diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..1f5a32f --- /dev/null +++ b/.gitignore @@ -0,0 +1,8 @@ + +*checkpoint.ipynb +*.pkl +*.pyc +/dist/ +/*.egg-info +__pycache__ +/build*/* diff --git a/README.md b/README.md new file mode 100644 index 0000000..186f013 --- /dev/null +++ b/README.md @@ -0,0 +1,54 @@ +# Welcome to University Of Chicago's Python For Analytics +This course introduces the python language of programming to students who are preparing to study analytics and data science + +Please follow the instructions below to get your computer ready for this class. + +_Note Mac users: Once software is downloaded, if you double click to launch it, you may get permission errors. Try to right click on the downloaded software, pick "open" and continue. (Apple is trying to protect you from accidentally starting malware/virus)_ + +## Install Python (anaconda distribution) +Please install Python 3.x from this website: https://www.anaconda.com/distribution/ +(do not install 2.7, it will be discontinued soon.) + +Mac users: +Accept all default prompts + +Windows users: +Accept all default prompts, **except** "Add Anaconda to my PATH envrionment variable." Make sure this is checked. + +Anaconda's distribution of Python is widely used in the industry, particularly among data scientists. This distribution makes it easy to use many libraries and packages for data analysis, building models, visualization, etc. + +#### Aditional steps: +Execute these statements at the terminal (Windows users should use Anaconda Prompt) + - `jupyter contrib nbextension install --user` + - `jupyter nbextensions_configurator enable --user` + +Once installed, please start jupyter notebook and execute code provided below +1. Start `Anaconda Navigator` and click `Launch` on the panel labeled `Jupyter Notebook` +2. Create new notebook from the web interface +3. Execute this code: +``` +%%timeit +sum(range(1_000_000)) +``` +4. Execute this code: +``` +from psutil import virtual_memory, disk_usage, cpu_count, os + +bytes_in_gb = 1024**3 + +print("Memory:\t",round(virtual_memory().total/bytes_in_gb,4), "Gigabytes") +print("Disk:\t",round(disk_usage(os.path.abspath(os.sep)).total/bytes_in_gb,4), "Gigabytes") +print("CPUs:\t", cpu_count()) +``` + +## Install Git +Please intall Git, a version control sotware, from this website: https://git-scm.com/downloads (you are ok to use default settings) + +Note that this is a command-line tool. Once installed, you may not see a new icon to click. We will install a Desktop client to remedy this. + +Although we don't make heavy use of version control, you will be introduced to the concept. Installing Git also installs "Git Bash," and comand line environment which simulates Unix/Linux. We will do several exercises which will require this environment. + +## Clone this repository [Optional on day 1] +1. Visit this web page: https://github.com/ravescovi/python_for_analytics +2. Click "Clone or download" and pick the "Download ZIP" option (unless you already have a GitHub account) + diff --git a/assigments/NAME_SURNAME_ASSIGN_1_1.ipynb b/assigments/NAME_SURNAME_ASSIGN_1_1.ipynb new file mode 100644 index 0000000..b5f71ff --- /dev/null +++ b/assigments/NAME_SURNAME_ASSIGN_1_1.ipynb @@ -0,0 +1,196 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assignment 1 - 1\n", + "* Topics: containers, udfs, comprehensions, error handling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 1\n", + "* Create a function that takes 2 lists as params, of equal length and does the following:\n", + " * returns a dictionary where the keys are the first list and the values are the second list\n", + " * make use of zip and comprehension to make the dictionary\n", + " * if the lists are not of equal length, use error handling to indicate the mismatch" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# a = [5,7]\n", + "# b = [\"x\", \"z\"]\n", + "# return {5:\"x\", 7:\"z\"}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a = [1,2,3,4,5,6,7,8]\n", + "b = [\"a\",\"b\",\"c\",\"d\",\"e\",\"f\",\"g\",\"h\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 2\n", + "* Create a UDF that takes a list and returns the permutations and combinations (length 2) as nested lists, along with the number of permutations and combinations. \n", + "* The function should return 4 things" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "a = [1,2,3,4,5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 3\n", + "* Map a function to the below list that\n", + " * returns the remainder of each number divided by 3 (52/3 = 17 with a remainder of 1, we want the 1 to be returned)\n", + " * use lambdas for the mapping\n", + " * hint, look at modulus (%) in python" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "lst = list(range(100))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 4\n", + "* Using comprehension, replace the keys in the list with their value in the dictionary\n", + "* example below" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# lst = [1,2]\n", + "# dict = {1:\"a\", 2:\"b\"}\n", + "# new_lst = [\"a\",\"b\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "a = list(range(5))\n", + "dct = {\n", + " 0:\"a\",\n", + " 1:\"b\",\n", + " 2:\"c\",\n", + " 3:\"d\",\n", + " 4:\"e\"\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 5\n", + "* Make a UDF that takes a variable amount of numbers and returns a list with the numbers having been squared\n", + "* use comprehension to perform the squaring of each item\n", + "* hint, this should be doable in one line using args" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "def my_func(*x):\n", + " return [x[i]*x[i] for i in range(len(x))]" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "b = my_func(1,2,3,4,5,6,7)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 2, 3, 4, 5, 6, 7]\n", + "[1, 4, 9, 16, 25, 36, 49]\n", + "\n" + ] + } + ], + "source": [ + "print(a)\n", + "print(b)\n", + "print(type(b))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/assigments/NAME_SURNAME_ASSIGN_1_2.ipynb b/assigments/NAME_SURNAME_ASSIGN_1_2.ipynb new file mode 100644 index 0000000..c5071d8 --- /dev/null +++ b/assigments/NAME_SURNAME_ASSIGN_1_2.ipynb @@ -0,0 +1,203 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assignment 1 - Part 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Instructions\n", + "* Rename this notebook with your NAME_LASTNAME_ASSIGN_1\n", + "* Finish the test on this notebook\n", + "* Download your notebook as a PDF\n", + "* Turn in both the notebook and PDF (in my case I would get two files RAFAEL_VESCOVI_ASSIGN_1.pdf and RAFAEL_VESCOVI_ASSIGN_1.ipynb)\n", + "* Show the output of your code working on the sample data, like below. \n", + "* If techniques are specified, use them. Otherwise, feel free to solve the problem how you want. \n", + "* Try to keep your code clean, concise and avoid loops if necessary. \n", + "* You have to show your work (code).\n", + "* You will be graded:\n", + " * The functionality of your code (Does it do what it was meant to)\n", + " * Showing the output on the sample data provided\n", + " * How concise it is (did you use a for loop when you could have used a comprehension for instance). Simply put, try and write clean, concise and readable code (don't use 10 lines for what could have been done in 4).\n", + " * Even if the answer isn't perfect, make an honest attempt as partial credit will be given.\n", + "* you should not have to explicitly use a for loop except for question 12, meaning it is possible to complete the entire assignment without using the keyword \"for\".\n", + "* the only third party functions/modules you are allowed to use are permutations and combinations from itertools. yes, there is a built in median function in numpy, but the idea is to program yourself and solve the problems on your own using basic python techniques" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 6\n", + "* Make a UDF that takes two lists as params and returns a list of the intersecting items (items that appear in both lists)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# a = [1,2]\n", + "# b = [2,3]\n", + "# return_lst = [2]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a = [1,2,3,4,5,6,7]\n", + "b = [2,3,4,6,8,10,11,21]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 7\n", + "* write a function that takes a list of numbers and filters for odds only\n", + "* use the filter method and a lambda as the function" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# my_lst = [1,2]\n", + "# new_lst = [1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 8\n", + "* Write a function (lambda or not) that returns the absolute value of a number and adds 2\n", + "* Use the function to map it to a list comprehension" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# my_lst = [1,-2,1]\n", + "# using a comprehension return [3,4,3]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a = [1,-2,1,8,-10,15,-12]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 9\n", + "* write a function that takes 2 lists and finds the euclidean distance between then\n", + "* note you may not use any third party modules. use comprehensions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# a = [1,2]\n", + "# b = [3,1]\n", + "# distance = ~2.23" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a = [1,2,3,4,1]\n", + "b = [3,1,2,4,3]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 10\n", + "* write a function that takes a list, sorts it and finds the middle value. \n", + "* use error handling to check the list is odd in length\n", + "* if it's even, return an error message\n", + "* feel free to use a try/except or assert\n", + "* show the output run on both lists" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# a = [4,6,1]\n", + "# sort = [1,4,6]\n", + "# middle val = 4\n", + "# if even number in size, return error" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "a = [4,6,1,3,12,41,4,1,24,12,17]\n", + "b = [4,6,1,3,12,41,4,1,24,12]" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/assigments/NAME_SURNAME_ASSIGN_1_3.ipynb b/assigments/NAME_SURNAME_ASSIGN_1_3.ipynb new file mode 100644 index 0000000..1d3f2b3 --- /dev/null +++ b/assigments/NAME_SURNAME_ASSIGN_1_3.ipynb @@ -0,0 +1,151 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assignment 1 - Part 3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Instructions\n", + "* Rename this notebook with your NAME_LASTNAME_ASSIGN_1\n", + "* Finish the test on this notebook\n", + "* Download your notebook as a PDF\n", + "* Turn in both the notebook and PDF (in my case I would get two files RAFAEL_VESCOVI_ASSIGN_1.pdf and RAFAEL_VESCOVI_ASSIGN_1.ipynb)\n", + "* Show the output of your code working on the sample data, like below. \n", + "* If techniques are specified, use them. Otherwise, feel free to solve the problem how you want. \n", + "* Try to keep your code clean, concise and avoid loops if necessary. \n", + "* You have to show your work (code).\n", + "* You will be graded:\n", + " * The functionality of your code (Does it do what it was meant to)\n", + " * Showing the output on the sample data provided\n", + " * How concise it is (did you use a for loop when you could have used a comprehension for instance). Simply put, try and write clean, concise and readable code (don't use 10 lines for what could have been done in 4).\n", + " * Even if the answer isn't perfect, make an honest attempt as partial credit will be given.\n", + "* you should not have to explicitly use a for loop except for question 12, meaning it is possible to complete the entire assignment without using the keyword \"for\".\n", + "* the only third party functions/modules you are allowed to use are permutations and combinations from itertools. yes, there is a built in median function in numpy, but the idea is to program yourself and solve the problems on your own using basic python techniques" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 11\n", + "* Make a generator that parses the list of transaction data\n", + "* Put the contents in a dictionary where the key is the user id and the value is the list of items the user has purchased\n", + "* note the transactions are pipe ( | ) delimtied, meaning you'll have to use some string manipulations to get the values from each transaction\n", + "* make sure to skip the header somehow" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# transactions = [A, item_a], [A, item_b]\n", + "# dict = {A:[item_a, item_b]}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "transactions = [\n", + " [\"user_id|item_id\"],\n", + " [\"A|item_a\"],\n", + " [\"B|item_a\"],\n", + " [\"C|item_a\"],\n", + " [\"C|item_b\"],\n", + " [\"C|item_c\"],\n", + " [\"B|item_c\"],\n", + " [\"D|item_b\"],\n", + " [\"D|item_b\"]\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 12\n", + "* Make a function that takes 2 lists of equal length and returns a True when the values in a given index are the same in both lists and a false if they are not.\n", + "* Use error handling of some kind if the lists are not of equal length." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# should return [True, True, True, False, False]\n", + "a = [1,2,3,4,5]\n", + "b = [1,2,3,5,6]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 13\n", + "Show three ways of attaching a list to itself (one of then should use the function append) . \n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "a = [1,2,3]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Extra questions - To think about .. And answer..\n", + "\n", + "* What two datatypes can be declared with { }?\n", + "* What two datatypes can be declared with ( )?\n", + "* Provide examples of each of the 4 above.\n", + "\n", + "* Describe what a generator is and how it differs from a list or tuple." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/assigments/NAME_SURNAME_ASSIGN_2_1.ipynb b/assigments/NAME_SURNAME_ASSIGN_2_1.ipynb new file mode 100644 index 0000000..a745a5c --- /dev/null +++ b/assigments/NAME_SURNAME_ASSIGN_2_1.ipynb @@ -0,0 +1,230 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assignment 2 - Part 1\n", + "* Topics: pandas and numpy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Question 1\n", + "* sklearn has the iris dataset built in\n", + "* this is what we will be working with\n", + "* put the iris data into a dataframe where we have 5 columns (the 4 features and the target)\n", + "* but the target shouldn't be numerical, it should be the actual label (so put setosa not 0 in the target column) " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import load_iris\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "iris = load_iris()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "setosa\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)Variety
05.13.51.40.20
14.93.01.40.20
24.73.21.30.20
34.63.11.50.20
45.03.61.40.20
\n", + "
" + ], + "text/plain": [ + " sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \\\n", + "0 5.1 3.5 1.4 0.2 \n", + "1 4.9 3.0 1.4 0.2 \n", + "2 4.7 3.2 1.3 0.2 \n", + "3 4.6 3.1 1.5 0.2 \n", + "4 5.0 3.6 1.4 0.2 \n", + "\n", + " Variety \n", + "0 0 \n", + "1 0 \n", + "2 0 \n", + "3 0 \n", + "4 0 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df=pd.DataFrame(iris.data, columns=iris.feature_names)\n", + "df['Variety'] = iris.target\n", + "print(iris['target_names'][0])\n", + "#df['Variety'] = df['Variety'].apply(lambda x: iris['target_names'][x])\n", + "df.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Question 2\n", + "* using the data array from the iris variable (should be a numpy array of size 150x4), for each row and column, find the sum, min and max\n", + "* print out the results, but for the rows, show only the first 5 elements of the array and display the length (otherwise it will be large arrays since each row has a value)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Question 3\n", + "* write a function to return the multiplication of two matrices\n", + "* use some sort of error handling to make sure the dimensions are compatible\n", + "* use the function to multiply the iris data (don't use the label column) by it's transpose\n", + "* what are the dimensions of the result\n", + "* put the sum of each row of the resulting matrix into a vector, printing out the length and first 5 elements.\n", + "* put the sum of each column of the resulting matrix in a vector and print it out." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Question 4\n", + "* create a subset of the iris dataframe that doesn't have the label column\n", + "* for each row, find the index of the min and max feature value\n", + " * if we have a row with values [10,2,3,4] we want to return 1 for min and 0 for max, as these are the indicies that align to the min and max values\n", + "* the result should be two arrays of length 150 (one for each row) with the indices of the min and max value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Question 5\n", + "* Use the above two arrays to make a dataframe with 2 columns, the first being the feature of minimum value and the second the feature name of the maximum value\n", + "* note, don't have the cell values be the index value of the min/max value, have it be the feature name\n", + " * a row should be [min_val = sepal width (cm), max_val = petal length (cm)]\n", + "* show the distributions for max and min features (how many times is each feature the max and min value for a row)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Extra questions - To think about.\n", + "* Describe a situation the functionality from question 4 and 5 could be of use?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/assigments/NAME_SURNAME_ASSIGN_2_2.ipynb b/assigments/NAME_SURNAME_ASSIGN_2_2.ipynb new file mode 100644 index 0000000..0a532f1 --- /dev/null +++ b/assigments/NAME_SURNAME_ASSIGN_2_2.ipynb @@ -0,0 +1,102 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assignment 2 - Part 2\n", + "* Topics: pandas and numpy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Question 6\n", + "* sort the feature values for each row and replace the indices with the feature names\n", + " * so each row will have 4 columns, the first column being the feature name that is the highest value, the second column being the feature name that is the second highest value, etc.\n", + "* note, watch out how argsort in numpy works. you will need to reverse the order somehow. the sorted(reverse = True) functionality might be of help.\n", + "* make sure to replace the index values with the feature name, as we did above\n", + "* put the resulting 2-d array into a pandas dataframe and print the first 5 rows.\n", + "* hint, look at the apply_along_axis() method for numpy arrays" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Question 7\n", + "* apply z-score normalization to each column in the iris data (note you do not need the target/label column)\n", + "* column wise meaning, treat each column as an array, and find the standard deviations and means of that column\n", + "* note, you can use zscore from scipy.stats\n", + "* results should be a pandas dataframe, printing out 5 rows and running the describe() method on the dataframe" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Question 8\n", + "* make a function that takes in a 2d numpy array X, a 1d numpy array Y and the size the training data, test data and valiation datasets. \n", + "* return 6 items\n", + " * train_x, train_y, test_x, test_y, val_x, val_y\n", + "* do not use any modules. this can be solved using bracket notation to subset. Note // will take care of decimals in doing division. you could also use int() to convert the float to a whole number\n", + "* make the params for the training, test and val size be decimals, that repsent percentages of the data. For instance .8, .1, .1 means an 80% training, 10% test and 10% validation split\n", + "* use an assert to make sure the numbers add to 1\n", + "* print out the dimensions of all 6 elements, using iris as a test case with an 80-10-10 split" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Question 9\n", + "* using pandas, find the sum of each feature by species type (label)\n", + "* do the same, but find the min, max and median as well" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Question 10\n", + "* mean center each column of the iris dataframe (excluding the label column of course)\n", + "* this means, for each column, the mean should be zero. to accomplish this we can subtract the column mean from each element of the column\n", + "* note, broadcasting, which if we have say a 150 row and 4 column dataframe, can take a row vector of size 4 and apply it to each element\n", + "* thus, we can answer this questions doing something like df - df_col_means\n", + "* run the describe() method at the end to show the data has been mean center" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Extra questions.. to think and answer..\n", + "* Explain what the axis mean in regards to a pandas dataframe and numpy array\n", + "* How would you groupby two columns in pandas?\n", + "* What functions are used to read in csvs and excel files in pandas" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/challenges/Challenge 1 - N Queens.ipynb b/challenges/Challenge 1 - N Queens.ipynb new file mode 100644 index 0000000..def6c73 --- /dev/null +++ b/challenges/Challenge 1 - N Queens.ipynb @@ -0,0 +1,125 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# N-Queens Challenge\n", + "\n", + "From wikipedia:\n", + " \n", + ">The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general n queens problem of placing n non-attacking queens on an n×n chessboard, for which solutions exist for all natural numbers n with the exception of n = 2 and n = 3.\n", + "Chess composer Max Bezzel published the eight queens puzzle in 1848. Franz Nauck published the first solutions in 1850. Nauck also extended the puzzle to the n queens problem, with n queens on a chessboard of n×n squares.\n", + " Since then, many mathematicians, including Carl Friedrich Gauss, have worked on both the eight queens puzzle and its generalized n-queens version. In 1874, S. Gunther proposed a method using determinants to find solutions. J.W.L. Glaisher refined Gunther's approach.\n", + " In 1972, Edsger Dijkstra used this problem to illustrate the power of what he called structured programming. He published a highly detailed description of a depth-first backtracking algorithm.2\n", + "\n", + "## Build a code that calculates the ratio of solutions vs the possible arrangements for N queens in a chess board of NxN size.\n", + "\n", + "\n", + "1. Build an UDF that calculates the total ammount of arragements of N queens\n", + "2. Build an UDF that if a Queen can be place on a given position and returns true or false\n", + "3. Apply the 2nd UDF for N queens on an NxN board\n", + "4. Repeat #3 until it exhausts the possibilities\n", + "5. Build an UDF that manages the results in a table? or tuple? build an assesment of this object that returns the compiled results.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For N = 1 \n", + "Found 1 solutions.\n", + "1\n", + "For N = 2 \n", + "Found 0 solutions.\n", + "0\n", + "For N = 3 \n", + "Found 0 solutions.\n", + "0\n", + "For N = 4 \n", + "Found 2 solutions.\n", + "2\n", + "For N = 5 \n", + "Found 10 solutions.\n", + "10\n", + "For N = 6 \n", + "Found 4 solutions.\n", + "4\n", + "For N = 7 \n", + "Found 40 solutions.\n", + "40\n", + "For N = 8 \n", + "Found 92 solutions.\n", + "92\n", + "For N = 9 \n", + "Found 352 solutions.\n", + "352\n", + "For N = 10 \n", + "Found 724 solutions.\n", + "724\n", + "For N = 11 \n", + "Found 2680 solutions.\n", + "2680\n", + "For N = 12 \n", + "Found 14200 solutions.\n", + "14200\n", + "For N = 13 \n", + "Found 73712 solutions.\n", + "73712\n", + "For N = 14 \n", + "Found 365596 solutions.\n", + "365596\n", + "For N = 15 \n" + ] + } + ], + "source": [ + "\n", + "for k in range(1,21):\n", + " print(\"For N = {} \".format(k))\n", + " print(NQueens(k).solutions)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/challenges/Challenge 2 - Face Recognition.ipynb b/challenges/Challenge 2 - Face Recognition.ipynb new file mode 100644 index 0000000..1a1d50a --- /dev/null +++ b/challenges/Challenge 2 - Face Recognition.ipynb @@ -0,0 +1,358 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Face Recognition Challenge\n", + "\n", + "From wikipedia:\n", + " \n", + "> Face detection can be regarded as a specific case of object-class detection. In object-class detection, the task is to find the locations and sizes of all objects in an image that belong to a given class. Examples include upper torsos, pedestrians, and cars.\n", + "Face-detection algorithms focus on the detection of frontal human faces. It is analogous to image detection in which the image of a person is matched bit by bit. Image matches with the image stores in database. Any facial feature changes in the database will invalidate the matching process.\n", + "A reliable face-detection approach based on the genetic algorithm and the eigen-face technique:\n", + "Firstly, the possible human eye regions are detected by testing all the valley regions in the gray-level image. Then the genetic algorithm is used to generate all the possible face regions which include the eyebrows, the iris, the nostril and the mouth corners.\n", + "Each possible face candidate is normalized to reduce both the lighting effect, which is caused by uneven illumination; and the shirring effect, which is due to head movement. The fitness value of each candidate is measured based on its projection on the eigen-faces. After a number of iterations, all the face candidates with a high fitness value are selected for further verification. At this stage, the face symmetry is measured and the existence of the different facial features is verified for each face candidate.\n", + "\n", + "## Build a code that finds faces in a given picture.\n", + "\n", + "1. Build an UDF that finds faces in a given picture.\n", + "2. Apply to 3 different pictures ." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import cv2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def face_detect(image, cascPath=None):\n", + "\n", + "\n", + " faceCascade = cv2.CascadeClassifier(cascPath)\n", + "\n", + " faces = faceCascade.detectMultiScale(\n", + " image,\n", + " scaleFactor=1.1,\n", + " minNeighbors=5,\n", + " minSize=(30, 30)\n", + " )\n", + "\n", + " return faces\n", + "\n", + "def draw_squares(image, faces):\n", + " for (x, y, w, h) in faces:\n", + " cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)\n", + " return image\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "cass = '../data/haarcascade_frontalface_default.xml'" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "abba_dat = '../data/abba.png'\n", + "abba_img = cv2.imread(abba_dat,0)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 77, 66, 63, ..., 36, 18, 18],\n", + " [ 82, 71, 63, ..., 36, 18, 18],\n", + " [ 84, 71, 60, ..., 36, 17, 25],\n", + " ...,\n", + " [ 45, 22, 19, ..., 225, 110, 3],\n", + " [ 47, 60, 62, ..., 232, 157, 3],\n", + " [ 58, 53, 68, ..., 229, 150, 4]], dtype=uint8)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "abba_img" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(426, 500)" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAScAAAD8CAYAAAA11GIZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9edBm2X3X9znLvffZn3frfZtFPT2bZ5FkybJkBduxJC/YrBY2RZwFFJKKoQhFQUFIOZCwODbZSIJtCpxywGBkDA7ItgyJpMTaGc2MZp/pmeme3t7ut9/lWe92zskfv3vv8zzdMxLBDJmi+lQ99TzPveeee9bv+e1HhRC4k+6kO+lOeqcl/f93Be6kO+lOupPeLN0BpzvpTrqT3pHpDjjdSXfSnfSOTHfA6U66k+6kd2S6A0530p10J70j0x1wupPupDvpHZneNnBSSn1MKfWiUuoVpdSfebvecyfdSXfSv51JvR12TkopA7wEfA9wCfgK8CMhhOf+tb/sTrqT7qR/K9PbRTm9D3glhPBqCCEH/h7wQ2/Tu+6kO+lO+rcw2bep3BPAG0v/LwHvf8tKtLqh1V4HpaCi5FQA5QI+0igfCAqUrx5Qcs8lmqCBivhTYfH7LZO6JU/1v3426EVZ8l5V/Q94oyQfSH2WylEugIKgFCqE5lvyvvlvltoD1fuMWrTHrf6v61GnoKsHw+p1qjrflpwnGOnPJumlvH61bOXDyv1Q1RGtwAfJc8srQjU2K2n5HXUd3ryGt9VDVfmDUVKuVlKG1dJvHlYKC0jeEJr+rYdc+UCwqnmmaePy4/U1tShLlwFubVP9zrptdTnNXJT+IYCPNbrwK48HvdoDqu7Pag6s9GFdtFFvPnZu6RmjFnU1ClX61Xctj109Z/XSsz5UnbXap4t1smjXcj8sr5W6Dsp7Wc9KEbSW/02ZAbRmnu6R+/mbToe3C5ze7GUro6uU+gTwCYCot87j3/HHJZOR+2VbUKKznQOQbkTEY0feN5gsYGeO0V0xPoJ4HPBWXqnLpYntwcWrAx2MwuQCdjUQxVNP3tXNMyD3bBrQ1bN5Vzf/vVk0z2QBl6iVfMmBJ1hQZVWWBTuTgl18O7FqcrlXdjTRyAFgZwXzoy3szKOW2qTdYoDNRPomRIayEzX3XGKaPNEoxycGlxhM5vBGY2dFc98v5dWZo+xG8v5p0fyO9lNcL8ZbTXxzTjlM0JnUU5Ue141wiSHeTXHdCDMtqnbrpnxvNdFBxuRMl/75MflmG116dOZW6lDXQ5UCQGU3IhjVlA1gpgX5RotolDf3ZSwceT/Czl3ThmIQr1zXpcclBhfr5j9AuhHT2s1JN2LsTJ73scbFivZO3rSproM9yJp+qOta90f97Vt25d5yyocxugzYqtyyGzX9UXaj5jqATkt8y2Iv7+I3B/iWXXlXMUyIb87JN9vEN+cr76vv1c/4xNw2jnU5ZndCeXiwks9Oi9vaoNOy+X/r9eUy9TjFrXew10dVZUpCp9XkD+2YLz73M7f1TVPeW9757aVLwKml/yeBK8sZQgg/G0J4bwjhvbbdpehqghHwsFNHPHbYuafsyMRtX8/RhcemHpM6or2UfKhQHny9uwUa4PBG4SJFcuBwiSJohXYCXkEL1aOdfMqWFkopgM0CZVvymqzaRQJE84DJAqpcBUCQ/6qUfDYNxONiAUxGrpdt3QBuDcAm981vEAALVqGdpxjEDVAB2ElOsGoFeFwvFtBIDNp59LzEG3mHizVlR5NutfBGYyowqQGs7ETyXHXdG8mrS48uvQBGAF16QiT5ov0U37J4I6Cj5wXFIMFMclQZCFajM8f8aKcBprp8XYFYeycnO9xpQKF+93JShZThE4Mu/UrZ3mgBwArUdOkXbcsc8bigbEvd50dbDTDF44JgVANMJvfNdukSQzSVslUIFD1DumGxUynXTHKC1U0ddObwLSuLsHAQgnzLxG4+el40i7cYyDjV/W5TJ/OiHofSN/0Q7adN/wKUw0TqeXgogFcs3ksQgPMt23znGy2C1ahCxqwG73o8ov2UfKONmeRNHVXhyE+towpH2YmIro4WFFt1v9loqjq4btTU0ScGNcvI+1Fzz/eSqvxqzkYWVZSo6Vz6ZzQDt5jjt6a3C5y+ApxVSt2tlIqBPwD86jd7qOhqdLFY+GVLE7Si7BiKgW2Ax7UNWE00DngLTsYO7QIqBJQDkwuVM9+oFpkLDXjYdAE68dhRtBXx2GPTgMnkO5p6fCzgpzyYzFN0NUVXy7UKzIquRpeBdN1QtjQ29UyPJhRdjY9vJyBrMIoPCsq2lgXgw8pHz0vwgWgvRRe+YdnM3GHmDhdpXKSFPVn6FIMYO8kxc0d8sADIhsVpPqG5VgxizEiALz4oVvKpIHXRM6G+lp81o5xio020lzI/1iXakwXVUEEV++HasmPruVTGjHJM5hasRlVefR8EdOPxgnKQuoYmb96PyPtCreX9qHnWV/+jaUnRNyR7BS4xBCMAVLb1AphYsCg1uKkQsDOPLgPRzDM5EROPHa4XN+83NydVX8h/14sJRpNvtoVCbTYMi09sky++MceM8hXKV+asb+pvJzllJ8L1ZEzyzc7KfCiGreadrhdTDFsrdSsGsQDLfgY+4BPb1A8fBPy8jLud5DKedd/WY1DdK44NiPbSpXnJYlyrsu3enKB1M9bFsQHty1OC0TJvRvMVsCYEqQvguy35n8S3rZGmb97yzm8jhRBK4D8DfgN4HvilEMKzb/2AgEQ89tiZw7UNQSvaO7KACUIJqAB26ojGpZDzGuKRgFENNkVHNR9dQmvfY3IBI5MHykRRtEV2FLTw2/E0kPcEGKeHLbqEvKebnaNsa4quweQyacu25NWF/CdA+2YpbGfPyDUE0IR0d9ipQ5eB+KBEeSgGFl0GdBkwqbTZtWVhF4MYkzryzRZFT0DZdSr2JUh+kzphUdOSYJSwPgc5xUAGW/4XxAcFfikfIAvHKFyi0bkXUjz3FWWhm+dVGdCzgpBEmFm5WHRG4XoxdlLgejHt7TlYjZnJ5G5fnkr/KoWdCOC5bgQeyrVEgK8M2JtzfGJRpUz2oIXCdZHGjPIFULLYDAA6r4/knV76ohjEmLkjW4ua9nauzHGRyHriUUnZ1iS7BcGALjw+kk0vH1hcpEnXq83Py3iVLU0ycvhIYUY5qvD4xJKfXAMvfei6EWaU47o1INAs8FuT68m4mFEuC3deVlSalTGr+qgGateLpZ7JQvJiKzZez0vs3px4Z7oiT4r2M+KdKWZ3gk4LfGLlPZW8K9pLb6uTb0XNfZ9YQlRBQtWGupz6vXVShScY0zwnQCXzQhVe7relzWqe4fvtisIs8Rt9lHP4fhuV5m8BCm+fzIkQwqeAT/3L5FUBfCxsGEF2OlVC2TbYmQBWDVBAs8iSUaDoiHCu6CnicaB73ZFX1I3JPUVbE089s0OGaO4roaO8N5ovZlE0F/ahvedwsSaaixzKFAo7v4X9mnuicUnRt408KxtK+Z3tnHzN0tnOG5a0Ee7Hi7rbqaPo26aMaCzgoTNHMYgaAIr3M0BkB7cKmu0kx7VsM2ldy5LszJkf72JnUn40KoTCG8TyfE2FpUIt1GzHchk+MUQHGa5lKddamGnRsBZ2kkOw8lwIIvdalsHNC1iSQ5TdCFV6VEURqyXKOESmqc/yPVNUYFbds/s5RSVjIsD8dJ9oVBAfSJ2LQVyBsYyJzkWu5GONB3Qum0QxEAD0RkAw3ssphhG6DLRuFri2IRqXZOsRne2c2ZGYaOYbNrKW8anCUa61sJOyqmetUAnNt67keqEdNXO2llc1cpoAOquFnEG0CcjCdwPdjJFaHXZJHsq1FmXHyAZQevLNFnGAYAyqqOprNViN68g4LKjERX2lfRqTLsCnGRe/+C2g4xZjV/UFIVBsdGSzShbX9d6I/O7DmKo+hIDvd9EH08V77Kq8cTm9LXZO/19Td+tUeO/7fhwQAW62kVC2FZ3ruciKMkeIdLNLKB8o25bxKYsuhAKqBdMmC5g8UHQ1rb0FP+tioS7sEiCVbU00kf81+KglFtjOHOmmxeQBt8Si2XloBN6NRq1KwUI0cpQdQzwuKDqr+B+Mws7kvp05TOYWA+qDAPLcUbYNJvNEByllX4Ch1vjotKDsJ5RtQ+v6TNpS5QEaOYNygWJtIYCsn/eRbsAoPdTGzl3D3uSDiHhU4KOFhizaT0U43VtQZcm1ibx3rY2Z5rhujM6WJneVamGr695OvmeV8NmkDh/drtHSWUkxTIgOMlTpKdZawvpU9YhvTCnX2vhqt6/7tB6PemxqanB5DOK9vJHBZFsxOl+sA5foFbli++oM17IrQu9gdbM5RHtzsqO9qs6uWeRqSa5W191VgulgtQjNE9PUU7lA2TFEo6Ipv+zFRPtp0+a3SsFq4huy6JeBo1hvr9QnWI3enxJ67cUY3ZKv6YeWxaRlswHWda6fyQ91AZr5UT8DEO3NF+VPZI6GXgc1meHX++jtXULp+MLeJznIr/8b1db9KyU7LSkGMfFBQTAR2VqEyQLzrQiTB+JRJbeo+GXlLC4Bk1KxcCXeKlysiKYiIwIBHJt6QEDG1BMxCCgtX9NlIBgoOpp8EBFNPS4WmRRIfm/VQq1aLYSyLWWYNFD0DcpB2bYUPU17Z2lHKSsZS/XtY93IlFQI2NShc0drnFEOkua6vLyS4/RidO7o3JhSbHWw++mKKUFN5QDYsVBePrG4lkU7T7Q3p6xAK5qVmEkuLEBW0kqFVQtaCetoVSMvUCEIqzcuKLY6mEletStGp0VTt5rCkP5S+FZ0+1jvzzGTjGC1sAJvsknWAt35sS7tq1PJU9UDBBhdpQwARNbUsZhsIVNSZbhNQ2qnDh+LLBKjiEZuBcDkPUsPhLCilTJz2RyWr9dUbU1Rpoc7zcah0xJdeMqKVQMw44z0cAeTeRHgA/GooLWdNRuPLqyMXwiYebEA+t5ifBd95RuNHIBvRZhJhgpQ9mLsOBMQWmtBLybam6NKT7nWrtoMel6slGHHMj4NlVW4pfKlbunhDtBq5llN5S2Xo+nIvXlG6HXQN0eEjSFqtERBvUl6R/jWKQ8+UhR9aVDZtUIBZQEfieypBiadOVxbSP6gYHChbOQRZVsLqPREM6ZLSPbdCllscinTR6L+d4lurpkskG4YvBWgiaYyGdo7BUVP4xKFt4qypYlHJUVHNIy6DE0dg4F4VDY7b+daxS4lq5tDTV43bUrMgko0GteRndInFlV40RgZLdSJh2A0xUZHWIBujN2bC5+vlcgQvMjTXEfkRMEIZRK0kgXkBeTNJG9AcCHEBZOWApxV+UBl3yLyoRrQWq/tNHKJWvYArEzkYBU6LZpPsIpiq9Nogepn6vs+1vhYN8DVeWOM68VEN6YrMhiRv5WNjANqLazHx5rZ4Vi0R0FAuJ4n88NidlF2DGXb4mONrWR4jb1bY9KysHNTISwtwmpSKSiHLaK9OXacYccZPrENywlQbHWE1ctd0zbXi6s6BaJZSTQr0dXGoEKgdX0m2tleTLnWqmRcsYzFLUJmQlgZA9eTPKr06LQg2pvjejHzUwN07rDjTFjCYatizTN5vmXRaVlRdEvgkhaNtlLGUzf3OxdH6HxhjhCsIlixr5L3V1TbLIWZjHMYdFGjKX6jzzdK7whwqlMwqgEOH8nO7WLVCLvLlqHoR6JNGESYYlXDF7Qinng6O64BlvmWJZq4RuuWDVd53Pb1XADwWoaPhEIyWWjy1/Kp5WvaCfvV3ilQXtjKevdTrtrFIpnUwb61uaEqKtlIZYOkay1WCKglrU4xiMkOdRpgaCiZKo8ZZY1wsu4H5TzxtTEggswaiFQZGuBTmWsE0maUVWOgKxVz2ZgBABVldbva1/fbK/9DZJryF5mW2yyykBpMQmQoNjvYvTnlIKEcJMTbE6KbMwE4TwOmxWa3ER4vl9loCatrZaUhjMeeaFpip6UAdSKsa2c7p2zb20xCasCpr+cDTTz2At7VO10nxnXihZD5ZsVWD1or7dZZuQL2i+tO7NaW21D9rt9Ttpee8zTv+kapEVpnC4G8b9mqrrIBJDdmK2PSsOH1vKqeWcjEFv2j5wV6Xogsab7QpIqctGzKsHtzoZxvAU+30YN2a6G163dQF6/x5iaR1Tu/aav/TaTK+tRkIpSuPz7WdK5lmLTEpLK72NSJfKO2a4pk0ong3Fdk/JKANg+Nxq/W2Jl08Sl6Fjv1zI8kzXuDovntYkW6URkjjkt07rFT35RXa7lq8DSpI1+P0blYx5atyq6mss+i0tDo3FP0o+qaPOtjI9SECw0FFLRovKKDXPj+Su5W/zYzYbHKYYKZFY1GRs9Lis1uBQQCKuUwEblDpd1LT/Qa4JLdfWFUqQqHGWXoebmwCF76uHaEGWW4brVwg4CinuVEOxOKzQ4+to1A1bWjaqE5fGwXWi0Pdj+jHLRQhZffw7awIJsLQFZO+jPZnjVAW6cGNKvFFDXmCpUJQbdauEVYsRNbTq6y6woabj4g4oRk31H0NHY/Qznf1IHKBMG1I8pBq9lQ6nYKWC40XCtsbrVxCEsolHKz2RRy3U6KisKVvLUWc7mMhWlGttKOmqqt+1c5Yd2CWYB305+1LN4YKcfLuKqqP10vaUDSJxHFRgefRPgkIrq4g8pcU24wpppzHXm+ula3zWzvQ1GiZql8RlPUsA/+rYH3nQFOlfwmG5qmRvGotjJWmHFGMJpoZyagUTiKnmlMBOrny7bCtcXWqLZXMXkQW6aubuRCyzY0PpZn3lQjAg17SYD5oYiyK5M7GFXZINHItrQL6MKLIHsiQFqzEzZ1Tf5li2+pt0G70IAwWjUsSKNC10rYt4mAlJrLt+vGRDszop3ZUpk1GwK+E+GGLUJiiJZkUyYtiQ9yAayaBdMKMy+EMt3qUGx1mnJuGzKrcf2FTMyMs8p2JlCudRqZjSqc1NcFkUNU7i81m+RbFt+JKLu2qTfA/PSQaC8Vu61ZAWHRLt+J8J3oNsCsZSP1/2CUeAKoivqoFWJNvsWn3iSCUWx9PScfmEqLKgaFdR3+pdJKncLCnmqUVTIpEV3o1K2Azq1Jp5Vs7NZyq37N12Lmp/u3bxzdiHKYNJpEMyuaetT/63yEisLqJytyolvL07MMu5+iZxl6luHX+rh+0hiE1uXHV0YyL6xGz7KFnVQI+LW+WIknMRgt399AIffOACdEXhSPvbBFQdik5NpEbD66QpoWGx2KfuU+MFsgbjIS26Pa5qhsa1xrQS0VXVn89f35objpTDP3DdXmWlp6RNP89lGlRWmL3RTI/figIF+LxMBu7ARcMifXgHywEALX8qV8TVTS2gXKriWaSYHRrMRkjmw9aQzaYFVuo5xYj4uKdgzWCFjtz3HDFhi1kEkg2jEzWeyqwYigtpY91aS5SUt8Jag1k0zAomWlb2q3if35YpHFGjtKl0BUAMZV8otyq4eZ5cRXDjCzHN+TsUMrzCxHpZnUKwTKYSJlTTKiyYLFCLEmPsibupTDRN7lFkLfYBcAh1aNoDmalJT9iGxDtI61PMdVWtNoVopGtAKGeuPwsZbxCJU2c+bxkRZNoFFkhzuYcYbrWJY3DV168WFbvlb4pm/qsdClx1eaN7TYpKGV1Muo2z669JT9CJOWjdV+s3nsp5SbbZLdjGhaYuaFCMxrpUWQcbWTfLEBtCxUZfiWxcyLlTLrZ3XpxWatKrPedEI7BqsJkSVE0pdmnDWmCnU7QyRzR81zyduWa1iDvrkvpgO7B4RZCts3wLw1BL0jwCnoCmxu2cnKQQsfG8q+aINMWhKN8kb4LSybouiqSjt2e3Ps3C/MB5ZBut4VWho79wsTguXdqbqmAiR7Jemapugo9t4V8fr3t5hvVhN+VDbGhjrzwoZNSsq2FflHJTeoNXi14+WK0Z6H+CBvtD31jhK0woxTip5YQgej8MOuCDOhMcystSnLgEYImHGKGafN/7rMxjK4/tT3l6zUfWQW95aul2ttzFhARs+LFUBtUiR+ZfW9GihDr4PrJbhegt1PGzBVhZhPNJqoWyzm7f68+W8mWSW3CbeBuSocdlrSOy/+XEXHNuYc2r1JPW9JygX5hMUn2plhpyW+tr5eTm/W9qou+NBQpvbqHmacLSih6jk7LXGJWaGm6/vRftbI0+r+dt0Y34mw+2ljbU0IUu5yf/ggYGF0M0aN83m1Ub3ZuOOlrGYuGbXiKqNu+SzPPTPJ8J3KpcUaeXaWLezgairp8AasD1Ct1jeknN4RpgTLLitFz5Dsl5XjocJORTBbDhb2OrXcoOgoolnARZD3hfJajlIAC8BK9sTMIGjoXE6ZH22Jj51f2P9Q+b8twEy0eJ0vXMRPZxzc+zCT02LgGY8Ue987ZRKX5FlE5ytdolGgtS8ynXxo0UWge2nW2OHYyYKdNJlYc/s4bmQmNYlf29+4fqUlSyKS61NCEhGSqLEJyjZb6FzYxZBEDfsVQsDuzyk2OkS7s6YtIYkw45SQCFW3zK6FEETW44SCcr0E5UTbE4yqNElJU1Y5bIm7zFRYUZU7QmzRuasoNEVIoub5BhiNasCyHLaJX75Ccc/Rqk8qmcteim9FFIOY5PqU7HB3Zb6Ug9aKTZUZp03dikGMnZUioK76yWReIlhUgnUVaDaDWsBu5g6dlehIN1pjkM2t2OigM3F2bTSmCGtba7qAps52JsJwezCvtGBRtaG0sQfzhXw8BMqOxVR2Zo2SwCw0Y6rwlRwwlveNU8phuzH9MGMZF6F6q3GtNii7N1vYJiW2aYfMMduMs+vGjWavbkejoa3aWFPiTT2qzUbNc0IrEnlSMJDYyki1jd2ZCMW0Oya0E0hi1Ggi3/MK5M1bQ9A7ApwATCoDY2d+sVhvqbiu1JNieyGGlmEuUQVA/Oy0YyWsRL3g82GltQswP9bCGzDFYsF4q4hHJS4Rn7ho6lAuMPjVJykeP4d+4gW2fu7LKK3AGJQxqONHyM5scPUDCaMHCrpbM/Yu9Bmcj1l7OSfZzcg2EqJR0Ti6eqsbB9S6neYWLZhyAdex4g6CgLEfxGIhjVAh+aEu7Qv7AMzuXqN1Y+GaoAuP7wrLVGx0sKO0AeAamEISNZEK6mf0ngBZsdld2O0kEXqSVtbc1RhkBa6b0LoyFlDMCtQ8B2saA8D6PW+VQhIRXTvAnTqM3ZsxPz0UoKvaBtC6sMfs7GZj5e6txkzFdkdPUsr1jsjxqsWo0wJVAXpjrU0l3yk8AZrwJT7W5IOY9nZKMahcRWIBlhVP+8KLIWJisKNUBOBWY/fn+G6C7yYLjeu8bDYRXW0OdpSKFXYvwR6IbZEKNH1fW4EDTT1u1YrW7dATURxEN8U+yHeTlX6u86lMAMt3E1S2MAOwB/MGxHVRCcqrMC0q0Gx8zXyYZtK+JbsqFSotcy+RPhh2UFmBH3aEHd6XqAh2Z9LcC+s9VAV8YdBDzVJCp4Uqim+krHuHsHVGUfRlUmdrYi6gc4c3Ch8bXK3JMrpSfYsGIx6HxgWl6NxiXKkVduIwcy+g5ERrVy+6aOIbLZSdil3S6LRoAbO+YXIsIrl0AID60jPgHEorQgV8Vz7xGC/8scO8+vsM8+MlemJI5zHv+daX0R/d4fXfozg426X95fOYp14mX08aiqIGKl16XMdWmqLQfNduLLVWze6nxNsLg7VyIK4cbihamPZFMRmo3Tjqj+/EFZiUqCX1rx4trHeDUah5gZoXBGMo1zoNYNVymlojY3en6NEclZVVlAGZtCGJKLf6+F5LFosHvTfB15RKZRKAZ0H9WQ3WoOYF2fGBAFPmZGHXnv9rXdqXpG01MNXA5XutBaXZa4mscdBqzDHsKG3C6NQU660W6ADzI0JB18Dv2rbyuaQJqeMrsMoPdZtoDeVQDEC9Xcwp17YN6AsVGqROk1S0e91k4S40Sm/THNabTdm1FP2o0dJ5q2VTS0RmWQ7bFBuVYWMmmr1y0BJQSoz04dJmFJIIe0M2EpH3VeA4yZqNS2UF3lbyyOp/U9cb44Yb0ZO06Uu/NP56fyrvrCj0hcuLQ++OF1q6WUooCrF7shaK270K6vTOoJyCaMWChtaeIxrlzS5Sm9Q3pLTRDag0lI+GzrWCYmApE4UphF1zbSMsYy33qFxclAu4tiaqDDvTrZjRacv8aMAlEYeemKCfOY+vwjmoJY2Kiiz+vQ9w/G88Qf7tD3HpO2PsTFH2AvnU8sZ4jdg64rWMa9/R4ua33E+ypzj5Pz6BOnOSYjBs5A5ivCbGecUgIRpllWX26oDlFVsTjZascEMAROhaa83eLPaOKj2+vySfAny/hZ7lEKKFYV2rVrc79DglP7NGcmVCfrhLsjcBY3DrHfREhNosyxyWnguRJbQkNIa9McJt9TE7Y0I3QaVlk9+MRZMTupbk0gHZyaGUs+TyIcLxRb3yQ12ig4XMJ7oxgd0DinMniG5MFu20mnLQEjlRBQB2KouvVqiY3GNSTzQWqnZ2oi2mKFX0ijpul7ChWWNRX9exdoxu6lLN2ZoiclUYFJ153LAtipDRHLfeEc1lZRNl91NCW5y6Z3etkewt2uetxu4vKOLaT8+MM1RR4tY7kERENyaV8FnA69ZgdcEo/FpXxj+RuFEhKOnPCpRDfb1+1sv7ikFMXAnPy0FrpR16kpMf6ZJcOiAkcbPB1e9rNsEQCHmBiiNCO1mZN+94bV3QNPY33qqKSqp2/9igSk++3lrxHwtaXEzKRByG86ElKIgnnni/lCgAla2Ra5sq7Imr5EUl0ahkejymfX6H6VHDwSMFRU/I2/37e0w++i3oe8+sVtQYlFLoLz0DWtN6bYdDT3ope64g8my/dIhrFzfodVJU2xHvK079o21m3/MI5WaX5NqY6CBtfNtqnyWTlpR94efrHbMWXCfXxo06etmmRhWO9FhPhJGVe0IjoPahEYaKd3qBa1sxy9AKylrO4VBFuaKM8D2x+QqJEXOFjR5Ys1gUG73mWUJAj1N5T79FaNmFQDSJMXszyiNDievTsg21E5ZdLfotooNM3Go6FdUcVxbz47RhV+x4YeclFwzlfSeIr+xTbvUa2yJVyqYmWith5ctOhEcpZgcAACAASURBVI+NuIjcmONiLT6EscRYikZuxdWlbAt7740itCzx+WtSx4OsmZM1wNaqcjvOcS2DnuUie6uul52Ioh/j+y15pgb0SoPnY4PZm2Ey3wi5zd6M6MZENGizFLV9Ez3LZV20LG5dtId6Juz0+P4h19/TE8q29PjYNPnrfKqU9VD/jg6ylXGnMgkhBBnHWS7A0xLD3+jGBD2ai0Z2nIn28SBrxl2FIFpbaOpVzwM2huJb54P8916+v4G27p1BOVFTA/Lbx+J4qVwg3hayXlw6bDNRXSIB5kwmcZtUCcEivnItQ6hapkrxnUv2S4quFW/9rvi8bXzyKcYfeZjRPZAMU9b/ry43HofOVcXoLkP3UxekkAqUQgiEEFDWgvdc+8hx0k1FPBKqLD1swQRO3bXDjVGP08dv0jpd8PxdJxg+bzm8kxFev0R4+N5Fu4vFhKyjQprGFaBS0fYkumCwugmB4du1plDcWhrH2hBWTAjyIz3sSCZcvD1pBN0LAbXGv4mvlklL9Di93Wu8CvYWb0/w7ajR/PiWxcdGtGqlAF5oJ7hhFSpjlqKLEqzBtyuNTqjDxS6cg2vQTq6Ncb2E/PigMVSsqYHaDML1EhH6tha+fT6x2J0Jbq2zsisv+yfWJgS1+4s8V1GzhVCe8aik6NnG52z+0AnivbRyJ5L65Ie7mGmB60bYUYbdmRDs8BZ7oVDZefkqUqQI81XhFuNeFPheQnL5AKxhfmpAe5xx/g9s4CNo3azEDzNo7Xn6F+aNBm9+akByY4YuAsc+fZVyq78IHne4ix1llMMW9iBtfOdcN17xQIBFtE2gGRP5X2025ZK7VeXqYsaLsutn7f68eYc5mDfzgNLBzT0Y3OKy4m5ntev0jgCn2q7JzhxxJpMsuj5hct86QQ+E3YmrkKGFLNLasVdV8iVFaIKrgQjWa01dPK5kKIkCZBIOf/Vp/CPvYrZlKPuOzhf6HNwrE2Byr+OBn7rGa3/qPZz5qSdQd5/Cv3oR/+77xSYkK7j0vYcIFvJBIH0gpdPLMC8PKQeOa7sDfuTBr/KpNx4i/1tHOZV6OpfHTE536D8F+pnzcN9dqEzkLTVLEO0K/++tlgiPlYC6XBPBL5UNCuUiQNmtySdRY3ei96fo1DXktV/rimA5toQ1kVmYvSmqdLi1HmZ/QnF0DbszxpSO0BKtSmhVtlMV2xRfPsB3K9bQeXy3hbm8A8e2UPOM8tAAVXj0NG00QgC+26IcJsTXJzJZbW3Qurp7uk7UgLZOXeOfBWIw2NhoTcSaXKdlZcZREIym3BLL9xrM880WrSvjSjMV4Tt2JWIALDYGoApnrNC5r3zhLPFNYa/q5/L1FvHNFD1NgQ7BaOb3bBLfTMkOi0tPNF5285ANRM9LQiTarnKtLXZqlbbNDdukR9rMNw2vf7xHZzDiu8+8xG7eZVZGPP3GSWavtth5rEP7usLMW/SuOm78u0OUh+nRY6y/lJGtRURjMbuZnu7RfX3SaNuCEX/J5T6ptZBmkuFruVQ1l/Q0FWp5rUeIdOO3CTKPak2iKnwjP9IhiEC+k2CuCfUXIouKIplTe1XY3rnYfL1VekeETOkPT4bHP/zHiCblYic6yMg32hIpMHMVaWxob6fotGRyT18iWFYhT+zcU/QMOpeoAhIN05OuW9o3Ftbm0SjHvHYNv39A8cGH2b0/QXkxGTh4oMTMai9zxbv+q6fAew5+6DEA1r90hfGjR+l98XXIC/xshjKGC3/yMcoHp/zBB7/Cl3bvYlbE/ODxp9kpeozKNr/56jmO/kKLzv/5DHhPCIH59zyKnTm0E/+61hsHuHqhASESW5MQmUqVL/GZ7ZLMxbcs5mB+m2as1pjpSbpyr3bsLIcJ8cVd8tMbmFnJ7EQbbyRWdvTMBdhYQ5WOMBrD4U3yI32SCzeljJ1dsg+cI97LMDsjQisWi3DA7ohxaLnWERCfCuXley3Ja+vIDA4/7K6E9giRQU9S8iN94u1xU0Z9PSQRri1ykbIbEW8vNIW+As/lOFI1kNdx0Js4WZnMp1obWpdXX5NoAB7X1qJMqTSt9YYBIgvSaUmx0Wo0qrr0okFc6zT3lAsrscDrevmWRZcSirmuw/xIG5coZoc1h784wlzdIX3oJDcfSog+ssOpwR4nO/scjsd8de8MTz13BjuS/mvdVPQvesqW4saHC9TMEGzAHhg2noH1Z0aoVy6iTh6VvrIaPUmb382md0vf1XWtx7Xp5zpV5YAoJZrfrRid5qg0l43tusydkBfobkd87OaS9/Pbf48Dt/OmCPWOkDmhJHZSdG2MHqfiGzSaER1UmoG0xM4K2tspZm9WuY6II27R0ZVTpxbfvIZsF8Bp7ZW4tsZVVNTseJtwMEIZw+xoxPBCwdqrBUUPiD1+q8BkCp8Erv37j4HWjE9rpsc1k4ePMjpt8acOkz1+D7rTAe8589NPEj/Z5eef+AB39Xa5d7DDP7txP5984XE+88n34F/vsvugJfvQg9JeH+hcknhI3uhGsNoE9R8m1BbU4nFeNvGrgRUP8TdNSwLHZa2LKiXqZXR9gtvsy7ufPc8bH4HLH/HsnmuRPXo3jCb46zsUD5+BoiR+/hL56Q3Se7aYftcD3HgsZvfBHuk9WzI+pcfeGOHXRHDfAFM9vIVbxJFeHvbKBKAJvt9rVRbrLWHhp6nEHmrsssLiu3RNaJjGIJCF0H/ZTUfkT0GMXI1aKcd17IoCwuS1ixGNWl0VjhCLxkwVDrs/k8XnQhP/u0669Og0b0CrfqYuR6c5dn9Gvp40wATiZOwjRe+qQz1/HtotxqckztTB1zd54foR/vmF+/jl1x6jF2XoTBNOpiIK8WIruPNdGetbY+LDM9pbM8q+Y+9B2P72Ifn77hMtaX04Qpo3v3UVjbLWSi73T9mPUKVr8qkQoDLlUYVr2D2zMxKKqJQ2UsqY+15LhOFRtUm2W7IxFYWA1NtFOSmlXgfGgAPKEMJ7lVIbwN8H7gJeB344hLD3jcrpr50M33b/J7A7Y/z2jea63ljHHR6ix2mjianT9HRP4nr3DHbuJcxJtkqqR+OyidPjEy2BzaYF6msvMv/YY3R+82nKb32A6+9pk24F8k2HnmuOPnid608fYe0F2H1Y+scPS5T1qL2Y9lXNic9OsFf3wBhwjpsfOsH2hzyDFyXM7/AHr9CJcl586jRnf2GM2Zvir1wDrRvqqfz2h1A+iOq8ln20LGZvRnG0T/zGHtmZDexIqJTy2HrD6oEIkpfZEzXPRRM3XtbwrO525TCRPnjuVbb/vUcxP3CTdlRw+cYaXE/QuWLz6wH7h67zgcOv8fR/+i1c/GiPshvo37/LZJbQ+nKPbDOQ7Cri/cDhz16rOtwKG2iNUF7WQGTx3QQ9XbWsrgGnPqGksV+r7KgoSrLTG42G8tak96eiEZpmC/CqRAIhWWghGy2olQMcWjvpykk1TV+aOhzIIqa4N5pgFa03DqAoG/BdPryhOQFlkDRUPrBC6S5TvHV761Nq6rKuvb9NNAoc+fmvsf97HmPtHz3d1G3ysW9hdMYwvtdhN1NQgXefusSXnzjL4XtvMkxSTnb38Sg+9/K7UNsJPoIQeU7cs8P1PZHzFHsJpz8lhEByddT0lZpUoUx67ZXxqNtaj4urKMxlNrvu86YfuwlmZ0R+ZpPohcuEY1vo/QmhopRUu7VCQX/+8t/hILv2pgj1rwOc3htC2Fm69pPAbgjhr1THkK+HEP70Nyqnv3YyfGjrR/DXrq+Wby3EEWysASyMupKI8V2dJl99GEEdzXA5MmUtRK2BK/rc13Hf9hDmy8+hjGH0/d9CuqGZHlck+zB+NIOx5dzfHPHCj3cZbE05s77H5dGAdlQyLyzjaYvoqR7tGwGTiUlD/5e+AoCOZaFc/BPvZuuZkovfB6pUnPtTT3FbX/vA/GOPYeaO5MbsTakhOWJnTrnVFwvm8Rzfb69QQ42BWyuqBMKVbVC/jUqLSvsm+UIrQl28xsVPPEDRC5R3pXzwXef5f/7FAzz48EWefekkd919nc3WlJ15j0s7a/ibCd/5rc+yFs34/PW7uXZhk0cfuMB+1mb314+TbQTu+ctPw9kzqHku2r+lFCKLSjNCq7KLaccCpLVB4CSjONq/beLXbGh92sdKv7jKf2uprFvV53XgO9eLmwifwt6JmYryoYlnVfQsnTcm4kNXmQLUYW/al6fo0Yzy8ADXtsRXRhRHZcEvH4O1LFReNulo2lAt8OjauDkyafLQYVo3UtJDLdJ1w/pzY9Qzryz64LH7mB1rE00d803LzmMKdXqGu9YmbOYoHfCjCOUVai3HjyPWjo+IrCMyjkmacGptn2dfOcGZ0ztcvLLJ8KsJgwslvWdlvflBp2lDnczuBLfRa46LMnuzZqOrAau+pkezpgygOVXFr0sf6b0xYTQBa1GdlvjVAWwM+cJLP/eWbN3bAU4vAr8jhHBVKXUM+EwI4dw3KmfQPRE+YD8qx8R4L9RFXV6nTTh6CFjIUrCa2fEqgp+jis8t/nXBgM4Ddu7Ih7bxj4v3c+LLe/ir2wRXOWaeu5tio0M+tHQuTrn8PUOy9UD7mmJ0ruS+c1d4YE2ogmPxAS9Mj3JlOuTKaEBsS/YurHPqNyS0Svtzz4mhZq/LxT98jiNfydh5JEHnsPlsyvZ7W5z+h1dwl682mj98gIfPMj/ZJd7LsaNU7EQqwaNydagTOcan/q8nqezk6xIa1rci7NW95v9ybKf6IMNy0CJ64RLpo6e58XiCLqHzkW1G//cRZnfLAosHGVvDCS1b8h+f/ix/6a//QQ4ez0jeiCm7gY99+GsAFEFzM+vyzNVjFJe7hChw7udGqMsy2dWg8j5vJw1LUO+WoR2jx3OCNYT24pQSO0pR85z8xJBod/Xstdpl5Fbwbk7ySCxmljf/lzVRTSC95my7miJQFD1La3vO5K4u7Rs5Nx5tMbjgSPaXTn4pA/HlPdx6903PoKtjONXvbzSPS9dXgGqS4XsStyranUtf7O4x/Y5zdL9wnjCZEkJA33WKGx88xOyoouiHOrw4rR1FtiGHevh75zxw4hpWOVqm5KtvnMKYgNae2DqG7ZROlPO9h5/lH155jMs7axQHCXZkGJyHI7/8Eu6e45iDpZC6RUm51Rft4iSTzaza1Fb63mp07S9Z5al/L9+vN6oQWdi+gRoOVsr5/KVf4KC48baE6Q3Ap5VSAfiZEMLPAkdCCFcBKoA6/GYPLh+q2YqHgjJ1bJclgApZZfQHgIRiyPuxRLIsFl7YYnoAlAtzgtZOTr4WYaeO2bEE+9UKmIJHmRheuUikFFEIcM9pyhYc/aIj72seePQV7unsMPMxx+IDUh9xb+cGZzvX2VvvkOiSy4fW+OzgLEf/aUz7bjmmz0eGaASv/Vjg3p+dMTsmVMvJ/+VJ3EP3YkLAXboKwYPS8PUX6bwYU777vgV7UgGTmossIK59kwDfa+M2++j9hcW4TovK2jpfnHjhxNpaHaSEdkz88hUu/ehZsg34xO/9dR5tX+APf/Y/4L7vvsgoT3hwfRutAv/smQdAwX/xlR9lc8ez9b8Fzn/csf604Z8OHkFPDY+/5xW+9vopzp64zo8+8mv81Wc/ygs/3uXe//0M8TMXBJgORtA+JBqcyIp2b5qix3PcZh9zcwzzHB0kimNIIoKW2Em17ZTvthZAPc8J3crIsrqmC/Fbi7aFRfHdVdYfFuFpTBmqAx9yJmc65H1NPlDo033aNyUyRT4UT4PZ4YQjv/wS/tRR6UdrGJ3t039V+tzszyiOyCKrjYMb04BqCi8OPNVinNptVWNiMXtTKW9acPDAUYbPtZgeMfTabfzBGGU0IbEMX80IOiHdCiSnJ7STnNg6fujYSzzeucCn9x9iez7gmcvHKa+3CbGnCKA6js1jIvv0KP75zv10o5zwRofurqK1Exi+lhPmKeaFC4S7jjfC7GBN4w+oipKQWEJim7kYWpHEbqpEB/UYmcrHTo/nuGGX5YMR5MGA2liXn6Nxs4G9leM0/PYpp+MhhCsVAP0m8OPAr4YQ1pby7IUQ1r9ROcPO8fBt+ntYCTxVU0/GoI5siQyj227I5tnJbgNQJgurp6PMXHNeWbwnano7LzFfFOoGIx7cymiC8yijufkHHmfzl54CYzj/c3fznfe8zMCmdEzOzbxH12acTm7S13NORHt8PT3FITtm6hP+5xf/HeYvrNHeVpQtmJ90BOtRpebuXy5pvXoDf70hLgnLBwk6B0qTffejJNsLeZIezxo26LZ+v3od1W7jDq2hx/KM73cw+xN8t6IoczGK1GkJ2zsc+ycZn3nlLL1eitGediw73X1rArj/6K99F60fucbR7ognLpzm3J/fY3ruEI/8xSc5/8MnmJ47xM2HItZfLtn5QzPyLMKXiv/2A5/kzz/9g8x329hewZmf1URffgHV7QoAA6rfE0opidHTefN7pU1ZLtc0K/56oR0vNI61fM1qYe+NQU/mYiKRFWLBPL399Jfmd9swPWrpXitF9tSNmB6PyQYK8wM3ufn6Oo898ipPPn0PP/qhz3M1HXJ+tEXrz/XRL16AI1uL+izVBRa+crXYoRnH/ak8U9VVlQ5/dRu0pnz3fVz67g6bH7jG5csbnPujT2NOHhN2/MoNLv3YOTrbno1ff5lw/BDXv22d/fsDvu05cmaX8Tzh1Po+xzojMmf5/q2n+fNf+F2ovYjOFU3RD5i5wrx/j8moTXAK5oaNJw2TM9B/FQ5/bhvfa6MnSy5NS3LKFda56ufltNKufnvlfxhPUP2KmreGcGUbvV6JaPb20etrfP7aL3KQb//rp5xCCFeq7+tKqV8B3gdsK6WOLbF1179hIdCQrE1aYuvwXjyYl7Q9qhQv8zp6gIRcqVigtmlC5spJHFrMB558ufGLa4CpLIV60VqACbj5ex/m6Po1pmVCz2TczHtk3jJgzkHZIYochsC3tc/z+dlZ7kmu875jF3m1N+XVNw6x/uWY7OEcN7HotZz54YR06ziDX72+2ra6LpVAvXVtKhbxdexmLTy8Tm+3ZwqnjqL2JwvDQkSzEqoTa4NS4D36/CV2/+4h/szZL/Hp/YdJXmgzOmN5/4PnaZuCuYv4zHPn+NzBQ/yuH/8Sn/+p9zH59AH+J2LcG1e48fHjlMGw976jrH11G5NtUPQN4ZkB7kRBdNPyi9vvI93ukhyaMeimnP/RNf7o/3SDz3y7GK6qjbXGUFNdvS7UyGSOnswawXnTrkQiBKh5gZ7McFtCnajKpACjRBDe70g+7yiOD7E356g0w2+JHZc5SAktK4H9DzLS4x2mh+UwjGP/5CKv/odnOPM7rvBTd/9DOrrk5WKTz43v56nOCb727N08/sirHIv3eWV6iIvXNtAfj9l68kG6VwoR0Ne+keOZCMldIHQjmBaoWYbrV1ETXMD3JKpnuZFgjUK/Vh18rRQXfqBNeTxF/69bnPvUk+IadXUbZY6x/91nsdPAzmNw471naV/VlN3A+vOKvG8pnzhE+kDg0peHXHYwPeXx71W8912vY5Xn0mSNKztr/MjDX+I3r97P+EaP7isR7euB2THF5tOe4bP7+IuXUcbA8SMSM2yJ+pO15ghe5L1mZyT2cDf2cYfWFpnquTfLCP1O02a6bdT+mNCKG2AK8zlq0G9A6m058Vcp1VVK9evfwEeAZ5CTfX+syvZjwD/+pmUF0MOBLNxlYFIK7j0FSdxMVJ2WTZhenUtY3qIrJ7m6WDfxeKJRUVmC28afqmGlgOA8oQIpvBdqxntufLhgbybUx4XZBvtFm0SXXM2GHLg2RTBcd30ulhu8K7nG1CccSUbc07/J++97jf3355z8O5ZokOMyw945zfDZPfSRSm5Wk7LBL9SoSsNLr5Md6mCm+YJVqGQVwWrIlg4fDAE/7MoESGIJQVGrq2diNMf1m/ylr32a470D/sLz38/nf+HdRFPovRTx7PWj3My6fPnlu1Fjy/3/wxWe+2CMSxTP/8V3cd+f+Bfs//C7OflXvsCr3+4Z/MrXUPOM+IvPs/0+w/oLnjO/AltPBp548l7w0GnltGxJaz3lS3t3SaweIByM5eDEm/tw9NBCM9RtQxLj13r4NdldVZoJC281fq3XaI0koBzNkUblmrD3Ks2ILu9LELRem+TiLmZandVWmRdkRzq0P/Mcs6OK+Adv8Le/8Et88RM/zd+/75OcsY4NDWejmxyJhDVUTvH89lH+1vkP8OLOYf7ct36KT/3+n+Yn/8Lf4ML3RRyc7XHhh4bo8UyohUTcNmx9fl8SV0dlRU3guHKzTfL6DuqZVxqt1at/9hGKIzn3/ZFn6f7mM5QfergZXr/WJTlw2BTa1zU+9kzvz/g9v/O3OPjOOfkQ5lsKNMxOOKaPpCTHp/zOrad4qH+VF3dlrr33rgvcyPsEIOpnzE44Du6DQ08VTI9p9P64eqEnP7WOH3YhidGTGXoyE3OcYRe9Pxb3I6OFUrcG34kwe+OGclelq9yV5Fr9vIxr3gATCFsHNMa9b5V+O5TTEeBXlFJ1OX83hPDrSqmvAL+klPqPgIvA7/9mBflIQyuBUeU3puRbH94SEC/KFR5WfMyg6Bvs1JMciEWvq051hYVHvXZBzlirWUatGnCoHXpr1nbyfY+ytnlA4Qzb8z4nu/vMXUTmLYU3XJ6vcWG2weODN0h9RMdU6uGgOBSPeWO6RmeQsv2+Ieu/Zkk3FaNHMvGH2tkV4K0F4SAC9Dgm4AjOEVTlwnEg587pSUpoS/hU7cM3jRKr0pxQFDz/p4/wz7735/njr/1+1uI5R/5Lw/wnrzBIUl7/x/fgvOLrL51CTw1nf2Eswmqt2fx7X2PzHxhm3/tu1n7pCYhjlLXc/H2PsPNez9HfOk15OmW7m3D2F2bsnR2y+bXA7Ihi/YE5b3z1BH/wez/Lz3/hQ2z97X22Pn4Z3e/h98TbXk+WAuwXNQALqBZnDkm762B7yynLUVZTHh5gD1Li61MJRxJCoyUjy5ndt0Vre4Y+mOEOD5gdSVj70mXOfMbxc0d+klgpEqUpgidSmmnw/Hc3Psxvbd/D9Ze3WH9WsWZgPOkx+EyLyXHLwX/e4YZrc9ZO+PzHfxr3w4Hv/OJ/wvxdW2RrhrXfeJFw+uhCBliFnjWTvKF6y3680ER7z0t/8wHec9dLvPrz9zH5gcewc0/7M8+Kc/VjZ7ny4S7t64F0SzE97SDx9Ndn/IPf+CDloQK37oj3DK1tzZm/8Ty733eO6x+I+K9/8eMUfY85OWM8aXP1qaO4JBB6JSdO7HLlumy64xNyulF+92HswQico+hZ4jfm7HzwKNE8MHjxoLIzywhrfchE5qf3xcnY7s8JNWW01odiVuVpy7c1YhazX63Z2Vw4lXqutm6XD96a/pUppxDCqyGER6vPQyGE/6a6fjOE8N0hhLPV9+43LUxBeWSIOn0cdeYE+tAm+sghQVYPfthDpzkhtpTrHewkxxuFnXq0CxRVXO9oIuFWa7aufVkmTH3gYeMjV5OSFRUlWsLApY8EJtMWWRoxLyJe3j9E7gzjMsEHxW7WYS/t8LXRKZ6fHGWn6PPa/BBXsyH7ZYdjnRF3bezizk3ZPwtHvjhl8FTCle/aINx3F8E5lFILCk4J1aaMIRQl2Zr4pq0c0mlU5TRbHfczmjZGlj4Wu6L6/C93ZI1rv/te/vSH/ym/64lPsBbPeW7nCPt/OWPv147zPVvPM344R31lSHK1OoarnxAuXSU4hz5+FJyj/WtPVBRl4OIfexQfw8n7rkOA7pNtPv27fwr17HlMFuheLbEpvH51k9/30d/i55/4AH/k2z+L0Z4bP/oIfm8f9+i7pDE+QF7Ip5L7hbW+7LiTTNpSu0OUS4cJdMTFInrjZuMQXvsHiiBaEToJ7UtiT3bw+GGmJ1oEBX/9c7/IXzj6zzFAhKIIHoNi1zmeyTd5tHuRnf0eeiuTA1o/tkc4lXLhd2qiaeA333eUv/rG9+GAqQ/MAnzhAz/Dz/zMf8/w//g60w+elZAgPjRxxCQqQlLZfGmiL78I5+4mhMBrf/ZxfuThr/LkpRMc/uRz9H/9GdqffQ519ymK957l6ge7zA97dr8zZXrG0T854tTJm8ymLcrNEkqFnWnydZnDu39nk+/4k1/izLlrdN6zwyPfep4PnXmVh09c4cMf/jr9MwcMNqdceeUQya6hOCoUeLamOP/DMaOPPYje3ODi9wM7u3Sul/TPj9G7YwFaXVHuiWhZJZJEa6G1rALHhV5HhP7zTL5r2ZT3Msd7XZTR6F4XfWiTMJ1Knm9w4q/5iZ/4iW+KHW93+st/5a/9xPHj7xdNQGzBWkIrFncO5/GdCIVqnFt9y6JQAmrVybgqAErCPdgqpo/ryHlt7YsHsD8SYNBVbHEWFBpKoYxm56NHUC1HcIo4cfSTjNxbrPL8v8y9d5SlV3nm+9tfPjlUrurqrk7V3ercCkgiCAECJGOwB+M7xhg8GGM811zDGo/t6zTjO+MZ23cwxtfGjMFcA8bYXJJIJkkgUERS51Sduyunk8N3vrD3/WOfOlUtBHj5j1naa511Tp2qOuH79vfudz/v8z6PZ4Vk7A4Zp8OKn8azItJmh460mGvlMIRCKoPZRg7Limm2PUTsMPL5K6zeVSS9oDDnS6huMELoz6u72iXCMPCMdK/JF6XLr0alAc56gisCLRAfp13MpsbiVMrFaHUQq1V+728/xyfm7yKQFqt+Cv/Rfh646xhnM3m+/9B+Dt9xiYHJVWaXiox/M+bG/TZybIR0w0HNLugL3tJd6Fd//whRGppbY5IPZsh++mlyR5f4xL33MH37Vrb+3QzlQwVqOxXKt+gbrpFIB5yujGIIxR0vO0/ls3nE9XmMvqKeiGscKMvS56LbuS6kgoVlhDAwlEC69gbWt64gqTX9INNc3+7R5XpJRW1PZ2yF7AAAIABJREFUHkPYdAo2i3cKHn7P+7CFoKMUrhAoIFSKmlJ0lIEpYgwBj5Qn2Tm0zM/c9xgjmTr/ccc/Qz+U98KyPUnlQpHj40V+Kn8RRwhaSuEIuP9/v8xfmHdiBzncU9N6fnkuRsNHYHTnm4ByDZZLrLzlCNHddU4tjmGeS5N/ZIa5dx3GzPZjff885nyJ7NML9D28SGdsnGi7j1/zqFWTHNo2TUPYqOkkZltQPCvo5AXieBK1y+f81VFeteM8j5zezb6xWVqxw2wzz2RxiViYONmAn7vzca5+eielu0LC/gh30aI+IcguOAw85VO7bZTs0TmEYYJrI3rFli6GZJnIfLJHlzBa6wTZ3sJSSGlsajCHObe6fpEbBvgdhGNDFEEQIjyX6cpx/s//9Jt/+Hxx4YXRvqK0EoHZ6CBtLSy3pmMcJ+2ePIdVaWux/Vh2eU0Ks6Mfa3leTSsIU1ZXfkI/r65Og2H0cB8MsZ41Gd1MyjAwWwZxxUGYCiEUppC4ZoRl6JPhGBFFu8mrB89xODtNn91kX2qObelVik7XCloJOqENBjRHBe19m+g7HeMXHZ0V5nPrZMy17V13e7nW2gBoTCWOUemEPvFt7U0nc2mMRmtdeqPbra/KVd731Bf49WP/luvlAtWj/axcKZK+Z4kvXttHu+4RZhSXPz7Js8/sJC5EzLwlQkSCgU+eYOX2PlSno5UX4piltx4mexW2//5Rdv36CYpPzmN0q4edbwzgLZks3TdO35km7oqBKHb4zpldDCXqdCKLmu9yrjrMhT8b0UE4DHv9VECv7UHUW/pWqiK3jyNzad18WmncpIkuuyJ2SG7+nYRwIAVKG1g0xj3+xx99kGd+5s8IlcJXClP/G3Wp8BX4yqSlLPJGwH+99BP83/s+w9tHH+VLCwdoxC5brBa/PvBd9uQWmHjzJWo7Y459Yw8ngiwVCRlhECrwBDxy//tZuFugggBVyOoLWindhGx0Ge+mCaZJY7OgvZwkrDtM/OlRpv7mFowQUlcq3cqx/q7te/YyeLRN/qEEfU/a3L77KtUgQX+6yY47rxMUJNXtgsy0wnn9Mme+t4PioMbMDu+6xmMfvo2Z/2cnNd/le2cmmV4uIJXgQ0/dQ/leH3vJJn3OZfPX2+TPw9JtScT5axgRmgICvSKUzGkiJoAyNFiuMyh9va1l9CqThDDSWX4miblURRWyGq6xrN7r9uZsMqHnxAvd4AClfe/jpNPTXd7oZKG7qUVPoGvjsGsh7kqgGzoj7eDrVAKipInVjLBroU5Ng4Dm3uEu8K10QFASFUYIQxDctQcRC0QkkKFB03eIlUEjcKkFHrUggSkUjdhlMcxiCIkpJEWrwbBbpRSk8GOLzdkyxVQLZ7BFUJCUJ106WYPkbEunxN2+vt5ngN4Kq67P6szRFBgr1Zu0gnoaQPV1ftOaDrNotCh9so8/mnuA8FoaIRRMNjE6gtVKmjduPcHbjzyGUDD4eJnJ3znJ6NcsvJMJdn50Gf9lewmyguu/dwez/8et1H76MFYbBr5yuff55OKyrgAODzL6kRMMPR0y+I0bXH5jCg7XkL7Fzx55hu+c3sXKfI7GjSzXlwvcP3lGb0FrdR2UPVff1kT2126WhVmuI2Ldm7VGiQAdtNf6vwBkKoFMrzf7WqttlGnirnZ45W89xjarRYgiBNZI483uQlCSDpfDPmwhebB+gN/c/jV22mX2OwvcVrxBztIa3wZwd+YSbx15gtSmOr/8pq+RMXxMFBUpKZoma0X1f/437+P8nx9AXZtZ34o62pEmKiRRcczCLx4kzEmcVZOBxywu/PEhhKGIEuj/2zGBME06d2uemfX0FANPlSm/zGfq/9uFJSSlZpILz27m5+59jDAjqb++TvE/CPpvXSSKTb7y3Vs5tzhM/d4m86+KyX0gQ6rYRs4mWLlcJHXJwbzhkVgQNHaGtAddBj51gtEPHaX+2n2kv3GaaP+255wXY8MiGGOW61ovPNaqFcowen50P3BO14LXWuBNeBp76koPKaVe+JIpCIhTepsSp1zipIWz3M1EujKjQK/nSmvbSA2CJ60e+1f/A0RpLfYfJy0SU4vILhieeOSsPkjC0GC0ZaECPcVKe1yUUBihQAJxbJCyAnyhwXDHjLlS72M8VaESJihaTWJlUIrSpE2flNWh6DS51uxjV36Juu9SSUkaWwTp64KFuzOMfTOAyQm4cK3HsUJJVNTFoEy0SUAr0Cd6jVXd5QSJIESl9QolghDVbZVRfof37X6Qd33o17BSUF9KM75lhRnfQjVsloMMU+/dwwRtuHIDpCTz+aNkTQMZS5J+h05+jPodHcJFl8Y2CY5k5dVjWNe3Y0SCoe+HJB45i1xaQWTSeN85Re2Bg4x/K6Q5nGFoIeRbT9+FtQ2UrZB9IWHN5UJtkJl3b2Hs23WMM1f097CeM+3WcAel1tntpkCUm8jCBkaxKXpsZaMdEhXXjQ9izyT8zRJvLTyJKQSBUvhK4AkdpC6GBa6FA5hIXpq8zLUwTyP22O8s0VImA6bkwav7uXvsKgbgCUHGbHPQWeHe8YvMdvI8bWxju7PEqFWliCIphM7OgN+754t8hm3IvixiYRUjijEqJqrtEx3aqR2jY8hd1J+375ggemOLob+aYvrdh2iNSlIzRaIUDH0/5MZ7DrH5AyfY+fYQc2yYsweH2TUxz1Q6w2O/fSfJX6nRrCY49x88Eo86BHvabN4/z8L3xogLEqsjmHlHk9yXsjRvj3FKJsl5hdUUpBYlw0/4XPyFJDtnt2OcuUL6y8cR+Rxhxsa+rrN3lUqs87nW8DTXAVf/LDqBno9d3ppoakxKNDVY3nschoh0CtVo6u1d914kb3aLfu54YWBO//3P/vPmviOEhQRmGOuqjWv3Jq3R8BFBpHGJrrlklLbomU+y1k2ucMuddfdW08A4faX7LkJrqUuptxmmzqYQAmGYzP7iIEYoUCYoVyIMGM7V2Jpepei2GXJrKGFgCsVqJ4UwoBG7lKIUobIYcWtEmHhmRD30KCTalOIEgSEIUjoja2xJ4tUNzLnS+urS/SwI/flahzfhrGo6gAhCRLAOGopOcNPPMpdENH3O/cEoV51+ZrwkqYs20fYO1XqS3NMe/rDk4tIgtbslHZEk3jyIZ2YQhRxqpYzYvY2pP8hRHxPcuesKA2MV/suhz3Hr2HXSuZDltEtnPkl9s0GCItGWAaLhHNb0Cs6FBZqHRrE6itpWm/pWfS6Gvq9o5yykJ6lcK2CEgpXbbPpuuLC4ois11gbbKUMbLIo4BsfWZWg/QCU87bRrGBqi64RgW72M02xpWWKEoHRLgl94zXfY7SwTKmgoE0dIStLhaGcTe91FSnGSFyeuoRB8o7GXV2XOkDFCbKH4anOSp5a3cqBvjkOJG3hCYIsOjlBk7Ab9doMpf4RXpi9wKewnazRICoMIhSFg0Kry5dfcgfnBBYxkElmpIpIJKi/dgpDQHrJwK4KhL16merCP0osi7GRIo28rjR0RiUWT1uYIu2ow8OWrNHcX6ewYovyKMaJimrGvt6m9VCESMcs7LJxjaZxli8SsSXtYQsPCP59D7a+jKg4CQeKCi3QEiUWD5DxUJ2HLZ5dwn7mMqQzsKENtq0vq5IK+NjodzKuLGNk0Kgj0c46t55z5PMC1aSKM7tztaB8+EWmPQuHruSprdYxEQgemDTsAlC6OzIQXXtiYk+h6ZbnTZS0x6tnrVZmusJjWJja1FINtaGZ4W+/RnUqn58Qb5NabE8XGqK8kMgh7REwVRj3cSZgGuDFxLka6EqNsYzsaazKEIlaCWpRgZ2qJlNWhGboMOnXasYNrROSsNmnTJ2P6OEbEoFdna2qV/SNzZPubyGyEdBVGCCv7XBZ+8SDLbzl880GIY1QsseuxdtVIJVCucxOTWqUS+tbtXzKXq7BS4q/v/ThzjRyyZhPkYPSfHFKnPfwibPpnA3vJxrqQxGorCp85zvX7M3DpBo2fPMT1nywCsGXrMn5s8er+s6REgMRg2KkxlK4jbqkTDEaUdzm9W/uevZTfeIh2v0FzyKQ+ITFi2PmxVZx3LjD+UMiWL4ARQ5BTZK4YzLxWv5daq9hJiQpCVMtH1Jv6u5kCuVJazxbrGyb1GqC+tmUwBUF/ErPR4cDbT3Ordw0JnAoGqUuHinRIdhUITRTbnCViBH9bejFp02c1TrMsXfKGwftPv5L7J85yOHmd6SiLiSBnxNjAuFXhiDeDLWK+09pJXSbwlUGIwhYCXwkMFL+w6UnaL7sFWaliZDPIlRL1zdrgNT0XM/zR44Q7Rxn+2AmIBPXlNK0Rxe6/rmksrWHSHg+5+q4dKAPqE4LGtojqdoMLv+QR/9Mg4tsFBh528PsU7SFJkAF3xcApGcQJhfdohuScLvpESchdjbAbik5esP2Tq6zeqbvJ5OIyue9cYeBYg8Zr9+vzEnfxMUCsdSf0pHcCHYAsU8+/cg1RbyI20kM2DsvUMEA6pe2h0imMbEbjrtkMIpl8/v/b+BI/9i/+Fwzp6L1qXEh1CWzrpELlmoiqbiBck6yQXa1xMwKUIsg52ndso2lirLlPa5gSoO+F0WurALpicUcQho+RjGDOQw52KKRbHL2+mWeXXZStcJdMvG7xobI3wjQke3PzVMIkK0EaA0XebrHgZxlPlLna7COILYqpFrE0iHMdGqkU2YsCa61TQGnyp9iwKrknryEnRm5ypRB+gEontGhXIYcINc4UD/dx5V1jfHY1YrWSxqqbKAOWjli4ZZj4y+MgBKnpbUzfl6F8R0Bj82HsGvgv28vKAYPOYEQ+02ZXfpE+u0nebGIIyRHvBvvdGVbDFPP1DGHaorofrLJFlI1pjlpM/tU0crVE7XUHGPnmMhffMcjVn+nH/ho0Xh+Tuq7NIjPTgsYWhdXQ1VFhGl3njVA/trvC9/WWXq2LBc0eL1W1lVC9BWFIPD74A+0TznKTc+/J8fOFh7gRFYkp05Ius8pi3F7l87XDPJA5yfmwn532Ko+3t/KyzHlOtLZgCj0P6kpiGJJ/3/c9QgTTUVZjVgqkgJSIiBHkrBbfWLmFtww/SUl6OKJFzhCYKOyufvSN1xnsekQRbxrA7x/HLekgmv7aKQCsZ86DYWBXTKKkYuJLbZpbsyQXFe2tIWbFIkopiucUjdigM6LobPNxr+tgkZ6XuJUIp2Ey80CMb1lQCHCuuUQJRX1CMfK4Yvyzc1z65U3M32Wy4/86QfmnDzD3yn5G/vY4Ri6LLFcQlonR7NAYyVD71SOMfPBZjFxW85eabZ47Ni6UwjK1Ygg6cPX+JpXoqZw+X0/KmgqmarUwshn4IbENXiiZU6Swqn5Pt1hX4zYI4OeS0G02FGGE1YowA82wNjuyRyUwm9omZ60U752aBtDZklj/qmvZkzBNzMF+2mMRXiogrtrIpMSadQk+PUThWx6mrw9xZ5tPc5MiNR+z6z0nkK9d5VsfvYtvX5rkYmWA5U6ak5UxKp0ER0vjrPopppYGWaxmiGODoVydob1LlO8IaY0IouT65+h9PiVRrTZRRnNHZC7ZvU9rXW7PW6/c5TMY1+Z4909+ldlWjvTjSdLXtezLtr84T2JFEh+e1N/z7BU2/9lRdr3rNNv/8Bib339U2yYpgVPw2ZIvM+A0WA4yeCLkWthPKU6yGqc4kr7OXcPXObLlBm7OR2xukhxooky4/vObAa1Cqmbm2fEHx+g7ExMlYNeHqnRubZDcX6axWTH+jQAzQE9I0JUa20Zl9IIjag0NsHZvhJH+nVKodAJVyOrt/ZrNFBqfizMe77/3U3giZCboYzYqMBcWmA6LVOIkJ+tj3IgKXOkMUYo9vrx8gIUwzy2JWU63x8kbAaeCfv7q0KfoKqTQlC51qZBAqMnp1KXNLncey5AkRYemdKlIBwm4Aq5EOWwR8+HXfkR/nzOXqW7VF2/6UtdiLJnQILAQ5C7ogo919AKdrEnxXJvkFYdtn/eJk5L8EzMoC3a/5wyJ8x65ixBkBLlTqyze5mC1JHv+pIRTMUid8gg2ByhHYUSC8qTJjZ8dJ3dJm79WfuoAhc8eZ+TDR1l+80GiLYMopYhLZVCK2nZJbZdeDNt7x7qAvq0xzTDS91L1AG/tUWitF2w6gWaXS6UXEtPQ91Khmi3kyjqMocJQS6ckPP34R4jNvSAyJ0S38tQNSHHWwawFN0mFGmbYQ/ajtD7pQdYksaybfGPHwIi6/98V/1f1xrqtk5LQJTuCzqKMYp7qXeOIdIjfcujfXMGxIoJPD9HYJBASvGUY+VwLa3YVWanSefEegnv2Y9VDiuc6SDvBwpjLbF+ImwpwnYh6Jamz4U6XHJr3WahkmOgvMTxSZqk2QHoaNrbToHQ7TeOB/STnfMLN/Vireqsj/A7Um6i8Bodl2sXwI/xbt+GrGxTdFvW5mNaAwcBTNeLtYxQ+dxIVRqi19+jeqwM7UKZBfdwkeXidh1IKU3Skia9sfGmzoHJ4Rsglf4ha5BJJgyNjM5Q6SUrtJK10rP/+pbcQO4LVNx1c93sz4eLbCiS9CpW5LAyEtIZttvz9dWS9gZFJaycOP4BSBQWIxPOAo11hPqKYuJDCaK3JclgIP0KcvcIdj9e5FvRzpT3AA/mTnO+McKk9yJBT46FgL8Neja+UD7IvNcc/lO5kvpnlH4Pb2ZVdwjJiYiX4xOLd/NGmL25sKaOpLDIi4kqUY8KqEiMIlcWO1DIpo8Mpf5yJ1AUCpYNYxvBZFREn2ls4//697H7vGQoXOrQHbYylMnEcQ6sLGHsuyoCR72naRv+3b6BSCRKLCUq7E7hLgvauIUb/8lnOf+AgRrrN4FETI7a49LZ+hp+MqE5YSKufzDXFwOPL+MdyLN1mYrUgyIDZASVg8NlAq8AaumI28PfHMPr7kKapuxKuTqOKWfLPuAjLwn30DLWfOEjusWvrC0e7o3vilNKZ0VqnQ3eosNuk7WnS5ho/iijSRSdA1jUdwSjkkaUywnO1OuaPUCV4wWROqt7ErDQw/AB7qdEVVo9131KlpQ38zPWDIiJFaqZNmNYyGE5XTH7Ne8uIJMLdYCUlVa9KtGaOqao1yju74HlkUGt6VB4ZJnYhsaywmzDy/qcQJy4Qzc0jWy3sbx3DqocYT5/BPXmDvjMB3rKBaFp0SglaU3nsWYf80y5bPyfZ/Z6TbH3zGba+9SLVD49T/v4QMht1zRY2HgR9KrJny+suJmu/kgr6CxokDyNNbltY5nV//m2+Or+Px07tJPv4NYYeLWFcmaM9kqD+wH69ZdqQMQrbQpy/RnVnispeiWtHuHZE2u4wmVwgb7fJGy1MobBFTKwMloMMebtNzvGJlMFIskbG7TA8sUrUH1K6xSF2BMV/PEr/p44x+OXL5C9K4mLIpt/w2f0bZ/BuOLSGDBqHxvS5UArWsKRCTgPkSt1kvChavhaQ6z42q+2eHK9RaSL8DnO/cogd3iLX/H4Kdosvlw9xtLYZx4iwRcxKJ43sdpX7yuLoyjiOGdOJLKZqg0x4K3y+dphd6UUqsmvioAQSg9+88kYAzvqbiBHUpcdqnCZj+hz3t+Arm7q06ShNV2hJl6zhc6k9yPDmEmJ8FCNSFB++qufl+GiX9Ct1BS8lyHztNMFL9yFXVhHNNoOPLjP4hSkm/sdxlm7TwWLXu4+z460nWTri0MkJBp+W1DZbjHz5BrEr6BQEMz8xSHW7Q2JRkZ6NsdqQuxJRmGrRGLVJn17W79099nJltdfOpZSCpoXVVJR/ej9KKTJfOaEt4jcC2P1FHZig16yrPEc/11/UGf0GmovyHFQuA5aF0VUmAHTA6uJZawHrh40XTOZEfx4qWkhdNFp6ZX2uDrVjYZRrmJ0ssW0QJyzsRkScsHpyt3HCQloCuxajOl0xLKk0rrOhbUUYXanclAIlsFZsAgnGkTrbhuc5vzxE+1qGpX//IiqHArL9TaKnChTPx8hfWSbzBhNZqZK4uEx81xh3H5nirvxlPnDiFaQeSTL0iRM9kLv6c7ez+LKYzJTBtr+8yPz/tlNrlm8c3V6/znAGu+z3nC/Wf7++wsi+PFgGo/Yxlmpp0oNNrrxzO/5ohLvYR/6CJP+ZYzoAd52KMU3Urq34o0lW9wvIBCgl6E82KTpNJpwVTBR1mWC/O0tFeoTKpM9pULCazHYKFG3B7emrfNfcRSNyaPgu9a0mRsckF8coQJUq5L9wkuVbD3DjjSO0xgcZeEoRZASxJ6jfv4/MP59GpLur8vOsnCrddYZZKBON9WHNrt58DBwbYknxgVmeqG2nHdtIJXpN2nPtHEkj4HxlkKFknUBaVMMEy9U0nhtSSLZphzbnmiM0I5ftqWVsIfGVoCpdrnQGGUzU+V57giG7wodXX8Lt6StIJYiVwbnmKLuSC73PW+oGtqUow5BT497hFg/fdjduVWJXqjrTqFQ1daQ7iucDrUZxahq5FjBW6BF0g7yi8Zp9pL5yHGLY9MdP6ONlmqRNk+pPHiJ3dJHMVxa4+juHcSsQpgWVPQZbvupT2uOSuthk8BvLLL1mCwNPOaipy3oexJLGGw6T/sKzNF9/K8lpk76TVS6826Pv8RHiGzOaBN3dsqkoQoT2+uNU13bLNNfF5FKJdXBcqR4HD3QQWjvfGwOSMTQAV3/g9PfGCyY4KdeGIIBSgPQ7UKtjDPZrHZiU1wtUKp3UkiDo7Cl2DQ2Er4l8tSOsekCQd3E2bOEwxHrj4ZrOkGkSjIRk8y1krk2zmiCT9LlaKZJ0A17+0mN8JXmQLZ8TVCcKtPfEzI6BcXqQuQ8WEabCnnEIN3V4VfEsw1aVd+3/Ht/4xQFkGPW2Uvl/eobcpxRGwqPyk/vpO+Ozest64+NNjsLd7EC0Onrv7gfgdyVj2j4kPIxyjejjBidb47Sbrq7MTUQkr1tIB9yaJLhnP+53T2s+lVKEL95HZYdDfRvITT5DfTU6oYVnhgw7Na50BhmyqzSlQylOcrQ9QdLoECuDUbvMifo4ndhiyhohVoK83ebg0BzPhOM0m13NHqmAGGEaOBUDeXsNFlOkFkPaAw6drEH1vhaZrypdWk4mddUOEJl1zlJP5td1sFbqxIMFzIVVTeLrWgupQrbXMgRwo1kkUgaOoTPBk9Ux+hItlloZduWXeGJmAiEUWwplrpaK3D12lWcWxxnL1tjuLlKRHi3pctYfoxTpz/L+qVfxgf3/SClIUYrSGEJpVYpOGhjmSOIqgYq4HA7Qki6nmpvos5vUpMfKEdj5+6f1cVnLNNYWCiFIXFrRhPdKdV0ZdY2DpyTbfv9Z3eqx1g+6NneFgQoj0g8e07rnhsHEHx2FW3Yw9c4UdsXk8ptNUpcF4XCG2M2TWow00XON/Ksk9XGTjOMQpAwGjwaEOQ8v3aF6ZIjM4jL298/D8KDOsIIQDJ94uA+j6ettOM5Ncsyi1tCGBUq3Y6lMSldg/Y5ubm/orMrIZpBrqgQbMq3nGy+M4LRhKL+jG2HjWBP+RroVmud0qguFdjPdYGoQr+k3x6prmvjD2ad030O0TZotF8OQpHJtknZI3m0z4DXoSIvxrct4Sym8h04y3A2K0Yv2sHhrguDOOrHjcMvEHLaIsUVE0uigwgjDsZFrF57TBXiDEG8lxC77gPcDIL0wug6zXXcLNgh2iTDSzOpOgApCbi0u8mxpM8o3aY7HZEfr1IwMIhIkHzqtL4g1jM0QdAoWnaJAbG1gxAad0CLhhCStgE3OKi3p4kub+TDPTNDHQpBl0KnjGRpoLnd0NlOOkphCkTDDXssOiu7E766iscRqQr3uIjIhV/+NRf60/rtbRhforB2Tm078D8ceej12rq198bYMYpy6zKFCm0qYRCqDSifB1uwqy34aqULKvmb0x91tXbvqMTxaJmv7hKHJVGUI25RE0iBvtvClTU3qBaMd28w287Q7NtNhHwBnW+vZ0lwjR8oKupQCm0qcohF7pK0OS2GGW5JzyP4AkUqh6vX179GFEwSsG3lIpR2vu71/veqtkr2AJIToBSkZhL02ot7rCoFRabD18wlm7jWxVy06RYX19BTyzj0ERYsEmvyqOh0QBk5VIQ/sILUY4j56lurrDyBlQGW7yZrtpbJMyKR62zCzq0jwfOdrLRixhlPVm6gNWl0/cL7/BeMFEZxU9+BKv2uF3FslBJSrek/bdfMQUYxV7xBlXN30G2h/e7OlraXXrKxFvF4BA24C3vQEiQnvOQjZENcN6fgOjUUPOSDwrJBIGbwkd5ED6RkWP5LlZHWMa+UCnh3R9APCMGYg22TkrnlmGzn6TJ2urkQZLv/JHSSWBI1bNCopGiaFMwaDHzuG+/g5Fv7dIYIcNwHia9mTESmt49TNFtdUJHv7eSEgDHh4fpLSyQGcCFBQN7JkLpuMPVxBjA2jbsxqIp1loZRi7hWAilENh2S+jWPFtL40zKWVQY6P7cPsQGtYMXTHAof6ZmhGLsfbOfZn5zhe38R0Lcd4tkokTeZaOU6eOsjgk4JE1qBy4DmCeEpSuBhh31sn63Xw3rDM3DsPUd0JK+e2sFuc0aBwuMF00nPW++2eozsuZhZRA8We3ZB1fYlz/20/t5qPcbGhs7a82yZj+YSOiSEkA4kmlhGz0Mzy6PVtCFvimjEXygP0ZZv4kUXO9ck6PimjQ8bQ96GyaEmHnNNmWub5ve/9NL9+17d4tLSDPrvJkF1lqZwh7XQ42prAM0JCZVKNEkx4K1xsDGIyjO1FqFZLf88NPYWie3GL0SHU9JyuVsWx5vFJheHY6/O/28XQO0ZKYQ0NEK+UaL/2EIu3WcQJRe4iFC74rOxzsGvQfzqikzOQB3awus9l+PEa199zkC3vO9p7vcpuEHGK/gfPoqREWhBHJp3JLi1gcgKuzSIKeVS5AiODiEodseG8KM/RNBfL1MHKc9cXUdCmFqGu7K0dAxVsoB0qhxAOAAAgAElEQVS0fgSPgBdIcBKgP/xzV0+ltBFfGKHafm+vGyfsDZbS3dfYcG82Q1qbU1jdwKSzku5Wbo3rZAj8PhtvyqA9auMMtJAJgWEoxpJVRrwq1TjJkcQ17k763Ja6yon8ZkacCrd613ikuZuWdHjwxgH80OLb9T28q/goDwYZlK1o7ArZ/FmT5LdO0rj/IM0huP4fjxCmFU4VwrTqYl8btnSOg3ttpWepJMJId3J3L2Rh25DwKL98gv19p3go04dVN7CrgvS0wdDD88jpOX1IuvQEFUWoI3s06G8pTC+GZ3JUDtfZ8aar1Doe4RMjDD3UxvzIWZCKi3t3UvnvHbZky9giRiqDILK48Y/b6HzsBCpYZdKscPXju0glOrCY7a38AJgmC3eYeN/qpwTIT6aIn4WwGLN/zw1CpXTg7H4fAPxgXYQMtNrnGuY2UNQ+a7mUfk4p3vby7/LQwi4Gk3WmVgbZUihTsFuUghQ36kWqbY9cwqfa9jBPpSGhmL8+QpiXqFTMGw4e50JtkJQZkBIBDhJTKIatClc7AyStkOFCnelWH399+mUc3jRDxvRZDHN4iYCKn8AzQs41R2jHNqVOksmRBVwz4mRlTJP/R4fwtxRwvndaV+lcFxWENO/bS5g0yE/P3aTttebcIxyndxGrWKJu3Y1x8hJIqflJtoW37FM8m6S21aA5BqWXCNIntJBcdauN3wfFZ9uMfalKY98QySXF0tsOM/ixYxgjQ0SFiE7BRnaDRpQQeMeSjN1/HQBjsUTz7klSx6ZhoE/DC56Lqjegu1D05m3XHVqxvrDgd/TiMzIIy+uqSSKxDmdsDNrPN14QwYlYIlJJ/cWfO6RElas6+lqmFv5X2jLaiKXmNYVrgJPQ2ROQObVEvKYVbnTL6N0JsAY6Zr9yiubbDxJmDIIohTfWYCxXZbWTwhCKfrtORSa5ERYZtqq8IXuMpTjNdFTEEBIDxVimylwjy/dXtvDO4qOUghTGoE8x22L+LR78/C6iErhLAn9zgGhY+GM+uUe7SpEbAeFdW6Gq7cFVuQq5LEop3b6Ry/YqLKtvaLHspxEdwfb/clKXb0eHUDPzCNNk5tcOkZrVoDgxVHalMXylRcrOJjDuqDCcaXDm6iiJSy5OC+ZemiB69RGSiwLTV6xejakOJnCMiKu1IsGZHIW5mKW3HMTsaMUF73GoTCZw+tu9YypME2GabP6Gj/mHS4j3Zqks5WiMgbNicv6xrWznxLrJYttHtdq6z6qQ08WQQhbRaK8DrJ6rSZqNNjKXZOlVQ3x32WVzpkwt9NhaLPGagTN8fXkv18oFGpUkqmUSzBRRJsgDdSxTkk+1CWOTbflVrjX6iKXBfYUz+MqmqRwWojwmkhG7wpKToeIm2LJphfmnRriQGCBntzGFor6cJsjpC6seuVyvFUg7Ab606XcaWEJybbGP1o4+ktcq3awo6mVErX6TKCHIKd2OJYTVC0jBi/ey8CKX8fc9qzEoJTFOXiK4aw/OY2f0fACMk5ewhvYhTQNjfxU7MqnvC2gclFA1sOsGrYk83sMnSdXq2PsnmL/LI3jxXmZe7nRfm24TuiR2BKl5yaWj48g/2cS2z4QkH52CZGLd/bmQ05n40ipqsE9DFRscZ3pyvWsFrYbSdJa2v0403pCAbCQfP9/4scFJCPFR4HXAklJqX/e55zXOFFoW8wPAA2ju5y8qpY7+uPfAEMikR09faf3N9V0hpxnT7Y528nCew4BY65oOJUa7mxJvlMNlHZQUmQzl12yn8DltWmgGivS0oLZdYVsxndjCMiTtWFdz5oM8tojBg8eak9gipholqEUe58rDJO2AgtdmT34BW8CIV2WoWONA3xxXkhqv6PRbDB2qY6AodZJcfmYzrVF+YFvXGUqSLHWlJQwTVW9qn6/ulk517c9fu2OWLz1zmOx1g9pP6NaDVr9Be3iA4lnFpr84qvGublbWGhJIW2G4MXFS0S4lsb+eY/cnTiLSKep3b6UxYrLlf04hG02qbzxM9oLF+C2r/NbI13lH5S0MPR2TObVE8qtzsG8n/U929LZEShbecQRzeJBoWutjN+/bR3mnRf+fjlK9y0JZguEnW8y/JMmmh+oan/LcHo9pbesjohg5VNTbuE1D3T6tLtepK+YWJ2yK5zo0Q5tKkGCpmeYd2x5jqjVMM3RoXcphxloqJ3Nd0ikYVOouY2MlNmUqXK8VWPVTuGZEn9fk0dokB9LThMqkHKXImZrCMeGt0mc3udEukn5ph/PPbOGhepJX7jxP/rhN9XbJueYIl8v9rF4uUh+vUxpIUwmT5O0WthPRGkyQ/P6qJhzGa/icJEoK2oOa2iL3biNK2tjfP8/UnxxCKPAWofXagyS/dgKkQvodnCfPM/0P23nR6HU60uLxZ3dh+AZOBcKLWWJPQTJGBRZ4ktCEyk6b4YdBNVvY3z/P5mdNpv7rXjLXBGFRIG19jZXfeAhlQnPUIHdBIR2D+rhBhh1EKRN32cd07F6jr9YV33CddqtzytVBb22hUkpBuaqbflv6uG4k0Nxk9PE841+SOf0d8JfAxzc899vAQxuMM38b+C3gfmBn9/Yi4K+79z96qO7+dONza4FpdEinkErpwJTcUOWKFMoSOlpHISphIxNaYE5c2GAyvAbWKknlFdvJXmlr8TOgcKGDvdyiNVygPp2l5qYpDNeYI0vSCXEtPYm/euMWImlQLycZ/arFwhsCdowsMzU1xo7JeSa8FUIFt6ev8Mj8DlJmh58YOs2QXcFEESNoSZdn6lup7vdoPDz0A4fBXdEkPWxLV6/WAmx3xTWKBeRqCUMosCQjj+lAZi5WqP3bzSSWBPVxQTaWGAkP2fYRtkWnT6FSEVQc3v76b/GhJ1/O0CdOooIQubxK8vNLJAHleVz9gyNs+28nab3jID87/DQDpuS1o+d48uoBfcxtC3nsDPGGczT8kaOojIZRVRyTvNEkdjOUdtsUz4e0BizKexJESYU/4JE4K5HLqxj9xZ7Bg/BcVLONoRTksoh6u6cnHxcyiDimcqgfoWDLr0/xrpFvU4rT5I0WZzpjHC2Nc31qmB2f92mOedQmDFpvqtA+n2fXhzqIMwss37mH1fscapM1BrMNmqFD3mnzRHU7q50Uncii4LUY8yosdrJcqvSTsEOC2OTel57imYVxvnluD6kUGCs2HWmSdjvUGgLrOzn699SRCGwRU0y3kJ00ctsY5lIFGk0NbLsuYQqspuDqbx1ATjaBCPGrO0hYdVorSdrDMF8wSW25FSGhckuE0+fjiIgbzQIpK+iZnN6TPU8pTuNLm4vtIZaDNKeWRomVoOqlGBse1Md6oA/luQw8IwBFal6wclAv6u0BfZyDnGLTXxzj/Af2kz9l0wodUjN+z6QVpRcI1fZhDWbpcZ5cTRY2TU03kArZaGqyZSrZq9apbk+lWFucfsT4scFJKfVdIcTEc55+A/Dy7uOPAd9BB6c3AB9XOnQ+KYTIrzmx/Lj3odLNGMQGDGYjjyKXRjS1a4ccTWMEkjhhapODWBKlnV56KWJ5M6dpDQ8RBplPP4Ww7F4Z1rVMgk1F3UpQNwhtRXk+CwbUUyFxYHKlMwQGbH5QMFzq4A+a/NSeE+xKLvAdr8nJxVFW+jJcDgu0pMvevgW+/cE7ecmvPk2oTOqxxyanRMZsk7dbuoS/+pzqY5dJqzznZkeSdrvHEVlTI3jw5EHcWQfjmiaJyLbP5s+YnP2Dfnb/2nnYtQ2xsKxVDSwLaYFRs0htq/KNxT1kBhpcf+9BcpclpVsE8fY2zCYwYrBrgspnhilas9wI+vGT13hd9jh/9967GB4OieJNlGtJ4poDlsSddTjwyimePr+FyV9eQVg2YuoqGXMb+WcadLYUWT1g4VQFcrLBaj3Npkd0oNXtDxt1pd1um0T3ie65X+N75b58CraPc+zre/i9F+dphza1E330nVSsHhDs/vNLXHn3DjpDEUiJfS6P3RRUdqUodDbT2OSQvgHlfIolIJPocKXex3IzRb2RQFxO0jghmQayU1Ua9xcpH2lgHU/zSHaIAy+5yN6JeT7efDHDjxqs3Jqm0XHxlgSxC98p7eJlhQt8a3UPCTukqXQbi0p1bcxjCVFEp08iBwIS6Q6FpI9tSNqhjR9aYCsUMVFKURtUCEsiKg7Bqgd9Pp3IImUFtGObRX+Ip1e2aCnptsvWvhJFt8mu/iWW22mUEpx/7xiTH01R35Yl9c0zFK/PsPjvDlN8rMLq/gJq11astiLyBFs/U0Pt2U7utE1thyR3JcaemiXeNIhZbeoG7YxuU5GbBjFmltYpIEuryPEh3WKUy6LKVV2hkwq5uIxIJrsFAk8D4VJp8u2P4GH+azGnH2acOQZMb/i7me5zPz445bM6GnvuenQt5nusVFFt3HThikhidWKijN2TaV1zLTGqrV4W1tNN2jCEbREf2ol5/KL2kxsrUDyr6GQFzcgkdiBOS+K2CyZ4yybFs5Lp+xXuoGTg7+FLF/bzvex2Uk5AaybNJ5fu4tqBPlb8FFPnx0jeX+OLj93Klj0LTOaWWAyyDDh1Zv08Wa9D/TlHXjgOxmodlfTWwUal9HHZILSGEBi2RJkK1WrTesU+7GZE7BgMftsmvGMXzlKzl0a37t2LU9O9fFFkMpBo8KK+a3zN2EPloAPn03gnk9g1qO2QcKCJZ0W8ZdNTnGptoiItBsyAVM6n4LW5utKHdzKJW1JYvsnS3RHnlofYsXWxu73uNjOfvsTsO48w+EyT9LQgTEPysTReqbvNbrc1W7iQX/++lqlxx7ZuZ5G5NEa1oZu+UwmMYgHVDoiTilIzie/bpBcEq/sgzEvdXjQcUXzGIkoIRj98HGN4kLO/24/5loDCG44iTJPoVw/RkGn8rEMrY9NseJgzuo/SaisS3zyBMThAkCsQzyUpvHSJVmBz9uuTHB3ajt3vE3lJrnx3gtvuO8vlpSL5B08y/+oB/LzNq/rO8YEzr2DiTIXwRbuxnzi7Li4YQ5yPEBUH86TH4uYMWAqrahD2RyAFRstA2d2tkQHKixFNi3AhyexskgVfu1sXzyoamwz8fk2dObOUQkiB1dfG80ISTogcr3P9DUW8FUX4+v3kv3gKp655gaYvuPG6HJseanLp5zxSCxkqkwZb/+4Gzf0jlHfa+MXtFD5/CoYGkJsGMVeqqKE+7U23kZuWTiG7GJIqV29SuBSO06vMqVarRyv4X12te74uvuclsNzk+GtndbpoGBp0QxPxVCqBdCyMIELl0tAJCEcKWM1uEPIjTMfoVe1kV0pEnJnXKeOGoCTW5Hi7JDbz+MUexmUdu0juGFz9zYOYbYhSEhEIUrMGg8/6OMsVLr+5iMh2sKyYmVcLJn/hTNf3TjB5JM2FX3f5/iN7sJoCO6VoOQm2fjnmqjtIdcRjOFNnzshRDTzmVnNsuhbexHPy75wkcXb++bvBfV9nT2uZxIxH5ipc+Z2DJJYExfOSxEwdb8GguieHM13WfVNxTPLbZ4hefAAjBCEUZT/JspXhg/v+gcdbO3H36nL+XneWLZbOXi+GBR5rTlKwWpwPhrjbm+VXd3+XMbvMrq1LmHcojndGcUTMQpjj2foEs60csejyeIQifMlejECxfChF9npEc8iktg2yN6S2CWqsL5nKtbWY/uyCLl3XG1pmo1IH20IlPb3t7/Kc3F1V/LaDeSXB8N88y+U/PELxmEH7NYcQbW1MMPhJjSnKuQUmf+kaGCY3fvdFFM/FDD/R5OpAEtEXo5RAdkxSy4LhJ5rY8xVKX9jElmwZppvs/o1VVu8Zp/6ymP47VzBDfclUd8KWr7Zp3WuzcF9E/otCt/Z0KQm5VBuuzGFf3bATEAIlDAgMclMGfed8xv9pEVkq9/howjQJX7Sb0i4XaQvaw4ooITACwcAxRX2LwfhHp1DDA4hOQOEZuPazw6hDdTw7QilB61oWvyNgd0XL1B+oU51JkZvq8vS8NWt2CFNQ3q0Xp9yXT8Lr9qPabRqjFtIFI9TXxdY/PYFRqyOHB3qWUqrR0IsL6PM1vYAq5G4KTKoLLQhbewOsPfcvGf/a4PTDjDNngPENf7cJmHu+F+hal/8NQDY1qpTnYAz0QUdrECtHT0Szol0glOdo4SulCNK29q1rhdpcsWsGaM+s0t45yMYagIolwrFRnc6GioFct4paa2uZnCBzXdscGR1BlFIYAdQmXKr36UbNZLpDIdmmGWWpvuk28l88pbO8kxcZ+dJh8k/cIJqdQ919kJXfalPa1Uf2PFSCPMGYRXM1qUO1pXC/e7rXaCpsC6uuHVZU0sWo6v25rNYQXr/OnqK45/sVFSIG/vEsgxObtJ9duUo0OY51YZp8JJHdErUwTdixGW9Fi+hZVoxtxgw4dZbiDPenT5MyJEkhMBFdfW24Fg7gioik2SFldDCBB1LneO+1N/LA4CnuS17gdncWgIzRZiXKcGp1hBx6ERC2xew9HlYD+s6ERElDB0cgfWZZl8MTHuSzqEpNp/qVGowNoxZX1gPxGn+mK8khfK0nZJsxh7deYeltPiqO2Xb7NPz2DJc/eZiRvirz1gCr+w+w4z8f48IfH2Lyd0+hoojR7/m0hh1Ke5IklgSTL57DEIpjFydJzUuq25Msv9lj1xtPUW612EoJmUoh1DjFZy3qi310hiPcvE+U0XDCuYd3wmhI++W3MGBMAbAQ5ai3XZIvuQX30bPrmvGAkfCwqyZREso7XQafWNV0D6kgBuIY6/EzFNVeVvfpbM4IBck5hVOLGf/QWWTbR5UqXdeegPE/6goqGiarb78D76dW6UQmjdkst+y9wWw1h2wKGlsgef8+sjdCrv1MkaGnQlb32pT2K7b8c6TnSjlCtdoUzrdpD7tkLtbo5PNc+k8H2PGHJ2mPZ0guLOst2cbzBTDUr5Uv0ZmUnrO+DkpB2KvarZGsf9z41zb+/jDjzC8CbxV63AlU/0V4kyFQhqHBbsvUwvD1ll5RHS3Tq7qd0EYj0I29gUS5JtIxCHIab/J3DOI+fq4n0t8bXTKbsCzki/b1Mha1Rvi0bbhwjcFvTuOWtZSpSkfUdsa4Ncnmr/mEAyHNmsfscp7kvEGUEFRft1+vCqZB5gvHiBeXMRIJFm9P0mi5xB6MPlQie8EkOp3FXrZIXLdJn3PW2b+2hdi1FfvGst6aVtcp/cZAn652dAXW1ry+3AVbd5lfm0HNLWrP+2NTqGZLmzl0syaUhKmrGIEGOyuracLYZMbPsxxlMbvksLpU1JXEV/Dlxl7+56WX8KnLt/JkZRuhsojR/pBvGn6GP/3K63mwsY+psI+WMrFFTL+1zoIGQEryU5Lx//c8iUfOELsCM1RkL4OaX8Io5DVIuriiLb49B/JZRFPja2skv7UhophoKMfyqzZDFDOardEIXTAEhmMjHlgGw6SQ01vS3bdME492uPDHhyicEpx//y1M/cUBLr9NsPR6n+TPLtAak7xl+Ele1XeOqC8k/UuzCKXY/dcVLn1kEuG6CNfl/Pv2kvv0M/j9gvR1MOsmE/0lRChY3Z+k71TM0HdNypO27uGLkwxYdaQ0cB87d/Mcj/5/5t47Sq6svvf97JMrV+ek7pbUylma0cwAM8AwZBNt4mC4YMA2C7Owr20M+GGba1+b6wDYJtiASTYXDBiwyTAYhiHMjDTKuSW11N3qHCrXqRP2fn/squrWGAx+d637Zq/VS11V6u46dc757V/4hoiV5+0i7A9wVxXdH34Q2Wg0FSVFuyRWQYB5/3H6P3KM+nCI3FlhdbfCu+8kcaXaRpGXX3iIxi8cxkilKL/sDkovOwwKen5PUL+Yp2NklQuPjFKYyxAMhIz9ySlWdpi4PzyPVYHU6RnsqsJdNiiM2dRGMu33bB0fp95lUBvJ0PeDFdKTgvEPbWPyOQZX37SdYGOPvv6GetfOU3FdNlypti3HVd3/uYLRo9fPAyX4NLr53S2EmAb+EHgXP9k482toGMFlNJTgNf/VN6Q8B6NaR3ZmtM1zNqlp36ZAoXFOZkN7loVZR7v7lkPCrIM7s848s/VhNImOwraoP2k3idmqbjwrrUUjbEtfDL09yOUVuk93M384SV1Batok9eWjYAgyh2+h0aHAAG9RGx5KC+pP3k1ipooRRNSHs9iViL4jNVaf6iOLKZZu6cBb0ZmdVdP1Z+8njyNbmlI7xxBBhOzIIm7Ma9hEa4WRVgxs2ke1phvuKvqxUkS3bMd65KK+wB0HWam2qTCtNfTVGa68egAULNWSjKRX8ZXNEX+EMXuBgkyyHKf5XmEH51f7eNPW73G7d40XH3s9HwqeyI/zM4x5C/zN+bv5wAv+gf/+kdez7dnjPLFrnB6rzHi9j85EjZgmbksp8l88gTJNFu/dz/LjQ3b8xjltQZ3P6Q2nWMLozKPmFtd22VxaWwbVGxrXFEaaS2kKzBPj5OUW5p81wu8MfIYvLB5au2bCCGGaDGWKGn8mFHduvcyD9+/Gaig2fMMgcgXlEZvqpojpsIPb7rjEre4cM9Yq3X0lZgpZUi9f5vKebtSM4uIH95LM1XHOmVx83yHczjK/uvc7OEIrHrzz4RGEhOSMj3lynKX/sY9VP8k1t4vN7gKHN1xnYdtGOHe5zZ1rj9+VwIhh8g8ep6VNDMhMSla3C8IOiTdnsvEzs9S3dJPvK3PX0BV+kNjM8hc3snKpE7tsYNU1OTjMC/K/Oky9UaWxksDMBhTuSTDYpak2nQdusFxNsjqTo/6kXeQvS+ZevZ8N31ph6qWjbPj4BWbu3UGQEyQerKKCkPjxu7GOXMQIobDFIkx10PNIlf6PXaZF+K3ftYPK8/bS8a1Lbckb5Tl6M23K36hG0M7228u2UH6Dn2f9PNO6l/+Ul+75Cf9XAW/8uf7yo1aLS4ZlNnsMTSH7YsvowNG8HqlQQrPZ3fkqUabpZWYILd4PN/uvN111AexyyMXf8tj+BqtN7UBKnVEtr4BpYp66Qq8Yo7LR04JwB7djnL1K9npM5u9OrxljtpZpMvP6/SgTUrPaAWZ1q8PqtEN/WeEWYpb2616YVYO+z55DrgMsRmkHeznU4FLP1Se/dfJaNXo60bbxNrIZNvzLJLU7d5I8N0dhi0eH3IZ5/JIe3ZpN0br2jaAIB/LYFUHoxNR8l/FiD9XIwTJispY2vCyECX54ahtWNuBPC88k980Uw58+zsU/O8DU7Ea8RcXwp4/zxj96HV4Exy+N4o/ZZB2fSBqMz/ayGQ0CFUJgdHUiO7J4BYkoW1x9+342f74I49cx8rk1obLWF+iMuSVstlxADfRoatNqhfDAVhodDvVubTzQkkLRWYfOQgNp8tqhH7PDmedC0Id8okFwp0kp8GjEFh1WSCVw6U+VeH3//ZiAJ2Lev/tT/N7lF5GwQhZzHXQ9YmLVLcJ0lnq34KkHz/KbffeRFDE1ZfJAbQsKLf5mnhxHBQFxPkIikMogVgaHspN8fmwn6TOaO9daicUIo2ixdEjS/0PBym59HEsH9aR0+4eKGMUq5946gFU0Odi1yBu672fOzzJXzeIMV+nPl2h8ZIDcl0+BEMi9Y/jdHgu3WjBrcfiZZ4ikyWS5g4ztMxtlwZEsHHQY+fOjlP77rcikg11RlO7eSno2prDFxCxWiQ2BtVoHKfEKkvJGg+Qc1IY8yrfvB2DD567hrjRIXSi1rzO5WtCN7yhqT+uQUgeiFlYNbtKNbz/3U9ZjAyHeWuvRo9W69s3KJtvOLMq1MQpllNWBMgRRxsUq+VQ3Z/HmG5qHVqm2cUHtXxtGGJtHmHp6Ai9VZuGV++n5hyNNzWTtxBI8fjfOkUsQhlgnr9C5bQ+rOxVXX5Qmev0uRE2QeeUouYRPrASzC3nu3HqZH10dgznJpi/6WEcvoJSi9/uK3pbygWURPuEg7qqg91OnkFHUPkHCc7EX15Ep8xkdhNYHpdUSYjXUNI9mI1Hm0iTPzTH7C8P0/sMjOhg1KTkyCHWpKNYAqOaJcRJb9lHdZRCGJuWGw9laP6ahia+2GbMylcddtNi2c5LrX9pM7Ckm3naIwQdiGhlF18kil951gIO3jHP9o1uRVxzOyyGEG0PJpvOE0eYyKiW0BXmhyOrzOuk+pkjPhhjLJZRtIXvyiGt60xFNjWmZ0pM5QG9QowMYyyU9YbFMzBPjlF+1j3B/hR+Wt5G0AqrNTUc4DtJvsCWzSCFOsiwT7HLmODD0FcrSJkbwntmn48cWnW6NkcQKPWYVUwhmohwLUYb3bPksZ4NBqv0nuHJHL7O+Lntf3v0gu5zVpu+dydmgX+vKJyVgNg0zDBJ5n+VqkmxnnUKztMv98DqxIdrnu0VPoVtzLuefo+j6jkf3w8uoa9PIfVu48OY0XtbGvmzCpir/a1h3TJ7UeYm/nr6bdLKBUoIDv3OCpTelOD07iF9y8LJ1+nJluhP6MwykScoOKIceSTcgTJnECRsMwfBfH2Pytw6RmlWsbjMZ/eB5Gpkd7euVS9dgy0YS8w26T7kUtpiM/NsSma/fAMNg4UV76PnSBWQQIBxHn8OKvp5VKWiTmlvB6qZ7MYp+Jr6ptR4TwUkJ7UlnVHVJIFMuMt+DtVprSvjWUZaBMTmP6sojIol96ir+bVsJsxnS37vI6rN2kjEGGf9lh+1vOrbW6G6NN69PYwS9vHjrcb7i7kZ9WCFs0X7duzSHbGZc8Z7NWL5CKEHUE2B7EZFtUT+fp5ySWL11HC/kgVPbMUsWMim58qsG6t59CCVwlg2iBIx+PcA7p+VWhz54oq3C2aq/jVxW91ealkeiWEblMu2JnVgtaSR1FOsGsd0sh4o2mAa9Hzumy9I4blqqG83AJDCG+ohn55sjbIPMdMBiw0AaiprvYlkxlVISWbFJXrcYuhSz8vISe7IzXLyjl3ApgbNsEDuCrs+fYvyde5GupNercPwen22/domrb9uHVVg/YJMAACAASURBVLURErr/6ZG2WWlr8BAd3MrQ96rUBjwS5+dQ5TIik4FG2O6f6cCUwFha1b0/gLqPgQ7OyrEwSjXmXr2f2qDitpFJpv0855f7US/pIrEiyR69gbwxy0qQYsnNMGSvMq8M8kadnBFSUyZ/uuErzMUu5xpDGEjyRgQIeswyngipKpu7EtcxgFpynKTQZpwxWo3naphlLsoxFXZyvDgCuRChTGSjgZFO05hM421ZZcApUpMuK3GK6qFhEt8r6xuyeR68B84hX7ILMxGRSjYwXlImfqXPqj9EsQJZt0ql4uHUBX948MuYAnwl6LeKvGj7Cb4wvh/HiikECVJWwP7BG0xl9MTs3uGHaUibI6VRklaAVIJikCDjNlheSSO71/TqR95zjPrde+n55hTX3rCTvqMBxYN9pL8yC1JhTM9iLydQQxtxioq5J3WhjG6smqL3GxPIoT6d7Vfq+ry2CMKG0Ybv6OPWLZWfrjnx09djIjgBOiglHc2V80PMRqgDVi0g6EtjlQPUSB/i3FUSxRxqoBf3oUsI12H23t2ETy2S/6OYuw5cZeqeAyQevqLJk0pRes4+yhsMwrTiX64c4AWbT3Es3YGs1XR/xtb226rZODdPjmP37sFbsvCVQ9QHwtLMbbNuEJZchBcjIgPpSkQ2wDAVcSrCWHQIRnVZVtji0rhtjK3vu65lWtftosIQxAOdGLVA47T8hvadr9Z17yWMYG5RZ5O5DBTLGgfWmdeTmk59QUq/0ZbigBihBI0n79dkU0BFIQQCaRsQCywnIgws/BUdHDpOmmQnQ2Z+OeD3dt/HbJhnoKNEsneJpBVg3SPZ9/YllqeWuXtwnGdlT8F2OPXM/Qx9L2Bpn0vsrvV92ss0caZXWHn8IMm5EJVN6dI9DBFltRaEw+jmwAT6e6WNKYkVcmGJet8gRiB414av8I6ZZxFEJuVDktQ1k9R0B2JugVLocaHaT006JI2And4NUkZDu6xEWf7u4l387s5v4YgYAwiUwhYSW0T888rt/HLXj+g3G3hCUZYGnpCYAgrSoqocrgfdzAY55usZVGTQcSFsc9OsoRo136HPLjAf5gmlhbuoM10hBGzfhLp4VWfqgIz0v54VUY9s+tNlbDOm4ruoWNAY84kxsIEYpeEJVh3DUJiGZNFPM5DU2uTv2PJVdjlakC9WcDhxlYU4w8PVMc4UB1nxkzheRLDkYmQzxKsFhBAkvn+O+hN20nExpt5tETdF1MX2zairkyw9fxelMY1mj1KK9JQitRChsmkwBXHSw6rU9YbTxKoZqSSyWtPO1uUySkqNM2yWcMK2mrCJn509PTaCk9A9I6MWopI20rMRUhGlHSzAKgcY1UbbVjxeWkY0x9HJLwp+o/sLfHjiToJ3BxybHSZ4dYi4aweDP4goD1k0ugSVnQ2GB1d4XO8Ei0Ga8+/exvZfP6H/vpRt0a/W8vMmXadDbjzZwvJCosBCpmMM34BIYE27ZCegPAKqoke+KiuRCYVpS+LQIEwL8pdjXeKA7peta9QDegpXrWvGvR/qiVWlphG2reZ4oyk7kfB0k7wjh1xcXhvLhhEQt4OUc/9pvXtF2v5KBQGlEQuMGNNUxBFk+yqUiwn6P3WR8+/eRnemzvvHn8TqTI7kdQunCEFOWzudlTvoOdHg5AMuJzkM+7ay+DwDoRyihKLrdBNC0BS2QwhEMoHMJsmNVzGKNd0IbSkr0JLTCNdY6s2SvhWwAWae3IFVVxi3dTD0vYCPffyvORl004gttncvcCqw8KtpzMUisZLMVTLMVTKsppOk7QazQY5AWlyrdDL32VE+/pa/5krYQ96ocT1Kssv2CUUEBryt97s86Z9+l+c+4yHuyl4iY6w1cpfjNPNhvi1CN7WUx1q2SXz3ODKOmX3dfhhXZA4sI5WBryyu1HqQjonat4Uw51AategZF80bVWDZMRmvQTVwiKXAjywcU6uJZk543PHy44RKXyOL0qXfLOF7s3zm1o/w/G+/CXfWonabzZ19VznnDxEj8KVDWXr40sYzQrZ480zWO1isp4hjgeoIqR0Ywf1uoU0zcVYbuPMRi4fzpGe15jcTUyAlTkWiDANlQGJOYFclIkb3gpdLGC2oB6BKZW3g0AT/qmJp7Vpf31v6TzTDH70eG8FJ0ebEmeUGMmkj/Ajbj1CuiVGqE3e0dt6oTWi9/Lvb+eyG93Il7OEZQ+e5Uu3hUOcUe5NT5G+t8Y49z6e0lCLdVWNjukqXV6UauUTS5PW3PcADVscaSbEpxt5q1DlVSeL+szgHDmBsixjqKuJHFgtLWUTRITcOblkbV0eeIMiD9JQ+lljgXfZwigp3NWqWXGuBqe0N1tDBiCjGKFa1g0WxDKkEIqMdV1qqgSKZWNP2iW4+6S04g1IaANmGEUCbXOyU9XGapsT1QhqBRW9PifPv2kH6okXn6y4hLAv/rbcBUNgTseE+QfprJym88AAzvxowyB7s+x5h6WCaKKMY2a0dZjs/e0xPH2PtiCNGtVa4sVzS/SO/od+71cxQm1Qk0XzcvsBzaYzJef19rc7Qt/XzV17eRf05OgsJlUUlcnnzhm/zltVfourrLFNJRaGcwHFiLje6sc2Ymu8QlFySV21yK5LfHn8JMytZnrBxgulqng63xrb0AgNOgSF7lSgnuf+Dt3Pfc7Zz9/A4HVaNhrTosLVMcTVyuVHTG0b6mu7vmZkMQkG4IWB75wIZs06jYVMMPaRj4jx0gYXX7iczHWP2dBPNzCECg6hhsVBIE0cmhqFwvZDlmoM55fH8V/6Y67VOYmUQAv1mgxONXkqxR2gZ/PWTP8U73v9qSvf186XDaQY7i/yb2sem7HJbXM81YpYbSfzYplhLYFmS2JJYlbgtOhc0M+ziCw7S879Pav+6ppJl487dBBkDIUEeKlOs2XjfcFAGNHqSeBM39OZpGvr8tlx1Wrd0HN/s8ivlf8Q3/Z9y6/5vLCFVW01AJm2Uaeig5EcIP0JmE5jFOnLPFsyZZWSxhKzX+ZsXfRSAfquA79ls8+ZINaVlyzLB/9rzBZbjNFXpUowTnC4PcbXSxZbMIjONPFc/sY2NLz0FtqNvqmSSxt4RvPF5cj+8jn/HTka/tMil7i5mNli4bsjBjVNcXOplyUqTmLawy1DaGYEtsRIRlh0TTqZAQs+nTwJN2EKTunDTam0oUqLchM6cPBc5u6DLtiDU43bX0WJzzWAkK1Utd1ostX9Vq7mvaJapcXyT5VRiOUJEJrWySzLTQEqBZ0XgSaLbyuR+0MWZb26n92hIkDPJPnGZjjdXufSyrUCV3k8lmLnLovGKWzDdOtK3qIf2mo5WU71RCAtRrRMNdGC1emeWpQGVUayzuZaYXCqhme4t4fyoeePk0hiWRX0wQ3XAYej+gJe96LsAXG30sjM7R79Z0UqWKYVcXkEYgmgpQeiu26UjQXLSwgxg9ikxO19ZY6y8wJWn7WHudpMbNUH5PT7EKSZ/67kkJazulqQe6ODf9u5noH8Vx4xJWCHdXoWpSgfzxQxh2SU9pzeAyTfswYhg36Zp8nadWBkYKK4XOxHDDl0PQXomJv3NM8S7NiPm5nVPsm4T5nQWLg1FVHAwqyZOQfD5Bw+TuWJxZNtm/qLDJ6g5OMmAsd9apr5zgIkXG7iPL9P92SQlmWamI0XQGzGV6sB29H2U9AJcO6LWcGj4Npl0Hb/mEHsGVnMzsL9zjOjJB3ELzWlnag3/F+QtvNWYcmThL+rzM/obl3j48ka2fEjqAU2LSmZZOkitFtekc9YpEaxdo+tugPUg6J+yHhPuK9LWwnFhthkklEI6FlHWQ3oW0rFoDOUQ5ye0vXE2g9XXyzOTDQIMTBQZo07KaGCLCFNIuswKhThJl1lBKsFWd569mRsMp1apRi6hMnjBtlNYo8NNxLhCVavYPzyDXFxCVqrYD5xm4sU9dJ4WhIsJUm5AIC12985hpEKCnELdvUq2v8zwhmW68hUaNZvu4zD63mZgaikLrM+aWpO8RtCUdWmWQqWKbkamNblSpZNrr0Nb9lT096wFJqE1qRded4uu/VtL3Hxq3e+fwV0wEc2eRVBzEEJhJwOi0GR8uYf0HYtMvlSSeN0MK6UU17+0Gc5nEAJmXhoQpSSmG/Oc7WewvIiFxSx2ibY8y9wbbgPDQK4U9PtuyhQjJarmr2V6jUAH3Oa/7bfcEtBfLRGO9uCdnqLjfJnysEO/VeBalGaXd4M+u0TGiNndOaenZoaeFKYnTIiFBrtes0lds0jOKRp5hfBizr9zI9Wn7SH1zVOM/Y/jjPzFI2AYVJ61n0aX5MDzz5EYLWPWIXneZeZaN9emepgq5Dk2O8zsaha/5oCE9DdOaw36nMI/XCHr1DmYvk6XWaEmHZZX0liNpm7YqSXdKD49DmhOnLdo4MxbmDUDq2jhrJh4SwKrBts/WmPo/cdIXbXJfjWNahhsetU4slTG/dF5MpdsLEty46mK7jMB7qogec1GzLk0lhI0Ki6rSxkWVzPUfRvTiomkgYoMFg+6WmOpuXGZ95/Ee+AcKo6JvWbGs30TfodB6r6zKBOEFNidPme/tIPsUY/ClkfZeLU2nvV2UZXqGjZvHUYPuPn7/wSc+ZgITkJpLzqrGqGEIEzb2lllrqAnc9PLuKcnMTryLN67j7kP53j+d09zKvCpSZeCTJI1fJKigS8d7KYFdcasEyPY6Cxhi4j93iR7UjMkzBBTKDa5i6iPx2uI8UfhozAEG//qJJEHuQsmc9e7OHN9ED+y2TsyQ9/eebymvRJAteGgfJPE4rqpXAv5+yhgpBACHJu4N6eDkGVqwKFrt6EEolzVwDZolkRS957mFpsj7LXf1//vi5qD59gIIZqlXnNXEgYyCMlOKFTBoe7bWG6E3/T5SyYb3DV0BYDe3iLXTg0SRybdvzBN4sAK/nKCTMqne9cSd2y8RiRNDo9eJ33KY/DDJ3SvKwgQT13RxOR8DnNiTgfTlo56C/XdDFqi3mj/K8pVfaw1H2EYqHQSe2oZOnMoQ5CbaDBiaQmchSjDM9JnWYltDmWv43T6GDnt55e9FiNCgVPSn0vuakxlWGDtKvH4rVexsgHTL4y5+KFdOlg4Dhf+agfmG+Y5dMc47xz6CpmET3F3TM/JkMy4hTNjU5lPUy16NKoOqmaBFMh6nfqzDuEWBIeGpxlLLtFjleg0fBaDNOaMS2XIgE3DqBtzzevJQElFx/3XyF2NcUoCq2JglwV2RW/QVk1RH9B67RvefZTur12m44TF4isOcvWte7j2iTGqB+o8b9NpnGWTwpiNVVe4BYVVNfQd3TBAaFE601Q0VhKUV5MglHb9+Qna+vWn76fnH48jLIvFwx2kpyOm37gfI4LMhhJhwUOZ0PdQma5HVnXwaVqO6/Mq1yawoANQKwj9pAD1c6zHRHACkLaB9EzsyUUSZ6bxxueJ82mEH7L8pA1c+c0tzH4wwx+85RN8Zf9Huc2bQCqBLSI8EWI0raV7rNJNvzclAjwRYhMj0U4irhESSpMeq8zdPRcxsk2fplZwatXIzZ5IYkXRddbHqBuousmp60NcL3RQ9l2i2KBQTjCzrHsR7pxNlFp3I64LeG1gpNAW3LrXVNMStElHp7imqQNUGLYxIaJc1c+BbqD3dbfdOlSgzR9k2qX0zF2IjRsQoxs0ONG8WZ88d7mGXTKQsYlhSvzABiV4w7bvM+dn2ds1i2PGpDYXMSc8bvxoiNrpDrw5iyAyEULR55YIlcFwchUjpL0Lm93dpD6ZQ0XRmmliy3a81Vd6VAaIZWk+YTqpXWBNA9mVXwvKUvMni5tdvlnZgydC8maNuVg7odSkw1jvEv5O3ePKXCyiHEmYVkhXUeszaWxuEEUms7UsfZ0lLDcina3j/2sPl/9+jOHRJR7fc5V+r0RVWWzKrqC8mNnHW3SdDUksCD0E8U1omIhYIBLNstSE2Iad6Tm2ePP0mmVCDBb9NHZZaGJtd7I9Um9BSVoDEqeg+ZsaVEzbkHRlp4X/ZC0iKAtF+j5xktRCTJiXNKoOlhNTihKEeS1cJ239FbsKq2CCqUAK4sCkUbcxUmta7VZ93XVIE3slBN58XV9/ShGlRLtc95a0Y03qmkV1Y4Q5McfyrR36+Fu4LanWsnrPuylI3RSw/ovrMdFzMhox3lSR8Vd3c+97r/PC7DF2OgZlGSCBudjkWtiJxEBicDHM4gn9gWvXkxgThWeGLMYZYmVgixADMITElzaOiLGFHvHvT01yyR/gatDD7ckrnP7KEPOPayHGlb5SDEPf+IYg+9XT+HfupPOUoLDdQlVMKpaeyAlToSID95pLHCfpPRXhlKK2xCqsXQwt/hTC0Bin5vGrbApzdkVD/bu1CF7Lu404bo/d2zIwlRrGlo3E5y+3gX3mjSXEpjRTz+4iSkLX2S7SX3rk5s/5yFncx91GudMm0d+gXEnwzlv/jSOVTdzb9xA/LG+lO5FgaroLhgJE1UIEAmVJDN/h8OglQmUilcHDS6NIS0MVhGkiXAe/wyANWvnRtcG1m2RdC6I1mVrhedqO3LI0VcVzNCugGGpIhWXpANWVR7kmUVJgCElKRDhNs88H65vZ7CyylM9wLO7T3LXxCYS3m6BbgCUJMxZjH5OUh5PMbE4z+tUijf1JGvkUM115hAnzEwn+RfYTjjSY3Nipx/qDq8zXu/UN74D0JFgSo2whMxHODQfhOMwfNgHFzsQNes0ynaaPieLUkTHolKRmBct7PPp+qFBqTT1SNhoEGU1BAbCaJH13Rb9u1WB1m4214RZ6Pn0KkfAojVooV8s89w2sMF7qgXRIo9PQnL9AI9b9bT74JqYXI1cdRC5AxQa2FxHWbdLTsp1R137hAKnvnNcsipOXwDQJ7thJbiLCLgZUh/XmVpnthbwCoZh441Y2fW4ZNgw037ylz+U60LGsaikU4Toov3lwPyV7UombnWTWr8dEcOrcUubj3/g4BlCUirNBL++eu5V3Dn4NXxmUpdN2N6lKF0+EBJh0GXV8ZWILidm6dU093ZLKIMDEIQZDPzZR5I0ahiWZt3J4ImIlTnNvz0P89ttey/BfHl0r7Zp8PBXHyL1jePefIbFpmOxklvKwQ2Mq2X7/QR7cFRj6ygxyflGzzLl5h1qviCAcu51JiHpDB0TH1uoJrefW9WKo19rkZVks6cBXKDLzO7cz9O6HNT3HNHFXI6I9JkP3+7jnbxCbJoYl2sej4pjB9z/C9d+7hWoigWoYLEYZTCTLUZqnZc+wNdGDY8aUAo9iw8MxY3oSFfZlb5A0ArqtEkcrm5g8M8DW9z+id1thoLIp+r4xqfFcXR2IYrldngI64DSDVOsxoEvR5nNad7qmnWKXdRln+BFOUVGLXR7xh8maPoPWKrWGgyM8+uwS198QM3bUQtZ9fRMqgenEGLM2l19lsusPp8j90w0m/ufjsEuCoEMx9kfHufLxbWx+7RWWXroP84JD41+K0GiQFQZLf9rL3G0Qj9WwADnvIT2JsCWb33WG+NAOgv4QJx1wh3eDlnViWdqkrxlURnVWE2TX2gVtPJowyF/xKY14JBf0hNfvEngFhREpykOmhlCEMP7OvZgNgRFAIu8TNGwqDYepa90gBcFgQEU6ZCfAKUFgKVTNhLIJnkI2TMyEloYhFJiBvgbLv3gruZNLGocURrodkPBwJ1dwpmdZ/aUD2AVBlFZIaZC/DOWnNej/QnOjLZbb17nwPG13tT4oNQKtQpDwtDLBTynplPmTVJaal8hPfeX/4sqIBsuxQCIYNBVPSazg9fyYTxVv5VX5o0h0xhMqg367RkE62MSEzYATKgOERCqBg8RXNx9WVjQI1jWIHRGzy7vBmfoweaNG3qjz9lf/M//0NzsgEm1AYRvJfULvKmpiCmcCukeGEGFE1JfTAMpIUh9KaVWAZo9lvf9Yy+2l5Ygi0ilkTx6jWEVlUzoQttLial0DFktVPc1q6TuZ2mH40t9vw3EjGjMpjEBReNmtdPzrWaoHhkiOr7DxXTdQUUTtngMEuU34eUHPsTLizGXNeA8jNv39ZS7/1hhhX8AHTj+Rl+98hAv1AYbtZe5JXuLZqUu8a/4ewpRBOfR4y+A3WIjTSAyuBL08vDBK75Em8LJZMsrxa/oYTVMbLTQJvu3VlD0hmYBafU2eN5tp03dEGGlB/TBCdXWgJmdQW0aw65LJeicZ0ydv1jhS38yDhc38ev/3KMRJ7tp4lem9Y4jjF4lmkhhSexjGWQWBwcR7OwgmRnCKAm4v8vyN5/h8/jB/dvBzfPIrj+NA8hTlyGXCOEi9V/C4lx7nyuU6EvC8kOpCCjMGkYpIphvIao0bd6cwvTpP3jSODXiGIFCKP198soaVOIpGU+qoFZRuKqceOIX/5ttBQuxBelqS/fpZCEPCXzpAaZNBmNXlqRj0iQFjPIPMSlYrFvaKxdgfn0TW61R/6Ta85ZAwZVE8aJLeWEJKQTCeJbIUMpaYlsIqWrgrgVaE/dfj2pzWtonu3KM3s6VlRK3O4isO4pYV4XCA6cTY55Os7pYkj6Ypjyi8H83oc9vXjVgp6g2n1Sf1PC0i2MygVCNo9vfsmwi/wnNRfgOj8tO1nR4TwclsNnZtIfVJQNFrVtjiznMh6GDIKuGJmL9ZeApPz59lq7PAZgtWZESswFcGEoEpFAYKQyh8ZeKhM6oAg5SICJVBjKDH1LiVpBEQKBNfWQxZq4h0ChHHqEpVg+XW0V9u6h1Nz6IAY37Ngz5xIdaE3nXNRg3jv/lYhWNrzFKT0CwKZVRzxN46YcLRUjEtzAkAnkvtKbuRdYVfsRGmgiGfhaRLxxclyfEV5PXp5h8xcL9zgvg5h/BWBdeem2X0mObcIfXoffSrQ1x7rkfkWXyy8AT6RlZImgEr3gxTYSc7UzM8VNzE4/JXeaC2DVtETDR6OFscoHZfLwOfeUgDL5u+eG3ybhBgDg20PQbbQWndUkohWplhI9BTS7gpWxRhBAO9SNckc7nMbD3LgFdk0cxyrDRKp1PjWH0jg/Yqq4kU//5qjx1nHbb9/imu/MF+RCSIcjFI8KsOKhWjNtaRUvClC/txF0ze/o2XIiSM9/nYTsSW103QiCyOLQzjuiH1ikvVT2AXTMLuEC8RIh/JIUyT+mCMZca8pe/bmEIQN/tp3/7xfoysQjmKRpek41zzMwrCdUh+HbAGP3SSxXv3gSGo9xpkDmxh7o4EQ+89Si6OMTtyiFyWqDeLtE2sE2e4/pt7Gf6fR1l6/W1c/Iu97NtzjctTAWLWI7EogABDKBqBTZyR2HmfODKJQwMrBvdH5zVNS5uvIKII8/6TxIZAuC5sHcUMYOEWgYoEYi6BVYMgK8hNxDQyhpbyAS15Y6/rhTq2lpX2vDV8nmOjgrC9af9X1mMiOEmlcIQkUAYmUJQxW2yBK27wkeU7eVvvA/zA7+dioY/7Lu5AVm2QYDQMNu6dYXtugSdmL7LVmafHDMgIAImvJNejBBkj0MFKxNjoILjbmeHBeDNZw6fT9LkWelQet5HM8VnCHcNYJ6/owNByk2jKrLZR5ELc/Nr6mrtJvm3JA7ca08pAW6x7jlZ1rPpa9TOdRFVq2pQQUJUacqQXY3IBmr0nubTC8mvSeLGBZek0XQhFKl9h7jX7kTYM/K32HMM0EZZL8usnEaZJI7cfI+FRfdpuEjN1xMlLmA+eZcsxm4t/tge7YDJv5/kX/wCbu4bZmZ3jxwubyLo+n5y4nb50mclCntrlHE7BYPi9D62VqYaBkHLNtfbwHuSpcS2h0dOJUOuyJ9AUnGQCVa0hDENzB5s7ats8tGnK2MK3EUsuXB/gcKc+vhOLgzx1wyWu+V08NX1OH3ImpPDc3eQ+dwxpKeyyQdQbI0o2qmph5QPC6ymkp/D6q1j7CnR5DZJ2yLX5Lnb1zVGLHFb9RBvErGoW67Vd1bkMI3/2kNai8mI29y6TMQQGGsL2m9dfgFUXyGEfahbKVlQHDfoG+7VTzbqNS0mFqtWIElpyt7xREqYTmHWYfMutWHUY/H4Jce4q4sYslmli9Pcy+u6TXP/sTnqzs5SW8pyb6cdLBMS1BGEKkrk6YWQipYFVNojSFqmsT20iS5TUVk2tbL7l4Wh4mlKy8Ip9FLcpuk8ooq4Ia9kmeUNg+VpjvLjZxFtSrNzRT+eDczpbMs12hi9yWV09RBFGNqNxTq1gbFk3kYB/nmD1mAhOQghsAQaSsoKMMAiVRCJ4cccRfuT3cMid462bv87pwQ3MNXI8MDdG8Vg3T+y5zL9e38uR+RFiKQgiq5lwGAx2FPnFwePcm7mIIWLOBw49Zh1baLGpjOnjK5vFWJA1fA6/4ygXfmkDsWfSeMpO0hdW2lgcmXQR5/W4XTUR3/qBBNNk/nW3YdUU1Q2CkXcdRZgmMmxaq0eRzsB2bUGVa23n1JtWq3kehpDPYs4s61Ft88YVlkUm4TN/pRs/GbN/bAqJYHtmns/v6cTKBlx8/0G2veEYhqOnLq1A2vfVCcZ/fx9bPzzD+OsH6R/cT/KrJ1BByNbfPMrcm28nSpv4K1nOzKY5wyheX5Ubi3nUqkNluRsUbP3Lk21HF1qSx3GMOdiPnF9k9nUH6HvfQ8hbd2GOT6NmFzQYb70Bo2WiKjUdkFvwgihGNANTy3oIwLg+D915UAp3wmV5d5q06TOaW8VEUo48roWdJI0GsW9S2GKQty22vvMsl9+xR0/XOhsQG8TLLgbgzZmY17LUuxVBQ7BkKKLBkIlCJ/mET9V3sEyJEGB3+MQzScK87luOvlNni3LnRsxEzNs3fhWDZq9JCY4f2YIJWHaEkZbYEynq/TFyUfPehOPooUerxSAM+v72x5hbNjH1/H6NmxMCy9cb2dTTsvj37sMcqCOlwa/s/RHfWdhOfSLBZMXFSeqM0zQlgaswG4JGwyYuOggpiHMxnZ0VdGDH3gAAIABJREFUVuZyCFuRmFlrM4h101wAsXsL1SGBdCXSMkhfcLB8cAuSRtag/0hAacQmyArMQGmFjCDUZXjLjbrur8ugwzXWBawNQ9Y7GD9KseDR67ERnNAByUcSAlcji1tch6QR8mNf77xlabLZXtEN7ZTkGbnTbNxT4MXHX8cH9n2Kjy48kelqHokgjE2SdkAtdPjI+BP4q8LTsL2ID9z6KTrx6RSCjBWzzZ6lpkKONvQFvjmxSOWzLtMvFdS39lDe1UVqqoq5VIKkS/UZ+4gSBvVuLRwnYj36LY0BKLwFQaNTwp6tyBPnEJbdNvI08jnU1NzayWlmB6pS1SVOPtuWN213Jjz3ps9o/nI3I9vnEUKRtAKe2HGJiUYPqd4q6kiOe192P0e27tS79DoMlPIbjP3ZGVY+28vYS84w8bt78IZvpf+DDyNMk4H3HWUACJ60l7nbXcKsgpksrgF2BTJTMZmvnV4jGYcRhmMz+/pD9JyqI45d5uLf7WDbrzzcHEfrngKpvKa0tEq8dqDVQVewDlbQzKBaRpoqndSBDAiG8vQdCVl4WprtyTkiZWp7LGAq7OKOxBXSnTW8H9gsv3g/Hf/4MGO//whX/uQWvL4KYWgSWpK4YhMFGrSanNeOKUEWUFAsJ9nZtYBtxCxU0oSRSVjwdB9XwpaPrvXXjPPXePxmwS5b35TLseDFx16PMiHsDknbMdWaQzQUY5YNRH8PamKyLa/y6BWPXyU126vxaBZESUjO6JG+EQq4nsSuC/7x4j34G0ISnXUavo1hKJQShKFFlI1RdQMlBQgwKwZyyKfmuxhehAoczEAHSCGlLq0TCVaevZ2OL53mwpuSuJkyXV9PU9kgCNOKrtMKM1AMfvEqKoqR1kaKm21KGw3S2wexCz5UfX1e+7v1ptuqAqBNWdLnuTn0iKJ2X+pnxoX1qM7/v9ah/a76ztd7qMmYnOHw/sJO+qwir8gsUJI+X6sNc8CdxhaSsrQJlUmfWSdEcC7oaze1zwaDTAedrEQpGtJistrBfC2Dbehm+UIxTWMlgYgFTk+NoG5jT7l8+ZV/yTF/A9eDbgC+NL2P+DNafjS5EOEt1iFWhJ0esWfgd5g0sgbSgSgB7qoi9rQYfee+RZbO9rDl/zmmlTYdW9+o6/pXbbfbVvAxDN0khnbDWIVraa/IpMFvIMsVXvrIOH/3x7/IC9/6HdKmz3i9j+lanvHlHup1h85clY4XabNLpRT+U/ZhBpKlvS6lfQHP3XeS8TtNlu49SNfxEpy+uNY3Wrda6o3CcVBbRjCm5ohXCvoGbcnRQHMX1iBP0exbtPTBRSxR5QrCtvXxNBunwrZvKudaNtetz6VVJqhsWqPmPZdgpJMrrxW8eO8xTCSV2KUauWxKLrEnMc3nF2/lyHd3svmPj2sYSBgR3bmHq6+Bjo4KNd+lK1OlHlpkvQY9iQrFRoJiw0MIxQs2nMIQkgeWt3J5sRulBI25JAjInzXo+9hxZBBiODYX3rOPI895T3M6p3jzxIu5+OBGoq4IL+8TRwb5bI3FG3mN8r4myX3phC7z1wsBwtrABFj8tdsoj4JbECih1THdosTvMNvKqwDV4Rinv0YUWmQzNeoNB6UgjkykFKiCg0rG2IkQLxFQns1gF0ysrWXU6SzD99W0wYdhEO8b48obdNBVBQd30cRdASNSKEPQ/w/HiG/ZgXnqCnOv0tirMAN2Gfp/sIpRqq05dfd0wuJK+/y2nleN4KayTriOnh5HEQ9W/o1ivPQTR3Y/E4QphPioEGJBCHFm3XN/JIS4IYQ40fx69rrX3iaEuCyEuCiEeMbP+v0AEkVN6ovdFiZPSZ3ngeJ2Xnr16XSYSZ6TmuZ7tW2sxB6hMvFERE2Z+MrkkDvHa773KxxwXYasVZ6aPsvvdv+QP+37EU/vPsem7ApCaMrGQEeJVG+V5ECFpBeQ76iitlSZirJsdebZ6d1gg7PCX27/HMrUWVG138LvTYCh8Vgo8FZiEDowOWXtYgFgNAQrpST5iyBv2YE52KcDU7M2J4y0MJfrQDKhtZXrPqpa08+tc0wVtr0m9K+U7keZJu/88XNZeFpIqEwa0qbD0rvUbQOTuMdTfHL3JzCyGYx+HVznD9tM3eNQ2SgRpuTLxw/Q9e8ejbxgdW+2nckJIda+WgTovVtRW0baQwLDc9teZMJxdCBq+v8ZqaSWZ1XayVZEsU7zuzq0+kBrF02nNJeu7q8BM+v+TSRgEcX6ZxoBuA5xPo21Wid5zmMlSFGKErhGxIHMFEthmov+AHd3XMBZFYjRDVoqBzDvP0nuIY9KzWNDpwY+didr5ByfqbIepb1s9Cj/e9cn2J+YxBNaviRo2EQTaayKQWbcpO8TJ1GxxHBsqs9YC0yngyzvWbiHsxODRB0RWJJ8uoZpSRwzBlsiIrAruvQXramkbelA3uz5AKAkfZ88hVsQNPKKIK+odxuEaYOOMyWGvrbA0H1F8pdjvHmTRlGDGy1TYhgSw1DkszVk1UKZCjsRkko2KK8mEU0H5GdtOkdjzGdlZ4L4wFaM7k5uPDGJccNDVvV7ixKK8piksFsycN8C2DZGENO4fRup+ZgwA1YVMtMRyrGIu7PagKOrA+EHeiNtbTaZ9NpGvK6EJIpufvxT1s+DEP848Myf8Px7lFIHml9fa17gu4CXAbubP/MBIcR/bogOGAhCwBaCimywzzH588Fv45kRf7s6Ss5I8Nz0eTpNn5zR4EacY4ttYaJYjB2eu/8kLxh/Bk/wQkatEE+YmELw6/kb/M7AN9nfeQPLkFqWwoqwzRjTUCSdkK5cld84di8fW7qLQpwkVgITxSt+++sklmOshsLvMCltyVDalNDutdttGhoki1VVJJdinKIiyEv2DM5SeEqda89NMvGq4TUbnK4mqna1qKeB1Zs9u5Tf0M9XqtpJNZnQFIGEp1+r+6jNG8gfddkwsALAqLNEp1VlLL3EXbmLVHc1+HThMMGnHBafNITavw0Rg1UXJEdLIKBvaJXLhW7KuwMW7oy48Dd7mXvdISrP3n8TFqV+926kYxKnHZRpEh/avnbTDw/qzGx9at4UvGtJoMjlVR1gmsFVhSG0tKgqtZsyQxWGN5WwaqWAGuwh7siA3yDs9ODyJEYA51f7CJWhLeKBOT9LrAxiDKIkXP/F3magk4jmzp/5doqJ+S4sQ1INHRbrKZK2dnPe6s5xf30zV4JePnblDq6cGcK+mMCqCDrPqrb3nTnUz387eZEvvO89hErx5coY3yrt5dtXt+vrIBNiujF+YNOfLxHE+rJvdCvsarQGQmyZvD5aOkQYyGqVxIJCWYooH1HaG1DcbHDptWkuvD3Lyp8E+K9dxbilCAo68xVsMybphtTLLvXAxsyEJHpqmj1hxRgFG2UpOvYsYQjFC3efoN4jkI7B9POGUCakpwT2qkVy2mTDLTNIR5KcNinv6oJNQ0zfk8FsSJZ3mZh16H2kijIEfq+HuVjUm4lrabG59WwApfT0zjT+gx2UagQ39bx+0vr/6vj709bzgc8opRrAhBDiMnAb8OOf9YOdhkVZRtiGQU0FZA2P9498ncuhCTgMmAm+VU+x0VolY/hcDGNSImYqyvPs/Cn+ovAMTgUxt7hacydWkpoM2GYLfq3r+3zWupVS5HGmMMh0IYdUgiAy6UjWGelc5aH5Ub59dTvPGDsPaTiUuMYHbjfJXoEwK3CKCqeiaGQERgNMG+yyIns9IMyarO5ReEMVHDPm1tFJ5IigErqcH9jDjt85o+2o1/eQUklU+ebnSCW1/Ee5qiV7c1nk3EK7fySu+gxcu8H46C46ho/iGTpY9NklTteG+e3bvsU3F3fz1o1f449Kr2PqGRmsGux44UWOXNiE4cUUKglGu1ZxNixTrHtUruWojCjqPSbVvv0YgUYbd5wrIV2LIG+zdGcCt6Do+XGsoQ7Fks6cEp4OoErp74OwLZPR1vZZWtEMdtDASrtZQoYawKcVPi3k8ioimdDCemGoMWB+g3BsAO/yAtW7dyNtmJnP84S+q7hGxFKUZsgrcKHaRyQHSdy6DF/rbBOBW0OGnn86TpQ8xOQthu7HWBIvETCUK/LB6btZ9RPMXO0mOWWRK2svt9HPzRD256jds4flXRbfeOOfA3A9cjjd2MAPils5NreBbMpnqehipgK29S1y5vogSTegP11mcSaP0RCISK2ho2PZnuK2+JbtQGWYdH78YQrvug2UINVZo+7FIAWpjG7WJ90Q05D84i2P8L2ZLdQDD0MoLDemVnZRUiCtmO58hfIDvagdPtasy/Mef5qcWeeK30NtJGLG8rArmp5SussnLtqkdxUp1j2ecugcy7tTXLLHKI12YlegsNUjM6mQFqzsSpKbCLQDkmPTGM7jTSxr84pmi0Jk0jp78jxUrd6e7mpnpObxP8rs9tHr/6Qh/htCiFcBR4HfVkqtot19H1z3f1qOv/9hrTfV3DBkEqPwhIGNiSssjjQUexzBFjvmVOCz23bYbK2wIj3yho7CgTLY5SzjCcH23AKvOfnfOHXbpwFdKlZUSFUq+k2DN3Ye4f0rhznQOU3G8ble7GQoUyTr1LGFJOP4BBmLs4UBHpzfyHt2/jMvefYPWAlTfP3kHna8r0ZlU4b81YBan0Mpa9B9qo6yBOUNLvZImZQXcGxymEMjU4wmdXYzfOsqU5tGUJMzNwtttXhWhaIW/Id2UKJS1Xy7QvH/pe7NoyM5q/P/z/tWVVf1rm7t0miZ0ez7eMa7jXdsbIPBmD2QQNgx4QuJCUlIgOSbhSQQCJtx2BLWgO0YMNjYGGywB7zN7tlHo5FGe0ut3mt/f39US/bYGJKc8zvH33fOHEnTPVWlrqpb9z73uc9D/N4ke0eXoWkhQ//gMvLyHIlxqIcxxr087XqZU24bjSBGWjY4Vcwx152i9uYFnOM5nBycXGhFiwfEEw6GFlC042Qtm3jMw+mpoeshtWIcd0ChbA29pNFozxJYEMZAOhHPRV8+EAXLfAuUq1EQWgT2XS8SmJtfiIKMH7GOeSYrfPF9TYxLABh6U4M62paamkW05VGFeehsQ9s/TLC6n+ShWcau6oKysaR7fqLeztmZk5ystWIHBivzBWZHMlSv2UTyh7ujbmKzzOz64pP0pJIc/qvVyKrA1uKMNku7WAWygPQUXd89grIdQmD8NT0MvHiEzyy/k512L4cavVQDk8cLAxTr0WR+sZygp38O19eZrGRY2xe5nshmW8MsgnF0/Hllap+TQQErP7qX4T/fgp2OEZYNRMqnWkiSbK1TqZuc3z/CvoVeXF+n0YghZRhtXwCORmt3jblHu3DXOCQPWNzwhl/SpleY9rLk9Dob1o0x0pnH3ZeNznnBRORcinMpNq0YZ/9cNzs6xpBXHWP/6V4Sjyew2wTCh3q3IjkucDM6lT6NWNkiM+IQ5JLIkckl2CIyRn0ulvk/Wf/bwd8vAEPAViKr8U80//2/7firlLpNKbVDKbUjk48OI0ARElJVDtvMkIkgQEOwOWZxbyPBuliCdq3BQmgRKkGLDLm3tpox3+DCzDEGc0VuOnFl8xcTGAg6tYjYpyG4pXUPnUaZoVSBgew8YfNwK350g7XE6mRjDVbnZnn7l24mrdl0xsq8dOtebr79TsYvA/PQOL4liC2oCFQMQV5dYHvvGPl4nXjc5cB0N6vi00ihqHgW+X+bjgZ5XbdJK4g8+IQZQ7blnzaP9H1YiMYCwtkC/l0t7N01hKaFbF42zsTHYNNVR/AT0GNEGIqtDDqNEivis3ToFa7sO8Kds9s5r/sUekOg99a5ZfVP+P6Fn2coP8f6tmkShocfShxPZ2VHAdfVyLTWiKdt9LKGXovsw53WMOqTi8j5deQ1UTl37K2dHP6nZVHavkiwC8PoCRkzUPXG00z5xe+lFgWm5uuyJQsyepqG8wso14u+KoUqlRHZDMwvINtb0Yo1VNzEXFZF5FyOVTsIETQCg52lIezAYGQuz5FCB6NXa4hQUbopso7SeruXaBVhtcbqP36CFX+zm5XfKNK+16fnEZvuL++l64tPRthSw0a25Tn1/i1sf9kBzsqNcdvsJdw9t4UHptbwo+EN2L5OV7rCjq4xNC2k3LDIx+s4vkZ3vMy5+RGkCNEWIp6U6m6LblrRnK38DaoAi51AISPFg9b9CjlqgaZQVR3hSOpjaZz5ODtPLef4yU6qxQSZVAOvHiMoxxCFGJmuCtqtbXjZkMRhE3FhkR3Jk7TrFZabM2giZDA5T1uqRteF44RWiEoExJMOq/un0UXA6wcf58B8N0cLHRHgfk6NUCOqHkqCeCFkfq2GXlOR1n6gogH2VBJlOwRtGUQ2Ez1s6o3onDb//k/W/ypzUkpNL32oQvwbcHfzx/+24+8zlyHgiKezJQamiAC0amjTqUkCFNXQ5pp4yFOuwwmvnZckKjzlwkQQY6t1igDB2tgka9LT7Jrv44RXZchIYQodR0VPbQ+FHbq8s+Uwp3yfr3EBT5W6sQODXKxOi9FAI6TedPRodAfcdXozr+9/gktSh/nKzEXcfPn9VC6xeOwGk7Ebl6HWDmLsH2Z+cjVHBLi+Rlc60oK+r7CeF7cdJCFd9pd7OP6xbaz8631Pt1E1GeFOVX+pBFFBSLB+gLkNcepXVbGPxiHrEdo6FdeiLVWj6CSoD3o8WlnBjtRJNKGY9rIECAIEC16CC1tOUAksUpvneO3yJ9lZWcU/TV7NpT3HSGkOGcPGCzWOqXYK9SQD7dEc28h0K6k1RfLJOmOFFsRoEhGAl1E0ukLikxrVa7cg+ussby9y6j9WMPCm4eima+JVzyTXnfH94gDoIg+mWjuDBwNPT7Ar20YkiDCqQnRsjVVDJK0yvqdxupSlO56jN77AgxOraE3UMPSAWs2CdgejLGnkI06P0iTTv7+Fzq/uXrIDV74Ph48TP9wkQy6WHATMvf4scofrXH7Dk3hKMlJvZefxFShHo6+/wNbucXwluSR/lH/dfxnduTIbc5M8MdvH5o5JnFDHkl5kEZXzcGsx5FyZ2vYB4g8dPKPcfPYSmtYUJQzI/nAf2cMDFM5qwc0IkJF6gWZLIIVapvDyAY1drWhJRRhTtBwRdP59gZF35ohPQv8PZvk/b72LShhleUnpkpAupvToSpaJax7BcsmqbOSWMlLN8wfdjzAfpDi3fYStg6Mctbu4e3QDQ9edZl16ivsm1vKVt36dLxQu4fjr+xF1O+qu2m40xFu3I+rNIvmyyRA/4xyHwf9/JMxFK/Lmj68AFjt5PwC+JYT4JNADrAIe+13b0xD0aQ6VUBAIhSl0DKGBCpBINCEIUWyIxZkNbJ5yfaaCTMR5EiGDusthLxl1cHKnecXut/HPG2/nAsvGEBJbRRSFUuiiCUGXBh/v3MMnjTKHat1L0r3L4kXCQLDgxdm6ZZiRb63kC1dejNqX4fG3f5J/KJxN2be48Z7H+NbN7Uyfn6XrqRPIqkbDNdjaNc50I03DN0gZDv981w284dqHaDVrvPyqX3PgrxNRuWOZqGKJw3+/Dq0mCXVFfLCCczyDnwkwFsCrmHQNztGXXmDfRA9b86fZM7+MY6c7SHXUWBWfYdRtI6fX8JRGSrNJS5s2s0pej1q4A9ki/370PGK6TzZuc012H1+YuIw5O4kUaqmLOVNJoWsBq7pnmK6mODneRn/3PLWUzarcLMOlVmZmM7htDnPbfRK/yGBPWrz+Lx/ikbAl6kQ+c+L8t2j3PDsgQcSHEYvW5MkEYX8HangiEh1sloSzW2OkZIhXM4hla5gyMrcMFegyxPM11KwJIYxdKWg9oCL28vgUfryLybefRfdtu5ozjk97+y3apzcu28Do1ZL2J2D5p49ypNzB8GQb2mkLuh22rB5ltNSCmfXZlprgB5NbWNa6QM6sk9EbrGwp0BtfoNMoI0VIu1UllnYJdYOpa/vofHg+cq3+DYqoSzpfTSVR1fwM1eFh2oZjiP4ecFwqmzsIYtF7E4Wok1zvUrTvVrTcuQfZ3cnkTStJjyja7h/mnJ+MMRtklkQY5/yIxJrRbcq6w7FSO+tyU1Q8ixfljnJxy1FiImBFbIat5hhlZaIRYi8zSEiXtGbzpXXf4FMzVzBcaeOj934PDcVXCxfx5Be30v7dA8h8S1P2R4swxsWytXlNLD2k/hvrv0Ml+DYRoL1GCHG66fL7j0KI/UKIfcBlwPsBlFJPAd8FDgL3Au9R6tnTZc9dXvNJkpUWCRnD52lagSYExz2fQtA0lRQhM0EKS3hYwo+ca51WNELyeo1GGOPSZcd5x8//gJS0iIsYaRnDVj4GAk8FJKRBPXR5T+4Im1On2ZQep9sqkZAuHbEKF7Uc56/67iaIC+zJJG5LyCV/834APtb5EJ7SeNVn7iU+G2JfshG9LjC0gENzHdQ9g025CXY/uIbAVCQ0h5pvcqTSyelvDEAQcOyTnXxw98Ncsv0g1qoSH7n2dj6/9ZtYM4It607xtuvvQ0jFO5b/ki8O/JDA15hx0nxq6LuoQOLvjsT2g6ZbY1arU2yK7xecFJ7S6DGK7HtsiJcMHuSGgf30pYosBEk2ZCbZ0RqZjyYNl6ptEtMDpIDJcobOVJVcvsroRCvFUpJf717NzHArKhSIU3Hi96URPhS2Sr7y80sRi9IZZ1xVv+OyekZpI7Jp6OkgLMwjsk3p4bD5Hl1bmsGrLwso1y1EI8pyGkGMOS9JX6ZE2bEIQxGVKBogwG6RaN2dEIaYC5HImlo3FFElNBkFRKNJ8RCCwkaDd13+U9a/+wA/O76Gk3t6UaUY8bULpLINpmppfm/F43SYFX45t4qs2cCQAWe3nOK03cJZmVG2J09GWbw5ia8k3bkyXi6MMh/HRfT3RKz9Z0nTPht3isi7YUTbCALUyGmE7ZI8VUVvRKNC0lN0f2kPKz62i5a79iFSSYrndhMrK1p3zTNx0xCXpA7TqlUxhI+ndDKaTa8xz8b4aQbic2xvHWVFvMDL2vbQZZTYZJ6mSyvTIm2y0mNQr9JnzLEuPsG5yRO8Ir2PHk3xt90/5ftr7mCHGbAu5vKhzvt55K//lXuO/JKDH+5CFeYjfprUIvqI+E1oz+9e/1vH3y//lvf/LfC3/9MDsRVMBg06NRMdDU1IqqGNRLIhFsdTAYEKyQiP9WaN6UAy7mdo0er0GtUlcubLcrv5eWUdydY6Nx6/ijtX3o+GXCoXi0E9ysqaq8eIygZLuiwESVq0GnN+iqkgwzmv3cvPH96EdAR2XnDHf13M9+sXo180zy+3f436X97HA1euwr2xH6+UYHlPAdvX0QjRq4LAUjwyt5JliQVM6XOw0cUf7XqUNcaP+cvx63lqtovvbvsSu5w+vlk4n9pAgK8kP57cyMbl49w9u5m/u+uVXHfV42xNjnJPdSMnr/kSGz7zbkIEgZJMui30m3OcrLfxumyVJ6b6+JOu+3iovoqww+WHxzdy46q9LE/MccvOV3HJ2qOUXIu47tFpVSjEkkxPtZDO16hVo7LKNHyG+mY4frwLa0bDX1sn8WiC9HiAk5G4GQh1SA2UUKcno5vttwSkRR+z53zf2RYB302WvKrWkNkM4fFR6O+JBkt9H5nN0L9mmom5LEpXOJ5OxTfJGg0WnDjTT3SR2TJH4GvE9idw2iKV0OqmLhJTM7Q9UYST49HBNAmaS0sKgq2rWPapJ/n84BWIQEAgiPVF7O9GI8ZZ/WN0mBV2Flfghjr9iUiwsGzElxxepAjZFJvEUzqW8DgrPcpELUusvY5TTjF9eRedd0bqFjJuEVaqZxzHUoBqZpZLnawm4TUsLiCKCyQPPWMYXDY9AjWNqZtWY5YV9U7J3BvzbL/4MFN+lj5jjlpoYogADy2i3/hpEtKlP1lgdWwaKULSwqNLg4lAsNLQkRic9G1WGQ1a5ClWGnpzPlWnHnrUlUe9ecwtMtJeq+Pxsxf/C8sPp7hlahu//ptzSD88DHErksVpjjwtQhi/a71glDA1EY2wSCQhCkd5pJqZ1EmvSim00YQkKz12OS08bg9QCeOkhcdCGOP+2nrek9vPr2or2ZwYQwjF3ieH8J6VuOW0BKYwMISGpwKuTEzTqlWxw+gJPedHqphp2eDzy35B+qQktraMl1YEpqLeG1I6nWXrt9/PCnOGgR+W6HhEp7O9hNOUvR23WwjikW16f3KeHemTPPirjTz5oi9wTcLhX2Yv46zMKAnT5U9P3YglPO4/vA6zq87lbUcwNZ+5RoJjc+287fr78EONeT/FjsQwt5V62HXzp5l100zaWcp+1BxI6g41pXNZ3zFmwwRXJY8QP2zhTiVIaZHpw48u/Qy91gIf6vsxhXqSWSeFLkN6euYx9YCwbFAqJag5MaYrKfI9JcINVdSERffnn6CwWTK3NaS60qdlwxzV8jO0pH+LtfQzL8SlwCQEaroQmS86biStQRNvEgLGJqPZLV2ndN4yLL2JUQhYmEvhh5Lxegvz9ThaQxDTfYI5Ez+l0GuCes+i6qYfOdgC/pahaBOGHjH3mx5q2pOHkekURs5G+ALR6uA2DJyixTWrDrJvsodfjg/REy+xMTPB5tQYY40cy+MFZuw0m9PjrDej4KcR0iIbrDKnGEzPkbBcvFYfNyMoX7oS2d6K6mlHa29DJhNIy4zGm5IJxJa1EZG1iT0t8sqeielFO9GWMj7R08nEWzehuWDUQ6pbbTacP8wbO3eS1hrMBSnWxooMGUX69AX69AVelznOm7MHuCE1Rlq69GkOXRoYQrLaiDEdOBz1XNqb5Wa7FlIKXUKlsJWPFIKQ6H5NC0lCGlhCQwpBi5SM+lXe3fpL7v7Mp/jgrx9g4tUro2ONx8/wbvxd6wURnHQhsYTAFNHNbTyLt9mvJ2jTkjjKIwRatDpdeok+Y456U7vprdn9HPEky81ZKoFFvWqSWbHADUdfesa2qqGNpwIMoZFF0WLnAAAgAElEQVSSFpbQuTQe0qsXmfdTFPwMW63TXGhJDKFRWhuQTTQIDaLOiwDhCcJ2lw/86tXEpI8IFed2nGJqPkPDNTg6187Gy46RPSb44d4tfObYpRx89Wf41Nx2Jv0q959cy+f3XsIjm+/kB6vu5ZWpMvFDFp/e9h3Oio/w3v4HaI3XGcoX+OLeF/EXnQ/Qppf5RXUtG8zTfLU0yMr4DFvTY3TEKkihGLTm+El1A5dnDvKj0lbSUlBf5rN20xg751cw66Z4xb//CcO1Nt7wq7fxkt6DXNp6lM2tE0zv76Qw2kKmp4Jh+jiOTq1iMT+ZxZ2zUBKu2zPNwIVjKEMh65KB7DyiEGs6y8inSYa/ZYln6DuppsSGzKSRTVshYZqIZCJiFmfSS3pQ4y+Otus1DNAUmXyU1dS8GGnLQfowu6sTsh5uLsAsCmJFQa2r2Q10PVSjgf7E4WjnzWxE5nNMfOBcTv3xWYy+dQ3evIXRU0M3AlLZBrnuMj/cs4UVbXO8fHAf6xMTbEiMc8fEWaxMznKy0YYUirMSI8wGmaXfbTzIssOcp8VokI3bWDmbek+IF5fMXdgTcbisGAz1IXo6YeUgwowhjo4w/MGNnH7Plugz8nwY6jtTi3uxRJKScMMKpq7qwpxX6A3F2PUhsRGTGzufZMRtxw5jXJ0o0a+n6NfjbDBirDVMLKGTkiYGGisNnbxmIoXAFAaO8shLnQFdsBCGTAUatlI87kQyKQbRZ5oQGrYKMYRER8NT4dJrbTJGv54gVIoVRpmH/vQTfHnX9xl73YpI06mjNSqtf0e594IITgLIyhgJGaMaOhSDOtNB9HUx8wlUSKAUaSkYdjvIa1UOOhGFKkBwxIvoAGdZo5x282zqnyBUgtWZGfY4T4tcpaR1RvBbPCFnm4L35k7xgfwwm2NP6x7/1ZX/xZbWCcJESNBnI9scwrSPakROJvccX88b//xHHH7numhcoBonpkdYRHIq5KVb9vKRtXez14WPtB/k8q98kFTcYd8lX+TWhej4Z4Ia733j97ki7nBpPORfT11Jd7zE0UIHhy79ErcVz+Gvd11P0Uvwuckr8JROj1Fk2stgSo+in2SNNUHBS0dYnPQY8WP0Dc0yttBCqAStRg2nz2XBjbOmZ5oHptbw4NxqBqw5brj8UXpXFKgOZ1EnkoShJGb5dPXNI9MeosvmU7suJ0Tw0rN385Frb+fkQp4VW8aZu2MgesL/jsAEnKEnvRiQwnIFZdvI9tbo+2IJVami0olIiM5xSbXXsH0DIRWirpGyHEpuHKUEdSeG8CEzDC0tNbSaRrU/JDMakjvUiMiizUxDJBNLMjhISTBbYNkX9vKeN/wQzimBGRKGgvZsleqpLOVqnJdsOcArOncTIrCkx0effCkT5Qw5o4avJDuyIxy0e0nLBjsbK6iFJgtBkr1uhj9ue4SVmQKd2UqU8a2G7LEafmcLQT6FGD6Nmi4gwpDjn1nG0VtX4y5zyYyET2cXJ8aioL7oXKNpkS/gQC+z21NLSpJTl4Ro8QBjU4mCn6FLL/Hy5MKSzpQkaippzXEZTwVLnWwAS+hIBClpccSLVEEsEQk8HnRb+VV1FVIIvCYeLJFYzWaTJiQeioSMsRCGGEKjHNrYKsQSgvkgwAN2fuCT3HPskUhexbKW/Cefb70gghPAdODwmONxytc44pkshDpSCAyh4SgfR/mEhEhg0Cgw7HbQotUJENSbNXVC+BiEdMcWmG0kWdM2gyECbhm+6bfu2xTG0kl79tpqjiFRvOXih9D06MRYGYee5QXa8xUSlsvXR87lQ9/5Jj1vPE0YRMzzWx+5jDv+9ZM8dHol1yWqHHO7+ExxgCCm+NT675CQMf5zfAc3j59Lh5bkk/uuQBOSu2opXtf7GIYIuXrgELeVBrlrZDM7L/4cO2eWsyo1w7yfZCFIYIiArNYgpdmMe3m2JU41tdKj47yu5wCXLDvBBa3D3H7PhXz2Rd+gL1kkY9i0xavM1iMQPaU7rMtNE7b4eLkg4vJNJJk53E5Y1+nKl+lqL7EqM8uUneHO6e0M5eZotWoUj+Q58dV1S+AtYfi8gSosV6JyKmY8R4xsUVZEKRXpAp2eIpydY/TmTQihmKsloKaDrkjHHLxAI2xqWrktCrMUUtuXJ2jxURImr3PRdx97WiJXCFTDJti2Zgnr0Xq7Kb10E3e/9kK6s2Vy7RW6chUmjrazbO00r163i0uzh3isshxDBPzjN29CTVo06iZFL8nhYgfH652kNJvjThe2Mjhqd3Go0cMD5Q383cwlrE5OsbX1NKnlJfS6YG5zCun4yEMjjL5rI5XvtXPyYybh6QTpx+NcvPYYxdXyjKaB6u6A5X3I9taIoGpozJ6XIzAF0lWUhyDdVSEsmFwzcIirU09xfXIOR/nN+8dDExKJwFEeESoakpAGOhq28imFLj4BhaDGdjNGSpoc81PYSievVcnrNephgEGEO2lC4KFo05Ks+fK7eNOxVzP0szeTloJiaJOQUdZrK0VdaQx7GQ64Bo85Hj968t6InGvEfjMzsrleEMFJAbYS2MogQOA2gbvFNHEx0zGERl0p9jl9rI1N8avqStJN5xVDhBzxOtCE4lijk3TMYV06YuvmzPpzsKdn//x8a11MsiYxRdFLsLprFivuYldMglCSj9cx9ABdhtw+fzbH/2IjYV2nOJXh7ms+TU5aXNw7zF21Fq5NjHHazRHGFOc1J1aqjsnxShuO8kgnoxbry5NVTjrtXJY9xF2HtvDt0bOxXYOctEgYkWsMgCU90k1VAoB+Y45yGMcQPqaMjB5uffwS+qx5Ptx2mFdf+zA3//RN9FlF5p0EF+VPkIq53Du1HkMELLOKxJIRxqEbASrlE7ZEOM/koQ5ShsuMnWKmnqYnUWK2keLgbCexBUlQMDn0iSFOfHRbRCb9LeD4M1URF4eIn/OeVDzy7gPqyz0EYDeaKpm+WJJLARBCEViRtEdqFNq6S7TtFihbg5X9T49NBFHQ1Opu1KVb0Y/XmSX7o6cYfnWO8Z/10ZqsM72QRra6bMxPsjkxxj3zm1kRL/DQ7Crs9oDWPYLQk9TDGFIo9sz1cqDWix0alPwEGiFpzUYKRUK6TDlZEtJlU8ckTmvUabO7ksy9ciPmRQWm5zPYC9aS2cF0PYNVeFrSV8QM/BYLNBGZRigV/QxodqSGoW0o4/saIoR+c56VzQFjjwBPBRFYHbpLmZJPRNGxlU+IamZN0ZpvPlcecwRJ4aKhCFX0+1pCEjadYAOlkMC7x88DATPVFImkwxEvTkoYBEqhCYGtBHNhHFdpTAVZbGXwaztg6gvJ/3cyp7RQDOpVVug+W2INNsTiZwSlkBBb+SSEoEMvM+rnOD91nIoyqIQWlgia0imQ0hzObz3JnJsiqzewNI9XHb/2jP2FhP+tAGUKg33VZUih2JCd5FVDu7l43VH6M0Wqroml+2RMm9F6jltfdRur3/E4wgro1EJW3/1OPtHzMO16GVPoPDS5krA9ukg+UxxgKFdgrNjCbQsreVn/kugDt7Q+yZ88/GrOXn4Kx9fZ1nOakJDB1DxlP041MKkEcRLSod+cpxpEF+vdM5uZDTIcr3fQIuvET8SQIuSf5oe4pe0x/uySu1luzhLTAr4xfDYXtZ0gaUQ3EMBLVh4k010hn66BjCbbO/uKWP0VTky1c6qUp1iPE5cuo9N5tnaO0+jxka5AMwO8vM/hz65fGgIGfiuuEDZHVp7De6o2ohm+/h6MjIOuBQihIOUhQqi6Jk6g0fAMkjGPIOeTOl6i0S7QvpOn+OIGA3fBqZflnt6ojEDlYNGCa3gU7cAw5WvWo3TwNtSZqaRY0zXDZSuP0hkrc/fcFvrj8+wu9xF7g0t+v6TtZ6dY896jPDC6mi2tE9y4bA+NIMbDc0M8sdDP94c3Me8nuT6zh7XxCbYkR9mcGKPNrHLO+Ucobg6Z3hFjbrOi/mQb4ZSFUdAxqoLgsgWOjnTR+c3mtSAib71ab5OcGtPxenK4aYPiBoVzVRnjxQWsmIfvSzrWzvJ7mUPUQw9b+UsZDjwthQ1QD72lIFMNnSiQIJBIejSNr5U7mtr80f03FWTJ6RHOl5IWEolHNL3xhtadtO2YJvhZKz/afhs7zKhc1ERTIVQJ7NCgrkzKgcVCkOCo28mvz/p2s3v3Ajc4UCjyWpROLLb8IQpKgQrRhKTeJFJqBNRCk0Fjlj32AAnhsNYoMBvEWWGUubc2yNvzv+Jxuwcr6fJgeR1AJELXBMIX9xOoEEd5BCqql59vSREyaWfJGDYNYbA6OUPRS3Bl6yGqgcWReieaUNxX3gTnbWage45TvsHJl/4bH5vdwkfaD3LTiWuZnmjhq5d9hbvr7Xx672XEYj6vWrWbR0vL+cbgg0v7S0mLC9ce5x+W3c3F+z/Ahd3D3DJ5ATe2PcGdhR30WfPYSmfay5DWbDbGx2iRda5t388TteVkdJunnGUMfu4pfvapLsJajZ9yPtc/VeTx8nK+tOIOPjB2HV8/cC5/d/adPFhax2gjzwXZ41S6LIpunG0bx/nF+AocT8c0fOxGjJTpYCZ8jlU7UL5kmbVAe3+R0u423KqOTPqEjsaxf1vD2t4pgmuKEI+fITb2nHP/DKXPpfdoEYv7xBvyBFMKY3UdrxQRLI2qIG/VqXgmgRbgBJENkho5jZfN0/rQaUSwjFM3+az9o72gadiXbcB+T5GZY21YBYn73iHicRfHNkA0QAn8okmubYF2s0rFNzlRb2O0kmPfTDc9rxlm4VXbaP/mXtztazjx2j6sXRo/PbKN+/ps5KjFyn88zPG3rMO6tMDD0yvYf00HG+6ZZWtyFEt6ZPUGmhVy7bl7eGqhi8mdvSQmFVZBUu9UZE4GrL1xlJ9NriesRCXv2F9eQO5wwNxGQXl5jt4Hq5y8IY7oqxM3faQM0bUAP9DwyiZfOe9WDBHRZhYfvhLZJCL7TdB6EXN6uvT2CJBCcNpvcMrPsN4cR0MREBmGJIRDWkapXSlsYAkdT4V4SnGOqXhk852wGQqBoB5GWfF84GArqKgYtjIY93IMxWaYC1JkNJtbF1YQfteCq54/OL0gMqdFHtIzA9PSa0LiKA+z2RUIUPTqRfr0OpNuC716mbnQJECw321jrTnJfGDQpS9wtjnHgpdgdXKGVakZ3n36Rc/Ztt4sHaMg9Zuxko923c+q5AyBikqKMTtHXPMYdVoZbrQzYM2T1BwMETDxpz73rr+dm+65GSBq+ftVTpXySCtgpVHmwdI6PnzWjyPDQxRH5iPtpc8t9HHSi9jdk/UMF9/zfi7deohfTw/y46MbuC5hM+cklzStPKVR8FLsrg8y4rVRChLk9RpHKp1cmzzKkc+u4OjfbOJdx44z+67z+cy+S3loeCW7nDzfGHyQK1Yd5mNffQOXZg8xUs0z6rZiaj66DCm4SS5ddpyBliKm4ZNIOqxrmaY7UWbBjrOqb5qEFk3fuz0eWlWjPR8Bv+35Mg3f4Ppd4xz+9PLIDbhpmvnspRb97J7x2YdzRWQyQX7rLO2rCyxU46CH6BUNP61YcOLUPYNQCaq2iWm5UbmTDghzKVq+v4+17znAyJ9sgTBkfo2BF0hi3TXsIQcVCnxfA6EQIuoC9qwocFnnUWadFEU7wS/3rmX8UCc9Nx3j2JfX0/KdJxDL+xh+pUn2oIa3ro7X4dH/7xpD/3cfYaWClwLX1yk83sn0l1q4ffd2/v6pa1hlzHJ+8jhbkqN0mSVWpOe4+Jq9zJ/r4Scgd1gxu01ysNjJqm9GpfXcH56P1gCnRSJCQaMr5OjbY/htHpoefVZhcz5SCIXZYrPaiLKaauhQD72lDCdUilApDCHRngHyyGbWYgkdA428ppGWkXQ1QIyI8Dzh5xiMFTCFTlbGCZrbMkSEYZXCBjNBDUNIpBBUVKRoOx3EmfBzaCJkq3UKSUiLVkMSMhCb5T9Wfff/BczpaQyhHrqc8Ko46unZG4kkK+OUQ5tQKUa8Nh63e1htTTLuZ5gN0kvvbZUOCenTpdXZ47RQ82NIFGU/Ts2PPScAaUKekfL+ppWWOlen9/Omtke4MfcE1+X24oQ6I/VW+qx5HisOktIcVluT2EeySCS7Xvoptj/5aj7b+yjvH3sZCwdaefm6vey0e5lqpPnYzpfx8vV7eXR+kHy8TjW0OS9+YmlQ+c+X/whzyqDoJGhL1DhvcISPzG7gjpX3UAks2vUyk3bUvr4oeZS8VmXeTzLpZrm49RgTgcmJy79KmPP4i3038PO/+CRDH/e4ZMVx/uXUVfxdYQ2f7X2YDdcd4eNHrmZFeo6qb7LMLFJ2Lep+jHk3SYigM1FlQ8cUp+stZI0GpYbFRDlDm17hho49vG7bYyzbNMWFncNo8zoJw+P1vY9RDSw2Dkzw8aceIPED7Tn40jOD1TO5UDKZ4NCHB5mZyVK1TXyvKYTW4qNyLn4okUIRKtE0eoDJP9yKCAUcH22eWI3B/5pn8i1bqKzxsAwftx5DN33iCZeE5SClIgwknV0LdCfL3D+5lqPT7Zx8vI/4aZ30CcnEH51Dyy8spt9xDsV/9jELkvKqEDUeZ+3NBzHufxL7rjYmb19F54UTZL6dIVYSFOfStHWWcV2N39v7ZtbH5lhrTnJl6ilWJ6dJ6g6Xrj9CdaXH7NnQftY00zNZxM69CNOkOhDNNGo2hIZCeAJR15CxAKcWw/M0WhINLugeYXYqy33nfYFi2EBrUnIS0oiaSIvduuY1XlcBKWkuAdbRPRfda44Kqano+rOVjoskI20s4ZERDo7yqYcuCRmjHgYsnrFSGGAgcFRIqBSWEEz4cWaCNHmtitGsdhaDniZCFoIE99f7cdqf31TzBRGcmoIPBCokIWPkpaQeengqoBicKcr2qJOjXS9zeXyKUbeNVUaRx2pDzRo5AvYMFJXQ4Htz57AqNcNpJ0dSd2gzq3yv2vqc/etoTQBP/sbsKSUtyqFFn16nS6vRqy/w2tyj/FXvj7goeYRPDN5BWrO5b34jmy44zhUHbuJxJ8ttG7/Bx2bX02FW6Nw6zbyX5Mnack6VcljpqJyRQvGTdXcz7ENeukvlZYts4A01KDSSDCYjzsx3Dm9HE5KnSt2UwzjtsSqXZg7xaH2IShhnWaxIqAQJ6fK1wsUArO6f5pYN97Ptjvfz+e/fxhUtB7m68yCW9Hj/xAWkdYc3rniM5fECD06sxJA+57aO0GlVsAOdUAks3WOqlmFVaob3tj2I52usap3Fkh4fv+sV/OeDFzB6rJO45nHBhQcp2xan3ci5+MbOXXyneA4xGaCW90YYVPj8ej5CCMJanZb+Bdray7iOjtQCtAUdYWsoX+KHkiCUmLqPJiO5l/LagO6HIn3w+Zu2MP6OLRx+d4bydod0Z5XZhRSxhBtxmCyHat1C06Ir77zOEXbtHWL2yU7UsVQEWq+ySY8HvOh1T9JoFyxsc5mayGGvdNiwbYShW36Fcl2O/tt2ph7uJRu3KTzQg/f7c2SvnCKbq7GxLRo/DZXg0h/8McNuB1KEXJl6ipxeJyZ9tq87yUsu3I2l+/R+34hGV1wXp8/FTyi8JGiuIMh76K02qZRNd1eRcCRJ+sYpjp3jsuYde+jXU6RlbAlHrYdec0ZVLgWmUCmyMkZdudhNcDzqiEdhwFaKehgFC0ME2MpAihC3iT1FGVE0qeE13+816QKVJtXHVhE36rDb/XRgkzYxEaCJkLS0MQjo0CskpUNHrvS8ceEFEZw0olGVxZXTEuS0BBJBQhqM+g1KYYOENLjIKuEpnVO+xnJzltnQZHviJDNBmousadJSsGgiuj09wjprgnTT77niW3xx9EXP2X/E/4j+0zO5H89cLVqdymKnrElbWFRknA3inJs4zq6JZegy5F9W/yd77X62mzEeLgxxqNRFi9Vg32w3440WypUE23pO8+RcPyvT0UR4jxaw3Egt7e/xxnLeufUXGFqALgN2pE+SvSfJfXWDu1ffA0Bc8xj38gw32mjVqozYUeBt1ao4gc47Tp/PT9bdzQXxk7zj8ge4eud7+ElxI9en9zPutPDEbB8f7r4XJzTYV+nllQN7GbPzdBhlxutZcrEGughJ6w6m5lP24/yysYLzl43gK41aaDJwzmliy2pcdfY+Ju0sN3c9wOsGn2BHcpiUZrO/toyHZ4bYkT3F+q8ciZyNnzVb9uy18NIN+KGM1CotD2/eIrQU0hXocZ+ZmSzz5cgyK5+skzwWQ29tkBqpMXLLFuauaeBfUCbeVgehqFUsTNMnDAWm4VO1TTJJm0bV5C0bf8WgVSC9rExu2yz9551my/nHSBy0aH3fCDsnB+m9fAx93mD1Fx3WvPsQ7hUF1PlbOPbVTaQPxei6aJzaHV3UBnwKI3lmdnfS17LAiVIbybhLeSqNzDv82c4bmQ3S5KXL1en9jNVyXNl6iKTu8KL246Tuj2yuZCLB6j/cw8q/2E3n1/cxcHeZNe/ez/I3HKDrFYdJveQkK/7sschwQjdI/bxl6aG62DyKWNzhGdiSIaKHviV0QqVwmq9JJKXQJdG8BxYbTF1ajVBJCn6GEb8VWwlKYYBPQFpIDCKZo0qo8BQshJJHnS6OuR2062VaZINQSaQISUiHFlmnElq0aHVa5JlJx29aL4jgBBFAd8JvUA/dpeivNcG9vJQc9zRMYTARBIy50U2oERIqyYbYDJfE5wihqe3cxrcXzqUvNoetImwCopt5S36cu2qpM/a9CJJHQ8HPLf0g0k3a4yzjoNvJmN/CmJ9lNkgy5rUy4rVRC03ipsvhQgdfLVzMDel9nPCqvLx7DyXbouEbdKaqzDvRTZU2bCpOjD/veAiAfypcyKhfXcoUb0gd4dY9LyIIJTfmnuD65EkKlzv81Uf+EIiexpb02Fftw2ie/LjmkdIduvQSH+6+l//T8QA/qlukheK//uEKuvJlViVm+NCpl3P/N8/j11tv5z1Xvgk7NBgp5cnqdXrNBYYb7ViaRyMw6EmU6LEWOLGrjze2P8Lr0uOEiMgwwsswmJrn7GWnaI9VcUKdDxx5DccbHeytD1Dw0hwqdzF2sp335I7w07E1HP7oyqct35+xhBCR5lUQoL1phiCQlBoWjUYMoQTCFwTJANPyoKJjGAGz1STZmI2bUWgHU1QHkzjLbTQtxPc0nIaBYfkk0za6DMln6jScqLRYKCd467ZHuD6zl/suGaIyliFueIwXs5yYb6O20mPkjiHUfa2clR/DXFlG1j3G/mgrx762CS9j8HubH2PrTQcYPdDNwotsWnqjoeXk+iLj5QxjJ9pJmi6pEzo/ufCzZHeb3LLnJva7HQQIruvcz75aH+viExyqdjH+tk3R3Nmi76HnoxwHtetQJIEsRdPSqWmUoWkoz+X2oZ8uVR+y+UdDEBApfHgqRENEgHgzQEkhSAkjArcJyGsmlVDhqgh38pRkKojoHHm9yhO15VTCRSckdwlXOu3rLIQx5kKTijJo18p0NcdkbKVjK4OFIEE9NKmEcQwCQiVx0TCEv6Sp9pvWCyY4Dfs684HF6cA7A2+CKJOylc5Rr8aAHluSBCmHccb9HMe8VkphQCVUzAaS3fVBhqwZWmQdQwS0GVW6YyV6zAXcUOe208/NnmTzo4hGZJ7LvdkSa2AJD0mIraLW6EKYQGsGhiNOD+taZ9h99jf5RM/DrDaS/Onoy/n53Bqu7DnCVClNybFwAp10qsEr8ruo1CwOumkeczw+3hml5jktCl6GEChf0p8ucr4ZUFeKjrYy9U7Jr+3ITj2n13BCnS6zxMO1NWxLnEKi2NUY5P0jr+Sth3+P6xI2fzt9BcX1AuebXXzrm1dwaLqL6vKAa49cy6H3t/Htuy7l+mUHOFLvYsZNkzPqbMpGDPuk5vDTyTUEeY8dMZdPza+nLVbl4tbjGCJgID5HXPNoMypM1jN0JCpsSI5TCuJ87fELEH8QWUVt3fkWsnGbnpWzeOesWfpcF6kGIhHnzw7+muE/3wxAayrikC3vnCNW0CIWeE8F19Ex5zSi6lDihhpeS0DXoy6TFyuEFuFISgk0I0DXI1KpH0rqrkHga6xtn+aWbfdxUeoIH9r8YlS1xpovV3ADjd5mmbHqKy6BBZ1ffILdN2+l7/UnMD63gLetSuqJOBNvcfnPuy5h7rVZNp11EhQsTGToXjVL6XSWhhNDJALGR1t5+x/8iOu/8kHKqwKMRzJ8Z+ZcTrgdnB0fZqSa587ps+iLF3nl7z/IxPvOWZo/e6aE76Kd+bNtzefedj7AGdSAxet5MfBozwoA8hkYq6cCPBXNzpVCg3poUg9NrCaR11YGZ1unmHYy1FSM+cCgFCrSQrLQtINZ7Op5SiNAkpc29dAgISMOoiU9DOGTlg3qylwiCUfH+fxzdi+I4FRTqgnAPd3mf+ZylMeFluQ/iudRDz0qgUVNGaw1JyJrcmOew26OqSDBd0s7METAOdZJurQ6rVqVrFZnxk1jSg9dBKzOzPCU2zhjH4bQMITWbL0+t+xIicjdpVdfYFCfY1Cfo0srYQifQ3Yv7XqZBTe+lO3NBDXswMANdVKaQ30mSagEtq+zLFsiQKDrId8snM+Un13az2J5m5UW12/cR5tZZTpo0K+nWJ2b4ao3/JqfVDYx5rVSDSxWJmYwpUdCOtTCqIz0lIavJI9svpObx8/lgZHVeNkQ6Sk0B3pujaFXJH/U9wC5/Ro/f/M/YocGoZJ0xCo8URxguTlLb3xhKesUWkS3qAQWZd+iHsbYU1rGyXobFc/iUK2bFek5rmvfT6tW5Qffv4BNq07z3gfu49+vvo03rHmchOGSeV2RE6/RI1eXrvamY3KIsm0++vY/xNywwPh4noxps6VtguGJNuIzoLocUpZDGEq8VEjKckiYLoV6ksxRnWqPERFHPYmQIUIoYrGAmB7ZhgNoQvHHW+9nU2aCehjjrZQZifcAACAASURBVI/+PkHTev59t9/B/M4unM90Uzma48JbH2fZZ/dw9MsbKf5ZndD1cC6dZvC1++n+wpOs/D8zpEYVB/+smxM/HGL1u4/z7osfYGI8z8aNpxBC0fkTg/beBe744It532u+j9aQlNf4zHx4OaNuGw/X1vCmnl+RMWwMEXDP+HrWvuIIM285K3KX1n8z02cxg1JBwH9++J+W1DsAUtJEa05W1EMPDUFKmkvlndcErReBckNoTY5ThH+2aHXyWpUAQYu0mQtS/LK+knws4jlNBRnGgxTH/OgeTUuPtPDISo+kiJKKUmjiErkjASRF1IGshSaW8LCVTowA7bcEJniBBCdH6ZxwOxjzonIt5MyyajFY7Sr28Q+FC+iLzZEUHvXQJC18DrvtWNLj0fpK6kEMQwTscfowBKwx5lgRmyGueRyudmNKHz/U+OTUVQDPKeEW1QqevTQR1c4aClMEpKWHIQL69AUuSh7h56W1VF1zqSz9XmUtGcNmTXqaH09soGd5gQs6TrK9bYwL8yc40OjjQxvv5ZWtTzDltyzN2f243kk9dNly63u5umU/BSfFKT9BMahza99P+enXz6M7tsDF8VMYIlg6phN2B3tr/by48yDnJ4+xJj3N609exprEFJcNHuNl5z8ZOcm0KUqDMVZ9fpT33vkWShfYXLLz3Xxr39kAlPw45+RG+FV5iO5YiQUvgevrvGzTXk56VcbtFhqBQW+syJyd5ES5jcHEHBXPotMsc9Jp56/3X0diQjH2vRV89KNv5s7iDiqBRfVzyxh+/1rWvG8vhR2ZSC9cCIov30Q4tIyTr5L4vkYy16DTqvDTXRuQExbBVUWEVFRtk8DREIGgP1NkMDtP8UAb+cMehXMCDMvnfec8wMaeSbLpBkEgqVTj1BomA7kibxx6jJNOOwnNwVMa8miS4b87h95fxvj0tnMY/MddnL4yGuq+fXgro19fTvyQRePhNrQHOqM5Pd2IJEyqNdq+sYu1HzhAdbWHEIKfXzGEHvc58ovlNCZTzFzn8KqBXZy6KeTjv34JH73hu3Ts1Bh7p8/3vnI5w412pvwsO7IjHK128JLeg+yf7KHWC8VXn/W8srYqVEvs6iEjRUpazdGupxncxdBeGqSvK/cM4Pvp+85fmr0LiaCCgMh9yFYa9dCgXS9zsN5Dm1EhVJK8VqVF2iSbo2KGgJgIsZUkIZ/Ga5PCxRIBlvAIECSFR0wEuM3sykWLHtDi+YnQLwgSZkz4tGh1hoy5JZkG4Dnl3e2r7uI/yssxCJgJUtjK4KDXRq++wFNOD/UwxsXpI/TqC3hKY7/bxrnmHEecHq7P7OGX+mrGnRyNwKDim0tt0cV5o8X5Ovk8dXCoJKb0sJonIy09PCWphSYVz+Kra74BxDCExr+fPI8NrVM0ghhxw0MTIWsSU3xr7ByuX7GHP33qlXT+X4PqQAI3KQkNuOOITaXf5KMrJAff9XlOeFV2Hl/BudmTfHF6gLofo/eeGT6+/Wo2XHiaehhlMpsTYwQI9pb7/j/m3jtMsrJM//+8J1Sdil3d1TlPz/TkHIAZkIEhI0FADCgGYA2oq6jorrq6plV2BUUFjCAgShBQcpQchglMTj0z3T2dc1VXOnXS+/3jVNcMK7r7u/x9v5fvdfVVNaeq+9RU1fuc57mf+7lvzqjYzV3ja/3X0/4U1w6t41v1z2IIlcM3vIyOx49GT+Pl2hXMvncaL6Cy4qYdPPTgOh7NL+Pqk56lz6xi80gLizsGaQ5Nsclp4bPVz7PfThJSbRqDKXZkWzi3YRcvTXSyI93Eqsoj1OrTxJQCbR9N0PvZJVQc9jAmHN74z9UMneZiLFJp/9YbIBRq7nwTdJ3uzy2mWOey7LOHUT7czNQNHm3xKV4faAN8W6t8Pkhb7SRHRqvAUnBqLaYtn87Q9KLD8PE6xy/dx9LYAGknzLKKAU5NHmB/vh5bKiyO+JnSiB3HkwLb0/jllpOI5OGOD/2Yj2z5KK1WFwCdn3mDVVtd7j+wnMaqNMZPj9B97WIK1zXRf1stly3axJ+/eRLRJ30Wt3Rdal/yhfwPf3o2Tb91UBybgSstrCmDnz11BnpRULFkgu/+9r0Ul3vU/jGMWQWHs0naQuOEFYvjK7uZsiNEQ0XOOm8bW++ch1RVv3v53yRtha4hNI0DP19MUb5e4h35WYorJTYuUaGXOU7gl3K29Mol3QwmBb6EdcaTpLwQMcX0mz0oZKTKYasWTyq06JPkZIAYJp4UeAgaNQdXgg1kpE7eDfqKm16EhJLHEEVUJCoSCwVLqgSES8oNExAuEWEh/wbm9D8GJyFEC3AHUI8fYH8hpbxRCFEF3AO0Az3Ae6SUU8IHEW4EzgXywEeklFv/1jkCeKwzxogpgTJze2a50jc9CAqdxwsVpN0wNipJJUeLkqbXqWTMjbG70EydPu2DbmISF8Ga4AS7rBjrI/t5NT+boqfTGRohHwwwasW5YXIp1yZ3Av5VJCxKZghl4udby8satYAlFTwgonhkPJUBJ46HwrRtMEuPkvYKfHrgeOZWjuFKwYpoL/35BLv6GxlKJujbU89gqz9W8cCDv34LGD+Ttb3v0AWcu+wMRi6aww3X3kmflWTnXYsxq0F8d5o1Db3cOnoy51bt4LBVw2x9lIhSpDGZYmNutj++Ez9EUOj8uHETp+6+jOcW/YmEkuX5fDtfrX+abVds508XrmTTcAu7zq1nyX37+Wbzw5z79Gf58omPoTe6/Hz/SVwx9zWObzhCnRrgU4dPIx4wiahF9qbrWBHtZbpo0Bqb5LTYbl7LdfLoug7S5y7AqvC/+MbLezGAdMcyWm7YctREsiSxMuvUHhKBAjt+tIzxjwqScoyedBXFog4CjBWTxDQXu+QDJ1yBBKqCedRPuuz7UgX/ds4fOFCoByBccjjNewHqg2kUJJNOhGnHIKTa2KhUaVmSrwRwg/DvJ7yTdncI13bKJpdbVkgCX4rywY8+xff/7SJmf3ULmYebUdJR7t63isv//QXu7tyAF4BCs03dS5J9N8zH6BOEXthD1zeXEArkmbfgCOfV7uD6Haej3JMkokvmnN7D/twszjpnE8/8cQ3q+/bRY1YzUEjQYKS5sHUHdz2wAfEeSByoJv7HN9+6H0sXb69g0nXGL/1ReOGzwdVSh05FlLvOihDlMk4RfrfNEIKwUP2OHc5byidD2OWGR8oLszvfRNHTWBIcZJ9Vh6lo6MIlgMegoxFWHPKeVu7KuSh0aL55SExxCUuXjNQwPR0bFR2XJi2DLVVSXvjvxpwcfOunBcAJwKdK5pn/AjwrpewEni39G+AcfO3wTnzrp1v+pxNoQikHJqCcwcyIws0cXxkcpkLNE1NMUl6YjNTLIHWVlmOhMYCKR5+ToF4tMuyqLAtkUZG0BCY4KXKAjelZ5N0g41aUrakWXCkZcX2C2bF0hrdjq8cUQVH66ajfOg3yWq6Tp9OLaI/4VlCbi1FybqCE1yjcP7yS2dExlrb001NI8q1z7uOx8SWk+ytQheBnqQ6ynn/+IbdAWAnwUOcTPLztSdLrTa77xgdp1KfQzh7HGIOPLXiZ7U/OZ2W8lzEnxrgd44BVx8MTy0mqWcJqkahWZMyJsfDVD3Lyzov4+dzf8bXRJbRqUZYGB2jVoky6URJ6npdW38qjW55g+3Nz+eIp7+PJM3/ELw+dSH0wTWvlFEeKVQQVx88wXY16Y5rW4CSrk0cYsSs4te4Ap1fuwfR0Xjyjg/yJc1EtSfV2SWTQZ25Lx6Ew3/RnqaRXLkkiT4QYeKidLX+ej2MIvEaThFGgYOlUxPKgSNKpMB2JCYYmKpCA1D3mtQ2z5bn59L2/g2vPepiDZh264lKUGlnXoOjp5L0AtlRJuyE8SpIxns/bMqVO7cOHMCY9hn5RRffV8/wumKaVbxt/sJH7lrcx6495hKowdKiGjisOYY+GuGv/GtrP6Wb+GV1UN6VZ8pmdNLZMgAL7blzA6rUHcN5M0PVsB3f0nkDd7w1GT3RZe/VmdnY1Y1d6PPH0apJ7XPbmGmgIpFkYG8JFIe/6F8iG9f0UapS3EFdngqfQNLS2ZtTSIK4tXTx8npEtPVwkLhL7mOF58PEmV/ryRJPe0RJMRWBKlbBSJCZsdOGRkzop18dJPSmwpYIqPAzh+EP5wsM9JusJK352V6/mUIWkSnEZdEJlZ+4Z/pSh2Ay7cYwSQO7Kv6NbJ6Ucmsl8pJQZYC++F92FwO2lp90OvKt0/0LgDumv14GEEOJthKaPLoEfDN4O6/FBal+GoVoJsCvXzJgTxyiBbwesenaZLb5kilKkIzBKk5qmzwmj45GRHlWKy6nGNANOpT8X54TRhEd9KMPj+WpmwlBeun9RSh67wkJFF35Wl/ICbDPb2JutZ154mKBi82xB5dnpRShIqvUMPdNV7NvTwpdrX6J7ysfTNmVnsflgO1pa4RN9G7g60U1cMahUw+Q8hRdNf4xli+Vy3Zr7+ea3fs0XX3wPkYBFeoHLzTvWoxVgyongomAoNrMDo8yNjDDqxFgf2ceUHSasWNyw/D5eXPIgc/UII8U4T+V1vnz4EgDWhw4T1YrcMLGab44t5Avv/hOd9w9yzQmXwMNJ+swqFlUM8VT3fBZH+sl6JvMqRnlXYiv39K2iIZBijjGMLlxeSM3nR2efR3Z1G3ZYwQ4LQmMOblDxaQOeJLbN8LOmktDb/v9cQu6sPE137ic87MsgJyuz2J5KZjrEdCZM9WsabY0TmI5OIGij9IZobJ0ge1MzUoWPX/Uw3cWacvdHQRIsjfUA2J6KXpKQybr+5mgKTvHEyCJkvsDEBQVSkxHMJpsjv5+LVyz6wVNV/U6ZZSFe24F0PTrus5GOQ8NLAnMsxLqqw+x9ppPxwQq23LaUkZ11mK0WC2YPsnH7HMwmm0sufomJ1+rpP02gxmzmhYeJ7gvw9dMfpGXNAEv+dTsHv76A+/uX40qFg5kawqqF2WrRO1pF7ebsUa31GevykjvLiX/aV87udaGWbdWCJQ7TDMidlzZ2KVDlpaRG1RhxixjHdOwy0lf1sKXKpGcw6RoYwuHF9FxsqXJu1Q6u3HU5AC2azYCTIOUFfeik2EDKC5H3dJKl+buYkOQlVKlmOYApeNhSK7lqKwy4FWX54L+2/j8B4iXn3xXARqBuxoGldFtbeloT0HfMr/1VY83y3y3pzLxdlwyOMsi7HZfBQpx2fZw2bZo9xSbiSoGwUqRRn2LSjdKhWVSpNosDRQzhkfI0xjyNvLRZFBhkcagfFY+IVkRB8tjkUlKewrALY65SyqLePkBFFQMXwaRrkJMBEmqeVRW99JjVNAVT3D56IkcKVSyP+f/9iUyErnfdwnk7PoKuucQ0k/58gti2IE5TkZdfWEzns1exfue76Xjg4yQUj04ty1UVh/nN+DsYtCv5Ud8Z1DSkeWfjTmTQw/MUqndYzDV89vGUHSamWCwO9TE7MMqvx06m3ZigRZ/g6fQirh1ewU+m2ni1v53P3H0VN8+5m7szlbRqYS6p2MKVlRv5XHIL43aMnmyS2964n+TOPM/0zOO0+B6Kps6H4t3cklpEYzDFC9n5jE75onYvT8/lt/eeRs9X5jG1po7I/nGGToGxNaA4En3aB4rVZCWNt2z1x1VKOtJXnfw8+7+3lMP/PJfG+w+RnWezrNqnLyQSOdSDIQrnT1MTytI9VUV+Ikxy+SjRc3sZusjiMxc8Bvhuxx4CXbi+JVPpfrjkhlxwfW35Cq3AqkgPN754JtmbmsHzqLvX4JZ3/Jb4Pp22D3cjVJWxK9YgbedoFqWqSMcmMJim5865pGYrzP/iLh784QbseQVE0CV+8RB6exY9ZONJQXvnCFrMZutlCxAOBKYUOm7yuKdvNU4UvnffJdiuyuabVmBdM8nIZJzBYgU528+aOlpHCW8Oc/hdkb8wQwDwTJOvVO8vzdGZuNKXPdGFio1LphTQVAQqgmCpEjGEIOM5xGYE52YwJwkZTyemWERKAPbrhdk0BtM4UuX17Gx01aNGnSbjSZJqloRSxEKlSZsioRSoUQsoSIxSYLKkgisFeol6Y+OTdgHiiulLsfwP4ed/HZyEEFHgfuBzUsrpv/XUtzn2F4WlEOJjQojNQojNYxPu25ZRM0Ei6xUZdDQeyy7mtOp9qEh6S2p/g3YlYaVIuz5OizbJQdsg5yl02woRRZR0oTx6HZ02zaVKzRLVijQFfZH6/lyCvNRIe0HCwiXlaeVZo7dbOn46awibFn2CGi1D0dP448Ayxs0o7699HUV47Mw0sa6lm1E3z+2Lbmf8YBJHqrzZ24J1YobmBzVmmhsD3dVcdfLzvHvPh3gsN4dBp8ih6Wo+ljiI6ynYjspwsYIPrHmd8NYQxkCWlOsPANcGMmRK7r+/n1iLKiSLjT5U4XF9w1beEdvPZyp7Oa9jN9WrR7hx7FSWBAcZcPNMumH6nDAX73sv66N7MV2NC3d9iFvuvgnj2Rg/nLMAL6ex6Imr2RDZi+np/GbzOl4+6WZ+svcUnn5oDVbCo/+0AA9c9wPSP4H5C/sIpEoedgHfcbfrcx1HTRWFwsA1q/ndwdXo04KGtYOsfrKfYIXJtrEmps0g05kwTS9YHN/Yy4QZwSzqGIM6wR9XceCnq7hy6avl7AigWsviSsXn2UgFVypkSjIycc336KtQ8zw2uYRFC/oYXA+9n19G/7keP155PLMv6vLLz5ULqP39LvIXrubINSv9DKoUpEZOrWXWh7po/81hDn19GVZCIPoNap8OcEHjDqKPRUk8GebQplYqg3nq7wti1UZ9OZa4RPnOOOGvRTGbbNrX9TH2agNT8+HMhn1cvugNXh2YRdLIMVhMkCn6m7jz+F4/UB5rHRUIMP6xteQ9q9yhAx+z9LlK7luCj41f6s1sdF0IzDIz3H+OTxuwsKVCygsRETZDVoJpx2BppI9pxyAWLNKh5dlnVzPmxrGlQrIUlGKlkk4VErNUpnmI8r6Ki2LZ+MGnEujESknF3wpQ/6vgJITQ8QPTXVLKB0qHR2bKtdLtaOn4/8pY81jH35rkX14dXOmVJXQBjjiVPDWykHeEuxhwK9CFwyGrlkZ9inEnji583kSjVqAoVYLCZcxVqFE9IorHHN1l2IWUG2ZFuJesa+CisCAxzDPZRSjCIyM1YsJh0vPIe9bbvhdJVRJTLBKKRURYKHjsSDXxrqbtNIXT7Cq0kPcCjBZijBWjfHvkdM574PMgJM/3zoHxIMbzMdLtGuFBgbHfINSv8YebNzD5aj033HExl3z/Wq5pe5plv/5nDo1UY1o6TcEUr43PouGlDIffV8lDI8t8WoNik/OC3De4itMTu4moRZ6eXlzmkFwQyfOurrP4XPJlBrur2THZhIKkVYuytdDOh165kpwV4HtH3km1kePDba/z68l1aOeN03vvEuZ/cR8d7aPYUuXR3kX8YcPNPJFr45k1P+cD7/4zs1YMYNU4XNN3AYN9SbJWEH35FMHBaeywBp4kfpBjRN9c/1K1sYLShZR79q9kfftBosEiNZEcos8g+LUhGow0qYKB7I4Q65YcOUfhA+teQ1ectwSnGaKfLVVU4eEhUIVHUHGo0PK8ODKHO751PluHWsh9r4nEXgW5NEPHrBH2Xj+P/DW1jNzdgrLrEIWT5mNMWhQaXIQQvoCeUMhuyIGq4qWn+eKFf6Lptt10fnc3V3z1IX5z29kkLz/C+IYis++dZvim2YwvUzl8sc6yM/cRHFPY31vPV+65E4QkfWszehZOOXUHd99/Cn/sWYr+VAWzIhPsTdWxKDlMdrnJ3r3NpN+/prQJ/ZLYy+X5w1f/q0wZKIu/lT7vmFAwpUfKOyoKl5eyTM7xAEMoJZs0XzAu72nkpFbaPxneMGcRU82yPv2X6p7mx7PvYVOxlsPFOnThsM+qZ8CJk/F0dMFbKAjDbhhbKmQ8o0wZyHlBIkoRU+pYUsWWGpNuFIW/nMYof65/9ZHSKnXffg3slVLecMxDDwEfLt3/MPCnY45/SPjrBCB9jAHnX11vpxbgSo8XCmEmPY8dhVZ0xSXv6SwJjLPN9FvNunBZH9lHl+UrQk66Os2ag1FSxxx0NEwpGHH9ILUhNMmuQjMKkoZAGhWPg3m/XTrsxFCFjyeNexbjbu4vXmdQKOX2aEyxGXEqWF/TRUdwlEuTb9BrJlloDLC66gjfafsjp1Xs4fNnP4qeUXD3xogdVrAqwKqA1FKbulMGWH7uXk772Otc8Z4nuffj1/OTa2/CRXDTB37BNcufZUVjP0+NLkAREmVvDw3HDeF4Ch3BEcbtGKbUWVd9mLtHjyPnBlkUHuA7B9/JHdPVHLBz3DPnEb49cjpnrtrJrPhRU4ifvHw6iUQOTfFQhGSkECOmmvSbCabSEZpv8Tk9gS9GueLWz/DKqjsYcBLc9B+Xsu7Ja3ClwvLKfoTh8pG6V6hrmiJjBklG8oydUI0xbiJ0jcr9R91+FSNIttMmPCxpWDZMT28NYcMibYdIGjnCmkXNNskFddvZkW4iszNZVrqs2O/PU850hgxhU6VlUfGYdCLowiXthMi7AdJOiLBa5CdvnsrkS/UMr5M0/afKPb+6kbrbt9NclaJ/YxMIidLlu/U4q+ZhPP0mvZ90mfcvO8mfsZTZ394BisDKBuj5wjKEpvHgilak7XDwXxbxo7vexUnv28rEb1upeyLA6HFxhk+WmI02lbsV3tjaiWZCoD/At7vPJ3wowOQSgTwpxUtPLmXV2Xv45NwXkWdP8YfNqxmdjhLTTOpq0gTHVcykclQVs4QTzdKjuPhOKD7w7VMGdES5pDNKydZMDTDDZ5oZzvVxJkFeSsKKPyeqCMmwG+GQWcu4HaU5MElEKdJlJ5n0DPaaPjpjS42YWiCh5lGExJVgCD/Q2VJhwo3S4yRJeWEiwsKUGi36RJlKoAoPXThUqdm/j0oAnAhcDuwUQmwrHfsK8H3g3pLJ5hHg0tJjj+HTCA7iUwk++j+d4Fjh9ZnlSg8Hl0k3yvJgil+/ejI/P/02atQCf853EFGKKHiowmPYjbPG6KPPiRNWiuSl9D8cKalTbfpKYOg83WHSc1gR7uFwsY4eM8mkHaHg6lioGIrNoBNi2jNIKBae8MW11JLwO0CFEmKQfKljp5B1DV4fn0V1Q4aMZ3ByfD89Vg0bJ9qp0PIMFytQhOTW999EjVrgsF1Fzgsy5vgyL2tC3Yy5MWrUDC2aTa0awZUeP5hs4RdPn4YxrtD2pwmqfjHKazs7idwex9ocZ/X6faTcCCfH9mFLjQq1wGcanuHl3DzWhbpJzM7jSoVJ12CurpKyQuwYaSQ/bfCvDU9QlIKalilOb9zPtlQzYc1iQXyYMSeGJxVWtR1h05VtVM5ZRrzXRivAhh2XEf9OhNC/DzFXdTiUr6bZSFFXk+ae8eOYzhtYRZ3pTIi5W1OMrUlgr1tO489LTBLpMfGeZQSHBIGcy/QjDay4tIv5sRH/wuMGeO6WE1h/7UZeTc9m54EWqg/Cmk9uY+um5XjH6AEawilpxzulrNnD9HSmHYMVUV825fqHL6DyAKTnSWb9yaH4rWk+svQ8Dn1tPpHsFJ4G6pSON68NRRQ58mmX9pddTu3o4tVPr0CxIPy8gn3SYnAEVpVH9+cX0379TqRZpOMbWxCqwuPNS+E4F+EIzj3+Tbrf24A3Msa+Hy5k3pxBJjvCZA8mGXq6BdakiQVsPjBrMz8ZP41Xt8xjy9hCEmtHCCfznNDUS9HTSIbyKMeNIH5Vc3RQWtfp+doK0t7LZZ6Sjq+xP4Mf6fgBSedo5mEIgSmlL6GMnzkZQMrzsBG4UmAIFxfBvmIjs4JjvsW9FCS1LGGlSMYLMW5HCau+nfncwLBfngkbU/oX7EnXV++wSxc/W6pMuBHiikmPnSSp+mNnEWEx4UYJCBfx91AJpJQvSymFlHKplHJ56ecxKeWElPI0KWVn6Xay9HwppfyUlHK2lHKJlHLz/3SOtyM9FqTFH7L1zA8M8/7976djzjCz9SmG3bA/8azmSah5Um6YmGIy4QU5JeRRrxYZcwPlgJTyFGqUIgE8DtoqMaFwZihHULF9S6XQBJrweDi1AvBnieKK6Q8zukc1cGaWLxYvcUvtVVcqXNK4lZdTnYQVi4Sa5x3hLvpeaaYzOMK5ie00BNJsKnRw6ZtX0VWs57qus3g51ck7wgdZFQxwdrjIzSMbWHfvF1h489Ws/+wneehbG/CiLrGTRpm+3ib1sVqSW1SsA3HckGRFxREeHl/GmuAE+80GJp0IG/NzsKXKJrOVd0WyxJQCh+xaZj15JR6CQi7AJUu3csfUCdyTaeDMpn1smmwjoLiMFaI80z+XHtNnfOedAO31E0ytN1n43Z189qoHGB2P03eNh6HZXNdxPykrzDOD81CE5IUtC7lh+X24eQ0jZCF1lYnjHKTGUbwJSJ2dY9Z123ADguMvf5P5sZEyVhRWLeqeGWR9fB8NxjQLvnSQqdNMHt+ylHy9wqJ37+WmH19UssYulDaNQXexBvAZzi3GFA+dMJsf33Uh4WHBzV/7MXP+fTvaV0ZYnuyn61/mU71DYgRsvEaT2NwpkJKLWrcTfyJC9tLjef33K3ADkJnl0fvPSwhu6gJVouYFkX7J8OVLGP7Eah/g13XmfXY78z69lXlf3kVEK7L/6noO/ttSEnUZwppF1cVHoNKi9awepBRMTUW5v385axceRAY9lGVpss/WcWHHTp7v6mSoUEF7ZJKKoEns8V2+hVbIwMvl2fXRn5aHeN/CZ2KGgHk0QM3UIhlPlo+NeTP64v7noSIJlGgBOh67ck0cMmtZHOoHIKHk8UpEY08KhotxXk7NYVNhFpNulDEvjIegy/YzpTE3Ts4LYCgW7fo4hmIz7Rkk1SyjTuyokF2JjOn+vZjT/+11rNicLV3ynkXGc3ClIOWF9drB4wAAIABJREFU6N7bwDc6HiLj6SUwTqOr6Jdx8wNDeFLBlDo7LJNhN0iLZhMRDiOub/oYUwRtmssc3WW7FWXKM4krBS5JbGba8TOiHVO+SP20Z2BKnX1WA3mpkfdcguKopEtQ6GQ8vcx3yrpBlhu9rIwfYXZglCo1y/3pVTSsHeRLf7gcU+qcF9vJL/edSNQosi3Twhc7n6IuOM15j3+WovQHnW9ueY6D7/8Ze66+mRduvIVHbvghPzjlHpYkhxifjvCJPz5MtN/BCXt4UZczIntQkKQ8qNRyPD/cSUdwlBXhHp6cXMSjeYMzwzbvCPVyyzt+yymV+/nK6sfZNtXMBRVbOWA28NTAfDpi4zSHU3ym7c80xDJU6/7VbTgbY211N8fP6mFFtJfbetdx6ZKtfGPpI+zvaeCAXcvHm54nnQ0xmYmgFASf/82VaBMa+YkwY6tiCMOl6Rc7fQvwgK/dPfuKgyiVCUbOslgcGfTHSISkIZDigbvWc+Fjmxi0K9l5RpK918+GoSDGkMYPPvlLUhcIzvjYa2Rcg95iNYfMWkYtX3CvIZDm7u1ruPPhU7FWzcGca5KZ5fKNpRsYf98y0kWDp+8/DrehiPBgalMtXlElv6uSfHOYzalWzvvcC6TmKJhVkqYXCig1Jk5U4uXzIMCus5meA6FJDzcEh76xgvFLF6OEw/4cnOuyfY3GnK++iVNjw5NV7Hu6k/0/WYoWcOh7tB1zIEo0XiBrBtn1wAJEwOOEpl4KKwr84YkTaambos7wZXrjARPR3OAbQugaajRydAZUiLfwmexjRl1MeUy2hI8HpTx/qycUhzFPkvMkplTIeDo5qRERDr+aOInV0W4WhQewpcrS4AB9dpKcDDDsVJB1g3hSYW5klHE7xrRr0KRmGSupFww7FWRcg4BwiSlmuXEUUYoMOxWoQqILp1ySh5Xi3xLC/McITqL0El3plexrHFKeQtqNMO35wWNZoFDqKuSZdg2WGP2owuOQXYslVVYG/PZkRDjssyOlGtrHmSY9P4XdawWYp09ToQRYF+rzW5xSJa6bqIpHQLjEFZNpzyCmFDClRliZYXB75dc4o6885sao0AqYUudgwTcVUJGYns6R4Sq0vOCLb/rVbn4yzND+WuZHh7i1/yQAtp1/Y1meeMQtlv/+l4ZXc/3E8awMDrJtrAnnSIRJN8rEIh0Zc6iqTzPqRlkYG2Kf5WcNteEMA3YlMcXk9d52wPfDezi7gGWBCe4fWskRK8nBnjpMqTPXGMLQHPQSgGx6OuuqDlOp5Xh2aC62o3IwV8PusXrWhQ4T/K9K5hrD/ixf0OWOwXVk3BBfWvoUtq2iZxWciERxoKYpRWjcY96nupDz2srDvUp7C55ZZPhnURrqUuWOGvgOyy0PDHF25ADXvXwuIhgkdDjgExojki/svBRraTvP9M/lV8+dSp2expYqYdUqc2XEpE7dJhc1Z6MNBAkNq/R/cglWTJB5uRZ7aZbqZIZMi0KxxWLN/G7s5iKp2Rr7x2q5c/dxJA56eAHQd/VgGDbL33EA6UmEqSJ0DyfiITxwA/jOwvWC/isWUDxpEUplArWmGlyX+Z/aRePjA1hxSahP593ztnH2Za8hIw65rEFLIkVwShIIW1xd92cuX7wRqUKmGODEii6mnSCOp2DXREvuvzZT71xYfr+MY6RQwM+Kju0x57yjZZ5eyo7G3ACmFNQovmOvKvw50YhwCAsoeAGSWpacF8SSKmHFIaz438uip5PQCzhSoTtf7duZ65NsKzYy4UY5XKzD9HQUITEUm4znN5xMqZPxQuVOXUzxL/I5GfDZ6H8PCfP/xZJIptw8WVlkwitw2NHISJ22wBjXvP5e1q3az3bLz4JMqRNRjnbSlgf99HO75cvx5qTGQj1HWHFIKBaDTqhEClOJKRY2cNB2qFN92dB2YwIFiSIkj08vfYtCQJViMuJ6hEWgLGXi4JLyQgy7cVwEFWqBjGfQZkxwyK7lm0cu4IneBcTjBeyI5IoFr3LpDdfSMWuE1gXD/PKhM/n+rAf4fv0mTt36kfK56tQg7+vewKJffZqN31vDG59cybt+9CVCuo0b9qhSs5TkdHhk2a0A3Ht4BUk1yyGzlq+2PMq2TCspN8wJbT08P72AHieAikeDFuWd9TvZn63j4uVb2Wm28MDIKtrjE3gIto41Y0mVhaEBZgdG+e3C2zmuoZedww10Jsdo0zRuu+1G3sjM4gddZ4KQ7N7Xwk+7T+V3A8fRmEyjLUuhFgRVeyTLqgcxEz6nSTieD+S6LnJwhAO/WEGhGGBx1RB5L0BQcVga7uMnBzdQfecET+fmMO8XBW557V5cQ7LxwCycCoem7wgOXaoxvTeJagru+fy5XJLYzKpwNzunG3l8bRtqUWAmVI5cC1+5+H7C68YpVkmMSUl43Tghw2bsSCXZdpdVc3rZ9eQ8jIhF9XZfslcRktnX7CE8KOj61/nU/zjIpl2zEYpAyyjIvIYMeqhFD7PWxaxzKdS7ZDodBv7J5sjNVez9XhPddy3k8O1zOfCJRubeOk7bwym2bUiy+4xKFnz+AEq/gXPGBNX37aL98gN8de5JvH58nKbnHW5bcgfX/f7dhFSbykABKxHwh6MvXMSqz79J1jPJezaTbvEtg7w6Pl/JlaAK/8eVfhZlSp9wEFNsXCnoc5XyxleF5JBdyQ3j7+CE2EF6rBoSap5aLVPu+Joltv14MUpEtYjpJnOMEYadCnJegEG7krwXoKtQhyEsqkrYUoCjcMhMOZfxDExPR0X6Lsn/6BriLpKM9BhxPfocvTTF7PBEaimeo/CjlkcZc+L0OVW4CGJKgR6rGoCwcJkfmKJKMemyq2lRi2Q8nwzmSsE8vUivE6JRlYSF619JhMd2C84IFVgZ6iGh52mNTLFtspmYWiAgXGrVDPvtWiZdgyH3qLxKUOgMOxXEFJNdhRYyrsHhYh15L8CiwCCd0VHe27HVb/+vHOKWF07nPz5zK02RFMOvNWJX+iafP0t10FqRKv/dXZZk2jIID0mqPtPLwY9rXPepX7Og0vfeG3YSOFFJ+ECQXifEQ1MrWV43gC5cUnaIR6aXUxXIcbBYjycVrk6+xHFBnX6riik3T42W8ZUzzQQxpcC5tTtpNlL05xNc3r6R7blW/pxewENTK/j+8FlMFCMUizqzo+M8mGugVYsyJzzKmU37iISL6CmVD7Zu5PPtT3H7/DvJToVBgclFguefW0rNvbtQ6msR/SNlzMnL5Tlx4UHMXIAWY8ovHcJHcKXAfSTJDc2Pc/cnzmHsGxZXXvZprHobRfdQCir7/ylC9LDGhlO2MfvuaQKTJpe/fiU/W7OGHS930v3rNure8AiPObDb12ifPFBFtAcy7YJIwCLXlSBan0XNK+x4qRNnYY5if5Se83XcLQmUrjCvHJxN/WsZml7wsRxhC7IXrqLlKQt9SkWdVlFNDz2joBQFMuwSrslhmxpFU0cP+fmLrruE56Vwf1qg4qZhqh9zGb8jyb7vLaDtyaLvnVeSLRaqTxMI/XknV3znGuSiDL3Z0tjQC3tRKhNU/PZ1bmx8DaDkpKtQlB42folmA+H/ttGP7X9npIYhJDYKEeGUgXBbKuWu29Kg/30yhE2LlmKT2YItNdQSezymm0w7QS6u3IwtVcacOGk3wogdZ9KJUB9MExAuZukqOlPWAeVjvhqm72M3A5D/tfUPEZwAMp5abs9HhEPGC/DkvgUs6+hn0FXpDIxSo07jSoVhp4L2wDj16jSvligFNarkBGOM/XacjNToc8IlhrhHjVrg1WIVT+fn8kKhhVcLs3g5N4+vjK7krvG12FJlMO8zdF05o6esl++7kjLvyZUeLfoEKh66cKnT07ySms29B1Yy7MapD6ap0PKEghbxoEnTM3B6KMPO0UaSxw8jPMFIJsrpkb3knACvmP5XaFUwwGPzHmPr12+hIzpOLJHnU69dxlM7F6EWFH51+ESWrT/AI5/4T57JLiKuFdg52simQgdxzWTntC9rYXo6axOHmKVH+ebYQr5SvYXP9p/NHf1rCak2qyp6MWWAJn2SVZEezqjey+5cE2ui3ThSZc9UPS/2zKZwma+xfShbzaDty8B2F2poDU5wYlM3dtJhxK7ggfHV/HDsVFZ19mAlPKQKoVGBNIuYs5LIfKG0AVWUgE73dBXN9VMsDR2hOTDFiJ3groET0M4f5470Eg5+UEP8KUnku0P8cP3dzL1qL78+/xckdmnk2lz2fG8p3e+OM7EsihGy8GY1w6wczVUpxpep6FmHNWftYtbvJKes24XigBORLKwcJjQiKJo6ToVLxwlHkEfCXP/O31K9VSBV+Nb7focyYHDgnwx6zxPoKZOVyw8Re3wngVd3o9igZ0vKFbbAjXoI3SM/GcaIWASCDq6jUhXPsbaphw/OeYP1NV2squhlSWyAS9u2ctzyLqa/mGH4960cen8l6QuX4xy/wO+kqSrJW9+g/QP76R5LUh9M4+Xy2B31aPV15Y62WiJSzoDg4GdNNn7GNENndvHLt0BJVmdGZtqfddMoSpWY4vKt3gv4QvUrWCik3VBJGM5n3M/sA1cqtAYnuaruRVQ8LKnRYybpKtSiCn+2tU5L06JP4KGUIQ5bqvRY1bj4s3k5L4haGgGzpPo3u3Xir2nG/L9cy5cF5P2PJMvRPCA8PrT3QwzvreWhi36ILRWOOJUYwi4B4irLg31YKATwmJZB6tUctlRoVP0szJSC5/OdJNUsG0LDb/Hz+u9s9L1WHhuFX4ytJ6Hn+beardjSJaoYHHGyTLp+NrcqGCDvWfQ6vrzoFrMFVUhu7TuRiG7RGp6iMejLtTwxuICGyDSDP5/NcddswZEqT+xexKzmMXp2NiIrbSqTGR5ZdisNmi8bPDMr1W1nGfOCPDq9nP3ZOnrSVYynonxn1Z/4We96llYNUBvI0GdW8sz++Xx59ZOk3RBpJ8ziUD+PTS7hpX2d7DvzZ2wuqnzw6Y8TShZorZritNp91GgZlgf7yqXpjOxxe2CchJJnR7GFH2w7gy8vf5LvPnMh69fs4VC6mqvbn+fVzBxWRnv51rMXoVWZxKIFJsfixKpyXNC+i7teX0v0kEbzT7aC7vOkZubrer+ympPO3Y4nBesqDmJLlY3THTy/cz6fXfc0N20/Be1AGGFD04Y+Cjc3MrpKwYl7LF7SS+HrDXR/DBTVxR0Mozfn6Liql55bW1E3xskusJj1O0ni60fY/eIcEOCpgAKiJQ/dYdTOLOaUgZJX8cIu+riGG5ao9XkCAZevL36E2959Dv1nV+GEoP51Cz3roG7ZhwgEGLtkEZUHCgycHKbQ5CIDHkrIQdU8NN3lHa2HqA9Ok3ZC/hhNCROzpYqCRBUer050MJyJURkuMJkLk06FmXW7ILBxH7JY9Id7VYXCQ/UY5w8hhKDi2TA/b3u0TCGYYYJnylionyn5rG8/hdKR5WNpT0cXHhNeqCz+ZkqNrYVZrAkdplErsM+qZNCpLPvW9djVqMJj1IlzyKzlPYk3GHbjjDlxduebyLlBImqRqFqkWs/QGfCz/EAp+1KER94LMuFGyXkBIopFxjOoUrMl0LzAFecP0rWz8LbF3T9M5hRTBIbwgTvw/b86lg74oxluBbVqhjE3TlLNsjA4gCk1OjSLmGKzUPfJkrZU2FSsoMeJkvF0Lo520aRNsdMOs8vSOWBbTLpFhkpa3UecLEecLHmp0WNX0RYaZ1+mjmcKMQ47sKVoYQjBsBsvv04bl+3FJrrsGnYXmmnRfSpCzg4wbkXYnGqlSsuxqrqf2dFxVBu2TTTzw8aX0EM2PTsbEbVFTprXRXZHkgt2XEHaK+BKjy8Pr+UX6UYSikK9WuTKyo1s3D6HqUyYWMRkzIlzafMWagMZRq0YaTvEexdv4Xd9xxFWLJoDk9w9fBwnJQ7y0mk3srmo0qjmefDMn3LnqltJFw3u7l7FtlwrptRYGJjgz+mFJNQ8hmLTY1Xz1cMX8f2nz+fU2Qd4ITWX6o5J0pbByXUH+ca289l442q++eKFaFUmzpiB5ymE4iZr6vv4/Z9PBEUivLdxVpEeq87aQ0LP0xyaQhUeGc9gohhBm9J4caKT1tpJatYOITwYf7CFgTMkbkjy9dMfxH0fHPywytlz99B8a4D4YQX2xhDVVZj5ANnZDkZvACuhsTpxhC9d8iBqXuA2FjHGBe5wiPec+zJyj88vO+WEXayY34PbYiJqigS3RskNR/jaA5ex/2MVFGok1pwCQ1cWUTbuIvPOZUjHIXnnJtQt+3yKRMADTSI9wZz6Mc6ZtYeoWmTM8s+hiKODyAqyHKROSh4iqDsUHY3aaJZZTeP0f9xGzm8vv1eeZWO8c9A3G5WSO9uffoua5bGBCSCiiLKcj16acbPxj+WlWlYRMESJSY+kUc2zI9tMlWr6lYZik1DztGsWjapFUs0yYFeSdkNU6xk2FWbRY9X4KhDCLZWFPj8wohSJKya1apaJktbaZOm216omrpr+YLETJaHmyXlBbKn9zW7dP4TYnJR+KzQsfLeVHZZKeleS699zC4Zw6NQn2Go2M1sfZcKLYJakUnZZMRq1DIOuWiaRgU/ychEMuqrfscNFFx6GcMlIPwgea+JoSq1c/xqqQ49VQ706zc5iMz22L1U643hqCI0Xp+cRUYs81r2QVUu6aYykOZSuRkFyQe12Hhlbiunq7N7XQtMVo2jXJ7n2P9ZRl8iQDto4roLjqXz70t9hejoVSoi7M5VcVvUa9arvN//jodPJOwHa5oxyZG89XptNnZ7i2dRCoqpvZpC1g1TrWeYlRtCFy4BVyeKKQQ6ZtfzL1Fy2DjZTfWeY0Q8U+MrSxzmt4QBro12sDIzz++mlHClWMV6M8rS9iKDqMCs0RqYYRK8rEFQcBvIJfrDgPv75R1djXqSz56TfwElwXzbJ1za/CzWvUBXJM5SKs2O8ERmQBEY11CL0Xbua1h9tK5sZSE9yTnInGzMdzDZGybghRq04+4drceuKdD3cyZJ37aU/myC4doKpkThGv86i0w9wz7s3cOQjVeDaHD4tSPZindQym87f2Ewvr0NMCKL9CoUaiVbw+NXzp6DlFBLrxqi6rYqJReAFPe575CSiK8dRLZ3nDsyFqQBS9xARh3nnH2Brdyv1s8co2DonNxzk5RuPR3iSw99ZgxQQe9RDhEJ42SxORCIsn709d+4QHdEJip5Oyg5RFcgRVqzyOA0Sip4Giq+cYCg25zft4v7eZUR0i6KjUVORpeuaCuZ8SPp4lOcw9f5VVP5+C0rIKFEIlLLTro0sg9/gc5kCQqILSHkanuc/EFNsUiX26swMXd7TqFJtPrj3cn467/ekvAA1aoE9Vh3z9FFMKcl5CjkZ8HlvxjgDxUqmiJB1gwQVh6agjxkuCg9gSY12fRxT6phSp0mbQhEe045Br1VDsDR7Z0qdhcYAY46fZORkgKL86yHoHyJzUoSgVg1TrUYIKwE2FTqILpxkzIkzLYMMuxEWBofYZzXgSsVvSQqbZYEshpA8k11ITEhyMkBSzdHnVDHmxjClWrJT9sHNXOmNcCXkj6lmY4rFIasWQzhEtCJdhTp67GpiiokqPC6NHuS4oP8Lec/XIfekID8WIeVGODWxlyvaXiHvBLCkxqL4EAVHJ9KjYbkqn/jpfayM9tI/VEXB1FlSP8RpVXu5MDLOuBMn65m8LzbFYauWnVY1n9r9ft7oaWf7oRYKv21Axm2mxyN0F2vJ2Ab7M3WMFmMYqj9BnrZD7Mi2sHGiHYB7N61h62ML2dDWxT0/uQFrNMzPe07m3RWbWRkYp0oN8vmqw7QGJzm9ag9LYv3ENJMt6TZsR6UylueF/jn8a+ujZDyDZ679L66f9YeSAanCvz53Ka6pIjVJ3tYJBS0cV2Huwn4qV46RWmHxkcuexCtZjeO6KEaQEbsCR6qYUqffquRQthpdd5GWSu1Z/Wx6ZT5jrzRwWvMBWh4VOBHJjpc7mVxZiRORqNMq7oNxipUCJeQwviSEFVW49qyHyba7IECfdmhbMEzlXpg4kGRktQKLM6xY3I2WFxRtHbMQQOsPcurxu0DAqfMOMJSLo+kuuuqSyQd56NnjmZoPel5y5mlb0TOlKNDRDFLilr4P8+YOEA/4biUAcd3EkwpjVsz3fvN8V2ddccuUh4xroAqP05sPMFkIE9EtooEiTTUpFCPoKzcAk4v8Ux74xkKynumTL5HEFK2ML+U8BVf6gceSCpOuTkw4hBWnpMukoZcwJ4AeO4GFwm1Tx3Fp81bynk4Aj4yn01ISiUt5frd8v9mIJwX78/WknDBDxQrimkltYJq0E2a2MUq/VUWtNk1OBggrxbIsryl136dOLfiByAtilSRTcl6AlOdLp/z/Jpnyf2v5ek2Fsi3SD587m5sX/47OgD9LbAibPcUGVhpHaNWm8KRCUap0OTpbi/V8vuowg26gBFL70g4AEeEw6kZLonTHtjUVTKmS8VT6nDCH7WpUIRl3okTVIntT9ZwTHuf08AjnhKeoVMNlOZeM9FgYHqTdmEAYLlsybbwy3cmfp+ZzWcPrXLf5LO7et4ojm5so1Hqkdlbzm3Wrub1vLd9e+0fEwQhvPjeP/9p5Bp/o28CIHef74/5w5/tiU7hSYaq7kvWzu9DDFv/81XuJVJismNtLW2CczugoC+LDvpOx8EuFmFYkohU5v34HX0huJLFDR7Xg0V2LOfe6L6FmFYbHKvjgz6/h4dxcAL45tpBf719Lb7GazuAwMdUkpNpURfJMTodxPYXdxWZ+1HsGVx2+mN9MrSsPYQtLsGpuD4ojGB5OEAn4v1cVzLOseoC18w/xm9+d5W80z1cioKOVbZlmDmeS5N0gQ2acg5PVtFZOkajN0DtahRN1iQxKHnloLYPvsWh90iKxHyYXglXnoFgC+fVqcs0elS8Y6HmIDNtct/FswgMqWl4wudCg/81GMq0C1RS4YQ+xPcauV+ZQTHrUxLIw5kvWbBxsY87cIYKqw/DeWqoqcjSEp/E8gVNj4cQ9JuerPPfgKlxDIl0P0T8CiopUINY8TViz8KQgWlLgBAipFroyY6rgUfQ0H4NSHLKur2GU9wJUaTlObjhIRbCALIm6Zc9egizNIM65cwqAa855FFt65KVbmo3z8SZb+lQADx/k9uVivPL325YKeU9Hx2PArcCUOkk1R0zY/Kl3CR3BEUbdGDmpE1NsJtxIidhr8Pj0Mn767JlU6nlqAz4p9KLkFhoCKUatOFk3SNoNsyLcg4JXVoUwpU8T8KTCgF3l85sUmxp1uixvVK+ly3SDmabT28eFf4AlgZgSIKzo7LYK/sCj1Omx/w9z7x0l2VWee//2PqlyVec03ZOnJ480iiCBBAgQRiCRBAhj5ADGIOCDD2eCfY2vbYLBxlwwGINsMFEgMAaBAAkFhMIkzYwm93SejtVVXenEve8f53RJ2IC9FmvdxVmr1/RUd3Wdrj7n3ft93id00m80WIzybLXnOeiOIEXsPNBICJQ3Zes84sXVujMheFVUBiPhPJWMZntlcJNeuyQVeRmxzoRRq8WotcAeZ4YdqVnSRnwDNnVAUab/C3hejuKt6SZnHmkp1qfKhMrglT2PMO13USw22Tc0Q1iKsOqC3kcVyy/Yxvi5PsphjiCvye4t84z1Y/zF4He4Knea9/Uebf/8frPK0y89xQN370Epyede+Xw2dJY5fH6Yvz17HZ+75xnkDI+86XFRYRqlJSUrxoyqYYY/nXs2WkDfoy69P4y3853Hoft7Kdwexb9MXMnVh17Dv/zwmehDRT73nWv4o6Mv5Vyzh16nxkhuhaGuKtu6F/j1/Dif3PIF/mnT16gET74Xdn+TG3oe50XPfZie3lXetOFerugaZ1N2CaUlW3MLsU2vEHH7rBUTL+mkGdpoLVgOshxbHMAxI05f6CV8sJOhf7PZ8bEq4qZlXnLjA1inM4zdInjVO7/L1g+epvc+ky0fPMW5l6XIb6lQ2wBeUeA8dAogeT3IzkW87vp7uPSFx8hcEGzeNcvgAy6XX3OCdT+I2FWaIzVSY/3gMrdtv5ethUXGal1cdvlpWr7Fge/uJPRN8h1NNn01wC9q/KLGXhUI20Kv64snjyHkUx6hNkgZIV4yKk9Ln0bktO1n14imHWaTQJl0mM12gYqStJst2UUUAscMqa2LF8Hx2zejT55FBz5vLE4AYCESK17argMpEROC8yJs40pllSLQEkdEZGTAfJRj2IydWTulz2+deC1v3Ho/+SSRdznKMRvmKUiX+SjHUXeYH/3+09nwHyF3fOLZXJ45x5X5szxY34anrMTtoZUQYeN7rNeoJecT8Lg3jKstRqxlOo06C2GhzR8sGU0UEqXXJo+/hCvB/6vjbBDy+snn8IaTr+H1L78LKRRDZoWftNYznAQWbLXnqKgUY0GBTulyVUpywPNjfRAqDvWTIVnhJwzvWJjoI2NcSXq42mAszDAbpvlOY5CDXon7W1sYDzqxRMTTcme4ru8E32+u+5nnGWd0RfQYNSLXoNuqYcqIO5cv4SeVjaTtuLiZVYP+h0LmX+bR9dAcuTGTjx69BooBhZTHA5ObGDAyvDjbbNMJ7mzk+H5tNyc/vYN/vOUf6fh+mrN/YHNqto9tw/O4P+xh9C9OYwhF2ohXpMO1+DwHrAq701PUQxsZaOyjE6zsAnn9Eh0nauRmfDofF7S+3gdf66J0UmDVQIbQOlvk8L/uoexnefTOPUwvdtCTqqNQlJXNa06/kpd0xuLdSCu29y3w0TPX8t2vXEn0jW4+PX01A3aVvOFy/8Qm/uXA0zA21uP2xDDQSpO6bBmlBV5kcmB5BIByJUv+wQzOiib70FmW93fS9Czu/19PQxmanvssvv7u53LyvVtIrUSsPmsrfQ9DZT7P0D0+fgkWX7kbtEDZGhGAs+zzhS88mwdfrywGAAAgAElEQVQe2UmzXzP7/WGmnuNw8Ds7mXqewWOLwzRXU9Q9h7/70o3cdWInXmRy8kvbqddSpC9ZRi7a1JazLOxPIRTtqZ8OQ8T5GdAKe30dPzJoBDZZ06MSpAm0xEvaOFNGeMokb7h0WA1SMsDTJpYM27uqtRSYDqvBjuIcjhHirMSY08bb5gGQ+TyGkInvUuw8UEnuZ0lMwZmLsrhatlvLzsTMralNXB3jrlNhiT6jzrtnbuA3NzzE9dnTTAVd1FSakvFk+u5k0Bm7PgSK1ESFwW9PJyZ+kl3pafqsKgN2hRF7Kc5wVFYb47VEhI9Bv1nB1wa+NqipNAXZwtU2KRlQjnJUogxSqKRQ/YozxD2t+djis7goP4379T4uzYxhE9Epfa5KjzMX5uNf2mjSJVvkpcs2K8UBz09ImbGIV2nJgBlPCBrKoUc2aWqzXaVnohx9hmLYbLLebPH8zAz7nQo35c6w2VpmyFzhCXeI041+7ly6+Gee6xm/Dx+DxSgPocBTFrUgxcb0Ek/vOEdPusHJpV4K52DiZRrriQwn39pLfUNI/odZ+voqzFfzZFIeh/0YC9tpudSVy03ZOi8vHqRxfZ03/9MbqW6FgS/bhC2T09N9yACCnetZ8PN02bFavM+JzeK/MnsJX126FENoZACV67ay7vs++f9TJMpaRI4kckD6EOQEyhBYdY2ywa4K/CLcd/deDA9ShzIcXBhmz7+/lT8ZeymzqwXuWL6UpvL5Sr2LJ2b7Ed/oonQmIswKzo718/dHnsXXp/bh1RzS52ycB/OEV+xoc5zWFasoLSk4LuVmmspECeUb9H/mMKmXzTP1W9vxOgTdn8mSf2AMsykIXrpC9i3TjP7hUVZGTfLfPkrx28cxcgEz19hc8cKjdP/rQTaNLNB1WDDwkIc1V+XqlxzC8ARBZ0RQ1KQXBa2hkMLGCuXHe0hNOJTPduIOBeimycRsF6tbI1TDYmWmSGpRgi9xezXO9iodx0GbcPr9FyOKBXQUxa1fJImU5EIr3hUoLVEITBmRMzw6rCYZ6bMU5Am0EU/ulIlEk5E+C34BRwY0I4eC6SKFput755h++yXoZgsMgzPv3cVkWKehYl+m2HY6xptimoCmRzbxtEFDm6RERFU5VFS6bb2bFbH32HfquxlKV7g+e5rxMC4SG6ylNpM7IwO2OzFz/9wrTRae2cMr7voJty/EcqulsMBsEJN4e80aG+wlttrzTIWdLEexL/1s0IEhYinYmpGcJSIKssVcEL9PKRngKouaSv3qa+sqUYa92Sk+/fnr6b55iqzwWYjyLCqHZeWwwapgEyXKZ4ctVsRkGOeux4p20c7cOuzFmewlIy5MMVAXsNNy2W+7NHWc634mzPEjt5cH3D5+7PbxYGszJ/0BMtJnS2aB4fTKf/GYOuE3WQwL8YhU2dglDykUs41YFGmgeVrnGFnHx65rCsdsrBoUTxmITETnK6dZfKIHbz5DrZ7my5XLWYoadBgZcjLF95oW7xx/GepkDsMHsylwlgOsRQs0BDkwD8dJu9OtDp5oDnKwPEy3VeeZPWcpe1muKIyRXYgo3X2a9Kl5qpstrCemSS22UKYgyD8leqtTYLhgtiBzQZObhKFPH6P/kRbVeorUvMnUPSN4J4uM1bp4xqFfj6cxn7Xou3ua2oiBXdGIloTpNH5o4MxYWE3oPdDEfPhE+7VMEeErAy80MaUifcFgx4dqIAT5l83HYZ+fP8nkDdC4YiMjf3+EHd3znJ7uo/aCPbz2N7/LmU+NEu7fQvbRDJvef4yFV3eyetPFjJ3uJ0zD7DMdzt8ywIm/3ENYCsmOm/QcUGTmFVu+EFCZLaBGWkgPpCsQqQh7yWBkoIxVkYhUxIYt8wRZjcwHZGYE+uESyoaBBz1kAGc/2IkwDMLJLC3PxjIiTBFhyThDsNN60gMsHp1nyRsuGem3fcwtEVFNROkqCQ5oRRZDmQrnf3cLwx87GvPDgpB33RB7O6bEmk6O9jVsPeXOXptGu9pos7xnw2LiQBkXn8eq67m59Ag/bG7ibUdfxTcv7OOPxl7GXFTET3Lq8iKgw2zwx9d8i9v+/zsohzm6nTqusug06/SZ1fZrjvvdSVhBQJdRpxJlYqeIKE2EYCGMKTiNZFrYb1WRcVPXJmr+UmZz/y+OjPT4+y/cSJTWvGH4Phrapt+sUokyqMSLuNNwOef3cqUD5SjiqB9blmeTKJuYwxHSaQQsqyyVKMN40M1WM05fKSvFj9wSgYaiFOy3XZ6VXmS/M8cGc5kr02M8PX2ezfYCkZY0Ioe3zT7tp85zUWXIGy36jSqXpWbZMzjLQlCg3EyzGqYph1neUDpCpZ5h7pqIxjpFUIDOkx6Xbz3P2dMDrN83i5YaNZvmvrnNdMh0++dfnWrwT5vu4D03f5ndLz2BX1LwZ0sEHSFy0cauAkox0exkIFXFUyYjuRUGrLjtNYUib7g0uw2EZaHrDZwVBcUctY1ZwgyYTY1fjD2+/YImPSewVzV2QxNmBXrTOog0pbuybPrEOUpnFUP3xq3qF/Z+hh9VRkk/dJrW1l5y0xFBXmC0JMVTsLKQx3AFZkNjzVXbNiki5VD103iRSdVLEUQG3UdD1OnznPr4KJNv20fPjVNoP8CsGMxcK6ldv5ul3x/BmnTIn6vxpQ8/j6EvWvgFi3VfmeDk+3cw8coh/Jyg52EDvyjQO2ts+NARlCkQrkQLMF2NXxBMPjcFliL7aIYorSmMQep0CmXD1PF+/O6IXKmJ+ecd+D0RKpBU98cFyS8IyjsdOo8KBm5PUkSW4lunGVg0Q5tWFGMxq2GKotlqT6EMEYPFEQIn8WVuJjdrt1WnHGbbgtlBp8qGDx7m1Pt2xXidiri1sIBFzApf+4glWHFLp4gTgVLJBHkNV13jNOWli0Tzhkd/nas6zhIheGh1M0JoZqpFinaLTdYSCklKhNS0xV5ninqUohzmmPFK7EpPM2itsMFaosusUzBibLffrFKL0mSkR0Vl6E8KV0Z6yVTdp6FsjEQM7KqYAjRirtBp1Nshuj/v+JUoTpOVbrwORVDQ7W1ooA322CvMhB0sqgxzUZZb8qc47IfMRplEDxSzwwMtKck4YTTQkJcuJaPJZalZysrgTNCDJWDYrFBTFgaC2ShiKYpYjGzmogLlKMNBdx0N5ZA3XHrsGEuCGGeJtKJHNnl+ZowtVhIZbrkMWBX68nWW/Cxv7XyM1429lEuGpkBCalHidivOv9hi1U9BKmJsshejJXGWJLUfxbYvS1GDx30XSxiMBSkWwzxuZLLuhxFnz/bzwv2P0/GEwKnGq8yym6XTjFdoW4a42qIeOdQCB1dZ1EcEOlIEuzeQqkTUd/eAiIuQDCE9r0lVNNqCxrCm2S+YezoUz4es7CowcUOa6lY49c6N/MVffood7zvG+Zlunv/9t3HqI7vQYYjzwHHydx5i8LPH2Hr7MpUdGnwZt4UVjb6wECv0DYOxP9rNSjMd726VpFl3EEojbIvRN57ErkDzE4OIvm6cimDb35xj8WKJWWmx+e/OMvbyItXntJh6RUj2XAW9WiPXX2fgoRaNYUHX145R3xKQvi9P65k7MZuK/DmD9IJm6jrJyk5NfgK233YM98o6xTNQ3h/hdSnMusBsCKwOF+7v4NwbJDgR678sSU04OGVNZk7Rf28ZZUL2iXmEbZOe1/iuScu3SBkhZgLsWiIiUGuTs/jz/3wYIsZqloJcjMMpk0AbrIYpdBCy9W0/QfsBRl9v8v3xFslNbHVdTXKdR7FeVCjcdmTZ2r8mvjZoaJsXPfhmXr3jALucGSpRhjf33kNHpkWjnOYNAz+ipmz6jVXcxDrF1Rbd5mrbzsYQuu0sEIdlBvjaQBFTARbDQttATiGpqTSGUGSljyESH68oXtib2mE87GqnB/8iJ8xfieIkVJzsuufi83QadQ64G+LIodYwz07Ptb9vNop9iuNpXHwxlKTbjmuSaGrKYqtZp0t6HPZ6qSiHDeYyFRX7gw+aIXNRPOWoKJtaYo+yHOUYtFbIyxZNFTscbE9f4Iu1jja/RyFwE37UYmTzk5n17RUya/jkpMO/bb6Tx6aH2bdtEq9DY/S4mE3BUjOL6UQYqRBtQHOLT2t3i1ecez4fLV+Oqw3uqHdTlB4nGgMMplcpv75OrrfB989vo7oFlCFAa57WfZ6lIMeKHzslbLXnGLCrvGnkXj5w9Lm4632QAmUlQQNSEGRErDNLQ5gW+DnB5i9UECGgYNNXXbLfO0bnt0+RnRbc9GsP0b97gQ9MXM8jn7gY3TKxZy1Kd52AZFIkLBNRyDP+sm7MpkD6EhFCdqoFUqLKK2g/oHjREmk7QGuBG5jI2RQr2yyCy0dBCPpvP0Lh349w8u29iBCWr9/CwEMhEzd14+4bYdMXV0ilfbbfdhbRdNFa05jNs7ItRbKIs+MDS3QfblLeaZH+0XEGP3WY1S3QcVyQmZX0PrhMeOl2oqkMjSFB748NMrOxzQsCjCdyNC5qMfqGJ9j+oQaLF1kMPOARpgWpcsTCXyl6v3YSlcvQfM5ueu6fQzVNIiVphRZpIyBtBETIJOfPpxb99C5qDfxdK1gdT2kBq0GaDalldBhAYtNz8v3rWImacaJv8tyq0m0LXnhSqhIl3UOUDH/y0mW7vcKbj9zCa3c/zN70FMe9IRajAuNBJ/+w5Yv8+HkfaYPhFZVmWWUTKk4DhSRnuJT9bJuac9gd4bi3rg10xzQBPyliMeO/EsX35nKYI0jEvSWjQadRJy9d+o0naQQBxi83rRNCDAsh7hFCnBBCHBdCvC15/M+EEDNCiMPJx6895Tl/LIQ4K4Q4JYR4/n/3GtrU2FXBxaUpTnmD7HKmKUc59jkzPBGksInoNxq42mAmKtJj1KioTGIyF0sDoiTtYb0ZUVGSHzS3UZBuko0V9+MBgprSscdTFANyJdmilKS3dMkW/WaNDrNBt1XjQlDiQGPDkxeClgQJ8/yM30erFhvT9aVr5C2Xf1kdwhEW3YUGR06sZ+sVE6j5FEG/T0eqRXdHjUKuxfDOOfAkV20+x28P3s/vdx3gEtvgJbkF1psxUXQ1dPiHvV/AbdkUsi6pnRUWrwnQUcQDC5uJkDy94xxjtTgN44Jf5EerowgBn7v2k6xevZHyToep5xjIQKMlBFmBloL8TET3YyusjhYpjMHIt6tcuDrD2B/v4/SfbOfP3/ZZvvLgFTQ8m+XPjVDdCjdf8QhBR8yQRiaXzaYRqleuIz2v8XojspOSwlSEcegUutVC+z46ihgprFB0XLzIoFFNIyJo9Wmsh0/GEzDbBinZ9o7DDH97ib7fOY9VDTAbUH1bDTEzz/Dr51m4eRdP/EE/BAFOb5OeLx7D7VZo3+fEn3Qx/ZwM/T9uMHfrRUCM2fX9cI7srGL50i4wBBvvdLHqkJ31KY5F9B7Q5CZg40dP0P9Nm+VXXUyUd+g5HDD1XJvu4y2sWkB5vgBdJcTcIiLU6PkliARSaITQKC1Y8nIYxLymprJRWiATvyxLROQMtz2tC5VkziuitKAV2URa4D6FLa2jiN/dfz9lFTsQRGjyQmIJ2gukq0U7lFIlUpKs8JPAyoD/b/wlvHTTEdY7Swxby/SbVVIiwBYRZ4JuDvrdlKMcNZVu85MWozQpETFormCgGEmXKUfx7zVordBvVkiJgK127O0FsKrSHHWHKRlNesxV+s0qI1aZvNFCoto2LLHHk2gPqCItf2k/p5+X+Avw4ada9wIkX3sVsAu4Hvg/QvycQLr2IRh90WkCbWCJkIebWxi1limrFINGkx4jTgZdjrL0G/F20yKioW0MNJ42Egq+z2wkqCqHDdYifpLQUVM2KaGTpNKY3g8waNZwRESPoegxfAYNzbCh6DcrlIwmA1aFnOFxPogr/WFvmJN+D6422OPM8pwdJ8nLWOrhK5Mec5U/mb+US3smKQ2scurwCEZ/i0u2TDC7WiBlhqws5Jm80InRlBxbHMBVNsd8i/vd+JwyMvY4el3vgyyGBV44eoyRwgpuy0ZWTGZvu4SGb8VyFa+D63pPcqI1SDVIM9sqsmdglpPeIM0eyeW/cYjstCS16OLnBTJMnBFtgd+TZXG/YPX6Bqd/M4fXEX/tXS+6g3cfv5G9e8b59sX/hHrJMu++6Su8t+cR/vp5X0SX8iBEG0+KsSsBhkZEYHjqp3R1RmeJFS+DLSMiJdFNA8MTJE4aqP3b0WEYxzAZBnpskvlPbyQoWuQuKHpfMcnpPx1Fre+nth6ykyarL76IjX9c5+y7drP1z48jHYfR3zuKsa+K2+fQ/9nDIATrP3IUPb+E0FA47+IXLMxDZ6gPa1LjZUxX4ZQDIkewdON2Zp+j6TxWw+1zWP29Vba87xhLe9LMPiPDjnecZvGZ/Vy4eZT0j46jXQ/pxzeXbUTtXZEUOt49iZBuqx6n/GhJM3LwlEU1zOAqC1OupabImLQpFIEyQes4CkpFvLPzFEUZs8KNJLwgTleR7TABQ2gkmlXttDPnUiLiW7U9pIyQnOHSb1bbPKO1SXZKBFjEwHlDOWSkx2SCATW0yXZ7BSk0GcMjQpI3WvQaNYbM2OZnKuhqF5mUiO2pXWW107ilUPQ8RQ9bU6k24dLXBj7GT1EYftbxyyT+/rzjRuCLWmtPa32eOOjg8l94Eh6sy1R4Wu4MKRmwPz3ObJThUidiPkH+F1WGgnRZjrLUVJqaSrcLlI+kS3pUkjGtn0QwpxJNT0ynj+n9FWVSkiF9RkCnhEFTkBMWeREHawZotlpLZKVHj1nDEIqv1vYB8NnJp/O9yh7uqe9kPOzghZ1HONjYwLKXJW+6zIUl/rDnAQ4vr6PRdDAHmzCe4dCjW0jbAXs6ZunorVHqaOCUJd5DXXx65mp22wHXpuOkmX2PvJq7v3UZbzvyKt5z9EV0W3WemO/HejyL7gwY+uRRUlbcNkihOdvspRJk2J6N29/h9ApN5RBmBEf/dh9ut6Y5kEaGcXuXWVSsrpeM3Sw5+tq/5+J103z0127nvld/gD3XnuH75Z08Y2iMEw9s4pZTr2FjqczHz1/DNxt9vOfwizn97iyta3ciTJPG5gJ+TtIYVliLJm63Jn3P8fiPmth7nP6jrZhCYRsxGGy0JMrSpJYFOopY3Zxm6RW7IQhYvGUfGAadXz/GxAsF2ekWZ953EaWTgjOvybP+rhZcXiU71aK+uwfpQ/25O/Ev2RInuzxQZOoFmnPv2hfv7oKAaPcmSv9+HOtChcwPjiEMg5Hv+eiUQ+Z8lann2vQcaiIUbP/9E3jdaeYuN+h79TSn3reLys4Qp6I59b920vnZR+j79IGYuxVFiDAuRhKNKRSmjGhFMfN7bbfkiDieKiWDn5JqrO0YqkGaeS9P1vQ4WH0yUU2mUhhCUlUaV2vmkqdWlGqzwjMialufxBPuHAaaF917Gx9//JnszF+gz6zia6MtG4mLkU1TOwQk2lPpMeb3kpUeR93hGBvUa+cpqUQZxryYQuMmpMuU9HG1xXKYo6kcGsohQnKktZ6MiGUs8Ws6ieDZpNeoMReWABjze9lg1n/53Lq14z8l/gLcJoR4XAjxz0KIjuSx/1Hi71NDNYOgzs7MLON+D9vtC/QZdQaNJo958ZsXbzWDtr93hKA/qeAGih7p0dAms2ERTxv0yGaSKrrGog0TpbZqg+YZadDUmnIUUdcBR4MMp4JeDnqdnAp6k1SPkC3OPKPOBe6oFyg5LZb8LA+VN3H73FX89ZnrOby8jtl6gYz0KcgW3UaWmaUSvR01wsBAjbgUzkq8wGRfdoqOTAs/NGkNRoy+4AzD2RWO+Rb3ufBIczP/sf9T/PC33k9jIUtzPstnv3ctWguG76qy/a+qjL99DxkrYNYr0Wk2KJgt+p0qU24nL+45zPcmt8fj3O0B1Y0SoaHVLRGRxi/A3JXQ83jAFbvP4QiLvOlxxuun18hgSsXO3AWW/Cx7nnmG/9jxFSaqneztmuWG7AW8mkPpnjTqrUuc/MhO6oMGQUZAh4/hCvoei8ffcfijBUIyuGceITSLrRxeYIISGC0BGsqv2k/pSwfp+tf4hu/5tyOE+7cx9xt72P7OY9x2+1e48ukn6b3jJCobYRw+Q2s8j1lpkj8Up421OiVTz3EwBvvwS5rRTzbZ9N4DEARgWRjHxgDQF2Ip1OzrdmM/dILVnSW0lBTOgXnwNMVzLfS2EZQl2PxXx6jcuId19yi2/+EJ+v7lcba9+zjSthC2jSwWQEVEOZWwxCWtyGpHVlXDNK6y2nSBZhQPKmpRCk+ZGCgqQQZHxkC6IyPKfpbJ1Q6EE08Dp2/bzyNewPJauB9xG/dUjKmZ5DMWk8y+rdYKv3HwN7l69Ayv2HGQXmuVpbDACXeImkpz3utNXCsdFsICbjI1nAuLnGgNcl91GxGS8TDeQV2VPkc5zDJsLePIAKUlgTZpKgdX2SyEeebDItN+JzN+B5EWFI1GO58uwCAlfFLSpySbzCV5kwrJBmuJ+1vr2/fozzp+mcTfjwObgYuAC8CH1r71Zzz9v5hGPTVUs9RrYIuQZ2TOALE5VoDguLcOm7VoZR1Xe22SFTErPCUDOqVLgOCM39ueONQSdbSBpt+s4WoTN7GOqCibhjYpyjQjZo6NVg5HSGwitlqLDJpVdtrzzASdPFjfxoTfjS0i7lrZw4bcMp12k4LdouqlqbtOewVcDrJMBZ00lU9XqU7O9tixbg5Vtqld3UQDS2EexwjpyddZt3WBkewKo5l5XG0x5vfyru6TKOCaB9+MUTPI9DUY3ncBr2lR2Zln7lk9pMowW4n5I0drQ0RIFvw8njL5SW0Lz1g3RkoG3H7dp3B7FEFeETkCvxif5+Y7XKZeHfLxkW9xb0ty3/f2crrZjyEk/7rhbr40tp+Jj23jstIEb5y6jqW5Av3OKk0dIe2I3q+eZKGa42k7z5K5cZ6VvQqxnKjeHfnUP3D8d0sy8dJmQL2eQgbJFZJ8q7p8JyLlxD5GwMq2FANfOgVC8PH9l7D8xn4u3LIDIx9QuXEPdkWiJ2fR1VUGHwzxiwJndwW1uIyzLFi4vMDkH1zK8isvjkW6QRyJvvjqvVRu2svAZ2OpUP4bhxDTF+i5/SCrN+xFJK1o9uxK7J90xyGyPzjB6gt2xa2WYyO7u5CdJapXrgMhEJ7EDeN23FcGtTAuJIE2yBsurrLatIFqFE+wZDK9Shs+njJRCUfPjUyWznbFWkTD4N1v+Hx8niJgMYrH8Wt5ibGJW/wGegl0MWi2+PDisyhkXDZmlqmEGZaCfNsRYMbroGg2CbTBfFAklUzXxvxeGsqhFqawhGKs1cOY18tRv5eUiLg8O8b9tVGUFpz0BjjpDTATdnDCHWQpLDDldsYBnNYqCsmIVQZi58vFsECvWSPSklWVwkoE+BB7iG+3LyDELxENBT878VdrPa+1jrTWCvgUT7Zu/6PE36cehlD0mKvMhXkGzRYVZVNRNrfk41Uv0Ca1JOggmyifLRFREB4KwVwUV3cpnmzppFDIZMTaY7QwhKaiHErSZ5MZm/8f9jwmwzpLUURFZTgT9GCgmQ3zsS7IbDBgrdBQDm/svYdXdDzCq7p+wrM7TvLW9d8H4IqecSqrGTxl8vDKRhxh0vBsbCMGPREgJ9O0mg6fOnoVq16KvO1RSrU4Uh6iFqWYDDq5tbDAg67itvMvp3h3BntV4HkW42f60C0Tw9f0/9tx+m8/itu0WfBy7MnPECqDVmRTsprszU5xfelxJrxuflDbRWpRUnpCIkKNVQO7Bs1+h9yBNJd87R287R/eSNdxzZ/1/4BAR3y+NsDguzTlXYIZr8SZSg8Xb5tgstVJpDXmeAq0YuNvjzPbKJK1fJy+OJnEHQwp3vVEbJGyZxS2jCB2bKLh20QqxmZU3UJZoCWEKTB8jWwGoGKgXQchpqc5+45tXPjtfQhDMnlDJ4PfmKBwX5qO108SFBWyrweUZmWrxdDHDtI6WaL88n0MfeYYXkmw/kMH6TjVIMo57RbM8KHj2ydikH7HRoyeburXjCKEoPDNw4gDJ+HYWfT5qRikNwzG/nA3hf84Gmvq6g3USlwEc3ceACHRtsIN4uLUDO02uN2KbBb8PKGSpGTASpih02wQKAMD1Z7orR1pI8CUCmdZosOAC2+6hD32hTgiHIklFE1lJtNlC19LFqMsNWXHydbK4aure/nODy7l19c/gkRzeX4MQyjG3W6qYZpt6TkW/AJSKDKGx9FmfIuWjCZXps9xeX4MRwZ4yuKCX2QuLFFTFvdUd9Bt1VkK8zQTD6b5oNjeGaaNgKUgh6csesx4qldRGZraaVMO1sINrKd4imdFbDznqV/CMuXnJf6uRZEnx0uAY8nn3wReJYRwhBAbga3AI7/oNQpGqw2WNZRMctsNFqPYVcBPRpVxXyvwic2zpNCJ8jph3qIwUInWLsJOPl8L/DPQWGimQsViJFlvRoyYOSwRCxYzItbeNbRNXsbCxmqUZTboYIsVMWw2GUrM7gAcK6BotkBoSlaLLqfB3yzvYH3HCgXLZVthAW1qDFcQ1i12Ds2xo2Oe6WoRW4bMPjxIU9lcmZ5gIWowHvQws1ogXY5ILWlU2cHucsFWWHWFyOcQQlAqNRhOr7DFmcdTJgWzxZCzwuONYRbDAp1mnTmvgNkCvyRQtkAojdHSRLbA7dTkJiXWquaGP7mHroQI+ucPvQhMiT/osz83QdOzeXx6iAfPb+LbjS1s+spK3LZFEbMHBtiQX8ZrWm2zau3HDotjNxeQy6uISGNIhWOGRFoiXQnyyZXS8DVh0WnvsgDMlmbzXx2j/+OPcfpPd7Lhi7M88Rf95KcjFj63nsHd8+AHzN2yi4FPH2by7fux6oLOLx9CRxFurwLD4MJVOYxDp5EdJYginGrccgohMFYaYEhkoJl58/5kYmjF8U6GQXjJKAAj32e3CbcAACAASURBVHVjA7iBXibfvj+OaFKKyqsuBRXFvw/QCGxCJTGFwpJRoquLiZVrXKZqmCbQBvXIwVNmewflGLGratoIyE9ohGEw9JnjDJpPhl0CCZfJxEdSS8ICUiKkqhy2mgEfve86Rq8Y5+Dqejxltsf1A3ZM1p0PihTNFjNeRyzzsqsxkC2bWEJxWSoWF29KL5IxfFbCOO7JlLHty5pRXjl5PNAGzSjWy+UMjz6r2gbY89JNiKcSOzn/csKBCp4ykbRE+FNF+j8f/5Od01ri77P/E23g/UKIo0KIx4FnAW8H0FofB74MPAHcBbxZa/3zTVsAV9vUVJpeo44hYjeBTukyET7pQLnGRzLQiZufbDNhM0loZmzevjaxCJFCU5Kx/q7PaLHFcmOBJLGdL8Te4FbyRrna4qi3rl3QXpO/wMvzx5n2YzgtIwR5Keg3PPbYS2zuWAagq9hgotnJfKtASgacnOlnKF2hw2oiUlE8xcoFjC138YOHd+M/2MWRqXVoEy64BSw0dzdjMWwp7VLebuJ1COyyxDiWQ0hNZnKV2qXrOP+O3ezqnuPA8gg1lSLUki6rwXfmduNFJpYI+eL0ZeQMj9VdAWYTtAFRWoCMOU5mM/bM3v7bJ7gie5ZV5bLt33+Pne+ZZ+zlRaxUyF9/+WUYUpE5kGF9b5kIiVxYaYt5N//vY4zXusjkPQpjEhEJkBJpW+QmILwwz4VndVGwPSQ6vglzIVqCsjSmC35OYh88i8ik0b5P8Iw95L51mNUX7OL0p/aw4T88ylf0I1csnvG+h+j5/CEuHOpn9qb19H3+GHp0I86Kxu9QLL36YlrX7GT47ojWNTspjkW0rt2FrtcJL9tBet4lumhrDJT7AdHcAqm7jzD4d48QXr0X/8rtoDV62wbMR08g+3sxV1qI4+dgZh7ThfItl9B4/l5KX3wMhEB6AiNpWSMtSRsBrciiGsTFvhXZWCKiy2q0qQW9do2c4REq+VOBknnTpetrx+KpZTaLhUGATBbUuPoPm3HA5WKUx9cG42EXfUaLK3/8RgqDNa7pPs3mzCI3lQ5wqLmBBT9Pt7nK1vR8uzj22qvUohQfO3QNQ9ZKO3rNEorXdj7UZqzXohSPuBt/atTfVHYb2O+zVum26kg0fVaVSAua2mFZZbGJEhKmFwvlRUS/GUtX1oD0hk7im3+BS/h/64SptX6An40jffsXPOcvgb/873722tFneLwmv8zjvk6CNFMYKDLSw0ro+K62yBherEXiyaIzExbaI8m8CClrm2zS26ZE1HYBXG8GiXDSpkt6BAg6kojxTsPB1bF16NqKs8VyqSvBw14/3VaNqopoKIktFFYSu/P8ruM8UtvI+sIKFS/NTLVII7RhzuHIwBDbCgu8ZM8hvlvYQUYqaisZejaXWUyVMC6kWHfJLGcqPRzp7ue5mUn+vb6ZsbG+doqGsyJo9Wjkos3Ei7uw6uCO+Nx/eDuX7B7jaGMdRasVvy8IXtvzYx5tbeQjW7/Et2r76HnQpNkPbo8iPS/bhEW3V7HvknM8+Pg2HlnZQXZaMPpIDXdbH/aqIPutNIavEEdKzLzQx2xkONYYQjWaICUrL95FmBGUpz10JCkpSM0ZbTC877OH0IaBe00NKxmzB1HcbquUIgpjPyQZaqLt6zEXV6FSxV5qgGkyf5nAsCPs4zNUN25h+4en+PrSMxjhIOlFQbNPc/Ijo2x/yxM0XrYPoyUwfI2yBJlvH2b+q5uw7+jA3WCQvjfAOnIOhgc48ZYiow/7BCPdGNVVxLp+RL2F+MkTyMF+Fl65j+4vHUHv2ExtJItTDlh4436shmbw4wfBMOLiZtto1yOBe2iFFsXEcK5gPunrtEYvmPML9No1VoJMu0gYKHxlEiiDUEt6HRftS1CaJ/58kOkooCRjDd3a4WpBPrnuh80mkYbr7nsLubzLlYPjTLTiRKK5dJHr8se4KiX5ZHWQ/sTaZD4osDs9zSef9TRGixU+tHAV//vI3QRakhIRq9phnV2mGsXk3lPNfjxlshxk6bVrNCObnOFyzo2zEoecFfKGS95w2WrPxQGcKsuY18ewvUxGeCjiIcFs0NHOwIu0RCa7qF95V4IIxU/ciF2WzXyUa2NKrrbISx8fIwngk+SlT0n6iV1EHB1ekj6OiKglW8aastsugFFiwNXUmsNeb5JCYbEcCZrap6njVqSpDQIMbBFxhbNCh0xT04qPTjybk/UBvlHbxf2tLdzdGOWg18/Dbtyz14IUzdBmILOKbYZsyi+hugJ60zVCbXD31Ci7++LJUmrCoeVbOHMmuXHJxBMDlA/28q6jN/LsR99AUznYRY/wojqtoYjoGVWUBeb6Ol0nQla3RxAKekZWmKkXcWRIqAw8ZbG3NMMHp55PNczwrdo+5rwitQ2C/KRC93oMv2AcvyCIHDBaghM/3IpsSYSCIA9RymT62TbNQUX36yco7zKYe7qg41GL+/bfzocHHmbyLXuQfT3U1seSEGpxS2c1NN2Ph+goQqs4BkpHEXsGZsmYPjsKc/jKiJc4DUKD4UGYEqi0iV5eAcNg8oWdzL5hH1vfe4T+rzic+pPNdH/5cZauHWbNy829rE6Y14y+6Siyo8SmL6+QPw+tHkn2u4/TuOFirK91UJhw6TgVcO49+5h80270+SlGbzvI0usuwzhyFiEE+vwUanGJ1rP3oGbn6P7qMRrP3c3CFQXK203Mw2cZ/MRBev71EEhJ81m7Yna8Ukg7NvSTUrU5S6EyaEQ2jciOMU9icqYlIhb8PFJoyn7cFnnKwhQRoZbJjjeKc/5SDn/1jDvazpWS2FAuLyMWozSdMqIkPeYih+vuewudHQ329F5gd3aWtOGzPr3E/bVRvrO6jy/WOrgkNc7VqXnOtGIpzGqUgmIOUW8y8ebd3Pzw65mLCuRF7G7QY8YuF5949Bq+ce/l/HhmI5aI6DZrFM0W1TBDqAyGnBWKRgtHBonIuKONB2915oiSFO61gpSRXpsNnpUetojaJM6fd/xKFCdPxwD2WvRNVoTYKLpki0DLNuu104hXp7XImyAJyjSesjc00BSlR1OZBFqSFwE9MuRRd5B+sxr7IoddnAm6mQ01TRXRVAEpEbHVWmanvUxOOoTEO6X51TzLXpZjjUEerm7iUH2EB2tbuW91lLvLOzk0u46Z1QLnqt2U54ocLw8gzNhvadCpsL17gUM/HKU2n8PriajP5zBaAi1jqxJnWaAOFQlDyYnmAP982WcJZzNoS+GfLMCgi/NQnsqtNVBwxa5zZG2fufEuBuxYaNlnVel3nlSL91qr9Ng1IifGmPSqzdVd5zD8mDApQyiejb2tze2r7LzhFJUtKZxlwdCOeU4cWo9ThuG9F7jsNw/ztL9/B9fe9nts+MwY0zcNURxT0O0hOz0wNF6nIP/4POrpe5ApJ8Z2LJO86dHr1Cn7WSrNdIw3SVC2xuuIRbkiSKQwQjD0owa1TQlG8et1Rt93mtbXe+i88xhGi3jnMp5FpRRj793P+Vs3wNlJZBRLoCbfvp/c947R/fXj1AcdyjssNv/F4wx/9Ag6imhdv5++78UsF71hkMbz94JlkT0yg3vNbsRgH9m7j9H76QOs+8gB3KePgmEwf+vFiI3DZH4UuywI20Z5HmFa4wVW7IRpxbtXM3EmUFrSiOIwykAbODIOOuh26m093RqJUQpNp9mIf26txg3ZC20/fENAp4x36j1Gi1NBgbyMuOWh11MotBjtXOCK4nnmgwIjTplhq8yezBQDdoXlKMdMWOIxr5MPDPyYcpDlQtDBri+Po8OQDV+a5eWjh6lEWSbCNPbaYMorgoaenYs0ZvP02jXuXRllwc+TkgHDqTL1KHYE2WAvkpUeDeUw7neTkj5+Qqa2RUQlikmntoiwiKipNAthPvEzd39hXfiVKE4GmuFkaRy1VtsufkDb/3jt/+vNiJTQTIWF2E2Qp/bEMVC4NuFoaJtTQS+nghi7GvN7eay5iYWwQCXKMBF2UFYGQcIcTwlNpzSxhEFTBbzpzKtZV6rEEoTkYlvxM5yp9VLx05wpdyOERgpwzJCewQorjTTKNTi0uI7P3n0tvztwL6PPPM/g+mXS0wbpaROvU2P4GqMlCDOAhjA0eGbhFB+YegFGS2AvmmgD1LJNfb3C/G6JnkclY58apdzIMLRxiWqUxpQRp1v9ZKTPfD3PapjCUxYn6v0EfQF+XpA7Z/CZu55Ns1ew/aWniLa0uP9vPsbJV36MR6/4DBuzywzcep5Lbj7K4kMDXHfVEUo3zJI2A459YC8bXzjGvf/wcVS9weA/HsbtEDHHUgvsWRvpQ21fH/LHR9u+4eVX76capFgNY0P8IDIQArDjYhTjTk8uKlpr3F6H0U9VWb55H8O3nOXUR9bDh3uYe+0e5AuWEIaBsjQYmi1/fZzWZh8xPEhjQCAUDP/tgZhlHkV0PL5C1zGfqbfsQ2xYh3QctAmzN44w+dZ9iPFZ8o9NM/HWPfib+sicXkwuRoNT/7gXYduUd9iolsvKpQF6chZZyFO7fjfh7o0II2a6O1ZApCS+il0hQi1ZDdNkTa9tn6ISC9t4mhcD5Z4yWA2f5DCVwyyq2USmUsgEa8okgt+a0hgC8kKzyVrluh+/ic5ig6sGz/PynsdiLZ3hcll6rO0cYImIIWuFQJtkpMcRH94/cC9TbicXZSf5o0d+wNPuPEmgDab9Ts4FvVgCCsLjeaWjGOmQufNdjGydj4uq3WDIqeAqi5zhMmSvUE9cPpcTect25wKuslEJEJ6RHl1Gvb2jWgsmKRnNZFpn/+r7OUFMiox0HJ3d0BZeoq5WWuCIiJJUiVhXUVMGnUYzkbEkF/tTfk1XGyyrNAXhscFc5qg7zFmvj2OtdVzwiywEBVxtJ6kqEb8z9jJuO/9yUkKQkymqqsWZ0GKxlkNrwdb8IlnTY32mzJbsIjsLF7i4OEkp7ZKyA1q+FRvYGxFBYEAk4vZtQ43XP/g6yq0Ms5NdpBc1QU6j+10ag3HYY+Ro0BC5Jp+7cCWnFnoxG4Jog0uUUZi9LZwlSWMQlp7nUrm+QW2qQCswyRkujgw5tjpISgQIoakEab45t5eLC1OIukGUAsOH9Jzgkd/7W17Z+ygnr/nnJM3DoKp8vnr8Ykbz83xg6C4ufu4JTlX62FpcZPVjwwS3lplZLbCiWsjOEiKbpedAHdMKiRomQVER5CD3w5MIKWLphVZ4N1VY8WL9Yyuy0BqknSSxmBplgp+XGHUPLBOUJn9knjN/mKbjiTpGbw+ZnEf6nqNc9BtHMb/chQ5Dtr7nKBiac3+wC6NsEnZlsVehsitk4bf2c+KDoyAlenya+pCF4cHp3+pg/C27cYsGhfEQGcHEm3ezfO0I6z98GPPwWdTCEvXtnag7i4x+tMX5d+6hOB5SvvVytr/1iZgrdd16CnefwJpaRkcRYT6+9hwjJJXYO0daJO12XJAKpospIxpJkYYYCsiZPo6M8CKTZmjRiuKF1Xvmbi5EfmKJoiknj7takBKSm4/dSm+pzqW9U+zIznKsFTuhvrp4iKL0WFUpumSDvc4UkZYsRznGEw3dqUDyp30/4Kzbx5jf275+msqmHOaYDdOsM0NGzBXeedHd3HrVAzR8m4z0Gc3MUQ5jN4ylIE9BtugwG1hE7WSie+o7yMtWO4REJRO7ispgibBdoNZaOuu/ae1+JYqTJSRFmcYQEk8HXGyHXOQ47LVTXOQ47LBjgC4vZNv9L35ehKcNLBE/JpNxq01sb7IQ5fjG6sXMBzG/Y8CusCsTe4UH2mCDtchzHriNG3sP87tD9/Km8RupK5eiTPNn4zdy2eAko8V5npM/zmW58+xKT7MhtcSAXWWTvUhXqkFvrk53rsFiI8dqK0Xom6AFzfMFvnnpP9LVWeeD277Cj6//MHe+5wP8zgu/z47huTjocVud/DhEKY2omfztxq9y6/afwMWr9HdV2bxzltfvfpBwdx1tgDmeImjabNs1TRj9X+beO0qyqzz7/e2T6lTs6uqcZ6YnaoKyRiMhJJCEhISwkMASMgiTfckYcPhs38982J/B9ocNli/5k0U0wkQJFBEKSGg0GkmTNKEn9XROldMJ++z7x64u4F7A3OV11+Ks1aunqqequqtP7/Pu932e36P7cIteGgPFkcYAZ3fPcqLUzeU9E0ilJ2iRDfU+xRvf8gCX7f1DznLmMYXBZ4tDFGSda597O3decidvyT3JDX/yIfY8uZn3rnmEuUaGDR9+kfoTPew9/26+XNrOi3/Rz5H/NcLpG1LEnBDsCFIhfodCVmsYiQRTf3IRCIO065G0Nfw/aXk0KvoqazhSyyt8QZAUiDCCViP91BuGWPt54O8KRMUS5iNZMAxe+Mp2Fi8LWb71bJCSCzeeYuyHdWRniPnCBKk5iZM3iSwBkUAITW9YOT/S8onOkN7nAuoDgiBlYDZg9NP7yN1/DDau4cx7tzP3lrNJPnKY2QdGafYnyJxU+EmD5UsCjvzzVhjopetb+8C2kPOLWudkKEKpG9rFFiEiazcwhNYypVoY3pTpkbEaREqQsfRWxkBRClrviVAcKmllzua/Pcghv5eTQYZma9u3FMVwheKyPW+nUEmwNTfHtdn97XH+OmeJR+trWJCpNkpo1ZbiRTb7aqMcaA4zFeaYkjFeln6xlRunwXTzXobdpbUc8QeYlVp1fl78NOvdBeJ2QEW6xIyAbrtCPkySMD3KURxX+FSiOPmW3GdX8rjWN7UmcoaIcEVAT8u2UoniOnq+Zf4NlEmofr3t9ncit04ABVlnIrSpt0yJrvCwhQ4i6DNjDFgp6pGPr34+idPNRl1JpQ2JqXxmwzRNZWOLkLxMkTabbHOnWGoFYw5ZhTYY6w33/xHYim/Nnc/JxS7OG5lmVkqONBJszCySMHyGYgXG7YLmHbeafKAVroZQOKak2IzTDCx601VmQ5NmYKByko/OXocQugf2neoW3pSZ4FXp/exKTjA10IUtQs7fOcPV934Iu2jwueXLKAYJBrJlutwaK80kjy1vJMi7ZGcFQQqkG7JST3Lj2v3kwxQFL8EbB37GikyxNxxjbSZPr11m1F7hC5kQ+6TD2NWTfH7/ZXxr1+d434lbmHlkhCtufI5PPH49r9/5NM3I5vp7P0j6lhJWYPF8fYw1yTw/OrSN7/3RJwmUzYOLW+jabdG4rk6wXldAomohsj7SVRBJonqdkX94FnNogEZg4dkWGbtJMYgjLF3byoY+5ZShUIaAULZNxMMP11i4KEn/n3cy8/ZRhj63j6Mf345dUgw9aLB4Hohbz6V0h2L5BsGGL9apXrud9MOHmX7FZqyaRe+TJvT3IFYKbPrQPubfeh5dT9ksnStontVg7Jt5OhaWmH37OQzdeZCpa7OsufMkUbXG/O3bGfn+Iqdf20v6jKK8xsAsWmz4yxco3ngOmZNnCHauwX52AhEE4EQ4lsQQCreFTAmVSdL02j66MDKwTf1vQyjKodvWNhlCtR5jcHRikI3M8JHeh6m02N+rqUE9wuNNR/+AvkyFXd2n2OjOcX9xB3k/wY3dz7MiU/RbRY54A4w4K6SN1QUwYsRZoaksjlQHOF7vZcTV+rjdpbW8qmsfhxtDdNk1xtw8+TDF6SDHqFWgy/CI7EWkEvTZpfYWbsAp4kV22+yrqbC2lkWEunnfZQYteY/uOQH0WGUqkY7ESgq/3Sg3foOW4HeicqpGggfqQ0z4/QBtomWi5YNbjeiekz5bnASmUOQM3Y9KtE6CWmRQifSilDC8FtfGZl1skbqKkTYaZM0aNeUglcEGZ5HcCybZ3gpHjw3R+aMku4+u43/MXM/+xii9tp5OjDuL2AK6DI8OwyNnatjWGkvH9lhCUvdtXjF6hKVqkq39c4imiVJwotTNF7d+hXce/QPenZ3iWS9BoAy+tryLy+KTjNtL/M3cK/nCtV/EKQjuvX8nnxh6gM5YnZF4gWZocWolx/pNetpn+HD5uuPk4nXuPbMVU0ScLOToaYHBlpoprsq9yM9K4/y4fBbuGYdmNxyf7yH1ZII3/l8f5NRCF42hkIePb2LTxhn25kf5y4+9jdiKyVhnASkFxSDBI5Mb6OyqYKIwEEzsG6H38QVS38/A6QTVqotKSlTBYfCnigdmX2D2/RehAp/61gG6E3XiVkDMCMnaDUxLc7dRgKGQMd3EVq6tFeKxGNahU1QvbHDyAybNbkX1mm10j+fxhwIyDx9h3cVn6Pr2QUxfIRScfK+gOmCi1gzSOVgid0RS3AhH3t9N5XKtaapeWqc8DmFcse4LEC0uU7xxR1sGoATM3rSO2pVbaPQpTtzeQ5hU5L69j7FPH2DT/zoNG9fgVCQzd69n6RwXohZ5ITCQkaDRaoo3pI0nLRrSoR452IbWOK02xBOm3xZfLntJemMVKmGMprSJT9tgmKy1dTT9iOmxwQrYYttc89S7aYYWmzoWOTcxSV6mWBtf4tzMFHuqa3lw+SzqLbLAlN/FVNBFM7IZsUpsshe5JnWIG7peIFLa6nTc6+O2nt18ZvIKBhxN3lgJkprdLyQ1ZTMjU7gipOHbLAQd5KyqjmRrCTKXwwyVKI7f6neZRJSkZj+tonddEbYnc6tHWbptWsjqtu/XHb8Ti1NDOUwFORaCDgwRkW75gXpMi2FLNw3ryiRnGCzKGj2GoK5UW0iZMyROy9TripBIGRxojrDZmWsrz1dXbBPFiK3Fk/aNS1w0MMllZx9h6SqPO1761bbobHXsOWiVyEubmrLaorhVfZUlIgbjZTZ26WbqNaNHuDA7idNTx4xJ/njdw5wOchQbLlcfvoGPnryBDiPgc8M/Y9RKsc4KuXP0Ca6MS/72nf9GYluBKz/5EeZrGe6Z2IYfWmztm6fUdIkvRygLkpbHeGaZywZP0mnVyLge/8fzf0CXWaUrVudwY5C0pXsJzeEAcVaFvm+5IKBxbh3XDegcLhHUbY4dHGbqJ6MsXxiROaU48+11JJ5McabeyZ9se5Ct3fMMmgpTGMRWDMKeNF33HEHGFImkh6iakAkprjd5yf6beOqDn2T621uZvDViOFlkMFEiZoYseylQAhUaEAmMuonZFJie0rohpSj+3nam3rkNc8pl8BsOa3dOkfrRPmo/7SF+UuuKjh4bYuEPtmHVJHJNk3X/ouj4vVlO35Sj79Yplm6tE4z4bPrQPtxFj2DnZtJPaEFkcgaQiom/3oHVVCgTjnx6A73P+fQ/kWd5m0X6NGROwPqvrhCet5HalVuIerIYS0XiPzmEfDbL4BdX+d4+uBIhFHE70FW8oTVdGUtjdKphrJ1P12E1KAQJ3WdB0R2rUQldIiXoitVY8/njGDs2cSyokTVCAkCiuOLA60inGuzomuXSzARPVdZTlS6LfoblIMVlmWO8of9pflw8i321USQGs0GWZ+rjLEW6akmKkJ2xeW7uepYRN49skQYu7dH2sEGnQMryuKd4LouhjlI3iagpm85Eg5UgyaH6EJ1WjYTh0VQWg3aBU14PkRLMBlkMoRhzlqhEP2ejl5UmFazuYlaNxqtR5a4If5MG83djcQLapWhS+CQE7alZTNgsyhrDFsxL6DWTdJoJArWKj9AYU1v8HPJ+OuhmuzvFokyTNDz6zRIjVpG00eQsZ4V+08MVkvu2f5kH923jmtwhNo/M853lC7goe0ormltO70AZ1JRNPdIfxZa/aPUohzE67CZ7lsfodcp8b3oHti2xLMmf730NW51FKitJHtpyD+8Z+wlr7RRfLndz48Q1PNLox1MBngq4MLbIrev28tyH72BmOkdvtsqFfWfYe3qUTreBnxQYPuxdHmE4ViCMTHaX1mGbkq1982xwFlhoplkbW9KYiyBBtrdCs+hy/l/s5f3v+Q9eeOln+c75n+dlQxMQGFx8/jFyhyWb//sElVFBrKj/aLdk5vnoozfyxP5NfDqvU1eMAAqbEjR2rkdEIITC6m2g6ibDDxT4wuavsv2H78V+tIOLN5wk1kKkeFJbNYKGbooTgVlvsY9CEL7WRwVxAZcUGf9GgSBpMHFoiHDnFoYer9P3bMCJ//NczIrWSllNSexgnMnrEqw8NEjfnoD6lduQoYk153DyL85l8cMep6+L0f1CneS0oLIWVv5EN25TJytIB9zjMRYudDhzfY7ugyEdpzx6frrI7JXdzHwgZP4ik+ZgmunfX8fkB89h7J48Qgiq12mEjm5tCbyW+bchNREzYfrkrBoxI6Qhdb5iKYyTsZpEShA3faQSbU+dY4TQaDL932FJxilGFq4QvOPUjURKcMXgcfpjZRaCDtbFl1qNZMUVmcPtKuWtPY9zS243R+t6cttp1TjiDTIRdFOMHJYiixGryM7ECcZiy/jK5JWZfdy/pGOF69KhHLoshxkONEdaQmcPGRkYQtFhNcgYDbKmTpQ57vXRYTaYC7Ksa8kJAmXpyZzx88ncKr531YGRMZut5/BYlKnf/WldXPic5c5wSWKCtBHgCoOU4bYXpkqkKEWSBZlqP2a8Vf6mhUEt0rnxrlBsdeJscBY44g1qQ7FZocdsMGJGbLGhz4xpG4pQHA1i3HXlF5BK8NnxuykF+ooUKC1srEiXmtLRyfOyg0WZ1tOPoLvdezpR6saLLM7rnuKemR0YQlEru3iVGEHD5vbDt/Pnl/yIL5X6sUXIbadexi3pOe4a/x4PFrfyz/mzOBpIHqqvYVdyggiF8Ewu7TvJg4+ei/tinImZXuL5iPhSxOxkF48tbeCBiS1sTC4gI4MwMjgddNPnVjjjdZGxGmSsBuVKnOQJmyfvuJB/f8MreOV738/v/+NH+M5z5/Mf19xBOXDJbzZZuqsbuwrSBqek+O59uzBrBrEFi3d0PsMFn/kAkQVuMdLs70ggpYFlRQglWPhYxPWPvYex70H/T0saui/1H2xNOlSDmFZehtpfJ1q6JKupYHoevemxGAAAIABJREFUIkVqLmT49ik4dprG64ts+KpW/S9cmMB9/BDXvuJZBnfM0/dUkUaPQ31dQNchhfPSZSrDFkHSwJxIEHRIevZFDL5xmrXnTWM2AmpDCqshKB/NseZHHmeuyxIrgl0FI4DRT71AecSiOB7j+Jt7CROw9sNljEA30Ie+fBiZUBx9ZwdKKZL3PK/tK3ZEIDVnuxK4GtVr+DyxtJ5FP03C9NsCzdVDL1hOGy292iSXlQr/ds6/kWxR+L5e3spyI8XL+ifotOt0WjUWggwmOu7p5uwe1ll5TBHRb5YoRgnyMsVrc3vYXx1mxF7BEWELm6vaMps1VpVBq4AjJCsyxa7cSQatApemJxhxC5zxcgTKaiUBW2zKLhBGWqu1IlNM+t1UpUszslkItJzncHOQhUDjUNJGowWda9BleNSUQ5dZ5WBjBJOIstTuj2ZkU1exNsnzVx2/Ew3xtAE7YwFNFdJhaAVtNWpy0LcZtLSiu6xiDFoVAuW2o8HX2inOhFV6TAsDg8MBjFqQNgJuSk2QEDbLkU+fqbeGq4m1TRFSV5JBq0FaGAyZp/lv069ibXKFeuTQ65QphMlWydpJU9n4ysIRIbaQTHrdSMegGsSoNmPEOwMqgct4xzITxR6EqbBiPuFSHO9bffzvmy/hot5JLs8cpTtW5UOzLyFmBPzT4GMAeCpiLDVFhxFn7X3vJHvY5MFDlxBPQG2thKKN6UVIx8RMhdw8+Bx702NtU+l4apnn62OEyqDTruFFNsNOnqGeIsWLm4RCMXmdzcUjL7JndhQxm+KPPvZ+ml2CsQcL8H0DTN1D8/qSFLZaxBcMrBq84o4/IbGikK4gPt9EKIXh2wgBmUQDv5FC/qSLoUlJ4mdHmHrHVqwgj9WKO/KlSSWIQWhAKLSMICZYxWcrqfsRhY02hY3bSSxE2NYKnf+0SOGDQxgh1K/cxv0PmnTvV8xcaeB1KkZ/oJi6OSD1k25sFI1uA3cFzKbF0jmK0trtNJ6P2LQyzdBjCaZul7j740xdFSPISjqPQebFAvOXdxHs3EzpbJ/UUYfcoYjCDTX4plaxS0dw+JPr2Py+g1oZnkkjG7oCi6Qg7gTYpqTHrTJdy+K5Fhd2TbYTfdNmk1IYp9uuUpEuEqMdnBEpLdoccEocMHMMmj5LkcVT9XHuX9jKtQMv4hoB3VaZShRnS3yWfJji9uyz1KJWJhySRam3YjrdWvKK7CH+9+xlvGXwCZ6vryFjNllnL+swBGC7U2BK1qlHMa5LHeQzS1fw+1272eLO8oxcx7TfqflNGKyLLzPZ7CJlNlkO0kQIVvwU8Vb/zAstNsQX6LU0MsVEtYdHR4JuuowaPiZnx8/wYnOITa4GlGSMZisI4ne85ySJWJAe+/w4L3geTzclRwMDH5PToa6Q+s0aY5bTXphWj1ErRV1JpmXA+TEHTwX0GIIlKfBUyKiVIiZsYsIm+AX/8WrI+KwUHPD7GXBL2EIyGstTCvVefcApacMrEa7waUa2DhU0m5RkAj8y2dS9yJlqJzmnxobEIud0zTDSW2Cku0hqpEzqljlGMwXWuCt8Y+Ei3tL1U97W/Tg3ZF/gX4tb9PfSklJIFWG6ko5TAfUBRbNbYdQNrJqBnzZxypLrNh1kf3WEWhhjppElF68TKUHC8JmrZ4iUwayXxRaSSjPGOX0z9KUrWJbksd1bkfs6sIt6RN7sVlTWZ6hu7ODo2zMgBNUBm5690HUooONkQPfVMzz7sc/QcTLArHkYh07h5ySJmI+MDGQiouuQT6NT+8LYVSQX0yvPatCpIbSWSwQCu2xgNgRCglOWLTyJwXm3HqD/6SrZF0vIH3Rz4oubOP0hobdfS006j8D8pQpeWiBc08RPGahIUDu3QWFrRG1I0XEqJHHpMl0H9fY0e1hw+E+HWLjAwTzlsuaVpwg6IjZ9roSfMmiMZGheWcF+dgKzaOF3KGoDBhxPcuLNwxgBZO85xOZ3H0YIwck/24HMFxBnrUeY+jz0AgsvtCgHLluzc+ScOg2pOU6miKhIl5TZikpq9VIThrZMVUJXh2ZENkZHhgN+J/eWz+b56ig39r+A1+rtNJVDpHTSyWsz+wFaur+IfqtCl1ltJ7o0lc0ae5l/WvNtnqhs4tzEaZ6treV0kGtNAXUbpMfwGLQqFKMYmxLzZI0m/VaRl6aPsCt1HKDNoyr6cY7V+pludmKgWPaTNH6BSDDjd+oQW7NM2vBJihBXhKyxCizKNJXIZT7s0O8JGmO8KNNUZBzxuz6tCxTkpU1RJpAIOgyPHY7JS114qQtbHINxK96ufH75sZJeM8lGO8lhv85hP6IYRfSYisnQpB75/6/HLEtJRYl2o/uelXOIGSFDsYL2ChkBpTDOS5JHGbIK9Fsl1jjL9FgVNsQW6LNLpMwmVT9G0vKJWSFTjU4mmzksQzK70sFCOY2UBpOTPSQtnzt+/Aq+tPYexizJV/K7cEWgVcCGQ6plQN7ylXeTfcSltNbGXRYgQHb7WpTpCLysyT37z8YQEX2xMtUwxkC8RNwMmKj3ckP/fvYUxyj6LT2JEjxxaCMzpQ7+euu9vOmKx3nsbf/AP9xyF3+86yFGz5+hMqz1QZs/epLpV2RZPk9ReE2Nl/3PJ3E/Mst8McOOf3wXsYKH159C7hgnPmPR4TYZzRSwOz3mdjmc+479lO/uZnvvHOOJZeItUaIh9NZHeEb7bDMCcMqKWN4DKalftYPFW7KcuSYFx8/Qd/cRwqTA2Zuib2+D8toEjW7B4GNQWU6y6WNlml0G9oKNYSo2falMkJXM7zTpfv0czdsK1NYGNK8vs/nTy6SndLLxoYlhhh9WILTHcOECh3AizakPb8fwBb17I8IEdB1QhMmIkc8dBCkp3LSDudu3MfajOv7l2+H4GVQYokKd+BtEBlmnQSmIEzd9Ou16W0rQZ5c1stfQ2Jiw1cPxI4u4GWCg8JTFqfds5mBzhHk/gx9Z7CmvpcNssKe6lhPNXmJGwGXxSWqRwbyMEaCDNtsDHBRBi2U2E2aZlQk2xBeYD7NclDxBXqZ4urGOyTBDLdILQrNl/7oscYy8TGjBpNQ7lyE7T8Lw6LXLrDT1fQ1p83xxhDAyyPuJVkVYocPUleSKTFFsY410+Ei/VaIZOTQjm06rRtpokBF6gmcLjZb5dcfvxOLkCMFGW3Cxu8Sg6ZM0IuZkg4KsU5D1X1qUVhvI1ajJXFjlx40EX6t08b1aismwk2IUb/GVbcYsSUREQdbxVIAtTAqyTtr4Oer0h+VzGHBL5Kwabmu/32HWOS95mqQIyRoNRlqpFf1WsZUmXCNjNIhbAWlLhxbGzYCTlW4qgUtQilFbSuBYkqt2vMgbep7CLgtsTP5i/uW8qespLnZN3tBxgFKkf7EP1m0iW6Es8NPg5QAFiUwTuwaRrXEn566fJO8n2bsyymiigB9ZGmjmJTjZ6KEpbS7KnqKpHN6/6SdYyzZBYPKR+27jmxPn8eoDb2J/Y5SYEXDP5v/gE+/9Eu/62Le4+fEDRBbcdvmTXLX2GP/29KXM3DdGcyVOZWOItVjm1GsMpq5OkD6jWJdeZm1yhaBpET9/hamXBDifzDGSKLQnVnEzoCltPGkiQp2fbQTa2xdfjhAtUHWQMpi/dpiefSG1q7eiRvtRBnhZxdLZcbIvlujb02D+Jo+Rew0mb+6juDWk8zCEJYfpqzXSxggE82/aTrkaJzZv4/smh/88i3XbAgNPSay8RWGjRfHjPvkLA/r3+FhVQezsAkGnZOEig/7dAZEFow+G1C7fzJF/3MbiTkX/XQew5wqcfrW2x2CYeloJxExJU7YWG6HaUzlbSCrSJWH4BK1suv5YiXKoL0aetIiZIfdNn8U1r36GTe4sKdMjbgZsTc2SMDzOS00yGlthjb3E385fzWSof9apMMGCtBm0wp8HeLboHavhllckJthbGWM+zHLK66Ek4/ywdDbPeYMsRTrvsRi5pI2AH5bOxkGyxl6iKBMUZZKj3gBnvC6d1ByZFP04Kdtje2aW6WqWA4VB9leHKckWaUFELb6/08Jhm0wFXW0C5nZ3ChPFYqt3XInc/zoJ8//vYyGM8zdLF/CBM6/i7xZfxpeLF/Ci38VSpEgYNp4KMIVBQdapRD4HfcVzvsser1dntIdaCPaL0cZ1FWC3InUShk0l8inIOp1mAhtdVfSYPqfqXdgtH9Avai5uSJ4hbUhyZkDSiBgxPbKGR49Zo8esMGKvUA0c7TdqNX8/MPYQEYKzt0xipkIiJZgo9TAfZrn5VU9yZ3mck5Uubn32bfyglmA2tPjj6asZf+TN/Mmn3s7gtgXqfVrVrSyFTEWYZkSQgHq/oDYosIyIE6Uu3jL6UwwRtcMc80195VuT1KbMSAlenz7DxO2f4chLvsLJ132Wb1/weTZ26kTjb82ez7bvvpcPfemtPFcd42+efBWX/N4+7pvaQkPabPmHZcSlBb57zb+QGyqiCiW2/OkR1v7zIZxqxLMLI0zWc2wcXaCwlKZ6zzCTt8s22TBjNUlaHq4ZUGm0lNCBwAh0LyeyBeLIaYTjMH+JontfjfE/O4zZVHD8DPV+hVMWlLYFqH8qY+09CsD4nx3GrkH2kEXu2/tJD1TIHQm5cPsJrBqYDUW0HGtNFGHL35eZneskdA2yR0BeVMb9VA6zZDF/kUOzT1Ipx3HnLcb/50FmLrcobhQU1jucuQ7Wfi9i058egHXDKMdm/Ft+S4EeYTaNNifPEAqnZVvptOukzWZ7gZItNbSuyBO/lGPXkDauFTLuLnGwMaJH8q5mdpdkgkCZnONOssYu8tf9D9FvlvnqyiWtIU2G06FGBBlEOtVEmUz4/ZwOeniktpFLMxp9vTa2RJ9VYkN8ob3NkgiSwqcYOXRYjXaqdtpoMhtktc5J2gTSZKaWpRY4TFezfH9yO5lYk0CanK50carepVG/rfTfVTO+IaI26391S2uICNcIWAz/823d70RDvBHZTDez7fHzRYkTbLAL9JgWTRXiCou5sEpTwdFWfI0rgrYcflNslt4Wh0mrygV2a+LnqYBK5BMBpSgC9AKVMAK+W+0l59Q1LAtdnufDJK/P7mFWGthC4Ao9CaRlkXFFpGN8lMFIWpuC16eXOVntYibI0e1UeezYBixbknI9ys0Y3144j0rgMpfs4ILcGY6eGOT6RJWz/u0DRKa+QkgXFp8e4IYbf8ZEpZcT+S54sYNmt00wEmqYWyrgc2P38OaTr+HJ8gZG3AJHqlq4GrP0e/eSzDEeKmwllgr4Qa2Pe1fO5qtrHgVgi5Pgy2OP6ze950Xk5hbqA8l3axcx6BaJD/jsTJ9k+8MP875jt3JOLMZ959zJ7WvegVmsogpFpCPIJRrUQ4epQhY76SM+18NNf/UMKdPDiyxSpkdD2iSsgJgd4AUCmYxQBq0KSkEQMP+284gNVDBfnOT5r2+ndnsdd8fZjP/tPo7/1Q7sFQveu0zxpnMZvDvisavOwunWpunJD57NyMerTNwmmNm9AScG5fWw8St1Fi9I4fkpjt+eJPc0lNforZxXjdHoMnHyOlAzOVJh8BMW0y+Dxdu2EQ55ZJ51wQCzZnDqloi+nh0sXC7Z/L4DWHOLWoApDJyCwGs6kF41+ApsQ7U9Y4EysY2QuozhGtoGskopKAf6AlJoJsjEmjSVhSEitsWn26rqZqQHMTmjyZKMM4+mvr6n51G+X9nBiJ1nd22cC5InaUaagLA6vAlaQsdeq8L9pe1sjs+1hZqTfje+o//0h6wiNeUw6izzaH0DQ3aemSDHdncaX5kcrfdTacbIdDSRkYHZmj6WPVcjYBoJIgQTTh+Ra7QjopKti33UItUOWgUcJGkRtMm1QFuU+quO3wbT6wohnhFC7GuFan60df9aIcRuIcSEEOKbQgindX+sdft46+tr/rPXUEqwNrHCVZ0v8paun7LZKdBn6ua3jTanVpRgMsxwwu/lhN/Lc401mESMOzpVIyYkw1ZIzpDYCBL62yFQEhOBVApf6fineuQTEzY3p5Y1JVAmqEqXab+TPrvE6SDLTJhhScY54neyFMWotFJaV9MvXCFJWzo+Ku8n6ItX2FsZ06ryoSVMKyLteMSdgPHUMrPFDEcKvbw++wwvvPLTPNq0eeMNP2mnHUcWJGcUD39pF5Yh6U7VyJy9gmVFDK1ZJjFQRXkm5z3wPjJOg5l6llLL/b7op7ENydu7nsBXJpdnj3C83svBxjDvG3iIU0GVH9QS/EthjO/VUvyw7vIP+XHeNXMpp8M6pcjnNS95hj35MT49uIfdlXX8wfNv4btbvg6AVApjdomwr4Nwyxrmrg5pBHqrHbNDgnIMP6UbtoVQV3Ce0kiQUBmYLTSvMhWmD6aniC/6KKkb2WJfGhWGlLYHrPmMYOSzBxG2hbssGH3Ao3TTueS3CsqjFoanK8tgR42xTx2g0ecyvnUW2RHidUck5gRzl6YxfHAvWSYxJ8hfFKAuLOGUIbvbYeX6Jhe86iDDjwbwZJbJ65LEdq2QmpGIFYfK2ggvCzItQUFuzxKbP3BII1uk1OkypknHqQjZMAlafSSAlOm1KRZuqzG8WjWsUiQroYttSL1dkhYp26PDbNBhNihHcbJmnYWgg4SpXf2rW7miTHAm6OKAN4CJImdWyVk1nq+voRK5TAU58mGKM14Xc76OYDriDTDfzJA2m1Sky3KoJ26rvaqmssgIj3PcaarSZSnMsKe8lvf/+1t4/2O3kfcTREpQDxxMI2p/jlt6SjmSKWCgmG9mWA61x05TCEIywmtv6TItHeNk2Mkxv5+olUz8X/XWecDLlVLVVtDBT4UQ9wF/jA7V/HchxGeBt6ITWd4KFJRS64UQtwKfAG75TS/Qa5d5deZ5ekyfUStFNVJERNQjyWRoYwuTCV/H2uSsKrUoprcMRsCSzNBvlnRii/p5rnygJHXlk5cSsyWlyLZW/boKNCRNmNyQOsz3K1tZDlMkDJ/NsTnKLQ9QMUpgr/qDzLqeNPyCLiNu+hRlgpxTJ0LgGHr/P1vMkE3VKXkulYZLt13FsSTlx/v4i8SN7D89xGBfkcJj/ZBWRJbCqmnG08DDiyzMjiP+aFFXQ66+unhNm5GxZd4wuhtHhNw9dwHnJ09z5/SlXNx9ikIzziO1zWx3p/j8/OUYQjFV6+RrT+0CSzEytsyazAoyI/j66QvpcJvMPDLCw5s3E0/61BaTXLrjGHs9n2IQ59mL7gJsSlGDACjdlUJQxRCKLY7HS7pOMFHvZaqYpfM5C+O2Reqt7QHoq37S8ij4cZKOz3IigpgELFr/RTv7B3zUvMP8m89h8x0Fyp/wiH1yI7U+m/iSYv59HmPvmmHhkjUMPS4xPZtYSbEiE8y+bTsdJ0NO7x1m+85TlD8xwuTNIQhw5myyd3dRfVWVoY4qyb9OMf1yaPRCb67Mqb/fQv58k8S8ojYWIZ7rovIShbsoiGIabTz+DYldaCBzSVTPRuzJJVS12pY/ZJ9bYu5lOQDSLQJmoExcEbYrl0CZJAyfprKQkRZkpq0my14Ky4gwjYik6VOVLimziSt8lsIMA06R893TNJXFfJhtDYuMdnU0aBf45vJOLs8eYaLRi1QGHVadqnRJt5Cnq3qk1/U8y2zQSbddaXOYFoIO7WN1p6gQp98sc8bLcU3qEP/0mddiZCF11OHci8/w7NQImVwTS0gcQ+JaAUuNFDEzJN9MIoSi0EwQJEwm/R4ybpO0oZEoKzLFoF3Qk3e/W8sdREg+TFGXMaxfsLb8P4/fJlRTKaWqrZt260MBLwf+o3X/XcCNrX//Xus2ra9f2QpJ+PWvgaASuVQik2NBjSUZMhVGTIcWM2GW55qjnPR7WrjPLElDGytzZpV19jKDVgOJIABqkcaqTIYhh32HWZkgL22kgooSVFqLS4BsyxKuSb1IwvB5R+czjFlltjqLrLPyjFhFhqwy/VblF5g8WvqflymWvRSLfob5ZhqpBBenTjDnd+BYkrWZPDFTUlvUnqW1nSt42xpc0DnJDy+/g5gV4m2vY3oCs6knc0FaEPSkCJKC6WO9zB/qZXk+w0o1gQIqzRgf33Mtf7fvWtalVvhpeSOgR9MJO+B0s4uE4XF2ZpqXdh6j5Lmkj1s4CxZTU108cXgjd9x/LcPpIguVFDuuO8K6wWWyiQb3XvspMnaT9bbkPf0/5tyfvZlvVIb4WTPLxxeuYm4xy/yBPqZO9XB6Jce018nm5DzlQoLyBsVIusiAUyJh+KRa6NaE4RNGJovlFGQCiARKQHxFYh84ibAtBvoLMKpXq1M3Z6n/oJ/KsE2QhJ4fn6E+lWbpmnUoN8JsSHqeq2J6CjVepzaoWLjIJJYXHH9oHZOvgZHhFZCCoccCcvuLBA2b2cUsE++yaPZE5A4q6vf2M/NyvQCJ1y5jNgz8jog1F05z/qsP4uUkfXsCpGtSXZdB7D3C8VtjzN44RlRrtEMemF/CKlm4rS11l11rV0k5q6rDXCPtzq9KtzWdsigGcZKWTzO0qfkOOadGpdUnbCqHnFXlisQErpDUohimiCi3bCFJw9M9VmXTFyvTVA470yfxIk3TjLUmzc3IRrbkBwcbw5xo9hApg5gRMOqsUA5dKlL3nnJmlUWZYihW0JO2Du3jjCzasppGaFPwEjRCm2Zok7S1zinlaPqEaUSUw7gOYVAmxUj/vI6QbQNw0tAUg2Zkk7OqrfXlv4jpFUKYQogXgEXgIeAEUFRKrUYn/GJwZjtUs/X1EtD1m57fVyblyGWmFWigkbkG+70hnqxuJB+mWk1eox1w0GOW6Te1D6mptOL7548V1JVFMUoQtBIr8pFDPdJu73ykhY/LskaHoS0qOxMncIWBKyAhwBURSRG2jcW/lNaK0TYv6vLc0pHkyqTXriCEohrGiJkhqb4qj1c384cDTxItx/jxwiZmZZpTs91EhRjKVNh1kA6ESbBXaiy8JIJIEJ8zsFZstvbNEwUGxZkMKjTY0LdEl1MlYzVI2p6uWJwGhlDcVz6bqWaOLrNKX6JC5IBVF9iLNvaijVUTvLB/Ha9Zu5/5WoaT+4ZYKqX4qzOv5oGjW/hmZZxttiLwdWLHab+bZxdHyDzr4qytYFZMmjWHnF2jGdm4KS110OGQQXtLs6qRiRAYhkJ5JgQGygCzKbUmasdG5iZ6GPy6g33dEmM/quEWIpo5Qez3Fom6MiRmNUq4Z7CIve8EteEE068OceM+MqcrYNODxlofa8ViS+c8v3/BHqZfZjN9dSduymOgt0hnZ5XhH0dURwyyxwO61+VxVxRKCaQboRyN1P3ZqXWsuVdSHrMorbVodhpUX30umQmTvi/sxYjr5r6KViNxaQ8lVs+TtNmgFsW0TaOFTVlNLwHt3PdabQLHlAzFCm0vZ5dZZXtsBleotoq8FsUohMk2GA50ZTruLuqoKSUYihWIlEEpTNBhNSi3NFS2EeJFFsteCkNEzPlZmsrWTPMwQVPpXlXS8NgUm2MqzNLsD6mvCRi+6gwLXgbLioiZIZ2xOmlH86kMNIkhUpoP70mrPQypRHGyRlNPDs1yO/G3qWykEiwEOogzUOZvNP7+Vg3xVnrKOUKILPBdYMuv+m+tz79VqKYQ4h3AOwA6BuI8Uj6LDqvBvUGCWosQ2BcrkzB8loOUNrIqiz6rhGv4bHYK7eeyUS1xmb49EXQRKAupDHyhkaH5KN6WCiQMj3oUkTMDalKRMyIkdZYiRZ9pEimFLRSBUlpPgiRQWhRaj2L4ymQ26ORkqYsrckexOyVTzU5Oeb1si0+Tip1FyvKYKWcYz61wppHj/MQputevcPpEHzu31Hjj2bv58u5L2PWKFxmN5/nR1FY25Rb517fdx3erY3zq068lcsBdFhyYG+S2s/dwvNZDzqkzHCvwVH4d61LLOKaeBi3W0/zZyI846feyM3mCdz99G5/f9WV2veeHXLj7zWTuyyAiaHYJ/C748jOXkDxu4xrQ+2CM6b71DNQi/q52PXeNrdDZUUMqgz/KznD72V/jirvfD49lsA2IFlxOb+jiTKUTbzaJ6tVer0KYJCZCEqZeMP3WySqlAYGAuMQILEwvQvk+x96QpOt5QX6LYPQdNaLCDPPv3MLarwEvZOH4EZTRiTKg9mQP+b/qZuCpCFGzqJCg+0mblSs8hIqR223jvGaRp2fX0Pf3Dh2boLhJIWdSzKZdMgcclreDIeH06xTG0S6iHRKmszhlA783pHj3EMYoLO0QjH71BLM3jZNYDIlswcAXX6B047k0c4Kezz6tqZyeBwYMJks0pN2uXGqRpmDkW/HgEoGBohI52goS6YZ4LdB90bShq8zPHX8JGddjZu8g7pKgstVHWBGGqbhj59cxiKjIOGmzwbSfY31sgYcKW7kwc0on5wqtq8qHyTa22RaSTrvGnNfBUAv9kw9TrW1ggxNNzRbvt4r0mhXuLZ/DV6/9bEsCIDnp9/Aka7FaFx3HDHQenxVQ9l29QBla9W4bkiCycA2f2bCDHrNCTdmtIsFEKkElijMWW6YWxdqEg193/H+a1imlikKIR4GLgawQwmpVR78YnLkaqjkthLCADiD/K57r88DnAWJjw+oHB85GNUzszia5TB3XCim4cTakl9gSn9VXJKNBl1mlx2xQiwySRqSV3gJcITgZuMzLDqb8rtYvJtSNwChO2mi0cttDZsJOeswyPnVcIVmKDGbDDnbXxtnkzrHBWWh/n7pnELAk0y39R0JHLSuTxeUMy8NptsWnWfTTBMrkrrlL2NCxxIlyN44lOfT0Ol591W7+7K4/5HWve4y7d1/Oc77LN7//UhgKGIiVOFrtY895dwNwyIfvLJyHESqaPQIZU3z63Lt5zzOvJwoNVGDw4V0PsD69xJ6lUdZm8jpyKFFhPuzgYGOYYSfP7dt3M+H1c2V8hkO7vga7QKqIhvL5+PKFfO/kDgbusrHi7d42AAAgAElEQVQPniI8aw3dJ/OEXSlEU1tuasOC73zv5Rz8w0FemBvC7BWMfH+BKBPHOHaG01d1M3+gj1hN0BwOteHV8LGFpC5j+vfVAqv5no3ZESBLNlYDrHKTyA+ILxg0ekDGYfbGNYRxWPs1j9hSneXzs8BmBn/a4PjrbcyGQXzOwE8ZdD0H+W02oStQdYu+ZySpA3Mcu6KLKBKU32aSzhXZnltm/+71OCcdyptCjGTAB857hHvedgULFzucd8shnjy9FllLcNbfznPyzSOgFIM/rXL8veuITMXgdyaZvmWcoYdcuPIF0n4AwkBYlla3j9ZImj5d8Sp2i3S5+ge3qgSvRw4lGSfvJwmVDhhthHZ7Ot1UNhuceR44504CpahsFFQimx7TxxWChDB5uNGNKwK2u1PMhx2sjS2RNht0x6pcGD/VlgesnverDXqn1ZA+KzVLLYrphCGrStps4CuLqnQpyThdZpVjfh/DTr71vXttX153ukbRi9Mdr2KJiKTtUwpcMo7W+FmG1AuXEbIutoiNpMus6fTtKE5RJqlFsVa6sUFFxokZAYsyQ6j+C5WTEKIHCFoLUxy4Ct3k/gnwWuDfgTcB32895Aet2z9rff0RpdSvnxcCmIp4ukm616M7USMXq7ExuUivXWbIztNl1LCFbCmqw5Z/R0Pfg9ZTTIU2T9U3IBGUwsQvnBgxUmaTfMsGk7OqZM0aeZmirmIYRDithW+9u0DC8PjEzCu5MHuaSBntZqYX2T+3HUiXeuSg6hbTXidfP34BFw6eYbqexTUDHn90O2qkiaxZZM8IZppZjAAGbK356DHqHHjrHb9kxfl2NcOIvcLDlXM48x/rqI0rrBq8/8Z7+W7+PGxb0tdd5CPr7ueu+UvpjVV53chzfPPM+YzG84TKpBLFeTY/ygUj+mQ9WBuG7AyLsqZTPNDcrAuSp7DHJd/643Np1NdhzLqkTyboOB3Stxv8FHTvlyydY3L4G1sIhhVrvniYcMso1sFTiM4OZk5341YEHScjoi36fYmtTqOki2sEmERk7CaZdJ3CYhqRCrHqJkaxSqQisi+dp/BEP2+86cc89o6dGC8cw3vJVmp/36RarlI8kWL9Xz/Plv+R49izY6RmIhav99j00RLeq2NkHknTceMi0y/rx9w1TDazgowEYWTQcVeGw9s7iQXABSXIJ+i5P8a/xl6KelUCvyfg8Yn19PeUaDya5PBHBkmegdSU4tg7bQyrycZ3Had6+RaG7jxI+cE+jL4kLOd1uKZhoCLFxv4lyqEe0Bgouu2KNrYqnVMnMVqJJXpyGbTEjGHLsL0+s8xliQlMFKVIYaAN7GnT19gUpZiSEWc5C8xLnSmXNhs0I80l25GY4og/wLi9yBp7mWKUaIPc6q2t5UoLT1KLYmSMRvvxq9vMqnRpKptRO48rAr5VuJAbsi/gCB1IMJwqstBI45pau2cIRVesRi2METcDvMhkKF5kS3yWtNmgy6y14q+0KFQvclG7oQ8go9/YhgZ+u8ppALhLCGGie1R3K6XuFUK8CPy7EOJvgOfRqcC0Pn9FCHEcXTHd+p+9QE+8yn/bdj9Zs4aJavdzQJe8acMnIX4+dQuUbny7QrOVX/T7mAk6kYh2qbh6FSvJOPVf+EU0lUVFum09hmsEFKWW3M8GWa5OznKm3EnS8sm1TLQjbh4DRaKFhYCWabNssuwlqa0k2G8PsCm3xGytA6suCGZdkiuCZhfsfWIT4UafF+uDOCX4u7lruXP0URZljVqkWGunuDlVBmxu//KViJY63D6vwCcfuJ7rL9vLhcOTXNX5Ih/ccwv9uTI39TzHV+cuxjYiTta7WZda1v2K7CxPVjZwotrNhvQSBVmnw3A46Cs22RFTQY7j9V6eXxom9+Uks5eaiBDktUWuXvccd97/cpLTgtAVpCcVYVwLJ6PxIeyZPCrusvjyYcyKtqFIR2DbkqTl/Xzi1MbN6KTmjngTP2dRK7k0uwRRvohwHIZSJTL3xrgr8XK4Afx3bmXzuw9zauYskkcdxv55L8Gurcw95BINSLwOg8QLcQoXxBA/MZjfqfBnusieMGj2QuKzWc5cB+68xfTVIYlpCBOKaCJDvCpY3CVhIYHqlIyMLTP3fD/Fw3G8cUWsr86Wc2aZ/pcNiKrF+rNmOP6X20DBuuU1WHMFgqEc5pLmhwvHxnBsXtl7kMUgQymMkzabemtrBHSYDeqR5jmtBEmWvRR+ZLLc0BfJmu+QdHySlk6ZzssUY1aBZGuibAqBDQRK4YionVYy29IIrfaohqwCP6luYdxeZF524IqAjNFkPuyg3yrpyTMRG2LznPB7SRieToVuBQ8shRlSLVjcKtrkdZ17kAgOeUOc8bowhOLMYo514yutxUmnC9kiIm76XJw60Y4izxpNipHbTpZpRjZdZpWlMPNLIEiTSL/ub2CI/zahmvuBc3/F/SeBi37F/U3gdf/Z8/7SIWDazzGpuum2tZFxs7PAkkzSb2qBW12ZuK32mQEsyDjH/D6Wwwz5MNlOtVhl3SwHaRKGT4epJ3kxtJct10qm0ChfSdaoUxMOFRnnksSEVoQ7PgaKTrvOsJOnIuPsTBznheYYBhFps4kXWShT0ZQ2BIL8QobZmE+p4RJ0RMSWDYxAo0EwBJvGZ3jo1GZ6JkMO3rWV8K9+TK+ZBBMeb2oPYaAkHScU+a1grKkx8H9T9+bRkp5l2e/veeeaa+/aY+8xvXsekk5nIAOEQDAJARNAjIAIKAoIiuhBjiii4Kff5/RxZFZUBkFkSiCgzAEym6ST7vSQnoc9T1W75nrH5/n+eKoreBS/s5ZnnZXzrlWr08PO7q566677ue/r+l25Bte88Cluyh3lgeZ2vrp6OX+w/xuc9Ef45Pz1SAT7B+Y0X6c1SCvncq5V4qriBV4ydoj3nf1p+oYPUpMdrnBTRCrhtflDrGRs7nb3c+Zdg6T9DKcWh4ge6+MLP7yJmdsv4D0n5lUjj/KZxWt5+uQYZt1CxBLluahiltLhBv7tEh4sUjgbYKV8KqEexDYTT89XEg/XiOl32qwYeYRQZIsd4owLSYK8YgeNt4Vw6gJRMc/mL0XYjxwD22bgAZvKCztcePcVeKta/6WESeply5TsCPPWFZq/cSUvve1fuffvrqGxWZK9YLD8HBNHcwSxqya7bzvBQrNA/Llh6jMwtX2Z1XoW64ECC7kipgJ/Vwfpm4z+Y5rjrx9CbDLInYbO9zZRLEFmKaa6NUP/4TOYxSzVOy6l8KXHIUno3DPCqY6O1C5Ynd52LJIW56MBbCOhFqe6w2hFI/SIpEEYW2TdgFbosCu9qHnbSDKGpCUNPCHx6Yp/gdaP5TGOmHVm4z7NR5KODp4VCVWZ7vG6W8rRCbtCMmQ2qHZTiszuKWGHo8mqdemx1V1mNir1Yuwn7DKeSLCR/FTmONWUw5fU1Qz118lbnZ4XbkdqiZ/LncIQgkBJ1pJuMeo2AWG3k/e6M7h+q9kVTmt5QyXOMuWu/6fbumeFQjzpHp9sEVPsFqNT0SChMjkejJI2AmbDAU62hphr9uEYCYOppg406KZT5KyAAVfrcJqJy6hT68UqFyytUSqYLRoy1Wsxc0anF8c8ba/jiZivN3dyZWkWz9AR0/NhP+3E4RPNG9nkVUmUwYDdYMBukuQSjs6O4q1YJDtaXJgdYPP0Ks24D6cBYR4GDscsPs/k5CPTuBVBfRJEAr82fyOfmHgQ0IUJ4PONYdZeFJDLd+hLd3CtmLUwx9lwiO3eEndMHmSH7XL9mRfw/NHTrAY5Jt0KR5ubMITi/sY2dueXaCQeX6/uY0t+HYATkcXVrtZ1jVpZDoUu7xs8ymfcAXa7i9zdfwVvuuFhvtXaxlJY5J9OXsF7Fu5AJYL8cJPn7T/LQ2f3k1mWNCZMGtMSo+Nj5mDhBo+SqGILyVqYY5NbJei+mSJlEne3UoWUz0YrhT8eocKQc3ekMf0MfccLbP+dowghqN6xD79PMPrVs5RvHOOSL6xx/C0lRh4Cf0iRf8Uyp95/KcnHhhl4UHHXof24NzaY/qjNmTstjHzEtj/3mfsDA9uQHFkeZeTjLpXnCoJSwoXjI2RmTeo7IvKPp2hNSFTNIXvexPzVRRrnB7GGFUlOYnVMcnMxViehtcmmHwgG0xTvPogCwut3c/PIA5SjDGkj1Kt8I6EtHQKpAXvVME0zdrCMhGbk0oocHDOh4PoEiZYgTHaprBFmT+i7Jl0yIiZBdD1qRi8irdWFuF0MFTgbDhEpk6LRpiwzLCd5Rsw6fvetXZceaSPoSmEsBs0Ga0kOA0mESc7wNQwvSVGJM91A25hiF0dtonCNGFMo1sIsk6kN9qTmeVF6HkMYVJKEinRIEMxFzyzlbRHjGSHVRP8/W9KhoTxCpZ+btBlwtD2GIZ7+iXXhWVGcNqpZPviN24gHI5xMSByZqLKLcnXwo9k0Nassl5AeamGasqu3sMg4IUoJykaGjTCFZ8Zsza5Si7UuJG2GbMQZ+qwWs+EAo3a11zVJtGYp3xWt7XQMXvH125jauUzJazGVrpAyNQf7ktQ6/Vazt5VqJB7CkciWTXBJgKq52AWt+UCAXwKvDJWdFlZb60a8dUXQJzBjePCey/ib155jtztPpPQn7fNTZ0llAm1raKfwrIgpr8yfHLyVW7c8zQuHl/lWJ80bph+mLV1WgxyHm2NcWzjDh088n+2XrPDthZ384bav86X1q5hJa3zw1e6/dX7fmtYzidfl17niwGvJOBGznT4Orozx4qmnuWn6JMfevYf1S10e/K2P8dn6DGe/u4mlW3RCiNXWoabK0BA3QygasYtlJGxEaSxD9op7pAzGM1VO1QZ1bp2l23hlKoxQUDxWw8jn8D9twSdg5PsrRJtHSD3t0Zk0QCjSKxE7fv80zbuHEQcFxAblfYr+R2yqz0tYus7DLLaRGy7nXpHCOADmVRuE53KUdwvsfRsUvlygvFfQGZY4qxbbf/aEdtf/6TSr+0wWywW2zSxh/OYGlVdcSv68z9yLUmz+yxP4L9G0yNTxZYJrd2Hd/xRv/tiXebozhiEUben0uE2GUKyHWVqxQywNHFMHcTQij5Td1UC5bVwjZqFdoJqke4uai1FoTtcjmhExa0lK+9FQ9Js+lcQj050pVZIsdZni0tQcy4mGvUXKopxkKHV5+XnD1/FLAla6+Y1pI6DSPcIdDzZRMptsxBnKUYbThh6KSwxGzBprUp9K8q7Po3NTFDdrTVpFwmKc4Xw0wIhV47CvI6o8EVMwW4DTK3Atqf+7mqR7TLS2dOizW/+1gfj/F5dItFbFOu+gLBvjIvy+Yz4jTFBg10yYLRCmFHNjEV5ev0iOmTCQatIIPTwzphxmkQimvDJnOwNcmz/TM19eHMqVzGYXEZGmLV022+vs+uI78CaabMmvc2h9EwdnJ5CxQJgK6es8OhEYmL6BXRMMziqin63g2jH1+4bhyhZnyyVSK4LOsCJpCpyaIiyAPx4R9NnkzkOqImlOC76wcCXv3zxP2gh4uD5D2gjYObTCkaVRSvkWhlAsBEWUNCjZLSpS8t4//0V+6Te+wV3z+5jOV5hvFtmRWWYwq3VHA+kWXylfiWUkeEbEbNxk0sry1VaWl2W08O1zjRI/nyvzlWaeO6ef5EBtkp8bfJRHv/NLXL7zAmkjYP73i9y79du87NQdbErXmP2zNJ1ZqS0obQMpBVYk8Af+7czgIiqlFusONW/5nGuVMA2JUiDqNsb2GQYPwPLNAZXLivR/8Rztv99H0Cd4+l0lRr9nMnXXKuXnDOKONinvzrHpXIGNdorhy1ZIPjNEp2RQOtLiOb9yggPfvZzM9S0qCylMHzrjCX49xaa9K6yM5cl8v4/KLm2kzpwzaW6Jeez4JRSfdAj2gT+c4JiS9kfGqPzGJNOfPs/qzVOYASz9wh62fnaD5s17sFsJ9ncP8Ounnubb1b29FN+C2WE1zCGVRokYQtGMXDwzIkxMnIvpKygKbod2bBMaJmlLp+PmzA45w9cGXqEtUhoPbVEwAiIMjK474aLy2jMiRkSNnNJfe19zBy/IHqP8Y45/WzxDLADY4q3gK0t77ERAW7mMWFUqSZY+q4Vr6E6pEmcxLUlZZMgILbY0hCLthfzzA1fwopcc5TF/smeHOdiapGBpAmbB7GCLmAmnrGF7RqeXa+eIBM/wqSba/DxoNZ79PCdpgzIgSSvitNKzmu5zakT0VFLSUvjDEmmDd8EhOZ1lvZyj4bvM1vswDclKJ8eyn9PsmfoEm1NaU6GPZy4n2iO9mdNJf6S7hQt445HXIT1NATi2McyW4jqbBqoU+/Qx0163SZ+3yZ0xGTiomP7yKqWvHaV6vsgNI2fwd3foNDxaqxmd6OuD1VJIUxBnFFbFBkORKkuEhCQtuXbgHO849ip+0NxFJ7H54Nmb+LVN9/L86dM6sjqx+PoT+4jrWsx4++NvJnEEG3GG/QNz7Mou8Ycz9wDgxxajjga9SSWIpcnZziCTlr5Zd3XlEU3p8/O5Mq859wKOdMZ5Z/8JDs6N8/ZvvIHSkYSXZ1f5je++lk9uvpvbTtzGJzffTc7yMX9U4PIrTpMea5KkJbJuY7W1/8wQGth/0ewLMGA3sQxJJ3FwjATXjDFNSXrRYPmGfhpTBjv/ZIPajKD54sso7xEMf+4IWz4dkVnwURfmKV+qCAOL0e8s09ozQvEzOTZ+NEJ9yiDKwrnb0xx7717qlwjW5vrw1gVWB3KnTIa+47B0bIi4bZFbSMjtLZOeNbGbipEprSKv7ovg8jpmx0Acy+EX9Zww90WfgSeq9B9PuP4NBzj1Lo/sNw9x7hUGmR8N8A8r1/VW9bZIWAtz3UKl3071yCNthTQij4qfYa2TxRSyhwfpAfjQfruMCHsss4sok4sCzEp37ABQky5+1x7z4741X9rU4hTno0H9NUmWutQT2gSBryxtLEaSEREjZh1HJIyYNYpmm63OMnu9OZ6XPskeb47t7iJFs02u23WNOjUG3SalTBtKWmLwRHOKx+qXcKFT4mxzgOUgzxOVCS74/azHOapJhrzhkzd8HJF0C2ENA0m/qee+82E/6j+hiD8rihMClKXB9+klQ/vMTHrxPdJTvQeSLvdI6Tjo0x6t0wX8yGKhVsASklqYohZqO8Dx1giP16dZDAo6M8yImQ1KPN3ZRJ/VomC2WYr6aD46AIYi44ZUGhmGvAaTuQ2ybkgh3yYaiOiMJppOGSmCMc2T3vGep/mX87v4gyu/jtiwcfs72HWBUxO0JqC2Xb8hUyuC0kGBNHUh7j9ocNfpy+hPtfnbf34RfzL2L/xo75f5o3MvZcqrcGlpkeXvj5MfavLq5zzC5795A+31NEEJHt+Y4rn5k3ziwHN5ojPNi7JHaQcOj9emeeXA4+zOLvLTpYMAHA07HAhCbBQbSbtHavij8a/z26WD7HrgDai5NKllg41tJq8/fwvX7zvJ+1Zv4Mtbv8qJyGVnapHxL57lyQsTWlBpoPlMAux8yKZMrccMv4gLOd7UoP2MpflEkTSxDMngwZDadT5jP2xy+v058ucUq/sNtnxyheN/vhN/0OX5H30EgJE9qwx+y+Xsa0fY2Kp1TXFa0d4SEpQkTk2wfI2Nta/K8y47Tnh5EyOC+u4Iu6XY/qdnGRipU53pRhFdVac5CZXHh8BSbNu8xNTrzxEXY7IXFNt/+WkGnwxYbBYQ5xaI0oIHP3UF2371DMJx+PlrHiZtRThG3M1M1HaUSJosdIrE0uyhU0Bv1ExDY20SZZB3fBzjmZTb+UYRvxtn5nRnSw56M9eWFrLbKdlI2t0uKmdEhOjidXGh43T/Hld5s93uRHeva3G+O48KaEmXUncs0ermOl4MvTRRXfmD3l5XEm2PWYz6OB8OMGDV6SQ2nchm58Qy96zt40B5UkMOa4NU/RTlIEMQWyy0ixxvjnAuGOR8NECIxrgMmnXq0qMtXSpJlqWwSNoI/426/v9+PTuKk6GIiglBSRIU9SdKZl6QXhKayxN3He1NA2VqLpDV0vAyALtp0D5VpL6W5dTCEM3QYbWdYyNIs9LJESTaId9nt7GNhPUgSyt2WQqLeEbE5z/xU/iTelYUJQZxpO0GUgmyTkCU6COdchTShfagSZzu3vDbp0jfVeAH1Z3ceO0RwtU0mUVFZ0ijYrE0olaZEOaEDpIE3JqEQ3mmc2WO/MIHyQgDUxh8YMsXmXLXefgLlxP2KfzA5r6VLcQphZGO8dZhMqMDEK/ffoYT7WHub2+jP9NmoVXg7vIVPN0a5UMXXkgrcdhmO1zqmPyrP0GfmeZMpI92vz//0+z5ytuR5zN4a4KBpyIyS4r5RpEHj22hk9hc9dF3sNnWXKJkbAD7rIe/4WF0BMqVmAFENZeldr63LY2UyVJYYFd2qTsQN2glDjk7wDQUnUGL/CMpjMNn6PtmmsaUQG1poxaWQUL+iUW+9PcvZPX1l9P6+gjma1fJXdDx5cs3xaTWBFN3CXZddZ6xH7YQCchHizx8/24y92VpTiqm7oLV/QbH33sJ6wsFmlsiHCuh9LkMqVVBOBqRPu1Q+ewEZ3/nUtLnbeozMP9HW1l+S0D5h6Oc/P3drFynES/JrmlWPjfC6dYgKTOiaHeIlUk1Tnez3EyKTodAWoTSpBF6xNLUtAGnw2CqyaDXxDMjMlZA1g5YaecYSLfId7lPSbeDWE2yVKXH+bjEapIlUkavewqUyXKS0dRL9YxmqKUc9mcvsJxkSBC92ZOvbJbjIufjPkpmix32OmejAfq7hACgm5IS/5tEoRGrRloE5MxO16ibUPYzWIZkc3a9R8Y8sD6OEIpWaHN2Qx/dL0oN0kao48elTYRJVaaRGNRlipZ0SZtB79/8E8vCf6Wm/L91CVPpdA5DEQ4k+IMalxr0K516qAQiEcR9MUaozaOIZ9IzkHpI66xYqLbF8mIfi6tFlmp5PThPLDqJzVP1MZaDPDnbRyK4ND3Hp375dupbE0h0lHVloYhhSlqJS6wMneTqRLh9PkY2IklLzFAhHR17vXJVjvKtPved3sKJ6hCZWZOgKLA6gsy8YOghgd1QlI5EYEBzXHdPnZKBcXmNB+Y287vLzwG0gttG8sk330HQr4gHQ1685RgLsyVUNiZ9OMWHf+vDnKgN8531XTw2N8nP9D/O15cu5aahE6zUckymKkylygynGuzNLvD9TpobD/8sn5y/nmsP/QzvnruDRCmeXh8GS2EGYDcVUdZEvryMbSbcuOcEDy9Oc90dh5iLtU7FXKqQeGC0Tdyy7p6MSOH2d1BKkLFC6rFHOdRWo3Kkb+CU2e00EKTsiP57jlE8HSJMk9JXj2KEMPOLJzj/zn2M3G9w7rUTJB4ERcHAoTbNb40QpwQjL55j5wca9B8LaLylxuHT4yz/nyG33PEow48FFI9De1ThrQvEb61y4y0H2f47xxj/tsHAWI2VswNc8q6nqW+LKT7hkF1QVG7ySS8Lgj0d1JYW1a02GS+kdOMSM19p0feUSdAP51+SYffAMhkz7KWnrAeZboCmjS0k9chj3c9QC1IIofAsTSe1DK0J6nc09P/iQynBufUSq3GeHzR3ESmLubiII7RJdsSs9fRiuhjpriwvtFev1U3/MVEMmo1e+m7JaPVQuyWzSUs6ZETIQlzEVyZHOuPUpIvZnZXkhY5oMoTE7h4XL176+1osRn24VszWwlpPFiGEwhSKMDHJewEjuQYZO2RfcZ5Rr07W9EkbQU8hHilL00S60oeC2enGkT/LAw4A0gNtRF+IiAVOVc8URCKQjsJI0F2SEiR9EUlGknh6ViUUmCFYHTBCgVUzdcqHbxJFJiu1HCfWhgi7LbcpFGebA/z+8Pf43EtuYPYWD3fNxOiYWFUTEQkcJ+bYxgivGHyC/cU5dvSvMFJsUMi3yYw1CIqC5iYTxobp3NggnfFx3JjFE0O0dgV4FUn/0QTTV0QZjaVden1A87o2ndEEpylxGor0PXlumjrJHX1P8Nn6Th4J4Gc//k7aIw5GpIulieSt193L+DdMfvDrf87nyteRc3z2FhbJpAIkBjsLK1zw+wkDmyG7zpHGJl419K88UZ/kmD9G9b4R5r8/ycajwzx+eporP/YOgkf7GblfUDqiyC4lLN0WUUz55Bx9c965+Ul+cGYrny5fz2984ZdY+Jlp8mf0a2VEYKRiopwg9G22Fta6eWwRRbvdU9JrB366Nz9xrRhSHm7Zp3brLgAmP3gIpRRTf3qA7JyPeWWV8Q8cwKsonHOrhNc3GP6bx2lHNudeWcJ96GnG8nXMqkXhM3kOvudy1va5DH75KJe94CSTX5zjhqHTfP/0di68fS/lnSbrs0VEPmT11ycxfIOwAOVbfPIPp+h/+TxeKmT8b22a17SpP1li9ZFRTt+ZZvhzR3Bq8NyfOkw7dugkNtUuJ7xgawNsJ7G7qb0WliEpuJ0eK3ww1cQxdAdej11CqVOZVzo6LUUpLeYdtTdIulH3LeXgiaiXqJIgSNDHO9AwxUKXlwR6O7YcF9hqr/FwcwtVmWbCLndhb4IRq8bRYIwhs8FakuHFuacIMSnLDG3pUu1qkaQyaMgUZ6JBZqP+nrl90Kqz3VvEEgkpM2SxVcCPrV7klWfFpKyIfrfNNf3nuDQ9x/XZk5TMJm3pshZrYkc98ajE2S5SJuRUZ5hIWv8/ONYJRbuSRrYtVCohSSnCokQZqjd3Aj3nMOoWzoZB4epV/EFJWNBD9DitNLitJbArFlbFIlpN4S9n8NsOR1dGOLE+xPlmP++f/BpvvOLlLL54lPSywG6C1dSxRe6a/oaVtn7R2omDayQMpRtMFysM5ZrIa2t4ZYn0HHYMr9JYz/DWXfeRnTVInXRRhqBwaJ3+o23yszF9J3yy388Q1x12fKxC7BnEKUFjUvDQx67k9d9+E0dam/jL+VuIsorl5wPfBAsAACAASURBVCrCLR2EqXhsfYqC2eGeD36AP1x+Iat+lj6nw1qYwzQUdelxsDzGS/oOYRiS9SjHb2/6Fp9aup73jX2DV+ef4om3/RWl5y9hNyD/hIvdBKcOTiPRrO68iXvOZama5w8m76ERubxn4Dgfvfpz/PLA/Tz1hg+SXpXEKX2czs9KZNvC71eotkU5SOOaMaHUnYQptI7MNWJt6+h+wnYim/ItM5x7WQ67oZNXzr77UozpCQBOv85m4vXzCCEY/Nwhlm6f4pI3XmDpbVeSe0+aqT9+lOpXRolua2DXDdb3miy8wMIfUPhXb+XY17fT+oTJl774fPrybTpjMbtuPcnU1xXWBY9zd+QwYsGrX30vSc2mdrVP3ffotBzWf62NXHcxIoHpg8wknHn3HpIbaqz4ulBclJXEysQ2EkyhkN2jiZ/YdGKbeugxnGo8E5aJDga4aIKuhR6NwGV+rY+XzBwlUhYlq8lyXGDQrGOjZ0Yls9lLXLFFQkM62OjQWNBFqmgE1LuDZr9LPhgxtVI7bQRkREiEDhk4Ho6yHBdoSI/Kj+U/Aj01tyciBq06O9wlBs0G03aFxaiPI50JYmUy39YAO8dMCGKrt8V78dBRbu4/wiXuWk+iA3rm1ZYuZ4JhzgVDVGLtsWtIHZVlGzH/mbHtWSElMITCzgXEvo256iBtvbGTLqAgcRTKUShHYvgm4WRIGJvYUy3UsRzKVEgbErcbQaQ0g9tsG0hXYSx6tPss/FTM88dP87tXv5TlV27BrSnCrMAM9UwoySc6SLHjMD5QpZ54zHirvSy4C50SnhlzbmGArCUwzs1zbHGa/uE6//P+W0hdW6eznsZuWMSDOYwwwS37JJ6F3VJs+VyEP1Fg6YUJ2//Wx31li437R8iesfiOt4tXXPokfS/q8KMH9ui1uykJE5N/nLuaA8UpWrHLH03cwzvO3Emf1+aSYhlHJEznK3ytvB+Eot9qcXftCt4x/l0+un4DtxUPUfazvHn6Pq769Vl+9dSrWW1kSd9dAAVuNeH8y3THqUKL3z//MixDsvOv30rYJ9myd57leyZhFGIPvDVBmAURGMR9GuxWC1PEymTQbTLoNFiPsphIgi5KBujSEwT9Xz7EwGCJ2TsnGL9P6A5xaZXouXvY8fbDMLGJ5t5BhFQMf/oQa6+6DCOCtStyDB1zKNw+x9obriC1qhj53gpqYZkz77mM+TfGZB5wWX54E0lOwV0lsv2C8tem6QxbjPxrQv2X6xQ+niO5xYBUgj3rUm7YZMfruFaCcdqkdU0bIRQD303TGhXsGlrW2iMjweoWpCCxel2T3owavTdq1g6ohimGvQatxCFMTEJpESQWsTSIEm0YLz7kMjfVx/b0Mr50mHbW9OxHWHhCdzIZo8Nqku1pldrKIlCKghHhIGnIZwSZaSNgT2oeQygyaD9oQ3ndSKoQszv8LidZPCNkwqpyOBjTx0UkbelSS9L40iZtBj0l+KSzzp7UHH1DLT4/f1Vv4+haMVFi8obxhxizNjCEpCG9njVmIe7TjCp0bFkj8ei3Wj0eVdb09ff4T8ZOz4rOSQCOkyBM3eIJqWdM0lJarBcJ3TW1TZKs5OV7n8Q0FNH5LImnOyZlKnLnoXREEeckpi9QpkLEEOcTzLqJkoITN6ZYunMrTkMRexBnNUsJQHiJPrIIRSwNakmGvd4ct2WPcGX6HD/d/ySvG36I9z7nG7ReXmfuk2NYdkIx5TM4scGlo4t4yxaNzRLDj/AHPWpbM4hYEvQZVHZ6mJ2E0mMWCy/IkfzDEMXTerBcetDhn8/s5qFvXkp+2wYqMbhh62muHrqAH1tsT68w2+jjjkfewkx+naOrI2wEaY50tPjteHUIIWApLPDNuZ38oLGLSJn8j/O3cWe2xvc2dnHHo2/hY1s/j2VI/uGP/oKBd5/jwmsSBsarJBnJC2ZOUQ88Wu8bQ+1uID3JYKrJD9/5F8SePjpLBxIX3HUTq2ZBrFlO2W6HtBzkcY0Yy5CkzX8fy6V2bUZt1LDaEF+5DasFZ9+5m9d8+J+RQUDtQ7D8HIPM959GRTHVF3UY+ujDVPbHlO/UMeCdAUF9RtHaMcDp917GzB8/hXEyQ1AEdwPsLQ3qm8Hy4cLtJuVbO6R+c4FNb61T3WrzqSeuxXR1B6JsyfjvSTIfKVA4FzMzskZc9sjNhlx62/FeYUqZUa/DSJkRsTS78yOhi09s0YlsGqFH3vbZCFO0Y4d27NCKHN01ttIsLPRjLrkMfvxh+hydOdiS2j6VFjE5w+8hfv3ukPri4PjiEe8iKjptxHhd6KIvbSbsMo90NjMX9/c4SU43YMHobuMuxoZXkjQls8lWZ5nd7iJ7vTmuzZzi8vR5trorXJk+x3MzJylZ2hd3xh+i4Phk7JA+t03KiviVqft1tydi2tKlHGfxuozwQNqa5dUNOhh3KmS7Yud+q8lsUNIho896EWYXQ+ucTiEtvRETEoxYoAzVq64ylWBkYu5fnqF2uITTRdsqE1IzNcwdMbVHB9j62SZnX54BJZCeRMSCocegeO8ci7+4l8QBMxD4JYFQYHe0WpmGjd0UtNY9FkOTj9Rv4KPiBpJEIISeESSxiePGpO7NsnF5TKq/w1imyrqZ5bGzUxieQqYTNnblEVLh9xtk5wxErJCWYH1viigHrW0h0ZUB3v05nLqiMS0wDufoTERMZlpsytd17tynrmL0Z85ztjPIh7d/nlf+029SmUjz8cs+y9+uPp+n6mP0OW3agUMUWGxLLfO1cC+PbUxxRd8sBUcL4D4+cS/JuKIiFf2ZNrf/61u4efNx3vW8v2Y5LjCzp8xrD/0iqc8X6QyB+6CLKMCDxlbu+LN3oHZ3I8TbXb+gAKcqYDykHrrYZkIzdhlPV7toDAEG1GOvl/xrGxLj5CyrP7eboVfMIg8NMP4xHWTwlWu3E79wC7Ufuowdilh71R6GvnCUrW85y8JvXIu7oj+Eyr9wBYkHxRNabmJ1BJ0bd7H5L49w8mMzTL3pJEvyMtyqovTwMsoYobbP4uTcMO4bPaZuvEDxLzcBBhtbBSOPClqbC9Qu6do9vjLFtr95nNP/Yz9DgGfG5G2NBgFNXqhGaSKlE5/XOxkMoQWSAoiVQdnXaBRLSFqRgwLWNnJEbZuJ8TKpN54Dw2TC03ylflMf6wJl9gpQq7tFyxt+1xen8JWFIyJ8ZVI0YmwUiZK9o2VGRJzqDLOjuIiJxCYhwiRSFqaQvYSW/m4YCIquJcbR5AAhKXV/z0RRlWlyho9tJZCip2Fb7BT45dH7aHcH3FqVnqVotlmL8xzvjHY3kEY3ci3uBqwKcqbPXNTPjLfKRpzpIV3+o+tZ0TnFiYlc8bRsQAp9lPM0W1sZ9OQEwpUYhqL++CCmr0H3cUaReIqRfIOJ/AZhv6Q2k2bmn+qkVgUT31FMfy2mPm1w8l1bCIpaUxWnBUYCTk07750apOe0Qz+1aCI2HD0Ez3Rw3ZgkNolaDrJpEyylMQOYmFrn7/d/mpV2ng0/xXM2n8fy9XbR7xc0pgySFEjbIM4I3Joku5wwec8auVKLPaNL1LdIWmOCJKVQAnJDTd40cR9X9V3g0bkpqntiXjx0lJLTZC3J0HcMntd3itd+5y1Mp8pMpDa4f3aGjBvygm0n+cbapWwfXGU0VefAxiRTac3nORLqAM+vNXfS57YJKineM/xD/nrlBRTNNh9ZewHOl/uoXWLwe//tU9T3RAwcSbCyEa/44+/gVrU+S1pazR+nFGFB4bgRrpngmRFpK6QSpqnHWgB4cXMnldCf3kKhwpDqNli9e5Lla9II08StCkQuR3m3y8SHDrFytU34kiqLb9gDwwOM3n6B3HmobtOvW/6covqCDrVpC38iZH2vzdxb9jD+jxYn/vse2te2aA8Lzr1mhPaIwlq1ERsO/ccly1+dYn2vzfoem/D6BkvXmvS98wKNqzuk1iR2S+HffBnXXXesxwU3UL035lqYxTISKkGmVxQuLloA6r6ngwtii0onTSeyWFzqI9pw2Ty1SuoWXZhQkgGrAeh1ftFsY3eBbjkj7Dr3VW8Yrn12upuqJGnWEgdfCYqGTgPSdhUt5/BExPlosKudssh0dU6mkETK6s2dika79x4c62YyauGmBiv2m00Woz7WkjxbnWW2p5eZ9sq8a/ybRErnJc5FJU6GIyxGRX5U38F6nNPbOKvDuLPBqL3BlLPGpF1m0GrQ6qb+nvcHMISkI52fWBeeFcVJCEVqxcBuaj+aEWqFuC5WEBUS5EBEOu/jpUIQumhJVx/7pKtIWRG78suM7Filul2w+MICZgArV1qsXe5iRJBaEdom0+picdMgLYFXURixDnGUjh4WG77Ajy36U22yXkB/sYnpJTh9PsqTKFMzvQ/407xx4n5u3nScg0tjyJ1NnHWT/pcu4FRBXVOjPuVgtZSWIJgQDWTx7i5y8qvbcKoGRgzRQEScVdhmQtFscbi+iZ/ecoS7b/kQnzr7HBJl8HBrK5VbO3zg4E3kRhqcaA4z1+njxqnTGEIx3yqyKVVjvlFkrlXkRYNPk2BwMmpxhevwitM/xduKc7x6+FHe+tzvcyzMMerV+JXHXsf9X9hPe1TQGZG8//2/iF22WL9UL5w/8o0XY3UUZqAfbl1SOA1xf4wQECRm95gjeh2GDofU1oeLybYX5xVWBwYOdzCeu4EMAiY/eoSTfzrApn9ZYu01lxLM+ARHiww/0qC9pcSJ05vYuMln5s+O0hmEyl7F1l86TvPKDpnTDiKB0uGIKGNiDARENZeRRzvYl28w8mjCpgcTDF+wfHuAU9cdWHuXz9BnUoxdtciFL83AuktzwiAoCkZ+9wxhVwTpGjGVME3KjKhGKaQy2AjTVP0UVT/Vu4cvBl9YZkLdd2mHNn5ksVHJIloWEzNrWC+a1YUJQCkGrUYPYSu7am7tXjApdS0fQA9B4iurC130MVHYKNoKNpmKKSuiaATcXngCgB3OEoNmi03WBga6Izrhb2Ix6qMca1/dclLo0QxayultBDMi7CGxJ+xyb4h9TeoMz82c0JIFs0mitG5JKs1QC6TNUligYHW6bC8tLl2Oi/o4qkxk1z42461Si9O9pcF/dD0rihNoWYDpX4wQ0jKCJCtJijFGLiJXbLOltM5Mf5nEhSgnSRxdmEQMedtn0i3zmsnHEFLQGpP0HwsonpJk5yWpdR1LFGcUcVp/+nf9k/j9gvaoIndBdwZOQ+tl2qHNejvD2kaO8kaWpGkRracwa5bWB1nawPhXZ2/ivtUt7BlZYrSvTjQZUOt4VC+LaC9lWX9uhJCw8rKQ9Vd2OPMqh/RqzMfe9mHCvoTWVIJVsRnYu0oQ2fy3sy/lur6zXJU9y4dWbmIiX2O208ec30ey4eI9lealU0dxzZhT5UH2ZWeZX9Js6adrI+wuLXPi9Cbumr+cnyoc4Wee+BX+tLyVu7Z8l0TpPLX9qfO85cDPc7wxTFhzmfjaMuklxcATgupWfWTLnVckdQe7LoiyAqeuZQe57z2NGaDneD2Utj7K9TttTKGoRmnSpnbrrwVZ4oud0+4Zpr9WR4SSzD8VMFwXlSSoJY+Vm0YY+sJRck94ZOahsynF3C0mo/eayIrD2Xfuxrlsg6HH4ML/sR/nZIqBwxEICAsmZijxnkqDIzn/Eg/nn4vM3aaoT1moCR/vaArjzjVmXnKG/gdc4pS+/eMUFGcqhHlFa1zqOUlX6NhKNFXg4qaqHdvMNYq0Q7sXCRVLAwHUOh6mUMSJSZSYNCtpVMdi05Y1Ui9+pjCJrhB32l7H7OqLikab5ThHSzn4ymYhzrPahcQBvc6pIb3esW9NurSUxVxi0FaKtEjY4wT8oLmrl61oonpHw+2ehsHpkAEHo6tG95WNiaQtbYpdSoEt4p7OCXR3V04yLMcFVuMcJ8MRGtLrCUHHnQqbU2sM2brgamSLoi5TeCJkIeqnnGRZiQr40mYlKvRSYn7S9awoTkoJgv5uwGMaMPSxDjfBSsekMwE5L8CzIiYzFS7m8ClHoWy9qTOExESSMzo4+zZQjqIzaIMCy9edlhEpPWyXeqh7sWgbsdZ6SksfFQun23SGFXFsMl2okE4HuF6EkYlRtv57SgvSdsTnz17J0okhFisF3jr6A9abGYYHa4zkGkz8i8DsCxgerdIeFeyfmqWQ7ZAdqxNlDd705C+gHIXR1psv25CEJ/O8efI+fGkzba/jmjHT2TLrvj4iGX0BYVExYDc5VR2k1XY50hrDsCWxMnDNGAMdBVXreNy1fiVJYvCm4iHaMuTv6uP8X2du4k0PvY5wJU0j9Jj5x4SkL0Oc1s9/elkgEs0b90odtt18Brup9WZGoCDlkVqL9drdlPihPvI43Q3WxSMQaB1PyW2RSIONdgpzsczp1+QIiw6tEYNTv7cbZiboPyzYuFQSXT5DlIHo5hq1aYvhRyB7oYM70sbsCMLQYm2fYPLbdfzpENOXtDdJlm6Q2I2ExIH8Uw6FU1DbAsI3aI4rMo+laE/FuB/rpxZ6NMcFizfrG6C5M8R/aIBwJGLPVedodhn2ttDbUoCsHVDveuXixNRz0sjqdUyGUDhWTCeyCCOLTtuFyMDwDdbrGZD/npWtO6Fn1Nw6ytvrcZc0xVILKqsyzVqSe2Y+1BVmauuJoiFNTAE1qT8wH2rPsJAUesP0nOFTTTIYaNvLWpzrFSmpjN4Avd2FNUbKwu7Go0XKZDXO01baerLSxQHr50j/WT1fajLlrrPLW8AWCc3EI290yHQ7spLZJGv6bMRpbCPGNaJeft5/dD1ripNMSVqbNLkwTilUKiGd90mlA0byDTYX1rmicEHrTLKyp38SkR5qn9wYYtDShsadgyu89JonsAJFnBaEOQMzUIR5oSOrA52wazf1sN0rS7Jz+klyarD4vAxJPqZT83CMhIwbkk0FCEPh9fkg9PFmYb3IjtIqCMUlg2U+uvQCPn35JxlMtzh+YZQobZC7L8ULR09y2c3HGXKbBJFFENgsPR/i2OTFVzzF8553hPxgE6kE977mz3lpZolXFw7wzfpl3FQ4xnuGfoRUgutypxkfqCIuaZE2An5u4gCGKRlzq6TSASWvxenVAQbcJpVWmsuGFxhwm/iLGSpS8mjg8Zd33UHr3iGcMylKTxgs3zNJWLQwj1/QBSjWz40RgruhuGHqNGcqJfIXQvKnGqTPbqDaHdyyT5zSBTzn6Rb0otDVElKvvhN94weJRSt0SKSBrDfY+odHST94gqGfnmPmvU8gVirYbcWOj2xgPX6SsR+16ZzNM/b3R4jSgo2daaZ/4RT+sCRcTrPl/YdYvi6Pd8Fhdb9LdrrGzt85zuL1Lpd8YZX21W0qeyVOVWD6Btn5ixsVWLnK5PyFQS07iQ0unBzBu+Aw/qJZige1wfpillqkNPIklBZrnaz203UJA0oJUk5EvePRiSyqHY9GM0UQ2USRSdLSHcfey88xdefhZ45zPJPcMmW1aSS6IAFc5y1q+GE3RONYMMbZcIj7mjtYiPo1wC1JsZbkWU10cSnLFL4yuw9BSxq8se9fqSVpRsw6beniKxtfak75iFVjzK4w4ZT/DTEA6Hn+fGX1wkBsEZMxAo61N/FgYyv3buxgPcpxoj3CSlTAETH9lt76bXWWmbbXOBMOMW2vs8eb61FAMkbAYtRHIO2evOQic/4nXf+VxN9PCSHOCSEOdh/7ur8uhBAf7Cb+PiWE2P+/+x6GIcGRRFMBUU6hvITMQBvHSuhPdyg4HVwjYSPKMOTUMfsDMJX2u3kSEQk2F8oUzTbXpeZwjJgD6xPULjExA22FaI7r2Q5KP6SjCAui63vTw2p/AMa/uYZX6dpmEsGZWolSSg8O010OkpYpCNyn0rxh+AFUSnJqcYhz1RLvPP2zXN13nqmxdToDBsoQ/NND11L2M3z32/tpNvSNaJV83rfv65yoDZEowcNXfpof7P0Sf7dxNdf/+W/xK294O4++dDMfesfP8bLf/C1OnBjjgfo2thbWiDo2D9VmeKw+xa0zT+NLm1unnuaOwYPEkcXN+cNctWmWrKUDMgdmKrSUxXtOvQyrKRg4HOKtQn42ZOxbq2QfPk/rhh36tQghuyBRlrbafOfQHqLDBdz5GsapOdTiCkiJ2QxQrsRzop6nCnSnlLGCruesuwGLPDJOSKutKZhq2yQA63dNUHn1fjr7Jsn/82GYX2b+bZdhHTrDtj87S7z7Etav1jevcPRsaed/v8Dxv9hD0AfT//MwzZmYwqdynPutPQwcSTj3qiG2vPkM7mibwacipKOoXh7SGVJgQDAeQSJINgXkRhqQiwiGEsI/G+Ha1z+BgdYqWUZCO3Yo+xn82CZILOqBfu1StvbqCcA2E7qnNCw7odN2SJq6c8yPNOjcuPpvCtOPXxlhMG2vs9VZ1knN//jbfL58Lf9Su4yvblyBL232ebPcnj/IkFVnyGwwba9TibO9yHKpDFpKw94SJZAIqtLiF4sHubt2haZsdovOxRjwjAh7EWueEfUMuRclDP2GT9qIaClLI1OQtGKXx8uTSGVwtDZK1gpoJB4GkqLZIm/4vUJzVeosh4Px7qBff5DOh/0MWHVcIyJnarnEepT7TxN//590ThcTfy8D9gG3CiGu6f7ebyul9nUfB7u/9mJga/fxJnQK8P/2Mt0Ey4lxxluY2Zi0G5JxQ2by61iGJGMFBNIiZ/gM99dBgnIlomOgbMW5ej9+Vzj2S0MP8Obp+2hsifW2L9GPKKOtLokHA09J3A2FW1Nk50Oq2wRRTkIi8TYkGIrLd5xn/ZBOta23PJq1FH7Fw4gFZqAY/16dHc4G73ve3aiKQ8qOmMhu4Eubd17ybWr7A4Z+ZpbhBwSL1TxmIJBtPbcyTMkXV67kWzvv5pOTP8QVFvs+/Os8+pJLGH2wTmPcZfm2CapbbB31XQz49qmdPPiNy5jcVCZvBTy3eJr5dpGVMM+XD1zJ+558CeODG3ylchUZM6Rotbk8O8vmYpmD/jhrjw0T9CsaEzZWR6FMgbItyGVY32sRp/WRN3a7M5GvVhgZr6C2t2BpVSfdSglKoS4sABDGFv6PqYUtI6EVa+xHrMyeIThITOSaR3j9boxmQONFOxn55EH6jjXhnWuoMGLhM2P0nYzpPG8HslLlzM+lSM9aDN63jEoSpv4l4tj7Jygct7jkA0e48Pa97PrjRdYu00Vw/mbF8OMRRrFA5jtZUvcdR6YSik86uBVB3yETYUk2TZUZv8tCPdiHd8KjdMAg8+4Fjm2MkHc61MMUobR012yF+ImFZ0Xa2JyYWu0ePnN0DWMTv+Pgtxxky+p9AI797k/uCgD6zDTLSYFIWczYZT5z54d5delhbisc4g0D97PPm6Uq0zzhT7LJ2uB8NMABf7qHNFmOC4TdoNe2dKl1cSsZEVOV8PbSIzzQ3KaLjhH10LnlJNubNfnS1lqo7s8TBHNxoadGzxk+J/1RNsIUJa/Vs94s+to0vxT1sRD1czIcZq1ruQE9TyuZTRpJikhZDNs1GjLFRpzpQvkkdtdz+ZOu/0ri70+67gA+0/26R9ARUqP/6fcAZCIwTYXnRAz0Ncg4IUNpvWodcvWPectnNihR9DooT1MylSeRniSI9MajIXVc83qcJzXY7qqgJdlFSWZR4VUkpaMRmfkOUUYQZUDa2pahSiHRUI7smSYoOPaDrcTDIc2GR1DzUB0Ls2FidsBuScyFdY6HfXxx+Sr+5JYvsrBa5MEzM6yFWX7tu6/jii0XmM6VCV9TITydx75ig1dceYCP3/L3vHLbQS7JlHsJLO9avpLpz84Sj5fwh1J0hgSDj9cZOtBGJDB4l4dc8Qj6JfPrRRY7edajHGcqAwSJxVuvvZeUpzPFgsTi0uwcP1rZwlJUZMyrUrKaSAeys4LqDkXfSd3Oi9lFlm4exQwhzGvd2EXf4sbeIssXSqhzGUQuq4Ve3Qm4imPcVZNCuoMplEbQdiOCLmJSLs5jslaAH9qklvXtpuYWWb7aQEUxZ342i/3eIsKxGXunj7sRgQJjaoz0gsHgkxHxcAEMA/dCBdEx6DsR8vRfbiezpFCuTZxSDB6MMVsGs7cZrNw6Qf+RNsf/ajt9By2a44rmrpDqNQGppz0WF/tZu9Qi6FMEg5L1a2JiaZB1AqphGseMCRMTP7FoxU73fSCe0W8BpiGJpf73hJHe7KnYAAEiNDDSMcmxkyD+/VtMGKLXTW23VwHNBzeEJGeEtJXLYtzHcndmtNedJ1ImO5xldrsLvUQTWyQsxwVmo34W4j4W4j6WkzwLSZaqdFhLDN7W/zDnowHu2riShkwxYlXJGR0iZeGIhMW4D1/Z3YSjmMPBOItxH1+p7+fbzd080pnRfjgzphbqzVy/22LYrbMeaRuMVAJTKPxu/PhFntTRYLw335oP+8kZHUbtKkNOHan+F3PvGSZXVt77/tbasXaFrs5B3cpxpJE0oxnCMMPA+IANDBgMF3zw4TodfLAxxgGwzXU4xnDswwETjG2CbZLBgWgMmDhMYIDJo1EaZakltTpWV64d17of1u7qwTbYz/X9MPt59EjVre7qrtr73W/4v7+/pJ35/3me0790/NVa35d/6m156fYuIYSXf6zv+JsfT3QDfuL3/AUhxINCiAdVs0NQihBCE3gxe4fmmSmt4lsp0wVjnhnIfOs9Ka4vC0qN6FnIrmR1ucyRcJpAZPgiYau3yNaRFUa+dAo70jgdxfDRDgNnuhTuPMbcLSV645qJTxxjdZdLWtRYVz1Wri0gz15i+EHbEA9CC9WzET2Js2rhtCVCm4AW75zkF7/73zg0OMtfXb6ZQjEmKEYcrU2yZ/dlFrvmTvLmXV/hp5/3LZ49cxopNN/t7ODuhe14MiXSCQrNP33tqXSunaQ7WcBtJAydSIhGA1Z3FrBDRe0aC39JoodMc3FLcYWPPf4UdCViAQAAIABJREFUfDehlzksJ2VcO6Pq95jtDPLX529iQ6lBoixuLJ3n9ff/JFpCcT7DigQiydBS0HnmbpIyFBbNFFOmBpQnE+hOSH7n1i9wwy2Po5othJ1rdpUCpXEb6xfrsN/p79KlyqKRFBh2DKgvzGyE0BSvapy7DnPhjQeZujdD7NnKhrszmlsLXHrdAdSlOWaf67P48z2SDVWm/9xonmSYUHvJPqJNQ+x+7yLL+11KpxzCYYG+fJXtbzmM1VM4DcnACYvifEZrSwFrxaG5XTN8VOPPugw84KMcqAx1TG9zQ4SqpLz8xgdwrQxXppTsiFTJvhrcEgrfSumlRki6Hpw0jU6BMHaII5usa5vAlEimdy6y/VWPYLjE//ZhlUyju/EERO/a5GvIahM8ASY3n1Xyprmx+q5aXSpW2B/Nr2GmE20xnw4wlwzmS70ec5nLtd5lXjdyJ8NWm2+1r+H+7jbuae7k6429XIxGeKS7iW+093IhGeV6f5ZbC+d4+cBDXOtfNhqp1BA6xgstbhieZUtguOclK+q77bQyn44yzfqVrESibSZsY4VWtbqMOcY6/f7WFmOCIRQjdtuYgf6A4/+T468QYh/w28A84GLMMX8TeAv/QcffJ5pqFndO6pIf4dspWyorDLkGUVu2Qi72hnFkRpBrZq6GAzRiH+Fl6NgCS+cIFc2VaJBWyWar02QuNWm4dhzcekpctWlvDKjefZ7Tv3sA+YTNirQASUmjBhPkGXOnlAlEQwrZk/ibWnRXAqMUz8BpgRUp0oLNrv9V58v/Zy/tB0fQUuMvCXqJpgf4q5pv3jjOXZ3ryDxNOpLgLDsUdtfZMljjq5d38+qh71CUgqEDS/SOjxIsJqzsLTB+5yK1G0eNbEJJilfWRpQ+3NDgUm+Qtx38Rz61dAObgxUCK6ZWL1JvBrzimocYsLt8ZX4vFxpD7N1+Bd9PYDkgHJQkJY12LOpbHZRjApPbUVihYbUrF5KSeQ3eeteLcOoW27LDiIEKut3JX7SUoRMJrWdZFBwjtIyUjZ05FKyEDU6dhaiCl99xo8Rm8puXUIUCU9+OcO4+wsl3XcfOX32I2q8/hY1fWCa89Vo2fi3Efts5EILeM69BJrDwtAEKK4ruuIP3wArhyATb33qU1R/fy7nfuY6t//soywdcggVTpoeDFsFCwvQdgtnbJa0Zi3h7j6l7JHPP8GjNViBQDA61mSy3ONGc6J8LtSig5ESAopMYkkCmZT8LbIYeZT+iGztYlqKzWAShEbE0mXyQEbxoDv0D+kz9w3Voq5BAwnxa7u/Pzadl3JzUOmy1c69GowpPtMVELtxU+UqKQuZjf6e/JBxqh9lkiG3uYj/gLWXG8fqZpcdN4Mozr7VmfJw3wefSgb7JgcwDx4XOEJOFJofKFxi1W5yJxglkTKItIuXQznwckdHIArZ7hriaPKGXdCYaB8xkb0/xKqtpkRHZypeE/3+a1mmt68CdwI9pra/mpVsEfJh1m6g1x9+144luwP/mYQnFxspqn6g4aHcZsjsMWD0OlmeZ9lb7DPClsESSWbiFxIgxLdPoJJHM9QaoZQG+yFnLsUc2MUx72gScJBBk06NkBW36S4AICkbQWc6QtqK+y/xMhZUMpy1QgaK7HFAY6uG0RA67AwTIWJGMlIjuGEHtaVM9qZn8yBEm7lhk/BNHGfjyMbZ/okVhyWB57ZpDWlaER6tcrA/yU1se5JXHf5rPtnby6X0fYfGmDLuTIhNo7R1BKKO56mww3nFg7LQ3Da0y36nwSHcTYWpgdMtJCdVy0FpwpjPK+d4or5r+Hr3Y4Uw4TnKsQndK4TU1bl1S314gLUJh2bwO7QmLtGhkF1ZITobQPP3a0+aJlUI1zMY7QqCVJvj2SZLMEC5tqXBk1kf1tjNjNJkoi82lGmlqkUwPI4Rg9rkuwrHZ9qkY4bpMv+9R9KWr+N87hX3fCVZefoClV+5n6aDDzDsfwu5pBo7XaW6WUPDZ/geHufyaa9FSsO3txxBBge6UoSYUL4d0xwWXb3OwYsM89+oa70SBcy+1KCxpsKA4a1G7OkDV7RnXWmFK0sCO+3tzQmgjc0lt4hwTUvYjerFDp+3TWS3kW+YC7eST31kXnfxgYaF5/SRqZoJEm77OsNUxTkLaYdjqUJU9xqwWFpqyjPt9pGK+umLWV3rGny4ZoJUZMWjf+CAtcT4a40IySl2ZxnmM1ZcVjFottrqLjNpNNjvLVK0uO9353C0l4Eo6CEArB8NV3R6z7UHOR6Pc39lKIGO6ymXcaeDlzCkw1c0a+QDMpK+lfEbsVu7j5/bdoH2ZsJyW/3MMcSHEaJ4x8QTH38fX+khCCAG8GDiaf8kXgP87n9o9DWhora/+8OcAWyjCzGbSb+Qye6uvmB1xWpRzYuCw36HihUiZ/1L2WkYBjcg0+1pKM24prixXyUoudqhJAolMNO3NRVDg1qVZGC4XUR7IjkXxkQJs6CFGhnBXY7QEb8FGxJLeUmCWj+P1SK8lZJ6kfCmj8pUi2hKs/vhetOsgLEn31j00dpeZ/NoC09/U7HjrMXa/Z5nBE5rukUE+9KkfY+XRMT7wvh/HAiY2r3D25R52qOmOSoKFBLetKF7RNLcKIw5d0lTckCtLVe5b2czzx47wrInT7C5cBdusk6RKMuXVuau+i1unzzIXDZCWNV5NYsUaLzeHT4vQ2WBWa2SqUY4m9QXxgMBfEshNHR66YzfBFYHW2ogl45js4A4AVGQuhqrXI1Vml6yeBFRyG/JUWVTsHktRiVIQIh84xurt17D9rUeJn74He7WHsG3Uvm0svnIfKy/ei9Yap2tkHxvf9TDCdUlKAk5dAA3J7g2gFHFV050QnHvDXvT4EDv/uk4awNwtAWkAE/cp0sBi9HsWMgV1oMXk3ZLWZvCWLEpziucePGqMCGwT+dO8ie/mNuFRXo52Ysfw6WsVllbLpuxrO5AK018KJXbDojTTZONbvoOQAul+v+PN9x1asXJdhZZW1JXLSlbMFdmqD5Jby4CupBXCHEQXI6nKODdCMNO2qtXtN7tjbfWnc+Xc5doIJsfpKq+vZfLzQGxY5opARDSVT1HEDFmm1LLQWELxWHuaelzgxuGLTLurbPRW6OYrJw+0t+SWUxYXwmFqqSlVY21TzwKSnFueIWlk62r6khUSa5sRu/Wf7jlNAt8SQjwGPIDpOX0R+IQQ4ghwBBgB3pr//y8D54AzwIeAX/r3nkCgaaee4cQoh65yCZVDpNaUqy61tGjuxlaMbyXGjE/nUgBbgxIstg3MakAKRqwiSguSik3xcoi/muHXMhpbLEQmCLdEhqo5v0RSMhSDYEEhLhVoXD+Os9KhsCiIphKCKxZO3QKZQ+1SiEsWcdVUxQNfPcHy01KGH1xBptDeMUDtBXsQmWbo25c58YYhrr4i5txfbuL0z43hr2Zs+lKX8gXNpq+ElK5mPPe9b+JTez/K5M4lVg4IvIbGWQ1pbbBpPL/DwBmdB0M4uTyGe8ZYWifa4s75HVStLt5ASBQ6PHXwPJNOnecNPca9c1vYHiz2g2rpVAMr0vTGBTNf71K6rPBrivaMUYVHFYFINeGopnRHEa8uKF/JIFufPMn7jiILPjpJiWObhW6pj2cdcjt0Mo+SFVGxezTTAlFq49oZWmmqn30U3esRD9jok+d5/G17kMfOMfbRR6hcDBGWReWLjzF1Z4P6TxwkevouJv7iQa7+wvWMHk6wHz5jjDcPa0QG2z50iVM/V4Wzl3DaMPZwTOW8pj1pEdx5goEzPYKXzbPxXZL6y9romR7j9yVc92uP0kp8XCulmxo9VqokFSc0jxG0I48wtXEsRSdyKQQRlq1oLZYQmcBetY05QgZ6psfkSx43jW4h6T5nP8L6t0s7rTTWy5bo5O+fL5N+hlNXAcVcY7TmfJ1om6rsEmqHrrKRufDSFylTOaiuYhkzgarVYbO7RCnvSYXapWIZB+A+Xyn3l2vmazG+NEFOCkXV6rLZWe5nWY2kQJJZRMqmq1wWkwpSKGppkQG7x3JaopEWGHNbBFaUizItZnJ3U1dklGWP7d4Cg3YHSyhG89L0alL9z/Wcfojj720/4P9r4LX/3vd94pEpyaV6lWrQo2znv2BuMHg5HjKbzTJhKS7RSr31L7QV5LW+yARSKupZQENpHNFDLfmgMqxeQrTJZ/Azj9J+0X5ELJn4msPSIYUQAn9J0tmSkvxkHXVmiPor2wy8toUVjVC46DB1T5fZ5wZYPRMcMg9Ma02QBC7dF14DWlG7boikKLjtNfex2V/mo+efxsVLU5DBzt9eIZtfhCxDBgF64xSdqSLgY4eaift6vOy338DOXz7Ovtuu8o0Nu7E/XcTuaVw35amvf5BvfvZG7I4Rb1bOasrPjvjm8m4mik0+Of9UkthmoNLls5cOEsYOr9z2AHFqsZoUySYiCod9srKHTMGraZqbfTobJHYX4rGEkcckrY0WrR0p1aNmyvWBV76ftx+6hUxpBJmZPgmJ6uXZUWLMIc3WuaQWF6k6XQP/z1cfCnbC+cVhBhwbOTpCsnGE8jdOoG2bXW8+jigV0a023XGPgbWm+6lZ6rdfy9J1Dtu/ZaaH9e0OMt3F3M0OW99xjM7P7GPxOTNM3a1ASqY+cpRTv38NVgiT30648OvXsulLTS6dHYVXKwbuLrL5I0fpfnqI5cjQBMp2RJgZvIdrZTQTn17qEKU2BSeh3vMRQJZJek3fnGuRxOquGT1AVtRMft7/vslcXJYUWF9VWRNerh1TpQZuPtipiAjfMuVRICMejycYstp9QuVaw7woYmIkHhllmRFqBQp8Z6UvKzAWUzFFEfN4NMnV2KzdGDSLh4ViylmlrgIqMsQXSU5CkP2MCaHI8sBYtGKkr00gSkqUrIgr0WD/92ilPmU77KN3izJi2GqzkpVyu/MyLeVzqjNB0Y4YtLssJANIofBk8uR3X0mVpFEPaEcerdRjPhog0VbfrbdsmbG30pIJv8lyr4TrpIb7DSZOKAhjh5by6WibRCszupZQu7aClQCWRfWoTXBV4rYVO99y3Dx/YE64xuPDfO4l7+ZFW46gxgYpLmTMfK3FuV8SJAOK3qQiGsmwe1A91WXkvmWqpzoM33WJPb91ktrtPe7//T+jFhd572dvZ/S1ETs+HrP7TSfQjSad5x8keeYBTr7lGpZvHGTjux7GayqamyWtjR5+LePCH+/mzq8d5KlbL7Drzcdo7ILRvwj4ytdvoLspMVnP1RJLN2iOXpjipeMP89CJLeypzBMUI+LUJkpsZqp1vrGwh20jK4y5TXTXRsbQmfYJljIyV+D0DJxv9JEuzqpNEkjaWzNGv2uhLFDbevzix18DSvcvMrRCOHb/sUokZTfClmZ9RiGIlEMz9Yny5VkpFMPVNjpJmXvRRqxHTtF9xi6TWWQZlItceNNBKl94lFPv3wqTY+gwYusHzyE0NF96PRs+eITOtMb77km8mkCnKZ0pzeinj5H6gu6z9kDBx+oJBk9ogocvkgaarOiw+R/NTczuaU68fTcHhy8z5rUZcHr9VZtSTiBYW1fJcmPTwE1I88AkehbWqo3dkjk5w4hVJ+4RlM+tqW3M4XQVaNUPWEKK9dcQ2FFeQgKjVs8A4kRKhsQXCVOOmVCHymB759Nqvnzrm+xJ23134DWm0wa7jisyLBRLWZm6CphyVtnuL/R7QmVpDAtMiZcTPLVDJ2+Qg2lku2tBCqOSt2VmjAq01WfDp8po2IacDuOOYYa7IsVC5fiUDs3M9J4GrB5DbifnrWdMOavGWDPzvq9x/i+PJwXPCaBYCXFtsxcWKUMa3OjU8GTCUmpG8tuDRU51xkmUgXwJW5uXUAFSEPZcHm9PstVdwveu4q1qekM2A2d62I+cJrx5D+1NmtJFweL1NpvvyBAFn2hDjFuOiVd93jX/HN4w8TVe/vkHePPTXsjsz25n+Cuau//4vZyIFXVV4Bcnf4rlK0VGHg4oLKeIbAjrcsaGj7pcc/a1JDMRckvI8d+aYPBRC2/jXhZu1ux64xF0krLjHoyg0feoHF7AbQyjXEln3CYpCgZOa44t7aG5P2Zo7wrB01p4X9pC8bJD4+Ye1mWfqXszBt4wx8cuP52n7j3L2fYIL9v6KJ84cQMix+LuGlhgOSrx/mO34A6GDFzw6Q1ZFOd6RBWLpCAozilmnxuQFkxDGQ29MbNjqK8UTMmiNcs/eyMjH35g/Q0TEnSCDi16qZMzphM6qcuQ0+mfdAUrYUUXafV8qr7H+AfuB9vGv+Mxzv/NTja/6jR6boFN/2Qujp2vOUd04w7cyw6602XDnSmFu46D1mz/g8eY/9kDTH9mlvrt+9n5nvMcf8cuhh8QVD9/lNaPXcvkvSndcZsTf7CZPW86xvlf3cfGr7QQsSFbvuYZ3+JqPND3mAszG1sYFlUncVHa0CjAZKg94dDreJAIyMxmgcgEyjOk1SxQVD73KOr63UhpBgVIQXC5u55JPaG8ExboKOLZ5RM0lBGotpRLMadfGltyn3pmkLYTdh1fxigkHW2BBj83Ls20wM8Xh7tYsOaqInuU6eU8ph7DVptQOwQi6tMPhqXhLPV97fIgHWqHFVWkLENOR+M4whg0WEJRsiIsoVjJsTEbvFUCGTNhNyhLs1A8ajeNB582sMay1ePh9iak0FQdk2TMJYOEyqFshT9UMPmkCE6+nbB3bD63nzG9jVbiE3o2tbhIYEVs9xY4E42jEGTKuFdoDcJRiJqLCjJIJVd7lRxJqilfyYjLkqXrAiYeSGnNOFg9QW8MrBBz5x4fgTQ/ibyMe+7dy73RPgpLgrEdXWa+XGPlukH2fvJXyMoZKBj/jjQ9rMUQ5ZivzSaGKXzvFM7BvRQe8vFXFJ1JSf3aDH+8Q+WuCmzdCKfPm+eVAoQguzSHOzdP77ZrKaxkhMM2aUnQnVSM3u0w8uVVTr9+OztecJ7lbhF1aRAJ9IYsZOyxuVwjURahchh3GmSJRaHcI1EWJxvjRJnNu6//B9558bmIlSG6IwFJ2aE9I5j4XkxStrBCycBJSWOXYvghycqhjPFty7R6Pl++4QP8wtt/hNGPPwKu21eJC0uiM4k/b5NuW0/A7ZwfLoXxQpMyJcxss+ISRut9mH3bGf+wubPqLENbkuQZe2lsdWltgq33S3SWsbLPYfryDNFECe/eExSWFWfeMcSmd/cIr9nA1DcslK0583sHSKsZu3/jOL2X7mf4IYuVF+9l5GiGUJpd/89xrru7QS0t9s0YFsNyH9Qf5yr3KLUJY4dO1zMuPB0f6g52KJGxWfhGGI9F5Wl2/sYjCNfh6jOKzBwLyHKphTw1i5L/umQRts3537uejMcZkAmXslLuGWeWgDtqvW0xbLX7DKai7BLnO2qJtgjR+CIjQeDkl3hZJnSVTVVGBCKjKIzHXagdJkSTpvZwyfp8KKVFn3awJlvIhKIsTLkXyBjPShl223kP2ISLqmOa8Itxhb3BFS7GI5SskDG7ybl4jCl7lfl0AE8mfGHxAKN+G0+mlK2QAbvLNneRC/EIV5PqDyVhPinKOkcquqnLdLGOJTSNxGfcaxo3XitixqkRyIhuZhww+vbOjkIrYQKTEujY9K4uxcPUlY2/0KM0GzJwIUUI44KyhjTw6ppTv7sXLl1FhpJkPmDsDpfvvfyd3Peqd/LNX/8/vPiD3+TkbwSsPCckK2WISOIt2ShbkBYknemAuOrSnSoQTgXo6Ulm/uwIfk2xdINBvwSzFvpohTSAk28ocuXvtpEd2IFwXcgyhOuQXb+LpQMOdjdj8FRKNKTZ9KWEzpSAKGLyOynNd82weHqE8y/8EKXLAr+R8ayx0zy2NMn55hAX64Nmt0kY9fJ4oUWqJVWvx8cWbmLUb2MfPY8VaxavNyP61Z0uqzttwjHjBuPVJLX9mm175hgNOmgNL3nbG2m++DpWXmHajtLzzOROm1Jv/L4EWyoG3R5RZlN2QhZzx+U1u+7JoElzvow9Pgpama89dpbCHUfoPmc/V37lEGnZJR6wGf34Iwwd1+g8kGkJ8WiRhRtckJLFF0Zs+70uSEFStlh9eZv2tGTHh5fY8/sXQGtq+yApCroTgqvPEIijZ9h2R0wzLeAIs17TSvz+jVBpQTs2QaEZen3KQtxzUHUXq2sCE8JIOeyuIBnK2P7mR8hu2svSK/czfCwh273JlL1CoOMY8S9EmGuPt733LDflI9OKiCiKBF+krGQlxnISZdXqEGqnb6nki6QPj1s7wjw7tQSUZdYvxRyhaGkbT2QURcoGq40jFBNWh3GrR1lmOKh+ObmGRomx+gu/S5lZ7t1bvELJCrnSq6K0YMDu5c+RsdlfzqduTXa680gUW91FEszPtZhUODBwhZIV9b8m0RaHexs5G46ZbLX7hB7yvzieFJkTQNXtcrVbYe+AUR2sGTQ+xT/LfDpApswosmAleHaKlAqVyL7fHNII4bJM8q2VnYw7dbQlWd1ToHQ5Jb1hNzLRVM4JgqWEi7cL7KYFroNbl2SeZvmQ5k9rT2EuNLC203NjuBf8fkBLSsZ4Ia4IMk8aplGUQ8ZCTTRRhImdlC9GVM4qlg4Vmfr8RXSzhdo2g3jfBeRgldmf3MTT3q349peuZ/Ckwm1lOG0I37TK8oPjjD2gOP+TAhFm9G7aRfCdU6R7t7DzIwnP2fdCirfPc+nKEJ89f4CZah3fShiohlxNqoh5j5pTxJGKlXbA6ESbduoR2DE6y4gGJBvfc5j5Vx8yzdRlTVwVuG2FFVmIDFb/bprLGwTBoWXe9Zt/wR/feBs6TozWKcqDRq7lCe49iXpj2ew9OiGd1GNDoc5yvO7w0Yh9rHKyrpPKMrrPux7/Sw+hHMH0nx9GpynZbfvRWhOXBZ0XXofVU8y891FWX7KfuKohSdj01xJ14RIXX3U9lXOw8b+eYvlnDnHxpWPMfNVj4Wnb2f6HR7j44U1s/CONbPYIvl6i6izQyxwudIcpWAmt1DMlXLau/J5v5nZMqSTpOhBJ7JbE7ub9NVcjU0FSUez65YdBSOyHzyC27aNw93GQ8vtmTzpf9RFC9P+NlAjbxhGSJeXkU7eMTi6CrKsCDsa+2xcJzcynanU5FY8zbLdxMAG1LGO6yiHUikRrHKGYz4oMy15ufJDfwNHEWuKLzPydS3CqUhFq1S8t1/hNa0emJZv9FXa489zb2WlwPUL3yzGZI30DGTFhN+gqj6rVpZ4FXEqGzWQvNueFIxTDrsGllGWPliiQ5f1J/0rEDzqeFJmTFBpPZvk2+Lqlzk5/nrl0MPdt7zHitI21dWahtUDaytAJLCOA05Ym7LpMFZoGPTHtU7qSUt/ukJTXnR5WrnFwGhaFRUHrlu14K5DNhAycFHzs3mfwjWN7OHVpHNWxjU2QY/7YXZN9ycSMsWWqsZL8BFSatGjhNmLs1R7hmMfEhw/T3TdFcmAbVqODHKwSbxlj5i+Pcfk2CKdSfv5/fp7g2yeZ+vgxat+dYNvf1qi+bhZ/IKJ4wSJ8fY3H/3A3IlOce3mFd2/7B+rfmsCvRNw6fYaLq4OM+eZ1uRQOoi0YGWiz2i3QXS2wGgbsKC2yv3wF4bpM/s1Rzv7uftyGJhqG5admpBtDPvPeP2HbC87y7FuOELxsnpe++B7+Yf9fs8Fqo3shOo5NxpSk3ycy1GlKYMc4MsOTKUOu6TcVLSPUS5XFsNelWDTfA8tCeB7KEchiQOmrR5FDg0jP4/J/sRC2TXMrLB6SRkQZxxTnE4I5QePFB3G+fZSLv32I6ikY+bvDCMemtk/TnU5ZuqHC5MePQpKw+edmOfnzRc7/1ARbimasHSmHihP2HVOUFsSZRSPyiTOLNLXIMnODEx0Lt2bhtIx3ohHdCsKJlO1vfsRQEvZsRUyNIxRcet0BSBKTEYMJQkL0s6V+FqUUZBmOsBiVEStZMceeOPlmf0qC1XdNUUhDnrTbJNqmqw1O5UIyRFP51JVPkivYZ/KsK8h7SU88Yi1JkIRaEGpBTVmEWhLkGOWhnCqw1iusSGOKucE2N5SClTDitNnorRDImF3eVba6i4xZrT6c7kI8wmO9jVyNq7TzZviE10QhKFkh7czvW5F3lYsjMrR6kvvWpcosi074rb6dkC8Tammp74OVaBtPJhSkWWPxHWNLJARmvOsqRGbMNO+8tJ37u9uY+xHNxRcJGtdHBLNNogFJc4tB9WYbwpxSoGjsS3DPFKiejpnYsoLlp3iBcfmNr+2SjBiGVFoygUg5JkhpKUi9fFnWFdidDFKFmJ0jCSTIHOA14XL61ZPocoDz+GX09CTCstj1ukf5xOtv58xv70X1Qn70Rfdz7uXDqNdWmPgrnxtedoR6O+BTt/8pt37wPsTWDi/84q/i1TWlQsQX77ueTqOARPPlE3sBKG5p0Oz5RKGDU0x4yeQjfPb+G/Blgo5jkgPbGL9fkRTBaYLVlogFj+c89N85fGITd965n0uXh/nE957O7X/9Jn70268DzMUlXKPsBswkCtMvGnBDEmXld0nDP5JC9UWYUigCz2RupuRJCD53P+d+ax+q2yUbGyDbvYktX4hAa4aOwvQdMVaYITfP0N7gEg1pKp97BGFZKEdTnE8483sHEOUSu37zUbxli+atPbqfHjINaMti/DuSV7/sK0TK5mo4wGJUoh4XaCTGLnzNSy6MHXqxQ5ZKeqsFdMPFaUrsjiALjPmF3TNEi12//DDCsrjw0W1w/grnXzFG9WSXzsYUnan1ntraRSfXz4P+ERSQrGdZFopQOSzmU7a1PsxSWqFqdQmVw0paoqM8OspjKasARkNkkClGCtHSNkG+ElKVKVG/7MvLPRRdZdNVNomWNJRHKyd5rFmeJ9qmqzyOhDM8v3SSjraZdOrsKc4x7dYYtto8NTjDBrue7+8FLGUV7utu52oyyGpiGPJzYU4OzVyki2AtAAAgAElEQVSmPLNj58kkX8cxe7KfPHvDvyp9n3g8acq6RlKgYCUM2D0ckfW9rq71L7GSGeZxpBx6ymXI71DrFszGnjCZk44lOKpf2l3sDRvLIyUM4G28xMCFBK9h4XQ0pec3uNK1UYcFE3dKWhuhPe0y4vdo+T6dWoFgsIdlKVQm0J4wOAyM0jzJVdV2L0/5bVCeRHsWqy+4htLliJPv28H298cER5cJBzcSbqiQ7B6ifGyZzjN3U/z2SbzvnmRodC/hj+znn//Zxq9BVnRxWgllO+SlOx7lg0u38rVH9iESSeGKRTwAnQuDTG1f4uDwFb5xfiflSo+jtUkOTVzmgbmNbBip48qMryztY8OWZc71Rs0d+/BZHKDMvy47ppLEXNhPvJiyzNwBpCR+yk68B04bZXi+kS+EwJWpWZq1Ikp2RJJYue4JusrFkylam+CGZSEcB3qKrX/4COkzD2J97zj20CArt22mddNBZv7kIeZ++RDt/SG7fnGB7sQkWz92FaoDtJ6xhe3vv8TsT27EDkG32gjXpXIORj7WQF9dMkiXNOU1v/NZ7ljdTfoECF479fCthF7qkGpJlBo/OaWEyZhCibsqEam56TgtgRbGs2/z2x8mfca12Ks9vHvKCCHw6mAdPUdw6Vr0dbvg4RPr2ZN5gQzJQUozSHBsak+dINIJp5NhfJEYkaXVzTnhDiFOf7+tqzx8mRgxpej1ZTWJtqkr4zM3lDezHZHRxay3JNna4rLuByBHqO/LqGLMICXUDmXZYyUr5kSBAjcFpwm1YFRG3BScJcypm8aEQTCbDprJXVpiNh6hkRbo5T3hTuYyU1hlwO7Rynw8mRApB8fK8mVlwaDTRX5tXS/1bx1PiuCkEHRSFzunJ+4uXGU5LRNYEXUVMGo3uRCPMOWs0sgKNBOfih/R63pkmQRLIxwFLQdtaaKeY9TJHd+ccEBatOiMm1WGwkKPd+3+BPdu2sbffu4F1PNpU3ta0FgcIW65kEq6i0VErqUSqWEdKRuSsiFqrim2DRsJZKQQmemZLB0sIGqKM78Yo6Mp7FUozVkoe21vzpRIslxi6J+O0372bqbviLn4PJf2poDilZC7P3YjzV0Z2lZ4g6FRxc+VuO9X3s3+v/sVlptFjspJxgbadGKHm8fPESmbznLAhoEGpy+NMz5eZ8ALDQ/rmTfQGXdyEemam4rIme1mj0/ZECxl+Is95LFz3zcGd797Aq3y7ECsZwaeTChZEQtRBSk0FTt8gjVUAU8mTJUaRGOjpFeusvDapzLxwYcAsL53HGHbZLVVVq/Zwoa7TCO5fSBk12tP07t1L9N/dpjTv7+fbX/fpD1lUVxcorNxA7vfs8jVnzvIxIcPM/ypxzj5tmspzE/S2Zzy6pvu4khnmjBzzHmV5gA4J6QeF8xCr8qDU2qs63XNxVux+qRUDYgECsuaYCkDy8I9t8TsKzYy88GjJqB/5CjJ9dvpTWfIo2dhTUT6xKAEsBb4hWTh6ZpzKf2gkuRLvWuTOonK99rcHEVifvYMyUpaQuV511pGtHYYWYDV54cbzO56oOwov+8r54gUl4xYgNSKpazCqNXsuwGvWcgroCpTOsqYetaygI52c6vxChfCYePWomzaqUvV6VF2QgJrnXIZSGOYMGq3mEuqLCemIhr/0INc+CGWv0+Ksi7Lvb4ANvvLNPKN6Qm7gSNSalmJjU6NWFsEMqZgJcSZhe1k6HRNgWvsxJEaGg7HGpPEDY+s45DFFs2NNknZ6Hfmn1bkf1/9URaTCrVdDsGiYtM/XGH81itUiiGFatjfNNeOwm5JRCJwm7K/gJt5+YWdX+AA2pZkvk35Skpzd4YejrEd8wallYyFp1jUt1s0tlgEsx0Wf2o/p1+/lcf/aA9xybwV4/crildC4qqLv6KQPYEMUm7ZdA55osRXX/N2nv6OX6U0K0kuF/n1LV9j28AyvpNy//ImHljaiOjl2qN5l+tGrrDQKjNg9UgLEpnlKX53vVeW+Way2NwmiCuCaEBy9ZYyl197gPoL98KmDURP30V6467vywp0pkAZTHBXuQy5nb4WJtEW7czDlmYlSWkJaYqQgsm/etQ01dOUk+86AFojhGDksGZ1p4vav4Ndrz3Nwn8zjWadpow9qLn0owNMfPQI+sBOnIbk6o9NMvGXD8O2GcTkGFN3a2a+WOM3n/klVlOjmyraMbEyy8mBnVCPC/RShzA1AtEotUhiOzdyWBNXYtjzXRPAhz/+EPVttikpV2qkJTj/a/vI9m1l5cV7qW/z2fVbJsiq/TtMSSelCUZKrT8GsCTuRNcs9fZRuBktVaAoo76Vd1n2qFghWe71tibNsIQ2QS3frVvTF8X5hGwlK9LK7ZfW/l7jP63t7gW511xdBdSzgFY+bOrkWdpqWmQuHaCuXOazgEtpwLl0iMfjSVayEvWsyFwyyGw0hCdTRpw2rkzZW7rKjsIik26DMadJIGNGHLOqYlZeSkTKIVUWD9eeyAb4t48nRXASaMYLLab9VbMbZ3UJZNT37lpbTATj8lCwYsaKbZQSphkO62pxQDuaxXaJX7rpDsqjbXQkCUcMMzwJBO2DId85v5UHVzfRui6ivkNy4R0lFhplVpsBvVrBTAAtjUgkyjEe51qYxviaEUBWWLevkgnYnXyCdbqG9jN0aE4YpxQjQ2ka655ZuF26scLwkS4jj2qcmnkbmptcUl8SDXn4V7sM/dNxtAWHtsziyIxwKuHFf/BGmrtTMg+COcnnVg7xwOeu5dDIJQbckC2VGs5El4V6GS3hK985yP/YcQ+PNqdZuMFi6TpBawssPBVqh1JWb0joTCt6Y+b3syJTsmauQcm0ZiSXnzdEa4ODsiVqxwxY1vr0ybJMXzBHikT57lek7L5CHGDUb5usQkjTXM+b43veUzOUgzSl+t3LDJ6Kab+lg45jmjcbUaG6fjfNTZJgXjP38WnEIydROfLwwsd3cPqnq+i5BUSmue3vHuCh1mauhgNcCasUrRhXZgw4Yd/osps4hLFDrR0QxzZZaOEuW8hUYIfGlcfumh7TzLsfRl+3iw3/bKBw6Y278JcAAfax82QejHzqKBd+41pUFCFPXADHMeXwWlDSut+Dat66HSmNu0tDeYTapqNdfJHQUoW+M2+CRSAiKlZIUUa4IiXUuallMkgnZ4PPJYMspWXmkkHm04EcuFhgPquYTCsrYuVolZYqkCGZSwf7e3uWUPgy7tuan47GuRJVua+zzQDv0mo/INWzgIvxCI91Z7gQDqO0YMxtkmiLMaeVN7lTSvnPLIUikDFFGeU4l7TfcE/fM4Gwfnj4eVIEJwDPSvvbzo5ICeT6iNGXRqFasUI6ymPMbaG0wLYzhNSQrN2VDL5CRJJGM6Cbebx+17f4r0+5D+tAg+ZWaO5JYdUlC23O1obRkSSaiemuFkhi28gThCnjUGapWFuAXseWWD1z8nqrefaR6dzg0yYt2rDaRNgK4SqkZf4oXyEySH1tbKkSc3L7K4lhpxfz8kppZKoRZ2YBQ094+Ls7OVS6wOi9Nq3N8MIbHjHWVB3N2cYI4YEuFzrDLPWKLPVKuG5K3HYNxN8yd844s4knE4IdddxrGozvXGLvrsts2rhMcWMT+5om0XhKe7P5Hc1U0rT0ZJy7/bZiZGPdiBEpEJahRww63ZzvY5ria0aTjsjoZK7Z+J8chFxFLWwblEZduARaE992EFVv4N51hNV2AFlG8YECy6/Yj8gU0+8/wuiXzhI/PIjwPba/9SitrYpoIWDH/zwGwL7feYyLvRHAlG8FKyFSNqmWFKwYpYWBxqXr0Lg4dBBdC6snEAm5S4/xNZz4wEMI16U3VeDqfxkzxIQrdSY+/Chb/uQotRddQ2HFZEaDj+flbpIggvUN/H/Z8G1PWViWoqWdvo7JF0mf873moFuWYX+1pKMMZiTWdn9RWGlBWfYIZJTbRcm+iwuYEq+lfLraeM7FOeWjpfx+AIy11W++r+/XaXqZy1JcZjGt9INJLTXlnicNd3wNJNjNvD5wbsDqGRRKUibMOU/tzCfWdl9LJdEUrJjgjmP/bkx4UgSngpWwwa8zZK+vPazZych8kpFpSagcfBHTSAtU3JBy7ohiNjONIQFCoz2F6to8VN/I2x54Pp85dZDxSouXP+/b/OYzv8RLbr6fA9susWd0gZnNy4xP1BGuolLuYrsZTjlCBxlUUmQxQQ/FFHfUCbdH6AMtdt9+ime98gF2/szj1G6J6EwaIwO3HiFjRevmrSaY5TZSUmq8oR7xSIZMTdYVDptswb3nKJs/JgiWFDKB6vEWwaOzZjoWFBh7KMVfEbzjb3+CxnZ46GffxZkfLSMTwwCfXy3z1kP/yJHHZ/DtlLIb8uyZ04jQwp3s4Iz2WIwrLHRLCFvTrgd0Ox4LiwOcXxmiFbmMlDpIqRGpIC1oaodSklLuumyBX9M4XYXV6KF9z4zPLat/4UXKwRMpg3aXQafLYlImkDGZNnTHsh3SSV1O/XeT/Vqlosm8tBmr927di/O1B0Epzv7h9Wz5tTrCthk5EjF4skdzexGU4sQfbGbwlELMTCKEICtnbP5CRu+W3Wy7K0OimQ/LrEQBmRbYQtFKPQbdLp3UYyUsEmU2ag2vGzlQdwiuWKaxHZnNASuGTe98GGHbaK2Ze3lMOALdZ+2hfsM42YEd6Cyj9oIevWGJmBxjIafqy9ERA+TLe05P1DehNZ0NmrGysR+XQvUzGOP022MlK+HLuM9EMvZPZqHdFzEd5XExMgH4TDTBclphyqkbP7g8mF2IR1hJS/1rBuhPvFtZAVdkZtKHROUBae25AFbjAstxkXbm90vAAavTx7oEMsaXCSU7oqvcvovKVm8RXyTs8o1WcdJZZYu3SCMrsJyWCLWNQjDpNtDRD9Y3rR1Pioa4yCcNmZZscpfxZYIvEsLMwNcdkdLN1pWkG7xVluMSmZJYToYKbXBzQgF58zqWXFe9xNHDm4gdm3PNcc6dH8+7nOBXQyxLUS6ECKH55evvZMRuctC/TEu5/TvQsOyymJWYTwf483PPotEpcPjeHZysCdyGplQ0GZVMNLId4zV6rOwdRToxlp2htSDsOMi8HxaPpYhIkpQEqz+xn+qxFvNP91A2jD6a0dtQxC25zD+9gN2FiTtrxOUqN7/xPv7X+IMcfN+vU7xdU1hWNLZa6NkizQMFSmMdbKFYjQI2BTXEQIwQEHcdNvvLLJx5OjuuuUI7cWl0C2SZREoD7J+vV4hDcyoIlTf6Cxp3VeC2QGaa4lzE6qERUk8w8tAqqFzpnUsLHJlSFiHLufyjmRYoWRH1JGDca+LKjPHpVaOTsm10krL86qcw9smj+F9/BFEuI2Ym8ZcEqt6g82P7Cb74MGf+6Eayckblb7sUL9iULna4/LwR3OYwu3/1MNl1O9nwzrPYuWcewEShRS9z+mSLTupRjwtkStKKXKRUtFsB4pJPsWYCbFI2hIHKbEbwuftpv+QplL5yhGzfVsY/7zNweBHt2XBmFjk8xOxrDzD1Nwm9YVDVItrS9G7dS+FbR8BxkNUBVG11XVKQH8ozLYyKDPuTsrl0kEBExNootFW+chKIqC9sBGhkRaO4d+ssJhUyLRlxWrTyILKQDDDuNKhaxlZ8DRYH9Muqpir0iQe+NqgWgwg272OGwJaK1TCgVfJRSCbsOpeSYYbsNpkWSKFpZAVKVkggYywUM+5KjuZt8Hg02c+cl9IKjTRgxGnRSAMCGfOBYzezxTr578aFJ0VwgvWoPZcMst2b71vOyHy3CCCQEc20SqQcXJmybXCZI9EkKkjJ2rbJAzOBdhRW12aDu4oYjNGJtY5WiSW6kBGHNsLSdJs+SM2fzj/b/CBa4AQxSc+B0Mq50AKRCLxVacbXJaMWT4pG/+K0TemnCw6ikdCd0qhE4rimByVtTdZyTN/JV8Y0tKRoT9vEpQqlWQNXK33juOlVWBbTDyT9JmowXuQz9z6FTzs3IkcVypVUzknchuEufWHhADdtOM+3zu3g1fvuJZAxw4Ntmh1z921kBfzJDp3ETH88J8EPUpo9M80EYNlDBxnaFgaBLGycNjgtc1dtbDUs89FHa+gLl43IEEAItnsLdJTHclom05IBu0cz9anIFFtmzPaGSLVkotgitCxUt4ssFBj75FGzpuK66DDi8u0jDB9NiD83SPH2x8C2cVqCbFiZtRkBc29MmX5bA2uxQZakPPMvvselcJBY2TQSA+CvxwXCzGbY69LLnL6fntKCgpOaCV3HodAyU9fupMZtCjOBi2NOvucpbPtMzNwvHGTqQ4epHJUk12/HPXWVk3+5k52/1yAc0RQfvkRyy2bkqVlGHtpL4a4jLL3qOkY/cRi9poaX8vtYWCrIGPNbNJXPsNXG1eZzYV7mSZTBmGhJSxdygaOhDTgyQ2ozyg9kjJdzmDrKoyijPMsxZV+mZZ+MCaa3ZAZLBq/i5pM0Y9xp9vtibTPl1FkOyqyERVYS02easlepWqac90XCbDKEa6dM2avUshJlq8dSWjEWUmrISB+U0w+M5VyAqRCEymHi4/4P1TetHU+Ksk5jJhKWUATSTHvW0s01U8BAmBe6IntMuzV2BQtsDZZziBnIIFct530nlRMyXT+lOtymPNHCG+5hj3dxByJUKskaLrpnoXuWKQlDCxSkS4Xvz8IS80KmgSYe0P2PW6G52yrHsMXNxzOSoRTpKLJUYtsZM2M1Bqca6MHYfK8M7LqFUDDyWBenqyhfzhDTE6YXk5jApPduo/esvWSepHLK4raDxylekYTTCcWFhNUbElRBc/qezZxrjfDCHUc53p7irtpO/sfWe7h18xkGh1s8UN9Mmkomik1qnYA4tWl0C8SxTbcWoI+X8WoSZ9VGBClywcNbNWalmQdhVTJ4vMnAYyuogoOYmVp/80aH+OrqPo50pznXG+FqOMBqEvSNE9f2qmyhcK0UnRg0L8qov5GC6OZr0FnG9PsepXDHEfijUVZfehCALX+/SPUhs1e38X1HGP5wkYsvMFnJqb/cR5hPApuJj0TjW2l/OtdIfOpxgW7qstQt9jngq40iwTkHmUFUBbcp2PAeI20Ib93H2P0C63vHqZ5N0Xu2kF6/HeeRs6jRKs7jASyuMHgczr5nlNoeSbJ/K8Ofegx9zVZGP/kYtZcdQKdpX9u0dgjbRvYs/q/B+9ns1Pq9IDBguUBERveE1ZcXBDKiKCNm3BVckbKaFnOHXYHSkoVkgLPhGK3MZzYeoaM8UxoKEyBqqdEtNTOfUbvJbDLcb5mYPpZZJo61hSvSPAszC78FK1kPQLJHVXZxRMqE3egb2IbaoZUV+rKBihVSlma66Iq0r1kcc5q0U48t3iKFrx/+D8WF/3Bwyh1YHhFCfDF/vEUIcZ8Q4rQQ4u+FEG7+cS9/fCb//OZ/73trLfDyaLvWJAQTpafsBludGhN2i6rVZau72F9OBHDsbI1/Rl9yKzWqoCjKiLBmnFjj2MZ1U4qFmEoxpDrUYXBDA3+kh1VOELY2yN/c3kd2LKy2hQxzndP/296bR1mW1XW+n73PeOcbN+aIHCKnyrHmAYoCwWKwLAocEFq0BUEasPFB290PRJ69tO32PSfsJdJAL1HAVhRRG7QRpIuhoAqqqMoasiqzMrNyjMiYpzueee/3xz5xK6GhLBU7M1nxW+uuuHHuiRtn34j7u7/9+32HTGBFRqZ3IxFtTO7AjOK1JdCeg/AztAbXSym4Cc3AZ7DUY2S4RW1bE3+iSzqQkvoQNYz4W3OHBRcWzFbJdZn5ueuwphcpfOkJCl84gh0YT7hgxJiJnn2lBalE1GIyH/7V1nuIlMOp5hA1x/Ds7p3Zie+knFwZ5iW7TtCOfdy/q8J9daKnqsQtDxREoynhaEZSz7DmPOO+kuf6ykzK0BMBq4eqzL5shPV9FVTZyzE7gvkXDXHf3Yf48sxunlgdx5YZ60kx91JzKViJce7wWsbbrlgEpVn/0evQSYqwLLyvHgWt6NxxNcJ1WTnoUT0dcPzXr0PPLhCMalp3XQNJwsyLJW4bjn9gL2+8/r6cKxf3taQqTogrM1yZEWe2EXHLLIaLXYYLXWYX6xQeLRhnYxcq05otv3vYVGZxjH/fcQb+8jGE69LcYWNdWAZg9qcPcf7lDSbujdBZxtDXlvDuq1Ca1diHTzD/hmsRx86Q3nQVA0fb6AM78//F/C2mFHOvOwQKlrIqq7lLyUbbwhcJoXb6VU89n1gnuVpBqMxEb7e30AdihtqmYXfY5S/SUx47vCWjzy1iltIKoXaoWd2+JfhKWmbSWcWXcb9S2zA7UEijNa9t1tIivmVUCVbzRHcyHus3zQEcMlaycn+LmGlBKdcgbyufkoxyqV6LhaTKl1aNOP+TwcTfr7G+8TZ+VmeZeAdw7KLvfx34Ha31HmAN+Jn8+M8Aa1rr3cDv5Oc9YzgyzTWNRR8Z27A6NKweFZFSl0b3eFAGOZirxajTZMDpUvEiVCJRqTB9J0Xf1HAmbkAmjK9916Xb9olTi27o9j3HfDfB8xIzXXMUopiaCZ2j+/2Xi0Pbun+TiWmeastQWUSmUb6LsDSulxpPN6mwLcVTZ0dZXKzRaptEia0JJxPKRxcN1sgDtctgP3SaMv6VLsGhLaz8+SSzf7qD8oWUe2d2MnBomZ987tfYd3Aaq20h5k2VU5IRX5vfznK7xNG1UZaTMteNXWD27BDb62t87sn97K0tELy4Q+/agLSWIgKJ7FlG2bEr8RaMIJ0dCNx1Te10wtoehzN3+awdgHBYEwxJZJD0zTVH//vjpCWzZQoSG0to1uICiZaUrYiG3aVkxQTKRaK58LPXodOEgQeXkL4p+4VtMETFmR5P/uoBxj70EO0dBXZ/IkQUC0STCXE5R+IXMto7M9550+f48NdfgCMzImVTcwKDf1NG+sSRhsZhS0XBThj2OhxfHME5b35n5sLU7xyh8YmH+/roYss4JAlP/t4BSBImPjPHudfvxHn4FP4di9TOKNyvP8n8T18Lc4tMfPAw3QlhKDxnElZfdQ3NHT7i2BnE0dNmbRdtX5QD3opkj7PUJ862lN+no1jCNL6tHMm9MX1bSqt0lWvAjtpiJm6YyVgusbLBY9sYQDSzEgu58UGoXaOfpB1C7Ro789T8vkRbT7uw5Brfy2mZcbfJcwbOULFCWrkJ54S9Rjd3BU4wWuUbSbUoIkq5G4vBXoV5I1+zmJiJ37jfxJaKVlro/93hmQ0wn1XPSQixBXg58J+Bf5ubGtwO/ER+ykeBX8a4+/5Qfh/gk8DvCSGE1t8ZCqoRDNlGTa8qAyyM5Ou6dghF0i9DfZHRhnxql5Aom/FiizMM4xYSoq5roAQ5MHMxrmC3LVRFUKqFZJnsT2rS1JCHk8QijS1sNyMOLcBAEQDURQlKKECBwNAZRGaaxnZ3o7LSyE6I8l0cN8WyFE6uFTRUblLzQ84tNkiXfWQg8QJBPJARTg2ipaCwpBEnzm684Ez/QInKGY38k0GKGlYPSIbKXTwr5Yvze5g9O4QFvOD5TzDkdvil334Dwe0dHCdl7tQwamiaex/fg90y5pC6aWAaRT/CshSJkxF3XAgsnKbEWxUEIxq7J/pKBTN7bJRvZFi8JYuRh1K8lQhm5o20brOFmNpC8YJkx/WruFbadzFZi4v9D5xdxSXOBEOU7Bh1W5OlF16F56TUfjgzKHkfrKFBEkuy9/95AoSg+lSX83dUmHosYN/bj7H6o9egM0V5pMveoUU+/s6Xs/vn53h8eZxDQ3NEmY1nGRpNJTdYKFnGjl0KxYPzW1EnylTOQVyFbb/zICrLkAUfkfeFzvzEON76ONv/PGH+TTfgdDRb33+EtVccxPuA4sL3CcKBaxj78GGar7wOLWHHB58iee4BuqM2w/cusXTbMDpOEK7zzX2Vq6aQEVCEYUtxIXVydp0hzSqkURzIf2Rjgmah8KUBWwIkWFQt00wv2uv9BGahmE0GmHDWaKkC4+46UT6pK1sh7czPEdoDZmvmNDd+EV3l9WEgUmiG7A7nowYjbotq/nvB9MUUklC5Tzu9ZGXTfM98fJkw5SzT1S7dHBa0Mclz7IzpsGE4fa+8htqnHzN0nu+UFHj2DfH/ArwTQ8kCGATWtdYb9dnFxpl9U02tdSqEaObnL3+nJ5doFJJ93qxxlMjtcCq53k5R2GQiZV3JvrrfbDqAI1McmeEWzWRKSGMVpXNY/6nOMNlojF9IiJ6qorcEOE6GUiLHxZn9vrA0WWphFTKyro32FLJn3FnQAru3sa0z16s2jDWUIPNMoirNJSRDZWSSIaVCSkWUWX2b7pIdMzzQZt1NCboeesHD6kncrx8jeekh3LZm+ueuZdsHHmf9Bw8w+kDCuVcKrLbFp179Xt524rVcWK6zbWSV2bNDvOi6YyTKop14tBMPZQt2DS8zvV7HboTsLCwZtPNoxPFzY4ztWuZ4c5TOY4OkRY0VCeycO1ZY0PQmDJ4pLWo62819pyOgY1Gc0ww90qa3pUhzd5H4+kMUVhVJQeA3FU5H04x9Bv0uZ7uDrIcF9tSWaCY+dafHWmomdutJEcfKODQ8hyMU2x5oc/+LRsnW11G9Hg6w/oMHqXzqYeRjJxkduhoxNszCe23u2nYPK28vUwyWeOj4FDe+6zSPf3EPW+8O+cpbdnFo0oyvh9wOZSuik3l0M4+FoEI78uidqNM4bnBkg7//dXBdhBYELzxA8avHyQ7tYvtnWoijpxFbJzj3igZ2x6L21C4Wb4GrfukYV305lz7JTRhOv+da5l66jX1ve5ze825Azy7Q2TLCYI7/yt8DoBTnXtHASgw8I9SaQavLfGaEEcH0nBJtKopBy0ANKlaAlW/rgH7zOVRG7vZ4NM5yUuk7Ew3YXaaTBn4OdvRyYJ4rDEm+rXxqVm50qgxq3BgReGYSlwvPOcKgvsGQj8LWrfcAACAASURBVGtWl/m0xpS7ZLTMZUSGoCIN7hANY06TrvJ4MjLm3j3lcSGq96VWMiGZDysMuAHzdyTU/sd3ViPYiL83OQkh7gIWtdYPCSFetHH425yqn8VjFz/vm4E3AwxOmP30dDLIQlJjyG6xz5ujnVtBZ1ZAXUosodnjrCAByzWSDUUZ85C7hSSxjRtLJsDL+g1t77RHMG7xrrs+jRSa9x55MdlMEbsrSHOEt3ZNhWT1BLYyPaWkoskqGe5AyEClh2+nzK9XyFKLbNXDXZX4y8LgjaTAacdk/tMvZ5paRNK4jjSjgpGNcGJUUaCUJBo2Cgpzb7qO8Q+bBmHphqvoPX8vVqw59yrN8D02xeWUn733HQQNC2u74IKd8aLrjtGMfVwrYy0qMuh3Gf3h85SdiDByyDLJfWu7zOssNXQcLKHZVl5jfnEbyhV9apxIIRg1+KasYFxz3baR63WbmuKyImhIzvxomXTCZOfCMR87EJTmU9xWAngstQ20o2AnNPxe35I8ySlHllBU7YC9Q4s8NLuVF247xVpaZP//arK3uEBVBnyjI3ls3aX+jhLXVC6wkjzEalLCjYo8vL4VW2Q04wJDYy26dwToX4T2u9pUEpsgdTiz1mBym6HSSKE53R5kdr1K+mSV+ikY/NwpssUlhO0YnJbnUfzqcdbuOkDji2fN/9qBnYgT59n/e5Kl3wDrEy573vUwq//iBlo7BVs/1+Xkv3IoD/So/xUU7jOE5rRkKDhpUZv+VZb1+03pc/aTVDXWUj5k0EbMzcE0lH2RYAljxTRstVnNykw4awajJAzJFwETzho95fV7UTvdJSac9Xy7ZZQta1bQ122fdNZYTKvE2qYqg9w6yqWagzfBJB9HZH1qiRKSATvBERleXrEtp1WjsqolPWUkW6pW2N8eFvvA0YCKDJhOBvFkwlZ/NacxmarqXLPB2Og5XnrgKOeyXE31O6eeZ1U53Qa8UghxJ+ADVUwlVRdC2Hn1dLFx5oap5owQwgZqwOq3PunFjr87ry7pDDP63O4um2mdlnl2jgm1ZF0ZXtC8KtBTHou5M+qg1WGi2mKhXSHLBEkiITT2T6fXGoSTCQj4jS/chd2W3PLCY7zv1s9QlT6RTol0SlsrEg1FAb6QSCHoqYxzaYFPN6/n8NpWTs0PYz9ZpLT+9BpEZtDExaXUbOmcIiLK8JyMIHIYLPXoxC6nFoaolEJGyh0GCz26kUts28iOQ29cM/cz1xLVoXIuBzvGmv2/vkaws8H5f2m2iDtHl7mm2GQlKtFNXVJtQQY1NyDODAp6d2mJw2f2Uj+4woVODbtpw5qNvatDo9Aj1RJ5+yrdrk8W2IiOzfCDgqQqsEIBSGRqknPlfEZrh0XnxXm1GToQW+hEGlBmoEkqFk4vpfLYIrVGSDdxqXkBFzo1psorBJmR5kiVxZjXxLEyrq9Oc2R+nL997BCTk6tMlJssxWUKVsJCYByCw9ThXNjAEpoos3GtlFZs7K7D1Kbqh+h9U/gH19lWXePYp/ey9zWnOLPU4Hh7lFbkE2UW650iYdujPicY+rNHyXo9ZLlspoRK0bzjALXDCwad3+0x/eZDVM8r5t6wn12fiBl81VFWX3sDQ9M1lp6j2PfuY0y/5RATn1VUPnWK+bfcSGvKYcjbj9sUBLdehb8qUFHEzM/fyNb/chik5MwrPAqLgrhuICdN5VCUEafjEaacZdZVsa9OcDIeI9OCbY5BYoeZSV7DVrtvS74BEzDAzAQkfchBV3kM2226yuVCMtC3Xoq1hSU0LqnxuMuKfQR/po3ekiOyPktjI5pZiYbdMUJ4WbEP4NxAmTsi6zfNE2319cGbWYEhp818VOtnmtGywZ89p3aas9m4YRj8U5KT1vrdGOtx8srp32utf1II8efAjwF/Crwe+FT+I5/Ov/9a/vgXnqnftBGraZnMEoTaZcRusZhVGLHahNqiIlMjRSoy2irDkgHroti3OR4ptFnplbBtRRpJtGucXm1pxOikl+EOpKhhwb1P7OGmB/4t3ookriv0SMTYcBOlBY5ULDbLxD0XnUhEzzKSKBq8dUPyTUrgdMCKdb/6KJ1q9bd0YBqTUmo6sUvVjdi3c5GvT0/RjHxKbmzccd2UxPZQefN+4Lii/oVTnHr7btKKRv3gINt3LuKsV5hsGCfktbhAqiXtsESSWYwU24SZk4v0Zfz12UOkBc16s0S5HKKlRk9ERF3XeMcVUiZrTc7d28DuGPWB1QMSZRvyr9sSFOc0mStYeXWPrYPrrPYKNNtFspYLCuyOhd0Dt5VRmDGkThZXOHp+N6PDTcLMYcAPWI7KTBVXmAtreHbKYlxh0OkyHQ7wuqse4GMnbqH5hTEu7BxClhJU12HvVReYLDb7FtWrcZGG26OV+Oi8MvDtlFboU5wo0e0mdH46pfe+gK9c2MXO1x/nyAeuNkMQN0M6CmvNZvSDDxjs7Qa9xLYJn7+f6qcfQQwPEQ0YtH5c11Q/cITq32hEpUzv9mvIPDjx3kmGPi/RUxOUb1+g/sYuJ371BvRkQPn+ApV7z7B8zW7W9rps+cARhOex9X2P9isnpyPJnNxWrJEghWZY9OjZTVo5nSRDIFFM2mt9HukGunslBwHXLTPKd8TTJN0sR5ZvOLREysEVKUtphZsLZ/p+eBtbwZI0cIWNPlOG7FdTLcwEMNEWDbvTxynF2qar3JyUbAj5LeX3gZ11q2dwWcrvJ7mG3eHJYLy/PZwOB/CtpA/glH5eXT5D/FNAmO8C/lQI8Z+Ah4EP58c/DPyREOIpTMX043/fE2Vamv210PgYiH5FBk9/osiYnpIUcy/4lazKSlbu68TEymaw2KUXOehSCpEFQhPGDvaqgxW4hGMJbj1idHIN18pYWK+gQhsd2syeHkJGT+Oa7Mxsd2QqECl96IDTMeqXYJQIrEgz+oU59PIqsjyFtdpF1Yr4TkwEeFZGM/KZb1cYrhp1SqUFnpPS6fpmIphCdxKElqy/dQ/J1givFBNHNoutMslsCTXQMo4gnlENLTkxq2mRVFmUnYj1qMBqUCRObF71gvv5i/tuoTvnY23rksYWOrQoORFfn51ix8Aqds/0zcIBSVo0mlTOMigX1l4UUq91ydpFzhzeQmFRUOkaBHU8YAYAytaEAxaZX8PpZBTWquiesaQKUoeCnbAUlNlXnmctLlCyI6p2yEJcZau/RjMt8GO7H+H42CjNl4YI2+aGe9ZopX7fBy3VFrZQLIZlYmUTKzPAWO4WCSMHMWjxB7f+N97y9n/NtrEL3DZ8mgczj/phl2BEk7k2VgxT//EbhsuXI9lVnHD6165n9398lNYrr2P5GsHO/3SYxddfz67feILmy6+mNB1w8k0Osm2x512Hka/YTlIqsHLDAMunFeN/1kJ/Q7PnrU/RffF+CELi3QETfyjJDu0kGPcpf+5xxNQW1MmzZpCS30oDAYmWrOZJYwNCYLSSjHPvoNXpJx+lJIO5wmXfu05bODIwFYxQ9JTHQW+mrzRQFBGN/GdkTvqdcpaZz2r9xAQG52RwYoKKFXA8NP2iTuazw1vKVRAUrkhxRUaszc9s2JVvNMW7ysuFIVOaWZGecjkfNKjYIad6w7gy5XR7iG2lNSJlMR/VEAUfgu+i+4rW+kvAl/L7p4Fbvs05IfDqf8jzOnmZmGnBalZm2G7jCoOjmHKWyHKXiDDXQt7QUa5ZAU1ga2GN+W6VwXKP3nLRADEVhPMl3vsjf0SmJZ9auY77z0+x8viwUTgsa/RQjF8PCdseShokOMLoS9mRYANgW76g6UwauRU7hGDI3N/+1y308ipq73aCUZ9ilMujZBLPSbGkouQawun0zCCiZ9GtmSZluRrQTQrIJJ/+pdpgpqTRo5KWxrYzosGITEl8O2U5KDNU6KC0pOxGDHpdViLDF6t4EZ2vD3NqdIjSZJtqIaTZK+B5Ce3IqD52uz4MQHeLZuxrGfO3WkYfW+SE1xiq9xWw2z7FhqC1P0Xt7NJLLVQmSXs2WjpkvoFQWIHCijLUyirl0SoFN2G+VUEpwS2T53lgbYqp0gqptlhPitTtp0nD81GVmhPwggdnaKZFjnbGSbVkyO3STb0+YbeTeDQjnzB2+mTdUiGiPVXm1/Y/h/2fP0msbA7/xH6ar2ngdDR2z1SFhb89jFbajK43wJCWRWFJcP4d1zH1kdNUPrUGloWyBWt3HWDhNg3Kp/6wRXFRceaXbsD9ssCLNUvPzZj4guT4zB6uev/j6Cxj+k7NVvYx8ZeC069RFAYztr/uiOHlnZ0BKfBXjcKDFcE1o7N0tdunqmzI8xplgqzPj9sQn3Olec2kUH1KVU8VqeduLKejca72p3PFAUE9P38DP2UJRVWEXEgH+mBLIMcTWsjcZHM6HqSVmort2tJ5lvNeVM3qopC0VKFvMZVpYayqclKyeQ+nudx2YvwmHSMaWfYM5Odse9BokKcOrbTAyXftZfd/ePgZ88JlgRAHo9h3Ph7qM5rPJ4M8FY4+7SiRa9lkCHyZ5OWpgRhEyqbqhVhSYZVT7FUbq22hPcVvnnoZfzh7G+N+i5+/+m7e88q/4A9f/z5+7Yf+hP1TcyYRtGy8RctAEAYjKletccNLjnHnq7/GO173P9j+5hMEkxnWC1eRP7yMFcHoQwlWs0t2YArlSJy2SUwiMMknSmwyJUkyiwE/YOuWFWrbmuhEIhc84kcHsHIVTaRBmSs7nzjGEtczz+MVEuZWaix3SowU2ygtWQ5KVN2Qs50GW4rrNAOfgp2gLfjxsQeo/GmVlVaJ7lqBih9BKunEHlnP5qaBc+z5wAwrB2zcNdMYl5FRWLBCCEdg7c4exTsWaEyuIwSkiWXgEWsOdtdIFHtNhRUrkpKNCiP2Di0yWOixo7FK0PXopi5VJyTIXGZ6RrJ1ITKYlw13YEco7l7ex1dXduHJlFRJluMS7dSjkxii7gY/LowdBooBrp2RKkm4Nebcu28kfEud7M4mzMyT+oKhv3yCoT99lPIjswa7JAWiUjZ0G9dFFnwmP/AIW3/rQeKrjFzyyV+9htH7WyxfI9j3/jVkI2b8s3OEA4KBG5bYyKk7/zyjOBuy/f2Pkx7cwYvuX8JdtCndfYz13RZWJaH8NxWO/+bVZPu292WJRx5ooxywAsHLhx7DJWPMbvfpKl1t+jwbWzwwDfMVVcqBj8LoMuVo+A22RE977HQXWcnK/XPm0xot5bOSlWmrAheSRh8FniGoWz0GrY6hhuXvqdWszHJaYcxrEiiXucRURnu8eUoyZo8734cUZFr0e1XtzO/LuSTappkVDIHZChl3TaukaJn3aDcxa6w5IWtxgZtve9IAjp8hJ1w23Lq61WXALtJMN8pdI5D/9N5WYZHhiwyXrM83Uloy4PRYdwu0Y4+hgTbLc55xyuhYTJabpEpyz/wuHnG3cH51gG0N46i6q7rM/oPz/IvG/VhoVrISH1u8jXG/yZH1Ce4/PYXq2RzcO8Pg1Brp3w7hz6S4Tkbhi0+gd2zFOjVH7+YpCufbiIUVsl3jZCpBA0Unppe4KASWVFT8iMb2HqtDRZrNIvYFA6C0QkMczioZvpcS5dpURTdh8XyVLXsXWWqVWQ7K7Kiu0E1dTq0NcsPIBY63RqgVDF0gHE3573O3EtUErpuSFSwcqShcsJkbqDI8sc4Wd5V0tI7yTFLSltnCRgOCaFChRmK2NAwvLNI2UeigYouga+N3DazCa5oPjMyV+As9hO9xem2QkXKHhtejVuvxyPQWDk3O4smUsh3RzVxqTsCp7jCxsthdWiLRhmbiakPaTS/iwEmhkGhWekWCyKVWCkiUpOTGlD1Ne74CCs79yDAyGWbrx55i6M8eY+VV1zDwZ4dJZy6YHpNlodsdQ8r98hN9wrI1NoJ8+BTTP3cdO/6qx+LNFZy24Mxrhtjz1iOs/tBBVq/P4HyD7WcTnE5K6lusXVVAX3eIsd8/zIfuuR3HeJUTDmkmP+4SDkD1uMX5Oytsf1iDYxlF0Rdfi9OBm/3zZFrQVB5jVoswp6Ik2ibEoa0K+DLuO7C0VeGbOHOGA2fR1W4/SY1YpvcXY/W3fhvwgylnqW/VlGi77yvXzgoM2h0eD7ZSlDE1K+BsONg3RC1bIXe3DnBj6SzTyWAuiOf3G+glGdPGZzaps9VZpU2BhtXlyWC8T2UZzJ/rs/MHGSoYx99e6mBLxU21c/xd1rj8TTU1gnZWYNJZQ+WTiI3x6FJW7ZMUzdQiIMainuM1trirhMqhl7lMdwZQekN2VqAdzcPnt6KU4NptM1xdm2VvbYGz3UHizOL++W0A/PXJQyRdFyJjXy5LCSNDLd56/T0c7Uzw6EcOUVxW6LomrkiqpwP0wV1kjiTePmXW4FiIKCItOhS9LpmSBLk0bJJbDyVKEqY2jp3hF2PCcYGyXUQGA8cwci86JwpnkoKTIBox64FPrRRwYbnORKlJxQmxSoq5oMpcs8qW+jqrQRFRTBkvNDkxKVCBy87RZaLMJhxSWJlkvV3gwfYOVg+WKZ/TJGVBlkEwYpKSkBrPS3GsjPXA0H7StsPWqWWmzwxjdzfwTxlW9DRORccxcWqT5MllV2OZC26NhZ4xrUyVoZasRUXmuxVKbsxir0LdC1gKSgwWesTKoptDR2yZsRqWmFurUvRjtjTWGS20WQ5LnLwwgu1mjG5bZW15GG0b5cozP7ubtKhJyxn1P4qfTkyJ8Sws3nvcOH3kgMu5u7Yy8geH0RIWbyoiEwgmUwojPU7+8kEYD9n3phMI22b2pw9RfwrChsXYHz9BcOtVPPUr17Pl8xlhHfSBndg9wfkfVhDBwBGL0W+kps+VN+H9FY3b1vhC082Tb6ht5rNa/3Xc2IaFysWSpm+0nhWp5A3zDdpWVYa0lN/ntsUYWRULRUWGrGZlJKr/eL1vyBn3K7P1zKhgLsYV1pMiJTvCk+b3ryVFhuw2I26Llir0t9MbyXFdlfuQhqKMaCkjxXw+Huz72nkyoZd5DDltMiWpugGdxOt/+DTsDtC4/CunTubxiYWbeM3og9zf3MGe0iJ7/Tk8aYiIoWXK34oM+58Ms9kA+9x5ltIqvTyR7a4u81RriKVyZiY2sUBlAvepAkdP7eGY2kNSUQwfXGJ7da0/GYoaxv58R3EFT6Sc7I1w79kd/PFnfgCZapyu4b5FDU3lrMA6chq9extpzcVfCrHmVuleO0HhKSMz62pBmklcmdHJlQASJXGkIowdwwcUGrcYE/s2VmBUMp1Vm7jg4HgpSWiz3ClRLEUkiU0rtfALMefaA1xVX8K3Uh44O8WOsWW2ltZRRcF6r8Dnj+2nfO0a4ZN1bt5/mL86dQ1YmrTtsP+qCzywuI2V6xXlbS0GSz2W2mXs3PHYshSWpZhdq+UgVYEspXh2alxacsXPqG5hhxKhNN7jSyjLIgodCo0kp5BY+HZKzQ2ZbtfZVVtBaUEz9lmYrSO9jEIpRghtpm+RT6oktlR0MZbgC80K1VJIEDs8dXKcmdmtxA2FHAkp+jFB7BA3MqyusW+yQ0AJdv3iYbAdI2qXc7jEzm3o6TmO/+a17P3FowjLwm1rzv/7Gykuaka+OM/y88eoTLRpz1fY+wuHab76BsTEKOd/zBilTr/tat70U5/hd2/5AUrnLa6+9SRH2E1xTiCnF7E7VQqnXbb/9Son3lhn4IQyyTE22xorAq+ZMWkVOZKZXpNLRl32+r2njWpICaMRfjYeYtA2OuMryshY12WPtir08URTzjIrqkRJxDn1K6Eue7SU36eYdLVrRO2kgQT0tEkSR3uGwO1ZuXqG0Iw4LVbiCeaSOsWckhIph4bdQeZVm9F0iuhd5E6cISlbYU7WN/LARSviQjSAEJpWXKDsRMTKIlWSE8EY8z97C7zv775jXrgsklPd7vHOLZ+lpXzeMPoVjoRbqVgBT3WHmQtrNEtmq+eIjNtLxyjmbOduDmAb85p4MuGRzjYKdmKa3B0XjcVNO85TuyokUhaezLhvZor5CwMsHh82HDlP9aVUHlixsEJDS5Hk+tE/NsMHd3+cV3zjrex+0zQ6U6TX7mLm9iLhZIKIi2z/nz7+YmgE4hT0YgelJJ6dstQtUSuEhKnpQUmpiBIby1JEoYt2jbuL19Rs/XzK0nU+aQmcGNKbzCdlmlioTDA5so4llZEBySzGBg0FoZu69FKX3kyZX/2BT/Lbx1+C3GmsrO/ccZRPLt2MSCUvHz3C7x75fkozFmMfd+lsq9H9foWIBaVpCzswjdtkVJGVDQyjPNRlsV3G6Ui0zLeBG94Gke5Lg7hHinSHXdasAhUngkKHMHMYLXZYDksstCv0QpfRL9p0J12Sm1JcmTFc6BAri6WgzFRllQcubCNNLXwvodkuUCjEVMbaRAMONkYrPslMMrTrMdZygaSmSIuCPR9bIcsyo/+OhT05Tra4BDPzkGXse88x0kM7sR57itqJLovPKbLjYxdY+ZDP0vmM/a+7wMJrDxK+5Frqf/0E8//yEAMnMk5+cDfe4/C5G8fY5x5j7qcOcfqTe8j2ZozeH9K7YTud/THlJ13E2VnEcIFw0MPdsMLSmsGH1+htqxLomAzJUlplzF4n1hYtZXSTNhQJ6rLHfFqnJGMyLXks2sqI3epXPRUZmIm2FfQnfVIoU0HlVdnFbi4ZwlBktOxrlG9QW9qJb4xqZcp6UqCbTqAQ/Z7SXFzrOzcP2IZEHArNQlpjwjGgv6W0gi+SPsevPwVEsBBVGfTNLmcpKFPzAmJl00oLdG7tod/3nfPCZZGcmmmRs8kQO91FjkaTVGTISlrmFUOPsstZZL8bE2nFk0mJlvYIM4eltEI3b94dUy5DdodO6nKhWcO2MybH15g9PsI3ntgJlqZQDxmvtwh7rtF8EmD1JHQlOjflTIsa5YHTFNz4ysf5r1v/jv8VDPGW17+dkaIFQw3UUIW0ZDN+X4QVKTLPVBTi6GnYNkHmmULVkopW5DNWaROkDpZUZEoSp4a/lGWy7ySspUbZgu64Q/1UireakJZsgpkSi8/TjH8JgkHJwvdXqJUDVmSJ6ZU6WWox0mgxm9VoheZT7ANnXkj3SIOkopjdXmcuqILUaOB/LlxN3HZ53o8e4YHnbCM5KRi7R7K+R9LZGxvvP6Ep5FCGpOmhlKCzVqQUkJOCnzZGsGLF7FtuYPyDDzH1kdPMP6/KcKHD+c4A28prKC14cmkUITRB4GKdKqClkTkWbsre2kK/zO+lLl8+vgfHTykVIgpuQsFNaPV8Q5QGfD9hqNxlrVfA8xOkVLS32FgrDv6KIDt2EoREug46TY3YW5ahoojw9msIhm0GPv4QouCzdGOZ2nGjIlH/kWkqN5fRWYa6c43kj+ss/MEUWncY+78WmH/uLoLxjOl/cwNRQyO2dtnzzhVGtgwy/dISU7/1COK1++jsizn5noNkzYzq3zxm/ra5eYNYWGX9+xssZSkrmZmcGSpWSAmjl99THom2Wcqelsc1CPKn4TXzad2YH8jQWEPlySdUTr8dUpXGkXeDoNvOCv1EFmuLVuZzNhxk3G0SZA51p8dCVMWRGSU7oihj5qMadafHuGs+AB2R4YqUc/EQRRlTzBUIesqlYXWZiRtGskYmlK2Q5aTCSmKqPZUL1BXshDizqbsGTnHX3sf5yDPkhcsiOfWmC/zR7beSTI3QmvIJRiStgzFjk2s8f/Q0N5dPM2Y3GZQBK7lLRd3qMeEYrZkdnpGMeNPoPVTHIn75/Cs5OjsGgIgk2jfblXOLDVRkYVcSVDEljSysNQcrFFiBINoX8P8+5y+4q7RCqFNue/CNVD9axXEzZr/PZvcDLSzHxrYl4bCHtjLChk3j/nniG67CefQUMhnCdVKS1MKSik7sYUmFb6csNCuUCxFpJoliG5VKQ1RWgswVBKOCMJBMHFshPDhEUhKMfhVAU1pQDHzI4fzLSqwDA08YQGiUFpi9OcVq2TgRzJ4apri/RbxsNJWmSqs8ISdxKkboX/oZX3p8L+XjLtmEYuUVgbHeBnQi0akg9VLSKFfGFEAqyXJX9jSn91ixScITHzqMHBkmm19E6xojXoeloMzZdoOFZoUktklDG2/GQWSCgU88RP0LJR6bm+DLM7ux8p5UGLiUawbrlipJJ/RIcmcUKTSlYkSSWSx3zD+8Y+XTUdvos0/81gO5ZZVEp6mZlGEUD5CSYNhGSzj1qzeSVRR7/+9HwbJIrt2FvbDM8nVFgpddQ3oCfFsjhGbs933OvXE32lLIwZjSgz5bfvsh5PZJdBxjNwOKNwd0X3aIHR/NaP18i6G3X2D9k2Nc+JPtTPyYSZai5KM7XTIfEgRVaYjJoXYMiV0m/T5RK/Op5prcYMCTdTsgzJHbvozpaQ+lDINiPStRkeZ164MmsVC5/FBXeYzZzT4easPoYENit2qHVKyQJVGmIGMqOUlY5g46291lltIqobaJtU3ZCvvv263OCpZQPNybyntlDg3ZvUjnXJLksh6pMgR018pYDks0ql1urx7lI8/QEr8skpO2BOvP24q3llKaSwiGPOxlh+XlEb50YoSvr99CcaaH1Q5ZvmWI3riguzumMdpitNxhtNCm4XQ5FkwQKZvTaw2kpbjzeQ9Ttc328JGZSQaqPcrDERU3YktxnU7qcvvAk1znTXO169BSIZ8Pxtl/91uo3+eRDgjCumb3u47iv2GM8LoplCv77MH2Ngeno6EXkHmD2JnRCE9S86mX5QoIOm+GlwsRmRJoLSj6hqwcaVDYpAULZUGwXdE+OETl7mO0X3+IbllQXFDIVBMO2kzek9IdtemNCgaPJmgpsO+xSAsGQLljbIWCnXBaCc52G5QdM9G5bcdpvvzgAWpbm9RHA86FY2hbo7qGvyXdDL3hASjAcjOccsRVQ4s8Fk6SNo1iA4C3DjLWZJ5EZ8pUKFqRZBZfubCT4Mk6eltA2nXw5mzsaTGfyAAABQJJREFUVLDzo9PotSY//ugpfv/cC8iOVbBagtau1MjUhBaul2LbKUILktSiUe6hMZ+8Om/KbgjGRYlNsFbAXrPZ9YvfMERe10V1ewjLQnp2Xx0AoPHIGuuH6uz+5UfQh3ajs4wz77mWLV+IOf7/HaB8Gnb+1hP0btvL9E+mjPxlmdnvE8SDKfv+3RPMvO1aMk+z8lM3UlzKKJ7zOP6mGs5jEjUpABs+63HyVxqMfBSKNgjPQ8dJ/zqUbdQGMkRfvbIiQ9rKZ8xqmi1avmc+Gw9Tt3pGk0y53zQpG7ObpipSLsOW2Vb3tMeY1fwmyV0wCWQpq5AoY6TQynyWkwpX+fP96mwprXCoNEsze1p5s+KG1KyA+9q72eqv9hUmNpxUwKjWziV1vJxoPO6uk2iLxbjKelqkYoe0Uo+xQpv5oIJvGWVUOzfAMCDO79wSF8+CWfLPHkKINvD3iwpfGTHEMygwXIHxvbSezbVcfrFdaz387R64LCon4LjW+qZLfRHfjRBCPPi9shb43lrP5lqurLhsEOKbsRmbsRkXx2Zy2ozN2IzLMi6X5PTfLvUFfBfje2kt8L21ns21XEFxWTTEN2MzNmMzvjUul8ppMzZjMzbjm+KSJychxB1CiOO5z90vXOrr+ftCCPEHQohFIcTjFx1rCCE+n3v4fV4IMZAfF0KI383X9pgQ4oZLd+X/ewghtgohviiEOCaEeEII8Y78+BW3HiGEL4R4QAjxaL6WX8mPf9f8Ff9Pxz+nV+SVEJc0OQkhLOD9wA8CB4DXCiEOXMprehbxEeCObzn2C8DduYff3fn3YNa1J7+9GWOddTlFCvw7rfV+4LnA2/LX/0pcTwTcrrW+FrgOuEMI8Vy+i/6KlyD+2bwir4jQWl+yG3Ar8LmLvn838O5LeU3P8rqngMcv+v44MJ7fH8fgtgA+BLz22513Od4wOvAvvdLXAxSBw8BzMEBF+1v/34DPAbfm9+38PHGpr/2iNWzBfDDcDvwNBkp9Ra7lH3u71Nu6vsddHhf7311JMaq1ngPIv47kx6+Y9eVbgeuB+7lC15Nvgx4BFoHPA6d4lv6KwIa/4uUSG16RG8JZz9orkstvLf+ouNTJ6Vl53F3BcUWsTwhRBv4C+Dda69Yznfptjl0269FaZ1rr6zBVxy3A/m93Wv71sl3LxV6RFx/+Nqde9mv5p8SlTk4bHncbcbH/3ZUUC0KIcYD862J+/LJfnxDCwSSmP9Za/2V++IpdD4DWeh1jxPFccn/F/KFv56/IM/krXqLY8Io8i7Feu52LvCLzc66Utfyj41Inp28Ae/IphIuxkfr0Jb6mf0xsePXB/+7h97p8yvVcoLmxXbocQgghMFZex7TW773ooStuPUKIYSFEPb9fAF6CaSZ/EeOfCN/eXxH+Af6K/ydCa/1urfUWrfUU5j3xBa31T3IFruWfFJe66QXcCZzA9Afec6mv51lc78eBOSDBfGL9DGZ/fzdwMv/ayM8VmGnkKeAIcNOlvv5vWcvzMeX/Y8Aj+e3OK3E9wDUY/8THgMeB/5Af3wk8ADwF/Dng5cf9/Pun8sd3Xuo1fId1vQj4m++FtfxDb5sI8c3YjM24LONSb+s2YzM2YzO+bWwmp83YjM24LGMzOW3GZmzGZRmbyWkzNmMzLsvYTE6bsRmbcVnGZnLajM3YjMsyNpPTZmzGZlyWsZmcNmMzNuOyjP8fRdi38vo27eoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(abba_img,cmap='viridis')\n", + "abba_img.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "faces = face_detect(abba_img,cass)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[168, 70, 66, 66],\n", + " [ 56, 55, 75, 75],\n", + " [267, 69, 87, 87],\n", + " [354, 78, 74, 74]], dtype=int32)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "faces" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "new_img = draw_squares(abba_img,faces)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAScAAAD8CAYAAAA11GIZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9d3ScZ5k+fE3voxlp1LtcZdmWFfcSJ05xNsEkgUBIAZIsbc8G2Aa7X/ixwC7tW3bhABsWCAtxIAG+hDSCsdNJ3OImt1gusi1ZVpdG02c09f3+UK5bzzuWA7uQ/fns8X2OjzXvvPO+T73rdd+PQdM0XKbLdJku06VGxv/bDbhMl+kyXaaZ6DJzukyX6TJdknSZOV2my3SZLkm6zJwu02W6TJckXWZOl+kyXaZLki4zp8t0mS7TJUnvGHMyGAx/ZjAYThoMhtMGg+H/eafec5ku02X630mGdwLnZDAYTABOAbgeQD+AfQDu1DSt60/+sst0mS7T/0p6pzSnFQBOa5p2VtO0DIBfArjlHXrXZbpMl+l/IZnfoefWAjivfO4HsPJiN1utVs1ms8FgMEDV5PL5PMxms1wrFAoAAKPRiHw+D6vVCpPJpPv+92mCxe/gZ/4zGqf4NT+rZDQa5dpMbeVv/1BifwwGg3xW+5PP53Wf2S61PRdr68XeZzKZ5L3qu2d6dqFQ0H1vMBjkGsdqpjHK5/O6a+ozivs4ExWPq8lkgslkQj6flzaYzWZde9Tf8vnsp6Zput/xN+xjcfuL+5jL5S7aXr67+Hu+EwAsFguy2ewF71GpUCjIu9nXYipur/ru4nbz+5nmUL1/pj6/Han9uth1Pkftw0x9MhqNyGQyKBQKFz4Q7xxzmullul4bDIaPA/g4ADidTixZsgTA9KQ5HA4AwNjYGACgpKQEiUQCLpcL2WwWqVQKDQ0NsFgsiMViMJunupLL5eQdhUIBVqtVd81sNiOTycBgMMhgJpNJOJ3OqUYqEzs5OSkT6HQ65bO6sLLZLCwWi+6+WCymmwyTyYRUKgUAsFqtFwxMJpORPsfjcQBAKpVCeXk5UqmUblLVv5PJpPTJ4XDId+o74vE4rFYrrFYrMpmMri3F92YyGRkHdUyi0SicTifMZjPC4TDcbre0OZ/Pw+FwwGq1IhKJwOFwyPNNJpM832w2IxaLoaamBufPn4fP50Mul0Mmk7lgTDKZjDAlp9MJo9Eoz+bYlJSUIB6Py/f8ndvtxuTkpPSBbeX1XC4n48HPAODz+RAOh+Hz+aT9FosFFosFoVBIrrEN8Xhcns22qvND4al+p5LH40E+n5c5dDqdMh5Op1Ous19WqxVjY2MoKSmR8eK7PB6PtD0cDuvex+/4G6vVesE88jnRaBR+v193XzKZvKAPXEecY/W6+sxkMgmPx4NQKARgam/a7Xa532az4dy5cxeMDemdMuv6AdQrn+sADKo3aJr2kKZpyzRNW2az2WSRmUwmJJNJxONxpFIpWQwTExMyeZOTk4hEIigpKRFJQ+mmDprFYkEkEoHdbheNIZfLicQvFAooFAq6AUun03A4HCgUCshms6KVTE5OIpvNIp/PXyABeI33xeNxuYfvstvt8h51M6mMLpVKCVNzu93CqAAgkUjoNjswtaCdTqdsgsnJSem/1WqFw+FAaWkpTCaTjpkAEIbC6yaTCaWlpcjlcrKBNU1DLpcThh6NRkVbtVqtSKfTcLvdugWcyWRQXl4u9/D5uVwODocDoVBI3kMq3ry5XA7l5eUiWNRnm0wmOBwO2bBcExzPeDwOu90OTdNQXl4uGyYej8NoNOoYNQWR1WpFMpkUjcvpdMLv9wtD4ndsA9+dyWRk3bE/qhaeTqelb263W+aEY6dpmnzO5XJyL8c5nU7LbwHA7/fLvXyvpmlIJpPSB6vVipKSEtkT0WhU1hjbHI1GUVJSgmQyKW3M5XKorKyUeRofH5fx4fcqg+N9bCOZvdvtlu/4PftlNpuRy+WQSqWgaRoSicSMGiLpnWJO+wDMMRgMzQaDwQrgDgC//n0/olZEstvtMBgMcDgccLvdMsh2u10ksdlshs1mAwBhEPl8Xrh3aWmpXCPzmJyclImNx+NwOByIxWKYnJwU5pdIJEQjKhQKItGcTqdOtXY6ncjn8/D5fLDb7chkMqioqIDT6YTFYrmgj+xDLBaD3W5HMpmUd/AfNbRIJKIzKdLpNNLpNMxms5i76j+3241EIoF0Oo1YLCYTX3wfzV/+Jh6Pw2QyIRaLXXAvx8tqtUr7OG4lJSWIRCKoqKhAJBKRjQ9Mm6xkyNRm4vG4jinzefyeY6oyZlWQsM3c7KqmxM/JZBIul0vaRKZkt9t1DJPmjfqZmmoymUR1dTUSiYTMOedEHQsKVZ/PB6vVKmuEWhfvm5iY0AktEoUKMCWAHA6H9N/n8+nWg8fjkXc6nU54PB5d29xuNxwOB6LRKAqFAiwWi7RPNekLhQISiYSMpzoH/C4QCCASiejWJeeLz45Go2I6AkAgEMDw8DCMRqPsoeL1pO5hTdNmtCRI70i0DgAMBsNNAL4NwATgJ5qmffVi95aWlmqtra3SKXVB+/1+JBIJWK1WxONxncSdM2cO4vE4bDabTLDH4xEGl0gkkM1m4XA4ZPDJ8CipyJz4dyAQEC2Faj+1t2w2K59V00hlVtwcTqcTiUQCAES62Gw2JBIJuN1uYThcJF6vV/oMTKvydrtdZ36o75ppvNxuN7LZrM5/YLFYdBoFrwF6MxiYkm7q76l5sv38bTabRTqdhs1mk/6pfTSbzdJ2m80mGqFq7lL7JVHCGo1GhMNhuFwuua6aPxMTE7Db7aJRcG7ILNlft9st4+V2u+V9nHP12aWlpZiYmJDnlZaWYnJyEvl8HiMjIwCmhGexuR6NRuH1epFMJmUsisdEHReOMftC7SKbzUr/+SxS8bOAaVeAz+e7wATkmvB4PEin06L9Fv/PduZyOWF+xWuV1zmnJHXduFwuxGIx+Hw+5PN56SfHnmPE65xXAOjt7UU+n5/R5/SO4Zw0TfutpmlzNU2b9XaMCYBwYpo+nCS73Y5UKoVkMonJyUlZ8JSc0WhUNg43/OjoKNLptGhB1E74vbppVQaTSqWQy+XEPqZJSUakmgGpVEokOyfA6/XCYrFgdHQUJpMJo6OjOkc1NSBOcCKRgMFgkL7E43FpM6VJJpPB2NiYzqemUiqVgtVqRSqVkr/VTe1yueT93MhsE80T9Vnsp8ViEdXb6/WKr4B+OPrsqJoXa1pqW8kQVfOH9xZrfzRXqKXyejQalfYXCgXU1NSIsOI8GAwGRKNR6Tu1OLvdLk56at9GoxEGg0G0y1wuJwwvl8vB7XZjdHRU+kx/WyKRQDQaRSQSEXNK1aQ51qrGSeJznE6nrPNCoSDMQNUOc7kcLBbL2wY6VE2J64vaJNukMkO73S4+RBKfTdeAygT5nRpkyuVyF/SL80kGrd4biUTgdrtFA6QZy3mjxn4xesc0p/8K+Xw+rbW1FQBEnbXb7RgfHxe122w260wBu92Ouro6ZLNZnQZB35DL5RJGA0B8JSpDcjgcMoHqs0mpVAp+v/8Cpy19O1zY6mZUtTFqKyqZzWZhfKlUSiQtMKXisw92ux3ZbBaxWEwWFaUVN6/dbhdpry48+le4gEn8PdsATPkx2B/6kOLxuJiOuVxOFhE3gtlsxvj4OACIWcX2FhO1jOJxAKakPhc736VSNpuFx+MRJuJ2u3V+SDp1VU0kmUzqgiNms/kC08FoNIpfJ5PJwO/369peHEQZGxuDzWbTrRGj0YhUKgWbzYZoNIpAICBzw02umnBsO+ea88N3sf806fh8rqNixlJM1DYB6Prv9Xp17aH5rj6v+D6SqgnS78Y+5XI5+Hw+ANAxGfYvGo3Kc1StN5lMwuv1YmJiAvl8ntbQ/2i07r9FqVQKbrcbsVgMRqMRXq8XmUwGpaWl4uwEIBw6n8+LSZfP50VrsVqtEtkD9Hb9TD6HYsctNyLVWUppAOIYVaU/APE3pdNpuFwuYaButxsTExOyQYo1CDqeSXSyTkxM6BiLSozsDA8Pw+fzIRaL6b5Xf8eFYbVaYbPZkM/nEYvF4PF4AEwxWjpSM5kMJiYm4HQ6xaxVtRu2P5lMijnBxcjxK440cXyLiQEPRuRmIjp0KyoqMDo6KnOm9pN9Yl+LmWSx8ACmzCRqJkajEfF4XOcfnAkWoAYuJicnRbPjdTIzBkBUM5Fz6nA45L7JyUmUlpYim83qzPLx8XERPBxramJqMKOYyOhI1KgLhQIcDgeSyaRoV/SxkuHz9+l0WvcMujeo9agMmw740tJSGXs+h98XUzqdhtPpRCQS0Zl5F6NLIreO+BMyE0ZjqDHRmQhATDUuoL6+Ptk8VF05AVQtizc/nZVkbrxGKcqoDAdvYmICLpdLtC+73S7aEXEwbCM1J04koRAzhcvVv+m4VSNS/B0XKdvFqGRJSYks+mg0KpFIMj6j0SjRIEZcGBGlWUKTl+8is+RCVX1uatSHDG1gYEDab7VaRWLOBN9Q59Tn8+kiShwH9VlkXENDQ3A6nQiFQheMI30m6vvy+TwsFgsCgYD0TTVFAoGAQCDsdrvMPZlYseNWJZXxckwoUDmeqjADIBqGCmMgNEU1AVUox8TEBMxmszi+GembiTGpa4jP5jhkMhnRlKqqqmQteTweGRua8xRQhEGoz6ZQBvQQkeHhYYmocq7NZrNEsLnOVXPQ5XIhkUiIn/VidEkwJ5LRaJTOmc1mTE5O6iIeVqsVLpdLNhQ3DiUlpeD4+LgsjrKyMnHsFQoFnQMWmGIeFosFY2NjEgF8Cximi1Kk02n5TPNrYmJCVHwu4mJT7+1sanWxcmNS8habBIw6knmo99AMUMcxn8+L6cXICUO3XOBckFSv2d5EIiGbhaRqlyoVaz3EXKmkCgduDtXE9Pl84ldyu90IBoMIh8M6eIimafD5fOI7VJ+pMlVgmqHE43Ekk0mkUimdhjw2NiaayUztVPFDdKzznWQQ/C1NKdX/o47tTJoxI8eqj4pRSApZdZ6L2zkTqX5KPpcMjQJAdfjT78i/VZgA16zabkaKc7mczvyjQOUzotGoaHvqP6/XC5vNJp+dTidGRkZmBHSSLgmfU0lJibZ48eILcD+FQkFC7cD0BNA2r6ioELU4GAzKd6pvhINHBkaurdJMETiSGqljZJADykiUxWLRqeuMmAF6JDntd4vFIv4SShP6mviuYqaWz+dFLQamQZKq5kMGw+v8n8yS7aIJY7PZZNzUNjMKxTEkXEIl3uNyuaRfJpNJNmsgEJAFrbY5k8nookIk9R6bzYZYLIZAICCRJGBqI6iai6rVUMujz4bOcP6WGjdhITOZHVx7ra2tOHbsmGie586duwCj9nZETRGAbn75ewo03nexZxZ/XzwO1OCLzX9VSyyGcqhjpvppuUacTqcuAKH+VjXZi/19JPqTiseBv1PBqiaTCWNjY//z0br/KpG7svHcaESp0uFHFd7lcgnHVs06moSMvtE8ox2v+q6AqbD4xVRlYIpRcNMGAgHZRHRgapom5igjLXwno4Y0k4oBeyR10zASVox9MhgMEnkkeI4LNBwOC1NgO/g//V40Ncgoqe5TAwWmGCmf6/P5xBwpTvEApjaIGhJOJBIiMYnHAaY1JZrQjJiSbDabzJv6nurqapHCHEMVO0XTnv9UHBQ/q5teZXLqfWqUkb958803BcFNZzTb8IeQ+nx1vKjhUgNLp9Nvy+yIaSMV+/68Xi9qamou6AtdG/SLqcyKn3mfpmmw2WxwuVw6+ELx89LpNKLRqAgct9sNl8t1gUk9NjYGl8sFs9ksQFNVM6S1QE327cb0ktCcvF6vtmLFCp1GQz+OKuFsNhscDodA9Wmz0iamGThTHk/x95wwmmjUKMiI+LfFYtEhXw0GgzA4t9stWkM2m0UmkxEgKSOIKlFrU1VwlchoiqNNwLTDMxwOi1bEyFpxFItUfE39rEaOAOiiT4DejFNTWdgGFdyn/r44CslID9uoOuOZWqH62FKpFDwezwUmZbEGpUrl4g3udDpnjNYWR3WLNSmiyYuJmtjo6CgqKip02ttMKVLqd6rGBug1OKPRCKfTOaO5rCLb1TmiluPz+aTdvIfrivNSrCFyHtTv+MxiHxOpOKAwEy6ORE1OTeGiEFc1eGrNhCZcLFp3SWhOXNgql+XkEPXLSBgnglqQw+GAy+USJlNMqiNOZcSqtqVGQlTppDI4MkSn04lZs2bhpptukkgFfRvUkOjnUCU8nYbqwlSlmKZpEsJXiSBBSm86YLmJ1OTfYimmOr3V/quJsapfTb2m+vsA6K4TaEomNJNmRacov6PJTOAhI0acM2KpyKSKEfPxeFw+UytW285ncCP09fXJOuE7ZmpnMfEZ6lqkQLDb7boQ+ds9k+2jUBsfH9fBHPg7OtCLN32hUBC4AwMQ6ppiRJvzxoTmYq3ZaDReMEdq+hZ/r443GQoj1+p4FJPqF2P7mLJCJaDYh+X3+8XJf8lrTm63W2tvb0c+nxeuC+gTZouptLRUnH10oMdisYtmiTOS5nQ6MTo6ivLycvEHkeG53W4xbRiK9Xq92L9/PyYnJ/Hud78b1dXVYr51dHQIeG337t2IRCKykL1eL7LZLIaHh2VBqhJeldLFkpNSnNKMKR/8zMXDRM9i4lgQMQ1MaSk0OYufz99Q41Q1JVVLKHZ+Uxsq9h+xPxdzopM8Hg/6+vpQW1sLALr3UyhNTEygtLRUp0EUI7AZ5WKonBuCvjVqwMUYMxU7BUDMlWJ/C/vIMeK7Oc5qPqP6fq5jjgMxW+o8qtAHFXmuCkY1eMBIG9vLvnPMVFJzNR0OxwXjxrHgelLnjcR3qu/gNY49+0cNmNovtWIVckKID90cb63tGTWnS4I5uVwuAWFaLBbpuOokBiDah8lkQnl5OSoqKpBKpcQc5EQUSwmSin0ymUyyKFKplJgJVqtVENKFQgFHjhzBnDlzcOrUKSnZQZRxWVkZampqsGrVKjQ1NaG8vBw9PT3o7u7G6dOndekS6sIrdnYXb2B1kvlZVd+J/SL2p66uTheJUZ9L02AmB3Ax8+C4Mw0BgDALtfIBNVai0qnVUo3ns2fqm/pumnjMYyPynhrp0NAQGhsbhTlTWFGTIHqdfxN3Qw2zmJkXAz3dbjfGx8d1fjdqhiRuII4/zaJYLKaDe1itVh1mTK2coG5otYpDsYBQKxMUa4TqfFLgqIEflTmpzLoYf6YCehkworDls/i9yry4PtQx5RiwHyqzZlv5fnUd0KRmBDmdTl+6zMnr9WodHR1IJBIoLy8XB6/P59PleZHrZ7NZ1NTUiK+nUChcUKqEkovqrmrycZFzsxF4WFNTg8HBQVRUVMBoNOLgwYMYGRkRXxMwXS/orrvuwuzZswXMNzk5iaqqKsyePRvj4+Po7+/HK6+8gu3btyObzaK9vR2RSAQ2m023UShp1Zws1RcETKNt2QcubDV6Rcd3MQ4HgIwLf08mrWKoSDSRySCZVgPozdyZ8sz4N2EIzItUndNsA+fHaDQiEAjo0mnUTcZFns/nkUqldFqUylyLmX48Hkd5ebkw05mYs6q5qqDXYv8LNRBeV4VGMTCSzEgdF65l9uFi/q1wOIyKigrpB9+jCgq1r+r48N0qQ1CJgoCChXg8dRzVsjvqXDBvjub0TKBZVdBwL/Jz8ZpU/VhvIcUvXebk8Xi0hQsXSqPVtA81ERaY1oSqqqp0izESicDj8egYFhN1OaDqIlXVbqfTiYaGBlRXV6Ovrw+HDx9GT0+Pzn4nGY1GzJs3D6dOncKiRYtw9dVXi6OxsrISjY2N0p7x8XGEQiFMTEzgkUceQWVlJSoqKuRZZBL8Px6Pz1jwqxgqQGe96o8iFdfeKS74xWtq+L840ZSazOjoKMrKyjA0NASTySSLjSZKsflBoCid4KzWEA6HBT7A96TTaTHjk8kkKisrBUnNhasmoabTaTGL1PdFo1E0NjYiFArJOBRrcOpzizUHOmpZO4s+FzLUQqGA0dFReL1enZk9U7E4MgauM/qd+JxEIiGRTDr1mR/KjAjVp8XvSeqeyOfz8iwiuYvhCiQVvqAGFYqrP6j3UruhdqlWdGA/kskkAoEARkZGdGuuOLdPdYYXm5ZvYQUvbYc4nW/0H1E6UMPwer26TchESpphtMPj8TgikQiSyaTUY1KjMoVCAfF4HLFYDNXV1ejv70dVVRU6Ojrg8XigaRrmzJmD1atXo6am5oJ2GgwGHD9+HAaDAQMDA+js7BSJaLFYcPz4cfT29sLlcgmqeevWrVixYgVKSkowPj6OWCwmE8dsb6a9sMIj/2maJrV11AJ5dEISC8QFoIJF6Qy1WCxIp9MCRTAYDGKi0lRWHcCUoFarVZC8ZGL5fB5er1d+S6c78UxcfNQ0YrEYSktLhTGx/SozpKSNRqNiJlgsFhgMBh3OjcybZDKZUF9fL0XY6GMi8+UmYwoHqxWEQiERgoSS0PRW05EYzbLZbOjv70csFhNtnOauCmGg1kTNUU125XooTo5lUnEsFpMoLzCliTDamE6nEQqFxFy12WzCHOjfmjVrFtrb2wVoSxAztWsyNGr5TGMqhiGwfUwLGxkZEQhIKBRCIpGQWlCcN847MC1I2S6uA+5fgjX5/9tBKS6p3DoV2apmiwPTfhgSEb5cfNQYKEFULYHVMhnxYqj5hRdewKpVqzBr1iz4fD689NJLWLp0KQYGBtDc3IydO3cCmGZKnEBGu9avX4+ysjJB31ZWVspCCYfDqK+vR3NzM1paWnDs2DF0dnZieHgYzc3N0g8yZQA6iQtM+0q4YbngGNkCpqU4P2uapgsilJWVCb4pGAwKnohjTaBhMTHqWOwfo8QNBoOSDMuFxnHm3BE/A0DaTc2KGBi1HhD9EAAwPj4Oh8MhBePUaBElLyN+qnlHqEOxyaRqoyqDU4ulcT7IuCgM0+k0WlpaJHpGplxaWiqbNB6PIxqNXpBorGmamLaqH4apRHynw+GQ3NCqqiokk0ncdtttsFqnKmCScYRCIfT394vfraqqChMTE8hms3j99ddRUlIi64YmMP2ODPSo0AaSalVwTviZWm7xvbQYVJ+mCoBNJBKyDvL5PCKRiA4bB7x9BPWSMOuIEFdL0k5MTKCpqQmJRELy2Kgym0wmVFZWwuVy6VDVKhUjgguFgq7W0759+zBr1iy0trZi2bJlOHnyJDweD8xmM8rLy/Hd734X73vf+/DQQw+hqqoKQ0NDmDt3rkRIrr32WpjNZgQCAdTV1cHj8eDkyZPwer3w+/1YunQpuru78fDDD4sEqq6uxq5duwAA9fX1yGSmCtNxARHjpEatgOmSrjM5dWciSn/6ChjRo3apmmNqAmg8HkdZWRnC4bBoTuqi5Wal2c1xJUKfjJAleCk9iU1jJCwUCun8WsVEvIxqApJsNpvOFCHWjGuADlwVz+Tz+TA2NiaF3MgUinFolOTUOhnxGx4evmBsOV+qA53XysrKAEA2p0qcQ0a06FSmDzQQCKCsrAzXXHMNSkpKMHfuXKm0cfbsWZw+fRpWqxXDw8OYnJyUdUnowenTp+H1eqUkSVVVFfr7+3WRSkZ6OSZcU9T+VawfhQrR4BfDOXG+ub74HmIV1Uijapq/tdYuXZ+Ty+USh7haJqKkpEQXHXK5XBgfH0cmk0F9fb1O0k5OTuoAkGRKPp9PUjToBBwcHEQikcDixYtlYi0WC9ra2oQh5HI5fOtb34Kmabj66qsBAIcPH8a8efNw5MgRMaGMRiM+/vGPY9GiRVi2bBmGhoaQyWQwe/ZsUe+PHz+OzZs3Y9++faIBrFy5UpgxF5vqzFQjTEzBKQblMYJU7OydKbrC+/mc4eFhVFVVYXJyEpWVlTAajQiFQjhz5gy8Xq8UDfP7/SgtLZUNGolEsGjRIkSjUalNTabH0DH9S2rVAbW2NZlhMdiU0baJiQl5hhqJogRmXmMx8ywGCzJUD0wxLjIyMjGOP8P5TARmShTxVcVF8ggnUOuNU5iw3SqDVknVJAhjyOfzCAQCsFgsqKysxP79+xEMBkV4vutd7xJskMPhwMjICA4dOiRRu/HxcfT19cFut2PDhg1SxTUUCuHo0aM4ceIEBgYGpPSxOqbqOiseO7aVczfTOisuh6KuM85NcQ1x1e8UDocvfZ9TKpVCMBgU734ikRAOy4gJ/TVGo1H8SZSEHBBNmz4VhDlsKhCvsrJS0mEqKirQ19eHnp4eKb9RXl4uUve9730vDAYDGhoaUFNTgzlz5qChoQGVlZWYN2+e2OIPPfQQ9u/fj+3bt8Pr9aK0tBR9fX04ePAgHnnkEZw5cwatra1ob28HMKXqc7Ori56bgAmg/J/a4sUiU8WkmkD8LZ9P7BDrTPf09ODP/uzPcNNNN2HOnDmYO3cuEokEwuEwZs2ahVwuh97eXlRVVaGurg7Lly9He3s75s6di7q6OnluKBTS4W9U01I1XVWiFFY1M4bByTxUXJAqSNVyH8VrSSVuEk3TxF/E59AfqUa3eC/dAWwnMwtyuZwkh/O6avJQmKoRPfaTof1YLAav16uzFAhKHBoaQl9fH2w2G2pra5HJZHDw4EEMDg7i1KlT6OrqEmxdQ0MDgGkk+nXXXYeKigpUVVWhvLwcXq8XbW1tWL58Odra2oTBs5/F5W5mmiNGb9X7VKHC78LhsGjhmYz+gAqV+dlsNoFuqD7ImeiP0pwMBkMvgBiAPICcpmnLDAZDKYD/D0ATgF4At2uaFrrYM4ApEGZ9fT0ikYgu5cDj8cDv918QkQKAmpoaSRdRcUoqUYIAU4PCqpqnT5/GqlWrsHfvXrS2tmLJkiUoLy9HIBBAKpXCokWLcPDgQXR1dWHx4sUAprA/LN8yMDCAHTt2YHx8XJjL0qVLcdVVV+H48ePI5XJ43/veB6vViv379+Oxxx5DLBZDMBjU+a4WLVqky6kDpkO3ZWVlYgrG43GEw2EEAgGdSlyckEuntBq6LYYlUFr39vbi1ltvxXve8x7R3EZGRpDJZHDo0CF89KMfRV1dHe677z5cf/31cLvdaGtrQyKRwK5duxAIBDA+Pp5EY7gAACAASURBVI5wOIw9e/YAgDj2VTgH8VHFYFoyHPoXVe2EG599n4kYqmZoHtCHv7nRqG2aTCbRytSQOUktB1IsBFgWRDWLKQz5HMIdVFyPml6khu2JdVIhCsuXL0c0GsXTTz+Na6+9Fq+88oq0bc2aNWhsbMScOXMEPNzc3Izdu3dj3rx5cDgc8Hq90DQNx44dw/DwsJQFmjt3rlgOwWAQW7ZsQSqV0pXyUbUfdT7UMWCb1bWqjjmJJnx1dTV6e3tlzaqRV1VYBoNBZLPZP71Z9xZzWqZp2rhy7RsAJjRN+3/fOobcr2naP7zdczwej+bxeC4AEnJxM4eOZo/VahWpDUyZL6qtXFzZAJgexEOHDqGtrQ1dXV0wGo248sorUVpaitraWoRCIVxxxRWIRCLYvHkz7r//fmFaNGEymam8us7OTikJnM1m8eKLLwKYliof+chHcPToUWzatAnZbBZf/vKXL4AIaJqGVatWYXJyEqFQaEbJRXOhpKQE2WxWGLU6weqm5IkzwLQmooInrVYrRkZGcNddd8Hj8aClpQULFizArl270NHRga6uLsyePVtqoI+MjGBsbAzr16+HzWbD+fPncfbsWbS3tyOVSuHXv/41ysrK8OCDD6Kurk6QvyqRaZFRUq1X8+nKysouWPiq2TZTeoeKDStOHKbjvjgPkUyDYX46dZ1OJ4aHh6WwIccSAEZGRsTEtdvtGBsbE7+SqiGpJqYK6eB1bvBgMChHJs2aNUtQ8H6/H6dOnUJPT4/0Y/bs2ZLPV1paio6ODjQ3N2NwcBBlZWUwmUxyEIHf70c0GkV9fb34Ljm2J06cQHNzM86fP489e/bg3LlzOHPmDADogMkk1v3mcVGxWEzmjwyL11RwMwCJGHLfMoFbDYYAUxUM+vv7L2rWvRPM6SSAqzVNGzIYDNUAfqdp2ry3e47D4dAYIWAEh2Sz2QQxzI1vNpsFL0R0q9VqFUdmJjNV5N3r9cqCjUajGB0dlRpMBoMB9fX18Hq98Hq9GBwcxIYNG1BaWoqhoSG0trZi4cKFUn6VsACGeC0WC86ePYutW7cil8vh0KFD4hy+8847ceDAASxcuBDpdBrHjx/H0qVL8dvf/hbj4+M67ampqQlVVVWIRqMSeaO9z7azIqeap6ZKcqvVKgse0DNnzq/b7UZvby/mzJmDJUuWIJfL4V3vehdeeeUVzJ49G8DU2YA+nw8WiwWLFi3CF7/4RSxbtgy9vb3weDy44YYbZMxTqRTOnz+P8+fPw2Kx4Cc/+YlIY2arq1UqufDVkq8sH0MndzqdlpNc1I1CM36myCGfyZpNbB+pOAdRLQvjdDoxPj6O+vp6BINBLFq0COfOndNhi/L5qQqrDEoUt0FlsCqOSL2u/o4+VSK9idXq6OjAkSNHJNeyqqoKy5YtQ1VVFbxer7Sf2LN8Po+5c+eioaFB1szZs2dhMplgNBrl5BWr1YqmpiZ0d3djdHQUoVAI0WgU3d3d2LZtG2pqai5IuOeRaypgtNjfRMbH9VcMoOX3auSZRRtVGh8fv6hD/I+FEmgAXjAYDBqAH2qa9hCASk3ThgDgLQZVMdMP1UM1yeVVXwAZFLP9pcHmqYqZ1JTUJF11I9BpysM4KyoqcOLECWGAJpMJAwMDGBwchKZpqK6uhsPhwO7du+HxeLB8+XKpNEnziZuXKN7q6mp4vV4899xzqKqqkvZFo1Hcc889+NGPfoSKigoUCgU8+uijaG5uvgC31NPTg/Pnz2PevHm6cDY1A2CKsVJqORwOlJSU6Mw7+pVU7YShYEa9+vr6cMstt6CsrAx//ud/jtLSUjzxxBO46aabMDk5iYqKChgMBhw4cAAGgwG7du3C+Pg4Hn74Ydxxxx04dOiQpGOsXr0a3d3daGhowPr167Fz507cf//9+OlPf4qzZ88il8shkUjo0PB0MFMLjEQiAifg4uchBQyb2+12YdTEaXGMCa4lYwZmrlOu+vMIdGV01ev1or6+XgSWz+eTygPbtm2TuTOZTGhubpYDIBnVBKYjiaqABKA7XIB9YeAlFouhubkZyWQSixcvRnd3NyorK4Vxk7n09PSIb7SpqUnGo7m5GWVlZejv70cikcC5c+cwPDws+CGXy4W6ujopUHj+/HlYrVacO3cO4+PjGB8fx7lz55DJZNDX14eqqqoZNUD61IiTA6YjmmpmAjVjmogsU12caE9NipoWIRkXoz9Wc6rRNG3wLQb0IoBPAfi1pmk+5Z6Qpmn+t3uO3W7X2AHldwCmJJ7f79flJAFTCHEyKNXpC0yfSkKVlykix44d01UEUMPGN954I7Zt2waj0Yjvfve7mD9/vkQzmKHvdrtFItF3kcvlsG/fPrH1HQ4H6uvrpW1PPvkk+vv7Z6y3xL8NBgOWLVsmlSuBCyNtKhFjpB4LRKyNmuVPs25iYgLPPfccjh07JshuPjsQCMDn8+GLX/wi7rnnHng8Hpw+fRr//M//jMbGRnzrW9/CbbfdhsbGRrS1taG7uxv33XefhJg3bdqE3/3ud6K5ff/738fx48d1pZRphjI0zb9VYnKuGtwgs1WZNqAvwqaWWGH6TnEZD/XvqqoqDA8PS6CEAuY973kPzpw5g2XLlmH//v244YYbkEgkMDExgQceeAB9fX3w+/3SnuJctOIIFYmmD9vKdCmDwYB58+Zhw4YNWL9+Pfr6+vDZz35WaoaNj4/jtttuw+joKLZv345AIIClS5diwYIFcDgcaGlpQTKZRFlZmWh1jY2N+O1vf4uJiQn09/eLT27t2rWMiiGZTKKzsxNNTU04ffo09u7de4FPsPhYKhWhX+xjUvvF4JR69p+K2g8Ggxek2oTD4Yv6nP4ozUnTtMG3/h81GAxPA1gBYMRgMFQrZt3of/W5qlnHnLrilAyq8sD0AAH6Ehl0OMbjcXR3d8tmmemUkGeffVb+/tjHPvZfbfIfTW+88Yb8vXDhQlHjZ8qTqqysvOBQA+BCX9vAwAAefvhhrFixAufPn0dXVxeam5vR3t4u2sehQ4cQDofxwAMP4Etf+hJ27tyJv//7v8fY2BhuueUW5PN5LF68GEePHpVTbQ4fPizI7O7ubgwNDaGyshJutxsf/OAHcf3112PVqlUwGAzweDwiDILBoERL1Yx5Eku0sBIAi93xoAX6OZgeUSgUJBeTuXwqRoqQlMrKSpSXl8Nms+Hll1/GXXfdheuvvx6rV68WTXd4eBgulwsHDx7EsmXLBP7Q39+P97///QKgVevDEzpAOAKhA06nU06HpgAjyn5wcOrga4PBgJtuugm1tbX4zne+g127dsFkMmFiYgJGoxGrVq1CMpnEFVdcgRUrVmBgYAAul0sEzP79+9HW1oZdu3YJY9I0DTz/MRKJYGRkBCtXrkRPTw9GR0dx8uRJjI6Oorq6GocPH8apU6cwOjoqSezFKS4AJJGejIT/c26A6Zrr7Dv7zLmgdksoh8vlEiZVHJhQ6b+tORkMBhcAo6Zpsbf+fhHAPwO4FkBQcYiXapr292/3LJvNprnd7gvK5xoMBtTU1FxQgMztdqO8vFxSMVhgXiWWO6HqeOjQIUng5eKirQ5Mm5Lf+MY3UFpairq6Ol0+UDabFceqmryazWalTEomk0FXVxd++ctf4t5770UymURPTw+effZZJJNJkV58n1qPx2QyoaOjA2+88Qbmzp0LQD9xalRKdYarRFCkxWJBMBhEX18fDhw4gGAwiK1bt0qAYf369SgvL0d3dzfC4TC+973vIRQK4cYbb8SqVavw+c9/Hhs3bsS2bdtgMplgMBgE2PfpT38aR44ckWjZunXrAACzZs2SYnm1tbW4/fbbBXNGk44JvsC0b0IFjLJfxZFZmkxEbdNRq2qNgL4oHh3idrsdhw4dwr333otrrrkGmzZtkvfQ75dOp3H+/Hn09vbiyJEjYuIXCgUsW7YMlZWVSKVS+I//+A/s27cP8+fPx+OPP458Pi/QEz6T2Cy1FIvD4cDQ0BBCoZD4G//qr/4KdXV1+MxnPgOj0Yi2tjYcO3YMmqahubkZfr9fcjFbWlrgdDqxZs0adHZ24sSJE5JobjROnTbscrmwfv16RKNRnDx5EjabDV6vV/duMtcdO3Zg9uzZ2LJlCyKRCAwGAxYuXCiHZKjtNpvNwpQ4d+z32NiYbi2qEUh+VqOtxWBaQicu5hD/YzSnSgBPv6XlmAH8XNO0bQaDYR+Axw0Gw0cA9AF4/+97kMViEXuVTELTNN2pFcUpFyy6xoMOmYZBKIJaYEw9913VyoprP61duxbl5eVSJoPMjdKDKQrMdlcZm8PhkBIpK1aswHPPPYeysjJ0dHTAaDTK0c1qYq+aZKpKK9Vk4ST+IUKEIfi//du/xSc+8Qns3LkTdrsdX/jCF/Cv//qvsNvtePzxx1EoFNDV1YV4PI7HHntMGNDWrVvx/PPPY/Xq1XjxxRdFW9m4cSOWL1+OHTt2oKmpCW63G4899hhmz56Nzs5OVFVVYfHixdi9ezduv/12vPTSS/jhD3+Ie++9V7dAVYgDBQQZLGEDqu9R7RehAPF4XHyJZOo0p5qamuRwi9LSUpSXl+Pw4cN48cUXsWTJEokyUUPIZrM4duwY+vr6cOLECRw9elQ07VdffRXV1dVYvHixBFceeOABaJqGX/7yl3jjjTdQUlKCnTt36jRZzhWFFQBdVU5N0/Dtb38bc+bMwQ9+8AOsW7cO6XQaBw4cgNFoxKxZs7B27VqMjo4iEAiIr6m0tBRPPfUUKioqBBIxPDyMn/3sZ7jyyiuxbt06PPjgg/B6vWhoaEAsFsOBAwckD6+hoUGwdTU1NUin06itrZVAC6OVy5YtQyqVwtmzZ3WVSxn1JVaMWRtq9QHew/lS121xCszFXBYq/bdBmJqmndU0rf2tf23aW6f6apoW1DTtWk3T5rz1/4WFhmag0tJSVFRUoLKyEiUlJfD7/eJgZL1wJvgy2qMOLAApgUvGxMlgxI05ciT+TcZ34403SomQbDaLYDAoIXjmrBEjMjExgcnJSUQiETmtxOPxoLy8HAsWLMDcuXOxb98+dHZ24sorr0RdXZ34l8iA+bfRaJQMfrZTJuit5F1OtHrCLh2R1DhLS0txww034N3vfjeeffZZ2O12DA8P4+tf/zqeffZZNDQ0oL29Hbt370Z/fz8AiH+jUCiIar97924xxe69915YrVa0tbVB0zTs378ff/3Xf43e3l6k02kMDQ0hlUqhv78ft912G7Zv346NGzfCaDRi06ZNiMfjEg3UtOlqnWRCBB8yeZgSV01GZq7kyMiICCZ+zxw19jUWi2HBggWoqqqCwWDA6dOnsWzZMvkd5yCdTkuqycTEBMrLy5HNZvHud78bDQ0NuPnmm5FIJLBs2TIcPHhQosK5XA533303tm3bhtdeew1LliwRJz43IoG0dEd0dXWhvr4emqbh/vvvx4oVK9Db24tt27Zh9+7d6OzsRHV1NVpbW7Fq1SpUVVXhuuuuQ3NzMxoaGqSmFZO8E4mERLB/8pOf4Etf+hLa2tqwcuVKrF27FnPmzEFjYyM2btyI5uZmBAIBnDhxAsFgUJLZ/X4/3ve+92Ht2rXwer24+eabEYlEMDo6KhFLOr/JaKg8sOQKAAGE0pwjrIOuE44Lj1FzOBxymOpMEViVTF/60pf+EN7xjtLXvva1LxFaz4qFVqtVdzglMK0N0WHHov9kHsy2z2Qy8p3JZMLQ0JBktPMeYLpcKQvIXX311bDb7eLT4t80/4iwJbiTPhK1cH0kEpGCeZlMBs8//zyWL1+O4eFhBINBnTmnQgoIpVC1Akqo4tQCOuVpTtBsikQieOaZZ3Dy5ElxSL766qu47rrr4HQ68Zvf/Abr1q3DggULMDw8jOeff17KDcdiMdEwuWA+/elPw+v1YtasWfjVr36FF198EceOHcPixYuxcOFC/PKXv0RbWxvmz5+PyclJ1NTUwOPxYGxsDEajERs3bsQTTzyBkZER8blQY2LIm9qMpmmCc9PeQvermjJzJflZjfSQUamQiDVr1uDBBx8URsY+sZQOmZTBYMDg4CBqampw2223oaSkBCtXroTf70dbWxuy2Sy6urpQXl6OpqYmebfRaMRnP/tZyWE7ffo0DAYDrFarlJzm82OxGCKRCDZt2oT169djYGAAb775Jvbu3Ys777wTdrsdXV1dGB8fx5EjR7Bjxw6UlpZizpw5kiY0b948aJqGc+fOIZVK4dixY/D5fDhw4ABaW1vR3d2NtrY2dHZ2orGxEbnc9IGkHJPrrrsOmzdvxrp161BeXo6hoSG0tLRgcHAQe/fuxcKFC3H8+HGJFqpmMwUKi+0B+txEChaPx4NIJAK/368L8HAOWdGBpnoikcAXv/jFf5qJL1wyzImqscPh0EXSGGJmnho1KB5lpC5kakDcrIzYnTp1CgaDAT6fT6deUpNiuHjlypUS5WJkkCVcyKBsNhsqKiqk1AUdezweihoASwbT18ScLYbOgWlzkhocT0MlGp2MiG22Wq26xa+aP+FwGOfOncOWLVswOTmJzs5OJBIJrFixAsPDw4hEIsjlcnjhhReQTqclOTkUCuGRRx7B2rVrceLECWGYt956K4LBIB5++GG88soriEaj0m7il3w+H06ePImKigo0NjZiYGAADQ0NckpHoVDAqlWrxHelqvUUCJnM1LFdqVQKlZWVMJvNUtpEnRv+niYTmQ4wpQWkUik4nU4EAgFs3rwZ1113na50DDB92jJhJ1arFTt27MDatWsFqGi3Tx1zz4TstrY2TE5O4uDBg7jiiisEn0WGxyoWr732GsrKysQPyn/ECwHA9ddfD2AqIPMv//Iv+OY3v4m+vj68+eabohEbDAZ0dHSgv78fwWAQ/f39uOmmm8TEb2lpQSgUgsvlQk9PD+644w7s2LEDc+bMkRNzvv/97+OVV17BwoUL0d3djWw2C5vNJrmhAwMDOHfuHF577TXk83k0NTVh165dqKmpkXI/zBslGFct5cP6UcSysaoCf0O4hJpepFarBSDujEwmgy984QuXLnP66le/+iVmMhNdqkq6yclJGAwGGQir1SrcnLVqgOnDAaPRKJxOp5xkGgwGkcvlsHjxYgwMDAjn5+IxGAxob29HS0uLhLKpglLK8tn8m6FwMlNGcdTSqdzMRqNRcCXhcFhnXvB7AFIvqaysDJFIRJfDBEyXMDYYDBKWZ7b5D3/4Q0SjUXR2diIQCMDv90ty7JIlS9DY2Iiuri5s27YNW7duFaDqU089hblz56K6uhobNmzAggULxLx7/fXXpRIpwYF+vx+dnZ0oFAo4dOgQPvShD2HhwoWIxWJYt24d9uzZg2g0irGxMXG0bt68GdlsVpg7fVycX44B1XzmtRVj2PgbFo2joFJrVP37v/+71CTnXKmMjGYwazS1tLTA5/OJBm42mwXDZDAYUF5ejkgkgne9613wer2yqbgWAWDlypWCd6MwZQUEng34nve8B3V1dQiHw+js7MQHPvABKeRGxpBIJLBo0SKYzWYcOXIE8Xgcd999N37729+Kw/rw4cO4+eabce7cOaxevRqf+9zn8JGPfASZTAb79u2D0WhEc3Mz6uvr8dBDD+Hqq69Gb28vwuEwenp6MDk5ieHhYSxcuBD9/f149dVXcfToUaxZswZvvPEGZs2apUP5k+lQu+UapT+SUTquZ+5bQkPo4+MZj8Wwn8nJyYtqTpdMVYLm5mZBzzocDlHxVccZNaeSkhK4XC4dTkkl1bnMieGCZ4iXz2YE74477kBzczOMRiPKy8vhdDpRW1srzIn3lpSUSPSKTKpQKEjmNmvWnD9/HgMDAwiFQujt7YXVasVrr70Go9Eo/h7Vyc+JTafTaGpquqDeM6m4bAWd7SdOnMA//uM/wu12o7a2Fi0tLXjve9/7p5ym/zZ9/OMfx+uvv47e3l5drS2S+lnFxbCCZm9v7/9kc/9kVFlZiXQ6jbq6OsybNw9tbW04dOiQfH/HHXfgvvvuwz333IO6ujr09fXB7XZj7969aG9vx8MPP4xcLoeysjI88MADmDVrFrq6uvD000/jL//yL+Ucx7Nnz6KtrQ3V1dV45ZVXpLhfS0sLtmzZgpUrVyIYDOLUqVPwer0YGRnB+fPncffdd+Oxxx5Db2+vgFTnz5+P06dPA4D4ltRIsUp0gPN79fAIFSHP9UolgxqizWZj6s2lXTKloaFBkniLz9EqrkGsnlnHjlPCqyegms1mHDhwAAB0EpTMiWqq0WjEV7/6VYkWES/T1NQkOBZKaJPJJM5vEqONPHCQIf3z588jHA5Lyd5kMomjR4/izTff1EXoqBEYDFNn4jU2NupAcTMltgJTkIpoNIq/+7u/w8KFC3HmzBns2rUL69atQzabxac+9ak/xfT8SegLX/gCHn30UQwODs5Yf5wgxuLSGwCEmdfV1YnEBqbz15hu80//9E+Sc0kfSSaTQSQSQSAQQDAYRCAQgKZp6OnpQXV1tTDDwcFB7NmzB62trYLWZ32jUCgkAZK5c+eKT4X5cvRjbd++HR/4wAfgcrkQDAZRUVGBjo4OhMNh8Ydt2bIFN954I5YtW4aKigq89NJLaG1txcDAAGpra9Hf349HH30Ut9xyi7R7aGgIZ86cwZe//GXJwzx69CiAqQ3P4oUTExPo6OhAb28vCoUCBgcHxZEfi8Uwb948/OIXv5DKoYsXL4bf78evf/1rXXaG3+8XMOnFTnYhUVgW4/E4t+rJLTPxmrfM/3ckfeVPQgyps6YRzSpgmjGpuVFq+gJBdDx1Q2VMZFz0zxQnj6pmFWH4RFTT+cl7WBtqcnJSyskS/UtHPityqhuI5l80GkUkEsGCBQswZ84cZDIZHfBTNfModYpxTLzOTRcKhRCPx3H77bfL0VQ+nw8///nPMW/eVDrjhg0bsGLFCqTTaQwPD+Opp57CX/zFX+CHP/wh1q1bh/nz54vUdTqdaGxshN/vl7yvwcFBceYfOXJE2tLd3Q2/3y8RRhbi+8UvfoHvfOc7+NrXvgaj0Sjg0u7ublx77bX42c9+doEzm3NJwGY0GpUIqyqY6OfgWmD2wNjYGO6//36UlZVB0zTx8alwDwJCNU3DqVOndD4Sr9eLXbt2oa2tDWVlZWL2EbFOZkqsEJ26KiTBYDBIhQtqR9FoFA0NDUilUhgcHMSuXbswb948PP3002hvb8fo6Chqamrw0EMPSaS4sbER99xzD6LRKJqbm6Wo4tVXX41HH30UJSUlCIVCWLhwoeDZGIBwOp343e9+B7PZjKqqKrjdbhw+fFjm6fHHH0dHRwdeeOEFhMNh7Nu3D9XV1VizZg127twp/j1gWjBwnsh8qE0Fg0HBzc3EuDhXvJ9rl8Xm8vn8BUeKFdMlUc+JG5iFuoDpww1pTrH+DBeMijHyeDxi9/KfChhTTadiE9BoNOJjH/uYzvkXCAQkjeOFF17A9u3b8eSTT+Kb3/wmvve97+HYsWMYHBwUWH8oFMLY2Jj4M4jQZfSirKwMixYtQktLi9xD5zgXuUpkpCpIkMXgmGdGdPKnPvUp9PT0SEKn0WjE0qVLpf+7d+/Gs88+i3Q6jdWrV+Nv/uZvkMlk0NHRgcWLF6OxsRElJSUIBAIoLS0Vn0lZWRlqa2vlfEC3240lS5agoaEBixYtwoYNG7B//3489dRTGB8fx49//GOYTCbccsstePbZZ3HLLbdg4cKF0qeWlhZdsIM+DPr4KF2JmyFURAVkqulLpImJCXzqU59CXV2dFCukL5LRLZ/Ph0gkAqt16tTeqqoqnQ+LYNHW1lZhcDS5KTiBqQ3b19cnEA6Gy1Vfy8033yzrbcmSJZiYmIDJZJIKqCdOnICmTdfj3rJlC+rq6qQiQjQahdvtFoe42WzG7NmzBVk+NDSEkZERvPHGG/D5fKisrMSCBQtkDFtaWtDX14cf//jHsNlsWLt2LbZt24axsTFceeWVeOGFF3RVCFKpFKqqqnDXXXfBYDDA5XLNWJ2U/SeRMQH6LAbOEQGcaqQZgODBCD94O7pkzLqKigpd59USKAB0Zk5JSYl0TC2ARZOOjuLe3l7JMFdhA2peVElJCT7zmc9IzhUlL9Nd5s+fD6/XC4/Hg4GBAezZswc7duwAANx+++1Yt26dRO8oQcls1PpNzA/s7+/H8ePHEYlE8Pjjj+ugDGRWV1xxBfr6+lBWViaw/2w2q5M0zO/bs2cPent78fOf/1w20jPPPIP169djy5YtOjAq3wUAK1askCJkdXV1CAQCSCaTaGxslHQMSreRkREkk1On6BKBfvr0aYyNjWHz5s1Yvny5VPlcu3Yt2tra8Jvf/Ab/5//8H0kFWrZsGZYuXYrHH39c+kCpS/DoxRbrwMAAAEhxNWKWCOf4zW9+I0EJnmYDQKKJc+bMEZzQ4cOH0djYKP6OxsZGqf1NE54aKIm4qGQyie7ubtFK7Xa7FGOLRqPia6EQulRpwYIF6O7uBjAFfr3vvvvgdDrx+c9/XjS6mbIPVI1eZUi5XE7KqgDQ5erRzaH+Vi2b8lal0UvXrAOmYf/AdIEwtVSoeqQyF7HH40EwGJQQO5mOmlunosDVqA3fs2TJEnlfc3MzzGYzHnvsMdTX16NQKGBkZATPPPMMxsbGpLQvSwqfPHkSFosF9fX1CAQCYpKGQiFomiZRRCJ6KyoqUFtbi0gkgr6+Ph2zUKEBmUwGVVVViEQigrilpgRArs2fP19Ai4ODgygvL8eBAwdQW1uLl156CcC0L47votOfVS1JTNbkP6YhEEJQKBTEUc8aSPl8HkuWLIHFYsENN9wgZrDJZMIHP/hBXdJtZWUlnnzySV3QI5PJiPAoLooHzHzEEe9Np9Po7e3Fzp075VSU+vp6OfPQ5XJhaGgILpcLfX19KC0txZkzZyS9o6ysTATCqVOndGMBTOPJGBKnFsWSMqz8ZGJnVAAAIABJREFUyfVEyMfExAS+8pWv4LOf/ezvX/T/l4j5dIVCAcPDwygrK8OePXtgMplw5MgRrF27FocOHdId8MAKEgRTqkoNtfniigXFpWIASKoZ8YxvpxxdEsyJ2dIM17OEBRc3kz3Vsqb5fB5DQ0Pw+/0IhUK6zHVKY2KPgOn8NZU5JZNJXR5bPB7H/v37YbPZMDo6Crvdjp/+9Kc68OD+/fvR2tqKEydOwO12i1nCM+JpevX39+PMmTOS02c2m3HNNdegtbUVjY2NF5T3UNNazGazriKo9lYqD6XN+Pg4stksnnvuOZw5cwbd3d1S0mR8fBxXXHEFamtr8fLLL19wlFJfXx82bNiARYsWiTlttVrh8/lk0aiVG4ivMRgMyGazclbarFmz0N/fj9bWVgwPD2Pr1q0wGKaO61q9ejU2btyIf/iH6RqDFRUVmD9/Pvbv3y8haZNput64ysxJ1ByLiRL6zjvvhNfrlSoNfX19AtZk+o96XNTQ0JAIvGAwKGVQ6ABmJQVN07Br1y5cddVVwuiouVosFh4EKYyf2jjLQjc1NQGYMutYZoURaPpMb7/9djzxxBNYuHAhjhw5InlwTGK+99578cgjj0jq1ic+8QmEQiGMjIygrq4OW7duxaJFi+RdiURCnP9Nb9VvoiN+7969ujar9aqocSYSCVx77bV44YUXsHPnTsydO1dX/FHVJNVoN/1J6vHu6ndqBI+/5ZwUV0ctpkuCOQGQWkEzdQjQSzLiUXjAgXrKCh3b8XhcB6EvlsK87nK5oGkaxsbGUCgUsGLFCtTV1WFoaAhnz57FnXfeiaVLl6K8vBy7du3C8ePH8clPfhJ33nknEokE+vr6sHr1aqxevRpVVVXYsWMHXn75ZTz77LPi/7rhhhtwzTXXoKurCz/5yU+wadOmGY8uIiPheWrqZlUlDPE2zJyvrKzEhz70IWn3iRMnRHOio91oNKK+vh6VlZVYsmSJQCGYyExnNFV0aks8v401icrLy4VZp1IpwcVwbOPxOF555RUsX74cmzZtwkMPPQQAgnNZu3at5PwV94tEiR0MBlFeXi4MiveSgd56661yIjN9c8yNM5vNGBsbE+2GgoM1rJmwnc1mUVJSIlo1a3y73W6MjIzA4XDg5MmTKC8vF8YVCoV0m5VCg4dskGEw95PARXX9nTx5EoVCAadPn4amaYhGo5IGA0wBS1evXi0uhB/84AcApk3a9evXo6urS2ppMTm3ra0NW7Zswfz583Hu3Dls374d69evx8GDB3H+/HlZE1dddRV+97vfYf369Th37hy6urrwyU9+Uiq8UqthKWL6fampU9ireChqTJwLUiqV0lkzJL/frzvZppguCeZE2H82m5V/yWQSPp9Px5kB6Jx15MIqXmhyclJOJC2GDBTb0UajEbW1tRLNoJQMBoOw2+3YuHEjXC4XfvWrX6GxsRELFixAXV0dDh8+jG984xuiiTQ0NKCurg4OhwOrV6/G/fffL454g8GAF154Ac8//zysVqvUGaffgu0rJh6ISGyXWkwuFoth8+bNmJiYQCwWw5EjR9DS0oKenh6pQd7R0YG9e/fKIlu8eDFaWlowa9Ys1NfXSy4ZmRzR+VTR6YwlA2eeITVUm82Guro6ZLNZSezl5qXzfvXq1cKc7HY7vF4vbrzxRuzYsUOYFRe36m/iNavVKiWHgelyt3Saq9pmNBqVaJPVOnXWG4vLBQIBnD17FgaDAYFAAGNjY2hubkZ/f7/AUuj3CofDsrH27t2La665Ro6Lpz+Rm5Bg1Vgshlxu6hgk9cCEffv2AZjG3akpM2QUZF40G/n3v/3bv0lmgrp2+TcxcwaDAQ8++CAaGxvx0Y9+FKFQCB/84Adx6tQplJWVycnNw8PDupxElvJlmRiPxwOPx4MFCxYgFArh+PHjUqyOa4IRcc6NGv1mhJNrgAEOKhL8nQoVKYYIFdMlwZxUUo92CofDUtN5JglLU4NUHP78fc5+LjTC8X0+n0QaWP1y9uzZCAaD2LdvnzCRBQsWoKOjA+vWrYPNZsPs2bNFojHMrEIZ1HyiYDAoanVx3Sp+ZiRLLdilmqu5XE4c+DyFo66uTjSfffv2XbAheCrM7NmzRb0nBIJVCfm+RCKBZDIpYWAmNgPTWoJ67FKxP0+t4EDiHNKpXRzF+UMCM/TrVFVV4ezZswJypPnJwzDUFBeOQzgcRl1dnZS/4eEUKsCWa4l5aRR0AHTaUjQa1QF6mYJjsVikHcAUQ1Y1BZWZqlUK1LWgmtQqQyIjogWhEvF9Tz31FDZs2CA1zo8fP46FCxdKe1jix2AwIBKJYNasWRgdHcXhw4dx9dVXi7nOw2RNJpOU+gWgy/Msni+1Xjswne1AKp7vP4QuCebE5Eg1vK5e9/l84lxTNywLfLHIV3FBfHUxzLT429vb4fV6ZRHR18UUherqapSVleGxxx7D2NgYxsfHBZxHc+Cqq65CJBIRh+7k5CQ+97nPYXh4GIsWLYKmTR1JdPToUTzzzDM4evQo3vve98Ln8+kYksqo1No4rCJJKcMF2tPTg87OTjFpzp8/j+7ubqmaODo6VeOPC/3666+Xtvj9fpjNZjz55JMIBoOora2VxN21a9eiqqpKNCKeshIKheD3+1EoFJBIJPD6669j165d8Hq96Ojo0I2rpmno7u7Gxo0b5ZrZbMbcuXNx5MgR0ZRVyUtAI/sPXHhUEdfA8PAwPve5z+l8cwxhkxnTHxiLxdDd3S1hbQIQeU6dzWaTfD5q4SyUVigU8Otf/xrXX389hoaGYLfb5YACFlAjg8tkMvB4PAiHwzKX9FGpkS32qaysTFJ8VIZEQQZAhzviuPp8PkSjUaxatQrLly+H0+nEyZMncfr0abS1tSEajeLo0aMoKSnBrFmzsGDBAuzduxcf+chH8KMf/UjWxIIFC5DP5/Hyyy/Le3O5HFpbWwFMHfo6NDQkuCQemKr2gfuNwpRzqoKGVTAsoM92+H0RzUuCOdFGLWYgVCmpVtLWVVMgZmI6yWQSNTU1MzImlQn4/X6cOHECtbW1qKyslDKjXq9XyrSUlZWhoqICgUAAExMTcDqdKCsrk+OCTp48iUwmg6GhIbHzLRYLFixYgCeeeAJ79+7FmjVrUFlZiU984hNSSZBmidoeLkyWmqWdz0lnbtqKFSuk8D2z1vv6+rBz5045ZEAFOc6ZM0cWoN1uxxtvvIHly5fjQx/6ECYnJ/H666+js7MTv/rVr/Cd73wHTU1N+PrXvw6/3y+bJpvNYvPmzXj66acFCPn9738fTqcTQ0NDun4YjUasXLkSW7dulWsejweBQEAYtpprB0wtZLXYIAu8qUSGrWkaNm3ahN7eXjkgNBAIwGazYXJyUor/Ebd26NAhOBwO9Pb2wufzwePxYOXKlZiYmJCoETUTgmstFosAMvfs2YOmpibRjNSiagyApFIpOQuQgoFm1eHDhyXVKZfLYeXKlXA6ncIYgGkgMtcBN3GhUMDcuXNx5swZcV6zYuaxY8fQ3NyMuro6XHXVVejs7BSoRHl5OY4ePYoXX3wRs2fPxsjICG699VY8/vjjKC0tldNeVHDlvn37cMsttwCYwo+1t7fjxIkT8Pl8sg7pblG1ItXc53UyJp4gTSpOR3s7uiSYU6FQmPFsMwAi7dXM9EKhIJn6NGUAfWXL7u5uXciTEkqVTNu3b0dlZaUUlauvr5cMd+b+cNPY7XZB+3ITsdJBJBLB4OAg5s2bJxUKS0pKcM899+DDH/4wxsfHMTIygqamJgl5v/baa9I/Un19PU6fPo18Pq8LYbOwHk2U2267TaoffPvb3xZfyvj4OIxGIz784Q+jv79fmANPHy4tLcWbb76JNWvWoKSkBN3d3Th16hQSiQTWrFmD6667To65Pn36NKqqqmQjHDlyBIODg7j55puRTqdRU1OD119/HfPnz0dFRYX0g+btSy+9hK985Sv46U9/CmDKETo6OopXX30VwLSazzA1i6Kx6ilL+apECMOVV16J8+fPSwSzvLwcjY2NUsCfAEcCJjs6OqTch5pYXSgUUFdXJyY3552RYbvdjsbGRuzYsUOSeIGpUDxNPCL1WamAoXbO5+Dg4AVpU4FAQAQtTTYypMWLF2P58uX4z//8T/GlnjlzBosWLcKRI0fkN2fOnEEgEIDZbJbTdNrb23HFFVcgHA4jGo2ipqYGBw4cQCKRQDwex6pVqwAAd999t2jc3CMWiwVDQ0PYu3cv/vEf/xFPPPEEDh06JP2iH5cM2e/3i5DiuuTzVAZOAcsxUdd7MSC6mH4vczIYDD8BsAnAqKZpC9+6NuPBmYYp8fkdADcBSAK4V9O0zt/3DqPRKOHqmbQcj8cj2tPF4PLUsugbURHWwLRTkvgaUiaTQW9vL+bOnSuMi1GIcDisO3KI+BA6qcfGxqS2UiAQkFSHQCCAiooKkRgVFRVYsWKFlFB54403RLNTzbpAICDRG+JFeCIHAEGKt7W1YceOHejp6cGVV14JYGrBV1VVoaurS0LQpMrKSjmCyel0yuGKLEi3ZMkSVFdX49FHH8Xk5CSuu+46nDhxAu3t7Whvb8fLL7+MvXv3oru7G7t27UJTUxMOHjyI0dFRaJqG97///br6PStXrsScOXPw1a9+Vdqwb98+rF69Why5xMTQ50NhU1paKiegUPioc2y323HixIn/n7o3D4+qzLbG16mqDFWVVFVqSFUqI5nnhCTMggwiICiIAmoDNopeEb1022q3rX4ttj14Vey+2PpoX2lssFtaWxRkiM0kMkMggcxknlMZKpVUxhrO90exN6ciDt3397uf930eHiSJqapzzrvfvddea212VRgYGEBOTg634Kurq7mUaGhoYNZ1TEwMSz8oMyX3RwK2iatDz1xwcDAGBgYwb948lgdlZmbiwoULmDZtGux2O7q7u1FdXY3Y2Fi/QEv3vaysDIGBgX7OGSqVCmazGXK5HHHXnC4rKirw3HPPQRRFtLe3Y9q0aTh9+jRnmaWlpfjjH/+IuLg4eDwenDx5kjuQlZWVUCqVbHVCWGFSUhKKiop4PFlVVRUAXxfUYDAgICAAgiBg7ty5UCgUsFqtqKysRGDg9bmQ1Ayh8lRqBCi9L3TtpN+jxIJoNuPX+O75+PVdMqftAN4A8GfJ134G4LB43Sf8ZwB+CmARgKRrf6YAeOva39+4qGUpXbRpaUYXlSVSsh4FEhLj0nADuVzOYlEAfl2KKVOm4PPPPwcAlqj09vayl41SqWS3QMIjVCoVqqur4fF4eJLJ8uXLER0djbKyMqSnp3NmYzKZ2IWAJBsUdN1uN7q6upCbm4vCwsKvXAfCTwiIlPoP0fslu1+FQsGTdnt7e7F06VLYbDYmj9KGkMlkTBClTs6hQ4fw6aefMvB77NgxAL6U+0c/+hG2bt2KlStXIikpCcHBwcxpovdGqnW6Rx9++CF3UUlwGhQUhJSUFNbWJScnQ6VSQa/Xo6GhAQ6Hgw3oqCwgWxaaojL+ZKWS8Gc/+xnS09N5Q/T19aGjowNlZWXYvXs3IiIiEBcXh/vuuw/l5eV4++23UV9fj8zMTNxyyy1IS0vzK1U6Ojr4lCepztDQEGOMbrcb8+fPR3NzM4qLixESEoKuri5m0g8MDODQoUOYMmUKHywA2AqXXFPJ6oYoBhs2bEB6ejpfS8LErFYrDAYDYmNj4fV6kZmZyZN+SYZDQ04jIiI4sDscDtbxUTVSWFjI9tE0FLW7uxvt7e3Izc2FKIpsSKfT6fDee+/hV7/6FYqLi+FyudDe3s4dUzrsKQhLJycTMVbqu0VTi5RK5VeSBgqM37S+NTiJonhcEIS4cV9eCmD2tf9+D8Ax+ILTUgB/Fn2h84wgCDrh2iSWb3sdAtvGYxeUAZBhvHT0OJVdHo/HbzS3VK8mxXUEQeDJvICv69LW1gaz2cwt4aCgILS2tnIpRTdCJpNh9+7dbO2al5cHnU4HlUqFlpYWWK1WNog3m834j//4Dzz55JOsWKdZe9QtGk8uHA980pJOxqWfOXfuHJqbm9He7rusY2Nj+Oyzz/DMM8/gpz/9KaKionhDkGrf4XAgMTERDQ0NCA8Px/r16xlETUpKQktLC9xuNxwOB3bs2MGGbx6PB9HR0di0aROsVis8Hg+XDQqFAs3Nzbjttttw5coV/OQnP4FcLkdzczPkcjlKS0v5c1gsFqSnp2NgYAAXL15kEe54UFz62ccLtY8fPw6r1YpPP/0UDocDY2NjKCoqQklJCXJycvDOO+/ggQce4PdJJm4JCQkYGxuD1Wpl0iUA5ok5nU4MDAygurqaRbt1dXW45ZZbMHnyZFy4cAFarRbz5s1DamoqnE4njh8/ztOaOzs7+bmxWq1MExBFn/uBVELk8Xg4sw4NDWVRsdRIkZ53Mt8j7Sb521PAHBwcRFtbG2sJw8PDoVQqYTab2bxu48aNeO+99xAdHc2HGdmyZGdnIzo6mkvY3bt3IyYmBiUlJUhOTkZ9fT0aGxthMpkwODjIejhRFHnAAXXn7HY7wsPDMTw8zCxwoqJQ2UuHCeHL0ozyRutfxZy+bnBmJIBmyc+1XPvatwankJAQBigpuoaGhvLGpBEz0k4GDecbL/aVTny4EflSuvr6+hAeHo7y8nJoNBq4XC4EBwfz6UkAZ1lZGW677TZYLBZs374dly9f5tOoqakJnZ2dKCgowODgIEpLS3H77bfj0KFDyMrKYmCVZsuRKFK6FAqFH6fn2rX1m3oBgE9f4j1NmjSJx7EfOnQI6enp6O3t5TS6oKAADoeDMzG1Wg2r1Qq5XI68vDyUlZXh0qVL6O/vR3JyMvLy8hAQEIC0tDT09vYysZUCcWdnJy5dusTBb+bMmWhvb0diYiKfrF6vF/X19Vi1ahV27NgBAMzNoaAstXWVducISwsKCvLTyQHXheHEyxoeHkZ7ezuysrIQFhaGwcFBREZG4uzZs1Aqldi1axf0ej2efvpprFu3Dvfeey+bCHq9Xmi1Wmg0GgwMDKCpqQkjIyMYGRnB2bNn2VWypaUFc+fOxejoKPbs2QOz2Qyz2Yzg4GAcOnQIt99+O2NpS5YsYewSAKqrq5GRkYHS0lIu4UVRZFXDxYsXWTJFzyE91/R8EM/P6XSira0Nzc3NzMYuKytDVFQUE0Q7Ojo4ew8ODkZQUBBiY2OxePFidHV1Yfbs2Th48CAGBgbYAG7RokU4evQoVq1ahY6ODqSkpOCDDz5AXV0dEhMTERYWhsOHDyMsLIyN96TOo7SkWNvAwIBf1ktCabrvUrzxm9b/14D4jfK0GxJYhHETf+nmkX6MUmwCCmmTkkAVuN6qlTpVAuCR3+Nez4/kRl8TRZ+2qrq6Ghs2bPAbQ9XU1IRLly6hr68PK1asgFarhUKhwMKFC7FhwwZWticlJeHxxx9HYWEhB8ygoCDs3bsXwcHBPOWW+EJdXV1obGz0e4+ZmZmoq6vzXbBxHUiq9SmTaG5uRm1tLR5//HF0dnaiqqoKnZ2d6O7uRmJiIj+kgE9uM2PGDPZVJ2OwefPmwWazMUiq0+mYtU5G9ySONZlM3LaePn06li9fzvPVaOAD2RJTgMrKyvILqvTeyFBNCnaTHxYxuulQGO+fTjyn9PR0DA8Po6amBrt27cKTTz6JoqIinvXmdDqxd+9eAD585cc//jFkMhk2btyI8vJynD9/HhaLhTc1iZvPnz+P7u5u/OUvf0FYWBjq6+vxzDPPYNKkSZg7dy5uuukm/kzJyck4ePAgFi5ciIULF+LYsWM8rIHec3t7ux8DmrJ4KQa0d+9ethAhcJyy2YCAALayoSwxNjaWg67L5cKVK1ewbNky5Ofns3toXV0dRkZGkJGRAUHw2f42NTWhoqICwHXtKVkMkVf58ePHeV9FRERwlr9hwwa89dZbPFiBDn/aKwD4ECelgfTZJeiFMv9v69LR+leD09cNzmwBEC35uSgAbTf6BaJvdPk7gG/iL+m7aD4cPYgDAwMs7KWLT10XwiiIJ2Kz2ZjkR4s6dETuHP89yqyioqLQ0NAAi8XCN83lciE2Nhbz58+HTCZDaGgoQkJCGIM4duwYOxF++umnKC4uRk9PDzIyMvDzn/8cycnJKCsrw8jICGJiYniAgEKh8HNEJKLjeBIpfY0+L500er0eBw4cgMViYblFTEwMmpqa4PF40NXVxb8jMjKS5QiUcREGQOZt5A9NHSUipZItBgmFCQy3Wq3stzQwMMDWr8B1+5BZs2b5zRIkDltNTQ1nwSS4Dgz0zaQzmUx+k5SJP0OLHnTiTG3cuBFerxfTp0/Hb37zG7z11lswmUzcwXrttdfw7LPP4je/+Q08Hg93Z5OSktDR0YE5c+ZAEARUVVWho6MDcXFxuPfee7F69Wq+1rSRz507h7a2NlYUaDQaeDweHDhwAFFRUcjPz/+KB1lOTg7TCGgRRqZSqZCQkIDS0lI/ENnr9eLKlSvwer3sX+5yudDa2or+/n68//77GBsb46Eabrcbf/jDHwD4qoQ777wTK1asgMvlQnNzM3Jzc9n3i2Q1zc3NWLZsGc6cOYOMjAzk5ORg//79iIyMZIb81atXGT/V6XT4yU9+gtdee42bLoGBgX73i55LqZKDCKrUYKKu3bdVM7T+VT+nPQDuv/bf9wP4VPL1tYJvTQXg+C54E3FMpP7SVKrQHzqV6VSVMpxJjBoTE4MrV65wwKJFZDa5XM4kMwAMNhOAfuLECfT29nLbNCUlBf39/fj8889hNpvhcDjQ0dGB1tZWKJVKzJo1i32Ujx07hr6+PgQGBiI/P5/pB8ePH0dVVRWKi4vR2dmJ+vp6fiABX2CKjo5muxbpIjEulbkUvNra2iAIApvAjY2N4erVqzyqSeqy2dzcDJfLBZ1OxyAujb+izI0kQx6PB83Nzbh06RIuX76Mzs5O/l2CICAxMRHvv/8+GhsbeWACGfVJlyiKqKys9LNHcblc3HwgPZ/dbmcPKcqmpGOHxq8ZM2bA4/EwmE0g8vLly9l4LiAgADk5ObBarXj22WdRXFyMl156Cb/+9a+xbt063HnnnVizZg2io6ORnJzMjhIbNmyAKIr44x//iP/8z//k527z5s34/PPPYTQa2YInPDwcLpcL6enpKCkpwdGjR5GUlMSbkTar1JyPgv+cOXNgtVrR29uLjz76iA9NqYTF7XajpKQEH374IWJjY5GZmYmsrCxcuHCBfctkMhnmzJmDGTNmIDg4GAsWLMCCBQvg9Xrxs5/9jKc7nzlzhoPq73//e35fAwMDqKmpweDgILq7uxEfH4+IiAh+z1L5y7lz59DQ0IDXX38dd9xxBx588EFYrVZ0dHTAZDLxZ5TCKcPDw2xhRDrNf3Z9FyrBX+EDv42CILQA+AWA3+LGgzP3w0cjqIGPSrDun31DBJLRyUR+OdKBBySFoA7Z4OAgQkJCuLVNPwdcx5zkct9EXem4GlG8Ll4k5m1ZWRny8/MhiiKamprw5ZdfQhAEXLlyBXq9njM04pjk5+fDZrPB5XLBYrFgcHAQRUVFWLRoERwOB7Kzs5lJTCfqp59+yu8zNjaW1f703uizElNZmh0Cvu4clU+pqamorKxkrgxlk9KS8fDhw7jnnnuYxKfVauHxeNDd3c0l7OjoKNra2tDV1cVC5z179jCPSKPR4OzZs3j44Yfx0ksvYfny5bBarTxMlAzM6H0dOXLEL1M9dOgQQkJCuDHgdDrZ8oZOWalvFenupLhGTU0NZs+ejZSUFC6BATDlQKfTcemUmZmJwsJCjI2NYd++fQgKCkJMTAwSExPhcrkwa9YsGAwGDA8PIyIiAr29vVi7di0uXbqElpYWvPLKK9DpdLhy5Qp+/etfw2g0YsaMGXzyk3OkzWZDTU0Nnn76ab8hlIDPVpjKdymthe7nv//7v3NHtampCampqdDr9Whvb8fHH3+MmJgYREREYMKECVCpVNi5cycqKip42nFYWBj0ej0effRRjIyMoLu7G1qtFgsWLOAOXEFBAZxOJ5qbm5GXl4dTp07hzjvvxNGjR3H77bfjo48+wtKlS6HVanHhwgW43W4eEeVyuZCYmAi1Wo3i4mL8/e9/527kxIkTMXv2bJa6kCMsNZUAfMWDjJ5tqeTsm9Z36dbd+zXfmneDnxUBbPxOr3yDRUGIxJOU7gPXLRikwaenp4c3hUwm4+7V+KyJMIChoSFs2rSJvbWJgEa+RTKZDLW1tZDJZIiPj4dareYOl9TQbXxHcdWqVZDJZOjo6IDH40FCQgKampowMDCAvr4+5OTk8Ovv37/fj7BIHSNpZkQ3lIKUlKCqUqmwf/9+5OTkoK6uDhMmTIDH48HVq1f5QR+/EUh6QNKbnp4ePrGlr3n+/HnodDp88cUX2LdvH/bv34+f//znaG1tRVdXF/bv34+f/OQncLvdKCsrY68tr9fLVAPKAkhISsMJHn/8cXzyySf8c/Qepe+VwH5R9Kn0aQoKLQJlx8+0o/vh8XiQnp4OrVYLh8OBW2+9FfPmzcPIyAiLxEdHRxEaGoq0tDR25Jw7dy5OnTqFgIAA6HQ6nD9/nv2zTCYTpk2bhszMTMY/Ozs7+TPW1NSwk8P4zxMbG/uV4Qzd3d3o6+tDQUEBvvzyS2RkZAAA8vPz4XA48O6778LpdOKJJ56Aw+FAeHg40tLSMDg4iIGBAcTGxkKv1+PNN9/E9u3bIQgC4uPjodfrUVBQgLa2Nixbtoy1qUFBQdwtmzhxIk6dOsUcLhodRg0NEiGTOwLZv3R0dMBisaCgoAAA8Nlnn/E0F/qshA/SITMwMMAcrRvJyMZzGm+0vhcMcVrSN0vyALINJSC3u7ubcRBSnUdHR6O7u5uxlPHuAx6PBxEREZg3b56fVYkUc8rKykJ5eTlv9OLiYmRkZOCuu+6CXq/H4OAgHnjgAe4Otre3IzMzE5WVlWhvb8cnn3z/mxQ4AAAgAElEQVTCFqzFxcX46KOPAPgCzE033YSenh7s3bvXD18g0zIKQtSxlAYlMlKTugeq1WrU1dVh7ty5fJpRxiDFaihI19TUID4+nsuOkZERlkGQSLmhoQE2mw3Z2dnYtWsXgoODsXHjRnzxxRcIDQ1FeXk5nn32WUybNg1vvvkmqqur4fX6RiTRuCNphkAeQbSOHz8Oh8PBAyToIKEyTtqZk8vlbLYnXVFRUcjLy0NnZyfLTgAwpkhyjNHRUeh0OuTn5zPWdeXKFW6y0OYk+GBkZAQ33XQT+vr6kJCQgLlz5/JGTUhIYDY42awQi5yeWUEQEBYWBqfTiYiICAZ8L1269BWfLgAwmUzwer1YunQpPv/8cxQXF6OjowMJCQl4/PHHodVqUVVVhcTEREyZ4qMJRkZG4uTJk2zx8/zzz+Opp55Cc3Mz85jCwsL4sCbu2OjoKHefqdzcvn07HnjgAbS3tyM5ORk7duzwA7aJGtPV1YXLly8jMTERBw8exMmTJyEIAhYsWIBDhw6xpEq6P4eGhpivJ1VjSPfit/GbaH0vgpMgCCy+FUWRiXDUxaCN1NHRAa1WC7fbjZqaGh47feHCBcycOROCIGD16tV49tlnOehQadHZ2QmXy4Xs7Gy/16XvNzY28maOj4/n8oi4IwEBASgtLUVISAgsFgtUKhUuXLjAbfqHHnoITqcToiiyXceBAwdQV1cHhUKBv/zlL340CADMcSGei9R6BAA3A0heoVAoMDg4yD7lH3/8MQtP6XcSZqfX69HZ2cmbp62tjW0/iCtGHJ/6+npUVlZi7dq1MBqNuOmmm2Cz2dDV1YXAwEB8/vnneOqppxAUFASlUolbb70VTzzxBB577DGeM/jZZ59xgKRrSkJfAKivr2e9G2XF9H6Dg4P95vRREKbrTnrB6OhoJCQkwOl0orOzEwsXLoTdbkdZWRl6enqYCkDyE6lD6qRJkzA8PMzBhV6fSLvETwPAsh0pcEvUhcHBQXR1dbFwm6gnDQ0NSElJYcoGAKSlpaGoqMjPPqe4uBj33HMPM7p/8IMfYP369eyfTpY4w8PDmDt3LmNVSqUSubm5uHz5MvP8AgICEBMTw0qEtLQ0eDwe2Gw2zi6JnNzd3c2lniAI2LZtG/Ly8vDll19izZo1KCoqQmpqKk6cOMHPcH9/PyIiIuBwODBt2jR+do4fPw6j0Qiv1zcwlLJM6tjSdaPPTc/oP7u+F8EJuC5NEASBCWk0uZd4QhaLBQ0NDXA6nTAYDCgrK0NAQADuuOMOLFy4EJs3b8aUKVNQUFDAZYcoipg1axaioqIQGhrqRwwkCoI00yAGtMFggM1mY3cC6nYNDQ2xCwFNUiWKAeFe8fHxAHxBrqCggHVS42kMRqORMz2iRQDgjiBhS9TVIuW7FNeQps20ASZOnIiSkhIA108qKklISkB8o4sXL6K5uRn3338/pk+fjqGhIQZCAwICsHjxYrz88suoqqpikSkATJs2DceOHUNWVhbrr6QYk0wmQ2dnJ/+bTnwiDBIATsRPKWWAqCUBAQF+J+/Y2BgmTZqEoqIiuFwuTJo0CXV1dejo6IDdbvdzIlUoFKy9Gx0dxcjICMtO6H3Se5bJZMzroUyOMlB6Ht1uN5xOJ1MV3G43Y32iKDKZUVqC0zUWBIHHPtFrE+5C1ivElicOE4m1pW4FJPmRyWTctAF8ciHK7kRR5OeKnDTI/oaCPD2LxcXFyM7ORmVlJctZALBp4bx585CQkMD0mObmZj546VAhvhPdJ9qzxBMkQjQ995Stf5fs6XsTnARB4ChPTGFKQ2mqRkdHB9fEhKGQEVxJSQlef/11NDU14cEHH0R1dTVOnDiBiIgIGI1GZGZmIjo6mjeXdImiyGk8LQJD58yZw+UiDU9wuVyw2Wyoq6tDbGwst9O1Wi1bd4yNjSEkJIRb5/Q6UqCevkasWioHaANQCUrtWMoCQkJC4HA4+EGVnsxUVtLvp1IvOjqaMRYC7/v6+rBnzx689NJL0Gg0KCoqQktLC+rr69HX1wedTsc2sSUlJRzwEhISsHjxYni9XqjVapSUlPCJSe+DSJTSRUEDAE+VJfCUHl7aWICvOzc8PMy4zUsvvQS73Q6Px8M0isHBQfZsJzdJss8ZGhpiic6OHTuwdetWdhwYHBzk7Afwtf03b96M5cuXw2Kx+HkmjY6OYnh4mDM6m82G7u5unny8cuVKVFZWoqCggDvAgA8nTUhIQGhoKGJiYnjaNJXDKpWKXUTJpQEAioqK8OCDD/KzMjIyAqVSCa1WizvuuAPbt29HS0sLZsyYwZkTvS51XeVyORNMiemv1+v5M9Fz09/fj56eHuTm5qKjo4MrFFH0F9x3dHRwlkwmgFIMmHSgdI2kzp9SuObbcCbp+t4EJ0qvqQVPJ15gYCCfErS5KYhs3LgReXl5GBgYQEJCAhwOBywWC/R6PRYsWICcnBx0dXXBaDRCo9HwhBRa0otLN5R+9+DgIC5duoTc3FwEBQWxc6TNZkNfXx+qq6uZxxMcHMyDOCk7qK6u5oGadHKMD0xjY2N8UkqDERnekX0KAKZZ0HsF4HcaSYFw6UlFwYJSbuI5jY2NwWw24/nnn0d5eTmeeOIJyOVybNiwAQCQnZ3NftJz585lIt6FCxeQlZUFjUaDnJwcHDlyBIWFhX73hsojKWZEDzplgoQpSgFksj8BfAGBnBuki7q12dnZnBVQhtzf38/dXoXCN6bd4XAwheHEiRPo7u5m0qFSqURYWBhUKhVUKhV0Oh1eeeUVLFu2DImJiZwRBgUF8Tgvuud1dXWMYYmiz0QvPDzcL9sLCAhAdXU1VqxYgZaWFmi1Wmbvkxc5jWAngLqxsREbNmxgUJo0cvSzXq8Xd999N/7P//k/OHDgAKZNm8aDQgmUp2eCMlNinEtZ5y6XizPsOXPm4LPPPsP06dP5fmRnZ3PHfNKkSTzGiigb7e3t7JlFw1DH3yfKoujQHM9v+m9r6/4nFlHpgetBirKPsbExBksnTJiA7u5uNnPfuNHXGKRThcorwgJmz57NJ/TY2Bh6enr8vGXefPNNrF+/nkmI5GpJzPDMzEzs378f4eHhiImJQVBQEBP4SFfW39+PjIwMnhsWEBDAE1f3798PwN/lcvznpu/T5wV85QA5MRDrWDoxlVJpKeAsNSyT1vj0YNDD3d/fD41GA6/Xy6LM6dOnY9WqVdizZw/Onz8PrVaLuXPnIjc3l+elvffee5g5cybWrFnDvklSh1J6bWKNG41GPxY4pfNS6xAKktKxQWRtQqRMi8XCQwIAsPEZlV9SrIOGUtByuVxoaGjA6Ogo5s+fj3Xr1mF4eBhTpkxhNjmV3A888AA3Ro4cOQK73Q6r1crlvEqlgsPh4PmAlF2sXr0aLpcLycnJbFNL9zoyMpJnHJ4+fRpxcXGskxseHmbSMdnSUBZ45MgRVFdXIz09nZsxarUaTz/9NCZMmIBVq1Zh1qxZ3D3W6/WwWCysTKBrSz70NKF6PKZZVFSEiRMn8iEipYOQg4PH4+Hy/Mknn0RFRQXefvttPykZHY6EudI+Hk8jkAYm6XPzdet7EZykI6FoExIJjuxPCS+iTolKpUJUVBS7CRIASNGZRMGEDdH4cim2kZ2djfDwcMYGRkZG2KlRLpejpKQEjz76KEpKShAUFITk5GR4PB5YrVZ26KRuClnddnZ2oqioCIcPHwbw1SxHWvpQJ4n+TQ8Pnca0ecdnd3q9njlRtBHuvvtuHDhwwM9rSrqKi4sxdepU6HQ6xiwMBgNPFrHZbLjpppuQlJSE2NhYdHV1Yd++fQgLC0NWVhbuu+8+tLa2IigoCDk5OUzSJDKmXC7HPffcgw8//BADAwPQ6/VfcT2UyhekrqW0SMQ9MDAAq9WKmpoaP5a50+lkbCUgIABms5m9wQVBQE1NDVJTU9HT08OZjs1mQ0JCAoKDg/HMM89g3759OHPmDM6cOcNYzvTp02EymTBnzhw0NzejqqoKpaWlPHmGrjfhZV6vF6dOnWJuVVJSEoKCgtjwjj43bc6qqioIgsDcrPLych45T3jN6Ogo85e2b9+O+vp6/PCHP0RHRwdmzpyJJ598EnK5HFeuXEFWVhZmz56NW2+9FX//+9+RkZGBwcFBmEwmqFQq7vLSQU9dM6kwXgrQkwSM3D/J1+yzzz5Dfn4+vF4vwsPD8cEHH2BkZATx8fF+rh9SJwJalGzQ4Xgj2RjwzbYp34vgBIA7LIIg8OZsbW2FWq2G3W5nDGfOnDm46667MHHiRPT29rL3NaXTtFEA+MldKO2Vso9DQ0Pxpz/9id3/xvOjBEHAO++8g6VLl6K8vJwzjaSkJCQkJMBsNvsBtnRKUeCg30FlljRgUEAlOgSVW1JqgdSTWQrSElAuPXVOnjzJZvKURdEmIdyprq4OJpOJR1lRiatSqTBhwgQ0NzfDYrHg4sWLsFgsuPPOO+F0OtHS0oKoqChkZWVxlyYxMRE7d+7Erl27+PcvWrQIH330EUJCQpgqQEvqXCq1gpFiNBR8lUolOjs7odFovhJkR0ZGEBkZyeRQo9EItVqN/v5+NDQ0ID4+ngH2uro6pKenIysrCzExMbh69SruvvturFixgjf7L3/5SyQkJCAkJAT5+fno6elBVlYW9uzZA5fLBYPBwO14en1R9Fn8zJgxA3a7HRMmTIBWq2WxLWWMVqvVb1grbcrz58/D4/EwR40ye8I+TSYT6uvrsW3bNqjVaqhUKixevBiJiYlIS0vD8PAw0tPTUVpaivj4eHbroC43YVR0yHZ1dXGzie7B+DVlyhTs2bMHcrkcOTk5aGlpwZo1a+B2uxETE4O2tjbI5XJmqRNRmp6x8dn/+Gd9fID6Lut7MY4cAHs1dXR0oLa2lgWiY2NjmDx5Mh5++GFs3boVr732Gu644w6uswnkpYsxXkqhUCj8vi+tjYODgxEdHe3nRQRcv5iEifT29qKiooI5MVevXkVPTw/jRf39/WzN2tbW5seBuVEqSw8NYU3UmZQGVQq6ZDpHAK0UWyCpA2VZ5P9tNpv9Ahd99vr6erZ1IfqCKIrspmCxWKBQ+MZf19bW4tixY7h06RLa29u5K6hSqeD1ernspACj0WjwX//1X5z5UGdJ+tmlGSAALt+pRCOL5KGhIW6KSC016OfpEHO73cygps9HY64CAwNhNpuRmJgIt9uNgYEBGI1GdljYtWsXfve73yE+Ph5RUVGc+dL49WnTpqGiogKdnZ0YGRlhQJzseaTvR6/Xsxe913t9OsvY2Bhb2kqDMGXIZJBHBxix/NPS0pCXlwfAh33u3r0bXV1dzKWiqiAsLIzLt4CAAAQHB6Ovr48PqNHRUVZPSJc0QBCkQS6qdJjTIsy2rq4O8fHxaG9vZ1Kx9JmUNgGk2fCNjCG/6/peZE6jo6Po6OjAD37wA9x9992IjY3lepy6WVTPiqLInQLgui0sbXipfGM8MXF8fUsPtXSNJ40BYA+oixe/1dTzWxcFK7fbzb4/APxkNQD8cJjxKv7h4WFERkayDS3ge4iio6Nxyy23QK1Wo7S0lEtLWpWVlZg8eTIMBgP7T82fPx9dXV1ISkpCZ2cn1Go1GhsbER0dzYGTwOXk5GTOAtva2rhckMl8o8GpG0SaRyKZ0pI+wHRPqOkRHBzMr0dSH61W6/dwE/nW6/Wyg4HJZOLWdGtrK8/WCwgIgFarxbZt2xAZGYmEhAQcPHgQGRkZ0Ol0MBqNTBs5efIk4uLi0N/fD5fLhaioKHbLpPcWEBDAeF1zczMUCgUmT54MwNfZpaxJEASWdAwNDbFlirRJQXIluqf0Nw2xHBoaQlJSEiIjI7Fv3z4EBgbyINaBgQH26yJf9oaGBp6enJqayl3v3t5eDo7SuXK0D2bMmIFz587B6/WyMiIzMxP19fUsJgeAlpYW9pNft24dPvnkE9bUUUYvBeLpQJEOd5BmT9J1o0nPfL+/9jv/gyslJQXnzp1jTklfXx+uXLmC/Px8bo9K9ToE+Er5NeMzJ8os6DSiCxMYGIjm5mb23Pk+LqldLADGOaibSXrCBx98ENu2beNN63A4EBISguPHj6O+vh7AdYyNWtg7d+7Ehg0buI1NWQj5gpNJP32PZpuRljA4OBhdXV0oLi7Gzp07+dqr1Wp88cUX7JNEpSotaklLsybgOs4EXJfpEFWCvk+L7GJJ8kPeTBs3bsTjjz/O4Looimz+dv/99+NXv/oV9u3bh6eeegoOhwN6vR5btmzBH/7wBzz++ONYtGgRysvLcfjwYc4Qf/rTn7LdsCAIPH0lICAAb7zxBpKTk2G1WjlA0sHpcrkYW1KpVNx8APw3aH19PaKiopgoS4MA3G43IiMjecLPU089xc0HypRGRkZQW1sLj8eDqKgoeL1e1NXVcTk7ODiI/v5+BqXpmkiHzM6dO5cVDaQSCAwMRHt7O7q7uzFv3jwexEGqicTERFY+ED0BuJ4dSYOSy+Xywxa/rjP3dSJv4HsSnEjzJIo+f+WIiAjWuZGJGXB9EAJZL0gxHWm3aHz2Q4AfLbncNwzTbrczBtPX14fMzEwGDqUBT8p6BXze0FQC0M+bzWaUlZVxyi59T5TBSVvmRqORuVrEpgXg152UEvoIxN6yZQuCg4PR0tKCsbExLFy4EEeOHOHJL2+++SY8Hg8KCgpw9uxZLF26FJcvX0Z9fT2/zp///Gc88sgjiIiIwJkzZ9gUn659ZGQkj8geGxtDTk4Ov4+BgQG0tLTg7NmzfmS61tZWvk5E1JNyhaRdHNIAEk+KAiiRRN1uN7RaLTo7OxEZGcm/g/hLNDCCrHqTk5MRHx+Pq1evoqWlhcFdrVaL0dFRvPLKK6itrUVfXx9mzJiB1NRUhIWFsfyHxM9yuRwmkwkPPPAAysrKWLlAmkm1Wg2NRoPR0VHMmjULwcHBSElJ4WfF4/GgoqKCnTbp7/HCX8DnDJCbm8vvtbm5GSdOnIDH42HyI2WOUVFREEWf0wMF/u7ubvzud7/D2NgY5s6dC7vdDpVKhYKCAsTHx8Pr9aKqqoq7jfSM0/s5duwYVxvZ2dlc8o+OjmLx4sVwOp2IjY1FUFAQSktLkZWVhTNnziA6OppZ6uTPLhXmUxePMigK9iQxku5JGp77det7EZzoAZdydZRKJTQaDU/hlcvl7Pyn0WjYFVEKrEpLOSlvicS/lFpTyivtYtAcPKI1UKZBKbA0uBHT1m6383tvamr6ygN4I98ayj4oiNEJROQ2kiUQmE+/LzAwEAUFBVziyuVyREVF8YihxsZGbvkKgoALFy4A8Pl7j199fX347W9/+9+/cV+zXC7XN9qvEngKgOkigD8+QWOFpF8jpndXVxeCgoLQ09PDcpgf/vCH+MUvfoHf/OY3+PGPf8w2MV6vb8CnWq3mTUtatvfff58VAIGBgdi4cSPcbjeXhyQjIQtatVqNc+fOsb+VQqFAdna238Fz9OhRaLVaAD5CaWlpKZc+4ztWH3zwAZYsWQKZTAaz2Yzk5GRMmjQJ27dvR2FhIdRqNUJCQtgKprq6GuvXr8cf/vAH3H333fjFL36BvLw81NXVoa2tze/+k5qATOmI5Q74P8sejwfFxcXcoKEpzgUFBXC73Whra2Mni/r6eoSGhnLHlPYQ3VNyvCTqC3B9zNV4y+Xvsr4XwUlKAaALS3T+qqoq5OTksNPj5cuXmak6OjqKiRMnQq/Xw2q1MihJJzYBztTJk+JU5G8UGBjIeqacnBxUVFQgLi4OV69e9SM0SoMfcN1ZU/p9wL+rNp50CYCnChOwC1wvZ2gjDg8Pw2w2o7Ozk7Enh8OBhx56iFNwej96vR533XUXAgIC2BKXStkb4Wf/L5bFYuH/ps4XTbWRdngIa6LrQJ1MWnTt29rakJCQwJQDwNd5nT17Nv7xj38wPkTiYafTCb1ez4C51WpFXl4es/nb29sRGRnJJzndS9Iw0rpy5Qreeust1hgSk5yCzunTpzE0NITY2FgAvuwgMjKSB2hKDy5RFP2GBMTHx7ML6L/9279haGgIp06dQkNDA4PVer0ef/zjH/Huu+9Cp9PBZrOhqamJOW8hISHM6qdGTWhoKLRaLWpra/14TNKDnJ6V22+/Hampqbh48SJ7hLe0tGBkZAR2ux3x8fHo7u5Gbm4uiouLGceVluPUJCLYQLovpM/jdwlW34vgROUAcX+k1rsTJkyAzWaDwWBAQUEBj/ZpbGzEuXPnEB0djcrKSpYGEIju9XphMBiQlJSE+Ph4CIKAvr4+BAcHc5udghaVCy+//DKWLl2KwMBATJo0CfX19Vw3k1c4cF2TB1wPrCtWrMDw8DCio6Px1ltvQSaTsS0JlYmxsbEsTRm/6PeRPIXGZUs3Lk2BUavVSE1NhSiK0Ov1yMnJgVarRUZGBn76059yBhoYGMh40Pr16/HnP/8Za9euxdmzZxm09Xq9WLt2LZKSkvx8oSMiIthepaenB6Io4u233+byhw4SQRBgMBhgt9uxcuVKvP/++0hOTkZLSwsDsePJmONN5ejgIA0YPcQk9KZF0zz0ej0fYmTVMTIygqSkJBw5cgSvvvoqnnjiCdZlkhgW8Fnn1tXVITw8nMvLqKgozsKIuU6fSwoG//73v4cgCIiNjYVSqURBQQEHJpfLxdeUgiup+6mcIsGu9IDbuXMnrFYryAlWEAQO3HPmzIHZbEZkZCQ8Hg+mTZuGxsZG5n9RsCGGObX4+/r64PV6Gfin5kVra6vffpMG3ri4OERFRbHNMDm49vX1QaPR4Pz584iOjuZSn8jNZEMNwC8YUYAcr2qQYkzfdnh+L4ITAA4UXq+X274KhYIfKupw0IaLjIzEggULsHfvXsyfPx9VVVVM+ZeWSJcuXcLhw4ehVCqxaNEiP4InORyQDYtGo8FHH32EFStWICYmBgkJCWhvb2dfnKlTp0KpVLKPOV38xMREAD7nA4PBgLi4ONTW1vImJlDZZrP51eaAL0uicUHA9S6d9GdoVVZWIjMzk1NwIoOazWacPn0aDz30ENvySkuIsbExbN26lYPTI488gujoaPz1r3+FTCbDzp07AQC5ubmYMmUKNBoNT6AZGBhgPITwA8reVq5cidLSUlRVVeHVV1/Fj370I37gqctFQL7H4/ELtPTfUlCV5Dx0HcaDpTRtViphIl6QwWDAF198gQULFuCzzz7Dyy+/jKeeegoRERGsWxsYGGBnhvb2dhZtUweYKBjkPko+6V6vF9u2bePXbGxsRGpqKpc3NPxALpezhAXwuSgQIVXKdRq/Wltb2d2UnhXi+I2NjaGurg7Dw8OoqKhATEwMm+TRIUQkYzrUSa4knaxCcjDgurA6MDAQM2fOxNGjR7Fx40ZoNBrs3bsX0dHRCA0N5fFQhYWFfM8nTJiACRMmoLW1FU6nE8PDwxgbG2NvcelhRE0Q6X2mvfldsnrhnyFF/f+1CgoKxFOnTvHYm4qKCiiVSh7p09LSwi6UpC+iCRpkjUuAH42wobRWqumy2+3o6elhewzKwJ577jn09PRwRlNdXc0lks1mYxq/TqdDUFAQdDodNBoNc3TsdjuCg4MRERGBvLw8XL58GS+//DLX4fTQ0MalOp2Cj0wm85PvjIyM+KW9hKsMDw/j8uXL2LRpE37729/yyKeBgQF0dnayJGLNmjVcaubn58PtdiMjIwMTJ07E5MmTMXv2bCxevBhXrlxBfX29n8aQFgU3hULBAc/pdH6lOUD/JkyFwFdyKZWOVqdgTp0hKdZEPye9BtQYoBb71q1bMWXKFM6waVOGhYWhrq4OBw4c4OzG4/EgOzsb69atYymNVqvljp5arWb+kiAISE5OZjoCBRIK0FeuXMHHH3/MwuUXX3wRmzZt8suYvvzySxiNRp6E+/DDD+PVV1/F1atX0dDQgKNHj34FAgD8pU0rV67EhAkTOCg2NDSwEoEOa8BnYme1WjE2NgatVsv0GbrGdrudyZtKpRKtra2w2+1ITU3FunXrkJmZiZqaGgiCz6/q0UcfBeDDUG02G+8RQRDw97//ncehL1u2DACg0WjQ39+Pc+fOYXBwkDMnnU7HPCsp7kQddqnmkJoz1/DdG7byvpWEKQjCNkEQbIIglEq+9oIgCK2CIBRf+3Ob5HvPCIJQIwhClSAIC77t99MNos0ok8kQERGB9vZ2HDp0CEFBQeyxTQpuwnU8Ht9o6V27dsFgMEClUsFqtSIrKwsFBQWIiYnhEkAmk8FgMHCarFQqYTAYkJKSgsHBQWg0Guh0OqjVasycOZOjvsVigcFgYIEjBTkAPKJIOvbG4XCgoqICKSkp0Ov1PFSAyjsizUlPM8qeKHukoCCdrkqkxgMHDmDRokV8c4liERsbi/Pnz+PWW2+FSqXiTtHkyZMxd+5cxMfHQy6X4/Tp0zh48CB0Oh3S0tL4ZJNiEFTWxMfHIzIykpsEZPAmDbpUjpNNK5FXCROk7JSup1Kp5M9OG5WkLfRvKWta2vErLS3ltrpcLmcHA4fDwcMrzWYzP0vFxcU4deoUBgcHeSAD+ZdLPZAWLFgAvV7Pglhq1TudTlRVVWH37t2cAU+dOpUDk91uR2lpKa5evQq9Xg+FQoHQ0FAOIkSmJeyKrjVdXymGKYoiPvnkE/T29kKv10On08FkMkGtVqOyshKHDx/GsWPHUFNTg46ODn7/9GzJZDKe8EMQgFqtRm9vL8MK5J+fkpKCxMREaLVaHu1OsieVSoWkpCRkZWXhxIkTvNcyMjJgs9mg0WgwODiI1tZWdg4NCQnhwK9SqTgwqVQqvhbSEpLez7et78IQ3w5g4Q2+/rooirnX/uwHAEEQ0gHcAyDj2v/zpiAIX09kuLakdACXywW9Xo/JkydDoVDwpIfo6GjeAENDQyxtGBkZwZQpU1BYWAiz2YyQkBC++ampqcjOzuZ0nfAs4gVRFlRYWIjq6moOPoIg4FiEGzoAACAASURBVMUXX0RPTw9vsLi4OMTExMBoNCI5ORkGg4HlBt3d3TzPKyYmBvPnz8fixYuxatUqzg4IO6FUWIrDANcdCgiPIdCYMgziIZ05c4ZtX0JCQvgzREREICsrC3V1dXjvvfcwZcoUJCQkwOPxYHh4mAmn5BqanZ2Nm2++Gb/+9a+xYsUKzJgxw6/kKCgoYHmNTCZDcnIyb3ri9UhTc2oOUDZITHQi6LndbrbwILU8LcqYaVFZTy1+6TXq6uryy0JpeKQoilCr1Vi8eDEHOjr5Dxw4gLa2Nj5giMKhUCig1WrR0dGBgYEBlJSUoLi4GBUVFRgYGEBpaSmPYTIYDKioqEBhYSG8Xi+am5vR2trK45Y0Gg0zt6XWJCaTCUNDQ34cJ2nJLd0DIyMjPClHr9cjNzcX8fHxWLduHZ5++mn86le/wiOPPILJkycz3kh4E9EAQkNDeUgsDeSkaTR0f8PDwxEYGIhbb72VaTU9PT1oamrClClTEBgYiKamJiQkJCAiIgI333wzXC4XMjIyMDw8zJY8hDWSfIyseaV/aCDt+HFQN5qGNH79qxN/v24tBfCBKIqjAOoFQagBMBnA6W95DRboUgkQGBiIGTNmoL+/H4Avore2tiIkJITLGSKcRUdH4+LFi+jt7eUTkjaEVqtFamoqPzhdXV3o6elh8DwkJAQmkwnNzc2oqKjg8dBGoxFTp07F1atX2ZOabE3I8oLwmJCQEJ6eShiUdMrsCy+8wJkHLWLsSjcljUQiMzay7ZV2qfbs2YP4+HikpqbySUyWGrfccgsaGxuRn5+PLVu2YP78+XA6nbjvvvtw5coVbo+Hh4cjNjYWg4ODqKurQ1xcHMLDw2E2mzE6OgqXy4Xq6moEBgYiNDQU06ZNQ19fH8rKyuByuRiEJnsSyuzIQoQEs5RJ0meUegCN19P19/cjKCiIjfaILR4VFcWZakBAANra2vg6k8eW3W6H1+vF1KlT8emnn34lAOzduxcqlYoZ3VSOh4WFobS0FENDQ7h69SoaGxsZaN67dy8MBgMmTZqE9PR0vPbaawB8h4vdbkd7ezvf+76+PoSEhLBYmbJZt9vNEIO0fJO6UUjfp0wmw6effor09HQmZgYHB8Pj8UCr1TJ+JJPJcNNNN6G+vp4xNApQ5Dah1+tx9OhRpKeno62tDcnJyXwfYmNjGYOjYZt9fX3Izs7G0NAQpk+fjokTJ2Lfvn2IjY2F0+lEfHw8GhsboVAokJKSgsbGRj7sLRYL702CKFQqFT/fFKDoM9Pn/ybRL/AdMadrwekzURQzr/37BQA/BNAP4AKAn4iiaBcE4Q0AZ0RR3Hnt594FcEAUxY9u8Dt5qGZ0dHR+TU0NlwQkViQNmdPpRFhYGBwOh59jJLXM5XI5ioqK0NDQgNWrV/MHp44ClRsVFRVwu93o6+tjan9QUBBkMhk/ROSxffPNN6OlpQXDw8M4f/483nzzTURFRaG/vx8mkwlxcXE4efIkFAoFMjIyMG/ePKhUKvT393NbGPCd9mvWrEFnZ6cfwEtkUhI0088SO5qmvH7yySeora2FQqHAyy+/jCVLlsBut+PJJ59kmYjT6YTT6UR4eDjOnDmDGTNm4MyZM6iqqgLgK10Ih6DrRUxjGhtN3uVkZdvR0cGSDLo2e/fu5QOABoTSvSDjOJqcIu3OjG8h089Ryk8BjT4zHQZhYWHo7e3lLHPz5s2QyWSYP38+W/uGh4ejqamJ7/Pzzz8PpVKJL7/8kp4zfg/BwcF46qmn+DPTwUd/u1wu7Nu3j8mCP/zhD3H77bdj6tSpcDgc6Ovrg8vlYu4PAC4ZKROk+7548eJv3Vf/r9b+/fvR1dWFS5cuISwsDILg80D3er1ITk5Gf38/rFYrhoaG0NDQgNOnT3OJGhkZiebmZpY49ff3o7GxEUNDQ2hvb+eGDnU9AX+W//h489/CnL5mvQUgAUAufKPGX7v29e888VcUxXdEUSwQRbGApmxIJQAGg4HTYb1ej5aWFtYwUfkVGBiI1tZWDA4OsuMl6eAIZ6KLJQgCsrKyoFQqodPpoNfr/bpZgA+IJW3W5s2buayZOnUqjhw5gnnz5jFXpq+vDxRQlyxZgri4OB7G0NraCq1Wy+3ubdu2MY5C9TZ1DUkuQtkEkTIdDgd27dqFM2fOQKFQIC4uDi+88AKWLFnCljEAGMcijldSUhLq6uoQHR2NoaEhREdHY/LkyVi1ahXCw8NhsViYle5yudiQnwz5+vv72dyPjPgB38ZdtmwZRFHE2rVr8ctf/pKzUyrdKODQoQBcd7wk0Jy+T6csAO6OUVlApMn+/n7uiAHgThU5X7rdbnR0dMDtdsNms6GjowMLFy6E1+vFLbfcAgAsEKeyafPmzfj973+Pv/71rygpKcHJkyfx4Ycf4oMPPsDu3buZY7d+/XqsWrUKZrMZlZWVaGxsRENDA8rLy5ngGRMTA4VCgaGhIbaeCQkJQURExD+9of4nF41hnz17NjcHQkNDER8fD5lMhvT0dHR1daGjowMajQbTp09nz/m+vj50d3cjLS2N5x/SPaMDl3AoypqkZd4/s/6lzOnrvicIwjMAIIrib659rxDAC6IofmNZl5+fLx48eJBraOD6hNhrv4cvDgkf6QGV/gz5Sc+ePZvtHOjUpk4JjZu6evUquru7GZwm0SZtqkOHDiE1NRXp6ekICwtDVVUVjEYjXC4XFi1ahNtuuw0nT55Ea2srNm/ezMxanU7HHamYmBgMDQ2hu7sbR48exeuvv85ZhUqlYv9wSu29Xi8SEhKQlpaGRYsWwWazcXAldrMg+CbUzpgxAyaTiXkxoihCp9Ohvr6e32dFRQV7/TQ2NmLChAlsUSuKIo+IIj0iuRuSF3pDQwPrq9RqNdra2lBZWYl7770XZrMZvb29eOSRR/yA3W9blMWM/xu43r2kDJLsYG/EC/vfsLZs2YKmpia8//77SEpKwsWLFzmQ3whzoj+UBZJNjUaj4cYDdXWjo6NhMBj4ngUGBqK0tBSFhYVYu3YtRkdHeWKKFN+jqThUmvf29vIIrr6+PuTm5rIXu8FggMPhQHV1NYxGI/R6Perq6nDLLbegoqICK1euZHsWKuXJNYE+3/jOMx2M9LVvypz+JZ6TcG0U+bV/3gmAOnl7APxFEIQtAKwAkgCc+w6/j08eKu2kjHHavGFhYcxWJbBYEAQuheRyOcxmM/bs2YPZs2czEC7lPQmCzy9q0qRJKC0thd1uZ3oC+T6Njo5i8uTJ2LZtGxYuXIhLly7h1VdfxeXLlzE2Nobjx4/jBz/4ASZNmsTt3tHRUVby0zTiP/3pT1i1ahWUSiWWLVuG119/nd+L0+nEc889xxaq8fHxqK6uZivX/v5+HkvU1NTEjPGGhgaYzWbWWNHcOOr2KZVKxjz0ej0uXbrEYtmoqCiUlZVxRkrZJeF3VLY2NTXxQAiTyYSenh50dnYiPDwckydPxpEjR9De3o5XXnnFDzeRdp6+LlhJiXm05PLr7pfBwcEwm81oa2vjbHI8kfN/y9JoNFAoFJgzZw4L278ODAeuE3rpv5uamtDW1gaz2YyxsTGkpKRwAO/u7obFYkFERASbG+r1eixatAj19fU4efIkDh8+zNksQRdE9QgMDERPTw9MJhNjo6RplcpeiG5A3dl58+bxvrlw4QIEQUB1dTW2bNmCgwcPIjQ0lKEZh8PhR1amSuK7rn914u9sQRBy4SvZGgD827U3UCYIwt8AlANwA9goiuK3sq2odKB2OZ2kdKMILFWpVJwp0AVwuVzo7u5mFvfw8DASEhLwt7/9DU888QTfcCqnqIvhdruRlpaGqqoquN1uBuNJJmA0GvHXv/6VGcKrV6/G008/jby8PNTX12PHjh3YtGkTJk6cyAGG5qlFRkbi448/5lYqgcjvvPMOHnnkEfz2t7/FkiVLUF1djaamJkybNo3dBGbOnAmr1Ypjx44hJycHMTExeO+99zA0NISbbroJtbW1uHDhAjIzryexBEwDvlrf6/VCpVLhxIkTWLJkCTcQxsbGYDAYuEMVGBjIhv8AeKgB4BtjHhAQgNraWgC+zmBdXR2Pupo4cSL27t0Lo9HIPCTJM/ON91u6OakUJnM5KuXokCKB6C9/+UtERUWhpaUFKSkpsFgsEASBeTZ2ux3d3d3sYdTU1MR2u4sXL4bFYsE//vEPZvlL34dcLsfatWvx2GOPobe3F1VVVayvI/eKoKAgNnrr6elhVnpMTAzjcCS3CQsLQ21tLY9bJ98mCrrjxenjgzmRd4kP1NHRgZCQELS2trId7+joKP72t79x5zI4OBg5OTlMZbnttttgsVgYjKffFxQUxFUCNQaow61WqzmA0s8SZ4yssEnjST5QHo8HOTk5+PDDDyGXy7FlyxY8//zzjOXS/v5X+JTfijmJonivKIoRoigGiKIYJYriu6IorhFFMUsUxWxRFO+QZFEQRfFXoigmiKKYIorige/6RjweD7OuiRNCH0o6PCAgIIBNwyhIkXe41+tFXFwcFAoFjEYjPv/8cwZEKXiN7xCQrQUJOw0GAwPDDzzwAFwuF4aHh6HX67Fjxw489thjuHjxIhISEvDaa6+hurqaSxzCgYihK4o+3yMKrENDQ6iqqsI999zDkpvbb78dguCzmI2Li2P7i6SkJDQ0NOCFF15AdnY2rFYrWlpasGnTJsbciOQoCL6JNCqVCk1NTTCZTBgZGUF4eDhKS0vh8XiY/UtTiAlPI4M/l8vFoK9cLkdcXBzPhzMajSgqKuJx1RR0ydOdPvPXPmSSljEdEF6vl83Tent7ERAQgOHhYWZHm0wm1mmp1WpkZmZyd4iErIAvGJ8+fRpqtRo6nY6Z3wCQlJQEACgpKcH27dvZOUGqiQSAxMRE/OlPf8L+/ftx8uRJdHZ2IjY2FmazmceV07iknp4eFp5rtVp+ZgHwsARyN1AoFDCbzTAYDJgxYwaTK2/EfpdyvMZfL8J0mpqacPbsWRw+fBinTp3i78tkMixatAgymQwWiwX33nsv+6WT9o+qESoNFQoFDAYDLBYLf5bQ0FDmS6nVan5ujEYjIiIiEBQUxEHJ7XYzOzwwMJBHjz/00EMYHBzEwYMHMXHiRADX/b1oX38XjhPwPXLCpGhNaS9xJ6jlSSUZWWaQpzMZWrW1tSEtLQ02m42Jl6dPn/5KMKIpJrRJrFarX3eJCJUBAQGYMWMGamtrkZGRwTyW6OhoNDY24sUXX0RoaCj27NmD48ePw2KxcB1N4KAgCNBoNDCZTDh69CjWrVuHqKgolJaWwmQyISgoCGfOnIFcLkdxcTEiIyO5TT44OIjOzk7cd9993Hk0Go2oqqrCG2+8gaGhIR70QEHb7XYjMTERIyMjsFqtKC8vR1tbGzscrFmzBiEhIZg4cSLPYCN3A8quent7mdgYFRWF7OxstLS04C9/+Quys7ORl5eHlJQU5OTk+A2L+KaTcbz9Md1vogAQ2xsA32ebzcbkzZycHO7sCYLAXCcae0S+UzabjYexEhfM4/Gw3zUFK8IECe+qrq5mUq7b7WZ5Um9vLzIzM9Hc3Iz6+nq2ujEYDBgYGGDXTqPRyBknPaNE6lUqlTCZTNBoNJg0aRK0Wi2MRiO0Wi2CgoL4GQ8KCkJ8fDxXD1L8czymJzVYNBgMzKcbGhpCXl4ebr75ZiQnJ7MVESka1Go1uzMkJSUhJiaGDymlUsmBiabWEBYpbUJJMVKCEqRuswRZpKWlobCwEBUVFViyZAkTdW9U1n7d+l4EJ4qoUtcA6SJWL6WopAona1XAN13W4XAgNDSUR/gkJSXh4MGDfr+L8CVyb5TL5YiIiGAV9cjICPR6PeNV6enpUKvVjG8J16QT4eHh2Lt3L2dsNGxhbGwMNpsNixYtQlVVFc6ePYuioiI899xzjPdUVlbixIkTuOuuu7Bw4ULExcWhrKwM8+fPh8FgQE5ODtRqNcLDw3Hy5Enk5uayr5BOp8PVq1dZ0kBBMDQ0FK2trbBarVySxcTEIC8vD21tbRgeHsaLL74Ih8OB3bt3IzExEVFRUQgPD0dxcTGbnymVSjbbb21tRVdXF2QyGUpKSjB37lwG1Mn0/5uIheOXdLiEeI1lLu08UnNCqVT6sYsXLVoEACxxIQCXpCgulwvnzp3jLqzdbkdvby+7IRDbvLKykp8vshpet24dHnroIdx7773o7u5m8atOp0NkZCTOnDkDs9mMtLQ0hIWFISwsjK9/f38/BwjppBEKWJQx6/V6vrZ5eXlMAiXHAqvVioCAALS0tODRRx/FmjVrAPgCa2RkJAcmaZASBAFxcXGYNWsW0y2WLl2Kuro6nopM/z81OcLCwrhhQ5kMHbpSygXxzaSjyyhDlkqwKMuj60nfo/HnoigiNDQU7777Ltrb27F06VJuGkn90r5ufS+CEwBm7FJ6SJ7NUsIaRWsa20wnt3hNuAmApwMnJCTA6/WNzaHpKgD4ptCiG2IymZCeno7MzEw/hu+KFStgNpuhUqkQGxvLpyBlHWVlZXjllVewbt06qNVq5tCYzWZ0dHRgypQpmD59Onp7ezFx4kQ8++yzUKlUWL9+PW+W4eFhbNq0CZGRkYiIiEBJSQnPcHv44YdRVVXF4GZZWRljSlTWEoudVPZyuRxOpxMpKSnsKBAcHIzY2FiMjIwgOjoaDQ0NaGlpgUajwZIlS5CcnIyamhpUV1czxhAbGwuNRoOIiAgcO3YMouibnrx69Wr09PQgPz8fO3bs8LNp/bZ7TIsC0tDQELefybGB3BGoSULmfmS4Rxwtal643W7U1tbyvY+Li0NTUxOqq6sZRyRFAJXDgiDA4XDg/fffx8aNGzF9+nQWKoeFhbH52qRJk5CQkMAY2OHDh2G32xkiMJlMXCZTtjc2NsZZl16vZy5RSkoK6uvr2XO8ra2Nu86vvvoqXnvtNcTExKChoYGvZ2trK0uGALD3k9lsRm5uLh/oc+fOhVKpxMSJE7mDFhsb69fNHk8EleJelPlQBk0yMdKvkphcmvnS3qGvk+sCMcKp+UH7+O2338bw8DC7gPyvCU7Dw8Po6uqC0+lk8Ja6SWTGRheXUnciV9KDSw+iSqWC0+mExWKBTCbj+vzrFt2YGy0SHC9atIiBY61Wi8TERM5cSktLceTIETz88MPM+yksLMT+/ftRW1vLZDWS4syePRsKhQJVVVU4deoUlEolTpw4AUEQ0NjYyO6KKSkpqKqqQkVFBdauXYvm5mYesU0PAdXzNEZcWtMnJCQgISEBVqsVH374IZYvX84npdQrKSAgACaTCWFhYVwSt7S0cKZnMplgNpsRFhaGwcFB1NbWwmg0QqVSoby8HG+88Yafmd/XBSrKfIgbBFw3I5MeNGq1Gl1dXejr68P999/PGB61v6kMp+eBCLoXL15ke5M77rgD1dXVfptpbGwMSUlJvCmNRiNuvvlmLFmyBGFhYYwPlZeXIzMzE/n5+Sx6lslk2Lp1K/PqRkdH0dXVhf7+fvaPIn5aX18f2traUFJSAp1OB4vFwmO9MzIy4HK50NjYiNWrV2Pnzp34xS9+gaamJpw5cwbZ2dlISUnxu46EDel0OsZX8/PzWfVAMpOuri6kpKQwPECZDQUQArAJx6L9QuRj0lAajUa/z0QgOu0zqYljcHAwnnzySRw+fBhvvfUWl5KU9RK/b2BggGf29fT0cGn9jVjlN+7a/8ElDUB0stEmk/7tdrtht9uh1Wphs9kYp6KWOJ2ING8MADsYSNe3Uedp6XQ6DgiRkZHMApdazMrlctTX1+NHP/oRhoaG0NbWhvXr1zOO0NjYiKioKAwODiIoKAjh4eEAfBwPEmYSS5zGm1utVly8eBEVFRXMuiaOCABOzaUDEUmvRNKOo0ePIiQkBLm5uVi5ciU++OADng1IWFt9fT1kMhmn/gB4TiCJh69cucKdUCJIDg4Oor29nZXsL730EndHv+mBk7oiEhY2fimVSuZ3kR0NUQlog9AiasjY2BgaGxsRGRmJoqIiHiE1vmM0MjLCpbxer8fx48exfPlyFBYWslzIaDTCZDJBr9ejqamJhxqEh4fj4sWLcLlcrNrv6Ojge0gHKj2TFITJ2cFkMkEmk8FoNOLWW2/FnDlz0N3dDbvdzsJbp9PpZ0xHVj50v6lUoueHunRut5vpMDSjkYB/er9Szh8FKsoI6Z5RedrV1cXBgxIAqXsF3Wc6VAcGBpjSQ++TXoMUBlQi2mw2bN269X9H5kTlWkhICHMs6AQErncsyFOGRjeHh4czmEodOcokIiMjOX1UKBTMHJe+5ncJUHK5HD09PRAEAUajEVlZWcjJyUFYWBjzRkjX9Nhjj+Gpp55iTGzLli2YMmUKj31qaGhAeHg4PB4PysvLYTQa0dPTg6qqKqSkpPBrZmVl4dP/S915h1dZZ/v+sxPSe++9QBpgDKEpIIOIKCAggg1FBWWOXRgdZ8ZxlKPjOBas2MCCDCiCdBhpAlIDCYSEhAQS0nt2et/7/hHX4g2Wc+5zz72P930eHmDvZJf3/b3rt9Z3fdf3u2kT8fHx9PT0aHru6elJd3e3fudBgwbh6uqqYHJRUZGC2fb29hQUFGAymdSIcfr06To1n52drfiKZDFJSUmEhIQo6U9K2cjISMrKymhoaFBl0YqKCkJDQwkJCVHzUl9fX1555RW9KeDXu3jCVbuycyVdIOFzyU3i5uY2YCxJ3leCiL+/P1988QVTp07lm2++YepUFcvQzEFm00R0buzYsSq3K+oGSUlJ6kLj5uZGbW0t99xzD6dPn+bIkSM8/fTTFBQUqLSuSPtWV1eTk5OjnDdPT098fHzUbmrChAkMHz6ctLQ0hg8fzrFjx6ioqFA5muuvv57CwkI2b96sn1lm1wDtVLu6upKSksKNN97ITTfdpFlNUlISMTExA+RpjBiVHMYyXLiFcn6cnZ113cg1FIKlfAZ5zmQyERcXx6hRo9i1axczZ87E19d3QKYmga2vr0+7rM3Nzdx2223/5f33mwhOgN7QkiHA5aAEDJDdkPms9vZ2xVtkIru8vJzBgwfj5eVFWFiYtpyvDEZy4STt/LVD+DQCmHt6euLm5kZiYiJxcXG4u7srDyUxMVHJmEuWLOHMmTMEBgayb98+ysrKmD17NqWlpRw8eJDS0lJSUlKorq7Wtiv0L4ChQ4cycuRIlWE9fvw4UVFRqj7Y19dHW1sbvb29eHl5YW9vT2RkpHK+zGYzn376Kenp6QwdOlRLoYqKCsaPH09gYCDHjh1jyJAh2vny9vYmPDwcNzc30tLS1HhTymfxfGtsbFTFzqioKM2onJ2dsVqtvPnmm2zcuHEALeSXDqMAnRxSatx2221q5mg2m2ltbaWlpUVlOeQ7GZsFx48fZ+PGjcydO5ePPvoIGxsbRo4cyZdffsmf/vQnJk6cyBtvvMFHH33E8uXLmTt3LtHR0TQ0NODq6qraWVKe5ebmcuONNzJmzBi2bNlCaGgof/nLXzhx4gTbtm3j0KFDbNu2jblz57J27VpVTB08eLAObcvG6eLiwoQJE7j++utpbm6moqKCwsJCent7KSoqUkxQuGr/8R//QWpqKikpKUyaNAkHBwdmzJjB/PnziYqK0vtBqoVJkyYNaPRItijn8+cmJuTfssbr6uoGANbyHgJpGGksgtXOnj2bTz/9VEt0QAfIpQHV3t6u68nOzo68vDy+/PLL335ZZzwJP/ec7AISrAQslZkmmd+Rck+0mX19fbWV6uXlpTKqxteW7ExS3J87UlNTB7SKBftobW1VnWZpAT/zzDPcfPPNfPzxx0D/riNtaTF8LC8vZ+LEicpRErVPkeqA/nmzFStWkJ6eTmlpKWfOnFFlQyNY2dnZqUJ5kkk0NDQQEhLCq6++ytNPP01xcTHz5s3jhx9+IC8vj/r6eq677jqSk5N59dVXCQkJ0ZtfwGMhs/r4+GhW6+Pjo35rUVFRWnKEhoaqzIlkmD09PWRlZfHyyy//om+gnPcrz73YGqWlpZGQkDBgUNfd3V0zK6vVqgPDUu64ubmxb98+nn76aR588EGsVqvayIeEhBAXF6fjE7K7i0+cyCjLsHd2djb33nsvy5cvZ+fOnQQFBTFr1iyys7NJTk4mMDCQVatWsXz5cjo6OnB3d6enp4cjR47w/vvvc/jwYX744Qfl0YnmmJeXFzNnzmTMmDGK26WmplJTU8OXX34JwMyZMwcofwYHB7No0SLlTwFasgnuJvOcxrLTiANe2SGTf8u1EWqDkQQtMj5C1JSNStaJlLOizCnvb7FYdO2bTKYBnoaCG//ud7/75aDAb0imVw6RDBHHFbjMHZF6uLW1VTMmmROTbEs6MnZ2djo7JmCoMYWV40oOyc8dUibKRe7u7qaqqoq2tjadb/L398fNzY1z585hMpl44oknWLt2LfPmzWPPnj2cPn2aGTNmUFtbS3t7O9u3b2fUqFFUVlYqXuTn56dYS1paGvv371dZEF9fX06dOsXkyZPJyMjA3d2dmpoanJ2d1RZdgrT4ni1evJi33nqL/fv389lnn5GUlMTKlSvJysqivr6eMWPG0NnZybFjx1Tg383NTdUMpSMm+FNrayuenp56zmNjY4mOjsbX15eysjKCgoLIzs4mKipKzR1jY2MpLy/n5MmTqqQoh7SgYSAGKCCraIhLduXt7a0dNSkZ5HrOmTMHi8WiOtk2NjZs2bKFW2+9lcTERKVAyByllLO9vb1qjlFUVITZbKagoIDW1lbMZjPz589n37593HbbbcyaNYvvv/+eIUOGUFpayquvvkp3dzcbN25UzOW9994jPDyc2tpagoKCaGlpYceOHUyfPl0DmI1Nv4vz8OHD6e3tJTQ0lKSkJCorK8nJycHOzo7IyEgAnTro6emhra1Nr4MEucDAQI4fP84DDzygMINkU8aKQNa4VB0Ck8hj0nmTHKKYpwAAIABJREFU35Gs1+gIJD8vWJq8pvF5yZRbWlro7OzUklMCltxvXV1dVFRUqMTRzx2/iczJCLJJN0YAPiN/BFDf96CgIJXXqK2tHVAHi7BcUVERnp6eOqLh5OSkZpPGQzKyX+LqCNFTyGrOzs5ER0eTmppKQEAAo0ePxs7OjtLSUiZMmMCmTZuora1l0qRJZGZmqp9YZ2cndXV1NDQ0KGhpMpm4+eablR5hlPCNi4ujra1NCXuZmZmYTP3W0T09PTg5OWmXpre3FxcXFz2HIpcSHR3NmDFjeOWVVzh16hQhISFERkZia2vL0aNHsbe3Jzk5WW9OGxsbgoODlUMmr9fS0oKXlxeJiYkqc2xra8vKlSvZtm0b586dY9CgQUycOJGOjg4FeGNiYrh48aKC0MZz/HOYgzCYo6KiVF9KRNNEpK6vr09b1zY2NjQ0NJCYmMi+ffswmUxMnjyZ22+/nQcffJD09HQCAwNVMkbWgShGWq1WwsLCOHHiBEePHiUvLw9bW1sGDx5MeXk5DzzwAP7+/owYMYKysjLi4+NJT09n2bJl9Pb28tprr7Fv3z5cXFzYsWMHDzzwAFOnTtUOm3zPt956i5aWFkwmkzYjbG37PeMmTZqEnZ0dGzZsUNgiMjISV1dX1RH38fHBz88PNzc3goODuXDhAnfccQfXXHMNS5YsUZ0zOafGbFWCiGzixvLuyurBqEhrpAnAZY6gsayTLF42fgG+BRiXbMtIVRDsTyY5fun4zWiIHzly5CetRTkJsuNJKVNRUaEiX5LmA9oFE5EvsX6qr6/XzMJsNjNjxowB7y8nXBaGkSwoh3QvjAPJAvbJDr5jxw5CQ0MZPnw4lZWVpKSksGXLFqB/txERfXFPFfuiUaNGaedFjry8PHWPlRb30qVLeeeddwgNDSU/P1/F72pra4mJidG5MT8/P8rKylSUrKmpiUuXLnHs2DHi4+MZPnw4eXl5lJSUMGXKFIqKiqitrVVmtKgbiFWRs7MzTU1NeHh4EBgYSGVlpVogFRYWUldXp+VSQkIC1dXVOpgs2IoE2smTJ/8qL8pkMjF+/HjuuOMOpYyIs46420jZ7u/vr+c9LS2N1157jSlTpqi4IKClqvgcOjs7a/ZQW1urksxZWVk4ODiobM769euZNWuWYlHHjh3jm2++oaioiN7eXoYMGcLvf/97MjIymDFjBl9++SWpqanKuZswYYKWROXl5WrGOXPmTDw9Peno6CAjI4Po6GgtW8eOHauNDpEitrW1JSIigosXLw4of+U+sbGxYfv27UyaNGlAFiqbraxV+R3jbKkEFuEl2djYKLFWKpeuri5qamrUr060wIzyP5LZWiwWHfa1te2XCpYAJ893d3frKFpHRwc33XQTZ8+e/R/Vc/ofPywWi0q7Xkn0cnBwoLm5GVtbWx3bkOelixUYGKhBorGxkYsXL+p8kFxQUS24dOnSgPc2tpuNhDfj0dfXR0NDg5ooiJaN/FukR6qqqjh//jzh4eE0NzcTGxur1tLGQCrDusOGDQP62/VSrkK/dtGhQ4d0XjAsLIxJkyaxaNEiAF0A9fX1yvGSyXEh48nohZ2dHc8884yOWRw7dowPPviAOXPmkJCQoN9NQNvm5mZdwDLycOzYMbXZkvMshgpRUVGqd37w4EEV8xM8rKCggISEBAoKCnj66ad/MWOSnfiBBx7QWUvxkZPPIiJzwsMRZ9/s7GzCwsJ0gl486ETrSmYwZUC6qamJa6+9lrCwMMaOHUtxcbFuZMIX+vLLL9m2bRuBgYHEx8fT2dnJvffey9tvv42rqyujRo1i/vz5ZGVlcd111xEeHk5fX7+xgtlsJj8/H0dHR86fP8/tt99ORkaGkjitVqvOJnp6etLQ0MC8efMGtO2lw1VQUDCgKriSWnP99dcPCFrGTpls6BKY5Hcki5HnRYnWOHAsa9XBwUGzdWAA0C0jVAKAC8Nf7j1JCqS0k88ln+XXkqPfTHAS2RExzDQe0pVpampS3WxAF2Bzc7NiSnJDiDuKTGw7OzurBGxOTs5P3l+i+y8B46I1JTeRkdciYG1AQAB33nknI0eOxMPDg2PHjlFWVkZ0dPSAssTNzY3IHwdrzWYztbW1jBgxYsB3k0Xk6empDOmAgAACAwOpqalRFU/RhhJbKpPJRH19PYcPH2bPnj2EhYWRlZVFcnIyq1at4r333qO8vJzo6Gi2b9/Oww8/zBdffEFcXBxms1nbxiLSZm9vT1FRET4+Pvj6+pKTk4OTk5NyiISaIMakApx3d3ezf/9+FixYgNVq5fPPP1e/PZFCNp53BwcHLl26xCOPPAJclhsJDg7WsjU0NJSuri6ldkhp4eXlxbFjxxg3bpze1PLZjWRAuUlEFzsgIICwsDA6Ozv57LPP6O3t1dGYlStX4ujoyLp167jvvvtYuHAh77//PiNGjODYsWMsXLiQ1atXM3fuXEaNGoXVaqW0tJSEhAQuXbqk7jFFRUU88cQTPPfcc8THx/P999+r75yvry/Nzc1cuHABNzc3HnnkEebPnz+AzW2EPIx/5Lj11lv1ebkn5LwaA9PPrXW4zIUSVVbhoQne29fXpxm1VCSCMRk74VJRyHiZVCByf0gX8crB5t98t86II8DAtjL0n6CAgABtu0o3QhT9BMTt6OhQ3ETY2wJ+GmVWZP7KeBiHKX+uqySaSBLkXF1ddVhSzDo7Ozt1URjxETs7O7Ub6unpUfnhQYMGUVhYOECrSBaXSFOI1rhonT/44IPKUu7p6VElTcl0ysrKdMHNnj2bw4cPk5+fj6enp44Gvffee7S0tDB06FBOnz7NsmXL9IYW+RI3Nzedj5JrIhmJLGJhSHd3d2M2m/Hy8iIyMhIHBwfWrFlDQkICJ0+e5J577uGqq67Czs6Oe+65h7lz5xISEqJqpNJkmDZtGkOHDqWkpERxxdLSUqqqqggKCtLszM3NTU0gWltbycvLIygoSLtlch2F82Z0ABk3bpx2E7ds2aLW8/v27ePAgQO89tprnDt3ji+++ILPP/+cN954gz//+c/09vYydepUFi5cyJo1a/jDH/5AcXExTz31FF9//TVLlixh6tSplJaWctVVV2Eymdi+fTthYWEsWrSIhx56iM7OThISEli6dKkqPkgJamNjQ2FhIXfccQezZ8/WdfRzh6xRi8XCJ598ohmJrFN53pghXVnyGcdhjNmWUDQkuHd1dVFdXa2Qg3TgRNpYhn+NG4GwzY0Auqxt2Tz+v5mt6+vro6WlRcu1KzMXuUjV1dWcOXNGmdmiSiBiabLDCkgqU9aurq4Kqspukp2d/bPvZewgGQ/jBTQOTrq4uKhOj+zMFouF4uJiJQheuHCB2NhYwsLCCA4OJjg4mMbGRq655hrlCcmcXVlZGb29vTz++OOEhoYquNzV1cU111zD+++/rx0648Jqbm6mvr6eyB/NCry9vdm7dy+enp7ExcUxceJEurq68PPzIywsjJUrV7JixQquvfZa1qxZw5Ej/WKl3d3dBAYGUl1drcPQvb29jBgxQkdIpMQSioS4wIpV1oEDBygvL2f16tU89NBDFBcX09PTw+uvv87ChQv585//zPDhw5UHdN111xESEsLcuXPp7e3F29sbFxcXDh8+TFlZGVOnTtW2tnweGbXJysoiPz9fDU8nTpxIeHg47u7u9PX1exfKIO7QoUMV37Fa+zXln376afbs2UN8fDwrVqxg8uTJKjXzwQcfkJuby759+3TIW9ZPR0cHW7du5bnnniMhIQGTycS4ceNwdnZm9+7dlJeXM336dBISErjtttvYtWsXCxYs4NChQ/z+97/nzTff1M/m5+dHY2MjsbGxlJaWEhoayg033PCLJY+x4yxmmldmWmK3BWiQunLTNVYJxqzMyP9zdHRUX0bJiiQQyYYu4LkRq5VzJU0H47mTsu6/mib4TVAJBNF3c3MbAApfWd5NnjxZzQCFCm82m3F2dsZsNtPb20tgYCDOzs5YLBYaGxvx8/OjubmZsLAwqqurlbgou79xuvrn2LTGQ2p4if6yI0k2IbwNG5t+I0bxUJPdzNPTk3PnzpGWlsaBAwd48cUXCQkJ0S5SYWEhwcHBxMbG8tZbb9Hc3ExOTg4BAQGcO3eOnp4e9u7dS3p6OrNnz9YsUjKQuro6QkJCKCwspLu7m/Hjx3P8+HHS0tKwtbVl/fr12NjYcPbsWQIDA1m/fj12dnasXLmS1atX097ezo033khra6samQoDPSkpSdVGXV1dqa+vJzo6WpULAgIC1JPv97//Pffffz8XLlygoaGBv/71r0yePJmUlBTeeustTCaTOuQ+8MADBAYG8uyzz3LnnXfy2muv6eAtoME5KChIvQsDAwPVKvvAgQOMHDmStLQ0zYj8/PwIDQ1VW25vb2/VH5Ib4/vvv6etrY0//vGPbNu2TbtUf/7znzl+/DinT5/G19eXTz/9lIceeogXX3yRd955h7S0NJYsWaLB3GKx6FD0/fffr+XhokWLaGho4JtvvqGzs5OrrrqK5cuXk5qayvr16/Hy8lIJ5EGDBhEYGKiA/bx585g5c+ZPpFOM94utrS2vvfaaBhgJPPL9ZG0asagrwXFj11TWsGSa8pjokkn3VgKh8A3l/aSasbHpV9w0duiMJbgRfP+5xpPx+O8oYYYBnwOBgAX40Gq1LjeZTN7AOiCSfjXM26z9DiwmYDkwFWgH7rVarad+7T1sbGzUxtk4vyMnW4JCWVmZku8kggsw3djYqPIZArT5+vrS2NioOE1fX5+aPHZ0dHD27FlSUlIABkR+I/HTeAjHRnYC4Z4AylDv7u7m8OHD6u3m6+tLS0sLRUVFhISEcObMGZKSkoB+ENwIxkvWtnv3bjw9PZk8eTKvvvoqbW1tfPzxx/j5+fHCCy8QFhZGfn4+4eHhtLS06AJ3dnamtrYWOzs7bfWPHj2aTZs2MWPGDOzt7amqqmL48OGEh4czb9487ditW7eOtLQ0Vq5cqZlKRkYGqampREREqKOJnPe6ujo1tfT09CQ4OJiamhpGjBjBtddeq6TV06dPA/2Ugo8//vgnN8cNN9yAo6MjL730kjoVC5huMpkYMWKEbiBynaBf1eCee+7h0Ucf5Y477tAZQ7mGIoonnJru7m696RwcHDhw4AD29vbEx8frjSM30ogRI1i4cCFLlizhySef5JVXXmHt2rWYzWYyMzN5/fXXef/993FwcCA8PJz9+/ezbNkyLl26xKlTp1i6dCn29vakpKQQFRXFoUOHWL16NXZ2dkydOpXW1lZmz57NmjVrePDBBzUjdXFxYfDgwXz22Wfccsst5Ofns2/fvivvR6A/w3344Yd/wvI2Zj7G8yyPSxdQskdjNw3Q+09KbfGlk+Fqo0yK0c3ZmLm5ubkp11DuE+OgtiQPgtn+Ylz45ZChRy/91k8JwCjgP0z95pnPAHusVmscsOfH/wPcSL92eBz91k/v/1dvYOwcGC+AtDnlcR8fH8URBACX58Rc0mQyqayGKFiaTCYtv6qrqzU41dTUaNdJOiPGi3TlIYCe7BbigyduK4B2NQSvKSwsxNPTk+joaJqbm7nzzju5dOkSly5dwmQyKWVAulODBg1iypQpNDY2MnHiRBYvXoyzszPTpk2jurqatLQ0Nm/erGqXnZ2das8jPCk7Ozs6Ozv59NNP2bhxIxMmTODkyZOq6SPeew4ODtx2223U19ezc+dOhgwZwv33309WVhbOzs74+vrS2to6ANNycXFRh5GOjg4iIiIIDQ2lt7dXZ8e6u7vJzMyksrJSb4DExMSfpPKbN2/m66+/Zvv27Tg6OqoTsxBsbW1tVYBfhmHt7e2Jjo5mx44dzJgxg7lz59Lc3KylhZxLKa9lMzPqgfX29mrX7N133+Xee+/VdSZ/f/LJJyQnJ7Np0yZsbGw4f/48Dz/8MJWVlWRmZnLLLbdw8803ExYWxtNPP01ERAQ2Nja89NJLjB8/noyMDHbs2EFOTg5ffPEF48aNY+nSpZw7dw5vb282bdpETk4OjY2Nqvkknw1g0qRJusEZ7xOBFfz9/Qd0viSgXPlvYyknzxkJzfK6sjkLXCHVhfG15L2lRDR+NtkURF9MxssEd5XvNWjQIMV/f2nwW47/jkxvpWQ+Vqu1BTgHhNBvoPnZjz/2GSD03xnA59b+4yjgaTKZftUrx9hZ+MkH/DG17erqwtHRUXdVCR7Nzc2YzWZNE93c3HB2dlYL6J6eHhwcHAgKClIOj5j8OTs7Kx8ILgPzv3RInQ2oZo/439na2lJRUUFFRYWSzBobGzl9+jRDhw5Vsa7a2lrOnTuH2Wzm0KFDJCQkKAjZ29tvdXTu3Dnq6uqYMmUKH374IRs3bsTBwYHk5GSOHDmiM4WSUQoHpbOzU8uDQYMGMWnSJGbOnKlysmVlZVqOBAYGYmdnx9mzZ8nMzGThwoV8++23REdHs2HDBlpbW/H19SUvL0/F7r29vYmIiCAvL09b9DY2NlRUVDBy5EiSkpJUUaCurk41j6xWKydPnhwA5D733HNMmzaNDRs2UFFRoa66Fku/flBzczOHDh0iLCxMeUlFRUVERkby+uuvY2trqx50ck2uXEdyc8o6gP6Mq7i4mK6uLmbNmkVdXR1hYWF89NFHSiQ0llOin/XVV1/R19fHgQMHqK6uJjg4mG3btlFWVsa7775LVlYWkZGRDB48mBMnThAWFsb8+fM5cOAAkyZN0muUk5PDnDlzGDNmDC+88AJLly4lPz9fKTCDBvXbgEkQ/DmKgMViYefOnT8Z65L1IBuAfAdpkAiGZPSUg8vuu0J6FryqsrISi8VCeHi4Ds4L1iigd2Njo0IkxuFgIxNdDuNm0d7ePgDI/7njfwsQN/XbQF0FHAMCrD9qh//4t/+PPxYClBp+rezHx371uLLFaDzkC0r6K90yEfmSkkZKKwcHB7y8vLC1tVWTTGnLi/CX7BAlJSU6GyRDl78UoCTSG806/f391SX2/Pnz2iKGfi7NM888o2CqGAqcPHmSsLAwdu3axbvvvsvGjRt56aWXVN41Pj6e/Px82tvbOXPmDCEhIcTExOjun52drZmajCx4eXnh5uZGfn6+WjmVl5dz/PhxcnNzuXjxIsuXL2fcuHFcvHgRV1dXIiMjiY+PJykpSdUMysrKyM3NJT8/n+DgYDo6OoiNjSUvL08F8ETgv6qqio8//pgnn3ySoUOHUlRUxMSJExk1ahR9ff0efCZTv5rAmjVrBhBYb7rpJv70pz9x//33s3PnThITEwkKCsJq7Xe6zcvLY+bMmartVFdXR1paGrfddhtz5sxh/vz5ADpXJxmP/NtY3lks/Tbpvr6+bNu2jddffx2r1cqaNWuYNWsWOTk5LF68GBsbG2bNmjXgppeMrK6ujhUrVhAbG8vzzz/P888/T0JCAg4ODsybN4/o6GgtVxISEnB3d1dcsKGhgXfffZe8vDzc3Nz44IMP6Ovr45///CdLly6lrq5O+UIAUVFRHDt2jBkzZvzsPdHd3c2wYcMwmUw/61hkpBMYu37C5JYhXmMQl8el3KutrVWuUk1NDba2tjq4a5TvkSFsR0dHfS8553ItjBmr3Ef/VacO/jeCk8lkcgW+AR63Wq3Nv/ajP/PYT3I3k8m0yGQyZZhMpoza2tqfLaMkSAifqaysjLCwMEwmk+p0SykkVH8hckpXRnZrCWoy3CgMWPl5wSRkF/ilQ3YpW1tbJQX29fVRUFBAe3s7sbGxyjWKiYmho6ODyZMnk5+fT19fH4WFhYwfP57169fr+xQUFHDTTTexY8cOysrKaG9vx2w2M3jwYN3x2tvbFeCurq5WpUHB2drb29UpRcrbkSNHEhgYSGJiIomJiYwaNYqcnBwVjRNe2c6dOwkMDFTH28OHD7Nr1y7CwsJoa2vj7bffJigoiL6+Pr7//nvuuusujh07xtq1a/Hy8mLixIl88803LF++nGHDhg2wD7darTqAKzv6ggULOH36NE1NTYwfP14xNpETbmpq4uDBg0RGRmqWWFZWxmuvvcZ//ud/MmbMmJ/M4l1Z0hgpGRKcSkpKGDp0KBMnTmThwoVMmzaNwYMHc/vtt2O1WomLi2Pr1q2MGzeO++67b0CpN2bMGBYvXsy6det44okn1LJr586dxMbGsnnzZj13Tk5O/Otf/8LLy4tBgwbh6enJyy+/zLPPPktYWBgTJkzg+++/JzExkejoaNLT0ykqKlKRRCGKXnPNNQMwIcE658yZMwDngctZiYDa8pj8kZ+TYPHjPTig1JPXkNk5MVsVVrebmxtNTU1KvxBGvbyfEeuSYCSfx8hGl2bSfwWI/7eCk8lksqM/MH1ptVo3/PhwtZRrP/5d8+PjZUCY4ddDgYorX9NqcPz18/P7yXtKAJAv29bWpp5t7e3t2NjYqHyGyNMK2CY7n4yEyPS8TLP7+PjojuPr66ulmOweRsfaKw8JbtJONZn6VQXi4uJwc3NTORExEDh16hRvvvkmJlO/w0ptbS3fffcdkT9qJOXl5VFaWsrLL7/MgQMHePPNN1m0aBHDhw9n6dKllJeX09XVpZnQkSNHuPXWW7l48aLePD09PZw/f56QkBDs7e31+0A/03zXrl0kJSVRWFhIdXU1JpNJO27ffPMNXV1dnDp1Sl1Ozp8/z8yZM/nkk0947rnnVPI4Pz+fu+66i/LycubMmcOCBQsYMWIEAQEBHDlyhEuXLtHV1cXVV19NTU2NBo2CgoIBwL/VauWHH37QzmxWVhbx8fGqPV1SUsLf/vY3LSEKCwu5ePEiN910E9dff/1P6B5XEg7lphVco6SkhMcff1xfNycnh6uuuorY2FhefPFFHnnkEVatWkVRUZEaN4h295NPPonJ1D+vZ2PTLxN877338vXXX7N8+XJee+01Xn/9de6//34mTZrEN998w2uvvcbw4cOZPXs206ZNo6amhosXL+rs33vvvUdzczM33ngjn376KefOnWP79u14eHhQX19PQEAAqampnDlzhhtuuEG/o3TCPvnkkwEUAOPfgosaCZLGcaErsywp/YRu4OzsrGazgh8NHTqUa6+9lrq6Oi2jm5qalGtnnE2V2TrJxuR6S2fcGDCvnJu98vjvdOtMwCfAOavV+rrhqc3APcDff/x7k+Hxh00m01pgJNBkNVhH/dJxJedBFlllZSXu7u40NDRoyujl5UVpaX/laGPTb4fT3Nysciky5W+xWDSzEoeOoKAgcnJy9ELITh0YGPgTTEqE7YyHsT0qdkZhYWGKKRQXFxMREUF3dzdRUVE0Nzczd+5cVq1axdmzZ5XdLY6uEtSE1BkaGqo74JIlS2hqaqKyspLi4mJMpn4Z37FjxyoZsaqqCovFohQCBwcHAgICOH78OJ2dnfj5+TFp0iSOHDmivyeBd/v27YSHh+t3EiE5Ya5/8MEHWCwWnnrqKaZMmcIbb7xBRUUFTz75JBMmTOC6667TcSDRL+ro6MDNzY3U1FQdoi0sLNRrbGdnx5AhQzhw4ABTpkzh4sWLA9roVquVU6dOMX/+fIqLi8nMzNTh19zcXHWZleAjnTwpb41zXi4uLhw8eJCcnByuueYaXnnlFTIyMvDy8uKOO+7g4MGDBAUFUVZWhslkYsiQIZw4cYIVK1bw8MMPk56erhtLS0sLixYt4uOPP2bo0KHY2Njw6KOP8s4773Dffffx+uuv09nZSWpqKkOHDsXe3p7jx/v9ZNvb2ykpKeHEiROcP3+eYcOGkZiYyMaNG7nlllsIDg4G4ODBg/j6+qpt/OHDhwfYqcv9IV1hY5YiJZRRDVXOg/H+kgaFccZOOmrCJWtubtbyGlApYlGrEKqC0U1FSmoJOpL9SWko11ACmY2NjWJUv3T8d3hOY4G7gWyTyZT142PP0h+UvjKZTPcDJcCcH5/bTj+NoJB+KsGC/8Z7/KQGNXbE7Ozs+O6777j99ttxdHSksrJSsxbhPPn6+qq5pZF+LxPogAYvsfYRWQepkY3prOjWGKVXAZXaMPI7KioqtB4PDg6mtbWViooK/VmTycRTTz2Fo6MjLS0t9Pb26sWTdryjo6OqHlitVrKzs9mwYQM1NTXs2LGDTz75hIyMDFasWMGRI0e44YYblDApZUtycrI681599dWKj4nsSFlZGU1NTQwfPpy+vj4iIyOJjo5WuWMfHx/lAsXExPDAAw+wd+9eSkpKaGtrY+PGjbzwwgu8+OKLOsjs6upKYGAgFy5coK2tTbGr7Oxshg8fTnp6OmvXrtVrOmXKFGW4b9iwgbvvvlt12nt7e3n11Vf529/+RlVVFbm5uRQUFPDkk09y9OjRAYtZNiojs18yBsH8Pv/8c/Ly8khMTGTTpk3853/+J/7+/jz22GNa9jc0NBAeHo7JZOKRRx5h4cKFDBkyhPnz59Pd3c3JkydVBtfHx4dFixbxwQcfKKnUxsaGsLAwRo8eTU9PDxMmTODWW2+lsbGRZcuWMXjwYMUQt23bxujRo7W5UVtbyw8//KADyL6+vkRFRenNPHbsWN5//33NOm1tbXn00Ud1TRoxHQlCkhEZeXtGVrb8X/BYyWwkuIiDkawD6QDLaJiQKYXkKpmakbJhxLJEjVbcqaG/sSQJwK/GhF9r5f2/OtLS0qwZGRkDHuvp6aGkpARPT08ViZvw46S3nAA5IWKB7OfnpzW7sX0sF0I4GHZ2dhQUFOgAqdlsxsXFhfDw8AFprwDtgu0ACvTKDlRcXIyrqysVFRVqUOjs7MyyZct47LHHsLOzU0fcrKwsUlNT1bdu+PDhqtN94MAB9uzZQ0NDg2pCTZkyRTObp556irS0NGJjY3F0dGTWrFnU1NQwZswYCgoKFKiU2b2YmBjKysro6upi27ZtJCUlkZ+fr4RMDw8PmpqaNIh2dXXR3t5OZGQkdnZ2anNVXl7OsGHD1KTUxcUFPz8/Ro/WGem0AAAgAElEQVQezYkTJ3Qg+/z589x999189dVX+Pj48PLLL7Nw4UJycnJYvXo10L9YJSuZOHEizz77rHLHJHu76aabOHbsGNXV1UycOJFXX32V5uZm8vLyuOuuu/joo4/4y1/+MqA5IdcW0On+BQsW0NbWxj/+8Q/CwsJYv349vr6+bN68mVOnTvHAAw9oFvvCCy+wbt06nn/+edra2tROyd/fn+rqalatWsWyZcuoqqriwoULSjD86quvBgDAdnZ2HDhwgC1bttDb20tycjK+vr7cfPPNvP7667oRtLa2EhQUhJeXF5mZmfj6+nLw4EEeeughjh8/TnR0NO7u7pjNZmbPng30B53Ozk6lShh5cXB5Mzc+LkFJNl7Z7F1cXBTLlPMmgf7cuXNKVZC1JNlQdXW1ki19fHzULMPBwUGbH9JFlsflfaBf81wgEdlIZsyYQXZ29m9blUAO+TKCCXV3d3PmzBnS09M1elssFp3t8fDw0EAhZYWMt8jMmig5SnkoJUBkZKSWAWLrIxe/qalpwBCkAKzyb+lASItdtHYcHBwoLi5m/PjxvP/++/T19REWFsbJkye1xT5ixAicnZ358MMPdYh47Nix/O1vf+Ptt9/mu+++Y+vWrcyePZvAwEDMZjPff/89ZWVluLi4qKaPkOpkaNbNzQ0fHx9KS0t1DCIgIIBZs2YREhLCpEmTqK6uJjw8nKamJi5cuKBdvmHDhuHh4aFlbHNzMyEhIQwePBhfX1/Onj3LyJEjGT9+PBcuXKC5uZmkpCRaWlpobm6mo6ODV155RQ1Phw0bhoODA2vXrsVkujz8+fDDD+Pq6srUqVPx9vbWTcbZ2ZkVK1awf/9+2tvbmTRpEsuWLVN6xgsvvMAtt9zCk08+qfbu8r7QTxE4cuQIa9asYciQIQwZMoSYmBgiIiKYOnUqHR0dfP755wQHB2OxWDh8+DBdXV1kZWXpuM5zzz1HbGwsPj4+HDx4EH9/f+WEmUwmgoKCiIuLo6GhAScnJ5544gmmTJmi2kwWi4XRo0fz97//HX9/f7Zu3crWrVt5+eWXcXR0ZMOGDeqg09HRwerVq7G3tycqKoq0tDTWr1+vWlrQj2/6+fnpGhT9c8mKjBwkIwYnG7Kx7JN1LmoYQpuRYCMaYOLCY7FYtHEivEC5J4W20tPTo5gvoD8jQ76y0Qv8IbiZsST/H6MS/N8+jKCa4C4SFISkJtbHQgloaWmhr69PJ/Kl3JBFLymkDKeK37sYDciOJ3W6qA5KumqURDV+RqvVqimrjNGIBGlfXx/l5eW0t7eze/duAOrr68nNzcXLy0tVEZ544glNseUms1qtHD9+nLNnz+Lj40NFRYXycsR5WFr83t7eyowWVxUZg4H+xVJaWoq3t7eqO164cEGZ8vK9hSFtdGTp7e1ViyN/f39efvlllYF1cHBQ8ui1115Ld3e30il6enoICwujtraWP/zhD5qNWq1W7Qi+8847BAUFDSC92tnZsW3bNkJCQti2bZt+j/Hjx+Pq6sq+ffuIi4vjwoULbN68WR11jNyz+vp6jh8/Tnt7O6WlpVRUVHDXXXepdG9qair+/v6EhoYSGRlJSkoK4eHhREdHU1lZyfHjxyksLMTe3p4LFy7g5OTEpEmTlKg7aNAgzTocHBxoa2sjMDCQOXPmMHToUFxdXfHw8MBisfD000+zb98+PDw8uHTpEsOHD2fRokWqUeXj46MZe2JiIiNHjlT10cDAQK0OZJ339vYybtw4PV9XKg5cGaCMonHyp7Ozk76+Pm1UGIOElG5GoUd5HPoDnmRCIqnj4uKim73ch/KaRvE5IUvL/SWf77+STPlNzNYBujv19fWpDKyrqytbt25Vn3kBP40tSG9vb9ra2mhoaFBNGgG1AZ3ol2xJTq6kzW5uburcWlZWho+Pj76+2CGJhzxcbtnKxZdg6e7uTktLCwUFBarR4+rqSlpaGo8++iizZ8/GYrGwevVq/vCHP+Dl5cW6deu4/fbbgX5sbM+ePWzbto0zZ85QVVXFiBEjmD59Os7OzgOMH6ZPn05DQwNnz57l+uuvp7q6mtTUVM6dO4eLiwuxsbFUVlYq98TZ2ZmoqCiqq6sZPXo0jY2NlJSU6A5ZWVmpvmi2trZMnjyZM2fOcOHCBYKDgzU4ZGVlaScwOztbb1h/f3+cnZ3JyMigoKCA6dOnq/a1LFiLxUJdXR3//Oc/6ezsVFa5ra0tnp6eZGRk8OWXX1JRUcFHH31EcXGxdtY8PT1ZtmwZCxYs4OzZs1gsFhYsWMCmTZvo7OwkPz+fW265hUceeQRPT0/uuecerrnmGk6dOkVWVhZnz55l6tSpqo4aHR1NQkICmzdvJjU1lezsbK677jpsbGx49tlnWbVqFY899hhvvPEGt99+OyaTSctXYbAHBAToGrS3t2fs2LFqLCGGoRcuXODzzz/H3t6eVatW6fp+7LHHePTRR7Gzs2Pr1q08+OCD2NjYkJaWxpNPPskLL7zArbfeqtiOyWTSMlgaPXIfyM1tVCEwUg8kMzcystva2gYMC4sgYGBgoLoRC9gN6Cbe0dGhG5p0v433Q0dHBz4+PnofGstOwbyEeCkl4K8dv4nMScojGfIUPkdJSQm9vb2MHj1ahd3kOTGEFB6JCNLJ7i0Anygyir217CJiAiAn083NTfWabWxsVNRMsBg5JMuxs7OjsbFRhyONJM+UlBS6urpIT09n69atLFu2DHd3dw4cOIC3tzeHDx9W5rUcjY2Nqqu8ZMkSHnzwQV588UWEZiEi83l5ebS2tlJSUkJoaKi2l0tLS9Wiymq1kpCQgJ+fn/KZnJyc9LxJSevq6kprayvJycnU19drlnb69GklpXp6enLp0iXNCmJiYnBxcaGxsZHExESuuuoqJk2apCoQycnJ7Nixg507d+Lt7a0jQoIPDR8+XDlnFotFM+KNGzcyatQo5s6dy/PPP8/YsWPVpru9vZ3777+fwsJCpkyZwtdff43ZbObbb78lMTGRPXv28M4773Ds2DHq6uo4c+YM27dv59y5cxQVFREVFYWDg4MSSyWjTUlJoaSkhOnTp3P8+HHOnTtHbm4ux48fZ//+/UA/4XHcuHF89913NDQ06JoQqRgZi5LzZbRWT0xM5N1332XFihVs2bKFjz/+mD//+c/s2rULW9vLssWyJjMyMli0aJGK1dna2urYkYDpMLBsExhEMp0r7ys55J4w4k9SEkogEjs24fDV1dVpdiZNl+7ubiIjIxXsFgKzdFslSMr7G3WhAJUJlvf9teM3EZwAjajGYcEzZ84wePBg2tvbcXd313RURP+dnJzUucTR0RE/Pz+ampp0IFeAcEdHR2pqaqioqKCqqoqamhqqq6vJyMigsLAQi+Wyop9c0CvlJIwn3MXFRReVk5MTlZWVekMbGbOOjo78+9//Jjg4mIqKCsaOHYvF0i9lGhwcTHd3N9XV1UB/127q1KmsXbtWg9zmzZvJyMigo6OD06dPM3nyZF555RUFsSsqKtQKqq6uThsAAsxnZmYybNgwjhw5MgDoFIE6X19fwsPDqa+vx8/PT5nQ58+f584772TQoEGYzWbtTkp3LjIyEj8/P9XPOnv2LImJicrKr6qqoqenh5CQEM2IpcEgm4LIoohczKxZsygsLOTuu+9m/fr1/OMf/2DWrFk8/vjjLFy4kDNnzhAZGclf/vIXZs6cSXJysmqoi/vy8OHDaWtrY8aMGaxevZqJEyfqPKCvry+VlZV0dnbi5eXFtddeS1FREffccw8ZGRnY2tryyCOPUFZWpgTN1tZWRo4cyeHDh8nOztbyVdarNFfq6+uV4CsaW1FRUQwbNoywsDB1XklISCA9PZ2nn36alStXMmfOHCZMmEBiYqJ23jZu3MiDDz44QLImODhYyzu4THYUeAEul3VyrmWtyusKj0/WtlFrLCMjg+TkZM2CBDOSACiv4+rqypAhQzRYtbS0qJGtWLsJXiYQh8Vi0QaSfAZjKfprh+3zzz//fx5Z/g+PDz/88Pn77rtvwHzQvn37KC4uZtasWZqKCrBntVpxd3fHau0XRxPei5RXUvdWVlbS3d2tPnO+vr54eHgolyQkJISIiAhcXFwIDg6ms7OTrq4u4uLicHJywsfHR99TdkXZraSutrW1pby8XEFCwayamppwdHTk5MmTxMbG4u7uTkFBAXFxcdoiF386qcMl9fXw8CAyMhJ3d3cV02tsbCQtLU1b6rIYjh07RkJCgrreenh4UFFRwebNm5k2bZoO9UJ/6u/p6YmdnR3u7u66Gwq+5u/vT+SPelCxsbGMGzeOf//73/j7+5OZmUlcXBx1dXX4+/uTnZ2N2Wymu7tbbb/HjBmjLsBnzpxRPWrZoX//+98zYsQIFYqD/kbE2bNnGTVqFIcPH+bChQtahj7zzDPMnj2bc+fOccMNN/D2229zzz334Ofnp4zlr776imnTprF7927i4+M5e/YsEyZMwGKxUFBQgJ+fn16rzs5O/P396ezspKSkBA8PD/bv309ERAQxMTGUl5czc+ZMLQ+TkpL44osvcHNzo76+nszMTHx8fKiurtaOHqCdXBsbG4YMGaJa9kZ2t9zkEnC6urqIiYkhMTGRhIQEKioqqK2t1QCzfft2rr/+er755hsaGhrYtGkToaGhA2bmJHgYyzjjexlnDqXkMyoB9PX1UVVVRWxsLIMGDVLKjZubm+K+trb9OuJG/fa2tjbMZrNis7a2tmpxb2SCG4OokUQqFYy9vT1ffPEFixcv/tvPxYXfTOYkX9I4hJuamqqjGY6OjjpJ7+npqSREOzs7leewWCzU1taqpndERATOzs40NjbS2Ng4oEzr6uqitbVVxdNaW1txc3OjoaGBiooKWlpaqKurGwBWy3s0NDTQ3Nysjh6iUdPR0UF1dTUODg4EBwfj6empw7yjR4/G2dmZzMxMAgICSElJ4dSpU2zZskUD7okTJ8jPz8fe3h4nJyfi4+O1Xe/m5kZnZyeDBw9WxQUpHcX5xMXFhYKCAoKCgrjvvvuoq6vD2dmZBQsWcPPNN9PZ2UlOTo4aPsjIiLTGW1tbOXr0KF9//bXeMPHx8XR1dREeHs6+fft46aWX2Lx5M76+vlRXV2OxWPDw8CA8PJwtW7YMKDeMh9VqZcaMGTg4OODq6qqbSUdHh57zwMBAxo0bh8ViYd26dUyZMgVnZ2fmzJnDnXfeyb333svQoUP56KOPKCws5OzZs1q2x8XFUVRUhIeHBwEBASxcuFBt1yVrvu2221RkcMKECaSkpBAREYG/vz/Hjx+noqKCDz/8kPvvv1/dfBctWsS5c+eUwLplyxbOnz+v0sRSIoWEhJCQkKBlKPyUuS4YTEhIiA7Huru7Ex4ezuLFiwkPD9dz1dvby5w5cxSeuO666wbwh2QTlMNYqklpJtmUEXw2fh5nZ2fq6+sV3Jf5TzEXFWUBqT7q6uq0S2rEYAVUl3Ur9uPyt0AJQkkwlna/dvwmgpPsrMIr6uzsJCsrixEjRigoKMFDQD6TyaRC8bIYjFwXeVw6dkIeMwKKckgnQn63tbUVi6V/4loE6uTnRX2gurqa3NxcBczlM0VFRVFeXk5TUxP79+/noYce4u9//zvHjx/H29ubmJgY7TQtXryYq6++WnW6Y2JiCAkJoampiePHj/PDDz8wZMgQKioqsFgsODk5UV9fr7uPLBpfX1/V1xFd6hMnTrBjxw5uvvlmNm3ahNlsJioqirFjxzJ06FDNWGRmUTgsnZ2dBAUFaVAeN24cq1evprq6mvvuu4/Nmzczc+ZMlXiR7KGyslL1orq7u1m4cOGADpLValUDAGdnZw1M5eXlBAYG8vXXX+trXXvttaSmplJRUcGYMWOYPHkyt912G319fVx//fUEBQWRmprKd999x5AhQ6ivrycvL0/XzpYtW1i5ciXjxo3j22+/1Rtt7dq1pKen4+vry5kzZzh27JjOVs6ZMwdXV1fS09OJiYnh5ptvZufOnWzYsIGlS5eqTrg0QMTMtauri8jISN0w29vbB+glXQkqS8CKi4vT9r5MPTz++OMDMp4bb7xRBd4El5JzaoQd4LKygIDOMoIlJE35IxuRg4MDu3fvJikpSdeREHYlazLOqMpmbjabteNnb2+vmK2rq6v+nuC70nwy4k5SYRi7gr90/CaCk8lk0lR/0KBB1NXVMXToUOVSiMuH0XbGzs5OTQcqKip0J3J0dFSmspRJxgl1GIghQX/W1tLSoq/b1NSk0d5kMinGIq8hu1lNTQ3d3d2EhISQnJysgU9m9y5evEhvby9r165V40npVIWGhhIeHq7fUSyCGhsb2bt3L+fPnycvL4+VK1eqN19LS4tKtchYjgDNAmhDP6Fzw4YNxMfHs2PHDqqqqjh9+jSRkZG6mJKTk3F1dSU0NBRvb28cHByU6+Xu7s6FCxc0c/3www8ZM2aMpufr169XtrAs7L6+fteR9PR00tLSWLx4se7sstOL4kNvb6+WBjJyMm3aNPbu3cv+/fuJiYlh8+bNuLq6smfPHlJSUnB1daWpqYl169bh5eWFk5MTSUlJuLq6qqU49FtBpaSkkJuby7lz50hPT2fYsGGkpqYqrihUg/Hjx+vsWHNzs/KV2tra2LJlCwkJCbS3tzNt2jTFmoKDg5XgC5CYmKhEUllLQj2QwGAEveEyvhoTE0NbWxv29vbY29urjI28VnJyMgBLlizR35FzaZyLM5bO0pWW0kkClATJlpYWLXkHDx6sz0vAFRhDoAmr1YrZbNaGlGRHAqGIbZtwpeTekO8tYy5GfS2jVtSvscR/M8FJdiGAb7/9lt/97ndqPGlra4vZbMbHx0dPYF9fn+pmJycna5YknTa4LGxlFKWDyxbYApyL2aFgRnV1dYSGhhIcHExoaKgK0APKsRJJ4draWqqqqigvLyc+Pp49e/aQmZnJ0aNHCQwMJDMzk+HDh5Obm8vUqVPJz89n586dHDp0iEOHDtHR0cGZM2cA1HapsLCQxMREXFxceOONNxT/cHV1xdPTU4OfBAvBjWJiYkhOTiYzM5Ouri4yMjJ44IEHVEz/T3/6k84kZmZmcvLkSTUmlQUtQcBi6ddVysrK4vvvv6egoECzx+7ubpKSknR0R3ZOZ2dngoKCGDp0KO+///6AdnVQUBB1dXW687a1tVFTU4Ovr6964bm6ulJeXs6//vUvbr/9dnbt2kVeXh7JyckEBQXR1dXFH//4R8LDw9m7dy/t7e1UV1fz73//W9UcRE8pIiJCGxSnTp1i7969+Pn54eHhQU1NDWFhYRQXF5OYmIiNTb90sWCTFosFf39/PDw8GDJkCKtXr9YAVFNTo4EmPDxcx5wEN5R1dyV4LUCzZDiidxQZGanr1Wq1MmbMGH29f/3rXwDMmzdvAKNbgGwJUPKYcZzF2MmTrFoyHjs7O5VvEUKmCBQKLlVWVqY6YoKpRUVF6TyqyPoKv1CCoxGolyxSMjVZY+K6LN/5l47fRHAC9IM3NjZSW1urtaoA3u7u7moJJMaIFouFiIgIVUmULyygnywAWRRy4uRmdnFxwcPDAw8PD7y8vPD09ByQZUkKbDy6urp0EdvZ2elill3Qy8uLiIgIvLy8aG5uVsui/Px8urq6cHd3JzU1lbi4OK6++moCAgK4+uqr9fWdnJwYO3Ysmzdvpq+vjylTpuDn58f58+fJyMhg69atOgIg2Zzs+N3d3Zw4cQKTycTJkydVICw7O5sdO3YQEBBATk4O69ev107g119/zf79+2lqasLZ2RkPDw/8/PwIDAwkJiaGCRMmMH78+AGC+cHBwURGRnLLLbcQGBjIsGHDCA4OVra+p6enyrbIrj5t2jTNpDo7O6msrMTOrt8lef/+/axevVq99O68807y8vK48847WbZsGe+++y779u3jvffeY/bs2QwePJioqCj1q4PLMjFVVVXceuutzJ49m4qKCoYNG8ahQ4e44YYb2L17N35+fkT+6AOYnp6uWt7XXHMNXV1dyp3y9vbm66+/1u8iJhr+/v4aXES/ySgjLJmgcTOTayTtc+Mkv5OTE56enkqRCQ0NBeD999+ntLSU3t5+A0+4LLxoZHxLpiKln2TSRixIpibkHtm9ezepqan6O4LDiktRY2MjDz30EFu3buUf//iHbiDV1dVKY5AMSpoqEmBtbW1V2tfFxUUZ6cIiF66eBKX/Lxjizc3NHDx4kL1793L//fdrEBLRK4vFoi4fYt0dEBBAXV2dZkw9PT1aGkoHSnYYwZX6+vqdXgRrqauro7q6Wp1h/f39iYiI0BLpykN2J7GCkpGC4uJiqqqq9OQ3NjZy5MgR5s2bx6lTpygsLOTw4cN4enri5OREYWGhzvMJneDSpUtUVFTw9ttv89RTT7Fr1y6WLl1KaWkpkZGR7Ny5k3/+85+Ko9na2qrCprOzM15eXjqCU1hYSHJyMtOnT6egoIDKykqysrJYt24d69atIzc3l+bmZpVb+eCDD+js7ORf//qXtrFloe/evZvIyEj9/iEhIZw8eZJVq1axfv16cnJycHZ21pnFgwcPEhsbq3NeVquV0aNHazldWdkvUtHQ0MD333+viqHJycl0dnaydOlS7dg+8sgjLF26FLPZTHp6OkeOHKGyspJ9+/bh5eXF1KlT9abr6enBbDbz4YcfquLAjh07+N3vfsfGjRu54YYbFA/s7OxkxYoVZGVl0dfXx2effUZzczMjR45UcburrrpKv4MEIJEejoqKGqBXJAFBoASjbpFsHsbn4DLLW3wCZXO2tbXlySefBC7L3hrBbglMxqaCsQkhvCWhC5hMl6WrMzIySElJISQkREdTZM0C2hWX67R3716FD6ScFns0yQrlecHEJGhJ5ib3onT+JHmQrPOXjt9EcOrr6yMnJwdfX1+++uorBXgdHBzw9/envb1dv7Skhx4eHtqqFmxIWrVSskktLCdAHGBFBzskJES5PjKwazabMZvN6v5x5dHc3KwENLn43d3duLu7ExgYqGqRhYWF2h1avHgx0dHR/Pvf/yYoKEjNGOrr6wHUUy4iIoLIyEimTZvGCy+8QHx8PGvWrKG9vZ3i4mJ6e3uJjo6mo6NDg7Ds3ufPn+fixYualo8ePZrdu3ezfPlydUVxcHCgu7sbV1dXbG1tNcibzWY8PT3ZvHkzXV1dnDhxgvLycl5//XWOHj1KY2OjjrQUFRVRUlLC+vXrOX/+vHYIDx06RH5+Ps3NzRQUFKiYmmwc4tUnXnMXLlygu7ubDRs2cPvttzN37ly8vLz4+OOPyczMpL29nblz5/LUU0+xbNky4uLiOHToEAcPHsTV1ZXx48cze/ZsNm/eTFRUFKdOneLo0aPU1dVxxx13qPqEsYyLjY3l1KlTFBUVkZ+fT1hYmOJP8fHxtLW1UVJSQnV1tbLAk5KSyM7OZtCgQfzlL3/RjVICkfB44HJjR3hC0s2TeVBjp0wel8Fh4QUdOnSI++67T6f2lyxZoh1l2XiMUiUmk0kxP8FDZfRLgoU0hMrKynTdt7a26lqQYDlo0CA1AJk3bx4jR47k4MGDnD9/HujPeGVESrS3BHcSWMYIrxjZ64I5wmVFif9Rmd7/W0dXVxe+vr6899573H333XrhhHck4yPCypXunVHMSv7U19cP0OQWoE6wGikHm5ubqaqqorq6mpqaGmpqajR19/Dw0M6g8RBgUFqkQoyTDMTGxoagoCC9AU+fPk1zczO5ubm4uLhw9913k52dTWVlpTqySOfCzs5ONb5zcnL0QpvNZs2sXF1dOX/+PDY2/cqejY2NVFVV4ejoSFhYGB0dHQQEBFBbW8vhw4e5dOkSMTExFBUVqT61m5ubfh8fHx+1d6+srOTSpUt89dVXZGRk0NLSQlVVFbt27VIh/vXr19PX18cnn3zCwYMHiYiIUJKmsPlFXiUrK4vc3Fx9L8kk5AaqqKhQraQ777yTrq4uvv32W6ZPn05KSgqrVq0iMDCQ4uJixowZwxNPPMGbb77J4MGDOXr0KO+99x7z5s3juuuuIzc3FycnJ6699lpuvfVW/vSnP+Hl5cXFixfJyMigurqaNWvWaAYqekMODg7U1taqjZSjoyNDhgzRm66srIwffvgBe3t7Dh8+TE9PDy+//LJmyhJcjMO4gs8APwGopcQzZj8SYEQBYP78+Xz++eca/O6++26AAe8ja9gIJgt9QLIzW1tb3dSlHK+pqSEqKkozogsXLnDkyJEBjQoJqtOnT+ell17S6QKpPIzfr7W1VfXIZeOT7ylkabjciJIsUAKSMWP7ueM3EZwGDRrEe++9h6OjI8nJyfT29ipfQoKO2F37+/vT1dWlUrCSUkoXz8HBQaN4a2urkjK7urpUmE1aoEFBQfj4+Kibrr+/vwal7u5uNQOQQwBzJycnzbg6Ojp0F+rq6mLw4MG0tLSouaOHhwcFBQUkJiaSm5vL1VdfjY2NDWVlZeqYIkdgYCDjx49n8eLF3HXXXXh5efHiiy/i4+NDTU0NZrMZq9WqYzoywCvZk+xQUiIIh8jFxYWwsDCcnZ1VUK+3t98xuaqqSg1NhYxqsVjYunUrn332GQUFBTrKceONN1JRUUF2djbh4eGUlZXh5uZGe3s7ubm5VFVVaVdHslpAwVaZv+rt7SU7O5uysjJeffVVFixYoNKzjY2NXHfddYwePZrHHnuMS5cuUVpayl//+le+/PJLnbf861//yowZM3BxceHIkSN4eHiQkpLChx9+qDQIGXZ1d3dn0qRJ2Nvbc/ToURwdHSksLCQ/Px8HBwdOnz6t0/jPPfccAQEB9PT0MGLECLq7u3Fzc2PIkCGcPn2alStXAuhkgmQpxqzF3t5+AAHSuD7h8s0q7XspvVxcXPjggw/44x//qKVcXFycBj4jmVFgDAHDr+ySGbvaJpOJbdu2qUa7qKE2NDQomRUuK254eYj6JHsAACAASURBVHkpHUFwVCnlZCOVz9/T06NdWwlcck9KhiT0CQmcLi4uyq36teM3EZzq6urw9vbWYVHhSHh7e9Pe3q7GA9HR0dTX1yt4JzW3BBxJmyX6+/r66hyUnBRJJeV15bWlHS+7h8wJweUxALEvki6ig4ODgsgdHR0kJiayb98+IiMjsbGxobq6Gj8/P6ZPn647UFFRkdpSiWJBZ2enzqa1tLToDbxnzx7y8/MZM2YMZ8+eVZmY9vZ2DWpy0WUx9fX1ERERoSB9c3MzcXFxmuEJKVTa+OHh4QQFBXHNNddQVFREXFwcU6dOJT4+nocffpiVK1fyz3/+k5KSElatWsXLL79MX18fZ86cYf/+/XzzzTesWbOG5ORkzUjMZjMNDQ14eHioTIpgGTL2IADwkiVLMJvNvPXWW3h5edHQ0MBbb73F1VdfTUtLCx999NH/ou69o6uss/3/13PSSC8nvTcICIFQA0hEilIEKSOKMCPCYBudK1zLOHbHimV01NE7V8eGjCLNhoBBapASpBNII73Xk17P+f4R9uYJV525a353LX/PWiwg5ZTnfD77s/d7v9/vzfz585k5cyY33XQTJSUlSq48fPgwMTExpKenk5SUxK5du0hJSaG9vZ3c3FwqKyu59tprGTZsGIWFhTz00ENMmjSJ3Nxcxo4dqzMFW1pasFqt7Nq1i9tuuw03Nzc++eQTzTgrKys5cOAATk5O5Ofn4+zsTFVVlXqLCbAMl8zezBjM5ZdgNeI7JuWhuFs+/vjjqtWUn4dLjHOzm4ZQBqRbZ9bMSTb06aefMmrUKBXESye4rq6OIUOG0N3drdmRYGvSnZSAKB1v8z6T9yu0EkkmZI+Zu5Zyn6TRJZyxn7t+EcHJbu+z001NTcXV1ZW6ujosFguVlZWEhV2aKiX1rJmCf/kpJfwLNzc36uvrta6WmyOtUDnlzL7hQh6TaO/n56c4jrllC30BpaCgQJ/bxaVvZvy0adMoKChg6NChWK1WQkJCaG1tpaWlRfV2Tk5OJCUlMWLECNLT08nKyqK3t8+4TpTtXl5e3HnnnYSEhHD+/HkGDhyop2NERES/DojgZcOHDycjI4O4uDhdHNC3gKTDKaObvLy82LBhg5YImzZt4tChQ+zfv5+SkhIWLVpESkoKx44d489//rM2EDIyMjQjcnJywsPDg+uvv16zx97eXnUuEEH0mDFj+jmLlpaWMnDgQMWktmzZwr59+7jnnnvo6ekhLS2NgwcPMnv2bAYOHMjGjRtxd3fnD3/4g27o0tJSEhMTFcd49dVXOX36NEOGDOH48eOsX7+eQYMGaYaWmZnJ4MGDKSoqIiIigv3796s/lmH0uSyMGTOG++67j1dffZWUlBQyMjJwd3enoaGB559/nvT0dNzd3Rk7dqxas8jBILiOZAxS3pjXp1kHB/TLmgW+kOwC4Omnn9YNL18TSYl578hjyx8B4v38/EhPTyc1NZWAgAAaGxu1orjqqqu44447+nW4BecSDatkvPIz9fX1OkXZbIMiQUzoBVKpCNgvMItUHWYawb+FORmGEWUYxm7DMM4ZhnHWMIx7L379ScMwygzDOHHxz2zT7/zRMIw8wzCyDcOY8c+eQwSmwcHBNDU1aYSXGyoCW2HgDhgwQElc5jS2p6dHA5G0qs2eynJTJcrL4hHKvmRCMlWira1Nu2GyECSQNjU10dTURG9vL15eXri6upKXl6cWICdPnmTSpElUVFQQHh6ugxN9fHyUYDpkyBCGDBlCcnIygYGBxMTEKEu6q6uL6dOnqxtBcnIyU6dOxW63U1JSgsPR548kbgZtbW1UVFRgGAaLFy9m5MiRDB48mOnTp+s9kI1YVlbGyZMniY+PJz8/nx07djBhwgTuueceVq1axXPPPUd6ejodHR289957DB48mClTpihZUxZUWFgYI0aM0EOksLCQkpIScnNztdSx2+3a5RGPKBEnnz17Vk9rwzB44okn2LlzJ3fffbeWmvfddx+1tbXcc889zJo1i1WrVunvb926VR0bH3zwQaZMmcKRI0dYuHAh0HeYHThwgLKyMvX9/uKLL2hpaaGiooL8/HyOHj1KYWEh7733Hlu2bGHWrFl4enpy4sQJrrnmGs6dO6f3VswKpfwUDpFsNDFUk4xFNp/8fTnTWwTVZv6Sea1dddVVSuEw0wXk5y4Xp0vVIeXc999/r/w4sYAW7Eo4grIPZB8Jjib4kPiVS/fc3d0di8WicAn00SUaGhqUUiBNJyn/xIZFylDza/53u3U/NfEX4FWHw5Fy8c83ABe/txgYCswE3jIM43/OfTJdDoeDRYsWKW5SU1Ojft8eHh793AikTSkgopnkJgFFrCzkQ5QoL/W6gJEeHh7qMDhgwAA8PDz0Q3R1ddX2uLCDxTJDwPCUlBTVBAo7/ejRo0rezMzMJDw8nCFDhtDQ0ICLiwuVlZVKGKyoqKC3t1dLB0AX16BBg+jo6GD48OH4+/sr/+TXv/61nnBtbW0KSsuJGBUVhc1mIzg4mDvvvJPi4mLq6+vx9vbu50EVEBDA6NGjmTNnDsuWLVP7FhkEOXr0aObPn8+NN97IihUrGDlyJDfffLO2kGVRCaNcykuzhzT0gfiSqdrtdu3sCDg8aNCgfi32iooK3nrrLby9vamoqGDZsmWsXr2a0NBQYmNj1WX00UcfZdWqVbz88su4uLjwwAMPMGrUKAIDA9m8eTOGYfDuu+8qNllcXKwNhejoaMrLy+nq6hu37ebmxrRp07jmmms4f/48gYGB/Md//AevvfYaQ4cOZeLEiTz66KOkpqZy3XXXcfz4cc0SJCCYeTuSPQkmI4FH7o85O5Ly1lwOCt6UnJysI5skMzF7dl9edpkzt5KSEqXUiBYTLjkSCI4la9cs/JWSUrJvCYyyR+AS5QDQck8yNglmZj2s3Ad5DQLF/Nz170z8/alrHvCpw+HodDgcBfQNOhj3c88hKW1wcDBOTk7aRQoMDFSjdXGdFLmHBCazN4zcFNkcUtZcXtcLgUwyJSnJxDzLx8dHmayGYVBYWAjA2bNnKS0tpaKigpaWFqKjo6mtraW9vV2N6YYPH05lZSWtra1ERkaSn5/PgQMHlBYRGhqK1WqltraW/fv3qztmWFgYFRUVfPzxx3z22Wfs3LmTvXv3MmDAAMrKylQR/+mnnyrWYBiGipnFi1yCkPiYC9AvOEBtbS0xMTHcdNNNPPPMM8TGxrJs2TIeffRRZsyYQWlpKfHx8Xz33Xekp6djtVo5ceIExcXF7N69m4cffpjRo0fj5OREdHQ0Xl5exMTEKL4mXvByqt57772auQLqhSVeQbGxscycOZPe3l7mzJmDxWJh586dzJkzh4qKCv7whz+QlZWljPGJEydSXl6u2rTx48czePBgHA4He/bsYc6cOdx77716aMXHx7Nnzx5qamrIzMzEYrGQnp6Oq6srpaWlXHPNNZw6dQq73c6TTz6Jv78/qamprFixgj/+8Y8MGzaMxsZG/vCHP/DFF1+wceNGDSTmTW7upMmkW3nfl4vaZU3K2pf2vIDscMlyRIKZBBfzcAOBICT7lMzt448/5vvvvycgIEAPczNoL78jgdDZ2Vk1dKJXNWc3wi008wXlMBINn2R/MiVJOE1yj+x2u04bhj4ZjVQJP3X9r5wwjf4Tf6+kbwTULcBR+rKrBvoC1yHTr/3oxF/DMG4HbgfUv0iASQHdamtrFXCTNyunheh7JEKLe4Fo9MzeTOaFIcFLjLPkQ5ZNbu4qOBwODVSFhYV6AjU3N1NdXa3ZUFdXF8HBwXq6iCyjqqqK2NhY9u3bp97UNTU1NDY2EhkZyZgxY9Q1wW7vc4qcP38+Cxcu5K9//Su9vb3k5+cTFxenvuK33XYbrq6utLa2qmGbGMzHxcVx8OBBHQ0uGWdgYKCWV4MGDWLnzp3qtOjq6orNZlPjuoCAAGpra7nmmmuYMmUKmzZtIiIigqioKJqamjhw4AD33XcfBQUFZGZmahZZW1urhEY5aXt6ehg5ciSA6trsdrseOLNmzeKbb77pW4jOznz99dcMHjyYK664gieffJKcnBzy8/N59dVXGT9+vM6va25upqamhjFjxmgGWFpaip+fH++8806/mX4XLlwA0CETCxcuZMOGDVx11VXk5uZq185utxMVFYWzszNvvPEGU6ZM4bvvvuPIkSM4HA6++OILzWrFh8rb21s3v2QfZkxU2viSwUtQkDUtJRL0YZiynux2O7/5zW+oqakBLlmymMs+c5dOupO+vr5s3rxZtYiirpDgJ/iRlIaCA7W3t2v2bbVaaWlpISAggODgYPLy8tTzXIKWGWyXpoBhGPj4+PSz4JEszsxUl/fr5eWlFJmfuv6dib9vAwlAClABvCI/+iO//j8KS4dpqGZISAgWi0WtTyXSCt508fk1+5FFILYVwlsSXMpcQwspU26mnCCCM8nkFqmjPTw88PPzU92WMMdLSkrw9fVVLyXp8kkAlBa6KMxdXV2JjY2ltraWyZMn688Ij0pGVouavbm5mZSUFADWrVtHU1MTYWFhjB49mtbWVgYOHMjEiROpq6vTjVZXV6dYR29vnzdPXFwcTk5OLF26lODgYG0OiP/3pk2bWLp0qeJh4lhgGAZTpkzh9OnTvPLKK4SEhJCRkUF5ebmC6a6urmzfvp2GhgZSUlIUNBcyqRngNRPwhOIgwmXJNAAGDx7cz/4jPj6erVu3Yhh9c+RWrlzJ3Llz8fb2ZsqUKTQ0NFBdXU1raysHDhzAx8eHESNGYLPZqKurY9SoUdxxxx3MnDmT8PBwXQfXXXedTiYGNJv6/PPP1aYF+so/wzDYuXMnR44cYdKkSRpsxVtLRoFLFg9oyQaXhM6y5uBSxiMZpXTFZMP39PSQnZ2tGdcjjzwCXKJhmKkE5upAApaHhwdnzpzB09MTHx8fbZhIxirWvHI4yGEvTQuBCpqamlSA7uTUN9GosrISh6PPbNBmsyn/rqOjQwXyMtJMzOZ6enpUQSEdPHPmKFSWf5uEafzIxF+Hw1HlcDh6HQ6HHXiHS6XbvzTx97LHV7zIw8NDuSOiNBcgGy5hMrLgZXMK2CsfmnyI0haVE83V1VXnctXV1ekoqa6uLvUSb2trUy6GbMwhQ4YQFxdHYmIiERERjBgxAkAtTiQ4ODk5aRCSU7KwsJC2tjYOHjyop5e7u7valEjwqaqqIiMjg23btqnE4ty5cyq0/Oqrr9i8eTOtra20tbVhtVr11BbqRHR0tM7NE1sUsb5oamoiKCiII0eO8OKLL/Lwww9z5swZRo8ejd1uJz8/n8cee4xhw4YpV0kmrDgcDi5cuIDD4eCee+6hqakJV1dXtZqNjIzkwIED2O124uLiiIiIIDo6WrNdoRBI90qyW+m+mccF3XnnnSxatAiLxcKMGTNIT09n9+7d3HPPPZplOxwOEhMTWbduHVlZWVx77bVs3LhRs6e8vDzNTKSs2bdvHz09PcTExODr68vo0aMxDIO9e/eSk5NDQUEBlZWV+rndfffd7N+/X0nBLS0taoVjGIZm34BiKlLiCEQgQUAOUTMmJZdgTrW1tfT29rJ06VI94ASHlYNVqDMSGGW9FRYW8tVXXzF06FAMwyAkJEQ7pmJCKN1dcSQFVKMZEhKiWV5bW5uuOZnJaJ7vKIehkC7NgxMALUUFZzSTVM3vWd7LT13/SrfuRyf+GhdHkV+8FgBnLv77S2CxYRhuhmHEAQOBIz/3HBJk4JLgVj4AuRGCL0laKW9WNidcEkaaMQD5v9kuVixVvLy8lL4v6aeZKSvukmIT7OnpqZmVfLCCDUjAOXXqFIGBgbi5uemwhI6ODpqbm4mJiSEoKEhPpYyMDHp6etTyVvxy6uvrqampUftcGUooHZSAgAC8vb11sKGA97W1tRr82tralHAp91P4UVarlYKCAmw2G2vWrNFFtW3bNhWfyrDPgoICcnJyVKUu2euhQ4fw8/OjtbVVF5h8Dr/61a/U2UB0aYIbmjPhzs5OvLy8+nVs2traeOONN/jkk09YvXo1n3/+OY899hhlZWW8++67pKSk0N3dzdy5c9mwYQMrVqygubmZHTt2YLfbCQ0NxWKxkJqaSm5urpa+coDIhpUNv3TpUsVs5NAToW16ejrR0dFYrVZWrFih62/mzJm6PoF+ILesMXP3S3AbOWTle7JmpRooLCzEYrGwYcMG1TZKEJPHNB/UQofx8fHh66+/Ji0tTUXzksVK5dDe3t5vIKw0g+SwkEGkAmOIQ4g8r7xO+brsO8HUZG3K/yUjNFMg5Pfkkj36U9e/kjnJxN+pl9EGXjQM47RhGKeAKcBqAIfDcRb4DMgCtgN3OxyO3p94bAAtxeQNSiYgmiVAOxVyA8ynkLnbYe5YyOnmcPSpv2Uz2+127ToIYCe/39DQoAEtISGB2NhY7WKYux/+/v76gfr5+dHU1KS+5TIQQAKW0A2qq6vZu3cve/bsoaCgQDskFotFhcYeHh4MHjxYcZyTJ08q52vo0KHcfvvtajEiJ8+AAQMoLCzUYHD+/Hm1ABbbCmkju7u7qxfU73//e4KCgujq6uLll1/mmWeeYf78+bi7u/P222/j5OTE4cOHCQ0NxeFwKDZmsVh4/fXXaWxsxMfHh7y8PG1QyCZraGjgyiuv1KxVpDNmnZW3tzc5OTkqNRIHgUmTJvHnP/+Zr7/+mhEjRlBfX89rr73G1q1byczMZMaMGXz55ZdERUXR0NBAQEAAs2fPZtSoUXz77beMGjWKgoICRo8eTXt7O0OGDKG2tpbExETtbDU0NHDkyBE++ugjkpOTGTZsGA6Hg8jISM6dO6djtwoLCzXoz549m/Hjx7N9+3YNruYMXrJl2cCytswaT9E5SmdOLldXV9LT0/XnZT2aS2BxFpBMRQ6sjz/+WD3CfH19iYmJoa6uTjWYMvFZ9Knd3d3s27dPTf8kUCQmJiqRt7u7ux/LX96PBHDBdgX/FQxM7om50yfrDuiXAPyz658C4g6HI4Mfx5G++ZnfeRZ49p8++8XL3d2dhIQE6uvr9ZSRNydv1Kx+Nged1tZWPSWETCldOjlZoA+AMwsnBUgG1K1Avgd9J0h3dzc1NTVagpgDmcPR5+xYXV3dr9UvHKuqqiqsVivjxo1TpnR9fT2DBg3C3d2dsrIyxo8fT21tLfX19YSHhytHSE7VhoYGgoODqa6uZubMmbS0tBAbG8vhw4cZNWqUjsMSHox4fKelpVFSUsK+ffsIDQ0lJCREzf0BQkJCmDBhAkePHmXHjh0UFxdz/PhxYmJisNlsbNmyhe7ubk6cOMG8efNoaWmhvr5esY+rr74aT09PCgsLNdgLLcLh6JukYrFYmDZtWj9ZBaAbVYJEdHQ0jY2NtLa2akaZmpqq8/NiY2N56623tJNVWVlJaGgozz33HA899BDz589X22VnZ2e+//57PvzwQz799FOsVis//PADubm5BAcHc9ddd/Hwww8TGhpKa2urZqxZWVlYrVZmzZrFtm3biI6OJjw8HJvNxuTJk2ltbeUf//hHv01n9ggTkfnl7XHJEqRRI4p8MxVGKgEJ0A6Hg0ceeUSN3cyZhrTqBdtxOBysXbsWHx8fYmNjlfLS3t5OeHg4ISEhZGdnK2jf3t6Ov78/I0aMwNPTkwceeIDi4mItP8VwTvaMcNIEvJeKQpQKwmUSPE6aHjLDUO6PQCXm7rm875/jOf0i5tY5HH2ukgK+yZuQkkVYsQJMSlYkGJIEKjkFJMjIhy3t0/r6ej0tzIJI+b6koVJKtba2cvLkSZ3nJq9BsiFAcQBvb29aWlo0oxLb0vz8fCIiIqioqKCgoAB/f3/KysqoqanRFq7YDI8ZMwY/Pz/GjBlDdXU1ERER5ObmEhcXx/79+5kxYwY9PT3ExcVhs9nw9/fXxR4cHMyJEycIDg5WiUdcXBzZ2dkMHz6c1NRUPv74Yy1Tt23bpnIhAc2nTJmCl5cXCxYs4Ntvv8XHx4dDhw7x0Ucf4ezszK233sqWLVuIjY0lJCREmxCtra2UlZX1YytL9wvQoQuS6coBJPwykRfNmDGD9vZ2XnrpJSZMmMDq1at54YUXmD59ugZWoRI8+OCD+Pj4sHnzZkaMGEFwcDCffPIJkyZNYv369ZSUlFBXV8fq1atpaGjggw8+4OGHH+b6669n27Ztmo3KfZdAnZqaSlhYGL6+vqxdu5Zz584BfRtMfk6yJMkSJLMxl1xSLsmaEhDaPIhVDk9z2eTq6sq8efP0gJIsXrJs0cG1t7ezYcMGrFYrwcHBBAQEaCYl2Gdra6tqR48fP97PYri9vZ1bbrlFrWSkjBR8ae/evdTX15OYmMigQYP64Ul2ux1vb28NniIyln3r4+Oj+JQEa2liyb2T9/Zz1y9CviI1uLmTYbFYNMMRPED+b468UurJJVmV3Bxp79fW1mr0F5P2trY2BTCdnJy0eyZptzCaRUBbVVWl/k/l5eWUlJRQVFSkOJGA0CJl8PLyIjQ0VK1yg4ODqaio0JZqQ0MDtbW1HD16VIPnnDlzKC0txdXVlbNnz6rUYuXKlfT29pKSkoKbm5tOKQHUY0cukaiIdMBmsxEREaHSnu7ubnJzc3E4HAwdOpQbbriBuLg4amtrSU5O5siRI9r5uvvuu7n77ruZOnWqDh24cOECQUFBWK1WnJycCAgIICcnh2HDhvXz7hEsTDqZgu0JCVRAVvnc9u/fT0JCAgC33norr7zyCp988gnfffed4lUyiXf16tUsXrxYg6Ldbue3v/0thw4dYufOnYSGhpKUlMRrr73Ghx9+iN3eNyo8IyMD6BNZjx8/HicnJ7Kzsxk5ciSBgYEcPnyYTZs28f777yurfMGCBYSFhfHDDz/o+uzu7tbmjQD6EojMHSp5bQJFmEsgM3FT7FVkysnl35PAYbPZcHFxYfPmzfj5+REcHKxz84QJHhAQoFNeROUwbtw42tvbaWtrU+zwiy++ICUlha6uLu1KS2PK4XCQnJxMaWmpZvoSYL28vPS9eXl5Kd+qpaXlf4Dg5opDsmVzE+Tnrl9EcBJpBaDjnM1AoOBMgHoRyWK/vCYG+nU4pP0J6EQV6c61tLRoN0k2jvBAenp62Lt3LwEBARrx5cZK+VZTU9PvZIuMjKS5uZmOjg7Ky8vZsmULV1xxBdOnTycuLo6SkhJKSkoIDAzUTpWk593d3YSHh3PixAmlMQjXKy4ujq1bt3LkyBHeeOMNmpublYRosVjU6kUsZXp7e6mvrycsLAxvb29yc3PZsGEDISEhLFmyhMGDB/Pll1/y+OOPs3TpUnx9fbnjjjtYtmwZ+/btY9q0aSxcuBAXFxeeeuopFi5cyK5du2hvb+eTTz7R4YsOR5/GTdwYzpw5o5nD7NmztYwxq9PNJ6lkQ9CXbVmtVt5//31mzpzJbbfdxgsvvMCaNWuYP38+119/PRaLRTlwb775JgMHDiQ4OFidFN59913NQM6fP09WVhbLli1Tb24np75pxsuXL6eyspKzZ8+yYsUKIiMjKSoq0vX28ssv4+zszODBg+nq6iI1NVUN+CZMmEB8fLxylSR7MGc/ouM02+/KoXq5qkEucdKQBousKeg/09Hb25tPP/0Uf39/YmNjiY+P13JPMnZZw2anzvr6elJTU5VLmJ2dzTfffKOsfWkSuLi4EBkZqYaIQ4YM0aAqqgtxkZXPWppNMhxBgrRQfeTey752dXXtZyHzk3Hhfx1J/o8uwZOkdW/mgJjV0FJGSRZllgHIJcCci4sLXl5eNDQ06CgnaZOaf2bv3r1kZGRop0FoBRLU/P39ta4WX6igoCDV4Ql5U+p2eez4+Hg2b96sZnHV1dV4e3sTFhZGRESE0hUE5MzOzqa8vJzW1lbi4+Px8PAgNDSUmpoaIiIimDVrFnPmzKGwsFDbuBLApNTt7OwkPz+foKAgmpubFS8rLy/n1VdfJTExkdtuu63fyXb06FECAgJITU1l7ty51NbWYrVa+fOf/8xtt92mBD3xTT9x4oSWvWJZLPbAEshvuOEG5YFJyWwOTHI/BbB3OBxkZ2fzwAMPkJ2drY977Ngx7rjjDtatW0dvby8vvvgiTk5O/O53v6Ourg5fX18aGxtJTk7mV7/6FX/6058wjD673vDwcDo7O7nllltYvnw5vr6+FBUV0dPTw7Jlyxg3bhzvvvsuOTk5Op3ms88+48033+TOO++ksLCQefPmqYXJlVdeyeHDh3UklrhTSKYs61A2opQ1FoulH0Zl/uwE65SDNSUlhba2Nv0dAdclG922bRsBAQE6aFPkOfHx8QqBuLm5Kd1CZE2dnZ3YbDZSUlKUyySvQXhOQqHx9PRk8uTJzJgxQ7E80bsKx0+cPyRoQt8EHjMIbi7hZb1d3tX8t3lO/9eXnKhyolitVqxWKwEBAVitVm3dmw3zgf/xZuX3JT1tb2+nuLhYaf1iZStYi5eXF//4xz+Ij49n6NChZGRkqBhYTPLF90n8fsQBwPy3j4+PYkeSsubn57NgwQKCgoKYNGkSd911Fx988AGLFy8mLi4Oi8XCkCFDuHDhguIuEydOZPTo0YwZM4bg4GBGjBhBamoqI0aMULZza2srKSkpykgWp4bGxkbCwsKoq6vTskBOudDQUFavXq2e2IZhcP78eTo7O9m8eTMLFixg0KBBLFiwQG1HWlpaeOyxx9i1axeLFy8mLy+PBx98kGeeeYbrrrtOmcDe3t79xv3cfvvteq/N5v8Cosqp2dXV1Y8g63D06Sv/9re/8dJLL9HS0sK3336LYRj87W9/4+qrr2b27NnY7XaGDh2qm1SsUerq6rRbJgFy7NixtLe3ExAQwA8//EBYWJjiLe+//z4ZGRlERUVx6623csMNN5CZmakz+aRsTktL49lnn8VqteoYcenoSoZtphWYXSoFHhDPd3OAtlgsGngMw1A2elJOFAAAIABJREFU+CuvvEJjYyPNzc2KawqZcv369TQ1NREcHKxjtsSkrrKyUmVU5syrt7eXuro6GhoaaG1tpbW1lbCwsH4Yq2TqQrAUCZkwviWwilbO3BCQwCa4pwRR+Rzk98QGSALWvwKI/2KCU2dnJzU1NVRXV1NfX683tKWlhd7eXuVlCOhqFvKK6NFM5JOSwsXFhZCQEN0sIlx1d3fn/fffp6WlhZycHHbs2KEfVHFxsY7L9vPz08m78kfGbps7N0J0kw6G1Wrl2LFjGnjFWC4qKoqRI0dyxx13MGXKFD744AOsVivNzc2cP3+exsZGdS+Qsqm2tpaysjLNhFpbW7niiivUPykpKUnZtqKnEotaMb47ePAgM2bMYP/+/dxzzz3U1tby+uuvM3jwYHp6enjzzTdZunQpCQkJmpGcOnWK5557DrvdTmFhIQcOHMDb25ukpCQAnUkm3aDOzk7eeecdrFarYg3y2QogKtoqWbhm7GXXrl0MHz6cBx54gMWLF7Nx40YeffRRwsPD2bZtGwMHDmTWrFm8/PLLXHfddbz77rtMnDiRw4cPExgYiLe3N/v37ycgIABXV1eefPJJLBYL+/fvZ+TIkYwYMYKTJ0+yYcMGnYM3bdo01q9fz6ZNm5g/fz7bt29XUmp8fDwNDQ08/PDDXHHFFfT29jJw4EDVNkrJIutAgoHINaA/r0eaOGaagNyX8+fPAzBixAjFcczyrO+++w4/Pz9SUlIIDQ1VO+GAgAAtB4W4KwEfUG5eQ0MDJSUllJWVaTASbduAAQP0cWS/ubm56fAOoR9AH9VFPjsJXJL9CYZo7rRLuSpWQXLv5Ps/d/0iglN3dzdlZWV6ugr2I6ZzTk5OmpnIyS91tSwCoQmYSX+9vb3qkSOnl0RvHx8fjh07RmhoKFlZWXz55ZecOXOGY8eOUV9fr84Ews0x+9IIKAiXTsBBgwbR1NREZGSkljN1dXVMnz6d3bt3K9fGbreTl5dHSEgI3t7eHD9+nGXLllFfX8+mTZsYN24c7u7ueHt7093dTXV1NUOHDgX6yoEhQ4bg6elJTk6OnrjSxm5rayMyMpLKykrKy8spLCwkKCiIsrIy9uzZw0MPPUR5eblyeYYMGUJlZSV33303tbW1BAYGakmak5NDUFCQnsI//PADR44cYdOmTeTn59Pc3KwTkvft24fD4eCWW26hp6eHhIQEvLy8FGuQTWzWW4nvtTm7KigoYPz48axevZqgoCAmTJjAoEGDiIqK4tChQ6SlpfHtt98qCP373/+e0NBQQkNDiYqK4vz58yQlJfG73/2OMWPGKO0hMTERDw8P/vu//5vGxkamTp3ar809Y8YMxo0bR2hoKIsXL8bT05P09HTee+89/vrXvxIZGUlLSwvvvfcew4cP11PfTKyU8lUaKWaOk6xhs/majLeXIF5cXIzFYtFunMhQ/Pz8+PTTT+nu7tZKoqOjQ6fk1NTUqEWydPRERuXl5YWvry8RERHExMSomqKpqYnExEROnTqlwveOjg717u/p6dEMqqurSzMy2VOCtwkoLgFaSkq5zKJn816XwPlzWRP8QqgEvb19c8wMw+jnAyNkNECV9kIsM3dLhDYgN0HIlOJucHmaK+D7okWLCAsLU7+lefPmkZubC1xqc0rXw9zaFX6VkNHke9JyFZvX0aNH09LSokMa7XY7U6dOZdKkSUBfmSq6u8cff5yMjAzuuusu5s6dS1FREd7e3kRERFBfX09tbS3R0dFqIiYsdA8PD3bs2EFaWhru7u40NjYqPhcdHY2/vz9r164lPDycMWPGKBm1qqqKEydOUFVVRWpqKocOHeIf//iHEhGvvPJKysrK9KSsra3F39+f3bt3M2rUKLy8vCgqKsLX15fExEQ2b97M3/72NyZPnkxTUxM+Pj762ZmxJ+HNSFNCgPWpU6cSERFBUVERBw4c4A9/+IN6hksWkZWVxfXXX09hYSHx8fG88cYbPPPMM4SEhLB8+XLeeustWltbuf/++xk8eDBDhw5l9+7dxMTEUFpait1u5/7771dXyxdeeIF169ZRU1PD7Nmz1X3i2LFjJCUl4e/vT0lJCY2NjZSVlZGSksL69es1AMlnL3CDvBcztcXhuDSyTEi6ZvmOUFPWrl1LfHw8Nputn2xly5YteHt7ExoaSlhYmI67FzBdgnNxcTGurq6K4wmmJIMwgoKCtCQVKYyMoZLyWioGCTY9PT14enpqIJLRX0JHaGpq0u6eVCUSJM3UHglmEowky5bO5U9dv4jMCdCAJCmfZEaiuBasQFrkcnJdLldxcnJSvpFo3MzmVzKaycnJieuvv54jR44QFRVFfHw8BQUFBAcH6+MJqCknoXyo5lRdgmN5eTnu7u7k5OQoMS09PR0/Pz9qa2uZO3cuI0aMwNvbm7y8PHbs2KHExd7eXgIDAxk2bBjvvfceRUVFBAQEKM/Jw8NDA3F5ebmm29LRE+tg4cEIECpmdM899xxPPPEEK1asYN68ecTHx9Pd3c3EiRM5e/YsL7zwgvpCCd7w+eefc/ToUbKysvR9JyYmMmzYMC1JhMy4a9cupk6dyl/+8hcdcW3m/ggJTzIOs2+QmeV+1VVXsWHDBjV7u+KKK8jIyODo0aOsWrVKh592dnZy8uRJZs6cqazxsWPH0tPTQ1lZmY6Tmj17NqdPn6a4uJj4+HgeeughAEpKSnBzcyMnJ4exY8dy7bXXcvr0aYqKisjMzCQtLY3Vq1eTmppKcHAwc+bMYeXKlWzbtk2Bcbh0UAmYLQekrF/BZGStStAyk4RlzXZ1dfH4449r0HZyctKM1DzMUoK+YRiqawRISkoiPj6exsZGfX6bzaYdXOkMBwUFqaTH3KWUz1i60QJHyOcnGKNghqKtbGtrw9vbW6ucHytvhQ9mrmDMFi8/df0igpOTk5NyNiQNlL/N00UFrwC0UyLWHFIu+Pv74+Pjg81m03p9wIABih+5u7trt8hms7FkyRIcDoe6DsoYH0nX5UNrb2/XySstLS0aoOrq6ujt7SUsLIy8vDwMw9BF0dbWRnp6OrNmzdKpKbt27SIuLo4pU6ZQWlrK2bNnsdlslJeXExwcrJ27qKgoduzYwenTp1UOUl1dTUFBASUlJTqhVl5rS0sLnp6e6jooGEROTg5r1qxh7ty5XHvttdxzzz0cOHCA5cuXq5/0O++8oyetzWZj48aNKh5OSkpi1apVuLi4qEWrtM7lhHz66af5+OOP1epXghDQz7pVlOrCKu/o6NCBqFVVVdxxxx2UlpZyyy23sG7dOgBGjx7N8ePHmT9/PqNGjSIzMxOr1crAgQM5c+YM06ZN087n+fPn8fPz48SJE9x+++2MGzeOzs5OnUyTlZXFN998wzXXXEN9fb2KYt9//32ioqKIi4tj6dKleHh48NBDD2mGsHnzZjw8PFi5ciUOh4P9+/drxnQ5riZTdNrb238UV5GAZe4yyzDLWbNmaeDKz8+ntbWV2NhYhRRkM9vtfT5Y3t7eip8KzhoXF0ddXR2enp7ajZV7D6iVisARYWFhuLu7ExISgpeXl65twY/EbkeyHZl6JHo9i8WiXEChIgiTXCoaNzc3DXiCo5k78j91/SLKOhcXF4KCghSDgEvWn8LoljLOTB8QVrZofMR728XFhZiYGOXSmHU9cMkNUOptDw8PMjMzdWaXOeUWn2gzsUwM2iVoSfcpICCAuro6xVQqKytZt24dN998M5GRkboQDh8+jJOTE+PHj9fXI1a/r732GmfPnuX06dN4eHiQkJBAY2OjnrxeXl4MHDhQO2QOR9+E3bq6OpVBSOkaGhqqmJlQG4qKiigtLeX222/HarWye/dutm7dqvfGarWSnJyshnqrVq2itrZWR69LViYleHt7O99++y1FRUWcPn2aJUuWaLkmC1BMx6RxIaRYuAQYDxw4UJ0ZnJ2defPNN9VTfOzYsXz++eecPHmSq666ioCAALZs2cKNN97It99+C0BgYKAa/40cOZK4uDgyMzOx2Wzs3buXW2+9lePHjzNt2jT8/f3JyckhLy+PCRMmMHToUEaNGkVWVhZnzpxhwYIFOvnX1dWVZ599loceekipLlJSycZzcnLSMkcOKinxhJpidsWU9SsZugzTEMJqdXW1lq6ylrq7u7Wdn5iY2I+8ap6ma7FY+mGKdXV12lWVYBkQEKC4lPxsfHw8fn5+1NTUaPkp2GxTU5PiUnJ4Cn7W29s3AUiIp2bSqM1m0ypHLLd9fX31tYo/+k9dv4jMSYA66dLJDDnJCAA15b/8JJI6t7W1VQFdoeDLphcO0uWKaOjTPTU0NOhJI+xXQCn95s6SGHcJ2TE0NBSbzcaAAQPw8/NTbCA4OJjY2FhuueUWpSDk5uYyaNAgkpKSiI6OVmmEkAuFBVxYWEh4eLgOFG1pacHLy4umpiZGjBhBXV0d3d3dtLS06GsUKYzD4VC2b3t7O5GRkao037dvH8eOHaOhoYG0tDSCgoKIjo4mLi6OFStWaKmWmZlJVlYWBQUFXHfddWzevFmnxhQUFGC1WhXo9fDwICsrS0dqC/YFl8oeM4lV2tXiYSUA6/Lly8nMzCQ3N5dNmzbx5ptvcv/99+Pq6kp9fT3nzp1j0qRJTJ06lfj4eC1NxowZQ3JyMpGRkRQUFHD11Vdz+vRpnJycOHPmDKtWrWLMmDHk5+czf/58/Pz8ePfdd5W9P2PGDM6dO0dDQwN+fn6EhYWRnZ3NkiVL6O7uZs+ePTz44IMYhqHe5jExMbp+BNDu7OwkKChItYNm/aBgUnIASHZk9sH38PCgvr6ekpISFSnL183ExtiLk5cFVxSunTkb8fLyYuLEiVRWVqrrqjnjkYpCAq04V7i7uxMaGkpwcDBw6RDv6uqisbGRlpYW7biaHQkk0A0YMEC7cdI0ErxKfkfWgtkL66euX0RwkpTRLAUICAhQsE/a+WbU3/y77u7uSsaTLEMGW/6Y+llujJzoRUVFevpJIOvq6lIKgkw3HTBgAD4+PqosNw9MbG5uVpatuF329vZy4cIFXFxc2LJlC5MnT8bLy0sHIQhIL3jbww8/zLfffktsbKzyXoKCglQE6ufnx5EjR5RH1NXVpW3nxsZGEhISqKqq0vtot9s5fvy4BqM5c+bw/PPP8/vf/54ZM2Ywfvx4dX988cUXmTJlCmPGjGHRokW88cYbPPLII9TX17NixQqampoIDAwkISFBJQ3+/v5YrVbVwa1du5aIiAh8fX376afMJQD0ZcVNTU1aJo4bN44bb7yRa665hrKyMr755hs8PT05fPgwx48fJzo6msDAQDWIe/7557FarUr6++CDD/D392f8+PEsX76cZcuWkZiYyPz583n77bcpLi7Gzc2Nc+fOKXfKzc2NMWPGcP78ee688046Ozs5evQonp6enDp1Sjlwdrud6dOns2DBArZv387IkSMpKytTrFBKXDMHSPBSQEFfyaTMol9ZA729vaxYsUIHlPb29lJdXY2rqys1NTVK2QgJCfkfXlFmmYv8W+xyZGRZUFCQUnXMe0IwoJCQEM1izP76gteK9rOnp4fq6mot+2SfSbVj3sNyX0SHKvQEwWPNpMyfun4RwclisWhrVG6KKM2FfS2XvFGx5S0vLyc/P5+ioiIdTySZhHgFiQ2ElDcSDBwOByUlJcrUludxdXXVwZRSSgmfR/AcuclCHnV2dlZZS2NjI9XV1bi4uDB27FgGDhyIzWbDYrGQmZmpsouEhARdDKKnkxTcarUCfXIes9vgkCFD6Ojo0GkgAjx2dHToXDohw40bN46amhq6u7tZu3YtJ0+e5Ouvv1af59mzZ/Pss8/y9ttvc+TIEZydnZk9ezaDBw/mu+++44svvqC2tlYHNCxcuJDp06dTVFSEv7+/Lv7U1FSmTp3KmjVrFJAX0FOyCLMXkbg9SCbr6enJ1VdfzYkTJ0hNTUWcUf39/UlOTiY3N5djx46xaNEivvjiC+bOnUtycjJZWVk0NDRw9dVXA31Bb+HChTQ1NekAgwceeIBly5aRkZFBbW0tgwYN4oUXXmD8+PFkZmbS0tLCqFGjlCF/+PBhnJ2d2bFjB6NGjeLJJ59k/PjxbN68mdraWubNm6clvrgAyPs0s/Rl80kpK7iNuSyUAJOXl8fixYvx9fVVrDUgIABnZ2eVpEiTQCqJ1tZW2tvb+81XlEAnmauoC8RauqurSwXRgq0KF7CkpEQrBzF7tNlsynuSLqvsDZvNRnV1NXV1df2cFuTzlUpFutqATsgW7Fjwp5+MC/9OUPn/6uro6ODEiRMcPHiQkydPkpeXpzagZtavTO1oaGigrq6O2tpaDWCXR2ABHSVQSaYkp5qUUKKIF3BXrqioKAX1nJ2d8fT01NE3ArB3dnb20xilpKTgcDgYPny4lh3iq7N48WJyc3NpbGzkyy+/pLi4mLa2Ng4dOsTbb7/NH//4RyXYycaWoCj4UUREBBaLhbq6OoYNG6aYBaDdMMHNHA4H8fHxPPfcc6xYsYLHHnuM+fPnExQUhMPhICcnhxdeeIFnn32W2tpatm7dys0330xubi49PT28+uqrTJ48mRUrVhAVFUVzczN/+tOfeOedd2hpaaG0tJSmpibi4+Opqqpi/fr13Hrrrfo5SKCVgwYugeNCGiwqKsLZ2ZlJkyZx5swZnnrqKTo7OykrKyMsLAybzcaIESN47bXXlKT41FNP0dLSwunTp0lPTyciIoLs7GylbbS1tWngMwyDV155hbKyMgYMGMC5c+eYOHGisrCF29TY2EhFRQWvv/46kydPZtCgQSQkJDBnzhy2bNnCM888Q3h4OC4uLmzYsKFfaWLOXCQISYYgAUoyCcnIzWC4gMc+Pj4KGkuVIJtezAVHjRqlmjfBO1taWvoRPu32PstqGX8VGhoKoH7nvr6+WmbJ3hA8U6Zqu7i4KM9JDhbp+tlsNs6fP688tcbGRj0UJRALFUHAeriE98p9+v9NWWdWNEMfuCljtmWxy8gnEe6aeSQ+Pj74+vqqAZYsDDmF5OckkAn7tbq6WudsSe3f0dFBWFiYptdAv3Rcsikps4SVLda57u7u5ObmaqbV3t5Ofn4+FRUVVFdXExYWRn19PVFRUaxZs4bt27dTUlLCgAED2L9/P0uXLmX27NkkJydrgI6JiSEqKoqkpCTS0tJUriAuC3AJxwgNDaWpqYnu7m6dmCKXn58fV199NSNHjmTu3Lk88sgjvPXWW4wZM0a7fTExMURERHD69Gm8vLywWq3MmzeP0NBQ7ZC6urpqUK6trcXLy4s33niD0aNH99M8ysYTJrGwhOXE7u3t5YYbbiAiIoLCwkL+/ve/s3z5cn7zm9/w+uuvExAQQE1NDQsXLmTKlCl88sknHDhwgMDAQHx8fFi5ciXPP/+8Mt8HDBjAoEGDWLduHVVVVfzwww/cfPPNHDhwgNjYWGJiYmhubsbf35+6ujo8PDyIiYnh7bffpquri7lz5xIZGamDNVpbW7n55puZOnUqd911F9XV1ToMwTD6xnmbO8iCr5mDj1BSBLM0d4Kl3JWNbhiG2vNKFiTBTjJjmSwt8EVpaamWaoJ9CU4kB3BDQ4OubcEk29vb9bULYbOyslK1ov7+/lp5iB2KsMJlcIJhGCoaFna6EDjl8zVzwmRPmpOAfytzMgxjgGEYRwzDOGn0DdV86uLX4wzDOGwYRq5hGOsNw3C9+HW3i//Pu/j92H/2HBJgIiMjGTRokLb8zeJUAYAF26mrq8MwjH5z3qU8MzPHZSFJgDGDebGxseoSKF7e7u7uOtBRRmubo7xZPiOZlHBIampqcHV11U6htID9/PzUejc+Pp577rmHiooKlixZoiC7s7MzpaWlvPbaa1gsfcMWRo8ejbOzMwkJCURERNDZ2clbb72lJ5yk5GJlkZSUhN1uV6O0hoYGhg0bRnNzM8XFxWRlZVFUVERJSQmnT5/mwIED+jjXXnstlZWVTJgwgerqarZu3cqsWbP085GR8bEXRzmZfYtsNps2KwS7EBDX3F0VzktnZyf19fXKtTl27Jjawbz11lusW7cOJycnqqur2bFjB9OmTWPYsGHqSe7q6srIkSP5+9//TmBgICNGjMDPz4+goCDKy8tJTU2ls7OTq666ivLyciZMmMCECROw2Wx8//33zJ8/nxtuuIE9e/awd+9eZsyYQVpaGuXl5dTV1ZGQkKCUFIfDwenTp3nkkUc00EjQuXDhQj8baaCfhY/gl3LoCq9JsicBnOWwkyAutAFZQ1LKdXV1qSmfcI/c3Ny0QSIzASWDBNTIT4ZISICSACG4U0BAgH6/urqav/zlL2zatKmfzbD5tcvBL6Wa7BdhjAtYLp+94FJiVyRrxNykuvz6V6gEncBUh8PRYvQNOsgwDGMb8J/0DdX81DCM/wJ+S99Elt8CDQ6HI9EwjMXAGuCmn3sCd3d3oqOjFXg2ywGk8yS8IeFOSCQ3j9iRQASXPI7N7G65QZJtWCwWoqKiKC4u7jcZRWph4YiYBZrmqC+bTTpX0qqVIZYylkeyuV27dmnXLjw8nJ07d2qLV95nRkYGFRUV/Md//IdiY9Iujo+P54orrsBisZCbm0tgYCBZWVmEh4frkE5/f3/OnTuHYRg0NTWRnp6Oi4sL8fHxaoSXlZWFu7s7O3bsUPC3qqqKMWPGaKm8ZMkS4JK52LvvvqupupubGxERETQ2NlJXV0dmZibLli3TjQaXFr0IgqWrBOiJbbfb1Yhv4cKFvPXWW6xZs4YXX3yR4OBgampqWL16NatWreLKK69k3759qq7v7e3lpptu4sKFCxw+fJhJkybx9NNPs2jRIgyjb6rxunXrmD9/Pv7+/jz22GNMnjyZkJAQrFYrTz31FKNHj6aiooLY2FiOHDlCWlqaMrCdnJxYt24dzc3NKiMRca1sqLNnzzJ9+vR+a0uyJPkZWRfmYC3BRw5fCRyyqUXaYrVaNbu6HGj28PDgwoULehAJbUGyVbgkFUlISNB1KKRXOaT9/PzUIrulpYWIiAieeeYZ/P39ycrKYvr06erfJYRRkcmYhecymkrwUXlPMhhXOu9CdzDPtPup618ZqulwOBxi5u1y8Y8DmApsvPj1D4H5F/897+L/ufj9acbP5W59z6FAmqSHohFqa2ujrq5O2cGSZYjeTdwB5IOTlFaGBQiwbn4OWTRyYyIiInB2diYpKQkvLy+16xD7CPPjm8tDIWYK41la/3ISOTs7U1VVRWBgIIGBgQwfPpyQkBB+/etf4+zszIgRI5T4KVmgv78/np6enD17lpMnT1JeXq4nTXt7O+np6ezbt083C6ClphApAwMDCQ8Pp729nZycHCoqKigsLFTRq5+fHzabjQULFhAVFYWXlxcrV65U7GPo0KGsXbuWCxcuUF1dzYkTJ6ioqOD48ePk5uZSXV2t5VF9fT1JSUn4+flpM0MWp2Aw4jVuLoekYxkeHq7t8euvv17n5Hl6evL9999TVFREWlqayohOnTqlWsbIyEhSU1MVM/vVr35FTEwMvb297N27V0eJl5eXc9dddxESEsKpU6fYsmWLWgjffPPNdHR04Ofnx4QJE7jxxhuxWq1kZmYyYMAAoqKiyMnJ4aabblILETnx6+vraWxs7Ce3kixJylvJqkT3abbqkcPz8snAbm5uhIaGKiQhvy+ftbwGgT3MbgCCVZnpB2IZJP8X0FsyJRkIK95iwqcSygygOJUQk82DPSTgyPOK+F6Cr3xPsF95j7L3f+r6V0dDORmGcQKoBtKBfKDR4XBIn948ODMCKLn4xD2ADbD+3ONL4DDLGkQfV1VVpUC4mXMkwwPEiUAWiFl8Kae+UBXMpEBz98Fut6v2SE4G+VvKw8sjvJyMsuDktBS9lXwYoaGhVFZWMnjwYGpqaigqKlLng/r6esU23Nzc8PLyorGxkcmTJ+NwONTOV1wsi4uL6e3tJTw8XFu4ImYWIqpgEBK4RWJQWVlJZWUlzc3NHD16lCuuuILm5mZ++OEHGhoayMzM5PTp02olbAZcy8vLOXLkCAkJCTQ3N6sdrAirhUIhsgrZZGZbDtkMZp1VQkIC586dY+3atcyfP58dO3bowIIbbrgBX19f1cRFRkaSm5tLaGgoCxYsUOcF+WwTEhKora0lKCiItLQ0pkyZwtVXX63+WYGBgezcuZPo6Gjy8/MZNGiQGvjLvZRGwVdffUV0dDSxsbH4+/uTlpZGTk4On332mWZIZp2YeW2YWdLmybiS2V/cT4pnOjs7q34RUC8mKQFlTYstieyR3t5efHx89H5LYBFwWzItWZ/CLpcyVDzNJdC6uLjg6+urlioJCQnMnj1bkwGhFQhsIvir+bOW9yTBS55H3rsEzPb2dp3a828zxB1901NSDMPwA7YAQ37sxy7+/S8N1TRME39DQ0MpLy/H1dWVkpKSfiRIQfblQxZdnHg8waUAIR9wU1OTvnFZPGazL2n9mun10n0x81IksJnNwyT4SUYXERFBaGio4mH+/v662BsbGwkODqa5uZnAwECSkpLIzs5m9uzZTJw4kd27dzNv3jwt9YKDg1mzZg1FRUU88cQTynMpKSlhwoQJNDY2atApLy9Xb3MBOUeOHElzczNBQUF89dVXzJs3j6lTp7Ju3ToVHotR3p49e8jOzsZisbBjxw6Cg4M1W42Li1NS5eDBg3U+3HfffYfFYqGiooKhQ4fS2NhIaWmparxEEyYtdTOfRvybJHvt6elhyZIlHDt2jMGDB/O73/2OlpYW7rjjDqU9lJWVadDbs2cP//mf/0lGRoZiMPv27WPq1KnY7Xa+//57brzxRgoLC1mzZg2JiYkMGTKEkpISfHx8OHHiBMOGDdNyMCsri5SUFIqLi7HZbISGhvLxxx8TExNDcnIymzdvZubMmer1/tlnnzFlyhQCAgJYv369rimLxaIj4OW1Smkl1sLmNrs5I/gYAAAgAElEQVT5sJSsRDqbx48fx93dnUOHDlFVVaU+Xs7OzsyZMwe4NIWotbUVHx8fSktLVQ8KaNAR22bJblpbW9U2SCoJV1dXdQKRZlJJSQnLly9XCoDQJaTrKHtBMjgJUBKwZL9IGWlOEiQJEeK0BO2fuv5X8hWHw9FoGMYeYDzgZxiG88XsyDw4U4ZqlhqG4Qz4AvU/8lj/Dfw3QGRkpCMzM1MHRQrfo6OjQ83h5ERyc3PTNy3lndyQ5uZmjcpyQ831vCwgwa7k9wQbqqmpwdfXV7tScAkzENKZMIJFDyavUbCI8+fPY7Vaqa+vx9nZmb179zJv3jxeeuklli9fzoEDB6irq+Pjjz8mOjoaT09PGhoauOmmPliuoaGB/Px85Su5ublxzTXXsHXrVt3UM2bM0EEJAQEBOBwOvLy8dAKMp6cn48ePp6mpifDwcJYtW8ayZcsUxzt16hRnz57lww8/1HHnpaWlyltat24d0dHRbNiwgbvuuovi4mKCg4PZvn07np6elJSUMHv2bI4fP05LSwvR0dH9PHpk0QmYK2WTlNnSXaqoqFBu27XXXouHhwdr166loaGB4cOHA3Dw4EEWL15Me3s7ZWVleHl5cfToUYYPH64mZpmZmeTk5DB9+nR6e3tZuXKlGv/v37+fvLw8rrjiCuVT3XjjjYwdO5Zbb72V3NxcWlpaePHFF1VnefDgQVauXImzszPbt29n7ty5PProo8yePVtZznJYxsbGqiWvbDT5W7J56U4KYCybVLJyyUDnz5+P3W7n6quv7tfddHZ2pry8XAFoGasl3LfAwEAtu+T5JVjJawkICNCOnlAdpGso4vWmpiZ17BCKgWEYui5ERSEEZGGmmyk7oveTDqQ8vtloThIF88TsH7v+aXAyDCMI6L4YmNyB6fSB3LuBG4BPgWXAFxd/5cuL/z948fu7HD/3CujrYvj4+BAaGqrCROnYCZBqTiWlUyGZEfSR0qqrqzW1Nfs8yc0EtEaW+lhuruAtzs7OnDhxgpCQEL3hUkfLY0qQEGuKkydPaptaFnR0dDStra0UFhYqOVROswEDBvDyyy/3OzUKCwvx9PSkvLycdevWkZiYSGtrK7feeiuFhYW4uroSEhLC6NGjyc7OxsPDg6SkJM6fP68uBd3d3VRUVJCcnEx3d7dOdZWUXoDiwMBAkpOTue+++3RySl5eHkVFRRw8eBAvLy9OnjzJyJEjee+994iOjubTTz8lNjaWCxcu4OXlRX5+Pk1NTeTn5zNs2DAABUxl8cmp7evrS2VlpQZQkdlMmzaN3bt3c+utt7JkyRLy8vIYPnw4L730Eo2NjeTm5vLKK68wfPhwDh48SFlZGddffz3PPvssCxcu5LvvvuPGG29k6tSpTJgwQf3ne3t7+fvf/87w4cPp6upi/Pjx1NXV8fXXXzNgwABmz55NSEgIZ8+eJSQkhJ07d3LvvfdSWFhISUkJd9xxB87Oztx///2MHj2ajRs3smfPHp1PaJZhREREaNdUNqWUbebNKBmTsKvl3wEBATqdV4KBdLokkIkdsoDYZm8sma/n7e2tWJJ57UumJJwlwQPNnTLBgUQhUVBQQHR0tGaHAnRLliT8JQmwIpmR4SDSIJL7IO/LvF9/rksn17+SOYUBHxqG4UQfRvWZw+H42jCMLOBTwzCeAY7TNxWYi3+vNQwjj76MafE/ewIvLy8mTZqkIJv5hZvB1cs7cXJ6yYks9a+k13BJ+ySPKdH88vE8wucIDw+noaFBb7LceDPJDvowh6amJjo6OqitrcXV1ZXg4GAdril4UVBQEN99952yrBsbGzlx4gSTJ0/Wxebt7a2gsEgzAMaOHctnn33GtddeS1xcHJGRkWzfvp3AwEDi4+PJzs7GyckJm82Gn58fbm5uBAcHU1VVRWNjI/7+/tp6b2hoUExBXBDee+890tLS6O7uZs6cOSQnJ7NhwwaKi4tV4yci6IiICJVUTJw4UUl5Zra8lHHmMlikNlarlcbGRnX9lM7o9u3b8fDw4LrrriMyMpIHH3xQaQ/vv/8+Q4cO5euvvyY8PBxfX19++OEHkpOTSU9PJzU1leLiYnJzcwkJCeHNN9/kuuuuo6KighkzZlBcXIynpyfZ2dk0NzczadIkysvLCQgIID4+nszMTM6cOcPAgQMJCwtj3LhxvPTSSzQ1NZGSksKqVasA1E8rODhYNZ+SKcbGxmo3TQ5BoZlIpmKeXC1ZvWQeEig6OztVigT9SZ2SmchjyvehD/qoqKjA29tbKSVCL5EAIsROue8Cgsu/JbAKsz0uLg6Hw9FPT1dZWam+5PLahLITHByswxzMeJfsN+FpmcnOEqx+rlf2rwzVPAWM/JGvXwDG/cjXO4BF/+xxL79aW1vVYUBOW7OjgFkeIMCeBAcBuyULkta7dLGkVpaT3Fx6yAfe3d2tZZSkq25ubko2DAoKor6+HsMwdEHJadTV1TdIU4y3/Pz8qK6u1lrbYrFollNUVMR//dd/9RPIyqBIu73PJXPYsGEkJCTg5+fH3LlzCQ8Pp6qqigsXLjB16lRsNhtZWVk4HA7CwsJUW9fT0zdtJiQkREc8jR07lq6uLrW+SEhIUNnDE088QWtrKyUlJTpS6YYbbiAtLY2BAwfqBBNp3Qvede7cORYuXKiz+ERNL/dS8BVR1MsCF2Kf3W4nKSmJO++8k9LSUvz9/fnss8/IysrCycmJvXv3cs0113D33XdTVVWl2NOiRYtwdXVl4cKFLFu2jEWLFvGXv/yFxMRECgoKtHMHqNzGZrPxwQcfkJiYqDjZnj17tHuYnJxMR0cHH330Eb/97W8JDw8nNzeX9PR01e/Fx8dz4cIFvL29mTJlCunp6djtdtavX4/NZtNgZMYqpUkgjQXZ/AIeixbP39+/HzhuPnRlg0tAkpa/4EGSzcvzyP0W0qNkchIsZH+IM0BXV5f6gEnAkuzJYrEQHh5OV1eXir3lQIc+Qm9cXJxmR+KMIN+X9yl7RJoDkqVJMP63AfH/60vKJwkWcAnUlrFHQg2QxeDp6dkPdBXmqmwMabMK3iSPLSeJ8EIEfBepSElJCWFhYQo0i+L6/Pnz2hER3MvHx4cLFy7oqPCCggISEhLo7u5Wfszp06eZPHky+/bto66ujujoaHp6evj+++9JS0sDUInBhQsXuPbaa/Hz89NTVEpHX19foqOj8fPzY+PGjcTGxtLW1oaXl5cGTVGhS2cvICAAAJvNpjwVUb+PGjWKvLw8VeL/5je/UX/pEydOUHhxmm9oaCgTJ04kLy+PyspKNeYT47OrrrpKM1V5PbJAJXuCPv1cc3Ozvv+5c+fS0dHBuXPnePrppzGMPktdf39/vv32W6ZOncrmzZtZuXIlGRkZhISEsHTpUh588EFefPFF9u3bx6FDh5g+fTpvvPEGN910E76+vrzyyis8/vjjWCwWSktL+etf/8qkSZOwWq1qKDd06FAOHz6sBnsXLlzg3nvvJT8/X8dptbe3U1JSQkdHB+Hh4UCfNmzXrl0ADB8+nLi4uH4SKwHDBS6QuYgSPKTkMk/PFYxHyj9AH9MMQMuha348CYLCnRJ6y+VDX+Wx7Ha7koblOaV8FFmRBCZxPZAy02KxKNbl7+9PeHi4BlwB2CUrhEslvgRNSQAkm3ZyujQo4qeuX4R8RQDiHTt2sGvXLrZt28ZHH33Exo0b+eKLL/jwww/ZuHEjhw8fVucBEddKxtXY2EhDQ4PanJoxJfkgRSIjJ5zgUxK9/fz82LRpkzKF5TEEE/Pw8NCTX8ql1tZW9VwSTyaLxUJgYCBNTU0MGTJES6na2lpN29evX092djZVVVVUVFRoaSLCWQGNfXx82Lt3LxUVFXh4eFBaWkpycrJmXXV1dTpu3NXVlfz8fFWZC7AfFBTU736LPWtiYiI7d+6kuLiYo0f/H3NfHh1VmW2/K3OqUhkq85yQpCAkJCFhBhkUIoMICgpig6ud+6E+EdsWtFtRX+Nz1rZFVLARAZFJUSODzJAOEBKSkHmozEOlKvOcqtTvj7gPNzy133rv/dbirsViSlJV937f+fbZZ599MnH58mVYLBaMHj0an332GTIzM7FixQrodDqcPXsWgYGBADCi4ECRKytPRAdc0ENDQ1LyZjoAXCdc6fS5Z88eAMD58+cRHByM/Px8qQIajUa8/vrr2LNnj6RKycnJuHDhAvr6+jB16lR4eXmhra1N3E2BYcO2sWPHIiUlBRkZGejp6UFgYCAaGxuxevVqzJgxAz/88AOcnZ3R3NyM0aNH491330V6ejpKSkowdepUlJSUiIVIZWWl8Gtff/21bDQWZ0gf9Pb2jrCGoRSAhyQ5VeqIlKrtX1LUE/UoRzFxndFbXClsZXWbqSBJdX4NgykA8VwCIC0yFE+y7E+kV1FRMeI5m81mNDY2oq+vT2QqDMjcVwxMpGyU3Ruskv/aZf/yyy//N8LH/9/rjTfeeDkuLk5ye/bmKKMyS/3l5eViJ6LU1nDGu1Idq1ar0dnZCZ1OJycQbxaJS5LbWq0Wb731FsLCwhAcHIzm5mYYDAZUV1ejvr4epaWlKC4uRm5uLnJycpCRkYGsrCxMnz4dHh4eyMrKQnh4OHp6epCXlyf+5Xz98PBwaLVaNDc3o6WlBaNGjYKLiwtCQkJgb28vTbBsbGags7e3R1NTE8LDw+Hu7o4nn3wSs2fPRnFxMVxcXETgyGoKiXqiJJaPq6qqRH5RXl4OnU6HyspKGR0dExODQ4cOYfbs2fD09ERCQgLWr1+Pn376CRaLRVppmB6yN5Gjs8hhcANRl0Y1MbkXo9Eoi3zKlCno7OxEQUEBWlpa4OnpieXLl8NoNCI9PR1RUVGYNGkSOjo6UFdXh9mzZyMiIgIHDx5Eb28vrl27hoceegg//vgjJk+eLEMyOBpLr9fDx8cHJ0+eRFRUFDw8PFBdXY3w8HCYTCakpaUhMjISAQEB8PDwwNatWzFv3jwcPXoUiYmJcHV1RUREBI4ePYq4uDi4ubnhypUrqKysRH19vQQTVpYpMQEg/A0PQiJ2ohoGIQYptqKQW+XP5t+VlUBlnyc1fyaTCZ6ennIg83WVVIiSt+LPYfbAoKGsfvP5kT6xWCy4fPkykpOTpUWGPmx85nyvyoZffga+HrMdFxcX7NmzB2vXrt30S3HhpkBOlO0TmTAvBTCic9nR0VG69g0GA4qLi2E0GsUwzs7OTgYKWK1WNDc3y+bjBqFPttVqFS7FwcEBx48fl9Kt0WiEj4+PtDoAgNFoRHl5udh3HD58GCdPnkR5eTnCw8ORkJCAjo4OUYTTU4emW2azWVpbhoaGrTOCg4Nx+vRpNDQ0wGKxIDs7G/Hx8dDr9VL2T09PR1tbG2w2Gw4dOiTwPTAwUGw+eJ84hpwLu6OjQ6bEMDANDg4iKioKJ0+eRGtrK8aNGweDwYDPP/8ceXl5CA8Px+7duzF79mykpaVh9uzZcHZ2xokTJzB16lSEhYVBrVajvb1dtDbkNm5ceExzlD1mtbW1mDJlCsLDw/HGG28gOjoa06ZNw7hx43D48GHs2LEDjY2NaGpqQlJSEvr6+nD27FnExMRg+/bt+OmnnxDxs0Xt4sWL8cc//lEcPo1GI3p7e1FcXIwjR44gNzdXihPjx4+XymlkZCSsVismTJiACRMmyIHCVo69e/ciLy8PRUVFeOKJJ/Dss88iPT0dy5cvx5EjR2TyDQBJZ5UtK0RJHFTJ4R28lEQwNy+RBoMcgxGrzABGIHll35qyK4Jfx8OBRSIGLaaVSgsgjjvz9/cX7zQWOljQ4N7ktGqTySSdAixIET1RdsOgq9QoKnlfZRr4S9dNEZx403p6elBbWys2oRRN0qaEJUp+4P7+fpSWlqKkpAQDAwOiuCZJbrPZxHu7u7tb8l+mgVRY9/T0ID09XQjFjo4OqNVqeHp6isOln58fgoOD4evrK+S5zWbD5s2bUVRUJL7U3t7eaG9vR1tbG8LCwhAbG4va2lrU19cjKytL0F5WVhby8vKg0Wjw1VdfYcKECbjrrrtw+fJlmbbx448/wt/fH7feeiv27duH5uZm+Pj4oKmpCQEBAThz5gzMZrNMtmVjMZEaMEwMs8uem4Ybc9y4cTJQgX7hp0+fxuTJk5GdnY3U1FSpBH7//fcoKysbUQigBobkMgCpQLW2tkorC6tO9vb2yMnJwS233IJz587hpZdeQkVFBVJSUrBr1y68/PLL0Ol02LFjuPspKSkJP/zwA+69915ER0eLeyMRUVtbG6ZOnYqUlBRMnDhRyP+EhAR0d3fj/fffR1BQEKKiogAAU6dORXh4ODIyMuDg4AC9Xo8//OEPgiKffPJJXL16FR0dHZJGf/jhh1i/fj0cHBxw6623ykGqVF8zDVfyKVzXfN5UohPJABBDQn6NsjJHXRCDEFMjckT8HuXm52gnvj4DHblWpWMmMw4lsuJBzSBITRpJ9sHBQURGRsJgMIjRHy2BmP51dnaitbVVOgko7WCLDlNcKs9ves7Jzs5OmlJJ4lZXV4vjIG8mOSN2Z3NDdHZ2CoqqrKyUzmwKMrmAGLHZI8TS61tvvYWIiAh5QIS5/B6SnHQh8PX1FdgaFhaGr7/+GnV1dZgzZ47MjGNvFMlICtS4cNrb25GVlQVPT0+8+uqrckrNmDEDbm5u2L59O7y9vdHf34/q6mo5vYgG+/v7xVaFGqKOjg4YDAa0trYiJydHNCq0HqHQDgAyMzOxefNmlJeXo6mpCXl5eaivr0d7ezuuXr0Ki8WCp556SjzIfX19UVpaKjYhrDZxITJYMbXR6XRCiHNjkIs7f/48Kioq8N133yEiIgKjR4+WmX4FBQV47733sHTpUuzfvx+///3vUVlZCQcHB6SmpsJoNGL//v2YNm0azp49C6vVivT0dPz00084efIkIiIisG/fPqSkpOC5555DTU2NjJfasWMHmpqaEBwcjJKSEmzbtg1r165FeXk5oqOjsXHjRqxduxbHjh3DM888gxkzZoh7xbZt20ZMNlFakHBtEKGw1YSFE/ZoMlg7OTmJ9TKDD7kXyhK4fslvAhjRhqIsNlgsw4MIKGpUtouwBcnFxUWGrCpnyylbr3gRWSm5LVIFnp6ekrrW19cLKc4DUCk14CGm5HYZoJSynF+NC/+7sPJ/c5E8ValU8PX1hZ+fHzQajaRUTFN0Op00FKpUKnR2dkoFoLu7Gw0NDejt7RWk0traKjfDYrEIn8V+Op1Oh2XLlkGv1wsPUFNTIwGQOb+zs7MYftHJkMFk/PjxWLRoEQoKCmAymVBZWSmCuZqaGpw7dw6dnZ3Iz8+Hnd2w+bydnR28vb3F2zozM1M+p52dHZYvXw4fHx/4+flJFVCr1eLq1at4++23YTabUV1djYqKChFGhoeHo7W1FVqtVgR53t7eqK+vx6FDh1BQUID9+/fj0qVLsNlsaGxsFJ0LvZzuvfde2NvbIzk5GZWVlbjvvvuk789kMkGtVqO7u1sW4uDgIHx8fOSEJ7lL1T0AWaTkO06dOoWKigrY2dnhxIkTGBgYwBNPPIHHHnsMZ86cwT333CNoNT8/H9999x1cXFywZMkSfPDBBygsLMQTTzyBoqIiPP/887jvvvtkhFVQUBCam5vx/PPPY+nSpXj11VeRlpaG0NBQlJaW4qWXXsKYMWNw+fJl1NbWIjU1FfX19UhMTMTo0aMRExMDV1dXpKam4uDBg7h69Sq8vb2xYMECBAQECGoif0a9He8FS/L83HQecHBwkAEAyl/sMGhoaJA1zLXHKUFEY/ydyEmpd2K7FLVTJK2VDh4k5+nWSsRCTZRSjMxLedg4ODjA29t7hKCXiI4mdtT6cQwbiwTcS8quDkovfosQvymCEzBcUWIZnJuMJxKrIFTEqtVq8fHmyUISnUMDla6ZnA+nhNPJycmYOXMm5s2bh+bmZuGtWIUzmUwYNWoU/Pz84OfnB51OB09PT4SGhsLT0xNBQUHw8fHB3LlzxV88Pz8f48aNg9lsxrVr19DX1yd9RA8++CBmzpyJ4OBgdHd3o6OjAwcPHoRer0d4eDjKy8thNBrx/PPPy1BOLsjU1FR8++23+OCDD1BaWgpnZ2f4+PiI4tzHx0dyfVdXV5jNZkRHR4uX+YkTJ5CWlob09HQUFhbi6aefRnp6Os6cOYNr166hoaEBixcvHmFrEh8fj4KCApSWluKDDz7AwoULZeAoN49Wq5WWI6JDkroABEUoq0/sOeTst88//xw2mw1btmwRL6bt27ejpaUFdXV1mDVrFvbt24eBgQEsWbJEuKHW1lZs374d69atQ2JiIo4ePYr58+fj8OHDCA0NRX5+Ph588EGMHTsWBoMBHh4eePzxx2Va7sKFC3Hu3DmsXLkSarUaW7duxfTp03H58mWcO3cO99xzDw4fPiwVQGVKws/JzUmhL2kBHqbUDBE5KFMlALI56XqhzBKU5X4GfwAjUjkA0gbi7u4u2jqiNKaSbW1tIiEICQmRPcP3zq+lBIZcEKUHHh4eEmRZzVO26LCNhjyov7+/BEalMSQRJYXDXN+/dt0U1br333//ZbZc0InP3d1dFMhc+NSOtLW1Ydq0aWKixYjPh0srCKZ3PMkZ9SdNmoTw8HDMnz9fJoCw6tHS0oKgoCAMDg4iIiJCPJRJIFIRy7FDK1euRFVVFWbNmoW0tDS0tbWhs7MT165dk74yo9GItrY26HQ6fPzxx9KmExoaih9//FG66Wtra1FbW4sxY8ZIuV+lGp6I8sQTTyArK2tEQ2VXV5fMy4uNjUVFRQX8/Pyg1+uRl5eHSZMmwdvbG4sXL4bFYsG1a9dQU1MjCMdoNIrXEjDsVz579mzU1dVh+vTpMklm0aJF+PTTT+Hl5QVHR0cUFxcjPDxcOAsfHx9Bo4T0ylOS6QUPC+qm6uvr8eSTT4r/+/r167F+/XrYbMPuAIsWLcK7776LlStX4osvvsCRI0ewe/durFixAvHx8fD398eYMWOkKtva2op169bhwIEDYrw3Z84cfPzxx3B3d4der4ednR3WrFmDa9euISoqSszyZs2ahfr6ejHf8/f3R3x8PCZPnjxCJ8dNyU1FBMN1x44C4Lo1rTIF6+3tFX4wISEBTk5OUKvVMpxSqT5XiofJBzHYAdflGNwjHR0d8PX1HcFJKRtxyW8ROd3YdMt9xIOfpoYdHR0SlCiu5WFvb28vPKfSh5+flQGZwVnJrdnZ2WH//v03d7WO8nonJyeYzeYRtq7M3VlqHRoaQmRkJCwWCyIjI0coY+nBBECgrMViQW1tLUwmkwSIqKgoLFiwQKI3fwatfikmHBwcFKMxHx8fGU/FNoCGhgZUV1cjMDAQ33//PWbOnCkd/SzrtrW1ARh2ANy9ezcCAgIwb9485OfnY+bMmaJIzsrKgoeHh4gTlRqRwsJCXL58Gf39/Zg4cSLa29vR398Pb29v4esqKyulElJVVYWEhAQUFhaira0N1dXVSEhIwNtvv43ly5dj7ty5YlDW3t6OGTNmiF/SpUuXYLVa8fTTT2P79u1IT0/Hgw8+iMDAQKjVahiNRumRo0SDqaGyrM4NpURNQ0NDOHbsGL744gvxQB8cHITZbEZiYiI2btwILy8vTJ8+HVOmTMGhQ4dw++23Y2BgAImJiXBwcMB9992HO+64A01NTdi/fz/eeustWK1WPProo+js7MTZs2fh7u6OvXv3oqysDH/+85/h6+uLjIwMJCcn48SJE4JWKisrUV5eDnd3dzg6OqKkpARxcXEYP3480tPT0d3djaCgIAkKyg0PQPgUBmXef7aEkL9UVu2sViuamppw+vRpdHZ2ykZXjjBjQFI6CJDIZnBQFhmIguhKyYOc748Kdv48Ozs7aDQaQXHU4TU3N6OhoQGNjY2ora1FdXU1hoaG4OXlhcjIyBETevkaY8eOFeW/UuSs9H7ie2WqR4uj30JNwE0UnJRQVZmf8nSgHECr1WLSpEmwsxu2SWX/m4ODAwwGA3Jzc0X3wxPcw8NDAtGtt96KhQsXorOzU5w3qUpnvs4FODAwAC8vL4SEhMDHxwfh4eHQ6/W4/fbbcc8992DLli1wdBweyhkREYHQ0FDU19cjOjoaAwPDQzYZSHU6HfR6Pfr7+5GRkYFbbrkF27ZtQ2lpKfr7+3H27Fnk5+fj4MGDiI2NhdVqRVxcHEJCQjA4OChd/fv374enpyfq6+vFhQAAmpubBVmWlpYKj3HlyhVxHTh48CBmzZoFe3t77Ny5Ey+//DLuv/9+hIeHw83NDWPHjkVfXx9efPFF6frXaDT45JNPJGjzkGCwJ8SnyI5ldaXYTnkRjXZ3d2PMmDFik7Jr1y4MDg7i/fffx5QpUyRIzp8/H1999RUmTpyI+fPnAximAGJiYhAZGYlnnnlGuCidToeWlhYZUNDX14clS5Zg0aJF+NOf/oSnnnoKMTExOHfunKSvTk5O+POf/4z33nsPBoNBeKuamhrcddddsrmJZIDrgVZZqmfgIO9Da2cqw5kyUTe3d+9eSQH5vSTM+ZqU0/B1lUJNvg8ifovFIlbR3d3d8j1Kkpr7hGmds7OzHL5eXl7w8/ODt7c33N3dRUqj9C8nt0VkNW7cuBHprbLBmEUoBm3yUNxnnKN307evsBeupKREyEMl2cjTV61WQ6PRoKqqCtnZ2dJjZG9vj5iYGMTFxSE9PR27du3CkiVLpNo2ODiIixcv4uLFi1i+fLkoyCkoZIWE5U8a3LW1tclDpYiNiO7YsWOYMGGCPEwHBwcUFxfD1dUVGo1GSHaS0gy2Y8eOhVarRWxsLKZMmYJTp06ho6MDkZGRuHr1qog16af097//HatWrUJHRwdmzZqFN998E5GRkUhNTUVRUZFM42XrgoeHB/r7+9HY2Ah/f39pyJwxYwamT58uPNiBAwcQGxuLFStWoLe3F6mpqaLM9/Hxwc9OG84AACAASURBVJkzZ8QvatOmTYiPjxdylEihpaUFYWFhQoIPDAxIvxQ3GA8WcjK0W1m1ahVeeOEF7Nq1C+vWrUNycjJSUlJw/Phx5OTkYNGiRUhLS8O6deuwZs0a1NfXY2hoCIsXL5ZJKkxXUlJSsHXrVrz99ttYt24dhoaG3Tcp3UhJSUFlZSXuv/9+zJs3D6+//jqAYYX8xYsXERISgsjISADA7t27sW/fPmzcuBEAJGBwDRKp8PCihklJXPMeMYWy2WxoaWlBd3c3wsPDsW7dOtjZ2cnB6OTkJENgee94v5iyKYMLuVjgesDie21vb4eHh8cI4aUS2TETUe49ck9Efvx3ZeEHuJ7CdnV1YezYsdKCo+yYoO++stpNJEjurKurSyrON6aWyuumQE709mFuPjQ0JPwOOQtl82BGRoZAZ41GI9UdDnkMDw/Hvn370NjYiKNHj+Lbb79FREQEnnzySXh5ecHBYdh9kI2yrq6uaGtrQ1VVFSwWC+rr69HS0gKdTgc3NzcJcF1dXejq6kJdXR36+4fHey9cuFDUsmPGjJHyL4cB8HOo1Wop+9NZIDQ0FHq9HsHBwSJQI9cREBCAiooKJCQkICIiQgjN/Px8BAUFYceOHXB3d4dWq0VZWRlcXFyQkJCAyspKBAYGii84W1ioO6qpqRHSPCkpCYWFhXByckJ+fj727NmDyMhIfPrpp0hMTEReXh60Wi0+/PBD0ZCxpYItGCTAuYmVgxWVbRTK1GTMmDGChihMVavViI2NxY4dOzB58mQsWbIEy5Ytg5eXF5YvX47KykqMHj1avLPnzp2LiJ8nqsTHx+P+++/Hl19+iRdeeAG33HIL/P39sXz5cgQGBqKpqUmmBn/99deIj49HXFwcZs2ahWnTpuHFF1/E1KlTpTAyefJkzJkzRwIAkQEAqcApvYiU/A15FiL9gYEB1NXVwWw2Y9SoUbj77rtH6J4AiBaJ/070pNzQSjRFa2cGKTs7O+EhyQORayWHpZR6EOHx8wGQTgIlOnN2dhabayIsrVaLpKQkSSlZ3KGHPd0HOKGH4k3uUwIO2m4THf7SdVMEJzu7YXfFzs5OmEwmIc8YqDhZg5wQv4cbg+pkb29vxMXFYcyYMbjllluEo0lKShKvI3p+8+Y5ODigpaVFUi9WkwjLNRoNXF1dodPp4OLiAp1OJzqQ3t5emM1mxMXFYdSoUaiurkZ8fLyMM2pra8OMGTMQGhqKnp4e4Qu8vLywb98+7NmzR6qLfn5+MuyA1cL4+Hg89NBDyM3Nhc1mg9FoxB133IGzZ8+KtUtnZyeio6OhUqlEEc4GabZxtLe3w8fHB8eOHUNsbCxiYmIwf/58tLW1QaPR4IcffsA//vEPBAYGIigoCGvXrkVzczMSExNhs9mwe/duKTD09/ejo6NDBiww4DDNUZaoyUvwd/5fd3c38vPzMftnU7WdO3fitddew4kTJ3DHHXcgOjoaubm5uHz5MkJDQ1FcXIzU1FR89NFH8PPzQ2JiIp566ilMnjwZxcXFsFqtyMvLg1qthq+vL1pbW5GZmYkJEybg4sWLOHfuHPr6+nDXXXdJQzkFqNOmTcPOnTvR3NwsldhNmzYJiiGnpuxzY3FFORaKqRbXBYM0R4GPHj0aS5YskSDG4EQKgUGBh7ES3TDYk8MjmmHQZABwcnJCWFgYgOHiBkWrwHAqxX4/IhZmDEzFmHYpbU3YEkVnDvZtsi+OqZmyGsmAyV8M5Pyc7LckhfKrceH/JLr8Ly9qYFg+5c1yc3OTET2U19M7xt3dXYhyoiryJjabDWFhYSgsLERJSYkQ4iyzkvyluE2n0yEoKAgGg0Fgp9FolGqf2WyG2WyWf29ra5OSssViQVZWFmpqahASEiLIraenB8nJyVIOHxoawrJly7By5UqsWLECRqMRmzdvFl6KSGZgYACXL19GYGAgfH19kZ+fDy8vL0k5zWYzsrOzMWbMGGm1YaUPAEwmE/z9/VFcXIzS0lIEBwfj8OHDyM3NRWpqqiwOb29v/Pjjj2LSf+TIETQ0NCAzMxN6vR6tra0wGAxob2+XoNfe3o6GhgZcvHhRpqDcyIcQDfD+cMEytYiIiBBXzy+//FLSgrq6OsyYMQNpaWnIzMxETU0N/P39sWDBAhw/fhwmkwmPPfYYkpOTcfHiRTzyyCMoKirCtWvXRKk+MDCA7OxsODs7Y9GiRTIdODw8HGFhYcjLy8P999+PZcuW4cyZM3LQubq6Qq/Xi/ODMgUip0a72sHBQXn+TPf52UgzMI01m82CqJcvX/5fKn30CSPSYAGHvk8UCfP+0nKEaR/73dia5eDgAC8vLzQ0NIzowSMiosMsq4pEZvwzVehMSfnZAIjolEM9WL3j/2s0Gri7u4tnOH3ReSAzKBJZ9vb2jtBU/dJ10wQnCi45XpmexhqNBm5ubuInzlliACRf50lCkVpKSgqcnJyEUyLU5IMlZGXfHqEmUxODwYDAwEBBU0RPnPoLXNfsXLt2TQSYcXFx6OjokEbS7777Dt7e3ggODkZQUBCio6Oh1Wpl4smRI0cEOrPyVVhYiHHjxkkFx85u2H+HRLNOpxOfcrPZjO7ubrS0tMgmJ0oZNWoUuru7YTAYYLVaMXr0aFgsFpSUlODKlSv45ptvUF9fj/7+fnz55ZciMFWr1aivr4fVaoVOp4Ovry8WL14s1TimA83NzXLqUvSnJEOVz9bV1VVEhiaTCStXrpQWnX//939HUFAQcnJykJSUBL1eDzc3NyxcuBARERFIT09HbW0tgoODpWcrOTkZP/30E0aNGoX+/n6EhIRg9uzZIhjNzs5GcXExYmJi0Nvbi7CwMGRkZCAiIgIffPAB+vr6EBoaKnP54uPjBY1Onz5dPg9RDNcaq27czMrNybVH8pspHTmYX1JDK0vrSlKdqRnJaADys0g8K4OisumWHB97TrlX+N4YDJkZKHku5V5QcmbcQ0wplYhRifwIEGirTbsipQsBU39lW8+vXTdFcFI2wnKDqNVqmfrr6ekJnU4HPz8/2Nvbj2gDIeRtbm4WmBwYGIg5c+agv394XLhWq5W8uaurSzgTmqBR2Q1ANFQeHh7SJEx4bGdnB51OJwS+0WgUi1Xavi5cuFBsbNVqNU6ePInIyEgROdJtYc6cObBYLJg6dSrmzp0rvXovvPCCeCbV1tYiJCREcnx/f3/4+/sjOjoaDg4Ogp6UI6waGhpkMGhISAhcXV1RW1sr2ppt27bh6NGjKC0txZUrV7Bv3z7p1mcbCg3K2traEBMTA6PRiJqaGhgMBuHb2trahLcjAuGm5anLUjYXNVHUm2++idzcXCxbtgxvvfUWWlpa0NPTg61bt6KoqEh8v/ft2ye9dI8//rgMwnjnnXcwadIkGAwGJCUlYdSoUXj11Vcxbdo0HDp0CNOmTUNiYqKk59XV1bLOJk6cKFXewcFBFBQUwGAwYOHChbhy5YqkVvx68jysgCmRDNEOiXFqpPh3AJg8eTIeeuihEekLNySNDHlI+vn5STmeMpSuri40NjYK+iRfxODC+8pfFosFer1ehLI8LCyWYfsdrmWlipsXER11fQDk0OYkpLq6Ogm45N9oQuju7i5SGwYpggGlSp0/W1lo+KXrfzPx9x8qlcqgUqmu/vwr6ed/V6lUqg9UwxN/c1UqVfK/eg2ikIifJ/C6urrC19cXjo6Oor5mlYSG7lw0nOhBpz4GsPr6ekRERKC/vx+enp5Sklcqbj08PETgSQHbiRMn0NLSIpvKbDaLdoq/U6aQlZUFvV4PtVqNmpoamM1mXLhwAQEBAQgLC5NGzOPHj6OnpweHDh2S3jZfX1/MmTNHXmvlypVYunQpSktL8fDDD2P27Nm4/fbbcf/99+OOO+5Afn6+mMmxA9xoNGLs2LGCjKj7Cg4OlqnDnPFmsVjwz3/+E11dXbh27RqamppQW1uLU6dOIScnB8nJw49pYGBAzPRDQ0Nx6dIlZGdny9dznBL761hKVqZ3JHCJOshRsB8yNDQUALBnzx4sXLgQo0ePxrlz59Dc3IzVq1eLKj0yMhJTpkyRNWK1WvHuu+9Kg/Ann3yCmJgYfPbZZ3j00UeRl5eHu+++G08//TSCg4ORm5sLJycnTJgwAf7+/rCzs5O5dkFBQQgKCoJWq4W/vz9ee+01PP7445IG8eRnqsU0ChhGUTfyadxs9BcDgKCgICxYsOBXNyDXNxunX331VZSXl6O2tlbM/nQ6nQycpfRFObmFKZ6yLWZgYAAxMTGoqqoa0RlBUl9pw0KbHqUmilwuU0Uis4aGBthsw9OfmR7yfikFqj4+PmhtbRWin7Y53MdcH9Tz/dr130FOnPibCCAJwHyVSjXl5//7o81mS/r519Wf/20BgJiffz2K4SnAv3kRErq4uCAsLEwCEglopQLc0dFR0jWmRI6OjkJqA8Do0aOlX4ocgNU6POFiYGAALi4uyM3NFXO6+vp66PV6WSS0Xxk3bhyysrKEb+KEW0Jrmt7feeedIh718PCA1WpFcnIyJk6ciFWrVuHs2bNoaWmRtMBoNMLe3h5lZWW44447RHv0xBNPIDU1FRcvXkRQUBDmzJmDqKgouLm5QafT4dq1a9i3bx9CQ0Ph5OSEwMBAaTc4f/48Tp06JVU+eqD7+PjINJj09HR4e3sjJCRETj1a1cTHx0Oj0YwoNX///fcICwtDXFwczGbzCOK2qalJCFEuUi54pjs8sYmijEYjEhIS0Nvbi8mTJ+PgwYMoLi7Ghg0bYLFYsHXrVpSUlGD8+PHo6uqSUU8XL17E0NAQ0tLS8MILL6CgoACffvopHnzwQbz11ltISkoCAMyfPx+ZmZlwc3NDWloasrKyoFarkZmZKVydvb09IiMjsX//fpw5cwZFRUW4fPkyXnrpJZhMJulQ4AlPJMNNqjSP48Umcuq3eI9efPHF31z3HGY5NDTsj7Vu3TpERUUhJCQEo0ePll5Ss9kMtVotnCMFy+RvGKCU/aADAwMYO3asPCcGd753IhqmcTxMbDabTJ9mIOGgW74HANIHSGsgej7xUla5WX0n0lOml/+r4GQbvn5p4u+vXUsAfPHz92VgeIRU4L96Heo6nJ2d4e3tLfkrAKk4sJtb6VtEborQmJC4r69PJqi0tbWhvr4edXV1aGlpQUFBARoaGkZ0i3d3d4srQlVVFWw2G44cOYKAgAB0dHQIjGXZlKOkOCVk1apVaGhoQGFhIXp7e7F7927ExsbC09MTDzzwAIqLizFp0iTccsstWL16NRITE6VnCQAuXbqE/fv3ixDO19cXV69eRXZ2NqxWK77++ms0NDTA29sbTU1N0hrT3NyMoaEhzJs3T/RhJLw5wJMLxcnJCZWVlRg7dizKysoADPtUzZo1C/39/eJAQLHd6NGjYTAYUFZWJvebi8lqtaKxsVHGBZF/InJSpgvUlTU0NMhrTpkyBVarFcuXL8cLL7wABwcH/OlPfxKxrJ+fH2pqapCdnS2pdH19PXp6elBSUoJXX30V9fX1IoKl7m3RokWYNWsWCgsLsXnzZly5cgVhYWEYN24cpk+fjoKCAtTW1iIxMVGogunTp0uFTDkjkRtesRfk8ytFktyADMTcyFVVVb+oglZKD+jnzQDPQ5hGbjabDV5eXhgaGoKHhwc8PT1FY0XuiJOx+T1MNfv6+hAbG4uuri5UVlZKCk4hJitp/Ox2dsPTgXt7e1FZWSlDOhjwiHQ4FUnZ/8fAzUITCwfK98hnRfHpvxJh/o8m/tpstos//9d//Jy6vatSqVj7lIm/P1/KacDKn/moSqXKVKlUmRRlUQTm7+8PDw8PODg4SIDiaUBymwuED8VoNIqWh7yUv78/Tp8+LRxAYWEhDAYDrly5gmnTpiEgIACHDx+GXq+XsUxjx45FfX09Ll68KCciHzjHovMkCgsLw+HDh4VvcnNzE33RuHHj5JSZMmWKeBKpVCo0NzejurpaFrjNNmwkFxMTIxNciouLodPpEB0djb6+PsTFxaGpqUkKB5xEwmoldV+urq5ob29Hbm6ujEry9fVFWloa7O3txVaVJ2ZycrI4dLJlh8RzQEAAlixZgnnz5gkhz8XIoM/FpVar5aQlcc7KHTdtfX09srOz8fjjj+PcuXMICwvD6dOnERYWhgceeADNzc2YN28eHnvsMfj5+eHLL7/E5MmTMTAwgLlz5yIoKAhbtmzBuHHjUFhYCG9vb5hMJrzzzjvCgzD9DQsLg8lkgl6vR25uLiorK5GRkSGSE41Gg9DQUHh4eGDmzJmyblitUmqYmMIw9QGGuRjyl5x7SEI6Li4Oa9eu/c32DN4bBhkiGQCi51Nqp4hEqW1Sjo5SzsfjWmVg7enpgZeXF8aOHQtnZ2c0NDTAZDKhsbERdXV1gsbq6+vR1dUFb29vBAQEIDIyUjSBDL5ubm4IDAwU7RybfllF5GtSpEoukqpyq9UKo9Eo60E56++Xrv/RxF+VShUPYAOARgBOGB6O+ScAr+C/OfHXphiqGRUVZaMknpUoLgqKtShSVE6K4GnNlKK7uxuDg4PSLU9OgKrZ4OBgZGZm4umnnx5xIrq6usLd3R06nQ4lJSUAIDxWb28vIiMjYTKZZHGQ+HRxccF//ud/4o033kBGRoYEHqK41tZWTJ48Wfx0fH19YTQaERcXB19fX5SVlYnXUEpKCvLz89Hc3IzY2Fj885//lPaAoaEhkQrYbDaxt7311lulN4x6rfb2dqlWGgwGtLS0wMvLC66urjAajfDy8hI9VWRkJBwdHcWMj1UYuiMODAzgm2++Ef5Ao9HIRrHZbKI/YqmaaIOHCj2AGOzS09Ph5OSECxcu4OrVq9i0aRP+8pe/4MEHH8SRI0cwfvx4HD9+HB988AFUKpVIK1JSUtDS0gJfX18UFBTA19cX7733Hm699VY89dRT+Pvf/46EhAQ0Njaivb0dXl5eMBqN+Omnn3DnnXciLCwMer0e58+fx7Rp01BZWQm1Wg0fHx94eHjAbDbLWuDAVeC686QycPT09MhUXQZ7pYuARqPBihUrfnPTAZBNT6L4xvYfptdcw9T9MYtQijRZgGAFjAQ+G4kBCCIMCAiQIMIUHLhO/ivbj3i1t7fDzc0Nvr6+YsZI9KX0PxsYGJDApaxOkme1sxv2g+Le+T+t1tlstjYApwHMt9lsDT+nbv0APsf1MVGc+MtLOQ34l9/Ez82r7u7uAjGZhvj4+IjpP8vRJMJZcuVN5knGE7y/vx86nQ7BwcPATa1Ww8/PD2q1Wm4iTylu8NjY4UnrZrNZJqA2NzeLwyVPCZKEXl5eOHr0KOLj41FUVIQDBw7gwoULOHz4MM6dO4c9e/bAaDRCrVYLX5CTkwOz2Yz4+HgcPXoUVVVVWLBgAWbMmCENk9HR0bDZhjvNg4ODZRFZrVb4+vqis7NT+K/q6mrRnrB1o729HbGxsSKazM3NRUhICDo6OtDa2opRo0bJZwMgTgl9fX1ivaLT6TBhwgQ+e6lAcVPQlE4puKNVL8vINpsNnp6eIjRVqVSYN28e7O3tsW/fPjg4OOCLL76A0WgUWcb8+fNxxx13YPz48fjss8/Q19eH0tJSREREwMnJCe+88w7uv/9+2NnZ4aOPPoKzs7NUJhsaGsQ9lIGytbUV+fn5WLZsmfB9TFt4EHKj3IicyOeQdnB1dZVWJ6rmSfwCECL7ty6VSgU/Pz8JCMpBnEyplQe00qngRvTE9QJAUun+/n7RxfEQVn4mNskre0vd3d1FFkIzOX5uFxcXtLe3o7OzU8azM0VUGtXRw4rvh/uSn4ncL/ksJUf1i3HhN/93+Eb6/oyYoLo+8beIPJJqGLsuBXDt5285DGDNz1W7KQDabTZbw796HRLXHPlE7oQcCMuOzFkZ2Qlpyf4z3yVS0Gg0wgEMDAyInw3RAD2Murq6kJmZiZCQEHh4eKCjowP29vaiKm9qaoLVah2BuLh4ampq8P3338PBYdjKlW03KSkpiI6OxpkzZ3D8+HG8++67+Oijj5Cfn4/s7GyZcPLKK6/Azs4OUVFRuOeee9DX1wdfX19p4qyrq0NUVJQsDmdnZ3HcZAvHjdNW3dzcUF9fj6ioKPH65kQZIgU3NzeEhISICpjf7+HhgaamJkRGRiItLQ21tbUjCNTo6GgA1/3dqWOys7Mb0RbBTdvT0wONRoOioiLMmjUL7733HsaNGyf3mFKL2267DTabTexDtm3bJiiMyDEiIkJ4mICAADz22GNi7atWqzF9+nRoNBpkZGTAxcUFFy5cgMUyPK3l9OnTiIyMhNFoFO8o+hnx/TJgANelEdTlmEwmtLS0CHpmOs2Ukjoqop1fu2w2m0xlVk5f4bpnwCcC4u/K6hcPZjbM873zPfNw5qGlTElvbCnigcuqOTMRlUoFs9mMvr4+BAYGiuaQhafm5mZZF52dnVIkICdGHRYriLyIupja/mpM+O2QAWB44u8plUqVC+Ayhjmn7wHsUqlUeQDyAPgAeO3nr08DUAGgDMCnAP7tX70Ac3UlEUkYS4TCoEOyVVk65YlC5MCTh5u0oaEBra2taG1tFXP7qKgo8R3nnLLGxkZUVVVh7NixaGtrQ1NTE0JCQlBbWysVPObzGo1GyMz09HRMnz4dubm5sFgsiIiIwMyZM2GxWHDlyhU8/fTTuP/++/G3v/0Nq1evRnt7O3788UcYDAYcPXoUDQ0NeOqppzB//nzExsYiKSkJ7e3taG9vR3BwMO68806UlpaKpqSpqQklJSWyIKuqquDk5CQOnAEBAVCr1QgLC0NlZaWopwHAYDCgv79fxnDX1tZKA29ra6sMhPD398exY8fE9E0J09mPx2BNHo48gtLcnqJAPjO6X2q1WtTU1GDDhg2orKzEN998g5qaGtjZ2eHs2bO4cOECbrvtNowbNw579uzBihUrkJOTI1OOidq+/PJLPPDAA8KZZGVloaKiAgEBAbhy5QoMBgNWrVqFd955BytXrhQP8Y0bN8qaIzFL1M6/U0vEU55CYB5ULS0tIk4MDw/HmjVrJMWic8YvXTabDffdd5+0/ZBPBTAiWBKBcU0rq58MKjSqI//j5OQk9r8MVkRY5BqVanfuHwYlFqIYyJQ6KovFMmJAKLs6lM6dRJKU3RBNs8JIigaAUC+/dv1vJv7e+itfbwOw9l/9XOU1NDSElpYWUWArGy2p+mXP0o0R+Ma+I4rg7OzsYDQapXIXHByMEydOYOnSpRgYGMCPP/6IiRMnQqVSoampCdHR0VizZg2Ki4uxZs0arFu3Dv39/TAYDLhw4YKQwtT28GI/l81mw9ixY+Hm5oZnn30WWq0WeXl5UiX585//LGiNY8M5rLGvrw+ZmZm499578dxzz2HRokUIDQ3F3r170dvbCycnJ2zcuBE7d+4UXq2srAy33347ampqoNVqUVJSIpqu4uJiDAwMyOnc39+PgIAAZGVlCUpqaWlBaGgoQkJC0NPTg4CAAOTk5CA0NBSxsbHy5/Xr1yMmJkZOSG4M5WaiQp8bWjlVGRhGtw0NDeKZ5e/vj4sXL8Le3h5//etf4eLigt7eXvj6+grnV1NTgwULFkCr1SIrKwsODg6IioqCxWLB9OnTsXXrVixbtgwzZszA6dOnoVKpcODAATz77LPo7e3FuXPn8Oijj+LIkSMoLi7GI488gpMnT+LAgQPYtWuXeE4x3eAm5SHIVg6mslarVdp1SDozbdFoNDhw4MCIjabVagFcFzbeyK0oK7UklRmoOHuRAZ0pp9LDiVU94Ho/HwMRU0D20vH1GdiUVtM3oqgb3y+fLQMRtVy8qGFjC46Dg4PIMbg/WbmjgR25TaVx3i9dN4VCXHkKMeelGpYnAjB8wzQajZQl+XAIh5ULa2hoSDZEbGysQOWcnBypUrz99tsAIKlffn4+nnzySTHQampqwk8//YS1a9fC09NTpq/09vaivLwc2dnZKC8vx+XLl7Fp0ybcdddd2Lt3L/r6+rB9+3Y89dRT2LlzJzZt2oTu7m5Mnz4dSUlJ+NOf/oSkpCRs374dHR0diIiIkEbel156Cd9++y3GjBmD1157DWPGjMGHH36Ib7/9Vto16urqMGnSJJSVlSEqKgq5ubnw9vaWatvg4KBIImibQi4gMDAQzc3NsthsNptwYGq1GjExMTh//jzs7e2h1+vxxhtvyMLlM2ARAsCI4QXkNYiolJ4+HLs9d+5clJaWIiEhQb5HrVbjD3/4A86cOYN33nlH7Jp37twJm82G2267DV999ZX0xzG1CgkJwdGjR+Hi4iJFgJ6eHhQUFKCoqEjsnL/55hsMDAyPBX/ppZcEWdIHCYCkovz70NDwEFYOM+BGb2lpEeRBuuHMmTOiQufF1hHeJ+XGByDGcOSWlM6XJL3J+fDZUSZDTg+47unEaimlDAMDA8KtEvUSWSlTPBLaSm6K6E/5d2Yy5ImYflLWQ9pFiar4HpnJcA/yvSrfxy9dN4WfEwCRDpAYtLOzE3dA3hC2lHDRE/6S0KQPONtbWKkyGAwoKSlBYmKizL1PSUlBZmYmnJycEBoaCnd3d7S0tCAvLw8JCQm4ePEioqOjsWLFCvzwww/45ptv0NbWJgrsmpoaEfcNDQ3BaDRi+/btKCkpQXh4OKKiorB+/XpcuXIFISEhmDlzpnS75+TkYGhoSCxvOzs74ejoKObwJSUlMBqNGD9+PBITEzFz5kwcPHgQ1dXVmDVrlgxOeOGFF1BYWIikpCS0tbUhPj4eV65cEdEjq42XLl2S8Uc6nQ6NjY3SylBXV4d58+bJRrbZbPDz8xMujff6rrvuwqFDh+R58UBg6qNUGzOlBq53uFMs+/XXX8Pe3h5XrlzB1q1b8fjjj8NsNiMtLQ0A8Mwzz2Ds2LFobm5GX18fTp06haysLNhsNrz99ttYtmwZ0tLSMHPmTGzduhWvvPIKMjIycPLkSUybNk1G8wkGSwAAIABJREFUl2/YsAGbNm3Cww8/jGPHjqG/vx9BQUGYP3++HH7A9V4yIm7qb/h/JJcZGLi5XVxc0NPTIy1Ker1e0KNKNTwanhv8xvSOhwTFiOR7iE4ZLJSkM98PcN3+l8FMmWnwYi8d0YqybcRmu+6zRGSmnPDCEWIdHR3yXMljMfjZ2dmJRpApnbL1iTyTo6MjTCaTpIwApI2FBZNfu26K4OTo6IigoCCBysD1Mi7hobu7Ozo6OuQBEoo6OjpKi4nFYpF+OXt7e9TV1UGr1YplrTKF4Q3W6XTyYJ2dnXHy5EmkpaXBaDQiLCwMx48fR3x8PF5++WWpJp4/f17U4gyQOp0OeXl5SExMxKVLl2AymRAUFITExEQEBgbixIkTCAwMRF1dnZwwlB6YzWZMmDBB5t65ubkhODgYp06dwpkzZ/DII4/g7rvvRldXF6qqquT1mMYpTzGWc4eGhqSal5qaiuzsbLS1tcHHx0f8yy9duiTygMbGRsTGxuLy5cuYOHEi9Ho9enp6cPfdd+Pjjz/G4cOHRzhAEvVQXc+LKYiSVGXw4u8AEBkZic8++wzA9dOZ3lURERHIz8/H0NAQ4uLi0NjYCB8fH+Tm5sJkMmHz5s149913MWrUKBw9ehQODg545pln4OnpiZdeegnz5s3D5cuXcdtttyEvLw82mw1//etfcfbsWVFHs4TP96PszKcujr5I7NHjpgUg7RibNm2Cg4MDpkyZAoPBIAdpTU3NL/Ip9vb2ePrpp6UySLM6HsgMjFyPPATIOSm5JKaCyvSQ6ShTO34tFdrkgJScLcXPfF5M98gh0W2WmYqSZvHy8kJXV5cUUzo7O+Hq6irSBYPBMEID5+TkBK1WKx5oN31aR1KSQsz+/n6o1WpYrcPOf4zQhLkMCHxQGo1GUgl26tNLp66uTvy1ladLa2srnnnmGZkSW19fj+PHj2PDhg145ZVXsGXLFnz11VdYt24d5s+fL2V2o9EoHlIBAQFwd3eHn58f/P394evriy+++AItLS2YPHmylKxzcnKgVqvxzDPPYNu2bdK4S45Br9dLW0dpaSm8vb3x/fffy6CF9PR0vP766ygqKsKzzz6L6upqtLe3IywsDA0NDWhpaZGJwkSRbm5uIoQrKSmBRqNBRUUF+vv7pUQfHR0NvV6PgIAAkSYkJSVh3LhxQoo+9NBDmDNnjljkKhe2SqVCRkbGiAWstP7g5tFqtWhoaJBGUJvNhsrKSmRmZmLSpEl44IEH4ObmBq1Wi8OHDyM/P182Eg+QlJQUqFQqLF26FJs2bYJKNew1tGrVKoSEhODLL7/E5s2bYbPZkJCQAI1Gg4CAANxyyy0wGAz46aefRmh7lF5CNptNkAOtPfjn1tZW+TeuIU6c2bx5M+Lj46X3MSwsTO4L+R3lxb9/+umn8PPzk/vJ1Iy9owAkGPHgsbe3H1G2BzCC1lA6VvIzMsAonT5uTMGIim6sVLIC6e3tLTZCDKh8DeqoaGGkUqlE9gNAeEQGdKaHLS0tYrnyW1N/bwrkZLPZJOr6+voCuJ42+Pj4SOoAQE4EPgBGdD5cq9WK2tpagcN6vV4mmgwMDKCiogImkwmLFy9Ge3u76GCcnZ0xceJEFBQUiOF7TU0NKioq5H26u7tLECXpx4Xc19cHHx8f+Pj4SONmUlISjh49ip6eHgQFBeGLL76Am5sblixZgi1btmD//v0oKioSh80NGzYgIyMDFy9exKpVq9Db24uEhATk5OQgMjISX3zxBZKSknD33Xejuroa+fn58Pb2FhKSboQsL3d0dCAkJETg9dDQsHHf559/jnvvvRdDQ0MwmUxy+rHy9MUXXyAkJASTJ0/G+++/L43DTHmUZHdubq6c/OQZOACBF1tjlCOHpk6divT0dDg6OuLLL7+E1WpFSkoKbDYbtFotbrnlFvT29uIf//gHbr31Vuh0OlitVmzbtg2NjY1YsWIFysvL8cgjj2Dp0qW44447cOLECaSkpOCdd97BRx99hM2bN6O7uxvff/+98EsUEDL14IFHxTsA8Ujq6+sbMSqJKZ2Hhwc2btwIlUqF4uJisVi+MRgpVebKPzMVIylP/oXpJe8nD20nJyd0dHQIugGuoyQGMLaisNrIIMN9xMDG71dWW3mgKd8/n4NWqxVtGN8XAyEbhOl+wOos/aVI0ivlQFTb85BiS9MvXTcFcuIDIrHKG+vh4SHVKsJGZcsHTxyl7kM5STUwMFAGDvD0AIDY2FixzE1OTobJZEJ4eDgKCwtx7NgxZGVlobKyUhYou65ZKfslYpLEbldXF9rb2+Ht7Y0DBw4gOjoaMTEx6O7ulnTtq6++QmpqKkJCQvC3v/0NV69exaFDh3Du3Dns378ff/zjH+Hp6YmKigqsX78ezz//PIaGhqQ6dfToUXh4eCAqKgomk0lyflqzenp6oqurS6bzcpqyg4MDvv32Wzz99NPijjlt2jREREQgLS0Ny5Ytw7x587Bq1Sr87ne/w8KFC6Wyo7Q/UYoMGZT43Mg3cfMQvVEfw7SCXMg///lPaLVaODo6IjU1Ffb29oiKisKECRMkcDQ3N6O2thZz5sxBTk4O1q5di+LiYmnJSUhIQFhYGJKSkvDtt9/CarVi7dq1+P3vf4977rlHJB9KnoPpKbVKfC0+V7Z1dHR0SAl8YGAAgYGB2Lx5s7QvsQn9gQceEKTPNa0kwZUFBaV+j+mi8j4q0y2iOnYK8P5TYEk9EYtFwHWeT3kpdVCkS/h+yUExVQeuIzrlz6Ro08HBAR4eHiLk5OfhmqPrKzBczeZ6YGsUkfX/qUL8/9dF7ojpGSEsxW98oMxbWdrkwyfc5E0vKyuDyWTCvHnzsHTpUkycOFFIYFa8QkNDodVqMTg4iMTERJSUlKCsrAzR0dFicqfT6ZCUlAQ/Pz9JO4DrpxbLp3w/vOlUhHNB+vr6Ys2aNTKOyNfXF3Z2dti4cSNWr16NJ598EgMDA1i5ciXuuusu/Nu//Rs++eQTrF69Gp2dnXj88cexe/duxMTEYMuWLeKldPr0aWmuzMrKAgBERUWhp6dHBhlER0fj9OnTcjrHxMTg4sWL0Gg0ovptbGzEgQMHkJOTgx9//BFVVVU4ceIE/vKXv2D37t0AICmAklQFINIILnySs0quhFUpntwWiwWnT5/GE088gf7+fnh5eUmfos1mQ15eHk6dOiXN2xzWePLkSQluTU1NeOaZZ+Dq6orXXnsNRqMRt912G3bt2iXp4Pnz5/HQQw+JiJENsez9YpDlv1FiQYV9d3e3BGemdhs3boSdnR22bNmChoYG3HXXXSgrK0NERMQI/keJlG5EVKzQKb+GQZKIDoAcjFzXDKBE6wxeSlTLYMPv488HrgudeWiwzA9ghIDSYrGgtbUVISEhsFiGbYC9vLyg0Wjg7OwMX19f8fKiiJT+63QdINq0WCzSH8vnQuSam5v7m3HhpkjrAEjbCdXfrPx4eXlJkGLZkwhFqXAdGBgQt0IqeMPDw+UheHt7o7q6Gh0dHeju7sbSpUvR09ODq1ev4sSJEwgLCxOzOzb50p3yRs0L34PVapX0haePk5MTZs6ciYaGBrzxxhv4+OOPUVZWJqN3Ro0ahbKyMiQnJyM7Oxt5eXnw9vbGxIkTceDAAZjNZri4uKCrqwtOTk5ISEhAUVERMjIyMDAwgJqaGnh4eKC8vBxjxoxBQEAAioqK4OnpiaamJoSGhqKqqkp8raqqqhATEyMCVU7t5XsGrqcdDC7KzaRMBeLi4lBQUDCCtOX958HB9JE/k3wJkS4Rls1mw/vvv4/ExETk5+dDq9Vi8uTJmDJlCrZt24bf/e53SE5OxrPPPouAgADs3bsXGo0G48ePxz/+8Q8sWbJEmrIdHBxQUVGBvXv3jvDievfdd0VAytSFIkelk4CS26FcgPeCFStXV1d8/PHHomw/deoUVCoVWltbUVFRgerqakRHR6O0tPS/GLhxnRINJSYmimhY2UenRKbcyLx/RH3KJl8WjXgA8Ov5efj6ynYSJVJRIilHR0cJjoODg/Dz85N2Gv6Zr2Gz2YTIp5U10TWzCa1WK2k+37+yoOLs7CwV2l+7borgpOQyLBYLPD09R4wb4mblKcbgwEjNjcGHzQEGXV1dcoq7urrC398fFosFJpMJc+bMQVxcHA4cOICoqCgAQGhoKBoaGkTu39jYKKcPTxtHR0epNlCxTa9nnsharRY+Pj4wm814/PHHRYne0NAABwcHREdHj6iinDlzBhMmTMCpU6ewYMEC1NfXo7GxEVu2bEFsbCwcHR2h0+lgs9lQW1uLjz76CK+88oqgJgbwsLAwWK1WNDc3Q6fTid0w832iQJZ0eQhw8XBYqMlkEndQIgGVSiWVL+UiZ3BydHQUxS8bgQGICpt2H2azGatWrcLevXsBAPn5+bC3t0dnZyfi4+Nx5swZqFQqJCcn47nnnsP48eOxc+dOrF+/Hvv27UNQUBDOnz+P8PBwbNmyBcuXL8eBAwdw9OhRbNiwQVp2UlNTxeNLWQWjLQo3sLKb3mw2w2QySW8h37/RaERzczPs7OxQV1eHO++8E3v27IHNZpPpwqGhoTAYDCO4HmXVUhn4p0+fjs7OzhHVOL4XXtzo/F7uE1YbfwmRKQ8YojilaJnPQtkPySDW19cnMgCuDf5Mcm1EbfwzOTkld8cDmgcRcD3N5OxDVsr37dv3m3HhpkjrhoaGRMlKQziKtajBoBEaCXH2gilFc9xobW1t4rXU3d09Io1zdHTExIkTkZOTg97eXuj1ehiNRhw+fBhz586VoQrkGEhGDg4Oor29XR6ei4uLPACelCSmab1CXypgmD+bOHGiDIOsr6/H4sWL8eijj+LFF1+U3D4jI0NSUJPJhN7eXhFHXrt2DW+88QYefvhhVFZWorq6GsnJydDpdHB0dBTPKub89fX14kdFIRwXOu83qy329vaIjo6WcVNTp07F6tWrMXv2bPj7+2PcuHGIjY0dgQqUXAc1Lky7udmIeLlxVCoV9u3bJ//+yiuvyGa7evUqYmJiMGrUKDz33HNYsmQJrl69CqvVikuXLuG2227DwYMHERUVhfb2dsyZM0cClk6nw+nTp3H06FEsXrxY0hSKdZkOsrhCUpYKerYLcRMRHdjZ2eG7775DVFSUICmtVotHHnkEo0aNwm233YbIyEi8+uqrsLcfHs3Nz6Pkj5SpVVBQkFTY+G8UHPNycLg+YJP3lL8Y1Hgo8OAEIJ+PiInBTek7TgRDzop7iCiHpogUrtKCmJOmmeaS4+Re0Ol0Yq1NHpT9c0RZPBQaGxv/ZVy4KYKTSqUSLyTCVEZbPgSeKpQVsIypbNLkxRnvqamp8PPzQ39/P/z8/AR9JScno7i4GE1NTZgwYQL0ej1ef/11tLa2in6J3BcDFBcGR0px6IHy1GOKV1VVJbYaAKR3z8nJSXqXxo8fj4KCAmRnZ0sjbmhoqMzgMxqNOHPmjFQcVSoVQkJCsGbNGsTFxcHZ2Rm1tbUwGAzYvXs3goKCxDk0KCgILS0tsLe3x6lTp5CcnIzm5mZMnDgRKSkpGDVqFKZOnYpJkyZh8uTJCAsLEy/0/v5+MadTq9UIDQ0VLyUHBweEhISMQE48gZWKY24IBiUAIxTMPGXt7IZdBfj1V69eRWlpKV577TVYLBbMmjULAKDX6xEeHo7GxkZ88sknKCsrk/Tx448/xu9+9zt5ZocPH5aGaepvWGxRoomBgQF0dHSM4ExYYerv7xc5yueff47o6GicPHkSwHAxpampCSqVCgaDAc7Ozjhy5Agee+wxDA4OoqqqSlI1ZTrH+5CSkiIIimkZUzdlcYUpIIlpZYVUOaWFSIRGc8B1Z06bzSYVQf47BbFKPoppOe9Jd3e3cEjKMVcDAwNCehMxkUtkxY6HAItUBBMM1gyib7755n8Rp9543RRpHXB9cgc1GMo3To6AJ5+rq6sYyxFZEcEQera1tcFisWDSpEno6OhAQUEBXFxc4O3tLQ2uHP8UHh4uvX3KUweAlGaVlTkiE7Yx8H0zFWB6xIcOQIYOuLq6wmQyYXBwEAaDAa6uroiIiJC59ITNdXV1wmmcOXMGq1evxtmzZxETE4MZM2YgLy8Pg4ODaGlpQXJyshC4hNVms1nEclzIbL8hOtBoNKKApsrd2dkZ5eXlklJQ6ct2DhroARiBDuivpTzpAUjJHAC8vb1lEglPb/ohpaSkIC8vD9nZ2fJ+MjIysGDBAhQWFmLXrl1wdnZGaGgoHB0d8d577+GPf/wjGhoa8OabbwIA/uM//kOeCRETT+ob++a4SYgAuLEZvFxcXLBjxw44OjrC398fQUFB+Oabb2A0GmXa8Jw5c2A2m2Gz2VBYWCgBRK1Wy8+7MfUKDg6WQMQAwcZ1vm/6sytRjVIFruSgbDabjFlSBjWiQn5O8m5c30q9lDKA8vBgozD3I5EX1zRJbaW0gP9Ht1ol18XAxICVmZn5L2PCTRGcaIuhlLMrH5iyjM0Iz5NdqbBVlmh7enrQ1NQkFrO+vr645557pErFySoscXM6bmdnp5DyvNmcbtva2io2I9TyFBQU4OrVqzAajejo6ICrqyvGjx8vmxQYfjje3t6w2YanxDBFZSvLjh07xOi+tLQUZrNZ4PuVK1cQFxeHv//974iJicHmzZvh7e2NRYsWwd7eHmazGfPmzcPBgweh1+vh7OyM6OhoGafE05MBk0G9vb0dWq0Wzs7Oor4nlzdp0iTU1w9bcPX29krfI7k8Hx8fGI3GEWhJqTImSc0gwGLCww8/jA0bNoitMjdESkqKWJw899xzeO6552Bvb4/8/Hz09fUhMjISlZWV2LBhA06ePAk/Pz80NzfD3d0dX3/9NcaPHy8Bih7epAQYaAYHB6VtRZkCtbW1oba2Fh0dHVKBGhoaws6dO2WT33fffSgsLERKSgo0Gg1qa2tRXl6OJUuW4NixY9DpdJg2bRpOnz4NDw8PMUhUIib+ne6bRNIUFXO9kEO90QSO6nSW411dXcXEjcGQhyPvPyt2yuZeZiZ8blyfrIjzvjDVZHZADZOSxmBKSWcEVtvpgkG03NXVNcLfi0NJeHD/alz4n4eU/9uLN4j9dDwdlII1XnwYvGksuZIPogLYz88PmZmZIqosKyuT08HLy0saJlUqFWbPni1pkfJUI+Hd19eH7OxsdHV14dSpUzCZTGhvbx8x3oenMElsPoyuri5BUgEBAejt7YVWq8XcuXNRXFyMqVOnwsHBAdnZ2QgICIBGo8GkSZPQ09ODCxcuwM3NDZs2bcKECRPwxBNPYM6cOTCZTBg1ahQqKysxODgo00V6e3tldLRKpRJHxKKiIiQlJUnKoiz7Uw8FXG8loTleZ2cnrNZhv/D4+Hg4OzvLBGKe0nx+RLYMCtxsXKQk7Plsly9fju+++w6XL1+Gq6sr/Pz8xB996tSpOH/+PDZs2ACtVosjR46goqICtbW1uPXWW9HZ2YkXXngBMTEx+PDDD0cgC1ZSudm4odkLSE1OdXU1TCYTAIhVTHV1NU6fPo3Zs2cjPT0dUVFROHDgAIqKiuDo6Ii6ujq4u7tj9erV2LFjB3Q6nXivjx8/HllZWf+vvS+PjrI8377eyWQly8wkk31lSVgMawVkMRwjS1UEpFSRiktFPa2V72iFYn/W1lrXan/1fNbyIQqIgiBWK4gcQBA0lhgCSEJIQkI2sk3ITGZCEkhm3u+PmevOE0TFVkvwzH1ODmRmMvM+8z7PvVz3dd+3GD2GPqowrFexInaf5D0BehW+uq/pwXL/M6wihYAKigkJeom8P1Q4hE1o6FXFxIQHi43pZdMr5/nh/WXIRoPLNtGEQZgBZARiNBpx4MCBbwzpgH6knFQ3m10qifWoRaRUSgEBAcIeJ7WAG1RtcEZlwywHNTozbPwi6SnQAjDe5o1QD3FERIRgZOcDg+3t7dK5kmC40WiU6RQEn1UPrLq6GpGRkTJlxGAwoKSkREICjhL/+OOPZbZZRUUF2traEBcXh8rKSmRkZOD48eOYMGECjEYjoqOjJQRjkz1aPpJaVeyBHp3a26e9vV3CpPT0dHR1deHYsWNS1MofHmx2OeCBIqmQYVpkZKSECEFBQXj//fdlw3Z3d2PGjBkoLi7Gxo0bsWDBAmG5x8TESHixbNky/OlPf4Ldbofb7cbrr78uWVn1HrPWkCGtyofr7vZ2TXU6nXK/2trasGHDBvT09ODxxx/Hli1bcMstt+Ctt95CZWUlsrKyUFNTg7/+9a94/PHHERsbiy1btmDcuHFSBH7o0CHceOONeP/997/UNZTC+YLcH9zbDEHVUJnKixgV/1UJyKr3xVCZIe35lAYmltQ+/KTf8JyxkwGxLJ4XelvMhoeEhEgtJ40SQ0IqWipGKmJ6bmvWrPlSuHsh6ReAONDbN4aaGOglp9GK8HUDBgyAyWSS8cr8UoHeLnu8MQzpEhMTYbVakZCQIG1jHQ6H3ARyloiD0FoRvAUgAz6B3vHM3Bg85G63Ww4Tn0tISEBKSoqM+nG73YK9FBcXo6OjA3V1dbBarXJjNU1DRkaGtAIpLS3FhAkTUFNTg9TUVDQ3N2PChAkIDQ3F7t27YbfbkZ2dLc3hOD3XarWiqakJPT09iIiIkAp7Ar6nT5/G0aNHZeR6WFgYmpqaBEsJDg6GyWRCWVkZSktLpRcVxWQyoba2VuqlmB1V7xcACZPVMIa41qhRo+DxeLBu3ToUFBTgj3/8I3JzcwEA//jHP3DgwAFomoY1a9Zg1apVmDVrFlwuF/7yl78I6E4shfeCSpDZK04sBrx1lSdOnEBPj3eic1tbG9asWQMAGDNmDP71r3+huLgYFRUVSEtLQ1ZWFsrKymAymXDs2DE4HA4UFRXhueeew/DhwzF48GDs2LED6enp2Lp1K2bMmNFHIVICArw9ujMyMqS9DfcNDa4aYqnZaU65IV2FnisnAnGNVNLcR8TZ2C3izJkzcjaIA/HM0LPiZ7I0hSEljQ3HtvEz1IJuRgxUpgwDiUFFRETgwIEDuBi5aOWkeSewHNI0bavv9wxN0w5omlauadpbmqYF+R4P9v1+wvd8+je9N11JaltuIoZdHJXNimY1ViUormYCiBMZjUYpQaAlDwsLQ3h4OGJiYpCamorY2Fhp+K8yvwn+MpzkjaZy4Y0gBYAbi2U2PNiseQsPD0dcXBwGDhyI5ORkWCwWwbJ6enpkiAKt4uLFi9HU1ISDBw+ioKBA5syxQf2cOXPQ3d0Nk8mE0NBQXHHFFXC7vUWV/EzOr2tubsbQoUNx9uxZfPDBB9i3bx/KyspkDFN8fDzi4+NhsVhQX1+Pzs5OUcinTp1CSUkJhg4dipycHAwaNAihoaFixSdNmoRt27ahsrISzc3NcoCofLjxGT4zNMjNzRUlcuTIEei6jkmTJsFo9PZxr6mpwf/8z/+gpaUF8fHxuPrqq+F2uzF9+nQ4nU4899xzmDJlSp9m+/SMVFiAyoqebn19PQoLC8VzqampEeC7p6cHX3zxBXbt2gWj0TsAgj3W58+fj5kzZyIvLw8ejweFhYXYt28fTp06hdLSUsyfPx/V1dUYOnQoysrKkJ6eznMje3zevHkSWrIuk/tGVRRch6o0aKAjIyNF4bvdbsEMaXxoBGhw6SUzIcAQm54aOV66rgtRl51ACHrTgz0fQ2NZjUqyJQ+Rn+fxeCfCnDp1CgCk5dHFyLfxnJYCKFF+fwbAX3RdHwLADuDnvsd/DsCu6/pgAH/xve7rL0IhfFHZ8GBTYxNwZZwdGhoqgzgZW6vN6clTUZUNLQwLEgHIe1A5sWpbtcCqcOMTtOSN5ObitbIEhpuloqJCpoPwb1JSUlBRUSFcI3bGdLvdgnesW7cOq1evxqlTp1BZWYnRo0cjNzcXo0ePhsvlQkNDg7RuYbeC5uZmdHV1yftHR0dLQ7qZM2di7NixMJlM6OjoEE+nvb0dDQ0NwmFxOBw4efIkBg8ejBtuuEEmxlitVlE+uq7jvffekw4I9DaJ77B+jkCupmm49dZb4Xa7cfToUTlkPKANDQ34zW9+I43lNm3ahODgYBm0Cni910GDBuHaa6/F7t275eCyCPX80IgGIywsDPX19dJyJjg4GKtWrcKOHTvEU4mJiYHb7cYzzzwDt9uN3bt3Y8GCBSgrK8Ps2bNRWVmJoqIizJs3D6dPn8aGDRuQlJQEj8eDqqoqTJ8+HWlpaaiurkaVb7y9Gr6wt5E6Bo14GF/LQlxek+qh8zEmJuiJEjzn8+Qn0TNj+E4vR20Yp3Zq4L0LCwtDfHy83Dd2S1CTGFSa3N9UpKQ/8HlGI+p8Q5XP9XVyUZiTpmnJAK4H8CcAD2reb/waALf6XrIWwO/hne47x/d/AHgbwP/VNE3Tz0cGzxO1allNYdPqAb2tVRjXko0NQHAnliEAEJeXALEKkqr1SLQAvGnq2GnVcqnxP6n9ag0RR/zQmtDDIyeqsbERTU1NwkshJ8lg8LYUZhN/TfNOKKmsrJRwY9iwYTIhpqqqChUVFQCA3NxchIaGYtmyZZgxYwYCAwNRVlaGxMREFBYWikJmxT27NQQFBcHlcokioofS0dGBlpYWmEwmZGVlSUFoc3MzDh48CLvdDpvNJhlRDr9kixhaUeJPuq7LwIjAwEBMmzYN06dPR2BgoCgqADL946mnnhIO0YwZM7Bq1SqsWLEC1157LTweD+Li4hAfH48lS5Zg2bJlaGxsRHx8vHgWXBsAAeQ1TUNNTQ1KSkpQVVWFiIgIvPbaa31q/zweD37yk5/AbrcL5tXe3o5169Zh2rRpePHFFzFt2jSYzWZs2bIFOTk5MBgMWLt2LUaMGCHJFxYsq/AEACQnJwvmo+4boNc4q69XoQ0aS6C3DpXVBVRgmqZJ8zu1vIrfA8M69rBiZo97V30fYqc01BQVH+P1qA361Ow3z6Aa2fB8Tpv25QU6AAAeWElEQVQ2DXv37v1SsuB8uVhA/H8BLAMQ4fs9GoBD13U2SFIHZ8pQTV3XezRNa/O9vuWr3pzKKCoqSjYXLS8XSGVFzcswx2AwyMQWxre82Q6HAwkJCQgLC0NZWZmM8aZ3pYaBTJsS7OO0C3pgtGBAb0tXxt9ut1tmwql9iIipkLxpsVhEKTQ1NaGjowNFRUWYMGECXC4XFi9ejPXr12PKlCnIz8/HnDlz4HK58OCDD+Ljjz9Gc3OzjBufMGFCH5av0WhEfHw8Tp8+3WecFl+fmZmJ06dPSx9xlgc5nU40NjYiKSlJwM/09HScO+cdXOByuVBfX4+jR48iISEBGRkZGDlyJFpbWyUzw/A3LCwMbW1t6OzsRHR0tCh9hhP0GBMSEmAwGHDgwAFcffXV4r0BkJ7glZWVKCgogMViwZ///GdkZmZixYoVaG9vR1FREX73u99h+/bt2LNnD+677z4Jo3igmLHltR0/fhzHjx+Hx+PBli1bRHmMHTsWhw8fRkZGBnbs2IGqqirExsZizpw5aG9vx8mTJzFx4kQ8/fTT0pHTYPAOYeBQiuXLl+Oqq65CS0sLUlJSZC/6zgB0XcePf/xjoTXQsDHhAvR2DQB6M8QqdgP09munR88x4UwWBAcHS5M8laDMv2emDvAqmHPnzgkswaiEXiyZ3cyEd3Z2So8vlfpAxcbkQ1tbG4DetjMk3vIchYSE4Prrr8eePXu+Sed8s3LSNO0GAM26rh/UNG0aH77AS/WLeE5933sA3AMAiYmJkgUgAS0qKqqPu0oLR5dY0zTBimpra8XlZBkFQ4wTJ04gMTERP/vZz6BpGj799FPU1NTA5XIJL4NZEyokt9stZRzR0dES57NWi7VnJFMyZa8OPqC7bTT2jnHmBvB4vOO2u7q68NOf/lRqjJqammSQ5IIFC7Bnzx6cPn0a+/fvh8ViQXp6OoxGI8aPHy94Bctbbr75Zsm8sC4QgGTLDAaDjHxSK9bdbjfi4+NlxLTD4RB8oa2tDS0tLbBYLJg7d67M/ysuLpbumcwIEr9iCEVrTxyFCjouLg7V1dUYNGgQzp49i127dslYK5vNhubmZixfvlwysfwhntXV1YXExETceOON+NWvfoVHHnlEAF+bzSa9pzRNg8PhQGtrK4qLi3HixAns379fZg8y3Dt8+DBycnIEpE1PT0dtbS3+/ve/45lnnsHbb7+NJ554ArNmzcKgQYOwc+dOLFmyBBaLBZs3b0ZeXp4A1kypq8XPADB8+HAh/dLgMbuleuP0WqjMCUmo9A4VxyMWyyiA54Tpfo4M533h3lY9MWbuWFrCfcpwTSU+qxlEPg70JqEY+VApDRgwoI9XxaEaY8aMkTV9nVyM5zQZwI2apl0HIARAJLyelEnTNKPPe1IHZ3KoZp2maUYAUQBaz39TXZn4m52drVMjh4eH9yGw0VKQ48HDxy+V2SSn0ykxNTElm80mluydd96B0+nEzJkzsWjRIjmg/BseIrXEglwYzogrLi6G3W7/kgIi1Z+AILlX4eHhMpAgIiICkZGR4rUYjUa4XC4kJiZiwYIFMJvNqKqqkpqm559/XspV6G1ERkYKlkArS0vs8XgbyZ04cQKjRo0SomlrayuGDBkifXVmzpwJl8uFzs5OuFwu5OfnIyoqSjYaXfLa2lpkZGRg5syZ4qkS7FQpFV1dXSgtLYXVahXPgBOWuZEJiBsMBlitVtTV1aGgoACpqamyJqPRKJmknp7e8UUM13jI6OGmpqZi5MiRMJvN2LRpE+688040NjYKYZTv4XQ6UV9fj+3bt+Ps2bPSaF/XdUyePBnFxcVyTxYuXIiamhrcfvvt2LRpE2677TZcd911aGpqwlVXXYUnnngCt956K7Zt24a9e/filltuQUZGBoKCguBwOJCdnS0G66677sJrr70GTdMwe/ZsNDY2CreOnq7L5UJ4eLiAzh6PRwwDaR18jp4WlZv6HNDLT6NxJsygemZqCYnaZI7nTOWKUchR4nUzKiC0QcXG6ye+xb3AGk6gl0sWFxfXR3l/lVzMaKgV8I4eh89z+rWu64s0TdsM4CcANgK4HcB7vj/5p+/3z3zPf/RNeBMAAVnp8pITpNLj6a4HBgZKHRDgHQ7Jjc3RRGr5SHBwMCwWC+Li4nDo0CHs379fOkDGxcUhLi5OXFq73S5N5dgDSNd12O32PuQ6KksAqKmpkZAO6N0oPAxDhw5FZWWldCrkNdE91nUdx48fx4EDB3D33XcjMjIS119/PTIzM9Ha2ipALQ8orRzje6Z4S0pKEBYWJkMeDAYDkpKSJMUcEBAAs9mMvXv3or29HTabDSNGjJBUb1tbG+rr6xEUFISFCxfCarUKgZXKn72f2QcK8IbPFRUVkkkkjywyMlKsKD1ip9OJMWPG4NChQ/jwww8xePBghIeHo729XTwMbheGhaoHTUXJWsm5c+fi2WefxcmTJ/GLX/wCzz33XJ8sVWtrKzZu3Aigt01sQIC3bcnHH3+MqKgomQxjNpvxxhtvYN++fQgNDcW4ceMQHByMp556Ch9++CHi4+Mxc+ZM3HvvvVi2bBmSk5ORl5eHQ4cOYdSoUcjMzMT69esRGBiItWvXyuFzuVxSeB0dHS0eEo0bjTG9Ha6XiuLs2bPCKKe3wfupfiek3dDDjImJkQiCj/Nc0HDwzKkZQI/H02cyDXFc3he1Hzl5c/SQ1BDT4XBIeEgiskrgVEtoLiT/CQlzOYCNmqY9AeAQgNW+x1cDeF3TtBPweky3fNMb8QvWtN6WpVRA1Mj0bJgBULkcbrdbrB97fVM5nD59Wtrkms1mpKSkwGg0ivXv6vKOuibmQc9B/WEIxCmvQG99U15eHtra2hAWFgan0ynjnYFe0qjD4ZDulFwri1J7enqQkpICXdexePFipKWlyRpYWsFRSaGhoRIesRSDeADr/WbOnIldu3bJNGByfYKCgqTRHSehmM1mUSSsq8vNzYXZbIbT6UR+fj4aGxuFZW6xWMQIREVFCcZBT4zhFV17s9ksmAhLWOgpZGdnIzk5Wcpw9u3bJ/gZvVrea95jXddlsmx0dDTmzp2LkpISJCUlySTnzz//HLGxsWLgXnzxxT5M9p6eHixfvhwvvPACcnJyMGrUKLz44ouYO3cu/va3v2Hq1Kmor6/H3XffDafTiSeeeAI33XQTwsLCkJ2djfLycmzYsAGffvopHnzwQYwfPx7nzp1DZmYmXn31VQwcOBCxsbH47LPPEB8fL/2kGFJZLBYxMEAv14hhHWEGQgJsQ8Jzwozk+V4+B13wzPBvqPhYbsXzxc8mHBIYGCh4EflIvCaV6mAwGMQbYmhIbhWzcfRag4KCJIy22+2IioqS7KHKfP8q+VbKSdf1vQD2+v5fCWD8BV7TBWDBt3lflfnK+JbKhSAcNTxvCABZIMmFkZGRMsvd4/FOBlmyZAl0XZcM15EjR9De3o6IiAhYrVY5iPxi+d5qf/C6ujokJydLnM2m7R988IEMGjjfStHKEWeqrq5Ge3u7kDhNJpOAtnSnyQWiAjAajdIGlgeecXxQUBBCQ0Pl8IaEhOCTTz5BUlISUlJSpO6QgDS9HqvVipSUFOTl5WHSpEni+vP73r9/P1wuFywWC0aMGIHBgweLgj5z5ow0w6M1pwcbHx8v4Y3H40F6ejoaGxtlQ9KLpHR0dCA4OBiHDh2SflcEVpkC5yEmU5mWNiwsDBkZGUhNTcXWrVvhdrsxf/58zJgxQzw7m82Gzz77TA4erb7BYEBjYyPuuusuvPXWW9i7d6/gKzk5OZg6dSrcbjcKCgrQ3NyMpUuXYteuXeju7sakSZOwa9cu1NbWYu3atfB4PJg9ezYAYPPmzbj55psRExOD++67DwEBAcKkP336tEwkYXdJtYxHJewSZuC+oaGj4lL3F+8pvXb19cTVGHEQdlAzblSK3Cvcv9HR0WLgVa+II6Z4HtWsnMpiV3Erds90OByiSM+dO4cHHnhA6iG/Ui98GyXyfYrmK5fgQTpz5gycTqcoi/Op+7QcAORwGgzeqSMtLS1wOp0ICQlBQUEBSkpKMGDAAEyePBm33347HnnkEdx1110YPHiwhC1sLBcTE4Nhw4bhhhtuwB133IGlS5figQceQHJyMq699losWLAAXV1dOHjwIM6cOSMgNVPDxG54mNxub5V6WloaBg4cKEXGhYWFYoEIzrK9B9O+gPcg2mw28crUrIfD4UBERIR4QgEBARgyZAjWr1+PtrY2yaiRLtHR0YG4uDi8+uqrGD58uCiErq4u2O12aYt74403Yvbs2UhNTRU3PCgoCK2trRIi0otkGMKaQKvVKix0hgYEzent8T4aDAbU1tbi1KlT4iFT4ZFvxcNEQ0UMMi0tDb/85S+xZMkSzJs3T+gNO3fuxAcffIDS0lL5LHqcLM158803sWrVKqSmpsJgMGD58uUoLCzE6NGjsXLlSsTExGDPnj0wm80YP3683NvNmzejqakJa9euRUZGhniW+fn5GDx4MCIiIvDuu+/iscceQ2pqqnz+wYMHxbClpaUJuE1lwwOuNpsjUZOKgAdb9QIZ2qsN6OjBkhlODEgld7JzBT0jGgDeS+5LUldU4ic/R2WTqzgWAEmK8KzyPAC9zf6uueaa74xK8L0LvzQugu6nCsIRQ1JBOWppWvPo6GjBTVwuF6KiouDxeFBdXY2QkBDYbDaZ8GIymXDllVdi4MCBUqRYXl6OAQMGoLm5GcePH0dHRwdGjBiBQYMG4b333sOpU6cQGBiIgoICmUM3YsQI1NfXw263IykpSTYdPTsexNDQUHH7W1tbUVdXJwBud3e3DLpUCaJVVVUYMWKENM4zm804d8479iopKUlKTjRNQ3x8PEpLSxEVFSVs+ICAAAkNk5OTpd6QYQ+VodlshtVqRWxsLGJiYgD0FsyeO3dO+iNRmQNet76lpUXIhcwesQtnWlqaUEOorNra2uB2uyUMUctaVMXFg0MqAHt98V43NDTA4/Hg+uuvR3d3N95++21s374d06dPx4cffoiWlhbZJ52dnYJz8bCbzWaUlZVh8eLFePfddzFmzBg4nU7MmzcPDz74IK655hqMGzdOmvrRCx0+fDiys7OxefNmbNu2TTJusbGxWL9+PcxmM0pKSjBr1iwpSCYh0+VyISYmRmgxoaGh4onQkBFLoqdEBaBmPdXXARBDpoLlxKboafN5tu3h/WCXCp4XcqcCA73NC2NiYqTpHnEmfgYVGYvf6SHxs9nr6eTJk9KQkO8RGxv7vWJO36mQOMaF00qodVrMWhBrASB0AHIsaFnoLldWVsLtdmPQoEGIiYlBdHQ02tra0NPTI6THo0ePyiGg9xUbG4upU6eitbUVL7/8shATIyIiUF1djYyMDBiNRmF182aFhobKNdIScgOqm42TWOgJFBcX9/EM6bpHR0cLVtPc3CxjqXhw7XY7LBaLbBIWFHd2diIxMRE9PT2wWq1wu709q202G4YOHYqqqio58PHx8dJznDVTBL2dTicGDRqE8vJy6RWthgBAb9aSysVqtcpmp1VlyM4RRyT5tbe395k7yHCYfdxDQ0NlEOiZM2dQU1OD4OBgpKeny8iikJAQ3HHHHbL+rVu3imIisZCdFPgd5+bmYsuWLTAYvN0EWBwdHx+Phx9+GImJiVi6dCkCAgIwf/58VFRUwGw245///Ceys7Px0EMPYceOHTCZTEhPT8eZM2cwf/58dHV14ciRI/j888/FkLrdbrS0tMDlcokippJRR2ipWTCj0SjGmtfMc0Cjx32uYlYq8ZSfzRCQ3hIA8U6J39LzpifFKgyGizx/9KTVYmNSBdj3nq9l5pAAu7oWlXbzVdIvlFN3d7dMPmlqapKiXlp1lenKw9vR0SEpcCoyi8WC1tZWREREiNfV09ODsrIylJeXw+PxVsYzBc3MEMFXspQdDgfKy8vx7LPPCpksIyMD0dHROHnyJCoqKpCUlITw8HC0traipaUFWVlZOHXqFAYPHtwHH1OHM6hpZHJi6ObS++CmILudBaKssrfb7TLmqaysDElJSYiKioKue1uzHD58GGPHjkVxcTHGjh2LoqIiIVsOHz4cdXV1GDduHNLT0xERESGKGugtzWHRLxMNRqN37BSVK793j8eDEydOSHZILfthjSEHM1I51dXVSdsQHia+F3E/ZkcZshw/fly8P3Ky6CUz/Gea/emnn+7jeQBAQkICmpub8eijj+LJJ58U7tc999yDpqYm5OXl4corr0RycjIaGhrw5JNPYvr06YiOjsbs2bOxbt06LF68GPfffz/effddVFVVYdq0aQCA+vp6NDU1weVy4cSJE9i+fTtuv/12+V7UjJvT6cSAAQP6DFBgGcr53hDgzXDREBH/pBdKDJLfEWEOvifPDa9BTShRYZMWozLUiY2pGBU9VnqJDJFV2oGa1KLyJdzB66eS9Hg8aGtrw8KFC/HGG298pV7oF8opKChIyIdZWVlobW1FYGCghDK00gaDAQkJCfIl82ayJMNms0kWijyZzMxMZGdni3KorKxEbW0tjh07BqPRKEW6Z8+elZ7dpPYbDAbceuutyMnJwTvvvIP7778fHo8HQ4YMwbRp05CSkoKuri5s27ZNGsQRxOVmcLlcEsurB1BNr/Nm7dq1CyNHjpQNN3HiRAAQ5URmNQFVdgdglqympgYLFy5Efn4+hgwZAk3TMGzYMDQ3N6O7uxsZGRnIy8tDTU0NNm7ciKSkJOTm5uLcuXOorq6WtSckJMh8MqvVKiOkqLxUHIj4xKFDhxAXFyeZQbrxHKZJBbJz504kJydj4sSJQtQjxmgymVBVVSUZKjbv42gooDet3dXVBYvFgubmZphMJgwYMABvvvlmHz4PO2/abDZ4PB489dRTGDhwICoqKlBRUYGJEydi06ZNeOmll1BVVYV7770XN9xwA370ox9h7969mDNnDsrKyvDCCy/giy++wLhx42A0GjFnzhysX78ew4YNQ0FBAYYOHYorrrgCxcXFaGxsRGxsLMxmc58wtaioSDxZNfFDhU/PiLgQuV9U1BwnBfSWo9DrptekelAEsum1MxyjUHHTWNKQqvuUYRvvOeskiW2xEwivlZECFaCu61JSA/SOcKeXPGXKlP6vnFhmEBERAYfDIUxnWnfWxbW1tQnJkh4T+ymTN9La2gqj0dvruri4GIcPHxZ+D1Phai2Syr9QMws333wzJk+ejPr6euTk5CAsLEwmiISGhiIvL082CLOB50826erqEqY7wxvyWngNfK3RaERsbKz0aQoNDUVtbS2mTp2Kjz76CNHR0Zg+fbrwl9jzOjo6uk94cOTIERw6dAiRkZEYMmSI9LkyGo04efIknE4nFi1ahMmTJ+P48ePYu3cvMjMzMXz4cOGoUDna7XZ4PB4ZlMgwAOhVErfccgs2bNiATZs2IScnRzqN0ptraGiQ77q8vFyUMkNWHt7u7m4cPXpUmOrEINXSltDQUERGRqK9vV0SIGlpaWhpaYHNZkNNTY1YbLfbLX2kuru7MW7cOFitVmzfvl2MIRvILVq0CMOGDYPH48GcOXOwZs0avPTSS9B1HQ899BAmTZqExMRE3HnnnYiJiUFaWhp++9vforCwELm5uVi5ciUWLVqEESNGYOnSpXA4HNi3bx+AXgC5tbUVU6ZMEcY7SZRqLSk9HHqSQC8JlfQatcsla0/5t1Raar0glR8VGb8PGk0aAmZt6f0ym0rFotbHqR0L+Pf0kFRWOZND/A54DTTIo0aN+lpQvF8op6qqKowfP176HsXFxWHkyJFISUlBamoqrFardCFQe8uQnm82m9HT04OhQ4ciOzsbBQUFqKmpAQCxUAEBAWhoaMDZs2cRGRkptV7kO3V2dmL48OG47rrrkJKSArfbjbfeegurV6+WWXRFRUVyYywWi0zTPXLkCLKyslBeXi6bg6UHDOsCAwNht9slS0O2NcFQlnZ0dnZi7969Qk7kJm9qasLLL7+MGTNmiCWmdzJx4kSpsyotLcUVV1wBm82GgADvSCY1ZA0JCUFhYSGOHTuG5ORkzJs3r0/xMhU9yyvoprN8gRue3uzGjRulhbGu65KWdjgcsNvtotCqq6vh8XiwY8cObN++HbW1taioqJCQprOzEyaTSawuSYVMiHCtJN4yC0ROz+rVq/tgNmrdJHEwg8GAhx9+GBEREfjDH/4Ag8GAIUOGSC+s3NxclJSUiLFauXIlFi5ciIAAb2PD/Px8rF69GrGxsdI/6aqrrpJWy7/+9a+xYsUKvP7663jllVdwxx13iBdDUrGKlzKUY3sRTdNEkagZObXciN8Xw19VwakkYHpNvHdqto+fQQKvSnJWO0h4PB7h3PE7VQuBWbLDqIHhHxUq9wuviXjrmTNnEB0dLXjtV0m/UE4BAQEYM2YMHA4HmpubYbVaYbPZYLPZ8Oabb8LhcKChoQEdHR0YPXo0EhISkJWVJSUdrPRmrxgezNzcXOHeVFVVwWQyIT4+XjCPnp4eJCUlwWKxSCO4+vp6vPzyy/jkk09gNpthMpnw+9//HosXL0ZmZmYfUDElJUWAdDJeVe4Hbww3CktIdF2XDcPn2X8qIyMDdXV1yM/Px0033YTw8HA0Njaip6cHZrNZumHGxcVJU/2PPvoIYWFhyM3NFZCdoSIPQmZmJj799FOkp6cjMTFRCkvb29vlAKk8suDgYEREREhbYbVsx+FwiBJmBojWu7KyEsXFxcjIyEB7ezvq6urgdruxceNGtLe349ixYzh69CiKiorQ1taGzMxMwZDInge8ipKYIH/U75TcqNbWVjz99NNiNFRjwIMPeOsBs7Ky8PzzzyMjIwMejwcPPPAA9uzZg0cffRTl5eVYuXIlRo4cicWLF2PTpk24+uqrERMTg8ceewy33XYbgoODMXv2bNhsNtTX1+POO+9EYWGhHLL3338fDz/8MF555RVpwcP9wN9VT1FVBgzxuCcILqvcJ4ZmhCKoDACvElMNCIXkZI/HIxguPXq+jiEy6S/MLAcFBaGpqakP11DNBHZ0dPQJ+2h46TURBOeMSXrmNCK8N18l2kVUlnzvommaC0Dppb6O70hi8DUdGC5D+SGtx7+W/idpuq5bL/REv/CcAJTquv6jS30R34VomlbwQ1kL8MNaj38tl5f0G4a4X/ziF7+o4ldOfvGLX/ql9Bfl9P8u9QV8h/JDWgvww1qPfy2XkfQLQNwvfvGLX86X/uI5+cUvfvFLH7nkyknTtFmappVq3jl3v7nU1/NNomnaq5qmNWuaVqQ8ZtE0bafmneG3U9M0s+9xTdO0F31r+0LTtLGX7sq/LJqmpWiatkfTtBJN04o1TVvqe/yyW4+maSGapuVrmnbEt5Y/+B7P0L6j+Yr/bdG+x1mRl4NcUuWkaVoAgJcA/BjAcAALNU0bfimv6SJkDYBZ5z32GwC7de8Mv92+3wHvuob4fu6Bd3RWf5IeAA/puj4MwEQAv/R9/5fjes4CuEbX9VEARgOYpWnaRHyH8xUvgXxvsyIvC1EZuP/tHwBXAdih/L4CwIpLeU0Xed3pAIqU30sBJPj+nwAvbwsAVgJYeKHX9ccfePvAT7/c1wMgDEAhgAnwEhWN5+83ADsAXOX7v9H3Ou1SX7uyhmR4DcM1ALbCO9XoslzLv/tzqcM6mXHnE3X+3eUkcbquNwCA799Y3+OXzfp8ocAYAAdwma7HFwYdBtAMYCeAClzkfEUAnK/YX4SzIlmLctGzItH/1vJvyaVWThc14+4ylstifZqmhQPYAuD/6Lru/LqXXuCxfrMeXdfduq6PhtfrGA9g2IVe5vu3365FU2ZFqg9f4KX9fi3/iVxq5cQZdxR1/t3lJE2apiUAgO/fZt/j/X59mqYFwquY3tB1/R3fw5ftegBA13UHvIM4JsI3X9H31IXmK0L7mvmKl0g4K7IK3tFr10CZFel7zeWyln9bLrVy+hzAEF8WIgjeMVL/vMTX9O8IZ/UBX57ht9iX5ZoIoI3hUn8QzVsCvxpAia7rLyhPXXbr0TTNqmmayff/UADXwgsm74F3fiJw4fmKwLeYr/jfEF3XV+i6nqzrejq8Z+IjXdcX4TJcy38klxr0AnAdgDJ48YHfXurruYjr3QCgAUA3vBbr5/DG97sBlPv+tfheq8GbjawAcBTAjy719Z+3linwuv9fADjs+7nuclwPgJHwzk/8AkARgN/5Hh8IIB/ACQCbAQT7Hg/x/X7C9/zAS72Gr1jXNABbfwhr+bY/foa4X/zil34plzqs84tf/OKXC4pfOfnFL37pl+JXTn7xi1/6pfiVk1/84pd+KX7l5Be/+KVfil85+cUvfumX4ldOfvGLX/ql+JWTX/zil34p/x/tcqweVDN9TwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(new_img,cmap='gray')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "Image data of dtype object cannot be converted to float", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mme\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m'../../../../Downloads/wow.png'\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0mme_img\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcv2\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mimread\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mme\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mimshow\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mme_img\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4\u001b[0m \u001b[0mfaces\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mface_detect\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mme_img\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mcass\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mnew_img\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdraw_squares\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mme_img\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mfaces\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py\u001b[0m in \u001b[0;36mimshow\u001b[1;34m(X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, shape, filternorm, filterrad, imlim, resample, url, data, **kwargs)\u001b[0m\n\u001b[0;32m 2681\u001b[0m \u001b[0mfilternorm\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfilternorm\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfilterrad\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfilterrad\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mimlim\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mimlim\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2682\u001b[0m resample=resample, url=url, **({\"data\": data} if data is not\n\u001b[1;32m-> 2683\u001b[1;33m None else {}), **kwargs)\n\u001b[0m\u001b[0;32m 2684\u001b[0m \u001b[0msci\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m__ret\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2685\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0m__ret\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\__init__.py\u001b[0m in \u001b[0;36minner\u001b[1;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1599\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0minner\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0max\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1600\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mdata\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1601\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0max\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0mmap\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msanitize_sequence\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1602\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1603\u001b[0m \u001b[0mbound\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnew_sig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbind\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0max\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\cbook\\deprecation.py\u001b[0m in \u001b[0;36mwrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 367\u001b[0m \u001b[1;34mf\"%(removal)s. If any parameter follows {name!r}, they \"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 368\u001b[0m f\"should be pass as keyword, not positionally.\")\n\u001b[1;32m--> 369\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 370\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 371\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\cbook\\deprecation.py\u001b[0m in \u001b[0;36mwrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 367\u001b[0m \u001b[1;34mf\"%(removal)s. If any parameter follows {name!r}, they \"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 368\u001b[0m f\"should be pass as keyword, not positionally.\")\n\u001b[1;32m--> 369\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 370\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 371\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py\u001b[0m in \u001b[0;36mimshow\u001b[1;34m(self, X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, shape, filternorm, filterrad, imlim, resample, url, **kwargs)\u001b[0m\n\u001b[0;32m 5669\u001b[0m resample=resample, **kwargs)\n\u001b[0;32m 5670\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 5671\u001b[1;33m \u001b[0mim\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_data\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 5672\u001b[0m \u001b[0mim\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_alpha\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0malpha\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5673\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mim\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_clip_path\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\image.py\u001b[0m in \u001b[0;36mset_data\u001b[1;34m(self, A)\u001b[0m\n\u001b[0;32m 683\u001b[0m not np.can_cast(self._A.dtype, float, \"same_kind\")):\n\u001b[0;32m 684\u001b[0m raise TypeError(\"Image data of dtype {} cannot be converted to \"\n\u001b[1;32m--> 685\u001b[1;33m \"float\".format(self._A.dtype))\n\u001b[0m\u001b[0;32m 686\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 687\u001b[0m if not (self._A.ndim == 2\n", + "\u001b[1;31mTypeError\u001b[0m: Image data of dtype object cannot be converted to float" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAMmUlEQVR4nO3bYYjkd33H8ffHXFNpGrWYFeTuNJFeqtdQiF3SFKFGTMslhbsnIncQWkvw0Br7QCmkWFKJjxppBeFae7QSFTSePqiLnAS0EYt4mg3R6F24sj1ts0SaU9M8EY2h3z6Y0U7mu3v7v8vszC19v2Bh/v/5zex3h7n3/ue//0tVIUmTXrToASRdfgyDpMYwSGoMg6TGMEhqDIOkZsswJPlokqeSfGeT+5Pkw0nWkjyW5PWzH1PSPA05YrgfOHCB+28D9o2/jgJ//8LHkrRIW4ahqr4C/OgCSw4BH6+RU8DLkrxyVgNKmr9dM3iO3cATE9vr433fn16Y5Cijowquuuqq337ta187g28vaTOPPPLID6pq6WIfN4swZIN9G15nXVXHgeMAy8vLtbq6OoNvL2kzSf7jUh43i79KrAN7J7b3AE/O4HklLcgswrAC/NH4rxM3A89UVfsYIWnn2PKjRJJPAbcA1yRZB/4K+CWAqvoIcBK4HVgDfgz8yXYNK2k+tgxDVR3Z4v4C3jWziSQtnFc+SmoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagaFIcmBJGeTrCW5e4P7X5XkoSSPJnksye2zH1XSvGwZhiRXAMeA24D9wJEk+6eW/SVwoqpuBA4DfzfrQSXNz5AjhpuAtao6V1XPAg8Ah6bWFPCS8e2XAk/ObkRJ8zYkDLuBJya218f7Jr0fuCPJOnASePdGT5TkaJLVJKvnz5+/hHElzcOQMGSDfTW1fQS4v6r2ALcDn0jSnruqjlfVclUtLy0tXfy0kuZiSBjWgb0T23voHxXuBE4AVNXXgBcD18xiQEnzNyQMDwP7klyX5EpGJxdXptb8J/BmgCSvYxQGPytIO9SWYaiq54C7gAeBxxn99eF0knuTHBwvey/w9iTfAj4FvK2qpj9uSNohdg1ZVFUnGZ1UnNx3z8TtM8AbZjuapEXxykdJjWGQ1BgGSY1hkNQYBkmNYZDUGAZJjWGQ1BgGSY1hkNQYBkmNYZDUGAZJjWGQ1BgGSY1hkNQYBkmNYZDUGAZJjWGQ1BgGSY1hkNQYBkmNYZDUGAZJjWGQ1BgGSY1hkNQYBkmNYZDUGAZJjWGQ1BgGSY1hkNQMCkOSA0nOJllLcvcma96a5EyS00k+OdsxJc3Trq0WJLkCOAb8PrAOPJxkparOTKzZB/wF8IaqejrJK7ZrYEnbb8gRw03AWlWdq6pngQeAQ1Nr3g4cq6qnAarqqdmOKWmehoRhN/DExPb6eN+k64Hrk3w1yakkBzZ6oiRHk6wmWT1//vylTSxp2w0JQzbYV1Pbu4B9wC3AEeAfk7ysPajqeFUtV9Xy0tLSxc4qaU6GhGEd2DuxvQd4coM1n6uqn1XVd4GzjEIhaQcaEoaHgX1JrktyJXAYWJla88/AmwCSXMPoo8W5WQ4qaX62DENVPQfcBTwIPA6cqKrTSe5NcnC87EHgh0nOAA8Bf15VP9yuoSVtr1RNny6Yj+Xl5VpdXV3I95b+v0jySFUtX+zjvPJRUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSMygMSQ4kOZtkLcndF1j3liSVZHl2I0qaty3DkOQK4BhwG7AfOJJk/wbrrgb+DPj6rIeUNF9DjhhuAtaq6lxVPQs8ABzaYN0HgPuAn8xwPkkLMCQMu4EnJrbXx/t+IcmNwN6q+vyFnijJ0SSrSVbPnz9/0cNKmo8hYcgG++oXdyYvAj4EvHerJ6qq41W1XFXLS0tLw6eUNFdDwrAO7J3Y3gM8ObF9NXAD8OUk3wNuBlY8ASntXEPC8DCwL8l1Sa4EDgMrP7+zqp6pqmuq6tqquhY4BRysqtVtmVjSttsyDFX1HHAX8CDwOHCiqk4nuTfJwe0eUNL87RqyqKpOAien9t2zydpbXvhYkhbJKx8lNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVJjGCQ1hkFSYxgkNYZBUmMYJDWGQVIzKAxJDiQ5m2Qtyd0b3P+eJGeSPJbkS0lePftRJc3LlmFIcgVwDLgN2A8cSbJ/atmjwHJV/RbwWeC+WQ8qaX6GHDHcBKxV1bmqehZ4ADg0uaCqHqqqH483TwF7ZjumpHkaEobdwBMT2+vjfZu5E/jCRnckOZpkNcnq+fPnh08paa6GhCEb7KsNFyZ3AMvABze6v6qOV9VyVS0vLS0Nn1LSXO0asGYd2DuxvQd4cnpRkluB9wFvrKqfzmY8SYsw5IjhYWBfkuuSXAkcBlYmFyS5EfgH4GBVPTX7MSXN05ZhqKrngLuAB4HHgRNVdTrJvUkOjpd9EPhV4DNJvplkZZOnk7QDDPkoQVWdBE5O7btn4vatM55L0gJ55aOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6TGMEhqDIOkxjBIagyDpMYwSGoMg6RmUBiSHEhyNslakrs3uP+Xk3x6fP/Xk1w760Elzc+WYUhyBXAMuA3YDxxJsn9q2Z3A01X168CHgL+e9aCS5mfIEcNNwFpVnauqZ4EHgENTaw4BHxvf/izw5iSZ3ZiS5mnXgDW7gScmtteB39lsTVU9l+QZ4OXADyYXJTkKHB1v/jTJdy5l6AW5hqmf5zK2k2aFnTXvTpoV4Dcu5UFDwrDRb/66hDVU1XHgOECS1apaHvD9Lws7ad6dNCvsrHl30qwwmvdSHjfko8Q6sHdiew/w5GZrkuwCXgr86FIGkrR4Q8LwMLAvyXVJrgQOAytTa1aAPx7ffgvwL1XVjhgk7QxbfpQYnzO4C3gQuAL4aFWdTnIvsFpVK8A/AZ9IssboSOHwgO99/AXMvQg7ad6dNCvsrHl30qxwifPGX+ySpnnlo6TGMEhqtj0MO+ly6gGzvifJmSSPJflSklcvYs6JeS4478S6tySpJAv7M9uQWZO8dfz6nk7yyXnPODXLVu+FVyV5KMmj4/fD7YuYczzLR5M8tdl1QRn58PhneSzJ67d80qrati9GJyv/HXgNcCXwLWD/1Jo/BT4yvn0Y+PR2zvQCZ30T8Cvj2+9c1KxD5x2vuxr4CnAKWL5cZwX2AY8CvzbefsXl/NoyOqn3zvHt/cD3Fjjv7wGvB76zyf23A19gdL3RzcDXt3rO7T5i2EmXU285a1U9VFU/Hm+eYnRNx6IMeW0BPgDcB/xknsNNGTLr24FjVfU0QFU9NecZJw2Zt4CXjG+/lH5tz9xU1Ve48HVDh4CP18gp4GVJXnmh59zuMGx0OfXuzdZU1XPAzy+nnrchs066k1GFF2XLeZPcCOytqs/Pc7ANDHltrweuT/LVJKeSHJjbdN2Qed8P3JFkHTgJvHs+o12Si31vD7ok+oWY2eXUczB4jiR3AMvAG7d1ogu74LxJXsTof7q+bV4DXcCQ13YXo48TtzA6EvvXJDdU1X9v82wbGTLvEeD+qvqbJL/L6DqeG6rqf7Z/vIt20f/GtvuIYSddTj1kVpLcCrwPOFhVP53TbBvZat6rgRuALyf5HqPPlisLOgE59H3wuar6WVV9FzjLKBSLMGTeO4ETAFX1NeDFjP6D1eVo0Hv7ebb5pMgu4BxwHf93Euc3p9a8i+effDyxoBM4Q2a9kdFJqX2LmPFi551a/2UWd/JxyGt7APjY+PY1jA59X34Zz/sF4G3j268b/0PLAt8P17L5ycc/5PknH7+x5fPNYeDbgX8b/4N633jfvYx+48KotJ8B1oBvAK9Z4Iu71axfBP4L+Ob4a2VRsw6Zd2rtwsIw8LUN8LfAGeDbwOHL+bVl9JeIr46j8U3gDxY466eA7wM/Y3R0cCfwDuAdE6/tsfHP8u0h7wMviZbUeOWjpMYwSGoMg6TGMEhqDIOkxjBIagyDpOZ/AS9qX9SUF4NfAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "me = '../../../../Downloads/wow.png'\n", + "me_img = cv2.imread(me,0)\n", + "plt.imshow(me_img)\n", + "faces = face_detect(me_img,cass)\n", + "new_img = draw_squares(me_img,faces)\n", + "plt.imshow(new_img)" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQgAAAD8CAYAAACLgjpEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9ydNuWXbe9Vt7n+btvvZ2eZvsVVlVypJUKklVxraMBDYYHMYDiAAzYMDAQMAMCDzjP2DABMJBMPAEEwEMiLAcWNgODLKQSnapSqomKzOrMvP23Xfv173dOXsvBmvvfc6XrkwLiCjfirgn4sb93u60e6/1rGc9a21RVV5uL7eX28vtJ23un/cJvNxebi+3F3d7aSBebi+3l9tnbi8NxMvt5fZy+8ztpYF4ub3cXm6fub00EC+3l9vL7TO3lwbi5fZye7l95vZTNxAi8hdF5D0R+UBE/vpP+/gvt5fby+1PvslPUwchIh74IfAXgDvAN4G/qqrf+6mdxMvt5fZy+xNvP20E8XXgA1X9kapugb8F/JWf8jm83F5uL7c/4Vb9lI93E7g9en0H+Mb4CyLy14C/BuB88yvz6WVUBFEFEftSRj0KOCmv1Ym9B+BAxd5TB4i9toN86n/sM4mU30vev9oLidh+yg/S9zT9Lu/jU18RHR03v+/se/8UdpNPv/H5m7rROefry/vQ4W/Jt2t83XrxO+U3bnRin379Wef56f2MP5Lh+D/xeONr0U+9Lz/hN5/ab/n/U+eZ3xs/m09v499/ep/585/0/qf38en9f/o9+ace9Gi8jZ/X+Jrzez/p/n/6e2Wnw7jNY1XiMC7yNaiz/Wraz/bOnSeqeuUnHOWnbiB+0jC6cJmq+jeAvwGwu3NTf+1r/zFaiU1+wK8Dsbard11MF2+faTUYiH7q2e55YgUSYLMnxEaIFWhlN0kduK3duFiDXw1nWJ/rhcFTnyl+q4iC2yqhlfIQfKeExuF6+01oBIngghK9lGORPwv2d6wh5iegUK2gW0h5LaqolwsDRj3l9+rA9QqKnY9P57O17/ZzcJ0dR/r0AEJ6raO/g32vW4Dr7Z8mA4uzzzWdr+spkzZW6XU65ejTb719l2gD1HUQ2mGyIvYeAqEG36XznYHfQGigWtt7cTRC1dtvpB9NwnyepAngL94rdDgnCcloBBsD5HvQ2j61Gq5VQn62w1jJz0H9cC2xsmspzyV9nsdGtba/Q2PPRcLw3fzbWKfrbu0zvxmOVYx8mugu/Y7kmFxv+wb7zOZFvveKVlLuoUQ7RphAaJTY2j5//J/9px/zGdtPO8S4A7w6en0LuPe5v1CbAH7Z45c96gS3DbhtKF+RPoIq0ivSR/qptwGkEGqhm0kyMoNnGVvS0EC1hDC1/VUrhYwYYjIOneJ6RYISa6FaRXxnRkPF9h0rKUYAoRgHiTbx+zSJYw39NA9GKZMyTMClfSJp8iWEIFFxQW1gOnsNoN6MZ7Ua7GxoRpMjDcrQ2mfZOMBogmPGxG/T35M0kFqb9KFJxiHY36G1yex620doh4ms3n4Ddp4uDAPf9TYZy+SNdsxYJWO2TUavG47pN2mCTdL+ZTj3PDGKd/TDMxujxNgkA5fP0UGsdTC4yQi4zejc0ljpZ8NvwyTdu/Q6NoOBzPdRKztn16fJ77Mhv7iffjoYUlHbl9+Oflfbvtw2XZe/aGhFR/tMzyYbqOjtt7EWMyrpHPtZui8RXBC7T+7zOcifNoL4JvAFEXkTuAv8O8C/+5nfTshA+mSunSB9NM8qgsSIRCVOK4gQWmchh4OQJ2sLsREb0MnSx4rigaO3B9PNR96vEpwqfmPowAaA4jdKrAS/iem3F42O65R+IoYkksGIFfitUq3Sg0twLw+C8t1akF6TVzWUEeoUWmGGROvh9yDEZuTJ6iGUKl4qpkEdDZ3kayYNmFgP3ykh08gr5YGYPVZww0TXNHkkMEBaHQasX48MYdpPNgJg+3cj9+Q2g1cvk1Ts94j9LjbDfYMB6WREkNHHGEVAOjdv5xAaxW0F10k5RqwU10u5ZxklqbfzMsM9up9huO7YYBMuI6uYDNcIoRYE4kCdIlEKxM8G0cZLQreS/o9AclrRA+n6c3iSf+O36VlmlJOMXh6XMSPddXrWo/BDus+Pa3+qBkJVexH5T4D/DfDAf6+q3/3MH0RNUDgSa49fdcS2gqC4LhBrD364QK2ceXFswmwX5l3zgIr1YM1DMwxWdXaTs7eSoPhtmowKfqMJjguuM5QSJ95ucPJWNimlxIYGUxW80E9t8uZJk6G9C8loeNtvaAW/Uft7kkKRKIYW0sPPoWf0g8ErsWqG7tjAkchgROLwf4a/2bNkeJs9sigX4+jsaePFfY9hcGwUt5ELkF4ruxHl+GlCSZps6hO0T9eQYXe5jowKKvtegfLFkA/GkAjdQnHjAT8OC5wiveC2QqwVF+z+2n2UAXFO0gSOdv5OBXVqIe4o3KJOyKOyiVmegyZDh323nyt+LYUTs+vTYny0hn7ER7gtdLs57BP61gwaOhhG0vPJzyA0Nra0GhmbJhmymMZaRiUy3D+/FUL7YiEIVPW3gN/6E31ZIEw8fqmGFBpvRiOoGQkCiBCBMKuIlXnc7cLTT4XQmpctsX66qTFByOxd/TZ5zN6MgQukcILCJUhQ/CbS7Rjec1u18VeBYpNYk7HqJ3KBmMrQL0xGCKK/+MBjJbitIRCJg1fUiA1YuWhcsreEAWqWCZUHbD94muJNRt53bBBUbLBKsPuQB2Q2ChIosDu05nHteAnhFA+ZPHKQwbun+23XaZMuhwAZAofWTsR1Us4z79uvDYlleK/JiAAwmgCuS0bVQz9VXJ/uXX4OffL4QPSKZuMpoCqja7HwI59L8fhOIf0da0UcSBBilf7uBa10CO/E7lFozbL3cx34p8oGeL8T7Fq8Qie4jUuTWqlPnT3vRi/egzjwDHn8ZPSVx0jmOcIkOaYqPZ8R92J8xwuEIP7fbiqCBEUrZ4OzB7fpiE2FixGtHLIJaOvT9yB4x/pACBOhn3IBCWTo6cIo/EqTozlOkDKkuD1PDAW/VvqppR7y392OQxInYFBVCI0MxGaerPlB1SOk44DajFE/ySzUAMVhBG+nIKNryJM2x64Zvo4nf95fngCxBkbeNsPaMjkyGZkQRWgYCL+ENqJPMHz0eowqIMH3kHkYHYU/WgjCHI6UrECl9I2978IwCWJlN8J1Qj+3vzPC8FtJHJIaDhUIFcOEkcGQSrTJbs5GLxhuvxH6qeI3hirKObnBy2plxLPfpGfr7NqzMShZEg8qZgikN9QRmnTdtV2P9EKcRgjJkewEmATEJWjYQnTDlOwWdk5+JcRGC9HseqGvBgRszyORlDpCDDkk8QO6yI4yhzLj5/eTthfaQBR2vHFU5x2xcsSmQkJEvY1Ubb1NztbCi+3cEVoxb+2NWyA91Gpl4UZkYJezdwfjCupzLe/7LiGXOvMOUrxXtYx0C5cYaimwW+JFws6Y4wy9B27CbZXtjhhjLRYnZnIzG5VuNxFTiaDLxihWQ1iAXd7Aq2QPm71ENfKciYPIoUesh99IAArHoQn3akJH+TmYh4+fmozjlGk/1YHNdyOEkY5hyEIJGa2MDEZfa4mxS+o2TdB8X4130AveVF2a7LOEGvLkHRlEMbA5eFgHUQwtqteLqdKSOk5IImeNKlBVm3hbu65sKMutcPa7mJ691sNYiJOAbB3aRvCKNIF60iOiOKdsNzXsbolbjwZBFh1x64m7wNbhzx3EdG195npkGMPZqfVDJigTxtlglnCxNwd5wan8hO2FNxDqxci+2hNaSyWO48yc/swevJ/aRedJla24RBtA6sCrDCmlNdSnWpADmGe3nTPAf4WQvL0KhLkr/AHYYOgnQrUeIHdopbDbYBxGRgoxpULzxM4Pbxx7+/WAevLvcoyZjYNWaVzIwA1kWBobqJYyGIdMbpU4PkH6apiIrk+cTWbOtwmul1Rn8sjJy8aKkl7LsXdm37Mny+FHdHZe2ZCWjIdgvES6DhghnRTmFUOXkFDJGmREU2sJuyTBBFH7jWRiN6OlzBcUqD9kCwqCq4GQ7yWgWp5TSZuOvPWFsCcfLhuiKjmdXtDGZrG0gXbaUdc9XpQueKazDSJK33j6zuN8JPpICA6tIkErZOuQtRBbcxKxBknPKUyGcLk+T9fVD/cyI8c4diKfT0G82AbCBqTDrwP9zGZKXzvCQZ3gfiRMbKKKwnYh9HMp6cp+mq5eICYYl8lDG8RJF+EFTQPAdUZINWfBOI0EazMayLn+7Y7QTwYmPbRGNPYzSZZdB9JNB0Jy0C8M1ltTdsOVwUghtXK4kjMyObtQPIHCwfuBpz/vS1hgDLuAauJfNBkcg9KhgboX6lOh2xk8vHq7TxlFSC8F6he0JcM1UNnLfP+VAbKOU4p5/+W8E4zPHruEM5mZT5NQGBGRYEbLDcfKRG35faY20vllWF3CmmQ8M58yNr75+Y41EtHAqYUY29H5RoF0X/wmwf8wPKeC3urhmVOpoanK0EPV9DgXqVzEO6Wte0JKN8yajhAd664i+ogLjr6rCF7Bm37BrbO+JvMaQnVm15U5HUnp88xDZZ4pn99PFGB9anuhDQSY193u1CkulSQ0sivrpr547n4qdLtJBDJRFPvf9RDqgfxCLAQ0z6r4lRTDEVPuWAJsd7wRlT6FBl6MRxDYzMxVZONgIiczDtIrDjufzH+43rQFWZwkSU+QSVOUIhLN0LBPHIOdvwl2MjdQ8t2tIhth5wfHPPvCoUHskNN3xsbHSsFBtZJC3FVLIUzU+I1RFiB7m/ZI6HYHQi17yOwtgTK4CoxPk7NkJPIkzjn6EXKxmIhi5EjXk6MbGMKoHBZk+OwKtE6Jm3ycrOlIk5zanH5+5sQBYcWaojjMn+UMRf6spCeTdx6rUAuXkYmsEUIpXMsodCuEa/onAk1jF91UgS4YvJrWHVGFoIJ3ESdKVUU22VNUikYz3HYz0nPrpBw/G838zMZq22xMQzMihn+mEYQT+qkj1DZxc/bBbaXko0OTCJ/ZyDik2JXKiCJIoUZiiCWRYS6p5/oJtMfpYVamN6g2SmgMFTg1kVOBqAweMlZ2nmUQ1lIezFiclBVwJX/djFKS6fM8CfrJRQieQ5ECB2XwfrGBj/7Nw2SkkjYioxM1gxFJRFtKazkUCaNMS5rQBlOVzaFSnwo7tyPtceTubzhLYeaJkBAOo2vKvIRECtmZY/JsPGKdDG4Ka6QfdgcjQxWGcGKsHSiTXQe9QybmssEfp53LfZLB2JYwIs+xrKvIiCF7/3SsrNocZwcy/5NDK8swmKWK9QhtMArJAElGwVWKKuxMN0QVdicbuuCJKrRVz6avcC7iJ5HVtkZEaZqe9dajosQmIr1DtvYMjW8RcooZkuHMxjZlvQoSztf6J0AR7vM//ue8CWx2he1uiotdUkbupIxBSlV2uybCCa2RQ2GihFk0ltslyw3oJKBN+qwa4GuG8UUtqZjqUbCMxVzKQNQkjipik+QFi9fIYihIsmuKQCqHHDm9WnLfed+VIYUM08cDrQyykQy6Wg4E4pv/81P6mbL4WAmzNGBy/Othfk+JlVKfWGhx+P2YdBYweQrVOczvKrN7MHliM/rkTceDr3v8OitAR4RcQgIZwo/vY04lhuaiB/NrSQz/iF0nwWAdfq+SUoJQ9ABFweiH7+bQI59bHjPZ84/lz5CeQ3ouGWmMRVUjCqHspxiZdPycCRhLzEOrg7ZklDUoWaKMHlRwlZ18Dim8i4ToqH2g9oGowrTu8C6W81EVQkgHyCGfh+4g0M+VfgrdTqRfDKKunO0qgq4RIq2W9rffjBDhZ2wvtIGIHjaHQqxN02CSaQo0D62UiR6mmpjiiNbRbmQTh6ee3tMmol7pdwPqbSB2cyMgu5kRoiGx+/1MimKym5pRyqywismnywTOMXx+MGnCV0kcNfa+fp3OvxlClDwgw+i7+e/MVZTsQBqg2Xsffj9y+y9doj0STt62CZ4J1/ZImD6ycGf3Q9j9OLL/QaCbCtJD+8xI2n4OJ28Zh9OcaCG1/Npu4K1/YO7ej4ySpMkwfSRD+MBgIIvRyHwDDGKtHPOPnnfmQSQOXrloOvI+kwEZp4THhGPmKCTF3nmEa5rcLmdO/OgcMkeRwr9Sq5MmegmZRtfltiOYP3o2xUDl8KQzQy21Hcj5wGRis7KpemoXaaueeb2lckPO0YlSuci06fA+4pxSTTpzeLUSd+15xEkkTiISLITsp0q3M9zTsTHNTibW5hByDc7nbS92iOGT9j/H6zmOCgPsCw2WncjwP3t3xehar0Y65L9FwQkSLA5nJXiF7W7Kuc+gOdFBqZhJsyzT9sP5Zc/vegtHMlTNoYjfjIjJhDJiZbLnzNCPw4hMhhWDkB5s0eVnOJy+a95aefzLQnsEO3cifu1YX4X5bWV9Rbj03S3qJN27yNN3WzYHNoGqtWVs9t9fMX9YIxHOX6noZsLhDwJPv+KZ31N27nY8+lpD+9jO4/XfWnH3z80Kwbm+ZOnJ6txIT78ZQqhYW+giMIQVCQngzZitD819l3uwEbq58Ub5vYEg5CKSyPxBStuVMGRkyFXA5ZAt13dkVEAybGMeBfv+BTI4hUN2gikz5ofXWo2+l84xtEkn00SIgmsidR2YtVucKF6U3XYNQON6GtfTq6ePjqhC7QL0NXvTNeebhqhCVUW224qwzDGuIZScgra6GyPa6/OB9M73USKlPsfk6Z8fY7zQBiIrvwqxldNqYsIYTYSRMdYD/AXsaSYCSdqABmdPPolUtIr4lS8erLC9HrZ7QnWuRBnIstBSYK5JaC3mi0n5WDykDvsbIwpGx8lkI8mD+kRa5rRVMTLZSCW+JfoRq59EPG5jugLXw/k1xyv/6Bic4/EvL0qqd33JEythfUmYPYyoc3TzwSMur7eEVti5veHgBxuqu0fQ9+x+Z87jP3uVh7/SmBR9Zed3/PaUnduR+f2OB99oi/HbXI7svi+srtk5weCh1JvgJ0yVXEwlEbZ7OkioFfBDaroYfB2eTUZNJbUIZDVlNhTj51F0DOnx+y0jKwB0FIKyZCAiRUuRzzPXpIiaBoM2yaX7QSyVxVVhophEPoU+QZAm4qvAfLKl9sGeu4tEFSa+o3KRPjr66Oiip/U9lUQmvuf5Zkpb96y2NVUV8D6ycZFu2dh1bOxic+YEBVUjzavz0ZRIPFPZlFKa8FnbC20gctWdiFlGbcxaBgYCK1aa0kxZM59maOId6AWNzqy+w4gbBVl6G5SrPCDFlIcZxotQLS170c8pKTgixBznjYhD12Hls+ncQzOwxiUulaFiMguacuVizvXnuHkcP+dCpgKJ0wSjN1Ly4PvK9ElHP/Pc/7N7uB6u/4Mn9PtTVtcm7L93zsnbc179Wx9z9C++xvRxxG+EyZFy+pqjPRH6ifDol6c0x0r11oyDv/MeMmm5+nc/IVzZxz9+zvkv3MB1Ed9FYuU4u9lw5VsmYDi7WRGeOFZXDSFVy5RCTbUM7VNhc2gGLSbiOBODl76nHH1FBoEU2VsPY0HUQhqg6DokTe6xAcmCJrexCV5Sx5FSuFjQQ76P+f3Mw+asS/o7a1XGz9rk11pQYRmzmTyexELkIqDRvH8fjG9waWdOlG2scOniJr5j4rvyflSxzEZ0VD6w6WrLcDilnm3p17mYIx03peFzVq7IvpPziS2lytRCjJ9lBIGFDxLNIufc/NgjZDipaCoOwozDxiHTMHiZ3hlZFKUMKNdZxiKTcHnLGQhRKemurIGoOrX4fTyJk6crXk+HUEHFshJ+5Emzx/unoHiuGKyH8KSENzrEtTnN5wNc+qOOx1+tOXmjAQev/N4WvwqERcv6akt92nP6xozZwy2nv3oLidCeBtpju+ad2zZIDt7f8PztCbMngdknp8S3b1oV7fsf43ZmxMMd6rOe6niFbHq0rTh8eM7qtR3q056DH/TUR0u2V+c8/fIEv1Wmj8yAG48E08fC+pJSLeUCOnj+xcH7floVmJFFIX8zOenNW2Z0GatRwdKWMhZySs9qZkZGJfE8pZ9DHifpeVq9ycXw8kJWKWUncoyfa2y0SuPQpdBCgUqRKtJ3Hmm3RBUE6PoKJ1qMxcR3rEPNxHf00bPqa/roaKueqMKqq2jrjm1vJ+u9EutImEbkzBObhKaDQMrwhImRkqWQy9vz1ux0s9DwM7YX20CIJktsKUqtFOkcrMeFNVgaDClFTRqxuDBV5UllugiDlQq9I7YWvGYdPlViy2FQDVZQnSsaklwa01xkbqKQciMGO/cJKKIcsckdx+rCTBalsKKf2rllg5JDjVL6mwlOgGgeevJY2e4LD79RlzSg28LZ9Zr5A2g2PW6jHP18y/X/4xnu6BTevsrkcWB9pWXyaINb9xx/ecfOPyhXf/s2579wnTitkU1AlhvkyiVYruHkjLq7TJw06MKzvTRl+t5D2qOG6v4zuluX2F6d03znI278oEEP99hemXN2q6H5ZCAb/UpYXxlCuubYSuhDC9t9q/eIjeKTVqOkHKPxAjnbAwP/kEOHzOCHNt379CxdJ0TR4T5q4iSSqOgCVS9YBoghM/FpRWgJSRiOr974oKKLyAjFgVQRESWqsOlqVAXvlMqHkt6MKpxtW0SUTajwYuFHFzzbYKFw7SPb3iOiqAox2liX2koPMtd0waC6kTNKjqWfSSklGNcI/aTtBTcQWCZCQVMYYFBczWqm8l3JvIIfSnVBYCNQR7QXpFLER+LaLlniqMbAjwgpl+I0n5qidIJfWy8IUeinUmBcaBhkxh5CzrknWJo7O+FGA3LEdpey7+3ovfRnJuVKQ5IUZkRvxqGfi3WA2pgXWNxV6vOI3ypnN2qqw4rz645bf/sRxEg8ekZ9sEC9J7RTtHG4Jyt2PqpYX2npdmqqwx3m339EfPgY3nkD2WzpP7mDNA0igjs5R9oausjJazVHX3qV/fc7/PEEtw30U8/y628zebJmc9gyeXDOYjT++qmnXjoOf9DRPDrj/O19Vpc8B9875fidOfsfKo9+1ZVMRLU0wVa+NxkW59AuE25Fpj7SABTJtNjEzRmSzGkVhWfOeozrNuJIJ9Kn9Hk9IJxcCCXFIehAnDfR6i2amEhxO46vjMjoOo9zEZHAtvf04os0vI+OSdWz6mqjyxJZ2fUGb7e9x/tI19kYDul9jQJtRNbeHCouaYWM35FekIx8ssKy00H89Tnbi20gYMhASLLoTlI6KhkGSfFmho15UzMCunVm9evejEMQa5IRhdhayOHXDKXENcRMOqXJHFopJFXWuhfyCy7EsTkWzuFDVlJmAROJAzEYnD5Px84ioVgNIUn0qdFHIklz5mOzb7qFLkm+z24K1cpz+Y+3VBsrWNv9OPDsVy5TrZWdh08gKLLZsPu9QNibIOstq2sT5rfPCdMaWW7YvnbIya/f4NLffo+4WuMPD+DaZdh2rN44ZPrHdzj5029w7e98DI3drLi/wJ2t6V6d4VeR4y/MaZ8F1tcX1KcWH233Gtw2Mnv/Kaiis5bFt+7SvH2V7UGL62Dx4THPv3BooVUzTOJ8z3wPqAypuYwKMnmcyMVYD2naonXQi6/teSaFLVj5ehJDZOFiaSSTjLVfj7QdWXXZUziyWBkhmdEtKkgTCnpwooYQNjW04EWZtFvWXcUy1IToitzau0gXHH3wZiyCK3qIGAVVqJuevvfU9ZZ+U5mD3PgLqNNtpaCIaj3wK2Wcbn/GOQhinkEg3VD8JL09CG3AnznTPWxT/X5i+EmSWwDdeAtPYCCcOrnQhCRP8n5uJcCZmMzcwjgmDROD+rEaBkpW0eU8f7Vk6GQVB24jG5esAyh1Hg2QS3JTaq9a2W+yOKo9gtU1O+/F3Z4wdTz9ec/kqbLdE7qFZ35vi9sGup2anffO6C7PANi8sqA+WiMxcvz2lEuPGnb++DE6bahPVsT9Oc2Hj7j0rVP0tRvotObs1RnrPcf8Yc/ZjYrHv/w2O59Ezr52i/NrnvNbwuITm6iLez2zT06Yf3/F6p2r1M83LG/NqE966tOOflFz/sXLVKtAfbRG9xbUT5bUj46Yzacsv3iVq/94w/O3G5pT5eymY7uf7leXPGKfm61ICcOKIIgE8wsMo4QAmXyMEzUHkZxMNkIhVXTm2hO/IQnd9IL6Ne9bfbLpraGN2Fp4IXFsIGz8mnEw0lJV0Cis1zV1HYja0iVkUPvAujNewjsLL2IUus5TVZEYBeegaXqqlAFpm54+OJxTNrFBpwG2jugFv3SEmVKdDqrZMEnZqMbGd2nb9xnbi20ghEHHMH47SIr/pXiD6sQRJpaC0pHYyC9dgaQ5wyFhKJHNpBYqKW01iIOq1UBCZuMQK6xIKZGWVmo8IrsykVgN75W+FH4g0gz6Dv0qxkVZdmKjar0RCbY5NGN0+F7g+O2aS3+85vrv9hx9sWX3x5HFhycgwvLVBaER2klF+4O7aF3hthH/4Cnx2iEH3z3h/IuXWXz7HqdfucLO//kB7M3AO+TSAeF770MMzL/Tsnv5EvHklNlkAlcOCIuWMKu59p37sO3Q7Zb+S6/htgGtHMt3r7G8XKE3a2ZPAsdvN1z6oyXN0Zrz12bMbi9xT08MSewtePyXf475g57ZR8f0e1Ne+e0nxN0Zs0cz7v16W8bC5W9b1kWiaS8Wt+H8BtaDQofGLKSMUJhE3CbxTc6cStaOlPudNtdJMewZkeZwM8usxwKr8ozWYvUz51YkGNvUK6IGfApvUwVn6L31fgCIjk10hCrQND2qwqarUnGYsukqVIW+d4gYghDRYkj66BCgrXu8c5xtJzSzjr7zxF7QOnUoS/J7ehs3oR5CrGpladrP215sAwEpQATpHX7pBig5Fn50UpqSSEpz0ScoKkOMKamQSSvFr10JDSRIySBkGW2JYUdpo9KrIJ1W0WmMG8wE0DAwxqXZa0IOPqRESu4OlZR6cFFvUTQPOnjI3Hexn8PRFz3tM+XRr0xMEflc2f3hKXK+pr+yW3L066tTZue7yOmS+oFpJFwyErM7Z+jOzM7hYA/3/JxwZQ+33OKmE+JqjXv9Flp5pHoGqdwAACAASURBVO+Jr11DVh39TkN7/5SzX7zO/INn0Af6ecXk2RI5X+GuzFjc75h89IzVW4e0z5WzV6dsF0J7Enn8a/tc+b+V1Ws7TO+dc+X/eoROG8Kipb7/jLi/QLpA/XzN5W9XqIf6NPDgG81Q9BVgfVlSn0UtnEVR1NZmVeMscVi5mjI9NzYOUiaipF4TUimoI44MdMo+leawar/J6C9M0r6DJFl1+rtSNAiusuIrcUroPb4KaBRicKxXDT4hBE0dsKKKKS5V8FUgBEeVyE5JKkvvlC6RltnwiFP8oiOcNHbs2sZj8Fjqfk1xnuqh/5kmKRVIHII6RVNVZs5DaypNNqtN6U2gvT0Y6YXSHagaBsNYRZcrHy1fPyCF+pxSrZklvC5P0vWAAHK/gFJrn0uFM4pJbHZGCX0qRc+8Qg5vYg0+C3LqwRgVci39a59rEbecvQGXvh1xAXZ+dMb939jj4L0Z8+8/4vkXb7D/3pLq6Jz1q3tMPonw7ATdWyB9wD08Ip4v4dXr7H/zPnF3Bh/exulVcI7Vb/w8sx8f012a49c94cpNVpcbqlVkebUitHvUpz3rV/dwXaR+vmFzfYduZ5/twlEvFV7bpzlaM/2RGQ7dbJDJhPt/+TX6gymTRytWN+bEesH84zOO3l2ws9sw/cED9HyJu3xAfTqhOd6y3WuYPrbmPepN5p4zQ2D3v59rSUFqmvDq1WT22+QQ6mg8QRuTw9CkkzAYHiYRvzILkTmITCgX/QmD08m1NOokNZJhVFKd0EsTiVtPiEI92+JcpNtUNrG9WlMYtTg2JjRUtT0hOOqELpzTUnzVpayGSMC5WD4HCAFi50yjoYAawjGjpgQ19Fyf2jIH/6zthTcQooI7k4FFXjEStEjKbnBBq5A7FwGpp6MZFEikUnTEXGCTBTajrVpykegZlc7mxrNAEchk6XQxCIUgonRu8pnxrgdeIZ8PDIYgjiBgRkiFefdw8iZMnqQ29SuzOqGB2FZc/eaS5+9MaY/2uPQHz+iuzFi+dUC3cDTPp7inz4j7c/yTE3RnDudL5PgMnbaEnQn15UPWrx8y+d5dJg+nFgJ44ez1GX5tWZJ+5pg8C5y+WrH/QcSvAn65xT865vTNW+x+eIa7OqU+6YYmwzESXjlAvWNzZcL137qDnpwheztUi4ZnX2yRuODSd07Q2tO9epnq6BzZbJl++ARiZPL+CVePX+PpLyzY+9GG+mjJ3b9waHL79NyKJ4+CVqHoLOiScRA17947aAPamSHQGohaCPFSHZkfZ44KUshoL4wA1FQvko2IIVZBRcw4iB1f1cKcbpUGT++sRV0iMmPv7Ni9Dbxu7ekngaoJuFSL0feeGI2kFFHWWpPXkyr/xzRwvUkCcoVrnCly6oiqkLqtl1qZz9lebAOB4JamfxiThkUpli7e9aOc+fhBZf18iifzYPBn9nmejC6ntKIhh1xKDiRtO0PF5QiRVctkAFJWI4cnJWxww+uQJNdum7gLP3AXOTOS1ZclBecpOfdYJ89YweoVu9a99+HkdcfejyJuG1jemHL1t36EHuwi6y3t81Pc61doTiBMKtylA9xH93n6F7/A/v/4T3DzqXn1ylN9cA/dXdA8PKd//SrVg+cgwupKzfzOGrfu0dqhfsJmzzN7FNnsVyksa2iuzNj/1mNks2X2/BzpevTsHHewh3Q9/uFzdD5l0kUIkeW/8HPMv3Wb5ru3ufZwH1mu0bNzZDZDVyvoe1gs0L0F/e6EajbBPz7m0rci/V7Loz91wOxhJDTCxMPZLSkcVIn3gliaPFdeSjICbTCj4Y1YzGGBrj2oEkXMtowI6hzWWqn6xVll2TRDt30KNVxvCCIQU52HQCdDGj5xJRIFXSUDllOuqd9DDELXOaSOuDoa8ui8qTLrQOh9QhAWWogo2jvERzR4S7UGQVEjJCeWrvWrdNwUNn3e9mIbiJAmUU5nhsGz5hSjVXVqKV22BWhSq/DkySWnsJJ3L+XSZ1Igo+uGkMJtsIeVSatxOjOz2A7CbKjWHFJnlNx66f8wOl+/MWVlfQbdzkBEumBeIEuvS8jS5KyGDhWOHq58W3n2jlmSR78Ge9/v2PmDp9YZ6/4j2N/j/Bdv4LaR5tka6QI6a+mvv8bkaYCvfhF+dBe8Z/vqJer37yHrLTprcWdbdD6FGNn9/rGlySY1btnRPobJQ8WtOs5+bo/FB8fE9z7EX76EhgizCXK2BBGkrtFnx+jBHrQOOT7FL9fotGX20bGhGO+gD+AcMpmYcQg2arXr4N4jqv4SOqk5/7kDFt/8GHe+4PJ6jgTl6N0F06eB6D3zh5G7fx78ubOYu4omQy7EYAo9vSJVbw1oO2dGf2Qw1Jn+ACgNaUpIWtlzyPxE7uyUS9zHNT0oVOcu1WeA29jAKKFv0XHITyTStbI0vQJh7QmppF18pIuV8RnBSEyXvKKr4yCe6p11sOoN4oy1HrExo3FhmYCfsL3QBiKX4RYxkqN0F47V0Gg0T/jc4ThX4GULKV6LxDb3FnD9sBYCDOFJZcV1RiTm9GOGY3GY+EgyDomT6BbJ6Ky4IJ8eKyNFzTjAwEWE3DQ0Ny3JufVMjJUQxzykVkp95nj2JeHW31vx+JenXP9HHdIFwisH+AfP0N7iltnvfUg8PsHfvE7cmaONo/nRY+rtluXXXmd2donu8oLmzhHxyqFlJFIH8fu/vseN336MOz0nPjnCv3ELHjzGdz1yuA/Azh8uIUTcO2+ZYToyElQPdiFE4nxC2G2oH5wSZy3MJ7izFTptzGBNG2Jb4Z8v0WmLqMJ8ipycoV1HvHEFvvcBcq/H7e2yeHpCPD3DTVqqjx9B23D599Z0lxfk1c4u/37Fk1+L5SHK1lnqL6fLIzivprYd42tJkyqHFk1EojUmqs5lUM6qlDEzXqpRgpXU5y7lIXXLzoizWnrrDB7csAjQSFlrIr+0n1TU5s9SKJxDnxRMqTokKYWrtkec/R2Cw6X+EtoN37F7YVydW0tB1+ggFvys7cU2ENG6JIVGwaUHlbxyTkXaUm5asgIWD6bPUqtwY6mzEVDTqSfLmdtzZQseWso6AiUzkSSz/YTSWzLW4BJq6Gdc0DSMi3fKeomJaygL2YihiH4yEJV5y9mKnEbtF+a1QgvtkaM+hc0lWF1reOV3jo1TWMxwP7qHOkFXawiBeHYO4ohPjpCmpt+f4E5P0VvXmX14RHd1h/rpOd31ffz5ljifsLo+Z/EHH3P9Hyr0gXC4C1f3WR+2+KtzmtvP0KfP2f7Sm7TvP7D7c3KOzibIdFLQQH8wwy87/MkWndSEeY1Wjmdf36U9Nj3D7N6a09enTJ8aIdPec4gqupghqw3u3mOYTuD6VeKPb4P3iPfobII+eoLMptA2VM9WnHx9yuEPYgnvpBcb3Umer0nVKLVBcntYiTlGEhR3SBMMsq88uDTOkmPwo65afjkghax5gfRMZ9AcS3EkWaRVbYbVu6olpaWAwf5xegzqU3vefmNEardr4YIEQSXC2kKILtRIHalqIxT6rRFqUo2Y8VSCUPi2PiMck2x/3vZiG4hgN9xXMgiU0g3PqUAJ4GJqq5Y8tjXyNEuvFXS1Up3bTRrLZUW5oKIEihevViDRcsmxHjIOMZGPJqsdsg0SDVGENv+WogiEIXzxuTKTAU2Mux653sLCcbty6SyMqk+F5as9X/zvzrn/63u2rsZOi1tOIEZwYmSb94STM6qb14lPj8xYfHSH6l6N7CxQL8hqQ/3YLrr+5Am62RLfvs5216F9j3t6gq43VqZQeSabDne6shj99eu0Hz+Fpkbriv7yAhTW11pOb1ZIVJpTxXVT1ofWaGd1TTn4AdZ8ZwbPvyT0ew31M+HwjypOX3PoNw45/F6gWkWa51ti66mPVsi2Z/tn3mXyvbvEZ8+Rew9xVy+j5yt4foIT4cY/rFlfmbA5FN75m0vu/uYO569mKaxxDDn2z15VqohuKstseDXjsbGHrHXSMyTgYStyZZ2M7cfWZQV1gt8q/dRQaXNsjqtaforQFowPSeMs95wY6y2q5bASXH1u4yk4qJauNGGWrbNr6SUVKjr6xEO4SglbZ9esUjREkgq4xlXJljH7fJbyhTYQkCazjibYyiZYaeDaM1xFxG6CSvEYVuCV+xUO2ohhNaakoPP2kLu5DOnKhESyknHcp8FO7mL2opsNYZGmYxRZbq7TkEywDl4nF9bkQqNcLJal31kode0POvwmcvbGgt2PA83zjvXlhuqsRbY9EgKys0N88IjqtZv0H99OB8gBdESbBvfwyPiCSQPPjtFLBzCf4o9XHHzzDK5eIn50B2lb5PQc3WwR72AyAe/o9ids3tqhPunZHNY8/Ypw5Q8j9VlgeUONMO6E2QNheV3pDzv8rOfxLSPX+q1H16Zsja+uOdIJ3aUOf+J5/DVHtwMHfzxj9+OOZt2h9x7SfHwX3VlYCNP1cPTcdBrvvEk/b5CoTO+dsz/Z4ey1Gdd/Z8ntf3nG5kpWOIFMomUuBHxrmQNpYkqLR5Pl55SoJuQQ8niiENkxLXWXHZVLa6rauidSwkLUmhmrAHnJhBFqKGKsRLrXZ5QeHkVenzJywevQxWo0BkuFMhC3Pnkey85IFFRSfVIOY7C5UKVGt0XO/hnbi20gdIj9gdJ8JVTDYrREswvOp5uYSErJ7G2asHm1o+gHIwGUNTBt5WoZrH56eHnx2TzRGROWkbL/Aj3X9ptSfxFHXErOcGCDQYULqzXHGurlRbHUm//DI3j0lDv//pepz3u6ecX0yZbm46f0r+wzv30Oqqxu7jB/doYen+CvXSHcuYdUNRoC0lQQFbcwUlBVkUmLPjSYrvcfIbs7RhhGhdNzS9OdnuLcLjKbsnr3Bs3RmuXNma1svo48+EbL+pWAznruXHEgjmuvPS7NT05+bsLVxRIBpnXHvee7HMxXvLX3hEerHZ6vpyy3NdW7S5492SFe2aLPGnQSefaLsLracGl+iUVdIQ+fEp8f42YzC518wF+7gt59gK8bZDYh7i/Y+e5Tzt855PxGy62/v+T85oT7v2mDRLdmEHCJg0g1PqWleF5aLxn8bBgiemGBmqx9kXNKer3UhOhobEBZSvHCytyRspBuSWvXF2X4QGl35zZYFsRZX9GsJLZV15z1Wj2vYBouqI4Lkk4hMgldIzbWc6+Sz9teaAOhzpj+vKhJzhAAhPmge88eOMd3RLHGtLmaLioxVbiBfS9UNjA6n0KCxD7HOi35no6VU4tFiJVrN1JPCltpSsv5xjqjjuS1HdYp211cqq6fpT4UFRChz923JzZo3Va49L2ArDd8/B98mcPv91RPV/jzykQ5+wv86YawY/H79O6phRg3r6F3HyLTqUmg/9xXaX7/h4YANIKvYbOB6YT+3TepP3mMzGfo+RKqyvaxWuN2Fuh0gkwm9DcO6aeOZ9/YZedOz+Nfajh7y7S786vnnD+dUe9vCL3j6vyMxvU4UfqFY69Zc943XG3P+NrhbTyRTax4c/aU986u4TLjd+kR95e7nBy21D5ytm45n055OKvxmx1mmy2+Sdh7ubSOSXfv4doWXrtuc9M5JEYW/+QOH/yHr/P6HeXZlxyTB471Let7p0FMl+Asm6Ebb3U8fU49GSyXlP0wMjGVoBeCfFi1KpPYsU6LLI9I8owk8kJOmZwsadNgBWilRNsNyIKR9kVy2lQFj3Fy6o2TwwkhoYE4kpOXZjVJOSxBrKt7MWKW3v2ZRhBaJQ+ei5WclsVI7IbGMlnjdNRNSihkT7GcEo391bTYai+FsCxUc4Z8nRmG0Aw3NybrH1NoE3M9hTcC1TpNKXJO0TlkMlKz9h+IyapLgO1BNKVeSs8a8jDUEytl95t3CVf3eO1/us/pL1xN5yeEWU232+C7iD/v6BcNYVIRX1kwfe+hTezVGgUmHzxCq8oqL1drpGnQywfog8dUbQPO2b8mIrVNwHh2bgDrYI9Hv36Nxb2eR1+rOPxe5M6fF2skozC9V3HrnedcfuUu+/WKB+sdnqwWfPXSHVrX8zsP3+IX9u4VIzBxHetYM/NbPl5d4ouLhzzdLujUsfAbttFzZXrGWddyOF1y10W6Pc+ddsGN+jKLP34Mz0YoQpW42SDf+wD3zlvWv+J8RbhxiTf/1zPu/bkdFp8oz78M7d2GzfXOjEEVzUgkURLbRDQk4k56y+RkBDtOj5eVxX1CrUnwhqPUcJQws8L6VmYEMbXD+WRU8mrykPiohELHmQVb2mFwSPm9ajkcK5PzKvkLWnqEZLHhuP6o8HN1Klz7nO2FNhCQSBRnRF0hISuDWjoN1jquIVVuJgteRXLnKOsorOjKp47XaUKCVdY5wGmpn/droVtoCjOS8KbOwSbkCr0CR6EYIwm27kQcLamuXnFbl9ZwtPfd1pWY0ARTwnY/WsXiFOpjx/Xf7Uw4dGmXj/7qdW797+cmGHq+xh+viLMW6QLu+Ax/P5rgaWeBHp+AOGhqXF3ZPvZ20Ka2tKED//A57CwIs5Z4OKfbralPO+rbT9H1hpN//Svsvn/K6uac9aGw3a3xa2uDP7t5zP5sRVDh+OqUoI7rk2OuN8e8NX0MB3AcptQS+Cu3vk1MM2DmtjiJ1BKoJfDO/AFRHV21IuA47SfcmB5z2k9wqTz6cL5k3Vc8veG5/RdbrrfX2PvBBPn4Hm5/Dz09tfRqCMQf/gj3hTfBOdxyi6w27H4049GvOl79u1t+/G95ZG0Tv8ivezdoJCApKSkEJSntKCTU2SrO5daGF7kGSyNSxHJFKRspytjMQ+Xir36ejARDB7LYGCmJ2JiXOHAUeatSxsMWq9YyT3xupJREWUWHM/qO5eI19accurR/1vZCG4gCuSpFfL4pprPXKolp2mhprATRc3txqe3zuLGFUJkk9VwwhjpGk8K6jRCqgWXuZ1omrkTQOpp0NqWNrFIvWRiU0im7d6i3Y8o6db/Ky8bXyTgk1V6R4IItBttC+7ji9f/yH3HvP//TXPpux+TBOetfeQuAV353g1YO1wWk65Fthzs6RhYzdHeOnC3pX7tF9f4dCy3WG0sJVhW6t4DVhu7aLs1Hj9G2Jl7aJSxa+qm3hZGXgTu/OUd0Tpgouz+CR1/f4/Qt6K5uufbKcx5+cohMAlcnG7522cjPgxtL2pSf/f3jN/iNg/fotOK4n3K1PmUiPXXK74bk/hZ+TaeemsAyVtQu0NJDBed9y061pnE9q1BzbXbKj55f4nDvnLO25/5vzFG/x+HzM7t36zWuqtDtFpm0xEmDu/8IqTxxZ87Oh6eo2+HBn2qRbSh9S60GI3nXFG688x/9Pj/8b7+enEtCgMjAK+TMWWursWlldSGFV3IDciyNh0lp+FS1m7km6Udk9Fg1C8OxE/rMGQ3XUdrh5ePlDJ56kNFMlhRy+B7C3Ma4WaGBXylNln+WdRDG4tvksk45lIlVSsFVSvceU8hFvI+E3lkXnxa0dyajbcMgHPEmOsovaTJBNVjZmLT7moxOzpVb6aCWQWBLqiUD5LQIc2zhnkQMZfKqTdfRyVAXIOZJIC0k3Cv9oqE+61hfnjB/7wndK3v4J6emdpw0oBF9+gyWExSo7zxFrxwSm9Qxa9vTJS3C8VcOmT7aEq7tExtPt9ugAk+/UtMtoD6r2R5Yh663/pczHv/KgtM3Ye89iD9/yuMfXubaO0+oXOTdw/ss/IarzQn3t/ss6jVvNY95sN0l4DisztiZr/id4y/wp3Y/LGFFTeAfn73BL85vE9XhUXb8Gh8bnBgvMfVbujRTojocyiuLU042E7raEa8sOX5rl73v7+KPTtAvvo67f4Ts2UIQEiP9l9+g/vEDpG3QqmX6uCM0wvpK8q5BiqEmr0P66UxfL7jU4lBTE5jcXSqXlVfnpq3ZJv3MpxvS5PAkV+gW/ixSZl1oh3R2GddcRAyx0bKgci4szEh13Ay5SLf7wZFmPYhVOptxkNSfM6fn/c8ySYlAHLfuSv0kcwyJF9y0NwOg9rkIVHWgqgPbTW0EdRXRSizFmHT4mhp8qJeSHy/hgyZkkK1sZQo714aEZiLiKKFF2HjqSU9sHGFjNf8a8u8crg4WzmxSGsopMokpZ620txuaYzvWK//A6hkIEZ22zD+8j7QN9fc/QeYzK9d7clRQAqdnlqnwHlnPEY10775GrByxdjz9yoz2WOl2KqrzjqdfmbH3UcfRuw2rq8q134/c+wsRt/TEqxvu/BeR5fOO6nHN+i+dcG22Yvqljl+78gm1BK42J8zclol01O1TAJ6GBb+6+DET11lIIfCXDr/NSZhwHlsu+TPOY8NXF58A4IhEday1Yh1r9qolC7/hOEzxagbUScSJNXI9dw3T2pBI96vPeHpvn/0f1jS3n3L+SzeZ/v0/In71Har7z3BHiu4u4PER+sYNmvsnTKYH7H5Yc/xuhz/zKXMgpeqyGG1RZGkzthRspZBWo9VnlMY0rTkSSWSglYsP6dCYwpQ+ZQ2sL0NyPlluLYCzpjSut0lfrbLAaghhVbDS7TQeY6WpMI0hwxbtmFbhmtBRGNL9pZgsXYNLGo+f7YYxKEyDTbi1N+PQZG+eyLytxzUh6c2xDEDSqKtC0/ZsNxV+1qMhTdI6mrHYuAGJpNp9ekqfAElhjDilmXTEYFxCLsutW7vjfhYLMnF1KBJXEVAXEAd13bGNQjXpiNEksfrJnDqYau75L3ZcBeRsye1/+w3WafLufFdguUYWcxAhHp8gbWvEoqqpCTdbS2GqoosF1fM1j76xz/qy0JxA+7xDK+HpVxaog/t/uqGfKWG/58GfMaP12rv32Wk2OJQ/Wt0g3grsz1ZcmZ7RR8deteKgOsejHPczqJZ4IjO3oUkjr5HAjj/jeZgDEHHcrI94HuZ4UeayYSIdz8OMDk8tPRPpWacutDt+TXCOgKOPvnR7ntdW073pK9brmnBNOHgPdDFjeufUwqlvvUf3tS9Rff8j9GCBW8yRLrB68wD1wvx+YLtTs74eLjgECaktITCUCdvL3Do/NmqZNJVhQaUGpE/tBnLXsNQHYlhRXMu+YlpHw9qTYwi1dDKXIlgK7RDe5nKC3K26nHNOqyYxHjlDFgSf+23K8Du3GeCJRDNUMYu0PlV49untxTYQDrPKEagVcYOlz6sVlfiwiuTc9Xbr8V5TLb0ZCVXo8dRzW0FZgyDzSNx44ytSnz9qShfirHUn1ds7F0pH4bzFbAhyM5BgIhvvY2kCAlDXAbfYEKPgfaCqAv2bZ8QohPMFiw8t2NRpy7V/vOLxL065868ob5zvM/3wqYUWmy3uYB9dr5ORSGjnzZvw9AQqT3d9n2dfmhAmeQ1M5ckvNczvRjYHllbtdiJ6bYN/2OJuLpk2gYN2SeMDZ13Lr735MWCrPV1rT5n5LTebZ3Tq2cSaW81TjsKCud9ws37GaZxyo3rGWmuehxm19DwPM56HGft+SS09p2GKl0invvARAK3rCFGI4vJiWLSuZ+t7NqGij55KArULTOuOdVux/eoZj08WHP7AUz9f4964hfQB/+MHxNdv4I7PWX35FSY/PqI679nu1TQngWt/ELjzL9X0O1YKLhtHWT+F9DqJqnKDmTzZLPJJ2a/UNcoyZwPhKMEmY25mfEH0lkNMLYcASd/ptBCXmVgMqZVdHmo5K5ErmNUzCKdSiXrptp6zGulySvgSh8Y4iJYGtp+3vdgGQmxxkNB5skRWXJqI6wo/tckbe6FqAjE1/MzNNUSgrnu226qsbyiSJnEFMThkmophKlss1vtY9uMTrBWnpSFHbtARoxBjqqRL76mC933qHahmBHpPXQW8i/S99RYE80ZN3bPZVqze2HLpd81APPivGrw75+Sjhtf+Nkx/73102yFXLqGnp8S+HxBEjGYwPvgEffNV6Hq6nYrNvrC5ZIvV+DVc+qTj6VdqtvtKaJUwjyzmG+bfajl9I/DG4REHzYrz0LBbr7k+OWYTa5xErjYn1BKMWBRbYNaL8mp9xFfbezwIM/arFWut2Hdr5mLefu7MeJzHlrnraSTw0fYyV6pTCzHEEdTQwkQ6cLBJjFyf7v8q1LbClAtULlK5yDaYGTm/qex95NBL06RMdSy+s8E9P7MHH5X+8g7N7aeov0x1vGF1c241MbVCJ+gsWAl2LtBqYxE4gaWtyWFG8tK0KYXY5Rwj5fcmgrPQIOT0+0j7ol4HTmCkbgxOCgooUvCMAPLqaRVENxDleDsPQzeJeA+URsyZS5OeYWGpOhZNh9b8M1OcwMiU/3/YROQjEfkjEflDEfmD9N6hiPy2iLyf/j9I74uI/Nci8oGIfEdEvvYnOUaMjrrtqZuequmpaiMac2ceXw1NNXwVUktx0j8lRkfT2ESvqkDX+SKcs3DEJrevAnXTJ2Ng+wJAhabpS929au5OTGlXnvddVYG27mmaHu9tdebFdENTGQcxbe2cp01HU9k5zacbmp0t4d94BsBy3eCdLUB8+18VdNuhXY8u18NNCcFSe8sl2zev4vZ2DUlUnvNXrEfD7oem1ju7JTz9Sk0/he2VnnDQ0x6uOJitmPx7D7ixf8Ki3jD1HTvVhtb3HHVzrjSnvDo5Yset2XFraglMZMu+P7fQwG35sDtgIj07rsNjqcnHYQePJqNSMXcWVrzij7lRP2MiHfveNOa19MzdphigoI6D6pxFtWGnWrPfrAYhVdqmdUeMQn9zw2bP0z44w28i/dQRj55DVJZfusbkDz+ivv0EbWrqJ0u6wwkSlLf/5mMjiDNhWA8ZMcDe9wpNNBTRRvvcmQHRSUhaCi1M4oUFf6Cs5RLmkdjawja55X5sk8AvcxuJeMy9TE0/ocmIZB5hdAMqLanZXD6QDVlGNrl5rqgZudLDwg3Gwm0GI/R52/8vA5G231TVr6rqr6bXfx34e6r6BeDvpdcA/xrwhfTvrwH/zT9rx+KUtu3MIUTBe/PkbqCdjQAAIABJREFUTdtTVbYQqojiKzMKVWXkpPeREKzrTt+7so6AqtCkar28P4BmMhyjqpKx8bbPdmIDMgRH5SNNWuWoTmHCpDEaWMCWS0trFdQ+0FShrGlQeQtbZv8Pd28Wa9+WnXf9ZrOa3Z7u396+rqtxNbFxYlvlFpyGh4DiiJAXkLAQKA9EMqAgEYk3eOIJCfGUF2QUGsGDhRNjEwsJnMS4d9muzuVq7q1b99+fdp+992pmw8OYc679j13XEBtxiyUdnW63a6855hjf+Mb31ZJS11b+77xhOe/YdYIWHS/39KMFG5m/civ1dV0RdzvUbAZKE4YRZS0ojf3cVwl3j1H7nv3ra8al7BrbV2RAyi0ip192jEcBPXOc3rtBfWE1Wc1bCQxaBTau4U59y6eWjzi1W1rlaPXIGMXcpYs1u9BQK49JC7eLlk3a+bexokqYwia0aAKtGtmEGd90pzywgsRe+Tk+arpYs/EtrR6plOd+dc2lWzAGQx8sVnn2aR6+NSO9t0UWfr7qefLjAbeW4YX50x71+kP8vSPs7Uh87b4I8PaS0fhao8dA9/qRLKLsAA8v81lsHstVUwsbpJMFqM4UvkTuhMUqJjXtBBKmmj+DnERpbedywTepg5Z5CnYKDNHI4+XFHPXkPZtHzUPKYjCS2cgId3ov+a2MybN1L+dLObF70OmrDGn9CRHgzyJA/LPHTwI/k37+GeCvH/z9v4ly/CpwrJR6+IGPFBV9X6FUpGmmYilGDlJ+2fGrypXUPwt8SpofDpyIDsAaRQoi8hjGBPFOdCaVKJI5KBVp65GmcgJxpOAAojQMUFuPNR7nNW090lauBARrAj4oTMJPxhRoxqRSXFuP0ZGj5b78f/uFE+bHe3bvraRb4eX5wmaDqixKK/ztFl1Xkj0EGF854fwz0pkYV6LPmOXu3vvXHf50JDgttm2f2dA5y7waSjrfB8vb8xfsfc1du2Fl9jRaAMU/177HXPes9Z5Tc8tc9RzrHSOCJ4zRMGA41j0PzC3bWFPhWeieLgWNDE4aFQho7tobaiWU7CsvsvzXfs5cDyyNZBV7X2O1xwVDiJq77S1aRebNSFON0HguPj1j90BGvndvHqG/9i2i1ah+JBwt8HfWqNHRXPb4mWE4ssweG5mEhAIYykUBKk1zlsQlG/i2qXVtDjpcCpmsBHSnZcHWQUDAZNYjO7WUAVkYWcyeKOpR+ee8q+teoTslj8lUougx3SbNVqghtWONgI8lCPRpvmicMhzTJw6PkbJG97rc9oOOP22AiMA/Ukr9llLqb6W/3Y8xPgZI3++lv78KvHdw32+lv710KKX+llLqN5VSv+lvtlSVxzmNc1OeFbym6yqcM8VMpO8r8T5MmcAwWJwzeK8xJpTbea9xoy1BxjvDMIiAaMYoMn6glFi092NVdq7Riz17N1Q0lWP0Rv7mDfNmZEw1cj9a+tHivJihKBWpjLTunJ9Oe4gUtB4k2Ky/Bq/8FxXf/Z9+heg9YRiFKVnXhP0ePZcFRZVIT0ct21dbursSFERaTFLcmNhzs1VPuxwkwFWO8X+4z7vnp2m3NhxXexrt+OTiEdvQ0KWs4IG9ZhNmbMJswguAJ/6IYy2djG2sufJzzsOMJ37JQg20qezoYsVKd9TKE9AM0bDSHY/GE7pQEaLCpMJ/jIaNbwu5qtKeSokatItagkM1lAxsvu7YvAnNlefyzx0zf/ca7t+lerEDrXFHM7ZvLCWTcIH5Nze05yPHX0sAt1NTvQ7Cc5m7SYouHyYSByPZRQa0VSSPTBMQ9exAwhbSwqwkWJi9LubLuc1NlMXsZwflTZyCgiyGyU1OjWp6DAXmVuT/Q3KYy7yLmPCNLPCsAuhOWMIgASZjDyr+yTjEnxak/JEY4yOl1D3gl5RSX/6A2/5xr+SPFEAxxr8H/D2A5iOvxX5XEb3GJeBR2wQIJkkuYydSVIiKMExvaUw/eyeBQaVMIQM4wSuq2uF9BhwnMFKyjUSrjYjrkdclU8nKPYC4IDnDMFqs9ewHWVxaRbF0dwZ3EKgqI4Dq6FVJ9fPRDRXbv7zj7m+N+PML0AZiIAYtDk51jb8VT3dlNOrZJePpK+VsRiMMPxQsvmHYfe+eqvbluZWKrNue6t98xLiTzsLSDhiEBh2iptHS6XkxrqhrxzO34tjsaNXImHoNK71nE2bMdY+PurQ6M5V6rkauQsuZ3vK+O2Ghe+aqpwtLuigtzFo5NIFNEHmtHJQyWLmyHRrhLHdjyy7UaBXFC0LJZ9m93nHx3TO6u5GTz4vas77aEE5XKBewO89wX+Sbq/MdykeuvkuL2/XcCzsxn38ToRNAnDrK/zKxKpPdnHQ+lNcSfBOgqMZMxJq6FGavS+eg+LAYyRpye9F0urRHM3/CZF+OBI7mbCBnJTkTANB7CRQ5s4ghCysnibk0UWz2qujHZN7EoUr3tzv+VBlEjPFR+v4M+FngB4GnuXRI35+lm38LeP3g7q8Bjz7wCVL9prKEt9OEpCVA8hBwo2QRWS04eFW+5LUJ0GkSDdo7uTi900Uh2NrAOFjcKBnHmL4DjKMoCTsnwUGUhVUBOnPwOOyQ5FLGedn1dLJrz0eXAog8v6YfLT7dZ7uvcS9a9PMr6VaUkx2km2EkYKgsDmMtdjNw+4ouo+S+Febp7UcdzWxEKfGEPJ7vsTqw7WWhvXl8ybLqsenqXSUatEF27ZXpGKItCxhgTJyFK7/Ao+hCxSbMuAmCBexCw3O/oouGMRq0ChgV2IaGXWxKizNzKA6PVo+lFZoZldLB8NTaU2tHrR1HjQC2RkWqxrF7JXLnc4FoNWHRSDv4+RX9WcP8i09QLlI936E3e0znZHo32S9OXq5M5YYNogkBUxs0wqHnRe5IlEyjlAuym5u9TrqSiZpt5DmVm1qV+WegyBHoXghTZZgqtSl9I4NVMqItK/2lgcDE3yiyeGn96IFS2kyWe3EKQH901b10/HMHCKXUQim1yj8D/zLweeDngJ9KN/sp4H9OP/8c8G+lbsZngetcinzbIyDBAErklienkJGiV0XJNzgt/AYlixUVi8ZgCGmxJvxA6QnLGAaLNgJOWutLi9Q5U7oVAnzqVHpIazMkvsPL2EZMIqLpPikICAYiWUpTOfEnSMHD6IBLpUnTOGl9PX1GHB1Kq1JSxHEgdD26aQSwbBrirOH2zcWklXHkpF0XgSrQdxXjYOlvGs43C0ZvsCawqnrW9Z6jqsMlbsIu1DR65MIvys9talt2oSp4wnO3pjpooHexIkTNJrR0UYLfe+MZYwIrAYwKDCn47IIEiuduzSbMMIlZeeGEYHXtZmUs3CUucmPk+Vw0AlamYa4c+Pd3NMOZSPVzekS4e0z7ooMQcHODO5mx/9hdVD+yften3Z/CnZETrIr0fbnWchmSODkZnJQFKhlEzB2HtFiLKnUl2EPIosppUli+ZJHnQFUu+dyJSFmJTPYm+nU1UcMPpzMzxyI/hwQvyRoyYxLkMQgipJs1UP6kCPCnKTHuAz+rZCu1wH8XY/xFpdRvAP+jUurfAb4J/M10+/8F+KvAV4Ed8G//33oWk0U7kXHcMbEptfAWYorYpLJDV8ljAFAhluxDKeQDUXINGSvKRkpFSXfrBASGl01KgJeIURnTyGzIcbQSLIpoaCpJlC4tV8kgQnkcl8sZFRm9waiX4/j8/paYgMnoIW63oJQMX4VI9AHFiDpaM95Z4lolGhYa8FLHhpWjXg5iFnsx4+SVa1zQHM86rvctLmqGYKnMwBgMW9fwol/y8cVTLtyCj7dPMCrw1B0B0kXoQsV7/oxXqkuMCvhEqzbI4t/4GSuzZxuaQpYCKTuu/JyF7jn3y9La7ELFGA2Px2PmeuDICFB7r9rQp0ylCxUXw4K9r6iLvHhDjIrOJXu6OyP725r1Owo1etydJdW7z1H9DJSifXyLO5phbwU/mT3rCXWNiimLSOY7eZhLpPGDBIf80fd6mr9Jcm55cE8NEz26LHyvEjAIXqtp+KqeRFxKqZBuH2qKsVPUaQYjJwNOiZt4M5UjalCFVVnUDRLomF3hSRlH7lpkm0IzpMDzchL3R45/7gARY/w68L1/zN/Pgb/0x/w9An/7/9GTpDdIRIJCb1CtJ/aaGDRl/FpRPBDjAQD4z07iuMGi0zCX1lFkz5O5qtiyy46er4qcNWgdU1tUdqvc6eh7MWCtjJfWJBSuhHzXL7keHZYZJnU4nNf4gwDUVo7La6FNyzlQKThUUmACqm1IgZn9/Zb9XdEr9EdO+uFJWchaT99XtGd7Rm84mnWMQXO62JV0fWF79r4moMouvTIdF34h3QzdSSCLppQEz92au/aGMVq6qBiiIaDxRK78glZJqQAyU+FRpaNxZm658nOe+iPuV9dc+AWNclTKsws1S9PxYlzhgsZqySIa7Zg1A9/aHROiiNCM3rDpGtxoqBcD49rKXMOyoXrnGXEpPqNxNUfteurrLf1H7mL3A3HdYm8Mbi3ZYAEV844Ooq0QkEneOnl8plokG0eLDIEm1gFzq5OwUJLETwSm7HsSkgBMmahUlIlMdFrUvXAaxN6AyZAnO4znAKTBJxCSmLKLLEGn4+StkS5/kblLwGTOmpRC+Umn5Nsd/2+0Of/sjoCkX0EV34K4TwpAObS6aXFFr4pEeM4Yyt8TwKm1zE14Jzt8SFLhubQQIE86JYL4+5cIUbktCtA2I1oHhtRNiUEVIFCnwbEq8TKEoBVT8JDb7PoqZR+6ZBeDM3ziPzmfnkxpEXnxnhgiqrIwjlJetDUqRkwnfXWVNRW1tOX6rqZt5TWuZx0uaBrjaYy0F4dgebQ/EvdpIjM9cOEWjNGw8w0XbskuNAVENSri0azMnl0QfCTzIjSCM9w1NzywV7RqZIiGWnnWuqNN2mYeTatH7lfXMuWpPEd2xxgND6sr+lDR6rEEB5AWbEhdjJCC96waZd9onGSCQfHs+yqpq4+WqO0eRoc7XRCfvoBhpLrY0X3klHFVJYai4ASFQlBan0p257Tbqv5gfD9tWCpkXgHid8HB4iOBgmnU55+VTizfHcJ3qCailCiXxYJJ5C6LyllyAktFOU3uk42bctaiU8cj3045irRctoSMOqZs4oNRyg93gMiLPEL2OHgpOACqSV2JlF4DMkWZsaOEMkenCaMuwKDMSegSRMbR4EZbcIHc8ciuylWayMzlQghKXlZ6vIJ5RAku42iIEYbBJIBTDFiHwb7kp9gddDwgZbDfelSyBmWMiLQGL8HB+yT/rhlfFR/M2zekrgQOFJyFHZrPw66vGb2Wjksw7FxN5yRtz5nD0va0euTWNTysr2j0SKNHxpgs6QnUypX2ZS4V7tobNmHGPXvDO+Ndfr97nXO/JKBZ6T3nXroIc91jkNJk42cJ05i6H9d+zr3qhjEY5npgrqW70mjHxTAv5+j9zREzK0EkE+XcUh7n+rtmYrxjNGrXUX3rHL1cELse9f4zlI/YzrN4X2N6helUmWkQroJoPOheSzbgVNFTyCCjCgq9l6ChE/dA1MdVCRLKK/QAZiclg0kBR48UVfWMGxRehE+Bx0uWoAeFTv+PSjCD7Oti9mpSPkjlRNnHImSj4WhkpFunIFFt5f/VRsqf7G367Y4Pd4BIgSG/ShnVVtPk5ZB0HkY9TeiBREWnZQw8eR7KiHYUY1OkBaqNl7JDR4I3BcDMCz4bkeRAYYwQqYZ0n2Gw1NYlSncKTgqUjuLMnF5L9lUEySikxWmojKS4lZkYl5sXAtTp1MGI3kMM6PmcODr0fC4ZxekRUYmkvBkUwx1f3r+uvTgsRWFwGhOYNwPOCyNS5hsCrR2x2hc68+U459Y1NNrxTndHzkVqe7ZqwKMZoi1zGcJx2PPEHfNqdcn74wlrvWdlhPeQb5NJUnX6PXcoKuU5M7eM0ZRg9Gxcc1JtCaiXhroWdiidjE+cPsMFzTxR1o9We5RXVFtoNoE4E1ZqXM5TsDAyKq+USPBpkYorhKK0SLRTabHKQs8BBIQIpQeF3SWCkQez1eTpTZ2NlYJojWYfFOVJilIHWWgeu86g5uHvGew8aJ4ARVouf+VsI0+O6kEV7Vblk0BN+n8WstGOYsWQzaD+v2BS/tkekQQWRWG55Tn9iJy1KpRWk0pj2zEJt6BAN6Kbn7EJbWWXt5UToDHxKnRarHlMHCSIOGcYRwHD+q56aWjLmFAo0pA6EFGylm5fp8eVfFIIXyYBprHgFibtglWa/aheVMQQCYMEGD1rUbYi7HboupKLvalhdHR3KqqdINvVhRY6cBUTRXyYauuo2A8Vy1YwhDF1Bjon2cuNa7Das3Eta9uxND0n1ZaF7lkl4NAkHKJVA12suHBLnrk1z92aC7dkiIbXq/OSJXRBgkce/ZZ5Dsdc99y1m5fwjBB1mRTVRMZUWrig6UPFGDWNdrgolng3o8jSVcazagaht0dYPA64VhFaCz6grjfEmw2xH4i3t+IcdnmN6Tyzp5OGqU6lhdknAG+fM4JphxevTfmbdtPiU56ieC279JTdml42N7ubMhO7lWygZC5p4Wd1qewBmycyM9goytbyuLlcKRjEOJU+ehBB3WwBqEf53fTpf3tx9pbXx584zfmhDxAqN2uzxn+q94pjs1NFlakEhhxAoLRBAQElnWAMw74iepVmLqbuRkiBJEaFrVzKJKS0sNU07HU4OZqp2X1vJUNI941BFSwjlyqZ3Tn6BIqqKFZp6f02L5QEgnTEYYQYZPYCiM6Jp4XWtOcjrlHU12L1RlLUmi86QtAy2AYpU5FhqhgVvbPc9G2hMd+tbwlR8bC5JqAIKPogo9tdqMqC91FjVKRVI/erq9ICvV9dSbfBLyVj0GPRiWjVWFqi29CUGY5KOVZ6T6UcWsnMxlwPzE3PynR0oSqEqRB1wSOWVf/SXIYLmtvbljgLPP5LHruP3L4xh8oSYxTNypAyw6Tmba476tsgC9epkkGoANWtwvSyqO1OFdHavHPDlNKjJLhkDVIpD17GGrKNYtGIsHI7kHakKV0Lub2vJ5zg8MiZgfLJwCeXPQln0Afq2CGpTPk2vdasG8FBcEnApvmOLjESk1FFNZ3UQ6m33HJSUm6U8ds2pdshYxDSKg1uIl2pJHvuBsEeso6D95oxUa+nse1QiFPSAUkYRArpISi8MwRvpMORQUotn5gqX9A0KTNI48uZmp2PUIFarQohCq2I3qNXK6gqka/XSka9e8+4EE9IPSYgF+my1JUrwjkg3ZHGeFo74qNiWffYPB8SZdYhp/SNHjky+yQ0GzEqJLzBFVp0iJq16bhrb2jVSECXCU7B+zVdrPAoaiVzGSEKJtHFCqOigJsqstIdXazook34hmVlOhZpiGxt92glvJOdq7kdG0ZvaKzwSV69e4XqNOsvVty8aeiOFXHeQogoJROxhCjndN8R5hXVNqRAMAF4NtXnpVZHFqTdq2IGnTEASCWKm8BN3acSo5cvu0+7+TCVDTnzcIs42SqYRG5L492QuhKaMtBlhlRqp7kOUbxKWIebgpLpSYGLIkln+igZRA5W7oBA9Z2dQaRPokRkRWaxFWAyE1japMzhpZuQF8shoBm9JnoBKw+1LWOg5G+Fjg1YOwWCGBXO6cKizLfJHQ5tfKJt65JdiD5ExKUWKlC0KWwCO5WKMt6dnr/79F4wh/VSsIbRgRI7vNzaVFoAuP2DFjT0xykdXYzoNPHaJzA0v8ZutFTGsxtrHi5uaM2IC5qZGdm6ibF5YrfM9ZDASUOdBq1aPbI2XZm8bPWIj5pH4wljtMx1n6Y0lQSGKHMba90V8ZhWj4Vs1YWKJ046KE/HozQurvEoQtS8GAXYdNGwDzVDsLRGKOC5vHCJ/LYdKuav3rJ7IMpP9//pBeriGpKJMd4nAyExEjIXt7i5nujKBYOQBX2Y3le3KT0fpTwoizIv2JgXW+6ATC3NmDapXCJoP2UH+fb5d+Ulu4g2EuZB1NGrNC2qJYAQKB6ycJBVHASlqJJjWxTKdbUVBW7BR+Qx9CAGUzmIfNDxIQ8QKSjk4ZhkaKJc6mjk2stE6M0EVHolPg9WUu5cchTKdmqH+s5KZyNpWubdNkRVKNWSRYQy7Xm40IHSoswlClAChezgksEMvS2PE6MqU5SV8UVjAmA2HwhvPkDNZoR9qv+Xi5I5hO2e2PWEszV26wvVI2rEeg1wTjQwxtGWQNZWjt0oKfuQGIpWB/a+wmrPWX3LXA9Fpj5ExbHZyawFWpiUKeU3KrDSe1o9cNduWKRy4vXqvLQ1F7rHo/AoVmaf9CTG8v9Xq0teqS6plBepOVRRvO5CxVzLpOkYDJqIVYHOV6XdmTMvk35WKuKXgf4UQmuJxyvU8VrKDO8J+06o6pWFzRabMohDgZhsr2i6g7Q9vIz0Z8ObDD6iplo/A5N2P5UMuQQ4NE0S5etY7gspOKTPsuBrCrIMXg4gNuEkmW+R7RtJAGcuHQ71KVSM2H2a6Ug2gcpH9Bi/w0HKjD/oTD+dhEQB8sht+ZDzCfYpkxgkY8jU2Zhk77MaNilz0NUkMqN1KEzMGKVP3PdVCQjydwp5yrtp9iKk+ZCQZkSK5kQUT8o8Vp6HtYyODM6WLAJgVo98/T+yxJuNkKNALvKuFxAFwFpUN+IWBjNE7D5dnFEwFpBgt5p3opKlI7XxtNZx2u7K+xi8wWpPox3nw7JwDIBCjrryi1JWVMozRMNc9YzRUuF5YK9KVnDhlxybXWFQ+qRenec3PIpKOZnhiBUbP5NMBPWyapXyHNk9YzQsbF/IUlYFNqPwMpSKDN7QOUubsKL2/pZqC27VECsj59Ak/MkY9L07cP8urJclfUfLwsuH8mJwk+v23JK0OwkcZpDyI5cQZph24QwIEicD55gXt55uozyF5h2RDkc8GDmnBJJY7psxhCwkYzuK8bTZQ7WL2C652Q9TCyQHuOwKd3goJ+XHBx0f8gABeq8xW43Zy5dy0oPOs+9qUOKEBGWyrgQJmMhWyaxGjE2VuCplfMJpglP4vcH1smBzyREyASpIF+Nw9LxMhqYj4w5SWqThMJ9xDwkcWbxG68Cur9E6yFh4llkbKrQJuM98BGLAnBxJHS3tEfSshXGAELBbz/x5QDsYjzzVYqRqZRtrKkc3WhGmMZ7BCzaydXV5rtrk6U3HWX2LJqYRbOkWdKGiVq6Qm7IC1IgRMRg9sg1NGQG/a2+48nN+b/c6XaxKWzMfYxr88lFz5efsQsOj8ZidbwhRs/MNt77l2bji2s1Ymp4QFWu7l06GccysAJQg2YOAvDLn4r1m87bn4pMNftXC6TGZaKaMJjx7Ac/OwRrJvrJQS64OkupTtiCwe9BjLErVuXWoDjoEGVMw+3S99i8vxOwArnPGAel3VbxYYhaZ0QeCMenw88RIzeBnvi5NKn16eQ4gBQ752YwR08fiYm87iht9LqVibnV+wPHh1qRkOrHRTplXNBJF9Vbjl6HM5hcZMcU0kZclxEECQv57RPj2oxBeMvU1a1zqKsiEaE71oGQBOXsYByssw/ShZRJVPpRCqMCp/Sl/i2WBKiXzJNaEgrt6rwlec/HJOfc+P5dyYt+h60qyCK1RdYXyARWhX2tuXxeNxPG2plr1pYSxOtClVqrRgf1YcWe2pTaOzldYFZLmgnz96sVH+Asn36SNBo/igb1mGxp06mI8d2vuV1ecmVtZ+AFGDIZYsoFKeX5w+XUAnrgjjs2uMCZzVyRnJ4+HI76+u8OdeluUoy6HGbXxPNmuCVHxPaePuPG1BLaosSpwOVYvgfwhaCrjGQYD65HmqsZsB7jaEPte8AdrpcRoGvCBYCWDVFC2ST1RVzBDlNuo3FI/aDtG8S/xrZqyBxeJSmG7iG8EuxiWiQ8RI6EWmf1cAviDIBAPkuI8pJWZmjEprIdKOiuZBAWy4OvrKTjkbKW9ion7oEqACpWi3kTGmSr3F2zlgzOID3WAyG0iYbFJBzMPtBSb9J3GL4K8aYfMvw8KfPKgSIivGJbEqeuBEgwD0glLAGAliXbufhATyUoBKjIOVrQr0+8mZQwhaNxosKnNqdWUSYzJXSXPgDhnEhaBcDeY8I8YRb/i/Ps9d//7JFC7T3qUVQXeo5ZLojUoH9k+VIQ6pKEhTfCGqk5j6Vpaq6ump3eWe/MNISpaMwrQp72wKkNNpT0/dvZVrt0Mb8QD4srP07zFAkNkrnt2oSk060pl1SjJCK6HOfera1o14lNX473hDI/gGcKetLzfn3A9zqi1wwXNF64esB8rnj455pVXLrjZt9IOdpLJuKB5++icy35O7yy18VztZoSohACWdTlMJFSB538B5s9mtE8N1BUqWGlxxsSwHEaqmwEzNOJ7mYN3XngZ/FNSv6PVRIOuBPgbV4rmIjKsFabP8w+x7NK+kvQ9JlAxZyp6FOPmzHwMVgDD0Ip0XCjBKBYD31DLfIZvZRy8SA2koNVeRVwrr0O7WBzFbRfE90WB3QfGucamrMK1Cu1TEPyA40MdIEAIJXnwpTgaVbEMwIju3kEvOg2zZE+C7GockxJQmdgzMdG2oegPeiX4Q1Bl4eoqEEaNaVzpThzqQQhPQuz9bGJJ5klREByjSnJ542CpG1fapFlUFySLANLsB/RBoU9PCC/OhRehRTAmhkAWqL36aC2u0SPEqAkLL1oYCfvI0ni7seKo6co05O3Y0BrHwgyMWrMZW4bEM7DK49EcmT3XUbCEVo9UemQXmoInNGnrvPJzdBKbWSb+wpaGazdnjKZwGh4Px2xcyzu3pwB88/IE/7kjKY/WkepGYc4CF+8+oD8NnLx9weXFkufXS9QfLPg/H55Qr/syUDdvRNuzHxMNXIepVT0P6CGAtTL5moyLY4jEfQdnJ2KAvJhagUCxeqxuM4CYgcL0pSWz8K2iuomMS0W1jYWPYLuIC5OYiwoQNPhGTR6eGVRO6lJ6SLyGnSo8XMo3AAAgAElEQVQitIet/NK501O7NDt22b3cKFiotrnVl0oOpfBN7l5IBmE7CWS+lhJEAuJ3egbhE8ONxEyLctJC9gFIxBGzV/g2pDIiYrYHmUUafsEg5YgWwlVUYcIqUpcEnyZGQxodH3UpN0zrClUbZGR87C2m8jgn5Yaxcl9jhdpdDHV0LFhq1szMVG6loOszIJkmQXuDv3uMvhGD2jgIlK7qmri5JbxyxuKp5/qjRlDxWdK5yDMdaeddNAOVDvTe8u7mhF1fc7OZsV7tubPclrHtTd+wHyrePLnk4eyabWJXXo8z7jUbNq5lZTsMgVebS56N6xIkDgHGaz9nbnoCil2QKdFv7M7ofMUfnt+l++1Tqluo9rC+CNQ3nuu3q1RTa3avBMxecXm+InrF+GROfH0Apxk7i34m2Ut465a2HhmcKcFV66n97Rvp+qimJvYDymiiGyXQ3txy80N30zWVQEmQDkbCEHyTFmQU5yuTF3iUcsI3YLpYgMBQgWsUto/4Wgx2Cr4Rp+ATUtWare9yJuEbWbzZ6k+PUlbnzTF3Mci07jiVO+V6HERNLAcBYWjG5LeRhsdcxCTTXl/LROcHHR/qAJEjMyQwJVmo64HEKIuJwiqpXZbvikEl4EcXZ2NR9tGEhsmlaFTikZBIUzHKE8ZBJkdDZ8FKBqHy9yw9hqhTle9ZRWo0ElxKe1VhjcM7XVy+DrMImBY1ULgW2Ii53Igr9/mFkHwyD2I+Qw2O24dGLoY2FaA6EEaD1zCOGr3qsDpwsZtJJ2abaOGD5qo3bL90QnUtF+NwFPEtfPXqhC+tI+7Usbyz5WS+p19aZmak90tmB2aOmsi1l1R/aXp2QR4/oLh2My6GBVtf8+j2iG89OWHx+ZZ2J3Xv6lsON9O4maa6jezvKW7fdlAHcUq7rmVX3ip8rKS7cBLRr+0YrxrmlePqYkE9H7EmsN03UrZ5lchNHrQGI5+RWszRxqDXK9CivmV3ci0kNrm0AhPXwHQSJPJCnGTpFbYPRJdGuUfJHELqTriZpPrBTMa+KqRFWqvJNNcpMaFOv5ukJBXTFHAoHAvBDKKV6963aYFXUibUN7HQsaW9KWWD9lJu+FoeKOMcwcp6ye9Jf0eDlCoHA8juySa1kYAyJx+1Qrl0YkngU9YArKS+K/JeeSDGKfHnTF2OmOfnfRqZVhR+RayCULoTCBo1KJMXZST2GlWJTFvWdshKVjEqBlehbaTrJEvouqooU0nGMAnUhCSsq2wg3m6J+660O/MR+wE1evrjvD1JMAxJsj04RT0fsCZwvlkwfGvB4j1NvCuIfH2lSi28ei/QnWraF4rl48DNm4qzXwu8+J6K7bBiuCPqTWezHTd9y735hhfDggftDWM0HFlRv34xrpjrgVvfcDnOeT4s6XzFl1/c4/ZqzuLzDb5F6vZj8epYPAr064Qf7GH9ZcvyfU9zGdFuJNQa5R27+xXjQhFVxbiqmXkwv3vMsVaYvibUsABmLwK+Vjz7bGRYV9inGtUmDMda9J0FcbuDkyPZ5Rv5PDOX4NB/QnuIaeKylAMedCfEI5Cuhm+mAKJHWXjjQhWXqzwkNayk9NA+VbUpVhdfzex3oRD7Rygt2NAEzE6XroOvE0MzdVjGmaLZJGalOwxGCl8hE6cp0AUjQUKl9xOnhPiPPT7cASKlb3YvJy4YhYqSRmVfw0w2CU1CeKOctJDSM9MrdEcKDqmcSO0klXQiaIIoBiUqa9aekKnRFBxsfEkqPQZhY2oTkuioKl0PlcAjpeQ5dRXKCHmhfidmJgjnIGMRSkeM8rgXM9RqSdztiW5ENw0xxokAut1jO3AjqFGLWcuoofXEweBe1Ax1xG40zU5A3cV7srP0J9LCWzwKzF447N4we9qzfa3l6Bueca5on8HsiWbzkQWPlzMezTzzoz27sSosxo8szhmj4UW/xAVDW4/sfc2Na9i5mq9fnuF+44TVDsw+YjuFbxVnXxhpnu949C8dESrovmdHXYsozPVY8drxFZ2rZDTdGzbbecFTYtBszud893+14+pTawBGpbj3T1/wpZ8+4eM/s+f0t/fcfPoULq+J987g+kYChZNuxnhvLe3MtNkcYgZmmBaNKiWF/K3eBBEERoBKXyvhPeRrQss1WCjOQyzScKYXDVw0GCdgu/IK4xGfi6TfIBsTU7ciZRHRxDJuXjIaqwgxYl3KJoZIaFQqJ8QCUIWU1QzSwcgBqdqFEug+6PhQBwjlobmSVClYhYmSBushZwQpRQwSDd2c8gFJCSGbfGjihDUkJmTpNesUEHJw0Ew9o+QE/pIGRW6hJoZnBjWjQtqnydA3YyHKBHxn8MqgTCg8BWFZSnDIHQxI06RBEZtAWIhkmgjGhFRHu9Sa05guphmBIJhK66E3whPxiuZcl/M4fxr5kb/9G/yDf/z9HH9R/tadanYPaqKGmzfn+AbqG7l4xzlUW8X6a5Hh2LD8luLF96zhWtH+8AuebNdoFVnYAU3kuNpxPix50q2Y24HP/fpHuftb0BBorjzVzcijH5sTNbz4norudE1oxb2K84ZxP2MwMo/wlfdW4madz3MqO0zlGW9rMJEv/3sL0I43f1ZRbRXj2YL1ww3KGbpX19h94PZHP4qvFUcvrog3tzLyDWzebItMmx5jaVXKvEI8+J8sdNtJZwAEDMypu3YJGM/ZX9qZMw4xLgQkdK0qG1mm2Jh+KnVzEAlWEfxUdrwkvQ8lc87YxUGHHRVgWGvpnCgSBjJhDMGqwrCst2HCP76TS4xM/FA+FhprsCrpyESCAzeXQOHaqXMRlbRFRfmZIuWlhqTNl897RqhhyhiIk0BuFszN7E2dSpLkED4NiaX7VxJYogfdeMLWFlMW02TFKiTbSAClTy3P0iEZJJAAKO9hPkelXj7eo2atiJ+EQHMd2T2UHcYvAmi48yuGqGH5RGp8XymaK0+oFV/+dz/BG/c91x+x7O8q9m+OLO9u2e9rwnlDrCLuXNrDzUW6uOeK137xQlDx6lhk9f/hGZtW8XunD2guUy9eUQaLAO50EdfIjjXOLcMnqzR1mgLWE3EeP/rGQHXZobYdB60hYlux+dia7kize2hxy4ibJSLagSOWaxV2F/Bzy+b9hteefIt4R2wA3Exju0D3vW/Q/uZXIUb6736V3X1dpizz64XMfUjtSa0wmSOQsogMmodKldIhagH78u+uUeW6Kh0SJden7eR7Tu3NIO3QkOYsTM/kvl1Nm1L2/sx6l2iZQM3lzbiQ19DcxMmwVy4zhrXgFONiErkd51pwE/P/AwxikuoWAKa9lgvPpy+QD8IikVrBZLWeOz9eBD+zVHnMwqGkUiAZmxZLtUy2ImEV7TTPIcpVHGASaor0OUuxCeBE/q9q6YagowjUmOkTzMBnEclVqQwJgA/EzSalx+kGo0NVltj1mCHy+i/1RCsYzHBc4etAdetxC8P6i5f84U+dEWrxeognDboaAeFBsKnZvbNGD4pqgOZKTcM+6fzbbeTF95/IBWXhzuduuP7EivomMnshF2Nz7RmW5qUgYfrI/kynhRXLYqmvI8vHjua8JxqN7h36xTXx9vaAyOTR6xVHTy9YL+fERcvVp4+4eVMzrqcd3s0ji/d39KcNbq558+c82+99pSxi5YW8hFagNM//8pu8+ImBO3efS4n3C3eoN7F81plohMrYVv49B42Urh+Qi3wtoB9+0pEsGpEHCYDtYFymlD87eafgkbUpc6ljdgqVWpR5dFu4FJlvIefZdhCVlI3R5M6FKq9J+0hwKnE1KABspmLbLpYs6NsdH+oAUYgrVpBhUuok2UTE1+AqVXrENooNexHcqFLbKJUAwoEAQhILSdoRsQ6ovZHvXdIfHFNHxMTJ7DUqMUbxKWhkX4SgBFgqnN0/5qRroXSL6rbQr5034lTeG3TyfiwdkEFLeXEkdTajEwwi+2EMI82lo/7GM2LXsfvBt1Eu0m4c0Sie/XnN83/hjOpG4ecwnHnUVY3qFfNHitnzwPEf3IKPYDX6egdpbgEfQCnGeyt2D+rUx4+0feT6EyuO/mDD7UeWSbkoMKyEtNUfJbKXAZ12UjeTXdHuIvVtpLkSM5vdKzPa84HrN5ecvPMY1baEj73B48+ueOVnPk84XhGWNfbJFerZJUeV4eS3Ol589i63r6lyfWzenFPtAmYf8DPNzeuW9XuOxS/+HhiD/96PEivN7oc+yvMfcayOd8Ws6MVnHA9+WRc2YaYsAygl7zkTiXRItUEEXylQavLW1PJeo5bywrVpMzEH5YCmEK0OMY8s+BKsBL4cWMrPKpnv5i4KQCsYUjCgLHirStCIlWQFmQNh+1g8V3yyRghGeD4261p8wPGhDhBFQs1HVIySBbSyQEKlJ6/D1DPOwI7p5cPTKuLTCC2pvlVp5xcnJESBqdcSnXsNBlEyzipVSR+QNGCT26ZF5i4DWoMmLp0s7AOuBCaIbVtut2YufW9QGblO8x6AyOhlNDtGGSy62qBXS/z5pXhlPLxHOJpjtyNxMePL//FrvPELiTUHnH9a+nPjKmLSQNLiHcviUeT0c5eobkSNDrqekFy6wjCI/4bRxFfvsX91ifKR5tpLqyw3TDRcfXJFtZXPxLVS99qdJ2rFOJ/0CYYjCdzapfTZw/a+wYyG9bsdT35gxvJRQDWNWAv+/h/yytfn0DToyxue/tibrN5rWXzjGvP8mvG1M85+55JxcZqYtIrb1xRnn3dErbj8qE01vkK1DXEYsV/6JuGjr/H+j81Y37vkdLHj/RfH1L+7oK3BDL4EgUwoAqSVmRWoIwVziEpKFz0mzkFqYY5L6VxkYDBUskil5QmhSR2Eg/HuUOVOR5K4T8NZbpmCQkGkU9mghe+jx0To6hKvwoMd4wTcIxlPfi8Z9zj07qj2oYCZH3R86Ie1zCBoqx4Fi8hAj93L9Fq1laGUPHqrxxRJjXwwBFUEPcxuutCzloQadJrtUClyTx2ObKcWM/aQs5DsqnTwOmMdyiCYtFlTdtELnqHSY4jy9jQhFNMwV6k3Uxci2og/XaBGJ+BkjCJ3bwzu/hHKBUJliJWFlQA09WYkWEV3JqVRc6Exg2L+viyis197LqDVxRWMTlzBRWcPVdfc/MWPi4aCj8zfvSFUWnYyC7Mne5qLvpz3vCOuv3TJ4r0tdudZPOo5/mqXFpT07H3a7dxccfuanP/ZC8fmtYZqGxmWCqwBlTgL1qKMxr1+BzeXIL57Y03/ESE29fcWzM6D9P+91OGh0jz/vkrYtRVs72sIETVr8R97jW/89SX7VxyjM9x0Dc3vLPA1LB5HKVNz4memlN5XedeV3dtXMCw10agUJFQCAyUoEjIOljAJK7qVw7Ei+QEJqG5IGANl4cfE/I1WVKBMr9J5nzAQQvqWwHXlJDsrhkm13MfXOeioSTkqtUuF9zCB/jJT8sEgxIc7g0A+oFwnRatKKqmj9ISUn+qzaKW1owe5LTGSBZtU9jbMGQCUgHA4Pq6ClBHFEWnUL3kHiLx8QqVHQYSyQS5JngwTiXmWVyFlTLacDwcXZIRsIVgyjD7L+sOTH1ry8Jc9qDX6eke8uJIUM0TccYvuPcp73vr7YEbZRd3SEJpIdS1PMnsaWX/TMfvmNWrXEW+3qLYh3DnCzyqZZVssIAbWv/Ql1GoJIXDzqROq20B92TP6Gt9adO8ItWJ7z7B46jGdR+06/uCnj1k/2GB0YPv7p7z+Sz3bh7V0leYRlGI4C7zx84H3/opBjxbtIvUmsn2gGV89pXp0CadHxMYyrlve/asz7BZu3rCMS6i2VdlR6xuhO5u9LLru1DAupX1r+pRCnxwRK8vjH10xvt5R1Y5+X2F+dY1vYTgJLB4pfKWKZWGeYRjnotIVovyt2so1FjQMiymrCG0mVEkmEW1qvycAEShZxSGeQfLViBG0nwRu85i4TxwJ3avJTUtTHLmy4KwZpw1RA6qbypaQJlMzzdsMmQSmsPuQhGb+ZF+MD3WAiIqXACHlI9EITdSM8nNp0yiE9JIYcAXzSx9KVAeDXTBlESALPqV6atDFRFV3asoalBBWOPBRiCYW3nwxUzETfgFMnQ+NdD8aX2rZok0BE6Ca2qRxsAQDj3/0iGjh/q9XVFoTHz1l/6Bl9SvfgL4nfPR17FZwB7e0NOcjy3dNmiiMtJeB5vkOnBew7sEdUcOeVewftqzfW4m/xnYPbUuctzz74TMWTzzbBxbfzGiuRsztwHjasnnNsHk7cPy19Dr/a8e/f+8fcekWnNgtj18/5h9uf5jVu4Gz31W8+Kyjn4HeGt7/Fy1mD5efAnfioQrMVj1Pf9Tz6pHjuN7w6+++ie8ss/VG9DYqz+58jrmymE58H6JVVJtImCn6k8jJH3qiNYR5IMyRbEQpYtswHEG8tYytpn5cMRxHxqNAXHjGRU21jZOnaZ0jd/o5peXDUpWdPncsVNrV/VrAvkxb1qhSOkAqKaJck5lOna9JARRjeR657tL+kVQTSROdWZo/msm1O1im7kcEtxAsotolObsUSAQ8VUX7oUjmjRE9HrRx/pjjQx0gDmnWudZVQeo1IaVEkQgLkah14Z8X8MfJBFwmvPhk0Q6In6KbwCSCZBlFrnzMZilMmICaHhsOUsCUIgIF9BTSlpr4FSC8iGx8MptSu3gwHGZrjxsNau6wnWX+1PP8z2u+8ZMND3+lxn/fHY5/5wXxdgtas3t1TndsGFeK0y/1oJOikRIyz+zZQGgsoVkyriquPlozrKE/C3I+/sqrUAUevHrJtq/ZPF2iZj3nY+LhDhrVKqr31gx3PNVF5OE/jviZZvnFc9Z1x+PhmDeac0LUzPXAZ//a7/Hu3/04l59oWNzZESPsmwYPKBOZL/pCL//M3Sf82jfe4rGKvOtOaJqRNx8+4+ntkuNZx7PNEjN3VEdJkftrS9wc9veBOHEG3HH64HRkPII4b9G3O4azI9TSwWUtMm5thKXD1J7huJYPNT/GTK4H7YUqbfoobdn0ceYy9hBwNL20EPWQOhoH7MTcfcuHGSQgxCo/VmI/BjUNF6brK9oEyI/pmsqMy0q6TMFAlb7nmYtgZMTAtUyYUZoJ0Y5E7IqJuBUwfZh20m9zfKgDRD5yNBdQSP5WInRSCc40VjebwBjfSHstNGmBJ/JSPmJ9MKyVIn1IACYpO4gxlRUJ3Aw2Xy3peesUdDKPok3fg0LN3dQGzeVGUNg03SnK064MaOWjakQRuz+C+VM4/Xzk2Q/C4x/SnH4Bnv34Xe79T8/BGMFnfC63Irr3BAOz80C1E+NaP6vo14bLT4J/fY+tPPNmZPNoBXWgXg48fXpMHDX1cc/YWe7cv6F3Rqz7mpEbrzGNZ9QRFTRmH/jSf3DG9/mb6XUrh1EiY1c/3VC9VjP+kyPu/yvvcd22dKNlGCzfdXrOut5zOzYc13v+4se+wju3p7y2uGJhBqz2fHz9jK1reGt5wfXY8uXn99m9vySeuZJ9qUFz79dh9qRDz4xojibDG4BYWSGPDRp1POD7NJeRJkLzANXULUOCfWppx7Tz5g4C9QSGl9q/OcCiVMIhknpTzh6UB5IwbdmAsghzFQnZxs8fPHZEStaUGesEkiskG7H7FKD28tq8VYV17Ots+RfJDM+sofISndwF1HdymxMyQhvSiU51ngUZ1p8AGu2AfoqiWQnYzeNEs87W7alUKMGhjH4fgEMREcLtDdggXo02TCQqBRzY8tna451GmfgSAcokL9DstKUUWCsuW3Xjih1ffpzlohM5d6+pf/CC29tTFk8DZ59TXH0CujPF8dccVDXx4Rm3D02SGovY20GCwYliOBI15uZKs31Fs309sHjrmnk90o+WzbbFHI3ECGNnQUfe/shTACotKlTn+zlnCfXPOhqq8fjaMHvmWDwYOaq74s5tVBADHOP48t9d8fH/ckO1WxKi4t7iluN6z28/ek18QLWHqued21PeWl7wcH6Nj4qrcca66rh1Nc/2KzpXcdM17Lc19u4erSNjb2UnD4r2yjAuK0w1MqYRez0o/LrFPrkqn1e7GOh1RYyK2aLnbLnjcbNICtFyGbh5olqnyyLUqhCqMn0fKENYIatPKcpcR0htxlBR9BqKonUGryEFgpRB5Gs9ZRKmTzt/BXqvSgYsN5pYmJkxnAVu3FwlXYgUnFKHIhhZC1FLWS7TqoZoFNXtB8taf6gDRDCwPzXU24DdSZg/FLgo6K1JUbSaTn6WFJdBJmEaqqCIMy9CtqkEUDaUwSoURKfLzISw9gLVYhR9BwVUQVyrvJQFeY5C6UjVOFySlJsvekJQWBMYncFaUaPKatZZdLVJhjkhl1MqUlvPvBnoR0t3N9KfaqpbWL0Tuf7uwPyphnunxNoyHMH2NWEmPv/zK+79yiVuOUMP0N2FzVuKaALc6Yuu5ul8z/3VhqtO1JuMDsysKEY/nN/wvFtyXO9wQfPVJ3dFsWnVU1We1c+vWDzqsV98l27/Fpf9nNOsEQ/iYeEti3WHvh0w3ZzN338V/288Zl11fP+r3+SdmzOs8mzGlreWF3zp6j4/fu+r/NblG9xtb7kZW150C751dcz99YamclSN42y9RQE3XcM6mwAt7lFFWMwGrnZ1wXSUjxAjzTOD+fQN1gR8LWK+3mvGNEtzSGgSjGH6GZLMXOqW6BFklJwyyp2zkKx8pjPXQcvjlsWtEvCdSHp+lmnyB56f+dKOEpiMTw+QRjF1DgwHPh6ZRBVSBhGNELJQMDYCoooqtgQg06dSYx9xrSnDct/u+FAHiPwBCnj0R99IsMJqc1oVS7EsOnr4AWa6q3D75b62caI/mXQks8JTsLrMRygFph1wo6GZj4yDxaSF7rWIsmTtyRDETXsx6xmSkOqQPDIW7YAPiroEA4VWnlk10jn5COoD9WmjxOSmqRxXxwF7oxlXUiMffxF29xVnN1tUtS6A2e6VSHOuwChcGwnHctWHOlCd9Nw92eCDZjdUXO9brmnROjCrRmZWmJW9t3zj5ozOWb703gOUEavCZj6ymndsdi3zp2KC+/X/8Lupmw1X/Qy7DsnLYs8mBGZGLPGe/8hdzn7/Ft/Oufz5Vzj9G1uOjOOTJ0/4+uYOZ+2WP7y+S4iK58OK43pPrR17X/H2SgyMH85vOO8XnLR7llXP7dhQGc92qHnxzinf9ajjyd8ZmFlPNR8YtzXVtWL36ozFfuT4K5Gn9xbcf+OC/V5W/3reUaUSw81loE/OFZOo7ME1mMvWTNQDZPEzBQdfC5QFBxlDJBuyy21a6ULIzp+DgrB8VaCopU1t1ymDyW3RnF3YLUXQJs+A+FwmJy5G1BG3TM+fDHpCLZnS4FTx+vyg40MdIKKR/rm4DWnsLr7kBXAYQIKVD1InCmvuNYc6EuuYZPBDcfjWOlK1LsnDT74VefS6acfiwWlTKVE3I5X1OK9pa2HjZU+LoEVmTqu0yHWgthSbvRAVJulR5t99VMwrYbZkVetKi0FMYx29s/IhL0RyzHq4+lTk5PcBrQi1wQzgllLfbt8QBuSrv+x4929MZdVi3lPpwJMXRygdaRrRUNjvG/o0nVlZz9Vmxrir0bUnODH6Xaw7TuZ7tkPF3f92hulHGEb0pzZUVox4DIEjs09eGLLAj2cdFz95yYU/4exzV5huyZf/14/xI3/td1mank8ePeHR/oh5JeY8V8MMFzVdv+Djy2d85fYeb6/OuXU1Z82Wx7s1K9tz2c+5O7vlm5//GK/8k4ifWz5975tc9TM2u5Yx1fbLzz8nnCzRDtpHlqecUp90eK/xQTOQrqGD2QWg8AVAri9XUTaVXGKERrKFaKbd3PQU/CCXvpkNWaTyxwkn08nxKpfDMLEjM9AZDwKNHtNzKYr+Q8ZAVBTsw1fJ1yNlEnnziBrGlfBGsoBNfsxS8nyb48MdIBR0p4BS2L2w1arbBM50aXqT6YSEWtZEsBG3TCCjjaiZTEDqVBJkp26TLOma2pXR4owHaBWZt0PBBnzQ1NYzOMO8GYunpvNGBGGyFV+6fV7wVosg7bIeipBsa0fGYPBBlwWyTz6ZOXiEqJhVI2ru4VrEeQVBy/Wlxi/kPspDWDsRWolpuK32tPMBrSOfvPOUmRn5zMljxqj50uUDtIo8c0tihHkz8OT5EUpDNR8wJnJ6Z8vDxQ0uGFl8XzijWkTaZ4Ev//Rd6rBjVovD9hgNYzSc2Vsu/IKH7TUAMzvyhc+ucfNjTr/cc/IVzf/2G5/hb/7Ir9Hg+IHjd9mFmlvXcJuUrfdezH3Pmi2ayM0wY1n1HDd7+mD5xude5fKLiofXgd1PXfH23cfF40PG66V2Vz6gtz3705V8HhtDPFI0aZr2xdVSFskgYDbIjlsATjNhDUUDMmejQCblxUyozWxeeMkkV3Z6CQommevmYKIiqIRhZNu9rEJdtE+giMVkmcVqGwsz0nYifYeiEMeiPnhP6b1EK6xiVApuTBn3Bx0f7gBhYTgNKAe+Fc6DWwjTzC2Y2k4JIQb5LsEiSD2aAEVtA1Xl0TpQW8/oxbdi0Up6PTjDrB6TKYumMqF4WQJYI90Gm2p2pSJGRXwCGbWKtFbMaVrrpiwh6BIsGvMyIDSvZPsJUTGzIyNg0raWbxuDDKDF1sOtJjSB7o4lVhbdScfCLSL0mmrZc/Of9xz9ncB8Ke+vtg6rPQsrNftMe37iwVd40q+5M7sFoNae+/MN18OMy92Mt44vmNsRFzXfvDmhHy1v/YM99nLH88+eYe/sRDIv6JfUpM79krt2w843XJgF1gW+91Pv8sWrt9nfa7n/GyMP/w/Nr/3CD/D4hyy+jfyrP/GbzPXAW+05XbT8zvUbjNHwpcsHPPr8fZq3NlT/+xGr9z39SvP2V/fo/+w5YzC80m6L0Q9AZT37OqBGCIsZ7/xrp3QP02pIszSrtue03fHi6ZoqBdvcWdDFFDoxEPNune6fgcHkH1TITwyfG9UAACAASURBVKFJmUCeOM6Tnqm09c3UosyPi7yc/4u6d421Lcvuu35zzvXae5/3fd9br67qdle3X+mkjRVCpEhRIhMiBSGBxBcCipIvIL4AIkFItgBF/oKUICREhCySLwEUCEmEpcgEhVgmDo0Tx+64XWVXdz1v1b333PPcj/Wac/JhzDHXOuWuKhPyuF5S1Tl3733WXmvNOccc4z/+4z8o+hn4qUZmTJ6wysYl70GNky8ltA4FAtqndGi/JBV9xXzNoYw5K5LV1RLDGCAuPt9CvNAGAhMJTbjRLMf4JGI7TBgDkLkI0SLiKUUQ99FGrItU1dSr0pgxS8G3g+AFqmvoU6csH0QRunAeZ6JY3GQIFCMA2fHLdC4fLIdNSzcW2ZOwzrMoBnZjSZma9RZGWu8VJkiz3OQxgHgclfG5qxSIcTCtyxRv30TGW3u4bU+xXeWCoKEveHa+z+oAHv3ZwAd/WsKfq37BUbmjtiOl8azHmof1JS835/hos6bk1diwPqgpTaCwns1Y0/6tO9z71g636Tj9F25x+k3PXiOew6IcOKp2PB9W7Kft7mzcwxnBIc4BawJv/ovf4zt/70t89AcK7v3IEx7un2N/8nVcF/jW3/s9AAwrqW8wET7cBoq1x/whw5/46t9l+5WKT7pDfvP6Nuu+5uLiiP1FC6xYlT17Rcey6FlUA1ejFQ8iBIpvXPC1owve+ugeYV0Skkr2Zd9gNinlGaYFqn1gIWUYRjPpJgQy90GLqVA3PhmRok2eQps2sp3gYa6djEPmNqQ5q630tLLTdYnHALk9HiR8ohdykwrT6E/FSeRzyXAkryFawEbZMJWYZ5DfbZys1WccL7iBAKpAHAx+Kb0CogmySJbM3EFBhEMTpx4Z0WCrJM7ifO5lUSTvQZSQI1Ux9XscvIQRblbAUrtJxn4IVkIVE1mWfQ4TQjQ44KBu2QwVpZPvWJY926FiN5bslx2bscreQmECfZDr0NBDbbkaDGcCt+9ecXa+Il5WhEWiihvYvLxg+diwfBbYvGTwe9J9fNn0bH6y5/A/KLn33+7THhe89eYtrn9/zR++9x2G6Fj7mi4UlKpy7WuWrudWueF//bUfJWwLXvur4DrPg801H/7BfVy/YFzC8t4mGz+AMTXeqe1AZeTnNlRUduS43vL++pgHyyvqL1+x/WiPx795h4uHC77+U+/SuIGTasvOl9yvr9hzLafDPo0dOB+WvBkd39k84N31CR+dH9L3BWG0LPe63KX8sNrR+oLtWEmYUQZpb2+k0dH758f8vjfe4dvPHtD2Ja/sn/Mb53fQTtzqcgMq6zljQcbMVxA+DQQXU8pQMAUQno3tDf0hkurcJ4eC0Uy6DT7hEz6pWal7HxJxKlQwFhOOpoZIMyHSHUto3eNSrr8/kNDDehhnPTTkhpKRKGOqPUpxjYuQ9FR/iyjNp44vNBDGmJ8B/ijwNMb4Q+m1E+B/BF4D3gX+jRjjuZHusn8e+CPAFvi3Y4x/P/3NHwf+03Ta/yLG+Be/6LuxEdeMeOMmbUgveg4EiKuJ6ORdFAHaJA9natF8tM5TFOIdLOqeMRkHAB8MzkKMhiFlGXxqCOsSWNiOBYtyYNNXVM7ndPR1X7MsB8qEJ4RouOqaLMdmEq5QOo8zgcu+YVHIjOp8wWhCllWDCbsI0dD5InsdB03L6eZI6N77Y6r2hOXHHSZEquuAsHAMdT2wTCrWuz/X8tHzmhBGvvxfDti/suD/2P+99Ec1u9uO5dOR5sMrQl1iBs94vGBcOl6NUD3f8uZfeIt/ePaIJ+sV4ZfBLyL9ax0rG7MC98lqy8PFJa81p7m71g83H/D3d6+x9RWnYY/SetZDzeu3nvOuDayvFmyervjWJ2/w8PVTtqsrftfhh1z7hq2vOCx2vFSd0YaH7Ltrvn39kFvNhlsPNrx1epcQDZttnZT/Bd9xRrRAQzSUi4FhT1rvhccLtrd7yoeBRTUQo6H1Bf3oqC6sxOlxxkOIicyUkH3rpcLSejO5+3HSioi1GJBcuKcZi6SArVmRaFKaMdGes0ehdRR+AjNzS0A1MDYxJotZCJKIgSoOkz2OWddvv4iyXtzcykAuJtyT0CvOK4+/z/Hb8SD+e+C/Bv7S7LU/DfytGONPG2P+dPr3fwz8y8BX0n8/Dvw3wI8ng/KTwDfl1vklY8xfjzGef94Xm7n3YxKZSZvfkPpdqNx7IWXVZjlOaaLEdej7gqYZ6FLzWtLil51eemQG74gx5N3fjwWF8znkcHaajKSf3VhkkdplOTB4x24oKWaZCACftqQhOMYg+ELni2wcQjTsxpIKWPc1y7JnM1S5uY30+hCjaHeWYm1Yv1xz/EunbB80eRfYbmsM8OjwktPtir1lx8W7R7z1JyuOHlzxw3ffzTF7HxzroWbpBrZjRWmuOCx6nm732XrH3/i1H8Z+3GA78HuRcLejasQIaObnuBZlmS6U7Bc7DlzLmd/jteoUR+T5sOLD8QhAgMaF9Aotjj27ruLsesXFZsEvv/8yi2WHTRyQRTlwULdUduROs6YPBW+uPuEbBx/QhpKrseGt63s8WQsAuRtKqmLMY1NdgV+WVK+uWdQ9CzdgkHaEDxdX/Ca3ZeEPKc5PmQjJSiS19FE0GiCFHrN+FxJ2yMITEdmp6EnrdkghQ5ivMM2GJGOTsxnJQxgXs4xKnN4bm6Q+pYruyZvI5dtJYyK4VBG6UARUrsHUwv2JY2JtGcmuRcxUC/QZxxcaiBjj3zHGvPapl/8Y8AfS738R+NuIgfhjwF+KMUbgF40xR8aYB+mzPxdjPAMwxvwc8BPAX/7875aftgiCL7RTpSO1J1ZCdJrqG1LfCm+kQ5YBVwTqwjOO0gG6SUzCib9gASUvSbjQ5XZ1svi3g+z0ffImtoMw8vbqDhul/8TgXU5dRg07knHR0KT3DgMMXlD3zTB5EAAVMATLRbvIHkyMldSNDCZPSOvh7OuGsb7D6smI7Qt8iif7oeCT6302u5qhLYiLwMuvnHK2WfLzv/pVqicF1huKrZYLC6g77yfpGwgHnnA4YpcjReWxwbBaCNDZDSV9Ky30lrbnpFgTsGxSx62Xy+d8wC0OipamGGjcyHG1o7IeH49pipGvnjzjopfAubCBZdGLwSokq1PZkT4UXA8Nq6LnH1y9nMORk3LDSb1hDJbrvs6GfNuXQlE/jgz7JV1rqcuRn//odQBePT7naqwZhiK57UbIR1nhKz0PK4ttfgQX89+IASEzE4EU/srfW8wkGZC8g2gQJWuT1M6MGKBQi8ZDBhVtpNhKat9XKfVZkPt0RDetC5+o375K3mdNvjZpGyip7jjYiQyYSFcUIdf/fN7xj4tB3IsxfgwQY/zYGHM3vf4I+GD2uQ/Ta5/1+hceGqMTjRQ4zUujST0sqsRsNMhN60+gbwvMIqbO25ZtMCmVCTGde+hKlo1sI9fbWqxrAXGYgYdOUqPrrqIqPN3oWHc1Y9KWdLNYrg8GZyOXu4a6lBRoNxQpAzIp/Cihqh0KSufZA2noa2JOrzobOXl0weXbIpISHfQHgkx3x4bFWZqgG6k76LuCblcSB8s3vvIej9eHnG2W9F1Bc9wy7DlcNfLo5JyLdkE/Oo6XO3ywXHcV27bmtZML1r2Qitq+ZLOtWSx6HuxfMwbL2W6Js4ExWNa+po8FlRm58Eseledc+CWvVs/4lfVL3F1c0wdpKrRwA2fXK+4crNmOFXtlx6ro8QlI/ZHDj3K6c+F6QjT53yfVliE4LJEulDm1WdrAVVuzbSthSY6WsjVcfLliubqgGwoOli13V2t67/j2swfSPtEnD8HOdnkFwnOqVDMVyXUf0oKvZ5wIDQ11TqYUYy7yS6nFrEOim/so59HWekSTPRUFLM2oehdiwMdVKgdvyGnOLHyr3weTrEHCG0wxMYPlBiO2iPjeZiWzzzr+SYOU3w8SjZ/z+m89gTF/CvhTAMXtQ8k62JhJIyrxZisvVrFIqcDk9hkTMVUg9E7UnFKIQTRY51PYEul7x2jF3R5Hx3rT5O+yKY3Z+xReuEA/FFTlSNcXjJW4s6O39KMjZFRIXLei8Ow68Vi6oUA0WaS+IgSLcyFlUyKXXSP1BYP4r5ttDdFkxmYIqZArgikDsbKMRaRYWzavBO7/YgcsBY0fEn20tazub3j79G5K5fYs655VJbvzqpTF9/rhc7ZjxZ1mzfNOpOXfOJYemLXzXLW1GNDLmrvH1zRu4Hxc5ixP60t2vuLSL2jMiMfwQX+LO8UVj4djukw7hCEt8j/42tv8o4v7jNEyjmKEel+wLHqe9fu5QS+QjITFpgIwgM1Ycd4vpFN5AoSVdt2PBTEYtq8O7P1CwfW25s7JFa8enOcen91QcHiw4XrRoNWOuYeK6pjqT525Zup6NedBZKZuKT0zo50merRpgutGriK0On+TxByKJaQeF6GMGdQ06T3xbOREw97MaCVCIJrMGOUzMSaPBiS7l8Ru42ixi1GK2pKEXlYy+4zjH9dAPDHGPEjewwPgaXr9Q+Dl2edeAh6n1//Ap17/29/vxDHGvwD8BYDmjUcxaoozShPdmCTiJ7FXk0Vf42gxzuPbImk/WmwR8K1QqsNgGa0Ykegt6O/R5FqIMFhiafCDmz7TCMC121VYF9isZXK51EfTj0JZk+a80hhHm+gOQwJFTaS9XmArT1FKSTcgxmdbZkseBktRj/jRMUYxftbJ5IlaMIVhuDViOkt7t06EHZHgN60lLj3D4ChLn5mf+02XdlxZDZUdOam2rMea592Synleqi74cHPEGCzbocQHy25XsX//mqNmx5iyLv3o8N7yyfU+hQ2M0WKJ7JctY3C87054b3vCeqgzcHtYtZxUWw6KHa/tn/EL736J1+8+56P1IbcWW1pfSLu+sWKv6Bid5WqsueiXPFhcJs+hYAyWy37BftmxX3U83eyx60tCNGJko4Fg2Dw0BG+onaf3jjGKx/GV26e8d3HMb+kGjxDsXGekq1ViMip/IYvRKqaXjIf14FWaTo1Cei+6ZBSCZB98LefPgrjMuBHlZI9ylWmczsUYM5ApmZGpMhRlTlrk+yIQUwamV/kBA94Q2kJElFNtUez/6dRi/HXgjwM/nX7+tdnr/54x5n9AQMrLZET+JvBnjTHH6XN/GPgzX/QlMVla3wuuENPouCrgO0cM0jIvdE44D0XyHNLfGpvUpVU1erASk2m/CxuJg53q8UGApd4K1hGBaOm8mfpjQDY+MfWwMEUgDo5QTqXgAO21aEOGVO+BN4Te0etOD4RB5IA07IijZaQgepu7d/nWUXaGkJr72I3FXVrG1VTaa0dEqaiM0Ft8WsTLZceylvBp3VfcWmzZDBW3mk3uYRGiYT0IfjB4x6av2HYlB8uW68uFdAqPhjYUbIeS0VvadUW7rth1FZvjilXZc94vuB4aBu94erXH7kJ84XKvZ72/o7CePhRshoqTgy3rvube8pqzVjTZFNjtvWNZ9CxTCnrny2ycQKpNN2OVu3pXhWfXl9JTpLOYhcfXBYeHW4YgzYmP661UlTZrvv3hw7w7z/U9MhCpHtusOhMmdiLRZI3IkPQ+MjchF4ul8a0mJWoVn814QyI0aQGi6o9oFkW1HmIZwaXvTF5LpmO7CSyV/p2pCGyeqk2aq7YToh27Ms9l5X181vHbSXP+ZWT3v22M+RDJRvw08D8ZY/4E8D7wr6eP/yyS4vxNJM357wDEGM+MMf858K30uf9MAcvPPSJSw29iKtsVDMJviokJhsaIskjFkkcxJokMYlonH0zuo7ksk0wcWQnKpD6aWBH0oDPTDuPdFBBFCH1qtJvIJ2q4YudSjjlZcRchhSkZCOtt6p+BGJ0qyOfV1YsIGOsisS+E8FXE1PpdRGz8nifUhmJjGRumtgDDNDFiTN5JX7AG9pqO2nmptCx7Wl9S2ZEPro+4s9hw0S443a54+vQQW3lODjeUNrDY69heLni7uydemjewLinWsl0OpxXffb6gubWTkvZgCK0TDYYgu9ZgSk53Jc/P9ljudWzXNS/dO+egbtkrO55u97luayICWL5+/Jz1UFPYwKPlBTtf0gdH68VTKGxg21W50O0qhYe+LTC19M10HfSj42gpaWbFstZjJVoQkUlqfhaGa1QkTMaU8kzegAjLMtUBWU2JmrxoTfqMzDfhLMiApNaPiLEwo8HMIm8RVCazgqOZ0prRiryciN9O2iTRJqHaMYGRTitFQ1agcjubrxXADFbe62fh0uccv50sxr/5GW/9we/z2Qj8u59xnp8BfuaLL+lTR2unVEzKUGhcqO5UNEnmTTUftc+mi/I3YxLwTOW20YJtTa7HjxZZfMqjgAkMDeQ+GmqM8jGKuGz+vghmZ0VvIkoaNpcSzzwLs3Vk8ZpdcvXS7mg6l2oCktHBip5mEya32Mp3xmTTqguhno9LvQhZyD46bD1SOI8B2lFcdGek27c1Qtx6vD5g01ZsT5cQDMVSSs27oZDsz9bhPi4p1oaD94K0oCsCF284hn0w3tH1UhhTXtsE0hle/182FB+cQgiEeye095ac/ugh/GDLSbOlciNX/YKDWliYHz0+gQC/uqs5WLVc9zVXVcOy6OlDkTMbhQk5+9MOhXQm0xA0yENp7wRWLtCORcZcGjfy8faQ4bLGFVNvlMmDIGmB6CI3mVGZxz8Xbsnn/CKBlyEZl1TPEVNj6aAghEmNeWes4CxoVCYl9pkgrdHNysr8GzXEUZlDkpFREZiZ1oRNzX2xcSoNTxuha01ibqb+of9/05z/XI8oD0qsvcRTWTtS29VFkmCtDJjd2cw2jEb+LndEqrTHwNwtM7hkFEyf4sStxS9CZmSaTga52Dip+dBwZFb1l72YEkxvs4XXySX0VnKsajwiZGvTxBmm+3Fbi18GbGflbxyYzmJvd+I9GfFewmioNpH1Ky4rBplemtUMpiAuPH0sRbBGU6u+YtNV9OO0fbTbirApoQo8fPgcZyLrrqLtS+k3GqG6NNz55R5fWYqdx/aB+2dAgOtXa9YvudTeXp7t/V8MPPvGCr6xQrtex0IyMLYUirmGNcuiF52MR5GPnh0xPF1wWjSUxy1nbsWtfdGbqIuRq7bJNPluKOgSacuvxXuwZSBeldSnluXXe+pEXOt9wfOh5nS9wq1t2j0jOe2HXHsWgQmJIZnaI5gw7d6CRSQ8aJw8EZGmM5nZGzX8SO+5nZ3UyUgLXrMhVUplk4wUMYcPtpU55BNjU0OcUMo8t52GN+SUuAmTvqrWZlhtdj1fY/+UQMp/dkfS7MtAZWKpAXlgdffPjLZoppr8lIsmqtJO8gbsxJgDMfJeazySRxHqgAp6RKsTZkKUzWBkAavRah1Th2aDKZI1L8RjUcRcdwU1bkYb8CDnCbUs9FhGuf/eEBZh8kJS6IKBzV2HCuQUa8O4HxmrtGNABmHbXZVTtqp4FXYphNk5lvc23NnfYExk01csqgFnI10ratLbB4H1k5LVk5FQWnwtBi23Ihih2sD2AZRrw/MfFGOqDEDbS1HZeGugKSWoL2zgqmuorKdxA7cXnuGW5Uk4pHq/xjxb0d72fHTRUO53VJUI6QzeZs7K2CcwOckDkjaEUEM3CGuy846tDVzuGq6e7QmHKeiuOptrQbQl1VNzO9mQtGTapC7Zk7LUlCnIVZEqL0iaL61BSU8693JkEUwuwVYjE+og8zLKBM/dsJiEazFqyJRLoYYqZbzs1B4CyB6N0bBZwxcL5vMxyhfdQMxcwDApC+cjGQBdbPmvwrTI5QV18W4CSdmTSJ/XMMQv4m+x+IkDlC2+CNDEjG3Y0ebFnhsDp0kjjL0ZeGVSiJMKddTLgeR9pOu1WzESsYxTU+BiopeHJjAcWOoz6G4ld3iQxr9xEWCwhN6yG1xW0YrB4PsSd+2SwInDvbylcIFPLvY52tvRFCObXshgdTPQjdK38+KrhvOvFey/KxyM6gqKbWRx7jl8N8n9OSuLzIpWQXckvTHGvUA4GHG1Z9l0XLSLTCzrg+OsFW7F9a6haga6B5bmvYq97xX4Gto7jvGop+9dps4DLFY92+saW0lKO44S4gVnOP/wEHc4EHzqVva4wRkZQ5tcbTzZZc/AXxEnr5CpPkMVpRQo1Bka055AQEI/K4vdtmY6rxoiITJOxkLTqil0zMYhmtwYKuMH+bY1tBYjFUycuBop1IgJd8hqVQkYJSbCVTldz+cdL7iBiLjWJjRZGppKXwCT89JKXhHu+7TgTZys8bRzp8XeiFtfbG3OVasbJpJeJvPcY949gJhiy1lVX+7xmeTIg+bEnbibIUmWq7eirDoDk6vKnKwTyZ2/ylnTnlSJSC+irNFGbG+lg1Pi+VuEoBULgzsrGPc9ZiV5b2OiZHh6y+KjgvoCdvci3cOBwkTW1w2hdzw5E8DRmIi1McvUxSowrgxuZ2hvG/qjwO5BpLy0rH3B3nuR5jJw9M7I5q6jOzHUF9KYpn/Yszza0e4qVquWXVdx0HTsupqqGDndrrjeNuwtOuGLDAVm62hf6ak+KTl4B5pTw+ZRTX/PEfZmtE8FYkwizaXwrr4wDIcGPq5lXTiwqUArVDHjTSaQDW7OMICAfskzzCBzNDmUNZ6stZCFWBy54habYSmZJ2Oq49DsSSotNyBGyjGprKc/1IpMCVOZ5nHCT8SbmXZGDVFy9Wk0mVClhsskj9d2U1X05x0vtoFIyK8ZTH6ouR9iJQ1sQh3yZ+fhRCwjbmfz34c6SGctUsyGya5kfuBeqapGjfhMzTqV4lZpUJPLCTqxpmvUgTAk+ms1WXKjpSKKaqcQJuMaUTQkzaCDmybNVorVNC1lBotrDcvHMWtltHdFfcq2Ut2JRepTKk9oC9yVozq3HLwbaE8s9ZlhXBV0g4XG4y4Kwq2B9rLGVFId6q8qjI2svitbTnccqa7kpk2E5jTS3oLNS4b1q47mmbD/to8C7S3DeDhido7tsKK4clzfk85i77cl929fZqGdEAzPT/cxLhA2pRTaXRf4RcT1UF9FmgvDRV+yexnKA9HI3K2lcCtuU2arDpjrgsWzyPq1m4ss96UYSSlNWY3q3d3onqaegoOYsg5z4wDkbMZceDZoCjRRD6Kb5m/OpNls05KgbPJCEtCpWhJmBGk+nLIq6TtMkosTURuTz5XDHcXctMFOP3kUajxUcv8LspwvuIHQm1JZroT8Z4AvLSC1kgo6AjDT/sveQvYUFOSRxetaGXzVBFSEWj8LMighuXDSzm8ahImwovGvjJZ6GWqocsRUgBknbn/MW026jy5tPyqeyzQBiiub3dPyynD15cjBb0Y2X4b6zGRCjsbisUJi9EE8p3IDi+eezSMruMGFZRwMXDjGvUBsHWYxEnvLeCXApR0s41I8I78X6I5driNo70oXL9fC7sFId8dkMLbYWarLgu2rI9Se8GCgfK8RbOJOYN3WbH7jiHi/ZbXf0m9L4q6geVxkcdf6TIDN3R1LdRVpbwfsYsS5yO46FartpEaneuboHwbiwrO9X2YvgOQ5zKnJOTy1umGQ09qGCVOYcwrsfIfXhZ7CicgsBEg4hfVpVzcTHqAUajfOyFDpezL5KYUD0STvREMc9SIGMhVcqdsxwV8a1iqxS71N/W47qsea0rYaDn/G8QUQxT/nI2EC0WmBS0SbnqpBsJ3JLcl0t8j01oqMN2hu2iZAUAdTpcNzL06bFvAsfMBGWawFmc4qSkJTW3slxORmOmYaIN/EfL0wTcjJS2DqnFSKuEd2LVP8GK1kV8Y9uXC/COzue1lsFRTbdE4P5bUYh+pcZo3ZOsrjDvYH7ACnP1Ry/PZIfR45ejtw+LZMqMVjh1tbuCol3ZqaC8d7Hd39keEwUlxbfCPdqXydmtnuBbrbgfLSYVvD3rsOc9zj39wwHEQoA8XTSlS/V5FwZ1LSOvn6KQcHO7n2TYHdOIodLJ4amudw8L40BR4XcP0aLF++pl6IX2yKQOwc9anDdJb+3gidZfXdUtrNpexTlpsPs7QgTOGEeuZhMsRBqS+665OMQYpocle2mZo1kPUii53E+iomk9PdZjJUxTYJ1qbw180Ea7NRidP36M9YcBOsV2PgJ6MxrYmYL1oyIPq+GE23+3wX4sX3IBy5H2GcW9xBQoRYanelOCHJik/4afePZSpvDUwuXwJ38gJOyLbpPlWNp8BWNye7GAgJHEqUWg1nDDHHr7ZLIjPpPKGKuWZ/Akun3wFsbxPvP+YMjpmno2bMOaJh72PP7m7BuJJMTLERjYL+lhfqdSlMzqOjDec/WLD4sMCXhrv/+wesf9dDqqtId1TSnczi68OeshpZLXqurhasbm8ZjyzLpmfXVawqWaQhGtbfOyS6SP3aNc4Frg/2WDQD9w6v2X8ovTaeP1oyeEf1tQ190uS43tUiNDs4ITlFqM4t5XVkeRrwpaE7tGweRfwyEg5GahtwFq5OV/Jcdokvkjq4Nx+W9IeCV4VFWu3JmAtuMwnFhGqWGZjNOTXuOQOasCjbkxWjpTEN2YtQlmMGm4NoSajHAIikXeJaRCOEKN1wtLw8g5R+whc0lHE7k1vzmcm5TXNo8lB1Tqkh0LTrHFy1qdHxFx0vtoGAvEjUmmq855swBXIa+6cqOOUEaPZDTjQ7n5+4EBjZvTVuVNdOn75fBWxrMaN2tJ5GQeXv1LCEZqJai3GYPpsZemlC5oxM+pmzI0rWQa7F9Ho+sl5BbglYQDSR518v8oC7Tu7FBOFTjPseGhHnXVQDw/01a7uiP3GMi5dZPhkYl476QsRPTYgMJXBZMriCC9tgBsP2rMZ1hvN9GYBuUbJ/uGNZ99Q/IBL1y6TjsLzzhMqOrIeay34hOhl9yWZXU9cD66uFsEUjuLXDbQ3lYHj08y3BjVTPWz75lw6JVioYQynGYf9E+BBXj/dF8OS6xIS0MzYesy0Yl5G99w2XXwvZ3VHMbgAAIABJREFUA9WQTBeJHvnf6iGQFqNKyYXJW1DFJxMnr1Nj/LxYk3cR7bS47Tir0kwguy5s9Y7VKJgsJXdzngpuogBnCk29SYVeYhhc6iObpfLSHNF7n+th5pAYMpHqs44X20BEbgh1TAslWdbZg8tItrLVZl5ERogT2KieQ6giDPNmvGQKNumUEoOmfL6y0vy0WNUYxNSZS9Of2vhXryPvDOk1Zd3pfephvMTwsYxopyZl5wGTUEiaeK4T1uDxrxk2jwzVBfRHMmEkS2LxQDc2tIuO0nmOH1xx/viQ099tsV3J3geG+jxw/FakuvK4PtC884yLH3sAQHdo8U3avT4opKR5UTAUDacHEb8KNPem5jkfXR3QjwXbTU3oHPaqmJTHW0OZFlh1aTh+e2T//36f2HaYvRXxYMV4tGD9qkgLjncHGAwMhu2mYbHscIcDflNQnVmGo8DupTGzasuNyd6eGl2TMYjJ29N09w0hmJRuzKCfmTCq3DHLQUzl1lY5MJCVojU0yPUUOcaPNwyUHVL3+JlnaTPoPdvxC3IaVXAFjYeS15I2QJ9IXZpJy9ohmBsKV+p5qnHzzecvwRfbQKi1V/ctN0+dsSNVsbdQ/rrGWTc7f/vFVP2W0z2Akk5sZzIAmrMTsxSS68wEGsENN1UBy+y1zHw/ATWZYskZ5yIX9JQTJqK7UK4yjDe9FgVUMzLfyASuLwLXr1ppubdJSso+YRPR4W/3bNs6C+WY0cCtjnG0XNsKsDz8q+9CCMS2IwJH/9cIhaN7/Q672yV2hOpqZFw6QmHY3rEUO0M0jvHpAdcRzlMPD7+IFIPQwEXtKD9uuuPIwTvQHcP1o4K9/RUcH7B57ZCnv7uk/XJHDCPlsuf+4YZP3r3F/oNrChs4f7YPncV4IYVhwG0s/iASq4AdpLM5aRhMosxnT8+DllzrTnvD1VYPMGFOAOMqsVrjNH5WU+tKxVajouFGOpd6IXYwjAt5NhaTWb3T+E/4iGS1BGdQlq8A3zPOzgjMQptQmJx+1/BbeQ+agp2XtWfs7Xc0D0IBOhWlreMENJWJQTbYiRCCfl5+McOE0qoLlvkQXvkOMeeGxQiZG66iSZhFSCIgJI9EmXFAdh/zojfxRnxrB8l6ZHBJm7HYKSac8BKIzaQvoHGj7AImu7baP0Hz2OU2UJ85+kPZFXwdWT42dIWh9OC6ivauZXlry9FqR3wA2/MFy+MdXRW4vGdYv/wq1YXh1b/yCfHxE6hK+h+4z9lXa9avgn+ppfqNBe2XOtxpJUKsL++o6lHo3N85oNgY+pPA4evnVIXn6bMDyg9rqq9fsvlwn4dfecZL+xf86tmb7L7Wsvg7NeG9D7n8177B2Q8Z/Je2HO3tqAov9GsTaW7vKBK1ulwODH0tmaFSDKW34gm6jWPxJHL9WporIDhEmHkPadcRF56JPcm0+NWzU6k/24txmHNVQlKSsqMAjbpRadigbRgyizJlu9SbtIr1WHBaZDcLoc2stHy+mUhLPtkAprSsXLKqTqVLFPkJFdZNc1Y9I+VUuO7zl+ALbyBsZ5KUlvw7S3WrbHdyx+ax1uRdTCBQDjdSrJgXcCK/5GxHsuxqNLRCUunQ0YhxisHI5MrdmsnGDCT+D3WcsIhk9QU3SO6qptWCuZn9aKdiG5PuMxbSvTtqzJ2+M1Tyvc+/XuIr0DaZ0Rm2DyMH35VWfaEAu3G0y4png2Nv2WFvbVmfLTm4tWH0lt0D2DUVH/yr93n05z7EdB2282wfGHwTeO3Bc77b3uPHvvIu2y9V/KN3HvGvfPXXOCh27LmO56+u+IUnr/NHX/o2h25HaUa2r9T8P19+lZ+49av8nw/epHYjPhqGH11T2cjeY8fmj/wunv+oaFwcLDuOl5LVeLS64IP1MXcORA0qRsNuU0OE8XDEXTthmO6k3P/OP4hs71n6Ey/zpkz4UkjjmlvsxVzlmOcIZG8sMnu+ZZqIYb57mxlWRd4w9NzqOegCljkn4rcwhbkTGDFhGHOvV7GkaKUBj3o62lRHmbhK1XbK2EwbqxoHxa8YZc5FJxL9wd1wdr/v8WIbCMO0OEv1CCagJRiTY0itl1DjEIvJQ8icBkWYU2Wb0mptL656FgVxUvJtE5tRWWsRULKTKglFDQGCjGgGLtP166S047SYcws1P3kp2qBHMQZcxCb+hNMCtHhzXvl68jS6k8hrf2PL1ZcWXL5hc63JxVejdCOrJP05UDMcjrSp6/jeyVa6io2Osh6Jdz3dZskH/+E3eeW/+ocUzzdglrhOpP9vP7jkuNqyKnpef/UptR04Ljccuh37rsXfszwoL2jswMp2tKHkm4ewDSK1X1jPx7tDim/vsfw4MuxFHv8hj6kHjo82HDQdi2Jgr+zYjqIz8XSzx+Va9Cvd45rxeBQ86W4P24L61OF2hqL1LJ4Gtg/k/qfKRX5LkZ6GmXEW3tkk/5aLpJLuJNGk+peEHai7rtiYlYU3ZTCmhZ29xjR3ckaBqQhMvQxtw5dxBz+FZoqB2EFEbDNNfwQbpj4ciQM1ecDJWLiWHFLY2XnngOX3O15sAwHTjm2Qq03l1bkuXsEmbQoSp/d8E26i/ir+aiZLGy03eQoxuZUztDmX8sYpRjQBou78Rum1cu65/LjuCmoc8jnmbDwlVzFZfYyWDKd4WGP41KoNJGya6ynu7jeEwnD8VqA7FBIVAcbUT2Ncpu/rLbvnC+xy5OBgx+GipS5HrrYNVeG5fFgwrgt+46d+hKO34M4/CFx82fHJ1T7r0xWbk6cclbtc/DWEgksWHDppzuOTgK0j0MaSj7oj9oqOX/jVr+CuHYs3rti90dHeLbC3O9gVPLh7wa3FlqNqy0HR0YWC592SdV8zjI4YYdhWuDJOUu6XJeUmCec00O9ZukMDIbFh00LDSIo76zkkbzAor0WjAd1gEoipIa0eSkIT73LyKDLYmcZPxjelyhOpiSCtGfI5wpQ5C+nfNjXmzRuQndrtaYPg4GYYCDKvlFzl6+nzrktt+Aomg5h4Hr5Jm1T84lTni20gFHxM/PZoEf58BNMawkLo1jcTwmTuuknchGKT2IezBimZ066VbsnoSG9LplLa3uSMg9Zo5IKeOE0u7ARYgu5Y02UJvVdBJPV4ZJKiGRGQxZ8mSwZBlTGnLq5Pu0A5A5kiXL3iOPn1Ad8YdmVBdSGfqS5g80qkOrfsvtRjyiB9Sp3MshgNe1WPM5HrtqZcDPSjwReR578n3U8biI/3OXjb8YtXb1JsDMuP4dm/dc7ZIIpQh+WObz17BXdvQr62oeKvfet34zYWlgH7aEffiwRgcaelWfT8wMsfAtC4kYUbpKuXF73KEE2q4HQMV4byyuKPgQFsayk2Uh+y/2Fg/dDSH8UstGL79LwSFhWtyWFbsGnBN4GooKa9OSe0RkPBcFWUUjwjE9kU37Bp07Dkgr9YiheZtR/m9Q+zDUdl40IpoYLOlXGR5mqc+mko8KnegWYkcuo1GQsSBuGrROdOYa6ZeQ2/40MMEXexKPtxKlghl9JmZLk3uRhq2mVtakRiUspKXveqxFRMYGJWGIoS72f+PUyDPiTX0yiwpOFKzCXdUlYuO4vbzV1J4RloPlt5GwpOAbk8XCeg20pY5QaYM/qAWVZH/tvdi/QfWepLj2+gvIb2TqS9DfWp/JHZOaGp7w84F3MXr8FLz44IrBYdVTWyfr7MQxGS53b1g0MyXJbFU8fP/8M3qZ45ITI18pn/+Vv3ZLE4yQCUt1tOXhFwpBtEtKYoPHU5cndP+oPul6l3qBsYg+Oyb3i63cdHw7ar6HuHSeI6DIb9t0rWrwZpdddNbn/eEc3ktWWxoPKm96ZZjrxInBgFpV9HC6EJIgnnyZMqM3uJU4Y6qtdAduVDmluxiNmgu8RXsT1ZVXtKwaYwJwGQed4Y8RzmTYQzR4MpZFXjoKXcqoitLQNdm6TyUygdtIr0c44X20AwofUxuWRTVaa6Y4ZQSf9ORYoNZEOReeiQqayhlIWb1qacJ8pOYwYImkUoZnwJ0oetUJu1/Jz0dyB/Jznm9N5oJvn05DrOmZk6ebNhYnIndbCBnLvWnUDPYcKUztTPnv6I5cEvBu7+UsuzbzQcfyeyvW/ZvBQminfrsAc9VTly/d4ht39ww2G1ow8FT8I+/ehY1T3joaO9rEWVq/GYEop6pCg9h6sd5Q8Ethf71PdlS3Qmcr1pKF8eqIqR4+WOR6sLAGrred4tOd3t0XtHNxQsq4GDquWwbLOs3MJJp7JlMVAXI5u+4urZHnhDuU1VrDvH+tVAsTPUF4Zb3x5YPypkYekcKWa/K3BnZtkhpmebF8kMQ1Aj7rZWDJ9LuEBk0hRxnzo/NzEOmL0XpvGdpO5nxqqIN42VmYzDHCtTDGFecuAXCYvwZAlC7c5FlDkzLpNcvp3etyOiFv85x4ttIBQAVHdKV7Qhl3lrUQ8kY6IdmmPEhsm10yev4N3cOGg8BwnQ6mblvS7mSTApEievQunRKU61rclaEBnIUlDRyjVBmoDMJldKcUEycAEMN8tzEwaaMQcNLVw/u+5kNK9fKjh+23PwnufqZYfbRaozK4tmbRkX8mWjtzSP1rII24aXD865tdzwbLPi/Fq8h2q/pz8XNk30Bj9aXr93ykW74O7ymr2qy2Kyr6zO2fmS66GmcSNXQ8Odas3FsGSMlifb/UxtWdU9B3WLNeLFjNFSWY8lcj3WXHTSabwbCsn09IbhZOTWtwqe/7jHXTmKa8PeB4Hd7YLtfYPbpdBOi+o0alNDMeMRhATgZf1ImPz2hP8QpObFDEmZqYzYjZTYZ2wppZyVMyEeZwKsMzkvAd2aRmX2nZoJmc0rLRCLKWtmg8k1E5l1q5tawrBcl4DKPnkJOv9M6uCVwhoNL5SzEb7AAnyBg/HP9zAkpF87Es8IR9q5uNiaKS2ZFrSkF+XhudbMYkXypMkUWi+vByXz2HhDVwLIg5vbPBj5XM5eWNlahBmnbmacdVeedorMaEvXYlNzlDl7M7upcYpZY06Jkgtz1K2EyYOIhQi1mBBpnov18LXJu87Jt6Vz03Bd0XWiBH12tcQHw8ebAyrnOVq01PVAXQ+iC7E3iM6CkUX23Se3MSbyyeYgj9UYLO+uT7jsG5G7H8SofG9zi+ux5uPtAc5E6V7uPAd1y0HVUpjA9Sj9N8qEPayHmiFIWnMYHKYONM8cq++VnP1wpP64YPW+Zfkk0t6y9PvCM+lOVHqQqbBKd/L07/y8lMY8zgy9Cq+o5xlMBr+jAUYRhI3p35mfMtv1bepBMVfIVtaris7mXhZWx2s6RygklA0pjHFaxFekkMmSy9ajk4bAdsaL0DBGu3Dl8EO7kqfzfLro7LOOF9uDAJQnoJ6DHbUPgegEqMrwRF4So+AbGRBN6czd+MxqVDKKRc7XGYIzmAQ44skhhu204IsMaKpbh/IriBMA6nRgFUiddhmjXP4UL7uWrPCTqzdTnGpswjXaNLCk3SHdSi4q0rBkhPYWPP9aw8H7I0fvjFy8UWRx1O1dUXxyV47QWnwTKA861tuaoXYsy1QpCfhgKUtpW1geiPCrthW42jY01YA1Nb13NMVIOxZsuoqqGKVNYTWwLAfpR5r6lDaFhhA97ShhxbLoadwovUujpXEid7/ZVQznDWY50t73xKRZAbB7ECm+B4fvDDz5sVKa1c5qJmAWivnpmZnZbj9nM+qhLjiq7AUzzg0iUJzwMNcJO1LxgFipxJzJ4Wi05gbV3iThZEYxFra7mXbN3o6TzS+T5TKuATYVGEYjBiQwbTiStdI1EQm1GsLJAzFe5P/saG4Alt/veKE9CCC7cnacXGgduJAIIBq3zRFr3f2D7ublVC+hu6+yJ4OmpRTFDhJmmMHkLMKkXjW9FqqpKi+nTmGSiQMIgo3kmHAWV2Z69izE0N1Pu0LDZOnnZCpdDLlIyCajYVPaLILxkatXCoqdqBu7Haw+Cex9KJkd2xsYDWNfMHYFq7rn8fmh8B32NsQIu60UWBkbpSVgEbAusL1YsNnVPLnY5+xyxfPNktOLPbbrmvPn+xgzdUi3JjJ4x7qrOKhajuttDksq66WRcvo5BssnmwMuu4bw0ZL939TVDGbnsJ1h8dRw8A70+4bTH51KuzNvQMe+jLmK1iYgMxTJyCZ8AcgsXNuJUQhNEMBSx0Wf+2iywrrUMUwl2iaSq31NnFKXOdTIYQT5OjUE8cuY39MaDMEWIuNezP1CCVNKMyuZWZ0b6fwJHBc+jbBE52pmOseMNzfYmp91vNgeRJwsukp7R5jUeRXYmbEVta+hMt90p7a9QVkkoTQ3yCSqNajVdkpWATIYpBkS1ReIdkpl6kJVpR4QQ5Vj4cSXsLsJSc+3mO9PcQ3yjqH4hbqTZoadZC8oTm6mhiCxgP7Q4BeWo3d6/EL9bLh8raA/lH9W55YhGHwwmMOeJx8cs7ojHbvPNksKFxhsYEwK2CEaFsue3bai2utzW8JgDN5LZiJYQ73X4Yx04FqPNQeLlqYYeXhwxRgs590SHyy9d9xebtgrxGuxJuZOW++enYg7/vsuiU9WNKdCo94+MIwNlGtonkf6A0N/PPWSyBoKKWsUEgchFvFGSXZMtHUF8gBCHYSfoMYm1T8Q4mTAvclhRd5A8lgb7BjzxpF7XSRCnc6neWWn6ogq1jQuZzVDRku8k8yh1mMkD8MOk4juDcwlGR7lRiihKoc11YRB5LqRzzheeA9CH0aECT8AtA+AiHUIKSakdJJSoJXRNhcPNcHkGA2mGFJVgW+QR9JDVvFQINNW8+Cm0CGWinuYTI9Wt0659CGBR/PdZKJqz0KScRq4XE6s1zNj3uW0XVoQ0U2eSr8fufxSgfHyx/3Ksr3r2HvsWX4iylIiKiMYzfJXF5ha5OSfb5Z87fYT9pqOvVUrJKVWOOLD4EQOzkb86Gi3FeNQ0PeFtDBMHc0325rLqxVNOXK1a7hqGzZDlbMY1kSefHDMQdlS2ZHCBLZjiTOR3ZgaE9nI5rKB5KVtXoLmVMajOzRcvQ7bR5JiHvdCBh2zt5awhAxGMtvFdUElD1We9aTuFRIPQg18rsKcZSDmY6WEKTX+diR3ZJc5dDNcUFByXjCW+7TMUvXqNaokv2/iVIPSRHw1Gb6gGqYJGFXNk4xrwbSBpfXB73QDYVPqUUE23U3zTltMO6p6FhqPC/EkTotSgU49d6qIi+plaHwap2xCLCb3TZWkVAkKyClQ6V2Qvm8+IMFkCTpI46OW20wTasppm1yvgSGzSNXYyUkm9F3vSSe8Ituuk5324isVw8pSXwZ2dwybBw5fi0KTLpD6uWXzqsc9rRi9xQfLrz+/SzsIjrBa9MTUyGfsHeF5RbcrCReiV1mUo7QUvKjxVxXb65qqHvGXJcZExtGxqnrascCayH7VsVd1/PCbH9AHx736WghRxSDS9G1DCIbyuMNcF2Aj5ZURBaYgGEN7N0qFbpdQ+m6SBFRwWIv4dGESyVWY2QjMyr31GRs/gY3RMoUVmag2lZKHktzJSlXJTCrO0jAz14L0s81DAfCEOShAKvM7Ae128g6y0IvOUWX+IsYgZNFkco9RmQsaXsRseLKXFb84xHjhDUSu0bfTzi6yXpPis2pEqPXPu33qUWDm/yWrqbttcGSl6ryzMKHdtjMTp1/TW4Fp8sQ0EWYpo9ztuYh5AoQm5uIt34TMhYguZmOh95vVgZIbm3coy40JlCeOIbPp9JrUu2hPDLvblt0tR3MaKXaR6jriOlg8k5/1c8CDv99hEr520HScfXREn9rbndy9oqoHmmVPrEXQ1hz2hHVJd7aA6wLTeKgC1WLA2sDLbzyTpsAnF4zBcmuxpXSeykkfjIOyZb/sKI3Hmog1gUeHl1z+yi38W/uMvRNFrsHiG1g8idgx0h9InYXbScm33/dZA8EvwoQPJWOvzz06AZl1vHQuaYyeU+pByVLyIbuzuK3NPIRsRJLcodvMGtTYiUYt2FGcSHyFzFeCmSQS1Yg53ahkzqqI0UTdnjYtPaxm59A5ELNH7ZOXI4xceV6CYZjsZWQc7nOOFxuDyFmL6Xed/Oot5AKU0UzVbipNl3pQZDLMzPvQBy/GZiJZRci4Q9R0lca0kAu9jDeQCFpGQ5hea/pVLi5N1FTwo0YoMzdTMdhYhglIMvI/E6SGwg7krIkKm6oAioY2Ju0Wvpk6QUEUoRUD/YFkQRQUbW+JB9TvizXoD6F54uiCYWcirvRsCs/JowuMiTTVgA+Wuwdr2rFgOHQc7rW0Q0Fc9mw/2Ke4t8UYaOqBRTXQDQUfPTviG69+QGEDNIJh3GnW7HzJwg1YIkfllmf9PrvUd/O95ydUb16x+WQFncOvPCYYlh/LpB72DMVWxre9FyQMGAzHXzrn4p2TDDRmgZ2UgdLUYm5ynAyub2bKXynUjDOPQXd2AaHjFC6oAQ/T2KgxV1q/ydv1zfABE7NnoPUhqjcSrcleTqb1z+qAdJ6FMsI41ePkUDPNIdfNPCOtcs6pdpM9Cfs7utwbScdkFZxZYcmnOeRZIgyEkpp3erLLrlY9l0nDjfTnDYQ5D1BMpKWYF79++Y1ycTtNBDvTSTSDpE11oHO8G292i875+uSWjpUSsyTWNCpAqvedJqyCT3rkdKeBqM8uGYW9j2RiRiPlviqsYj2U55FQWbqmJFSOrhk4aDruLq957/JYuBFuxNnAKy+d03upzHzerih+6Iqn13vU5cjF1ZLDhfDZX757znG1Y1V0qaem53psWLmewnoWbuC43GYi1VundznZ3/Dx0yOq547+wYAZHK41bF7W5y33uH00iqvfSJrim/c+4Oe+e0JciBKVGeMMXJ5V6qZnZ6KkEX0T8+PT3pUZHxpkUmhFb1ZzSmFiLBIjd9bjM4OHeb6qFkgKIbzMPb2XG0Bh8jgCM7EjmLREfPrdxuT5TB7kDQ84ZzUEkM+M3TDd1xwL+7zjxTYQun5c/nXGYmQC+SISS6p7l9hlmePA5JrltNcoCzQWRvGsvIiz+Kw3GRAyg8nWNtdQAErfzdfbz9SChun1STQ05pAox7RzoChOA51LvAetGiXx6uMNw8YYJwOjaWCTagmyDmJke99w8D3PuHC5ok8mqxiM+hz6IysNiI9NfuZHi5YQDQdVK5wHN3BYymt3mzWdL7i3EBzhSb3Pcb3lS6vn7HzFab9iVXTJa4DCBGo78rTbo26uuPYNQ7Qs3MDhouXjbz2gGqUxj9kUVJdGVKmKaaHs7iRwTynwLnI5LOCox55WWeBY5QLVa9NFpJvEnB0LTPRpTf+l4XM7M3EedJPxs8wWch6VrQ/KuVAateWGZP5NXVMyv0HOOwHq2dsdwSqTMqdZp+uRF9L5w2QMQjnVBmnoqUZMC/5+Z2MQ6Z5jQnN1B5XshQxaRphngIzyI/IinsXqahyIqTYjTt6ChiOunQbD9olMYmWnCU3MBkgYltM5cnFZ0qHQUnCYBsgkqbN5Ce4NMdUZ0JhptXYSngmpOpCYMjgzV9K1JoNR4/Eo6kM7uT47Goa9yNnXHONSWubJf7LTBZdCjVMhVHRdwenlHqe7PR4sr7izWGdOwwfrYz7YHHHeL/jWk1cA6IPj0eKC1/bOqKynNJ6A4aTa8nh3yK88e8Anu33KxGu/31xR25HvbW4B8Avfe53z7YL+lsd1ci/lldzv8knAtdDdiqy/IinRuOdzKhOkyOubb7wnrndSuM46oeiCidkDmS8YDR+1BFp1GfTvNEOgf5exACNEJTtM8b8esUjzz0znkjmVXHs/DXlmeEcxThlXg2xwVPdUPIlkRDRLNiqT+ObyyZXATJR8N4jByGlxz+ceL7SBiEyuUGZTIjd+M9U0c9FnoYQyywxpUJM77lMtgq9jXtSaPsxAZ0w7SpHSl4lI5XYTBTvLljG5rvq608Ior1ZJvytm9zMDjrOBVDcSyOK3+d6KBKYqCSvOe26YrG9gAixvbXMK1ihdPRqwqWfDAL4xLE4D9Xlkd9dQnwtWUV5ahquasvRc7Bq+d3XCt97+EuuhprKeW80my8EdNC0bX3G73rDzFV0ouF2veX93QmVHVq7j4eKSH7//Ph9eH7EeK3a+5H/7zg/xzvo2n2wOuOiXHB1s2bUle+8UtHcCi6cCQBoPV6/bPEZm6/CHozAdXYQiYJuRlevZL7psONzGZoq9TViMVX6AuuL6GLV+ZlZjAeqOm0kY2ZBrGpQgNSfpaRq6SICgUv0hjWkyADk81h09geVzo6ShgI5n3ry2Mx2JMoni+NlCN+QsWbGR91wHmpmDdN4Een6R5NwLbSCM3pRiSMlzgEm8df7wMjNRLbbGXSa5cLqLj+pK6iKeXMLs9gddrGYmhCvfpXiH1mjkpq7pd22Hlnt8Jq/EBHIVqetEOq7Y2ly2rkcoZ56IuoND8pb0OlJ+X9Dp5PEoL+Neh3NhyrLMCtCMh35fzr98EugODMNqhk84OPhuxPSWzcWCECy7XqzZEIT49NbpXf7Rdx9xuttj8E6qM33Bdy7vAbDz0kn8rF/ypNvnu+vbXPQL3jx5Qm09H+8O+L1vfI/T3R6l83yy3mcYHfUv7bG7KyFRezuy/NDSnIoIb3snicseDiIuvEiz3YkM39VYc7te8/u/9rY8CydWXtLcU4YrzwtNEaZFBtMCjckQSKwes1EXEp25Ma7qfbpulplIuJd+31yW0A5TR2+ZKyRQkdz0WA2YYm6Z1Je8j5BYnroJaX1FxiFGEoNS5quvJ6NAwt/mc+Pzjhcbg0jHfDBAB4qkFgTzIqzc13DmOrlu9lBm7l5mk6WdwOgiT3ns7BHYqRpPd54MBrnpGoyeM12nflZjPRUOMUyTUangGh6Z0WCyLNnkYeSU20yId66zCIi3YcDYyOZ7h5SzFJkU7phM297dM4RKvI5yHSl2ARMdrpXS4MVHjuHAMn5Q0S0iHHhO1ytttj7tAAAgAElEQVTqcsSaSLkYeP837rF8sGZI7MjCBj5cH+FsYDuU+GC5XC9YLToW1cDH79zBHvWsVi2n5Up0Ht4+YLjXY4vAwQ7KtXgy5TqyeQD9UeI79KnpcjAYG4WXoVod3vLLTx5x8vKWOoUwoRHvK0vNIWOhNPxg0wYRJ05L5qJ8KgTJcX6cFq4aZ50nQtKbwEVRE594ODoGGqroHDM+uf+GzPrUUgDrp7IBNwM1bRZEItffaJau2DExjyMU25vhMzB1/ILf4WlOkjXU8U0qQaAEkkRKST0BIpD7FMxASp+qJ1WsAxKopDUUhlz9NqffTmy7acfIFOiZsbnBepyDZxHszCCJS4QUDKXQpthJtaUeWk8yB7Ssvm0joZjSahnVT/9lgRKm3YWQ6LZacGYjFpNShnKP3bHBN06oy/uGaA0nv+45/6ojFCmTtBi5vFgSW8fxgyuGTcni3gZjIm1fsm5rdrsKvy2w64Llq1eEYKiqketfP6F9/ZrVw2vW50v6quDq6R6mCuw9Mwx3DOaThvb29GzHhRFh1UrqCYZj2SHM1hHrAC5iXMjG+frjfa7vN6yKDnvSw8eSotHu6tHODKpNg5PGLIOUik8UUyihKc1Pl5DbnqkaMszmQJT/zVs9+iQxEGKUSNMnUpcagrQZBAWiw5QZc/1ErQ5FzNWdeX6pdzLIZqNiNJjpZ7Tg2si4MLloz6Z7d7tPARefOl54AzHvgQgzb8LoYMwWlJ28yAwCznYBP9fvm8X9uUGNURcuxaUzboKCPLnmQtHgFA+adB7plDSbPGpo0LBh+h6YXMOksJYuPhKdmbwUm3a1FFq4jc2ZEO0qpvn84dbIohrZHY80H5UidhKTzbORItWDFNsp7BJ3OjIsYe9jj+sC64cF1YX2HrXY543s5g8kaDVloGtLFsuei48PWL1bwJ2AKYX12P/aYc4KjYcj4/kC20iesb2ucZcy9dZf8pit4/7fCzz5MZvddYwoZJlRen9KaGiJCw+9xTaj6DvYpOpUBVZFx2as+SNf/TY/+/ibYFO1JEwYkZ12ceBmoyTdaQdSa73EMZj1zbyRJtThyryU+Fs8jzn1Wdm6oZ6IefMjp0gDomCVvBstAFNV7KyOXmj4meZ7kzIeHnzybHQNaN8M8XzAhHijhOCzjhfeQNhe29spesg00GmxqtUHslWNRVq06lqZ6d9z6rXyBtD39HtTLluNynwx5fRXL4y1qG3NUqm51AFFqf6D7OLO6zkITMpRXjwJPcwok1pTlFmvMqoEXswAmq8jTgGwCHYpC0cbunq97yATWclUel+uSxmMffmbbmeJRyL+Wm4ii7NAe0dCDzsYWlOzflxjUnHU9nkNtUi/VWdWAOBoKK9T4dHaUF6XjIvIuHK43lCfSSuDg+9Gdncc9Vlkc8+w+kgyKdHA7q70GO2PA7EJmFI6jzNY3GGPv6qg9hgbMSby5uuPqe3IzlRsxhp/OFKeFmKgmpiyOXN1sLRrlxHXKgqcXtbKyBQzmiQ8VOwEfFSvIbfiS+lixZ30vEBuyhQLkScwo4FExnLdTdHhYqfh4zRvhC05hS5K8gvJ+1SvAS0RSNfiuskDti2YmDQ5kd/zJjVzSL7f8YUGwhjzM8AfBZ7GGH8ovfZTwJ8EnqWP/Scxxp9N7/0Z4E8gNvDfjzH+zfT6TwB/HhEL/+9ijD/9Rd8Nye1KjDYdEE1NZQP8KRziRllrAhNVZENz1HNjoJkQIPMjzKjxpbj1GvOp96Cak3MSCgoE5cWr701KVJoPnxuN+U7yxn/0d387j+Wf6bH84o/8Yx9H/4TO44FfAUC0L3+Ab/1/P0nafMyIrIycohZ8QaQG5aP/L3XvHiRZcp33/TLzvupWVXd193RPz8zO7Ozszu4Ci30CC+JBkQBIACQBkAZBkSBlS7ZMUWaYDNMi7ZAjZEuWZDEkS2IwQjIo2lKQlBwCaVoUwJdJwoBAECSAxQK7C+xisc95T8+ju6u7qm7dV2b6j8y8VQMDSwXlcCxuxMR0V1dXV92b9+Q53/ed7xg/JavbsAKOFDJMid8g/Gv4p7oWdLeJ6MTeujbw/RytfzNeCGcSl3WoUnTzMFTl38vSHXwLrlFabNBGSH+CAKHd++lMbP8/yCB+CfgnwK98zeM/Z639h7ecXyFeC3wQuA84DnxMCHG3//E/Bd4JXAIeE0J81Fr7zCv+5SXsIfgB3pLiLYuhAtC4pC8gBISlydmwKBOE/xudEo7FxOVgMhMmi8PCSjwAj4GvBjrwKGALOl2Y14Ysp1NvGp/heAGTSwHh5Z99c/e5wH2uZdq2WwD+4+h0YYoaLnR2xwQhLLODHuufSiiOB0dn/z5aNxYvPhTOpqzn3mf4bKEOV5XbcdID19uQjjXFVuSndgmiwnYAXXLofC+zm5Zm6M5lPLFElaVNBfWKS5v71zTlqouGbS7I9g3luuz6YtI9y+Q0pPuC2UmDSQ1dTa4sItNEqSu62ypCJhopDe3NHqfuvsZbNl/iRj1kPZl5xabr83h2cpQnXj6J2kkX09k1HfjbNXiphfGwFSGDoHu+Vf5GnYuFmQt0DmShIavLUoTt5qwE/MoqsHYRJIIsvDMmahZirfDHnXekizDBPs4Kl7EGHEuYW6lSE4lFaSrA2fRbTBKyEbcm4uI/EIOw1v6hEOL0n/Y8f3wf8GFrbQW8LIR4AXij/9kL1tqXAIQQH/bPfeUAIRb/hwgslm5K3bOLOYTh6Us3lLBLLxFuylC/hVrRv7bsWBEP/PmyxGNOIBZgZ5epxAHJdjeoDgpKsbCe6/CKgCUE8KteSKeXcY2ubvRlQ3A5DnRt0E50tbrfrUxiGZw8pChSer0apGVwtaVai2/p3OzafFlkPiHgqMp93WaLDCiaW9pMMN+MaAaCwVXtXJ6t+8zVqqTpuyG89VCS7BjKkSQqHXoflZZ4bpGNJTlsMVFM/2rF/tmMcs01YUkv3pnd5lrx50d9QLMCGuFwB3ATx1cgG9QEpLcpEo48Ljn76A2mOqW1knHTo6caxk1OKlvuHNzkzvtvkj9UU5qYj1++m/2vrnf+ldbjWDY2WLUAgTvjWxtAcTq9TOiaDGIlEy+0Lw7vCV4O/pGAR+mQUYZAtdS0FawNg6zaX9sOHCcEb7cWHcDt1+JSuX3LPaDtLarOqLFEpaXpu0DR9F+5xvgPwSB+QgjxF4HPAz9trd0HTgCfWXrOJf8YwMWvefxbvt6LCiF+DPgxgGh1zT3W4GzgokUW4Xhkd6JVs2QMEsbiCQdeBQPQLlIE9sFH8y4TCGm+9yLsVHgBgQ6LIZQmHszSme1YA6EXnojLFzXw2st8uxV+ASWLpqwuY2gX7y8Ip0I3qVukwrEj/rnrD97gYNZjNs1Is4YsbolWCw7uWCc5tDQrPrhZb93vg07LUgYULd6zbBcOyLNjzvS2f01Tr0QkBy0HpxN6ey5w9K+2tLmk/9IByVqP+dGU0YsVOpFUaxGtnwo+uKzZP5sQlXD9oR5Rabtr2fTdZ2lzH2gzP0PCXzRRSmxfY3NNkjfUVUSaOb/M5iBl/zud7HvSZsx1zHo8Y6pTjmdjcllz0PZorKI0Mbms+Qt3fI78zhqF4TeuPcwzT97uYK1AJfuszBqnWTCAtNZhAb7z0kSL3b7rsg1TuHwZrHuLXhisNzZqfYZhwjX1OINebHTdtKtQuvprEjZJrFNE2ojOTl/WS7/n/77LXty6NJFA1e79tD1nrajMK2cP4Xb5sxwfAu4EHgKuAv/IP/71wtE3gkK+7ruz1v6itfYN1to3qH6/q+u68iHstsJ2KWCb207avGzWstwfH+hJoxZDTURA9z2lFIJOYEYcQyG6xdBNqPYXrgOmvEajQ5mX2IwuOC2VSyZyC8MsNUuFneIWT4p66byoxWsERqXNLfF9h+xcXWO+18O2ztXpYJohhGV8f4vOhEPyQ1Bc2omWMRvp9fqytt3flh7NtxHMthWyscw3Y6LKut0/FRRHI/KdioP71phvpxRbknIjpl51wSEwGdMTESYRlOuC3q5hfmRBHbe57bwd24HpBGKy9WrAtRqVaUSqqQ9T0qxBSktx0AMLb7/rOQyCSZMSCYPG9XYUOmGv7TNQFSfSfXJZk8mGTDQoDBvRlB/cfoy/912/yn/67k9wxyOXMLlB54vCXGcLbwad2k7XYBKXtQWdwv/LayGscOuDSDB+SWzXVg50GUgwtgmb1XJmh3XXIi489iAWWcZytgu3bjBCu8zNrTHfAxS8JKxdmOu8wvFnyiCstdfC10KI/xX4Lf/tJeDk0lNvA674r7/R4694BGPP4N60aLICV0f5ND2gxWEKV2Q7RyArFxdJeu18m7uUMDRimcwubkh/M5ng66AW9Wbn3LQ85Ffg1G3g8Auvzuu6T8Pur93zhGRRg3pPC/c8x/kLYxfKT3wgM7hMKXF02fB1uySRZufcBvGBoh0asvW5U2kqy2yesn37LsVXj3onrUXGFM0FbT+8Rxe/9YY3z/VIt+65IOHes0B69Vc9FKQHbuG5nQj27+mx+nJFmyuGl9xupWNHnQoD6Y4GCdPtiPlRweHtEtX44UVLfQ1h5zOJhchihEWPDMxiRKaxFpKVitab14i54rve+CSXCjfaL5GaWGr26pyVqGI1mdMYRSxbFJaj8QEayXrkhvVoKyltghIVr8mucPfJq5jbJL+1+yB//Ni9IMyClQj4gC/nArgczmFnhqtd6Rkfeop0yWVbhPWzVE4EgN2VO259i3px7aVx50j3wPqALVtXXoRNM+BGAVx1TIfDG2RjuywiBK8wRKfr9XmF48+UQQghji19+37gy/7rjwIfFEKkQog7gLPA54DHgLNCiDuEEAkOyPzov9cfs0tt0X6RuzmGASCgEw2ZJMiFPXIc2QVg5LOKACjdMvk4Wpr8HC+VCUHLHyJyKEUEHbCp0+XyhFsMc79WBxEAt1CDhs7O5ceCI1WXyejFPxtZBvftsfnwNaom5vqzm/QuRzQjTbJZsJKXrqyShnqWcDDrUb15gpq7hdyNfAvnUtIpOIOxblD5RQUdMKe7YSwuIMyOSqqRcNSocAtu9zUZGIinLcWmwyWEhWok2L8nZu+emGZFkIxdeqxT969ZcarDZsV4LYfsmt2EEW5oT6qRsSFfKVHKncxmHvPGh56nrypet3KFok3oqYZEtihhmemE3XrAWjwjlzVDNWczmnBnch2ARGhi0bIdjWmsorGKie5RW8W71r/M3/uuX+WRh1/smq66fh8fyLrmP99ARQDPvSzbTbWyXQkiW79OvVw73KxBch3oyzCjRXgaPGSUytPgjqGg814Nbd+39PJYurUjG5cVBhATltazXVq73+D496E5/zXwNuCIEOIS8DeBtwkhHnIfkXPAXwWw1j4thPg1HPjYAv+ltVb71/kJ4PdwNOe/sNY+/af97Q5Jlv6mF0tWb5kzGA2u0aEpx0q6+RQdOBhs4ZolcZR17kNqLrvyBFikf353N5EHHUMfhFwEirAjh/RyuW+kzS3xNKSPdErH8DrWBwsrFl4SshWdmi7M7wyHzi0Pv/U5ijbh2nRIMU1JDiXzkw3JyI3Kq1uF1s7Y5fw0ZbU/x1rB6NOWC+9e6cRYOnMLVy/5H3ytgAsLOvcAYunArKgMvgq+DGksOnE4SnJgOTgTI5vIBxVBXFjaXHTlSuN7QOh2RZfRtT3nst0ODXLuA6YWyLnEHiuxWpCkDVpLjBE0s4TkasyR180YNznGCo72Drk2X2EtLYiEYSWaM4gqhrJkOz6gNDGljdFG0JcV2koSvxi2owN22lU2o0NutCvEXof8A1uP88Pf8zleqI7yC595G9Fe1O36oQu36xBtF+A0HkjuBuCE8tiD1stmRdrftFHhArH2YxaNWmIrhMtKQmmJWLATHXsRiJPWlRbCuOsUwNXOUnEZjwvlySscwobGgVfhkZ04aU/81H99C1YAdFE8TNUyqUFWvuMvso7zFTiQUVnUVHZgXGABwui8kO7hX78bsrPEPAQqKhzdCdchBecW/X4Xzc3CpzKIqkRXl9pOI9GhNCEj8lOeO8xAwqPv/jKxMOzXPV7cO0L59AjZCLKH9zic9EjS1jlMG8GgV7G7P2BzfcKsSpheHbD6lcg1PPkgoQrROSirucd5lHOLdriNm+1pYhZIul+0au7eezJ1AaMaSUTrszblSqt0bGly4bIPT/E6gGxxfdthQPKhWXGUpu1p5CTCJIZ4rcIYia4lab9GCKiriP6g5N2nnuVquUosNY1RrCczxk0PYyVH0ik3qwHHsgPuzFzGkMuKkXKO3aWNyURDaWM21JSZSclEQ2FTDnVGYVKGqiQWrjQB0Agmusff/8j7u2sc7NsCFa5TSzxz13m5L6Nj1DyIaJJbqfpltW9nDuOB6YCzdQK95eyg9n4mfmkqjx91zlNeVh3P6KaCB2wjZCDCwBf++U8/bq19w9e7B/+sIOX/f4ddAEXhTHT1mZelylouQEHrb8wgfPLj8GxkQS4oLXeWuCXid9ZisOjb96mhYOmm/TpnLXDQy8EBvK7CeI9AsXSRPJNhQqBYsjozCcxPtJx6+3kGb7zJPW9/kdpE7FZ99quc+TxBtIJmYJhMHVCntaAsY5QyFFWC1YLDIqOXNBw/c5PRi41XZfpzmlviycLiX/oOwDbzM0C9hqPN6dR6wS1aZ8IDjpK2J4gnlvTQkkwdNiHbBX0WPEWDPiUqXeZgI4gPxKKE9GIhGonJNWSGtlFIpckGNVJaqllC1qt5/x1P8aXxcQDmOubCZI0Ls3VKHXPYZOzVuZvO5e+Uicnc3FDTozApxkoKk7IiS0rrMouJ6ZGLihVVksuKWLQ0NmKsczQu69iIpvyTH/jfGD1wExs59ml5kpry/RkhOARgOaxLtzAW1z98r8pbS4uOhm4XU7I6j1T/WrK2bmKaz4q74CAX9oLgM5OELjt0dLy7JtHcfnOP3gOcAWwtunZp10jjhSVREKnQYRCqkF3d74w9PLPgx+QFZiGeyi5yq0p0U4YCaBYWdIj+wS0IPGaxlD0EGXdo87X+fblSBxBuR+mmOIVkRCxhAElowIJve88XeeuDz3H/6AqPHr3ARjrjTH4TgForjJGOBdmsMeMEFRmMdnVOXUeU8wTb+HS8dVOvzr9vYVIDbtE13vw1DFqJSt+YZf2ClG6BxjO6hram74JGM3DnzmVPjvI0KuAmoWSyi+agxg+Q9UIzE1nqkfXUpiu1UK7PRDQSERkGK3OktA5TqWKshWGv4unDY2grOWwyLk1GjLI5BkHRJuxMhyhhOZ4foDBMTEZlYldimBgpDLmsqK1ip12lsRErsiSTNQ2KoZyzFU269ReLlkRoSp96KWH4G3f/Nv/gA/+SdlV73CvMU/FB0e/4slrs2NGcLgMIbFyQQ+t0qaQIOFAAv0Ng8AHcrVcHPMaFK/GkXtCpIdPovB/0wuhG1UuCOY2bD/OnlBjfFL0YXdquXDrcAT+106mDr/kq2aV8t0ywalwt2NE/7QJMWpQc3EIFdsIlXHBRpf/aspjmrZYCg8WxE/UiqHQNW63oVI/SsxwOeHRPtEoQTwX1iuVH3vdJCpNgrOTifA1jBf2o5rDtcc/KNQaxEyfPPtPj4JhAjWqa/ZTh8Ql1HdE2EVmvptgbYAYCbQW9qOHEHTepP3uUwzPuM4YsoVmxnarQzsViFqR0vpiydrWxo/XCeRZEc2eGC4ug24m5vFJPZ34BGoc/BAZmefSdsJCMBe0RA1qg1xvirEVFhqqKiSKNtQJdRLzt/mdJZMuX946hhKUf1QySikG0cD25Z/saV8tV7u3vcLFc57ev3M9DG5cY+At4oHNWVcF2PGa3HRCLFolB4m5+bSWxaDkR7bOrB2SiwSAZqjkKS+5p0p12xIe+85eRGJ4sT/FLX30T+isrLkvzOhJZLzQKbb6gjcNGF9qLwNvCBQoy3NCVe51QYnSsVuOl1CooXn0QqtxmqRN3DaO596QUePzI6zoChtJ4OfYrHK/uAGEXbr+BHehG3wm3C6H9hw6ZAuIWVdlyvdelbn5wawDollVwwvtJWOUYSEcLecBJLFBp56/gXn/RubcQM5nAdjRLpUNs2Xj4Oneu7nK2f51YaPbbHCkslYlIZUssNJlsiKWmaBPuGV6jsQqF4cXpEYx15U7x1ilME1aGBQc2d1mFlkRx64JVK2irCJE1jMsexwcHPHHvUZKxs56TjccFfAmlM0u96md6ZA6jiOZ0svEANNrI4Qrllu1s3+tV4RajP8dtvgB0dbroVO20AsaVOKIF07MUt7VQScg0lIpsrXCfxzjQ1WjJ+x5+gkvFCCksiXLbXm0UmWqpPTxvrKCxilS1PD09xiCqedf2V2isotApq1GBEg19WTHRPV6utujLmljOWZElM5vQ4M51LHQHXmaiIRMtpY0oTIzCMvS/A/BI7xx/7uHnqB9W/PL1b+WP/uB+hzkFx2xBtwF9LS7ROVh7FmlZ+9IZBzUgTKBWhbvpsR3LoRP3+9qIrlU9gJE68XJqSwdeuvLHZeRR9coY5Ks7QAChlTr6muGjbkgJXZHUCZ8ERN0uaH0rs0BUi+eZBO+NEDhl0XHyYXdTJYs5HEuzDTs0ul3UmCElV8HT0GcrJgGbwv1veoHvOPIshUmY6ozSxOw2fVLZUpmInmrIZe2+txGNX/APjy4isRQm4fJ8RNEmjJI52/1Ddid9Gi2IlGG0OsNawbxIuh4FkxmEgLKK6SUN+1XO7Y9e4uBXbmNy2lvVNe69t33vuiSd1JnW3cA6X/D5QYBqo6Vz4gE0VzoIkgNukbBLj8ZHrc8gPNYRdkKrXDZmh9q1nVpBsl5SFKkLBGnLaj7nwY0rtFbRWsWl8Sq9pOGg6HF0ZcIomVO0CZHUrCYl46bHKJ4zaTO0FVQ24s70GkpYShNzqV4H4HRykzf0X+KLxWkezs+xa/pkokFbyVCVKCyNVWxHBwCUNqIvGmokxkpGqqC0MQmaoXTPz2j5q0c/wV/5C59ECsO/Hb+eX//dtxLN3I3bpLbzEA1UpAlsRhifiM86fLYbHtOZIAjY3BoW2Db00lg3dDpaTB13dP/C5ChkFUEX0fWRRN/MGQS3LijwO571cyBSv1CXAKBQOrgaTywat/x5sBKimVucHbBo6LrkRAsEgNJH4hCVjfBdoUvvKSDPkgXPHEqbEw9f5YO3ua7Cl6vNzvS1NZIT6ZhUNhy0OZWJOjPXgSq53K4xigoaozhse8x1TCpbjmRTSu2i1mp/jn5+gD0hKOuYJHK/n/ZrdCsxrSBOWzd4V1jmTczplT36f/klvvKHZ7oJ6Jawq7nMpO1BPBOIki5VVv7rcH6iwmEQATcJGVc9WjwvXBOd+fPuhwi5TNADx9IiS4cZpaMSKS11HRHH7rMoaXjL1st8/PJZjg0nPP3ycY4ePcD4srIf16Q+g3jq0gn+3B0vMtMJlWqYtQlEUJqYkSooTMqJeP+WMgIb8ZrsCjOTsqGmaCvZUFMUFo1AIxiKFo0gwZAKTW0lsU8DMtGQYNAIYmEorSITGuOVbx8YfZ73fPAJdtoRP/OpH6T3cnLL7BKhwaSL7IEGlF4S1aWLJjobLRimoG3QvVu1LW1PuNLDs29GulmhTV90YjwrnOQ63BBR+c2eQYArNTySu3zDR4XoyoeuP8OnWa6ByS3msFilj7h4wE2oRd0sWzpMonPmCbVk4xBroJO3qsqpEUNzDQQ8w/38R9/zMVZVgUZyvVnpFvWxZMy6mlLahMYqYqGJlWaqU3JVU+iUtaigMhGNVaxEc6QwzNqUo+mEcZMzaVMXbBrBdJ46EK9VHdVZVxE2tgzykmFad4Hp5cN17ly9yeChXaZPbNwSAP1pdpZzoTdk7rM0oO1D8Nxs+nTNSC77YHEeQgZhHZq/bPcWHwpnOpMZRCOI5pJmy/2BtlWYWiFjg24lba1Y3Zzz9MExYmWYNQlnTt5AGxeZx1qyO8/Jo5qiTXjo5CUmbcphnXEkdS3fp3p7xEKz0zrcJpMNE93jbLrDhiw4tKm7uXHPuTO+3i0543cA7W+kQ5uyQkUmNIWJ0QgUllQ2NEiMFQxFQ2EjYmForERhUVi2ozH/+u3/DPkOw9+98D6e/8QZ1+6dLXa2aI5373JBuM3dmm8z7/sg3WMdJb6EHVjpA7mnx9ueK/mcItcFCbGEwbWZD1CxQC2L577O8apmMW7hh41D2VWzuJkD5xsAxWVBiAwmoOHwUTWa0wWcQC8uaEb3s2BY6qZrBVR6gVIH45Xl7rnO+amGv/69v8FaNKO0cYegn0r3eKh/gZPxHo2N2G/7AKxHU9ajKWuxW9SFSYiF5kg8RQrLbtOnpxrWkxmNVfSUu+HzuMEqS1XESGlJ45ZqHtO2EiEdpTuvEq4fDphWCQfzjNeuXXM30+YV8gf2/VxJ28nY3Yi6xWdqho6O1L1F3wt4TMZL3nW2cOnWPdvJ4HXP0vStZ0Jc0G77Cz2JHTW0x2qH0yiLqR3ooyJNU0Z8+z3Po41kJSm5bTgGYDWZM0rnrGcz6tJFtd2yz7NfOsnQS623ehNuVn36UY3EEgtNIloKk6Ctk1lrBDMbU3j9A9D9X6MYyoZcNgxlTWFiYgwjWRILg7GCTLT0hft5ODSCA5N2mYRGUPvbKxMtUhgyofnbpz7CL/+ln+e73vu5bpiziSzNwHrMYME0hE7NLjD44ND2WPQWRa78sF5i3fQdIL+g1F0QanLXnev0Gg7HsJErbV7peFUHiCAiCQxC8PnrJKReYqq9ykxVLojIxv/vg0gIKMtS2TZboMlAp2zrWqNZBoiWMA5F125tYanD1AFBP/2Bj7ARTVmRc4yVHOgeD+fnOZNeQ2HY1QMKk7KqCoZyTiw0GslQlmzFh9ysBgBMdIbC0FMNrZGsRUUXNKSwVFq5RdFKImmo24j+sKSeO4cH46gAACAASURBVC2EzF02UZUx8ypBCMtXx1sUbcJ6MuONx84jzsw80LjoHwmeB9YzNEHm7urexYAe7Z8TGuI6AY/3CZWN2xWjqdOAtD1LOzTovsEmFltJ5xBlwRrR+Tw085j+aonEWerXWrGRztjIZmykBcfzAxKliRLNtEw5f32dN77+ea6VQ8Z1j2mTUmuH48RCk8uaG+2Qk/EesWjRVrCtDv3PKhobsR1NuDdx7UUXmw3GJvEZQUsmWg5MyhPlbbzYbHBoU1KhKW3EzEYcmJTMf18TakxorMJYycw6hDbzZUnpF9yPrP8JH/rzv8iPvPeT3c3dKSNjJ2gLGbPOLG3u1ma4oXXqvm/6PliYJTsCz2TonvCgsm8jj4XLKDwNrdPFTJVvdLy6SwyxcM4RdoGGh1QqgF7LXgrBfNZZfS2+FgakgSZ3waNTSi7tjB2wlizwhFC+AEsU3gIbsR5o0rnhZ972u2xFhwBoJKuq4J7sCo2NuNGuUBq3a+WyQntybajmXJhv+Cxjl55qGKqSq/UquarJVd31ClQmIhaaYVSRKu2ZAkujFYOswlhBoVLqIkb4ej6KnalKEmlW0pJnvnyKF6a3s/4li35PifQsDiykzxhPxbaeIUoAY7smr3CuQvYQnJWMcL+nMyeddv0Wi0HDGGfo65SrAhs5arNzp64UopQ8dPdlUtXyho0LXK+GPLV7nNet7zBpU1ojOaidUzbA9vohu2WfjWxG2cbkUUM/qrg922O36ZPJhqEsGeucvqw4ndxkbHpkomGscwqTUlvFSBVkouHe5CoawePl7b4kyTiTXOfu5Bozm9AXNc/U20xMxtlkB4XlXDNibHJOxzdprOxKR4BNOfOPSTKhyT1ooLAgS7575Um+74e+yLl2g7/26R8iupq47C0MaPJBNzBh2nt1LJsItT0WND4sNDrxYp2He8TEYNsAeLqGrlc6Xt0ZBD7N8vXXsgIx1MOdkYfwaW62iMS3yqvdz1VNB6p1SG7sg4L/fSfAcq/ZGccstYnDreq02x68yn/39t9iKOeUJmasnUnbSBVsyBmZaLqgcLMZdJ9tZlIaG3EkmjJrUy5Xa7yuf4lcVhyJp6TSsRu5rMlV1ZUfK9GcWGnn9GwEWktmVULVRA7w69duV440WdpgreDUyj4vfuIO7v35G5z8g5o2E85YBsckdLM1pMVk7kOa1FnORzOXJTRDlwbbiK7Ekq3ohD6hK1GYhdZjoTsB0zNuwcbGp1+iC87NNIFG8KZHniOWmneNvkwmG87m19noFXxp9xjDqGLapOzOcuo2oigT3r79HEoYijYhUS2ldqyQQfDa/AqrqiCXFZvRIbmsHGgp5528urQxL9VbvFRv8Ux1grHp0Rct96WX0VaQy4qxyRmbnEw0jGTN2eQ6j2bnGcmKoaw5HY85Ee3zfL1NLhxVrbAYK7nSrrrAsDR2yzEkkgRXdkhhORPf5Je+7Z/zoR/8RTYe9FiIdee87dlOiwIO8DWRUwfrxF2j0Mqte5Y2cxly2/NZhy8tmkFoInPPrUfiVrPkr3O86jOITokX6J0IhPSuR750MEtpklEOCe5qNI9JLFvAWeGBn2Txd/RSQOi0DLEF//xuOrgH9QKYGZ+e8pOnPw54jb9sWBdTz6fbTrlX2pjt6IDCJBQmZaBKKhMz86YQqWy4Vq1wKt2l8TVsQNNjoR2/L1tyVVOZiGHs6i6hLImfVWGsoNevKQ4zVKqJlKGsXE762POnec2v3QApqUYR+nv3WU1rDu+1mM+sMd823bRxVTjpejh/zXChIg2lmvTDhLVXiwZKLTQpmcRiPM/vFrB7va79OQuKHdtlQm9+8AW+98gTbEaHfHZ2F4VO+EqxzX2rV3k52nDnMnJBrZc0vOOO5/jSgZNc51HN+cM1Xrt2jVzWHIkmaCSZqFlRJTvtiO1ozEgVKCyFTTtac6QKYqEZqRl9UVNaxaaas947T2lVd0Nf1wNuYLncrqGE4XS060o+K+iLhkezCygsz5QnGKmCTXXYrcvKKnZNzraaUvqdq7GKXDQdoDmSJaVV/Nw9v4a+R/BTz3yQvRfWFz1Cfl13VLLEGSZXLlMLhkRh3TqszIPtvrx2Xqp0ak3zTR0gwg0pXT+88hlDkLGbyDERoVmlwxh82m98TdYGRiJdnJxmwIJ28zJrG39tzb0AMbVP15qhAwDT7YLbN/b4/mNfZKRmaCtR1hCLlr6smJmUvqy4oYeMZNFlFSfjPb5Y3M7R+ID9tk8uKy5U65ztXaNIU8/BGwofOI5GBxzoPhOdcSrd9bRojLHSeSRoQS9xaeu0TGkaRZQ6JWLdRGyuTtmb5uTPpdg0Zn6sTzLRXN4dMB9U1GXM93zgcf7g9x9xmZRgMXzYtwi2Kxo596Ps5OKeDpoUBM4/0tJ1OFppsQnoxAWeMC+TRt5S0hEa56YRf/LkWYr7Em7M+/z5k1/geLLPYZtxND7kvFhn1jp9xHjcxzaSB85e5GY1wFjJzmyFh49cZtomaCSb0YRYtBikDwIzRqpwzzUui9vV7v9cVj47KFiVFUnXKAExBuMBx0w2vNhscTbZ6YL45XaVGM2J6JDG5/Lfkp2jQfKp4ix/Ln+e0ipKG7EhC6Sn1BzToZj4rBBA+4UcC41E8E/v+9+ZvCbjf3zhe7n07FFsoJp9J2m4R3TPuVKFOS+dilg4Sp7Gi7Z8t7CqRZc1d9fiGxyv6gARygInbPKKMQ9UBvWjZQEcdlbmie3aqZdR9tAo07kTS6+FiBb2Z53U2r+c9UrJU49c5j869iTH430AxjpnYjKSpdQxFxUrsuS6HqKEYWJc6+Lz9XZXB2shOZXucqle53o95I70Ovfll3m52mQtmnWBJBbauyGVaAS5H6KYq4pIaqQwnWkr4JiNtMYmgsNZhtaCNG1ZSUuqNiJ9XiPOXWb+wGupVgVippErluHKnH938S7a20tec9sOTz9/G1TSTfkLbehz6QKBtLfWtRZMzxnuqLl0eEPPLgDLBtDCDbqJDTIyGGkRylnV21DWVIp4IqiPG8Z//xQrl6f88t9+E++47TmMlVyuRkTCIIXh5nyALSK+79Ev8OnDs1yYrbGWFtw2GHPYZNzZv8GqmnOlWeNoPCYRmrHOOZ3coDApBVBbxcykXUkYDoWlQZItHHwoUYyNA4wTNGeTHXbaVbbUhF3tmKgGxfPNJsejfRqjXLaopry19wLGCj5V3M12dMBIFU5bIUtWqLos0VgXfBrrRFjGX3+AoSz52bP/J+VdMT938V185Yu3+w2zEzY4+/xQTht3TeJD6UyRtJPTu4Yvxyp1U8EXcfAbHq/qAIEIu75bmMK31wYVWjvwgFkAc7yt1qK0sN1rBPxiWd8QfB26pioW2ITr84B3vO0JvmP0jLMpE4bGRpQm5rlym7uzHW60Q7f7qIJDk6GEYaQKrjRrfOLgXt41crYXGsFQzWlsxEvzTR4ZnGdVFTQ24kq9xkCVDL10d2IyXiiO8m2rz3KjXWG/7VOa2Lcga1ajObCGNQJtFEJYMqWZVgnTInUSa2mZG8m1aMDexRGv+dKu+3zSzbm0maGf1WzkM8ZlD2shEob7zl7i6RdOQOlWnI0snSVAkAw3EpsYZCGxMZjMuKArcTL2xLiZmT2I8xrdOrYCQCUGaxxzISOLnkUuwJSC0ecTsp85zzAp4SeO8od/9y5+8PTjfHb/DoZxxVzHXLy+RrKreNPgRX7lypsdnSksxzInoCpNzFZ8yFDO6csKhXVt3bLgsl7ldLTPl6rjzEzKjXbYgZMnojGxzxwahFdhKmRnkAG7pk9jI9bVlB29yrqaktE4utSzVkNZM2l7jE1KaWP6ouad/a8wsxG/P7mfI9GEk8kuK95xO/F3aeEbyaQwnX4irJtMtAxlzf9w+0fhdvjHV97N5754tusJctfGW+FJBxo3q8Znc35dLxs1++AgcFnzKx2v6gBhBbR9szBSyXx7rT8vMuAP3rmnm1Ppa10djFgjsBY3RUkLbC3QfY1o/Dbo168V1qPBgge+5UU+cPQLjNSs48jHuo9GsKsHHI0PyWTDPdFV9vSAC80GW9Fhx1gM1ZyHBxd4qd5kVc15eb7JEa95eHTwsqM2VcnMpFQ2YihK+rJiVw+Iheau/BqFSVEYShOzquYo4XoEShOTKDc0pp87RqPyziPrKwU3xy51jiLNZJahZorizBq9NOLIbz3H7MfugchwcmWf2kRs9yckSvPy/jqPbF9C5S06TCUHVx60Xo2nLNYvat03rmHF98QgXFmBFmQrLuOp5jFpz50/a8Fa0dGvYbaqLF3ZEc0tL3zxJL/+/T/PP/7QO3n22bNwGrazCVfmKzx3c4voXMa3fueXeHx2GmMFiWpZTwoO24xYGLbTm8RCsxEtfB76suLQppyMxpRWkcuKQ89knE126IsFs5ALTSzgwEpqJI1RbKsZY5OwrQ7RCIyVSEKJ0GNTHdIXDTMb01jJSDrfiVhoMtGy6zPJ9w6fRArblRyX2zV22lVuNkNWo4IzyXXujHcZm7R7TxPjpKjbytnkJRh+8tjH4NjH+NDOO/jjx+9x+IJamtPqgeHl/qXAuNnEWfsHPOJPO17VASLgCTqMj5O4VNV7M1rtgLLgQ6kzh5B3RrfKImrhAoC3MLOJcYBkAMrAAZDeFwLgL3/bJ7krvYbGXWyFZWycL0BjIwqT8O39ZyltzDOlM+1ej6Zcb1dcQJEO/NqMJqzjpLsPDC+6ZiAbOWDSOiq0sYq1aNa1ICtMt2vVnjNfj2asRTMKk5CJhmPJmK8cbqOUodUSJQ26iSnrmKIMULfAWsEgr5joPrPtCGEG5HsTTv3OmGd/3HlLTKuUlcy5Qh/uDHmc2zC14q67drg+GXC423fXIeAI4HCDMGvEuMAhYuOaxJQFKajLiCjRJFnTlUHWCqQ0LuPp1VRV7AKPdJFCp7D1GPyA/a/4b9/zUW78/G18+O+8njdvn6e1iuLqgNUrgiPplD+4eA/3blznRG/cLZdc1WxGk07fYKykJOZkvIvCqRt3dR8TwMvIZWy5XBjDABRWdMBhieSG7jExPUayYGYT14PhFZobauoNaJxmIhctz7cjlz3IihL3f2j2ynAl6aqsyJPrbEaHqMywqeZd1nIyKpgYxcxGbKoZhYk7mjQ0i0lh+PHtj/Offc+n+Otf+YADM5XDgqyUhLGDwZwoiAqxYDJXFoYM+pWOVzfNKSy6ZzCJ6ag3G1s35dmbwNjweGJdrZuYbggK0v3cikDPhbwK98kjC7FFpNot+MTws2//P3g4P0fttQc39Ao1DpBakSVPFSd5MLvAE+XtfL44gxSWzWhCX1bcmVxzTTu+RVgJQyYahnLOueYIpY05NBmZrMk9kOkcli1DNXeOy7LpePS+rDpqrvFo+sRkXK7WmDUJeVajtaQf1wzTiixpiGNHm0npDFfmVYI5UTK7TTA9HtPcvom4dA1RS85fPsIdo11O9MecXtkDaZlNM3rDktVk7vo7rLsOctggMo3INLLfItPgSOKChbVAI7FadCCpEBalXNOYtQIhLEnUIoTFGPfcEGg6Tj8V/Ivv/wX+cP9uvvpXhpR1zEwnXJ8NyK4qht93lfesPsHWYMqx7IDVaM61ashqNGctmjHRPfqyQmIYKocxhG7MxioaFDvNKgDraspIVjRW+uFTgsIqChNxaFPGpkfiR1KNZNGVGDGakSw4Ge968ZULPI1VvNSuo4RhOzpgQ87YUlOvunTvIRaGkaypfN/GSJaMZIW2ggbJUDY0FnKh2ZAuCxvKmpmNyYTm0GSulMV6RWfNP3rtr/Gfv+MTzqeklO6aeLDZBKzCq4EDuNkpgP+U49WdQcAtIcz2W2hd/Rt8FNBeWuqVjCKyWBmUVUs/w/2sey2LG/xqBGmv4Qcf/CxHoim5r1szL2gJQJbCMtY5p9Ld7mepbChMwqm46nwMN6NDCpMiPRNRW8XdyTXGJmfm3YxmJmWieyicRbtGcKNdcTuODwbXmxUe6F10dKlHvIeypNGKXNUM44pJlJIlDZvplEEUU7URVWvJ4pZJ4cZkGeMyCfvAhEk8ICozer3T3Pu/7PGVvzbiyU/e3Y0alLeV2L2EYih5/OYdDLZmvPk1L/Inz53BNIo4d2YXrhVbIDNX5phGIiMXYOOkxRiBbhUqMrStIs9qUNAa6f61CmshTluqSnVsSJsLHvjhL/MPLnw3g7jinY8+xe9/4X4mWyk39oaY4y2NkfzLG2/lWH7IXtPnarnK6XyXXNZOBOVB3hvtilO0+s7MoHYsjWM5TsT7bMqCRBhiAd4dvmu8wjqdyjBy9s8ap8B8sdlkOzroejTA6V0mJkMKwwnluj8D7SyFwxMKE3UYR/g6vC9w5U1fGGZGUtiITGhebDYcpiUL+qLhU8WdnIj32VaH7Jqcien5IFfyPcOn+M73fJl/tfsWfvuPXr+wufPO7S5gLFy6BbA8Ge4bHa/uACGByHRUGPjvrRfYBADJK/JEZLGtQCTG71Lu04vIuoDSSp8Cu2lD77/vCR7sX2CkHA2phCURmplJSYRmUx26XV42PFsd51x5hDuz6+zpAYVJyGXdpZhDOWenHTEzCVvRxGUGyjDRPcYm51S0h0YwNjmNjdiIpn7nGXQgZ20VBzonlzVbsat3D02vE0yB6/ZsrKK1klhpZ6XWppQ6RluBkoZ5HRPHmqqMaSrFHSducma4y5P5cYoHIm4+N+KuX1Gc+ojg0g+VyMsZOjfE5zPq476/QFmKWcrnzt8ORnQZg1SumUpGBqUMTRWBFUSxC5oBu8h6NW0riWNNWTu8IUlcEM0SJx+fTTNXmkS2a6GPhWFapxzrHfKFX3iI5Ay0RnFic8zOpW1+/I5P8uGrb+Rk3+EnIYtY9X6TofX63vQKl9s1Z1CLYGxSLjYbHBqXYQxlSSYMSoC2MDExuz6Ib0cH9IULagFnCP6UI+lAzYnJHB5kY0bM6Yvap/4LgDEWjiJtrCQVGoPw/SEGGTpGO2rTckO7Br4LrWtJdxtGwq6VrMc3eSi7QGMVl/Vq9z4TdEeVGiv5jzf+mO9571P86s038snHXgt4Nkrg3cI9PhEaFePFpvmNbsFX7+EzAiFARAbhSwSRaneTRwaRavfz2P1cZi4tNq2rw1TWunosNsT9GulVfD/+yCe5v3+pywZOJzeJRUttHU11Mtrr/AqdRDohVzXbsat5wyJYV1POxDd9IHGinEOTUdqYxkZIv2sEdV34HXAORgrDus9cNqIpt/v3cdDmJF4g1ZiITLgb11jBqirIVIMSltsGY1bjkkw1nBgsdi8hLHHSkuYNN6d9NpMJd6/dIIk0w3v3uPqOdS6/XZI903NuRFtz7JkCKsXRj8WsPpUw+HyPfl4xOjLlrXe+iDESISDJ2q6Esa1EJpq6jGlbRRxrVGQo5wnGCOrasSxCQCTdrKzWSIyRxEnbXec2t3znj/4Jl4tVtvIJcx2z8dQEYeDLl45z8dwRfuDdn+bO5DqPrp/HWMlWOmEQVRy0PSYmQ/uCOpzfkSw4oQ7Y1QMmpufKOFGzGR126bsECqu47gP1hppysdnwFKThhl5xKljf5r2hZgzFYvjOMuMQBFUawY4eMLExuc8QGp8phscSYbqyokFyTfcYmx7P1UfZawdd6Xk6vslIFeyZjMYqdk2fkSyYaFf+BOwjdJ8GAPWHj3yGv/RtnyJ8SNGKTvIuPO4T2LpXOl7dAcIfQhm38/tAYLVwN7rglq+FtAhpiRI3R0GG50YG00raOiJJG/7Omz7CVGfksupObOYv+vl6kw015VxzhBvtCkqERVK7PghZcqgzNqNDEi/EGXukubERsWg7SzJYBJLGKsYmZyQLGqtcy7eJ0cguC9FW8tXyGI2NOJ7sM9Y5N5shR+MDlLBoJNuxCwLGCgZJxTAu6amaRGp2yz7rvYI0bmlbhZSWOG453Bny4Scf5Y9fOIOShjRuObxLI1pBdcTQbNes/U6f+Kk+st/QfHCP133wGW5//0tsDafUreJqscq3n3mB99/1JG85+TJJ4lPjrO1AVSnctCutBVHsbv4k0azkJb207p4TSdMxGv4kcfrRS/z2S/dxcX/E9WLItEm5+K4Vqu2WvF8y2JrxHStP8zdefD871QqjuOBofEjqOzVPJzcZqRmnY+fdqZGdi/XpeI+RLBx2oFzQCAu/sIKJSbjSrvFEeTtjk3Mi2ncBB8mmOkRh2I4mlDZiV/d5ye/wpY3JZcV1L7iqkZ2kekMW3hsC1lVD7GXVI1ljcKWM8mVIYyUX2nWGsnRlQzRlQ005Hh2QCc2KqDx+oYnRjE3Om3ovEwtNjcM/MtFS49aYEobSxjyYX+C/eddvdnoH6ZWWocmua1t4hePVHSCkyxyAjmHAiG5atwgL01N+4AKG1m6nU5H2oKRjKISw/M8P/Tqb6pDX5y9zrRmx0676ndyVF2fSa+5mRSCFYayd01BjFcfifbdrCNdGvK7czg90luluWlPMQ9l5hnLOzCQd7TWSBTOTev5bU1tF4t2THTvi1JPnyg0y0SD9lS1tzJVmxIrvIdBINrMpkTSsRCUDVdFTDScHTsQVSadxMEZQFClq2JDkNemLGbtPbbJzdY1T916jd12gc4Mcx1z/1pZ037L5eynmd4/wmXOnObe/RtHErOQlp/r7nJuu828++q089Yv3U764wtbG4WKFHca0jaI/mruMTkCaOkCyalwlO0hr8rRGG0kSaaS02EbyhgdfYDWZk8Yt337qRSqtePnf3km1ZsnWSoyR/K37fsvRy/mEWevOU2MVd2U7vDa/0u3wnfDI91nsmpzH5qcZyhqDdCpXG/Nkvc1FPeCG7lGj2IwOORnvsqkm1KiO2nbYQMPEJIy8df4JddAF/onJaFAdCOp2etlhEKVVTIxCCUsmLLmwxMKpJoOUfmx6KCzP19uMVEEiNBPT6zxEnBZCM7NJZ4GnEZxrjvB8vc2eHjj61Cwcum+0K/z++HVcbUYdqxe0REh7q13BK9+Cr+bDXQTTLt6mUC4rsEZgtcMUnKNzeEL3axitujR2a/OQv/nob3bCmURortarbrCKOuSGHjLWrgbV1tmi3x1f597kKpvRIcZKtqMDbugVAG60w+49lcbt/sFafUNNOyYiTHICV2asSIchuNGxsrvYDsNYJRaa1+ZXOkYDXNp4PB53/QIjVVCbiJW4pDKRt62r3SJUDZF09GfbKpKkJes52/h6ZOhfFgyeSbh0c0RyaJGDxnVYppqDt5Zc+1ZDvQr54znZb4zY/dxR9ic5N6oBux+5jeE5S7khGJ4X3Hhmk/fe+yVUZEi2CpKsQXkaE+ha07OkIYk0adR2i14Ii24l73voSR4dnWNntkJRJp3vZDxxCPzZrRv86D2fJhYt/+zCt3MkmXGqt9exFs6Ves52NGZTFsx8cB/rHIVhJOeciPdprKT2iJxGkovKaUxszJ4eMJQlJ6KxpxJTdtoRjVXey8EFCbkEdtYoGht1JcauyTtmobHK+Uj48tL9jmJmJBMjKX1pEZSUY93nSrPG+eoIfVmxqQ69FcCtUseJyXyPx8wD6TWn4xvEwuEQIQs9Vx9BCcO7Rl/mRLLPT77z/3LnPNwjXhIfZASvdLy6QUpwHyY2TpZrHBcvPGOBtETxQsvg5ihYjBYYb53eEvG6267w5vWX2PIc+U69xfFonxPpPkM1Z1f3Gcq5X1h9TsQ3GPrdPBam67EYqYJGK7TNGKqSLb/buJ4L186dSbdzAV7fX7Freoxk6ReNpjERY92ntlGXBu/5NLXyj4Wu0MIk3Cb3OoZD2YhNdchWOulQ8qEqu/q7pxpqE9EaibaCWGlm89RlVNtzNu7fd/0M8x6Ht/fY3jzgmlrB1Ioka8hW5sxGCcVeRptHyArUY0NejIZUby543YmrvLS/zhuOXeDjz93NRz77CCfO3ORgnhFJQ9VEJEmLtYJIeUdq43bUeROjjUQbyYNHLxNvGcZNjyd2H+CRIxe50l/l2RtHuWvjJgc/dIWoiXn96AKx0PzS1bdy18oNIqlJZUu65LWWLX0dGtv6cuF0rRGU/rw2VpGgGUWlzwocuJyLCiQkVntX68J7dQhmfmfui5qhrLncrjGUc9Y9XjGU805e3VhJ7GXTpVXk3rKu70uPmY1orCsRL+oVv9sPuVCtOzOafGFEE5iSXLQuoFjJlpp0PR9OLl5yb3KNy+0KidAuC06u+zJ3le1oTGFS/qfv/lX++498sAOE5Xwhl3+l49WdQViBqRVWOw7dWifRFcrRk7aVaC3R/n8Aa9zvBTzijafP8c7NZ7hcjZAYrjRrZKLhXLPJ6eTGLankhpxxMt5FIyls2tXWQd3oRsgnnV1c8AcYm5xYtJQ27jKQgGpPTOJ3qkUHX+x3mUzU1J6+3GsHnCuPcHe20y0MKWwXcK63K11z0cVmw7eA1zyQXySXdecVMYoKjmYTtvIJK1lF1ThGo64i7tq+wanBvmMQ/uQIzYphLZtz+9YeG0cm1GXEaq+kmccMj08otzU2gmrdMj+hObp+yOXJKo9uX+S2bJ8fet3jvPWh54iVppg6G7xBryJPGgZZRRa39JKGYVrRixvSqGW9V/COU88xiJyf5CCquTYe8rFz92Cs4MzGLs98+gyNVowf2+KXPv8W/s2Vhzl/sEZrFJMm48J8HWOld6fO2FYH9IWzfks8dbzu2YyZdeKymXVdtHGXqg87teJD6SU21IwEzXU9dLW+0MTCeIeomE3lHL8ueqZqbHKer7e76x7ozYBHBN2K8qxGp7MwMWOTcWhTRnLOoc641jjvjx/d+CNuj/YxvvyYmITCxExsTGFc1juzCWPTozAxI1mwKQtK67LR4VIb++8cPEjh7QRKG3OjXeHso+cX2YNXsX5zYxB49kJazMz1XVufHSy3CptKuccA07iAgrS8/vQF3jh6FoHeFgAAIABJREFUmcvVGt8yfAmDwwd2PU3pLqBhRZbUKKRwsua+qLneLnwkC5OyGR0uqSkV96eX2FQzSi+c2WtdEPlqsU0Sdh6bdGlkKDmkMI5Cg46jf6Y8QWlijiVukfVl5RqTmiGpaBnKOQrD6eQG62ra7Y6nkl021JRVVXA6u8npbJcj8ZRRXHD/6hUe2rjMm0+c48TqARtrU4wVPHblFBeePkaz6iTmkTBs9qbOMt0K9ooe95+5TCQNa6f22XjzDvLOKcmWy3Qe2brIQZNhEOSqZj2Zcd9oh7/4wGdJIs2kyMiitrOnz2Nn4R9JQ6paTuQHvDa/wpO7x3mgf5Ev3LgN3Sr+1gO/iRSWK//qDu781TH1h48ia+g/n7BzMOT21X0MgqPpIfcNnM9DJhoe6Z3rdvqJ710e65zz7VoXHHbakbOb8+xGJhoaFLVP84NF3MwmbKmJb7uOuKH7GCvYkEXnQ+m6dGs3bEe4PgyD5FzrmI8NNfMYhOmuPcDERmgrGMqake+5ebHZ5EvFSQAe6F1kz2TsmcwBj6bX+U0YK9k1fUobM9Z9xrrfUbgvtetcbkfMTOrZGtcPBLAdH5DJmu3ogFQ2/Be3/btbepWcn8cr33+v7gBhwZYKU0YQe/eh2nkuisi4MW2VcjoJ6zKKIPs9sjHhoZVLTHXGuM07AMep3xxnfOjZh8fmZ9jTA1d/2pTL7YgXyy12Te5pK9lJpF0DkOHp6njHXgTFYyZqHh28TG0Vu3rgLqZxwh2N7Fp8w9+VGG60w64vo7GKkd+pArtyoHvOFi0eo7DstKvUVrEaFezpfkepTr19tBSG7fSAtWjGSjRnPZlx94rDQa5Nhsz2e0QzQTvQ3HHPVQ7qjNcMdnjTsfMMVuZMxznjsseZtV3uO7LDm7de5oHjVziyMqNuIz514U6KNuFGPeR6PeRktsfDg/MYBLMyYXPF3YR53NBoxVpakEc1R3sTTuQHfPyp1/Bzv/G9PLhxhX/4O+/jp+78v/lPXvdZfm/vfr7w4u3svqXm/Hv/H+reNMayMz/v+533rHff6lbdqupauqqr2QubbDbZMxQ5K2c0YymSpURREsixlAWQEBhBAiiAE+eDgSQfki8JkA82IMeGI9iOIUeWZWmsGc8mitIMlyGnh83eWKzq6q7tVt176+73nv3kw/ve0xxD5Ey+UQcgSN6uruquOvc9/+V5fk+F4bpGUEywXuqwNdemkRkybw8JEp01S24qyqoXl3MlI5Uzz763K4acLZX1MTV9TKz6806UpybG6W0mB5GhUr36qupLKKu2cwa3ncmnG4ZcdS8bXQbxk7DRGTtitsmYVQ6+IkoF6u02qyonsc04srmcOUzvy2Gc4SiscBbl03XpaVRg36/xwF1Uc4ix2paFLOt95nWp5D2L8nza2aMmJlzJHsn7Tq09j/0yk9jm//iF3/0xwhQ/ocX45M8g9ARCITX7prRtJpE8CFITUaIku75kJGhawl9fuY2XyLJ7EMjhTifMU7VHTGIrtW2PY5srzgGdKI+r1o+9SKLoZ3ZtXW0TymKSvnbJPk5ZD/tBDUcExImgFRZZUnj1ujHAIkozFyT81EtbBV2LKeguj7w5YjSezhxgIiXWnTBPjEYYy3XdYVBl1ZQVw1izKaq5Q054PIrnqOpj+lE2FVJ5sUnJkCrQMJaiqqlvQgKV51rEicZidsDDQZWdyRzXCwd4DYPvh+t0RllsI+Qz1Q/40XCFV6r3edtc59v3n2Jhvs/ItxmFFqYWc+hVWMmfcTVzQLCp8053Rf65DJ+METAJLYSWMGd3aXt5tEAQFGK++d3nWPlOyN977VfpnzeYNBLE6pS58ojMOXm4TAODem7Mau6MaWQxDB0uZE6J0KgaI/k91WImCrxzJzjHM/Y+MYL9oMYPp+t8OX+HXpyhGRXZMM647hyknoyicMmKgF7sUMRTuhfpnHS0KBUx6SRK6CQrt2FscRoW6GlZHM2noffTYSbAMDGxiMmKkIlqLavC5yjKEiFohiXiRPD+tMGCNUg3L7PN2H1vkZoxUitQgxiRtj0blhTqzRSjbmKybHTT7diZevjMnK0z23iMxlFQ4SnniGjOxzqy0mS4j7s+2QdEApqnp74KZtsMXx0IM9ZcpP4BkqnO33zpdSaRhS2kTt4WoYp2l5uKma3a0iLuTpdxrQ7zxpD7ntQg5IRHxZiw79eoGiPOwrzySvgp4eksylPXhwxjhxWzwzi2aYYliaiPLUUuenKwlIWHl84hDPWmr8jsyMSgG2QRGcmQmNnKZ3922btaPA5q1FSLMVB8y2WjyzXngNvuObLCZ8+dA2DVlvbuipFQNUyoI4d7GyEtv4AXG3T9DIu5AW5kcuyXmLNHXKi36bkZwliazeasEY4IOOd0ubJ2zMmoQKtb4LSfZ7404nrtgLfH6/JJmD3mZHiFrO1TsqYYIsYNTT5V2eOf795g2MqjTzUqdzWypxGRozFcMpguJESLHvgyR7SeGdH15CG1mB3gxQZLTi99kwSJkbIjm2GBGMFpWOCSfSRXlvoAUwtZMTvsh1Wymse60eUsdmRIr/CYJDZFXBwtUhQpg5zmS8hsAmXhpkNgoSW04ixFlb7Ui7PpYLQsPPaCOSl000ephbsggnSWNPN4lIVHT8nt9wOppagaYxpGD0cNM+WA1ceNLbJmSJURt9w1gkRnwezTi7I0gxINs4+lRSl3ZKbg/TDFbPa1C1rAJLK47BxxGFT5317+f/kf/+DX0F0t5ZF+1PUJbzHUSizU0EIh07RmrssYySyIf/wM/LkX3pVEYxHRCXJ0ghzTyGQYOzgi4CioAHLy3QxKrNlthnGG2+45BfQQabn33nhJEpGtDgXhUhOypJ0pLs+U+q4XZ3ETk1ilLj325xjGGfaCOvAE/gGkKHT5eogXmwgStjKn6FrMitnhMKgoZL7BnDlS5OU+z9j7gCQgzWYezahEWUx4JXdPhr8gyOsejgjSJ5otApbtHtdzj1i0ejydO+Cc0+VctkfB9DgclTjzc4SxYCPfJmv6jH2Lk6DEW+01HC3gxC/y1fpdfmHlPS4unrJR73B4WubN0zWO3RK7Q9mD//L6uxQsj6zh44YmC5kB/+CtzzJs5RFOyNKfx9iDGK8kGC4bjFcTohWXcmWMsCLc0CBONCr2hE/X9hAklM0p/TBDlIiU/rQfVtkL5oiR68ui7nLbXWES29xy19j1FjgKK6wbHXLC47a3RC/OsmT0cWOTdaOTvoFnb6qZ/qEsXLU2NOjFDm9N19Mtk6nFrBldmfatj6RQLspyFEih1X1vkU6cxVctYlaLCBLBXljhTycX2QvqqkI1yesetgiUlDtOATR1Y8Cm2WIvKNOKCrQDuVKffc0IoSqGMOWdOiJgHNuUhMeuP5/6gCwt4iissGqf0VJztTgRygT5hLH6Udcnu4LQZjZvJYxKZAq0FmmytfiQ5oEEKAcYM34jIbYIOfEKDAIpYBpGGfpRhjljmK4kP3AXqBpjPp+7T5wIlo0erajA05l9dib1JzJaLVbgjimdKE/DOP5Q7xswTDL0oiz7bpUV5yx1cYL08Pdim4JCsEuPhXyanfoFKuaEujHAJEr9/6PIIav7qRsxQuNU9dNubLJhnXIUVvDVTGOmmzhndTkLc7TCAktmj4KYqlSpM0wilVQt/+4LpskPo1WW831O3AKb2RYA6wtt/unDT/E7d1/mxvIBrbDI+UyLY7/E1ewhg6JMzM6f99gfljmeFKnYk/TH1pnkMESMowdMI5Pnth6xczaH/Qdl+uc1nE6CW9GYNiQKP1ED5pfO75LRA7p+lpVMlwiBrYeEsWDVPqNqjNiymqkiVfIWpDiqGeVZt0KywqMgply0ThjEjkrIEqybbSI0jsISdX3IYSRRcQBV4UICOTFFkHAWO5SFxzgxGEY5GmaPmhjTVLLrnOYTJYJmJDmXY92mYfSIEkFRuJSEh6PeeUNlvFoxegSJQSfM04+yTCKLSWzxbPYRbmKmKLoIQV1M6Kt511vTDYJET5O/DsMKQaKzaZ5yx1umYfaUB0iJxxA/Nhep6iOaQelDFYUcoP5Xr3yLf/BHX1GE8Y++PtkHRKxJ5ZehaFJGgpZoCO/fKY2UPuJXr73DVAUHzNZ+k9AijKX1Wmgx3SDLovJTZIVHyZhQ0se8M11POQ5bdpNBWEp19YdBhTf65zG1mM+W38fRfHb9eaq6hNPOVkvSzxEpSbbcjefw0qpB9oUWRYWf82IZqRckOitmJ12TBomBLQJO3QI38o/SrcU4ttnxy+opoqWW8Eliy6+T6CyZXdzEYMnsKVy+oZK8ZD86m+brsz16yeXP+hcZBTaP3CpfLN0nQvAzjYf86cEF/Fja3rfsE3aZ58Cv8vPlH/HOdJ2ncwe8ba7zwWCOrpfl9vAcOcPj5cVd9kY14kTDjw382GDYzxAuS9iPX9AICglRLkIvBUSujmVE6WB23h5RM8ecBgXq1pDb/SW2Mic0jL46pN1UMbjjz1M3BqybbXbcBcr6mHZYxE0sJaAa4hCw689zxT5OhUyOFtCJ8ml/L2cAPgEiXX+6icm60aUX25L2RJzODxwRpANlHam4LQiZgjZMTB6FeZaMPsPYYi+oU9cHaiYgpeHz1oB1q52K9ABi5AwrZ8ot12xVO4psLllNmlGRw6CSukkv2Uf04iwFMeWqdURWhGS1hPfGy2xkWriRSSOWm7FZ5KCj+RwFFTnoTfgr3mKgjJsqf1ML1eFg8EQ+rU7A808dc+wWMbWIaSQtvYMwQ9bw8SJ5Dp4GRWwRpjp7NzY59Yvcny5hahGXrGMK+jSVs05CGbabEx4Xc6dk9ICzMJ+WtTECE6mOlE+BmDgREhGXmCkBKqeFSjAlsxl6UZYfTtY4CaQq87nsIzU9zyinqE0/zFIxJ+QUSAbkbn1VHSQ1fURdH6R5G/tBTYJJhE9Vl2xLX3lDZp8zRuAIP22JZi7Fr5TvsJztsz+u8L3hBUwtpGENyNk+h6MSERp/0r2GLQKZHRpUWDD6nAQlLmRP+dTcI+qZEdPI5NQr0HSLWHrIaq5Lc1xk5NsYRzZBQWZkuOcC4gUPvexjmCGF2pjPNnZU4nnMqZenE+TYdFqMQptfnv8h15x9GvpAypmjPNteg06UZ9nsctE8xdEirjuPWDfbfCb3gEv2EStmh1vuORwtYsnspm1DU7kha/oIP9EZxg5ZEaTKxVkuZ0Mfp7bsme6ipo+U6StIZfVlfYKuxfxwus4td00OONXa1dQibtj7nEV5VsxO2qpIPN2UbX+BcWxzFjuYWsim2WLbX+AwrLAbVonQWHfadOIszbDEt88uIzQZwLQf1Nj3a5xFeV6bXOQscngQlJhGVhqXMBuE35suyXterX4Bfv0XvvtXfM3Jk2QrSbdWLYcVPwkVUe39RqGDrfbtS3ZPDZhi9kcVzsZZHrhL9MMMppBpS7MBYlb3ebnwPstml1vuKjnhyb4tqLCWPZMmK7UdACjp0k+xbHYRxOmwarYTPwtzXHYO1dYiSv3+8GQW0YnyOEK6AectiUYfxlbqvSjpY7zYoGKMGcc2j/w649hmw5IT/JOgxFDZln0lhBFaTE2M2TI7FPQp7UC2I7omhUNZtYqtiTFFIfmXdV32uvtBlS+V73K1dEzTLfKB22DNbvO5xg4npyXe6J7ncu6Ymj6irE+4PVmhqLs4IqAfZng+9xCA5UyPo1GJHx0t82sLb/D1nct0v7ZE67tL1K6fEswHmNf6XNhsks17VIoTVmo9LlTbbDqneLHBC4WH/NrCGxQNF1ML+aXKO1jq+/Z+ME8vznIYVKRmIijTDErprKAZltID5L63RCsqctE6wSRmqNbBOeVxmZnpNs2O+tmZihwlhUgmMZPYIEgE54wpdX2qqE+Cuj6kE+U5i/I0gzLvTNbphHku2CcKOyjSFghgolavvVhWjf0wQ0mf0AzLquIMpcYmEbwfzJMVXrqZmIUmvTNdRxDz20vfSB2nl6wm61abgnBZseTc7L63lDqIdWZVg6SQzV4LEqnkXbXa6NO/4m5OobIcRUg6tNTHkrIsXDm43Hz6kDARZFRmhK7JDEUvNljMDlgsDlgw+1zKHNMPM1hamLr9IrWa/O7wslQiigl7/hyOCLBFyCSabSRkUGtOSNjobXflx/6cM3oySFhJUUjG5KxN6ajqYMefByCIJfilYfTJal5qD5/twm0RMooc1s0Wn889UL8uW4bP5B6Q1Tz2gjrdMEdBuFhaREH4NCNJPVq0etyZnmPfr1HXB5xFeQm+FT5lMaGoeczrI3pxhiVT3owlY0rJdOkEOcaxzcv59/kvnvsejwcV/uj4Gf51+zpRIp9oUSI4C3OsO23c2OSzlW2+f3qey5Um/8uzf8jvHHwO7ucZrcfEN4Y4RsjKuQ5PzZ1iioj16hmWEbKQGfLF2vvUjWF6WDaDEj+T2yYrPG67KzxrH8qqR60z99w5imLKktljwzqlF2fZ8+fSXtzUQjatE8aqNfCUPkEK1RI2zQ7L5hmdKJ/yImduyZkS1lEqygiNs9igGWWJEkkVG8ZO6r+ZxDYXnCYNNe/Jah6dKEcnyrPtN7jvLXLLXVXyeTl3KBlTCvqUuj6Qoi6/TjMocxblyQmPLbNNL87KalWh72b3xUzZeTOzy5vuefb8ObasU7bMFuPEYndaZ8XpykxYNTiP0OiH8t58krkSkxM+P/sfvvnx77+f9AbVNG1F07Tvapp2T9O0O5qm/Tfq9aqmad/UNG1b/buiXtc0Tfs/NU37QNO0dzVNu/Ghz/Ub6uO3NU37jZ/0tUnUmRDL7UVqMJkBY4TMX9gotBEkeCpm+9QvMAgzxIkgVM66YeSkASnwRNtQNcZsWKd8sXBPVRFr6cf1QqmHOAlKTGKLFecsLfdB4s5nW5FZaE6Mxu3JOfaCOQrCpxPlaKnptEDqBg69Cl5sIEioz6L6EqGYBnLKrGsxtpJZD+MnikCQGP15fURBTFkw+6yYHfxEZy+sKPjMWD7JYp13xyu8565IwxmC/bBMJ86xE9TZC2sArJttrtqHnLdbvFjcwVM003vuMotmj0vVE3KmlEb//YefZ3daJ0h0ppFJWR/z2J+jpo/40uIDTC3mv3v1P+agX8KvxBQ3eqzVzrhYOkVoCRVryhfrD6jaY16s73Gj+BiA10eb3BsvsmJ26KuDNkZwyT7i1ckWAJuW3PR8oXiPR/4cB36VvaAuMfTGkGXzjHl9xBvjCzTDMjfU1ucwKtGLsqmJKkiEyrLo0gxLlIWXthLrZo8rVpdhYtBU4rmeQryllUCU4ySQ1crMyAewZXZpRUVZHWoxB36VdljkJCjxg8l53pueI4h19ZCSbIlZdVczZLvT0Ad8b7pBJ8qTFR7tIM+xX2LdanPJPuI740voJLSiAkUxZXu6wOvTDXmQRXkO3TKrVpuqMVuHOzhawILZT5XBs8F7L8pyLXvwsW/Bn6aCCIHfTpLkMvAi8Lc0TbsC/PfAt5Mk2QK+rf4f4OeALfXPbwJ/H+SBAvxd4NPAp4C/OztUPu5KjOTHfOsz2KYWSvPWlZt7EpKhSVKP1A0IisY0/Rx9T+rdhRYr+nHEitmR1ChjwH5QUzJWaY6aodALhostQkr6JI29ixG0AxkG21H6iHFss2R0OQlK2EpF94G3wKvjpwiQRKL9QL0ZnTa2CGUJLcJU9qurIdgwztAO8+R1l7oxpBflyGkBy0aXsj4mq3nkFIOgFRblkzzKc9E8pSwm6fykqo9Yd9pkFP9yGGXSw80kYt1ss2R0la1YpDfSJLbJ6D5vD9c49QvcnSxxrXBI3vDoepK6dat7jn9y/CJHUzmwmzdlrN2/2H6O7ZseZt5nMnagFPDllQcMfRs/NtBFzMulbQDq1oiKKTcfw8hh0erzN+a+zzDOcNk5ZBhnaBh9DoMK153HKXYNpK7kM7kHPJt5TE54qSbCJOI0yvPlwns0jB5eotMMSxwGVZbMLjnNR2gxthalJrmL5ilBIrjjN1Jx1ElksRdUaYVFzlSIso+sQhb0Ketmm68WbrNlN/FVC9oMyvzj3qd5yXkkDw59yJfzd/i5/Hts2KdcdI7TB9iL+Z3UHBgoQJEg5qJ1km5delGWfpTjzM/x/bY8XBr6iHWrzXeHl+lFcs61kWlRFFOOwhKdMM9a9gxHSPBNQbipgni2xRCatJj3lWhrBkD6qOsnbjGSJDkGjtV/DzVNuwcsA78EfEF92P8N/Cnwt9Xrv5vIMIXXNU0ra5q2qD72m0mSnAFomvZN4K8B/8/HfX3hywMhsmSbMQvXnQXpbuTbDANHufwkyszUIrzYwBYhBcPDDw1Khrwh/NjgzmQZMxem7MgDv8YFp4mpRbySu4ebGGz7DTadU0aRI9dTfp5Vq0MvytINpSdj2exyGFSYN4bsBzXmjCH9KCtTuEko6RKiOqNXHwUVzkI1pELjKfs4lXHPVpDdMMeciqiXSsGQx2GFVaNLMyohiKnrA6rCTXUWbmLSjIosGX0K4gw30cmphK9lW94Au948P194l1veilTr+YtEifw7dGLZUlw05RP62C/RsAesWh3+8PQ609jiV+pv89rwooq/C4gTTWVSxNydLPH18VVipUm50GgxCSxOB3nuDRpcKp/yoDfPVrnFq72nuFF4zFPZJp9yHuImBoPYYdkY8M3xZW5k9pSU/RyO8HnGPkz//jPq03dHV5g3Bynl+1CrcM0+phdbfG+yJbcdImDDkDLkZaPHYVhOHbFv+XW2rKZ03aoNT8Po04zyqSt22ZBboNNI5p7MdCUPghpVfaTwADl0LaFqjNL79UgJ8XQSDlXFV9CndMK8rBo1KZeXQb9yfXkUVNj159nXJAdk0zrh6/1neKO1TtF2eaH2mHlzwH1/gQiNl/Pvs+vPc+hVWLT6uEIeAD8ar/xYjoebSDGdm1hpJMNQVUNZpbidrUc/6vr/tebUNG0deA54A1hQhwdJkhxrmjavPmwZ2P/QbztQr33U6//u1/hNZOWBUarIZYWBZEpqGmHmiY589YVDdGKmkUlBRMxbQ/phhkksVZRnfo4gEeQsn26YY92SrYgpIoZRhnWrxTvTdeWDMLCEx23v3I9902YilGlkqpyKhK3MidQTKK6EXDmGUtUWOVJ8Fcne9oG7yKdzOwxih1vjVbJCpnV/oXgPkwidmCVV6o5jW5GrQmwtYRxb6JpkTZ5FeerGgCgR7Pjz7GkJRTFlwzpFJ+GWu5oOOXUtppeINHw2QrBmt3nXW2bDOqWoebjJEKHFKVxlwzhjN6ziaAEXM02+071EEOts5NtsZU4YxxbXc49ZtPpEiaAbZtkezvONs2u8cbSGLmKE0quMfJus6fN04xhLRBRMl3OFHl8s36Nh9PnHJ5/hudJjBokcwr052eTnCu/ixSZ7/hz9KMcVR5a+73rLrFttBomtwDkVns4cMIgcRomTYuWjRMMi5kZmD4uIbwyvpbL5LbPNJavFdlCjFRZZt1rsBzWu2oeApD/5CCxkUtm236AoZKKZnAn0Uwy9m5h8bXCd57KPUlDxJLbpRVmuZg7YC+qsmB2OggqmqlC/3n+GRauP0BJW7TOywmNBn/Ijv4Gf6Exii4oxpqaPuGQ1+b3eTV5rbtIdZlk6J3/f884eWS1kkhg0oyLrVlv+7LU4vY/CROdq9hBLi9J74bFX48X8B/SiLGdRTlGrHEQif/YfThb7y66fekipaVoe+H3gv02SZPBxH/qXvJZ8zOs//kKS/E6SJC8kSfKCnpe9uxaD7mlPthZqBPGl+QdMYys9NbPCV+o0FWaLRkYPqDpjHk5q8o2nS6mxqYUM4wyTyGYYObzvNuRQi5jdaZ1lsysVZ0iBVdmcYItAJR/JdkAnSQnVM4aDFxv0oiwlfYybWGR1jx1/nqJwuZQ5TtWRdX2YbhhaUYFJbFPQpwqGqyhVKv3JTSyu2IdcMttsmh0u2cdEidTW7wc1enGG687jVC9REK4c1CJSJP9RUGbZ7EqSFUI9GSNen26yF9R5FFakvBuNLatJRg9Yd9q8mN9hz51jooZ35+1TFsw+W5kTfm3xdRbsAUGgU3A8Ltal0Ko/dTgZFjgclcgZHi8VtrmcbzJvDHngLfFc6TF1Y8iuP899b4lukKUT5SjpExpGn2HkpC3ZM/Yhd91lLCKWVfjum6MNAJ7NPOJmZhdBTIDg9ekGzVAi7b9ceI9JbHPPXebVyZYK5B1yxT5k11ugYfa45a5SED47QR2LOJ3+z2YXS/qEdaNPLzZSpsO60eFLhTsyLEd4KcS2IFzZBqnB6lFQUTJoKXxrh3lKxpQN+wRHBGwr7ACghp2yhb3vN1i2uyzl+7y09pDnS49YMAf8s7MXecdb4TAsc9dd5vujCxwFlRSLeBhWyAgfRwuo6wMaxhCdmKvZQ3W3itRiMBvICi3GTT4+vfenOiA0TTORh8M/TZLkX6qXT1TrgPr3DJ10AHx4xH8OOPqY1z/6UsdHGvAxI+AkUH2mhZcYjEJLbTAChpGDKULGoWQTjEOLrp9looxFUSL4QukezWmB46CCIGbNblNQK8xelCUnfD5fvM+uJwsiHQmLEZq0bAMsm11aYRFBTD/KMogz8g2EYNHqy1VWlGPZPKOqj2kYfd6ZrPPQq1M0XBbMvtwqJKYCjwZECN53FwG5EXE0OTu4ZB/TMHrc9ZbZCSqM1aCsZox42tlPYa2HYVlmPCB74pyCs45jCz8xKOmKup1YDGOHeX1IK8pxI7MnWxY19JTpUYK/Xv0hulrjXsocs+POM4wdeir/YRQ53JmeI697fHXzHtdrh/zX574FwFdW75Ozff725tcpGi5HQYVP53Z4Y7zJWSj5iVEi++yyPuG35l5jksiqLUZwwWmmoNjTKE/D7DNOLMaJxYrZ4XruEZfs41TL0QxL6CTczDwkTgTveitRAmZQAAAgAElEQVTsBXUOgwovZHe55ny4cIVXcvcZRhluZPa47y+wbHTZC2uSIZnMsPMhR1GWViTZC7PL1qJ0wC0Hy3K2cxKU2PYbgJREfzV/h3VDSvQr5phuIGnlwyhDlGhMEps9f46aMaJqjOVQXM0F3h2do2JNWc90GEUOG/YpvzX3GsPI4fdan6Kqj/mV8lspWTun+TzypQdnxqO87S1jahFHwWyzE6Vow4Iu8QFebKYD6Y+6fpothgb8Q+BekiT/+4d+6V8Ds03EbwB/+KHXf11tM14E+qoV+QbwFU3TKmo4+RX12sdeug/EcvYgPKQ4KoFrtWOCWMcWEXGicTApM4psHC3kQvYEU4sIY0HXyyK0hIwufRjLRpeaPaEfZpjXhwyjDPcmi6xaHdVr+imDsh3muTtZ4rFXY9HqpzdGJ8qjazGTxGbB7LNsnqUKuwO/kiLYe1GOFbNDMywximym0RPx1KyN6cQ5WmGRN4ZSUpvX3VThN28MEcQ88BZT7UOcyIqjGcj+9rq9T1G4NIw+b7lrEqmvjzkM5dPFTaz0JqjrA2piQifKpzbxXVXdDGOHZljmlrvKJLapibFKhAoo6FO+ULxHXW0KCrrL7rTOwbTCzqROxZyQ0X3WjSdU7f909Q32gxrzyq14GhZYs2dAWY0dd55JZKv2yWHPn+NGZo8df56zMM+m2WLZGHAUVthT3hYpOw/pRbm0Utj2Guhawh2/wevTTdlCialkdqiD4dXRZYaxxa4/T04Lue0tyTYgrHDFajJOLJaMLq5idmSVbdzUIiWgimhFOfbCCq9NL7DtN/jeZCtdbetawoZ9qnw1Mt1bkFAQQbr6zuhyk1A3BuRUG9kw+wyjjITeGP2UoP6gt8BmtkUnyFExxkqQpXPFOeQ/qr/JWZTjX/We52dzd6XzN87xaDpHw+7LP6sSzzXDEnVjCEidzmxW0ouy6dr8J10/zQziZeBvArc1TbulXvs7wP8K/J6maf8l8Bj4VfVr/wb4eeADYAL85wBJkpxpmvY/A2+pj/ufZgPLj7w0SeBNPuS50IBo2aVsSnxYy81j6SENZ4gpIlnK6VNKxpSjUYkgEggNFjJygLjjz2OLkLuDRSaxxX9Q+QEb9gk/GG9wwTnhvekKC2afQ69Mwxpgi5A3Ouv81uqrnIVSudcJ82zZTVphUfbQ402ezz7kyJdLGaElbKg9/H5QU6e1HFCds87YNE/pxLnU+OVqFk/nDrk7WWLZ6rJqdlKJ9447z6XMEctmlx9MZGkdofFi5iG3vSXiDxl3tqwmBeFz21vmhr3Po7BCVnjc95YAeM+Vf7eCmMo3h32ohqjSVrxidlISFqDUhw6x8rEMI4dh5PDYq/Fed5GlXB9bD9kZ11mwB7zurgGwaPUkCSs2WTD6uIml2p0Bt8arXM4csmGdMq8Pedtd511vRbYWscO61aImxuwE9ZQDumGd0ouyzOsjDqMSl+wj1Srp3MzsYmoRO0GdujFgL5hjHNtp2FBO83klf5dOnGPdbLMXVtiwTtkL5igKl35sU9fHHKkZ0LLRpaWIYXVlzmtGOeb1EXN6wE27QyuSW49DteKuKRDNs/Yhj8IK73grvDNaY93psOPW2XRaeLHkiXx/vMVXCrfZD2TL++3eFcJEUDWkCO0Dd4FnqocyyjEo8Iv596QnJJb0st1IVrardodBYlPVR5xFeTIqdtDUwlTZm9M8ToISi2aXTpxPuSUz2XU/yaaGtY+6fpotxp/z0bbxL/0lH58Af+sjPtc/Av7RT/qaT37Dk9YiRiUFhfD8+cfkdY9RZFOxJwwDm4EiHReNKXnLpR0U0LSEIJJEYUM9uYu6y6cKO4yjy4xDmz/s3uDThZ20HHvKOWYQOWxlTjnwK2xlTtg2pTtuEtvsevNccQ45i/ISPpsY5HWJKzdFSFWT+vxZCng/ymILCZKt6JOUTCVLvREWEZEQHAUVbKV7FcR0IhkA/KXiHQrCZT+occ46Y91sc8dbYi+spG/ggpgySWzemm5wI7NHWR/jJTqnYQFdy6fT+3aQ55XcPfbCGltWk1vuGnGisW622fYabNgnbAcNLtlHOJrc8tT1Ict6H1uLmCQG48TiD67Usdmj86EfVQt4T3WQXz+5yt9Z/1raQvxfJ5/jpdIOl8w2/zJw+Gb3aS5kT+mZXT6b3WY/LHNJ4eo7yo35cmZHaRAsbnvnuOk8krJjo8st7xzrZosfTDb4dPYDSHR6UY7nnT0KImA/LLLjL7Djz1PWJa8jTgQtXQ51y8Jn1TjD0ULu+EsSeKsP06HjUVBBaDGHQYWr9hHz+ggfwUlksaD7jBODA7/Gs5lHCkcYUhMT7voNIjQ+cBdYd+R3Z91p048ymKo1mTOGchUtfA6DKuecbjp/kMY6i2kk8XjXsgf4ieC+v8BVq0knzrBlNanqI77WfZYls8uy0eNHvqzUPuwaLusTfjRZ5YJzwlkoB9xCizmLpb7C1EKyupfOQT7q+mSbtTRSDYRQFm9/IWQte4YXG2R1Xwas2GMe9BZ4unJMxZQht15isFnq0HZzHA9kjsJMiVczRizafVp+AaElHPg1zlkd3hmvU52F76IxDm1+//I8tb/wOQkkcfrZzCMcLcCPnuRntoMCw8iR0BDxxD87jOVT99gv0fbzXC4fURNjxomVSnFne/B2mFdyY5O73jI3Mnu48ZPY+kf+XNq6XLWP2Avm2PdrlPUJQou5Zh0/YW6KAB9BzRjRCotyhZeUWLT67AR1HOGz7TewtJCyMeE0KnAzs0tWyGHbjNvoJvLPAshqI3b4/bObXH475I3TNU5OS/zWjdfohxmeye7z9/a+gC5i/ofVf0NO85loNl/vP8Mrlft8p3tJ0qENjxXnjM/n7pPTQoaxxXtTebA84YPGvOWusaRs1QXh0lE5mePEYtM8pSQ8Pp+7n6ZZLZtntKIC9315cEulZRc3VivMsERZn7DtNahndunEOQ6DKs87e/TiTLpWdrSQDetUDhd12A+rVPUncJphLFfWVWPEttegoLv0lHLS0iJ6YT4Vud2dLHEte8CpX5TO3MRky2qmG5KhyPC2t8aac0ZZn8jBphqWHnplvlq7w1vuKs87+wgSLCLemm5wM7PLheypmntpbE/nuZI9Yt1sSXk2Ovt+TXJLwnw69AbSrVY/lL6lyU9Yc36ypdbKoIX2JIX48tYhed1jzhwxCm1KphRE5S2PWDkcC8LF1kKqlnLbiZhjt5RSiNzYohdmKZsTzvycArLYXM89xhFSe7BhnZLRpatu3hlywT4BpIw6Ut82UwvTk3g2FQ4SnTjRFNNSTqfjRMMSIUtGFx9d6RZK3PcX+d5ki11/nooxphvK9d6W3cSNTcWn0GgGZS7YTXbced5219kPqxTElGvOPutmm4fePK9NL+BoAdfso/SNVhYyUr6hD9K162zQWNVHvJR5iKMFSgNQoqUGkNt+g11/nm1vgTeHGzzy5jgKKxwGFZrTAo/HFbJmQLky5rnMHqPI5iio8O8tvccvLt5WE/SEhj7gb1TeoCBcXirtsD1doGEN8GKTf9H9FH8x3cTRQr6cv8M1q80/b79IJ8pzyT7iur1PWZ/wllIJNsMSt9xVfjRdo6q7HEUFbnvn0uGiTsJTZod1s8WBX5V+BuUduWSdsG61iBLB884j+rHNs1abq/YBt9zVVDq/pE8oiYDvTbboRTnq+piG3qcuJhyFFW57y+TUA2CWiTJWK85WWExX3XndZc+d48X8Du2wkK4x3xms0YqKRGjcctcQWsxz+cf0o4z0doR5DtwyGV3K/O/7C7iKa7odzPE4rHLFOeAfnH6eqj7GTUzemm5gi1BVBREBOjUxpq/QBkKL0ZW5qxflOItytIOCOhysn7jm/GRXECCTpX2NRCRUnm+xmBlQNca0wzxFw6UXyDd62ZryeFzhQuaUfpSlH2UIE5286dEROUwR0TD7KabtP6m9zp4/x7e8K7SDAhMhT9LZG3rdaTNnjoCcGipaamgly/V5fch9fzF1cJ4EJcVY6HMUlNmwWnTIEycahoj5VPahHDKqmUGcCMq6pAltew3uTpbYypymkfLDOMNdb5lJZLNkdbG0iIo5VoxKnTgRbKhD6ynnWG5dTLjjN7hknSh5dsg4sXgcVqgbAwZxhjuTZS5ljqUTNMrQ0Ac8VhLtWaBPQUxTJd6+W+XArTCKbJ7P7WGIGEtIG30UC3739GUWbLn1fjqzLzkJKjOkKFzu+3NsWSesmB1uZPb4V73neSa7j+lINeeOkkp/Ifs+/1ldRsXd95a4mdmjrPlSsRrl8WKTG5mHNMMyrvKkZIVHVvO46y8wiByuWJLsddGRG463vWXJ6lCu1ZOgTC/KqofAMbfcNW5mdokTwWezO5xEGRwt5Ku5u+yGVVyVhlbVpbENiuyH2RR2PKNGg4S8NAMpxrpkH3Mzs8sd7xztQK4368aQX6zdohmUaImihM0kgodeHZ2Ymj7Ci03OvBxnXo7fXH6VIDF4e7iW2tMjpAlMqoZDcsLn9vhcSqFqRYWUGTFnDOkGWUaRQzfMUdKneImgpE/pJjn1cNNTYdhHXZ/sCkJVDrGZoMUa87kRth4yjByCWMeLDQqmm5auZWvKMHKwRcD+pEJO93B0me6U0QP+qHOdXb+u1mMOZ1GesjnlzM9R0KVJacEc8LPF99i0TnkuswdAL8imlUWQSDPYIJbRfe1QWrZNEUoWQORwzTmQqHpl5y7pU647jymIKadhAStlRshh0v3pIjfyj9Lfv+fPsevXeSm7zVPOsXpzOywYfdasNnVjwEvZbRnYEuZ54C6mw6ZV44xhbDGObW65q5KkpQXcdPZpGD2+ULxHhOAorPDO9Dx/Mb2ArsVsmGfSTBbMp+5JR+UzfKF8n88WHrBkdrlcaBImgkedKoNulk+XHvJUVqpQv9OXYbHfH2/x5mQzFQrpJHx3dIVmWGLOlJ6DXb9OVfismLJXv+Wd498Or/HG5AKX7COOwhLfGF2hbgwoiil1Y8Ad7xwA77irkkE5lf//rNXE0iK+Pr7IUVihpo+4bh9RFhPWzTNuOo9lhWEfcdU+pGH0yGohP5u7n4YY6SQ8Vvbq16YXaIVFWlGBgpiyF5RVRdSnLDwFhAnSPNcZ3u5mZg83MeVmBZmsldV9JpGFqYUMIie9D0wtwhEBVWOcMkEO/Apla0rdGfHudBVTC/lc6X0aRp9rzj6fch7yT1o/w9W81DY88ueIEMxbQzZNGeFwFuXpRHnuTxfxVKbsebtFQZfS7hlw19SiH8sW+ajrk31AfOiKnxoRxoKM8BlF0nloi5BVW1qyM3pARg/SQNyMHjCOpB7C1CPudhtcKxxQULAWE9n/P5vb53hapGqM+IXyLeaUqen74wv8ce86AEtOj7NQxpvVjUGaxjTD2R/7JRwtpGH0VU8quQ9HXpkzP8ea3WY/rEqwi/ARxGnl4MYWm06Lsi5FNpPYJis8rjiH9KIsK8qOPIwyKTIvJzx+v/dCKvdes9qsmHIhNFuh9uKsSpQypIlHyZQPgyrdMMebww3WrFaaDfK9qXQGAkpKXMQk4jPF93Fjmavwtf51Hk+r3Gst0CgPME8sbKX7j9C4kX9Ew+izYPb5SuE2vTgjITiJyRfzd3nk13na2aeou7ySu8cfj66maVE1fcSvlN7G1CK2/QYFMeWr+buUhctN1UptWrJiSsErkRT5tGKbdVOamTasU6JE8L3peSnE8hdoRjnqxoBhnOH16SY5zecdb4VebFHX5Ur0dXeNS9YJraigDph93puupBudgvApKVPXRBHO9/w51q02dWOYwowFMbeGK/zJ8BnuTxdxY5NLmWOCxOCxP5ei+E0t5O50WVasaPzZ4CnO2y0GgcONwmPuDhfTtec1+5hdf55b3oq8x0ko6xPyukvJmDJvDrjjL6UwmW6Yo2RMWXEkTDhSANuG0Wc/qFHSJRF9ZiX/uOuT3WLEEgiTiIR6eaSqBlPCUGOTWOVnlowp26N5VrJdKsY4VVauOR28aIGC5TEJrPSHLZAqwyWzx1FQ5nKxyQ+G56lbc3SCHMPQ4TOlbTbtEx5wjkWzJ7H1BOwHNcr6mIIuZx9zxhN598wB2jD77PlzFAyXnC5j9WRsX4FIDf+G8ZM3fNUYqeqiyDlLMhT3/DoNoy/JVWoFNjssymLCi/kP2Pdr3MjsUbBc6sJjmEh+ga7FlMVEuQW11J7sJibtoMCGfcoL2V2VF6ERq+fE7JBxE5Pvjy5QNcZSL2IN+GCyQNGY8vnyA0rmlLaX51GugRebNJMSV+xDvjl4Gp2YFUtqDHpRll6U5WZmV+3kB0wSmw2zzTvuKhv2CftBTa6HbakveTbzKB1GwpSqCPESJI+BKa6KNXS0gC8V76bwG12L2fPrvJJ9QM6I6cVZrtv7vO2uyTxOpXid8Sc3TTmIDBJZZl+1jnhrus6LmYepBfznCrdxNDkYdBOTLbNNlGh0ohw1fcQjv55qClphQaprtYQ5e8R5u4Vrykq1HRawRcB5u0VO82lGpdTfQQyjyOZzxQdy62NN+NrJ0/xy41ZayTUj6ZX55tkV5u0hdWOAowV0wxyTyMLSQom+i222vQaT2CKIdSJNMlItLSJQVasU/kWU1ME4Ewl+1PXJPiA0iK2EYCGgnhlj6SGD0KZoTIlVSf3+pEFG+MRoigFhMsFiTuHtM3pA3vTwIkVXCvOckacdFlmz2mSFj9AS3m6f468t3aNhDXildI8HrtRJAOy481zNHipkm5biymYVhC1CFhVGf4Z164Y52l6e89k2OeHRDEs0Q8kwDNTTB2TuBZDyK4PEYNcrE6GlmRknQZmbmV2GscMDb5GCcCUoRHclSERLsGa5DvqUuj4kTgTNqEhBuCzpQwKENFjlPGpiwk5Qx41lToiuSYDKptniO+PLOMLnnNXl2C+xbHdZt1oUhMv9qVR6TiOTd08XMeZcSgq7Nkls5syRGoZJlsGS1eWSfUwvlkO8L2Q/4NuTiwwih0vWMW9NN3gldx/XPuDV8aVUTfjZ7DaD0OG2t0jD6KVqxZmc/Vn7kLM0fXvIOLEoah5Nrcxb7io1Y8RVq8kt7xw1Y5Qa0SJTkqJ6UTYNUSobU1pJkXHiSY9GWFaf02QYZajrQ36pcIdWZHGmxGQA8/qIZzOPuOsupyrFH07XiRKZcfLOaI0w0VmwBmR1jw8mC2xVmvjoLBldLGJcWx7EIPNM3huf43Bc5kZ1ny27yZI+5EexyW13BUeTBrmtzGkKmTn2S/xi+YfpNqwVFulHGR5Oaiw6A0rGhP2g+qG8UCnnlzYB+VBoR08yZv+y6xPdYsws3hurp7SmOXKGT9mcktV9ztstSvqU8xmp/y+p100toh0U6AUZRqGNFxv0/QxBJEupBbPPBaepdtMSQns1c8BascuRJzcd+36NZzOPueg0AXg+t5dawI+V/l32+o7E1seGPKUTnZohn3BBrFMwXZ7OHKSS3G6Yo2H0qeojVqwOk9hm362k1UhRTJX3wiBIdAlIFR5rVov3/YVUxFRVN/2mKdXt151H3HQekRWe3FjEDm9NNyRxO8py12+kIT/NsMxOUKcgplIYJTx2/AV0YvZCuRr7Ru8aO25dSoTDHB0lELueeyzzRM0pRccj6Nm8OdykHRZ5b3qORbObot+/WriNnxg8Dmq8N5U8itfdNa7aB+haQifO8fncA16fnqcsfDbsU/pRhk3rlD8ePEvDkH11MyxTENPUXdkMS8RolIXHttdgJ6jz9f4znEZ5nnce8Yx9SKS0A70oy7d6V3l7fJ633TWyWkhOC1ORkiDmO+PL1PVBOuUXxLw2uUhBRRzc8ZZoRrbapJS56RzxknOEqcWcRXlOApkOXzVG2CLAFKHUxYQOdWtIjIajhTyVbfJnw0v8aLrGG5MLko4VZQljkXIabBHw6doeg9Dhz0dP8SNvmcGHwqDXsmeU9DHj2OLfDq5RMSTdrBUW6UU5IgQVQx7YjghSP5GpyS3HgtlTlaSVVhMz0tRHXZ/oCkIDokxCzvRxQ4NxaGFoMYKEVligpE+VHVun62cpm1PaYZ5ekKFmSmybxHxrTAODdljgueweh0EVQcIjv86S2VXlYcLLxW0eevNUjTF33WVK+gT71QaPfEmSfjpzwAvZXemoDObxE4NukGPZ7nLPXeJgWuF6Qcp7T7wi1wv7nIZFLDXEmhl5aoYkFD/2qtTMMfemS2SFz1POcaqMO/Xl0z8rPF4dXKJiTijrE9asNg/cRT6Tf8CfDJ9h1eqwH9TS9eBhWGbZ6PHZ7Pu86Z4H5GZmP6hyyT7mmn2Ybjjemp5PA4QGKjLe1EJeyD9k3ZLiqUtZCUb9/vgCm/YJ29MFppHFXGbMUbZMRvc5CYrMmVLSK7SYk6DE9+IttqfzxIngZ4of4GgBR1EF1zCp6wN0LeYP+jf490vv0Ill2/Gs1eS16Tqv5O8SKH9JkOi8MbmA0GLqxhBLi/iDwXPMGUNuZh5S132u20fc9+s8VoazXb9OSZ/ySvYBL2Z2yGohd/0Gr062yAqP551HNKOiCrpt8c70PFnhUdYn/GCywc8X3iWnhTxwl3ghu5vOAq7bR3xzfAFHBFyzD9N7whE+NTGmrg+4ZHVpRrZieUi+yFmYo2qM1UAy4M97F/j5qoTYGiJmwRzw9vg8FVMSzl4ubnPdOeAdd5XToMgpRT6V3WHHneckLLFk9tCRrMl184xmWGCSSHJ5MyizYA8JYh03Nrlgn6SV6OwQMQlSgM7MwPVR1yf6gABYvHSKoweYar1WtcZUjVEq/oiFhi2keApgFNp0/Sw1c5wOL00RMZo4zBlDWmGRbpjDEQGPvSpVY8Qktvlc5X3K+gQvNjj2JS3otr/Muaw8YdfstnLPFdKYPJAY8e92npLu0URLXZwZPZCqySgLmuyvZ0YZQcxddxlbhGw6UvAiHYxVJpHNU84x15x99oOavIkzLQpimsbUP53ZJ0h0nsnsM47lnnzTOpFSZfOMu94iZX1CUUx5a3Sep7JN4kRToUFThnGGtzw55a4bQ06DYmpDzwroRwY6pzTMHg19QkH4/EWs863uFa4VDskKH0NEiPMxc+aIvO7y2KvxlH2MpUWs2W2p+FPa/4KY8sBbYs1qKQDMAd8aXeHXy29y25dP0mfsQ7bDCmV9wn1fkqU2zQ5vuys8mCzwfOFRCvD9Yv4urajIbe9ceoOPYwtLi3hWWbjHscWDYF5uGIyejMxzerSiInuhTOSeHcArZodh7LDjL3BBhScfRlJ1KrRErjuTLLaG2lToHIVPUPK73gI9Y0RNH7EdlFgxJFz33dE5LmSl+zVIDC47h0xim1cq92VFNdqkZEzpRxkuOk0O/Cp/3t5kUHZYNruptmHNatMMS5QMuf145M2l+PqJ8lxctE7IioBtr8E4sjG0iP2gihebzJsD6nqfcWwRJ3a6eSkqAPHHXZ/oFgPgXKGHocVkTR83Mpgzh+lk/jiocByUyeo+JWOaQj3cyJTlljlRgBMfXY95e7gOwHlbluY7ozmOgjJ5XaoH/9npi2R1uSVZtc8IYolVO/ULDKMMbpqUXKCsTzgNihxOy3S9LH5ksJY9ox0W2XPnEJp0QgaJIeceYZ4o0bhoygOhZEzIqjViO8zjKVT9Z/IP1A2bwdECHriLUsgzkZF2D9xFWmGR+95SemOsm20cLWBZ73PfX8DUonQWYIiYsj6mrE/ICo9tX9KgD70KH0zmeeTPMWcMsUXABfuENauF0GIVHOsyTgz2Vd99Oi3QDXJ0QxlGdDqRIqA9dy51i5bFJEX+35ks04uyDOMMT9lHBInBM/Yhfzx4lgWzz0mUYdXochbleRxWmFcw1uv2Pr0ox9uq2vrthW/xvLNHJ8yzbra57y1JoZh9kGpJZNxelX5sc8VqyiG00UUn4ba3jJuYvDq6zGko0fGOFlATHmXh8ur4EjnN5xl7//9r781jJLmz+85P3JGR91H32dV3N5tHs3lMDzkHzRlyKHm1krC2tVpblgRoDxvYhWEY2hWw4B/2Yr27XhgWZAEWpLUlrSXtSh5dnlPi8JjhkGyy2ez7quqqrruy8s6IjDv2j19UDm1Mj0CvRNYA9YBEZUdld7/MjPjF+733PQRfQQrRifjO4AhOrFFNp0sXU4ZvLzZTJ7USbqJx3NjgsjOTMmJdNBKBmFQF5H9Gb/BEZknoj8oe46pYMEY1caef1RvDXlBRH5BTvSEy05J9SorD724+SSfMcMZcJU41Jb1YAO5MWSBAr3sTLA1GUKWIGbOJExkUFSFLtxUWKSgCEtCLM1TVPutBedj7elDs6wVCMgVTM0xkTCWgqIkP3E1U+pFJMW1aNVJ4bT80OGzuUNLFxSeTECYKHT9DFH3vra75QmvgULbB9b4gMkXIVHSHVmDxSHZVSM9pA/R0Rr1nlrqHPFz1q9xzaqIxmm5/+qm2hBPr2KHQT1gwBLP0uiOIVYvByNDYxImFexXAPaeKGwv35mueEJsVsh8SdwZjYpwalLg3qOEmGs9Zt8T/kwiW4npYxk1U5rVdIa8e5igpDj9SvDQUt1GkmEv2LNuBuBuVNIea2uW93jxvtI6yFRZZ8QXp6aY/xk1vkguDeTQi1twS/2D2G3TDDKtumYaXpWC4yCQ8kVsChCDqTV+M5wA+nb9NVekzr9V5tXeSeW2XohwMWZ0jyoCb/jhfyN7AlAK+3D3Ls9Yd3nEPcVirc0zf5oS2i5VOpQRHRLyX1/snuOlPMKLYzKgOp4x1vpAVU42NKC/cx6Icp/QGL1mrYrQtC5WtpcHIkJo9Iod8NnuTa94U98MKVdlOUalibL0T5emljVFFilkNS9zxxlMSm0Q7ynLLm8QODepRnouDeQIkVoNqCrbr0QhzXHJnhwpPO2GeRpQbVqKL7qiwJoh0xs0ehhTyauck/3b7Kca0NrkSuc8AACAASURBVBESOc0jp4gt6ocb4+tBmTiRecM5xmVnBjs0yCmisqmown3+idwSTqzTCHPDZvYdbxxNiuikeqkPin29xdAUMebxI5WOb5LTPGpaD1MKGdF7bPhlLNnnnlclRsCZd1MUnyIJYkw3NMlrHoYhQCF2bODGGtN6Q1Bre2MEBYVlt8aLpcvDhpoTG2RVjzCWOZrZHm4PokR4Yiy7VTJKwOncBk3PYiHfQP3QKOmwVReovfRiySmeaEDKwsBmJyygENOJMswaDY5VREN0TwS3GYrZfVEZUFbtoYvXw7k1sqnP57PW7aFGwk1vkh1JzPDbscVz2Ztc88fZSG38RMNSqFBPai22g5JQb5YD/lrpOiXFYdEfxU1t/m56k5QUm+2UVv5EYUUoLfsW24M8XqiSgOjQu+N4iYoT61SVPpfsOcqazb3BCFEiUdVsXixeJi8H/Gb7SX6qdIFXnaP4qYnPnWCEo1qdv1F8l0veNM9m7vKBNyU0RGPBP5lKy/br3gRH9a0huS4reyyk8m1vDo5yNrPMjNKnKju8585hxwYzWoMzxhqRIbEciOnRiNrlO4N5IYyriy3dkj9KNzZ51FzhDecYM3qDWbXF7WCUeW2XBbVJjERVtnnPnacVCjp2LzL5VOFuqla1y01/BFMOcAI9BSsZqUx/mbveGCfNDSHPH2axFJ+1QRktG9ENM7y5OU/ZGvCZkbuAQKP+QeMcJ/Nb/GjhEstBjSBV6S6kJMFGlGPRHWHKaLHk1GiH33OUnzUabAclLNnHlIVmym7av3Nifah2/aDY1xVEnEj4kcruIMtON0fbF2+mqNhYslgsiqrDc5WbZGSfpm+x6IxgyNGQ2ZZTPUw1wB3oDKLvceAXvTG2/QILuV3e7c5z2lpnyR/lcm+KN3rH2fSLfHdHNI46kUUvEsK3a36FZpTjuLVFNzS41p8UjSa9S1WzOW5ucjSzzaQumn+iZzFg3tzFizXuDMYETDfSOWzu8LC1iheLbcueJPluKHwzbrkTTOsNvPh7eQeJaD79P+0nUpUjYYTzdOYeQaIKqLZsYycqhzWxXdhb1Nb8CmfM1SEW4EcLl4jTi3RGbfN0ZpERtSd0M7Qm20GJRXeEGFkobMcabT/DQr7BdL5NvZVPXcTFRbyH8S9rNmNqh1+ovUZJG1DT+tz0JnnDOczz+av8evPTPGne443BEUqKwxl9a4gEndEavOIc55Sxyby2S0F2mdfa9GKdC4MFKkqfcbXHrNbguewNANxEYVxx+Jx1i2/3j/NrzfNMqyFnzNWUwi5YmiOyxxPGOi8UrwCk41OVRpzlkjvH+cwqbqKRlwKOGltsBUV8ZB41NtgKi1xwZ9PmqVjE95Sg9hSkTxnrNKIco4po2Aapt4nweZ0iQuaYuTkce8dItAKLQaSx4teYNNr80omv8uL4Nay0CvhgMMuVxgROpPPW4DBBonDbHh+OOkEwNz9XuMm6J/LKyD6aHHHIqNMKs8PX7dkmGHJAUbGHWhE/KPZ1BQFghzq2p5MkEsutMs+K3QFuCiOdScVa5s0GZ3MrvNo+AYjyXZZi+qFBRgkoFRyWuxXOFu5T03p4sUZN7fN25xAVXThRWbLPY4VVNv0i3dCk0bfYDXIYcsincnfZCoocMcQF9LX6aSw1IIChB8dn8rf48+4ppowWecmlFwll5j0uwagmKoLbg3EMOaQTWbzXH+XJ/BJ+onLFFtDhp/KLAtQjCXZmLf0iP7BnGNe7zOm7nDFX6cUZXu8d57C5w7IvRpejao9r3hQjapeN1D18Qa/jJhrnrCVKsqiCZjINLgwOpTJzgp+yHIyw4tUY0zpcdmYoazZhrPDn3VPDbcQvTL/O9cEUrdCicsRh0RmhpmfIKR4PW6soUswLuWushiXclKegSRHf2D3Fl2pXUUj4byrf5oo/ymiKSt2KvtfwrYcFvpC9yQV3lj1z2m6Ktnwis8RyUCMre1SUPv+2+TTPFa8PhVi3ogI/XnifXqLxymCSP208wlPFe8O75EOZVfS0P7NnnCyapitUZZtfbz3FF/NX8BIFmZjnsrdxYpXfaT/BU9lFPmctc9Eb5ylzg92ojmFFrIRlFrQm9SjDa/YJKoo9REsC3BmMMW/uctzaSn1V9VTS3mc5rFHWHNpBJlXpMvjHN17iuenbnM/fJYhVLNmnknGIE4mq0ueGO8nDOaHX2QhzQ+HZIFGGSmperFHATR3aMjiR0LeYMlr0I5NpvYmb6HTCDJV0LPqg2NcVRBgpNGwLQxN8Ck0RkmCdVE14JOXWe7FwlhKakArHslvpc22osWCqIX6k8Fb7EHEiCUBR6kmx5pRwIoOdoEBRcSirDo/l7nNmfJNRrccxc4tlv0aQqNixTi8yGTFFh94JdUwl4P6gwtu24B84kcFGUML4kJs4wKX+LFftSba9wnDklVdd7NgQ6LdEoRlkWfFrLLqj3B6M80RmSWAw5O9ByW+4k/xO41PIxDyeXRYdf31nKFa6V23shnkBqtJ2h/iE99x5loORoVGPJXuMKF2hv6jVeSorWJdrbmno31HTxKTnQn8hNdgRJ+wg0nimeAdZEuSlEaXLiNLlTecwphTwx53HWHXKLLojHMsJgVWBShRK3hWln4KARH9nQe3zjfZperEQ6t0OSkMIs5nmHiEzrjhUZY9T1sawYbsc1FgPKrzmHOUP24/zuLHOP576Cl/I3mRab2DKAZcHog8gqsESTqxT0/q86RxFlmIet+4NDZHqUYFv2ieIkHjMWqYR5XjVmaei9FkJLW764/QSjW5sshVlhy5ZncjiXWeBi848wBBGL1TK1KGfZyvMMqr1cCKdY9kdYfATq/ztw++w2B/hd7afTPtPo7TcDO3A4put0/RD4d62N0ER3p0mF/tztPwMo0afbii+o4oqrA9yiseE3sGJBCHxnjdCnAh8xl8kGLOvF4gkgYGn4wUquhphD8SKmFcGuLE2lETbcw5adEcx5Ij3OnMoCKPenOJR1AaiodTL8ERpGVlKmFRbaWPSpmo4eInKY9YyzTDHtN7kujNJw83SiTJcdyaFY5HeoBNludybYnNQpOlZonE6EKzNfmQMsfVBLMBO20GBPUPfObNBGCuMGV0MOWBpMEJN61FSHG7YE5Q1hxfKV5nTd+lHBvPmLr1Y3F16kUkYy5w0hcHNj1fe5V1HiLT2Uj2DkuKwHIwMpyc1tceCvsMld3Y4ztoTtr3pTbLsVhlRu9SjAreCKvWowE1vgqOZbQw5IowVvlC+Sk3tDXUi2pFFJ7RYcSosdmpsBiUes1aIEpl3nQVe65/ETYRXaFmz+WL1Gs/mb7Pk1KiHQiz4Neco79gLfKt3ik9n7pKXA+xE5xVnnp8feZ03nGMc07eZSftE170p3nCODrEkAHai8lL2LjNagxPGBoe1Oi9mb/OoeR9NjvimfZxerHDdH+MJ8z7nrCW+lL8MwBOZexw1tiirNqdMMRb97cZ5wZfwqnQT4dY9rnb4eu8MN9wpzpuCZ1KSXfKyz1F9W5D9ZId6WOA9e344Kl4a1IaKVpt+UVSSWluccymbOKe4eImKHRk8lFnjqLGNIYf8y8ufYcvO0w/EuX65OcWJ8g4ncptDFbU49bVwE53jxgaPZFaoajZ+ahV42BIm0r0oI3QnE3XoA1tTxQ1vXOsgS/EQB/Og2NcLBImEu5th4Gn44fdIJTIx1VTbwZQDisoARYqZMlqEiUxW8THkcMiS6wRCKFSS4LYtutd3/PGhLuSN1hhbXoHv9I5x0x5jOyhyrT1BzxMl25TR5nxecB+aYZYps01zYDGfazKINDQlYsZqUdP6lFWHab3JmNahpDiEsUxV6Qt8ROrqJLYXGXKqONnFqNWjHxp8vfXQ0Cy2FWZZ9Ed5q3+Yo8YWqhwPvTWyks+csSsmGanoyk4o/DhP6Js0IiGL14szvNM7RITMdXeKS/YsVaXPslsTY7IUjLQnu6+QcNmewYsVPlO8iRMbXHGmsWOdY5ktvlkXjM285nG2tkovMlnyRrEUj+PmJq3QwokMbg/GmdTaXLGn+VbnJFNmW4CXsrc5Y65yz66yPKjyq/XPpbRzm0fNNb7RO8NP5K+yHpZ5o3uM2+44C/oOWdnjfWeeZb/Ge+mC8cpgTqAmvUnsRCNIORunM2u82jrOG84RVv0qf9A9y7/vPMp6WOKssYUpRRzVGjxqrgDwrHV7CK//ydK7fNc+ymLqQXHOWhJaDt4ko0qfOJHYCvPUI7HYCV3PESzFZycoUFZtCqrLuicqlAm9QyfKcHUwwx1/nGpqrBwnstCtVF1uuRNcHUxjKT7n5u6TNzw+U7tLTesznWujyyFFZYAsJTT9LA0/R4REPzLpxRnedRa40R9HJsGQQ7b9Al6sMaM3RK9O7Q8b4ouucGh/p78giId/WbL3n0RISgxajKZFWEaAJMGaWxoa3gApEarNmNahE1p4kUrDy1L3BXrMiXW8SMVUQwJXZdvNc7k/M9wjzpsNcrpHSRM6lseyO1ztTTKW6TGe7TFltMgp7tDn0VI83qrPDycsWdVPx5zi9/20jHMTwThU5Zi73hhBotIKLc7k15nQ2yzodTphhkmtTT8yGdV7TBltTuU2yMsDHsut0AyzXOrNcjSzzU1vklmjwRlzVehM+hPCek/t8LAhwEtrfpWNoEw3Njmsb7PojzGidnksd5+doMApc51Nt8hqUGFU77Lj5ZjSmmI7sPMIK16Ni71ZSqrDM6W7Q6n78/k7Q1jx4Vydb2ydpOMLx6mKavNmc4E4EZqTT+cWOWctMap3OWOscz5/l2cKt4cEuq0oS172eaF6DS8SU5kr7gxXvAmykrgQLnmjHNV3eKF4ZdjXKKXuZkGiMK/t8oXsTZ7NiMnKjCbQpBfcGd7zptCliBerV3k6s4QsxawMqtS0Hne9cd4YCPftK/44r/VP8rZ9GDdRycsD5oxd/qx/mkcy93nUXOGuO867zgInjA16sck1fxJNiocO7UGictcb53pfSPcXFXEuThktpow2YSwuL5mEFbfK15unuZJS1u97FbxYZbEvpioPZ+6zG+QIY5mGbWEpHn+2c4JdN0tO8RhX28hSQpjIjOg9ZrSmkAeITXaDnBAksjrEicyhjGhOL3mj3PNGuO9VqGn9odF0kCicyGzQDHPDLdyDYl8vEKoco2UD7E6GnmMQRRIVXXTM9+DFq6kZSpTIeInKvNWgatgEiTz8AgwlJKv56JmAOzsjzGV2OWpsDfkOn6re4+36PKtuBU2K6AYmE2YHO9S5YU9wZzDGbpjnO60jfGXzIaoZhyMFwexb6lVR5ZiM4rMb5JkyRMl2zZ5iOyilJsCBmIQEQpZu3S9zdTBNGAu59IafS5uhAceNzSGOvheaTJstFGK+1TjOfa869A49qm8NFZO/3n+IZ63bPJUVo7FeSrMGuOLOsOiOsuqW+WAwRzcwOWpsoZDwUu2KqBicGYq6QCRWNJtNr4gp+ZzQNxnX2pRkh6XBCLIUM2W0ebx6n91BjrO5FXb8PM+P3GDdKw3ZkVthkXWvzFuDBTYCgY48ba2zG+T5k/ZjvOkc5unMPf7J9J/gpcpZZ4xN/lXzGeb0OlnZ444/OqTuv947QSPMMWsI0ZnVoIoTq1zxa5xIKeBHdeE3EScyv18/l7qHjXNU3+Lvjb7CI+Z9TpnrZGWPX2+ex5QCfrzwPn+j+K5QeUpkRpQu56wldsI8V9wZXspfZs7YRScamvCshwVWgypH9W2uuNPIUsx/O/YKP1F+l7OZe4wqPc5bdyirNl6sccsZx1KEQNF/NfJdjupC0t+LxVj4cG6XC+05Xumewo9VLl4+zIszN/BiTfQJlJCy5vAvVz9PLzT5XPkWx81N/BQmbccG6wMxih5EGiN6L3WvT7jljFFUBuQUj06UwZBCcorHqCYkDSzZGwruPij29QIhSVAp2qhmuvINNHbc/FAfco/2u2ece8io48R6il8QmpGPFtfwIsHJSBIJWY652Z/g95tPsO4JG/ltv0AYy2RVj6Li8HTlHitOhY5rsu6UWB+UuNKbYtMpEEQKluqTTbcHWiq7HycSs4YQP2mGOb5YugpAJ8wMefezmSYLxjbHzC36kUE7yDCtN4iRqGl9WmEWRYq56U3yB41zPJxdpRsKFemi5hLGoiLaCMq81j/JvL7LlNbinLXE7WAUOzZ4KXeNJX+ED5w5+pHwTRAkNmGpN59tsOpXySuDIfbhWGaLw1advOJS1WwmjA6njQ2ueVPkZZeq8h92uvuRQcEQIJ95s8Gk1mLebFCVbd535ljzq6nDU8idweiQy6Cl+h3bQZF/3TzPdpQZ7oGXggqzRoNb3sQQqlyVBcX9R4qXKCkO970qX+s8jCaFrEdFVv0q7dhkIyhz059gXm3wiLHO/zz173mte4JKqsy1h4D9Svth3ukvYCk+60GZ1bCILsX4iUI9KnDdm+LiYJ7TxgZPZ+7xp71H2A6KjCgDnjB2eM66RUlx+Nfr57nmTVJRbCa1FnkpICsFLAcjRClIyol1VDmioA7Y9Etia5iKucyqTRYydcqqw6zR4KnyPc5ml8mrLqUZUYHcdUYpGw5hIrMb5KiZNhnZHzJqO1GWvDJgaTBCRXdoellkEja8Ihe7cyy7VRYyu0zqreEY2pTFlnxcbQ+bnPVU8OhBsa8XiCSBIJIhkYgjGUIZJ9Qpqs7wzhOkXgYbQYlmmOPR7H16oWAubnt5OmGGCbNDSR+gKGJbcqUxwbzZYFTvYkq+4M4nEuuDktAQjHT6gUGzk6WkD3gov4EbqRwr7vAT05coakKspuFlMZWQIC0lvVgjL7tDENZ9r4Il+9x1Rlka1DBlIdhixwZ2ZODHCpfsOXQ5ZFpvMqp1aUdZdCnkZHYTS/bIqUK9ezbTZN0VnfJnrdu8lL/Mt/vHuelNCq1FY50Tep1emsNxcxM31nivN8eU3mLc6ODEQl5/Dx9gSeIOsuLVWBlUueFM0ImE/gMITEI7slgNKzxfvMa36sfZDgpin9sXgLRbzjh/WD9LkCi80j+FF6tM62Kh/GxmiY1BkTvemGhcuhVG1C6HjB1+uvwWX+48PhTgGVe6PGquCCGZ3hnOGBtUFCGz5sYCJ3ClPcnRzDa9OMOC2uTHcrf4895p7ntVLjszvOocR09dup8rXh82NLuxyYo/QkYRficPZdb4nHWXqmLzljtHPSxQUmzOmKtMau10WiLx+dx1JrUW1/xRrvjCE2MrLPJz099GlyJOGBsoJOhSTITERlCiHol/a9WtUFad7ymVSzHtyBKGxKFAP9b9PHEiM6fvcsWZwZQDytaAZbc2lCrcY3s+VbzHqN5jzSnxvjNHRe2z4gsvjDWnhCwl5DUXOxQAv4LqsukXuT0YZ2kgqP2GHLAb5LjlTXDbneCeNzpkEj8o9vcCgbjrR5EsNO/lhG1H6DBESDRSlSc9HZO5scaGX2bC6KQCtjFNP8tifwRVjpittAh8FTdQhahnaLEdFjHkEFMNudet8Fr9KE/mlshpHpGr0vQs3mnNM5qONTtRhnGjy2K/JtBx/QKylDCq94bOzACvd49jpaK3dmjQ8LIYsjhBdSlEl0N0OeJha5Wa1h8a59ixwYpXSyXzswSxaM72I4Os4uNEBt3EwE6h0ztBgSV/lF/e/RzLQYk7vmiy5uUBrdDi8fwKpuQzobWZNZqpYa42fOzdVQxZ5FRRxYVy059gKyxSVYRE3NXBDEfydWpaj4u7M/ih0GcY0XucK65w1xllztjl2fxtLtrzXHOmuOKPMm21WfeET+VCps6k1qKkCC/Mw+YOi/4Y15wpFoMRLgwWxMWdvcF6WOC6X+WDwRyv9k4yqbX46cm3UwbigKWwwhW/TD806IYZfrJ0AUv2ueKPsx7lqMo2k4rDYa3OuNrjlLnGYXNHcHakgJtBjbH0+7lmT/FK5xS9OMNpfYPrziTXPQEZf8pcZV5rMqN2hpyPx411LNljPRT2epYElhQKRfRUK+SeLaoIRYqZNcQNY8+P443eMXqRycM5gbmphwXagcUho44sJWy6AkTlhDolY0CcyGz6RS6054bkwRFFYGpW3UrqsSqx6+WYMDuMpxL4e/icUb2HF6vDinkPXzFn7A7NpB8U+3qBkEhQ5ARFjdB10RTsOiZX7cmhnmM2Zbw5sc6iM5I6b8vMZpqocsSY0aVq2JS0ASUj1V0wPd7cXWBMEzZ5c5ldirqLqYZMWB2+2z9Cw82iNDRW2yUs1acbmGSUgA/aoslU1FyKmti360qUOk2HbPolelGGjOzTCTNseoJrMWoKUVJNitgOxKIUJxK33AkOGXVOWRvcsCfpRJkhRt+SPcqazcagSE7xGEQaNa03hE9/NnuTw8Y2561F/nblzeG+sqLa/HHrLDnFY16rk5V9prQW970KAOvBnuuWxldbZ7jrjKLKEWXVoRlmiVINgRiZb/VPoUsRY1qHF0pXeLt1iEGg0utkkBFN2wiJTmAKxqTaZqlfY9sTrthTRotn87e5Zk/xQW+Gt53D/Pb2p/jtxnkeNlb5dGaRUb3LjNZgaTDCO+4hKkrAdW+KZV+Q3n6y9C55ZcCaL2Tqm1GOR/Rdzugt/svKWxy3RD/ptLHGuCJsDd90jnInKFOUA0wpYkSxKSk2z+eu0Y1NFtQmQQLzWp1j1hbn83e5OpjGR+bnqt/Gkj1e75/gii8IWreCUaqp/P1WZLEVlqinxK+NSOdOUBuyJK8Nppm22qnVnpneFKK0uSnwD2tumfd6c3TDDNfsKXqh8GHNqML/1U7xNQvWLkEis+0VsFRBSpw1GjiJMTRk6gWiYh4zupRVh7UUUXk2t0I7sOiEGTHJS0WD8opLRe0LFzDr7g+8Bvf3AiFBf2AQeioDRwcJBn1jCJk2pWDoKjWtNxkzumx7AmfuxhrjRper3clUmi7BCXVCT6XrGmTUgN0wT05xiROZnObR8wzW7RLtIENW84nHPCQpYalTxZBDrrUn0JWQIFYIEpnlfoUolrB9IcDhJipHzG0iZE5ZGxhySE3vEyYy3UDQzfuRSTPMUtN6fLp8lzW3zJpfGTJNZzShsWnKAc2USHM4tyu8FpSQ684kt9wJFv0xLgwWqKpi9JaXA45qjaEWxJabZ0zrDMtsgAm9w6vOcTaDshC1tec4Yu0woveYNZo8Zi1TUW1x11ObjKsdJrQ2fqLQiSzWgwr3u2VMLaRUtvly43HuOqPMaE1GjT4jSpc7/jg/OnqZE9ltNsIyc/ou9TDPINKQSbjen2Qy0+Gh7DqX3FlAmC7HiczzxWvsBnmWw5xwYpcSDus7NFLJtSBReGtwGJmY7UjngjdKI8oKQ1wppJS6Zp8ztpjUWnyz+xAXvUkUEpaDCttBifWwzEZQ5oI7yyvOES4MFjhjrnJC3yZKZC4OxPcwr4ktX0lxeGuwgBtrVGSXGVVQxp8075GVPZ7OLKaTlSYf2LN8rfMw17oT6ZhaCMJ0QksoePujlBShTF7RbSaNDjc6Y2QVj5outiUjRp+c6rPcqTBudhnVu+QUj5afwZAjOmEmJVuN8efNkyz1BOZClhLagUUjyA4JhjcGk9SMvnD1CnWafpay6uAmKlEiU1DcoULWg0J5+eWX/9Iv7L+s+Ce//M9ern3pMeJEJg4UiCQkNcGVVQ7lm0xqbSpqnzhRkKQED40EmbvOKDnFI0wU5i2xd1/uV/EilUGkEgQKrYFFMetx2trghjOBHRo0XQtNiTld3ORWZ4zPzd9hqVNjvtTEUCIqhsOo0eNmbxw5detquxbFjEvNtGkEOZpRjlaYRZVidvwCO16exXaN2XyLWbPJa61jhLHCIBZ2dJ8p3MJLNHxUdDmiG1lCFEeKWXUrmLIQZ02QqOk2S3YNRU54Pn+dRiwo7/U4T4DEd5wjuIi5/M/Wvks1FVPVpJidME9W8Xm9dYwgUckoAZbis+UVaQVZQhQCNCEGLIX89u55Dpm7XB7MsOyNUNP6fLt1lFGrhx0aGGrEy7N/wm1/HEvxhaZBZovNoMSNwSQ/VrrIHX8cUw75YnaRdwcz3GyPM211uG9XOGzVeTqzxFaUZ9EboxVnaUc5PpW9w6I/xoK+wwm9jiRFfNs+znZQZNZo8H5/lgm9m8rR21xyRVN0yR/lt7aeRtcDTHnAnNbiiLnFEa3Nb7WfJEHiu53DBJLKqltlwazzdGYFTQp42znC/aDK53M30OSQ/7f5BJN6i0OaAKo9bGzwvjvHd+wjyHJMTvZwElENfuDO8nrvOCtBjbqfT/f6ERk1GLrMW7LPTW8CJ9WnHNc77ATCP3Ms02PCEG7p320dZsZq0fBzjFh9ZjMtLnZn6QQZOn6GhwobyCQgwfX+JHao0/NN8rpHXvPIqj5VzSZBEuZPiUyUyKhSzLTZxpBDxvUOx40tkGBc7bAb5fnyL69vvvzyy//q+12D+7uCSKXDkRIST4ZIIhko+KGS3rE13FhnRO0SJ8LeXJVjur7QK/RiIVF/KNtgIS8aZ4Wsi2kGxLFEyxc+EVXNZsLsDOHY77VmiRKJd+uzyFKCHws2qR3qNIMsI0afrOLT8ixcX8P2hZdGTvHIKy5jWnfYnW96Fp+fvMP2oIAdG+RVj203jxcLaz4/UeiEFk0/yz27SiPIcq0vNCB6oYkT6UN1rEaQZSbTYtfL8Ws7n+VJ8x7nrCWqSp+qbHPc3KCq9DljrtJJfUHrUYHr7hSL3hi9KMNUpo0d6ViyzylznbLm8HBujSmjRZTqegaJymGrzi13It3WCMmzqUybp4r3+FTtHg+VNynKAWXVYTsoMqr3WA2qmHLArNHkpjfBGXOVC/1DBIlgs9YyfZ7ML3KuvMLNwcRQA+InCxd5OrPI5f40i/4oM1qDK+4MrzpHqUd5nsndoqLaLOg7nMwK5uXT5goLaocXctf48cL71LQe8znxHS8HNVbCMt/qObep1gAAEh9JREFUn2IpLPLz5XfQpIhzReFW9pnCLU7oWwSJzJTa5fncNb6Uu8plb4aS7PB88RrvD+ZZD8uCli3H1NQun8/f+F5TVe1RTY15eqE5JAdqcjRUFRNy8y6aHNIPRQUkk7Ab5AnT3tKaU2JSa7PmVzhZ2OJSa1pQuc0uN/vj5FWPouYynW3TjwyezC2xMqiRUQKhe5JImGpARbfJq+5Q5r4VCMWonOIRJxKt0GLe3GVe38WSPaFZGpZSv48Hx75eIOSUfyFJiEwT4bLVauR4tXFsqKWgIIA0ecVl1mgwkemy1K+hSRGtQFx8g0hjJNNHlhI8T6Ocd1hs1nBinSPmNgsZ0SDquwbrnSKP11bRlIjubpZdJ0tZHxAmMnYoxqjrTpFBoKEosZi0pCE8EITBTkEVfY+84qIroUBWptsZgY9vD8Vds6rH6fxmyrdIWPfK1PQ+/chgJ8jTDTNMGW0W+yNkVZ8TuU3WoyLV1DNClmLGlS4VpY+bcgRWgwrNMDeE2e5xT4ragIraZ0Tp8ansHW4548IFLDJSvwbR1NzwUqEYP8+mL0bLQptyhaoumrY1rcfz+au8350R8veJTE3tcsLY5Ne2Posfq/zUtb8LwKPFNX5/+xyrbpleYPKecwg/1bxYDSv89cr7BInKFXeG56y7PG4uC00Ntc9xYyNVFHdwEw1DAkWCdmwOFbX+6+rraFJIRRHiuW6scd2dZjvSiRDI1L1zRehyRiyH5SEFPE4kLg4OcVrf4ZnsrSEO4213klG1h5VKBt5yJ3AThYuDQ4yoXU7lNjDlgP+i+g5RyvMZRBpX7WkWnRFA9ANMOWDLLzCmdajqfQaRxpzV5JI9y8MZQSI0lFBwMHojPFIQlgx2qFPRbKaMFne8MdpBhg2nyFYvT173UCUxnbNTDdZFd5ScKrAWmhSRU71UskAZaljufc97LukPin3P5ixbAwaeDlFKKokliCVW2yWcsk4vNsnGmXSE1GZeE1iIil7Ajgz6oRhZ5jQPJ8yQ0QJsPcTxNfKmx+3uKAox40aH2XwTLxrB8XSutCZZ2ayi1TXsqs77O1M8MylcmO72xJee1X12dgtkqj22vTxPFFa4MxhlJtWJDBKFUaNHTe3xaGGNy84MV3cnmCuKObgXa5hKwI3BJLe7oxzJ13m+eI2vhQ9jRwZHMjssDUYY1TvMm7v0I5OxTHeI8QgSlTvBCBWlz0ZYppIqMinErAYVdnyxMEzowq28HVk8nhXEo7vuGCNKlyV/lIVMnWW3yqjeYzfM8+3OUf5m7R2CrMJ9T1Q1e0jI9aDMDXuSu70aTqRzpzdKq5KlqA1YD0Q/BeCYvi1KW6PF2JRwQ5vUWkyMtll0RwU3wxej0j/tPTxUg34ks8LbzmFupcKys2qLtTDDuNojRqYdWWwEZZb8Uc4YazSjHHe88aGzWU5xmVE7zKjCxXzJH+WtwWGqSp+CORBNXKXP1zpnyMuDIQ7ATFGJluzTThvOM2qTxWAETQq54k5jyb4wsTE2uOaPs+YLweGzmWUW/TF+b/cpQNCvx40unTDDZ/O3sGNB3gN4KLvOLWechUydUa3L251DdP0M3XQ0b6miMn2ktMZukOd8ZYnrfcHT2bMeiBMJN1IZz/co6C6GHGKnrOUtt4AT6owYfcaMLjtBHkMO2Q3yKFI8HF2bckA9LPyF5r37uoJIEglDCUkSoS6FHotxZwJRInG5O8U1Z4pGlBNsztRvYkGvEyQKO24OTRLWeDlVjLT2TnQQdwwn0LnRHaei2IwZPTQ5RlUigkjhCyduEJnCHPZYtc63NxZYtivMZFtYqs9ao4Sqh9Qs8Xfn9Dpncyus+lX6kcnqoIwdGrzSPEFRdbBDg8PlXSxVNOVqapcVr8aPFC8xn2syrne56wkZ/2mjhZyawK665VRFKKCq2aw7Aqk4rnQ4qtXFHVbbYdmvoRCz4tfY8opp5ZT6dQSWYG6qXTqhRVF1hEeFvsO7nTnKmsPKoEqUyPyj8a/Tjiw2gxI1rc9xa3vIM5nRGrSDjKjEYpURs08zlaATkw+Jbb+Aj9AD7UQZPp+/jiV7LPkjvNY+xqX2NG6okVU8frtxngvtOVbcCncGYmLwhex14QMalmjEFv/X7jP8/Vs/xaTa4ZnMKk+Yq4IJ6k2zExbIyh5nrWUiJJbdGq85R9GlGFMKeDqziELMZWdGPAazbKWjbYHCzXPNmcJNZE6Z6+TlAX/QPsd62rxrR1nitK91yxlPKxiFG4MppvWWMEuSXUqKzencBo/mV7nlTgzPLz9R04rSZ0zroEsh82aDOJHxYo3zxUX8WKHu5jhubWMqAYdzdcqqzZjWxUsEyM+QA54p3GbWaFDRHbxIpeOZOKEuGLdGn4ziM2W2OZrbIa+5aOlkKk4kKqrNMXNzaBeokCAjaAA/KPZ1k/J/+eX/4+XiC+eQ5QRZSwj6OqgJkhaDDJICNVOIxGqywMi7ifCyKKoDCprH/UGFh4ob3OyOY6b7NkWJMVSxdcnrHjPZFlf7UzycWxeSZZ0isgzIEtvNApmCGDEWTY8j+V02B0UGkYaqxTgDg1iWqGQcarrNilcjIwds+kW23CIZNeDRwirvdubZGBT5m2MX+G7rMFOZDt/tHOGR3CpfaT1C3c3RDLI8lFvHTXS+snGaamaAHRlEicKSU0OREup+HlWOWXPKOIrJNW+SzShHLzGoKILiez5zn4cya/y1/B001SdEMEjPmveJkAkRFYhMwqXBnOiLeEUezd/nsLFDNzHYCYvshnnuDWpUNId+ZHK5O8Vle0ZMZMw+zxTvsOZXiBKFI1adF3M3acUZJAmOG5t8MX+LV3vHSGQJVYoJUfjpytsYRsi7zTnK5oDnS9exMfk71Td5NrfEDX+C1aDCX88t4iQJv7rxeezQ4KnaMkeNbX6z9RS/V3+cSbNDiMKL2dtcdGe4YB/i75bfZoCCKYf8yubneLNzhBY5TmY2qKg2OcXjc9lb3PAmecy6z11vnLqf525/FFlPcGOdk8Ymx80t3h0s8EbvGLthnjOZVU5b61Q1myV/lHZsUVAGqVmuSieyqKk9FEn4pChSIiQLVWHFsOmXmNTbTGktDDkkIwdccaZpRxazRoOMHiLL8HD2Pl/beghNFTe7Ta9EmMhMZdpk5IAP7FmaUZY1p0Tby7BQbFLQXNbsEk+WlimqAwaxUH73YpWSOiBEyNM9nFllMyjhozKmdvASodsaIfONX1l6YJNyXy8Q//RX/veXx196BC/QSJCEt4Uvi/mnJOEnCpoWEUsyBdUDCSqKTS/OkJM9yqqNJEtsekU0OcJUQvxYxQ01/FCszGGsoMgJOc0HSTSZWqFFEMloSkyparO1U8IwQxQ5YblXwVBD2l6GvmcgKwmW4VMf5NE0sRdUpIRv7x5mLtekrDm81ThE1XAYMcQ+coCQveuEGSw1oKSJL3LS7NCPTRpBlvlck5rWRwKB1kxUgaOQI+zQIIgVqobDqcwGG0GZZW+EQWJgygFXvElueJP0UTmtb9GMs0On8Muu0KTMKh6NME9O8WgEOXb9HD4aSKBLEdthkR2/wMnsFitujYLq0gktJAlarmiA1aMCRXXAmN5j1mhgSD6/sfksh7K7/Lvdx3k8dw9fUjms73DBXuCuM8rZ3DJeojGTa7Hj57nQPcTGoMRyOEpR63PW2ODLrceYNLa4F4wylWlzvrCInQitxZzqYakhf/QPvsAHrxznj/7oad6+eZyffe7PCJBY8Ud4pXmCGatFXvN4pnCHk/oOOXnAWaPOd9x5bg0mmNabzOoNcqrHnNXkpjNBSROMSV0Oqao2z2bvcD57j/WwxCVnnivONP3YACQu9Wep6TZ/uP0oRUNwIpDgsj1DIont8G6Qo6b1MeQIVYo4qe9gST4+Khf78yhSwle3HuJ8eZFDZp2rzgyRLFPShV+sHercaI0zneugpr6tW24BVY5xAkNghOSEz9duIcOQPbrs1hg3utip+LIpB+yEBQrKgDl9lxhh4tuJhQz+V39l+YdzihEnEkEsoyoxdidDksKuFTNElmPiWGLbydPwBF5gT5FJIU6JQyrnsks8lrvPrpvDi1RBv844GGpIGMloSkTDzTJq9Kj7eaqazUy+TbuTZRBoTGXbZK8ZqEpEGMscKQnB1Y6dwR3ouK5GECk0+0IjwZBD3m7Ni4XGt4ZoSi9WUGWhV7nr5fjW+lH8SOGrG6cw5AA/VjmW2WLO2GXL/R53P6d4NP0sNV0YFxtyyKPFNY7k69ihwavtE1xsz3CnN4Ile8yrDZ4071FR+9zzRvnn28+z4gkdQzfRUEiYM3Y/RP8doZlORyb0DiNqj6P6Nm6s8enCHSJEebuHJakPcti+zsnCFl6kcjSzzbTe4E92H+HXdj7L4VwdhYT/aeorvGKfZFztcN2dwlJ8/ruxb1GVPRb0Hda9Mjda46hSzEJuFzvSea17gjcGC/xn5YvCDLh1QtjMyT7PWrf5X5e+RC8yOWst8/O//GX+0T//TTaeUWl+yucJY4ffqn+aCIkXq1eIE4l/OPotJtUWbw4O4SYqliwITnEiMaW2Kcgur7VP8Hvr57hvV5jRGjxlbKET8Zvb57nsTfGV/mns2KCm9YgSCU2KqGk9Dlt11vwyFcMWjVR9h3ZkMar3uNEbZ8srpCQpizGtnQrNlOkmBiXZ4XzxLo/lVjhZ3uK+V2UtFSnW5ZDLjUnudSts2QVemLpBRbXR5BAvVun6Jn6kYGk+G/0CWdWjH5nccsa5aY+zG+TR5ZAdP09N67Ppi62SKQXoUkQ9LNAIBSekHub/Qk1KKUmSH/iCTzIkSeoBtz7pPD5i1IDdTzqJjxg/bDn/sOUL+zvnuSRJRr7fL/b7FONWkiTnPukkPkpIkvTuQc5/tfHDli/8cOYM+3yLcRAHcRCfbBwsEAdxEAfxwNjvC8T37azu8zjI+a8+ftjyhR/OnPd3k/IgDuIgPtnY7xXEQRzEQXyCcbBAHMRBHMQDY98uEJIkvShJ0i1Jku5KkvSLn3Q+eyFJ0rIkSVckSbokSdK76bGKJEnflCTpTvqznB6XJEn6F+l7uCxJ0tmPKcffkCRpR5Kkqx869pFzlCTpZ9LX35Ek6Wc+gZxfliRpPf2sL0mS9NKHfvc/pjnfkiTphQ8d/1jOG0mSZiRJ+pYkSTckSbomSdJ/nx7f15/zR44kSfbdA1CARWAB0IEPgFOfdF5pbstA7T869r8Bv5g+/0Xgn6bPXwK+CkjA08DbH1OOnwHOAlf/U3MEKsBS+rOcPi9/zDm/DPzD7/PaU+k5YQCH0nNF+TjPG2ACOJs+zwO307z29ef8UR/7tYJ4EribJMlSkiQ+8LvAj33COf2g+DHg36TP/w3wn3/o+G8mIt4CSpIkTfxVJ5MkyetA8/9nji8A30ySpJkkSQv4JvDix5zzg+LHgN9NksRLkuQecBdxznxs502SJJtJklxMn/eAG8AU+/xz/qixXxeIKWD1Q39eS4/th0iAb0iS9J4kSb+QHhtLkmQTxIkDjKbH99P7+Kg57pfc/35akv/GXrnOPstZkqR54DHgbX54P+fvG/t1gfh+lsP7ZR776SRJzgJfAv6eJEmf+QGv3c/vYy8elON+yP1XgcPAo8Am8M/S4/smZ0mScsAfAP9DkiQ/SL9t3+T8UWK/LhBrwMyH/jwNbHxCufwHkSTJRvpzB/gyoqzd3ts6pD930pfvp/fxUXP8xHNPkmQ7SZIoSZIY+DXEZ80PyO1jzVmSJA2xOPzfSZL8u/TwD93n/INivy4QF4CjkiQdkiRJB/4W8MefcE5IkpSVJCm/9xz4InAVkdte9/lngD9Kn/8x8HfSDvbTQGev/PwE4qPm+HXgi5IkldPS/ovpsY8t/qN+zY8jPuu9nP+WJEmGJEmHgKPAO3yM540kSRLw68CNJEn+zw/96ofuc/6B8Ul3SX9Al/glRGd4EfilTzqfNKcFRGf8A+DaXl5AFfhz4E76s5Iel4BfSd/DFeDcx5Tn7yBK8gBxh/r5/5QcgZ9DNADvAj/7CeT8W2lOlxEX2MSHXv9Lac63gC993OcN8AxiK3AZuJQ+Xtrvn/NHfRxArQ/iIA7igbFftxgHcRAHsQ/iYIE4iIM4iAfGwQJxEAdxEA+MgwXiIA7iIB4YBwvEQRzEQTwwDhaIgziIg3hgHCwQB3EQB/HA+P8AlCi5xXjGoU0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "me = '../../../../Downloads/vescovi1.jpg'\n", + "me_img = cv2.imread(me,0)\n", + "plt.imshow(me_img)\n", + "faces = face_detect(me_img,cass)\n", + "new_img = draw_squares(me_img,faces)\n", + "plt.imshow(new_img)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAD8CAYAAACFK0QrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9ebBt2V3f91nT3vsMd3hjv+6nVrekVqOpQSIgGZnBYLAx5ViACfEQu0xMDKlKylWpSkxi5z+oSipJ2U7ZScVFjKPYZbBjHCAMMjYGDBFoQmaQ1GpJ3eru9/rN7w7nnrOHNeSPNZx97r2vBRiFR9f9Vd069wx7Wnvt7/qt7+/7+y0RQuDMzuzMzuzM/mCb/P0+gTM7szM7szP7d7czMD+zMzuzM3sN2BmYn9mZndmZvQbsDMzP7MzO7MxeA3YG5md2Zmd2Zq8BOwPzMzuzMzuz14B9UcBcCPHNQohnhRCfEUJ83xfjGGd2Zmd2Zme2NvF7rTMXQijg08A3AS8DHwb+bAjhE7+nBzqzMzuzMzuzYl8Mz/zdwGdCCJ8LIfTADwPv+yIc58zO7MzO7MyS6S/CPq8CL43evwy859U2mJ+rwvZjU5auQomAkQ6JxweJRyBYzx5skPgggYCWHgG4INDCo4QHwIXNMUqnz8cmRWDpKhbLGr0QSJuOIY798N9l4jLaVxACCIgAQYx+IEFcGHis2UMS6ILmwE5Y3Z4gh0CQgnDRcqleMJUdtQCBQAD+2MmFfLohgBBlpA7pVPKvQwgIEU/CjWZmAYEk4FKLKwIBgUVw6CbcWc1gkOiJpVYWSUCIUC41t39I9yzft/g7ynstHBqPFg5J/NwiGYLi7jBnuFljJ8DUUSuHkY4hKEKI+zbSUUvLTHYY4QiADYo+aA5sg79m4nlIkf4gxAMhPLgKmHgaM1ClfUl8uY6QzinfpvE1jttajF59EKn917/yyNLmkkDrDb1XtINBLiSqDSBi3wgSghrtP52v14AKCBWQMh5ByYAkIIVHiUAg9ufx+Ycg8Ah8iH+lxwmQeKQI5fNwotPH6w+j7Z2XhCAoHXjUkUNIRw0iHXzUMv5Yw4ljD1Q4eewTjTv+HE4+o5snvj630uFBOJA2/XWu/KQ/pwgmoA8FauVOnN7vp636PXq7fLWr3bAvBpifdvATTSSE+CvAXwE491jNf/LDX8ezi0e4WC+QIrCjV7TesHLxwTTCATAExcpVSOHjQ5ha/5xeMlUdg9csXE3nNQ6JwrOtWwA8AiMctRwA+NTiUX7ut97Coz+rMQuPcIGgUgdVsQMId/LuylM+A/BKlO3H2wUlyv7Wn8XPr3+t4C9/w7/mG7d+kwrPp4fLfODeM/zbH3yG2Q2HrwTX3jfwp5/5Nf7w1nO8rbrJJSmQCYx9COx5zzBqdkPAE6ddSsAQwI2+bxNq+CCohaMLii054BAYAsugGIJkKi0Ah97wgcNneP+n3o17fs722+7ypZdeoUrfA8xVh5YexXrgNNIxV7HtG2GRwtOIgS21YlcuuaIP2RIWn45xw23z9298Ndf+5zdz9+0S+fYDnrp0h0v1gtvdnM5qPIIt0/KWrZv8e7MXeNLciYOAn/FCf4mfvvUOur/xCABuqrETSb8lGWbx+s1R4OAJSf+2FU8/dpOntm7zxsltjHAYEQeNRgwYEa+tEg4pPNX45hEdBiU8LkgcgtYbhhD73EafCIIhaKTwPLu8wgtHF/jU9UeY/fKMnc8OpW8MM0m3k/qeFLgahi3oz3n8zDE9v6Q2lkk1MDVDbFvTMdM9WvjyPGQHaPCKI1vROs3SVlTKYb1kbrpybpV09H49gixtRed0uXeDV/ggWA6Go67Ce4mUHi09g1NlkGtbA0HgnIyY7mQEVAHBygjoVoIKIAMEkLUjBEEY4jY4AUEgbBoAjtvxgYTUwbMHk8FfQTAenEAMglAF9L5CLwXNHZje9mx9boHoLaHSPP+tW/RXBi7/omHnuSVyiPc5f5//L6dx7LPx+/z/2I7/7rTPx/sfH+dXf/N/O6UhHmxfDDB/GXh89P51wPXjPwoh/D3g7wE88Y6tAKCl41a3xflqyTDqZFIEHJJaWpyXzHSH9WtAmqiBpa/YUi1IyxSBQ6LxTGVfgD3uDKb0OKLngo1e0XHLz24GZ9V7vBIngDwDeB4IMoiPPxsD+dj7AvBTx0VzyJYY4vkkc03c3mvJzocaPvLY65EicH5nARzRCI8kArUnzk4ABiQOnwYuz6FXNMKx9BqHiNcdJD3xRHZFBFsjwKV9ZX9SEegTWBlpqSpLG0CK9fHgdCCfqh4jHD7IMngqPDMZwUQJjyqee77Hgko6goweNID1Ei3dyMeNNqSGHIKiR5XZWPFQR/ch/kNxM4QHP0gGr7BB0XlDo4bUDpugPX6fvXfPGshzOykRAItC0of1YyVFKNtBnJUcd//KOab/XQW+Su91QDbxYVcyYORpSAc+SFauKu9tAnUtPdtVi/WSxgwb24yB3Pr1QzA4xeAU1sdWd+k7IQIhCIQINMbivECreD5dZ1DCRbDVHkScSXgvsL2GKv5Om9ieSnuECNhB4b3ErRRYEQcAE9YuoQhxEMign9sugAjx9zjK/Q1pEEEH6CXCxjYUNjlZPuCNQiUAFWkQ0W0oQO6NijPGBNCh0vGzwZXX4+DsZnXZnmPbln2Ovh+D+GmAfhrAfyH7YoD5h4E3CyHeAFwD/gzw515tA5+Atk1eeCUtRrqNEbqWFuslU9njkPgg6LymTt7hVvIAFQEjHFPZ4xEsfcVU9gAsfYVJntbgDZ3TyJVC9ZsP/hh8MyD70QMHFGCXLkQUBHBhwztfe+ljT59yjCABtZ7uSgLbskVLxzCPvzOHDj0XvPTxx3jqa+8UENuRii54PAEfSGAChDj1zvs0+OKJD0FhhKNNQK7wGDxeCIYQ2+68lNz2gZp4opXwkL5rjKUlPtRGeEzyCI/bVPXlWLUcUIkSyG0fmyoNEtkRC2DSMV0lIuD6CEZApBSkB59pNtL2rsz7xoPJ5gwpe7zxOzlA8ALrZaSVgoyDfUjbC4lJ+3EIKuFoxBoI29Hon0Fd4VEC+gBV8urzflWiNWpp0dKjtd9wIDIN5BpBEBHIgwDXBIIOaO2pdGybLoEsBhZDXfZRSVdoFy0iwVMlT91IhwsC61WhXgAO+qYAfdyH5aBrcCNqxjqFknG/vYu/G1zsP1rG69LSEyrLMCh8akKtPUY7fBA0zYC1Cmvj9nVtI5BbhTYOO4A3iWqyAryIAJ6AWagAxkYvf0gevotEEB6EFASZQNyM+qNMz7UA6eKs7Hh3re+BrzTSrr8ooM3p5o164Od5W075jWs0n/+WCdMbgssfPkL19ncF2g+y33MwDyFYIcR/BnwAUMDfDyH81qtuQ/SArjQHHNmalYv0ykQN7A0TtnWXgMEyVT33hykAh0NDrywTtX7QMp2ghIcgabJXKDw7aoVJHXyuImgGE2/wJoCPzu0BIB6UKOCdvfWxlz7efgwo2YQDoYjeCJECkkQvTomAnQZ8JdArT7Pn0UuFFJ6Z6DkvwaBAQJ12e+gdjRC0waOAJY4tKTj0ngqPE4I6OJQITINlQBaPssJTJzqmDZskZ27PqeyYVT330+daOma62wDQWloaOTAEVQZQNfKo1ehJqoSjDYou2PLQqDQ4eB3BTYyabKqHMthL4fFBbOw7nqtEC0cwEjF45OBhIpE2XlK8l2vPznlJ5+MjsPRVoYJcAIUuswcXJG2B93SsRLP0QZXBqvWm9DeA1hsMMBBnhnkg1nrdwXwl8FpgG4FtIKRrd3XAzjxiYqlqS1MNMZ6k4rYZgMceNWmQjrRLKPdEisCW7uMsxGkObc1iqJEicNA3VMpRSctiqDc4cgCdjme025iNQRzU82/F8dlGiiHkz6WMg1J+H4JAKU/XaeygIt3iE88tI1ijQwHkuJMQvX6I3+VjlRMa/c7K8l72IjpUqanU0ZpquvzRJe3lmuZWx433bjP/lhtcnBzR6IEP/dqbef1PenSbPPbmdBAvhx88Tq0h9TQcqA4Ei/es2H2uYnLUFa987On/bgH+i+GZE0L4KeCnfvu/F6jkuU3UwJ1+hg+ClRo46CcoEZjpLtIsI5dGS8dM9Uxlz6FrgOjd7rsJjRwwwqGIA8V4Spw9ulo6gopURvw2cGyWfSpn7pVA9X7j/YNA/DSqJX4fX+VKcegb2sRbq+RV2Wl6CAYfz1oHds0qel8IaqEZwnqHCmhHwUwjoA+h0CdxXpp+KwKK9bZTAUoIPIFGSJbBM4z8Eh9k8cAQOeC1tlpaOq8xwrH0VeHJ/Sn8VdzXuu0cgloEBi8Zgo6zCp1oltEMQwo/8tLjuThEAUifPOBGWfaMRA2j+5N6+ca9zINoiPsw2DgIJa8690eHKIA+PmeAwZsI/sWBiEHO/H8lHEe+xgiLC1WZRVqrMA8Ia2WKSQQQVmwMVxMzxBmp1RgVqaelrdiuYnv3TlMpiw2yIFzk0UW6P5tuaQZ8SaB1ZuMa5QicnZdYN37uPNZLvJcYZakT5dKF9YDnnMA5g1IB5wRKRcpFKU/XaoQMcXbUJyC36/2LQUTeO3voY0AXILRPUefIn4fE1ZdBwB1zwOp1LEz2ATerUUcdorfo3jJr433Zf2bgqy9c442T27zS73D3rde5dvNxLn8k3ZvRcy9H/UsM/gTNetyEizTOlV9taT9TMbm2X747jZv/3dgXBcx/N5Yf1s7DjllhhOdeP0UKX4KgB7YpD4QRjkvVAi19oVJckOy7mk8eXKFRA0/Pb7GjIwDKEUerCAwherpiYpF20+s6DrzrzzdvVvbK/ejz4zdzTLWMLVMvzc1IGxRAIFDLATePncUmb2DY8oVK2vMeI/qN/SkhGEZg7gLsBU2TPGCTPOhMx2QvS4lAGyDFB5Nnzsb5GOEKdSA8+FNojamKtNZU9gXEpfCFbonHjAG0KoFktmXysiUeLTyuiR5aCGIDVCACSe81NoF/tjWfLTYetHF7u1oUlQgq7jd75jFwCIe+YUu2hffO7VSlAGkcQHSkIpD0XtOIHo/EBYkRtgRNlwnI83munCmDk27X/UV4Uab/wrIpGM6BRWA1GAIwTdy3TwNN9s6liCBrg4qKIekLFdl7jReeWlmGdH/GSheZqah02OhxCyrtUNLjvMAoV7h0Rr+L3yuaemCwCuckuSv2XWrHNGEJWsRAKj565DZ55PngKhCqsA5oWhk5kpACpCogzXrm4dwowOIFGB8HBycIOgVbu+M0W+yP2SvOIHrplzU/d+7NHFyt2eun3Dqcc+G33DpO5gJy8AW8T/axcII3P276ELbuLk8c+/fCHhow35yOx/8vN4dcX+1ELz0B+spW6PRg5aDbVPVIAkp47g4zprrncr1grjrG6pWlr+i8Ke+3dUs9HQBDkCD7zQDlWN1yPKCW4WIM6KfZgxQyvooDwPlnHft2Un6fVRRiYgGNbqOihQSU2RyBpXfc8ypdO4BgCJI2KH7oztdwp5/x8WtX+S+e+Ve8u3meg1BHbjcBNECDo5EOFwIuwJaUHIbkEQuKZwpQK4twYFLQKyseOq/LPTh+T7MX7oPECRk9V3lSPhrbNAa5vU5tJULZZy3j+WZJnhQhcdFRwhoBdP174QLBpEFT5uDX+OQSNZa81qnqyjk7JBJXOG+T6Jc8CzhON7QhBh6rBNyVcLQ+ero9uhzHBxkVI61hlsEte4w2cvneJEANKa5iozcLYJQrs5NsGdSa5JG3acDIgcneKyZqQBLKDCqfTyUdWjqsV7QOJJqpGVj0VeTJ5fpZrLSjt/H6cxBUSl/49Eo7ZGJJoqolDkLBRw5caI9SHiHjoJ0HKKGih46KFIqqPN4JhAz4VkEQhF6BjtsKnYBcJNpGhsK/KxUHCISPg0RSzgSZxoJjLMlxlcrus0ua+1OeV29l8kpL1ES16988wPOWgytUyfj1NMuf/16CeLaHAswDMTjng+DA1mzrjm29KoFOHwRHti7aWKkCUtriGS5dxVx1SOF5srnL5epwA/gWrikAPlYnGOEwxpYRO4PtiZs+mkLl1zFPfhqQj0F8vO/4vyjHsY0oDxhEMDlnljSznnx7hIu831y1cVaB4KbzfG64wA27w1R2CaAtu2pJIwZ+9l98OepLDvmBd/4Y/+XP/Fm2Xn/Af/+OH6URAy5xvQBDcBjR4pKcMZ/D2LIiI3tx/hiYTVWfgG9tKoPfiD+HCHwNAwOqePDx3H0ZyFwdgVdrx1T3zFXHwtVsm5aDoWGq7IZHna2cn5HIduQh+fW9KAKOIBI4ujLb80HSyH6jjzRyiG2WqDnHGhXWgU9PHzR90Chi23rWwU+X/l85w37X4Bdm7Ym7ENU8FqQTeEOksmQeiEBKT6Nj8HSme1qny/FLoDLPhgjYIJMKyBeVzkx3HNl1wLRRkX7pvWamenQaLJe2Yl71xfseDx5LYQhBlO+MisBqlMMQYU9JH9UpCaxtCpYKGdZKFBFQ2uGsQqiAl4HgBKaxaJMkiwEGouoIL2CQBBWlVF6uZ2xKeayVaO3wo8EjB0mpfKRSazjWrU/QG3JwzJ4/2Pgufx8qjU8xibH3Pd7+iwnUvx17KMBcQJqiusQLR+/Iellu2kQNDEEixToA5oQsnvk4uLajVgCFU40KmPgwjhNt8kMcZEwaygGyMSVyHMghgrFnU29+3Ds/Hjg9jbbJD2vWwUO8tqnsaaqB+09rLvxm4P7Tmu2n7/Kjr7yL7atxkPtvf+Y/oLklmX3VHY4+eBEk9NsB1cOf/OZf5fJHPft3t/mxq+/ky9/1WZa24p/f+3KM8Pypcx/jnpuzq5YgO4YgUSPqw4i1xzcGdi09chCFMx+8opaWpauKZ+4LPUPRbcd9RvDYVcv4nrWyBWBI9x+imiOqWSSt04mqiV74VPdpf5sN2gd1QuO9YYHi7caDRFWGT4FMRcDIoZxTJSzmmIolB9Ur4cpguNajx8SjIeiiN6+ELXTN0lfc7ye0g0a2ErMcxVdyUtPoXEU6V9VYGhOBfKKH0gZLW2HkaZ66Ryew80FQS8euWeKDYFuvOLATJmrgcGgKgEsRqIWDpEH3IbZ7nj2NNefZ47de4rxEyXUsw0jP4CWTaqCzCiFU5MYDEARSBqrK4r2k7xVKR/okBIk2DlNZtPJo5Wh7g9eO4AUhc+Au/tZ7gZcSgoueeG62Ye3tR0lj3AaRnr9j3vmDtOTj78a/yUqV4zLDh8UeCjCHyP9NVY+RcYoaOdHIzzUqTnOtM8x0V9QrkQpIcqmgMEAj+yKD67xBiTXHDkDSPnfesPRVAaYYrDx5Xq8W1ICTgA4UDv04oOfjjGmXIEUBQJOAc65aLs8X3FxeQLeO+XWFrAa+9uJn+K9/4TtQh4ow83zjt32UF44u8Hx3keowUO0L9t8x8KEf+EqW33Wf128d8uLhefzfvcy9t2pu3n+C+894nn3rZb7y/Od5enKDK3qfC3JFGxTT1OPHuGIEmOCZyQjWQYUoESSqR5RInmfyzDfpijU1JEWgEVFWmiWIhVtPx1r6mloO2EmguSNYrSoOh4Yb7TaNGkpuwUQN1NLSpoBbT0z0UXi0dMfkoZv0irSwzlJkIwYzfm3EsDHYjIOg6wSjcYeJAJ/BPUdhih7ea1pnWHUVZl8irSsB6UwDBRHPL0/UgvEEJxgSvdE7FT3QIEsSkE2KnK2qLYHh3mr60WxvPJOqpeXIVdggmcl+47tMqUjhqZSjd9HJGvwmTx7SrMaHzX2rBOY5piJEzhAWKO2KksX7COzeyTUY61C8+UD0uIdBRS/bypJMFEwg9PH3Qz/WdwrWiUojDj4QPXqOCRCOJfucpvkev44BPdtxFcqr0Sv/f9hDAeYZDJTwLEZTQYC56WidYW+YMNdxCjz22K2XoGCapscZyCF2yjFHHpNYBMsQuXPrJUY5bCNQ3eY5xWfwwaD8oCzQ8fdjn2m8j/E+zdJzUS8YgmIZFEtfUwnLey68wD/6w5dw39Sx3eyxXbf8o3/8R7n6nGNyo+XodQ3/8qWvpH3Msd3DuU93yNaxeP2ExWOSvZvbfM9Tv8Tffv+3slt7rvxqy2f/nEJ0kps/+Ti/+b6BH/mF9/LGZ67x15/8SRyCmehpxIoxyyShKFumukd4wTBSNrgg2VIttRw2aBOIWZ/ZFB6PpBFdCRJutJcIxQu2247JpxTdSw2fdZeYbbUYFaffO5OWedWhpaNvdOL0fbm/EzWUeAR4ZB8QkwiS+aHWLWXKn+maDNxDUGzJVeLNT0/QgTjry9vkgasZBdlzVuiWXNGGCiMtjRpiUHdIMZiw2S9UD/1W7iMg+yivs16y6CP9cTg01IkiGbxCCX8ibb+StgRB73ZRRDBXXZm5aBHply4NjoYYKPVhresniqgAx8oaXH7mpMdJgXUKrRxGelaDodaWwSlCEAxO0fcaKQNb0y4FSCVaOZyXtJB056IkInkv4/2SAmsVUsYSEJn3ziaG5Hx1stzP6HEHSIFTkT/PU5yFOT2rNO9zBMC/XTA+LePz9xPI4SEB87HlDlfL2DnudbOYNq7WmYkZyMfJNhCnvOOpthEOJCVpI2+7JSP3jIlTbVlteuCnqVkeBOqvZmPA95wO6HtPxQfqL/zkf8rW5xRbLzn0kWf5iEZ+CTz53hsc9jXvOf8CLw1PAnD9a6bsPO8595xHfhL2n4T7b66594cGvuatn+BDr38CeW3G//TP3sdsL57D/adrZNNSXZtg33vAYV/zHV/3K7x98jJ/9e98L4fvaplvr/j+t/8Yb6luJxor0k5NaoyZzl52vIZmY5CUJ7zbbNOU9TkGxzEYeuK97EOkbTCByR2H/bziyNa0puZo6gk6cDCfMJ13+CB4ornHnpmiCNyyW7Qh5iacoLjSYYMSKQOQGKDLdFHKAq2TnHUImkauTsQO8nkrwgZo58SiIn8d0TFx/z4FgwNKebyISTKyH6mPKlESxUIKAOMh2LWG23rJRA+ljMJU99ETdyomIwlfZq0rZwqNYr3CqUhJeiGSwxOvvfOaVQL11sXZQ9yXS0FSy5ZxSGo6p1kOhko7JsayGnSkaHQcXMbKI+8FVWXRyhW+XxLovUKKwIoYKB3TSzppyJWKAVJn1VqhIgVikGtQzrOrnPFpRrLcyRBlj0MsOeDV+rkufeJ34VW/mh7899srh4cEzEOInKL1MvF8sVFudVt0TnN1ureRbShF2AASJXwBjONAAhR1wvj9VHYcuoZKW/ymMnEjY7Oc4yl0y/H0/gcpWvL2+TWXBui3JBe/4Tq/vngdW59RnPv0wEt/XHHh45r2W/dwz+/wqQ++gcvvvMmH7z9BvxtwleDib1j236jZetnR3OowC83iMYO6p/n4P30Hkx6qCuq9QLPnWTyqCAoe+cka/xdv0f/EJfxLU370qx/jF7/sFm/+9k/z0U+8AfmRc/w3/tv4r972Ad5exwoM+dnZkiuMdDFDMV3ymkLxG/rx6KUO5V6V9smZvsEwoyue/FhzPQSFnFiE00xve1QnsRNBUAo7hWGuWM5rPtNptPTs6CVDUCxcw+dXF7jdzk9t/4SvhcLACYz0JXCYrRlJPofEw+drGcspT4B6mlnm/+N1JZ268NRyYMe0zJuOO9sBr9dyufznFQQDXgdcE/CNZ7rVMq0G5lWMC+V6LBM1FFVXlNnmGIc/4ezk++CDKA5OLS0rV23y4dKjg6ezGnQcLHqnYz6H6ei9oknADbDddMUTz8fIszYpA8OgoY4Dzrl6Se803goq5aCCwarIf3uBEJvJVM5JvBNF4ogKsUBcn65JRFGAr4iA7gSi8ZA4em1i2QQpA92RKfe/PIe/Q6/6t6tS+f20hwLMIXp5C1+XjDWV1BMXmqNSQChzglO5DnjmdHE4CdrZFD6pZSRt0CgCc9Wyo5ecn664viuY3dzcZlN5shn8FMeCnafVbBmbP+aRAywf0bzle34L6xUfu3WVc58eWD6i2f0kHD4pcJ/axZ+zTG4art84R7gC0xuCxWOCeirodyBch2AkcvBM7jiu/jxUey3t5Zp+LrGT2IHrfc+tbxzon6uxB1N4HBZPKJ74QMeL/jJv+Lp7sZ26gAV++JV3831P/BQmeAyjglOJM5fHxixFoBkpVqayKxmPhqGoPQy2gH7WnGeLtXIkU9VTNwOgET7SI+YoIG1A3opg3O1KVgczfuPodTRqYEt3vLLa5qBruHV/iydubXJmwkfeFtYyNWEFh13FlVkM5GZuaQgaIyytN0lbbsv5DUmtUlQ/qZPERC+/rtci1oCeZyxGxIzZnbrlVhWwjaBKeSNeRw28r8BXAW8CbuYxOx2zpmdW9exUqzh4pRyMme44r4/KIJKTlXKxufx8tN6wcHXxnDOgr3wE8qO+ipRV2t4n2aH1UVZZKVs+36o6VtaUfRWacsSnSwHDoFOFR0pMynpZspxrbemdwmjHqjWxkqNM6f3abejUhQpRZjgurpUDojLEGIMAdCBYgahGAXvt4/FlKOqg0iceUBjrD7I9FFcjoHTG3Ekskscm+7GeRIhBnpj4M6qhMJoGRz1wridiOfI1C9fgUkq/EY5D1+ARHLqmcOsTPdDvhlcNch6XJY615xmoH1S75TRbXtY8+d2fBuBPX/oo33/nWzh6VPPl3/txfvaDX8bWCwLXCobdKFWbPFtzfXkRczVw6dcCeumZ3YBX/rDisV9UVHs99UiKp1YerQXnPrHg8I1zpIUrP2MI0iM+O2V1MZ7r4mrF9ufgg+ffjGwlyyuCqRn4H97wz/juT/5H/OBb/+FJqnF0meP4RPZU8wwpS/YyqKik9KhGADiWFeYBeWFrZk2Pm8zwOtIiQYriWUkLsxuO+XXoPmf46MGbqR9f0C5qONRMrymEO1qfY7oH0gZUF7cXLoJ5GPHMY6+7AHowbImWI19RCbchO5zKrlxbpo8MLiVhjcFtXZBLisBED7DbA5uxoaimAjcJ+IlD1J66GaiUY2Z6pAjMVI8SITkwvrS/Q9DIYaQ+iQCcQX1Hr7g/TMu1rnyFS3JfLV2kVtK1THVftOpAkThq6WmHzSlspk7y+Y1BvbMKlQKgKpcXCFHokGfggW96CTYAACAASURBVFinpet0rMOj171NCEqWaOHNa0fQAtGqtW48iFiYS4LQAanGYB77WqtjzkFUtay//5160w+D9/1q9lCAeQ7yDEGx102Z6QgItbSsgqH3mq0k38sKCiDRKz2dN/EPw1R2tMGUFH4jben8Rlo6bzivjwoIzXWHm3lcLdHLV4mScKwjZJAY1WfJr66SG+n+Yw63O6fotwQHfcM7L74MpMSVXcEHrz+JagX1/YCrwE405gCGrzngws9s0V4U7L1JIK1k53nH5IbATSS+VejDvkimdOu4+3bD9LpmmAqqhUe1gWqvZ3WlxlVQHQR0Gz1Eva/YegHkENj66o4PLN6OEoGjoFNCUk7cGfApmSenhmfP8/hAmy1nReZYRg4sZg8WNkv0njNLlPSFeog1qMMIzANyiMqj6U3L/KcDdjJleUlRHwSm16P0UQ6u6IKzhw8J1Pvonbe9oXWGAzthmspCjDNWJZ4jv65EeORrlPBJOZODvGvpoh/Fa9YFuAID0cGYyp5KWXRtCXIN5sKzlk0GUv1yj1GOedUx1zHgm0vbaqGQIcTBcDQoqhTwL0KANKPNltPwJ7IvEsX9oYkDhe6jwkVELXvnNDYlObVuPegp4TEylKqmW6mUgBQBK2QpvpXrtWgZlTE+CPpRga5KuaSIEVTaYt06QiEEVJUtkkZRx/+dVfigCFVM9VdbA26hY3tVWbgfqRU5KgEgK4erTypaXmv2UIC5xDPXHXf7OUOQhcs7p5bc62fMVOQIx9meW6rdUKss00N36Bumskfi2NHLDQ59R61Arehy/Qw856slYrcnyPrU+inHb/64PkNOGDrugR8vl6t6j6tkKrTjObqi+bJz1/ilu2/iZ/q3sXhhB/+U5S+/8df4kV/6Bg6fgAu/5TBLQbcj+cYnn+U3/sPH8KuG1+/scf2H3oj9j++y/PVLzF8R7L+hRrcV9X1HtdfTnTOc/5Tl5run1HsZ/OJfc3egOnC05zWqDUxvO0Axve04fFzjvOQffOY9TH50l//3r72ZdzYv8ohaACNdfhClNvxaweKP6cpzMHSdzj42j0ylawVGbHLPUc8eeeVSq8SH5FVHIB/XyKgGT3030jzHU6rl4FErgW0UqqN4+bKPAbKVNQwhqqkWrmFHLQtXXglbBqOsKx8naI1zGyAFQ1N7lNcUP8h9F4h1SpKTO96F8EmVEQQmVRaslKN1miopVop+vLKlsJc8ZWCFqCZq0SxdzVx3tN5EYUFQbOvVuq5NiEHRWXJ8AA7EpAD4YqhxKRFpbLWKZQJ0yr7V0oOPn0/rqIWH9QzapQqOAFvTNpZi9vEeHLQ1vdUlsxSgqhxS+lJcbHCKdlUhZODSzoJ3XrjGrW7OR59/fWxX4wqICxGX3FAyZokGkTnzE13xNWMPBZj7pGWt5cD5ynGvnzJRPYNXzHQXF6NwvqQlG2lTJp4s/GwOxvmUlQenB0NhLUOLNdKHmLxwiq2l6a8e+Dz+HWx67N2uRviAamFxVfENf/5DnNdHfPKFR7nys4b62xdc/VuaH//Q13Ppek97XrO6ILnw60ue+66Kn/jIu3j05yXD45IXugv0j4P4N5eZdHD4OkF1EFhekrH63kyijzzmcEA4jTfgaomrwRwKZOvQhz1HV7aY7fV0Fyom93z0dG957A89QveM4HXf9fmSNKNEBK9aWnydH0xRwCMuakFpcyMsPtFeQ1A0cqD1JiXnrKmJ45585p219ARHWhVoTbVIGynTMitKdTLY+CzeNNFbMCp+36hSCwWAEKWoQ5/rdic1hzfANBYKC542mJjhWK5tc5o9VrTE7auNOuf5N2pUjAtiEaqN604r4OSa2zHYJzDKF225Tlm71ktkqhiY8xMaYWnTgDkuDpYta/9zAbTBa/bdhJr14i7H78VE9axchU5JSvt9LDnR2nicbtDM655KrVjaqiRzQSzHmwOqlVxnmk50LBQ2TQtq1MrSOc3gFZV2G9ml02pg1UflzHYTNfSrRPNcmh/x5Pwe23rFTHcsH6/41EeeQHSC/mrP5cv7LPvE7QeBMY7hNQzi2R4KMM/dTic96lxHDi7Xxc61oKey5+4wS1PxmLE3rhcNFATOqoTTVn8Zr1q0N0wZ7jWxUt8JLzwrWx6cAfogzjybVwLVeW7+uRb98Tl/6c9/gP/75S/j+vMXMfuK218euPDjW8CK5r6Lnua+o9qH1aMNV35ecPffX7H7Pbd55/we/+IX38nVf+3pdmNp14MnJaqPevXJnQg29Y0FodKoPjC97fFaMLndr2uzo5jdGNJMwdJva4QL7L1JMr0ZGHY9X3/pWe4MW/zl//M/5//6nv+RJnmiQUceNNe9gXUxrhwIhDVYR29VlEUpsg25prrIdWXiZ8cHYNuA8ILo1Ea6JerIo147l7t9NdOtizOq1A3MEqSNkVDrY5p9Lkg1BMV9O4vlklPW6jLUJSiPJybbIOkDpcBWDpA2bC4AkcHdJ+/fesmwMifyGmI9miSz81HhNbi0TVBI0VHJmJaf69UPXiHV2nEZWA8ssd3HiUNrtZGRlvMixhWGQa09cBcFCDHh7mTSUS6L21uFVjFBaK+dUGvLUaqtXjKAM09O1vGHtDBHyg2RYJPnHmMrsb7LVA64EGM3g5N0VnFnMaPrNVVlEcDz1y5ybbLDxe14DatBEyRc/qhH/ZLk8PFLdE9AeNMR1azFGEvXeLxRv2N58R8keyjAHNa1WXwQaOEKf7mjV7ggWfqKhavjFPiYnCwmHa1lWRnIc30MoNTIyMfKFMH9fkJ1f71AxdhOT8F/9WzQMbhn772bKb7s6jW+/Z0f42999o9yb3+G2Vc0b9njqx57gU8+c4Xhb11Erzyydbz4HYZHf0HQbQsOvvGI3Z+ZcXTndfz0n7rKuc8Iul1JveeZvniA17vsPxUz5GavRE/Vbjeo1nLx40u6C7FWs2ot3ij0QRuBfimQg6PfragOLN5IHv2VFm8kzZ7in/+bb+LWV8B3fucv8dxwkat6D4DQxDohMgXifBBrPjwVpsr0Qx9yud2TYBvrneTt4mcmFbdS0m94UkGCnYBeJYokrddqG1VqTWcbrwSz5s19ol9G8Yt0zFhlUHJgJ8x0F2kLwsjTtaV/IWDwa657lmaDR75ag/qoCHsMSsZ650e+5u4w4343RSx06W/CBdCpaqJgHWBOiTSlDorwyFGxMYhp9j5IBlQB8QzaXSr0NV69yiRFUr4/y1E8IC7HaLB+LXM8suvvswqFJFsMQZS6K1hd+PAxFSRFKIW4am3p7IQhX89IyZR/O6t6ztVLKulY2JrlYBicYtVGj3zx8jayFVRLweRmQ380j31hKpjPBF7Hu33pY4dc+A3FzT805/A9ka4JlWeYqSIJfS3aQwPma7mTYpay1abHyrx2XnOj3eZydVgCbkPQtEHTecOOWlGLoagRciGiHOnPtTLG3p8Pcr3qDyfT7XOVw9N04mNv/HgAFKJGe/mI5vxffJEnpvf4mz/wZ7jzx1q+60s/yPtf+Hrkz53j397b4fDbDrmoIgVy8KYJj/3rmIc8u+ExPz6l24kc8VPvtxy9TjG92aMPe9ysZv8pyezlqCfP5z9e3mpyY8nqypTJDbux3JVwcfmsDIZqaXFTHWcSK4/sBY98SPLDF7+Sd7738zgEO2qFqFyqEZITtVxJzx/z44U/D54hERWbq/WYlCIvUCIl1JSgXUyo8SZglrEYmerZGHDdRKJWPgI6INzJkTevCCNcQLcOS4wwFv58WDsFR2nJNStliQ2g1vV9cmxgKvtSN751m2AIbM4CR2PYEBSHtuGgranvrNt9w1PMk0sdUEnZ4XxccKPzutSzLzPL5JnnpQCzIiyD9PFEnmWoygwj1z4C6LxJ9XkCQ4h1ypfW0CRZopaeraqNXL3SHA0VrdVl4Yq8MlFUB8Xko7xe6LQacMRSBL1VtL0pVRcBHt09QIrAcjDsLWYsh/i9lh4jPdtNx3JZ4w6qKD+UAp3WOJ7ciTEi4QLdhZphLuPM0yjUUcflDwvu9HOOvvoIs9PhJvrUJSJfK/ZQgLkgBteWvuJeP+WR+QEewZ1hzkWzGKlWNFeaWNXMB8kyrL2ksaIiBqcCQ4gBKz/yFrNFva3lUrNguBR1zXA8S5MTn8FJXjxbfp+Dc8Nccf4vvsgrP/YEn37XFS77wDe8+dP877/6NUwPBP02VAeC+l9uAw4xeMwyxBT05K66SlAdBuxEopYwe7ktXrZvFJc/YvGVYPLKuliXa/R6+0ZT3+1KBw+Vpj/foA9jpqRsHcurDdNrbfkMYNgyqM7z6E8Z/kbzPn7o3f8AIyzNrI/e1jHOe6wwgviAH0+HP/ATtuVq47MByZbwHIU1Bx0LrVGuH9YJP6pPAdFxstaIajlt5nRaRqiwwCDoreKgb8o5T5Rk5SsmadnBsfx16SsGpTC+wgXJVMXEp3Htdy9kmbEMaGayK0XAOqdZdVUKxLJxXa4WuDouEydkwJhYdGqiBxpl2TYtk7Suai1tCUAPXtMlB0UJz9JVBaxjFdKGXbM6Uekylv5dZ4ka4fHCowV0PlZVzN9NRCxyZ33MNO2cpknp+1IE+vTa2RjQzqn8UkaqKCcVOSexVmJbg64tVy/uMTM9e+2Ew7aOC0MT8UCrWFLXOsl02rG4X7P1aYUIMMziNfTbEqio73bUdzuEq/BVrMsTKo0+aLn4b0F1U+49E2DX08/lxhqgryV7KMAcEb3uI1uztNVGNmg2JTzn9JK76U7m9TwzXZJrsyjh10vFSV/WdhwrKvbdpARMJ6rHTAe6bYNZrL3wHPU+rYIirHnzvHxctnGxrcPXKRaHWyy+YgX7Fed+fY/nv+9LEN8en+QrH+p58Y9pHvlQ3La7ULG8JDn36Y5hpmnPK8wyyQdXnrvPTNh6yVHtxXMxd5fItk7nmwCltXhOVnULSmC3I2ipZV7MNl5Pc3cov8lgWO312C2DcPDoP2z4m1f/GF9/4Vke2TksMYxsOeDpj9Etx20Iij4osj+bFwzpQqwPkt/7EK+nn0sWjwvsJKBbQX1PoJfRWxdeIE1U6gQn8MqgW4dwbmONxqAEwUi8WZ+P8HG9AxEE3aDpUho7UNbJnKlYrTGrqLIduiYqqQh0aaUhWMcNxgty5IBpbpda5XZfnxvEmYedgG881A5dpSqJZqDWcVnEmeqYqp65agv/bqRl8Jo6xTNab0pGZ1wIQ6ZMT1Pq/1svWQVT6BjrVQl25nrntXSlfnz27msRPzuyFVumxYaoQoHodWcVikv1WUSudePWsZG8BoVuBi7sHCFF4NbRnGWfZm7NwHYTFwcXInDvaMrB3Rn6joGZZ9iCC5+IC37vv0HRIqkOPP1uRXN7hTkc6C5U0RFpY1KQai3nf2vJ7EbN6qLC1ScH99eKPRRg7hLvasN6Sglx1XeglFiNadGWQ9ewo1aFP9/RsYZ3LuA0XhpuvAJ59FzqshpOLQdsUNhOk6vQHl+EOdurLQf1oLT+/bdZ5l7y9te/wgs/9kbcrMYbGb2vr9znlXqHJ3+ypTtnqO92vPTHZ1z4TUd7wXDvLYruosdvW+gl289W7D4XvfDuQkW/JYEJXoui1GjuRapEDr6sVyjS/zIFAfvdCnNkyRxAGNX+Vmn5rAyGEfQj9fJrLzzOJz7wNF/6Jz7FjlmVeuVjTTaQVCxruuV4insENkfrK2YilibOMFvhStKRrwTdjqC76JDne/oA3f1YcdAsJGZBTELRMGzFZJvmlmH7JbcxSzn1nvlUIdMKhl6zGkwpMJWTZIC1Z5oAPfPp40JuOc9hLAnM4B9rvAwYotOxpVvmk469cwF3TaDaSBsEGRelQIKqPE0zUOmoMd82LVumLQHnDMLjYCbkWuwD+3ZSlvAb0uczHWvZjKWFQ4iLVmcpYlSNmY0FLOI1rvt15xU2ZWJ7L04od6SI3rcxUVKYBw8gFdSKgA2wfzTh7jDH3Zjg547zV/a5un3AXHccDA2Lvmawitm5Fcsjxblfj4W1Dh5XbF1zVAeB9rzg6IpidsOV2ahwYGcSv6fKWp8SmNxYUt+Ns9lgXptcy0MB5jkTb8es6Fys3jZRA3PV0YXoIQ1BsW8n6wCLEiUxaGxjTwnywsGmdLzMOfpULsClYj3DDJp7m+f1oNosrzay+5Hn/vT3Rpe7Ax7lBhBLoz79Lza3mabX139w/dnsC7TZ5At8f5oJoHmV78Pod/k1t+5TPx1f738/3AdeoCl7+85PpmtLcQqONc+4Vkm2vHqPGi2K0bOuSW4bQXspUD2y5PLOAiU9d+dTFtsThoVJCxUEpheWnJ9F6uagrbn20jZv+pHT6+iU65QipvR71mniRA8zL248U31aMCOecy1tWZ81zwhzX8uSP1jXc5E4ZrIrWvBdZZmrjvOTJbcvWdy4yFOmXFRAJh66LIScqMOlr2jkwFyu11fNNXFyoDPPiHI2tCTgA2Vx9PzsGBy1thtAfZyG2Wi7lFeQZy8QM0Wtj0lFk7SM3SqIuPC0DDgv0hqh66XmtiZxUXCAV/a2sXcapGdUW359DveWE9pXZjQ3FLWB9gJMbwaEDxw9ojBHATsLLBrB7EakBaMcNzBMVfTWj81O82zVbh0rxvQasYcCzGUKgE1lz/lqyZGtMcKxoC5ewv1hWn7vg2DfTpAicF4fFU+oGdVpyWt8SuELSmVlQg5WlWh+EJh1BvirWqYmxolA5bxGmaDN//MhvvRjgmcPH+E3PvM63vK3o1zwpW/aZud5z/Jy1H5PbgemNy2rS5pbXztw5ep9rs73eWb7Oq+r7nHPzfj86mLxnADudHM8grttDBgJojzrcDHBWQl3a2QXA0XmEJp7UdLX3HMb1wBgjuwG3zxeuTxUGtdogpFc+7qG+VfcYfnLF3nkoz3zv/4y77v8cQD+yVuv8J2fvJEWZPYl0WZIq+9A9FYrYUud8JzOPwRJI1zJMi0LVGiBnQZ2Jx1XZgexBkvVcThbsuhq5nXHpcmCp2a3uVwdsG+nvLg6z+1zc1587o1c/nC8ocFIbKPS0nuUBUG8AV975s3AbrMqFQilCFQyUhuXqsOi0R6X88396LQ8hrVc03Pka2YpycghOGeO2K1XmK0OO9l89OQAohfY1jCogGq6IghY+YoJPctQlSDnGPjyQtq57kqOL9Uy5gZkDn1bt3GJPL1eSKSWQ9GdT9RQ+his1SzjYmSR/pRl1tIoy1T3HA01ut5UqPggOOorpHBoFe/xy3d34bkZs2tQGcH+2we2HllglOPFvV2OFg3hXgUSJtcVzb3A5G7MYAZozyuCjBnSs2twdDVwdEUxv2bpd6sI5jPotyLtJlt3gnKUSfGVZ6XjPv8ge9jK3Z5mDwWYC2KEfeFqbnVzrjQHZTFaKUJMXhgt75VtS7UpSUJGOZk3RS4mE4eoUsnbNphS8jSCiEoFuwK6tqjeHKNVTp5nUbKwXoACOEGxrC5pauDRap9/tf80b/gRcLOaxRMTdAurC5JLH1sWLtdVkvtvg3c9/XleP7vPOb1kS7Uc+obHzb3C798atjfKAM9SRuHKGe62M2bVwK39OfYS2IVGBE17xbE6UMgB5i/FV+HBLAOq8wwznWiXVLGvmaIP+3Vh/lQX/OovtLxYXeCv/oWf4Ec+8Sd49sZluLxumzHlkjl0OJmMkq2sKypcIl4izZIXjpY2aq7j2pKBiRpo1YCsApV07NQrrjQHvGVynZns43J5cmDLtHzqsTeU+3X8/uV77A1QeWoTwWhuurLohRSBHb0qddrH5rP8kjWlspZi6tIO+Td9eq8INMKyY1Y0zYA3Ii2cEZBWRA7fCXxKKOps7Ps+6fQdkiGRziZlXGY7SGvI1jKqjHJuxkaAOtFEUxUHl1x/vpYD+0w4L464M6wrTtoE2HZEU44Xjo7JPwNGOg6Hmp16VSiq8avzsqhdrn/mEpc+JNn+3Ao31dx4d0W122GU4+J0ya3FHN8rzFIyuZlpKOjnElXF7OnJbYudSfp5dIbkIBi2xvdWoFewvALDTFMNHqf0iYB5d6mi244U5e6n3O8InB9GIIeHBcxFLP5zYxUr849rj0PkLrPHkae62R6U5Rkr+Q0FuLPl1OVpAo0t3aKNw1WxE7xa7YYsSRzb8UzQoAS33uvYfT/84D/+ZswS9OERq0cb7rxvhb3bMLmmuPFVUx75SEt7XnPjq+CRp2/xzM513lTf5NBPmMmOXbXEBckVvc8QFDPZseemNHLgnp3RK4sLAh0ktbbU2mKUYzkYbqzOod60ACtx88ho39+pqO5FQDdHgvk1UF2U9+VzFy4gBo0eF+x3ATeVPPFTK/7pv/lmXvoOj3pxxvId9Qmwg3UiTbw/ljZUZVm10m6seV8lwIe1Z66lj1mRvYiLIqT6MI0a0MJTKcvlesHl6pBt1XJeLdjyK/qgY/B8EkrgM3vl3oiUyh/wmrg0nfFMzcDcdOyaVelL27otQJ4XNIFUVybTdEFsLBUXa7b0+JHCSgkfYzgjim+iBmZ1z6JKfc1QKvoJB6QFinPlwlyfPA4acb9a+hOyw9KuIxDPwVCAc+YIRWAnLdsXb+yx+xZEKWingSzJtm5dAbJSFuslc9OVIGkuuKXVup5653VcHSoFSq/d32H+OcXsRs+wZTh8PDoab7p4n0cmSWqcYhX7ix36HUXTCxBw9CjopaDfEjT3oxMCcfZWHRCTrBSlPvzkjkP4WPb5eIwIosPVnhNp9idoL02YXDs80ZZ/0OwLgrkQ4u8DfxK4FUJ4R/rsPPAjwJPAC8B3hhDuCyEE8LeBbwGWwF8KIXzsCx0jBPjc4QVe3tvl0Z0oPcz0SpbAZR0yUGRZYw48fi43UpnzlDQHoQ5D5HjL74NgS7VsT1va3e0TnPlxG9MoD/rOVoLHfi6pF/ZTcajBMXvxiCf+rmZ1Bbz2NPcs7QXDja8OfNtXfZj3bH2Wq/p+2d+Rr2lD5FujtC2mRDdiAAnn9VFaMsywAho10DpDZzXWKabnVnSdoaosprI4J+lqjZ1K9AqsE/RzwaSjUBAQAb27UBGMjGoZYkA0K2DM4YCsBDvPxaJmy5REk5eDG4O4R5aV62G9LFl5n+kxIRjC5nfCB0QQkXtFlISWha1p1FDu+1R0VDhaTFm3M9S+zChoYtZfDjRCfIh9FainA9t1y65ZMVddCbj7tOBEdgLGCWdAqe3jvExed9TyeNYrYJWyBaMgYS41oUSszZKXDVR9lNsFScxKtaOgYlrsejzzifuNtOTSV8Ujh+g9NzoC6uBVqQeTg/7xPvgyCMVzHS3mLUJU6pTfrvcb1S/R61YiFBomLyId20bTe5VS+nOCkGNS99x7ynL4VoGoHfPtBeeU4+bhnFpZ5qZju2rxW4LuMc2qmuKa+CTbbYfcGvALg95XTG7psiqTXoJuAz4Vxc+y3sltuxYzDL4EPWXrMIcD09vRu7dNzFn4QotLPGwLUZxmvx3P/B8Afwd4/+iz7wP+VQjhvxNCfF96/9eAPwG8Of29B/hf0+urmgCWQ8X52ZJLzYIjWzNJndCGqIXVeA5dU7zzW2l9LSNtWcA5ppCvQSFLFPMqMDIPCrnrCslctTTasvxtzlEeVJdl/Jn57hvwT+DgPSve9L94Vlem2Klk9tIq6sYPPPtvMBz+kSVf8fjLydOSDEGzK1cpi9Vyw23HYxKr783SghqNGOgwbOuWpfcc2Lo8zBMzxJTxlELpvUCpVEWurI0o0MlBsxOJSg9ABL0IMP22Rh+OVlVxAd8ohplG6Y7lN8XiW1l+N04IyrVYcjp8PreYILRuswyQfQhl5aFY3dKxIvHbSYUhVQSMXOsjA0WhcxJAPWim5nX05KSNnrmdBnbqnqnuOWeWTGXPvp3wcruL9Yq9fsJB13B5esjrpntcMEdMVcfS1fi0tulU9ixTQtFY4TKWJW70kQTK1kvsLJSVj0DEEq4eGOL9CscCkplayTrzXGBLCc9+iMKATK/s20nhyvO2PtUxivdhHaR2yI2BSxJYOVN05TmDdKz2gbj03CBCpDPdmsePGdxx0Q+ZZKZaet5+8Qbm0vWyhq/1kpdW5/jk7UdY9HWp1/LU1h3esnOTO4/Nubna4u7RlHPTFU/O7zFRA/f6KQtbc+1gm9W9OWGlUUeS1Z7CLED2kaIzR7EqqBxCUXiNY0PNrQ7ZV/TbEleJB2rPjy/qPP78QZbVYKctaPMg8cRYVVbkz/p3prr5ghAWQvhFIcSTxz5+H/BH0v//B/DzRDB/H/D+EEIAfkUIsSuEeDSE8MqrHUOIwGPzfSSB89WyROmz5emfwnPw/1H3ZjGWJeed3y8iznbX3LOy1t43NtndbJLiJokStUuUxxhrbI0NSBqMMQIs+8EG/GbYwDwMbNiGAdsv1tPYfpjBjCRKmtFII1Ejcd+bTbK72VtVd+1VueddzxYRfoiIc8/NquYiCIN2AIWszDz35rnnxPnii+/7LyZjLfYyp8JhfSuPMXc6LFUjbhRgAsvCR8a7x5RUJnXlmKiiXHmHcztlFxfw5XBvicUdD+d6JxwAO1sn7H1gh9Gjho0XHXa6s18zvhBz/JTlVx57hef7VxnInCeTu01TKveZeCYqchs3OwzAk0Hc58lkxUHVa7a7I5MxiHOKOvLa0IbSa1o4kX6v/9HaXwcCztJnlFCsKHTaZ3Blsji2MqjSIK50+a3/4DNL0ra5jb0olwtYzptSejifywJLIpQo3PcoMioqn9MuCEOmKQ0A9/ANgkpfGI2BstAL67bINGWW8HlMJNBJUCZ0l6CfliSyZlKnfGtykbeP1pjcHBKNJdHY1bH3Ozu8uKFhWLGxPqGfuoC4ls641DtykD+rkLjAtp2MWVFzlDTNubWp9rWXrZDeyzLQyxsobOQgfG3X+5B5B3x/E8h97TsWCYWN/Ps7OYx2IA9AgDaUMCBfChNTmcjvehgykwAAIABJREFUch0DNPiBBly8E8GrGdcp/bho5I9jqSl0tAjewjZ19kTWTKqURDrMfCo1j/fukIm6WTjmJuGBNXcNB1HBhc4R55MjVtWUZKib8wxyCUECYmpSjtZ7XDmzye35CofzLqM8ZTpL0dMYOVVuU7an6N61JBNJPNYNU1hNC3QvJTkugYS6Kzl5rEuUdxqpCFnaJdXU0/20+/kbfL/RDuphd9/2RZDaLnEhAOwPftul8TetmZ8JAdpae1sIEVph54HrreNu+J/dE8yFEP8I+EcAw7MdttNx070PjRmN5NZ8hYkX8Xm4f8BO6oL+WjxjppMmKw+jLaUKLAXDEHwyUTYYYIyDWdlo+eaFcTqQt/8fxLbawySCq+M1+hxx9MUdHv17V7jQPealv3oGgOufjDGJ5eJ77vDJle9xLjryhJMgY7r4G7mNG6GwgKnPRMWJcSa9d4oVNuIpBwAkrKczSqPoJwVHqsN87rbBVRW5TF1aLyfbug/m3gUpsBJnW5Le9eUswyjBEz/+FrmJ/Y4hlEqq5rq3seUhqMeipg0IO+2vGcpjxsomM8dC6hUtU7WMf27X6l3JzTcHZY2I7FKZJUjpWuWCp4kFZuhKLPt5nxfvnmd8a0D/SsTayJKOLHUGVU8gaojHis6+pO6k3Nl2KJu312q+pR4gHRQUh64BmazlfPjS2zzZu+uCLMsQwsO6h7aCWkuCMVO4F1aAjS1COSPjUIcOAfXehqb1C1/MSjRnv+o316QxZWaBhW/vnMIIiK9gIjIzyaLUZGUDaYy8mFemqmaehszbcUMWv2/ulY4WPS9h6ChX5ukqZ+pxtdjkoc4elz/koJY3gBvELHXVf+CYA3N6/GAob3u0ZXDuB9Xd/Z2PkZ54HoZ0uznrd05WLrTxwf0sTMtW/rh0rNsNLhKLoC+0YAFLp9PfkqsIJbgfZfxtN0Dv99fvy7ax1v4u8LsA559etams6aqygSCGYD2ICl6+u4MQsJlNeKATGiwxXVWS24iMmsIvAGOTMZDByEJ4vWx39dv1W8cMdV8zVdOS2Vic431YoGG09VmWSiwTzc1vnqHPFdTcTfB/+8XnuFhqdDdi+wXL7U+V/OzOq3RF8C01jUZJGCF7yY1bjBz6pmjqnBOdUZiYUQ1znbCVjLmRr5LrjFmVOEPcPEJlThfb1BKMaGaxDBmH9KiKoKgYRJ9wE25+NqNzO28yi+nZiPd2j5qM+35Mz/v5YQYBrsSrCpZWEXsRKlgE99AABQik3X5cNIiItsLfNstNK9lapdqZeXjgrASdOMzy1pkTjvIOd/ZXUNcyNt+E7Fg3xJN4AunINz4TgSotyQQ6B+7hFlpglUSWnebamCTjyx99mu+9d4efO/8ql9IDqlbJJVyT2khahGQXDCRY6TS4hbDEymfUOJ1whWmw7s3r7EJmuK+KZrFrZ+8LGePF63LPAA2aLqmsGnTXyGSe2m8pTPD2NI1SYzM/vW9ophzIAMtCStgH+EQ6LfZeVC4IgCblRHe4kBz6OT7giW/EfGL4Go/Ee3Rl7YTJ/AUyVjC1MVOTcmy67NVDJjpzWjc6Y7/oM66dLd5B3nMKi3lMXUTI/ZjBW5LOgXEidqVtsOgBrmhixfxsxq2fFNjI8th/+VVmZ62XCsCrWwrf+3LPjVE0RL0QnHUqkJVtzTdXQnPoMeFVMf171O65MxE49yPPaK59r8gvBD+qjszfNJjfDeUTIcRZYNf//AZwsXXcBeDWD3ozgWUzniw1eSrrmjeXOoccbXUYVxlnvS4LuIc+9w5DFZFjwhlA4p2GnMtKUO2bmrTRbQEa4wGHe3YEFGApOxc6yK3eW/dqA+5Oa7U8+4nXOQEu/srbXD7aIB65gJ+vR+w/J/jxx95kLZo2bNXcKnqypvS4a43wO4qE0ioOdY/KROTKiVNVVnFQ9pnqxNU2rWzgaf2o4M5kQJHHrsvvXcqzbsm8lJhUYHJXaolye09mLmtnGu0mHIwuKrLdxUN88hhsJS6IOvnaRcYX6tZtNMv9gnrQLXefRaKtXtL7Dhme8brdpYnoqMrVWv37BKnWgOFuzgEHNW3nFeHB0Jmg6sLGR++w3R1zfbQGuym9W4IoN40ksKjMPfccHDJCd6RHPlnSo+qeYx/6I5i+sM7vP/txHvv42/zC1ivEwtWytc92u0nFyakH1UROXkBExpkha0XtF/TayEYvvE1WOj0CdNf4GnjqS14hcXE7PdUIhzXv469pwNRPtJtjqXR/39W4vf6KUV6jRTeOQ4Fl7XoamkxWpFJTW7nEwD6pO+Qy5mxyzEDN/QK+xfP9qzwS77HS2m1l/iHMUWTUTL3NnsJBjm8VK4wrl1fnOqY2kl5cMk9jZwZtBYgYWVm/+Lr31d3INfMr19SU+N3asGaw7rkJj8yYF5ETYtMCUcglchmAmktMYpGlWDhglYL00B2qE6h7AhO7Ho2sQRVOtjn2OYhV7jjblt+2DlUna8t98qTvO/6mvNY/Bn7T//83gT9q/fw3hBsfAU5+UL0cuCefT2XNzKfK69GUD65e4xNbb7AZj73PZLk0oY3PMEIDTVtBbtxqrhsXlWJJKyOQWTSO7mxVKCW49wxZedj6nHYokb7O1f4+jFAWujMecLg7ZPWDe8w3I4qhQM3duU50xoHuNwbTZWDx+QdRW8nYZMxMSmXcYrXAcbsHOvG2YIWO2C0cRnhSp4ymmfNQjCwq0vR7OWlcM9icQr+m7lnmWwsRqxCMhHZZgSoX28pqAPl22hyz8xXNlw8eYrcc3CO0pX0Ttx24YUH1P21Iof3nDdWr06UXgDSqSaRjTwaiCtD0DUqf3bfJYu80qh5EHzpiuzt2ddyoRpaCeOIwzNF8IXFwvzpoclyS7RbEE8NsS5FvuMLR6WN71+dc/EzBa195kL/cf7IpkzmSjnYQvNCL9iUtZxvnSizgpXmNZFS7uVS0TJpDVq1b86UwkXsOPNJL+pIVOC2iQ93DWOkRNbZZCGG5ZBX8cmOhWY1nrCfTRt88ZOa9yJVMIg+1zHxDE6D0wX6uY2c6EYS85EKmIxE1O9EJq8oFz3U1IT21/dWenW2sK78lvicSrsW4yqh9IgOutFRp1ei6AETTxS4zPN+nkWiirJ25dq+km7jrkHVKsn5BPCiIV3PEegHDGtvT7l9qqNdrTF9Tb1To1Zp64LT+jYecOlMYS7Vi0ANDtWaoO7bJ0BGgU9AZlENLvmkpVy3V0FJ3/Xz4266ZCyH+Ga7ZuSmEuAH8D8D/CPwLIcQ/BK4Bf88f/m9wsMQ3cdDEf/DDnITAZW77VZ/aqAb61VcFuY1YiWaNPRy4B7Yyy6deWcVEZ8SRdrVKH0gqG5FY7QSehHYBvoWAwMK0TsGGUkML89s+x5brkFXiHvZnGFJbbv7xg+xwi8kr6/zSz3yLP//r9yPfB/1rkJ+rWE+mnNQdropNMl/P1DInaYgoFoNkIHOmJmUzHlOYGOWz3soqNuIpR3WX/aLPpE45nHeRwjJMc4wR6HEM0tJbK9kZuFRgf9aj7heUsaGyKToV2JngfpUwVTqBL6D5GjLX7c6YbZ+dh1p16Z3rw8ht7BUDFxDTtqFz20LM706XMuxQLwyEoVTWTHRKLyo5KbOmNBDgqKHmHgvtbMJaLkMA5VAQf/CIJzZ3G6W/23srrF6B7EhjlUP2mKFyTk2nDC9OswTLYUa+KhHG6cUDjfSwmhbIKuLcFyJeih7izE+OeKZ/g8ooYumYkMHGTPgCbuhxWwtlqahiyaxKyOPYqxsGZm1bA2Z5VxIalUua5dqxqbuqQArDyimTkDYjOgT/lWjRhzqpO9R2YTARgu56Ml0wVHVMN6qWMvSATQ8ls4DCWYlmrKvJEgIoExXmVEZX2IWueomk9CJtUlhiqZ0RdRURSdOoNipvMRcpQ65DkzkkKoukRXejRofIJhF1B5QyFNUipijldkjGCJJEU5YKXSusFhBDFHtpAI8as4D17ichNFkFtqsR3mS6thEIiawdmsxEoDOLST33wboFyAVzcf+i9fcZPwya5e+/w69+5j7HWuB3frRTgNxEXJ5tMfZZyHY6IfIruWpN3InOCLZYE+2C8kDljHXGYdnjoc5+856hnttGXJStrO00kUgV4h5xrdM183YHu61ffs/wcSB6dMx3Ds7xkY9/j5f++XuYXLL0t6dMaydTMKo7rEcTHkuctknpz3Nk/PbRb4tdF1+gbcxA5l7XJGNmEnpR4XwUq4gk0kzK1EmMnijqoWa1O2czmxALQ6Yq3qo3qCtFlRqKtYjOwXLQEt6FoanbRZCvSfrXFuWmb925wNOP3l6ql4dA3jYDyb0AVbiHbdjgaUni+w0Tu8y8PQodkamFrkhu46W/C+5BbGOL60wweaTm0cGEB7qHFCbihf2LqBuZI6XsKGebt6fJDu4tnZwO5NEop38N5jsp+aoEfECvWNKMTw8Kzv91ymfks/Q/UbAWzxjVHafmmdmmbhrKQCLYyXnjhyCO5QSwKkyrIdYO5GEuhzJLuLYhY1fKNUGdqfSiwVlaBTai8NrytDL/0LRdiebsloPGM7S2ikGUNxDSmU6arD1ouAQ4YhjDaE4qK/oqZysaN7vk9j2rrMR4NnDVfC7f+G9JDCsMqag9ycswrlMKHTFIiqYUlcY1E7F4fk0kkB7F1exCy4WoXDkQdNIS5UutwXM0wEMrrTw6DMdwa5Vcoli7gK6d3o+JaFykTGJd2SyyWOPkI2oD8UhR9Zw4nDsHG247dRci62rwP2pm/q6QDzNWcGO6ylHR5ajoclh2SeXyzc693GgICG13m8Baawfo4FvpjhHexCIht3GT+VdWMTMJszohGot7SintDP10IIf7QxOrviIZu59/8oE3uHllky+9/gj9X75DtVlT14qbsxXmOuaBzn7jYTozKWOTLUTBcI3bnegE8NmLdVC/gZdBBbd7iYRBCpgWTp+DSeRqdBPFWjrjQnZMR1UkyqnZ1aVC5pI2FPqdmK9Wum1fKD2IylDk8SKba3ZAyjfWREsCdqGoGEyNF2bD1RL8dHHfAooAUIsMM27YhrpZ6JvXnPLiFK2HzSrB+EHBA4/scql3RCw0+0UfC1RnKo6fskwuOXkDcBTwahBTD+IF3vcUplj3UmzsaufliqAYSoqNBJ2d1ltx5iDnvmD5g699kLHO/Pmb+za5rLIoZRpjilIrSl8+AZpGeGWipYw8FQ48EOj62i7QT+Ab0v4eJL4hGpqaTU/DlypDGTMTNX0vl7GEjml7i8qStWjGMJo3sMSAbImEIRKGlThvFt6QiPREuaR101zX1meSwrk9BUQXBHs5Q9crSEbSYe9TVdOPClbiOavJnERpVKTRmaUaBCTTcl8r3FOTKaqhJVYLBqq1ohEHq43EGIExwgX0MLdCpG2LlcUW3XHaMCZ1wTtKa6TSqFgj4kUpxqRusakGFpsabFeDdK+xkQv036dieN/xrgjmIOh41lptJIM4pytLBi01uljWZKJuAnQgbYTJ2FELjLNpapRysa1nwcKbmaQR2SpMTG0l90sUXZ0t/H+BKX0nv09waJburvubLx6cJx4pbK44+cwO25937uM3jlc5LrvN+RzrboMbTtCsynnz4AUCimsqVYx9Jz83MV1ZMtEpkdSsduYeAeEmh5o7oa1znZH3UpUc5D2MkdhSEY8loVQadEKcS4uf9LWrn8tKUK7YhvIPUO97XXQWuOV21h1gcIHBGkYI5It7Ipa+wqJR6nYFy4ula3oayiDx2rj7LDK3WGiUaqNaIH7uiCdW7zKIcw6qHnt5n72jAZ1hTnxuSt2zzM5IDp+KOH4sYnYmatyiYJHF2SRC91LqQUw5jCgHrqGVTEzDPGzcjcq6eV3nds7O5yV/dvUpl1mqGpMsPlsotbj50Cqb+EbeuEqZ6JTaSMY640R3OKpcUzyQmKRvjANL17z9vZOxKFrXql5ip7avZWiSVlY1SJraQxkBhyTzJt3hvHMdN6WWyDdAgUaKYyc+5sF4v9ldt0duI2YmarLycI7tEYh/sdDspCfEHu2TKO2ff7eg9OISKS1111CsWeabju1pVYvFHStsElH1IsqVe5MyYyRaS6x3ULJWoLVEKYtSlijWSGlJEk3WLVHDEtPTVANLsW4p1gwkBhOMOWqFNc67tlwx1Jn1aBYLyiIi99wC1F1D3bX/3tAsf6sjlRVnOiNqo5jqpMkYQnYXcOJK2kVm563gDII1T2dsRKg8ZToIHcGCLNTWgp6ZxH9v7ymphP8vl10W2zSdyMZR6PQIP59XEVZA/3KE1DA5L9gcTLk0OOJ855gHkn021KQJTNrKBlbpmliGr00f9teoZlRnjRLemfiELxw/hrGC47JDbSTnhyOO8w4yq8Gjuuc6ZrcccGW8ye64z+jOgPhYoTNLuSqoDxydXKeLrnzbJ1HUYLuO8hyPXYae3Q0QtGUp0UByCjZyPVk0ZaLTQ/tdxj3Xzt+b4FYfSUMs3NY6jEQuyizBLLl5X8RCwrcyjC9GDDNH1ddI3hxtceXqNjLRbK2NmeQp1UbBqK8QM8XaS5J0ZBo7snbZBKDYSJ3WS+QCeXdPk+0WC9G16t4tjqw0K69PmHxhjZd/+ayDwvYMOgmZwuKfqSRaWGrpvFBdWclLzJoEDHRkSUHU7E6kcAbbD6W7PJneprKKL80e47vj82wlk2a+GysZm84Cqusz/cO6RyarxvDFCFfPzn0zu6tKxjqj5+GPQbUUHET0sHL4+cQHcONhtuG8NZINNWFHjVj1APs7usuxXiihlii6whH+nOqCy1RzHZ8qj0bNojWM5sx1zKjKqKxEGsWkSplWCVFkqDcLSpGi5gphBKDIDnXDtBRlTdWXsFYu7eZqIx2c10iKQiGl3zEp4zJ0Zeimpc/gnZNSLyuZJgl5mmIKCYlBKEcA07XC1tKhy1IHudOJBQFWhE6ndZm7j2I2/tHRLO+KYK6E4dGuQzc2uhe+QaJ9h76yjtW1kPiMl+Bv0gtrBSZoIlzDJ8DHw1bNSYUurlIsNMM4J98yTfBuB/F3Uk+Ed6b268QJ/5+8vu5KBYWrQdcblpu7qzy3cYOnOzd4MN5vso+xzchkQeaRCAe6x5Vym7dnG3z3D58inliKVUE1cO9nlaVcM/QvjhhmBTdvrXP+3CGr2Ry9dcLezYy6a3hx7xyduObWnTXsXIGyVGs18bBEX+069ErhkBxqVi8pOZpIkowF1QpMzimyXRcgV64stELCPQjfh0UzbOvDAgo0uw1YZOenR0C+WM9WDcbRYXGPpKaoo0bu9fQwdqGPYmPJ6BHD08NDRnWHlw53OPraGRJlqfsRt0dbJFsztjbG3L25xsrrisH1qsEig7Pd012XqVsF5UBSDgT5uiAZQ3fXft9A3s7qd74y47Z+gM1fuQHKusZbgcMaG7d42VKhpQVcDySMaZ0SS01PlRxX3aYR+EB2wIe7l7lZr3FY97lTr9CTBWeiE2bdlMuzTV44vMj71m7x3t5NerJgapIWGS1qFtWgzgmLDD2WdfNMAt65yCVBToclahG2NNIa+i2J3Z4qWI8camUgK7oCDo1iTw+5Wa25e8YCZROezNwqXinO8mZxhv2qz1zHHJVdch2TyJqdbNygm4wV3JyukqqaWZVw52AF7qT0bki6dw2d/bJ5Lp2QnGkW6fmGJOsuew330pK8jJcCfBRpej6AJ8rpwSthnK67FxPrpwV5b86sSNC+PCOERWtJaWJ3o6XFdrQL4FpAZBB+B9rIEyUGSsk7UHTecbwrgrnEydRKYTFervak7jYB/chP3m7sLnooM4TtZeyJBmFoQnNnYVkVRiw0RQtjm8rKQRPToNtA8zW8RTtmtCm47zTydUUGmNSCFqjCUvUE3duC9Y8cONiXmp06Z0FXaI5Nyl9N3uOy6ckm33vhAYYziOaw/mqOqMxCt3mgKIarHP7iGDFT3P32GTofvEEsTUNEOLyx6j7nnqI4X4G0RLsJ6Zsxw6uG3vU5stKN/oQY1eheiswUQjv2ZDEWTM9ZNl52XpvFinDkrhZ9rm3w3L4PbYRLQLMExcSFjGyr7ngqHTFW3CN93IalLmHMhXHUd1/7LIcRYtuVFa6MNzj+6hl6ty3lwDW85xdcENv/3iZnvw7du+76BmPruieZr0tmZ50/Zz00yALUHFQOyejeQH4/AaaQ2au8ZnhVc+2b5xFnC6yMnI2ZbzQ7N5CFLosQ1gmnxQpjnUJmyMaH0Zz3dG8xUHNeLs7z1ZOHyHXMF8UjvHG4SSeu+bWLL/AL6y/zr8yzfPH2Q7z30Zs8Eu+yqwcc6y6H9crS9ax8ff60Embqd8FA03SvjcQIR3E0Pht3yCNNR5ZLio6hn5JbRVfUTG3Ese4y0YsJ5JzC3HmcmJjXq23+1zd+joOra6S7imgG2YGl7gjm2/DNCyUXLxzQTwpGRcbxzO0U8jwmupyx+rolO6iaGrnu+MRvvmiA2sRd/8gvmo2mvjSQVEyLhChyPQPtoZeDtCD1DfhQCUhkTRRrxlXmdJ6KBCEsUWQwPqi7P8oiPgsLsXUQxFogYrOow1fS7ST+PdH5/9aHFJZE1A07LWBmNc54dqoTthNHGgrEB4DU6zODe7CDv6exDpI18HT/SqhmcTBiOTMP7LTTgft+yeNpjYX7jWACkd1RDvp43pIcw+ysZVNYh22XBQNZMTYxuRfYmtqEW9Uar4zPMqoyCh3RfWjEaCtl+JUOx4+k9G+6YFGsKaquIB1Zpi8NiWOLmgluHQ8xxpFEoqnAzhXxSGASoJJkdyI2XtKo3DbloLaQkO6lvnYukdqSTAzxRFGuQp0pIhw+/WJ26LPxe4NXwJy3G57h56UnSBkrHdbW3+Mw2jVzxP0XidRr22ufzUHbqk0196nqObLH3seOiTjmEtfue79OjzA7Un54mrg99fWdRvcb8PAfLP/s9n/zMYduiSyqUyOlIY41StoGWdGLSmKpvel0zd9d+waZqDk2HT538iTf/ufvZb5jefJjbxErw943zvDXnSf4rXNf5O9ufZM/5HnemJ/h8eQO56NjdqIT7tYr/NGNZ/nFc68scRhOjwADzqSDEM500tyX4DMahLk6svTfB7ijYKwzpialspJEiAaCG4Yj+WliLBWCO3rIF0aPc3F4hLkEh2qV9G6EKoTHZlsoJXujPul6TSeuODRd8js9opGkfw3SY0PkyylVP2a+Ll1CtSeIx1Uz362CRGliuWiAhq/dpKLyEMs0XszzQkdInEyxbDFjayOZlgkWtxDX9aI8JCODLiXUcpGNC9sEbBHKLXO50Br4Ece7JpgbKyj96bgGT5ftxJGEDstFba3tEqRwne1UVguEiokw3uBWI5t6u0NUlFT2XsO1yipEfX+89enRzszfqcwSzB7mFyvSOzGyEiQjy/SC5c03d/j5j78CwNjEDdsz84zV3MZ8dPUKuY0oTMyl8/t89vhJbl8Y8uadLQ7yCDGLGL4mUYVltiWx0iIrgSrAfGMF07PUfYuaC4aXoXOoGV1UyDJieNUQTd1ED/6g9aBPvu4nt3TBOiAtrPL6EpVbQKLbGt1ZZNNVC0cexmkrP/d720gWVzYi9hC59oMdmnKJvE/dWZgGay7FQkbgdCMtFi4IBmmCR/7TFzn5N49S/8EWycRSrAhOHreISrD2KvRvVZRDxcHTCvG+ER+98Lbzx/SEmN2iz63JCrfurmILhUgMMvHb+6OU+EiSHgr6twy9GznR6J39R0MAmV7qsfsBSTRxTNtz//OXeOuffBTZr+h2CydD60lNg6RoMkAnTWH4xPA1BrL0DNrIzf912PqW5ZX4QT728Vd44wOWN/Y3+drwYX5++BK/uPFdvjh6jN+98wl+fuNlLsYH3CzWOPrsDi/80pjnV6/fwy4N8Mc2jDTQ+Cc6dYgxqZvrFfvGcxtp5EyvS3arIdfjdQbyLtIbxhwKR3RzTc3Qx3JZ+0WvR/3m4SbprqJ/3ZJMLFVXUPcE9mLJpx55iae7N7lVrvEn1dMc3R0yuGrJDjXxtKbqRaQHBekRyDJy9XEWOHMTKwcllJbKLM/ZNKpR0iBERFkrtBEoCZMyIfb3BisaL/d5FXuCoseU+0Be19Idl0eurAJgBbYG1TFuFyksdRlhLQiJq61H9ketsrw7grlBcLda4Ux8gkZyVHXZ8D5uJ7rD3fmAoo54dniDlWjKRGeehKIaVlujTNcgJCSZKBrnIY1jhbaPDfCoVNbOZPm+9fHT2foPzszDiFcKuBtRDiE9ckSBsiO4Ot/kE71XgQUCA6ArC3aiE6cqWDtXodvVGpHUJFKzvjJltxwic8daBAcdFEaQn62IjiMufeAmv7LzEpVVfPPkEi/NnqC7Z9n6Tu6y7WqBwZ7vpNz5sERvVFAaulcjsgOLrKHuCqq+w3qbCFQpOHlI0LsNs3PayxEXS1DRdkA/nbE32fpSsLg3cMAyoiNpGRYv3ssyrdOlGq9z8vFGDkGu1a/be69ucuGOpupLpueceNbGS5bsQDPbjrj7UzUffep1Huwe8EzX6cTdqtaorHOuX0tmPL1+m9vzFW6PhwhhyaKa6SDmMB0CsSeMZPRuuHLK99O7To8q0oOMarj4mUlcky2NNMZCrAyduCISmm5UeS1xxTDJ2YmOyYRmT3corWI7GbPz0VvcSs7Su+nqx79y/mW+sP8In37zWeLHNR/vvc4z/Rv84e3n+Mdf+VXWNsYcXl/l3GXD3dmAakU1UrkhoAe44kndQeNgeu7rQi4XaOSqw2jLBcx1zFzHyNRyUPc5VCdkYlljBmAQHKaEZVXNONZdPvP2ExTzGNG19O44xU5VKtIR3Dwf877udS7Fh6yqGV/pPMRkAp29mnjsyYV9idAJUa7daw8XekphFOuWjahemnORdIijWLoG/ARXA9fGNaVLrSi1QghLPykp6qiJu0UVOcSYFWhcdLTfAAAgAElEQVTtfFBNLRfy08IHaeVq5FGsncwzQO1Mq4UViPJHBxq+K4J5eMhDQLiYHTaT4c58hUo7JcAwHKNtMYHGOiP2W/euLD2pxrZo5cJnvQl5S5A/2F9VVkHkhV1a434qiu7n4vtm5iaWKKC+22VwJFh/xTDfEFQrhvULx/zY4HJzDlMb0xO+w1+v8FpxljvFCodVjxfuXCD601X41AHzr26y/qrmYm5RZU2+HjF60KnvrbxpqPqK9330TZ5duck3Th7g23fOUb45ZPOyh81VBuVZjbobUaxGCGPZ+aqhe7NCVnoJJz25lAHSBfTI6aR4LhO//hNfZiWaeeOMhSBSeEaCBC606ufWEbhyk9CTRVNmaX7fMhUJSoGo+zBThfWlhnubdQH1EGrO5dB9HV6WqLJmnilkDevfsiQnmronufvJmk++51We7t/iQnLA+eiIqUkpreJuvUJXlc2DfiYbN7T1TFX0k5hOXHOns8L8doosJfEkITkGxf3r5+AMErJDS91rMV4jSLMKY0GKBVY+kobSKKTXDP9Q/wrO8zNiTw851l36KueJ1bvU75fcffEMb712lqdXb/OTm2/yT+9+hP/nax/joZ/Y42J8wNOrt7l9MsRaQbYbAYatzpTKKE5M5x7i0djXtec6PgUcuD+Sa24ST8OXFF4BFZYXaEeAk6xHE2C4hHYKx10rNnh484BuVDI6n/FWcYnV1xzZRlagegVDlS+LqwmXYAltqQcxk3MSuS2puzHpkaV3R5OMFmQhgNXX4Mb2GmfPHDfvk7ZIaQEyPSmXlfgqLVHSNh68QYjMoWAWn9VU0iFZ2lNZWlSqkUpT19JJb0iLjQwij8CI01IwP9R4VwRzQXBUWXhAgtvC76QnFKsRHVU2LuiBPFRZ1WQN68Jl8m3XlXZ2GMhCQeckkHWCtKiYK9pX/H6BvE0cCuMdWaBANBeMH9V07wqKVZC5pNZqCWftsPOGW/UKv7f/Qe7OhhzOu9R/tkn90yeYoUD9xSb5o5rBH58smmmziN4NKDYSihXFxncg+ahmoHJ+ffurPDs8z+c3HuWt44c4s18vNera55+vRw3DUcQKkylkruns13T2Yb4ZMTknmZ9dbPv+4v/4OPs/UfLffeRPmoev7T3Zlb5UcOqBNywy83b21x6hbGMlUC1UEgMd/PRY4KNl0zwNr5lecH9jeLV2TbAU+tctvRs51SDm1qdqfv49r/DR4WXW1YShzN1uTdLs6BzDMaYwEdM6IZHamz9rMlWzmsxZ78x4VZ5hXnWRdcQQvm9Al5UmHRnmuXLUbT/m84Rk4Lb3mUdL5DpuIH7ryYxVOaMnam7WQ/5g/3lmdcJzKze4mB1h1iSjJ1Py763yr777DH//ua/z04+8zl987Rn+ybd+iV978luMq4zffPwrAPzf9UfIbw9JVNBddwS8WGpMABn4pmvcYtA5wa2o0XEPozBxI30bAnm4F6M640R3HRnOHx+C+DIXwb3fk51bPNe7ysykfGP8EG89usGJ7hGPHaLrYw9d8dei5NDf84Ajd9fYoErIN6HOLFUfdBqxcsWVQcNzPLxWof4y5fBXe1xYdwE9EsZ5HHiMePDero2DIWrczimwXrOobhqkkTJEkaauFUIIorRGK4WNBNYIqPwc1Q4qKZV25RWBq6f7hcAq+yPXzd8VpKFIaC4kB2SibFQMA1kmFppHu7ucT4+XmjN9lSNxzcSuN6cIwb6dBUyNczQPGaT7vYNkhQXh5ZOz9K6pJZIQcJ/vlwP5/cSY2lu4/+JX/xQxLEmPNCa19K8L1rpz9urhEoIjxvDt+SWunGyyO+mTf3aTOoNz/5szmf7H/9U/xUYW3UsdVC6L2H+uSzWIkaWld6eis1fztcsP8vLknNcP102JAqAexKhp4ZTiKk1ymHPzH5YkJw6iVQ8z5mcz7nw4a34vK0M8NXR3XU3eRpBvxMQzy/DFdEnlsu0olNtkqYQS5AiCvsbpAB5GqM9KXKlHzSW5jpco3W1jirbUAyxq9VJYqkGMHXqnqeMS4z1e+7cqqkHM7Y9HPPnAbR7t7rITnTjhJzlfvi9CN4FrWieMvLiTQTRuRHfnAw7nXfdgR1AOYbatlhihbZx6yAjjiSY5aRFDrDvvWisq7RppkzKl9EzESZXyU8NXXQnCpHw7v8QXXniKl/7d43z66jOksuLR7i4f2rnOyvsOiHYTfu/V97vd6rkJ/c91+fQf/Thfv3PRe4HOyecJqoBvvPkgd4tFzacyaskgJJhcR94wI+jl9Hy/aiEnUPnyhHY1dKnp+YVvrmMuJAfNfAn8Cnf/DLGg2dllouJ87CwU9+oBVyYbWCMo1w3lByc89zOv8bNrr/iErMUa9dM9MJXTY4c+sgqqoeHkqZqD9zqiUDhOzWqSiaEsnFSvmz/Gy/u6N1wYWdtmdpS1otYuOZtXcVNzt1YQK+2ao14eIJDYhLSofoVIjP99SyzQKzQS2fvuSH+Y8a7IzGGhNV5Zb4zbZHEzxiZrHEraNPFY1gzIGzx6YZwvZTuohPpdYHyGckwY+9WAt/fX2bhqWizPdz7PdkBvdKxPZed7zySc+3N4T3qT33n/Z/k/T36Os5+zHD8iOJp1ONGdRnc9E5oT4wLjemfG4aTLx3/t2zw3uMb53z7iWHf5o4PnEVpw9VNdurcF6bGhf0sjtUXNao6e7DA9Lzi7fcCZdMSOOkGmhiudLV58Mqd6LSbbLRoLLFE6+OHWv8zYfV6RnsSo3JkybH67olzPGlJU2JZ2b0VMz8Phk5Lh24ZoHhBEi8xYW+7Rznb3YYFTvp8pRVvLPQTkaG5I9yPevLOFNpLDXo/VeNbIGrePLVGNvHFlFUoaJucjxGh54Y1yS92R3PmwYv25PT62cYVns2tsqOnSeTkxtoWVWuG9R4/zDuudWaNBAjDKM9cgKxQKF1DqjmC+obAqJcPV0E8H9Ghc0d1XzM8E9A3URUQuLVK6Y7tZgcUFkd8492V21Am5jfnL8dP8/uXnGL6mWLlSU762zh/+xrN84sybHJUd8ioCC6v/tsuXd56l7sDqnmb4tmF+ZZV/8evPk0U1nW91SCaaC59WfOFD7+MDP/0qD3YPmvvZTor6qmg00t01cQiUw7qHbPm3BselSiiCbVwsDJup2/nkNmYoCs5FY9bVDHiY1cbOzs2PdTWjspKb1Rr71YB+XPDxh67w4HsOeCDdZyc6YSDnTf+rtIpuVFIO3X3WXb97Ld39MB2DXHd/I9+U1F1JPJVNDymeaOxBirzkpQj8guVUGd3CNqtitCcTlbWirCPK0mm2dNKSSitipan0cqkvwA2zXtlIAoQyjGOW+gWgU2HTmrqIXDavZSPQ9cOOd0UwdxuOe40OylZ9+0R3iIVmRc0aOJCxzsNzojPGdY/NeLyEbw041vBQhky83bU/qHoUR5l3bReoJlC797hXr+XeC3y6zPLIr15m/r/Af//63+G/ffTP+Y8+9jX+7OpHSUZwfNBj7fGpK0W0HIbWoilnOyc8+OABO8mIwsS8UZxppEh7F8bM31xBaIsqF2iacidldlaw8dE7nOuf8GTnFiOTcaV0ji2ra1MmZzeQZUJ6sCBlON2QgjWZ+QanReULdutiy+op2RNH7y/WDf0vlowvpn4RXdyz+zE9T49YLHMC2rXzdhNblpbBdcPeVoeb6QoGwV7UZzWZNQ7w7RHKLLHQZFHNeCiIF453jVlAvqaozxc8vHLA49nte8hLQewsoKDmOmZUuk7qemfmzCKEcVLDRcZ4lrqHUzsmrdOrcp+v7EvU3L2P0NapKeKCuaw0srQ0Rln+wRbComtJ1vGNeyMZFRkPxvtIYfjq9HE+e/cx6u+usOKbgr3bNVd2V/l6/ABvXj1D53LCcM+SjgzZkSsNqrlBasvgesHeX2xzuGVZ27WNGUn/Olwdr3G+c7xwNRKyofK3nxljnctQ7pU8EbIpx8x1vCRVHEouA5UzMs6/tqvqRst+MXecqbf0jfBYGIYqZzMeMxjmrEVTNtSEdTW5Rw5CYVlLZuTnK6rXFOLEP8PGOm3wXKALHwMq0ejkS99DUrOazp2EcZUhgURqL+UrmddxUy8va0Ua1yhpSeMFnyFWhiRyapixMg2c0fjgH0W6gZgqaalqhZSm8bcNyBcZ2+a+u2N/sBhde7wrgrkUhoGaey1swczL1Iatel/ljZ7Kipo1r2tv8TbjMQOZL6n3pS2KsvY6z42Sn9fWDgYAKncCOFaJxv8P7kWynPb9u19w/+Xt7/L7bDOepzwS7/GSusBTf+c1Lv+/j5MOHGIltzGIitg3ereiEU/1bvPy5Dwr0YybxRpnkxM+e/gYL16/gLrSobfnCEg6wdlQ9SBfl2z++G0+tHmVDw8uM5Q5Y9PhpO4yqlOm8xR73tLdk5gkI55oIt/tF9rSuz5fKhfpbuSvoHC0dRZehSoXVCsO0ihryyuzc+ykTgis2TILc9+gHhraIUsPpeLTJZeGeTiuMIkgGUXMJin1wKEpDose57vHCycm/37tso6xgnIFOndF85l0ArL2KoVa8mD3gFU5Y92TtzQL7ez2Oe8WA6Z1wpnOmI6q2Mv7XBuvcTjpMh9lYEB1a2TmG8hCNM5GwkC54s4zOS6bnVEIYfG0JhmFiWZd40u4/+fzBPyD/R9feoFYaN6uNvns/uPc+O4Oa1edsYhRTlYg9Q5cqy8kdPYNqrQtH0u/3Z+53snqGzXZgWrMSayEfF2wGS/IPqH/Ee5to8ToiUVhV5RKb+fnJQBSVS+VaMJ1DPrp62pGjOWu7pwyFXHQYCUsWEOFpCsKzsXHDV9hZlKulNs8nOy6RUFWGCsYSKegKLs1dRYRT/wz6lUmo5lAd5VDifhpYmLpTCpwTGFZ+1IhNIF8VifMq7jJsruJLwFLQ2Ukw6xoMvFYuc+uraSoIyqjmRYJ0ucqSjoNGemRUGE3WhmJjiWVD+hx5I4RLQz6DzveFcE8DCf8Ezf6C6FkYqybPE450ZKJkplNm3JJVy6ao4v3SRrYovHHBLKRsm4X0BUOw9vZmGNVd+Hz9wPUyu7xBT0FV9yORsA2WVIxkBVnk2PMQHBFP05dRdyq1jgfHZFgnPSnlZz3XqCDYc6h7nFQ9Xjx+ALzOiZNK2bnFZC4xaYWFOvw2E9f4T/Z+To9WbgGnigY2ZTL5TZ75YBZnZClFdPUUvYdwUgnErOaNCWa08NlKxLtRbeqrmwyzWgGauqFgxLBn1x+mt95+nPAIpieJp0EqVWDJMb1QdrZ8Omyi/LqFNUgxsSOeZl2KudgoypyD3UL0NUw2juEVNXudQuAgrfkclvvrTMnPJjtM5Q5MYYTb0kWTKkdwSViv+pTaqdB3lGuxLA/73F7fwUzj0BZBptTsrimqCJG45iqL1GFQOWWqi+oOyCMIsrVEkvUJhEy141ao6wFWoCupSN9edKJ1pIHkn0qq/js6AleuXaWlSuysbgLo7jV46awZLrlLdlKSAJcr1GClHhbM8v0jMJ+YMSF3nFTH3Ya6tpzOUqwcuHp2pSffDlIlcx0ghGCjizR/tkM/qDh2g3knGOTccfEfHn6GA+lTsKjspKxdecXY4k9fE/518xMyo1yg78+eJxSK37r/JfoyYKxSchEzcymTHWC1c602ySOddP21ZSlQ5TIUixZRApt0V1JsWGXdvW5ds3c8BMlHVRUeS2nMHqxQzt1o3JRMYgF4ypz8EQPZ0yUdmxmL+lc1AsZBG0EcWCh/ojZeHu8q4I5uDr3ie6wFk2XLloQ+AkGDbBwSFmYCpdeMdEtBie600zAAEl8Y7qNFIbnBjcYyDlbyZhhN2e+MSA7Pq3tvXxuP6wbd9ii/9S5Nz3kzvDx3uv8yzOfYPClDteeWufZzlUyArbWkGHYUBMyv+iksiZTFaMiQ0rLYG2GWJtxdjji0cE+P7nyKrmJeTM/wx++/Qz/9ROf4Zn0JkOviteLCowdkkSaUc9QdyOSiUCVugniobYYqOtVV2IlVH1BseYkPWUpyA5YqEpKF2jrDpS7XeR7Fzuh4PJUBbyCxSOUNPkpMaxw396xGdqRjM8rqvWKLK5Jo5qVJKcunJjSLEkadMtyI1YyTHIQCyauq4v6Wu9Q8asXXubBeA+Abxfn+b3dD/DN7z2EqCQbDxzx4TNXGUZzRnXGWjKnsk7nZ1xllFqxtb7wHt3uTehGJVeONwAnuyCMCyg6cQJmdUcQzSKi8WILHTL0JYh2JdCxwyhjJKUVdHtONvZavc53Ds8T3UzpHJiFgmcCRkvOfhFm20PSE+MWLu0CWZQvhKXCvNWZ8zR1YmGWk0/k/NjZm6wnU38NF5R+KSwndccRfVROZWK6quCoWnBj241nCDA9GjnccF/Cvfrjo+d56egsH3z4SjMf3omykduYN4szfPrqMxy/sc7Ko66PVFrFW8U2m/GY/WrAW6MN1O2U7Nii5q3m+7Fgvi399fCeBdLNeYUrN9adlHqndLsKFg3PcC1CMFbCfY2EZlqlpFFNqV293nihsdwvcLF0TVBjHapJSUMqTaMrFAJ5UGQsKkfGipVukDFtiOMPM94Vwdz6+nfpM2dnUxU75xChQcjGEzT4TEq/HdNI73FoyFksuaHh2VVFk6HnJuZr1y7x+M4eeuA0ztejKdu9Cdf622THp86rldlYtbCQCxnRO+HNQ5b425ufJ8byXHaNN8ozxBNH7b882SQfxgxV0eCrB7KiK2vGJkYltnmP3OOLpbD0k4LnVm/wSLbLjXKD37/xHEdf2KHz4X0uxYdMbcyqJx5dmW+xlU04KTscaNFkYmEEp5VyNWlUAMuhYL5tKbZqZCGJR4L0GGf6LJ0olCxd4O8cWI6yto2bIJN1Ay2MRY3xDNwQ6KVHLbjjXY27XZIJbNBUOSuv+RnLmYtHbPcmXOi6m9P3ZhxhAXdWdIuGaGWVc5Efi4aJKyrTSBcc/JjlvZ0bbKgpX5o9xvdmZ3mge8gDHzjki3cfZv4X23yeTcaPaKKNnPeev8VaMm9syh5cOWyggrVvjN6dDdjbHbL5dcXgRtkIls3OJJw8JKl7UKxKOneW55coa6JZK4GwAqsltpAQWXQZ8dvv/wLbaswfn7yf67tr9O8IorlurMmsFJhS0L2V073lSgbilEtSaAoaJZp7LYxbdO7+mOL5By5zsXu0FMTCCNlmVzrxrNQ/T05W2TUHCxM5q0fjjCoqoxpzizCCyqK2klvzIed6J8syHCZmRVYYaMyctZXcKDf49NVnGL+8gR0YLqycsF8PiEWX1yZn2EsGVFZy9a0ttl6FeKxJjsvmcwN0dgU6E5i43QsLC1vEfEMxWB0TCUMFTL3tY15HWCsotUJ7WGKofQeHI2sFtZ9zuY4wVjKtE2ojKarI66HL5jWduGJSJpS1ako0ZRk1gbtWirKIsF5D/UcZ74pgHkbYfksvmHR6NCp9YgE/dLR+z6K0NA4mhYkJPohhYt0th2RZxfnucaPVnErnYejq0G5r1h7LwlstaVhPTrBK3COFG4gWoTb4v9/+WV7806dIaxhegZMf8xO71cA59p8jE5p1NWEapRwlPaad1F8TyzDOqazi29OLfObtJxDfHLL+huYf/Gef42a9xtPJLbr+hIdRznHlIHNyvqgV6kRiVOwacnlNcuyw6la60oCaC+RcOtcbK5qGnpXefUg4557sQCOShVmIw5lHtH1W22Uxw72St20eQHiwMx80qq7AJJbt3oSznRO2kjGTOmWunORpWOyqFuQ0CG2Nyg6dvRY65UKGMBDNDOcu7bOqpmgE78lu8HznrUb24ZMrr/C5s0/yey+9n8ELHeSrPV7ZfhSenHB2bcTZ7ohI6sas+LDKeP32NurVHmdfM3TvFkTj0sMPHb1f1ilHjymKVYnOIqJTuPMmMcCrJuZOz4dS8BPPvcqHOldQWG7kqwjBUkACv9C2+jdC66V5Wg1iF8Bj0RwfxuF7JFsfuMMzw5vNnA1DCrtkHxf6Tcr6nZhPjgJwYaLT5plMZe0dhxbvt1cOmnr3T2+8zkDNmZrU30O31HcJOy3Jge5xq17j5ck5jq6tkRQCdmoO5l0+Xz+KEJbDueu8zMuYZD+iWBNYGSG1JRpXTcKy8rbFJAmTC/dHqhWrgjTSzGuXOJVGkdcReeko+sbIJRhhnscNSiVJa7ppSTeumhLJzNfZ8zJ2LkSe6BYr7WrxZUxdK0f1B7CCulQgoKolVGKhqvgjjHdVMA9KasHhJBE1EoO2CSvRnBU1J7iNuwmUNZl85YXzm0DaWhiCUuIgyvnUAy+zEs0dTv0UzUoY6x+IH65u7pAly4FcJ5L/6Su/xON8g++W2/zJ0bN84/pFbN8Sj51+yv6kx6Hus6GmxB7T2gQz4bQutqIRVepIUZV1zZhJnfLXtx7j4Moa218TpMc1h09FfCC76rbBPjjuRMccJH1GdcYoP4esBJGvzerMNcxm5zP6b0+b7bjy1lV67ClcytXIwTHudAZ1BrprKAeS7q7FzqKlEld7hEBurMAI2UjbAsToRqMFUS+ghn6X0ouKpu6bqYrVeO6yQll7k+B6qeEaFBid8p57KPs3dcPEnZ6VmAjqruQXtq41kNBKVOzpIbv1sNH2WY+m/Ifv+TaXL23xxv4mxX4XTjIm3YK6I5mUzm/1ZJ6Rv7bC5ncsvdtOKqEcRhw9ljrtEAHx1KIKyA4t5VA0NnbtEcSgpAZtcE7w0vKbP/l5fmHwXTKhuVWvMKsTFxRS9zlC0tHebS31cryUcftnISMvVgTjn5rxkQff4sMrbwGuZDnRWSNd25hC+2ZnsIcbkS05DwWa/9wkjW5LQLDEp+rLt6tVHkz2eb7zFoNGiuFhbtZrPunaRWEZe6rxWHe4Mt5AlP4znMTcKjYQqSHuVFR5RPZmxvAtQ7QqmG/BfBtUGdEPSJW8RuU1Gy8bIKMcLK59YIrOzhtW44pRmTLE6ayM5ylCQFUp6soZS0hl0XOFHEdEM5fo1Fpw2DPs9Z3GChInpDWLoHZMTqss4yRFpMapYs4ihBaISiALgUmtI07m7nhh3IIt6v8fBvNAXZbCLqFVpK+PGytYi6ZeOyK4kS8bI4TMIeB/jTd7WI+mDlIlaXSV25oe4GpkxYbFXnMd9fsF8nei9odhWtnRuT9zl/V7+Xn+6vLjVNMY0TOMnrJc+tcwlqbJUscebTMzqVdOjBodGY3zYLw+X2N3NuBknjF7bZXN70H/ZkG+4UhF4YG5rvveGcZlw6msmRcJ0USQTEzLc1K4zDcQWMYVVnkc/sQCAqP83KwtOhPU2UKmteoJ1ygVi8mWCL1kItCY9Tb0cNscF/SrGxaoFSBC89M01xug1G7BGKicTCqGcd6QOsDBV43vi0iv13NSZHRbi6zKLdOfmLMymPFgtk/m5xHAzWqN/+v1HwdgNkvRowQ1qHhoZ58H1o/obt+lG5UoYempkjdGW+weDaj3MtbegnhqKNZiiqEkX/cGH05p2GWKgqaxbu4TzJuSiHUkKd0z/PrHv8wvDL5LLDTHJuNmtcasTjClIj2hQaBAyLTfGY8cPF1DG+P2L1f82GNv8UD3kEey3SazXlGOMNUYwfhdTmFiZjq5x+81ND81zqO09uWWEMxds88t2g61obiVr/JddYGPdd8gE5rc3+TvzR2CSwrDqlw8/11Z0ItLp55ZgU0Njz96m9IoRnnKcdmjWDeMa4dGiSeukSyMpRxGRLFEzbzVY64ZXK85eTjywXLBEVFzwThPmeUJQ+DujTWXFVuQhfSNc/d9OhbEU5CV9fcUilKii4WfazISjYuX0O726ExRdwOQwLNUm01aQN3474x7zX2KE993vCuCObiHf0NNmJqEmd9+negeM5OwFk3RlqVMvE3qaNzKheGo6jeStkoYZibxkrgLN/DcRqzIeTORM1VTrWlALuHL30kOt90EDfVyqW1jNRbqoLmJqU5S1ETCuZzOC13qrmGjNyM3MVPrPmsIYMemQ1cWXvs5ZqwzjqouN8ar3DkcIq912PyOdYzSWHL4hGJ+oeaNcpsr5RaViRpdlFRWHFQ9R1TQLgAUQ+m9J520bbO7yGtUGWGVbHlhenp05GqNrj4Laiobj1O0WCINJR537mBXHpPs6+KLwL0I4rCMZpHCOrIY7tysd5YKjU7p2aGnceYagSS46GjuXlvnkapurO5OnrBsrLjeyDnPLAzaPTOTMDnuwiQCAY/+swLdjdh96iKj91Y8+OAuH9q5ytn4iBPd48WD89QHGf23FdmRQaf+nueW1cuayDffitWI+YYg3xSY2JWvvt+QXrXzP//Ev+ODXae/cqB7vFac4+18gxsnK2SXU3p3tIfRCnSyKJ+drpWLysEEzP9H3ZvHSpbd932fc87daq+3v9ev1+np6RnOcDYO9+FO05RIibKtKFEcIxQCC3biILEcOIZhOEDiAAKCOHIS27Acx4ntKBEly9oXauEikuIyC2ftnu7p/e1r7XXXc/LHufdWvdc9PWQQGfQBGq9fVb2qW/ee+zu/8/19f9+vUlYOuKoYfK7HZ89c4YHKLgtOn8yIqWY9VdaZMiPpZta9ypE2cPeTgH7q3xNXL8wZ0lxgCmyCVnESHKmpOxFhZtv/10ct9LzkY/XXy/t3P6kRaYduWqWqrLFGIJMy4XGGgsquIa0prm0tUK2FzNVGrJ7uMT5hP/fW+jziwCXYvfv4innujDXBvsEJzRF2j4oE3VstnGHOjrtxNFGUKWVwdYcGd2RQsSGpSrLM4CqB0IKkaexrBuD2bRdzsYNKAzFVgyt2VZQ/Jzut6cfuO2XuGj8Qwfz4NM+QJFqWdlZgg/3ABPfUWy6eB5hxRmV2Xmi3zLvWOqsI6uSZvXVLcRmkPiLnIJfHdBeT5e7iyXQ3qL4H0+WZ2nX+Rf29qL0AIwzjFU1tC56dv0ZPV5jVA2KjCITdgfTyAD/UflScVNsAACAASURBVGnw3EmqtgK+79N+E7zc0mzr/TXMk33evbLBf3/5h3hsYZNL+8ukvzNP58mEn/nAF3GFJk0VwcgG5cZaUnKNj2y/845ErTy0a1UYZWq32AgLrxTZpTCT87Bw5rC8IftZQFuNSvu7412g0yM0LhpJQ4yPPF4EdldmFBuvgkXgS2sA3XTGdHJBkyITLHTqVZ6xV285QFoWpb3VIYOxTysIc0NjC2W1ZcgFf5u/9NQ3cUXGtdECt37tIjLRVHc18iWXW9EyB/O3eKpyk2WnS8V9nMq6oralcUaWVZLW7CJZXR+V51ONUrQTELcEb8d+ApARvPvPvsY5f4e2HLObNdhJG7wxWub2aIbBepO5dYPXy/K5NrnZrfeoRMJdxU+wXPedjyZ86MQdlr0e2kg2kna5OxplPiPtMc7cMnCPUq9cdPtJQD/yGcWTIKe1xHcTlDRkWjAK/SO0ykKTvRbESFHHkRoD9EOfLwyeYn2lnd+zForZjRtEWhFmLstBj1W/YxsCYx+3L6juZtTXDdtJwGOfuMmn5l7jAc/uLNbTGZ6fP0cnqfDtzTOMh7MIDf5+XEIpxc7Z72alXytYZUWjoHZHkeeA+B0zgToKXrpjz7eK7WIA5D+t5g8Axr6OPBC7I2O9dDODOzpab7M/8z/LY8vx+/J+Bjj3Gj8QwRwoMe8iM9tJmxwmVR6o7OKJlNg41FVYthGTi/wUsII7ZfZcqCT2s6C82Ystoy8TmMpCNuOWlbB08u1oPt4OVilG4WRS/Cz+FmA3bfJXnvwq/zj7CM+evcGLwUn0Ky1mnSFezo+NjaKvK5aDm1VpK5u1d7IqW1GLcebS7VcIdhRBJ8Pfj+ifqxC/r897Tt5CCcPnzrzCGX+PH59/DvWwxaKvRku2oWczwOuZ0hbu+ASZNASlRztZc4il8LpM6+B27RbRHVlo4WMnrh4RugIoXISOZ+TFcEV6xD7uXsMXKUbYhaMQOyqfkykNJ6RwICo6P6ePo7ZpVSLJYY2i3briJHkNRpSdhhfdHU40Ld3thc4pwlkHIyGu59ncnO1CXHb6tssxdQgO7A3tdWKMK7n9QxJTzTj9q1XcYUo045b0OJFndQUsktV81HBKWiE/52nd8N7WDZadLltZk/20zu14np2ozp1Om8qaorqTTsF5IHKGlcwMMtEWxsm/c+GuM5qXdC8a3nl+jboTc3m4dMTWLTOWE12YoYwSl1HkWSZGohDSEI9cCzsUsqwCRCYYQS4dbfFfkeaLvoFMgtYQSjAzCUE9ohbEJIlDf7PBb119F15PcppvsBU2ud6ZI80kYeyyUW+x16gz7w/Y7ddwRxC2LW1WZMIKjuX3SVOGJTTzQGWP7XaTN6uzJNVJohU3VUlucIYat5+UnH9nrKnftlTNYnEMDk2ZLZfJmmtpnCKzHr9aCUy+iBslSGuGtGZAGOIZC4cd5blP7oPjHePy2AJcLMjT9ZDvZbxtMBdCnAL+BbAMaODnjTH/QAgxC/wicBa4CfyEMeZQCCGAfwD8MDACPm+MeeF+n1Ec8lo8R6ito3s3rbDo9anKmKqMCIxt5tBClkbMYLOzlqOPOH4AZVGs6sSlj+G0VVymhe1mK4j8foaR95bAvV8xtLi5Cn9BmCwCQ+0TaZe/+q6v8LnGy/xU9y/xY//Vtxhpr8xoYSIPmxiH3bTJXtpACs1BUrNmzQcB7Ts2K4vmfLY+kfLQ3CHaSCoqopcGXNHLLHo9XJGxlzRoqJDHKmvU1iRpxVB91U74QsWvcBSaHmqUQjPXCinml2OLc7l8xlSBxjDvTvjWtfwF9zJphon/53Q7v6UsZkds/SQaV6alOUYhdhSIhBC7kKdaTqRac656Iau6Hs0QHGZHrs1yo083ClipdAlEQoLMs3MYGYcgv2DvbG3w4qfOULnm4fUh8+GBpT0u+puAhcHiTFkueRkoHKonB5YfHLRI6h5pIPBykw+vb0DYXV/mSRwoAzlYnrMBFt61zSl33+7IsgqbyQwv91a5tLvE6FaT5Wu6DCJ2jhnU2JQmI0nDJa1JoqYkrdgtfTQD0bmIxcUum/0mtw5n0MZqdBfsjCRTDHoVTKQgE4jYOsjLWJTS235sg2g5L6ahgMTOD3T+E3vdisVYaIhmfMYnJWlLkkYOMpLU1iR+x57DN/YW6Ww3EKFEpIL1ZsBBu8pic8DosELDge5D8I73X+dsfR+F5he230ugEma9EbeHM1zeWaJeidi/OsfibY3X0yUlM/Mmx15I5Bb6RDI2VPazI/d50ZNQKo1mBtnTkyBbPu4CyurqVA3MxLh+Suj7yMjFSGsOLhNTdpaX8zx/L50XqqcfLyEz8fY7uunxvWTmKfA3jDEvCCEawPNCiN8HPg/8oTHmZ4UQfwv4W8B/DfwQcCH/917gH+c/33IYI+hkVW6Gc8y5Q7QWbIVNC4s44kixDGwW35IxWtgC4TT0IoUmy8W1CtYKTHjnMDGFLkot670moufe1f1ZXOD7ZegF1HKvZqJf3XySR1pb/PYbj/GB91/lPzj1PAe5hkwgrK9ihuRauMj5YMfuIrDfdS9p0E989kY1vH2LZTv9hLUfrXL29DZKampOxLLfYz+uc6m3TC8K2Dpo8o7VLdreiH9+9X001zXVjbvdb2SSWYb2FN/WUrnsnnG6i1DG4GbFttPihf1TDgpTUkiPu9QUo+CR13ItmgxRvs4jKw1Cpkeh11Kc90IDJhAJhxz1BLULwqQFfTNq2evmSpKGwgceqO+T1KxAV9mWnsuzDo1HmLl0dJWqjDl7apf1Sptx16cyP+JTi5dy+EjS0VV6o4Cac1TQabRWx18Z0fmEoXlZ4fUNcd1mks44L5K1J3NLuwp1jKL4waXrzKkB+1mdO8ksrw1WeHnjBOK1BiuvZSW8ApPMbrqDN24p+icl0bwhrWXQSBGOxkSK7fUZ5EAhc2PxcCpnccaCSpwH5eQojAZFl+gkSywu8TTGO435Fo/J2JSLz2jJIfMd0lpqdbtV0fVqXx8lDsLT1K66qAj6DziMZcBa5CIHDkkTksWEdzQ3+WjjEkpotuptfmvvca4P5rl5OEMUWgjIzMSM54MSCimUPzNflnP6uPG2dgXimFrq9DkoNIpUYmE1mWS5vo5GhdbxS2hQbsZSu8+BmzEeNVCRBCTewMIt2rPvq7G1jOld/eRYZBnQzfcXy98+mBtjNoHN/P99IcQlYBX4HPDR/GX/J/BlbDD/HPAvjDEG+KYQoi2EWMnf555DI+hm1fL/vZwfvRa2WfUPS554EejquSh9VcZlhyUUesyTDLzQYLEa23EJ0Sg0SmgiXPaiOoeHdYI9WQrwTK/SxwP6/ZyHVKyPZOjx/7TCY//D8/TPB/R1hTPebg4LabpZlaqM2E5a+e8VuwCpEYdJjav9BVKjiBIHNRZUdiO231cjOzWm4iQ82V5jxh3yYvc0AHU3wpGaLdPija1F4qGHu+2SebZjszzenMFStpZP6c1oV9nimmPhFQCZOxoVWiNGWvy9994xGaLUnz/uLDQdxKeHwhzRUXmrkVat+44j7cJbOEtVZUw/d5oqdgEZApkv+JcPF/GwN0Vx857wO6h83gy1z0LOM5fCEGAz/n5WwZcJT8yuc6p+SKoVTzTXuBhs0JYW1ullAVpPLPUK7Lp2WzGacVCtmGhOIbOcs1+QpnIEr1g4p4OJdq0qybzbp68rXI8XuTxY4bn104jXGsy/kuEOjgWfPAAU9MOkrug8KBmvptbZPRXIQ9e28ScCFdrah0ht45fIF+ZSDyvvJSjXYjMJ0tND5jCKE5qyhmIfLwLnVEDP5SKczJBVJDK1/PlqPSJyM8JBjUKRYb4xJKxEDIIFizsHGmKJ3HJxxnnhUFuuemhczjoH1ETMB2fe5I8PL+CqjHo9xMkbesZLPvW8gQoslCIy25U7DWmYvPMZJsmLvSYWhiuy6QLGKr9b3r1b3DfewKBCC1lVnIR6EDFsVIhbHipfQN0RCAlq+n47RqI4co3vwXx6u/F9YeZCiLPAU8C3gKUiQBtjNoUQi/nLVoE7U3+2lj92JJgLIX4a+GmAmRN+HqQji4M5IYFKiLVTYqHTdDSrj21vXpcCbnFL3B0Ko+awFJB3RVaqtxeQhi8TYq0wQ4fj8eV48J4UKYrnp7ZM2dFJPD1+4Wc+w3/7D/8pXx08zCPBBh+pXeb58Cwn3EOuR4uc9A44yGo83z3DY40NQuNSVTGesgL3vptSv2bxUP+Tu1Sl5pHmFh9uvIFEc9HfJDQuN6JF1qM2px86ZC+usej32Qqb6GcF1w/nOFxvsfzHEic0pYJeYSE3PSpbI/Tp2pHCj3ZEWcEP21arpfnNCo13hVTzYN2UYckTt9o4tghaLJ5lu3/eI+DlXPMjetQYApnYHZlrMJ6x+K6YCLEVXbvdtEKoXeoqZD+tE8iEtXiO7WvzrHoWFqjfsgXWk95+aUVWLDIummCKBdVQYzIk54NdVjwL470jWOeU08FFcydrsZc2icdu6ZNaTCivbxh2PdRciHxHn+4ZD7nnUdmSOGNI6tiGtsFEm+Ve43K0wrc753h5+wTi+SYLr6RHOoyLeVZYn6UVh9GConcespNjG2AyCSp3vYlt84mp2mCDsv0CBSSiiyKqBphwnO3En8q+80JgsaCngSjrKVasaxIMi0Le8XtCJCCUoR5EVLyEvWaFpJaL5FUGzHhjvu7OW3xGGlTXoX0FMs8QzQpUx+HmYJYXg7N0fJv43QznWeu3OdhtIkb2vZyBpLJju1yTmnPkfiwKxSXUWHVIA1EyuMyx+Pl2NTMV2k7frCJxhpI0E8RasVgbcFCvon2XzLc6+iU91SuE/O42uZmM7z+Qw/cRzIUQdeBfA/+lMaYn3hrPudcTdyH5xpifB34e4MxjDRMIq76WYbnhC96AO+OZI9hy0cJfjAnv3ClFtAq984JqVcjkwjHT4fyEzflD8DRZxZDUIPeRvUfwvjejpdhKyhJHOzZ5PMGX+u/gjL8HwDfH5xlpj8O0xgnPWpQpLIc5M3ZnsRM3qKmYXhwwijxWNkJufaYC/Qqel/GR5mUackwgUtbTNpfGq3zr4Cy3DmYY7daQoaS6LskCqGwb6tsZNSVQ47zoE2akgUIrRTbj4h8mqNB2Loo4xR1kpBWZdw3a4hAUHbKQVCU/+tNfKXVXyutBVurmFIEcONIZ6pERkytVTk2LqjB0pxbueC7DmwlLg42R9omNw15aZz+uE2nrPjXIfBa9HlUZ80LvNPXrCnPMENoTmbWqm7pJvDxqNUQKapjTFH1uxvO8OVwA4OmVm9SEzcI0kvWojVdJ0G4A2K5YmRrcoUGGNmmo+DGuk9FLJcnAQns6b8A6XuiaHjtxk0g7vLq7TPpKi/mr2V2JQTG0J8h8SdgW9M9aCEJJrDZ2JiY62ArbpIIFsLVb8LDtMRW3cAF3ZGrCbZ6+1Y6XQWzwtt+92KWUlLo8kE9DQMViIIXBVxmhERhXoz07DwKV8mTjDn+09AjeroMYqyMBUI3B7Uuub84z44+4OZ5je9zg2s488X6Av6eIZzUICwkiIalaQTqZ3M0UmdaWv984shDc49ppV5U7QGHsQlpxrJKjUobEMWS+KGm93+u4n3vZ/cb39K2EEC42kP9fxphfyR/eLuATIcQKsJM/vgacmvrzk8DG/d6/sJ7ajes0HStqtBvXSw2MAjMPRFzqr2QGDlMr9lNQDO3jEt9J8PPHwpzBUgSWblYhkRbqKLJ+t5qQnsmIhhUa+Z7iXqvy8cdEzi0/ftNNr7Iigz/8u8/ymb/3Ja6ky1wZLDLnD3l/8xoSXe4oak7EtdE8D9V2OBvsc2m4cuRz0qbGDDx+5KkXLGaYtvnFnXfz0pcfYu5VgzvQzCmYA4bLotzyFuJhlpFp9UpkmOEmmmjOnss0UIjEZjHGc2zG7smJtnvBZc5vrr/wt36fvaRBTUZlpitz6Mpj0nkLlJDWtGFz8ZpiJ5UYyYERjLTLVtoi0i6VhRFKabpJhT2nwUAGjLTH2niG9VHL8tVzRkbLG3Oy2mF92KJ1MyOuS4L9xGY/wHcG5/hI83IpBWGPN79WU9dtqH2+tHWBrRtzfOipy0dqMW05YtXv4Hlpyb9XsUaNNSITVDcc+g2X0Let2iLMTQqU/bC34wwfxDVuD2cYX24z/4bGGd478GeeJK1I28V5BtKWRnpZGciRxkoCgE2hShsyq6tjL6h9znYnTs6BTPMTM1XgnL7u0/h4CcOl5m445lihEOxnIYzVKjHiiJtOmDmccA958MEtbh2exBmJnJdvoSrtGpyhIF0PuFxfpF0JORhWyW7XaN+yZi2jRUU0a/D3bdHZG9jFVrsQz0i8gbbQ1yhFu5NaUbCf5YJlR3PQt8rKpyEymWTIRCETiUhBKE2UOdTcGM9NibzJd5zsXMzUbn9SzD7yGf8fAjl8b2wWAfwz4JIx5u9PPfXrwH8M/Gz+89emHv9rQoj/B1v47N4PL4dJ2h5rBynG7CW253bWG1GVEUPtE8ikbHAoTZiZiCsBHCbVUhq10EC+Fc5ywleseJ3cPUVOAn9u/7U63yHTku5zVjOlwL7ve15K5oq5m2p0/PfY8Dt/86Pl1ur5HxE89pENZp0BdRVymNboJBUGic9W1OKR2gYVFeNIzWjgA7ZqoiqZxcWTNv/ozQ9T+9/aNBZg512CbFbz1IVbXP31C1z83BVabsgfvf4wsudgZhJWfstj90lFZdcW6DJPWAu1+mRil98t0VZZLzRlJb7QhxYaRplvHdeFLjPuImAfx86LEWOL0h1jNWisqJpTdm56IqOTVdlNm7zQO814r4qopGy3rZ64IzTb4wadccDhvp0fxoDyMzwvZaveZOPNBU6PNfEJVW6xfeBXXnqaWxdmkcLww/OvsOz0GeXU1sgo9nWVO8kcXzl4iM63lnADw2fnXuKUsu4WI6PoadvjkKYKx6HUR1ehwBlrGmuacMEhqnvWeEDYQl8W2M5BFRqSmoMfHsO/A+tQdBhXePPaMkuv2qaw4yPzJNoTVoBsXhLNQtrIMJ7GxMoG7SJ4GxBpzkiZ6g0wytr/YSzMIo7ALMfnN2U363QgLwqh0wXPMtjnh61dWZqHg10wjADy7lBPWR2losA3/PAuP88DSO5w7ghC+9Zj9djvrfu8tnaPxyYg2T2eu09JpyheFzLGkH9vYTPzwozcoghTNNJ8NwMTuZBpdsuRz/hTzMw/CPwl4BUhxHfzx/42Noh/QQjxnwC3gX8vf+63sbTEN7HUxJ96uw/QTGzdpDB0kgp1J2bR7XOQ1pl1BoxSn9A4NGRYBuVpCKafWc2IYnuvjWCQBdwZztB2LXZaZPj9LCDIs/WKSlip9rjenbNaGvF9rmQ+pilL+lggnB4yMzDVGQp5dtxVJXXS2p1l7IV1bh3MMLM65tLwBL3UaoAIYYOpqac0GyNujWb5nVuPMPtP6nTPO4wX4APPvsqS36euIl5ePs/fPPk7fG14kf5DPh+YucY3Ds/z3ace4rEPXuXF18/hbzskLU0049G6nh45NhJbOErzYD79fcE2TVhHGXu9SlPeKfXDDAtZ9HRQFq7BZuKxcUr4KzGKvaReOtsMMp/bw1kuby9SueOQNBWXWabaiBj1AuSuR7AvaA1yMxHXiiSFC5qNOY/mFYXMbMNROGvNF3zgwj9N2F45T+e84tH/aJN3+mskQF8HhMblWrzIl/Yv8sKL52ntQvSxPqF2eSOZ41tDC4ud83dtY003YGZss6u4LnBC6zDk9jNqay6dlkvmaWRs9WBEZouO2hUkdYm/f2zu5/oxt7ozzD7v4HfuDuRF5phUBVFbktSsSTEGRCQxyjZ6GWms3kecq2TmkIptKRdHAneuoDCZ02byuNV+N0eaZuBuRsuR594i+FgDcRvws1xYKs4U5C34h59/P3sfjfm5D/7fjLTP33/zk+y/MUewa/sFwBpneD17ztOqyPVpDNFSir/lUtmBtAL5Rh2vB407GZknGJywHcu1rQx/Py7Ft0arVZKapLYZI8OMtOEynndsDeA+gVQm2RFqaQG/yBSMFiTaSuIKYcrdh1HFgldAPea+ePyfWmZujPka98bBAT5xj9cb4D/7fg5CI9iMW2gjOIhtceNcdb9sTS+Ed4qMumCxSEzp6VnordhtuyohlKZn8fIi8O8lDYapT9MZM+MOrQqeSkkyiTw2Oe/VjVUyEu6Bkb/VOP5ejRuUbkMj7fPNzjk8mTFTGzPvD5h1hnz94DyL1T47TgOw7IRBxee5Kw+x8g2D1wlxPt2l9utz1J2Yf3P5CT52/iratd+1nwU4QnOY1qy050LCi1fOABC3NdVNyeCUprYpj2RZ2lX0zvgll7xgAYBlKwyX7Xlsu9YpfppaGObGIj0dcJDW2U5abMfNUrsZ4DCuEmYu/dhnnLiMYpcocolHLmLg4B3aApaMDX5HwJ0ACGhnhuDQlEVEFWvSigQU41UDPZfaliapK/pPhvDdgOat/EZLMoKdiHowsRHs6YCR8elkVV4brvLCjdPMvCo5eHfCZ85cpSZjQuMy6wzZGLYIPZeDtIa35RIcmhwvnrARAJyxsUHc03lzif3OKoLKvqa6HaOGR9k9BSTRe22Ola2snGPT860I5IX+uEwF7lAgc3syI/J6jimJM3bepXb3YAosmUlGPp2dF5dHZKByHLysDckiuE/+TR6z56D7gGS8pHGGguqWDbyVXWHdolDoXHag3R5yobXLQ7Vt/iB4mLXNUwxXBCdXDmxnrhrw1MIaX9xoEwpwh3bhygIboK25hF3I3YEgWrVYkdBWOyXzQftW1CxqWkpgeZ7jCb/ceM49u3Lde0Bbd7NM1F3URvsECGlwpXUK8pwMIycaOvdiB91v3K++8lbjB6YDVKGpOTHD1GM56OGLlJ2kwUyuPlNm4toG9YItMcp8u8XPz9S0eXNVxiwHvVJgC6CfBlzqLHG2cUBdRbnOtqHipgyr0x2gRy/2NJ/8+105ZWbIpvAxJ4RL4QlOegdUZcS72zdZj2boJz5X+wsEaoamG9JLAusjmGmLdxpB+7Ig2AmRSUb7Z6vAmKt//WHOATe5wANuzF/e/Wu4Q9uG/7J5hNqG4fTBROe57GoLFJvvC3BC8HqO1eFWgqglqO5OdazFpgwqhx+MWPR6jDLrzlMUFbfSdq6X47CRtNmKWlwdLNKLAsLUoT/2GfUCRN/BGUoLT4xsYbDdN7gjnfOTM3vzT3XelceR2J1TUVzTyrXXJRUE2xK/E9M96xLUYiAoA38hKCZT22TW0wF3kjlG2scVKVd7CwRXA+Im/MhT3+XPtl+hLUe2H0FEVna4f4rnNk9R3RBTGar9mVWm6iYa5MBBJrb5Rmho3s6orod3BfLpMfv65DzDZAE1ygZyFVN2KcrEctczf9JKnnmQi1DaMaW/JfV06z/luTCCCQwzRU08yjO3P1VsA1MaCJKaoPPOlOUz+6zWuzzkRmRGsBfW2R7U2Vlr07zsUtvOHYma1kRjoTbk4zOXWFA93KWM33hWMk5cPrVyqewMfry+xp8snKWfNQjnbGUxreTaQMoKwMnUGn+owwnM4Q9tsVFFAuNA3BBUdzLqG/a7OlPwlnaVLfoHqsys7ZyaaL7faxQc8zIrj1OEa7VvkBYzd6QmUFaTRkwlMUWhuOgiLa7tWxa5/7SpiX9aI9Gq9JJcG7Z5pLGFzptDIu0c8SC8E1rYpKHCuzRASscTI3Hz2ZtqxWuDFRa8AXPuEInh5o1Feis+csGKNvVTn6YfctjgrjF9su+lXT49pru67vU+xY3qhIZz/i5r8azdSWiHg7iKKzMOwhqPzdgSw15Yw/MTQNlCkDCli8y9jq3gHS8+n5QTspg4WSAYngxKnrB/mOD0Y6I5D/FAn+RWvaQqhguG1k1dwkhGiRLj+7vv+U0CkbBLE20kvXzXtJHMsBbPEGmH64N51ntNDm/N4HYlMhY4Q5g/MLlehVVwVNEUdzeD3c+P+MwDr/G17Qfw/uGcPdfj47Sto9dFZIbWG4LmTQvzdC+AeLPBwtV0cj0CVYpu9dIKc2rI69Eq3+6c46nWbQ5GFdAw82c2+Wz7u2Xr/k5W5yCrsx61eW7zFEmimPvcBrfW5qnc8KhumpKaJ1OBNzA4IxtMnFzuWCbg9bK3DORFMPG7RVaeX6+8ySXzrOLlNNe8YBppx4ptZd5kK18EvBKylRPo5AjN9h5B/DjnbDoj3/p0wuPn1jhb32ecuZwKDplxhtRkhETT1xW+rh/kSm+Jsw9us73QoPNSE69r/762brh9MEPj1JimDFlyu7xzZoNn6lbCYKh9lDQsOD3+wrmX+MX0abI9e0MKDeGcnYMitZztpAmNm7Lk8zuhwetO2u6L+8QdapyxRoZHr4EMM7ypAF/w4qk6EE+SuWn8uoAhi1Fg5sXzrj+JOa7KMK4GVNmbUZzg+zUiTtNPv9/xAxHMTb4x7CQ2oB0m1bI9XwrDIPOZc4eMMisGdMLvWvPYnJNsHU7c0vGkmJ0Fe+LK4SK3nVlO1LosBn2qcyPi1GE/qhFrhSPtilrQx7R7N0PFKEFalYSzRZZnJ4rXS8vg/XaraZltOnDW3WU7aVmBf2F9Evuxz6lGh0vdJd45s0GUOSVm7vYFo0QRzh7dPZTb8am24IK6Zjm0usQOM992JBoFjTuCepihK6aUIC6zlDAXckp0qbpnlGA8r1hweuyndULj8OLoDJthE+jxL2++hyhxiBOHOHLQPdditwV7JC+2FZDOtMPOeF6x+PmbfHb+Chf8bVrOmH995uPUN23DjBNm5XcrArTJtUeCQ1vMNUowWHLI5mMWv+Sh4gmHXudc4DQQrI3sDmJWDdgcNblY9znXPuDFhVl8x+rlHGQZQ+NxNVrm+niBVw5PoLXA91J7roy9hlkgyozXSLtQVXYk40VTUuu8j9UOrAAAIABJREFU/r29Vu81TN6EpD1RZsFFIHeOeHg66NhmkM7YBv5CftWarBTvN/XeUlB08BYBqSho21/ucTw5nJL8+AF/bvUqjtSseB124qYtHmuXblrlAX8HV2Q03BD3aoXbuytcfOI2bzzkUvlagJcrCI6AN6NlDpw6z/XP8UBll/PeDoFIuRyv4OVU1xWvwzOrt3nuxcfsbiPLdyKBwRnni1UKXs+UbBqhDU4oyPQkuAOlJlEBjRjPQQ2jUs6iaJ0vd925B27qiSMBt3jdvbp3tbIS0cUIM4fuOEAkU236x1g/04yWe/HN/9Soif82xijz6ac+dTeik1SsGD+2ILoc9GzHZj5Li2xc5RNqlPk2g5eZ9W10RyUssxU22D1oYPZ9NpebvPvUbRabA3qhj0aUW6JB4uN3DdGMy/rHwFsaMdcc8nB7h7Y7IkMSa4dxbii8H9a4s98mOqiAMPjbDie+ltP07oF3HWn4cCwcsRm3cos8+73mKiNeXDvJuYV9hqndPwdeArg4Y6g1QqL3ZqSvengHEx7ycUhIu8IKRWmb2fXOSEZnUpuKuQbRdwCJ1/WoLA8QYuKbmDRcKruTQnDBSRcZLP/UDXbTJmvxLK/3V/ju5ippojjHS+yutVF9hYoEXiKQUY5zYreW7shmsSo8qhd/+7Pwnz/7ezwW3KGjq+ykTYAp+ODoAlmISaUVacWUtIUAskDQeRjEyKG2lRwJoPZms/DIK3dO0FmtMucMWKr2qaqID8xc5/naOe587RQ/M/8X+cBTb/Cp2VcJREJqFEvVPuPEZe+wQW+jQf26Y9v0PRs0goO09FHNPJCJDfJpFfyeLotubzcKeCkNbMbthFaPxzsIS6xXkytcBgqdY+ZFtq1d+7mFZn0R4C0GPhUcCoy8EHJ6i7iR+YLORcO52ojNsMWN3iy+ypivDJjzh7TdMQdxjTO+dW864XeJZjSN65Ir2WkWHtnj8OMZ7d+qoR14cGGPvaTOr64/QdMPeaZxg3bedDbUtn6x7HQJRMzDtW2++dg55JUahVe79qCos3s96/GaBZO5rx3KQC7TicxtgZUD5c8ikBfPF0PmWjfg5DUZW9OTSuTBUpM2beSeNhup7Bq61+u8OvJAGsSeR7Av8fq2ZuKOjhrfFF2mxxkt94Ne3m78QARzA/Typa3mxBxGVfbGNcaJw3x1xHLQYyNqszFq4amUvaRONTc+PohrZSAvCm2dpIpGsDZsc2NrnvrzFWqbmq0PVWg+EDI/aylnReav0LwcrfKZv/4VRtrjl15+Gv9PGkT9Oq+PFsk8we6HEyrNkHDkUbkUEOwbKp7ADexWeuZKclcQvxfsIjOLPXZ0lXfXr/Pre0+hjVWCqzoxJ2a7eCrjMK6wVO2z269jXIk7MPhewkJ9yNpHVjnzm0fd1kv96pyJUjQqRDOScFHTWO7Trlh3pShT9LaWSGuSj51+k9/52lPMkuV4fkZlX9517NoTvGfmJl/cf5RXd5fp79Zx9x38Pfv5S39s2SMy0Xc1aRTNU5kvCWfz93Og/pMb/J2T3+JRf50MwRvRCbLc5aYoHGlPkFYdhLaBrRiZb/VqkqoNet2zCrRh9kWJGkXl5xbn3B3a42p9PWDrmRbLTpenmndYcPo0ZMjscpfDeIbWJcXXKw/y4x96joe8bd4RrNPXAa+3VtlZbnJrNMsLrdNkPZfKhoPXtVlz2nAZLVhtFH9/UnR0hvotOz5hEhCKm9hm2bYhx+tOAjlQtpFrV5VBp/j7zMt5946Yuv6iZKUUG9aicFuqOBaSRQX3XMPho4YHHl/nU0uvc9Hf5FK4yu9uvYOdNxbQzZThoseg6vPCqMb+QZ32YyPeXb9OyxnhnxjivF6ncUOyu9TgXWdv89rqRerrhtPVQ1yZsfHKEpWn1uzn5yvLTtLkhc4pfmzxRWshpyI+9eBlviguIl+t563/IpehtVm5ii3HP63JcpfhhAYV6SN+vdMqlQU0Mh2Ii3Nf4OGTpiIb0Avj7BSFk98Tx2GQyoHG3JBEHR+3T26srctzPi27a9SkD2T6GKbHv7Mwi8JCKQDD1EMjGCf20HwnzTmbdvviqZRuUuFmNEdqJL0oQElNkilSLTno1vD8lCyThD2fyk0PGcNwSeLMDWg4IbPOsJTTXY/aDDKfv3Hmi/zc7U9y/VunaezYbdNw1fCxD73Co/V1fmPzcTpfWGXxTooThqSB4vAhl+GZDOMaeo8BSkIkOf1bMC20OB0YM882MPxB51F+av6PrRtQ5nJ7NIMnUw6GVRypqQYx26MGxti/i2YEi37ESrXL6sc73Hj+ESqbNmWZNibIPElSs0WqwfnMdiZWNFHkcqAlT6/c4Xp3Hu3bjLmX+ix+J19klEAktmFFJJqs6pQ44vp7JP/sax9GjSRydczscpcDp4EztNdNO4LRgmC4CvFiSnNxwIW5XVpuiK9S2s6IurLFxIYK2UvqPFm7xVl3j5H2uZ3Mcjua5cnabbaTljXEcCyuHi5IMl9Sk4LKbkwaKPv4jKL7IMRzmvp1mH3d0LgZ3pXZqFFK3PTZ+AQ4CyNux/MsOn3OeHtWkVMkfHDlBpWTV9DvF/z2L72fL1x8Nz+28AIj7bOdtLg+nqftjkm1JIsUlTWHuUsWAormfNKqpH8GjGNd4LMKNG/qsuj8VqOgJtpWc5HLJ5C3ykviKW/O6foF5NllHpPieh7UfZv1ZdZlLi/ETrB9G1z0kcDSO6XoX8h4+olrBCpl1hvyRO0OD/sbzMoQJTRfcS7AfAQjh/3rM/R6c6ixYOmG5pfTd9F6Zsyi2+PM3AG3FxrUNgzBaxXS0xLtwfCEoKJitqImlW3JOHVpyJDESELjsJfUeemF8yx/sM/jtTs0ZMjF6hbOhYzf1I/hfquK17OMIaHzHU8+N2ViaarewJTNVu6UBygw2dm4qqyhFIqTk2L7hEM+uX8nRVGjRFl7KX4vsm2RWfpjbYvy9+J1b8UnP46bT3PPjTrGHf0exg9EME+NZDesszFoMVsZMUo8uv0qvp8QpfYQE61o+2Na7pjDuMow9RglLlU3QWJwpKYf2cASR3mV29WESxmZL4lPJDyxss2826elxngiLemLf3XhywBs9JpUNwW9pyOefOA2P33iqzTkmP9x7c9y+/lVTmxkk2JHP2Hx+YSFl3PubNPJW3sFuXcCcdNBxqaspCd1xcaHBGIpZCtsoDD88OzL/Nr+k6xUuowzl+HIJ6mOS5hpsTkg82rIBCpOwoI3QArDH3824/y/zCdWbkygXUkWCKIZQdIwnDi/iwECJ0UbwThxGSQ+e72a1QpvSP74pYc5t5dnflOZbFa1naBZ1SGpK5569go3OnMcHNb4kYde4VRwgD4nee2RE6z9d/DQT1+iohIeqm2x4PSRaGoytron0vL8p/Vanhs9QFuOeD1a5bXRKlIYrg3meWfVNo1ov8gababafThlvKgIdgOyiuUZu+/scmHmkDd35uFaw2bqDbe8kUWcWrf3kwGdHx/wvpV1VoJuSVOdVQNCY2sWj9XW8UTKKXeflb/Y5XY0S6hdbkXzPN85zXqvyZnWIa+un6D5ikf7aoqKra57GlgGkA4M/p4NXu4AgoP0vgyW423l2rEQ3GhJELcMoxWF11MUshKF8OcRK7pcia9gp9ju1BzvzqVpcQVbn0iotseM9qvgakTPxfia2dVDPn3yCic968DUUGMaMqSthtRyTGM9mWWt20Ipjc4E3qGifid3q5LQfMXj3yw8zo+efpVTtQ7Xa6eRKdQ2DQeh1fkJ56320rXBPHHbcKG1S01GJe041YrKluR3X3uUB5/ZoaVGtNSQd1Yj1EXNb8jHcF+q44yx3ZzjyS7YGU8K5W4/sclNUSAvYJWpQA5H2S3TmXmpM58HdJGZEtKaXkwnu0/ye+feXPt7BfJ7PVYsCtO/38cN8J7jByKYZ0bQjW33ZWE/hRF4TsZCxUIiNSei5kSMM8s1b7ghc8Gw1O5ItWIhGPBAa58wc3CkJszc8v1Wqj3e0dgk0i5ahsRYoa1Vv0NDJnS0Rxi6pE9H/PCjr/ITc99iWQ15JVphc9jE7U2YLGmgcKf1iJUg2InYfbrGuX//Ks/OXuP3vtBk9mduceNwlt5BjaAR8fee+GW+2HmUO8MZpDDESM66e7TdMRvjFi035PGT69zqzjCMPep+xKn6IbdYwhkZApWw6NmGls+/6xv8q92PcOZ3o/I4Ms9CLEZAvJzQ9EPqbkSgEjZHLTyV8erGCnq9iivgr/ydX+Gf/t0/z/EWwOkKvlaCU3/jCitBl+9cPocMrO5NIBKqKuJ0JWANj/e3rwEwpwZUZWSDNpm1v9OVXO5XsOocci1epJ8F3EwW+Oc338/2m/M8/NgdLt9a4dMLr1FXIUYULfOGtAqqlaAWRwz9BiqCJz56hUV/gCMzVio9vmrOs/ZAgKhnNF6sMnM5sSYEgPz8Dj+29CYrXreUEJBomjIEDW055qy7i0ZyyulxqvEK14NZnhud4/Z41uLD8yOaTsSblXlGS1VkYjNCmdhAmnkCt5szWGJo3Enxtwb3nfcFZRJyFkpOqUuahrSdkTYhmss7OdOJJnfRcq9iawiBmhQ9ZQJOOLmkRTPQTz79bVrOmKqM8WVSahcVFm2FUFpinNwcpVZq53x3cJoocskyiWomuNecUjnRCQ3BvmHv6ixfrTzIjD8iaWWAhd0ORhXSqiFrZWgEV/YWyc6GPFTbLj1jbX+CTYpmv+bx3IUzvKd9g7YaoYTmYnWL+iMRX2w9TPdrS3iDnLbpyiO1keJsyjA7wgUvAnk6pR56RAVxWnbgCMwy9X5hNqWPftS74HtxknorLPwuHrsSb9uM+FbjByKYGwS+SmnVx6RGcTCusjzXpR2MqTlRrpVtSsnTSqVLqlWppV24hRdCWpF2codwh2Hq4yvrTlNXYW4dZ09UU45ZdHrs58WX1bkuC5UBH2tdYlkNuRwvMNQeC9UhgzzBSuqK0YJkvOgyPp3w6IU1tBHc/r2zuH248388yL/yH2SBP+HlV84SbCqWb2hk6vD3f+k/pHNe0vjQDqvVLrtZg5qIuVjdopNUqKiEXVNnHHlkmWQcuzwzd5s36xLtwsagxbvbmpZjnVb+zMdf5A+Tp1j96qTQk9QE42XN7GKPQCVsDZsMY5f+oIIfJGSpQhiIzkb88ta7jrBKilEUPUESzSjOVvf5wqWnmXnehR/q88rhCQCert8q/6YmI2LjMNTWPWnapCLUbim2lRiHvbTJOX+HX999koPnF5EVw+WXT+MsjZhTAzpZFUSuAe1Y6KDVHCIFhL5GppLvXD2LkIbPPvoK5yp76DOC7omA64dzREFAWpP0T1WY/xr81JlvsOoe0tMB20m7lBywvrPDfC6EucGFQAnDgurjy4RuEhBrh0AlVFRCI4gY1LVd0DNKO7HCUBigsW6blL6XkVYkLnYxKHZ12s13SKEsW/KdsWBaKaHwpSzEpWTeCAQWPiPP3gEO3xNzPtjhvGflkxoyLDPijq5aU49khr4OmM0lDIodSyer8vX1c7huhutmjO400O6EsmgVNTWtq5Jby7PsVmvISOZMGGMTpBMRC/N9BqnPeOhxevmAeaePRpKhCbUlFaQVaN5O+JNXH6T2ZMxDta1cIiJj1TvkA4s3+PoHBb14kdYNk7N5jjpomTx71qgSKy8y8oKpdkQG17UrY/n3eSCfXmiLUdAXZXLUUOJeZOWyqbBwgJpKjo5L6trPkyWTpvj7/9+dhv5tDE9mvLO9YW25tMNKpYsvU3yZMu8OSv64K1OqMqabVhgx5RiuC5MCK7FaqCZaJ56EpjPmbGBVCwMR4+Wqeq6wpmOhcRkZn0fbWzxWW2PVOaSfW7cdZHUckZE0oHfaZXBKMP/eLf7TM99gL23wizeeJvvDOVaeH5Wrdu9sDvO0Y5rf9PEPM8YLDv3TAr8D3j+Z5X0/+zWbBWG44G3xG+PHaTYiHmtusDuqsXvQ5InVdcaZx8EjktY1U0JObWU1az4z811O/GiH/73xUc7/UogCWjcMwaFDb22eV+bm0F6OlaaCYUNTWVM8++deZH3U5vAfncFh0jRRZA9poEqD6pm/fJvfuPkYC78ZENdhtjayHp1GshbP5rUOQyez5g6hcXFzCEsKe6Pa5pyMVfeQncxyh7/dP88L3z2PciE416ddHfP0/B3m1IBL4Qn8Q1sEzDxBuJjxQKOPIzT7rTrBzYD5lyy84T5mr/V3tk4xuNOk8aYiXbBmuwfvTpn/ecogtm/qHKQ1ro3mOTE/8S/NEDTyFsko12zZz2q4IiPWDle2F0gTB6PBe7PC7PpkoTHKZtNpxf5/7tWUytbovkXPYuhAHWmKSiuQNGwgliPbWCVTkJGw3ZppTvGMAWHpeuhJ9g0QzYI7EDgjQ+cdmmefucT6sM1aPFtmuh1tccBQu/R0hW5WKS0VL4/tQl1VMbuywbcOzzHoBwTV2DZ9KUNwMOlsVLEtugoN3qUqg2Wfyo4s+evJ0OP9D1/DkRnf2DmHySTvn79BQ40JtUssFD1dIdWKpGUVSFd/X/Kl+kMcnq6wHPRpOmNazhhfpjyzcIeXP5mxdmWR2i1r4ef3FMF+ntBM9RaAX8IqxbgX06yAWODuIK6nGosK+iLoUnsmqzpvSSMsA/n0Y2XWLY+8rujxKB69l0rj240fiGAuhWHWsTKkg8ynoqwzty/S0oygaAKSQtNyxiSJyoO/W56Xso1fWtilkEmtq0Jze1xu7eJC+7zcVla5WN1i1rGZydB4hMbDFRkz3pikqdl/RvPow3f4yZVv24XDkfT6VdpDQzTnMVxSdB42PPDEHfhfwb1WQcWa+b99g0ClfP2VC6jQJW5I/uef//P0H8z4uU/9S0DxsYUrdNMKrsxYqg4YhD6HUZWGE6EfGuK9FLA39tlLGiw5XZoyJDaKk94Bn3jfK/yReSfnfi3G6Vtant9xCGednOYGCOh/NORvf/I3+b2DR9n8hbO0OollQdxlh2V/jucVD9cOubKxRDu0XOHNbpP3r96k5kTcGM3nV3CAzp17BlmQZ+lQExnbaQuF4UHfZlnaSC4NV/j25mm8pRGLrQHzOZR2oWKD7k7csBRGmeO/1Yy2N6bphmwv1uk0A8wWdB62c+eNwRLjN9o0NizrIF5MyW46NBYmMEdhYqKE5rn10zxU2+GT9dfo6QAlNDWTIIVhaKzSJlBa1OlMko0VquvgDCd4daGeqD0bWIMD8z0HcsghOmcSzDNf2MU3FSUvv+giNYJSbkI7HHEEEhqcT+/x4ZU3qTsRg9RHCsP5YIdZZ8Br1ZN8eecCKyc7BGJSkD3I6qVExmFiC+8HcY3USKLMIcwcXl0/gR66jFKJGDhWbrZpXeqh0DandCqq3VRHqKdi4DDrjZBCs9+tMTPX57S/TyerEYgYhWQvaXB5fxHv0EohVLYiat+ucq0+j54R+LWEULsMcoG32WBE51SPvtvA3LS1KqHdkjFSMoNyeefj2fj0kMc6Q4sxDZ0UBIPpxjyYBGF7HtQR6d+s6txlBzf1qUeOoWAlFe8tp1hK38/4gQjmTq5B7gqLqxUWZIFIS+rSIAtK/ZWDtJYHbqvlMu/boiBYO7BxYieoI+17Thxp7AkKjX1+pH1knpkGIsF1MtpyRIyyXqQippu12I3qmNmYR05v8fH5N8iM4E/6D7Hsd5Eqo3MROh+PeebMbc5UD/j23hk8oH7HBqTN/+VBZGo4M9ZAgswMwb6gfVXw37z+ef7Of/GvuBhs8lsHT/BQbYuT1Q79xEdiqDkRq/MdRvUTREOPYerT1xUWsf6bC06PT7Rfx/9gyu/Mv4OF362w+zSYuZiVpR3O1rv8+OJzrMVz1FXIlzsP842vv4PTNxPSirQuLMfcVwq8bvfZBFdonjl7i8snH6Z9NSF5vclwyWPWG9JNgtKjczNusej1ykDYVCGhdtFGciHYpClDttIWG8kM22GDxcYAJTQr1V5JKT3j7drrG9dKkafMB+HZ42s4IeeaB3zzgRb7gc/s47tcG8zz6sYKwa6lKI6bAuFpjIKzM4dEUPqDNtSYlhoTbtb4RfU0jzy6wbLTYah9drI6y07fmmcYSV/bGk7djWjUx/SBJJ3cyIV+iQ7sMfodQ+N2+j0HcuM5RwXY8v+W3pnG/iIy26YvE1vsTBqGtGJw+xL/AMIFw4Vnb/KjSy+VyYoXTGSIA5Fwqb/M2vMn+HL1Ihfr23a+Sxsg9xNL7e0nOewSVxinLkmmWN+YRfYchDKIsYszEiRNjdu3HH9vYErTCic0+AcQtwTB3iRzn3tJcP3xOR5pbtGohTwyt5OfY4i0Vca6Olok+eoc1b4hrUiCzDB3Kebmgy023JS6a1lQw9T2ouyOa0SRi0hsAxEUMFXuxavB61qq7XjBo7J7f0YRTEk+5JZwkAdkJXDC7EhwLRt7ciQxDaz+DDHIPPCrUVqSCKYppCLR6JxJU177YrGYes2/s8HcGMFIe6UdWNFEU3g97sYNi527GXtJnY1xizBzS73zrbBZdozO+0OUSvFkisJ2dk6rK+r8Zs2QeCLFExkZgrYasZ/VS5uzvq6wlzZZj2ZwRMbKUoemFzLSHl/pPMz1/hzN+TFPn1ojXZX8xNJ3UBieH57l1usrXOAWta3siJZIMbKqU1bFm7dShtqzBgpOhDaSE36H2+4M49Tl5nCOs40DXmyv0nzBZ+fBOqeCgNgoW1xMK4y0z5nKHj/2yEt8Z+EM/ldXYD9gS7WYq4z45Z1neLC2yx/sPsytL57l9PNxGUjulbG4/YRw0af+huL2hRk+OHuNm5+epZcsUL8Nz6+donLGnvtYH92WTnutxrnNW+Ge3tMV3hgtseAPSDxJ3cmhjcyh5kTlbmOQ+KVIlZECtMg1620tZGmhy67TYGenxfadGYJN21TljMmbFhzG84K2N2I7v5ZVEVET1hzcXRyjvtTmG6cf5M+0XivPJanFzkf4NOSYzBF8ZPYKjzYavNg5xY3KLONOG6+f87gVZBWobRhqW8nbFjynh9XUtiYKQJl9GwlZoDGBprEwoObHzARj5oMBJ4MOM+6Qw6TG670VtoYN3je/zuP1NZpyzJ1kli/cfBftypiVapeTQYf9pMYrf3CRmZuG586e4mCxymq1i0YwzBlTt3szJHkDUpS4jHoB5PoywY4kaeQa3KnA69idiIqtaqQ3sA5UcV1a/nfX0gTdkYVfvIHhjZdOc/aDB8xXR9ScyBqaa4eqsvP91b0VZi+nrH9E2c88cPEOQtqvN9hpNmn4EQPXMtUOoyoH/RrxfkCwr6wdW4ZlE7kSDFR3dclqCefckoZ4fBxPYo7IY+SNaTI2d2X2TpgRNx3SKQ9d7YoSMpNTmfvxwDwNyxyBYKY+o6QE/ykYOv9bGf1somhXBPEMyY3hHGDZLBLD7eEMG4MWDT/idPWQXmphGQAlDDUVUVeR7drKzQvC3ABiqH0GWUA/C+ilQbnF/HDrMqFxqeXa6aGxsEuoXdI8WHkq4/+l7r2DLMvu+77POefmFzv35LA7m7C7ADYgE0ygEkmJRYomRFolA6Yo27Jol1xWyS7ZUjnQkqpsmbYoiZQoSqSKIi1IIkgQEBNAYkGASLvAxtnd2ckznV+/fOM5x3+c+153z84SuyyXCzxVUz2dXr93372/+zvf3ze0vJxr6RKXR0s8tniDBX/C+7sDzodbrKgRUxOyU7RAHhIs3KWQH55UW+WScKQwnI12uZEtciLsc7axx/XJIrtpg7afkS1b2pdhWgVsFB2O+fs0ZEFLpbyWraKRvDpepdAK/eiYYhTA0OfSzjJpP+L5a/ez9ILm2H5G2ag9JQp7hGd7eE0/sk/jlxd54ZmzPPytt/mTJ17ik98tmfzBMvHvN/m8PMeF1R2WwgkDYNkfvy6cObMufm2z6pBZn92yxalon1CWXEuXkcKQ6oDceHxr8yItmXGjWmRQRHN3PmEstpTsZk2UsPTyhGkeoPsB4Y6HLMGfuKFfFbnO1Zu6AhTWs5HM+CQqdx06krPLPXrjBp+49DCnHu6x4o3o64SpDAn83flurSun4Dm4ZdwKGRQR18OOswcu6o583xLvfGPmyt3WnSyI8luGPLa+gVfbO8zO68PLWElS3+nSwufl/hpdP+Wl6jifvXWe6Fe6DICrD5xEnJm6oXdkifY13gtNLhnJ9WCBtc4IbSS9ScJ0HCJ2A0y3Qow8goFA5m6+UyWAgKAv5n4vooLxCUGydWC+5WW2TvcBa2Y8eUddlJnk8miJtWRIU+WMdeR2vrLkhfFx+i8ssbA3Jew1sI8PyZ5toqYe3ddKssWIG3GX5fYETxqGWeiox8KpQWUJ6YrAhKAySDYt/qjemWQab1J3zXdkms8K+VElaG2i5TseuvFrewX3aAfvQT1k1XFdyL0DtW3R9FCFu8EFQ1wI9Bt02ocHsn8UY6071zdFMde1ha0LKnC2trnxGemIlpdTWsmyP8aXFVXdZbf8bF7IU+3PB26e0KQ6qC0BfDLto41kKZpQWcle1qCfRkzSkGI7wSrLB7/z4hweKIQLTRjohO2yVae4u983VjCq2TFL/oRIVHRqNsRsWLqVtRALBRt//X0c+z8+/7rXere37Oc+fubQZ4bnaeMMNLZoADvAGb4AQPkv4CXgJU7e5ZE26fCHG/XDUUHTnWtWXpY/5z52/hV81RH8WOQVFnnFfeP/ghwXISU+fYIF7xnGh3ziM+PPb5Z7usnUBJwM9jC4wWlpJZV2fjqPtG7xtvA2vjBsV21KreYDNGFAZJKtcZNce5TaEeaEccVFZcztXdNVgV7LCa4HFEuG3Cje9/WCn7v/8PEFuMkiN1n85/ApukD30PeOv8GRsQRc416u3fW7b3VcJYCk/jf68HtIlyULzSnGCvplTOEpJjogq3wGRcTtXmduE+xNJPEyuKWQAAAgAElEQVSWINqz5FWH324eI1tytMhov8JLDcmWoGzF7F9oEI9d99p5zdCLYorIcnUhotFNmWw3CPbcLsG77SMMxFuOVSMrhz8HA0Gy6Qa+6YqgbFEX+qMZoMHYknVFbaZ2AB0FA3dWxbV1xl7RRArDFm0+f+Mcxz7vTLCWXgzZCdsMz4I/Dgj6BcvPS7bDJhvnPJqtzL33smbr+JAtQ9E2eFNB56YlGJl52LXQGn9Ukq6HZEs+3sQcYZLopGauzBgmmZ6zWZw1g5i7HM7CQWDmgXOHYrMu6FUiSGNBMHANUsDR3e+dhfuuQ9I/zjCLC9TN5lRDX2gib0BmA9b8IQPt8Muxjii0IvbLGmap2CriuVlWoRWXB8uMspDxKMKMfLyRwksFN7S78L0pqNzSriDa12w96fDxWZalsZJR3TkoDJVRBKoiUo6mNi5DTiSOmzs1wTwJ6Uq+ykbRIZAVYVTipRH62x+bKynBvUmHmSIzL44n/8ev8GTzCpn12alaPDM4zca0zSMLt/n09ft4aHWTr908QTkMEYHhv3nXb7JbtngwvsVIxzwzPsPLw1UuvbbuAg5mJ9LgwPb2dZa+hwyG7hz23Py2iMc+9BKVlVz/JxcYnpF8x/d9lSdaV5iYkH9z83F2P30cHUHy+C4rTFAYmiqrIavJPJd1oGOaKmNRTVjyxozq91IJS4HgRNznieQyiajID8Fhs1QWK0FNJaNJhK8MnTAjbFWMbZuZJ7esLGVTkJ4raHenlJdCrLJspy3OJXv8yMWbKOFSkAKheWp4H7/5r99D97Lm9rcIzj96i5XIGW+9rbvJh7ovkIickYnZqVq8OD3OZtbm1rjDzjNrNG6J2pHPuR2GewXe8I7WD9CN8Ihl6uFVtSNGZ6MaijDEu4a9L63R0+skG85rZpZKLzUs9M3c20bo6kgg91zYcmh77400/kig8oCqtugN9zWdVz10KJgeC0j7HlJA46YLgFC5w/515LxGrHSwiZfW12nhvl90HFbtlTBZl8S7dt6ZR31bW/baWpkp8CeQVf6ciDCsQpc6VcSor7ZIbg2xgUdya8oKCYPzHvv3eSy84naPq1/V7KUxw9M+RBox9fBHkpqghjeRtG4YgoG+a1C5MLD3kKJ1XRIONEFdLKvYKYuFcc9VTQ9cEYumM6arIjX3fJkZZekaZprRZv2JYyIVrYPrKFsSIBx+748PCvqMsTLr1g935rP/zzt5+8eQmlhYxQvj43hSs18kGOvCcQvjURnJ3rTBJAsoCg+7FaEy51ssygNWwczAxm25YSGbmdYfhM6C+zgPKPZnWYMHw9FZ8k8kSzSSVPu0vFqYYwWJV8xxP20lPd1gakI2CtcPr0cjXhJrdbqMM4WaiQyMqgcr9ecqdd7op6Iee7qJLzRTHXKhuc1qNOLjX3qM1rERr+0vsdieslMq7j+5VXe5Pa7kq/hCsxKMuCSWCbsZ+48kBHsKfwQND3QcOepV/ZrnEuY3KOQP/P0XeO3Lb+fLn3uAb/u2Zxl+35jwd9v8+lfeTvs9KR9svcyHT36Z//CnH+aV37oH/VvLXHp3g63lzpw66nMQqp3IgqSGgxqiQCnHG9ZWcCwc8G2tlziuRg4Os+50HGUhEcyTerypIOtHiM6Ehp8zKUNkJgmG9fsuYXrccP7MNg2/4DW9QLiY0g1dFRqZmJZMaUiNtpLUBFRNVyiO/T7c2jvFaxcymp2Ur+kTvDRYYymakGmfq/sLjDYPvJHb2y6Byav/zY/dofSZw6tqBYjSu2uxn4VbqMwS93OSrYMLumh7R1SFM8w3XQnwf3STnUnCeD9B7YUkG4KwbxlccOHOcafgvpUd1uIhvjB88oWHOfuLdXe8W4d6p4qiJakSx0zxUtd5h0NLjruu/KmlqhxF1Amj6h1R5WYF0+OGaMdxymcDUR2437PS+efMKJylcUy1JjmZ9vnyq2dpPxty8qnhfOBYtXyCYYUsPQb3aXToqIfNW5rjT01rxlhAFbubRfN29TrlpVEuxHnWmTtfI03zpnQ2urKGTwzkbWd9oUN3DnV8QbQna5aRK87GdwNob+JuZABlQ2DVwZA37zrGWNV0MJQ/csIt47mh7IyKOOu4xaHCzh1d+h+Fkjhb3xTFfJhFfPprD6FGyiWo5BzKLXQYnRKQzHILtbsQZ2KN2R0SDrY/M89mK8W8oM9Mbw6n6MQ7lswGtEXKnm7SkilTEzI1jjkywy4NgqafE9YMmf0yoe05f5ddfXCxl1Yy3UsIw4Oifdi/uGpIvImZO7qNT0d87MZj/OjZz1FYj2V/xG7ZIpQVH3rsBX77uQeRkcbzNcozNH0nouqqKRtld76b6YYpSVSQNwJcL65ItUQPHH7nT+18mDPjyN5ZyO/7+y/ywc5F/sR3PUdPN4mESxr/zBP3E10N+ZXXHuXYgwM6asL7ly5x+YlFoo91SK9GlA8rFuUYjWRHt+lVTTLj01LZXM4P4IuKUJYoYXkgvs0Jb4hB1Hi2ozbmhYcfOIUjwl1IIpdo4078ysr58bTCWdGa1ZyzzR6xKrnYsbTinNVwhMQZqS154/ng+/neMSJHnEFlloVXDPs2YnRWwQpUVcLl3XXA4b3B2G2hXXgGc7On2e5BJy5v9E5rVKsEZcPDn9yd4TIrkqqonRUz5gKXYPj63xGl4dR/9QofXXuKy8UqP/Xyt5LudZg+MWVtbY8VqRnmEVJYEq/AF4ZXhyvIXZ9sEZKt4pCFMBhPkezY2irZiVSKppxDJzNVaRUJ4j2N8erjLpydArgUoGxJENePE4xNPVOYPYbj4DvzuIR9Er786llWPxPQeXWCKCryddeNC+2Gl7K00K6YtiqmlWS67rP2JUtya0q455Guh65Q3iWCbWaXbJSAQxzzeFdjPGchPTqjiLcteVdQNSxV06JSgbl54L1iFRTdeofbdzfLKnFF2wTMIReVU8fYObGXDiDac+eLE27NREwH7Jcj50Ddlc/ZLzD//I/lAFSNJItPq3or4w7I4bilmWWkrvm8JgAidwd22znHZBAGgpFBFQe+2Yd5p+5z5l+X2uJPJQ2Z1xFuwbzwjHREVYuOZvLnwnh0/XTesWskJ8J9tJVzBs7L/TVELmvfjNoXvHB/q4odDpfcKubSYGFgkEZzYdRYR+yVDXbzJgD3ntvi0ivHKCKJH1U8fe00hfb4UyvPE8qSlybHiJXzp1lqTNFGMhIJZSkQ1sn7w747qYKxmbNE7ly3PxCxc+scntC8vXGDdb9PJEo+uvpZPrr6Wf7dI0/w8c+8i38RvpvvOf0Cp4M9/vSZl/h3j7wXoWG/SljzXcDILGmoWe9o3M0ym3P8E1lwb7zN2WAXjTjkXmkZ6Yiy8Obe3DqsPbfrIOBM++SVh4mc2tWfQJlAlBQsh2MejG/z1APneXBpm4cbt1AYTvkueLMhC17IT7DZa7O6pef2DEJbOlcAfEbaDbCFFohSYD1LuWCxocbf9VH5zEP77vbD85DfonLb6EBQ4uGNjnbu1ncZmCo388R4Ncmh7lIPD6Znf0MnjrPtIL6Q9faItfff5nTcY8Gf8MpkHWMFV3aWuPXiGghonB1w/JEt5KOW6185xunfyp2ZWmpItt2NMOoZqkTOu3EHKzjhVdEShAPHsRbGXX9ly7pBqBZUDUPVAKEd3FI0Jf7UzK0Y8rYgXzJsDVps9tvk2wmLzzqzuarlkqLyrmR8yoK0hIP6Wu77+MemrHTGbDdb7E0brH+hdE2YobY0Bq++tmZDySpSVA3H3997RJDcFgQjS9lwHTQ4+9zBfRZZgFXWGYjdiObhHjMhmNB1l526z4sF997p0M5varIQVImlWqwtpiuJ8Tw3IA8gWxA0cvAnd0+jOCwUmt1o5SFo9q2sb4pibj3HT51BpjW05pLB6w5aFtaFR9TZg7NQgHnRNryuYM/WEe+FO4QxsnKFu6UyOipFCcvNYoFU+3T8FIWjNqY6mNsA9IqEwng0VT7nxgMUxmOUB1jfzrf/MyhFBy4dpnXloEvNux4bHzSc/IUWF//WsblKdWb0v5M1ySsPv5tjryV445Ds3pzKSl5N17g/2QQchfNU4oyS0tKnbCrM9cAJTUp3gurg6DE4Yk8bKdITFX/zgd/iJ1/9Dr70y48zOSYZ31Nx/323eO/SFR5p3OTEn+rzMy++n89u38u7ln0eb1zh1feu8Mxrp9nOWlyIHQR0LV2m7aUse2NHQ7OKoY6QyrisR1HQ9lOMlfR0gi8qWqKY31DNtLYplW6+AS6Czdn3eoyyELtYkEmfaiLxpoKqkrRURiRKvv/c17k32qIlXaoNOChvTzcZ6wjP1+RteTAQ05ZgaOhcAWE8TOg6foSlbIPtlmCEw6+rgx2fs5c9WnDnGZOBE41kXdfpBn0P7y4wjHfIMMoGnuM5R2oOE8zWaz+qSNopy3mDr6dnWPMH/J1zH2dHt/n43jvJjUfXnxK2KtpBxqvRCoP9BpNxhNaShUbK+uObDC6t030lncvSwXPDz6kr6LNryUrXUavcwUnGc/F1etagVJaiq5HNEnUjoophuipItu3cix0c/7xxU1LttxEWlm67r+8+ogDF0guKslF3ualzK417htZlxVAkbGpJEFSUT47oDZq0blRz9ow3recFSlC21HwnoQq3S1h7YpObr64SbSjSkxXhjqJxE8qmwAaWql3h7fqYQYAsHb1RVnJuUhb2AAnpmrvBzapu1TTIXKATA55FRhUUCqRFRiX5oiLsuSFytgwqdzutWdfvcYhNcwh2uXPZt9aYf3MUc6Eh2rNHYBA4wLZledBd361Qz753uAOfFevDpjhwwCed49aFZaCdvHkmPGrVbvi58Wh7jlt+c9qlE2RMqhBfGDLraG5THTKtC32vSOgPGvh9NX8NM1WYUf58m1V0A/IFxYW/9iJ/qXuJ//vK9/Hrl9/GRx74gsPiZ/4MwjIpfIKwYrJU4Y98Wl8P6a/HXFOLnI8dVtAvYyZVSL+Iub25QHg1nAdDmMANZ46kphwq5LLUbL63Qfd5+OQjj/Jf3PtZ/vdz30+yYYn/QHHz6hl+df80OhSUDTAty+DhghcGx3g0ucHbO7cYnXa00pcmB0yQRBX4omJQddBW0gjcHVpiaNdFd7PqoJHc42+jsGgEu3kTkUkQ9RZ2FonmWfbGCVHglJrNdopu5KS3m4Ckyj2mOuB2ucCv33wbe/vvptuZcM/CHo93riOFYawjXhqtk+7FpO/S7CWas/+qnpUUBn8C7WuOP20C4WT6DYsKK6rcQxUHdLvDvhlGCRQHA08dOdilih1OG+0dPWdnhd4f6SO+IuBuBt7IYe0zKfn2kwkffezTDKqYl0dr/PyVd/PnzzzDI+EtRqYkkBU/tPhFnk7P8uneA+znCaNJhC0kjDymqcc9y3usRSN+77vahMNoLn/3JxXZko9QbpdQtNzuURiOmIhVkaBsOgaRLCBftIi4wox9zGpJ1VB4EzfHCMZ13N1Au8jAzBXX4RnJ/oNgfYtJ3I1tV3k0bkHYc06Ro3OgCkm8axifEphSkhUOQxXHBF7mISs7rw3zBLCuo4tG+xqhoVpxMy5vKaMaJnhDhQ5helxQxRaRC9AKcyJDCsilT7Eg4EVJOLCE+27nly1DsWAc/UgLt2vrFuhSEiQlxdTHjH2EFnRODTi3sMcz07M0bnluUBxaxickxguJ+gZ1aM4Cd5ft34mlv9n1TVHMZQlR37yuWB9JANEHL/qws5jUdm5igz56oMBdpDNe992cy2aDwZkqra+d8dDMnXFqXFRdJ8gYlSGJVzCtgrm5l8H5yfSKBlvTlhOtzAp5bUA/EwoYBEU34PYHPf6T7/4058NtTvl7fO8Pf46n/uf3cvFvHONc4rrzmTy+FRZM0hA8Q3qiQl736D21zsYDHfayBgvhlK1pizOtfa7uLeJtBnQumbloY7ripvVV7DorWUjU9KCQ9x5uzY/D87/2AOd/aJeF928y/bV1h6G2LfkCtF+z5AsCLxVURnK+6Z5nonIe7GyS1pF+e3nDcc+rmAVvQr9KGOuQZX905Lhn1mdiQhoyn/uijEzMfhHjjw4CLKCWsueCaT9GLRmWGlNaQc6kDLhReJR+SPO5iN/4/PvJF9xAqzGCQsZcmixxubzPbc0TweSEJZ4IOpcNVRRy8yNTTv6cPz8GnnKFws1eJPkyVKXCThX+LDmpOujMrRJHzs1iMaKKJcGwYrqiSFctKneQmsrcC9KR+ziz6r3TD0QUFTJT8w59+GDJveEWN+Qi19Qikyzg93YvcCbY5VqxzPl4l6g2o8u0z4X2DguhE2pl2qeXJmyM2ly8vQbXEox34L9j6qAEB2PK+VB2RjcsWg6+CIYWb2opW67o2lhD6oFviDsZVaJQvQaZk4UQ98yBEVYBwijCAaSnNM01J4bypGF/Kaa36uiR/mS2O3dhIlIr4nbmsgnGoSvSMYSDGmYJZti8RRUORgSYrCuG91qGex30wEdGFtOpCJoF2V6EMA4+E5FGKcNSd4xdELTCnMvlCZaedYPLou2i6qyyyFaJ8jVSWqS0ZFVIsR+hxhLd0qye6XGy1afjZ0esa3VTQ1+iQ8FkTRGM7BvOUA7L+v8o65uimAtjjwTWfqMlD3Xfh+1a38w6jHHOtmaX02XuT7YIa7rhfpXMu/RZUZdYpLBMq4BpFdANHASzWzZJdcC0cnx2M/IJJzWtrpbGHw6ETf7GTf7WsS/x9clpOl6TU/4e72le4vG/e5X/9R/8CN5Hvkbby5hUAZl29r3GCISyWNzgSaWC5NmYG2qBW6KLMZLBNCabBAR1bJbQlnCs2X689hkZQ9g3hHuuQ1aTnKodUbRr1VoFYc/yy7/3Plbu263FIoL2ZcveY5oq9mjcsuw9oQmf7fLJV5/g5ru7vL1ziyV/Av6El8br7KYNMu2xHDoRjSc0kyqs4ZaaoonB4LzNu8oVHV2Lu0ZldCjJvB5w57iCaJ1DZsMvWAonNL2cDz50iZ9/9t3I0mO6LsiXNEgoFkRtWyzw0vr4SxzG23KDxmDAvJDP3h/H/HGfh31DOpYUoY83lgTDmgXlHewaZ7s8cKq96arzw5GFu/lZz1C0hbNO8NV8VjL73Vl6kCgq19nPzvGZ8VOkwAgiWXIh3OL86g6Pd9a4OFnnZ29+gJVozBOda9yuOpRW8V+e+B26aso/3PxONqYdRnnI9nYH0fNZfF4QDs1BkxHI+XDeKwzTNc8NK0e2dnAUFC1H550dv2zZohsGkUlsU5N0UqpKUU595EMj8hsNhJVEfTGHQKSuYwmtwu8r0nZAJ85o+AWrKyOyRZ9xEXJzawH/RogqLF5qaF5T9OM21jd4IzVv9HTgBozB2A31dXRQyHcf9sjWNTbRiF4AvkUdc/CpNQLRrB0zfY0fVERBSeKXnGj0UcIyuD+iny/jD53StVzQJCsTWrG7bopKsX+zgzdS6IZBnkhZaKWsNsYE0kGuwa5H3nUzvWDH+fk0NzTDU4rdxyzCBDRvFW8Ir8x55/9fwyxCiAj4LBDWP/8xa+3fFkKcA34JWASeBv6itbYQQoTAzwOPA3vAD1lrr761p3X39UYuZH/Ymg1GDrBNR5l653/7DD+++ml2dMznJvejcaZdiSzoeCm3sy5xPS2c4eKF9mgHKUXdMs6MvVLtxEm7owZqenelF4AsJFf3FvlF+25++PgXiWTJxISc9vbJrMdf/fF/z0/+0+/noR+4iCcMpXECmSgqGY0DhK1xzNTFZsW/GTM+JcjuySmvtIly54vhLFMNedfDHwviLUvrRknQL+a8Z90Isb6kbLi5jStOgvYlybZcwu/WQ0ANi19XpKsQ71mSax75wynBSzFXfvkCz7ztHPc/cIvzrT2GRcT+JGZ/EvPepSvOqMoqdvIm4yRC+wKFRGLmKsuZHW3fROxUbTfc9F2B9FI3bPRSN2iikghh5zfajWmbd3auc2xlwMaZEFZzwrCiLBU69ahK370+I2r6osWGBjVWmNB1c7P3Z6aKna3ZdjjeAWFdV64KO3dyhAPe8ew8k75kfFIiKkh2ajvbbklu/ToqTGNQ83NSRgqrotcl4sxX3bH7PUVhFV05ZcmbsO71uZV3ufL0Sa5Iy+IHpzwc3aAlUyJZslOzq7ZGTaavdglSh0f70wMWk44PEnB05LpyVdj5rqOKIO/WMEsM45bjoasMsJKyawgaBdYKrBEsrg6ptCJfLNHDkMm6pHnb4k0OCro/cTfKMvXojROGXkgSOIjOWMHCwpheIRnvBchKEe9Zio2aC14zzxyLyBVyKyGvZxKTdUW+ANmaxtYKbG85A2FRylIW7v1NmjnWOqJIEha0wpyGXzilt9QsRCn5g32GvQYUksUTfdaaY3LtcXOvS7EXoaaSarUgaWe04pxp4TMqQiJV0pu2sQKqpkWWguYNiPYN6SwuMTKUDacw5VDaEXDExEsHkuKwlu1NrDfTmefAd1hrx0IIH/icEOJTwF8H/oG19peEEP8E+E+Bf1x/3LfW3iuE+DDw94Af+sP+gLijHr+RvPWtSF8Pp4K4eC2X4vIf/Q//gXdE1wF4Lj/GO8LbvDO+ym8MHuFstIfCcDvrzhkWiSzYyDtMqoBJFdAOUiJV1k5wlpvTNr2sQWkkVeWw3tkddTYdn4sBtGWtM+KVG2t8MnyUH1z5CsCcX/2++DJn/+pP81d+5S9z7h23ABhnIVkagLKIOihYR07kEe1Z2lcMiy95qJqHbBUEwwpRGpJpRbwj585wMzyXepvvnODcrnB2kcjCsvC8ZHrcHTsdCbyJM1HKFiXd1wzjaczovCHZFKx9XrL14hlefvQ4i8cG84tmagIaMscTGmMF+2XCNAgJ1JRAuNAKiZlj5aVVZNbDWIFuaZCOo+xldo7hztaoCEkrn7T0eWWyzs6gyelHNuhPYwY3OoQ7irBwaUUzJaLKLPGGoFwzBGdSykstBy8ogTfSiJlZUr1m+ZKNTfDHM1zdPZfDXfnhVUWKyT0l3a/7lA1JdqZgcXnEvmwyXQlpXK/Pb20xMOeSQ4A/qeYKxMMBCaI0VA1LaT2ulisoYdip2vzac49y6nMuMOG3ssf49h98aW6eNdsBZS92WX12tiuxFE2BlznGl9DMw5CLpuNbe6mtVZyQL85CqS0yrxkbDafmNJ7A+gbf11SVxPM1sV+RAiowlPel6BsRKpckBlTqoM5gbIh2Ffm6wBiBtQJtJEWlUNIQByULqyMGYcL4TEj34sz3xBJMxZyJpUPIO3VxDMAfW8anLPpY7gbVWiADTZV72EpQeRbhmTn8EfrVvCmQwrJSh5yk2qcVZFRNyalun1x7td2zYGfcoLqd4BUCvVawsDgmrrv65WTCWjSi4eW8tr8EEoI9QbhvCYcOBurfL4juGeC90ibeqxWosWM7hXvF/L2e6VI2fiSnc+mALPFm1jcs5tZaC8yMJ/z6nwW+A/jh+uv/Evg7uGL+5+r/A3wM+IdCCFE/zhuuw5LXO4v1W4FSZkUcXGEbnfKYfGDMX3vk9/gzzRcorKRE0jfR3Le8LbN5MblZLLAYTFyohazIjUeuPaZVQMvP8IWhEoZU+wyyFqPSZZBmlXdk/Fw2Bf5UINVRI/rYK4kaBc/cPEkgKz66+jkmNqAlM5SwnPKG/MT3/mv+5m98mPj4GCHAGOkoT5FBpbW7W+Woj6YAx7W1R+7yB8yeQyHI0dG32zEm6gFjPdRThaiVf1A2QQ2oU98tWVtQNAWNLYOwknQFWjcsYd/QuujTs50a4LZs5y2iRsmpqMdu3mSnaDKKYnzhYBBtJQ1ZENXRZKX1uJEtIoVFFJJw/6goR1TwJx57jhuTBV6+tcbJX/JpTir+4McDytxjY7/NicUBpx7p00sT9icx+c0WQh8IQMq2RfqGEwsDbt0LvZWI3mOC478Tz/08Dh87pyacxaPVGLl8473v4LxP0B4T9RRFU7CyNmC9OaId5Vx76BiLL3gHfj2JB8UBX3m6FuClhmg7n8MuEjAoom3JxITsVw1+eu/beHF7nfB6iA4NZSJINgQvZ8dY8wec9noYIxkWMY3bgqhXYpRgcI/P4D5NsK9Y+7LLJh2djRidcgnyfi34yRbc+z93b9SOWqiKA4GdVRbVrLAWqtKj054wLXyywmd5wXm+DKSh2mq4cGp1kNIlS4ucKhrHcmK/wleaiQjwlfNHDTyNH1aI4xUD20BUziHSm0LRdrDPrPkzvtuljs5CtVBBKecF2xSzLsXBKxiBF1QUhbt+lDS0o5yWn80N3DLtY6ygE6Q0/ZxxGXKpt8y4nyD6PioV6NMZS90JeaWcuM2rSGrDuM2sTX/QQOF2EeHQNXDTFYU8OeVYZ8jlqDXPKa0igfEkXuod8XC6/r2W773wIp+Qb8AjfoP1pjBzIYQCvgrcC/wU8BrQt9bOnsFN4ET9/xPADQBrbSWEGABLwO4dj/ljwI8BhFH3DbvtOyPM7u5ucrDmLmaBoP8XR/zU23+RAE0iSzKrKK1kYv06yELQNzF9k8x5zoueG96l2pn158Ynqz1BukE6pyGWVs4VqsMsJM2dA51uGKrSKVTLxHk0zLGxyD1Gp5Gy12/yB1fPEauSv7D0RUYmqlNVDGf9Xf7pn/ln/Odf+o+pdiNnKiRA5OJAeDA7ab2jrxte3zHe+f2jXz94LDjg98sCyoYl7LkO3eC6urzrOtPGpmF4xnV0wcgFFpgrPum6wUSGrbTl0mqweFJTGXez9EV1KAu0IhIVpZVsVy1SHVBo5fDpsQuWrhqO/1y2LBtph61xEyEt2094JBuKbz/1HF/bO8l6wyUrhdJ5kG/sdGpetEVagY4s1VJJt5USqgopLSJV0KzI2x7JbecUKY6ca/WxKO2RGx4cQCyHhSuTU67TU4Wlaki6Yc5aNKIbTLm12qXohoR7+ZGCrtWBpW7RksjCeZIcFiCtPna7/1YAACAASURBVF3y6g+s8WTzMs3FjEfbt3h29QTPPngcc7mJzOEzO/dxf3ubrpo6N80ynL+OqiHpP57jxyVm3Jg/rj+dYedgOs5DvWy6G2cwhLIFRddgA4uYOgFXtmycKjJX5MInil3BKbWiGeecbPXZmLQpM4/y4QJZBrRuGOdAWFpUDsG+ZDSOWVztuVzb2s8+kJpp5dMKc2Kv5JKwFNeaGN8yvMcNMRHgb/kumk5ZGld87MmMhZbTWBSlR1l46KkH0hK3cqS0FIUiCNwNu8g9mo1s3plLYZDCsBBMqYwi1T4Xe2v0hwl6K8ZGBrollfLwlGEwignCitML+zzY3mTBn3JluuxuBmOf7pUDyrQOJYMLsNCe0k9j/IEE9Jy3rwMHqdSjI4anfR554AoX4u23GgH65oq5tVYD7xBCdIF/Dzx4tx+rP96tarzueVlrfwb4GYBW5+QbPu/DHfkf1p0f7shNIPjLP/FvAWjUZvzGCjJUXWBcItFO1SaShSsuGDcArQKmJnAGXiagX8SMyoi09FlLnBHYtAoIVEVa+QyzkFIr4rBgVEX4nZzShngT7wg0MFs7tftfs5EReJqnrt9D28t4f+tV+rpBS6YsqQktmfHfv/NT/MrWO3npc+fB1gXEzkQ07qjO+PZ3o1++Ue7gbPXvCTGBxR+JOuYLnB+K23KbwIGLczWgAZ04ObOsLPGOJV0RDtOuLNEuGCXJl2BaBmTGP/Cjr0KmOpy75TmWsYNYRiaitJ4LRSg9wp6TzNuaaQH18NJI2lGOkpa9ewVP/snX2MxcLJ5sWmJV0lQ5t+iwvjJg0IiZ9GIoJEgQgSErfKSwWAtBT6LHAcmOnv+NWabjnVYHcMDwuPM4O1WypVwtoRcjjOMmH0uGdP0pwypCeeYIjDMr6LNiO3vsqiGBoDZoqhOxRiVf2D7Ht7RedqlJATwY3ebJ7gpPrV3gxZvHeO3GKq+xyme751lqTLn66hryvGFy0sOcyrhvfYdXXj3O8qWDvz/TbhgfyrYr4v7EwRhFu+6ALaixc6H0UqcJERZsIQnaFaFfUmpF5Fc0goJrg0WUNNx/ZpPrvQXSlYCwLwlGhrLhhFKygLwXcV0usNieECpNM8gZ17BLqRWhqigKD71QoZsCNVZ0l8cYKxiWTXed9SJ37KXBWkHoV1jA8zSFp/E8TRSUjhFWBBhb73JDtwOYKWVn7pRbaZvKSq72FplsN8A30CmRnsEOA7yRpIx9jp/scV93hwvJNpEsGekIT2ryyqP1ike8p5GlRYeS6apEnRuxnEy4+Oxpjr1gKDqKMhFz7F/MjMFKQ/87Ur63e51Qlti3OAF9S2wWa21fCPG7wHuArhDCq7vzkzgDPXBd+ingphDCw5n49d7K33mrsIo8dOFZBY/8d1/ngXCDoO6+oWZL1Na2MAuR9cAw5zsbK5nqgGV/zGbeIdce4ypkkEWUlWJaBY52V0R40rA5bJFndRBGI0Mpd/aX/hv7K4zykNgv6cSa7WETawWfvPIQx+4fcDLYY0e3mdqQdTXgofAWF05t8pHzH2HhUwmj0zN++IF4aiYzv1tnfqeg5c41PO8uTFeMa4y/hhPABQkb/0CGbJX7uSqqh2GFxUsFedepTIWBeNeickn1kDziI19oxV7ZYNmP5/CKrN+fwipKq9BWMBrHdIZHxThWQtXVJF7Bg+1Nnu6dYuHYDqHUfGjhRb4SneNCvE0oS8Y6omwpNv02gdJ0kpRxFlKUHtaCriSvbK1Q7CQkU8HqVyvCvYKiG8zjz2ZMJJgpj8WBg6M5uLnURxuwbD4ZELeH8EwbHRjKFWeF0FQ5xgrisMDK5A41ssUflZggOPI3qobEBOGRHNHN51d5+eQxnoyvIIWhJVMy6/Ouhasciwf8/s3zZJdbjAcd1h4e8+63X+JdnavunNMRn7r1EPENr35t7kahCuN44yX4w9osqgOihLJtCfcF0Y4kPaYRiwV6N0RNHffe72Z4nibNA0K/IvQqSu2w78XYzZPisKB3OmdgQhZedufOdKUOvU4FxdRn5EdkSjPKA5S0c7hlmEcstKeM/RD9ahN/JBAXLMZIRGgoxwHxhocsQEiL72kW4ylBU89D3Evtzj9jBaFXkZYeUhoST9ONDrx79ouEG6MuO/stlDIIYfE7ucPcM4XaCNw52DScONnjeHNAICs2izbrwRBVd22vXF9jfXNGdrDoEIb3GNbbE7SRNG5IZKUpmk5Zq2PmUOLMx+nRk9c4F27P5x5vZb0ZNssKUNaFPAY+hBtqfgb48zhGy18CPl7/yq/Wn3+h/v6nvxFe/mbWnXDLnEY2p4a5YrP5bsX/tvR5oprHpK3r/KQ4CKkYmZiJcdvQCSF5HSgrhSFRBbulk9KXVrI9adIfxcRRyWo0RluBJw2VkeSZT1UookZB4Gk8lZGXHhmhy2us7OtuSr1BA8+vB5LSUuQeth/wbxvv4D0rV7k/2WRiQoY64mywi7GS/+mxX+XZB07xqX/2ARBg1EERntEQ3wq0Mls6tvWe6VABrw4MhISFsuEkzbO6PMPYy8ZMhWdJVwUqc0NU6ue1cXEVfVrSkhlr4cjJ8I3nYCvro6whES5BZgZzAZh+QDg4kGjPtqlnzm8zrQJy4/Oday+TyIKtss1Tg/u5N9nm/vA2fZPUeZbutPakIS19Ak8z3Gxx34XbXNpYgWsJrQ1B+4YmGFb17MANNycfHlA8s8Dyc9r5itSxe1ZSW7uK+RZ6tm5/QBGeH7DQSBmP2oyPS1pLE8ZViEHQ9jLioKzhIn/uZOmOp+uQZThTDDtoqYol2Wo492g5+TuaL7zrPG8/fp0A14xEouR0sEsiC+IzJV9vneC71i7yUHyLlkxZURM2qxbPZ6fY7TeJ7mD/utgzO/cOsR5k6xXeQOFN3Y0cC6ISThjjWcpFg9/JiaLSGd9ZQdQo0XVXHXkVpVEMsoh2lHPi/JDn8tNk2+4EyhfdUDXYl2Shh2kJ/NB1yUJYfGnwlYPKlDTk2wlhXs8VsoB8EuBtB+jIIiqYnLScWhzQCTLWYicEGJQxhVZk2lEejXXaiFZY4CunrvakYVhE7EyaDEYx5TBAJhXNVoaSlt29FmozcDfXlsFfTWknGbFfsp8neMLgB9P5+faVrVM0XwyRlTum+YJicE7SOLfPQpTywisnWds0ZF1Jlbhja9RRRlS26PFY9waRLDFGzhlfb3a9mfJ/DPiXNW4ugf/HWvsJIcSLwC8JIf4X4BngZ+uf/1ngF4QQl3Ad+Yff0jPi9XDKnSIhqS1aHRjYAHPWys/80E/PcVjn+yHxRcVm1Z136S5kOMBYOc/89IVx+aH1yo3HdtpiOHXUqXMLPWJZcG26SOyVLlpr5HBymwiEsHTCnLEMGNpmTffjyGCj6CjOre7x6sUTBCtTp2ZsGkaF4vbGAp8YNLlybInvXL5IbhpczAPO+jssqjHvaFyj85+lfHVwmiv//D7gwMXOHx89Zt+oiM+WyhyWLA+F8h5ZFge13DH0sxJ3U5kl0xdu4Cv7jtpmfGhddjudruc8ul/dW+HC0g66TtbxRYUSholxdqizG60ayfqCMFSxx3RVUh3LOd4YEKuSH1v5PT41eoRfufV2fvDk01yZLHEjW+RatsRu3uDrt05QlYpGM6OqFEJYPGWIl6fc2O9iUg/T1qjUQ28dMI28TDM+4fPnzrzA1ZUlNj7Q5sbOAsFLyTz+b2asNVujU4rR23OWlkeEXsXtV1foaFAGCi250NzGF5qndu5l52trnNlOKWs/EnEHfHh4uKoyi24L0iXHSw/3S7xM87Vnz3Nj5TlO+PtznxuDJJQlF+It0o7PY8lVjnvOI0dhyazPrbzrBoJQJyTVlMxME+9Z0iXAd5i4nM5YIm7Xp2ODN5YIK2E9J2lkTEYRo70GflKy2JkghWWUhXTjDCUNozwkUJqFcMpu2qS1PqKfd7CBgUijej7WF8S3FdNGRDPOUdIwzkIqT9MMc0qt6A0TrG8oFhxFVo9D/O1aFyAdRDQ9X5GWPq0gnwfJzDzgs8pDCYsnDc0gZzUeza13L24vYYygmAZYI5CNijgpyAqfPAuwUw+duHkBgaEqFaNJhBRw/+I2a+FwTpC4OFijt9VmZceicudjUyaC9GzJ2cbU2WJv+HiZpkwEo3MGlQpkVcOb9bkwOiU55vcB5sSAt7LeDJvlWeCdd/n6ZeBdd/l6BvzgW30id0Irhz+/8+OBG6E4gkPuvU05Vkgt8MlqoUphlUslr5qoukNXWMYmYJS7UOLz8Q6hLJF1dF1lJVnlTpxmknM8cRdI4hV4xnBzcBABIYQl8UsWwinT0kdkkmDg3lg48D/p3ytpASfv3eZ0a58v3zjtAgekJWwUlKXian+Rf7TzQT5w6jKnon32qwZngl18obk33OLe1S1e+q9vsZl3+OQfvIMTnzk4XkY57mrQL95UQQ8GgjSyc4dJ53kzy1KsIZWGxR+KA7xY1Fz9gLkHRzB0oQVV4lLhvdQpTj+zdx/fvfIcn7j0MO3faPCVd3Yw7xB8z8qzh2xyPTLr4wvN1rRNvC0IhpoqUuQdxeDJjMfOX2dchVwZLvKpxiN01JTjzQFfHJzjUs+F/h6PBzzeuc69jR2+3DvDte1Fyv0QWUj8oXDmUIsFJ07tYYHpiYA9f4G1L0uCmmdeti2JKnhv9zLJYk50umTyzpCNosvtvMMrg1Wuby4SJQXtJKMjDS0ruL25AGMPNZGEA0PZECRhyWow4re3H2D7E6e453cc0jhT+B1mGc2GrTOfFqcQ9DCeIm9LwEelhrO/qvnJk9/OX7nvcyypMZn1SWROV015Pj3JTtZEI/AxGASllTyfnuIzty7g3Q7cMP5Qdy5LXRcfl9gkSudUaQUUyxVYgcxq07jQOnuABlgrHHOkLpRuT1c/5qGvDQrXIUd+xeKDm4zygDQPyH1DoUJkJmh0U7QRTPMYrSVlpRhNQ6S0RFFJFJWMB7H7m7l06moJMy97EWqUNHRrqrAU7rVrI6m0ItOS5aYLkOnlDSZlwN4kId1N3H05MFAJCBzDJS/cUEAkFVYp0AIxVRhhSRo5i/GU5XCMJ42LuiwjLm8vkbwWkGyVWOVU13uPac6e3SaQmmdvnCRKneUuAkxka/qtJewFJNtulzQ9YeaxlW4o+9YAjW8KBShwBEI5yl45+P7s89f5cCvHff2Fj/6fADUO6+xOJzYgMwGZ9WmplJGO2a1a+ELXrBXnu/KdyxeJROFYG9I4jqlyPNqkWeLVV0GsSnazpmOvVAJCd9f2hMEThv4kRk2lUy8WR9+MomuYlAGVkTyzcYIkKrh/fZsXrh8j60f4zYLKSLqNlN+9coGzyz3et3yZiQmJZEkkSjSCjkrRgeQH3v8lnn7wFJevrUIhCRYz/uyF5/CF5nf/3vto3DzqoT0bsswyBsN96zyea0bGDC+fJcZbWZ94oVOQguP1zkzEZv/mHb2FKj5QXD775XvYfluLzqcaRPsajGRaBS6JyPq0yejVBSmrfHanCfGuo3KWTZ+9Ry33ndpiIUh5evsE+1cXSE4XLHpjssrnxrDDk+vX8YXhQuyS6Eu7wtao6SyDV1KKzCNPHLMhiCqGWUiW+ZTjgMZYzHUAVkG0I9gtmyx4E3xRMTEhS2rMUjzmWNCn6x/l/W4NWqSDCDnykJnAH7sbYbYoaEnDx669k+x3lznx1HD+O4cjxGbhwbOG5PD54k8qqkSStx1mr1J3PSQf6/CpH32Y71l9lqS+8AuruDhed9GGMiMQhpHx2dZNbudd9jfatHfE3LNcaIvx1XzAOlN5BiNAOCoingVrUVPl3uNOgS0U41ttbKgJFjJ8X5OWHlnhEwUlvnJDQHCWtzPL4laY4wnDVPpUpSJOCvxzKf3NFtV+zFRFWF1fz9Iiph5WWe6/7xbaSrLMp9qLD4bEqyViolwKUC8gW/CojKKXN9jPYqZ5gJQGJS2dOMNYQVqGbOx0sFoilIOKtJaYUiIyD1LFsJQ0OhndZkqpJb2dNuGG58IoVgvuWdzjnd0bJCpnt2zVJnwSrjZo3Tho3EZnYeHkgPOtPa6OF5HXIqxwSVhGAZVg4dSQ8TRE6IPMXOsfvP/qLXNZvomK+WEIZZ5+fej/h6GWmRhotqyEv/0TP4svTL21VHX3bSit57oVUVFaj43yQFa17I95IXfBuL2uo2xt5h16RUJlJdPSR5fKyY6DEbtlk8J4jIuQsvAQWsBEQVKylgzpFwnZNCAcOYGEvAPLthJu3VhChBqbKcpWwcV0lTAuWV3b59bTxxjHMdnaFCHglavrXNle4i889BUklmV/xH7VqP3ADU3ltqPCN/zdb/k3fHF0D5/fPsfDixtsfKji5CcPhmizpHB7SMAkS+fVPHtuhx0oZ1+z0mI95ib9UA9CCw5BDwdOl+AKuiydW97ueJ3lsWaypvDWJqzFI+eTjqRvkppJZBmZiN5ui9M9Tdnw6N2vWHxwh1ONPremHXo3uzROjBnomJvFAs89c47Hn3iVBxsbKCznwy1K67HgTfieMy/Q8VIGVczNrMuwiNlNG1igN2ogXmvQ3hXEO8Zh1LHj23uppVckEENbZTRswU7V4nq+xLCKuT5dwJNmPvCKw4Isa8wLediHvUfg0Xe/yva0Rf7rq5z44kEhh7oR8bnjayDUHQ1LafBHGiuVS56vudrByHDj4+f41T8r+O6158hswLjOz31/9zW6MnMhf8IytSG9IiHY8VxXXg9YXQCEu5HMZiBeOhO4OOWhSF1XWi7VHfqesxqwyiJDTSPO6fcbpCKg05nSjnLyylF1Y99BBFnlEfvOGG2QR2Slx2JnwiQPGOw3UGNHQ7XKUnaN69RvuYQf+R7nAro9alKOA6fF6xaIZUPkGeyNWvTVrFhrjolVSb+IKSqPaRbQTFwjs9lvUUxrODSXqGZFuzVlPA1hJ8RPHbxULlcsr4xYaYzZGjfp7bSRA881L2emPHr8NsfjwXwes+YPkcKwkXVYedoS9h2cOl314MKEk50BqfYZ5SFlbZJnFKRnSlqrY4rKo9pKULk92FXPDAaxKGHeIpflG5G2/39cd+vG7wa9vM4/Wgk23i9YqrM4M6vm2PhsyNmQOaX1uF0X8lCW7JZNbuVdxmWIJw0ngx5T47JDKyvZSZsMU0cpO94YuHBoK/CEEwhJ5fwf/l/u3jTWsuw8z3vWWns+853q1tjVQ/XAJimR4iRSogaaimBFkSxBdmLDA6QgzoBITmIEFgIDSRDnRyAgCJIYCeI4BpzJsiNFFiGIkkOKJimSIlvNJrvZU3V3zXe+94x7Xmvlx9pnn3OrW5b4Q0E7CyjUHc89Z5+9v/2t93sHGxkQltoopkWEnQb4C8f0eDjMGQnBoYc4DhC5pBqHVJlPPg+5fX+T/rMnBBcX8GaHaj8BaalmAf/whY/y3Pgab2bbpNolm9/NR7w0u8g4i7i4M+a1/CLTOqb+3y84qpURnD3ZJBsl50UJMtfISrchBHW8zmRZFXUrcaIL5RLXrWjEJE1nboJVaMNyR7hkexjfbddVk7gyu+648hfDSctgWd5kAW5nWySvhfiLmqorqd6/4InhMYVRvHJnl/i+x/dfvsX3d17n2+NL3Hj/XZ7oHDGpEy74Y3xcitD14Iin4wftMBscR34jThmEOVIa/Jmgf1vTvV/izyo3MwgcX35cJhxWfRJRsOuN2fZmHBR9Pnf7Bkdphw9u3OUnLrzIj+287DDimcSfC7zUHZPek2dciqccnvUYvV628nzdCdGdsD3+Dy+VmXPisqUIbHlMdeR8foSGwZs1+7/6CH/v9U/wndQ5Vd7oHPKe6B6R0FQITnXCVEec5J02cauOmseujBMlNYwWldNwngVYp3hVCwejqG4NBuft7lvkRompFGcHfecZk5QoaZnmIdPcXUvLwfNypZWPEJbrozMCpZkfdohfDfFn0tnJ1oJoX9G7JYlOLOXQEnqa0yxBG0lva4G/lSEkjelWQHgKi8uC3ctnbEVzpLBMi4jTsw7lScTpYZ/joz7FPER4huHGnHgzwxoYn3Yxdzt4qZsZ6Ss58SgjrzxunWxwdtJDhZrw6pxqqwJhmZYRh3mPcZ1QGI/jqsvLi4v8wa3reOnKzG9+RTLoZlzvnDCvQ05Ou8ikJr1Wk12uiUY5290FZeHRuSeJT1fvebSv2lkIgPguu/N3TWe+XEt2ysNuh7BOtVv9vPEE//TP/deAY5+4/xUayczE56hvCktlFfvZgGkdsh3MOc66fOriqxzXPSZ1zGmRNNazAYtJjFCGjirxZU2sXFixFJY690ELVKemzn3nPa4VMndCIZWdnyYWIx9ZrHYUsnKeFkZaqCTCwniygUk00Y05vahg+tImumeQM8XLe49y8/EttnoLdjtTaiM5TJ0Hx9G4y2fMe+mFBbNHBIs65PK1Ew5OLwBuCLvum7z0Z4mPa7KtAKFp09TBFXUrV9u+NnbPSRJboZJLxmkMsSrHTe7sQR07zFxYF581viGpNmo2kpyLwaTFBWfaKUI1ggdZn8FbLi5t/wcsH7xyn1hVfH3/Kr1vRswe1/zw8BW0lWyEKRvBgq4qeFAMSc2jZNrntOywl/bp+CWLKkA3jIhPbt/k1fkFxmVMElakwhXP9YR2F/HlYgFfn+9wLTjh2fA+V/0TPj16iVfGOxyd9ah3JBf8MQrLM4MD7nK55fpHP37IPA/57Oc+yMZL4M3Sc+fAw+exaYy3HmYiGX9lwbDcJa0Pp60S9O5q7N/v81sf+zCf+JEX+VD/FmPdcfMHHIx1qruMopQ3OqsBt32ofXOMFjfziI8s4cSgCsHissCEAj3xHSB+OXNDwbnnrGCBzlZGJyyZphF1pdgYLBoKYEPXbXJ5tZEMwpzTLOF0noBnKQcWHbvdocodY6rquSYALLFfcaU75t58yKL0mWcJ4tTHbpVI3xDMLLMPFlyPMg6zHrdPNuDFHlHpaJXVCLqbM5KgYppGTCYJZuajUon1Qfc02jdO/r/wyU9DbOgG5YPRgtCvOZ10kHMP2S/YCB1WLoXlpOpwViYcZV3MaYDQbheebXksHq+4liy4OdvGk4btzRmHb22CZ9i+MiavPN584wL+mQeWFkLzck3vrkduAzqU59K5/qTrXVfMgdaJbr2gP7yWF8Zf/k9/k8pK/OZs1wgiUfNGte3YKmrO2CSU1mOmI+5kGwz8jFhVvDi+xPGsQ/dy3ib8GCu4NxmQZwE2V+xcmyCF4X4x4lp4ykHVpxcWHHkG6Rt0oRBzxf7UFVZ/5tSL/qw6x5U+e1I5oUjhZNF14qhVbvroXpOJDDJVFFmHPIhho0Z1K+SdGB1Y9Ks9HgQ97oU7yK0Cpdxr9jxDpSUHsy7ZtYqXzy7gK43UMH4yZvhadj7gtukWZWUwHviF69r8dCWMcb4yuJN9zW/GRWG5n6u6OP6vdhTHZiOEv3BFvk6cj0zVsQSjnAvdOTfCfYeRGzfDWJiQB9WIb755je4lyewJw+XHjohUzRvTLcQXRqjc8pEPvM6mmvNifpWvfuVpjAf/5Y//I74xvkbiVXxP/y5PJfvcj0e8mW5RG8lR3mWRB/xG+j66YUlee+SVG/ZJbd+W5iKMxROG0yLhq9PH6QwLrvvHXPeP+auPfJVfCz7AF/cfx5OGZ+N7PBIf03v2hPHNDUxH49WK+DN9dt8q2mLsvMubKLJ3CCJY4udert3vROpt5/wy+V0q0ZhiCaQn8FLDlc9X/N7oGXofynkVF3V3vTFQv1NssL/oI2pn0PaOFtC5dolAm459tVSF+jNB1QPhCWzsBDi6DlBzidmqkL5hMY1IVUgQ1nQ7ju43K9xJEHmOe77UVRgEWeURhyX9izmHaoA88fFnkrJvKYdQJ445U10oudIdI4XleNYhO4sRvsFulWxuzJkuIowPSa/gNEs4POoT3YyID9wMqNquiIcOZjk+6yHuRXg1VF2LHtaIwECmkFMPfyoxgaXuG6LNjI1uSlZ5HJ30EBLCK3Pef/EB39O/x2ndcTMtPyOUNfMqJH6g8PKKOlKcvFcw3JlxMZ5ykPe4dTaiE5YE2ynFOOLo/hARGDa/7kK1xx8oqbsB288bahThRHNY9RmqBSe6y3cLtLw7ivk7POeH04HsQ1i5lXB2Q/Hx5A0ioUmNR97g46rZukthWkl5agKUMGgruLMYMQoyCu21BdEXzmgn8ZwTXJX6iLhu8b+lQnTW7FWjuKQqPcw8wJs3nPOTiMGxS215eBUj14XUsRPaqFygw8brOrAgnNLOKnc8RC0QmcQuFPpKjq0l9dh19+GpQi9iyt0SdRygJoJMOJ+K3U8dsNuZ8tZ4g/DZMYt0xPC1dz7sVccZPcnKUQtV7uCGpcLUqqaD9GC5GVpmskLzv3DRbsZz+LrxXEFQRRN823R13STnYjzFFzVDmXPUzDRmNuZzx08jjwLmj2uefOoBpVHcmw+588oFLt3V3P+04c9ufoupifgHNz/KztfBnxuO/kyfRzsnjKuEgcoIRE0oa+7Nhs6bpfAJQ6dQPEtjRknGyWmXfr5ySlx6hoArZrWVeNJwc7qFFE/zqeF3uO4f82x4j+BSzf/w5if5rVvv4fBij+vxCc9u7fMSsJWk1FZSH+p3tDZ9J3bRMubMBAJyWnaWLO0qAi0SqzByRZv44zzCBVZJrvyOIPtAQN/LmNYxv3P4DEeLDpf7UyZZhD8VDcPItuldsPJ/iU8s5UA27597nsHUYgJJMbTU0lIUMSLR0Kugkm2HbkND3E8JPM3ZIsYYyaCT0Q0KpkVE7FctlXfpxTLNQxc8byG/WCPiGmY+XgO7XL10yrwOuT/tY4wg6Bf0O4726EmDeavjfNYtHBwM8A8CRO26+mLLIDxLPg+RRwFe5ob21dAg+qUrNcch0al0Fg9dg96oiHsF1goOx12MkVzeGbMVz7kUT/GarcwRNgAAIABJREFUIPANz0G5h2WP46LLW8ebjN4yzfWt4NGUZ7f32cv6ACRBxf6dDac+jjTBrZD40NkQ50MQhWqvJXAD8P1iwJPR3jtfsH/MencU82atD0GXn68rO5dSa3Cd4T/5679CYRXp0idbGHwsd+sN+jJnYcJG9dmhsqpJBJI8mA+YhRG3727xE+//NveLEQMvozaKg7RHloagBUGv4snBIVJYrkcnDlMvYwCUMhTWxZlFx4LUTwgXgvjYmRit34x04qGKlYLSKgtW4M8EOmmsWJvrX0eOPiYqd+NShUDdjDG+pbpcYjxDcRK6gdudkPKRgqwvie/6VD3YThY8f+sqppZs70w52Tbs/UDCpS8s3taZqdKgYxCTJU+/eR88p/K0nkXUon1ey8zDJT3RADVOJIRcPcbSi9xRGS1SGj64c59Qrs5cX2jGOuFmcYGjtEPvyTNqIzlOE3xlmCxiLn5JkG0KfvL7/pC+ynk+fYTqmyM691KEtrye7fCjg5c5qbvs+mNO6q5LhwpztBUsVIPfFgH5NGQxiQlvhU6w0XTEZinJb7D+QcNYqY3ktcmOG6oPXuayd8aNYJ+fvfY8/9edD/DPbz7BC/1LbHbc8C/0ajpCc5BI/MV56iHQ2ptKQGjnzVH1fLJtDz815zI/299Rgny0hKssxpOUXeEGzPUKOhHacj8d8OnLL3Iz3+XuYsh2Z8G15AxPaF7sjtqwkqUeY7lEWTcmY5J8QzQpPjSJSpI6FtTN++jHFdY6YZewbiCpPM08DdG1wg9qkqgk9ismRYQ2kn6YU2h3ffbDnHkZsshCkn4O/Zw8DeA4ROWuwam2nUthUXtsJBkbScZpGpOVPlIa0kVEfCJYPKpJBIR3QuJDV7B1CP5UogsnKrKepRzg+O2AOA4RtRtWl32LHtSOtWME+SJASMtw6NKpdsI5i4ZpYqzgrE5Y6JB5HXB3PmKahxR7CcHEBUgffNxycTRzebzCcmc8RGtnI+Efe4Snvgv4yJx75fwayFGB90bS2kEAvHh2kU8OXqEvc9Sfgmjo/7P1sFhoaRW6XtCX68J/8AbV2vxWCouyjhWRiIKxSVBYhjIlNSFX/VMUlr1iwEd2bvPadIfOKKOyEmkN97KR8w8pAnQp6W4v+MjFO+yGU07KLqGseHW+S2kUWeVTlp6jNTUDwcFNSI404Vl17qK0SnD4wQCVuQJnmrnQEqpQqWgk3M32du6ScoQFymYwFVkw4N8P8GfuWBQji300hbMQWQqyKzUyk7z6xUf56I+8wldefpyjB0M2Hj9lmm+y9wMdLn5p0dLRlqvqWeQ9xxReSuetdBAK0jpfExqBkG6Mq4QblGEbOKU5BuBoeUv5fzCDRQ/qWciz3ftNAe+wKVNy4/NyfpkHxZAfu/QKn7nzLOFvjlj8K3OubIzJf3sHYTTxnzvkzwxeorIe/+cr38fVL+RYX3LzFwQ3X3of2dMB7+/eY6ZjAqG5Fp6Q9gMe+AOOvK5T68Y5t8Y79F4MGL6+BjG9zUxLEKuKTX/BPAw5Lrq8Od/ksPgwPzi6yY1wnw/Hb3HhsQlf2Hiar9y7zhvjbfyw5qndQ2qrUIU5h3kvIZZlso+oDOUwoO64fNCqIwjm7dNw84tgeQMV5NsWf+4w/bInSC85eC46W0FiQsMrty+iLlu+J7nNZBRzNx1xKRzzRHLANy9eQzznIWtB3heklyL60xVt1Z9VRMce08fAywTJkYs3i08NOlLUiUKPKsp5gIo0NtSgBZ4yeJ6hyH1M5mF9Teg7WX9eudKSNVqNJU1RSUMY1HjK2eYeVorac/TXuuO6atv8XNaoN6WAqlKEoUFnimBimUsLfzCgd2hdiEYfyhsZm6M5oyhDScPt0xHpQQdROraSypv3WzjMHM+iQo2pXFj6lc0xPb/g0c4JtZFIYdoGpLKKcRlzZzYiqzxOj/p07ziI5exGyKUn3I74uYMrzL6z4c6pGrqTpRWuQRXGaSeeAO/JGZcGMyZZ7BojJdCx5OBkQHotRGH/dL1Z/tTWHzG0/aPwch0IfvnKb7UByxrRyvaXHizLtZQ9g+vcn+7skxufv339N/krX/4FzsqEnXDOWRkTqcqpBXsFV4djPOm46LvhhMOqz2PxEdM6ZFEElLmP2gvxMkE4sSQH9TmcfEn9Si9FVF13QS5zLcF1EgDNLBBViFYQIUsc9NR8roVtmSQ6cscrGAsYJ1gF5TMZzHxUISgvl3z1G09x+alDTmYdtjsLzpIRmS/ILkZ0b07aY7PEzPMNiZc6GqXxpAvuTVwn3uoWGhuBZUEXtcA2wiID7ZlU9Sz2qGG4aAddxNtLla1mZiLKZjidG58H6YDnjy+TfmMLuQ3Wwp3jEVe/nTO7GvIzl79NJCq+PH+S6KtdIOeNvyT5mx/9LP/9d36IszJmrxww0xET7dwuX57scvPVixAYrj/iclJFqtrACX/h/N79ylD1VueK8YTz8ZA1iXJ01MOyx37e5/MnT3I86PJsfI++yvno4E1iVfH8yWXGi5hZGdILCjfAyx7qfpe6iAanN4Eg25CUA9Ge+8sYv/XO2XiCauBOgqrTzCBCSzh3zpVLBpKsLPLEZ2YifFFjrODBYsD39O+RyBKbrzEkbLPrWvqllzUqr4nGhpmVzQBy1TgFU0swFRS+h/UsGvA7FXFcskhDslmIkJZomOP7NWWtmKcRvq/Z6DghT1r5RF5NoT1KrehF7qSf5iF17iNGJUoZ6lIhpGUzTul6hZtd5Y5GJaQlCSrmnqXuCOIHHsObmjpyNzlhYHtjxscu3GLkpTwoBmS1z7G0VJUiDitm8xhdSiojEJlCznxMooguLHhi+5gb3UM8aeipnDPTsFaKLrWVlNpjVoV0/JKNOOX0/pDk0FKMfE4/XHPBSL517zK9zydsppbJE5LOPUs01ngLpwqtE0k+EoTPjHl8w801xkpQDFQLpSnPdeMdWfzLz2Z5WCi09F0Bh4kJA8HPu1R6KWxb0McmdvxMLKkJGaqUsU5ac63C+K3nCjjaosk8Su1xXHbYjuaclQnGwqCTcb17yrwOqI0ilDXPxA84qnvcnY9I8wCMswyVTUybl+tzHfmSqXD6Htl2qsvu1S4L9toSdVM4H2KtmQY/V+vq3gbmwDqxR/iVGCwsLlvQgnhfcjzepbhSchR18JpwhfklSbwXohbuYnJbeyhGMHhjxVypO4Kq6yb9snh4GNcUatEkliMQyqkHZSWoOo5GtyycshDkWcBh2ediMOETnTdIhEb5x8xMxOv+Dm8VGy7QYOIj73UYfUcABdPHBIksuVtt8k9vvo+LL5W88VcEP/rMKxxXPTa6KXuLPn/4xiNYC1vbM7LSxzw/4NrzNem/PWWah5zuDRA4/rtVnEt2OfceGEumAwpVEEpnN7ATzAhlze10g+fHV5nXIVejUyLhvNqrDcle7ApH38+5u6vwFgbF+VlPe05XhmLXJ98U1F1LcPaQtL+0VD2nEq0jAf2SSvrYPdXSBuMj28IsqsHXw2PJTMdsqDm30w1OFgkjb+HotGPl9AJNF++vzXSWRd1bGKJDF3q8nqTkAiUauGWwep5l5aGbTNOk5yifi1mE1ZKwUxI2s6ZxFhH7NYHUnOUxgdL4SjNOY9I0pDd0ePvpWQebeVy6fkykKm7PRszOEoKkIopKNjqp81O5GTomjxQtnbIcQX654oJf8fJ4l0GY4QnD9d4pm9GC46xLbSSLNEQbRTzIiXfcbGwQ54zC1PmX6xBTS07pMKtDPGHYiWYoDEdll0UdoKTh7njI6AVFMDek2xK05fCNTa78M4ssa/Y+4VH1DFvfcqw2L9fkmz51s9PqKM2dyZB5GtKrbEsNlhXk07A1oPtu17ummL8TXm4egleW3hj/1Y1/jC8MPoaiGc35QjvfBeNcEffrAbeLLTa8BakJOCx7HBR9jBU81T3guj/m4ucU5inhApqFYVLEDOOc2KuojKLvFRTG4/HoEHBc6HEaUx3EeKnEmwuCJk7snYZe08ccvi7qpqsOHdNj+ZqWnG0d0wQBrGh/S3jZL2gzL+p42RmvuN7Crj7v3QJu+Vjlpvqd1wMm4w2ChfNvMQpO3pew89WmmGs3jK07Fj9dDt0E5QBQFpmfL3bWc1FyVq75qHvOTlba5XvlwoFlhcPYNdg7CZ8f3uCnr3zL8fWBoSy5Eexz0BtwfzFgut/DmyoufUkTnhS8+bMxP/QD32Lbm/Kl6ZP4X+mR7hg+fON1nu0+4JuzKzw1POQLbz5Bb5gS/dqQcDKETUVnr+LOXzBEecDfePZz3L824n976cN4r8TuuK0V8XN2wQYKo7iXD7kQzhh4GRLLtfC0oUEOeGO+zf18yE44Y9NfuPxTnPPehXDKVx4zdB9IvNzh5ksrBx2tknKshHJoMb4lPGkEcmvwV8vV90D6BmMdbU9oSPYs0XiV47l8H4OZS3dKTehUtkoTiJqDetCkA9mWobS80S4TjRxuXuFlHvMdKOaC5Mjt1FRmUX2JP3NKWWOh0oLKNySDDCktWRagUw8ZaoKkJA5LKq3YP43pdTNiv3Jkg8ZEq9KK2kgGvZTIrzmbN7TBgbsBvHx0gflpgvAMYVhRa8nxvMN8HHPlOxp/rimGHrMrivkjBj2qiHoFdw42kPcjgiemPLJxRuKV3JsNOTrt4fmaunSF/LGtEzbCBcd5l2kRsbfosyjcMetHRePz4gbhsvFs+oM716gLDy9wmP72ZNX87Py+Ij6qHXQ2UsSHguFroDJNMVLME4/xU+7aSB51IrKzBwPUXLoovZrWTmPnCz7/940P8KmtV6jsW2+rKf+i9a4p5g+vlVf0SrovjGXvp0sCDMYKKiHJG2+PSFRMrU9pFQ+qEZVVzHXItI6coKCOmVYR+/Me/8nl3+KCkhx+CMyiy0accpA1KfXCcr1zyrQOuTXfIFQ1h7GbTr94dpHxcZfwTCEshGNL58Dgz8935QB1z2d2tVFHlo3XiV6aY60wc+OvunRhm87XNhddsQZtNJ8v4QtnRdv8XlMH6ljgL1wx7TywjQtfw5Bp7vwmEJx8cMTmHzqFnfEdHi+0pY6lS3PpGzf4/KPgrybwQdg1EZGy7d8p+w2PXq6UoifP73C40+NuPaAvc0oUqQlJZOmcDY8VO39oiPdT3vyZHj/4Ay/yk5vf5KTu8tuvP8PuHc3+xwQfiaZ8Y/IIntTM6pDN347JfqbA/PkTTr68Re+uYfK4T+dFePwn7/HN+TWXpXoYOSy4NK25ljt2tv1/eZ6VxuO0dEPzUZNmfMGfsOXPeFNtczcbcWuxybHXpec77Hngu7AD73KKysJz5/HDwSuqdKpaG9h2sO+Oa5MitQxcDoULWfANVU8SjJ13fHt9rAVk+HPLYdnjou+K2CDOiUTF/WJIMFujmtJE4q0VcqCBWiyz62LVmWsXbeanls4eyFqQ7Ui0sojAuX4uJfEq1vR7KZVWjM86YAVxL6cTVGSVz6JwIc6VVqSlT+DV+MpwPOmia0W4lVFMQ84WMZ4yqEjzyIUT9ic98jRASKBQhGeOBrjYlUzeWznP8VyhE0G3mxM867ju9yaD1mgtjCrisMTvuYH4tIiYFi6jwGHzPotZhMk8xklNGFVkJzH4buhblwr/XghdS/zIBE9pVOmCTPq33PHzck05cAe4d0+zuCA5e9qjvlTihTWXNqYOYgoL3ri3zfDbHtGZIZiallFVxxI/Nbz+mzcY/WyG5evvfAH+EetdU8wfVoAuOea2Ub05loTgVz/xPwIQCk1hVcNgqblfj9qE99QEhLJi4GWcVQnHZZdbMzeU8JXmSvOq/+5P/8/87f/832Tr33nJhVLUAZVRvD7dpjSKvPbY7s85rroc5j2meYiYe0Qn4KVO/qwy8zal5/yRmNkV6Rgseg2aWPuxpWpS5a5QI1fWtqJ20vk6cqIbd3xoMXRv7qCM5fccH7y5WYTOX0WH7m94uW2+1twYaihGgrof4U1zsB2QrpCVXUExAqEF72TatmSnCN0wWsTa19cKv1XWeZ6Xq89FKfiNz3+El79vl+8d3mNax9xabPDSq1fovu5z+VslKq3JdhOe/sRbfLB3h0hUvJbvwl7E/R81XL+x33bDB2WfL77wNI/fLej/Ssj7/5tvsfMXn0cKwwVvQmU9LvtnLEzI78+ewPRqvIVo9Qvr5906tHecd+n6BZWVHBfdNry7p3ISWXA9OqHv5RyVPQ6LLrMqom4Az1iVbA/mmCBqqYawnE141LEkTGunvK0ltmNW1sJl3QY4y9K2NwDhWVfM+5LoWOGnpqWQri/jQWF8DJKt0O0WSqt4kA3w57bhqgtk4+S5hFfWlyoM/sxDx1AlTiG2DAcXRqKnDpIzlcCimNsYFWq2tmbUWrLIQsrUh1LiDwp6ccE4i9Ba0osLhLBNIdcESnO6cLvoQX9BWXuUnmW7tyBUNVmc0/FLQr9G9VzE24OzbQDyTUXZA7lQIBRWWR7bOeHpwQGl8XhztsksDxl0MhK/oqhdgPSschdYGNY8unHKbmfKUdZ1XPSDkGgusdKj9iI2bjshVXYdwn6BTCPKSyXGCk7vDnlkYVqFbh0pipHfKm3v/wh4Wymer9lIcqZpxDiLyF8ZMpsIdu4aksPSOYNGiqrrNCg6dJh6Z8/w6njnX37MvPWxbpwR15cwtk2nSa1HZRVlA7Nse1P26wGpCZ0RFYJj3XNbJSyhqnkw7fPrH/ifWLKmvzccc/hDFYcvPM2H3/sGgdR40pB4JQdpj1GUkWuPRR2yl/aZTBNU5pwB/dTizzT+7HzVmz4ec/CDms5b0nXczgCveW2uAMqaNrlnqaBszeDWGApyHT9vCvNyUOItlpMzzg3C2h9vlHQAqnAFPTkyZFvuec2vRQxfzKn6puG6C6qekzfDavBpaWxwm2UVoKzD9o1whVqv/e+5vyVD97qEdTcVWbri89pz1/jz/+o3eDrY45udaxzMe0yPNpk86hOfKI5+LuNHh3fY8OaMdcLn7j/Jxz/+Ha5EYwZexv1iyKa/4PXpNld+xz3mvU8l9BabFMan4xUMVMZ1/4ixSRjrDq/OLqBOfSaPLSPu1g5rq19wO4k7ZyPes7OPsdJR5LTHQdlnrkIGXtY0CSlKGGJVMq4S93PGnSe+0mga9oov2xu9DlxX7aALl6GKcjau/sIVV2exsCoQ+RZE3QJjBPVRgMpdJukS/jCBaOdIOhR0vIJEFsSyJFJuwv7WeIOgXPHHW/+dpiNfdueirN1NJKSxRRb4d2j91nXodoadB4J8S1H1DNo3WCOoakVW+JSLABlowl5BXUuOTnoOlx6kxH5F3ni3DPycrPIxRpBEDpIpCo/NrRkAR4sOl/pThkHKkd/hid6YSRGT3FNAdV7NOqgIOyVdv+C46GKsYCeesRGmPFgMGGcRs3lMNQmR3YrtjRk7HTeQf+Nsk9OjPvFbjqdeDSx1YkBB2VNkV2pGOzOXfHRgKbZ8FnOP+EDhz9LVTKTjsl3Ti4rJezSPPLlPqRVn84SD+yO6r/qoDDbPTGOf4Gpc1fWb17Jys4xPXFzinde2KR428flj1rvGm2V9vc2gqpnwf+iXnztnCymFQeEwrf16QGU9IlnRUxlDldJTeetsFihNElRsqWX6iEUC/8sP/32ufQb2F32kMGyGC+fDMHW0ttO8wwvHlziedzALD9VI8r3ctoV8fdB16d96AzVXlH33PL3MDSlV4Qr0+r/lALV9PdXq67bp0jHNDaCR3C9hluVqH2uZU9mIjhArmT24gp6PZIuXll3XnbNdoHJBMRBUiWPVSL22i1iqP6XDx9v3ROIc7iwr2b9yA1gTrsykjGoEUNoVdJUL/ovnfoJI1Dwd7vHXHvsK3/cjr7D41Jz7n7L84vs+zwV/graC2+UWtZY83TngcnjGI8Exm/6C58bXOP71q4RnFbd+IuDDP/4iP7H9bZ5IDpr3W9GRBR1ZcFi5Ocml9+8zeY9mftkJc9ZnMutr9L+6Ydm06bgrK/GEJtNu7pLqsDW26qqCjWBBrCo6XoEUll5QkI+ac0yJll9uPNpzxMs13sKxl4Sh9UpZXzqWFFuafpKjlCE4k0RnFq8ZqHm5Rpa2hVryLVpRiycNF6MpuQ0YT1aZn8YFDbnzNfDe1p1LbfEWTompQ8d6WS5VGMKpobOv8RbucagkplRMzjrUlUd3lBInJUXuU42dT5EX1HjKcDzvME0jIr9GGxcP6HkaKQ15FhAEmrJW3NnfYHxnyHHa4TDrEXk1kyLmraMNBm+6TnZxUZBd1DCo8KIKpQx7iz6nRcJWOHevXXvcPRxxdtJDKkNvd8ZjF48ZRhnjPObbb1xhfHMDckkdW9IbJd4TM2xXt15EhJrJJGFxv0c4tZjQYAODt+bSYH1JuqM4+LCi/NEJW9dPsVbw4MEG5js958Vk3Mzj9D1ud6QjQbbtuQF24eYfxncfL8Oe4z2Ffth74Y9Z78pivkoOWik+jSf4yxu/T9584Y+a9kaiorQeEsO14BhfajaClGGQ8u8//vlzP5tby2P+lAt/6w3Ef7vNQdojkDWeNOz05wyDlGGYsdudkc5DRCnxMnf39OeNd8baTWdxJWJSxohaUG3oVsgAjYimgTlMsPYkmpexxMWX96rWhbAZci5dDZeQkzs+TdFf8+9Y+qrQ/M76sBSWjCBLMLecPhs7Q/7dmjoRLt9RgzcXyGrt+DbDWevZFlpBOOzcwV/WnUkSbGiwvkUHTaFvZgCqcDcuVQjUWxF/662f4X49IjUB15MTtvoLfuET/5z3RXfJrYMLXlnsstVd8M3pFSJRNTfqnBdvXWLzpZw3/6rgr/3Y7/FTm9/kenDEVf+UHx98i1fTXScYMwHaSrq+Cz+wSb0WgecKq4scbI6VJ4gOC168f4lAuiIyLhMWdYgnnSfPg2LAYel8fArjtcKOTPsURnG9c0L+0+MWP11fddSkY+Wa7l2LKOQ5eMr4ClE5TH9xQSJGJZFXY62gs2cJJto5XjZ4/zrUkl+pGDXFfMNb8Ez8gImOMQuvHVgLu5LrG1+1Hfm555iAjQx1x54r5rK0jRmYJTqxeKnAmzgrC6DRXLhhuGm8zm2oqXOf03GHxTSiqpoAEumU2H7DNV87zZCeAeEsdLt+gSedbXQ1joiPSsqBIt8x2NDghTVB4KIBB2HOMMgojMe4inkwH2DHATZVeJ5hGOeklc/BrMfxrAPL4X6sqTZrVKipKwW5xB8r55YowOQe/kS66yfWyFTRv6Pxpjmycr77xx+tsY+n1LXi9JVNbt/dAuuu/apnmD1Vkb4np34kd2yxyNkrrB/f9hgoQdVr4Lbv0s/8XVXM1/Hyh+XPs7/o+NEBpjXMSk3IwoTcqrbaRKET7eiHqQnZq0YkssQXukm9P2q+p9ENq8IHfunS71Inkvlnd/nS3ccoao8LyYyuV7IZLki8EpN59N5UDN40BFPdbp9ti+tbZlclt759id4zp8hMYpR7Q5ed83ohljVtwV2/oMUSG2/+LT8XevXzbfHWq4Ltkn8aP3JftIyIlhZpmufQbOl0IIjOnPDi6qNHjmkzW/tbzWBzCZMAiCVjpSnqwghXyJuCbj3rLmJlnQJPrXHmbbPzqN1w9K2vXOM3jr6XSNSM64RrvTN+pPsdIlFRWcWXJze4GE74hStfojaS/+f0Gb44fZLPHryHnd8N2PtYxJ999kWeiR6wqeatbeh1b864ip3FrnZc4Y5XEqrloMoVJrE2o2kHyM3FNfxswma4YBBm1EZyUnTYz12Hvwz/zbQL/gboeAW+MMwrl5r03u199n/g7YHQbggpWsdKWS632A8Nz2NJehGSTuECHQ4TovEKo3W0RdUahAH0tuf0ZUYkKq4EpyTSeW6LNY65e8/cx2pRvK07b+13A9N46wjquPFeX3uOfmrp3YLoRLgBu2mEbIVPOnEB2qpXEfYLmHvI+xFCWrpJgTaCo1mXTlgyjHPGaYzna/IsIM8CBr2UYDtlGGWcFQmHsy5Z5YFyc4TZFYn1LaKUVKlPOgtJ/Ipn+vvsRDP2sgHPH13hYH+ITTT+Rs5GJ6Uykr39EZO7A7JxRLyTEl6dE/cK522eKfR+TLznEe+52YKtJFSOCDC/JB2f/lASnbhzwPjKDYhPPMy9hHIWoIc18SDnwsUx9VaF9SwyVdi5h5n7VInjxcvKUUR16CICZeV2XTpyHXp8tKJd/0nXu6qYv5MN7nL9d+//P4BlMLOHRpJblycpcRSi3PgYKzmuepzWXVITtAEUntQNfdGyRLm1hdzCVS/lwY/VjF6pEF8fcDjvEsianpezFc5J6wBRSbr3ncf026xtaS7SGjp3JZf6U1S2wvV02BTaJSRSvr07bzvn5uvCuoK/Ht7svu8uYOOfl2YbrxlKrmHny79v/OX/a51Wg52WQ8uNwRGL63XLoFly2KEZctpmh1QLbBNWbQOzgl2WgH8LybhO3Yq1m9dDMwBZCb75pSf54tkTVEbxkeFbDGXR3JQ1e1mfriq46p/w713+HJ8cvYYnDbe/fJXksObqp2/zycEr7HouZqu0blv6Sjniq7cebfMTj8oeZ0VCoB6S1685ci6H68s81ehM8+Zsi91oymPdEwJVk9c+D7KBw8WFJpRVi5UDDP2UxKt47viKe9xO3Q5aZWUI5i78Y0mL9OemoXme56FXPZ/FBUWxo12nd9Snd9NzXfEanm4Ccc6DfhjnSLESnJhmgCsrGkfI1fGXlX7HAaiLr3M4fT2qybcsVbKCpZbLy0yjaGxu/LnE5qrFzKMNx+wpTmMwUA80CJjOEk4Pnd9K1JhwaS3xPU0QVjx58ZBHh6fEYcX9aZ/7pwN6UcHV/oTont+eR+GR49wH3ZInrx7wVP+QuQ55ebzL3fGQRR7QGWaoqEbXiv3TPmezBBYedGt2L59xcTilyHyy4wS9nxDs+wRj14ECdzzIAAAgAElEQVTXCRRbBr9XoFJJsueG+eFbEd37bmdlAw8TKVRm6N1uTMo6FRcujtnoplRa4h/4BGfKwYuDChFr0guuLoRT4+ZUidMKyNLh6MFUIzQEc8usDN/2Hv2L1ruqmK8v0Wx/AdLtZRBz5JKDrN/Y3ApmJiaSFTMdUzVD0ZOqg0Ewr0MXTlCHLo3Gq5hZQ2VhZiwVoq1Df/Pjn0XHkq0XKqqvbLCXDpy5fB2xN+sjU4mXnu+O1p9rOQwaGAH2Zj1U4aLKpHb88BZOqc53rKKBV5a4OGZVxNf5xlY5T471JSuabl00j7XkvjYF3neP1WLxtTNaWnLYs01B8kDwB//k/TxxY4/0kmm7/Nb2Fhw2rmkxIOct0/ycZ7HhUoRjmr2yxfq23XXIQqx2HKxh/ga+8dwNHolP+N7oDgCHusdr6S7PDvZIVIEvNB3h0oX+8PQqmy9a9j4e8HMXn+Oy5+iVUhhSG1JZxYN6xI/f+A5jk5AaJwcvjeI0SxCpd25IbBVrQ0TbHB93MR3/+lW6qiBWJaMgJfFKcu1zUiTs5QM0kq4q2nBvgKGf0Q1Kcu1x+eIZ6Y5H2fecoVdhzol1hLYE48YLJV/t8oqRIr0kCDcydC0J7/n07q3OO5nrVdPjifaxdjtT+jInEJrSKqYm5t5iiCzd35D1Oh327RBQ+7xqRzlUnbq1njgXNdcUHnBzmPBM4E3VispqnfS+moSISuBt5xBq5P0IexQifINqMPSs9PF9J+3f6i2ojWRv0adorAB6ScFOMuM467DxskEHknIAxZYm2E15fOeYxCt5c77Jm7MtDIJhkhF4mrLw0GPn+1KXijCoSS7O2dmZ4EvDvZMh6n5E2ARNLyGRcujeI5UJuNVh8Lqgd692nfN8ed1pdOSeYzFSjJ+yBO+Z4Pmaw6M+h+Muk2kHE1rKTY2+WBCEFfLEJz52JnRFX6IDF2IjtEXH69oHCCYa7+j/B5g5LHnmzcc/5aSvTqrsgpoXJmz8sGsiUdGRBT3l2AaeNKQ64LTqcH8x5DDr8Ys7nwOgauDddYlPJAQfi98g3ZKYQLD1QsXtr13hy3uPcmu+wSwNCU/PF9L1+K91bL/sw/yFTWeYZR10oQrOQSmqWAb4us9lvcLMZeNECKui7OWueKo1eECYZXKMYzg4psOyYLsTRhXNjaDhGMtqKU5wkEK2I0gODReey7mYTLAbJcXGUlyyEkW0HbZqoBbVdN7KuueqLLZTt88bQWtutPyacF5ODjuvV6/bWwi+ePQEvqjRCPbrIfM64GeHX+eSf0ZufRY24Guzx7n3xasIY/nAp1/menBEJGo0ssWtc+vzcnaJX9p2s5GZjvCkdqEF8wQ5LJvncn6Qa6Vj86x7hvtzy82Fo8J1VcFONONC5NgW0yriQTZoLZOX/h2Z9pFYzoqEfphz9CGoOpI6eftlJpukJ6cLWBXXKhGUg4Z3fBrRu+WGj+uiNK8J1Fg+f6HhkeS0DfzIjc9eOeRo0cFbiHMzFQe3nfeNWS6jnHagriXK09RdQ9kTlP01D6T2/HOzo+jE4i8EMpNuIDrz0dMAAoO3lTsWycR3AdGxRkjL/CRhMXPD0Kry8JXzPT9adJjlIaNu6szW5hG3xhs8OBwSjmvyDUVxvUCMSoKgdva3jaf/tc4ZPT9nmoeM9/rY2wlCC9Ruys72FE9pytKFRD84HlLOA+qumw2YxOGJ/kwSHUo6e5ZkTxCeON2GVQ4aQbhrUZS102VEivENSXhtzm5/xsXhlMEwdfz7XDkNB8DYp7jTdR5KW8Ll5cauI3fvw0oFXMdyFR/4XYpA31XF/J3CKISGv/PMb7Q/s9xKqsbeFhw+fqK73Cs3uZVv8e3xJU6qDrdmGy6bUxq2pUA3tMZlN75clXWUx3/9F3+HxQW3hd39mib76hav3NmlmEQt/FBHiqrnv80LOzwp8Rcu3Dg6cm+8Dlwcl2y45rK2bTcOK/xyyTJYbYNt2ymuF/1lcV927Esu+fpa77yBlbqseeylp0d6QSBq97nxpeNTW4Hu126w2dwEznEUwd0Fm+7b2flZ9zGAZ1xAbvM967nnuMTtabj1opkXYN32/81vXOWfzd5LbhUvLi4Tq6plpLxe7PJC9ghfO7rO9vM19c+f8LPbzzFszPsVhpmJKa1iYUIy7c6JmY45qxNem+xw//4G2WGCuBe1x7INBG+8wh9ewsC3PvckB0WvjSAc+inb0Zxh4P72WZlwUPQojIcn3fc7fsE4jZ3x226KvzDt+7X+XsnKOKriWnF17zGYrqYqPOJ7imhsCKb1OVETOJHKshjoSLATTAmEJjcBE93hTrbBZJq0HvUPnyfLpKFz586y49fSMU02SvIdiw4aa96GNiz1ahjq5RaV4waiY+U0CM2NvJoGCC0w/Rq2C0Su8G5HiFwRJSW1lpS5hxCWSksu9mY8sXFMoDTH4y66UsRBhS3cTWf6qMAWEjP1mU9jIq/mWu+Mq50zjoourxxe4PTBAFEJ6s2a4ELKRj8lLX3OzrrUuY8x7kalYtd8yEIQ3/Xp3JXEhxZ/4Y5V2XfnaLYp2x1NcrCKhys2Q06f8cmvFxSZz/60xziL8D3NVn/BaHuGt52j+q6BsL6lGmmyqzXpZUPVg2IgyDadbYNVgrrjTk4dy7fpCP4k613FM7fKFdp1ql+dyLYjN00JXl68Q5W2MUubas5tvcVbi01nkl9FLq9RGp4d7DGzBneuipYRU1nJQFZUwML6vCe6z8//jc/w9/7uT9K7W7P1Ys3iqDHbH5+/GtyNp7E0bbr07oOKxa6P8WBxxUEQLU7dwBbL7pjmdRpfNLa45weby2GpMKvBpmOqiBYnXRbYZfFeYuQtj53V15ePXUeC9ILzBfGaAGKjBKVWbpBlXXDGkheOXQ1T7Tth42opA31o8t6IiqwH3mKJ7YqW3bMc3srawUH/8Hc/SfopF9vX9wpOdJfLnouD+/3JE4x/bxfzfviPHv0Sl72zJuvVo7IeUxORmpCzukOsKhIB3xvd4fcnT7AoA7wjn+49QdlzN1jddD9W0nTkTVFccyusI2dmthxqSmHoe45itBXOmVQxizog1z57+YBhkLVMqEHsMOOrW2MOn7zC9gsrgUh7eCpDODFtpwcOujOBQCU15ixg9HrjwlkZZ9yGWjU6lcsvNYFgfkmx7c2ac1ox0xFnZYzJvJaK+jZh15rR1vpqhWBWkHRyZiMfWcv2nH+bs2lN4xUjyDfB1AJSlx+KsDConGfc1MfLBDpw84S6luTzDsONOYlfcbEz5Uoy5ttnl7hzsIEQ8MSlIzp+wen9XXTQuF1mCjus6PYzdjuOgvhgcYHjeYey8FHdGs+vMUZQZj6n2ukFgqiiExdOdXrWgwcR8akgmLkdsY7dwNfKFZNMmOXu0RAfS8KJm5fV/YjZVUX6oZTLGy71y1jBeBZTlx7dfkYSVERx6Sx8k5jQ04ReTVr6aCOZqT5V1+HxS/gtmOrz58l3R2Z5dxVzgIcZACfPrnpoX9RtIQfIjY8UxqWoe/Pmc8snNt7ga2fX6fku/eQvjb5KZaG0kgrZxsuphtGSGkVufU7qLs+G9/nPfukf8B/+wV/g0q/6dB80GPma7Hr5PJvxFl6u0YmkGHocfZ/l0hddMK7FFW8vdTad6ywToDULWi/ksBxYrgr4ElKBxuu8+Z0lDros5u0Q1Vt9vP64OnQWtXXP4s2WA1p3vA/THt6hv7IR8N3NCCNWoqH1t8Yuv2DbQi6kxRqBEA27ZTkLKJdd/ur1CY2jEjV8eGsEv/bZ7+df+/TX+GjvDa77TtljkHx9/yqj1zTv++UXuBHu05MleSMYmxrH+V4Yh5k/GjrGUk9W/PULn+c/nv4c+dNjxptdtzOoJfGJwGd1jHU7THTPz+2MIP/wAk8aFw+G4FhqhkGGLww9L6ejSiormVQx99IhWe3jS01tJG+ebPLY5gl8fIx5sYM30+3FZnyFyuuG0XL+ii17oFOPwWuK6GRlU6sjJ0xZn9V4uaZGcfZ+TU/m5NZnamIXa1YkyLlqYK0GM1eroIulnH99rQ85tZZ044J6J6Xq9PByB3saWAWv45gXwgiEkQ1vWlB1HSyouxZbO/hFGEE9ql3U4qkPRYAnYSw6FJXHPj2+lV9Bz3xEpLl88ZSnBge8OrlAsa0p/t1ThsIyWcRkZzGz4w73oiFS2FZlKmWza1cG20prLb5nEMJSa0Wah9iDkOhUtEVb6sbG2UJ4upwHuKHm0hpZ1rZlQR18pMP0e0pG3Yyi9gi8mlhpZiqCoKauFVVjKJb4JaLj9AdF7aGtwFrBomgICw0tVuUuM1hoi980h98lM/FPDrMIIZQQ4nkhxGeazx8VQnxNCPG6EOIfCSGC5uth8/nN5vvX/8R/421CIdj66H77tf16iEYQCE0kKqQwHFRDOm0MWc7Hhm8hhSFQjhf8seFb7CpNaSWp9TBWtIlEy3+VdZasBteB7agZv/KRf8z+v5Gz2FVvK+QPP1dZaYwSnD0piS7PW/waVkW1jpqBmyfaYu18jFcd9coOdfm757neSwhlHTY5lw259m4uu/Elm6aOBVXXcclV5k5kYZ14SGrL/ks7Dv4uXUeqo8Z217Ntu2Y92wqDHGPlobPNClTg4vSwzcUfOphp+Vra4IrmdbsBXdNtAr/29Q8RCM3MBJzqhG/nV6i/PuL+D8Mn+6/SESWyoaYaK6msR2qckOesStj1JzRUagIMf+eJX8NXGr9bomaK3k3VPo91mqdVziGwfSk/dcIjO+6G0vELjBVktc9pkXBYdBlXMVIYuqpgN5qSeCW1kZxmCVnlEfoVR2mHyK+ZXm/CU9aCnI2vEMapP9eXrECNPTr7jr0i19w4rRIrjrm/ogzG2ym+qCmtYqJj5jpkXoQEY+nmLZw/Z4BW+flwQXeiM0vVOCJ2opJsW1D0V9j/sujL0tHpwN0w/LmDXMIz4TZvlaC7kRIeqiYgGoQW+DNJsi/wJwKhLElYsd1bYA9CRKR576P3udIdOzooguiCu6kOwpyt3gKV1PjHPkffuMC9V3fwlWa7P6fbyakLj/Q4oZyERJ2SXidnuz/H9zTT/R769S7d25Jg1jQ3m1AMwIQO/vMyN8eIj93rWQYuuwZqjVY69RifdpnM/l/u3jzYtuyu7/ustfZ0xnvuve8Ob+zXrR7UmloIISQhIWyMDMLEwQzlBA8hYJK4ynHZFeK4kopJynZCEsekcBWJjY2H2OCynQrEBswgBEYSCLrV6kGt7tfvdb/5vTue+exprZU/fnvvc+59D2glqURkVb26591z7j777LP2b/3W9/f9fn8t9oddplnMoCuwznp3TmkNeRlwnLbIrWFRhuTOMJq1uP/mBtGxJj6UhKpoi39S0QvxRmHSUuaK+/Ki+ZeDmf954JWV//8w8De9908Ax8D3Vb//PuDYe/848Der1/2eo97CLY2P5N8PXP41sbF1bUJVkrqI3BsmThwJJzZh5mLGlT9216RsmBmPtQ9wXvGn1l4kRD3QT29eZXIAqQ9oq6zxPQcY24Rvf+oFvu3P/SrH/960CugPXlwzr6TQ1nP2G25J04pIApQEv4pJUkDdDLnO0Bt0wq+wTSoIpX4suLm8V73t0yUnblKoVvf8wfOruc0uqrzQEUVq7a3uAim6JPuaYmBxRia0SRU+9o0zo3IKVUMvdeFzJZgr7dFRTUz38lmj+rsVnL82DTuN39bMGAAzMfz3Vz9O4QNezs7zk9fez5mXSt7/vtfZCsZYFFmVlac+bIrhcxdxkHXZMMtOD71qRf2LT/4yf+V9/5L2Hc3atZJ4KJLqYOEwuQio2vuiH3ChqPmO7qwRm5LSST2hFRTEpqRwhlHWIrUhB1m3wdPPRDO2WlNht1iDc5rRrIXRjvnZ6mM2Xi0WXdgHmn7X32f7rmqw2fq1th00WbnALiIuckZxcX1Iogqc12QuFBbWPD6hLn6YmPBh9ERlIYos3mqmixijHemOPcGkWsXOl9oQwZujseweJWFQfNvll3BPzHGx5/ylQ6KdOUXPNfMwuJ5wNOxw62CALhSbZyY4L/frG8NN3jm4y8X1IYF2IgCLMrR2FOsl9tEUnWmiwDJcSNNmvzCgobs1Y2dtgveKe0d9Jjf6dN4MxP0xgmxQfd5S7oPWfU889ERTh8mXSZA0h1HNwqvykva+EwUvUBaGYh4xz0ImC+mu1IsytntTOrF8AfvDLtf317n+yi7q2T4bXzD0rzvae45o7LGRMPaKnqkUw78z2+h3G28JZlFKXQC+FfhrwF9USingDwL/bvWSfwD8EPBjwB+tHgP8c+BvKaWU9/4tLTOrxU9vFOfDY4ZWJMkWfUL5eb8YkOiCUJXMbYc3Fmca34xYlzyzdhuAI+eY+bg6hqKjCq6WA7aCMRMXioOfj2nrrGFGHFnJvnpJyg8+/Qu8/EMX+Pm//2HWXyuaSRykJ9P1H7z8r/nPfub7cIETf/JyyUbJlGqWTg9QLAuejVPiStBuPBtWfle/drXAuUohrPnEtRsjvtoNhLIzUCWYQoQzRReC8XLhBDlfF4u3SjgW/2pVVn08deW94h+SkQN19wytnbTLqjq4e+oi68rnX4GAGkZPXl0HBXtf2OHNy2cIlSX93Cac83x0/XU6KqejSgqvSV3YtAQ8Ljvcy/rsp106Km/mSOoNiSrZNFNuF+t8z/f+ImeCCT/8hY/T+2SH3k3xI6lxYDMvmf2VCeWBRh3GaOXJXUBhDaGxeC/NK3JvmJcRWnlKr9mOpzgUgXKc647Y0z32xl0Wxy2s1eL50QsbfYILDWaWLZs4V6NMjGSFhxKsvVHUoggbadKNgGhkq7aE0mu02I55au1+c38ATIuYIguI58sFfnXR/92GTSDWUqnO8wDXUuiNHG9asiBHCqpFoimGppK0hHOhD4bT2oxNSZOP9Qmzdsb7ztyktVPw/OYFrl9cx1nNey/eohdkTMqYG4N1OlHOOEsoncY61RS0z3VGBNoyLaQZxsXLBzyxts8nZ09zOOo09rTt3SnWaqKg5PbhGsUwQc81CmnorAuFbXnMQuyrhQ1W+x4tHSNBIMnubfnMq8pbZT1l2+NLhQqg1U9Z7ywYpzFpEXBn3Md7RVka0sMWrdsBqoT+vmRuLoS8J4wW5aXYamNPNNboMiTZc0JXfWshsxlvFTP/EeA/BXrV/zeBofe+Diu3gPPV4/PATQDvfamUGlWvP1g9oFLqB4AfAIiTwQOFlZruZ72mozNybyoeuUio98sebZ3TJiPRBakv+GD/Kke2Qy9YYJSjrXNS75lV/PPCBw0L4maxQahKOkHOftmvAoDBVpj6qBRHt0vRAUmV4X3wez7PpEj4zd98irOfWXqz+Cjg9sdC/unBB2jvObK+auxqlx+oind6hd3hK2aKWRrtL2++ZeGq7qe5ekOegGBY/n61iOpCTkzOcLZS4KoycxvJ5BS2jm86uSdHnsWjTsDE6lzlwEBVECNe8eA2NVXFo6Q23LxcPk8VrG31VCbijCXEJNCNEoSG//qXvp0n33GLtWuO+x8v2ArGhMpSVNRUhyb3hsyFTGzCftrlT57/LD1dYL3CKE+oHEMnZv+Xo32MchyVXT56+Rrxnyl5tCX0xpFt8cb8DC8cnGP4/A7Gy7nW3YMACit2qlp5sXlNW4TGMlPittkOchJTMM8jRouExTBBzQ2X/8wLD3xPINizWXkMEL8Ap2Ui9WVPqn+rQwFt4NX/DV7lnSvP7PM4+w+8Z//UMU+/R/wC+I98SFq69TIW44RZHNHupMzOJQRzscMNcQKxrC5ELd0Ir0jreaj4+TvvYL+yuf0/PvdVtLbnGON4cmefQFk+uv46cxfxd1/6MI/v7tMNMyJtBUKd9PjCwXm+5fwXeVfrFgMz43axzpXDLTaSuQgB+xlJUhB2UrSCWRqxOG6xKNoQeggcrr5wc1NRdlUDhXotmXdd0wlnEtiLtqK17wlnJaWVb6remQ/fFhCel6zfloayEFvfy+vHTPKYo1mbyXEbtTDEh9KcxiuY7wpOXnYqu4tqxx5OpB+wN5B3NfGxhmW55C2P3zOYK6X+CLDnvX9WKfUN9a8f8lL/Fp5b/sL7vw38bYDe2oXm+aZRQEVLnPuYtspwhISqpKgoaBtmSuEDLoaH3CvX+OL8HE+07hNWaeZ6MGNg5mQe5i6UrbiPSVQhCsN8wOXogJmPRHxkWwyM9AtNfchx2ebx9h6JLrien+HKZIvd1oSNaM4z77/K5JmEvUmXojT02yn5jTYv/L130Z1a8q7g7MGs8hcPTnKYvalc9NKlm92qQg+qm8EvCySrTJWaX14P+xAaU5P9Si2KIH2QdGLyusmvyIvN1KCsTDZ9H9Tc4CNfwUAi3Vd1xl0FcqUkgfBWE0SFZOXQZOZq5XxrdaqNVCOc8qszsGbdGDAzzZUXLnIu9Tx6Yb/6vgWzqj3s5y5mZFsc5R2+8cyXeDK6X2XjFusFjqnnQ+EDBmYunj2thHGZ8G8On+DFa+dRs4DWbSPwVVvOq+x4cmuYFVHVh9LjnCJYabDgveJ4kXBMi1YkrI29YZdimKBy1Vzr13/kg3Tf0Gy9IHeoTm0jp7dJwPHbW4Tziua3cMx3AmwE3Tv2BKZ++2MJxRML3FDwqz/+4c/yge41UhfyW9NHee7oItdf2cXHjvabIboU2KNzz1K2NNmauEb23licbIZRMVrcC1/CK4gCS5p7yDRZGrGzOWK6m1PcjwnnS4e/MjEEqV1CLZmoQouObiC8c90R+8/u0L8F+ZrizONTvuvCs4TK0tcLemZB6iL+i6/6V813JHWsgPf1b3AxPOId0T2MEvpwR+VcHAzpRwsuJsec3xyxN+5SlobFvnDLpR+ARyclSoM6CAmninBS8/rlXMxC7oe64F1/Bzr3zWNYwkpmllH2E2YXHO3QCm3SK5TydKKco0Wb41lLLA1SjV7PcBue2VAaSQczTdlx+JZFBR51EBIsNNFYziHvKyaXFBCzduVUke4tjLeSmX8d8G8ppT6BJAd9JFMfKKWCKju/ANypXn8LuAjcUkoFwBpw9OBhHz5W2SzeKKzXOCUBYu4qmqAuSJ0Ed6MckbKcjUZNtyEQ/vEfbt/gqPKNqBWBG2ZKT+V87uARvrrzBvtln4ltMXdxs001yvFE6z5bwZjCBxwUPbaSKVvRhCvTba4enWEybBPci+i/DiU9BomqcMOSeKxZbCniY/ld0eaEVF7nSxm2BOUayliBPKrMWl4j/+rgq5xvIJXTYxVeOfmEHN+vYNn13+d9TevAMd9VFOtOnBqNxsw1ZWQFL6/hlhJReq6oQ7XyKCNMFu+UMBiQG0oWNFctOALh1H1ObVV08lXDDlNV+K2uCshecfdDij/QO8QoR47BeunxmnvDUdnlXrZGrEvem1yvvO0rjnMFyQ10XqmFNcOiTaSsZOhFh3GW0Opl5IchyWFN9xSr2nwAeRkwmrfQ2pGEJZ0ob9SecSC9NttRwdG0zXjawmYGNQ3Q1cJXC690pqSb1KluVC407H1Nm/zDE5Jf7bF2VSC8/vWM+U6EixQFUoMJp5b4CJ6+eIvnjx4DD79y7wl+0b6dr9m5wc+9+C7iWyHdoSKcaXo3CkZvCzn62oLyCxG92/akedrvMHQhuxpjHBiPzYV2t7Y+Y7YT0bkrqtnagrfEUPz5Q77jwvP86Ke/ka3PLkPK9JIIqIrzOelTGefXR3zr7osYXANnFj6gozP5fr2h8KZpNrNhpkJDVUvr6x2z4D9/5F/yk4cf4mw45OnBfW49d06+k1SRb1oRK6UB/ijGLBTxgSRVRUeRnhFltkkhGlXiulzYPsHCNbBbkKrGTA+EOeSjgGwzwq0XzCYJtq3ZWRNKqHWauwdrhFdbRIHAMFp56XDUsgRJgS3bqFKhhwHeQHyom4Y0NlbSfSqAdFPRu/nl4+a/ZzD33v9l4C8DVJn5f+K9/x6l1D8DvhP4KeBPA7Wy52eq/3+2ev6TbxUvh2VmDjJp6kw8VGXTwqkO5A6NwbNf9jkTTDiyHXaCEZGyPJncIFSi9cwxvJae5UJ0ROpCrE45mrW5lW8S66Ixd5qXEQMzw3rD+fCY3BtCVdIzKcOixb2sz63pgPFRBz0K6L2x5J+PLxmyi4r2fYNyMkmikSfvqmavUptdrRokiTho+fnr/plLccvyb2sqIzwIuzQ/q2JiIzCyS2gFJLO3poZuZEHI1hSDqwXKRuiFsG0W29JqzvbEq7zhbtUK0EKh4oq66BXK+6WqtkpJXQjJwXIxEliJxt5XFxVNsVxm6F5JQPGBsGCwcGW0RbEZVA2hW1gUQ9thYhOO8jbfeuYFElUy8xG9qojtvDCV5i4gUSX7tsfQtrlfrPH54UX60YLt9kQk5KbbNNKIJrKQlFsFszQiz4OK6qZIiwAFrLWqDLumZCqPyw3k1SKmawaQPB/MVWOb2jRuroqP2QAubgz5lv/w07w63+G10TZXr22DdYQjQ3wkzQriY2m+/R07z/EdH3+OiU0YmDn/5N7X8su/8FUkuVAC80sZ3cGcvWfXyTYdehicoDnok+SZB4YupYGLUR5Ch1KQ5iGD9oLJxRbzOy0pFFafZfJnR7x3sEfXpBB4puerwmDX861/6Ld4d/sWB9uCzorhnfyrg3foLSkhe2W/gkJNYzEcKkvfyLVOVElblzhg18x5rLVPogu+Ye0Vfm793ZiJoVjz+MRSZgH6OCSc6KqAKaQD25KsPJgrOrd91bt3hYcPDeXYBaopMq8OFwpjy1lFOos4DNoCty1iXGbILuSS2GQaN40oCgWBpygjgipZiYZShJUduqdsC6srnMq9Z1JpFC145Vsf/3d45n8J+Cml1F8FPg/83er3fxf4R0qp15GM/I//Xzm4tMIS7MyisNVqPXRtOlpw8twbDm2X1Ado77gYHjEwc8Yu4aChjMAAACAASURBVJFgARgRl7iQUFlu5RsMzJyJy3hk/ZiXp+e41Doi0QVrZs7AyB03dzGdYExPL7hdrDO3Ec5r7i76jX1m56amvW8b4U/NSgEh/0djTevQMrkYCIsj54QEuxb1SLegKsBXLeROc8lhBXNuiqMPFrPqvwEaj2RRnVaT4oTRVf1HUuixNzXte57ZeVWJnTzhWIEVJosPnUj5rQRwKnhFKdDVTe89+FLL762cY3LkKj68r24Q39AytZUgvrrYKC8TvDbqUh7u/tZZ/rr/BP/+I5+mrQXD3iv63ErX+dDgGu+M7khg9ZB5Q4zQUgsnhW2tHKEqGZg5I9smCQqeu3uRrz13nT/1yG/w3+59MxBXjAVxv2z1U4GMvKLIAqzV+Ao6WiyWbmhB4NArBWEfSN1B50J3k/lA4wnjKkFIDXMUPcfVm9v8Rjxn7689RtnRbA4Em1bOk/UFRjt+IqZsw//wpW9ieLsPoWdjdyQd5x9J2fhkUhXxQo7eMaD3gQMud6dc+dwjjN9e0L+umzm0WlgFTrSPK1uSUWrtCFsFzmnSPGQWWNb6M0aXYoK59IodPWb4uu3bfOHH3sNnLr8HtWlZPFYFs0LzyZtP8I6n7vBUcpfbxTrPTy5Res3l1iGJFsveyFtSX9kP5D3GZUxaFT0TU7CX94h1yXo444n4Pj29IFSWc+Exl8MD2rrg6Sduc/Uzjwi/XYEvJYDqvGrZGFcBPZD5HszEyMpkFa0yXyaQtTlaa/9kx/Xacz45LLDzABVbopbAimVpKLKA9a0Jm505h7M240kbZxU+UOjQEYSWInQwCdEHRupewTIOeONhrhrKbpkoeEhd7HcbX1Yw995/CvhU9fga8IGHvCYFvuvLOotqnG4Z54xq1HcgQTaqUlVdlZCGts2GmdEzYv9pUZwPjimA+9YRApGyvDbboRem6JbjXjlgK56ysCH7eY/HWvtYNGPXwuDo6IzCB8xczJEV98Xb8zX2Z13KwhAODe09d8LYqn3fka0p8jVDclQSTX1jHyoS+mVHGBdVWakR1VmdiZtVTrBbwizyHid/6tKfwMrrTF1c8qrst7ICcCu2u41IIVvaCNT0q3AmUEcxcFXgrbFy2VzUuDkeVKHwMaAqeMWDDjxeeRTV65CbabVJtUMCm21YSxXuXvvWh9JkWpXVQlel+6OfPcvf1N/J+B0FH3/mJXbjMS2T80R8j5kPwQu0lqPRSJFu5uKmwffQdhgY8ft+4e45ol/r8yzv4TMffZRvfOpVfu3me1h/RRac7N1zEu0BCdR5FohHtxcYyZVaFjQtDpz1QkbkULMAVSiUVQ19TeeS0WWbEdG4PBlMNUQ3Il7u7bKFLNTv/v6XeF/vBj/605/g/R/7Eh8aXKtwZMOXpmd59pffw+Sy40Pvvc7THbEAvv7MGf7n3/wYu+ePcUd9JtMWX3f2Da49uonLAiBqEgHbDhpzL+CEClR52XGExhEEjnQWUHhFGWvWWilHGyU2jogrCuJv/eNnyC9C703P9m/XXac0NlEMH1+n//SCc8ExW2bMxfAQh2ZsE9F04KSm4aUt39TEtExO5gKxQ8Bh0cKbtzGJKlkzsyaRG7uEe3aNu+M+ZbsS1E0C6sboRd/jF0rsKZTUsKKJiPiCuTuhNG/m34rKteHyV/CYjwJR3o4j9PmMKCqZTRK8V4RxSRyWtIKCzc6cfpKRBAWjLCHUjkkaM1qEYBXZemURHYpttJlpopGWpuuRMF1qT6QvZ3xFKUC19dhIN9t1bb044rmY3WDE1Xyb8+ExbZWJyMdremZBX6dVUwrDtplyo1znnFm2A7EVz/wob2OUY79s0zIFN2brbERScJnahDPBhJ4Rtsu42urt5X1uzQdiqBSUFPOQwR2R4CorQbBW2NUyel04opE0eJX+iyDZNxIVHct+nyt+46vCjtpAqR6ns/AapqmHLBQrTS1OXFdhrdC4MdbH4AQEFM4dXovAQ7mqIOuFM2xbFXxQdQ7ylSrUOyUc88Dj6t6gTl5jUoUuJTMv2nKdGkfHKgOxkZyDcgK3RGNFOJFj20Q1u526gHrmswHP/uZ72f6e63x48xq68mapM3bjPXOv6emcjs64U64zq6T+x2WH97ev8VPhVzPf8XRvQO9fdfn1R57hnd94hVtXHqdsgSs1aRrinSIILXEiX1JZGBHTWKFhqrlpYC2lwSsvDpGFaloE1iOoCoeqWCYBZS8kOj+DYQ//+TUmF6UI9tLBWf7w+kv8uT/6s5wLxRmyhiV2BiMe/f4D2jrnQnTYJDdPJ7f54a//Z7ye7vKZ1mN86fYur0+2KEuDy6THpC691F2MwoWm2R2sZubeQKgtrbBgXPFnvIPSadIyoNVPSbciookiHnqSY097r3L5W7Ho1QX0bjj+u1c/zuXBEd0w40IyZDsaY/ANfAk0lsLb0ZhsNYMB7mVrzGzEKE/Yy3pohA56nLXphSnHWZv08xtEyI6u2CzFL6hU1cIKYaVeDeY0uo2lEGtZp1v1uNfFidMQQkZeokJxiCzGMRv9OZcuigWzVp4Prr9RObgmhMoytTH7eY/P3LpMHJbSHDpwFFEou13l0akmnAjjBQ3ZhuyK1R39e9JIT4+vqGC+KiduKsh4ch+QqIKpTWhHGXMfMzAziqqjkKmi06aZ8WP738C3bzxHWkn3URbrNYUzled5xMi20coxXLSgDwdFj51wTEdnRNXrE12wX/YZly3WwpQ3hhu0wpLoXljxaH2zJaongbEe0CLqCCUgBmllVFRnpyuSfJDtVJiCt0vsfNVNsf5/7Xp4eqxi57pYMbZSy8XArapyVn5fN7SoKVp1A41yzYpij6rjUA2XN0XPKjOPJJCjkE4zxknWaqVgqkowC4dtadnuRssFq/5/OKe60ZY3l01U0+QaarhFQbVgzS7AB7uHDVMFaHZwtYhIWgrKMY/LDtZrbqbrnA2P+bcvv8A/eelj1H7gW89b3jh8grgUjNTPAiHjKE8eaZTx6LqYGQj/21uF7zqRqhdaAnih5bNUwaO5XqpiIVVyfB9K0+/hd075q+/5Gf7W4A+wP+nyg+/8WUJlSXSO9boqwMu8ndg2GodDczYcNs1ZJl4LPKhg20y41D3iI91XubKzy9zFvHGwydrOHBCVTN2WrOyFREcVI2klM/dAUW3llPIEsTyX52Im1opzjs4WtO4HspNbcfIEyWa19ZCDXVcc7/Xwv7BJ/82SNyLFfEuTbiiKvqfYKWj1U+KwZJGFZKNkuXgvDASeYKwxqSI5qOCSGAZXHUVbceMJyM8W9I8hX4dyzdHZmjM7bBMei0AoqBqm21jEcKv3Sz3qPqerw4Wa+XaAyQVyGb+txWKzQ3LsKdcsf+yrnyXWwq47yLsEDXoQ4VDcyQZcGW9xe7SGe3GNufYUa/Ie0VQ1GhRV3Zp1m8lizRJMTHWP/r+Hmf8/PrSV7XddhPBGmAvOK/Zsj/VAtlg4Wc2l6i0TsqdT/sXw/Xx88DLvj4+4bzVDlzCoPCtapiBzpjEimpQJgbHcmg/YjGc8mdxrBEi5j7lfDJi7iFgXFF5zpj3n9TtbJFNFVFW5bSwe52Vbc/ykZuv5ssHhAMKJJav6Qdb88aK9LGK6sGqI4OoCp/x+tTlEc21OBfLT3iv1JD09UYuOsEdWKYm1zW7NjAGRa3fulpU61OMS38AzTWG1Dk71sQqxB1g6Kp6cfMH8JDtJl1UmjtgAS6ZEdS3lejSLilbNrkVgIYF3jt/teN97r7IbjyodQUhHZ8x8ROitNGZAV8pMSQRem21TOsMwb/Hzxbv5gd1f5V8+8y7cjU1AONL9N6U5x+SiRqd6eR/NK/m/QrbFsZUCMEghzHh86PC5RmOkh2pllVAv4O09x2xXE011ZX0rytM8C7mWb/FtZ1/k9cE2r6TnGJUtZmVMrEueat+TnaKXdoi1S+hB2eP1+TaZM4TKsROPWQsWXIiOeHt0F43jnbEI5j7x2CY3F+vcNevCtpoUFL3wROK0mpmD7ALQkEQFSsFiHkFgSfOQTpIT9nOKbkjr0Mn3VYuIQt1AEiDJDE41WoZkL8csQrq3FemGgVdCgjTABRBGsnMTF0aPsrZK6OR44aQgH0RMLhriYYmNApIDjTMhJvekuxbTK8izgNaNEJPKfZSviSAnmAvdOVictG2AZXJT7yxcqDn8szO++ZFXuDLZ4vNffBSUJRrMeebSm3zv2lW08uwVfa4vNrk1GzDJYp6zIrU5PuzBKMTHjnAtQwWyC4yGmsW2JEwuqiDQ2OMiJ5z4UhEdGcxc7tnf15k5nGSzKCvFy4GZc1R2Gx74QM9JfUhPp8xdzJaZ8BMHH6UfLPia5A4GTahcI89PVMFWNOGw6PB6tgOA9Yqt9ozIlOzEY2yF4dVeHyPbkmxusc56NGctXuByQzysIIAqkIstrnBYp+cM3Tu2Yiw4iq7cfDVjxQVLDHkVI18NxDW88oB3SMUx/53oiDUOvuoJ03gNVVv+eiex6jVT7xKKbl2vAL2oXCUrG1BUpQStFgWvkIDmJFuuoSMP8mSp0ZkiHvnme1R6WbgN0lpxJ4tbvbOui7YulELpqsOkC2H0pOfJd95iXkZsh2P6ekHhAyBrsnCpfSQV5DYhUiXTIuZg0SUtA26N1gjPlnznI5/nn7S/qdIB0FiOFr36nOuLu2xw7Y3CKy3GY6q6pomDqvuSKkTCXtv8/pff+5P8xF99hPG/MyYKSqIf7aML8VzxOsQVmrmNuTLb5s3xBtvtCZvxnHPJkO1wjMFxv1gjVJYb2QajokVmA4Z5q8meQ13z6CVRsV68i3RF2dXKc6414o6WrFxZ33zWVailHt5I/83SCW6e5pxILKxTmEDse3UpNYayrQjmrjGeqwO6LiVArdJkxaCLBpocPaaJj31jbLU6P50R691g4SrdyZLjHk0kO49GsligPXYkiZ8OoFz3uMiLQChTtO8u2Sv1fQecyMhr3vzkQsj3P/EZ5i7iQjtEv/Maz165zNbalO8889tcy7d5fbbDUd7mxmSd2zc3McOAYC4OqP2RCOLSTUWhIlqZLFQ2BnchpZwFAgUBFJVFQ6YJxlqcTANRbH+5BuVfccH8NM/8V47fzh/Z/AIWTVtnjF1CTy+wKEIcu2bMJ2dP8/OvvYN/+uH/BevhyEuESZRtMneA69MNwio6tEyBiWfcma1xGHW4nBw0mc9R2SVUlrmNWI/mzd+omWkCzCp1sEygd9uS9fUD/i21nwosqYCrGfQJSXv5YBBvcPhTEMzpUTsdNtv7KvOus/wTtrpWnq+Dp/KSGXujiMYekyrKtpyAycGqOmOu3iwQHJXQVwVKtZT42yVmXHdREbc+meg1W6BMVHM9VoNFfXOtUuhcCNOLsPuuPTIb8FjvkEiVzFzc1Dhyb4gUjc5gv+zT1yltnVF6w803tqQB8aU598oBXZOK+OP+8n3KROhrdaclnanGORIlfjUALGpaaQUJBYKdhzMl3t4LGL0/Y78UzeXHL32Jn/7UB+i0HEmlGi4TReflmE+df4Lvvfhp5oOYo7LLcdlmbiNeyC5wLh6RuYDMBdxZrJHbAIcImFrBcqs2sxFnlHjSvJFtN+rnWBfMbMyb0w10sVQs17bMpwM5VEG0AvuToGSqYoLIEgSWIg+YlhpnDYmvGlQ/ZDcox5bdh1lURUR7Eo6RGpNn9lSGejmmvaj70y4D9sPG6q62c98CRrxTMi3e6d2SbFt2ccleQDAVhlI0rTtJ+WYOnoZ1a8n+5BEpNh+VHTbDGZvhjDe2Nvjmc19k20z4pcU7ef7wPFkZcLDfI74b0NoTIkM4F1i16FRzpNAUHU/RVcKoyY3Y+CqhI642ejcL4Zr7QPQZb5nPXY2vuGCuanvNSgX66eef5Fu+8UVuZJu8Pb5Dn5TCBw1f9a/f/gTPXb8ESHay72KSynWvxlRTH3JYdBimLfaiLuM8oR3kInZRnsdaByRK9oo15/yR6IDPZI+Tu4BuOOPK4RadG4bWkcVriIclzqjGSH5y3pAcV+2fpCbSWGYqC2Vbo5wXJaaui3/VTVUFLhcs6YernuRCVaqLnAqT+SZI123hgJPQjF+Rz68ExtVM34VSYPRqCX+cWCy8OODla0KhU2Ud3EChIKub6yppHeeUBPMKMw9mDm093qoGfqo59nIeHpNLZlXf3HXHH+Wg6Mhnm+8qus8c0AlzHIqPDl6TOkiFGw/0vPmea3vkq+k2cxdzMTrkse4BL88vk+wrZkmLV9OzXIgOWXvyCJ7dqK511ahirZDtR6HF2Kpi8OhcHP7wsijVBk11gFeVx1id9fUGc37sp76Vi3yGX/nxr+XCmyXZuiGuAkj/6oLkMOLmzln+xs9+N+kHp5xZm/L2wR5Pdu7TNSKkGZctFjZkPZpTOkNsSqZl1NQIxnkL5xW/fXiJrAw4nrVYTBLUUHpadm6JUOvM4RyTlkwvdxhdNqxfeTjhXFsaL5rSaZxTGCOsHm0czinsOEQ5T94T24og9Sey6dUm4mZxMjlbHS4Qu+Qg5URLvfpY4aTAtoPGp0YacgTLv63mSdmmaiaOcP1jB6UiHEM8PCkIqqGUuq5VP15FBNaueiY24UJ0zJXFNr9+5zFmL27wL9x7+cA7rzIrY+6+sk0wU3RHimgkBl3hTN7j3gdD3JMzNvpzLvSGnGuN0cpxbXqGL14/Cw60PXmdlBXvGBcL88ZF/P7PzEFMhWp64uDlgOIPGnom5dB22Q1GFN4Q4viROx/n+ZsXxNzpfosb5QZPhnvcKdcan+u3hfskquCx1gEv6bOkNmSUSTA/TDu0goK5iyh8QF8Jvr4ezHhhfpGWKRgWLa5Mt5lcGTAYVoXPFf5nA5ckqgrGy+fqDKDo1rarK40e9EmXQxfUviyqaeAskMwym2+w4/q9jQiA6ky7hmLq504P5aoJW0MEFdd7dURTRzQ0eKWbhr2qpOF8U7FXPKCcghLB5LMKZ7YCvSgvGKQL692KapoQy7ksFw7ZXi8zchcI1t86dMy3NdmGYzfJmBURg2RRKXYjuiaVx1WTklVc2aL5N8eP84kzC87Hx7jEYXJN97rmN44f5U+cvUc/yU5YYNgIzGFYsX8qrntQ3VwKfAh42brrYmWXtbKomkyk4vzKOuWufKaNL2WUiXkggw1SC2dLBp8KcddbKJvwarjFi913E8496UB2VsECjt4lO6aaKx6NFWvXpMF42dHihw3s5K66f0ryvqFoa+ZnJUman29z+w96ouOldS2cLICqUnqmtoKC0mm09rQiEVA5Kx3q8fWOROoi0dQ1zpw69w1c4bXQAZeQnieYFLhEmmzMtw1+YcjWoHVQwyn1vJR7rfb4bhwny+X8VxVpwCtQlcqyzAJ8amjdCGnvuaYmFY0rF8q6h69RJ0zO6uN5o+jcK5pE8LmDiyye3WTrZUv5yoBfvvROfv36Y7Rva6KJlwYjC4eNNem6YXFGwdMTzg0mPNo/5HLrkDPhhNvZurzHYSRupCW4xFdEAi9MsVCurRkboqH6/U1NhCWmVvM9W4difbkdjtk0UxJVYHD8+uwpPnf9ERGHjGL+m2/5p7w9us+9sse9co07+ToXokMObYdJZY+71Zoxq9zuAu24fneTDz9+rcEfa6XpwMyI9YA72Ro3p+vcG/YJ5qpRezZY90qWGY19k1k3n6VSkCnrIVAn1GY1bn7Cs6UyKlrFxxu5/0pArzOXGu9epSVKxi3H0nb5ehmSiSsnBUZvELpidX/UftXBHLxShNPaJ6d6H6rsCyV9P2snxRrvj5Y3mq6N/wtHrQpQVoplwvpU1Q7En4CWvBbv9fa+w0biKBfuLmmm3TDjqOxgKjXwxCbLZiV+SWvbCcd8evoY/yZ4kkutI8wgx5uAeOh583idO2fWiU1JCo09QtlWdGpTCqTbkCj1RDlYL4DeCPvIxzQBSz6rYLJ5T9G575ifPZmVlonsNl1iULYqoi+W/upm4asM1BNOLLrUTbJgBw6XGUylavRKWBY6tUTD5XsA2CjCzEtMpLGRJB+ziy32/9icTmRpf65PMFnCNKsF0IotiEPRCuU1hdXYKpAbI+IxZ2QOl21prZYcyxxXtsLlwwfTyiYgpxaVGGGYjA0+hMUZTf9NV9ld+MZhsvk2rPD+VxOgoiPXp1jzJN2MdBbBMKJ1IH0846HD5K6pU6yex8PsrOtuTmZecnW+xcxG3H1lm51XnQjgDi3//FMfpH1H096T+z1bUxw/FZCeKzC9AmMcW/0ZG8mMSJfcydZ4cXyOL97fZXHQpn9dM3nMgfHojUyaTmtQucJMTJXkQb7mT/oWvYXxFRfMgSVp3yiikWXuYh6J9jF45pUQ5B9ffT/eKUqn+Ylv+nFey3fZNZZ9K8549/I+Rjk2AzFoSnTBTmvMZ+9cxjmxxAyikkG4aIpI1is2TcrQttnPexznbe4N++RpQFyoRoofLB4E9ZIjSzbQTUeX0w2f4WShc1VMAycz0zpjXfqwLF+vyypLXG1qwUrz5pq/nSwDft0QqB5eL7OlVZ550VaEc98ELOkAJD4VuV1CMlIQBYKKB64rUVReYct5jRfKNdCFwxnTvKcuZOu/Ci/V1yfvKZLjakdT4Y5n1qYU1hBoR6RLMhcQasu8MplJXYhDk6iCWeWx0zUpobH8+vXHePe5hHY7w8Ztoqnn+Ooar5/fYV5EJyiiZVt2Ibpys4ubxbdqJFIFL10uhVhAY01Q11MahlL9fLWNL1uiAD3t0aKq5s7znYDp+Sr7jjXJvuzE4rHn3C9o8b3eFlfLIEX8WwI4eEYRHymSI0888kQj2xy35u/f/SM5rdBifnWN7p38oXi5zFXxGdFIwtMKC5yPWO/NcV4xS6MKJpC5YxOYt8X7pJ478kR1D0dU9ECFHUTiCW6tQChRKLzvQhpou+jBIHuiYU2oK7M2uX7Tc5UeIoPFXhudCTW0tedp74lV8PJzLY9d/9SFfWgRWFnPJ7/wNLpTMnhFcfyU4tLX3+D1Fy6w+QXF8ds906cKNnbG9JOMPjBaJMyr3cvesMvRtM0XFhfw4wgs6ELRvavp37QEqWZ6SZGbiOjYYBYi2CvaUPY8+XplLfplguZfkcF8dQSpbfxThMGy4Mdvf5T5LMEVmv/1Y3+Hnzz8EH9h+5eZVJTFrknJXMDL07M8EklhM3Uhu/GYOLBkJdy+u05vfU7hNfeyPmeCKVuBFFgPbZdxGTPOE/I0wC0COrer9lG5b2AgWMGgzbJhxOlhFg5amtPWtatFUPm5hHBOBvQllr5aeNXl0kC/ed5QsUEk4PigMhIqlhl7PZoFoYJo0o2lBW/R8xQzwQO9Qvo3JpW/uhW/lpolo1wV1JUUDXVWq0c9dbJc007rsczIl1TNoi0ZuS49WV/jQsXiXMkGIlq53D+iZQqmNqaFbIUnNmHHB+J17zWpD2XxVgXvXr/D9Vd2eXb0KGhPu6oNdK9rfnv/IkejDtvVtr1sIcUnBeG04shnqmm7RilZazhdqWdUH8drgULq7z+aiCfPKl7cfOcroqHRozHnL9znzkd3qmMI62J+VrH2ujRJSNdVs4jX2Gr7vmexpZrrt/a6tJtzoWJyQfHEn73Kneka489us/F19+DTu6x9LqH/ZoCyxQNZ7+rwRkzEkqBgUsRYp1lLUgprGKcxWnt8x4IzUmfxUk8pOhXN1tbMIJmo6eUM3ozxRlF0NSbXTZZcW2BEE4jHNWNlySyS8zkp6PG6wrsr8Y/JKv74saHsyE6xd6MknBQPLAynM/LVQL7aEEIXlsf/kVA4w8mC42diPnzmGrOnI+5sDji7PWQ9kcL7ogzZn3aYHHQww4BoqGV3o6BbVgG642ntK/rXpSHJ5FFpBKMSi401+YbF369qAZUoL6iEe1/O+IoO5nWGvlf0GZiZVJIn7+K1u9t4Dz/+9X+f/3341fxHW58iVjD3ikQVRKqkdIbSGfbLPkelNLeY24g4KMlKAwvD4FxK6Yx4USjX0LmOyw65C/Be4ccR0VCfaOisqgJtLY0X1zONyVwzYZZdZRy2bp5bFf0aE6yHfFlLCGbJAX8Yy8WFJ2ndzYJgl6wWXbJ0SDzl2VJDNQ1sUy0E4cw1eHnRpeHrel1l4wAanJYM3IUS6JrWclUXInWKc15nU67SEaxeD10qsr4iHgvjoKxUtS5UqG6J9WI9m9qA3JmKYWSZIw2gj0L5fpPqBDMXkhFyMTnCty2d1yNsUmWIgaJ14Nh/5YwUNZ1wpfM1ha26yueVuCOYyY1Zi4BW6xXhfPm4Ue9Wi20tFGvfO5kJrgrM7v2lnMmdGPPSNme+6Bk/qtl8ue4+JPMlHpbEQ6khhbOSMjHkPUU2UJz9jRQXaoquof0n7+H+px1ufrMiuWe48Q8fp3PPstZ36BfOUH7Is3ikIJyG9K9nJ6T8DwwldMeOyTlUnjiQ187yCKU8SVji1hbkg0iofwtpaDI/q9GFlqDslnPq8Ut73LhzQZwWq0RIN/40S2hylcXijZIemNbKz7pRB1USEEq/URcJvCmUUcGYO3eqeViJs+DkAnq6+Y01wUMhF2V9k9nvfFpx6/3rDJIF7336Nm/ONshswDSPuHdrg2gvoDuUhCZIZZcRzj3jS1oap88UwdwzPWsIFhp7PsVoSFo54foMrR3DbAOditmWXwi19/c9Zn56uFDTXul/9fN3nkYbx/e847f4B3tfx1/c/UUSZZl7ccgrvKGtMxY2pPSaV+e7FF6zG49pm5xWWLB33IPAk5YBkzJmPRJMNlK2wV/HecL1w3VUoUgOVGXGI+fQ2A6EtZRfkXcVnYlHW/fA+a8OoegtXRFPZuIPZq5yAyyz1zKpaEwZTaf7GmOv+ea1qZPXYvjUNGiuqYCqyuYrlWXdMKKWNqdbnmS/oknpGjOvsvGyYncU9WK1pFCJza9CuSWEsgo31dfOW9Xwnb0WLLl1s3zBOQAAIABJREFUJEyAsn1SxhxEJaF2Ihyb92iHeeNWWHjDwoYUTih7TumKa62Zu4iNYMaTj97j3ouXaO35ExBW97quxCmeMhFfjGgk51MrDb2WxbBEIBQbqYaXrstlHWO1vV+ZyFxxwYPWCjauFzzFR86/wXPRBcaf2QYcZ14Qz5b5TsBiSxHcpKHK6WJJ7+vcs7QOBcYzhZMs+79aJx/A5nOa4ZNyHqPHxKOkdSCYkAo8+x8q6V/ndx0u8HTDjEE4Zz/oMs4SZnmE0Y5+lFNYw3QRU7Z8o17EQ953ZANN69CvGFd5NpMZ19WqQG05J+oGLiavCpL1bncF9XChRlPh7NaSd2OiscyRvC/zsXUglrat/ar+UVnz1hl+bWurT8Bbq+yZld2y9Q+0beveSPn0zUd5z9k7PNI64PnD89y+u05wP6I1q7QWK4G8dWAZPRYwfbxEWUXZB/PVEzpxzv0bG6jjiPi+wakWmZd5snkgPPT5LuTrToL5SWeD33N8xQdzEEw0UpaxSxjNWlzcHNIzKR8ZvM7Yx7QpSb1h5kMObRfnNS1T4FBcm27SDpaLwaIIGfTn7E+kEJrakFHRoqcXaBz3i0328h7dMCM7bGEstPZdk8nW8Eo96qJl3eQhGOanT7+SC8vjWt6+ymyBOnif5O3WwacOFEVb5Mk1jbDhjbvT+Ht9bjV0A0JjXDoXukA1FrPN8ar3C+aK2SWHSRWzi57WfdXgd95UAii9vOn86WKuP5nFPmy4SIrHNoJ4ZNG5p+gtWT+uclM8vzkCYLpImk4/Op5X/S4D5mXEyLYaf+xQW46LNsOiRRYFPLV2n5vdS/RvSgae9WX72rnnmutfVrbDQSreJXW7Phupig9f7YSCkx2k6kBePzYLJ6yV2uphZSpo609kWi2ds/+lM8QKLvwHr/PK3g7uhTV0Dr2b9Q7F4DtVT9m8ClKJIho7bHv5hdeGbvMdxX/8bf+Kf/g3PkHeg3zDMXqHYfORQ3a6E27/80dRRfHQRs71sInHeUXmQjSeSRahFbTCQtroWUMrzhmezdD7Edm6J9k3LM6WlB1hdLTvlw3cd5h2miRIEpdlQJdAXjtpymuC1OKsbpKgVUjIG8X0oiI5lsw8nEiNxsYQj5b9c22sAddANi6Sgq6KhIwQpMuM/3cbNaZu0pLez/S48l1n2E3G3Hlti/bdyvLAC/RW3x/zXcXx0wZ/cU4cWC5uDlmP5+wmY96cbbKXnSGcSju66XnF4KoY9NVMtv4bnvzAsNiGE7LttzB+XwTz41KaOf/E3Y+w0Z3zrbsv8nP33sVfeOQXuWimTHzAxEXcKwfMKprho+0DXpqco3CG3AUNL/dS75hxkXDU6TbH75icke2Q6IKRFQOv29M1iBzRnUA45dEyc6jHKoYdzt1Dt2urbA7g5HZRLwPsanBX7mRnIqjVo8ssfZWDvvqz9meR3y0DTa0s1SvW8jXNUnnA1nBK7amiGp563q+PXe8ilotTHfxrumNdcKuz0hO4+Qq7p96hxEPpVFMHchsJTFEmskNYFCH7hz28VyRtedND06GM5cJPi5g3ZpvN7gpgVEhH9LvzNR7rHZA9vcBdiQnmjhjXZOTeKMq2pmxJNp6ty04mmsg2uawajrQOKn+SvmkopI2dsVkROq3469Q+IIB0FTIKXUbNNfmlm08RX5qSbYX8id3f4Mr6Dp/fvcTn3rxMNG6R9xXlO1VjSOZij+1bon6G1p5sITib2PIKrxqTM7EJBx8p+Jon3+BP736amYv5H1//Jl77jcu0wur7WAnkpwuALvYkppSeptrSCkuyMmBULabeK6zTtHsZM6slK7ch0bEh23CYVBPODSaTYD1ctIQNFAiEt3qP2FiKl/WORVvf7DhWO46tjmxjeWNIPQNah66aX8sdweocl8+p8LEoVWvq5In74BQH/nRRdO3KnOG/2OSnv74PXcv8UYdul8RJgQssvSRjUQS4LMKlIXFUkkQFkyzmjfubshvdi1l/VZGvKQ6fcfiNjLuP6cq4DXCKzvWAaOQJJwoz+/Jwlq/IYL5qQwlwP+uRuojrow1+6O0/w9+5/TH+8M4XGdo2RShNjFIfVsWvoOlItBYuSMuQ1AbcnA3ohhl5Za+ZtHLW4pSjRZusDPjatWs4r5lXaerxtI0eBfTfqLd+DwbqOhjnXf3Q4udpiGHVarPmXsNJ7mwNray2k1uFZE5n7U2gPpWdL3H5JUtG/k8jn2+KoQ5cS4KxBFjPYle20S72KKcJ5qqhSgmEsBTLyMFoqJDanuTQr16HuoZgUunK5ELdBPL6/OqdSDjW3L+1jiqqFlxO4ZxmUcoHWIsXeK+4erzJ+3fmTIqE0mtKpzlYdJlmEXCGwdoMr2NM7vBmWby2RnYGNQuo9p+pe6eWLfkZjQWzDmay6KzCQLI7Us0x6+9SbI9XX+eX30VhKX5rnY2P3uN9l2/y9+58hFkRcb4z5GNvu0LnqaxyEix5c77JleMtAmNZTxbstCZEumwaHYfKcSaeciE6ZicckrqQ7/6q38Z5xRfT8+wEI55c3+P5vW0WW/53ZLE086Zl2YhmlF5qToF2zJ1iOksIQlGChsaySEMoFbpVgg7Qha7a7UnRtnOvEs0pjztTkHcj6UG7EjRFcCTUS5NWTdJP2XmsDtsOxJVyxVk0nPpq7ksQr++rOqg3DCpqAV/dO0BD4yXzYCK2CrXUC97g1TlHH1d899PP8eZ8k0Bbhnmb2+O+tAucxJixwRQKaxPmpSItwCRSR4qGQm+Opp74WDHfTSg7nrLj0JnYRKRnHPMLXkR4/3/AzE83d742OsNL7QsA/OLoXZRe80zrOjeLTQovhlo1l/yg7DEqWxU9LWMRLTgab9IKCvbmPXY7Y8Z5QisSGAYgrwy4QLbpWjkWo4QwVUQT20As9XnZqFKOnWCXnGxwC5wI5PUQumCDMp8omC6DsmTpqwpR2fb7BmZZ9TJfPY/6PcA/1A63hlxMVrVwq2mOlsosX9E69PgrmsUWhJMlzbHGRwO7XATkBKvHWrJyaYv3kC8WKDoy5ereljZampWJh40cu2hXRdpU4yOPKzTeOLIiIC8NFwYjRlkLgMks4TgX3/JpEbMoQ9IyYLaISfMQ7xXBCn5ajxq2KNvLnYSr4AFXLBv+ukhRWkM4kbZuZUuTV3BNLRF3lUJRV92GgoUj751ayKvFs+xFvPcTr/D8zz3Ncx+BRRFgtGcaxQTa0QtTCm84Hw6ZxjEvlbsc3Bpwz0Hx1F0OZ23SPGSjO2e3M+aLxzt8/+VPs1/2ubbYItYlZbXypj4iVI7JkyXdnSmnZYUPBPdTU9ZVmThAWWrKUpP6iDI3mE5Jq50xB9RxC5NKQbxMFGVLkxyVTBcxcSfHRZJgrdIDZeFTjc++suLmCDRiodWRDQKSA8XBuwNa+56yAwdvs+x8WlMmiiDVzbxrjl0tsg+nJlbPhfUEfnjSBsvgrrXjTDjlpfIc+/MOk0XCbK9DvGfoH6tq1yfNL0A0B3lf5lit8bCRzJ3uLY+NoGwZyjbYVm037ckulg38+VbHV2QwPz3uvbTNs605f+rR3+QfvfkBvuPS84TKclR2uV32cUgrubvFgOOiTT9IuZWuMwjn9IMM5xWjLMF5RWpD2kHOvu8wzSOyIqCfuIb6eFy0uZf2CfZDem8uM8/VL3nVrKi+QW2sH1CUwYMF0NW/rwN7faxlll3DEKf+zkkg91otmzGvZO6nIZca663FRDXLAL/c2gKNMZQLYL6l6d61tA4cwVxV1Mfqs65YDDTHC6BpxOyqY1WT9gH5dqgbEQeIsRFIsKwDes0IKlvSai2YasFxA40NltnStIgIq+bKSsG9WV/85q0hs4bRtEU+jFG5xncsa3VWvKJhcIFivitGX6oqRKlCrs+qOlUYP8KwCCYFZq5QNiLvV0GE5SIRzkqy9ZD4uGC2E5/4zqEqMG+GXGwfc/djt5nlEYssohXnJKbkmf4ttHJ8YXyR7WjCv776NPkwJt4TPvLV7hbd/oL3n79BakP2F10u9oZ0dEaHDFrwywdvp/SGN2abvHvtDhdax7z76RskpmAYXniQV72qAF0YMhfQNRn9aMHBotMUnJ010qSjssYNQ4u1mnY3Y7Ees/aawsaKoiNCIl0a+Hyf7MmU4lGh5AUzxeZLphFqFW2B7+xU442n1JKo6DIgmLtm9waywKNAf2DI5TN7TPKETpjx2vUnql2lUGlNXgfT5W749CJODqBPFUUfpELCyQUveLHPtbdtcWVvi+LNLuFM0R9Ji0hdesK5a2ws0o2A4ds9rUfGbLQX7D+/g72jGg9/XVTGdqW4OZYtuefLQmFei7/cxPzLVf//fzPseskkj3kz3eSZM3f4Q92XSV3I/aLPq9k5Zi5mVkErUxtzWHQYFYmoQ71uJqNWnqwUX2aAR/rHeC/CI4vmfrGGVp55KWISMfKRsRoEVncOS+x6BSqpbnxYrv7aisHPEgus/r52sAuWatLTEElN3xKjqpNb+YZ/vDInlQPUMpDDMrtftdJtrAVUwywU9kaywvPVSuT2XjLuuibTvF9Ny/NLlo187pNij9oetS5o1YH8YVxg2R044mEFt0wVKjXYhZFWbsA8iyicZlGEGOO4vT9gUYRMsojjSZt8HqLnhuSeoftK9AAM5o3QIReP5ZRt33yW+rrUhWWzgo2XlQxdWU98mBEf/5/UvXmwLNd93/c5p9fZ7tx9fRveBjyAfARAbCQoEgRFiqQlkaIluuxIshZLjmW7nLiUxE5cScWVuGQ7jiXbFVlybG2UKMkxZYmkSIoLSJAgARAEHhZiewvefvdl9l7PyR+nu6dn3n0AmZRc1Km6NTN9p3u6T5/+nd/5/b6/7zct+sEOUpPUy+63wUIPf0/GKTmRVOoKTlWu8zcPPco/u+0/cc/KZWpuzF5U4UowzQlvnYoV07QGzDa7YGniuiapZzw32RhVWjDl9eknLs/1D9JWFT65dppLrSku7k7RiX0C5TDvtPm+mbO0I5/xdkMytJZQscwgsbKEs+/GNOoDXC9GWKYwIQkc+q0Kg45HzYuYOLFLMC2obiiq67rg2Wm+phDSCC6k0zHqZI/BjLnHdqBxuoYi2OmkeLtxFn4zn90xMIHT14YH5bNNnj5/mJoTcn5n1vRvYiqX8+cjd3RS37BwlrHrkCVGx1As+V8+PkZQLtmEt/jNiD87dxv6xQbNc0ZhqX5NUdlOTSI/1kRNi/W3umx9aMAdd1/kTQurOFJRWRWEzbw4wTyfSaXkIGWFaTktxOsRju3X/kJ45h+582kO+jt8Zu1NPDz/CkBWzi14obdMtRHSUT6xtlj2Wpzvz6K0YC+u4MmESX/Axd0pJvyQbuzS9AZIAev9BjUvItWCvnJpJRUudGfZCyp4O+JGwvqRmw9gPEZTzj+aUAF1Q5gl37/I7ltDQ14egFCOdQ9j63BjnDz//35FReNKRUN0jDl3U+Vp9k/doSEuG3MrNKXsQoqM6c0cY5zsv9ArLRvA0vXbnbiY5HIBAxkrwikHfyMknHELY4dtKlGtCKyBwQvLUJBakrTjQCOmH5hVlW1nF7nhsWHXEQKitofoWzhtib+jcXqjk11eI7B3m8byUpRvoWwLJzH9UcaNm77Lcx26WJIPcchZUjNL2sk4RUYu4Yw7UpsA5iFVvoUVaf7xF36EH3vwCX64+TR/Y+FRrAXFQbtPT0l2lM/fX/g83wwO8Y6FCzzvBVxtNbGlYskP2erWuNZtMlftUbfNTUuRbMUN3jF7nvmlNq5ICvbP57oHeOJjd9G5b8AtvjAJ2ayEfxzVomNJoiwsqWjYAZNZcUyY2GwBQmj6bX84+2vB+vVJGrM95H177PiTTL2i0FmobfNuwdxMh83tWax1FyvwsEITilG2SXYbHvNh1SqIAnGSe+UqC0NqyxS3VV7xeM45QNqzmewOnxllZx5ubDz1vBo3r2q2IpV55flYN8nQvDJ3vypRoOgndydg5pN1dm7XRvIx1ARTgrhmk1QhnFEwGzI306HpBUg0u0GVK+tTTA5M7HyEyrpAiWVj02H4uH93YJa/GMbclordpEYr9HlL5TId5dOQAVN2n1c6CzwjDnPQ36FuBfRTz9DbZi7kIDUejCU0NSditdNg16liWylRalF3IgaJqRrcjmtIjDdS3RiyN46/5s14kZlHuk9VXTnxl++XZjCyMpRviDoZvpZDJSPHzLaXedFzUq60CP2MHn+oQTqcGArjlsXBC55yzMNgD4YeKWSTgzCQRG2AEwAFUZfIJOmscJTCtMxIN75aiWs2TknoQ6ihCLXMwkj2AFIFlpNxifuKtOOQSnDqUeGp2wNBHDgGNRBI/C2J2xoiU6wSsZS2BGHTQs1G5kF3TYjH2xMjK53yamuIipDZclZhBQnuXlR46zJOEVFCZa3Pxr0Npl/ODG3Nw+qZ94bL3GXqOcFXv/YAjyX3o2xBMCVo3aphNmTlPzpsnbZ534efZMlt8VMrjxEsOVhCcz2eZDeu4ciUVlIhUQZrf6U/xdl0jpfWF4kjG7XtMnNG0jliwhi1rs7k79wbDPlImCWSmYRbh52kxon6BlcGU9TtkDC1cSxFHFuo1KyURMYX0w0nEM0I7442G806/rqZSJPFiOV6iw1nBtkVLDwRD50YV5jQSdavOQupSI06vRGTUAU5V1qRVLbB382Snpc8gmmZhR5NONBJdem5Gt7HfCLISe/y8SAzHpkifj4WGtyvn7zdlLc8dAGAM1dXsCyNUkb42xxEsNOqsWdVaFSz+37Nx98zItJhM1uVliq+k0r2DGa/mz/b3037njfmyhIc8rb5vcv38n2L5/FFzFrSZNnZxRIK34p5YXcJbybGkwnbsakGlGi2Q/N+wglo+z7XWk2iyCKpmdCLI5UhFLJjtuKGWZamNlfXplhIRmOsI6GVcc1AezQmul8rZPAGaiQuV06ADgVmGWLIsxVAniCFEgqFoVEfsi4yLA4q/37m+ZeRMkMPIYtvW5CLTeTyc+WVgpamQEJGFMVG5n8UWGEZZ9DCisRtM1KJV26Jb2FF5kGNJo13m7rGkyqog5Uu4GdaGviWiiyzHHU1abeC8s1DaNvgn/eI6xp3z3BdeHu6ON7I/XMFncMCsetkY8VQ/VoZzjyf+MzKJ9sn4wDPY63slwvJHnYRJVghbN7ps/gIbN5dY+5p009mFWCOu/pwysHDWxyot7hr4gqBcvjNJx5k88cHBC2Pr//re6mum2O2j9jMnumTNJwCV14wDEaazTsdkrpm4ckUkcLa2yRb96X4qzaDwxHBrI2rhPFEO9ygLpQ3nVXBrkZN5p0Olm1ElS0UkbIIUgchNHtdk3BWgYVyNXIgsPZ8CCrImqZ/NCZq2kw87fHc9jGsxIhEOJ14BONtNZzR0vu90rmUkpYmH+UUIUZlCwaz0tAv9PJxP3QyclSYTHRWCCSKe6ilQNekWZXmBUuZ45WfVz4xj+ijZkbd6cS8tLlAsxKQrlVJMWRrtshw8yEoD5Sjack6/qZg4XKKvx0bfdQkz6+oTF0rgyanBpSQVLKw6F9UzzzHII835ZoS/SC2ebBxtuCsVlqy4LSYcvu0I5/H1o/y4IKZLR2hDMl/4pIqiRAax0qRUlHxFYPYoRe6TFQCPCuh5oQ0rIBES/qxi73q4fTSfc+v7J3ng8Ms40bjb+OeaKGNSAkEkmaqK9lrgUHPCkT2w9nmJFUwihgpD/Jc2Sg3xKMMjNwQ0gFuKB3OKyGtUBdefuoNvfzhxWLciSyBaIpu4MjffYUXNheJnptk+Wtx0Q+m34YFIeXYpCHoH3pIVqDxdxVRQ+BYAhBIxzwkOR+MjKxiX7sHIjFCwzlXijHQqrgHyhJEdUk4pZAZIZjTFXiZtxdMy2yFMfTsimv2RcHLYrYPaW3NffKKCa6ynbJ1Lyxi+nD1wZph2nMkwZSkv6SZ+7pN+4UlWmKJ56u34Xbgp37uy/zpv3gX6qThK8nHjG2iHYUhH5+gtG0KfvKk+uyzGi0l6/crZNs85tYzDWQa7WvEi9vpKAbKZdLuF9q6S26LQDnMeL2MJkPi2wlb3RrdSIKysfoSqy/w9sDfAn3FIalCb1mTTiZYuzZWIIgbDjJDfil/H57msZY/A8o3kNDciNt9TfvWlOoVC6+VoYqS4XNQQHgjTZoJoQw5+0WhapTUsrqN6MZkKDBiyPP3dpSgnpzm+qJi4oIJsya+cWScnglLKscUmFW2FW47LcKM+NYw3BkNq2WFEhmNBRnn0o21Jm/UviNjLoS4CHSAFEi01vcIIaaBPwCOABeBj2qtd4UQAvgV4INAH/gprfXTr3v8bEzuZ9CVI/ha6wQTfsiyvcvFeJZY22ykDTaTBnUrRGtBGNs8vXOQk82NYt9UyYJbYi+oYAmNbSkGkfEu8lBML/aItcVGv0Fr4OO0TILyZhNMmVsk5x4fL3IYj5uXjcl4MrV4hX09+yHPix56iKVWNjBlqoA8ZFCU+9tlA69H4I0yxdStl2ouyoZcOcOkZj4xFJ5hiWTfJGk1npXw8MGzRCs2X9J3s/i4kR/PJ8Jc9SbvHzsTJ7CDtKiizK8h97zIaGlFLLDyUFLGpw5mHPk7uhBMsPtDCtThdWo6hwVkvNxOR+B0zcMTTlHwjdhBeXIe8mTkY9Xp6psq7eRefe2SObHamqkkbB0TCGUTTcDSfats3V5jYaLD6lcO4HTh+3/mG/z2I+9EvS3F6mZ0qP2EtGrjtRXKt4o8Ts4Vn48dpw1JVRQQ2RwPrzyFqCf4Z32Ua6CgyYQ/5DwpCTRIgLbN2qDBlqyRKMlypU078Zh0BmwGdYLUIVaGdCuOLUOL28+4RLJEfWXbeMR6F2QkaU9K0ukEte1S1vcVsULX7IKHZbzdkBzPnIhgFrwdwT1vOcf5Z08aRavSpKocMRQ5STVxVRJOGufA7Q6rfIfaA7mDNqQOAG7MJ5TCLctf7RPMeyhbsf0mQVzXVK+PcjjljkTutOTjz+mkpggxyxsZGyOL5ztJzETAn4cxz9q7tdZbpc//APii1vqXhBD/IPv8PwAfAE5kf/cDv5q9/n9q22+ycDrTfGT5DBYapSWXoxmOeesoLZmwA440ttns1WgHHqtukzmvS5J55GFSqnbTglanwsxkl/XNJkuNDpGycGVKoBzagUev59PoZNnuaGjIy0Z9OMhEUeCyX7gEhnHzfP+yIc9f8wFe/NYYJtqEW4Yex+hANK1cFJS3wuhmCJmyoDIMK0rRZuCZbLo5bq5mlE8EeXI0534pEp6lpGrule8dNVqUg9ShboXc/u6zXD97DLejRpLKeb+U4/Ljqx+7r1C2HBp0lcdbs+suIWysUOP0TP4gN+TlewDGmA1WEmRfDg15BQYTw7gq2iyTRUZpq9wspJSlHIzXPrzPVsZBn//PQOsoiLau/FjCod/XaOkQTkrCGcXHbvsY3//43+LK5hTS0fQX4HMfexs1oLphJtvKWkhatUldSWXVEI27QUo06SJiNeLZWpHxxmWqi6V8VJc4bQtrw0Y5muqq4axP/SFk0lAqmPBbA5g5I3ntlRMmdOfAhQgG84YsKu8Tr2XGUa2nqelMWjDjsnf6ownk2rpCpjadIyoLj5kq25tVeBZjo+TU5H2gZSbt52lat6f8wMy3+Xf9E0XlZ07WJaySh56a9257OD5zHqSy+DpQGHQRqxECrhvOMyvxr11OSH2b9XsrrNyxztrSBC1Ro7JpxkOyKAyXTpZPK4tzqFQWebayu5imsrieceGYN2r/f8IsHwIeyt7/FvBljDH/EPDbWmsNPC6EmBRCLGmtV292oPISf9wbnnlgjTi1uLvyGp1MPWg7Mln6VmKKRo5WtrhQm2WnX2Gt22CQOFhCobVAIfCshIYXEsY2QmrafZ9ms19gzyvVHp3Ep9WuokILb88YnfGwQDlckg8umYDTSUcM+IiOaZlkKlYFJK/4f2mglPcve/h5lWG5gm04WHXGRZEdT5aTd6NY+LwoJ/fOc8NdRsHkhjpHAOxXeCQTjAYoQ0OeL3OF0qQPtOnGHnU7wpaKuhPSW5J4e0PvWzvSGJ2bPMx5M56mmXTsAdgDwws+IhGkTSVhngi2wqEhH09Md5ct0Cl2X+D0DTNkNKUQuYxXmqm5BwIkBWxRC5NIlBkOHSiMoHLK9zyfaIel/UJqLv2o5tAfJYSTkve953FCDVP/uUb9Z6+xcPgS13pNWp9YZrAg6GOShzkXfBFaiVNS3y76xd2LCGc8I1DRMTzmuXOQuoL+QjZmYlBVwwzptYYKVuVWXs05PV1wBYFhzkwqYG/rIgwA41WuorSPLo0x45S4LUlwMmA38Zl+KSGadE2RVe7clHjey1DW/HkpePpdQx8xd9cWz/YO4nZUEVoqJtcsVJc7RU5P4bbNRBZMCjq3wOLda5xobjLrdVFa8EpngdXOBLvtKmnLNY+Oq5BOiuo5iEQgB9LkhAbGCfB2DanWwjc13QuLTMSG1sPpZU7EBrh70Uhy3DRvhBcmpzAw93jo+N1sortZ+06NuQb+TAihgV/TWv86sJAbaK31qhBiPvvuCnCltO/VbNtNjXm5lQ25sgTvXDjH6eoVYm2TZsZpkDr0U5cw41wJLIc7Jld5WSxwYX2WOLGwLUOs34scGl5EmFrEqUWaGKyyZSn6kYNjpVxtNVmptlADG2/VHkExwI2x3rwZL9gI5d40qVkWaLhJAZGR3BqSKUFuHPLSYzHi/Y94t9YwtDJS7h+XPetRT76MopGJGNUareREXBRGa7zCNN82TgQG5hxOzm0SZQe1UDhCkdRyw5wOH9qajQxSbEZhn8CIdz5MiA4n0OH1jnqCVmhkvHLGweJ8Y0Vas9m9Q+PsWjhdU9yS1A0DpIwMKyTkSeWhkpCRyzPHsUIKrvg84ZzfHyBD4AzDUQDzn/FYe4fi2rssVr5TAHhDAAAgAElEQVSS8iPNb/Hx1j0MZiW/dfz3OWZXOPXoTzPT0tSvG9KxtJJ5iFV7WJPgWGYspaNl+TlpVa5kH1dGmSdzI+hFw0R5PibSUsFafs4FIVuS9+3QSyyv/MoQ1vze54ySyjYTcM77bg3gxMoGF71puq1atnpx8FqqoBMWWXVtfo+juino8lqGH763IrDv3GOwWufOxi5f+ON7WRwMcYaq5ATJVHPpA4JTt17l/umLLDgtFp0Wk7JPiqAhjURkP6tROVFZ50z1EIcPbyOFUbG61V8lUA6byQT9TFP4YjCDI1Lm3Q6zdscUGiY1zrQOcKy+RcMK+IPzd/OjR89wcTDDc5tLtF6ZZupF40T5eyaGXpbDK4e6ivH/BiRg+7Xv1Jg/qLW+nhnszwshXn6d7+4H57hhihFC/Dzw8wCeP7nvgWSqaScVpq0uKYI4K1HupS4vtJc5UjMd31cuTXvA8cYWO4MqSSoJE4tUCZqVgCCxqToxSWrRa/lMTPUZDFwqlYh+4DFZ77MdVpFdC6cj9i2j3c8QA0VcDsY88tzLzqGJjrwB1jjCe16i2B0n/rH24X254XfkENJX1v8cDbuIwjDnD0zBmJhttwfDOPkQPTM8RlERKYeTSDl30FmxmMk5Z9B4MiHWkmApprti0zphU78imPl2MOQziVUmnjG6Asqxx3nfiVQVOqIFF4cqIReiYdFHPomWvb29YzZYKZVNSeJDWjHhA7RJIJJmFXiVUtgkECDyzxq7b1j4yCZXlemo5r9bXsmUOc+XvyzZvkNw/R0Wjkj5zc8/xN0ffYWv9o9xy8Q17BdqaGm0JJVjKALyZKHpk7QoKS+Po7wQrfjcTwgnzXNiB5DUM+yzMDH1sqHOV3emP4fjYEjmZl5Tf3QFVx4XhSLVyCQLZLKAiHyCM1w69x+6yFfvOYmwFdWXfBASLU3/pq6ZGA0pl0lcGopiQecIWLe1edeB8/zptTvpJh7eDnQOOPSWBOFtAx46cZYFr812XOORCyf4+H2/gSNSriTT/NNzP8BSrc1fmnuehjWgpzwC7WChebJ3lCe3DtOLXA4f2kZpyUbU4IBreJ+aVo8FZ4+XBiu81FrEsxI+ufYmTi5ucqS2Y8Z36vDo2jHePv8a4ctNtg/WOFbd5O6jl3lpcYmr906y2plgotblYG2XS91p9oIK65enmVpukX5xht4hxeG3XKcT+ARfnkWd2R8Zd7P2HRlzrfX17HVDCPFHwH3Aeh4+EUIsAXnm8SpwsLT7AeA6Yy3z7n8dYGLigN7PWKauYTrcU1XmrQ6baZXttM6s2+OVoEaobCbsgEHqsBdXmLADZqs9YmWx1m7Q7lTp9kwoZW6qY2g8HYXGEMP3ej6Om7DXrWIJjZ6KkZe9jKFQjRiX/TzrMpZ7PMRSDq+UE1WpKwt5rPGwyqjnvT9sEYzhyI9lDYyBy3+tDGvMPX2RasSYJzvO7WIe3uHn8rXt1/IldjkBKBS0b0uIUgutBTJDFa33J5ADi513RPzgm57jcm+arbUjuO30BhIuNdZved+TMU/mbI1ibMLNDblMdYnXY3gB4ZRD56iics0qDHmhBCRMLFgqY9SFNn1oDUQR4kIbREneR04vX/lk/avMPnl/GFrkYb8oG2a+rVi/D745uIUPPfQkRyub9JWHQlHZGhrWoSi3KOTXiusM0kJVHoY5l3ICMA952X2T5HX3JNGUwukMDe6wUG0YLgJjUMtIqIISoqRNO1KgpvPJdBja22/cyFjzradOMH18B8tPSQOLcMogs3KP3lwzdI/HzK60ONhoc2l3it3NOr/44GdRWnIxmOFH3vZN/viV0zgPdXjn4XMc9HdZcvb42NX7+eD0c5wLF3iqdpB/cuUvcWVvkuRr0/yDv/EHPN09zP998UGm/AFH6juZsxGzGdVxZUpXC766fZwLWzOkqaR7i8ei12YzapBqwbX+JOudOv2zk9SuC85P1EneJQkShysbUzgXfD47WGDhlZTPcg+NN21z/+Jl7mtc4P2TXb7Svo3PXjzFZq/OXK3LHdNr3Dd/iW9uHiJIwduSvH/x2zzTOsTtP/kcv/7p9n6P3k3bGxpzIUQNkFrrTvb+fcA/Bv4E+OvAL2Wvf5zt8ifA3xFC/D4m8dl6vXj58GbfaCwHsxZvb5zjejzFjGXKvLqpz4zbBeZJlEU7GZYotxOfqh0RKRvfSUg9yWCnAlKz51RZnmpRqwcEA9fgZwcWlp3ieTHXLs3gbNtoYTyRpCKR0Sh5VvkcTRzMbC9Xj+3HRwLckOQ0ZPzlBCc3kAKV4+aFoS893MP/3xhfK9jicnpWhh57+eE1HtGNuPSh+PSQmvdmhUfDSlSYWOoQpoYyoZP42EJx9soCzlKf5WnDTf7B+ef5pR9aYenTLpUsHBI3nBv6utzK3rvB6w8x+ePiA+MTYDTpsnOrRf1SFvsdAIgisWn3hmIUOcLFCg3czM5j88oUIOX4ewPVNAoyubEuhyrGOXPyPMYtd13nl194mH/71t9lLWnyePcYz4QXimOOVKq6osBNl8eF3YkLLz0fb4kv8HeGSdG4asJzSU3h7hlj2Tme4rUkTt8QPOWcO7kXXj73EX3WbKLKV2X5eZaT3nkfDEMzWSI4BjLa5ckXBTw3w0I3m3AiQ2LXXbb44E8/xvubz1ETET3t8kT/GFUZMbPY5dKxWbbiBn3l8kpngct7k9h2Su1zdc5Ed/LcX93glokd1lsNfvGrH2V5ZYfJSsDurxymJqE/p/kPVx7kUH2Xe+cuc33QZNLu88T2Ea7tNEkuGY4VfXuHnbPTqHrKX73nCT7+9H141xyUA7VrgtkfMdFjpyto35pw4M8Eg2+tcOXHEg4s7hJNW/h2wqWjc9RnO1hS85kX7uCRi3dTv5LRKr9J0DrWZ7dV46XuCs1vO/g7iuA4NO/b4Avrp7i8M8XjqyfZjZ/iu2nfiWe+APyRQRxiA7+ntf6sEOKbwB8KIX4WuAz8WPb9P8XAEs9hoIk//UY/sJ88krJMuGM7rbMaTbLs7BJohwuDWQ76u0x5Rr8zTo0QRd0K6aYe/YwzesIP2N5qGPSD1KSpYHVvAttO8fzYqI3bhqITQPYt0oqmv6yZea7EneLsjz+FGxOd5eKY8n7KMhSpqmR88iZSjTUYNcT5d8uGW45B0YDCOy+3stc+6s1D7u0Pl9eihKOmtK0cM73RqJdx7EWSL9VEDUmzYvQiPSshVhYXe9PoSFKdirj21DKXGous3TnBwudc1h4AeyWh+Zka9etD0pjX6/PcqOffy7cBN5Rja0uQVm3ah220hHgCZDkM0jH9klYyeKWgUAhStik6skKTOHQ7w4Rmjju3x+7buFc+RBgNw0GrrQkqX2kwfV+fV6NFDnk7/Mfdew09QnBjbqLc0qqN3Sn1U1Z4VV4F5qyUVgRhs3RuaY7PH3rSeYitnFPJx0N+LVqKLCFqvltOlJrPowVW4ys60x8UYyeuCbZ/tMeDh16jYsUcrmzRkAG+jHk5XGbS6rGXmmK/E+4agXaoW4ZFctbpsD04Rv9cE+VAf0kweVahfneOJ++a474HXmFvpsL6xw/TdwV1Ulq3WCQ12D23SOW2mBe6S6w0Wjy6fpzFWpvGQsh77niUi8EMn3j6rUy/LPB3LT6ePkDlqs38t2KSmsGS9/7dChOJxu7FpBVJfzZTG7Nj3rf0Eqcrl1lLJvnPzp28/MJBehKwNOFcSjht8jLuniBMJLVGQOOPm8gkNc5VAIPI4aOHniaet3h2+QBfKonqfCftDY251voC8JZ9tm8D79lnuwb+9ndzEuMJx7z9yN95hL5yGaRGkDnNRtJuXGXRb3OuM8dKtUUvMVCr3ajKIHGwpSJVErcaEQkHBMRtj8p8F88xtJy+G2NPpigl6ezUkFl8tLIusIM3Tj6UQx7hlIPTTUfxzDnyJVOmLyfzxlsZa17elh9n/LvlFUK5IKbc8glheL4U51su+skf5KF3OSwsulkrJxzzeDVA94CkmtjU3Ii6E+LJhLW9CUgESgsmT28xX+vywtoS87spM7fu8TePfpXgzQ4fv3wv8e8t0LgSmklrzKCPq8LkSWUx5o2Pt9YRU7yiXLLqVEAZPLpITRzZ7g/7x21nGqTRsFAn95rLXmvij65MykYwR3Xk/ZLj82UEg76LqMBmWiNUDk2rz+9cvQ+r5JnnE1JUN2G0otLYEqNCEr5V9IFQhv8mmffI+W3yczbJZwGVFJlIctregg1TDif4HFpYrhR2+qMJ9vwaR69/qJSVuhlPvANOD/ydFCtSXPqJlH/5wB8wb3VYS5t8cvtOfvOVB5ip93nf0kt8ffsoH148Q6wtDrtbXIjmeaZ7iIudGWpOyG5Ypd33TcJ6pc/BN21z5S2TDDar2C2LJ79xKzIR1BzBsb/yKv3EZUamrPfreFbKlb1JOpcn2PKaLB/e5tXtOX7xts+zaLe4HE7jNQNEWsfppKCMgb30UcXhlU2ufHuR+kVDsVvZNoRZ/UVB5a3bqN0av/2pdzN95yYNL6Rix1h9ydwzmvX7BPWjLZYm2ry2OQO3KDygu1dFHZU0Lyh6S5LTP/QSe1GF3/vlH6C/KBgcimn1Kzd9Bvdrr+MH/BdsIi+KGRZ4bLzVoWkNWAubnOvMsZVM0FcejlDsxVU8mWRLeY+aHZIoC9+K6UUuMsu3um6C7WYEPq6i06qQKsHBqT0SJQkGLlFogqQyFDgtYRJbcpj0uekpl6BQcdWEZcYNahnKuB8twE23x2pfz7S8PX9/s8/5Mc055uecveaIlxL8LPes8paXGI8zOOYGYjy+LiNNNKGJE4tUSZQWXOjMcGh6l++762XuWbzCLxz7Cg/PvkKwXqO3ZHPX3FUckTBjdfnJw49T/YnrY3Hy7DdKBrtc3l2mHC7zo8g4RVuC9tGKYc2zyaBkJo5sD0yFqExMLNjp6kIgoSiYivLYc0YHUDBVDr3ToQerC0KnEQM3lhgXqcb1EurXFX//3/xN/vVzD9GwBrRfmyz2ybHPIoXdU6X7GCVDMqqcNiDrl7RqIxNN0nDICdaMwc4S00mWpO3buG2Fvx2bEGLP0LU6nRQ7g/M5PYXTVcU124WcnllxOP2MIiEZGvTcIQgnjJHTEio7isaVlL2TEP7CDh/95c/w79/+W7jZIDwbLvClM7czuFZnb+BTlRG+FfNE6ygzVpe+8vinj32Qa/1JHCvltsY6tlRM1QYcf+ASH7r1ORItmagGyEZMMpUU4cpTf+0llistLu9Ocay+yQ+tvMDlVxdInpjC7kusts3mMwssNLrUZMSi3eHe+gWkNEnXuGEx+W2b1IPDK9tMeAHugR7hNPi7qmA2TCuabs/He81HKFi/NsX5F5c594Wj1C8LBjMSBHQvNLnwxCHcp+oE12t4X57gtsOr3P2hF9i91VQcv/yx23j5hYMc/alXGRxImHrmu0eNf8+U8wMjybC/9tEvUZUmdHKt1eTblWXuztRobZnSTnyWKi12oyq9zKC3Qp8pf8Bmr4bnJDhWil0L2NsxEnG2m6KzmI7vJAigs1eF1MRInd4ockRbojAYN4MYaplVGw5uNL4w6qHnc+cI7K4Ee9wvTjweShgJ37xOOKI4RqozabHR5GhhhG8CWywjRfKl9LhuaXkfbRmV9iBymK33iJTN5fVp7r3lEvdOXOJM5yCvhXOc7c6z8Jhg/f0ht1bX8WWM0kaI+YeWnue3fuF+rM9N0riS4vSSGz3ysQKO/XinlWPRPeST+MbTBlEUFJU5bFJX4HaH1Aa5XF0eVsj1XbUkk5EbDZ3AaIiq8HgLDvzRc5SpJtiskLoCf1vTCW1eC+fxtnJhDlMBWIzBI33kI87I/VaOhVUqxy/GR8JIyM1cj3l1OwbV4m1aWFGEiBVOqV/Tqo0c5KuHsnMhh4lla6iSBYYYLSwEOsDtKKrrCTIratq+w+Fv/8wfc7t/jbPhIoF2+FrvJJ3UJ1Q2Fop/+K5P8RsX38a/vPUP8UXCsrPLn2zdyS+ffw+pknzk7m/xA83nuZ5MAXDOm6MVTNMKff74ldMcnt8hSgzHuggsVD1l+rYdbq2v87t/+i5Ov+Msn7t0itvm1vkn7/1D/vcXP8DUHzVN+PZtMedfXOYfbn6YP3rg19hMJji9dJ29j+xSd0Iu7M7gKKNatT2oEoU2XmT4/mUKnSOKA6fXWNtrUL+scT+6TjfwaPgh1+xZwmlJ9UibKtCsBOw8tsj0Swm9I4LGlYSdf3+Ic7cLpl9TbN0JlXWJrqScefQkB59IiRoaq//ngGb5L9VyQ37pAzad1OdARvrT6/lc7k1xsrZOrCWD1KFixUa02QloxT6OslFaIIQmVZK9bhXHSVBKYvsxaWxRqZgYlGcnSKHptIfLGG2ZGKLTNQ9lXopbNpjlySbnJI+bEn8nvSFMAqNwxvECmXFVopth2fcz8Df7337IkBx7W/Cml5A0ox465InNG+h0S7HyGxEsujiucoc5iERJ9I6Leyyhr4x49rN7B3jxsaMc2Ip5x4lzHHC3h32lJX3l8mNHnyH+ry3Odud54sIRJr9aYfrFAd9Ny4m7qlsZVW1XUOZXzyc0p0eB6c4nLbeTGnhgzoYZKrQ0+YeCKTLWBctjHlrICZ3KiedyghpMmMRpDYmWvIsev26/g1qfgqytu2yz95aYw5+ASiXC7gyvy6xYUrRrj8iaWf0ENTtasShjbYq0NERNQ1NQuyoyg1+qit4nNJVvL09CCjNxJRVJb8EiqeXcOZr6pQHaEmy9pUo4DcFiyv/08Cc44a1hoTjibhJrG9+LcUTCnqry337zr/Bn33qA7vGEf9N8D6+1p6k6MX/30BepLYZciWfYSer0tYcvYv6viw9xdXUa20uYnOijlKQfO7x75SwrR/doWn3+2XPvY+OVOb7uhmgBz3zrOACvSsU/33svzUpAa2GSyfMp0084HP7xc/Rij3+18TDX+pNc2p1Ca0HFjTnU3GOQOLx6cRHRtbNxZUJTTg8aFyXXkiXSiib64T1ONbe4wCw/efhxPlU5jSsTWlGFKa/PHY1VPnW/Tfseif/kNKtv00y+CvN3r7Nzssry71QJpgS9wxZWJLjyA4CbkD7651M09OfayglQ5Uh+/vu/yJKzS6xtPJmgUsGF67NsTDYACvL8qozYSBooLYgzRrdW6GNJRcWLaHeq2E5CmlhYtsKSpip0kDg0vYB21SfouxBZWIF5KL22KrC1IhWF0R3nJrciRerKQsg558oYb+OY6TdqZQN9M2x73sY1Rvc7Bowmaocx+6GhMR6XGEFkwBDlUE7glRNheYIsr1LUjiKJLfqxw+ZuA+1qnrh8hLnjXU7W1rjSu43JV2HztMtfbr5GTYaFqIgUCk/GdFOfbuLRcALuP3oRjsJz68ukzzaZPKtw20Z9Zn9VJ6sIsTg9VayWVHTjRDvSXzkNb5Y0NiiLYZ/ZA1NlaEeqUIjKwyHlXMQQnTRqIEdXD8Pko92FoGuy5nlYT8ba6Gq+zqNZIFnyvEHJ6OYoLDCc8E7HMiGBZkJt3XDepO6QQqHMxukBSW04nvIJUCEKvpPEF3htTXVLUVkNsHohnZNNBtMS5cKHP/I17qhew0JxPTYedU95rMdNXugs8/OLX8FCk0QWjY4GL+Wx504iKgkL8y0e7x7n5c4CZ54/iogNJ463Y6CV9937KpfaU7S+voA+OaD7mUUeiRaY+dGrXFidxfUSVCVlN6hQvW0P/egU1Q2FfnqS1jFBx9XYnkH6VHYUl3/7OK0TEN1t8f7FF/n2+XchAouen3LvwmU+863TLD5q9H1FqolrEjtQON2U1JXUrwvWPzrgf77903xq5y186MCznA/mqdshz1w/QLDjU5/v0Y09LKk4OLHL9QcT+pGDdTomTGyUEmydtmmeVyx+TZhag4sWqWux+RfVM8+r3XJDdDWa4YC7zYzTQ9oKrvs8MXeE++cusho0aTgB23GNmh0RRRX6iYNvxUCFKLGJIgspFUoJpid77LZqtLsVfN9MBJGysCyFtDSpMCXLTndYjmwFw3h2ufAkbzkypRyiKJJReVlxHs/O93mdStB8//L/3iiEoh0jVXcz2t2ib9MhnDD/nK8sdKZ5mcfGxw26SYSNe+Oj35GRpnW7BDfBdoxhjAOb9939POuDCQbKZTeuce7pgyzvphz4mdeYs9tFEVhbVVBaEiqT6A6VU2h6JkpyYHIP/c4WvNMYllbgs9epEO/62G0LoQ0F6eITEd5aSGWtb6olMzTLG1EGDK+1hCK6yT5ycPNj3Wzf/PcNtYBtKhttk4StfU3SnzexfOUY1IxlKborNg0/RFsmoald+4YJrLxqlEnuTVNMOMo20MCpV1N6J6B6LTAam6UwHwxXbTCM9ZfZLJUt8PaSorze3zQrpWjaz8imzMTxv/x3v8X1eIov7Z4iVDZvblzjwmCWGafHxx9/ALttcaZziom3b/DuW1/lqeZBWGvgbViE87D3xAIvP9zm3TOvcnZ5jsnfabB70mLxiYCNu3zUPYL19UmYVdSfqVBbV6z/YMj7py/xcwcf5VcvPYScahGnFlP+gFWmiGuCYNqgXqobGZ3wIYeNe8Fd6nJgqs217Sa/9tLD1C+bic/flXRvd7nr9te4fqjJ1pPzJBWNONzD92OCwGFlpsXli/PQc/lfX/xLhKHDo9fuwAoFjdcgfmiAiCUPLF/iq5eOEoc2GxtNaNugBb0UU1m8GHLP+1/mieePM/m8zd6bEmSQ8fZ/9i+gZw5DQ9lfcA3pVeKz7O5y2NtidrLL9uUK11+ZZ29yg0RLeomHFKZUXApNN/aQmcyVlIok8nD9mLDrEXgJrhcjpabuhySZQK0UmunJLu1zc9iDPJOfxz31vucHuZGVKARRXWCIwIecI/vxd+dtPz6SgjWxZOxfL4RSnlzK5cA37dsxY1+WrTPXY/hFGCveLSc5R/YfwU9nkLOGRkgTZrl+bRpCo1gzSByu95s83TvA/FOw9oDFh6fPF155Hi9PEaRZCC2X+lNa0IuN5x4piyi1CGKbfuARd11EJv4sQ8Hy1wKc7b45ryjJNKatgpslrdrZtaqbTqrlvMZ30vZDIO13/8qomzz+HjZN7H73lMDdI4vNm+uJ+w7ayoSeJ12jaBTntQqj3D6qXOU6AoEdQlKVLahccNFWMhJWKc69hIAb8poM8xNetnKJJmyq1/okDZfVB3wmzytydR+AX3zqx3jwlgt85Vu3QyNm5c17bAZ1vvDqbQYeXFGkVbAjh2c2Vmhv1qldtAknNW8+dZkHHzyPJ2N++XMfYOFJ2Dsmqa5p7E7E4jdS1l89xrG9CDDP2fW3+3z41LM07QF7aY2PLJ/hzf4V/tW199CJfcIZTeOqZueulKl3bXHX3EVWvD3ODeZ5+lfuZDDT4OKpClZPMnFJ0riasn3KYvC2Ho9fvIW47bJ4aIeZB9a4e/YKn3z6TuK2R3WmT5AT+IWS6v/TpPOg4tgnI5QjSSqSwYtVgvmUL758KwDLn3Ro/3ibTlozlcZti7SR4rsJT569BREJ+kua2W8aWuVwymYt/QvqmecPQDAlmHU6rEcT7CR1lp1dDjT22KjMIhN4bmuZWya3qdkhg9QhVDauTPGthF7iEsQ2QWAobh0nJZKaNJX4bowlNXEqGURGaShOLDp7VfwIjHL2sKKvXH03TheaN5HCYM4UduTL0/0ghUOIYubp7MNDMv7d8ffl334j453vW36oh+c8muAd+V8pBpxjkcsCzjCKeCk4YbLkJ4BSElLByVuvsx3WsKRia1Cj98g8U4OEk2+7MhIrBwqDHmY/NkgdVKbNCpBoo/UJMAhd0kQiQgsZSPwtwcJTQ0NeXEvJoMONOYl9ufPfoF/HKYv3g5Sq0oSb3yfrkSED9JGvmddG9rkEBS/axO9lb35tuM2kI0db2Weo3+Sc62Ov3k2+l7fcS089SX9OMnEpIalIUk/SuNAl9W2uv93HHsDuScnkOVVQLf+juz5NoF0a9wdc7U/yH599K4dXtji6tMX5q3PYExGN+oCdrQYTZzy8afjrP/45duMan792G7/x5fcSHQmYecGsjt22pn49JvVNPsDpJcXqXQYpVgihcnhi9wid2KcTehyaOE4n9rn8+AFm37rOzskaBye6bLTqfEse4rw3h2sl7P5Qn3izQuWKzdRZhd03aBj1lg6WAMeJqTxeo/PaAsGs4k/FPP/wg3/CxWCW//Tqnfh2wqnj12iHPnuLFWTf5cJPCdiz0fUE0VXoRoJla6Y/71O/2OHa9QaN5Q7dvSrV412CwOEXbn+UabvLl3ZPceY33kxvRTD9UorXpqin+E7b94QxF5piCdc9ZMiZNoI6tkg54G5zx8QqTzcP47zmsbU+wamZNRNL1xIpYlpxhUHiGNGJgYdSEq0EUWTj1SJ0lhj1bFNqPggtbCtlsFNBhLLg0yhDw3L89niIJQ8HgYlzDpZTtLSYPC9IahIri68pyxpBraSufYO3P95eL9m5b7+NJWbLdLvjE8ZIMmvMcyujFMpe9+uV9JcrHFPfhJy0hmCrgtW1qDkhdSekG3usx3UaVxQbb7V4z9QlIzaScdhG2Y+HykzMobJJlFV45QpBLzLfHUSOEeCOLUQscLr7G/IbzrVEeHazNm6UU1cW3DFl432z7+/XRKxQ77hz+DnVnP0Jj9mnLLbuT6hcdvhbf+3T/J+P/gBzT+RSYrD9Zph6CbbuSzn0KW5QZIIhH3ze2kcreK2UrZ/oM13vU3FiOqHHjxx8lt//tffyfT/1TZ7bWSH8zcWCRyfHlxsx8dHagXDC3NO4LukclCx+o0/q2+ydrDB1Vo2wduZj6bH2CY5XN5hxenz2sXuobQvWz60QzCnkXMB/dfs3+d2X7uGOW67zsruIlIp/96n3MfkyBHOCxram+k0bSEmqks5DfXbuczj4Jy4ihVfBB/EAACAASURBVN6ixcTlmN2THjv3xtjbms++ejtTzR6WVNTciKcfP0FaU1gu3DVzjafUQaLU4uDMHpc2p7iaTpGGFscPr3Nhtcry1wOCGYfNu2yCWYUIbcSaT7QUwC0KZkOE1Nh2yr/4xIeYe+s6D91yls+/dAppa2wnIVqrggSnZZyLxHcJ5hWNM2bqrGwltE7WkQFEz07BLQHRc5NILfiV9GH8SoT95SbNawm1NbN6tU90aLz4+uN6vH1PGPO82UFKvKjoK49WVGHG6wHgiYSTh9a4dPEwlQsu35o8yJsXV2k6AxyhcKWBIaaRwHMTksQCLUgTCy0VzcaAQeRQc80DEAbGKGBrRFeQ+qbaTyb5wLz5QzpuEOzZgIHrUtm0kYmACTIxYo0eI70CcYNRLZNJ5e07gRyWz2cEb1zab5zLZXy7eT/8nHOe5zjy8UKZcisXjYQTEuWlMLCoXLcJFlPOXDxIpRZiWYr0iSnq3YTj77ximOiyOFSsbTqqQif1M8/cQWlJoiWdTEm+E3ooLUiVIEklaSLRoYXTEyx9I8LuRPtqWY70erHCujEvAUPDnCdA833KBn3k2svQ0n0M+rgEWbnfa4s9dk9NgKVRLjSsAYtHttGPzRUEV+6eSTpXrth0Dmpq6wK7E9M5ZNN8LUZZgmDeKwrVNu7yaV5M6S1a8OwEq7c6+JWI/kYNDhrRiyW3xZe+dC8TSpH4Q6WdnNkwv785E2LUFMR1aF5QzD1ruG6Ub9E+BrPPmu96u0YGLa0Yaoqn/+2dHPxvHuGAu8PP/uAXOO6tYwnFtXiKRbvFI61TxH2X17ancb2YIzM7vLxzEDsQ9FcykhcswklB93RIsxrS2vG58sMpRBJvEwZzLnNnYqZeVeyehNYBSFLJ9k6dd5w4x6l3rfPpM6dBaj791FuwepK0kbK9a+O2TLK3tqpZf+EgYlnx2g+bCdI72EZ3PGxbETcT6mcqeHuacLJCUgM3o0m5dnWa++cucmhph1hJXCulWw3Z3qmjZ1LaC9l6ydIMFl2sQNA5aOHvapa/ptk6DZVayNw3jLO3u1FBWxWsQLP6dgvvVAsPY6N6yT6Mf6/TvieMuRZDA2a5ik7qF8tqpaWJndd3eHX2ANWrFsGFCbYnTe/WrIhEWdSdkK1+jTixqFVDVEWglCAMXMLEMl5jYtPp+1iWIuy5CMtIhzm9vARbFOx7I+e3T2w18S2sQHNyaYMX4yV27ha42xZ2V+DvgBUOoX85htnpjnneWZz8Zkb9Dfsth0mOY9FLxnq/1cB4tWSeIC172+NiFzfz0mWkCacy7P66TTijOHBig6oTsVJt8aWXbuXgiwmrD1q8d/o1ZOkgndSnr1xCbdNKKsRa0or9IryS881LoQlTmzSVJoxjK1a+EuPuBCMGvCxUnG8vY88hW81k/TXufY+TmeXb9wun3KyVYazllhv36OUJKqdaeJ9usndKsZPUmfIHbPiCvYcHVJ+qMlhJCBYEupqiHZfUtaiswtSrIYlvFcyRcd1CpJKkBlc/mOJsStxbWxys9+iELmHX4t9+/SGsts3p+88ho9HK3nJYzfSHKGoP3DZMv2Sw/jmnuIiV4fVOlCF4y3I2cVUgXZMEPe6Z2oFAO2yndbqpmZSvxNMMUofpxx3q1yWrb7d4+YBL9YrF5l2at97zKm9/73k+vfZmlBYsCM1Wt4a2NKJrM/OskTEM3tMmflefrX6FOE74P+7+BFUR8o3eCZbcPX7r0gM8/OaXeOSVkxz8hI2/MeDaQzXsAMIpzfSLmrhqpAW1JamuZ9W25ycY3BUhpAap6Z6KqCy2qAnN5k6DaMtj/tZNGkLzmddup1kb8NNHvsEXtk/x9458ke2kzpOdW3i1Nc/W51ZMsdAtSbHs1dJg1KdfVPQ3m/QXNHHdVMoG93VJEwsh4O0rr/HCzhIH59f4onVzeb/92veEMS+3NLDoK5eKEzNIHZ7pH+ZU5TqOUNxz5zm+fe1WnJ7gyvYktYVoJLa6064aGGLNJEV9LyEMzOymlCRJJXFk41cikshCp5JkMiXdsw1NZ6AKweUycmA81FLEXV1Tpj4z3cWaVayLKdA2AWaCkLE2hUiRzuBtQw+5bCSA4oG5Wfz8jdp+Sb1xjxy4gcvF7DtEs+StTIM7jl4x/x8WEA3mNHbLwt+G4HBC3Q3pRiYhLdoOMkq55b4rnPSHfGv9jIJUaUmgHAapQyf2kULTiz16sWsw61rQjxzi2Eal5tznH3FxdwwAu+yVlwWVy6/atYtQS7mVve9yv+Sf89d8r/w7+3nr48Z+PFmdv84/rVDPTaClxmlLvrx9kpevLLLY1Sx+wmPjbk31is3U2ZTWERehoPGBNYKLswBEDSPyEc5IUs9ItM18O8V6StA5CIN+k0srNUQsqOwIJp4x0km9u70bqJHz8Er+2YqMobMiI7KQn7ebF86lmrlnU1MhXZHoaFgV7LYMqup//MZHqE/2edvyRQ77O+wmVb7dWuLdc69wsraO/FlNL3G5cvYo/is+vSMJK0e22BzUueDPmcrhs4vMHdrlxMwmu/Uec36Xp1u3kVQg3awyaPtIJ2VprsVeWiWSFl/bOkaY2AjgqT84jX1fj71jPv6URXXdrCKdDqif3KLuxMSpxfb6JL0DLpU1yeS71nB/bwF/R3L5g7BwZIdu4KGebmLVNNVVQfjKPOH3t/HdmP6fLRD/nMVbm5f55+ffR9MLqNoRDTfk+r1d7DN1Dv0pQEpclyS+IJoQTL0aUr1uiOWCxMIONN0jFYQSqOmIzz9+Gm+pT9ML6HWGJILfSfueM+bOhsNqMEHFjlnvT6C05IC7y7K3x0ZYJ5hXRhh2p8LmRI2VegtbKtqRz/xkl+trUySJRdUPsaTC8yMcKyUYuAhfg9D02z5ag2zZIBihLoWhVzb+8JdbWpF0ly1OVtoMEoetbg1/OiD0HZIdlzgUhkJ1VeNlS7ScOXFcOi7/Xxka992EXfLvjqsYvZEnmcMSgREsuSrxeuznjeffzY+BhOkXwemnRGddXmIZITXrew2mnxes3+/wE3Nnh+ebGfAcirgXV+glJj7ejnwiZaGBKMkERVJZFCNNf96nebZfYMpHrmdMST330oEiTACjNAsKbjDo5c8FzDRSpGOFNEU/j6FgxhPX5XFUWQvZub1CZceo3zx/9gBiYOG2UtKKZP5pVVSRVrY0blchf3WW1lG7ULZJqtKIPcej2PbaeopQFt6ujbKgeXGoPbnVrxa5oTLRWlknNpcRtEKVsSRmqxbfIvEt7CDF243ZPO1T2VZQFcO4e5Y4PfQHEpnWeK1zkjMnqmw+HHHb4VWmLRMyPT61zoVojrvuucw3jh6l7oQ8de0Q/hcbPOqs0H5rAH7K8cktEi1pOAHP/Nkppl/J0UCSndstnK5L7b2b/OHqPdw5eZXTk9d4bm8FSyiuvyWk+mwNp2f6y92L0I5k+w6f//7451Fa8u+vvgMw9MCDW0PiZxaoTAm6KzaiFrBcb9FyK1y8zUX1bMLQIZxTTLkxu7t1/vJPfIMnWrfw1edu5QN3P49EM0gdnt9eIg5t3vzBV4neb/Pi1SXSgcXKZy3q11O27/CpbigGM4LBvCCpaKoH2gQXGjSe8rECjXq1wYV38nrR3n2b0Pq73OPPoU1MHND33Pu3UY6kdcSh9/1d7jlwhYvtaearHW5rrDPrdPn67lGWKy0+9fW7sQaSZD5ibr7NYr1DmNj0YpftTo2w5zIz20FpSFLLKA/ZhlSrt1NBdmxURSH7ErtvioNq1zW1NWMc9lOqKYdaTJxQ0v3rLU7NrpNoST9x6cUuUWrRCTz6PR+94WH3Bf6GoHEtLcq08zh1uWIQuMFzzwuRbmbICyNeKXvj5vVmBFx5wcgwTp5dXwlnXk6QjXvoMKx21JYpIomrgv6S0WacftFwd2z91T72Ew0mLisO/71X+PDcENGxl9bopj6d1Od62KQT+yQZwX8n8ggSm17omtVUkqlCbdY4/rFoJGxk9cIRz3w8zFIW5M1x5zCEKeb9bO7JjTj8skHPvzPulY9D/farFRh3Cs79uEvzRRt/R9FblFgRtO4KaT7j4e1poglB65RRnpcRNC+mBWQQKBSFyueuXIGyzb2IJgzM7fB9V1lrN2hWAn5o5Xk+/Y/eXVSults4U6a/HY/kYZQliJpWMQ5qVwN6B3xWH06ZfNbBHpgcUdQQJBUDe/V3zTa3lRb9ImLF7m0V2u/p84/u+jSTVp9AO3xs9W288Oxh7rn7HKcnrnElmGLRa3PMW+ex9gkO+zt8+n97tzm3DTMjaUcS12ziuiSuioKaGGD77TGT33JRLhz+8AXum7rIkrNHR/l8cvU0/f+wzNr3KarzPf5f6t48yLLkOu/7ZeZd31ZrV/U60z09g1kBDIDBSoAAN3CRKSookDStoCzalBQOWSHZcoRkyQ7bf0ghOcIhU7JFm5ZCEi3aJCVSIiVxBQECJgECMwMMBoPBYLaeXqu69rffLTP9R957332vqmd6QEgeZ0RHVb96y3335j158jvf+b70SrdcyATrz7jzkv6pA8xvrTM9Be137zFNA77/0vN88vqDtMKMNPewv7VGdGjKJirDwX845jvvfYkL0QE/9399D9PThnhb8uM//im20yWe3jvP9vYysu8T3ZZkS+6zeq86HZsiErU9YnjoDJ+f/vzfY7p9/a75iW+JzLzqAFWTgpWXDNOPW9peSui5ltitdImWynj30nWuJqu87bEbfOPFcwgBB0cdfKXJtWKa+cRhRhw64mzkF0ytIIwL8kKhlEaGGnHkIacSlblJ0NpyCnlNXexjW/KFVn6ZWd6+cYtY5YSyIFY56/6QkY64Nl3llf46N/Y38EaS6NBx153o07wJNNg5PfJmYW0xO18ctTHBQjPkYiBfxNDnCqANIa1ZpjYvwAUzUa6mUa7QFt1zHXJFDBfed5ODrfOkyxD4BfG2Yevb4EeWr9SfNzEhqfEZ6qjWoi+sZJBFWCvItXIZeV5KuSrDdKvD/b+QHuf+B3c3fZut7019ncUMHFhgIDXooI1ztgiRzX/W8eu0mJ2f+6RAB8YFu4GbC+994DWu/84DpWCXYOPzrlFndE6hpsZZE/qSdMXHeIKDhx37IuhLMBDvuqaj/vsSNjf68BubTH/mLO/8L7/BU598mMkPfaOxCyuL2qUbvEpnPqMz388C46v63FR6NkUkuPmxFhtP59zza4Kd90B4KCiMIDwyRIe21svPOgKVSYy2iDKJWH4lpbUb8o9+/oeRf+k2b1+5xcX2PsG7Cn7q9GdZU2Nuxssc6RafPHwEgOdHZ3jkr3yVh9tbtXXb71x/kOHtDiLO6PSmjI5afM8jz6OEJZYZV+5fY2fSxROan3v+fcgX2xQti91M+RN/5Yv8zvUHSVOf5Rec+mGyqck6kvjAMJ6GrP8H29wbj3n+1mmKXPH+7iu886Fr/MOrH2F3FBN8xwA+3UPmlp33SKLP9fj00+9BvLfP9KwmOjOm97Ypv/Tqu0ifW6boWLrX3MIttKW95eSAq1pd52aGvz/BBh57j3cZfPcY85W7g1ir8ZYI5tWoJr1Shs9evZ97Vg8prOTGeJklf8q67wwq3r1ynZd7p9CDAD1R7Ptteu2EwCuI/IIk92rbuF4Jt0ykz2ASYUY+ypYSp2NHv/KmM1W8yqFb5Xc2m6j0Td7W3mHFG6MwDE1EbjyePrzHSW3e6NG9ovBKV/m8ffwmr8ZJ5hNNDPZOgRxmWitVcG2aNMzBCWXgb2blMw3rMpAtiG7Vx9eAYKrjrYbKLP1LEnPv1GnivCtDpIpsErI0NFx+bItT3hBTvjiznit6Go/U+IyLkFEeuoah3CcrvVqNEVgjSPdaXP7FmQj56zm6N7PxOwX6ilq6GMirc9QM7M1r475royGnkb2/UXFULEAu0X7OzY9GrLxgar2XJ1+8xLnMknUkOx/N6T0b0Nop6Nx03znvOkKAmjrm/MaXZsWxIpbc+ohk6SWIX4j40GPP8OTVNYpYsuxPSU9pJtrh77Nd3vx19qaGrCtLQTFVa8KozJB3VC3r4JQm4egBp9C4/JLLKiebrvDvTQ3+yBnLxAdmbm46P1vHWfeHGvPTmzw/XsP4klsf9vkHH1X8wMZXeTy6ykX/gLdt3mZHd3lueoFb6TJP9e/lQuuQ++Jd/urDV2k/mtYenS9NN/jXTz9O5yWf0X0FP/Pxf8qXJhfZybv86Lue4ncuPsp7e1f4XP8yf7h7kdH1HvHZEXlXsPKi4UApdAgHDyry1GNrb4nt2xv4Q4kC/s7K93Jwc5n3PPoqnSBlWvhcfX/Axm8HTtNnYAkHloNgiYc+9hqPLm0hheXR+Ab/4x/+KPmyYXzB4A8Fpz9fsPtTEyZHMStP+WRdSdYJ6USK8RmPoweh87kOanz3ZAh4CwXzJpxwtjfgpefO0z29xbXBCt0w5cZkGdUyhLIgNR7f98DX+Y0XHsEkHmk/Ym/q0+45Y4Re5G7+dpBjrGD7YIkgKEgmAXIqQTrLMJkDuRNcOtaWf0IHaG0OUdqxTXRAv4hrd+/DJObW1TXi6z7tZIbFF7H7jCrLrT7LLSACHc+YFFaLuSz9TgXMZlCuMvNF/ZdmZl4F8qb58LwR9AmslwW2Q1Oetfa8zCxSw+Zan2EagLJ4Q8nq5yO2PyD4xOrV+v0SO8PJ9/M2+2mbzHhoIxllAdpI0rLpS0pLvhtz//+d3FGuoImbLwbvkzD1Jm7ujwvytofKyqw0azynNNduGm1bJRq6JzMdl+rcViHyTkG9CdOJ3LD6vKnZQ8JAdDVg93HL0svwnY++wJNfeweDe3x613Kynmszr3aOQN3Zan2JVAKViDrzzstKp8osO2mHhx+6wS8/+27OyqqvoPpOVcu/Ew6rpCyawxvmyNwwuDckb0vCvmHlpWJOjCwcGPyJmyfj0wqso+fKzJIuS4KhQUcSmVvHwDGzc5tEPsFAc/rzBePfPsO/0Kf5n/5Yiwc/coWfOvtZdoseO3mXH1/7PF9NLtDXLRSGv/Xc9/GP3/1PeDXbYEmN+XDvRU5/cID6kKk1m3KreCC+zW7R423t2yTW5xPrT/F06xI//9VNeGqJZN0itJOh7b83ZXl1RDENuXRqn3P392l7KU90rnAjW6N/Puap/XsYZwHdMMXzNaMfHhL//hLpimOsrX1wm/s6+zwUb9GWKctqgvrAIX7qY191phu3PurhfXkJuWbg+w+4tHzAs09eZnzeRwcWs5nyQx//Av/gt96cwNxbJpg3C0aPLd/ixeAsz1w/z+nVAUdTx3K4KZd5R/cmIx2y5o+5/+wur9xexxyGWGGZjEOEgFaQs9qaIrGM8oBeO3Et/7qF7WpEKjGZgye8qQu2YX+WaYnc3DmAlDd3EUk+e/t+JpnLmA73OzBVBAfKtVD77p8VbsuZrEpUWt6I6SyQV0MYUfLcoclHr4K7jmfFuEqytVLrg5ln6TEfzTt0gVY3frNxBOxcFj6fyc0WjWYmqxJL7zXD7a9uwrmpa+nXEO1rzj2xw8VoD4Uhs6o00fUwiLoxKC08MuOCT5J7FIVygfxmm8u/PB/I3yionxTA5yCWitFSnp8qoFeLszc1jcVyPpA3PVUbZ/JEPL1uMrpD967IDfFuxq0PRUzPFaw+o/CHUMSCg0ctn/r6gwTvH9HujeHvruCNzcLnNr+f23n5o9JIYgzDIqoX7StHa6y1xnS/EgIzVkrFbPGmplygjJuXDavE6pyK3NC7mjI9FZCsCHSgaO3MJIqz5QBV2hK2dkU9v65/QnP6N117uz8yLgEpC+y25RIIHQiOLvtYKTCBu5c2vqTZeeEi//POefKOYuvbBCvfPeFXr76d77nwDb6j8zytMOfVbIPr+Sqf3n2Q26MOHzv7MhejfR6JbtAWGZeDHf754fv4zt7zfHlykV967V0cHnawE4/WfQP+1Pc+xXPDszzQ2eFSuFvrBX1lcg+bfp9T3pDtYgmD5Ea6wuOdawyXImKZ8fb2DW6dWkEJw97FDh/ovMI3kjMALHkTXkxO86v/+oMU90/5iUe/yD/53IeJR8J5zBaWhz7+En/6zOfZKXpMTMDZbx/wqasPUEwci+uXfuWjTA6fPvGa32m8JYK5aCQDIjf8yheeQC3lmMMQb90pHQ7TEF9qDIIlb0q/iPnjZ77C/z78MKNMQS4xAx/Zy13xzAp8pRFAoDT9aQRjD3xDtK0wgcMrnd6zrYt6JxUbhba13kp1Y+tA0PMzBklIMg1w9nSugJiuG0QuENYFfzeJLSopMWntpHbde1dB2bXPNzFrh6szM4ooGzwqtkml5tZ0uW8OUwakqsuzkr2tf8rZYjCTwZ09bjyBOqkpphHARmcV01NuQdBaIPcC1r5qmWx6fPf6FQJRkFjnEpUan4kO2c86DIuQwiqns5MFpLnnOOSA0ZL7fjk59rmvN5oBvb5uWQELXpmz5x8vLJvG7kXpSqpgtogde4+gZHOU7JMKulmEx+5UwD79ZMaV++DgXXDmM5Lhjw2IvrBMMQm58OEdtvo97IZHtK8RelGwa4b/F5EiPHDb/P4lyR9cuY9TpUmyEJaDaYvude3m2QlOVzDbbUltZ3TK8vy5BcvQupUQ78ramq76GRxl9fEUkSs0C+WYLTq2pD1J3nILgFDgjwzTdYUwLtEJ+5a8BaML0L3qoA6r4OARd9NFlwb8ztZDdH92iSezJ/jMX76fP3v59/k7f+/HWXo1x0s0K8BnL72fLx4Zor9wi0eXtyiMYiftYHqSkXbdmGI/4Ds++Bxv794gEjlbkx5/avPz7BcdtJVEIucbo02++8xz7Ooep7wB/+j6R/gbl/4Nv9l/B4+2b7KXd/nS6F4+3HuRoY752U9+F/8q/QAbj9/mo5sv81h8na+Nz/G+7/kar/zdR/iNX/92fvyvfI4lb0pHJUQiZ6/o8je/8QMEXsGfPP8M//aZdyASyZ//2Kd4MNpi54ke//0vjU+8Vncab4lg3hzWl9zz6yD/0gGv9Te5trXKvWf3ybWin0Yc5i02giGhLDgs2nznhZf4N+O3oxOFsAIz9BlNPeQpFy21cUW1NPGxgUEOlTOiGDqZ1FkL8zyk0cSxq625DpyNlwkE9//ZFxjkEautKbtaUuQKPIOONEIZdKbwWzm5FZhcwtDHjGRNBTOeIBiAjlwV3uaVUzmAqF1idFhujctAawJR8tdLUbBsfgGqCnvNoaMZj7zJRGnSDhe9J4W2qBLvrAJak74nc4elJmsChDO81bsx/tgSHeTc+Mmci9EemXU68xMTklvXQ5BbSaY90sIjKTy0cXx9gCJX3POzCjDHjmcxSxfa1rod7rvPUzNfr0A6Z/yhLVpJKoihhqHy2a6nLhCqmRF30/morkM0oLGT2ESLsgLRtYDgXYfcft8Svd9dZvzhEXqrxcsvneFdj1zhpdNLRPt67r0XC6o6lrRva4pYMrmcET/XRhjNdE0yGUes98ZzNMbjtMr54xPazjVd1Q1X2iK0JqxkoZUTeUvXAtIlRXTgsnUAceQydpk5emUw0OQdVTpSybL71CVFedctPEEfkvXZsXhTQdGyjA9i0hd7eO8RJPdmyBfW+Wfq/aSrMEo9rPTQkaC14/B7/rs1nm1tEhy4hOAf+H8SqwRLLQ/vtOArX3s7n3n4MaJdyfiBjP9i78f4wbd9la1kiVjlPPXZh3jyj19hJ+txVLS4Nejx+6MHGemQ/+UXf5CHv+slAqX5bP8hpDB0XpOMLhouL+2xlS7xz8YfZCMc8dzPPUp+rzMi+ZVf+zDy0QHJJOCnHv8DBzPudfmuh1/g324/howLwpWcn3/lCUaDGIwg0V+/4/w9abzlgrnInV711qCDaGnsxMOWWbY2kt2sw0YwpKvchVIYPnr5Jf7g2iXS/Rg5lQgtGIg2MtLErYzJKMQWEpQl2pVgqWlAzgLLWWhVn98c9U3qyzqoWSVYD0dOhle1WY3GZGvuVK6GY2KVc328gjaS7WGXJPWxgaYgQhtAgAok2bIL5ManbqO3sgqcAh1ZMCBzV7CF0jyj1MRWybyOepWJN4970WCi+luFmTbO/Nxj85TJGee4hhJ8WS9Iw4tuW929alm6kvLqD/v8yENPoXDSDACJ8enrmKM8pp/HjIuAYRqSlTZzUliG13rc96+yOZs4E6k7ug3V33Hh//VrG3TE6jFn3DB7v7pBaDqD1ircvCreNesUTbvARfOGxYC+qJBpfAkNKMwoQee6ZX91ie59fdqf6+H9dpv9dxlEXJAZj9HDGaeeBX1C/aRm5JTHPjorCW8GeFO3IPU/lEDm8ejqFi9NV9+wO7X+XWt0O0SN02OCZTDrqiUHEpCJJtx3RdrJZkD/kjtfwRCiA0O8V6Am7l/e9V0SVUr1jjcl6YrFPDAh74fITo49CIh23Oe1tgRJ7tPagtauJrvqowPY2z+DME7oLjyyhEeuMe/mRyUQsf1hg9Btzn4Gbn1E0H3Vscr6l52356mnbdnJGtDa9Xhq8AThvqu1ne/m/PqvfbT+vudyze/5H0DmmovZAdN/ucYk8OiXBfez2QE28Nj5+XsQWYFuhxwBq1FaNx+ufB34TUW65vHIB2/yM7sf4/I/1Dx/9u3Euxned4ec/aQgWfOxFxWTdzoJkjcz3lLBvDnJ1v9xm9GfP+Lg+jLXb69wYfOQTpBye9JjNZhwJugjhSG3is1wwEcvvszv2QfId2JMZBCem/gVBCJ9jboeoWNLVIr2Vb6N1ZCNIFL9XDR2MIGg/6cHdMoOjNPR0K3Oasa4OCpadaa50poyVJpCK9INQ56WlLvNwolGZc44w+KyUqksOpcU0rrfxx5i6swzvEllYADexNQ4uZkLaswF6Tu141d4sHvd/PZ70e6sOgeL8q5Zx/GZTewMtKMjw/RUwEOPXeOecJ/cKqQwjErtlXERViy+WgAAIABJREFU0s9jjtKYae6jjSTJfKIgZ/zVVe775OwcNj938ffZd7Un/ny918CM0QIu8M5YKjDbiTR2ZuW50pHbFc2gK1F3kS6OpkKmW7Cb4meyXnijI8Mj77yGsYKXn1gm3nIu7mI75HlxBjHyMGpmnlFd80orv15cgeVXCrKuK2Te+D7Df/PEb/A3f/eH+PSnHuc8+TFoaa6juanWGSlk4gK6zHUNtyzWI5pDaIs/zN2/UYBVcPiAx+2P59hEIWKJzRTtV3zat1wvAkD3uqb3msU8HaJDSbIcMT4P6arhj33703xp7wJ+4bF3Y5nhkUJl0L7p6k7eFIqW47QPL8iyac4xboJDRXAomK5awgNR6/IXbUO6aUhXFcGRIN5z0JRuCbL1gLUnPQ4fs6zeP+DouTVMYPGHkqDv9JuMXyVT7jMnFwrCXQ8dWda+ahlckqRrhvY1J7Pgv+eQ9Nll18ty0xIfGP7W3/wJwoGhnYzpvXAEwH2/6ES1/H3ovgj8NuzffnM9QG+NYG7npWZFbgiOMi6v7HO438XkilQrfOVoay8PT9FayhyGbiX7eZup9jmzMuBGodATD5tJ7EQhWuWWsB+gW5bwpiRdBW8COnOVeDU1NVZ4Jx3zmQuN5Ufv+zLaSlb8MbnxyK3iTHBUUu6c+t9GPOSoNFjwy2PoJxE6FizHblfhCYPBFQFzIym0Ypy4TlVjJMYITOQoemKqEIXD98PBCcd5QpGzDkb+LEuXeTPwVVhp83XMZ5zNwt6iTnfhmh6KltOpCQ9zXvkxjw/0tt33FprceCVe7jHWAYWR5EaRFh6T1EkVT55Z5cKn5wP53QxTd7xW0MXd8XKbXPMmbfPYQqgdJOCXBciK9aFSV8wLBkWJEc/j6s0CcVN/pz7uBgtJaMuL26c4t9Yn72m8kUf3iqT/Nk372Yh4z7L7uI8JobVlkbkiWRXEez6D+yBbM0S3XENPsmE48/AOB6MWn7jva/wfVz5M9xV3bWZMnIXA3Tg2o2a6/EXXeY9aJbDdAJk4uEWNGzTR0r5O5hodzTptgyPX3LU5KMhe8ujf5zHdVORrBcGH9um1J7y6tU78XMzKi5Zox207dcvDm0hae27xfPoP34NKDUEoOe1BuoQT4bpgKe6dYg8DLj2yxatXN4ivBBSxINwXGM9pLsV7bh63bzrLv7Cvmex7mJFEh5a8a0G6TL17HbyvKIxn8fuSyR+sE+B2xXmvolU6brgswFSnITAsvWIZnxUMLgrUFDa+CLJwbCX59R7ytKD3WqmrHwmKGGQh2H9Hl+jIOCmRiamThWou6evzsOEbjbdGMBeNbKqx5XvpFx6k+92HDI9a7B526WzuM0hChmnAZtSj6yd4UmOMIDMekZejMxd8vQOPYq3AGuHa9l0nPyp1GWp4ZBzEks3wzTsFSOPLmvmw+2cm+EJzxj9CCUNifDSSQBSkzJxylv0podRIYSiMYliEbMZD2p6bBf08JtOKwipORSOKEkcex05LpjCOd51GHgMZY/sKbwrBaN4FqUk7hPngXNMHG4G7+XhzLPKljRLHWBmLI1lxEzwYWpZfSRmfCXjbAze4GO1jrEQLdy1GOmQ/b9PPIoZ5xOHEuUEB2GeWOP/7SX2e5QKm3JT3bc6Rueu0IDj2emykxTELrMdhmyJ2gVyH0hV4Q9ng2rsC4GxBnLFehD4u0NVsMqoy+yrr17davPuB57i90YUNSJ7rQa9gdL8lXVeEe662knUFXuIyw7wjiG9DeKiwwtVWrGd5dHWLw06LJ/fuZTWe8MLjCff8ghPnahZQ7ySVbJUgb1d1CHlMQ70pmSCyAlXCCouuVxWnPNpJkZll7WuloFVvmSnLhA8r1r+Sk6wp8osR0b6uj88fOU/dyt2ogpPivVnXK3/gYZUl/ewZLuSWvG3qbH+yLln5hmF0VjLdtJz+gmGyLkmXPaKDWfOTylzdSYdVI59FFqImZHgJGOXMT+JdW2osQd6udsfQfT5AFoalV93r+5cUk01Z/t3NodaOYbKhatKCew9nIp91JFlX0L1hmK5KoqMGGeN1ehdOGncVzIUQy8A/BB7DVYn+E+AbwC8CF4HXgB+11h4KIQTw08APABPgz1hrv3TC277hWH9mwtKP7fLl0QWsEfhSM56GrHQn3E66eHJ+27c/aUMuUX3PFTYTifXdSiczgT90HZ/uwlBbZHmJPhGXrSZ8NUwg+MmHPs+qGtNVjgN60d9DI9jXHVoyZdM/4sFI4guNpuL9emgrSGxAX8e0ZMZIR3RUQr9o1bxggEERkRqfW9Me0GKa+ZiBTzgQRAe2hleqUeG1tZHwCRPAqBks0ByLE2bxtU1WxkkBfXrakp/O2Pi0W4D2f3DKd6xec68VBoWDwQZFzH7a5jBtcTBuMZ0Gzl7uyz3Ofm6etWJ8WQeb+jjvIHQGLjAdk/6tCpuvY6lX9ww0MvOmzEIRSyc81ZalC1BD00Q1O3erbF7MLZjVeV/sFK3qFa624a7L+U8Z/s30/Xzv9z7Fv/3se1APjrH9EJELjIJ03VJ0DCpR2AzSVTC+Rd4/Ittu4Q9dPUcmkt/+0tv5yDtf4Nb+Enk/5OynJP7wZGaQM4iewU6VcqSXaKcKOinmjruqQ0iYU6tU4xSZuyy9eY2MEphI1d2rxpfE2y6ZObvvgr/UPumyR7qikAWumai8Hnksa9ZXcJTVFoB1gFcCb+wW7mAwE7JbKj06V7+usS86OKt7vaBou8Jr2pN4U+v8e40LqMJQH1vrljMFb8KPRdsde5UIFV0fr9SUb/7efTGtF7wKpnLnY8a2qrRuquFPJN7U0Lk12xkaX8x5I9/NuNvM/KeB37TWfkIIEQAt4K8Dv2ut/dtCiL8G/DXgrwLfDzxQ/ns/8DPlzzcci51yAF9+8n56l48YDGNGWciH7r3Cl7bPczNfYjUc4wvDYRaT6FmxwJuCNxHEtxXpqisa6tCtpP7Y1kXPmpVwh6JnNSr614f+2y/UnYzOGMPxp5UwbKhhI4B5dSDXVhKUgT23HgPlWthPeU59qyun7BU9Z51mJR0vJc18Cqs4msSMhhHLz3uER4bwyNSt+tWooILmsS6OSrPizQhxNTNyU96Ii+8d7gu8UUh7O+PocsjjF15k3R+RW8WSTNFI+jpmJ+2wPe4xTEKy3EN5BvlUj9NfmAWZk1gfMJsLVcA+pjVTYt9VsXHOFm6heLq4GDQDbTPDzjuOF513XCDPW4JgOMv2rQQ1nXH/Z+wWGkF61lzk/raoyzNPezzz+wXPfPFdRI9IxE6b4pEEcRBgTydwI8LvS+Jd65gfvsUEluJ2C6wgW9XEtzxWv22bWy+e4ku/+hhr1wztrczBIw0J2+b5PSahrBtSFo25cpI2O5ycpauxe1xHHrKiKpY7GDe8Wneo7qxN3f1VNRNV58kfzVbGOT0df6Ze2SwmV2qnIjd4w+Y9Ub7PrjvO9gLLqZMVTM91565TuJ/OxQG/7Ii1StQmIXotnB1DpEqphRhZWJJlWUMo/rDUfGrIXAdHWZ0wViSG5me6efUtbucXQvSAbwf+DIC1NgMyIcQPAR8rn/ZPgd/DBfMfAn7OOgWvPxRCLAshzlhrt7jL0Zw49/1KgvwfRgyGMTd3l/ljZ5/jtfYqN/eWeeb2OXpRSuznxF5OL0rYY4lw322VrHAXwZs6GlQ1oaptTEWjguPQQ8WZrU704UM+kczpqIS2TJHCEIl5txdjJaqsMkYiRyNpiwyNQCLJrUdPugA2MC6oG2QZ6BWHeYvr0xVeOVzj6KiNuh7R2XWUqyojX3Q/qrLYuRt1oRBYDY/FQtzJ440cj6pAkPcsp55xLjgHH7Z8vL1LblW5K5FMTMAr41NcOVrjcNCqfT312OfyCYH8pCabKpBXGXj1vLzt1dlas8W++vuddhOivPGao4I9KgqnKulzlSRsMDRzGbowzDVxuQBdnfv5uVRBKVWAbxZYTalXUkSzRrDlV5yLz8aXJFBglIcJZoEvHAi6113bf952lERvbAmOxthP97hMOivulnO4aoiqzmq1qDfhnvr/DXmDdC2YCXqV94LIjWO2VDTQhcJoJUXsVdTGtmMzVcefd310LOtjUpMCHQTEuwXjM058rNpJzl2juq4x2x0JbfGG+g2dpqphA498rYU3zMhWo7oI3eysbSpEyrJ2sLjDOknETuSGeCupj619bRZbFpvaajG4cXFc6bMZk96kBuLdZOb3AbvAPxZCvBN4GvhLwGYVoK21W0KIjfL554DrjdffKB+762C+OHZ+5R6Wv2+P/sC1w/7Amef4325/O8ODNkPatJamtMKc/jAmuuUjLPij0qR4CggQxt10zrTZFa+AY47nQL0lrFbS6brH6g/c5LM793Ohc0isctb8MefCQ9qy3JrJlEjk9GRSO+lkVnFgO7REypFp1Vn9vu44zrUOOSxaHOUthkXI87ubjI5aqNsBrT3hJE8PdO0oA8ezq4r7uziaAaXKAGC2tYb5IHqnBpfXa3yRmcAfaQ4ebXHvuVsseQ56SoyPFIZXp6f40q3zTHdbiFygQ4PIJPf/YjoXmJuftWi4LCkZJ8xT/lRWWuRVgbwczd2Hmsxn9IvwzaLOi0osRUuU7juVUYPT1al6A6pE4KTXLwby2Xk63r9QM4QyiyrlZ9123y0Yo7O+m6cjU+uOBwPXrSm0q5tEh+4zXeAN66y/yYOvFp2spxDGiXbpWM506rUl71aWdZaiW7kQlRi3r2q1z6pJqOr8rIZWDUvERnAXWXGsYCq0hSMHTVQLtI4E3tgS78/mceX85LSTzFw3bnCUoZKCOzlLLY4qYIqsQCaKbDVCB7LGsf2J26nnndn50bHEHx1PfKS29TzyhvlcJg3lLmDBu7M6B0146qRjv9vvc6dxN8HcA94N/EVr7ReEED+Ng1TuNE5K+47NcCHEnwP+HEAYLt+x0CVyw9rzCVfvWYMLUz6z9wDvXb3KDz/yDP/iy+8h2PbJdn0mqwVoQTh23NYqm9KBqx4DBH2LPzZ3DOTNoFeNV/60QPop6qmz+APBDucwIRSxpehp/GV3oVaXxsR+zlKQsBJOaJcKSm0vrX0ttxO3lRvlIaMsZPugh554+Ds+3tgVWTZHFn+s5xQcK+z3TgJT1bEvBvA66Cx8p2qcZBz9RqNptnD2D1wmcvCRlA8sb9MvYjSSSOb0s5jP3Lgf8XSPFpCcMpz7PUl4mB/HwxfYFdVNXuPh2pItBzUNsPpZsS2AYxRBlZVt5pmZZaKlWFXz3DSDhI6cgmCVhWcdF7xV5voQKtNuHZbQibE1tGIlSOYljZsF0SqIu8Dl3kvmlqLlJFxlYfEnVUCwtG47jDfruM8K+7r+HHAyCs3vkfUkwcA4GYnASRMHA7cQ2FLFsNolNBvEdDSvy+N2H24xKyLhFpNgxoqSuVtMKxhmjrVT/lQTUd67Xl0Ync05XQf59HQHowTRvot+lflIE+LTgSt+Gl/QvuKgyaaY2t0EwGbmC05vRilBcNRg0DXvraMGK2kB867fc1CKut3BdHlR9K1pnnKnx/6o426C+Q3ghrX2C+X//wUumN+u4BMhxBlgp/H8C43XnwduLb6ptfZngZ8Fp2feNCRu/qxaiS/+6ymjvzHkRn+Ji50uoyLg7LkDbpk1gtsewY6HKASt245nKjMLbWqd485N14kmNMcvXnVMZZDJ2x7+uCD5q0ecBVp+zsFSzHAUk0991IFH55ok+LqiiFvkHcEgbNNXsKVcZmX8GbfbhBbT0oipwhsLvKnAG8PqgZ0Fi4mut7cnZuHavm5AXwzkzZ9vNN5IL736ffF53jBj/x1dzp92VMRBETsKYhFwlMUkzy2ztOVs5c5/ytQZ3aJWyRzdsYGPn5R5V8XGil00w2LneeJz7xd4c/Zni0M3BbTKQJ23xByskqypOmNVqcH4LthJbyYL3NRxqT+/IdgFM4im6sjM2xAdusW68gC1SpB3ZcmucPOjKV8Lzmi5kqXNO654WH1G1pEEI0d1c85Btn4s60j8iSHtuW5kf2LIW+6zwiNTQk1up1BZnXVuOTkB/FldoJ6LWclcaZxPoS265SiQalKU38fHH+Yky/EcfbOibrod42xXtthw1X2xXxcUm3DFmxlVAxQ0m6BKaG8heJMf7yiu3gOYOxY1TusmK2Cu8/iOvrTfwiBejTcM5tbabSHEdSHEg9babwDfBTxf/vuPgb9d/vzV8iW/BvznQohfwBU++98sXg7zASn4X9c4+ImEZ/fPck/3kEBp/G6K2XdmrU7fxN0ARZldqcYWV2Z2jgmy+Dkid3ZOo7OK1R/bYnt7Hc8vuHT+Ohc7B/inNbHM2M06PPe2M+wdtrGJQg0V0Z5EJGA9gShA6lnhMesKrOfoSuGhJRg6GlVlOLCodtg8D038+40CelXwW8zEF9kgcHJwXnztIvyyuLiAW7C2D7sYew4pLIeTmPEwQuwFLF93tYq1r2UzqOMEPHsRyqlYFFVWrkuu+6ylHrKe5wKL39SwcTRMmTk2itDueS5ozmiEs2vu5oSORc3xzdsu+FXUtUrhUmXUJtfGc1RFL3FwRxVYm2JYzUWlaMnavcf4lJ3HUJSfVSkQ6kAQjFwGLcpFpKLbVee6Ovf+yH1etbOo5kYVmK2EvHQkclk2jDddF2TWkRjfwQvGc/K1wQB0oMr7h3pHEAwt6ZKa3VctWQd7gHRF4ZeMEqsE3mFeFwhNIDDKr3+vin0nzdHmnBO5wba9+roHB0mdxQdH2Rx0c7dj0aikuleqLuNq96tVIxDrebmIajRZKjKfdcs2P6Pm4Dded5KByrdy3C2b5S8CP18yWV4FfhIHAf2SEOI/Ba4BP1I+99dxtMSXcdTEn7ybD1iEWU5itoT7KcVWi31p6YUJ09yn2ImRnlMglIW74RYdcqqMyirm6FaLI+/6rP/1K7y/s8dO2qXYkMRezrn4iJbMeDi+ibGSl9NNDtI2o0lIAdhWwWRdYjMJRiBygVUW0dKsnxpwoeNK4S/tnGL6bJewb49l4Yvnohon6ZEce7xxYzSr/icVFBf/tviZr3ejLRZWja9cI8VBxFahMGMP/9CjvSfwppCswubT2VyQXmQlnBTUaS46Dapg9b1rY4VG8KzwbBfcqvNV/q0BpdTnqczG865yTUBS1AtD1pG0t4o6G89bzqzYSkGyLGspCGBOInj2PQRF1xVOi3YVqB3kV+HCQlvSnguSzq7NZc55yz3fPV5eq8LWRVJ/4o5VlAtR3pG1GYSb87NgrAPXnFIZNQsDk41q4XTF3Uo+Ius6jZ1g4HoxKk0gp+YJ6ZJApbNdSBHJuv5UxCUPPxBEi0yYMiB7g9kquji/mkSDqthaYeXh9ojpuS46lnRe7h+bk3c75qiUi6ybhsdp87irx5rwig08FhU6FwN53Vy1IPq2yP75Vgf0uwrm1tpngCdO+NN3nfBcC/yFN3UUdkYRXMxEF7v6Lv/ilJd+IuaqXGGjN8I7leB9rY1KHXslWZWOrF86cJ+k0z330eVn6ZZH+F9t8YmNpznSLZbUlAdaOxgEG/6ANTWiK6ccmRaHeYu9SZt8FCBDzak1F6wDpRmlQW2u0Apz3r62xbI/cUYMKwGvXogID33a2xamM0rdnE1ceWzNwFoF2ybd7qTGj/lzN59lL44T6WavE/gXFxPd8picgVP3HrIUJfhSM8pCMu0m8dLfX5nH5U9436Yk7SJWXn1OM6M2vgvcrqtxHhIQuspyHfY969ZsmnI4DQ9dBgxZlG47ZYZdyQqnK6r+3XiCtBSHqrLlWYC05K3K1GEGfVRwSWUHViljGl/UvOaK9ph1RanLI0vc3MEj2iW45a6gklRwx1tl6ZUDlJWQLEvCgUUH1EbNulTanGwKdGwJD8rkRkOy6nYI7oAhXbXIzDWCYcG0gPI4i0hgpcWbCvKOY1g1zaCLyAX9vFGXcMd+sn1hsxh9THMmEASDAn9/QtGLSnbIm1MQvJvRZN282cCqFp67uFgAx3YQi+///1Vm/u9tnAQpLEILD/yfKXuP97j5UYVUhuKxEdN+iH/o4Y0EyZrLzrKeoH3L3XDBYMZCOLZtanlsvzfgT6xe48uTezkTHHE2OARAYohkzjnvkNfydZ4cXeLZo3PcvrECApaXx2y0R0QqJ9G+c5fPArJCYSykZbs/wFo05uhMn+m1dcIjgZWew1/LmnFR43izDKXK3psZbRX8jBJzzIQmQwFc00UlVdDMghcXzdcbx5txZvUGmRviHcHefpd8SbHeGdMJUnKjuPHZC3SS5Bhj5vW8VSv8vMLMK/aEmxcldCFngayuSZSSwHlbEh5q8m6pKe+5zBQcxuyVsJZjdjh8vGqjNiVenbecp2MVnKoMvMKbK/wZKjd793vak3UBswrgFRsGnENQ2vPqZjUduG5eK4HE6dzkHdfUpgNBMHQLQAX11NdYzWQFilbZUepRysm6zwYXvFu3y8AeCKzvXp8tuePxpq4ppSi7RwFUKshWwBtTSzXrAJKWK87nbVFj60U0fx3c93bv666XKM0pPOLdjOAgqYPX9FyX/fe2wMDKi44RkndK05CRJtjJahx6ejqk++I3n5Hf7fh3gWH/+x5vjWBuj2/hgWPBtxnc1746ZfUFjys/GGBaBtnJyT2LPq+xWqC2QoJ+lR3YurOtGchNpDC+5LX/yPIj7/wcHZUy0iGf3H0YYwXr0YjHuzd4MLqFRvByusk3hpvcPFwCz6JCzeWVfVaCCWv+mP3cUSf70wgLWCvYmvQACGWBJwyRX3B4RgOKaN+iUlU2MQGUWWQ2W3hcW/3xQowJHCygg/nsD5wNHswocXMFxgY+X9Pk7gCrwMmwS02rSzRLr+SsfQ2gRR51mZY0vnOHyVzwbnZpVjuKZsZ2Jx55ulbir6XGeJUpVxi5lzi97HhPM10vtculw6mBBsVw1tiD74JGsurVmuRFVLV4zwK4DqjNO9LS67SaT5XKZfW+XgLJsiA6ooZHKvjD4dLe3GNWumuXrDiM2ykdVt6wrl1faPf+lWcsuEUjGLn/VNe9iES5OM3qNO7/AhMABnRgkblboKaXMuSrAdG+ZbrhivHJKYtKQU1LI47J7H2CoTvP01OC1m7l7ek+r9KXqyFO5eCgeNc1LPljd02KbgAENaRy6hldF6StgvAwxxtmc0HVRIrOa9/6jByYw66rQucxZ6r/nwX4t0YwPyFBPKnQt5ilC625/M8dt/nw4RbjMwIk5B2LPxZ4k9l2c7Flv+j6XP0+jz/3Pb/LvcEeGsmNbBWN5J72IaMi4NpwlRcPN3j72hm+Z+U5tJWcax3RO5NQnHbB4v72LkveFF9onjk6z83+EoP9NirSLPXGDNMQKbpsxkNCVfDIym3MfYJtuYZVHlY6Qf5gNKN+zTVxnCBUZwJRb5+LyN18me9w6lnLOfOuMQu6GfV5vhM+Psf4WdBLaVyX4Ciru9/SnqRzK58L0nMKha9TXM2WgwbjxNEPq0Be4eWKWUHS4bQOWqjOCTgsHKjpfsZzvwcjF9i9aZVVenUm7k9cht1kd1RFUHCvC0aWZEWUBUQHjcjCwR7RkYNLoiNb491Ni0Bvashbqg64Wc9BgeMzknQZVOLos8K67Fals4Jr3hY1sTc+MOStGQceKANr5Q4lakONbMniJU4OQLehOJeitkLyJUv8SoD1nWgVArIVF8hl6prt1NRJBgRlQmylw9TDI0v/Pkn3WrXAlKJRebXowPb7JdaziDxk6WUIBxZ/qGt+dtBIJoJE37GYaQPvrpuB7mYsBm0deRB5c1BlJWPQhIiq4Q1ziq4/U66sEprye+Vdf06O2n3OfB1qsdBfES78YV7fIxV33fryrtlo9TF+MyfmWz7KyboIrcw95YTur+Zja88OWXsWdt7bJei7LaTKLK09Q3iY1xmpVYLRPRHv+Mtf4XvjPc4HB5z2+mRW8bLZBBxf+Hx0VOuSH2YxV9INNv0+94Z7DHVMXzvy+kQHrHtDrmVr3B51SFKf3tqYVphRaIUs27h2px3OtvuEsuAda7dQwnIzWkEMPcaZQtwshX08gVIzpogNRZ2xNc+Ly8gdTzhvO7swrLuBjzWzNPjYzfNa1SQWcfnF836nUXNwI9ds0Snbr4sGB7kpNVs9VsvCNm4glZnak1MHsmaAGH9WdDMNp6UiAoTr7q0CdhO7tZISxy6DboUtK+ciX3V4ysLh01lP4I8cnzxZlnXArCRPkxUXVJPl8v202wE5/Nydj6wzuzaVPyY4qKcSJDOeg1JUAlkPrLLkS5CXMFnQd9l0smGJt8qFqy0I+q5F3PgAlbmyndtN1E1OkSDow/CyZuVZyTQSiP0AfyRITmfkqfs9W7KY0BL0JSIHHVts4Y49PKBOsqqFSUeCzg1L1hX441LcS0KyJoh33fleegn2nzB84n1P0vn+lP28zWdu3M9gq8upL8T0rqZ3pAY3x7cyK24Gcvc9PPKu37gn3I6tiFTdSwBgAlUz4KpOUOcyJueorlWdANycroJztQtp3gMV5Amgyvuy6rStZAGqXoumAOHdjLdGMC/HSYG8euwkvPukCTG8CD/88c/xL3/rg5z9TFFrIEzPRGx9ULL6yB79keH/uXaZ6Tkf3ZbkVjHUMV8dnCUzHqdCp+6z7E8JuwU7aZfrySpJ4LPqjTnlDZDC1B2dfd2iX8QsxwmRX7DZGpJon1R7eMKQGWfAcGO8zFIwZS0c8+iqc+++tbdMakK8qSQ6mOGPQB0QZi5BM9aGDtxNlC051oP1BL5wBT5/Au5OvLvib3Oha57b+cajWRGz6jgVWUG+5mR+m00ji/9v/qxFlNrzlK+KtaIDWTfvOOaKC1KVVsrMbMMFj6xT0vwiQTioCooQ7zuMu8Kai6jKwAU+1F6U1eLgTRx+PT7j1Y0zWc/tlKxyAd3BCFAELuPNO+7YgpEtC6Hu/HmJrd8s7/J6AAAgAElEQVQbYLypCPuGwb2SpSuusWd6SqBDS7QnSFctOgQTGjLcDsEbuqBeyGonUuLVfVd8zbqlobIGJg7PhmqBABOCyAXTDUHRdt8h2dTIPR9/KCg6lmJZo4ZOWrmmdxqXEOjQaYWr1HnkehO3gIY4faPq3DgRO0o83RlIiC8qPvXlDzC4BPFDRyzHCd/2xBWeuucC/V9ep71VfNMUwzczdCklUI3FuFIN41fsoPJ15cLoJU7DXkeqFvSqGsCqDF437pHqsWZ/xCJBoZnZ6+Wg1gHSwaxZzigBLe9NC20Ja9+kAMC/g9HrnLPve+d/9roc6tcbTWurvf864bFTW/S8lJ20w5MvXUQIeOzSTQJZcGO4jLGCaeYznYRIaUBYdKGwRmALycr6kLX2hHvah4SqwBNONz1WGVJYVr1xHcz7Rcw94T4HhWvRv5GsMCxCup7Tb9lP27S8jJ1pl5bnZosUliXf0QiujVe4sr2OvB7hDQXhEYR9Uxf2HNWyhGG8UkJzbMiWFIcPSpIzBUILolvKqSpOXbFO5pZgMGu7PmnXc0yP5g6Pw6y+ANQKcZWOhVwIynPXRtsTHytiWRsoNznklUZKxdqoMuQq63QwhsuCq8erIA6z5xhv9nh0ZBqt8qJ8jSmhGEe788cz7LkqJoMLosaD1q4h64oyKy0VE407liKGyRlB55rTmh+dVajUzvUZeIkt+w1m0F/esei2wba1w1gShZxKwgOJjpxJc9C3NX5eGYHLnFnx0wdvbMuuT/e+OgR/AuNzBn/otLuNDyY2BBsT7Isd9/2Eg3iscouJPxBlIuDgnuVXHCSVdd3CopKSSdPst5l14RAMndNUEama8hkMCtIVv+bC//sI4hVN0Cz4vzazcfd4eehVr0LJzRdmRgutTKcrVcaToM/F+6WSIlj8W/V4cJSRbIS1eqaV1E5nzXvp6c//fYb9G3cd0t8ymflJ7ejVeL0Av2jiG3iaUR6y7E85G/f52MMv8oUb9/LC1gbvOHeLjfaIjpeWDvGSF3Y3GW+3CQ4VMncXqj9Y4Wi1zXA9ZClMWAqnrAQT0AGe1Oxk3dqEIpQFVzhFJHNaMuO9vStsZcvsZl3WghEdlZJbxSh3BsaBLOhnMVJYNsIR93X3iL2cF9QGye0WSAk43i62zMwVdSefMJRu7AZhJBiQU5ed+mPq1nN5h53M6wXs1zvPIndCTXVGUm4dtz/oEd92wRfhsjbjuWP1xwYyh2NXDVImEJBVTIlGa36zpT6xdWESZowVHThMu7L7c0EY0p6ocesKctKhC/gzXNxh4dGBJu/IOvg77rfriGztapIVNefKpFJbB3xhAOGy0Ko+MbgkiHcs3sjtlISRqNSdg8KJGrrXr7hsHgHhEQwuGxdIQ4OQFi/KybXACJh2NK0rPtmyywyDvvs+0YHLwI0PWdf9XweOveX0iCjZK5AGYAJL3rGYlsEbSsRIYtYkJrZ11idziPacY9T0cob6ekDecXj58Lx0C2fXFUGtrBaVUsMmdguMUSCrGoEva4aV8/v0iLeS4/d3GXC/1UXGpmHGnP5LMKutCO0aocK+JuvKORmFii464+yXPP2y89j4Alvqn1c6LjKjDvQyszUc09TkWUxqZg2MTnRs7h5R813PdzveMsH8TsVOOLkYCvPV56qokWtJon2MlRgLq/6Y77z3Jb68f44bw2WeOHUdT2oKU9IFz4/JzroW9Cefu4waS4dOHPnsmCV2VZdeb8p6Z8ypaMRqMKGvnYflkp+wnXSRosPpaID0LVvZMkoYemVR1JOGQRbT8nJeG3Q5GLWQ0nIUxCRdn+Vgwj2tQ87c1+cPo4sMRQ8dSlrb1fbafT+vhk/cUJlh6RVDeOAhc5cRelNTFz3vBpd889fHNYQ0i6EbT88gmiZzpGpBt0owOSUJ+zMa3eBeiTd1WW094QVMN1zgco0olGyOEs+Mq4VC1u9TUedU5gK6g0dcUTEYuJ1MdOQycAezOKjGYfBV63uzMWaeNVSxTioM3tEGnR5+Bb30rjhfyda2y5iDkaG/rpzZwLqkiKBzSzPeVEw3HZRz9IhGFIJ8TaM6OZ6nKa63oWVQI4Vey0nXDEKX81+4f9P1WTbuGDuzG15NXdA1obNGCw4l3kSSL2suXr7NrS+epegZxFaMaRv8A4U/nDVgCQ3LTwdQLj5FNA/5FWXg1gHEeyUEWPnX6opC6QKRmhqslHPKksfm07+jIA7MdXJWsIWOGhm5dJoz6ZJbuLPOrBmr2jW5XZ+ou36rHoVKcgFcgE4jQdBoSFvUx4cy0JdQo1ai3CFQuz9ZKYi3U5etj3T9vDfqkVkcb41gfgLUswgJnBTQmxm58RW65ZFrxSCN2PE7XIgP8aSh5w1519pNPr99Ly8NTnG+fcQ98QETE7DqjVnxxrRlygc+fIWtbIlXRuu8drTK4X4HO/E4Sjsc7XW42l5huTvlbMdh5tNSQ32QRUQqZzvpsRGOaHspkcy5Mlmn6yf084hAamI/pxOnaCPQRnBz0OPAb3G6PeBtnR0ePnWbZzKP3LTJOwJ/5HbfQgN25o5STYz2VkZ46Io2KrHHJHJPOp9/lABfda02C5wVhqhjZ31lAlFnLBXO2L1WzDVGtXbkidvQeF+W1DvHHLHSZdlV7UClZcFtVRAMLNNNlxVnZVCbnJk1GCXrIDPBZFNhfVdwDA8dlOJNbb0DkEWVhVdFZ1E3BVWwi+vQdM4wYd8diz+YZXDtm25XMtkUWCXxEtc6H+8b9IZk/1GFzBztL+9aOlectMD4fg1WEAQF8f1H9PsttGdpvVTqZUcgcreIFfEskFe7NW9sSdbKRb8FRdvS2hLkHXec2YqFwHD15jry0hQ79LEhqIGqcXRZwDh2cEveddBPvCPQUSkdHVLy7SHat0SZZXxaEh657LzaeXhTF/CTNUX3tWSm/+3LOeKCNzjZKOObGSfZ1i1m4c055o3dvKx6AopoxvWvdoFQ8vFLOK3yPqiExoLBrHaT9Upu/LiYyUuUgbwy2a7umaajVbMjWWq3266KqBVrxh8Xc8d0N+OtEcw5Dpe8XqHzTpn66KyPtc5T01iBRuJhmJiAtpfyxOZ1PnfzEt0gYVd1ORseEcochcEXBS2ZIoXlbDzgUnufK8trHKYtjiYx40lIPg7YLxQH/TbryyOEsCyFCZ40vDZYA6DrpRxkLTypiVXOTtIlkBpjHawjhTNqnmQ+xrhJd2O4TCA1gSy4f2OPa0HByOvRuuGKU97UFdsocV2ZCSir4l4ys9uqAnnNH29MoD9KEG9eGzUpMF2/xv8GFz2WXsnryaumVQu7QOjSCDmWmPLzs8CbW6iN5xp3XNv0rOkm3neZUoV5VxmRSg1e4uzchFFER6bufFSpqAt2QpeNPl13DqqCaNh3C12iZlBKBcXoSJAuVZmng0n8kSVdcs40ecdR8dJlgSqLhPGeW9CKlmvSURkUuCw9XZZls5prxtGRcwzKVy3+UorIFHrok0iD52uCKMdeD0nXS//ITGBCSIygd9Uw2ZCoFPIe+AO3k3Gicm6hS05ZxhdAaEH/bRobG4J2RtYPMWOP9pkRySs99GoOqYSpu6Y6cqbHRRtkLhifs7RuufPmj+1c12vedg1N1c9gZJmccsXY9m3np5tshKipIdqdYnRDkjj5o2Xjd8LCiyion2OUqLVymp63OhCkPa/OtPOWo2VWbKe0R70DEwbat3XdHOZqVzP54+p9deh6D5I1f45tZhWE+w4XP4laLDT4Q6dh01T6lJnTiXGB/869H3cab5lgDrOg0QwebxSEmoF972MZa35BJ0xJtM+18Qr3tA8xVtBRKWv+mEc3tusiaM+b0tcxy/EtejJhF9fg0/Om+FLzUPc2eUex1+1wa7zE9rDLcBBjC8nt266Vbj/O8X1NN07RRvLs3lkAktzjwrJz3u74KZMiYClIyLViozXk1miJwSTi8KADwOGwxQObu7S8jPNLfW4rzUGrR/e5ABNUGZIgsyCMxE4riKJBpSrZJqWc+qzt/5ssLM/ed36RrQqYQC3FelJGXmUsMNMEd/8c5p8uuw5YHQmHm5c3UxGDymaKf07HRNLac4VSB5soBzMcQbLuAnERgQodxDI+4x4LBq7ZpdpN6NBl9tGByyyjA1NTFDWw+g2NDmaekK5gauvHooOKrTIrtuZtl6E6bH/GfNGB0zpxXHJXYNR9dxzBwCPvQtGyiO02FjCRxQQOUjHdAoYeYiNlsilJVwP0Ug6FIDhU5D2BDqxr0d+TFC3oXJekK64lv1g2iMBFknA5IT2KyL/ew7YtcuihJiWXOhEEh6Le9egYgiNRO3Slvgva3lHV0g9h39aF0WTV0Uz9cRkgyx4BL9FMzrUI97Pyc96c3OsibFIJYmU9rzbMaBYjm4qZKrNMV2W96yoiiI4cFDk+reheLxhvqpLPb+sajAvYs6KnXzKcKuilUqYUhlpSQWa2bFCb9XdY5dyIKpiRaYOvnmiynteQPXANU8maT7Sf19/vmxlviWBeOWosagYvZusnvrYMUpNzEV6YoKQh9vKaFnhrusTpaMCgiOl5U+5r7SGxDPKIQRGzFozYLbpk1uOZ4T3084hL7X1CipqlciboczHe51Z3ietLK9wedegPW1gjKJJZhm2tIPQL0tyd1t1xh9AruD3q4Ct3gZbChHEecjSKyRIf+j4yF2Qtj6+NzhEvJbSjjFwr0ILphmM1FJ2SjdIWZEvCuYljkNP5IN20TztpfCsYQ5U7jFUN+lYgMJ5jMORdRXhUlLsEAEu85zourax42LNJa6UgPNQML3j4E0u6LOt292TZMXxMMNNHmZ4SdG66TH5wj8JUzj2+c2RPVwTtLUv/AYeHZ0vuHBofklMu2Fbdk5ONGWTgKGczwTYnjjXbihvfZcBpzxXCVOoy02BoifcNKnHHbjxXkA5GBn9skIWsMzughm7Ycsf9/7Z3ZjGWZVda/tY+4x1jyjmzurKqsKHcphtbltvuBgkx9CQEL/2AhYQFlnhBokFIqC0eWjwiIbpBQq1GTBJCDaJpQcsPWMj0KwZbbbnKVeUa05VzRGRMdzj3nmFvHtbe596IyipXldOOzMj7S6G899yTEWfffc7aa6/1r39NLqn8QDJ1FOcM+Z5jHvTbb3T0gT9wTC4nJNMFW0cqIZ4EnjlUXQ3lxFPgZgKS0OSOqufIjjSBHPlCInFQrVuq8xYqQbzsQXpgMD6HEBcwfsaRHqlw17LeS1Q6yjWVzUgmjnw/JI8dUeG0dVuhNQzlMKYc5AzfKrB51EpMV72Yzr0p5WbeJipD0cx8KyXfnjPfytqQmD7vHBNdazIN79UdQ3rYUJyLScdW49V1UHfU5tDlUBttlAPTyiqow0DL/+/u2Ja2GnR3QkGU1in46tpUdHfYeMbUvv7NwIxZ5qu3i9GSx20aR50u7Z7bBLJA8V5W2IfBY2HMA06W05700j8IO58xZLlywcZlRj+dE/vwxqTOOJeN6UYlXVNCVzVTGgxX032GpuCPp88CEIe2b6aicjGDSGN83WjOleyQK9khd3pr3OxvsDPps3/UxTVCVUXUs4Q6i6hGKenanN3tIVFeY2tD3i0ZdmfszzSjaYzDxBYbgTXOKy0K81mCMY4sqUgGc+iXFKMUalHJ1Km/GWpD977/3srjSooWNVhBtCpoqgR8EKPl/XDSO49K2+ppaOcmy2wzUk3sTLm1s2u5er1eFTAZWy0GKhel300qJGPL9KLGkdORhlSaVCmapo6o/HZ3tqldzF2s4Y7ZprD2jmV6MTzceqzJoLoq4ByTa46112H/RQ0lSCz0bqu3Pr0CWy9ZDl9QudzsQFqRqlAaH880fpqOtIt7OQxsm8WiEKpFlxUUA085SC4ENKn+ju620k+roaEcKjvGRcoUqXrKe1dhLh+f72uoZXJZE/T5A42jW3+9+Z7Gz8Oi072ni2xxXkgPVJY5KpYKmUro3okwtWkLr3SeNZEaXm9+T1+XQ0+hm+piacpFDqLJhfGVSEMZaxEuimiyhLrniGbe64+g6nU13zECm8TkDxyTSwO6Ow3lMNN7wUsXN5lhdiFrv79j3G//2saqZ9PZDd93Qzo2bax52auuOwtxs1b2YrbIRWgIb1HwpYv6gqpqY8gOfKMOT10Mz11I9ocwYUD+oGK+kbSdlMDLcySCLTUEWfe05kLnzbTnPNFslvfDshH5oCReudlQTzI6aUXZRFQ2wjohj2o6kRr5rq8KuJ7vEmG1K46UPGj6bMaqATGMCyIsh3WHmdGt0NzGrMUFuamY2YT1pKAzrHimt8/N3gZ7RZejaU4NqqQ4jqgqrc92hzluUFOMu8yaHjhwHYsZR7jEER9pMkULOQx1ETG1wixO6HXndNKKZlAwLjKcg7qKaYqISRRjI0P/DmTlcqk+gLQe+nKjh2UsV4U+TMzsh8FUFmk8WRnaisqQFAq/O9uvOHgh8zFt225hg6ZKOrbM11VbxaaiTJ7thr0XY1ykHuvkoqF/1zK6piGWkEcQi2qbNBrH3nytYXIpIi4cs02he0+Yr8PoWejch9k5R/+WGrh4CuU6bH/RkW1D3XcMb7g2+WUTTZTaWB/ycqBGSRptqpztu3aL3t6rbdWna7fggUVxXHExMCj0d3R21FiOnoX0SMc333J07uluwokmJ8uhNnW2iTC5qswfXQCVD9/Gvru6e3ERWlpfLsIRNtbEqik13h8Med0RskNLPFtU1S7XNqRj/wwaAMPkmuZE4gkYn1DG6CLTpKoLk4500RpdM20YJ3/g7zEnzNc1PHXYi4kLXbwml9SwmQawWvHqYl1Ymkzv03zHyx9YT88/Z4jHMF9TL362pUnc6SXo3g21AIbZhncefNGTMpR8QjzVndFyJW3ohxASpqH+ISoWPUObdNEbVkMvQjxpqHu+/+qS9IKLVI+97mXYVMge6OuAqh/53JBPGn9Ee/7YGfOHhVrC8feQ85e3/mslrtFioCvDI3rJnDRq2EynZL56o0HIpSaVmtLF5FLSMyV7TZ9EGuZ+GQ9ee0BoTmxwHNU5lYvacy93jsijiqoxiDimBx0V/poZVbKbCdE8wcwFm/qs+k6k7JSeI55qmXg0V1pZXAgUGXXHMW5y3POHDPM5U5OQJTVpv+D+ZIOmb5mfE+JCPY5kfDys4iJpGxw/TBMlHFk26ifxQQZeKqVBJlPl24YQi4YftKtQkycU51P1YmrH5GJEd9e2MrHBgLcNIApLeX7BRqhzITtU1sXh84a6q8Ynmahh6N3V35OOLbs/YxhdjagGAKryV1wQsj1lesQFXPyWZfuzhuHbMH5GOz4lR5GWsbMIvah4lGslA0LxT5NpSGGZh25q1yZPAQY3a6U6tho70vKY50Npdw+mWhRCVX3VPYmnMHrOkR5I25Q8HTll6Yhyv6WBoxctnXvqBDQ5lENN/tY9TbbWPUt6YKh7jmq9ITmIEBu+Y73PbKY7AGeCPK9beO2+hV0Ibcw2lZM9X4uoehpu6N7VJK8WKKlxTCbK/CgHRmsOxo750PcUbRzJROPRQX0x5Ejy/cAo0d/dv2PbWoWwS5uvC927UA0ErBY0VV2h7gqDd20b8xZryR8YkmlDZ3chQheVTncEsdYMdLdtW7VaDjRMEpKmgdE02xCa3BBPVEcnf+BUUG1L8zOBmglQrTl6t3TeR9cSkomDTUPdC9XFkb/P07YwyZQJs3VlbwVphjaEM3YfuQL0sTHmQcHsYaGWgOXPtDHCgpYUxw1WDE1j2Cu6WISOqzgyNRezEuuEuU3II71jh6bAiOWg6XJ7vsFLB1donIpsdaKKyhkmdUbtDIN4xqTO2pZosWmY1inWCbGxzJqE9c6MkXFU3ZiqSHCNYAq/NSzU23KxxjSb3Gn7OG/IwwrsIujcVW+sVwjlEMbxkFG3weQNxSjHlQbTqUGgmRrqjvhKRr0RlgsVYKEHEV6HmF0r+rN0rkt4jzzuBxVvxbNGGzgUyjJZnKcdfjQ5qoJMNha6u9brdOvDQq5xx9jHmrMDy2xDECf07lomXsxsvukYvg2jZz3VC+fj5pbD5wy9uwacFrH07jiOXoDJFQ2nTC8L629Y5mvC9ucMnbvC3mca0geG7h1lhGy97Bhd0648yu111LW0BiUYuRBfNbXKCISEWXbkkAPbVq2CJnwTH9oK2upzr++SjrTQZrYl5A+0a9DoGc0DrL2hHmg5EMo16N2GfAfmG55+2BHy+2rci6uWbM9Qr1kYGVziqZa1UHc1Ebr2akzV87uLdb3vcJpLsCmYI11QyqHX+skAB91d9USXY/3p2DLbikhGWlEalZorGD2jomVxETRynK8j8KGgBLKx6tv07vvK3ki97yaFiU9ex1PNDVRdXfSC7kx2pKGd4rwWiU0vOwa31bCqzMFC5sKUDrG2NYzKmZdWmyfshsRqIrc4t9A+Cg1Agqed7+uCHnmnJSRU00OVCS7XNPQ1XxP6t0Gs3t/aR8Ev0vt+YZzbdncUFoxqsNDMDwa+OKdt+pr8vU1PfhgeG2O+jGV1s/eTp1w+d76VYps5nY4a7cnMq+1lhu1Jn7fNOTpJxU/19jmXjdmMUyoX0Y9mvDm9yL3ZgAfTHllcc1jlLS+8tBGX8hG78z61M63OyqyJOSw7TKuEPK65fzggiRvKKiZOGqw1NLXQJJDsxTSZI26CroPqRicTqHq6TXSihj4ZLbwxaSB/oNWTVS3YykBiSQYldRVpuzqnnpmNodhUel5I3IBS1E5Wni0LXun35436kjxtYMMELLNi9Pe69ngQrwo3qkSLjH7dEdJD/aDJvCGuheygYXpBaYVVT2mGpnQqE2uABorzpjUY3bsGGzuyA32A1t9qOOiFzup6bOt7lgc/bTh6AbZecoyu6YN7/jsNu5+OsSkM33SMrmvYwcyFyRXY+p7l4AVDPF3Q0lT2VZkPKn6mYwtytKZUrr0WLLklpcqFDIFu4X17uUKNebavcXfAzzOMn4WNVx3d+/rwTy87kpGGgZKJGvXsUDVZyoEwOyfkO46j5wGnXnl+L6JctySHhtkLc7qv6dZ9tuWYIZTnGnrvRNhU/671crhOFg0y0iPtkTs3+r2HXEDwmIst7TPau2sp+wvVTpv4itQ1vd9m5/X/9G9qvmHZIIoTrdodaxjMFCHWrIYomegi0eQ+GXlPr+nwuUjDPkdKMXViWocg37eLxtPxYieZTHSXmIx1HoMS5ny4KAITqzmAwE4ClnYICynksIOaDzVvFU801r3+VsPoWsTa2zV11zBb9zs0XwFc9dV7z44WYczZptqzfL9hej7yoSwfkjzQ5yyeWC38eyKLhk7g/cIs72fQ7/w5A9YwmWZsDKdq3MqExgrOCU1k2T3q8dat88RZzaA3o5PU/Nz5G3znwVWOZhl1HRF1LT843GSzMyWLa2pr2J73SU1D3RhqDLdG6zgniDiKMmEiC45rVXl9l0YgsVAabARxqcUY0VyLMWym7rgmAf2DFTktKukBLIxj75Zj/FNC4wxND5rGwEGCDGuaPsxSR903xBNh/Cyk++JDEXqTBGMKHPPQj4liPaQv5zJOqiq2XnuiFY7LRSGLsn1ID4MuDC2XPPbNLfIDSzJuaFJltZTDiO79Goh90wf1VOtct++d3aYNZUwumpb/bCp9IJNRQ++2PqjpYcNGoQ/xfD1m4w3L/c/D5Jph/XXH0XOGzq4axzpXvZR0pGMI7IUmNd5zMyRjL4QVawu0oNAYWBDOuPckv9pWhWaxgFY95c+rUJbuVEzlOw1FwuBmTe+etqZrcmUtSaMhoXwXiotCvqMLQDIRygg623pOtm+UWz5XemJcCIMbujj0bkSYBra+q4nr/m2h6mq4YXzN0NlWb7XY0kKnYPhADVpoOB0YQ/GMY15jPNVdwOh57T60+ZK0ipUHn1S5ANCcw/SyhmiSiSZ140K9+FYuARULG77jQzZ9TdAmY+d3DwsphxCCiWeq854d2YXOSqTspwzbCqzB8a5P0wvGOxGG4Q8abOyplnXQ9rEUW6Z9VvXZ0V1M/47l4IWI7v2FgRYL3W3LwSeMFqntufba8v2Go+sxdQ6br9Xc/3xEZ1soMuW7D27W7P7pmK1XaqX3zpont2joJB7mnYfjpmqOGXl3aa5bR4G6McSRpZP6QKfnf0aRBSfYJlJu9+aY27N17tzbQPYTENi7ZMjziqMyoy66DPMZe0WX9bzgYNYhNpZrgwO2pwOKKiZPaooyoZwnzGcJrja4WiByUGnc0EWOagg2tTCKtKKzBpu4lhtbd8KD4xCUT95kuu1sMqHcrImPIjq3Y+2Sc2WGc2ASS94pKaYp1SyC0iB1jIv1/6lWi2lFjgJOtun6sDjWo9WX98czTpQu03ZvB9eWJh/nBHvj1o+IC+WbJ6PG38SLBhTx1JKMXFsWrjFKYXBT9VWiuWXj9bptMrF2Q+d8cikhmVr6txv2Pxkzvmq49H8axlfUwF74dsPoGS25P7puOPfdmv1PxuQHdomNogYu39Nj6VgTYYHVEJpfRHPbUizDAlkmkX/4tWIwIB1p9aQmHh2Ti1qMZCpwVvVCQvLQRrpjI1K+d7km2MRpwVIhFNdqhq/G1F2YPlez/krM1ncMdTfi4NM169/X/qLzwLcO0ghWF+9oDmIj5k7objctfzqe2DZWbr2xDFW+7Tmz4w2v833H+KqQ7hmGP7Bt/He2KWy85mhSx/SicvurgbJ5ZluO9BC62wvJhMXiHOQD/O5getyLTsfHpX+TqaXYNJ5NtKjWXLTWW2jBh0XWxkLvXsP0vKF3NzS91vh21VMJhsPrMflSojsqdQ4H79bsvZjQv22PLULdHZ9HGmtFduPDO/mBZXIxYnYO4jHc/YUIU6nhf/DThnMvNdz9+Yi1N/Qe6Oz4+ownMWb+sED/w7zz8HrZS59vZThb0+nNW485IDKWTlIRe2rblRkAAAkfSURBVBWgblZxeXBE6XXGX7p3meRWSjRXY1RVPUaDhkmvotufM6v6iDjmVUwcWXppyc2jDUQceVJT1jH9fE45j7HW4MQR76a42GFTh4udL7sWokKZGc5XoIXEifOxQzWCPt685vS8RuOa+XaMmS8SprU4XG2QWCmMNhdcVjPb7WAzR+N0C51M8FWPTWtI38/7PtlY+f0aPh871jjW3pg+lOq4rLKYHpTHyqylUUZA0zHq6U1ta7DjIigSqsGMp0sFF4Wl8l2X0sOGck31prv3S4rzWqQRTyydnZq6p97t2o2GqqvHN19rmF7QW767o17X1ss183XD4KbuGKLGUfUWBUzxzLWFIfnBQjlvPhT6t2stEBlGrWdeZVFrLFTx0pCOdAyhATJAd9culBnzRdw3dPBxkd/dHHiGjNWK0M6uasFk95UBMrsA66/EzLYg7gjzDcfaKzH7n7Ig0HtXQx3lMGjkWNKRLyWvlUPeKvctlaCHIrDe/YWyX+i6FGQQmnShqx4Ko6YXDL17lrqjMfpkvKgLmF4ShjfUe+/s6C7H1DDb0PlQXXhNXoM+J8lEk+vOqM5OoICqh25JpjC+EpH5xiA2VjE1g/P1AaFptW+m4aWQbazefjpaKGvGM91RRaXeA/m+I5naVtcndIfaezFh7YaGWKRZqJxK49j52ZjOribRywQ6D1SXZ7YlmLkuXtVAGPzAsfcpQzKG3Z8x9G4L3Z0amwjlWkTZF+rsCfTMg/2VpeaqJ7FswJe98qPrMdiGLKm10GYJjTWM5xmRscRRw1ZnSlEnrKUFtY2YPuiSxNCgoY54KsRFRLkpjGcxWEiGGoc3xjKaZgy6c8ZFRidTmqNtDHUZEacN1sXUwwYz024r8ZE2DRbNqanHHXmD3PEPqY9hhtJ38DE7tFmAqTRhFYx7kzuagxRyS9yZUzcRdW2oioRoHBGPNGygN7dm91sveckgP6wdXMDJ89rXS+GUgGVDHpLRJxtN11tpK2cbtsYhoVR1heK5oDKn3koyXdDBXEQbugGlOoZFIt+rtZFFHrVhnKDYlx41LU2yu12r2FJq6N8umW0lRDNH/7a2EQxsk7CrSCZ20Ri6dJTDRVl3aCCSTBcaGyBt8+gQP0+mKjOgSTXfOq2jnl1IsDXpUpm4XTA9kol661GphjXf13BPNFEj1LutMdvJNVh7A0CZMDbRe8QJ4JQRk44cdcffU6KhHhtHnqKoMf7Wy06EuLRtS8Iwv6FBtk3UOUimtvVWnfHyCzsaKnCRUGwaiovC8G1NMPZvq3frRJheMMw3dK6zAzXYC7Erx/SC0Ltn25h3EFNTzXhfYHbQqOa6V9ZMxupN5/uLIrZ4Ykkan4D2EsuJr0yuc21QEpWWZBrCKtImKSeXND+Q7yuDp1UrrSxNHpOMHeMrmrPJ9zVRv/G67u7SEW03qv6dhsPn45Zjnh2oymb/poZOzRy69x2HvkH26JmYwc26vfc/agL0sdAzF5ER8P3Tvo5TxDlg97Qv4hTxNI//aR47rMb/QeN/1jl3/sP+osfCMwe+75z73GlfxGlBRL61Gv/TOf6neeywGv+jHP9Hl+ZaYYUVVljhscPKmK+wwgornAE8Lsb8X5/2BZwyVuN/evE0jx1W439k438sEqArrLDCCiv8aHhcPPMVVlhhhRV+BJy6MReRXxaR74vImyLyG6d9PY8aIvKMiPyRiLwqIt8TkV/3xzdF5H+JyBv+3w1/XETkX/rv47si8tnTHcGjgYhEIvLHIvI1//45EfmmH/9/EVFdBBHJ/Ps3/efXT/O6HwVEZF1Efl9EXvP3wReflvkXkX/g7/uXReT3RCQ/y3MvIv9ORLZF5OWlYx95rkXky/78N0Tkyx/mb5+qMReRCPhXwK8AnwK+JCKfOs1r+jGgBv6hc+5F4AvA3/Vj/A3gG865TwDf8O9Bv4tP+J+/A/zOT/6Sfyz4deDVpff/FPgtP/594Cv++FeAfefcnwB+y5/3pONfAP/TOfengJ9Fv4czP/8ichX4e8DnnHOfBiLgr3O25/4/AL984thHmmsR2QR+E/g54PPAb4YF4APhnDu1H+CLwNeX3n8V+OppXtNPYMz/A/jLaJHUZX/sMsq1B/hd4EtL57fnPak/wDV/E/8F4Guo6sQuEJ+8D4CvA1/0r2N/npz2GH6EsQ+Bd06O4WmYf+AqcBPY9HP5NeCXzvrcA9eBlz/uXANfAn536fix897v57TDLGGyA275Y2cSftv4GeCbwEXn3F0A/+8Ff9pZ/E5+G/hHLHrXbQEHzrnQ4Xd5jO34/eeH/vwnFc8DO8C/92GmfyMiPZ6C+XfO3Qb+GfAucBedy2/z9Mx9wEed6491D5y2MX+YksyZpNeISB/4b8Dfd84dfdCpDzn2xH4nIvJXgG3n3LeXDz/kVPchPnsSEQOfBX7HOfcZYMJim/0wnJnx+9DAXwOeA64APTS0cBJnde5/GN5vvB/rezhtY34LeGbp/TXgzildy48NIpKghvw/Oef+wB++LyKX/eeXgW1//Kx9J78A/FURuQH8ZzTU8tvAuogEOYnlMbbj95+vAXs/yQt+xLgF3HLOfdO//33UuD8N8/+XgHecczvOuQr4A+DneXrmPuCjzvXHugdO25j/P+ATPrudosmRPzzla3qkEBEB/i3wqnPuny999IdAyFJ/GY2lh+N/02e6vwAchi3akwjn3Fedc9ecc9fR+f3fzrm/AfwR8Gv+tJPjD9/Lr/nzn1jvzDl3D7gpIn/SH/qLwCs8HfP/LvAFEen65yCM/amY+yV81Ln+OvCLIrLhdze/6I99MB6DZMGvAq8DbwH/+LSv58cwvj+LbpG+C3zH//wqGgv8BvCG/3fTny8ow+ct4CWUCXDq43hE38WfB77mXz8P/F/gTeC/Apk/nvv3b/rPnz/t634E4/4zwLf8PfDfgY2nZf6BfwK8BrwM/EcgO8tzD/wemh+oUA/7Kx9nroG/7b+HN4G/9WH+9qoCdIUVVljhDOC0wywrrLDCCis8AqyM+QorrLDCGcDKmK+wwgornAGsjPkKK6ywwhnAypivsMIKK5wBrIz5CiussMIZwMqYr7DCCiucAayM+QorrLDCGcD/B9yJSEwU/USrAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/challenges/Challenge 3 - ImageNet.ipynb b/challenges/Challenge 3 - ImageNet.ipynb new file mode 100644 index 0000000..9c87bc9 --- /dev/null +++ b/challenges/Challenge 3 - ImageNet.ipynb @@ -0,0 +1,48 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ImageNet Challenge\n", + "\n", + "From wikipedia:\n", + " \n", + "> The ImageNet project is a large visual database designed for use in visual object recognition software research. More than 14 million images have been hand-annotated by the project to indicate what objects are pictured and in at least one million of the images, bounding boxes are also provided. ImageNet contains more than 20,000 categories with a typical category, such as \"balloon\" or \"strawberry\", consisting of several hundred images. The database of annotations of third-party image URLs is freely available directly from ImageNet, though the actual images are not owned by ImageNet. Since 2010, the ImageNet project runs an annual software contest, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where software programs compete to correctly classify and detect objects and scenes. The challenge uses a \"trimmed\" list of one thousand non-overlapping classes.\n", + "\n", + "## Build a code that finds faces in a given picture.\n", + "\n", + "1. Build an UDF that trains a ImageNet\n", + "2. Classify a given set of pictures" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/challenges/Challenge 4 - Panorama.ipynb b/challenges/Challenge 4 - Panorama.ipynb new file mode 100644 index 0000000..6cee0d2 --- /dev/null +++ b/challenges/Challenge 4 - Panorama.ipynb @@ -0,0 +1,430 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import cv2\n", + "import glob\n", + "from scipy import signal, misc\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['../data/Photos\\\\IMG_20200602_164740.jpg', '../data/Photos\\\\IMG_20200602_164742.jpg', '../data/Photos\\\\IMG_20200602_164745.jpg', '../data/Photos\\\\IMG_20200602_164747.jpg', '../data/Photos\\\\IMG_20200602_164749.jpg']\n" + ] + } + ], + "source": [ + "paths = sorted(glob.glob('../data/Photos/IMG*'))\n", + "print(paths)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(3024, 4032, 3)\n", + "(3024, 4032, 3)\n", + "(3024, 4032, 3)\n", + "(3024, 4032, 3)\n", + "(3024, 4032, 3)\n" + ] + } + ], + "source": [ + "images = []\n", + "\n", + "for kImage in paths:\n", + " image = cv2.imread(kImage)\n", + " print(image.shape)\n", + " ##\n", + " images.append(image)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "(3028, 10086, 3)\n" + ] + } + ], + "source": [ + "stitcher = cv2.createStitcher() \n", + "(status, stitched) = stitcher.stitch(images)\n", + "print(status)\n", + "print(stitched.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAACHCAYAAAAIlx56AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9d/xlVXnv/37WPuVbpjKFofemWMFgwdgbUUO8idGYezXGa6rmGltMoomxxCjEWH6imBDsInoVBCliQUQiIEV6GdoM03v5lnPOXs/vj9X3OQMWwpXku17znXPO3muv9az2eepaW1SVuTSX5tJcmktzaU/J/L8mYC7Npbk0l+bSr3aaYxRzaS7Npbk0lx4wzTGKuTSX5tJcmksPmOYYxVyaS3NpLs2lB0xzjGIuzaW5NJfm0gOmOUYxl+bSXJpLc+kB08POKETkhSJym4jcKSJ/9XDXP5fm0lyaS3Pp50vycO6jEJEKuB14HrAauAp4pare/LARMZfm0lyaS3Pp50oPt0bxa8CdqnqXqvaALwO/+TDTMJfm0lyaS3Pp50ith7m+/YBV2e/VwAl5BhF5PfB6//O4h4muuTSX5tKveDp82eSebwqg2WdxTyBYTkRGPjaUVGPeOzfs+oXo/X+cNqnqsoeqsIebUciIa8U4qerpwOkAIjJ3vshcmkv/RdO3/uxEKgSVgOWKZECuognggQgfHhYURfw19ZBvLRgjEVTi40LMK0Vpqb4CnMTzHRHqukaM8ZcFExiPCGprTFUhPi9Wec6/fP+X6JWHLN37UBb2cDOK1cAB2e/9gTUPMw1zaS7NpV8gXfCmpyHqwNKql/AsiBgUULW4qwqiiICoweDBW3MoFkQEVaUSwaoDfaFkGLUqxhiXF39dFY3qA0WZRtxnAPrAMTS719QpIuPw9BR3RTCtEazFeGo9A3HtU6QyfO8tz/H0QmUMam1B0zM/+O2fp9t/JdLD7cxu4ZzZzwHuxzmzf09Vb9pD/jmNYi7NpYcgXfx/ngkCta1pVS0EHDh7DAwLzQGev6LgAM7iv8X/VR2g4wE8wIgBBEVQD+hQ1zXtVjuZDkQyO4IBLGoTc1BVjHEagqYq3fVc46A0HYkI1pYaSLpnULWISMEqiu8ZozDGYK3Ni6LJZIwxXtsAI0njKDJ5RhdrE3dfxHitBGprMSJYlF//x4t4iNJPVPX4h6qwh5VRAIjIScC/ABVwhqq+7wHyzjGKufQrky5424vcF5GAG/6nlyYJZu2GzOpNEiCoCA5OHAhadRK4YHnBBy74hei65M3P8GV62DQBsExpe/Gw6egNknvDuuPbENqkHujC99g+BcVJyjlfERqMImgHIlRVi9rWqaKSC2R9mz+XZW+YpiKNWf2j8jl+lrQCIXVNU79IfVUmVUVM03iVxtvxPq8VNWgEx2vFSPR7iAi1ramqqllRZJTq+/Ap77twBI0Pmh7ZjOLnSXOMYi79Z6RL/vrFqAlSrZM0kYB0UgKcTxFmg9lcLWJMwzeaYMRa60wmwSTRsIxDKcE2HHXJsCKpVFv3qQTQGqEG9RJvkOYL04k0MFjAA3tJr0bpOTK8nC7v0zUNGkctzKCJpJZqyiyZ7F9oFM1eKesI/dfMF2gO5q8omQdfwggzUnjaGJOZr0CMQa1mDuxR7EPiR84sgiksFxqG8nhGEpmUxMzNomMyRqhri4jGsQHl5I9ezu5ejx3TMyN6rEgPKaN4uH0Uc2ku/aemi//6JFpVm7TsNKJ8KXkmRiBifJ4AZLkknlLQAtxjlQdyBwKCByYPNlVVecAQJ0kmu0tZZrT96DCAkCRZFEzV8pI63lfg21EJDBLo5RoA4LUYR7ND1RQVH5mDKUEsZ5LG0xS0iwjQWUpBQlIwntiPDcZb2IwafRHGp/Kmncq3J/SNyRgaims/RCahzfKadWdzIpYhpbTvzFTVsBfEa2PhhglMhgz3Yzkpf9Ij3bU01lnn+WsGp2kaI6BCVTmBxNY1xo/vwskJ6tpSVYZ+b5Zud5ytu/7zorPmGMVcetB08d/9djQpaFhkwTOXScT52o9SZcDIAng1y5NA1Ix0UqpbtEiw3vC8953Ld//uZEym8qPuu7WlRBxrCZKpCFYtqHNuBkqcI7bBXEpyCSaG+EsEIwarDjhNVTmATNlHPFdCTwCxHMiCNhKAOTAKVQF19mzBgHVRN3gnag6MgT7fNallvp/y/hEZlqCj0zgLEw3XCtDNFLH0rEkMLfR/5TW3slsSgyUVkmh1zCKCa3QMN8A2MzsVz0Psw1EpN0c1r7u9wWmOhnFuzoHk0xhVhtfYgl9EwCTVI1Xt+z+nO4xd1hkgYGsbfULtqqK2NePjk9R1zaLJSWxtsQq7ZqdHtvkXTXOM4j8pXfOR1xV2V/UgqB5clWAqsCkqwttmNYKnRotICP8LKnNYBCe+44s/N22Xve9V/ptgcSAnqpnUrXHhhXoipPoJGxmGhqWUg3+WvO2+tNEkW28oLyRTrkIn7XvDR+XLufTvX+ZosDXGtDyYuUeqYOrxoJJLqcFX0BKhDuvUL0ZjKm+3twwbWgLVwQGcQCBG4vh+KujP2l1CcSatm9DUVF+wWzdt3Q48PIOzNVKJlzprtE5tLUNMnR4RRmdYadGSOskk8JyBaBpfB5pBWxkx5oCpvFvbJoe5kSoKGznI55pUGC3NSi16rjLDhiEdNVoN5tFgoqPSyHZ7ChT1c2tEayvx80ioMid4MHEl7TVjhBmjKJiZqnfvl/QbMWBBqxbdytDrOdPT2NgYg0E/ttEYE9fiQ5nmGMWDpBs/9X+QTI3Ph89hqyaTQ5SINUpyYaIEKVxQVCRJXCJgTDQ3m5ZBa02iuDQAWANAuWKv+Kff99WF+km/RbxZxSDhuWAJ8PUbTPod4ERcuGIEB/FO2Khza4Y05aTMZUJt3CvyhGKKxdPMIzF+fehZgKrpIyDSC6D5szEsR6LEnlNfSOFZG4qvWjKysPiFshcKk0s0PQXNK2OS0nimQYu7nogI9SggpnLmJ9MGK5gsMqkpXTd1tDxFp3boj8x5XWgaTQZuSgYYSHZ967QKVT+frfXaQ+g/T1GTsIidkuZgsx2Rp0gSuqTJiD2ZkdzczFgyoGY9qX2jtZAYBhvqD2SLpwlnMnLtD9pGFT9VbXSuh3kY+rvlTW2a9bsNEVF+7S3p7WKt6eICSKHf7/u6aqrK0BsMaLUeelj/b80obv/3t0YpMwI+YdIHBuClpgiwQbInAzsfvZJJSQiewYiPQnFlqDgpWl2GZNs1fqJlppMQn57U/QT2GbtwYXp+MRp1Zbl6BaHKpL701OhoD58yycr91Kg8DD3VFKBH/J+bkwppx5dXYIX4BWWtY3DGEEIJA0MWCVJp9pCGMYkDVYJbbJpSVVUBpopgCrY2WpsYKaH6aqJMENrTYDgRqEjXRzG5PO8D3VNrHbOQIBzUGC8s5MxBGj6F3GH9QMlPIyA5yeM8L5hsKM99z8087pp6s1MYW3G0p66hmAGhLwkRROmGUA6pG/a098LkvoysHSJhPpVMPRRlRvSJNMpIdSaTV05b8PMYzwAgmKMkMj71YB/MVGF/SCjXYYiJ/ea6OmkaKsK4ZxAmrk/XT6bdRlHa7bbDgoc4/ZdnFKu+9E5UoQ5RDRDNQAH2LTZK98nMkqTi4ISCAP5kgnUa9JA/ghoCVQAuQUWjqcPRIW6hWwd+UE6+tDgywBYpF7v6IMWwASgglk1SmQRORZi2ubSflk4krZCIR0mpo+VW95hmd11OY6q4eAoQCE9nxYmnX0yFVIKYDhiDWFCtQes4bkRgzOLtMz6RRwEVET1Z1sSoxM+FHMxLA8hI7SX2WQbwsWuCVteMfBpRXny2oaFJCJNsXPNjpFjHqEQh7hMoyzXezh/SkM1+hDkmzmspNbB2VTEYDJLDPD6+J8aTCTce28QDaByrOK8duFqraS77qViui0g4AShVSgd9M3euIZSMPAgvYY012q66h5blwhAZwBN3aod8Iacxvt4418McSKKKc0c5AbPVMtS1jR2gqsyb34XdA1eGVb8Z0EAQMI005tlDk/7LMIrVZ70b38Vp4me2dhdAkEk/NhNCG0DsH83WblLDH3BNFClHLc8k/J1C4w5ZrMY46ySh5WVRmDQC+KgIxjOlGGkighj1E6+ixu1+ZSQFDrajXV8LREKsRk1imEFktBVALxHwkbJfwTn0EpMIbcu0DhHPnL1vQlrQrkAHaD0Atd6XYH0LxANlapbEZiYtUUTBg14dAKCBO1VYx9oc5geAiyaINYQI16YGUPnOCoBYMOkiBf3PzQ8nGKeREBxAVVRRmzCZ2aOQnjMALM1bDzChxUVwxfKspWqEoOoezDQ59bmPQ/HSdiQhzgbSHoKchMZIBOaBIJUBxTua87IyGrzaN9SzUXDIxyndg9LUmASMvKxsbfqf5Xx3xDqnvC8hIyRoYrloKn7B2bpO80ZdrvGOUE15x7oB0+owb8ECZnbvpt/r02l36M0+aOjsz50ecYxi7VffB+LAK4qiFh8HXapcucmkEE0KCSXZ7WMom4TrmdSXLyxN59MEcPZyUzGF0hLXCFzJnpotBQMuJBPADkmeo1LBbPzKMXHzjmZ1Q0tMlltd9BBuJ6iIc8QFqXOoNknl7Ckl2SpJghrogsbTDUnMf0+mGSKAGr84RPtgLVK1fBfVwSUEEhz+mjeRiPTeNxMWpPUahckku0iHEWqtXWSKZ1zizQGQA0BuSmiUEa4XeCCxH/PnotRMOF4C1J8rFEE4zAZxdVdxk6+fQ36Oi1rHNPztAHBhHCLD8HOlCAcN3TbCJDUqKiu368eZnCk9uRDgwnQtIibttg7S71DfpadLLaK8H/vQqzNB2HO0Jtd9+dxwyudck5bkiB6dn+jUduGr+S7uYfNb2rWdaywJlkIQhNP+6sHAhQYXtbuZMNkyIDWddseFxtaWwcwsArQ7bdQOGOVv/2XTI4JRbPi/74+jHSaQDxJz3WcIqOHy4CUCP9gSJUu3SEJHCqAqXt0NTibvVwAv5VZAnbBHiCYkJxmZSFQJHiNhN6aMZ7nfPjokhOW5PLZcoJSLsZjGQ6aLTKLJTSIS4tADWGb90ViduZNzaNE0KWgwQNc/4XfeDx7YRpAunlYjTvoScYAppkJM5fq4aoEx2NogDFx/eyEhaYelxlTQnfd76BpN2aoo+cuojyGmMaqW0vwTjrhIx1KkCCZffzZ20moVWmPEzjB2xocJZ/ZP8VJoCEsNzDY8mgDbU2nM8MzMxzpeStE4Ta07zxn6UnFnM1UNpoLmwGkQE9qX+ijvQVcvXprW7H5aY9EfoZJ3TyzPWltoQnkbijaG+RrbNtqENTT7A9MyYRxNGiso+zebDyXDbVzT1OdpBksYRIxalu+9GLNlE7XW2BranQ6tbgcGFWKEwfQMdjA71M5fNj0iGAWNzk2Dm0lVkiT4mLxpxkkxWXFBxg0C3ZD92K1g566w8ZngfA6zMjwbmRilDXxEQxiWXVwyXlQ0kseKNyJ+RohZo0sMeoxvTeqcIejeE62FTb9hjhpl0460BKZJ1s+NPPlnKDJAnvFRWkb8YhSDSOX6IgKZoTItVFugNXbQd0OmmjXQL7No8/YMypTQk5q0Zwdvwp8smqUhjQ8/0wTLpNXEu+FIiIQYeyxLzR4AT8DgnNqiILYuAD9G5OXPjTDDDAkII7SIlMry8jk1FB7sUyWGWusGY8waUZASFmYxSwiMYjRNjfqqauj+gznwU8DIKKpchFFVVYl5Bu7onzVQCKGj6hZxkU2JAeOxJqwbt26jRhG0Sj8ml6+Z8k5zQ7s7RlVVdLpd2h1lcmKSbVu3OBp27XzAtv686ZHBKCCadYypqK1XzWzdAMr0S8BHGLnBC2FtkGN7vtmnnPBCimX2rIawwAMzKHwagT6RoaiDiK2O12RmoVx9D7VrtpO3wQbCZMz9FODN8GUwagpnTX0Ri9EUUvgAuJ9VW2pLuarchF0TNKKIBY0R0tTavF0BPyQ+FZh37diNVs55V7Vc4aZCaYMOcFEtA1Rrv+DKBlXGc/d8MWq5mE0V+jJjsZIXVQLUMBCEfmw46XMRU2g8lwUgFGWlORXpC/JlxqhCiKWbe86BaiqG+vYBdduGtNuUwJvmteZcCKm5wTG7E2kwhbbWpCrTnoqnG4bYcGhhVl1Z0s/GHJJGmDHIPbQgXOt2Otnd9Bm/+TDoPQleIZXnO/k1n6QR1zvWRkErIoMqr33a0fzjRdfT6/Votdt05y2g6nTd/DMtxsYmqSoD60c2+xdOjwxGIULLODXSah0XiANA/IFr5WJNc9Gp5ZbSjKMeXEM+FzmRHEmlQ7mU4AiPBtNNuBxUR/EwF8NfJbNheqAKTMPfi8cj57PVcxfrd+Om7pBIf6AbJGocIXIrSfRBg/JhpgV251JhYonRjp0Pg3/M+UISoaHtI4eueDIMzehlXQjKnmtIVoIjy52xhKjbP1B1sKaNocbWA9CBa6NCilhIZhfxZg1bJ3Ni0b4GfRHnA4MfAZKxXRHpymirMB9TG1LfjmIUMOxwLqrKOiqYPkUUEzWnBrgzenhGgejPKoUPm1DM6AghTdq7WyAhRLbBqQtG7AUSRnYN4ciVnOE3a94jYyyJbpIan3zg5yXliBqF/9zTLnD/aVUx3kzlfD02nRoQ2hJpcz3gglKE2gqLF3RpGUNrcoLu2Jg/3sPQ6XRptQxqJ+j/9zU9EY9JyJ2FQXi0aNxiP2yjBkQwNoe28r41bqAlzxOLyaQEEcIxBAHEgpkoFJnXkZzhGehGhpCWrosiCTMu+UgCERVeAimkvbQ48q0DqcuCEz0L1SXEkjtnfO4sVbI2jx6CuAcklN/UdsRTEXncUAnZr3hYni+twObU/gi+ualHFcExjLTBqYO0OlHa1Hrg2m97rq9qr234aClTZUCc0dpkHiWDS8yiyDHEVCWTnlPzo+RZmK38OD0AaIcY/YS1zbwWg0EqxfgNXeF8pDzYYiiqrVlfqnjoXjqYbs9pqM2+0KDxIoKpjHPYewY6SnvKYXI0lWE+J6EuabgUTxdXoik1A3aCTF/OO//AyPpHCRJJoiAKWaM0lEpK/1A6npyIH+JN5kagtqFIR3RfhHa3Q6/XAxF6/T7773cApmoxMzNNr1+j0jiR9iFIjxxG0ZCQXccqqFAZt4HKkJxAQSPQID5LkgrdCKRoieTUTWGWERBUnW3chr0WVcY/vMMVhSAlwbAopAHYm+0K3M7L/4V0kuvW6UY5dxslhqYWZqLAAJISG5iIBhNaKde79oywST2IESO7k6KDUlHZ6gz5s2ObS/AMdPgLEQTctRTfbn3b/KEH1jsjRXyElAXT9fZdt+cA9Ru+xLpjMFQJL9xR9edNFcJio481RfFESiVnm8a9iKdgwaP6yP+SDKBG5iHTrhjOrwoefIyPfDJxT45EM0eu4TwY4If8ezaXjE7D2pYbf/XrNKwt8c70PGcJn8254GkqQFmiBJ4LaMNPp7kctfJCYg/P+DllRjuzm6VnalK6miSBIfplxLdRRZaMzRUVj40BJsed76Xb6YBVOpNjDOqaeWNj1MxjQdWmNz01gu5fLj1iGEVLWilWOkQw+U1lwdwS5WbN7fxBsvcqXJDgjItYsHUCCQneKNHI1d3bGB0jSFKDOMnU1vFYoEIqjIBd4HOzSY65eS1lGEiHHyomUrwtBFWodGE3GIbVrDwtCnJMNjMRZGqVaL41T6LElIhIlEmucYW7QeILC7BoY8H2h4Sz5o8k6GVAHdRKVS8o2BxRHIiaEGWksb1Yi9o+ageI1u631kmz2iNDlGIH8JDT2rfKRIk3QWBkmEVpUlSVdp9nc6nshdFU+Tkewn5TX6b1Udb7IKnpEP8ZU9MhHAW0bOkkP5WJeVL2IOAMh9AOeYYaIFokbQg2DSYRKMirL2O5skpG/ZbhHG7u+DrFC5dFnpwGzTQcz6DCWi2oCwKwX781tKVi3fq1tNodZPMG1q680+2VMhWt1n/jndluwth4vkycPcbvgFSN0S2oOvU2qLv+Xn44aO7IipJsiPEWSDvMMlElAoMSvQ0ZMIQV4SIhNEYaxXDbPN7fcYgIwiImqedRPNI4YcLkVmuLzUiJEaQIpaG+IwqdsQNK6M9MT6E12YatYFKSQLe/Vg5EWmqjNpaNBrm0t2TE2stYnkMZxYI/VM7WzvkcEEi8WTJ1oQPHECkVgd8YwgY1MX4/Sd9FxKnxskBmjpLQx9llkfQuhGY/0wD9plzpyMrmVLhbNHwPjKB5WfNR0ziSYU6Pckw/UKGj2vSAzxa0DMvzTVILbTk2usxbQHhWp7PRh93lOVfNNkjmF0M9D8JemyLLsOkp5Sz7c9TOoBFjaQzNSylnMrc6HpFJln5o8+MBw9jOn+jQHu8wsEpvZsahRJgGUmNnZkZbzH7J9IhgFEFlFBEGNjl2E7BJksIi0Hsxxi9MNRona34QnjGGQT1o2Fc1+6P8VI12+lxKCRuz3EtwUrQV0QTmJd+cEYjbVBZQqeQVGql0H25DXQ7ogQwjBhu1ioCVPlegN/NgB3enksstDRDPwSGoRUUWZdQSaJa0p/th6rt/o6XdIWxUF8BQGXGaQAPA3FETlX/SOzzjnhh/KqwfA2cDbmFbIGpBLVK7yKko2fnFKxokxZSchiQlSDYIbjIKR8eI7A/QYTlcBmld87shLNYIxibGH5gcUES8NctOctAIyTwH6wdCnwcx0ThTZj5foqQ3/ESxRvLrskcH/yh24x5JgR3uzvAAxaWcPzs0MAl/YpYmGXsYw6TJpozFo1lT4yZQgdofJ+6ed+8R0dptuOt0ugy0pl216Q36UeASnGXi59EAf9b0iGAUko1o5TfhqLvhGXBgEAHQ0qQUAWx4gbu4CClxz1hbJzuuF5grqbA6IOF6suk7nmTc2VA05Wm/7MImoWzQnVPVHXIXvK25xyVILEmaKFzMMXeqy1/x2krUJgLDVC0nI8ORU3nfOmt/ebVYJJIfeqxRak/O6Ox6kJRyZpoxw5BGQETcBxEXeMGfGoGMkvWt33TlHLhZQINVMEFzqVxUm/jDBsU59E17zPWl1lD30EEPp2L4fo6mrWgUKUhoIn/e9Ob1+DPi0SiuMfRokTfOhIAOvr9FJb33YA9l5CkPsd1TEpEY8//gWsUeC8koyCP/MvhONsVUlL9kJOiWJa35HNlT1errH9knYf5GfjYiFq/QapoFpA+RpP8O09c0JAW8ajyRWSfyvUgJyQzGQNURpmZmqKSi1+854dFaWqZy7++Wsq6HKj0iGEV6dSFk6EsEZACViNEpefONSRMxYAiKP9UyC2dVHILZKknzGsBIwygi0dMBgVsVTMNz9eDfEBSqAKwhDLcQZXxThiWayCQ0TeV4JEimVYQ644TLpWLNF1ySJMPLejROSreokpUuCx6IDC6pLRLBKq3WITzxUlioQRslp5aGh934mkx6i3UML2VXXkQdTTSoomLReoCp2igDnA06OGVNXLCmaiOtCQazu512UQ8yyVFTv4XvBQPLk8sXplt+1HRz+SbfRA5+IWsDlkYwSw2O+7xsMd5xn8oYBUZlrXtKLker1Yo9rxHBtZEvSFVZ27IUR88aNJ1PmXgd4aRVyE+DTf6EBNxp45pkQt8emIUOdXHZwqI/ZETGfJY9AEPNaGz6CEfVEYJgLBrD+6MZyps6rbUMBgOqVghGIAqDE90uCC6IR1PEp+sfMKN745dKjwhGEVBJojMyzYAUehcUigxUpSzDIN4qlTEOfzeXcKoqe1A1OYKD1uEfUPBCkjaAWeMps6Iuvk2t9ZKqZxbRhFUyDPXPFWf1ENoVsmZSls/lmp5JQA1GkdMYnlD1x21H84xjmFUGcIWZTbN+MuKddVlfSaKnyTGGzAa5mSNk1yQhx7bm5//b7PkG08vFr6hdIenoDyQyrfzd0WJrwDm1K3V+EEzW7yGn1k5bUY0uLCMGa+vEVPykyDAuHjWdlyihrzPeV/TWCC0la7K7nM1RiT6wygF2tjs7vcugkZpmprK1MQV52Gr5LgZpPrMnkZvQeoXKRZ+F+Rv2LBU0Sf7McJkioLXXoLODBUe25We++GBss5zj8esIs+Mee9VndZaAjAGKph36ucBphHan454JR6RbsAM8MxAX1u83iFqrtKpWshzU9RANv0yS/wx71kOVxBuGt114apw4wUldQEbeBs2kbDT7UP8ynjQBg5kigaXEE2ZNOO1RE/gHFFC8MJMRpVhsbeM5SkETGQnSGjaC2VRuRmeZtPgoWq/pXtS3inqa17L8vh2q3l0WmGyz9pwmDxLFgXBZ2TmIBDfcqJSxM0LYWHnN5WpGome4SpIJ/NWo8QSG5x2JwZcgYbNMFZ9LgQz+GHT/WtEgQIhAXRxrTiE0QHq/AgLEdx4E6dj3R7NbvbAg4b0hmoFF1qelNDw8NkmIV8BitEZ0ELWKMtjCP+OFgHC0jWjoa2L/pYmdv9QqPy4+CBEFNUPj5StM/aPqT1F+MGDOBZrM6Oo7pDLuFaD5Wt5jMSOqyudQM4O1SvO1piOL1vJthnHTa8pQVBTWWtACNb8f8kPS8glCo0Za1Wu0M/0BnbEuf/XP59NdMMZhy4XfP+npjC1czGzf0lPLcX9y2k9U9fgHbcjPmB4RGkURYy+us90GIPcO2SRJD0ukxSIJEif4SetBKgNatyeifFKE4rwkFFoCdV17YNDoBynNBhlAR4mZ6OcwUjUYRZoUxcINtntPZzxG2u/8ttlbFPINTKIj4toRXDitxHKNPwY9COy5Izy84B0v9ivleT4pWivxuQjEocr82I5RfpImY88EzSR1h4CBVFZDGHW7Xgn7YUJbffRT0DL8q07Di1+MqRgEhyC+T9EomQUgjb0X370dKE6x91HK91ws0FcAfsagYlviIX3+/+zdJImhhXujNgp60LKKWO+ryJz2ZY8LGMPSJz6DdT/5ES0GGFGGR2WIcGIYZ2xHnjkLd6VgrY4JRonb/R+0r3AxHrOfniryx2FQoVb1jH8kH3jANMRYsvFQcg0QN1cy814xDyh6Jmdn7jPf3BjanoVtp9DfuOg8Lekgwxhxl70n3BiDms4RL4UAACAASURBVIo/OvU81u+c5Y/+9xs57SMf5vTvf5mrP/En9LZuYsPsA7LPXyg9IhhFtFWKYL1KFVX7Kt+EJlFLcPMwRR+JQrtVuR3e1oW4RllW3FSMEobjJCNEWHc/yltVAHo/MQBRpfafUZuIIJck9LDJLzCAop1504srmUkte77SsMGLRI9vUQh7DNKJqyJsePJueb8AjZCmvIRzpUqCmguzcNKF3fMZHflDzWdl6IsvM5iaUpcQORCO/igPSnqmkASD6SkzQyVmkRahtYMUFuv3Y0DSjKQAjmxRx6tafvfMPNnSG23OLhgo3uXg+i0wZZ8nIk/Wz5R5QtVGKqTSaO7MZkGG+a4P7p9t09n7YMymuwoTSqNIILxSJ6HycCTPcMqpTSbeEG/nd0fH2FbBVJlYlTGAMP/KueLbn5FQKjeyhxvlrVHz0Qk4YX9HzvjKZ4o1KilHHtw1HGVV9q6E/7N5FQUDTUJi1IpxDHJ6IGycGbB++27O+sIZ7J6axrTbvObjFzNvXFh2zON4qNMjg1GExSpSOJkjemf9b0zGkT3jCJMx4yc+QsY/asS/JCSTaKI06X0NKd4VBVpVxWBQR8D2099ZEXJd0//FQc/NQGF+REkjlxSLGRel1ESgA87A4IZ3L2SL30sizrziMwtg/VYeVdQIKsZpaMYkBhq7OjONZKslvcrdA7DWib6hVMZ+hFEpFmEmtSawyB23octT+cnEI0VfCcafC5XyKwmsk4/IkttRhjaNZTSnUdEsb8YcPdOJdvxM7miilnozlbNCWneCcEL0WI5jPM04sbCDPAgMIegB3DtNRlHv+0UM+x31KG678WqWtypE9rB/wrdv5BlOvt3Rl9YcbwUbZBpvptF8A1rOSIcECSlCy/P6UvkyeoiK0SHNh7KCPaZmdJd4uocYRCaouetDjYhzobif34wCiqT54ddqXdcRd1I1ghih21bmLVxMd1cfMYZWp4VY4c77NrCsC3995nv53JlnPXhjf470oIxCRM4AXgxsUNVj/bW9gLOAg4F7gJer6lZxvfwR4CRgCniNql7jn3k18Le+2Peq6md+FgI3XXAqrlO9KmcCNIU/nzR9EX/LLWpJwBIWsCbAsOF6dkRBAIPcYZzLXM52nQAtRjih8VWODmQ9OPlTbvO8Tq3VYrK51VWq4FlDGlJ6xqCCra3Il6gOZghjSMdVB+4SGZBnxK2WA5OmKJdXTVF8khaNoGrKm1k7mmsoMtMRayzPOXw9N3skadUBTB6/Eo4mD/kT87e19RudLPmrOUceEx2BxoODAtk7FZr7aoTkvE/AkgqKuTxN7j3npuzTjICMFRX3Ip9AE13Y7A13oSeCeTYwILjwC1/k2InaH/eRYDD/FVZYoVU1kgL1oE9VtSNNXi6L0TcqGtduYuL+eW3O99Rad4ZbMz4u67vGnBx6YY+GUPXskip5gMRQyUJ6FWuooiG4FMyC5sXsZzSVhrrdd6vh1bIZkwjzQynfna1KreGtgk7rN8aw6t772He/JUxMTLB86RLe85mzwMK6zetpz/aH2vXLpp9FozgT+Djw2ezaXwHfUdUPiMhf+d9vB14EHOH/TgBOA07wjOXvgONx3fITETlXVbc+WOVVu5PHG5Lgv2E/DDZ3Qgin5kJiTOoHJ7xYJ0hNSc7PAzn9NyGplHmEUHTshSgOPDPSOIlT+G26Jo3FmYs85Qu6AlhHzpbxA9eOGH6bL56YP9QZQjyT/E+g2jNRFfFyqKcrPwWzyagapGuWLZp8SJJ8XCvlmo2LIy6qkWmYUxURbZ5BB0aQMhnCKaPJD6T+yAcwLT/2mp1hlLUxleTc8kkuFM8kksbQZIKxOMnHtmR5Ksmin0wXqV1lc8rSG2KEo8oI2AFGK9CkHYfAjBhl5Qs470tf5IcLF/Lmlz/dK+wBoGWoHidQNZiNv65qabU6Q/TlUzj0Q2xT3E8EDUWpqDkK2ntsva9oyG+05/zx5NlM0GgWJ8Ev50NOEz0yep42pIq0PEp92Sm8Jntg1Eiq7x/rYU2KF0GFSK+q0+a+1dtQa1i9ZhPSNezeMU2nM8lU56E3FD1oiar6AxE5uHH5N4Fn+u+fAb6PYxS/CXxWnTjzHyKySET28Xm/rapbAETk28ALgS89KIWVkJ+XE00KKGpaoH0XsmhrwhStDC4qgngpLhTBh7uaEK8dyhS0WCYBAf2EycVnEbDq7MseqMMeidwpksv1hSM9gnqDCZAEC/eRTcoMjfPjLeLObjz7DGcteWk2meFcPWJAa00g7vMiYYd3OLwqi2EpGNfw4pXGxdCnOZ438yQ0KdhMgy1Ica1gVo2iHAgJaSNVZqoyRKbubOHla0OHJNMonYdUpT6XDExz+SUrK2cgBf0QGXVgdiMZTP4ta3xjT3Yh/YN3inueqJmo4zRPKXY59tRSW6VlhFrMMKNFUHXvbHbDOQwVrj+qkYMbzLDp7I5sPUmI+PKhstIos9HKxHhkeA5FOgJjTN/T+AwHdaQdPcMpOe2zORSWdfaQC3jIOjUTzCK50efgLlhcXxaRiwFiUMRAbV2gi+LPNMveB25VqVoVBx20H3etvI/f/q3f4BWvfgWrakNr3gQHH76Cf3jlyXto2S+eflHWs7eqrgVQ1bUistxf3w9YleVb7a/t6fpQEpHXA6+PF0zOiSFI0W7EBtmDPiBTwfrXQjqhQONGPPcaSS/xu4fi22xzUAfi5iqNcbCUmmSuPnuQDQsyHpnhd05LdJTS4AQNTQC/xDKpNkzo3LURKFbyG2FSVkm68m0Igm2cr1Wa0MmPo/EsJM2YVr7WQ81JQi8lxyxHsaIkZMjzhLEJQGSkaGPet8Xia5y0knAhMd3yNBZNUqIfG/Wb7nIGFEELH9/fCHbJgaUJMLKHHzn2hj5IGpYTTnKp2ckgoyLVAnPSkWWGdsaLCmg6XrzM6f7v+FDXWiSZVob8IKUztykhU9xtpLhWfK1R4ndMIiyrAPKjFUopJ1/DLxH6Kg9+aPRK+t5gys0xzNe2Gwd/HE9+v1GWoXw/d9zFL+l0XAlbdsJffDGWH5k4qVI5xrjNoKLh9cyuvNp30pQZZ+O69Yi1LOh2+M4FlzCY7bJq3b1s3jLNvetWj+rMXyo91DrKKCatD3B9+KLq6cDpACLucAbJ9hoGp2WQkPMKNKqJSjy/05DJ334DUi4JBsk5tyd7U4xAFiqbx8MHaa0MjIs7roP2EhdvIjQtNE+TTVFa8WphbA0MIe9Jx4jEO6FdFRrfapf2hqTzosJx6wl3kzaR3tPtHNq5KS5rciN5UM5aBJIN9NBSzJ4hCJbxKbeNZXialPVnD2dtSNYBzQAq9VNObwSM/JTIrGpRTZu3CzqyyTYiNT1ZefO1rhH//uamPX6on6XZDaN6NOvx6J8KIc9pcqewz9xvE4IxWsxbui/v+fcLeffrfwtL0MhlDwBcNj3pNxktYUlmXWFRTOGH888ZkBiRR+yXUXJ+fv7hEDMI/g+R4ll37lfJ+PYwdHu+H7Slxr7SVPcwxXG2hfVVZfl9hqZ/RLxP0AYBLPajW89RS/L7dF7xN5/GWmVsfIxPfvqzdEXY3bOMdzpUwOadOx6kpT9/+kUZxXoR2cdrE/sAG/z11cABWb79gTX++jMb17//s1RkIhCSQlDdlSRZSeD4QTIpOUgAxPBRLkT1kl3mZ2iseQKQZUZeV2diFsEnEk+NRdMx5Rk9xbJTYux9rK5gqymSJfpWhOztYAnsw0uFgjZgIG6MUxveoiWxT222cSwtec+UQz0jacouakbDyOUiMZ9ivcHQknEI0mg2ni95ZTRVFJ3laXTbJPK6soWYiaou3FfTQ2XPZz91+FKEqKbE34TyOOHSlRGniI70BTQzDeVMIspQvWERqKQ2SHq+mNYKrfmTVGIZn5jHAHHCgrjd7+6k1iZTK1MTVJs+gtD9sc89BflzVoWwAdKNZVlfZFgjOqcYJsn0vTgnDNokcriYorxCeSHrOZOuDZVVXFf/Bjth6Cwn/0TRC5GZ+sKiYzvpHGG/WO01flVl2V4LCAc91Cg9WzOhQmVa9Ose8+aNwT1rhxv5S6RflFGcC7wa+ID/PCe7/uci8mWcM3u7ZyYXAe8XkcU+3/OBd/xMNUk6kMyBfJjuGmdkYefMhbrocCbmT09rEWFUqJZeXorgGxzSqgRTRiLP+OM5Ajnh9YbGMw5vykDdXgf/fgT1R6LHcvzML2LIY6FkSok2zlZOYO/mmEYhKJ4hIyVQaQBeMhqiFGPiKo8MpNG3ufSriDchJbjLs4djGqKRb+iU3j2AUcMmE8HCkjqDFC4tInEsivcKNCMa4qMBWEegSZgFHjiTmS+XJAtiU1vkAVtFNHYXxOTzuiy3efRJaR4RotMzmD0Q3MuZwmZQtzbc4X5VdEDvu2wFu2b69PsDNGz4M8aDUV1oeGFel3Sk38GcloN3Dp7hM+7FiGadrHzfqJxZxL7WOCJFj9usk4cYV54RH7YuJaMiCpj+mYzRjTg2Lmv7cJ0ieDxJgkUW05ITE++7zbOS9VkgxmmH4b06sQetomoZtCbR2T5j420WLFnCoccez08v/Ravfuf7AeFrXzyT2+45l4cy/SzhsV/CaQNLRWQ1LnrpA8BXROQPgfuA3/HZv4ULjb0TFx77BwCqukVE3gNc5fP9Q3Bs/0zJD3AKY/RQHwfMRRKkOCXnBFJroQrO2SRTSQAbSRM9TWQ3usGMEyZokOgTiAb1HIITxPlArAu1jdWlBVyYvb1NPjnBiTWFTJK1MYJ0xlDcb/ULTCNjitJRVT4by/W7j90BPu6iqI+JipJYgrsIg4bsvKUsxLDKGVnBJlIfDEGn788YbJ/RGce1DC8Acf6VbMEZ/JAYNzZS+QADGT7jyL0XxMZyRcILYcJ9LQEQkFbe5kBjo1yEwWBAqz0qxDqjPe6ALs2dint1qvXHROdnKQ0xpgIc3SBHH5QHGtUaU7Xi+yUUMK3K7aXxJqqq02XHhk1UAvg3RGrV4r7uQRw+uJ/BoJfqz+iITMOmOWi9tujuloOYg33u3wsCYBijdLbAMOjnmkoMhm6Yb5LfMqM3K8mdeZUVGX2dw2W58kbTAHgLn8Q+j2HwEsYuCViNKV3UJZHuomZUjX8rYGAneExSpNth/dbtDGanUK3obtnEFVddz1s/9CGuufJqqk6Hyy++pNmDv3T6WaKeXrmHW88ZkVeBP9tDOWcAZ/xc1EGUgnJnVeK87ndgEuEzLv7KO5saDt8kcKrXBjSpx+oWQD0YOBunB7oAngHYQ6xzNEnFQTUZ2GTLvQG+AZw9UQSbcrkpaQ8glX1qU1/OGE15PdxOS9/NdRvbrAhWpHh/Qb70NCDz0D1Kyaz4Pxe/QqYMQk1eUrmscj9UmTTmCsAVJK8QdhpOzIk5o/QbOGwmXbojPEcuXI00poYWIOT7qtV8Vaj4ePwMFGJVqWKnYYnfzZ9FYmnILORXmmw49Z8/bUC8aS/sW8i7z4ozcxsRuhMdJsbG2bxum4t6ouKOTV0WHbKI957+Sd7+v14UndxBsw3zJ0ZQaYAxz2i8EFLQlwlBBdP0v4uIp5ivfGB4KktkWnGtF88OT5pBfKxkYMGXMSTKxGlSalKK09B6fVjY7TAz6OEOaAjtdhTV1rqw1hF+N83+yxVnzRhOWuKalmylDGrLts1bqIwwMztLp10x1p3Ph976l1gL/UEf0/nv+M5sY2i1OvTr4GzLJOJiQuXOrNzRlg+WA/7apg0vinsFZjBDhOVmWuFQwCDxhP0KGidLSlksSDTplEzC/cyAT0K0UaMZJpzoqhlIBc0lFKlZ0RkjlOyaZFkTTkYJyn13hIUNUeo8jKmsoqohTpB/IUR4NflCuk+RCiZTXC8X5ah1HxmI4PpRxEfHZS5la/1ZXlmFSibVN4lxWqBki7S8n4/BcMPCrcSHlUzUL1snkfRojix7I+3RSPldWRpLkQgiQatz1fo6rfWgVWqsVG5eL917H+68dSWdiQkEQy3C/IUT3HbrzYx1uz5MOq0nR+co0E/OZKchZXs4ovCW2hzKM8bEV3aG+3l/Rq0lH6c9aBx7/J3P/SG6/RhUpRM8XHeML9koEnMSpsYWslHatHWHOygRJb6JzmtKBkOtWloRinaS+sb/F7SUcHCi9eMd1p4iGKMssjWd9iTbKsHWM7zjlH/mX9/6dmq7G6oJVtmH9uRYeCQwCqkYWG9KgiQJRg7uBrI8+59sdmj8rf6oAjGK4k6fdOGymeTkjYy56ofgQ141Xg/lxhrDRCxExyxXYzbnbQi0Fg7zTEIpK8rKUn+WU10XNKecmrIXVeW0BybhGyEmLnB3xTugI0NSD6iBxLisUl3RKUcj5Yyl4HcRf1M0YZk367QCeAKTcKSb2FYN78mOleGZxEjCfN/Ejh09Xnu4V1yOAoF6JpbPwmSu06zdRR7PV9yu5CDMhKCGVKYnOAKIAyF1e8Rw0XBu97nEvg5kW+C2O1eye3qabrvDoGqzwe5NpzvL0uV70+50saYiWeo1rbuc6flCbQu2mH25+Jwv8aqXPAOtB7G9hXkozCljqNW6fVC+35umn+jg9Z+F7yLrw1BynL8jxiwtKe+TjIytmXtYmknrJTEKK8IhRx6M3Hsrg17tjyhJXg3FdZ3YcsNeof3nA57T6uuy2XWbRhhEeN83L2bLpk3ccvFn0OlZFi5exKkXnhPH/o+f90Ie6rinX3lGUeP2KKQ9xQFUfecrIOENbRn/Dk7mglmkcuMYxWfd98BfRMJRHDnDCAAwujDNf2Yer3KBZanB7Iqym5NoiFEkumyIHCFNxsiI8nWhDpTcuU91ySgUVFzEU84o4gLUsv0j25QvPCHugh51X6GwrKgL00r3YMgPTdnDfvjENc77KJLo6qN4NOwVUUoCI5mFTBFpHmIUTa7mf2hWUE6iqI+8ab6zo8FQYl9rvO9uWawRUFNoOfH0WoQayy233s7s7DTHP/7x7nljfBssQuUDJyx9MbTUvTvDChxz5DFsW7eBXq+H1YrpTXcyseJQKrG89A/fgd39E3bNVpx93iVsXL+a/Y86it975nGE3dlx7ni/oa0qOgsWoGK4+Kpref4Jx8d8UesBRAy1gFBFMKxtTWVKc8nw/CpUkszfkANtqXGIiNNahMgYNFKVWwXcvHaaQMKDGHXlD9V02gOYVoeLLriEpx3/eLrjNWbbGmc6bETSiTHZO/2aX4ZaG+eYO1vL7wMj87eJUBnhrFPeybKJDrfcvY4D913IIUccCTqIot3HvvttTvq1J42q6BdOIzfQ/0olU6EYapykazFYxH8PPgn/FyU177gylb9mUKn8n8FSoVRYcZ/uvsHGT6FW/LEWxtvtfRmmhRWDmlb2VxW/MZWvu0JN5aT0xl+t+Of8NapUlmSfUuFeplMN3/OfVC20qrDxmXas2/rPWiqsr2uguLZS+f40JMOakE4N9CAQmYg74piqnfWn+7Pi+snGNlaY1nC+/I9sTJwDL/R/haWi9jvFh//COPo5IM5kZsVF7dSmAtNy100Vr0dafdvVPxPHwBjEtGLfubY2aPb33afv+6zcWJ6pPG1uDKynI9IU56RnzpLoqzF+LCuk5ebnD6+5kbPOuZB+rdyzahM1Bml3AedMLvrHuPUiVYt1gwl+eu8G/uHDp/OhT32Z7qIlfO2CS7n3vlVs27YTVeWDn/oKKw4+BNNtsXu35Yffu5Bzr1zL5NIVrF+/nk53kukNm6n9mrFhvE1Fzwo1MFDF1jXT/T5T23dS00p5w/yTioEYajXUxo2jxSBV2/ddFcc+/uX1kf1lcyGUE/va9+GCI5/KOed9Jz0b5o2pyv6iwkrL05fK6Fnx11to1aL2635mdpZjHvtYrvzeRdx/x00eHxId1q+rAcJAYaA4/DKteC+2IW9LWIuN9tZ+jivCQA0rb13F9j5YW/OYxxxHVQXB1vK5086gax56+f9XnlGkyRHArcEkJHx3C876P/VgnwZEqBG3CDHZxHQDW2cDWIe8mkDcZhOIyBwCM3C/MZUDjvy3B/kQeogHNalaGROTBJYE4HJMxJpUb6jThj8P/taU92uhALYE3iZOuFx7aP55O46nQ/xb4sKJsgEAE42hj758/nfT4jWuH/OFa8UBRi0mMoE6LvZ0vwSBMF5SLO469Ls4ILVqIuMxnt7EiHLQcePj+qzFe075NP9w6r9H4E/M1v/GM2B/P9BbY/y4tqHV9s9K1p4KmwsSZOMnFdJyjKxG0lwyxo+54dbb7uT8Cy9hzaZtfOrzZzPbUwYrnsjnzvke/3r+t924iOGKa27k8itv5vyLv4+lxee/fgnnfe9HfOT0s/nEGV9n6fLlTPWmaZsW/RoGVhmoMj5vfrSRDHoD1m/dzFhnjL323psNG7awa/cUb3/nh1CEanyS6UEdAc+aNmd84wdYKjb0JjDd+TB/MVv6+/LhfzufO+7bzSxKz5KtMaE2VQS9bTPz+NaPp3jXx76NtrppnpiKgUlzpGb0X5OhqGTz3OPCNddcyBS1X9tprcdxzZiRm5du/GvTYuDnV18NM3s/hoH6usUw0Zmgt3sbF1x4KZdccTm1+jmpgWF4HFHD2m1T8doAPz9yrNGEcSFfEFqtxwer4jBKDQMLE3t1aE12OeSwfdmybS2CUFUV7Vab1/z5H6ZjfB7C9AgwPfmXzORnW0fjhJeAvVobVLaQrbDWSK7WSWFmijbMzKk7Ob6U3dMbY97CFhHPr5GMFM3UyixmPI+mIqsv+x0+rC+uiAKOeYLenEXdCKVdHRBRxJ+aGU1KcbdBiAUKTsTMjhKYhjhmhXdcFlE6kjna02PejKTM9vpYjH9PRzDXERsV3jBYmguyX3EcQrNTW1NUWhhutynQmBA6beJ+gHh8N3jTQ7D1J/uQkQpVy6bpmk7L0td2GuZoecsvhPHwFIU+CNcqy7o1GzjkiKOZ2rUjmltSUX4OmMSMT//KNxhvjyO7NyMtwytf8btMjHfpzezm0U9+Kptn+vzoquupWmOcd8kVHH7UkVTMsGLeBD2tGJcO6zds5+BD9uXIl7yRhccuZ/kVV2Glzb6HwO233M5lV17Fat2HfjVGrQM+9umzqMcX8cKnPZtbrr8RowMGYvnK2T9Axn7Cc577bHZs38zJf/Re7r77Tro6S21hMN3j7z74CZ78tCfRZx6rN+2mrjro9AbOuPAa7rr1Ho78tZOwahloxXXrhfnzF/Hj877I8qULed7znuk38rlOO++ilczbaz/mj81jetCl7eOci5mpljI8enRSkqU3DKKqsmv7FoypuO3+rfR37uDRRx/qsmSBJhonnJvv9cIVXH/Lap64ouXWpIWV6wxHmJY/H8JQ9/rccutKHv+sF7BzzY1o1WaA8N3rbuHZjz/ak1BT64CJttMoXORmFjARHN2ZryW8XS/3J0UfKUqNMLDKS3/3FSxZtJSD9j+A7du3EgJanL9ygLQf+qinX32NIpoYvLQdJF8NEriP/sANRK7Ci5fenW5WgbTAm3OimamQtIM5ROgPZqPpp2k2cvlaEKTUIHGSJEeiycnXZZrlBGnXSw2QTCi+rcRnpDSH5Cab8Bkl0kzKlyqGu1rBSybqtC4k9msuqaeyklSdJF4vnWdmtqjtSItpWyFVx2tgWRu9+TCY+FK/5n9egm9eCyZC08K0x7DSYufuvjdFVlg1WGlBq8s/f+x0PvGvn+ETnz4TM7bQaw8dLC2stKMZwUqbARUDaWNabQaDATUtBloxwEuWIT9B+gzPhrnjf5sW1rQ59ZNnume04qb7d3HR+d/w/R/6qIWtQplOMpQa1qxezdodM2ydtqzcvYBTPn4mZ373Vj5wyumMzVvINdfcxN33rGHekqVs3NmnP2NZu2YjAzX0TJcXvvQl3H3fBvrtig3XXUZPJpmcmOTOO1ey32GH8/3zL6IrbR511FEsGOtw7/3rue+OO5lcvpyp6Sl2TU0z2x+wY/2ddAyMT0wwOzPLkoULmN9WumNdxlotli5ZwtIly2DfE3jRH7+NFYsnmb9gKeee8y3WrF7L+PgYYwsWgLr1umRCuP4nP8QYYffUbuSgX6N99LPpLD+M2gqtTpt+PaA7PsHu6VmmWvOYMWNcdcNdrNoyxY233kmtzqyVrAHJKhC0hForaivcuWmWq+/ewk2rd3LhpZdTS5vpXp+6Vnb0+vzkppu8taDFQMWNMxWDWqkVPnruddTaZp9Dj+HuVev4wKfOpvb51q9fjQuJF2qtmLWWYw8/nFbXcPSJv8FPb7wVa8FObaW/5ED2P/ZJ1CrORAsoFZ0jT6TfmWAVC6nF0KthEKwXKgy8NlKr1zT8nK/9+tw21ceqsGrbPL50+qc5/dRTef9b38ZXzvwMgiCtCmuUWoDZh16j+JVnFFL5l89UAVSdzTx7cy8iFVVVZaYdt0tXTMuZTRBMVRF2m2qMbw6ShPhn3HPGtGgZt0HJvfhGosko/hkH5MZULFm+H1WrRdVy9YlpsWByks9/9t9ZMG8epmojVcVpnzjN2bUDuONUSoyBqu2fdb/V5O1w18Xbt6VqeZt7ouOcb57DxRdcwDfP+za7mM+3L/kB11z/U7btnEalotudz9VXXceOXdOIdKOtPdnHJfpSXJnJ9u+mifvT+D0xbDcGhttvuQ3VYMJy+Vy4YFWat4SkucRyHTPTbFyCCSHUW9cu/mN8ciIy1GQ6FFreXzDTc1rEwKa5YrX5p9R1zaMedQxLli6nN+gzsNZJz3XNoB5g1Xp/lfgy3ImrtVVq9XtqvFZXW6E/6NNqVzzjOc/ngMOPoDZd2t1xYjC3VMxaOOeiC6ktTM30aHXa7O4p27dP8eVPvI/ZXp+9Fy7CSI+vnv0NaixaGaZ7grQFqdocfNQRfO+yK/nIxz6FVuN0xsYwVZdvbl/M1k1ruPzyK5jt91BqzNgYi7mLO+6+G+l2/ZFCFwAAIABJREFU2Hv5fJbvuy+r7l3PwCqT++zHC/7kVA79zffw0ztXM9MzzMzMcsCKeZz4tBOYmp7mntX3sXbdOhYu3otnn/QiDDDo93n/J77I8/7sg0xMjrF4n/249/Y76dUDFOGsb17Ey//gfzNTjWMVDjxgKdNb7udbF3yLs755EZ3xLp1Oh7GxSbZu3cH+jzqejf2KXVWHdevWI5NLUfXg7M0vtYXaKtYKW2Y7TJsO9dhStvRgottlZvcuxNaMTe7Fp75xLbfcsJpHP/EEtu3YQWtsnFoqVk93+MGV17Nmp3J/bxLE8NHPfZwXvOhF3MHB7Fi1khMOnWRmMIuqIKIccNDB9MRQa8X0wgPYPbaY2WqcJz3+SaBt1u3aybwTTmavgx9Df3rarZuqRXfxMu7btguLMLNrE6tWb2Dtbddyy6oN7GxNcNt9Gx2DUWHHoINVQ20NA2uoJ/fnzr0eg+7zaCxCZ7yLiPBvZ3+Bv3znu3jbP32AzVM7wVgfAWZodyexvZ1MjpfHvj8U6Vfe9PThD5xGqzI8+ogjeO7JzwetoXYDGDbiYQwf+chn+PXHHsITnvUMrFUu/8GPuG/lrYxXbZas2AeLcvQxj2HJvv6gW3HRIOGYYBf96lhPVRnm77WY2U3TzoTgNxcBjLU7nH7ax2l3xukNap5ywnHMX7qRb59zDm/+23dwyj+8j0pa7KqF6Rnlg6d8nEFf+cu3/Cmd1iQXnXceL3zpS7ADG01fixcs4MP/9D7+4s1vo1fDF7/8JbZu3gKmYrzb5g1//iY+dOqpVJUyvzvB/L2XcPvNK5m/1xL+1++dDKpMTs5jstNh+84pBtMz7Ni+jdmpXYx3x1h01FH0+jM87def5qJc6pqwPxlMbJs78Lbi5ptuZd36tTzveS+kX/cdQ/bHfQZDjFqnmYRTdgXD4cccTR+lW7X5znV30evv5orzz+WpL/5trLX8xgmPYrbXK48j8aaFGAoaN3GFGI5k0bPxxSAun1WvqltLR7qoQm92lrZp0W112WV3RFNVimxKG5istXz/sivoGOEt7/pgNOXVA8vUzBSTExN87P1/y9jEOB/99y9w6OJ53HXPvYgYev3dLN1rOfVglu7EBAsWLcW0nSZ11pe+wL03XM8Rz3oV//LXf8If/fmfsnJKufSr/8rLXv1nXH/3VjZ98Wsc94RjuOaaG/ndl76Yz3/2M7zo6cdz6dW3sL0H3bGFnPCso7nqBz9mdrbP4YcsYNPmzez/wlcyvfZ+XvSyl7Du46fw4/+4Eq0qvvjO1/H693yYVUc9hme/6g18/oPvYtOWXfTqmomjfoe9bp9h++713HjDPRz46ENZcshjef4bvsStV3+dj773PbzyT/6YhfPbfO2LH2GfR7+MUz53A2d86kcctEBZMdlh8+bN2Npy9tfOY+u13+Luu+7mNX/2Zr76z29n6V6LMO029++aYrzVBjHse9ijufn6a5wzfu9jEau0J+chxrB7pkdrTFmycBsLlu7NukVHsW3rDtZv3MY+BxzA/bdfw5U/uoojXv1yjIRTW4TO8sOZ2biSq266l5XrtvLy//UybrtjHUcd9QSm1t5FZe7HGOGyyy7jcc97BztWnsWq++5lYsk+2FqZ2e8JsGU7d919Nq98x99z2jvfzUknHku3O870jh3sfdSBjHc2M9EdR+qaGnj8yb/HsVNT3HTpFuzsGipTsd+jn8L2zZu5+fbb2d7bzubNu6gV5i9cgplcgI5PsskattxxFxMLFrHvs36Xe356NcYIVatLt1J2bFjDwgXj0Xy5eWwFN6/bxKAe8JTlNd3lSzly4T4sX7CA1etudQKkWsamt/Htcy9k3brVPP6xR9Nt+xdGzc5yz92rmD+/wzOPO/YhRGCXfuUZxWw9YOdUn5X3reXKD32CemYHSxftxbIlS5ipodvpcs31t7Bs78Ws6Vs+/7b3MpjdxZLl+7J69UYmJ+Zhbt1EfzDNCVu2sH71Zvba91DG6y2Mdzrcs3Y9E90OBx9+BBvXraNva+8j6LJxZpbB1o1YFebNm+Sxj3483/npTzho3iTbd/WYnpri29/5EZuZ5ailB/EP7z4FA4wvmGT55CSb123hWc9/MV//yuc45ZQPM9bp0u/1+PpXzgKt+P3Xvoaqhg988IPM9tv87Xv/heV7zWf79h30ezWdlmErLd7y9newaNEiDD1uueMOVqzdD6367Ni1i4996kz2W7aU3Tu3sA3LxvWbmbf3T7n5lpvZZ8XeXHv9Teyz4kBOfNYz+N73LmZ69xRvevMb6fVm0dpy1y23c+gxR0VXS9USbr/1JnbunuLTn/40f/ja13pzldPurrzsUp769GegxiJj8/jkxz7O7mk46JhjWbFsOd+/ciW33/5TVt+/jl87/jh21C0+/fFP8NQTn8Ll37mEf/ybN2Fa8PkvncW4MTzm8U/k8ltWs6LayeJlK3jcY4/FGOGKq6/hMc/9XRbvvoevffXrvPSlJ/GBD5/GX7/lTdxz373su3wJiNMMOq0OV/z4ShDBtCpmZ2Y58+yv8RvPPZFW1eJfTz+Nox/1GH79mc9htjfF5jX3cMmPruSVL38l/XpAi4qdU7voz8zSnRhn4bxJ+oM2rXabK674D6b6A5bOm8+967bR7/XZvnOaxcuWcO+994PUHHrYIWh/lmtuXsW7T/00CyeXMdaZ4S1/+TYetWwBWzv7cPcNl9HZawU3bxaWtgxHv+DV3Pyds9iya4Z9Dj6UP/2L17Fy1S4Gs9dz7g+u540nHc+iffbFtJZz3X98l/lL9mbzlm2c/Pt/wD+9+Y9YvXEbu3fu5v51a1i4cD6z/ZqxHTfy/e98n4U7xuiPLWa8Y1nUXsZdt9/IE056BXU94MWvWURvdppP/c3rePrrPsWBR53A1EWXUs0/iPkLllBPzXDR//048xZ8nWc/Zl+OffLTuPb738BO7eafvvQtFi9ewNv/8DL2339/fnT5tQxmetx993oG/fv46w9/mmVLJ7nxp1dz76rVHPGEx/HD71zCrf9xBX39c5YsXIgVoVqwgg2bfsJ+v/ZbHLDfDBOynXe9/+u89uUv4aZbrmawTelIxUe+8n1avSmOedJT2brpHm647KO84BWv4qrLruTIp/466zduxVqDGXMhwUv23Z8f33Q/Y4c9lbq1nWVHHccxRx7K3vsewNFPeAqXnvNVDn/MY3jOb/0m3z3nu9zw0zs46dlPoe512Lp9B2M7djJvn8Xsmp1hcmIBgnLdN87mX865AXvPZfzlG/6Qmd4s637yQ57/wpO5/ebr2LlrO8cc/wxOfftf8Jd/9TauvuIqDjv8SA4/7tl89F1/w9Ofexw7N25k4ZIF3HPLgCc+4fGsWDafXbt2sW5rj2+c9y1+89lPZcP6rRjTpiMtNg/6bL7mWlZvuIqdG+7ipD/4fboD5Yb7tvL2Uz/Ga1/zfzj4wAV0KqdFYwQzNsb/Pe2TvOH9f/+fgsPSPAnzVymJiJ5x6t+yz5IlfOubX2WqN83qe7dh6FLb3ey/Yn9efPLzufyiC5hYsozDDt+PS75zheP6Rx/DSS84mc987FSm+lMsHJ+A8TYbNmzl+BNO4NwLLmK/vfZmavd2Zmf7LF60kNoO2NGb4jnPegE333YzY/1Z9j72yWzfsoopO8OsqdAdO9luB3TbHZYuWsrqlSuZXLaYxx54INfdcTtT27exYPFStm7bSntiHmOLF3DIoYdx4fnnwuQkT3nyU1h9911s27aDxSuWsH3zDo489DCuvuwy9t1rHw44aClbN29lv3nzmOmMs3P9BjZO7WZpu8XBRx7Gyg0bWbpsGStsi70ffQQ/vflWVt51J6966f/gzH/9Nw5YvIDZiUm2bNrMsqWL2bF2KxPzJmgtnUdnfJx9xiaZbLW59qa7wNZs3raNRYvGOfHJx7Fx3Qbu2b6VNWs2MDYxzgHLj+Cgw/ZDrWXXjimmpmcZ9GZYv349/Z4yNTOF6ji93i6sQl2DqVrONGZ7PP95z2Tl3bdx7XXXc/ghB1IPLPM7wuNf+Dr69Nm+9j6u+dEl1LXSnlzE9Ja1PPPJxzCza4b71mziJS9+MVf9x+WAsKs7j+6yQ1izZjVbb72Zo/ad4KgjD+WOe1azYv8DWH33PeyamUZqywDhhKc+jdnZHjfdegezMz0OPOBA6nqGa2+5l8OXjlGNddg5NeCGO1Yyb6KDVUurVVFJhWDotDuMdSranUmOeNzT6W+9jXZl2K7LOO4JR/Pd87/KM48+gV2Lxrjxp9fxgqcezx2rNnDf+nu5+677efnv/w7nnn0uT/2tv+CIQ5by0Xe/iQ+d9kVe+6pX8v5T3sP/94/vZfmKfXnNG97KRV89k50b72XX9Haef/KbuPiqO7j20rM5eOliZgYD5o8PeMb/+GP6szt44jOezec+cgq/+4qXc+EXTmOd7s+jVhjq2jA5f5In/dY7OeNdL2PRXnthdJb22Bgb197P/CWH8hu/9yrumj4Qu3Oa+678Cj+54Tr+55+/iX9819/xsv/5em699EtMdKa5886NaKvCdBfyt+9/C1/55EfYsnaKiXnzsP0ZwNLXire++7189Zzzmd2yiZn+LnavuY/du3exeK8l/PGfvB67eDEXfPYzrNmyi4+e8Vk+/8kPc9xLX8e1Z36EIx5/LLdcfQP/801vZHx+xc7tU3z0nX/FrWvXcMwxj2KiM87M1A7s2CTX3XQbj3vciay/92Z++43vYuUdt9NffR1/9q5/SoEbAn/zxj9GxhfRt3323vsIbrrhKrqiHHLEkVx71VU88+knYscmeNFzn8iPr13L7K4NbJtVDjz8WO699nJe/gd/yn6LLV/46oWsuecmWu0jePJzj+Osfzud9uwaXvCc58TwCgdQgCo/vO5GnvHUZ7Jp2xa+e+E5XHnDVv7oLa9l7Z0beMHTDmRixWH0dm/m/Mt/TG/9ahbJgFa3za+feCKXXnEj+zzqeKr+FOt27Gbr6p0s3b9FS/vM1ks45tAV3HrjLWhbeP5vv5zpHat47cvfwOGHL2PF0sXU1nLI8S/6/8k76y67yvN/X/vss4/7OeOumcxMPJm4QQwLlmDFA0VbKMUd2lKglOASQpEEGjwEYhB3z8xkJuPuftzP3r8/+L6E/tbqWn1ewPPncz33ve7PdbN01ZUI8SjxhMzcsvEApxVFmf4fe4v/20Fx6aqFqIZ8ZKSnUlXXRJrDRkhJYC7MJBFTSEmxsnjcTL7+YiMpNjPhaJjikhJONzUypSiD+rP1mM026gbDvPTyC2TZdHy28Sse/NN93HHjjZxv7OGCS5ZRe+YU4XAYjc5CIh7F5xkFBDRaDTkFBXjdPh74058JBcNs3PARKkHLuZoq7CYj6bnZkIC6hmoEUc2CpYv44z0P8dE7a3/baZuRxXBvNz2twzR2N7Hm9vs4fq6a6pZKlpZPwZeIkppRxNJLL8Ln9fP95r1I9JMvprL89qt5/s8P0OMbxelKpqW7nXA0wbg5M3jmnke4++brePLPT7D2zddZtXQur/+wnazMJIbaBjAbNFiz0un2jKIa9lOUkoZGrcKVnUlN03lmTJlO5bFTtPd2k1WQjzseQqPVY89MZ/LEqXQ39+EPh+lr78LbN4zTYSTojiCJIoIoYrKaCXli+CMB5swuZ//+I0haHUk2E70Do1idWjImTqBq114uWr2SX3/4CbVeSyysYNZqiMsJjFo94UgEa2k2akmit6WNNL0Wv1YLWg0et5t0KYOmptPMKsrBkFpAz1APHW3tOGaMp7e+leKsfCIuPVF/BCkYo6+xg4mlxXQ2NJOemYQjOY+B6Cg9/mH0cQlBljFkp9BR34TWlUy+Wk1PPIgw5kdntzPUP4g62USk34PD6UJwmhjp68Mg6RBiCWS3B5xW4iN+dAmZopKp+Mb6qbjsXo7VfU+gvp+u4AB5OfnUNNYxrXQiHT3thKJRkgIq8qZcQlfVVvInz6WmdT8J0UiSy8FQSwd7DtTzl7++i1pS4w+EOPvrJhKSQFFWCn9952M+fGstlXUn6OnvZumM+QxoFLJUZgrSXezcf4LyeYtJdmiQ3SGClhnIgsjmD55Cq9NwyZoXSLZE+erf2/B3nSI9LUx+xV38uOEj3v3qC568fTWpNoGW1n4ESYPGYCMedpNk1yBq8rh6zSNYzWoG+vtpajrKVTdeR3O9n4GGnYyfmkluygT6PZ04NakMJbooLx7PsYMniaWVkWZ2oRK1aNRa8nUeSMSJJaLEE3H0GiMjYx727dzC5dffyqtPPUJH3wDlRdloJDUnq5vQuXKYPP8PkDyXcCSAPlCHJKqpKB4gprXTPTDMaFcH4YQKWQXHjh1lrC9GKDDEuJyJxK0BLAYZTUTAnpbB/j0nCAQD3PfnO/n1lx9o97jIdWp56MF7OHm6kpaWWvoG/djMBuSIDEP1XL7qCoT/kyHKsoJKUBBUMnXtHsIeN31DYbS6EMGEnqnlBVgzxrHj5EGuu3g5Gr2Ltq42CpMMSEoIvcmKLyHjNBh5/Z213PHg37CYTWh9A8QEAbUiUlt9jt6OVgpSk9hyvpLrli/nsUefJejz0TM4iN1sZebUcu579T1CETDqfpvym1NaAv9roFhx3ULm5UzhxNH9pLtclE2fxb8PbkNnMpGenkXtgWOYBJG4WYMukiAalSm47AK279jBTL2dJIsFrV7iplt/z/CYD8/oGMf3bqextQ2HIwlFURge7kNv1vP4Y8/y1yefxGq3YbPbOFPdRMX0UmRBTWDUTUqKk18PHWbhnPkMDnah6E14vV5uvPtxDvzyDffeehsnjh7ijXfWgwJmm4kYIulpyZw9XYndbGbFkgs5dOYMLqud+x+4E4s1iZOVTZBsRdM/xDeHdtF6pArZAHlmK5OnzyCkxDh16BgxFQhxGZ1KQpds4uILl7N69Wq2bP6Ord9+SVyt5bqrViDLEkOjo6gFNX3dXTR29aBIBmISOBx2rpg5idHRUX6qb0Bl1JCChDkW44477uWtd94kEYuTUCIMRMFVNAG/HCbk8yPrtKRp7BRedykb31rL4sxiHKIFl83AsDuAJIrUVR3kk+++5+Zrb2Vi+WSiCUggIEkaItEIklrL/m3fImiNVMydy5g/Sp+vH8WR4MSWXcgI2DOSSC/IodyQT/WxnWTnl9HT1UxJwThO11az6PKV1A330NnaSvnUafR0dJFjsZCs1jEYjtA20oWndwytImLQm5k7cxr6lBR2bf4ROehHkcykTC6mt7UZnU5LuimTht7zxOQIGoMFyR8hKb2A3rZazCYnXt8wTmcqwaCfUWJkmAyMDowSTciEdWrSc6cQGOtFtjiwaSSGW86iVmsoSMuhqb0ZR342ge5+rOkZvPu3f/LHpx8jp7ScI0d3c/+qW1h34EcS/hh2o5pFE+ezbd8eTGGFsnlXUr13M3HBS0HZeB578kOqG5vpbO3nvTf/yY13PI4oxBBVKiz42LLpTUaLDYxLm09FtpWY10d/fQ3Pv/Ymzz3zNK+88govvPFPjmw/gRD3EVOpeenlp3j9zX/QE9fwyTuf88xDf+T+Rx5jtK+b8tnldFU3UjG9lODoMPqscXz4znssnjuL5LTxPPHI3Yiyjra2BnLz0qmpPo3ZaKV04TzqwwNYfQm6Qj5UCQFVdx8qWSCm03P5zHHMu/BCTlaeYbi5i0eefJaxgJ9Nn63nTw89y9+ff4iBUYX3v/w3nV3dnKlto7+vkZ7GcziT82k+dxSN08bta+6lS8nmy01/53fXPYU36MZmc/HO/VegQkVmqou2/iFy01OZMHkCQ/0DLFx4ARlFhagUI5999h5PPv00f/7jo1RcdDEJRSYtKwuHKGPQanj607WMd02kLtLOXUuux+5MJhKNEI/GUSFg0or0ezxEA2H2Ht7NQGs3n37wGnI8gSM9haeffYbymXPQxwWWXzCb+//wKulJOXgDw/gigxQnaXj86efpDUYZrqmkbsTLxGmTqaw9h0pWsWLhbARU/P2555kxYxbjJ08jrhdZePUSEuEoTo/AgvkVPPDqe4g6PapEDCUhM7ukGP7XQLHyvssINw6gUatBBl1RNp0154gHYyRPKafu6AnWXHM9m979BIPLSY8+jhyKcvl113JkxxbmZhfiC0bRaTR4PR4a23sYk2X0LiMTbSnU1tQwf9oMzlafY91H62jv7kGt1tLR0kpObjZvvf53UGkxGg343G58kRBqUYXBoGPdux/w+JOPkZyXz9KKaYgGC1989C46gw5/OI7OaGfhwlkcPnqMsDuEWqulq6cHrVbEbDQQ0WgoTtWy+0gDJpOFSRPy2bfvMIogcd2lF/Hdrv14PB4mlpXT1NiIx+dHjsXILcxDjkNPTzdGrYRKpWLerLmcrqrE4x5l0cK5XLzySpKcaQSiUbxuL7/++jMN9ecRYgrZedmcPn0WvV6Hx+dD1GpRYjEktYiiqIjJCeLx38RiklaHrTiDjGVL6GvrxBt103LyLK7cXKxlpahOV6LtGkHSWiibMY6E08nRmjPM0pipbexDTsioHXomL5rF3g83YHSm/bb3V6XCawe71YI5N5WRMQ+xUJii0lJO7zqAGIoyYepUwiM+hps7mTV3PoIg0N/XTy9unKlphJP0dJ5vQFJrUXsCkBCYOrmc/XsPYDAYsMR1qFUiigKRcAitJJOeZKFvVAGVing8wIgQQx9LYHTaCXo8qCIKkUgQwW5HZ7cSae9GVKuQVBKxhMyaNX+mK9zC1j07Efr9qHPT8Q+Mkp43jsHuFsypdtS9o/giQebfdRs1tdWoPH7sRdns/GgjCy9bSqBlgGLNVXhjYdq716OyWZicng5xFTqVQFwW+PV0JUXTlxGxjKBPTsMli9SerSGpIIPanmacehOq0Qi2jKkUJMeoHB3BKYFXkonGZIKtfQg2E5aEBp3RgjphZNrsZRw/upl50xbg9STY+/06mJmHzWJnXt6lXLm4jM9/3YTVH+fr03tZeutN7Fn/BR5R5Jvn3qL+3HHWH/+VC0vn0NxxDrdFT8Mvh7EVpLLCkc3Kq6/n6+0/4271cuv9N+L3RJG0Ak5nEi+uf43nbv8jH3z5IbdccxctrW3Iah1V1ce54crLOVTXypprrkAO+NCbrSjE6egZ4aOPP0IvFdJVuQNvws81197Ct598yKjXzx8ffYzm/hh6tYdlF60gGo9y9HQ1UwoL+Oj1fxIK/aYySR1fzpi7H5vZRSgcAo2Kr499R3p2JnMUFy+/v44nH3mC3117DWmlZTz5tyfJcGZy89Wreebr9xkc6KSrqZXM3Cz+9dRb/OWfL+ASk5HVIvXDjZQmj0dvhRsuuwy9zkhCVjh95DgbP16PeXE5neeaSEpxYnCk0tHVhE6SyMufj0alIVXKYLC7hewp8xkdGOLylfPYvuMkciyOIzsXq/8cXZFU5HiMmCgQHKpn+yevMu/aG5g2vZx9ew+xZPEKZl1wIdGgm1hYYP6E/0FQzFkyFXNU/G0eOxBArddSNG0S+7fvwKS3klmcT2NPB6lmGwEEXKnJ+AwC7b8eZ/rcmYzVddDe2UZGShL9g4ME/GGMxVnYHXbKpkxk74cbmDl7NrW19bhSrYT8UWQhTn5hCWOeMToaWxEEKMzIpG+gj0VLlzFzxlyiiRhqScLjD5KeYuOZJ54AlYhWrUUtxHn2L0/z+CPPEVcE/KEQKvVv00U6rQ5/wI8iK6jVahRZJq78tsawdNo0qpqb+NNDv+ftJ1/ElZGLf6ifzOx0EnIUUYCG2m5iWjUmgwGrKsykqeP5/peTrFg8mTNHzuKNa7juqrns3F9P2ZLpyH4VBD3UnKkhGIliMuix2cw0NXUSjCaomD6ZppYmwtEYIGC3GMkuKKahqYGQP0DGuEJMFiNTMnLYc64KrDps+enojRbkoJ9enwd31Xnyx5cQluPoVBLN5xvRqFToXXYyzcl0+QbxN3Rz4SXLOLP3MP5QiIp7VrHn7S+ZsGgaDp2VtvAw1SdPIiZEFElNeXkpRrOJcDhKSlIKHTtPEQ75mbR6MeYkF7t+2YOkUxPs9aAKRlBLKhwOO+5AhEA8wuKJszlfdQ6j3YYUiaEkEqQbFYajce5/6CkGhkcpLhlHhsVM1+gI3V1d5BUUYtYZ+MuzL/LAow/gcqWy+g83sPCmG6mvr6XnRCWOoIoVV17Cj1u20B32UVZUQlCJ4u8fQWU1YNUbCPUMMRTyEpEgvSCPiVOnYHU56Thbz/4jB1D5IkxdtpCWvj6kwWEWX3sFhw4cZqSrl6vLJ5Ju0hG2FtBWe5oBdZyOkA/v0ADCUIjpF1YQCAQJ6S3EPQGaGqtITs+nu7KSGbNmMpqfysDuQ1x4y/U0nT2HejiM3mZFiKsJREJkLSlnoKGdcG8Ml1Ym7DBRu3c/yxb+jvy8Jewf/BwhGiWh0WFPTSLV7uLHjz8nNT+Liqw83E4TlXv2EBoMsvz6y9m55RcyctMJDQ6RWzQRDQKCTqKloZaH7nycTT9t4O5r1vDj95vRppixpiVz/Ndt+JMtWCwW0np8pKUZuWDpnfzwzUZeeX0tsiQgBIK88eyD3PzMm6x96i4q8VNszuf2W25m65F9PHDdXXz4wjNcfdcf+cezd6ORjJCZQaN3hBHPALctvBGH0YAUHqN1cJDb1tzLo3f9jrbcFJxGPb6QHykoc9uF92DUBJg0YxqyHKCzY4DpM2ez+8cf2HT8MMFgL6ePHsJhceDKzuTDF95B0mgYbKwjKsfJyBvHK2++SrdTxBWK0nEsijeksOSm8cyypzPnwoWY1Go0aomO/j7UJjsGk5ndO7Yyv6KC/r4+MooKiSXiJOIKsqjwlyfWsWTlCrZv+wWNIKP2eYjpnXTIXYzs38PFly0hOdnGJ599h5BQuOvpZ5i9/DJ0ehnvaJSFpf+DoJg7oxQ5lkAraZAFGZ3NSjgQIBoTx10dAAAgAElEQVSLgKwitbyQvo4+xjyjpI8vISc7m0M7dhMeGyMnP4/4mIdch4WVq2/hkWf+jGvhbDIdDo5v3kF2cT4Ok54Lrl5FsKmebb/+gkXR4w35WLJoEZt37AdFwWyxEJNjBMZ8JCUlMTg8hKiVEGUBk0bLiN+LSlYoKsilqbGRe9bcTUZOHjqtCp1ej3dkhPc/Wk9rRxcqUUAUVcRDASZOKCM9IwW9TkfAG0BB4deDh9FqjSTiCbyhMJJRYsGF0ylNy6Guph27K5mQv5fNu04xZ/Uy4uEQUkKg/nwjwfZe1r76Ekf7O9i3Zw9Zk4poOXMep9GC05XEgc27QCVRXpJHVV0LVrOeSxZWcLC6nlAgSjDgpmRcGRNzkvhi+14EVMixOFqDnhUzS9h+vJ7kjEy0GhWDAwPkl42juqEau9qENxLGoNEgSQbsziRWLr+C+sYa9u7dRlJeNkOtHdjSM1GCfgJjfvRFdsYVltPlGWNWaRmDMQ9drX1EBvrprmlFNOuISQIZs6fhMpk5ffIk6VE1Pe5BNHEJrd2I1mFkuH8MfTBKTIHMnBzSzTZCWj09Pe2E/WGMkTDzZ81BBchxGclm49ihs2hEkYQi/1/GA/5832289u6nCMgEQkF0Wi1arYaAXUE06NEZVNQfPEXanFnk+GLMvOAGrrn5Uu645wY8sQjRMR+hmB8xHEeQ4bLf38q2/UfpPn6EgtkT6TrfxvRLl9H0/U6S0gpQnAYSahXtdTWotXqMajVGrZau1lYUtYQpyYV7ZAjRaMAp6SifPoW6/ccgEmXYImCNiVhMdsIBH67ycgKdneRYTWTkT+X7fVuYvHAWVkFL675TmMvG0znSjhjwoY2K+Nweigun4J3sIEO0cnL3PnJnTEE+B+c11WRnZSE6rWQ6UxjuH2Ty+EKqWztJM1sx+H2QnkzjnpOEsy0UZxYSValoOXCUhMOELScHoz9IQI4iDasonDeF1275E7UnDlBQNoHuY7s42TrC3LmzEIDvPlpLZslEvN4Bqs7U8ep7HxGKhanauZeVa9aw4uarWPvE8yiKwO5tvxCN+1l90+1sXv8+VVXH0ZmSKR43jqWrrmP8uCIiiNRXVxMc6KBw+gLWvvR3/vz0U3Q0N/LOS0/wt/c3EEdAJUOGy0zfaJD2jhbqOzpZeenFDPUP8tbT97H88tV8t+MIXpefqsZ2okOjTJwzHZc9FbPTzN5de5hiWowr38T9t16DVa/lsy83cPstd2MySlx87+/Q67WYWkbxDgd4+v3XKMzOxqBV4fdFUOsMxGMRYvEoAiq6uzoZ9oV56YmnEYut/On2u3ly/VvYjSZSlXz+8cgtXPj7GykWkmmrPYcKSEqxozUbuezW+1hy2ZVI2hixkMTsomz4XwPF7ddfRdxsxDswQkJJ0NvXjkYlkVRcSGdbG2pZJiqqsRemY0nNRBgepuHYWQIePzNWLWFk2EN9ZRWuwiLGmpq4bNWVbP74SwJ+H6mzp2NOqIgFvPR7x8DtJU3WEIzFSE5Oob2tjayyiXh7O1GpBELhGJJWi5xIYDYZ0QgKiHqSUlJp7Wgm6g+TlplBOBKmv7ePyVOmIgoy2/YcYuWlS5k4cz4fv/MakVACORbGZHHg8XhIxGPYbHY0eomB4RHUOgmdwUB2mpPTNU2YbFqMoh6V14sITJw0npE0GwOt7Qx3jRELBLE7NNy0bAkWq4Pu3j7sc6az9sXXyHS6KJ1UQp49g2Snk8UrruClx++jYuXDjIVHSdFE+eiDf3Ht5Rdwqq6TUyfOUZ5voam9C1FUI6lFZFkhFAoTjIa59eZb8PlGSUQTZDjMBGIym7ZtJaooZKcVMGXKHLRqEKXfUs8IChpJSzwaRpYTqDVGPvnybaYvnsO5uvNcdsM1xLsH2fTZJlIzkgj7gkSDYWKyzG3PP82ObT8wsaScLRu+Ir0oh6kXLePI+o3EoxGueugBtu/bRqi2E60iEI9HyZg2jW4hTMqggkqO0pIY4e7y2YhqFTqtmmgkjCxq2bz9CDqLlkggSGpmGotmTEZUqamrqyErNRmTM5kvN+8GXw8Ws56JMxZx9NRhCifO5pKrFzGvZCKye4TJf7oHRyhB6rTJGE0ajh08RV5hLjFZYcQ9xvgJExlvzCBhVNi89VussppJCxczMuam/VwtIafAvDkLOPDpdxiT7OTMrWDg6FnEQIio14diMGKxWBgIjbD24b8yMNTL+x+v58419+JuOce3u/eit+jRxkR+2LKLzV9t5eDJH/GGJa68YDFTZ07h8JYfGB7qI33yNDZ98RM///g1199wDa9/8DmHt3yNyaLjshtu4YfvtpHl1JGXnUpy8WTUosCNV6wmNy8Xh15h0O9l4aLlCJYkvtn0HuctEq2HKjEb9UhqiYxFs+k6V0Pe+FKWWadSPGkcruR0XE4HzhQdEhpUCrz46qdMmpTPSEcjUytms2vrz9x6120MDXoQxShKQCYeGeODf33D2x+/x+CQn4GuBmw2K0aLjU//8Ryrr7+GH7/fxzX33oXJYGD7Fx9jzJjC28/9AXdEITVtIus/f4mh5vNkViwlFo3Q2dZARk4hkWgYSafmxbtvQ6cVadfr0Zq01NY24bBY8FW1ICha3vz3D7y88e/MzC7i6K4dfPTBBt5/65/85fkX8UZl3N5hXvv2E1YWTWQ0rMLf20rFvEUEohHuXPskBp3I6Q278MfixENB6po76OlsZM68hcTiMRLxOL6OAYIGDQZLKqsumEt2yWS6U3yoOkYJaMA9OEhSbg5/uvgWHn/9WbQJuH/ZEj7/+mcMGg2KSiAroxCryUYk4SUeSbDr9Bn4XwPFp+ve4cTJM7T3dKB3uggZgUwnlXsOMK54HD0DPcQNekotSZw7X0+2K5nemkbcY24yCrLob+0jkm6mYtEChgb7sUkStYdOUzxrFqI6jiE7nVgwTMPO/aSojdy75h4+XfcB7oCHvp5BdCYtN1x+Ef/+bitagw5J0iGp1TgLcslMNtFQ1crwyBCRaIwFFywlO78I38ggmzZu5KZVF1Hf0c+R0zU8/NRzzJ0zmU2fbOSXbT9z+U13cPjEGRpPHsCiVWNOseMe9eH3RtDrRQQgFo8gK2qisQQXXXsZGvcIB/cfJhQVKJozkbpTNRSVFTPU14esguUrLiDoHuPA6bP4TGpo8VA8Loeejh7yk+3MnTGV1Iwk+rp68Hm9FBUU0T/USzwhEIvKOOyW39TMvzmTicla1JKaiAye0WGcSUl4fB6SbE4+3LARvUaD1WVBm56JpFHjKMin+tttiHIEvc6G193D7desQhZkCjKykHVahka96CUJTzBIf283qliYgMdPe08vTzz1GN9+9W8iioaJRcVIBoEly5azceN3xGQZ/1A3h7UqInGZi/RWRFGFIqrZuHUHF89eSJLTgCwIaCQd/953gNLx01l91dV0nj4IiojeZmagqZbdJyopH5dHVV0j06dX4PbFmDGlBBA4tH8voUQCo8HKpPE5SJIGg9GK2ZVGd8s51KKaRCJOXvFUvvr+S8oKCrls5Qqe3vY9cVWCMVHPoHeMclsaJ08dQIxCWclCSqdnkWTU4Kvv43R1NV5Jobe5DWOKkeHufpJUFkZUARxOO9+/8xXbP/2Ehppj3P/U35G9ozT1j1Bz8iDTclN5/M3PefYvf2Xj+++x4auNdA4OU33uPCfHOimrmMg/Hn+ONVffylBVFX7vCCuvuYEZiy/k4Gev89kPu9l5tobH715D71iE266/DLvNyScff4HRbKOsYiHN7T6cyQaSHQlWX3sNgqBCFODhh5/BabZy2x/uJR4e4YU/P0BCEjCjxR8YI+aNIBm1nBodZFbRPLIMUZ5+Yy3/fPxBrnjknwj+AFvXP4fPMpkYatw+G6+9eDnvP/cAw9aLEQUv8YSMxxfCYTOiNReTCDYTlxWGhhSSUzIx69yEI1G2fPYuc698DItVh98XwGH0Ew1G8bnb6R+OY7Sa0Yg6YjERlUaPoMgc3bEOUZS5+u432PDG3QhKBFealbbYGIooMqGiAmHIQ3ZpKdPNLm5YczuffbSJq26+jUDYS3ayg9//bg0PPXUPtpRC/CEfq/94HTqHiwtWXIIrxcXAyXqQ1IQGeynLKsYmaZl7ycUc/XUP9pRUHEkujGY9iqzwzMPP0l9dybASwbZgNhGVH7VJTyIcxe0eRac3EhsexRsIsMCYycnmVqLDo9x4+QK+3XkEUQGzzcr1d/2BuZddwW0XXcWG7T8wv6wI/tdA8crzT+D2+qlra2XQKRL3+kmEI4wNj+EqySM6NICQk0lfXSsZ6dl4etvx13RistpYeNWl/LjzZzJtTroaWjBMKsTX2UtKXI8/SUVmXj7nq2uwKGrMJQWUl0/g5/c/IUVt4verLubf3/yIKyWF6264haS0dLb//A0HDh5DktQUjJ/CytU34O/tZOfevYgqgeozx/GHw1x14yquv+l6vnj5H9gKJvPR++8Riie499572bxxAwlBRTAUINnloKd/GLNFx1gojF6lwaTTEo6GSMRl3njnQ5Lt2ShCkPqWLlxiiI3ffEFjTwejYgLJG0F26VH1h9Ebtcy+YzUnvvoJJRZDozEw1j+Ew2EnEAiiFlVEPT40Bi3XLp9Po9OKZDbRunU/w139XLFsPt9tO4RWVDGuMJuZM6cRDSVQayU+37aV5fNm4nUHMenN7Nq7B1ElopF05C+eycGuepxpKQijftxnm5EjUaRYlD3btrDtpx+RdCZCQR9BrxuVqEJQ6/jsmy24UjIpyivCHQlTd/YM1180g99S1zDo13Kwqo77br8UU8p4elsOcMDjIZqA3PwCjA2NDKUno67uhKAfQVBAVCFjoqrVh8fdhEmlR/w/Ay4kuGb1MjqaazEZDEQjUTQIqESJ7YfOo9ObURIKC6Yno1VrEHUSZnsa7uEhDHqJ3t4BCvIL+WLLTqwWI3964kXO7t+BRiMhabSsq9wLGflMH19CV2M9XY0tlMybSUKlYaSjleCYhwsqFtM75EcQQfEO4Bsa49a/vcXHLz9A28gQGTnpmOxOju87yF0r3+Li+clUV1WyYtliqg/uYrizHb1RiyhK6DUi7T3DnKg+y99ee4MRj4db7r4Tb9jLhIop3HX13Vx6ycWoBejs7GL9i8+jTcngwksv4pNXn8doNmFUy4hqNTFBBbKKlrZ+2jv7kQUd1z74FtddWorVYeS9J9YQyfo93370FFfd+xLNh95Bi49IIIjamE1bazOEZXbUHEanQG3NeYx2KyqNFkkvUnX8JK8/9yxBWeTosWMMjw7xz+efxCAZePKV14jHEwiShprqSnKzcggG/Gj1Emcqa5lQlM8Tj/4VTe4CppWnEI94qDlXSUt9Jxu3bmLtmweJBaM8/NiFmLUK11zzd+KeE8hKhEgoiqTXkZP+W1ixp70TlQD+YJjUrCRaG5tYdP0ynOXF1B8/xZljJ8FsROkd4aV3v6L3fIiYr41HHrmFpq5+stKTMJkshOUER47sJ9Xs5L3t/6bm2EkiAT/m3FQSksT8ZfOpsJUxqbiEyspzTJs2lWDUixwDUaXw8M23Mfumv/DFK/fhiYxiSU0Cu4aETkdaYQHekB8xFCIqKog6HdYBiUsvugz3aJRQ6z4Misx3O49i0KkRFLj19w8w/8abuHPx5azf/hWzxuXBfxgU4vPPP/+fuus/fl544YXn50yfhsthwzmpkI6aRoZ6e3APjqLTGfCOjaAryidJNJEY9hCMeqFliLlrrqW/oQVtSgoGOUH3+RbKZ88g1jVIcMhD0GkhKy+XsvElnNp/mKmlpVyx5l46z1fT0thEXlERNacqufKiRVR39vHLzh2IUoDavj7mlBZxvr4JmxSn8th+vvhuM97RAYb6ejHpDKy87vcsnjkfySuzafO3HDl4GLUkkmI10lR7DlFSoSBj0uuQlQS/HjjIdxu/QC+IpDisRCIBki12rrx6JVmuZA7u+5nzZ08Q8Q1xruos06dOoii7gBn5xaSZXVw0bTYd6iBxrZoTP+xBiimk5GYwobQMZ34q4WE3/kCApTMnk5mexOrLr8KdbeH7b35EF4wR7B2EWJz8nEzaO3tQlAQ+T5D8/BxUgpoJkys4sncPQX+QxsYmMtMySHLaSXElYTLqOdHTgS41BV9tE2ZJBw4DiYCbivHFlBZkU9dYR8g3xNHjxxGFGAU5aSixIBNLcijMy+HX7T9TUpCFJzBMltOJoBKoaujixJnTqFUQC/bzzaZvaLdrGIgpSCEfVqOJnVWVZCQnUb1jPxMnjMNuNpKXlU5auoujJ04Ri0WQJA2CWktmmorF86YwMDKCTm9GVqkRRIFYKIzBaEBW6RlXWsyEUgdBfwiHywUqCUdmEWHfMIKgwmgyUVdXx8333sPpU9VUzF/KYEcTiqJC1BhY/9oHjBlFvt/4JfQMsOjGa/hlxw6UaISRc42kTCylqaeF1GQzJp2APxpmeLSH/r46eqNhrE4HHR1d9J2rw2owIUsim7Z/w3CnwPk+gY5RI99/t4VYWg5jPj1ffbmO42fPMzTs4euvvqU50oPLloHaqMJ7vgfZPIMTZ8bY8kstW7cfYsb8CcxbspS1zzxKXVsfD7/8Cq21DcxedRvz5iyk8uAe5i5cQMKYx+JF05FHKlly1UrefvAmdGYzM8qT6Bke5YF7LmHugjl8+dnnJOIKr657m1nzptHd3cD2jV/S4MmivNiOTisRjITx9PdjtVhZtGw5C2ZPJysrD0mrpX8sQk9rA9u+2cj8S68kHAxxZO+vROUEAe8Y7hEf9a1trHvrVdyRYaL+RuI5ORxo3E1noIdr77uOX0/vxzMYwmrJ5NsPn+XYkaN4QlaCgye58XdXsvdANYLazoR8E52DQYZHR5BlAbWoZXBkEJVaoOKKxZw+U0nIH2S0u4/Lr1vFgNvHyGAzQy01DHc3UtubQm2jm2Nn+jl6vJ0dO6vxW/189NMHZGRm0NjXzdSZi4lqYuisWra+sZFjZ09CIoXuUTsnq/poavZTV++htsHD0f0/kT91EQ3HfyFj0RT8ZjWGzGQGx9wUlxYx0NeLTlHR39WNpmWAB+75I06Hk3Ub3oNYhLzUJI6friEaDOP1+emqPMvm9R8QinjY8sk6RgJBgL7nn39+3X/qLf6vryjefv3vGLUGmlpbOHj+BP2JCAVJaWhNBlprGlFEAf/gKMsfuZftH37M3IWL6WhpY6C7CzGcAJeFeEc/gihiSXKQW1aEGhVifgqnN+/CNzBE4ZQCgt44AZ0KQ2+QtqEu1MMRzA4rlsl5qNGQiEVQglGm52bT09yCrNdzvrqW6664kPb+AJJOi1YVp6W9m97uQTz+EFqNllg8SiIe58lHHmTBvIXEQl6OHjqGIy2FfXsOoJcUJJ2RMV+AaCBARlYmipIgKdlFV0sndocDtaSmq6eb1JRURFGFHI+iMxoQFDWRaJiPf/qRBTdeyfF9+1C5/Qx1DmO0GDEYdcTDMdRqCVEl4h7xUDa1hCbBj11rxt/Ww6JpU/EP9OOw2DHotMiKTDCWIMll43xtF3MrypDlBNFwlOQkBwm1jtU33sjQ8Ajbf96KSqVBUItUBsfYs+0Xpk6bgt3sQD/mJjs1hcbqMzhT04mHwixcsZTHnnn1N4Ov8psh6p23/sbDj76AoiiIooZELICcAFEdJTsrHZvdxkiujcOHTuGwWhkN+sjIzCTLaqXq8AlunTcdvSKAEMdiy+JEk5e9e3YjaRUMGjNL5+ahNUpEAwEkyYjDYkWQ1Gh0FtSCyOhQP7JkJhKNEIn4ufuuu3hj7cvodRqyJ87jwLYtiIJITE4gKwKxuIIgxIEEGp2B5rY+FLQMj3OQrBUZbu4m6PUy89qLqNx1mmjEi1GtQ3YYKKyYhGAy0rDrKEathH94GFdpCVqbke7qVujpwzx/IgN13WTkZ+HQmqk7c4rcaRMYrGlEM+Zi6rXTGcBD//dH0ac5SbSNsvyOG3j+vof4/PPPMOl1/PXJZ7lg+RLUU3/Huc8eQStEQWtFKxq5YtVSrr3tPv710lNEYwq2orm4lQLiiRBq0UvVz6/T2NyHIBkJi9k8/OifeOPFexFFEZVaZOehPdRWnWGkv43vPv+av3/8GZJaoaW5mR/XrWPU6+OV9Z+RiEVpbmmgsGwyTTVVJLlcxBWZqo5a7Hor1QfOcuHKi3n18QeZu2olh779juSMYjy+Ltw+P3XVraRevghLsp2mT/dgnVVCe187xeUl3HT99Xz62nsUTp/MrMnl7NhZzayi1SQSCvVVVXj6djCuYgq//LgDtcVG3oLxiGqJ/oFWTKKEPq7BkWJmOOom5I5RtWM3C2+6kkgwQMwbJsXm4pabVyEPxhhqbmX+4oVUd46yeG4FsqzwyuP302iD1Rdeya233kDFBXMZ8IeZN2MeP7y3jnEXTOT2S67m9hWreXFdNYIoEOn8maHBIdLSMtn4xddc++i7bHr7D6gyLYQDQeylhYQbujCV5RCIhVCpRCKxGDG/j5fXPIVeLfHuvq+5IrmYsaZz9AQFBvr7qDtbz+o7b8ZosvH+2ne588G7+euzz8N/uKL4r3c9+f1B2tt76BcD9A+PYs1MwY2C2h9AUOKEQjEkg5ajm7eSl5PHji+/5eKbb6T95DksF82i72glORYr/oCfzLICtm/dRtr4cczNTSGgxFlx/VXs2bEHSaVCJwiEdKAPq1hxzWUcbKon1eQg5PbS0tyBVtTQbTQQjMYY7R8lGlOxt3cQ2Rtk5qVLOLX7MMgyctDHDVetYMwT5uSZSl7626ucOryfTz/+CKcziTH3CK1dneRkplJT30BethWXxYSruIAftmyjZ2CUu25aTf2AiqH64/R2dCGKKlQquPnKy/jip+2k5aah12mZVVTM3AsX8MMHn5FstBEJhkkpSme4exB14LdkeXp2Fi31jSTPKKR1bJQ5C2ey818/oDebOF7fAp4IC6em8PXuI1gsZhJ+H8uXLObjDev4/MMPEACT1c6I241KDPOv99/H4spg7Tsf8ND9fyAST1B3rppQKMhQazdHzu7g2LYveeSph3ng4ZexmY1s+3Yj+3f9SrLLhS8wzBNPPExuspP1H77Dhtf/QtxoJuwPEYhFSMTjOGxmRj1+Kk8e4eP6UxROKmdC+Ry+WfsqoyMBwg4rlmQXXx86zQ2XX8OJ/XupbzmL01VELB5CVOuIJRLsOtKKIggYhBARTJQU2xno62bUZ0BOJBBUan4TWQOCwNZtd2B1mjBKCbbu6+Gllx7kxRffJPF/plhZThALjaDXqn8TDCYUZq19kkh7Iy3nG+gN1BG3GTh+qAprhhWXz0RCLRL3+xhp6MGS4sBkteAZGsSQm0F3ayuiSkCvUiPlZOLUmiHdhVoSOH/sCJLLStjrJ+4NEJW99MaKUeIxtDnJ+Gtb0RWn0il4WfjITSDD8tw1fL7tZxbMmM7Y8DA/2P5IV0sju7buZd6yScy+8BLW/+VFFARMZgMrl0xF1ur4258e4KlXXyPLcCOFOfnce+8deMJxPl97P/npVqLJJfzh+ot597V3uP3+NXjHxiifNQNZEYhGY0yYPAHjo4/RdPo033+ynnFTyhk3eyF/fvlRhvceJcVho2vIjbmkiLmLF9Cr9fHjsR+J5ucRTcRQppXiszmIBHUYBdCoob2xnsUTLke641Jsoog35kGn0rF5x1bUThtFZaWcrq3FpA2xte5lXHo7yZPGY5gyk+GBfuwVuSgKaG1ahnt7kD0ehMJMmk/VU+Iop69/gJysXDJnlnH0yDGmTJvEPZffRGZSEkLfINMXX0JDaiuOzByUrhPEYnESiQT6pCSy4gbe/tfbjC8Yz7l9Z8nPLODk8YPok9KQW4f46eB+rl24FEH8zSY9Y+kcQuEI/Z3dIKrpPvMNlkn5jHpGsOZnookqJOcX0tnVjTk7haHzbch6EV1cQQmFCariDHR2kzeujC6/lxNn2phYnEVEiRP2+0lxJqOOhVDJ/38+/v/1racrr1yFKy0ZjSjR3tdB1BumtKSI5rPniPiDTJg/D0Uj4Osforr5PItvvp4ju3eSuXgqFXMX0/fTPgJuNxqdAZ/bQ2FpGb5wHEVUyCks4uhXP4NdT9zrQ2ezkF5UQPmCeXS3drBw0SL2Hz1Cb0MrWS4n4VCQCdlZeEIJvB4/y+++k4G2ZswpLo7sOkx/Rxdurw9HYTaN3f1MLRtPTkE2X2z4jOL8Qto62nF7fXgCAU6eqiIzfxoDfW0kpY3jX1/9m1S7jdZ+H6kZU8lwiPR4IBEexufxIMsyKFBaXMj58w1oVQL+US/TJk1g06bNiHGBRCyGwaAlPBpAI0kk5+cQ93jQi1qCcgSdy0Z7bRMVFQuoPHwaURGIRiKc2vk9Z0+eZNmCWUwuKaBkfAmJhMCPX31NckoSsqKgNZoJh4KIohqtzoBKpWPfgSOUlo5DjCcwhWJMSM9i+coH+eXnDaiVBFpRR0djDbW1tQSCESIqLVa9lt6hfj7/4gfsahmz0URTSxMt9bXsO3AAd387ve1NNNaeY2hoiN2HDtOoBAlEAvQPdSIFYsQ8PoJuL9ERLwank8M79jEwOAaCxGB/H4F4CG2SiWM7vsWkRLnj7nvYvWcXn677gB+/+4Gu7lHGjy/ilVdf4duftyGJArFYHJWoZsHiRRSWTSEpp4Siwhzau4dJBH04nEbG3H5kRSEQDBBHIZyQCURiDEl+2msasFgtxGMJdDo9hriMu6eXrMwcFI+X5Mw06o+fxO+PEO0eQPH4iQdDEI6RPK6QsTMNpE4rpbu6CrdGSzjkJWPGBMKtA6iT7CQV5qIkEnQfOkesZwwx34WSbkVQifS1tROLJbCrc2lv7+LsYCftjSP8cvgssmEyb69dz/V3PcVjzz5IWnIKLSNjtI96KJ+1CEHSoNKomXfFFZidTtKz8yRIWWcAACAASURBVDA7k7j02uu5+/47WLxyFTOXr6D11B7O15yhsfYkP2z6kmMHDzLmHubs8cP8umMfky9YyptP3cW5yrNs+PZbfumoZvOpA0RFOFdZz2DnKB5RQWc0k1ychUolUVxYyLFTh9ny/c9klo1j2rSp/PTlt0ydO5Opc2fS0NROR3c3ikaid3AQp95E3J9A1ik0n6tn3xdfIme5kGSZxq9/xVGShaAVUNRqTh6uIj0lmcHuPjIzXPT399HU0U5XXzcZmWkYstM5f+gszrw01GYToXCEeCiEw7aSeXMnEZIMfP/dVlobq1FJEjqtgYKcTCSNjpaGWjZ88xlN9edJT85CZdGi5LkItQ9QsHwybz32MidPn2HD2bOkW0pRq9R0D2oYc5sIxtOpO7ObhspT+KMRomMelGgCpTiNWDzMQNRH2B8gWNlMweTxWLwCBYXjOPjZu6inTqDU76Wzb5hTVQ20tXQQjMWoq6zh0L69+KJhqo6fIBiLwX+49fRfD4qinDQCfi9tg70kIhEyy8bRMdBFIhAiZWIJNfuOEvb40eakc9XvfsfJ6loKMrOQRnxEhwZJDPtxpmQgxOIEPX6y8wuJGxREWSTiizI2PIAumqB3ZJTs8lL6ztRSvf8o7tERjJMKiAyNkl9UgKCW6KjvpL2/n46WDlb+/ibOHdtPQlIIjfhJT01hXMl4KqZM4dShE2hkcI+62bv7EIV5aWSkpjMwPIDHE+T4yVOkpKRg0GsR5BitLc30DY0gKHGCAR9BbzdlxUWcOnOQkN9DOBJDVhKIAsytmE5edgGZGalMmTABg97I/mNnkBMJ1CoVgWAYnVbElZxMV1M7iiBiMJjRpzoZaelGjCh0dzYT8oQRVKDIMsf2H0drMNLe2cPgsJvRUTfBYICAe5QFc6YwONhH2O/nqlWrOXLsOCpZ4Xxr6/8j7z2D7KivPv9Ph5vD3Dszd3LOGuUsJBSxRBJJmOBEMGAbjA02th+cMGBsggGDDTYYk0w2YJIEAgllCeU8mqTR5HRn5ubYcV+MturZrWfXdtW/drfqf6q6bt/Tp/v0q/P9/fqEL2d6uqkpLWFwMM7jz/6e46eHiIUHyPX6yXHJuL3es2QQOpLNxsjoOLF0BiMVRjdtNFSXIQkCgiSTTmk4XVYkQJRERFFAlC1s2r6XNaXVNFrdNMs+ZtTUUZubS8ZusmzmXA4eOMyUlfNIDQRJKir+OcX4lk0nEgrijaSJxGJ0d7TTWFfH4WOHqK+pZu7sGZQV5HGmvZXDg72kJ4KoShZRtGAKDtraW2k5eZzegUG6TvcxGopRUxVgaHgMQRRRsykqaoqJR2KUrz2XzsOHaZg9g2P79uINFDNv9Wqi2Sh3r72GEz1ncI5HeOzBB/jmJZextH4K9/3whzy76UMyIyHy5k2H0RiRUJCoqGEpK8SuG5QtmU96JIy3upRAUx2iomLKEjW1TSQKRSpy8gl29+CvrWA8FiaSSqD2nSEx3sEVl/6K/DyZ8pIy4kkL2apR9gf3sWtjmNMDJsmYi0DlbPpH07T3pjh4MsSBw0OcOjXOyZ4U/aMK41GZbXt7aeuMcORoD0U1y/jk/b8RiiikFZNoPMPQaIK+oSi9/SOEVQdbP1xP0uciXeFF9uZwyfLVtGzcSs3cmcxY1ExxYw2e/DwwTT546QWqaxqZPXMBgyOD1BeUsnHPdjLpNG6LxKHO0+iKTk5+PrllpRgZnYgSw19fjj0rEk7HaFy1ClSdxplNtJ1sYXTvKZzVxaQ6ThPLJDBz7HgC+UQGB3Ga8MZdP6X7cBeRiRBWG+Tm+VExyS0McHL959jx01w/D586gKnrVFeXEVJTnDneQlFBgK7+bvbs/ILq+gZcxQEOtB9nsK+PpqmzaNnwOdaKfNxWO9vbD9I7MIjD58AtFGGRfQwceJpA1VKU+Cds2radBTdeSV93N2Y6S2VdNWO7TxCemMClyVTObcaSm0N3Vy933fojAuUVlLW3oFWXIw32E4qlONbZd5ameJI7RpAlXG4XiqaebZ79/xlQFAX8jIRCxL0C06oa0K0Sh7btQVB0xKyOy+1kxbrLiAwOE0vFGe7oJDU8SuuJ41iSGrNu/jJhNBpKqgipGax2G8UFOcycswDBEMkGcunq7KC0tBRLOIUhSVQ1VNLfOUhmKEgoEmHizCB5nhzKFzYzYcuQ11yPkU4xY94CZLuXk7sPMD42zvIVy3j7tTdJpjJUVZfQ1tpNc2MN6YxGTXkln27aQVpN43W5KSgsIhyKUVNdxs49e5AFgelTp1JWWMDMqY2oWYV8v4+m2jqmNtYxtbGBxuoqslmFlJLAZc/h/c8+wypKnDx9BqdDJpPVcNqtIIlEwnFMRBobp9DZ1Y7b4iASDpFIZhFUEEQDTAFJkHC53HT1hxiPZBkYiTA8nmRkLM5YwmDTzpMc7whyvHOIV9/egCjJpOJxNDVLRWk5qqIgiRobP9xAcKCTeHiQ+Quno8ZTJE2DmooSjGiQrp5+UrrK0lIr7+85zfTZs1Di49htVixWO5+0D1Ll84I5SdeKIJBJxDnWdoZYOskTf/s7x7/YiiJ5uOOO22k9PMjegyeJJULEyzw4ywN89ORjjB4+Tf54gun+Evw5OchWO4IgYLVbyS8OoKazSJKAbLcjWkRK/LnUVlcza+Y0mhprsQgKVaUB2jvbSSUiTK0rJxSO0ts3gKIqeJw2nA470XCacNrJ8vN+wZoV34Z4OU2FzfzhV3cTiA5Tojv4xs13EGrppKo0QNexFlpbWhgYGODwgQMsLqvheG8vCXS0rkGmfP0S4u195NqcGDkOhnceR58IU+D1YKR0WrZuQ0mmibt1Qh29xAYnSA2Nk+wdwUyqGJJAbUE10fExqitnEQ0NsHV0OwGxkU2H3iDZN4GWn2FqyWLiWZXekQ72htfz1UX1VJUYzKj2EhluoztiYVFjmlvuuITLl84jOdrKaPcp7LkVHNv3CZIsTzICmmDqk3mmTDpG85I1nNi7BbPWj91uJ9Q1jMtmp6S6EjU8xtyFq9h5cBerzvsSG3ZvJ9Y7xKy58/j7O29y3Y3fpD04SGNJBUuXLub1J/9KYEojYsqEogATx9oYGegm311AsGOA3vFhqmfMIL+oiGRolInRMM35xXS3dvH1W25g18lWqprrwekgJ57h+V8+zkXnno/Vnc+F51+I1tNFpejkuituZFX9fIriMvff9WO+vHo1V69dwImD+3jsqe1oeorrvvEVpkyfRmlFBS//8VEylhpcOW4uWHM5Xp+VXTt30He4Ha/Hz9JbriQxHmHvS+tZeOs1uA520h5P4fEUcMXli/jjqy9ypO8A+fOaGQn2ozlk8n05RMeimAVePD4fjqmldL+yAVEQWbBgEc0Ns3A4nTz28mt0dXXSmOclHE3Q2TPM/HmzGBkO8tymz6ksdlFWsZif/uEJXv/Ln+D/dDJbEIRy4G9AEZPrw7+YpvmkIAi5wFtAFdADXG2aZlgQBAF4ErgISAE3mKZ5+Oyzrgd+cfbRD5im+fI/8W1eve4SxsbGyVtQx0gshqhCqKWDtV9ex3vvv0dJYzNCnhdrIoFZkEv7x1tYuXoV1ZU1vPvu2xg2iVKziInhfsqa6hgPjhG1ZHDm5mJEEyy69HyObd6BqGgER0YprCslnk4QPNKF6pCQ8/yoEzG8kkzxlecTi47S99YmpIZSgm1d2JIG5aXFxJJJouMRfH4vugBLZ0wjmUyjppK4c3Mozy8ipaj4vV4EEyLRCB63h2QmjSiIWEWZcDxKcHyMqdNnMj4ywuad+1m4YAqjo3FaOjrJ9Xs5b/FC3vl8Cy5ZpqKhlsb8ApKizMbNnyNqOhaLjKqZWGQRzTRZ+7VvsGv3JkTDYHxgHFNRUHWwiiCKEplMlrLSKhZMreREZxBNM7HarGi6gKFn0Q0Dq8WCKErAJCucYZho2mRVkaqoyFYJkDAMUNQsdosN0zRQTRVTybB82XxkNDKpNLpuIMmT85c0w0ASRTRDIZ1MUV6Qz5UXX8zpM60EQ6Ok0ybFpSWcv3o1b7+/AV9ZBR3tA0QSBvsPnWIs1EvexVMYP9XJx79+mL+99RFT6ht59pmXmPWlr1HjCGJoCoIoINssOD124uMxBFnCYpmkq22YvZCJ4ASK1YZbkvjDM28RGW3F6nSDqhMIFDI6MoGuhPEVNBAJ9eB0u8gabhKCgCWdorqxmVu/upIcjwdfcSH33/8AFcW5BAcnuOjiNWQyBqgq53/5Sp59/HdYLTKyJPKXdz9ANTQCc6ZhzXPStusA1fNmkUmmSckC/hw/w/sOU1hZiel10p2ZoDZQgDISI6PrhM6cYfq1a1GdNrr/+hFKNI5neiO1DfNRpRBdn+2mrLqWLjVGueClNLCCJcsuY+vJD5lRNJOO/g3s3/AehedMpXhC5EDbEfB5CRQXIIdVhgd7qPIXMxKM8KMH36U98wk7N2xhxoJmihxFbHjmdUQkDEPh8u/eR7e6j0QyztcuvZahvgHe3bieqVXlLFu8lJ079tLafZzgaJA7vv9DZKubrVs3Ex4cIlCUz2d/+weNs6fQdqyDC2+8FsMOibDJqDOLFxtmSsNikwgrCdKdg+S4chhz6uihKEuXLyM+Eaa8vAi7PQerKHK4o52nv3kLbn8FAY8D0WrhZ7d+i+/e9wjPPvwrtmzdy6NP/p7Zc2bx+ksvcuWN32J8dIj9+3dz4aoLuOaen1DnruCB++4mlUzisNv582/v566f30d7fw8XX3sp8y/7Gu2dh5H6BTp6t+LODZC/qJ48Ww5tG3fStGwhDo+fxQ3fRkbg3ZNPoA70ce/td/OHjX/n8OvvU7lyIfE9bdRNncuSS9fSevQYxYLJOVd/mfDACCgKA20tnNq3BzOnkGVlMgPjUd7afABJAD2r8drOPQiCyJY3NnP+DatZM2s2/J/uoxAEoRgoNk3zsCAIHuAQcDlwAxAyTfMhQRDuBvymaf6HIAgXAd9jEigWAk+aprnwLLAcBOYxyZFzCJhrmmb4f+PbXLZ4Ph6Ph6Sp0S+reBwuykpKON3RjjWcIX/5QvJLSzjTdhBvdQPd720mk0nidzqpLCvhpq/dSmtrJ1s++4z8gmLEEiezLzmHne9vRzRNuk6dIj0UxFpWSXmRj7ad+0kJCn6/n8hIlEQqjFngJq+xjmqHD80uEE1niAyPM3fBfE5/cYjgiU5sThd5hQFGh4YwBRG/y4HP68Zud1JTVIzdbmNoZJzDR49QVT+NAr+LmqmzUcZ6cXhdPP/q28xorqW0pACPzUkmmSGWSXDy5BE2fLKV559/hXR8HDEVw2K1oKka4WgMVdWor69C1QU0ew7zFy/gdw89gtXto+XQIe64aR17kyo7P/oUOQMpVcHmcSCldCpqauhob6e0uJIp5TZOj+jYbU6yikK+T2d0XECSJEzTZDQ4SFlpJbLVxpymIvYe78XQNARRwumwk0qmUAwDiySSzWRxuz2TVKKmTjqZQpIlZNkCCCiqgiRbJ8nrdZVAQT6jI2OI0iStqm6YWB0yoWAQv8fBqnMXkFRSxONJukdtqKpKVkvRN9xC3VULaTI8VAEzpzQSSYXIxFKIgoSJjGDqCJKMZkymrDXNxGq34PX5kWWRTAYEQUeSJezeHNxeP2JGYWhkgGgoSlFhIaogc8FVV5Ic6eWp3z+BIcqkk2lkQWL+0vns3LSHx159g6ce/T2NAZ3NrXGKXCafffwRzz7/Mr+6+w5+/pvHERGxezxMr8jnoccf54n33iZvyXRi7cM4GouZ6OmjsrqW7v3H0aMRpn/n6xx+52MKCvIYP9JB+QXnMnbgCDWrlhE+fZpBh0x9QQlTFswhOhpl5NQJipqaaTt6kLFDx6hdsoLBljayA0M462vJrS7lK0sfYNOOV+kO7yI7EsFaFkAbj5DqGaJsTg39e08zbeV5nNixhe989asomQxvvvYRJRetJRQ9hLekkOSedmJ5ForKaij0+Dn94Rdc9r17+GDDk1zy5SvJppMMnelFynOxe/02Fp27EMMiUV1cwYHt2wiO9HPb/T8n2TfBe/94H39FGcsXzecfzzxPyGJjSk0lGYuJanUSNbMIbeNULZ9PqKsbSn1IbQO8/eTD/OHRZ/nGd79LMp6ipqaCZx99FGeOhxUXX8GCebMwNRVD0RBEAVUXePTeH3PLzx7kk7de5q033mFsIsJvn34UNRyntLaZoxMZ7Aj0trfgcjlx+gq4bNVs0DVM4KPXX+PGb92CYcCv7v01e3dvJnfVVWx56gHO+f61nB7qJy8vlxOvfEzhOVP50WXX8s7Gg0QSGQKWGB2JMbwVAbTTg3z7O6X88a00iY4e8nBjMSGdUdCNDIWFRbSfauWnDz5IfnEpnzz9GEnZQs/EGF9b0MDpnjHe3nYYURBwiRacljye/Ow9Dmw7yvzlM1i7cC783264EwThA+Cps8cK0zSHz4LJNtM0GwVBePbs+Rtn7duBFf/9ME3z22f1/4Pd/8KXuXzxPDx5uQSHRzF0k7hFRyjxoPdFiIejXHrD9RxpO0J7Sxv51aU4kypNs+bjbyqh0FmI0+egRnUxPjTK7j376KwQOCevik0ff0ppII/2/iGM4SHSgsmSZcsYHgqy7Pp1vPqzB5hy4VJG0gl8Ph+9H27FV15CPBymcfp0lEIvpz/ZjlUV8Ht8iJKJIQqExscZ6x3GarPic7upb6ojk0pSVVhKMjFG10CIb377Dk7u30FUhWceu48jbd28/+pr+J1gt0oIgommmei6im5qxMIJstksogC6ppPNZklns1RXlOMqqODmO3/Aq88+TToexm6zo2gaFaVFaEyO3tAMKw3z5lBeVMJ1X7+eopIS+vv6GByPIJoSbruXqXVe+sbANCfZwkrzBXqHlUn+cFliPDRAUXEN/UKQ3Egam70IQRDoGzxNeWGAsViCiuJSUhkRQ9fJ6ipOmx2X200sHgddIRwNU1/fRCgUJhSKEAjkoesGqWSSjJrCbnWSTKUJBArAmCSIjyUTyJJEaLyXkrIGrI4SdCNLJhNhcKwD6vOZbi9lvHccq81OLB4jx+cDRSOcDFNRlE95WRmyRSKj6kiShKCpiOIksb0sCCimjqEYSFYZQ9c5crIPQRCQJSsIJqm0znU/uIc8ugmeOYrNYsOURCRRxma3Y7HasTldyFYb+w8fY259CVlNAC2N1e7GbpOw2Gyk01li4QjxVJp4PE5JPiRcJTy3+RPmTqvl/Gkz+dkLL+O1ecmfPwUtGMWb76VnzxFcDhcTwSA5M6pROoeovWQFxz/ZSkFlBfbcPEqqSjnV2oHsciBPJLAW5tK9bQeybmXxN77MqdY2ZlTPZZggw8dPkOfxI5Xk0P/RLuqXLsT0u5hV1EwwPkC4e5wz3W0Y8QS13iI6RoNoZRbcJUXkpFWGkhESLWfIbaoHyYJ2YIC1t/yCfzxzD1VLZ1IzvZnB7m4apzZxcMNWLvrKVdhybBzYsYPDG3ehoTL9/FV0nOoi12knLy/A1MXzMMZDVNTX8uw9D7HiunUc3XmMsEVh+ezFfHP5Obz/8puINhtfvfkmes/0kBMoorSmHgwNhyzywtN/5Ppb76C8pgK7xQGGxujoMC67kwfv+TF2h4Obf/Ygn7z2PNu37eHbt3+XRUvns3/PF1TNW4HVImERhckFjGHSdvIkn67/nJwiPwsXLKAokMeRg3v582MP0903giE5SPoKUAdaaZg9jf7uHlI+FV9xGeFdLTjrSrHFClGUIJ65AXIPTHByrA+X00kinUQyDfwF+fzkyRfZu2MbQ+4xhp9fT/mCRdxwzVVENfDl51FT6OG9v7zGkbbD9Bw7CaJAIquh6iZutxtV05ElCVWfJDgeDkfg/2Z5rCAIVcBsYB9QaJrmMMBZsDhLRk0p0P+fbhs4q/tf6f9nH98CvvXf/+uqCqKAOrWCbDpBumcQe08cQRQpKKlk5Fgn0Y5+Lr/jNjKn2ujs6qXj0GEiX+zmotVrsYgmjXMX0zkxgHt6Hck9W6m5YgV+pxe75ORLX76A1gNHKPcH+OD5Vwk0lHPmi71YJJlywUP/ngOM22x4cvwMnzhNTq6X0dM9NEgNdCuTox5Kywo5deIU6XSGWYvmsicSIyDZeOSZ5yEb5+i+IyTGBnAEXMyoqyHcsYvKfDumbvDs735DOBLGZUB0NEFcsoKhE0mmEEwdECkqL2PtdddjkSU++fAD9u8/xC9+/iscbje6qtHffYb5i5eye/vnnPOlC3DY7dhdbmwWC2+/+Gd8Pi/9Rw8xZjvObdddiQksXvVLfn3fb3E6Xew50kXXkIIgWNBRyaSzRJ12bDY7mqaiGzqZbJaRWgvRUxF0l4diQULWzMnx76aGoYOqa4iSFUOQsGISiUUnqbZNA9lix2bX6enuwZvjxTSjxKIyhmFitdmRDCurl81B03W6eiMohkEmkUBEZMG8GezaFUeS5LPDIFV0VUMQZIobagkdGiYy0YfDXQimgKZqZLJZ3E4f4aTJyPFOLLKMKIApWBEFERNQVXUSOM5yrxtmAkOzkkkOYXeWYMjaJJG4aOOSeQ6y1nPY1HOcrgGBpjoZSbIiWSzIViuibMFidzF73iIsepxMNIouWFDTKSJxFUEQyaZSk/zdxmQuaSgm8P1bb+WWr93IjTdcz3uHe4nuOUJwLMThQwe4//2XGDpwit9cdyPP7t6Fe0EzNovM0SOteLuHYDjJmGMc71CI4OgwS796FYfefIdoWkcfGAKnDcnho/PgfoSaWoKRdgb6B8FUCfcN4pyIIgkC6f4gyaSNNzd9QTaaoGrKFGrq6hjqGUNY1YT1uB0llSZP89J96iCpYAhPQxGR7n50RaW4uZqc3DwWf/tKThw4gm80xERwnM0dn3HLnTcxc9ocfnzn97jsqmvoPtZFaXkpoiLyg7vvYsf2LagTMWLjY5SUl7J5/ae8+Kfnefd3j/Cn++9HyahYLTI+nx/BKlFcUU4yqzN1zjwsdjeGaSBJVlKqxpXf/A49A2P8/ndP8NRzfyIcDJKbV4Bks+KwOxBtLt76w/1ITj8PP3Yfh1p6+MbXvoMp2Vh0SS2ioNI3MIDH6adnsJuC3CKs7rmcGQoxvrEXyWzBlyvRMxTBwEJGMXBZBWI2F63iCNO/upRw5zA5JfnITjtKf4jG5SV0DmSxWeyEyi0UlVTgEG1Io6N4Kku4486HsEoyZ6Qe5tPITa+/ya6eNh5JDeHo6efHZeu4670XyXjjSCmFuCmSVQwwLWR1hXQsgSgImAJIpoRL0v6dkP4vy78MFIIguIF3gTtN04xNpiL+a9P/Qmf+b/T/o8I0/wL85axPs2z2XNJ5TsqdHjp7T9NY5qarpYXYWIgps4sRBIFAcz2esSRdLd3oZgoyGdauXMPxnlNcd/E6FEXhnGnz2Lx/L7PrpzHS28+CBeeys20PPe9txOl00ZII43O6yFEsbHzuLTx5OZw6dZJxNYVTBj2rUjWziTyLDZumUVxSgLesFHU4xMR4hIlwGNmU2LVxB5XNlcwoLuGjV/6MoesUTp1DLBNn5UXX8vnbL6FqGiKgKxmSqeTk8D3DQJVt/OCe+3js2Rc50bKTJ//4B9weFy899wxbN35GR9cAdpeNksp63l3/D85bupKX33wdM6uSyaR44LePYOgahqagZxJEEzqLzruQoqJiXnx1A4JkZaDvDIaus3Hvc0hyPoda+pEFkVdffZaO9mNs2fAxp7t6qS0L4M/PRxOcXPzldRw5eoLzL/0SF669nODoOIrfjdVpx2q1kEjGsVsdCKKMXbaTTCbRDAOH1Uk8FsNmtWBYdBRFJZDrJ5NNYxMN7E4Xgji5eyrID/D3D9YjmAb5hdV43B4mQuPUN0xh247NuN1+0tksgpRBVTOkUjGUTJKxgQGKLBIz5pzL0NAwS+Y3sedwO5Igc+6yBRzYexRTtiKIIrpuIIjG2UIsHZvNgW4YpJIpnE4HmYyIJJpItgIy6SRT62oZGooiyDm4GlYxM2DSe6iRac0wNjpCTBUQEDAME0myIFmsmKoCiIiSxMkzZyivrGL9Bx8jSBIXnbcMwTQRTLCaAvc/+SQ//NlvkdQYA0MhxiaC7Nh6kL8+/ggVc1bzx+/cz+zZ03njlaeJ2nUKrTbGsjGmNs/hdGs7ep4Th13CdPlwF+QQGh4m0T1KXlMNQ9EYdsMGukZxoJSePYc5MThC8YoFlNWWc/L5f5AtLSApQNptxx7OUhYohnPKqCorov3TLfjrqskm0ijpJLkI5E+twNqYS/b0GEODvaxZci77op2oySw7+tbT0Xac+fUzGR8YwqLa8dtlxntHOaQf4cabv4EqWVh+4Rps5cXMrKjmw/WbqK+p5aW3/ogSSzF96UJKGsopLS7EO2cJFn8RAW8+sWSSloEefvDwUxR6vVgcEj1tHQiKxNMP7eb2e85hy9YNfGnlxZSV5fO9H36Po4cPUlNZwq6D+ykoqcRTMpPa6VNw2iw8/vBjHNp/kAOto4iiHUyV0oVjWCUZw5QJRsbJ9RcyODpBUaGPsahCMJKhtqqchOhE07TJBYauMjLUQfHiKegTCexZGD7WwnCvl5VXX8qhrvXIiBTPnE7Y1BnQVWZXliFlNUxq+Po5V2ERBF7e/BIl7nKWrFnJLz9+iURhLulXPuI737+TVFZBTyXQTANjXhl6x2lURaWqpAhJsjAwPMKs2Zdz62N30Lavg8Y5NVx17uJ/Naz/y/IvAYUgCBYmQeI10zT/cVY9KghC8X/69BQ8qx8Ayv/T7WXA0Fn9iv9Jv+2f+U5nsjhHJZYun4t26CTDfX14bU4sfuhtbyVbWETelHo8LhvdQz3MmTaD4q8tYvOWPSxcsZQHn3scZ9rk3DnnMTw2yqmeTtJTZ9DYPAVzOI7L5aGhcSp7P/wQM9cDNoHFy5dy8tgJooNB7Pm5FObmUeT36qS4+gAAIABJREFU09vbx5hhIosCfYeOEnC5aJnoZHwizjnnnsvJg4dJ6yoDnX0sa57Onn0nmD29imDbMTTd4OP33mLauWto37mVb/3gDoYn4uTm5yMLMDI8SnlVBYIg8J0bv0bi4pVsePM1AtNWcLKtg+LiPB5+9BGGh4f5/NNNqKkEH328AbfgYe1VF/DHJ59Atjro6+3G6XTicrl55/VX+PLXv8qfHn0YdJVkKo2iZGicu5Brrric15/9C/UldehKhj8/fC9ZRUVRVJJKgv6giMsfwJNnZ9OH/8Bmt/PaH5/mxsvWous6dpsVSZJAsKAbBgWVtfT3d7Pu8ivRkylu/u5dIHgxRbBZLei6isXUQTDJ8fnxF5pMmzuVZUtW8NNfPonP60c4uzKyylbS6RQ2pwtFTWGRwON0E02oCIJGNp1C01RMu0imdZDc6QuQDBuZrEZH2zFE0Ymixmg9sotkSiST1XC7HYgWKxZJRFWzmEqQWMqD0+vBwgSSNJlHymSzk/zZFguhgT40w4VgjPLhR4e4YW0ZiUSMohw3q89bwzsbPwUcSBYbiBKCIGKaBoGyahKtR4nHE/T39JKTl0c0NIHL7iKdzaAoGllVJ5Y1+OUvfkKo6yjXXHk5uqZjtVq46ze/Zvb8uXxl2SJuu+tu3LKL/U++SnR8hGVXXkZvLE1+XQGYFkY7e8kEUjQ2lNM13IWa0Rg+cJKmC8/j1P49WCZShM8MkByK4HDZKS+sYHzLMSxTy0l57XAijBRKMNjeTqCykoE3PmK4qRyPy8Ps5eewe+sOsoMhqhbOJdI9TMfBQ9jcNhylRQw3OCgaKkUzZU5v2IzL62H/kQ1U1lXQuHw5u956n9df/jv3PnYvxQ0VvP+XlwkpGYzTHVRe6OCaay/iWOdpVFHH4rURHDgDWoaXdwSxl6zhw/UnKQ6I9I9EyUYFJDGX+QtyMceSlDRNQzXh5y9UYpNkLl3nY8N7HzN11jT8Xhu//fUj5Hpt9EfsyDn11NQ207W9j7UXz6a3d5huRETBCoCZDfH+E9/BllvH6mu+h8vpJZuKU1Nmx+rKQc2kyAsE6O/rpVAuwjAMTFPANK1Mab4OR+AUEauNYOsgyaEQS1avYu+7H6MlIhzvOUNOfh1mOMuy6bMYDk6Q6/bzg8Xn8+HOz7hoxrnISLhsIr/9x3OcOXQAInEq1l3O6x27CT3/B+667nZKnXlMjI3xQOozDASaZkzh6JHjpLMZjh/Zw/u/M9i1Yye1pYX/Skj/t+WfAsXZKqbngVbTNB//T5c+BK4HHjr7+8F/0t8uCMKbTCazo2fB5FPgt4Ig+M/arQF++s/8X7jmAv72xuu0vfcK6VP9yKKIpiuUlpYSDk9gcTphdITjHw6ydOYiTo/2YO5vwRlJcOzVj8hx2fnJHXeTDcc5daqdfL8XLA6KCkuJTiQod3o4euAQ13z9evbv2sNEOET70ZOQ1YmqURYtX0LrsUP0DIQYi4epLC8hNBjEVE0GjQyyBjluie2fbkUUJYqL8+gfGGX33k4Kiqto64nhcDqJRyNMq83n+Wee44YbvolYNo0XH/sWV//4fj5+6mFu+e73UBSFbDrDS88+ya133c2qy64km80y5Uc/xuP1EB4dxe92c8mlF7P5s0+57cvrsDudqMkEv330IfL8Xj7b2IFgGoR6O5AMnb8/8ycwDLKKwthECKvNyvipE7wxNkQykURRFNLpNKe6e0koJiuXr2Ca1UpE07n0mm+gSxKffboZvB7WXXshYyP9jA0NcfLoQSwWC1abgShITPR3QTLF26+8gMPp5tILlmCRLVgsFiSLxIqVK3nsiedpaetl0axKVq25idfe/Ij7HniQtz94k1yLjfGRPm67/SekUholNT7GRobQVQWX1UEqm8YwBTA0TBQMU8WCiGGHrtOdVOVX4ff6sNkSqFEVh92BJMvYbTKSbCBKArppoija5BA6wOP18vjDd/Lxpvf50oqV/McvX0IUVERhcuehGSamaUzmM3QLFqebRDLFsJZlhs2KoYNmGphKFmQLFocLq93BYO8ZJFlm0bzZiJj09g8iSRZMQcQUrMQ0B1ZlDBCw2Wz4a2dS77FxcMdOZAmK8nOJjo9xxc3fZseOLYQTCfIKfLz59noumDOHlzqOkesJ0HOqncLz5mC3OEmEkoQ27sHIc1JV14AiZmEwzIqf3MrHb7zB9JsupPuDbXT2t6NU5JDedQjntDoqvrKWibZ2LK4aBruHsTqsWKJJ1Np8Xnv/TZbMP4+eDds4bRXwNdWSdcgYA0HiPSMYLgtNOWXs2rENyW3FGIwy45xlnNy6HW/DMMUVxfjm1ZFIpnjnjXfJLy2gY+8hXEmBz3fvIbI1zvJly8lxOklF01xx67d557lX8Xp8aIoNSfBwom+EdEonFk/iODjOsZOHyGZVDNGgMD+Xro5+fP4cnBaTWDKXJjmfxx/8Na2ng1jtHjTTQmYgxYLVlxLs7eFwu46ialgsNjB1JNmGYslBMNJYZTumKRNPpPC4XMydkWbL7hF8+QGSsRReXx6aKqCk49icOYhk6T32NNJpL1abjcBFM7li5i18suUzmtau4cxwL1r3OEpWxZBNdNUkFBlFGRrn7qP3UVjbwMO730Oy6MzLa2ReXSmtB/YAOvnZFINqhp/c/guacvI5vPlNmhavQxBFTFXl8y17UbIZFi1eQFYtZ+3372DJFZeRTUb5/Fvf/peC/78j/8qOYgnwDeCEIAhHz+p+xiRA/F0QhJuAPuCqs9c+ZrLi6TST5bE3ApimGRIE4dfAgbN295umGfpnziVJZEbdFDq6O8DtJBONYnc4CI4GcTkkitxWVF3B7vUh+3zUiBUM9w4iJxK4rDJt+9s4UPYJUm4BRkJjSkMzSSXFsX270SITJCST6uJKOlvbGAsGcTodiIJE1poht6aSozv3IakaKYeMt6GKidZeaqc1cHjXIXRdo7y5jvbjrcgWCafTyujIGKWleQgWgeD4CJdffSXr3/6A2TMqsYomfaNxduzZxd59u9FUjVce+A9MTB564F6yqh1XaS63X38z0UgYRVdxOO0Iokg6mSYjiZiyDKbOsvPXsHf3fmKhMbKxcUxNJZlMYp4NboauY+g6qUwGTdPRNAVNy3Kye4RZ1YX4cvMYCwa57IYb2fjyi8yqLeVI2wDr1iwh4/aTjoUY72nnwuuuo8Bj5a233yGbjPD0E89wx4/uoKyqFt3QJxt+AEGSsdnsRMIT+HPcfPrhB6imziWXXckjD/6eIyfOkI6OcelFC+lrPYbdV8Ds6cW0nDzEPXfeyddv+xGP/vYnLDz/alauXMgrf/0Lvtw8YokYd951O7u2fIbs9FLoy+P5tzcimAZOjwdbIAdzNI3L5abnzCnCE3Hs7lKSqTSmZqCpEIsnKSjKm5xqa3UgSEy+tyDw1FO/Z3gkzKbP9uPNrUfXVDBB09KEwmGsOS4kSeDUsYPsbfLz1Ztu5Y0//57nX3wFpy8fQbQSTmQ4cGiAVec0kuPzI4sCpmih7UQLFlnCIQkYbjc9A0NUVtTSO+Ci0RNHUVXuuHkdT738AcOhJOs3vE86EZvswgcEUUKSJGSrg42fbCM3x4OuO3ANJ2hLd5GT46A4v4Rj27bgL6vAXluCFk0y1NuD1nUaoSCHz3dupbKuCWEoRCYSoaZ4PqHxMPKUOvz5+XR9sosipwfdIpFjySVSoeJrqkNy2VDiGU7s240ogLe6CstQGHpGMUWJ2YvmUTdjNsdPtGFORHAVFqFWuTixcztllyymZ6iHSGcHv7rzZv729HMsOn81ssuFkJtLuiqHOq+H/W9s5/zzzqNg4TRqaqawf88XzJgxA1NLYmqQUhQK872c7hwlm0qQUQw8dhGP242mGiQSGUrLimk91cr8hQswbXZ2HBhhIBhGUxQsNjBNKK+tx8ia+PIKmIhGECV5shJKM0lH+7DZA6iKhregYJI33WIlnZ6savM4IRqJIYgChmqQk+PA0HV0XUczdATNpGTtbOTuOG3PfUy8uZbmyy4g1NuPbSgMRX7ssoWJ4XHag2HCx9uxXbCY6XoJueVl9I/1M94/yFvjm1FdEtWzZtP/wiecee5D1n73R7zRvZc7Zl5BU2MdcdE+GRNlC+lsCgGBPV8cwCof45Y1HyAJEpqp/wsh/d+XfwoUpmnu4r/OLwCc91/Ym8B3/xfPegF44d95wf1f7MHt9FGaX4yoKHgqSmiePgeLQ+bMkUO4XC6GR4OIFhk9HCQWjjJ39iz6xkZQ0xmWLSunftZCZAsESkrYunkzFbW1HBsYwWKz4w4UoFtlJsaDOBxWhob6CBT4WbT2GqK9ZzBrilBHhrAXlLP3qdeZcfUaCuqqmJ40OfDFHuKjEaZNaeJoayuW7GQfw/TVS4kdmyCTSbNj/VuIZHE6rBw53ocgSbR1jjBrShEnO0bJZDMsmd9EIh7Das2SGR3gvnvuJaoYVJYUcP13bmPJxet47oFfceroAfI9VjKZLBZRJKsoWCUJRVPBNFFVFUPV0E2VVDKDAFjlSRpZmyBRGfDx6J9eRMix8/h//Jybfno/Lo+Hi2+5neKCYo7eeQef7z9GW0cnY6EU666+mod//zTbP/qIex/8OT//+d3c99ADREbjWGURh91BVknz4YfvcdW130DJZkAQSKVVrr3uJn5598/oOvMU8WSMlSuW0vnFNq655ivEkuswDIPegVHWv/UyJ1tO8MHzj+B2ufjGpQvZffAA197wLe754a14JCvvvPgctTVVVFVVoGJBEgQMDIyYgmdeHRVleYydGcWfn4PDXkw0GsHpcmFYckmkBpEsIpIkIogWYokkR/e+ycO/+yO9fd0sW7aUl198leI8P6Oj3TTWVvLmWy/RPONibP4cTFPDZrdSFCiipTPC6S8+IcdfgmDNYLU5kB0OtmzdwznnTOXmm77KU795mLnnLmHn7jZEbz179n7GbV+/msH+YUITQQ7v247F4mbtdbcjyzKrVl9EOp1CPAu4ssWGJElnP39ZEUURSRRAEBEEJoGsoQTh6GlKr1hNNJmkIL8UM5bF1ljByJEWSubNYby/B2U4RECTiLWcZmgwiD3HxckPNoOgY9NkMlkdKRRldCKCmTVJ5VhxV1TRf/wkuq5QUFODz+oim5/H8JaDVC+dRaCxgtHWbg7vPcChLw4w4/qrmXPhKlqG+ygubyIWOEXZtCbKU9UsveWb7Ni9k2//+PvsOnyIkwdOUJpThObLwevPw2Fz86dfPsjN9/6U4NAQx9t70CvKGEulePmB/+Bnv3uRXbt2MzwwwNSZ0xFEiayuYbNqePxO+ntCeH1epkxtoK9vAIvViizLDI+OIVmtZJUsgiQhyyKRaJh0JsPs6VMRZDtuj5doeAJBEMgqGrqhI5ogiVbyAnnEw+NYLQZWlxOXTSCTTJHKZokm4mcjk4wgmCiKgsfuplMewl1TiHd2JSd37kLsHSLTUEZz6VTiXb04XC4GWjpwVQZIHu2kRZIpDA4RHh7nvEsvYf++vQxs3odamEvgnGbykg7efOoJcu1Wnqpp5dwFZVQXzkUWRTKqQklBLtFYnLKiYoLjE+Tn+tBUDVOAtt6BfyfE/kvy/3Rn9hNP/uHeL52/lmQsSnFZEeetWQ1KkrwcH53HDpFXUMRg9xmsbjey3UHz4oUc6DnDqd52pEgSZThIYmKMeCbNuJEmHIqwetlycv15xFIpTh0+TEXzFJobanBUFTHl8lWc2nuYbnuWGcuXs3vTZxBN0bX3BKNn+ihpKEcyDPa9+CHZTBpTlNDs+cxcMg1lPEkkEsU0oftoG/7cAlRNpfNMJ4JgpfdMN4ItB1XNEosGUXUXgiDi9boxRRvRhEE4omATBTSrnbSi4XLbOXrwEK/+9QViY/3ccvtP2PnFIW772U/Zt3kjmqoRi4TIpJIo2SwOScchClgEA1ESsVtkrv/hLxmNp1n7tW8yfd5idFnmxVff4Zabv4ndbuPaS6/kwOFTpOLDFPr9VNQ003HsKC6vh8N79rBi6XyUbJJXX3yFgoJCXnvlba5bdwln2tvx5Odjs9loaJxGMp5AFEWqqip48vd/Ys+BE0iY/OY3d3PkSAurzp1HWpLZv/cAc86ZT1VlOQe/2EZF00xy/IXMW7qSI/t2s2DpBXz8zttctGY1q9acz9IvnceXLr6YREZFRcBqtbB3/2FMwcCUBMKnB4lNRLFZnYyNjWMYOhbJgqYZJNNRvF4vNrsLXcsiSzZKBdi762PW3XInU6bMYPOuQ9SXFzI2HuPu++6jrKKasFLNrm3r8ZfU4PGVkBbyGAkmqS9M8sbf/sDuvfvp02vonzDoHMwyMJZhcMLggw1fsHJJPYFAPq+t76CrP8Ft162gbv5K6uurmLNwEQuWLGfeggUYokRJZSWn205Q2zQDE4HDu7YDJqY4WU5rsUxyXYCA1WpHli1YrFY2bd+OO8dHYniM/NIiwj0DhEITqIMhRLcdMxhm8c9/QMDvo+OLgxihGN6iIkoWzyDe3oNzzjSMviCOXC+qkUYpzUMcnsDXUI1XF4mpCl6vD4fXQ9/mPeSWl1K+ci49B44Q7x6mcOZUZl6xitHIBMlEFG04TnZgmOzEBNmRBDn+HAZ276NsSiNDmQSJZIqEqpLjK0CtLCQ1FKS34wwzLj6PFCb9Q8N0HTiK5rGSHpxgzvSLqC3TWX1+M9GEh0svyEOw1SKLVuwOG617/4K/qIn8okqymTQdm58hUL8YVVVIZzXOHNuCIFoQRAkDkZzCKnz55ei6STKZof3IZ3gKqknEIyQi/dgcueh6hvKpCyktq2V0ZBi3y01VdSFTZlXT359AVVUsFpFcn4e92/6Ow2HFn+tldGKUqtWLqKioxPDKBE90U1BdhrUwH19hEba0Qv+O/YRC41RMbcKQJWzhLHVTmlAlgdmlU9m18WMKZk9DmFqGFnBjmjq5i5qR/DbiqSTBEoHFHhmlrYfmXJPmsnxy3VZ8bhdeh4WykkIK8nII5ObhcTnp7B+E/487s/+fnh7r8XooKcqjuqqUbDrNyS+2M9jZTlv2CDaLjcFUN03TptI9OEJ4bIItf38PazzBhJYgJTvxeL18ad01pFJZFsybx8EjR/lkxzY6CdOzfQ+l9TUsmjWdocF+HLrMG399npoLFiH3DJLJJimpKaVp1hzSQ6M0NVTRHYxQNb2Bts/3U/f1i4jtPk2wb5joqMKqb12Ds6CIl+78BVlDoaS0iFAkijQgYbdb0RUDdBVDN/D6PKTTaQoLrJiGg5HgKJIgk1UVAvn5pCMTjIxOYJhWMmmVZYunEApFeeL3DyFLAr/9xa9QdHA63dgcfn5yz89w6WmC0TSiIIAooygGippFlASu+fp1mJpKe283BRYL37z2Spw2G6lUmlfefYNMKsNrLzzH8tUXc3j3Jn7x4MMEikox1QyPP/oQRf4Czr/gQnrbWmmqqkCw2jmx71OmLpjPiZZ2aqqrsef4+PvfPyaji0juAu758fX89YWX+M1vHiIvkM/nO3Yz/9yV7N22iTdfeB5d1xEFO++98TomBpqqUVhcyR9+9wBV5eW8+8YLpBQNR04hgmkiSiJ/efav3HrrbcxrrqG5eSqqoWETTKZMncmaS88jEo6AJGKRZEaHx3jskT/RNzpEIjKBaCho8n8j7z2j7Lrre+/P7qefOedML5qRNCONepfVjW25YGyDbTqmO0DwNQFCCdwkj0NJIA1CCAmBBGyDjcE24CoXybZsSZbV+2hG0/vpffe974vRzVrPWs/z6t4XWYu91ln77T577f+vfb+/7zfCo/se4av3fQbbMvFliXs+9D4q5TLbd84iO1X6V63i0LP/wHv3bsC2HRzbpm7bHHnzSXJj2zB0E9+xaRTG6G2McdO1qzl6NMjxSZ27PvYhhk4f5eFffh/H99i8ah0/+O7fI3jf5bUjB5lKFxd6c0nCsOrEQiqReAOCKCK4Hi/tP8zuXRuRZBFFURElCXwfSVURZRVJlNDCUS4+/zJbPvFhYq1JRi5dwp/NE1m/hBZfYeb8ZVo3rWdoYJDK6fMIrc30tHYSed87qZo677n7bg4PDTJzZojp+Tk2X7uHC9V51n1iA262zIUDRwlpQVKrFjNz8AzhSJSMnsd89ThhSaUmB7AyWebPDWGOz+BbNlJrE62pZYweOEIwFiVfKTM7OcOTv3mcaFcH0XCcsBajaleZHDxP7sIk+mwWT3RZvLyP0wdeRx+aWqiIPQ/DLOM5DkMXL9LcsZEnH/oXNl7/NWqmRSqcBEQ8RyMajVAp5Em2SsQbouh19aoHtYyPBP7CAuc1199IUE0wPzuL6+q4joWMSSgU5j3338evHt6HKEiEQ1EaGlPolkndqrH/iEd3l8b0zCyJSATD9ZDlAKoSID03g240s/pdexl44xihZV1Yuo4X1CjpdXq0ZmZHJxgZnIJkgu5d6zGyRWoTc2h+inK9yvjQEE6bw9vuuoM9G3bzL8//J0oNtLYlWAPzLEm0cfOXPkq9VEd481eUinMYpkPZcHhrYBpBUshXqng++L6H6/n8fxBJ/69c/639KJqaG/0PffiTNLekiERjZLNpNEWhe9VaXKNONNnAsSOvY+p1rpw+y+zUDI3hBSau5zkoooxerxMIBPHxQVLwPRfHsvCTMepNEcRUA5ensvTGE/TdfB3W2CSvvPwynWoDg1Pj+LLDyhuuoyUSZvCJ51n5jpu4cOwYpcvzSO0NfPnOe/juT/6F2NIe0ueGad+2AfvCCDIB1GCA0cGz7NlzLefOnqapfSnT01NEggEak+1MTJyjsXUxk7OXWb9qJYu7uhm4kmViZgZZ8HBtj3A0guvA+tVLCGgu9Xod3/cQRBHx6kTQx8d1XHRD52t/9lV8xAU9Hs/HcRzC4TCe5+F5UK6USCUTWKaNbhoEtCCSJOMJPgIi//Kdv+X+P/sKvudS12tEI3F0w8CzLELxKH61hC0HUVUV3bR49uUzVPQajutiGQbf/OpHePCXv6FayOE6Npm5aZav6MfzXIqWTVQU+d9sad/3FphOPleDhI9/1eEOfBAEPMelZVE3Tz39LAODV1i/aSOt8UZ8113YvvYd/KvaUPjuAkApikRCMslEAg+XarGIL4iEo1G+9OdfoalzGbpl4DkumWwGp27zs3//KXtuvJEjhw6x5fobmZ1NU3dsXnzsUdRYM6vXrqG/rxtPcHnxNz/n9VeP0trSzNq1qxkZHadeKkHbJuIRn+r0AO39WzHq1YWxoAuarPHDf/gzhmcLaNpClyAArx7Yz8fv+xyO4/Lwj39LrXAKSVYWxoZaAFEU8QBVVbEtF60hyS17ruGv/+LLHLYs0lMz+NkSlqmDLyAv66LtlmuRqhVGpqaQxmcRRtLEdm3EjEdJaTLlw+fQExG8M5dZ/MGb8GSLyYMXaUw0Mn96AC8VRjU83GqdRWtXMHn+Mr4vIEUVkns3kT10Fquqs+oDb2f8d6/hlHWM5iBRX8HJVfAEkXhjgq7dG3ADAbITU6zctIXu5mYef/IxxFgKZWgGx9FxiybVWgVft7nrf95HZ7KJW3bcye8e/il3vu99PP9KgS2r6uw/XCea6AEf8pcfIdn7DgKhJIIAtZGfo3Xcgy36uB48/9Ov4IkBPN8HFLbvfR/xzj4swyQcCfDUj7/Ix/74fn7xn/+B4Eu4jk45P8euuz5P+5INxBtiuJZDvZalrb2TtWsSfGTvTmw7yj1f/DN+9U+fxzJrhKIpDLtM8s6tOIZPJVOkNnCZ5l2bCEQizFy6QoMQQCzpZJIiwlyRhpVL2LFuO7dv3cvAlWEuzg9zuTpD/eIwizZvoJCbxw/K/M2dH+NHrx2gfnwELwa3ekUM06BcdqjoDo+9efH/FStFUeR/x3LLceAPyY/CqleZPf8Kc2fBwwfBx7dsTjz7S0aiIRJWK+VaicLsFEubVDS7Sq0kEItFMXUdRAl8F18UcHUDx9UXPh4fnGKVgmvjKSqrOzqoGzqvP/gLtu19B63JOFPlEj3d7cxcGqGhYHDquVdYvnQZY6cG6dm5lVrLJKt7dqN1rSGyZQWjL7xBSAvj5So09/eipSvoloMogKNEkCRYuqSP6amJBfaLJBKOBjEtC9ERmBod4+SJS6xatZFauYwgeDQ1prAsGxERWRNIZytkCiYhLcBMdpKN/V0ggGFaSLKM6Ti8cfQk1+/ehevUCIWCmKaJJEkYpoGmajQ1NlKr1QkENFpaWigW8giyjCZrlAo57v/KlygWCrz80u9593s+iuPaeK5DKBbBsRzEQJyAKvDrZ85i6BV008DH5YEvfohf/e4ZvvuvP+esnWJ3WmTpNcu5dPkiK2UFWdRISDaubV+V6gDf9xdkPTwfMMH3cT0X/6qmviAKoCj4vohjOwRViV2bNnBxYBpFlq8u4BmICFf3JAR8UeLEuTPENJnNWzYieCaqpuFYDpbt8E8/+DG+5y0AmrKCrGiowRCp7m4ms3n+6q//kpU9ffSu34nnSziiCrrOa/v3c3A/JJIJBLmR1TuuJxiMITQ1k9C6uPXm22jU03znu/9IX18PW65Zz+DZ0xx4cR+79t7MoX0H+MKffoPHfv0Tjp+7slD5igK79lxLQIaaK+DHOpD1IVRVAc9FDQYX/rem4bg+773nLr71J5/liV/8FMuyyY9PEe3rpKpIBHJl5GSU5kQTQiBOW1cP86Ua7Ts68e/uI/3bJ7FNl+nLQyQWd+BMTqEENEZ+9xq+aaEikx7JIMsSQtFAUCSIaUxfGEILhahWa7g5nZkDhxFzHoLnM/hvz9DRu4SZ7BjqZA1TE1FlBXXFIto3r2Z+fIa58Qk23nw9584f59jYPM1b1yCN5bDjMVq27aZwYYCALZFLz/HKr39L/5I+Bo5dor///Zw+V2Pj2m72v/oU1YpPxQzQ1Jgi2f8efA98BGTp0chJAAAgAElEQVRZYvvN7+PoGQu97qIGAohaENtw8HwXwfdIdvVSKFTxEbDMEr5j89CPf4QkB5ifHiCVaka8KlWTSkTxBAFBkTjws8/yzj95kOnJCL6nEwz4hCJtuI4OPiiqQvCafsqGTsxTiLQlsPxuxEiQoO8hAmZXHEH06FeirLrtJl588fe8cPSnHLxwHGFyjptuvZsv7fgInz/waeIzUxhzBfyQxhd++kPsQpXuJT2Mjg3gBoJ49sK50CSP1mSEhnAUHyjUdFpScS4MT7Kiu4vTV0b+r8fi/9YYxd/+zV8/sOGd15OvVuDa3RSrRaaXLqEUkMjWq6y583oqSYGb776bocNnCQU95ooysm8gCAtVpuX45Eo+WiCKIMWYThtowRaw8lQqAv03XsOFI6eYnhgnJAfIzs/SvfMaOls6mZ9Lo5dLFBydzvZuUptXsnzPVgKuC7LGiewgI14aW5RINaVIX57CF31Shs09932SDVvWkmzu5NDzzxBJduEaVebSGYKBAK7nY9aLBINx8ExaFrcxPTWPokTwPZdSpch1O1cxPVdCEESGhsap6S6iIKKoCngigyNT+GKECxeG6exqJxTQmJyY5tLhQ6zbsR29bhCORwnGm/jLP/86Bw/u58yRt7j9ng8zNDDE8y8+zeYtOzD1GtVKBVEQUBQVTdNYu24ztVqNXDpLJBpFkGWSzS08+JvDHD83RLlaxDRqfOOrH6aUn2P/629QLFY4dvoivX2LCU3Pc/ncKEKDTEd7G6Isg7eAnUiShCTJqJKGL4CmBTAtCy0QXBhJiSKiKP3XT1I1xsbHKJfLTE1N07t1N5GWjTR29hLuWkX/+hto791EpLmXCyffwPU9duzaRq1aQpYkBElAVjUULUgwEkFWNHxJQFFDqFoANRgmFI0TaUixdsUannnmMbx6CdWrY7sFqOeIB0UiAQeZGqpbIyzLpOISfatWo7kZ3nz+l5w8fpj2xjBhwSE9NYhbL9LT2YxgVWhviSL5Ok8+9ivmT79G3zU3I+BhuS7ZTJaALPDKYZn2RBo1GEJSZHzHJRwOcePbb2Tfg//Bv//sIQp1k5nZAvmygWHqWLkiQtXEtxxcy0R8xzaqxTwTpSzeS8cpj2bR2iPkT19EnM/Sc+01VOdyWIKAHw0hZSpse8dNzA6PE17eQfeqpXiLO4mv7KJ2aQpXALtuIiPQeE0fiqdhdEXRihau41I36wiWC76I77rggTtfILWyj4amJLWpWeZKedSqTWrTajLPH6Xnjhso53NUy1X8sTzlmTQlq065UOKDX/gUpVya5f27OHtljrHpIkqgHduPEGtIIooQi8Vpbm0mly9Qq1UZnxEIxRI4josowsCxfWz6wgcJeBL5mTR9W/fQ1ZzAsgxAYPTCQaYmLhAJx7CtOpoWxXVsdt7yXkQ5jKYFMEyXcvYi8ZZlhINRDr/wS/AF9tz6QY69/ChqOIRtOZQHJ0muWYEaD2PM5dBnCoT6upk9cZaUrVFpUAnpDtWAyJBXIGaH6dq6msRMnT/64lf56U9+QDCZoDg7S1r1KEyMIne2kFyyHNk2qPk2S5u6Sc3P4V2ld8uSyNB8BQGQZRnLcgmoCulCmVhIJVuuwh8SRuEKEAonqXSZzJ2+SG/fCjQEwn2LSeQzjA4Nk6wEeHXgGTZ84F288bOniCdCmHYFwREIRuJ4GCQDCrliFdet4vsCpVqBBs2hZWkTAz95nGU3X4tTrDJpVJg8cYbMxCRC2UBrb2TF7beiv3SYS3OXsX2LN554lqgr0HndVox8gVpMIyyHqAQD3PuTb/H0//weF6en+eu/eAAJkUJB5zNfvI9du7bw5c89gCLLLO5ooHX5Bg4+NUZufpxP/tFHOXLoIJ7roagqjmfT1JjijcMnCcfbmJ0Zp7V9KfV6jbVr25nLeLS1tqOqKqVSiTXr1/PWifPsvXYds9kqs6Uy3/3O3+OJDtFglJquIykqqhKm6vt86f7PIXiw++br+dpXvkgAiW//8J8YHhqiWq8jiDJ79lzD4aOn0BJxMiWdV46cpK7X8H3wqgW++cBn+cVDj/Gl+7/MheEkO2+IUiqWwdJ59je/4uYlvUiqj+DpCxanjgkIyLKG5zrIika1ViUSjuC6LpIvoNdqiNKCcxyCgKxoOK7D4HwO0zAwdBNNEbl8ZB/Ibay97jZGzl8g2zTNos5uTMtkfGqQf/znf+aX//AtPvQn9/HQTx+mQVW476t/hhNJ8tzDDyIFJRQljCTJyFpwITCrGpKqYuCzpGcpjmngeg4+MQT+65GABbkPSZJQwmEisQQXJ0ZpbogvFCeej+Mt7F4sDAYXRmyqpuB5Aq5r8+v9p3jl3IdJrv8svb1t9HeJDAwOUjjzNKv/9H5amhvJpXO4rs2Df/cdHn3o5wiyTF23yBRquEYZ16jieTKCIGBbdWRJo/Ht22jMmwzMT7GobxlTNphRFxSZiBZk9a4NzK1fij47R4+nMDJ8GckTOf7SARzXpVHU6Ni2leHDByg8MwyCj+iAK4Kl2zQT4eLcDB03raU6pSOLFpau07a2j1h/J+dfegMva7DtSx9lsFymevYsyZYW7EyBre+8mZPPvILv+BSHh6gOzxLRFMYmJkh1dKLPztLbt4razBxtXR088cRfUp4z2LX3T1FkKBQLtLa3I/gCCBLz8xlkRWR6KsuGTRso5PNIkkhdr2F5Hqce28e4qHPnVz5Ki6Xzq33/xsjBE/z418/yyN+dIxKIogbDyBWR1dtv5q39j6PXK0SSCoZtEgjIZGdnSYSCOL6PKMuIvsN8roYWjlIuFUg1N2LoFSzFo7mxgVKtREPHKjRZRm5NYUSi9NRiTGVyLN65jGq2SKWWpk/ZxPgSOLzvVW5cex0vPvprrJ4Y4ZkSyVQHsq1QPXacb3/pG2RmJ0EUGbpwGl8QME2DWCxC3XSIhEIYhoUkSdiOy0Jt/P+rmPF/dP237ii++/3vPWBk55irCMRXL6UwOcGSlcvRy0XCWhiCEoVKjqQWRb84iVGpUi6WiIQ1RFlAEWF2toDjeti2RVBV8UUb37ORdq0lMzfB8tXrMR0XdUknZ19+kYQcJawFKE6nUWMa4wfexFcVVl2/m9HXTxCOhlAUlXYxwCpB5MThM0wfO03rkm7uWLKdN1/ZT0tLMysWLyJbLOELHkdef50nH/st4XAI13WpWzp61cUTNOYzsxw7dgLXhUq1RltrB4ViHts02ba+l3zFx7TrNCYaScRT5Gcnqeo2LjkaUyE6WpPM53UCosjFgVFiiQYmJueYnClS0326l61ErxURBYFQJIjnLOACkiIxOTIKkowjiby07wWOH3mLZcuXs2hxD9PzWX737ElOnh/k4uAEpmVxzcaVfP4T7+DIy89w5MgRKsUir7x+GVWpMHnJp744zi09Fe5YK7FlSZEb776WXO97UPMTC5iKJOG6Do7nokgqmqLhei7VShXbchZwJEEkHGvA1E20YATP9YkHApw9dxbXckgXa9i2SyQqcGbqCF56jENjB4nNjZHLDTE1Nklrc4y7PvAh4ql2Bk+e494//QKx9i4SqWbOnDiKJMsoioKoyARCUZRAkHA4gqIF6etbyotPP4GHv0CXlEU8z/svPagFroCCpAaQ1QCp9sVMDZ4hGIoujDl9AUXViMTiOJaNIIrIsoKoqGhaCNsyGJ2cZyYrMHrhMIbcx9yZR3j3xz/FDXuv45Mf/TS33fl+nvzJD3n8lw+T0w1kRWJ0Kk+xlCUkuVexGAEVl5Aq4ckq8vYVZDQTw7ZZt30LhuXQv24No+dP4E7O0rRxLbOXBvFOD2HMZ6mWirzr77/GuYOHaN62Dkv2UCsW6opF2OfG6dq1Hqu9AXcig227aIoKYZlqrYw3ksGUHcyyjqIq5Gcz5C+MI1oOgiBhNYcR82U0QcSYz7H2xms5d+kS7ddtJ33xEvmBMQKKitTTwtrrd5PqX4Ta3oxrWoycvcTRl18lkWpk7uIVLp54i/zYfnrXXockRzj12lM0di1DlA00RSSZSFEoFJEVhYCmomkBJi8eJpefxY4GyWJjJjWG9+9n8d7tTLsCIweew/Nd2jt7KeSmCW1bSubMAO2916CFUzQ2JilXKtQzZ4h1rUNRw5w/9DgtLe30bXsnCDmyczM4LtiGTigUJNjTgaHJRGYK5MwqoqxivXYRtzvM/Z/9AmIkxulLZ1i7Zivp6ct0L+3jjttu4/LlAWKLulgZaWfo3Dmq82mu3bCVoQvHaQ6mmMxOsnHFZiaPvIzg+zg+KJLEydF5NFlGFARMx0VwHQp1g7AiUKwb8IdkXPSN73z7gQ33fZRIKoo+P4dZKpMZn8Q4cpnKuQEqo5NsbWpheUsjmQsnKNbTJGMhBMFFEBzq9RJ37riV4bFjuGKNYEAgkYzgdTbQ0NnKndt2MOY4BBrCVEfGWLzpGoSwiusYLF7Ug+JLmKUyiqIxPTJMX2cnlXKNsCOS8U2Mvk7MukFDezPXfeLjHNj3e0quzZrrtlOYyxNvCJOdW6gMPc9HlFQcx6K3o5FP3//H7LlhByfefBNNC9K1qIud1+/l3JmLWI5FvKGB2WwNWZXoaGpmaGSMUEMLtllGVsJMT1wmEghgGAYT4xPs3rGWTK5OsVAjk8vQ2tKCaboUChW6O1IMjBRpbu7hwsUR5mcLdC9uQvBBVmRExIUgKIu8+MLTHDt1jpMXRqnWKziuz9Hjg4yNzPHCM4/x2usvc/8XP8XYlQsEVFjX38LinhTf+9HXmD95nKG8RDa1nnB4KUridiYvHSAkCziOQzAYQlIUfvH44zQ2NvPmwDnCooQqR9DrOqKsISBh2z6CIKMGg1cBe4/jx48RX9fLpvffwQe+8RUO/cfvcEybCUHnx089wazrMKLU2BtOIQQUrpx8k4Fjh2lqTTAxMkJr91L++CP30tvXDYK0QJ8URGRVQ1ZVlEAASVHpWdrDGy/tQxQBUV7AM0QJH9ACwYXArwbxJYm0JtHX1c/k5ZMgyZimQUNLx0IgR8C0DBRFQ5YltFAYEHAti/m5AoYNi/vXo1dyDJ97hf3PPs+73v9Bepti/MvfPcDozDx1y2ZwJE02V0YwCsiAZevgLUjbBEMhCpaP70FtJk0okURpaWL8hYPURyYYOXKCQMWnPpGhmFRp3LCWtuu2Mf38AZZ+9l5OfPdHuP2LqBw5jdXaRuu6lQz+5gXCkQjF2Rkiy5aTvXQZyfIRJQGjWoPqguS2FNVobGylnMsjIeILPl0bVlOeSiM3R3DCAXZefy0TI8Nc2f8mmiaRP3WFRCBMPV9EWt1GfmASo1hicuAK5ZEJrtm6ib13voOO3h5ef/Q5PvD1T9PUnSAzMELTki1E40246ReIta7nuV/9hI99ZB0P/uArrNx6N6ahI2FRqVqMnDuI2ddF5/JF9KzcQmDUpumWzZjZPCmll8GDv0WLhwlvWIGSLbCi73omL58m3LKMVevWUS7lEEWHRX1bqRdyVC2XscHD/Ml3/p5M3ueZn34LSVEAEJNBOq9bT7aiox84haNIhCoiOBaipiAYNqPlaRJemA+/8x6Knk7d09EHctgKbF+6mhef+iWz6SlKuSwtK5dTiQgIaphkaxt33XAHhWyW4TdewgVMyyYWDXFmIrvABhRFfBdE0aVkWKRiIfKVOvwhJYq//cH3H7A8h5uWLWHQcwnP5nGqVXbt2o7aGEUMeuSGpnjr8jBZyaI8U8YTQwRUgf37n+d73/tX3rh0gky1hm75lOsG9UoNt1xl2Y1v44lf/57R8xfIjk6TnZglPzPN3MQ0EVGjaVEHpZkMsR1r8TwX9yr4Xa4WWX3TDq6cucSqFSsZfv0EfRvW8PrTT5Po7cIaneLS4WMUp+cJNoSZm5hl6fI+qpUqjrfQFlZNnxeef46tu3ewbc8u3nbLDTzxyOMUi1fbSNvEMHQi4Sj4oF81D5JFiXo1TSiUYtvNN3D+1AlisRiWo5CeGkcONGDaFqIkMzs5yPXXb2FyKsPUbJ6AqiLJCpZj4foCI+M5ciWdal3EcCQ6WhuxLJNQLI4gyiAoFAowNpGlkC+xevUqUqkYgbDG6RMnKVRMilWTsuFSqOk8+dSzzM6Os7Q9QlgvUC7lmRh6k4Qgcs9n/5gN6zdy4vRZ1EiYS20p1IkclXKdt06eZN26jdRrJkowgmk4iKqKJGvIigaChF4rMTExST4eYOWWDVw4c5wrEyNcd/99LNq6gacef5z50hS1msKGt+8hsX4NQrXCvx7Zz5Bk0d7Ry6q+fgKBCI5lIMgSiCKisiDkp8gqihZEVjVCUY2zh9/Ax0fVtP+SWUdY8JIQJBlEEWF5DwlV4Uouj1DKoUbibP/kx/n96/to8lWi8UZkTaUhkUQUFULROMFwCNf3cEoZ9u5aTcCcozOc5+YdK7luYy/7nnuKF149hOF4TM0XKRbriPjYro1umLQ1J/DcBbMnS1SomA4CoOxeReOKpQipKPGuRdSqNcRUnN4PvxvBd9Cb42y77W2UinmGXz2O5HnUR0ZoWL8G88wQcs2hddtWGndthUKOmYkxfEmk8tYFZFcEFxBE/KiK4MPuD9zC7LERytksLX0dGKUaSjREZWKObfffw1ypTENjHL1QImcbuBOzJFYsQW1poHR6kOSSTta//XbyI1doWb6M6deOE1vcQmtrG8dfPURDIk7V1THKVY4+c5BEJEyydyeRWIpt62KUnTbyuRHuunULu6/fwYv7XiE79AqLGivY2jLOHXmWTdu3cuSFlwlcHGPr7ncx+taLCK0xmuNdGGIFsWyQFBPk5kfIZMtIvkU9N0X7sjUIooxpWjiegKhq+D4sXbuXak3DqttcPrEPWFhwTW5aQizZyOjzr+POFKjlypQKaTbsvIV6rsiSVetZ1dCDp6o88qv/4NMf/wz5TI5EQ4p333Y3VdHhQmkOsz2B2N+FZVWINjTiVmrMWAVWpLqYHhqjOnYB3xdwfB/bdrg0U0QQWBAnxEOQJOqWTTSoUaj+gSWKb33n2w/4MY1ioUJ9co4169cxc+wyk9Ucacdi2TVb0JqbGc/Pkdi5GaEvResN21h9+7X81X1/TiyoMjYzh+eB53q8/cbdjE9N85EvfY2xzCiXjpwk1pwiEArgiSIRNYA1WyCUjDLw1nm2X7eL4Ng889ksuXSWjg0rMKYKpDasoHFFN+NvnaelvYWzBw4jlnWcyfxV3wxwdZv5qTlM26KltYVsOksgGEYURARJwjFNDh14hTcOvMbLT7+MDXQtbmVufoad27ZTrJeZy+S4+08+xCv7niYRblyomiQPNRgnHHDJTk9jOgtdQ6laRJCC1Mw6gu9jW3Vms3mikQY0WWPl6k76t11DUAgyOjqGInhIskpAUdi4eTNXRmaZmy/S1dWE7Yu8dWKcVEsb05NTNCaTjI5cgBUBJo4NMj4xTyjewsjYPMdOnWft6l5c2yYYiVKpWhRrFsWqSbpQYTKb58Gf/5xnnnqclmSY8uwoPWadRFSkvSHA2t5lfOpz93HtLTfyxBNPE4nFSCRTiJJErLEJUVE4d+glao5M3JM5NHCSyQuDNKghbv3k3Tz/+BPMlcuU5nPMjgyiHz1DY3MK4g2QaqbdVfncPR/HtS3a2luYnBhbeP+ehyBLHKhPk/HqLAo1omgashYkPTGC47hEkkl83ycUa+CoXqWvrZ1qo0YqlCQQCHFg7CKrW1eyYc0anp8Y5IU3DrCpdRkbN2xG1qIsXreeD9z7GXbcfCsbtm9HUINcOHGGgGiDL6AEgqBplE2bVy/MkilUGRqaQLcErHqOsOyBbyO5JoYnUKjoeLZN1RexLBdB8BERiGgaG957GxfPnWf15k3YE9MkO9sQBkaYOz1AQ3OCiyfPE0vEWLNtI7MnBnBqderT88TfuZe+ez9MvZJhfHCI2omLBFONhLQwjlkncftWjJEZHNvG121Ez6NiBrCKeTzbpZYr4frgmDYCItPHzlGbmmH1O2/g7CuHiTfF0S/NsPiWawl4GsKGPuxsgUuPPYOeLVEspum+cy9GJkd3bx9LVq9ibmCIlu6lOJbFxPAI173/dl5+6Ges2n4XEX+CTC3E7NQgt9y4EUUAXdnI8OnXWLt+GV6onxOHn0WxRdZsWkNIi9PVu5nxlx9B9WU6k9sIB8tceeswWryDYKQJ0feplOZZs/lW/uIrt7N1fRO7N3awc2s7W9c1sWNzF1F3nKETr7B+9y5e/v3DOI5Lyy2bUGNxBn//Gl46z5KP3EF8RTfq0g7GTp0ktrmXeKSB55/4JRnBRqjWee7xX3H5tUPojQpnH3uCV0euYDSKGG9eomrUMTtS5GemsSfSlF47x5hWIunW0aemECQRvW5i2S5TJfNqkvARBZAVhVK9TkhVKdV1+ENKFN/70T8/oJoOSjjA5OnzuAGVW+66m4FqmvLYNIXRCeywgnJ+DHV4hkKljiWLLM9K9K9ZzdyF8yxqa2JJRws9rc0U0hmaGxu55rq9PLPvBe750EeZGBmhb9Mq0pMzGJaNbRgYuoHv+4xfHsZbnKKnaxHl2TySJxCLxbBnZuldtJJLR94iHAhSyGSJL2plTfsiLg+NYhsmq/r7sR0PRVHIZXLYrkMgGMF1HCRJxnUNejtShOMJ8qUikgDzs3NoySSXJwZY/LZVtHQ1cvrUeWKxGKIt0NIcJz8/jSP6pCdGkBSJUrGEL2qEAipVw7tqsymzfcsqvHKBTMWmtb2HN17ZR25ymImJGVb3N9PeGqN30zpGBqYxLRNR8pmcnqRzUTNVo056voqpG2TS8yiqxI5738vxh/dh98TQ1SpqIEAhk2PtijUcP3GJ0Yk0mVydUKSJsxeGGBmbJR6PEw2pyJJMMBhmPlsgX9YpVg0KFYNMocZ8tcIvHnqYffue4dvf/Dwn33wOU5/HNuepZIZ5wymypDHIbe98Jy/U5/j+X3yZvliKadvm1795lMWtLWy5/lq2rLuGSAw2pzp4bnCI148cpX1RO8MVk7ZggEQ0jiAKzM5mMHCoOQYv1WapSQKxzlaShkAoHCWkqNx664288MQT5KbTVPMlMnOzhF2ZK+kJlEQb6YGzOJks6ViMG5a18bPnf8dkKY0QamDowiWEtjhP/fxRzrx+iMd/8RBPPvQgv//VIxw9+CqFQp5czSRft8lWFt7DZKaIZcCViTlEbMxqDlURr5oniWiqQiKiUqrbOIIA/oKxju/7iKKEniuTmRxFWLkEY2iK9NgYpQOnKGXzKHUHw7LxL09izOYYOfgm7/3YfZw5/wbSlvUYL7yKUqmRefVNGJlBTEV422c+yamjh4i0NSOMpjHnKogIiIIIvkg1W2bnTXcyPTGFJ9hILkixGILrEt/eT7B3Eabr44o+i1f0U/Mdpp99jbpZJ9LXztyTB1CXthPo76Zpy2rqQ3PMp2fo6e1h8MgFJM/i4vEzmBUTo1jmzKtH0CIxKrkCoYjBwInnyOYLvJib4fplS5mtxjl/8jXCooWcWMeRA09i1AtMXb7CvV++j3zR58KxZ+jdtQNZaubJH/4lDdFu3n7HtUxOz6BXc2gYRNu6uO3W3fjegm+7Z9n4rofvOCRTjWzdtpnfvnyF80eeous9e5gZmUQfHKPrluuJr+1BllQEX6QwM033upVk9TJTVwbwmmLol0dgKk84HkbZuZz8a2eYHJvAEyyyL7xJPZ0lFojhGAZWxURwXYRcnUzMY0ekAb2QQ/B9LNtGkmSyNmSLZSzLA0GkWjOIhkLYpk3NsuAPKVF8/c///IG+r3yCDR29JK/bQHVkgjXrNjI8eJFoLEZ7VztWKctcscAfffhe9u54G9f0rKAxlqKWz1OqVGlra0MNhDEdC9MwWLfjbfzg0R/z0fe9h654O6vWbuDlN14irgUolUpEgmGwfWQE6rU6ufEZCvNZ7LpJtVbGdWxkT8LIzzM7MYth27iOj6iIFGtVHMNGURTyuRyReJBKuYbruXj4SKKE61gosoSu13FQKZs2lXL5v0YKblDASIZpTKQ4eewIhZk5ups6KWSL5HNlBDFAUJXQ9SrVukk0EsNyfTRFpKmxEw8fTQtwcXCCRHM3ngcr16xh9Mo5FEkkVzEpZSYxDJ302CiKYjOXzrPq2vUczQ+RnR5j6PIYrZ3d5NJp7v73v+Lw8Udx7tjJ0kodQ7Hx4yLde3eTm51g8c3rsSeqBINBAoEglm0RCoWo1mpk8yWqdZf5bIWRiTki8SZOnRtkcjLL+PQsy5b1Yup1tMCCXMXLL79GvmJSKJlk8jq5iomQLZJridO1cw/xZDvf+t7foKhBvGSKTHqSqVODULKwL56lzfVg8wpuftvbEVNh9j/xeyJjk4wMD5E7fwZHr/Chez/G+i1bePbg69xz78fJjE3iZjIs61/GvvOHef/bbsCol/ne938IO9Yxdvw0je+5kfLMNLFdO/n9M78ntqwXbdM6Ji4N8+zrx7BwWbXnRipHT2HWy4RamrDyOTwXgpqGKAi4ro8kyZSqOulskanJDMWKiYtMXfco5OYJChaRoIaqSiiSgCDI+K6LYVpkaw627YC/sH/i+z6CKBFb0oy0ZjHCzvXU02m0VJiGtf0Qi9Db1c3kuQHcXAVV0RAI0Nrfw/DpU6z//IepzOSxo1HKR8+iqSp12ePO7/8j+773I8K6gVs2qIzPg+tdXQ8EfJAlj/zMBLVSjqaNK/ETEez5AmowRNgQqUZEIuEg9WqdwrEhmluasfvbabJUpk+cpX1VP2JbEns2izmfh6nMAk4UD7Lnut0cO3KWULwfw0ijRlRS7W3UMkXa+3aTXLyFN59/hGUbN+KePY6OwoEDxxDdGp1dCUxlKYOn34AgdH3x45i+x3Olc7Qu30FLy1rCTpnJgUv4ikAgGWdJTyeZyQyOXMOuwAc+cheiJF1luPn4gOt6OLaN5/scOjtHNjSHoyi0BMOUhvVRfGgAACAASURBVKeQlzehhDVc36MmuARdn4JRQ0vEKZy4DPN54qv6sIansSyfalClae9G+hYtpqOpi2F9nmh7K8ld69DfvIy0dSnda3pxAhpBw2BdLE4uk6Os61SthT2wiVyVal3H9T1cx0OQwLYdZEWhZprwh5Qo/ua733nglp17sSdGmTp6llpQYHpmmtL4HE3bNzL90jk+9ZFP0NTQRt/ylYiChITA5OQkI2fO0NPfz/jwKMVSFs+20UJRKtU8m5avY3rgMstWr+MnL50iNzlI1/I+BEWimJ7HMR0EVUbEZ+OubRTm5klFIrgBCaNaxVMUynULo1ZHE2SK2TwKMtn5LDguf/qX3+Tk4UP4vkDdMNBkmc3veTsNeo2IItKYjFCvVkl2dpOZnQHXpaOng2hDhLXXbidXyxPJmcwNzBBRQuTnc1SrVe64aSf3f/1zvPTUC0QbYmTSOdSAyrr1a8nNzqBGUpRLBQzbprW1jdnZOTQtwKULFxG8Ou1dbXR0LGdqcgTb9pjPFImHVD7zr//Aoz/+IWrNINzSRNCIkJnLEt6cIlYsMX7qEqH5MrncJJlclvd88X8w+Po5nPNTzJwYQTdMYvEYpXKZQj5HsViko70T3xcpFktogRCKrDAzM0ckHFvYuHZFDAcuD00TiiQZvDJJNN7KyTOXaWho49SZAeYzeVbedTOjo9OU58Z4/tePsr5/Hd50hmrdJlTXWbJ5D3YyyszgECv2vIMDr73O079+jOnsJI2OixOOEJcUslWD45cHefThRzhczzBYyfH0k09SX9TMwKmzjJ85jppM8N1HHiRe8Zl0a4ztP4K8ZikHf/c07dfuQS+XKcxM07RpAwd/9jCNXe1Igs9s2aQ2l6VUL9O6aiXmlTTp2Qym7pLLVJidz1KpOVR1k2JRRzccGpIpQCCXyREKhSiW8zTEAni+S0CRKVcMREmgbAuYvoBl2VfZVwtnw/cW+LpGqQb4GFNpNu7cxPS+N6n6LglJYX5kBHMmi4iAJ/g09rZjdSZIxzRkX2Pq2AkC4RD2jg00rFnN7k/fw1P/9M/IKBgXxnDLdXwEQo1xEg0JzHoNQZRwfQlVkbEsEydTwpjPge/jmCbVShEXWLRpNUW9SGLbOoZfep01G67hytwUer1GvLeL5t5eMkYdZjOU5wts/tDtFM5NcezVN5Bsj96tS5AEBa9eZ/zSMNFUjPnhkyzZchP9O9dTdMooyRYyMzozo8e55X1fJ9wQw3RjXDr7JvLtm5Dak4wcO86NXatwZI2skOZwfoq2betZ2dlCQpKQJYmhiwNUiln+4qc/ZmoqT7lu0drWBIKA7wsggAf86N8e4pWhFxAkn7mhK8wdeJPEXXsINzUz+PxBor2LsMoV2nuWIMsqlZeOE1zURNe2DVg1nZCsEfr4u9CQ0CfniPVtYnBJiMb+XmxBpJLNoQZkhJYE5cEpXMmhp6eXnlKOqZkMmqJRrdcRJYFc3aVuWgAkklF816epJ0q9YKLbNvwhJYpvfOubDyj9DZw4ehK5uZk1TT28985389B//gcrepZQKOdZvnItK5csRZHkBa6zAL5vE0818ebzTxEOh0g2N+OZNorkU6vWsA2LgCgSjIbQzx+ibllkC3mMShUrp9PVmkBRNWo1ndamduxiAVmTET2JWEMDQkjFzFcJKQHy2TyBwIKecWOqETSJYkoifW4Y13Pp/MjNtEebSbU3QChINBDEq1WYSBepFAvU9BKeJ5BINKCbDsOnL9Oxtofz+0/Q2JSkWCqB55NsSLC0v5eWjkVs2bWFzds3s+fm6zl/9gLzc1VELYxtOZiOTr2m47uwZGkvhXyBlvZWVMUjGAqQzdQoFjP4LFSqjqtzaGYYO65x7V13cerwYXo/ficpwSDUuwSvaNGwsQs1XyYzNkejGuTYr58lXITe1Z0s7m6hWjLYeu+7ObbvObrae9B1Hcf1CIcCNDQkyGQzqKpGNBxmLj1LNBbDsCz0mk5zcwulcoXe+9/J+d++Sm/vMq5cGabxllU47SnyTp3i5DR5T4SxApV0gXhLK4IuMDo1wcc+9wl0XL7+wDf5t7/+BsnOPopiFfPyBE2pNoKISL6A57vUdR2iIeavjJBOZ6gZdSqlEiviLRi9nXS1LmX4pQMcHzzHYKaAG40RqSvYk3mCS1M0xlPo43mmcuMsW7OR3MQE5pFxdn/qvRTTefR8nkRrO5cmLrF412ZWb1rP5MkBFEXD9V1cxwMRFEWlXq/iey6SIqHXaziOSU23Wb3jJnrX95OfnaVouNiOuyC/4i7cF6Qarh4QYUEIxNN1Ap7HzKmLtFy7nd7tmxnLZagNz6DUHO76x/+Hc0cPY0wXiS3ppGNRJ8FYkqJbJyAoOIdOUXvjJFMXLiKENJwTFwk1RLBMnZbuLhJdrdTKFRzHQxRlVFnE9xzExk4038YyrQWtIcdBEEQk24a2FNFkIy0NKcx0ATOuUjp6hhXvfQfGXJaRp17AvjJD05plVC5PMn9+ECUURWlI0rt+OX69RnNnOxePnEISIZpKUSkU2fWOP6a7ucLq9bdx4qW3uHz8IJZusnzb27G8OLbjcvHka/jnB4hkq7S0dFMybARPZvjMWdp7l5J75HcsX7sCt1JBFERSPav44Be/hF6oUbcFimWL84MTXBqaZnA8z5XJAv/54GO8NX8OwXYwZzNkLg4gegLJTcsolMt0L1uOmowi+SKZ2Sly+TS1oXHCXe1UTg2zqKGV3PAI2lSFtJWj+x23MPDkb1i3eBlpRSR//CTOmn6k/iUoxTK0NKA2JXBw6c4UqekLRBfT8fA8gVzNpWIYCx1eQAFNpJyzFqR0FiQ8/nASxTe//a0HZMdbkH3wPGhPMHVxlLtvv4ODh16hnCtypTLN6MWLrO5fg2WaOK5HNBYjFksSbU7hOQ6trR0kWxqZTc9z94c/zvHX9mO6FjMzaa7MZrE6kvjFCoIoUS6XCQYitLS2UatUmJqeQgsE+V/tnXeYHFeV6H+3Uuee7p6cpRmNcs6SJTnIliNOGGzAYPLCkrywpPWyGN4DFhaWtEs2CwYvYBvbKxxlS7ZlWdYoj+Jocs49PTOdu6vqvj+6YbV+2OyyAtuof99XX9+6dbuq7ulTdfqmc1weH6vXbKC0oYrB1jYUdBQFgkUBUukUiWSK9VdeyemDh3HoJt7lc9l42830Hm5FmeVloKeLUstNPBpnIDxNOpFC1zWwc+4nYjMx0pbJ7IuXMdzagWHrRGdi1DXWMzk+QTqdYXR4mGee2MHuXc9wzRuuJZO0WLJiORddvolir0Zn93DOj76mk7EsvF4v9fUNTExE0NQMHR1dRCZH0TXQaypIT87wobu+wcnmZqa6Blj3+hsZP3mMocFBHAa03vckF7/vVsqKZvP0T35ONhnDv3k1ie5BPMUaPdMzhE2JNddP8wMP4agMsWb+HDraunC5vFTV+6mdu5ip8CTRWJRYLEF1VQ2xeAyPz006mWYmHqNx3lyE240yEWegv5+ammqG+nuZvWoNmhWj9/EXuOiqS/jkt+/kvm//O9PhMJWb1qMmkyzZuIpQqJy/velmyufNJRydxp2wwZIYXicOzQdzyxls6ydt6EQHpxjNJPDOrcdAULF8Gc45VaTaB3j25/eh6lBWVoEcsWi6dA3uxXNwGJKO0X76T3cybSZYdsEmMjMJxgZHWXHTlbzw+MNEBoepqKikdOlstEgGaadIepxMn+jKLeAynCiKQFU1UpkMhuEgm7XQNB2H000mFUVRFByeEM/s2JUPmiSxzQyGrmDZuS6Q3IKq3HoO8l1QMivJxpJYM2mMrcuYOHKS9NF2snPK0ObWc2LHTtRwlJUfehMYGp6SYnyag+Fdz+NZs5TYviMUr1jIVDqGo2cCmcigugyshEV8YprYeJhEOIE0s9jZDNK20XWDeq/BVDyOpipIWyIQuZaOBRWrGolOhuncuZeUrtOwdAHDu49RUlrMwMk21JIAVdvWU7N4LiOHTtK0dAk9h4/hdjq5/E3XUhQoYdeDT7HpjddTOn8Ofo+D7uNtLLnozTQ1uOk5E+PybQ1svOxqZDbG8iXF1DQtZioc4fCep9E0k6mhEVxLG1lbvhVTF1Q6Kzi2/UHkUC8hr4N4LMbxUy2s2nIpVsrE7fUjVcC2cmMyqoaqG9z96+8wmhzFFgrYJuMHj6N6Xcy65WowXBhCYTwxg5lKkxI2asDH9LMHCS5egGM0xvyGhdi6SnD+PFLJOGmPQmpkGNfalWT7B/EXeZDlpWR3HyAbn0H3erDaRlBCHoorKihv7ySeMslYFhnTRlENJuIJElkTt8tBKp0lOKuYyEAYG4mVi2dyTg3Fq9opoOFyyA9+7m945OGdfOSDH+KBJ5+gs/UEKzdu5Nie56lZNJ9QqJjoyDiukIdbL7wh53ETwdT0FIaeC9O5f9ejpGJx6uYvoqezndjYGNVN8ziqxaBtnO5TJ0lpEhFP4SwqQvp0Js/0oykqRVUleBoqmDjUhtPtwiFcXHXl5dx/370sXbuRA0f3k4lEsU0bK5vB7XVR88arWbphBcGUgiUSnOlpZ+BEL6loEtk+iCkkOpDIJlBMhUQqg5SSa95zKxuuuZQ7br0NF27qbr6cUz96kKxpoisqPreLWbPKmJ7OkEzGsVGxLOt3zvQs20HWzOLxeonPjHHVVZdw8NAgAX8RRRUuug/vxRmaTX/3aVbdchX7dj2HK+BgelET8oVm0D2IwUkUl47TU0Qqm6C6opz569dx8lQbU8fakZokEY0RKC/jo3f/mJ984mOMdvWxZNVSgk11PPXDh1i8cBHtHV2oumQmGsetGThcATJZE7fDicPjpn+8m6pgJa7FZYhgEbe8/938/P1fpL6siiOHDlO5bhZtfYMUVQe56po30HK0hfbnnuEzX/kGu554gsOjvVzzuqsRmTTh8CQVa1fQ+s93ExcZai9YzqKLNrP9rp8xHp9GzWaIHuqibE4tU+OTWMMzxItVLn7DtRw7eIyJkXFK5s8mrUqU9mE0l0qmfxIlqpCtDeB3OBifGKZkWROe4gqMmTT9na0UBUopaqplYniQZM8g1YvnM3LkGFmXjxXXX0LPvhYSsQRa1xSZeAppmjm34YrAzGbRNB1xxWKm9h5EHZwBKRFCwbRs3E4daZmomkBISTxlAmDbNpZtoWs6lm1h2RJFVVEcOnJlA+bUOIRTFG9ZRd2KZXQ8s4f0wTOIEi+MzWCn7FxQIhcIVcXyOnGOxGn84A2c/r8/R9o2wqEgDB0lmkEKMC0LTVGwJCgytyhSVZWcZ1tFwef1oGoCVSgomsL4+BSWAo7iAInRSdxV5SRHRiiqqmRqeBzvhvlkS3ykTvfiHJjCTqWxNIm0FFZcexmN9fV09fYSKC6mrraSyPgE+1sOE5xbz8T0NLrDyabiG9iy2stwf4zTpw/whnfeyvP7LeLTYzz8y59BZoSS67dQrvhJJUyWzruMieQk/fv2oU4eQHeobLjxLfS2dzHUeoKKxnloDgeNCxfg8wZQNQd2NovUNb7ylU9QNX8WLYf2Y3SPo7h1Gt71esjapN2QTqeYGp+gSGoYtkB6PcTGx1ECIYonUoQjkzQsXMbMxCixgEGypIikS6DsOkzR/FnE4zEqSirpMaPE2rsp3bSW5Eyc7PadzLlwOU2HTpJM2ZhZi2jKwu3U6RibYnAqnpsebWgkk+kXvz7PqVPAV3WL4ktf/vKdl118GV6HhyVLVvH8ww9y6dZraD6wF4/DSSQSIZFK40xnuOyKG/FrDjLpDLZtkclkMS2T6elpapvmMzk5RbC6giJ/Cb0d7YTHxug7fIblK5bQevIUlQtnY2ds5q5ZzPDRNkwhUSyB4jWIdg2x5fJrWX/hJbz303fyjX/8HOWNNbScOEZqLMK8yzaiayEuePcbaFy6kVNt+zGnZpi3eA4nDp1kJmuRFCqjT+5hOhZFFxqpVIZsMkPGtlEkrH7vW1D8bn7wtX+m8eqtJFsHGNzbgqKK3CwMG0LFIbwBH6PDE6xcOouevjH0IgcYKulYCo87gG5oWJaNtJKcON2OYQQYnxxDU92oepBoKMvWd72Dw0/uwFdbTax3BOtEOw3vuIHqmRDpoI0SMXHjwpSQzVjgV+h6ah8Lli2npLaOUE01Y+3t7L93OxkzhaypZKDlDD2HTiFNC29RECEFgZAHM5VBUXQMh4N0OkUylUTTDDRTYF6zkJCqsHDtWh6699dUGTpHDxzH1BRKfV7mvvUa4mPjNP9gO6FVcxg9fZIzz7dQtG45Y8ebCQSrebb5IG3NL3Bo93MEsi4yCiy67CL2Pv4E2cFJIsODNFbVogWd9J/pxiSFmlXRFUF4MkxcmFSUVTJ57AzmyWG8fi+xqSjmSAxUE++8epRAEbVN9Wi2Rjpt0jPQhuYxqF0wj7RDEn7uME7NS9Ip8ZdXEZuaYKi5lS23vZGR1jaUdJzSYBGTkTGEYqCrGql0hsTaWdz43rcz75ptxHSd2guWMHn0DLrTSdCrEU/kHn5bCizLwrJsNE3Nz5qz8j5FJKquoagK2foQ3vlNyGSagHDS8ewenNNJbIeKPTKFyOYGQqVpoUkVkZSUbV6D8+JV0D5CrLePkvn1sGYJ1XULSQ72IxRy6ygQeUPG78KY5XwridwgbiJFaVkJhq7jcjvxuDw49Jwzw9IFjWiKTmI0jCoMxHiURNsQfl+I5GSYqk0bSY5HcOoaZdXlRCaShDuH6W9pZairj+mZGFbWpKu7k1BNJUY0wb4dd+P2+alqaqTv1BlWrl5GV7/E6yumq/sw7ksWcqr9AP3j4wRqXdQ7y4hHkhx4/B7KgiqTkQhj/QPUNjTROG8hC5avpGHRYgzNjaqJ3GyyVJKf3P9DKHFjmhkmdx/B5XdRddNlqKpCOpvENAQulwuf7mYqkYSqUuzoDA3B2ZTrXqbGwtRVNiBCPqKpDGWVNfTtaWbB8pWkVIFrdj1Dra1MujVKqiqJ7trPoqsvJjLcj7/Uh1d34GjrJ5vNuRFPWSaTsSid49Fci1NKTPP3RrU7f7qevviVL91Zs3AeXadPkhiLMDo+yOGWF6hyhSgt9jLQN4RiaNx689vx24JEMsnYyBhzF85HcxiUlFfg8ngIFgWYt3wFodIqapvmsGjdRlwlVZzcv5+27i6+8C93sXzFat70vg/w4299BzOdxExkcficWPEUti0ZGx+ke6SXkFHEeGSCUGkxWsjLwk2rOXX8FNfceDNP/vx+brjj7XhLKzn86GMkZlJ4LYvVazfScugFNr/lDVRfvQE0m7ETnQiUnJItb2S8r4+e5w9QtHQ2A8fOYCRMMpk0tfWVpFImbrcbM5WhrCJIJDyD0BxMTE6huTQCgSJikSiG00MimULXDDxOH8sXzSJlOnCYFh//wt/QY49y9Rtu5eFHHqBp8yokZVx+8yUcfeYAlcNROk634LCdhPzFzN2yiI79xxDZLGbaYs1lmzh14BAVDbWULKym4+Bp0CExHaUi6CcbCkA4ikCQTmRBVQl6nWh6bqxHouHzeym+fiNVa2cRvOUiFtguBk93sm/HIwSyOtWb1zJy5AyGAIsUrQ89STwygU/xoHoETaFq+qPDVBb58TY1oOsOavwGDl+QyWOtZDfMYXIqyf7v301m2mJosAPDkpjpDLVLl2EOjaFaKql0EtVpYNgCKxIj7tUQnRFUAVs/8U5OPLuH0KYFTJ/qxk4kifaMENi8lMmxYdZvXEPfjv04ohaxeJyZwRH0rIFISTJWGjsSJRoew1FTyvEdT5GeSWDpFqpDxXHtxeilRUy3dVH/kbfh9insvfdBZrqH8DRWc+prP0FaOZfxfq+TaCyBKhQQuW4ny7Z/504EcnNyhCqwTAuJRB+eInW0k+Wb19Ma6UfpniA7GSVb7WdWTR3TA+NIbOZcvYXRI62oTo0p3cJqacc/vx7ZVIvd1kfqUBtmTzeqlBiKlp+1lTNSNuQ+8w4ehSKwbQnSJjI9w0w0hrDA8DjxBEN4vH7e9dHP0tvRQ/3yixjpPE7J/EZKKqogniKdTJKaX0Ht5ZswK4JU+nwwE6e//TRzN6/HHXQxZ0E907V+otMzlNZWMfxEMxs++jaOdney7/RhxvwZHtn9FMWhRjJZJx0HnyFy4ADGUJS6sgD+bBnhkXYOPX4fZY1VLL/wQpJZlVBxCe1H91M+ew7VDY2YqSwKoKgaLzz3DDtO7sRwG0gFYqfOkI5M0/iu6/PyJrcCP5lG6Crhrm5cIwoiKAgFasmkM0xEYjSWVROfjGBlMoiJCJGmIqJ9w2SLfDhCQaaefJ5MqZeK0jrGHn2cqovWMdjdjc/tZfDgMUYe3EfHeJTucJSecJShqQQTscx/5/V5/nQ9zZ43T27aehGbL72CsuIiPv13n+IN7/krHvjeV3n7+z5O88GDBKditMci/P3f3ZHzXilz8QwcLgcnDh+jrnE2qqbicrnI2BaqUJmORjEzGT777r/mlts/wIF9LzCmZ+ja9QJzVy8lMjNBNpYiMhrG0HQymQyV9bW0t5ymcc4i3vcP/4BUBF//u4+hhrwMt7Qz54aLKY17OHx4N2tefxXd7Z2Mt3ewast6Zi2cx5OPPsCaa1/Pcw/9BjuRYdPrt7HnSz8lkUihrZlDicdNunWQ0ZlpiKXRlNxD6Sty51oIZq67qqTST3g8zsJ5szhxvAtnsYu5S5pobW7DJudwz7QFoVAxuqrh9oWIRWN8+FPvQRoGLg0+89nPUj93Cb3tJyjWnQxPx2jYspGjzz3Jjif28J6rr6O7tx+330P10ka69xxBqgrLt67j1N6DZEodKLpGtmsch3BiuwQO4cZOxJFCQdUduJw+PEEX0XAYpIrh9mGaJk0fuoruU71Ur5hPdPtzRFNphiJ9rCit410f+whf/JsvkojFqJrlZ8HrLub+r/2QIr0Ur8smZme46HMfR/c4ab73Ma68/nX8+798G0VxUqx5iJKhuqGeRHc3oflNZHoGOHXgOIGaUjweN2l/ERNt7egSgrUVJKeTeOZWMXSmEzVuITxe0osqCJ4aJzE9hYZGOhKl5KZLiR08inNePUHbSXR2kEz7EO5kiuxwBKupDGVGpcStMO/122htPkqxobH3V9uZdfvbKfYWkRodJeZUGN3dwuwtGxk/dYrY9AzlTXMQI6OkFYXw3mYYTwIqXo9CLJZCFQoZK/eP0bLs3LTYvN8p8k4KLdsGXWA4DKx0Lp6zrdloUsWoK0WYFvF4GswEhq1hZ7Oobjee+hrsJXUoFkw/sAvFyPne8koVxcqiKgoCgaoqKNLGkkrOj5AQOIo9pMMxhKrknSbaKJpKTWUlmsvD2+74EqrLh8/pJJlKYZkm0rJxupwc3L+fzhNneN+7buHzX7oTx8ZGyhOSwd3HEE4vjoCTzGSMaDRCdU0Fg529jE1NsmT9CgZ7+ylrrGXsZA/xVAJn0I9qC1RV4JQa8XgGy1GFpkWIz/YzT2nC51UYauukuK6R227/COnIJLYFwoSUzOL1+LAsE0VIUBRmotNs3/kQ4fAgGV3ims7QvXcfwStX4auuxZyK4jXKMUzJ2KEx3H4vbe278EgXvquXU9Kf5kxmGmc0SpknSGBOA8lUCiU8w7GhNjxXbyCzq5m6K7YRPXiKaNsp4h1D5/r1ef50PX3xH79855IrtzFvVh1uj4f+8SFGAh42z25gOJViy7aLWbFyFUuWLWAqNomwcwF7bGzSyQRFwRAg0Q2DsZFRjh08RG97FwP9fRTXz2f5lVfxja/+Pd29XfhXzGH25lX0t5xgsKWb6XAEX8hPOpabRaQgiMdjmNkEmYygrKqKi6+5joNP7gLbxLOmnlB9Ga9773vY98jDZJIJLth6MW3HT1BSU0fX80dp2/ECcihKamSMlSuWsG/PPtSsZNm1lzCy7zjxqRlqli7Enozm3D1YJooiWHblRqyZDLGpXD+2bYKZniGeNrEtSUlFMeMDE2iak4yZxWE4UEVu/CKbzSKF4NnH/4P9u57j1tvejNfp44Ff3M2statZf/t7CBMjc+QkqYkIv7n3PwhHprj9nz9D30grI8d6SOkKb/v793P66GnqZtcz3TWGM537J2urNqqlY1oZMulM7t2lGGiak1lzqonGoyRTFolYHEWoBCr9tD9/gJHf7GLZDZdxtOUoSniKabfgUMtJZtIzeCyVkkofK2+5gQO7momvCGG2DjH3uqsgNsXwTJK+zhO0t3Zhj4ZJD0f4+Pe/zaPfvQvnjESdW0nH3kOM2HFCcxuYOtXDRGyS5PAoWsImXVxEvKQIb0JScsFGsopGvH8APWsiRiZZ/NbrGTvdxrItG+lvbYdMFN+iubiLXFQrxYztaWbi0AkWXXExzuJiwr3DpPsGGe3tJmWbDDYfoevYSYK1VQSLvExHo6xcs4XYVJhQQxOJ3kEmujuha5DKymK08mI679+OaYGSBYmC26WTzZgIRaBoue5E07IQQqAoClZ+sBsBiqHk3HvbFiBRhILid1F31SYiJ7pwXL0OK56EkQhOvw/btMmm0xCeIX28m2xHH5qhobu1XJS2TG5MQldUVCU3cC4Aw1Bx5WNQZ+LpXFwRAbOqKwn6fYT8RcxeuJzi6tmEBwdxlZTg9hWx79mnqK6rw+3WsC2b8rJylqxajqUbjI0lcMRcjBw5iHAEUKWCVmIQc1pMj04inQZ2uYtAWYji5QtQVEksMoOatfCE/AR8PlJYBAPF1MxfT3igi8YrVjC7YQ2leg2KYiBw8K5PfIQ1F15CamoaATl35EcOUDO7EdvK5jzlCoXtD92LNxjgaPtB/vaWD7L9O98jPTlJ4NJleIMV+M+UYXaBkcly8tntVM9tYnK4lcq6hSjmNFVaiLrZs3KTYxbUY4RjxAcGUItLOPbQr5FjYTJ7WrAGJ5h8tplYexfZyejLvAX/aM6fFoXD5ZSVVZWkyZZ5tAAAGEFJREFUMQnMmYXmUkjNaWDs0FGaqmvRy+rZ4HTidvtyg3umiW4YqKqCKhSkELkYCLqBoggSuaXtxBMJNF1j7vqtPPror3n2V3dTfd0Wplt7sGNpKPUQPdqJnTCxkMRnYuiGjtvrIpvMYGWzXPfmt7D1hpsZ623nniOP45zKULphOauWreDU4ztJRJNE0zGC1QH2PvA4mZEYF9x0PXvueRDTtlCEQFUUFn7wZlp7O/Ee68S3djE99z2L4tIgaaEIcsv2kxkqqssJD41SW1vFxHiYIr+fWCKJaqhEp2LoDoNQcVUuljegKk5QVAzdkXNYFxvA6fZw051/y9c++Qkuuv51DB7v4M5//yE//vL3Ofjog0wPjqPU1rNl1RJant9PZDpKKBRgJhEluHg2o3taKaspx0pLbDPN2m2XsHv7djTNyMUjjiVwOTzohoLU3IRIMpNN4/SXoGoOVKGQcEDDvHp6OvtovGEdyYSFOwlDmWECkSTH+9sp1xsp0qJc/NUvsPfr3+Vwy1Fuu/1jeAMunn30cQZNSTCZpLflENLlwl9TSsBRRF9PHwuXrqJj/x4WbN7EyeYD+B1O4mdGuOS269j/0A4SqQSmJVl42UW09/UjrQSzN61j8KmD1DXOorP7NImhcW765pd59PNfx5qO4a2uIOlWSLV0smTJJk4d2QMug1BFFVkzgWfNEmaePURyUS0bNq7nzMNPoy9qxOd0svjiTYRPdPDUnp287aMfp/VYMycf2oFRHcI5YxI504GJjTkWQTd1hFBRFQVZU4I+MknStNGkzSV/dweP3/kPqPkIgbm1wwJb5hz2SST5fhNs08bhdmBGk8gL5mGOTVNy5YVowmL8hw+gWhq2Q0W3JTItESVu5EyastpSJnrHMBTQhEARAkPNrRBXVIFCzr06QpBMZ1AUlSWXXsHgsYOoQkV3GJTVz2H+2ot55oHvsu2tf8sT93yX9/yff2VieAh/aXHuFoXAoStYto2QVi4+iaHReaaX7T/+NqXr11FdX460BCOjIyxdtJzSQBCX053zQyZV9HQMVyjIdDRFKhrF7/PmVqsDqmGADYppkbFTNDQ0ceLoKdxuF1Y2m1sbAaiGEzubyBlWRQVFRSiCkyebOdRyjNYT+0n2DLL4Qx/AMaAQHu9l8OjzZFMxVm19I97KUq55/TY+eOHGV+YF+fKc0xbFq9pQCCF+d3M11y6nZsl6hs60oa9dSqinlxnh4h1brsEen8ApFBA2pmnz3GgPW6ubMNMmmlMna5qYZhaBYGJiklBZCaVlFViWTd/QOM+17iUci7B62RJ23fcgmYkoXrefiaERUqk0uqGjqgoaNpUlRcxrqKXldBeWhHQ8wbs/+xVMM8r2B+4jOK+eeCyKM+An0TfOums3M53IMNbZSU9zGyXLG5i/YCHbv/gdFr7lCqba++g+cBxZ7MFePx/P7jNYsRRl1ZW4QwG6j51A1xwkEnGEDaFAgHgshu40SMYTOFwuXC43U1NTVFRVYNsaifgMuuFDVXVU3YWqa0yNd/Huu7/OV9/xbq772CfY9/BjrFlVz9779+EwHAz3DxB8/QZcfVMEXS48tdWc+M0zXP/Od/OL730LX6gIt9AZjk2iWTa6aRAIlRNNTJNMR/E5/ZRtWMDQ7tNYlkQ3NEqKQ0xGIlR8+jZ6v3k3jnjugVQXzSYz3MV1//h/GNnzLKMD/Yyvms/M9h2kuoYIlpUQdPmx4yaxRaWM7D3M+k3rOe524xyfwKGr1DXNZ2wqzkT7KWaVVNH6dAsJ/wzBYAi/bTDe1cdndm5n53fu4YV9T2PGI1x82ZXESkOc+NmvQahkg0VkW9pQltRRrOlEusOIEhcuFGZ6xnPOAz0QuOEKJh54HBnw4Y9Cxu/AZQnSsRmcZaXEZpIsfN9NRA+3oi6cy9SOZ5lcUkNFeIbocISUw4WtZVh+9Q3079jJupuuo6mxgW9+6Haq/X6GuvuwNR1tdIaa1Yspv24re+75JXppGZmMzsI1Czj1tbtQ5e/WR+fHKXLdrBJAAUVVUDQV25KUrVnK0IEjLP7kOzn9tZ9iY+IvKSU+OPnbHis2X76Vp597BixQl1Zi9U+ioeObSqIAuqYhpY2mKCiKgqYIVE3NuRbRNKQUGG4XTZsu5eSTj1C/aBUTg+3oLgeGy4OdsWnaeCHeQCn7H7qXqsWLqVuwhFBVPcHiEnRFxeVQsSwbvwLTlkUskcYGVFXJxRLPuynJDaKLfGUlZiKBraoIclNzpcy5OJdIFKGiIXAXeXEYOpHJaRAKlrTBthA2JGIxnG43VjrD7Tdf/ud8rf25OD8Nxe/Dc/FScCrMufRq7LY+5i1dyGrpxeVwYqFgqGBlc0ZCVTUUTQVkziOorqM7XGRNE1flLL7zmU8zMz5E2soQnZpBleBweygvDxKNTLNgTiXNR9vw6Bp94xEMXSedydJ40UqaVqxmaqiXTdddxbEdOxkJx5i7agGnj51g4vApnGWlJKZnUPwGxbX1XPPmm9nxj9/j0o99gG++9a/ImjaKEGRtC4/PA7ZEYmOZOXfVWBLNULEyJrZt43I6yWRTOJ0eELm5+bZlYaOiqwq6QyOTlhgOV85jrBSYqXEymSxGVS0fu+cb7PrJL3njm2/ik299K0ZK4cMP3sOvf/A9hl44ycLVq3j+3kfJJGew7FzgndlNc0jEEqAIJsZGWbhiIYODQ/idQWIzUYQu0HCSyWYRgGVmUTSVy66+hmf3PY1z3UKmdhxCejW2vP/NHB0YwIqFGdnRzLpbb+TkoUMsXTCPvbt2Mm/BYgYOnSI6MIz/9dsI+YtYsWEjbXt3cWJwnHrNTUKzKFOLmBjoITRvHo6JSc6cGWXT0iY2XHElX/vohzHqS3HbbsY6+6i7YjXjR05QHqpkZHiI2sY5TAyPER0aIZnK4qkoJ6VZqPEkpAUynQG/TuXGdcykkyQjYRY0LabvyBGwJYnxSeo3LKf3hRZqrrqQ3sd24bhwOQ3FlZwZHWPF3CY6DxwlRorS+lnEhifwlJYyuGsnquGj/nVbGWnehz0ZRU2Z2C6VTCSBKUzmbFpH95Fj0FSHP1hDprsTT9Zm4lg7tpX7By5tO//OlKDkQyQJQFXI/feX2Jak7oPXMfiTh0lP/X/TJ3+H5nCw4NqttD62E1dZMfr4NJqqoGkKtpUPwiTB4dBRFJHTQZcLaUsuu+Ut7H7kN2STKUzTRiiSbDpFoLQcp9uFZWfBlqgOA1Sdd3zpu6QSCbLpDIZhINMJfAEfCNAQhGdiuXDpquAD2y48V6+S85GCoXg5Pvedb6FkbbxOJ6ZloSpqPhJUEhRBJp3B4XKjGwbZbBbD6SCTtkBRSKVSJGMJfvnT7+HKWgTLi1FtC4dDY3RggGwmweneSYIBH8lklpobLsQbLGP6VDtF5SUsWLaE4wePUimcNF66lt17d9P7QgtL160hVFvJMz/9NQ1LmvAtmMNQWztJO034dCf2eJpgZQlTE5N4vG6mxiYxHAbSliiqQjKRwOV2I6RCJpX8XeQ3nzc30J3NZFAkbFi/mOmJnPthXdHIJJKMZ1UMvw9hZukfHcA0bTZ/6P2suGgdP3j/7YjKYj78lTu565/+lYFHduJ3+0i4dJiMU1FbQ/9oN/aMybo330jbgcN4pYOh7nZCgWIcjWVYYzHikRizG+swzQxOt5NYyGBo92mCgVJSyRTztm3hzGgHRcUhRjvOsHj+IvYNnMFbX8XWysU81nIIs+0kV37+DnZ/80dMT4S5/OMfZed3f8CGt1zHC9/+MRs+/mHsmWEO372DoiWVzOzvYNbqTcyfM5vde56hpKGW1Ol+ZkajWKEs8a5RFmxZR7dqcdniDXROdqENTTExOoKKykjbMEXzK5iMTCGGY9SuW0BfSxuaqpONphFWGioCqE4dkUihqwoya2MFvCQHRkDV0V1OZJGXUpcP33UX0nXPfWz+q3fTMzrEdP84b37zrdz79a9RlFUZVy0q1yxk4FdPI2wLz+wqRk4eJTSrganhIRSXk4a1y+lrbsFOJlGqq1Cn42RNEzsWw3Y5sfvDKKqSXwEtcovt8nqvaipm1jzHT2CB1zB/XkMhhHACuwEHudCp90spPyuEmA38EggBh4G3SikzQggHcDewCggDN0spe/Ln+jTwLnIzsz8spXziD1z7nFixL37zmzgNgWY4cytj02k8Lg+ZbAbdMFBUg0d+/iPWbHsdfl8RtoC9j+9kpHM/ZlJw1S3X8OPv3MXEdAqhCDKZDJo/QHB5PctXLGSkc5CihkbMSBS/S2G4p4+KJY04FT89fR2s33wRzz6+g3BXD41rl3PqyBmKygNE4zGWr13FdP8YHV2dZEdHuXLbNh7/5cNoDgNsm6K6KoY6uxCWRMhcv7FQBVbGRkobh9NJJpNGVXQuuGAFiqpgmlnMeAKXrhIZD9M7DXPWLuPIM89QXF2Gv7SYSU0hcuQk1qxilOEUVAdIdnSgJBW0IhU1IXCGXLiybobDw6x9/TZOtBxFG7VIp6IYLgdmOo3T6cM0LaRIsuaqy2jdc4ix0TF83gDBogCBUg+TsWkiQTebLtjEc08+hR2Jo1cV8fbP3cG/ff1r1BTPwix2cObe7TjTHrI+cEiDpfMXsu+p5wiUlBEuSuIWNi5vMRfceiPhfSdpPnmQpXWNzMzEUKtKGN5xmNh0GH9pCZe+8XKOnGqjt7ePTdu2MPrsabKz3XzinZ/km1/5IqdPtGPUFaHUhCifVBjv7qZ42QoGjhxEzKmCsTD2aAy9NoghYfUFmxkcHKbxwvWUeP384vNfwenykHUKtHAa/9uupKmpib3f/THLbr2Wrp37EZEYke5OXLobEfDj8buZGhhF8zohlSJQVELGZWBlksT6B8nqGo58CxLVicykyYSnz8UjUOD8489uKATgkVLGhBA6sAf4CPBR4AEp5S+FEN8DWqSU3xVC/DWwVEr5PiHELcANUsqbhRALgV8Aa4Eq4ClgrpTy964WyV/7T97c+caPfoQiBE/86j6EbXHB667D4/fy469+KefOdypCPJagprqO06dPoRsatmlRVV6Ba+V85ldU0NbXS3VdJa0jQ6yZv4S9T+/CJXUa5tRSsXwJu37xEGsvu4SDj+3gto9+iJO97TzZfJCsS2P+BWtxRGJUBosRExMkJmeoXLmEkZNtPPvj+ynauhJ1ZIJo+zDZbBZFV/D5fEyFp5GWjapquF0ukuk0a9YuQdcdSDu3YjYrLTpI4xyOMmNnyU5NITVo2rya1t1H8VeXMRaPUKx4GR3uQ8sKhK2gSpuY14HXzOJSXESmImz665tpvudRlJhJKhHH4TZA2vgrAkRGIqiGTnltFWN9g2QzGQQKXm+I6fAoUlWoumQ9w0dauOTCS2if6MFXUsMHP/sJ/u7OO5jcfQQhBEZdDbPcPsxyLw6nkxMPPE6Rq5iGTWvo3dvC+q98mPBPdzFixFi+aTV77t/Fxvdcx8Nf+CYiKtF8ToQimHXdJVQ11jLw+AtULm+g7fkDJIdjMJVgaiL8p1apAgVeDbxyXU9CCDc5Q/F+4BGgQkppCiE2AHdKKS8XQjyRT78ghNCAEaAU+BSAlPJL+XP9rtzLXO8V7RebV1/LRHiSVCaLz+fF6dIJFRczXuXn7Te+gSeb9xHbe5RZa1aSMeDM4WPUzq1jomuUirpqRodHmbdxPfbYMC37DpBKZnAYDtKKRC/1MzI8jhF0E1yxhNGBXi6cs4jp8TFSQlBZUkpseIyWp/bidDhJxOIUFflIp1JomoYwDKx0hthMDFWouN0enIZOPB6ncU49gZIQqAovdLcRUtxcf+ONbL//lzjWzWdkTzPRrpmXrbs7FMTv9xBWFLIDw+heBZfuRRMOouFxNrz7Kvb+6BHMMieepIqigGWb2KqKW3WQTCSxLQUzFc/FpxYKut9HZmUVDbWz6Xi+GcfaVbzziss4MzzCzn/6BuqmlWSeP8KWt91M5/P70U1BTWU5hw8f583f/hIP/fQeksdPs+ydb+P5xx5i65oN9B4/xUB7N4n20T+TVhQo8Jrgz28ohBAqcAiYA/wr8E/APinlnPzxWuAxKeViIcQJ4Aop5UD+WCewDrgz/52f5/Pvyn/n/hdd673Ae/O7q/7XNfwz8pbPvJOep9s4PdxBkddH/Yb1TBw9hm3ZxOIxbANiQ1MoTh2hQ9BfRCySovaazRx6+ilEcRGN5dUoXoPrlmykc2yEk4/vpPNUL6a0MAwlP8iok7VMNE0HW2JmLeKx5Ctd/QIFCrx6eEVbFAHgQeAfgH97kaF4VEq5RAhxErj8RYZiLfB54IUXGYpHpZS/fpnrRYEzf1TN/vIoASZe6Zt4FVCQw39SkEWOghxynC2Heill6bk6sfY/KSylnBJCPAOsBwJCCE1KaQI1wG/XoA8AtcBAvuupCJg8K/+3nP2dl+LMubSKr2WEEAcLsijI4WwKsshRkEOOP6UclP/GxUvzLQmEEC7gUuA08DRwU77YbcB/5NPb8/vkj++SuWbLduAWIYQjP2OqCdh/ripSoECBAgX+NPx3WhSVwE/z4xQKcK+U8mEhxCngl0KI/wscAe7Kl78L+JkQooNcS+IWACnlSSHEvcApwAQ+8HIzngoUKFCgwKuDP2gopJTHgBW/J7+L3NjDi/NTwBte4lxfAL7wP7i/c+bU6i+AgixyFOTwnxRkkaMghxx/Mjm8qldmFyhQoECBV54/OEZRoECBAgXObwqGokCBAgUKvCyvWkMhhLhCCHFGCNEhhPjUK30/5xohRK0Q4mkhxGkhxEkhxEfy+SEhxJNCiPb8ZzCfL4QQ38rL45gQYuVZ57otX75dCHHbS13z1YwQQhVCHBFCPJzfny2EaM7X6VdCCCOf78jvd+SPzzrrHJ/O558RQrwmfUcLIQJCiPuFEK153dhwPuqEEOJv8s/FCSHEL4QQzvNFJ4QQPxZCjOUXL/8275zpgBBilRDieP473xJCCP4QUspX3QaoQCfQABhAC7Dwlb6vc1zHSmBlPu0D2oCFwFeAT+XzPwV8OZ++CniMXLCx9UBzPj8EdOU/g/l08JWu3x8hj48C/w48nN+/F7gln/4e8P58+q+B7+XTtwC/yqcX5vXEAczO64/6Stfrj5DDT4F359MGEDjfdAKoBroB11m68PbzRSeALcBK4MRZeedMB8gtS9iQ/85jwJV/8J5eaaG8hKA2AE+ctf9p4NOv9H39iev8H8Bl5FaiV+bzKsktOgT4PvCms8qfyR9/E/D9s/L/S7nXwkZu8eVO4BLg4bwCTwDai/UBeALYkE9r+XLixTpydrnXygb48y9I8aL880on8oaiP/+S0/I6cfn5pBPArBcZinOiA/ljrWfl/5dyL7W9Wruefqsov2Ugn/cXSb6pvAJoBsqllMMA+c+yfLGXkslfgqy+AXwCsPP7xcCUzK36h/9ap9/VN398Ol/+L0EODcA48G/5brgfCSE8nGc6IaUcBL4K9AHD5H7jQ5yfOvFbzpUOVOfTL85/WV6thuL39Zn9Rc7jFUJ4gV8Dt0spX86l60vJ5DUtKyHENcCYlPLQ2dm/p6j8A8de03LIo5HrcviulHIFECfvdfkl+IuURb7//Tpy3UVVgAe48vcUPR904g/xP637HyWTV6uh+GP8Qr3mELn4Hr8G7pFSPpDPHhVCVOaPVwJj+fyXkslrXVYXANcKIXrIBcK6hFwLIyByvsLg9/sSQ/zvfYm92hgABqSUzfn9+8kZjvNNJy4FuqWU41LKLPAAsJHzUyd+y7nSgYF8+sX5L8ur1VAcAJrysxwMcgNU21/hezqn5Gca3AWcllL+81mHzvaV9WIfWm/Lz3JYD0znm6BPANuEEMH8P7Ft+bzXBFLKT0spa6SUs8j9zruklG/hPPQlJqUcAfqFEPPyWVvJubw5r3SCXJfTeiGEO/+c/FYO551OnMU50YH8sagQYn1etm8761wvzSs9aPMygzlXkZsJ1Anc8Urfz5+gfpvINfmOAUfz21Xk+lZ3Au35z1C+vCAXC6QTOA6sPutc7wQ68ts7Xum6/S9kchH/OeupgdxD3QHcBzjy+c78fkf+eMNZ378jL58z/DdmcrwaN2A5cDCvFw+Rm7Fy3ukE8DmgFTgB/IzczKXzQifIRQIdBrLkWgDvOpc6AKzOy7UT+BdeNHni920FFx4FChQoUOBlebV2PRUoUKBAgVcJBUNRoECBAgVeloKhKFCgQIECL0vBUBQoUKBAgZelYCgKFChQoMDLUjAUBQoUKFDgZSkYigIFChQo8LL8PwsatdjpmrDgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(stitched)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "willis = stitched[750:1400,6400:6600,:]" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "border = 600\n", + "stitched_new = stitched[border:stitched.shape[0]-border,3500+border:stitched.shape[1]-border,:]" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAACUCAYAAAB/RfmvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9d7hkx3XY+Tt1u/v1S5PzAIMMIhCkAAJgACkmCZZMUZREMSlYpMSlZJPyem3tSt5dh8/SWpa1JGVRphgsyWImJFJmAkkwE0wIg5yBwSDMYHJ4+b3uvlX7R+V7b/cMLAk7+jgF9Lzue+tWnTp1cp2qK8YYTpfT5XQ5XU6XH46i/v8G4HQ5XU6X0+V0eebKaaF/upwup8vp8kNUTgv90+V0OV1Olx+iclrony6ny+lyuvwQldNC/3Q5XU6X0+WHqJwW+qfL6XK6nC4/ROUZF/oi8hMi8qCIPCIiv/NM93+6nC6ny+nyw1zkmczTF5ECeAj4cWAPcAvwJmPMfc8YEKfL6XK6nC4/xOWZtvSvBh4xxjxqjOkBnwBe8wzDcLqcLqfL6fJDW1rPcH/bgSeT33uA56cVRORtwNsAxjut552zeS2IPHMQOs8n/ZfgDP09eEWZp9UwzmFDNyPu/S2KcHKj/PudEZP08Q9px/jJYu/vqPiu/mcn4++Jhk7Yx8lc87+r6Hy68D6tMT6Dcubvudy75+hhY8zGpnvPtNBvwmo2rcaYDwAfALh0xybz8d9+Q2MzIoISoTTGzqsRkMgFRmK9+ExDOwjGi3hjwJRgSozWYOynLEuU4AS0wYQ+61wnYquZMKxmqhsWVavXlKG0KO6GCGgDIkKhFFrreoNDOpT0W0M/xpgEh+535b5SKoxXsucUxozQ2YYafIJBoRGjETSCxbk4nIamqo2K4EOVVZjzcT7NMsLgEJEc1w33PUwWF3YsJ+iwEQRjKuNKaEww4bHa06aKp1E/h8NWv/P0MBqfl9qVplYVgh6FrxHzW9MTbh4CTY6E9ETjqvSbzLH/jdHg5Iqk9QWUUmjdAIGpYyj9JSINcDePxBjDRb/10ceHjeCZFvp7gDOT32cAT416QOsSJRF1pTEoEYyB0l2zAt8RCoBIuBaR5r6Ha6mgtsK/1CUiRcSlNhgURQEYg7Gto8CLIjLEmzh3kgnRVGj6Putj9QRUm/ShQj/+q8TjSzc/NkR4NbKOJLAkzzUaXuKhkKxP/7xSeQQxtClAKi9918aANoiyc2IVq1XoMgwRtuEoMJSKjPh34CWqiiL1Y2hSLtUS7zuKGfbcKEnkZHr2TKBji5+E1COWKvZGbqKMNrUjjF6xxMaDOWMSmCrEEXBm4u0AugiGJlqPUGo36EKUE/5VuOrFj0Cq9Ywz70QwMpKKPIQn4bDlbefgW5q3CoB8DobqsFFQNQn8BAb/5yRp8pkW+rcAF4jIOcBe4I3AL4x6QGESi9qhM8OccdaMtQtzRFgTKSVeo4WiZbVt6gUYQKkWYjQagygr1MVoJ8yNVSTG4MxORHRuSckwojQjhX14vNF6GWbCVS8PEerDYEpQGMRSRbCKRPwZwGh9EkIu/W5/GAOqUBidM6LtyrWv43cplBPiYhW4w98oom60uJoAG+l6NJea8ssseKldG/Zs9W+ABzIDBU4clYiepiDSNJk4JSyN7TVgMIM3gpg/pROlLRWY/Vcv8L0XnXmKJMonMyiaY1UmGBX1Z5pHEOtF3Oc4MCdoh2Awpk8N6ynXDxX0V+3LkWM4KWVUaadKc55nR5VnVOgbYwYi8g7gy0AB/Lkx5t4RTzhXKRYlkmn+MI1NNGM0Is4ud8K5EMGUpSVsYyC1CvHzXTiKFjCCMcoxmLYWv7HhB6MFUcOFTSA6U2HMEeVEQtW3q7KwVdPkj24zNUA9cVomlSr3WNQOE7aVBpugFwG0QZGE0rwu00TLHyvIJBFkEqy0yliaXaX6mKsM8HQt/2EM2iDsm+ZBScXTqdpsje0Pt0Y9T6diNPUqw31Hl8bht9qeKlRjaCqiVzUqMT+ezOyqKLZMSSZ0ltWr8E1qPAXBXMNEIoCbEFSRz/FZD1vDM02NpYZJlR+yamJlQVUYDwHPF13hpVF1m+Yh9TQ9eBUzeGR5pi19jDHXA9efbP2qY2NMtEZN8q+ti4u3ixXcmV3hGaK0gswIopSN3QvY4JACMZb+jEIKDf6+AXSJYNDaxv29wPWKKdK3jfUqlU5ndWqGlNQcSR5tsi5jn8NduqGEngj7SmOB2VL8imoWAtUmPBHaIdQ797MXdKDKGVKwazU4z8p7aUPFoERaaBSfDu4RaGgcS02Aj7IwJcaM/e/Qfo3BhyuRHL+Veqm8E3KvKaltcAJV2wdsdK0eHjA6Vxa1Tvw4THJVgTF15W5pPSq3NIQnSPQ6Mg+ngouq3E0girhPnwiuTKPBJyI2RNTQeD6VDQzQ/FgjgSllw8E69YKH6KVI8iOMp1ppWJ9KaN56LUMfbizPuNB/2kUSQqwaSeGitQQNOlg1Rg8QZa180eIC8XYtwHKCZwzfkgHR1jJS4uq0ECVoq00wZR8wKCfnBafpxSkMp1DAUKgKQRsvBCuDqHrmuXGSfRcRdFk6BhsmBOuPh6IE8WNOhCyAUmJDXlim9cm8KZsVqsAYPVRQVn83CX4vGmwoyfUlEvqx/2q7boO1dKreXlPxbVkcJqJhWEhqhGcCVWFz4mJDIvX6SuIidwIpCVGEDkdGmwMfOLgbkq3D0y4UFsx+RiibAD8uAWFYo77d6kVot9uZwiqKInoRw9n3aZWRYrJhaGkIxzBsrhuYrPK1apVDXZFbRavq7VcuqMQLajSgEuPEz9qo4h3kGj+egG5PeaEfFkMgGWHVxvcxX1wkx1uGOgpSF/cXsda9KAnX0rZjf9YUNmI9ApEWRhXW8ne3jTKIUZGxxArjJIiRQpiQngltNFoPDURhAGM0qihSW2wE4hruOrOgifh9zNyiykEq1ce9gK4DPgySKqweM0pc3D5xpaM8SUMENhMi2KqjCLpqEXFiBjhRG38XpY5xZ3wkk5Tb4olAqcSlUzhDG87Nb2yhNh6JvGJ7iP8mtJEKpho9NoYLG2CuCHxJ740oI+tU7lW9jApQWWTA1y9U0VS53hVDrPJaKGtUK/nF0es6TZzdAFeyzuYfezoK9dQX+sYLilw4Q46OGCP0bmsiWJPf1jIXMMo1YLB+a9KG70psNpBCgWohqgA9wJgBojWIVwK5Pxj6N1HQ5RqcmsBPF2CarEzBOKVysuI2Ptd8PcGnr2lMtJCCEqw8GBYPG6yVTNE0W0ficWKiekwzf/x1CdZ/XMhNGTDtP8P+iBj80PDUiHvZ4LJ+6ozmYU+u1PqoL5TWYwmWIhuEQ+jHW4t+uAm9DysVmS3JvA8rXrA0WbtPVzkOV0LN/dZ4PGqjrK4qmgR4pa34MEXhc+8y6dFwLeWd0Tiqw95szdfWc+JDjb04Tgvfo92TG2U+xGNwEQgZ7Rmf8kI/df2rc2Bw+duSZwlki5GZZSu0ioLSCWq/yOqbNi6/1l4woF3I2ZSg++56GfqUTHFUwPZTLNhFYDHJzEnzM40MMYTwagL5RMK/+aokN2sWZUCFiSmhRGGQ4bYqEyrf6komsSAN+PBFJH+n4IwlYmlgDA9Hs3U12hoNzzfE4fM6w9Yyctw1KsiG/k/seeRqo+oleAYHm2HmEeANlsbWK0gyxj80nGpSqlON6zn1+Rzap0naO9HwK+QerOlw2ydnVOCotVOdkGHfh18zWWbeyaR6xrreeMqMyJNtwSsO/9O4iY62mIXPgW2vuQQIZRixdQQ4xYW+QMjZ9hcyF9alVhUF6BCqkYiYGpMJpTaIKlz80lN9VZuYgHgw1po3vXgvUxhu8de3kAkS36/BZh4bCrEbqWqueOYCpDcqwq5BB9h8eN9/yqAnE4ZpZt6qcPWlyd0FuybQHKesNxrdU+ca+3F64W+sJSxa3Dy48E5DCEEauqmNcIRyGC6EpVLHUZVNjcmHJTGgV29j+CJyDvhoQVQVfgGegIAkMyY0bTDa1DKIsjEPAS69nHqekb5PQFd+rkd340BvyPYZAq9N0BiljF29oKjis2koKHGsa1Z53RsLgAzvzz5Yu/i0w4tpXz5YIfl4/aiinMvnpTl8FcspLfQNIBX3LRN+yk5QyJ1JLFUrR5wSCIi3dSzfqqTFaPnEHnw6pttgYrDWu9EJJefC0HoKpgJk/BtTIn2cMSeSYYwTfhoyjyZcz9y9NMbYTHD1fiKBpal0T4dca5a/gcyKTgizkRFSa9/f9hu0agL4xMwkIi6jIiwdV+gjxX3d3W+GUzCNIbbY39D4cmgh6dI+eKKaWR/DIPZXtTGWto0T9id7ulaiPa1AtD1kKeteiTWuIkuug/zlhLWGiehMB51UqC3WHXG3dl8plSuQSr9N3z0daK2jwVPtN6HzlAaqm6EjZCdRTHxeqvDV2vLhT+VCtKPxd0oL/ZCBYH9V7qYWN4mAT3fw+YlP2vHWvwhgiUCXZeJNpILLW1ba/3TXdRCwJhiAEdFhItILCfdIlWMbONjrn7goZjlKJUcbeALL86SHojNvPzHBBJuh5IZEdXdt2n5NIQzTVA1WTmYxJhe9payNDruvs08lg6ep3QYRSavVDlkk9e33rnVTAgVVX0BUVS2YTAHVGUtGxpfrwr7urTTUto80ZYv4f8NCor3fUsotu0itqerO4mZATWWeqtAFlzIfTKWvKnmnRxLURJKJxobx4zuBVZ2GT6p9ZfN4EiG8UcU/4+e2SSllnnBCA1F0ud3pkq/rRFej0mlQlJEGm3gniS9EU/UkQointNAHGq2K6LV5YRgFdiAG8cIrCn1xdTJ7xBibT5+rffsHAZ+iaHyKoc6qKvH5wM71SmNxscFUglYUWV14pKTb5PZ6QVEkhJjjrIayhpJb1SrFSQKLiCf0etuJrKnAnxevmGrMksEsKLHCN8yQF14OZ1HRyNB20ivGhWIcIjn7eS/lsZ3fxHTXIoszWI+ryJ5JsZCOLwqsYcLwJIqp4G+Y9VY5eiCuVYWRxRBYEL5WrAb6T4Ssx8XJZM4I1RTTlCIiXrUpXRhBmiqmDVYwO8JOOEkvzj/SpByaehERtKmsBThknpQiTEo11EXVCKKCBvHGaXw2QCHWiNAmTyuOHoJQuFRqWz3no/o+C9/AP2BLHyANPaSXMoHvBm5S9z1wbBIucNZ9lCgmqZMqkETQOpfVWvQmMXAMiAv34ImvQjz1EF/G9cb7cNJQr+F7HH8qhBvCMRU9EcBIraKgDHOAq8uIWfUqHI0A1isOs7TS1HMf3UlVsihlD16r670AkKFqCefw+3x/I7C4MGdDHtvPg0dvw7gFsmqGk1KKsiyzQceF0qqCTXeIO0Wajt0RUc27y6DMS56U4Pvx3k4SGkwUkiHJA0fqcFaJYph5GdqP6xRRaLv7Iojjoyot6pM4quPpFG3M0HWkk1FivvjQR0xCsP/o2oLviUsTHcafURH4FOdwryGkZxVXZc3F3TBB+SdGjO+jAoyGeFzNP2xLXzJtVtNfUqkrgMv/zqxpSduySZhROXhiSBssAZUozIpgkBKMZQprKZTR/ah2HWkgAzsIkMb5EaqCKCOTyO81wq8Jfg9A1VpOn6g8NMx2SqCPrvVJCP3GOK0h7qdoQIPN2kni8UGhNjCZ1EMlXhiZ0LdiecMm9EOCTK1BpEDEeEPM9uLjtz4uTrzuw1DV/oO1GZjTwuNDb8G+aFJcVbQ1GGjpUnUQWGGM+ePRaq2vrTQpxTRd1sMeBH2wdGBgDEXl+Zz+VID9RGsaw2zQuHia08owgT/q3rB1gXyh+8SCfojjMvR3zNbxPVQmdRgNVAwCr5TiYYPDDSdb31jvwd07kedyigt9ImWLZAevuYsJ9SVukSiH7rgdPBaVCb9Qx1TqYFyqZSRIY8qkDZcumqR5ihPycTEnZ1j71eQWRxxJUuoWY7yVjycKOf+7OZMkjfnnocS8PZMqh4Txg2OU8LQXdmEBq8h3CudrDRUcSzJCn3roxid4615ZeHVZy0CpjCAKDN+QFICmKAoGpd2Mt+bCFzD7/a/Q7nYYKLeDOoF3mNWYh9gqSsfkMXCPq1ZRxCEZUxMIzR0NvxWrNClV14+OVnraZlXgx1+Rt6JVL34IoWJLqiZIAzy1cZnsTwJOdjmlj6B/q22NkL7GGEwaMhnWRiMUI9pvgnV0KzFbqKHr2rOpYqp0lNpgIZyYegeBrxrmjBMr3lNe6OexrmYGjdZJQtxOSeSLwYAomzPpziRRItGdh8Qs9+a0s/KdVSsSj28wQjjQKi1FLeMoMqIRH24alsqXWpWpUC8SpVPHUboBzK5FxIdHxfy9TxGiPZWUg6hH0/PgEwHrGgtjHjJHVWsmu5a5vV6zuKMYNBSFzYzy6yWe4EUKdLLAG4IRDr/+7PJCFZQC84f3UojiibvuYUtfUbTc3EoKxAmKD7skrnR9WPl2PAlpguIOnYvQNnTQgKSIpvpTqYeRGBSmOs/D2vdXZWi2SWCFk1BKWY8Nc54L0EYA6w+M0pMq3dtxMnNYoclRfQ+53STsq16g5Y/6YWy+ZBveRsBRwxP+yJQYRsseP4lw1akt9C2Hxx+mTFz+qFGzEFDKWEoFpOsQiogCH7wrVBH0Lt1NeyGbaOK42UJsCEKlFUaMI0Lq5HqVSJMQk9SnOuxKHsLINYemaqZUGCKEJVKyNA0jCXRZ53zxwj/1iNL7KipIFU+ryNoOVpnzgFQYu48Zx13CufKKC2CphWO0DsZBGKMb5+y+BUDo9pZptWy2jSkHiVh1Yz2ZBc8KwzXeSz2dCq6ihB0teYyJSr3SC6SLkyGM4zxZzxtDm7eZbn6HuleoaZpgnWI4oUDJqg8RYgZqHqt9xgqsWt7+sJhWrZNhIUeCIqwBczKlEm5KFb5vO8KDkx3DBX6Ep3k/QArnsBCq+AQFvInESQl8ONWFvh8cFkn5C2cistLLhWolGjYioBjCOMFNyixO+8KUOJe+To7Qqq3um6oLDckssFC3StGS/cm/1ya0ohgans15IhtgDPM0WKq1dqr3UsInEn3Nq0o8lkz2CHVRlzG5hdXvvhTSndLxQX+wV5imEJqqChSrjDZv28DBuwqYm4cpGzZqHH/qrVRu1YR8mM9YM8Tzq8xcHSdRqFf7q4Y/Qhs6ERTJngEnbuoGg1T+ZvBoK2RJjYAGQCrKvrm9+vyMLB4NNSEqNTI3elh39U6GKesQrqrrieEOQmUsoWqDURZqiKXck1lgblyTqKwvVsPAAaws0gGCySIho8opLvQJg9PeimmwONJv2mjnTleY31mhdcFv6u6r8VaZb7bZbGlEsTQQnsEKL6cVTCC+Srt+wlNB5BdwqjsMMyvShUQkWWA11Nz1TLw1wGnDQlVz3wNrshaaibpBaPivDvSQXdL4eDoeEBQqnKFkagxrShNfGdbUcYDe8PU7HuCG9/00G1ZNsNxbYWowy796688nPC9hqCMVnu87KLoEHjcnWa62P747ue8bsgI83+wVX0DisojSfQZGx/0kSZ8edr8pqyqSxAmi4R5M9KKU4Iwrxy8nlCMnUAajrGtHq6ooslcI+rH650fKspOTc6PrVzVt5boKc1jF7BBt0dBHMLJGgDHKsEvXg6rz6MM9HiLT9DrGpJzSQt/Kv2TbdCp43D/GZVqEEIP2L3oQ30CG7XTCjFP/Pv6Wqv1U2w6zKKqr5HHzhRNqPnUrM4J8GqGOMPo+VKIHGlbrc0ssJcAIZ7qTshnybBAWhJQYhwrzujCtdpBuFa/uTo2yLpmBCpGnbRp/zHM6xgb5XodDaswjCGUxTbttvcXxbpflQctl9ziYpIqwZszlMFXHX8eTV/gRB1b46tJQNCy4pSmE6fdwwqm3eXySWmoEhE4qisFdPylDMD1J9mmV+ribL0clhYNLGzIrtXbA4shumyqMFnrxUcev4UU+9edCNteoRIKK59sEt52DZrjEKdncUq/ymzv6vKhvvrKvTkjOqlL/gIW+NXckGvcNhJAymoiiaNnfWZyt6iIFZyFIWCRlZ1/fXcotNCtUDF7I+XbAhOObiXXdEPzrGY37L2XmEK9OrWxxfomxC5FxwTL6K387A0gi7yVoraf3+bE1GNVZRxKEC1R2JqbVEwbJF+ltV/7lMzbd0bgXpPu3NZ0EM4tkL3zxNLOwOM/42DjGwGBgFbMW27KouFs3C7c4szeFuQkCvxjuDY8sI6VmdVn6KAqP18pu2yTTx6egOpmQGSc+ayzQT6q4huLGtq9Nk8KpKxpf7E7p+vk9RlddZEYIe5pvjID1pCvU6jreOsGegcCvcbeUv5Nl2J0oVFMNt9ThqpgvWuf1k8MGTfin0oGAKtI9BtUqllZr89FQTm2hj0CyYBGvRkshozFP/K6O8UI9TXEy6bNe4KtMjMZ/U6s/Bys05ZE8QgoHxq6FU1JLzXZkz/pXcRTiFmmSBbtMscReIm4aSj0yGCV9UDg0EbhbHZEmi0YaxiyVb6Osp4g3j0abBdQkENM027yfaolMGOsUCnQBqnSeYely9JWydBB0ei7AohfpwzBV4R8x22SBpQK8ggX3TD7WqDDiHgWv5r2hgTEYKSgKl3Vm/HiTv3j7JMe/KGX3IFc84OospRkpKgmrZnOQKo4hwv7EZXg6aGy6kiAQzB7/y8tJk8EiJzh4DPz8xJ5Cm+k4TmBhee96mG6w++piI0YVlVFXOMWLBF2RG+mcVfsyIMXJnVt0igt9wgFXkAjJipK3jJm6pIJqKcqBy8NOKVXiF2/Z+nuNjNk4kV5ZuEdduyGkUZOvUYGMIg57WzFMcIemcASh8rGNNDYqIjMV+lnDQ5938UJJU+Saavkr1iWO+d85UsK7VhNmTfEpYpWxhE1ZVvD4/6ppqXWgc8inxzpMdSfpLS1iypJCFNIq3F03n9k2fe8hijMm0pGlJoG72uDiS3JvePHYDO5n3dvKrG9x/xsXe3eWqj9lNkHLUAsULztG0Vl4dVro14umVAk2yK6mH7FiGMtoYV+hloxqU2oxGQ2Ic85MrfugGEx+1UByyGCV2qtX8v01w+a3/vpIsPtGqsiKBoRK1n6CVyeeBtPH6kaEBz3O92jBf4oLfZdWRkq7qSA2TixEpvDMV5aJCxX4ySLEGH8ejA0dVF24bKKNyV//5tvzSE74MeaqU3PtozWYjq5hxEPgqNUrKvUaYi/5FW/J21ceRoEpDZUFGnOMndVpKvNR6bWmY23HzeMI/1YDAE7Im3QNxN9XgYmHKUjj5sAr9lKXKDE2zBY8KWfBKnHHdFthVDsYq9a4CYrAkBgODQypGLbVv8KYCf3mOXtkfeEFj8HOYxDOeUjIP9p0LZ8zv5FxSBw/CZN6U8l7n5KmXTYZHJkijHRWnem0pDA3lbrAze9raOSFqhWd3/Nz32x9+0dCuqaQrUdFFLhd+sVo7y7FZYDbuk6hmhfgpmbAELzDsCZBun9lyCCTcmoLfYF0d60SqYzHCvyms6bzdnIxZLWohAWcoShy1pDWlVbdRKROZlOaZnwh7ImmodL0SZR46uOwChVB4777UFHwGIdAEV8s7x/3C9Qu3TN0kRNaBQNUBXpDV6H4IEKydy7ObVi5jNkpI5UitjEv5I7OzFqv0cW0FcL4WJfl/oqdHxXH4V8U45FUO+qiqpiTUJIEmHUYebQOU1w0QW8SARSv5ajy6wde4Efa9HAVRZr144XXMGz5g9pSjzrPcrPZNWUGTYqB9NCydKarnkaSeFuhiKpQiy2kex5yqKslnZ96/aYyjGKz1hPWT8eTpegSwzB+cV35Y9kt8JU5jW3kR7XHP2nIcRjkfm1QSfwdPOAR5dQW+uC4yLG4VBnQhgBS4gjPuPtgLRKTKQd3XTWd1W+CBV/jv2oxkmndGuiNVnQGWvw5xLoZdkWylJvYXkUcnXR73rIN58VkfeUP1zeVnAjuxMJJU029deo68fyllHHWrv+4DUSNC3MyRNP7YhHTX+4zPj7NzNEZLnneley66zb+rz/9DGOF5rff8qpccCMBF8M2+3icN/KXMwqq1lwVFykOvIHRYLE0jgdllXKSRBtqDEqTxdurMfBqqVr/1d9aO6VbfchV0cZkYdimku9RboYjpQdDRVGNZMQ6aCdTP8xdk8HmKyQydFiLbrqjde4t+SyEWW/DHqZW389R97maVWUjlxk40asz/1ZCX0QeA+awJ5QNjDFXisg64JPA2cBjwOuNMcfEYvW/AP8YWATebIy57cSdhL7Cb/EWv6kQfDZXJtz3LpLnK399mMctiWmulFCWFWETqGCktEmmqFKv4bGhoqEmJNMKueA/ebZI+4j/RrHXAFfSfsYewYWv2015qYtAbwXHdrwtqKOiN/aAPINxi65gfMzUc9uQ/gwSXjzTmehw1vYd7N37lH31pVh3oqcVJuyh8K+l8+EUCfRWlmXtTBMjVKxcv+gawRrJfi4LzGQKlAQfDS6iMZTGZjhFxRI7TAVZ8FTcaFLPLE9THoXHSvcBwNqXvE5KmmLnMfVZ4ka6CKd/GVLqsw/joazXBqIVTzoVuOx5WVUjcViEoGFcya2qMqiu6ww7olpC3bp3lJZ4wmgU+lKJ/deKkO15aCp/F5b+y40xh5PfvwN8zRjzn0Tkd9zv3wZ+ErjAfZ4P/Kn7e4Lidx+641EBcC8kyF5+Xp0EGaLxKoInFarK5e4nqtkaOX7BL2GtBoHjPYrYk4fWSwDvPpx41KGNqq7JJLNjFicEtdYUSoXMmCoRNhFq3peQxZNDv7mbnWakWJiUOxWzafObG3Ll9XYBN/6scGIdUYWNG5d2IV6Uh8uJhSI5A1/yFmuLXO7fVqtD2RsgGLQWBi6Lpxz0XTjJ72YVqlatAVTRql3zWUjpztimkitue81azzY0YtwxzilOg7Vq0nRi7NEiOu8tF8Txfap58YolKgdj1NDNbVEoJzQjAkMFSnXBMUKnG3DqcV1rLXluyI3suQadmChBjzNxp1KbsN7dVNI2MyVg6krB86LHk3Ehw3xtoCIfwrPxaJFMcXs55vRgkbxYJoxbg6Aqhzqa0DJQ28BXLX8f4Z3XAC9z3/8S+DmrgJIAACAASURBVCZW6L8G+JCxnP8DEVkjIluNMfuGN+WRiJuw1PUjl4g8LVkan8kEhETsp7isth8sqHyxMyy6ZFwYZ9JmvkiNgGrFOSn1OvGicW2KCKpwwrJoOWJK6iREmFkJCQkm3TYKTJwlXPU6fDv5sBtGJhGo3CoCKQxNkSpjV9vdAXAGRFshRZCFgbktPaR7KWpnLjIx0WWxHABCb2XZMg02UYCisNa+e9biyc9vkq/tOve491Y6WAWVvzUpUbgiFbaMiNAmejA+hbW6LyTi1ThHpCkTJP0aFYc01YlAJvSUizSNBKEUKCEiIRNETcX3r/xaTNUTGVLSdkUErcuM1qo9erxFXNflg/E5HTXatriuHocQRbaETKC0jzS8mXtOEXYv2pvX3fx9D5/J5sLzS6k1ShXOZclhL9oxuSQN8dlI4d+vpW+AG8QGmN9vjPkAsNkLcmPMPhHZ5OpuB55Mnt3jrmVCX0TeBrwNYNuG1cH6lOQsEz8BTZOV58xK2m5iaZ6I9NwESIMrmDwvxnkAoU4kvOh9SLgmnmlP0HteIWfo3JrKx5fFyBsa1EKI9eYWUVO3Vj1lqmFknHT4vZASp5LXHnp8Be0WWU2JuM1oTlEav8BpgrD1jBE3YSV59FbauHFaelizahUzx/ogMDY2wfj4OP3BAOPfrSAxPdOIsNRdS6tcotOfx59Qn2VSeEXgrPUm7yAwss7vZLg0HhXO+vO7sivaIQh+R0fG483V9Qf/edxEr61qYjQIuMzAsfdzYzHScJVzRgl/ryQT86EOTq2t3LBryrWvUngm4JPmrddogR769jbx5GLXjNIQmK60iySbKIHaHqp0/Ucbp5wjTNqkIcKIzKblkDD2EHYMT2FMugs3SSYJ5zKNljB/W6F/jTHmKSfYvyIiD4yo2wRJTfo6xfEBgMvO226oDsIxu83kyUSSu9Wc/+snzWSvTRuys1Xi3fiSlQbGERcOyqwx11vGSG5CfBw6UP+oUneXGxVQSoTkDADJM4mM8L+Ng8OTtfGaLjQRhUiwlnIMjCgV665ihVffKpTWNU6KhRMgvRQ0BMEfXlTtGdTNa24hm3Cs8VinzZq10xhjmJ07zsqgpBBhMOhbS1v8rlbFxquv5eE9M5x17pkc+cFnKPsrhNBPGJ0J+CnDDst4LSgjdyRHTPFL4CVmQnnpb3w4J1yP7fpx5a9SrOLSEPLah1iw9SLZhKb1quG8pvaGZwY10GMI1eX9i118wQS6b4Y2vDKQnAbTBBlPQ+legzLxumptAqU/B0kqxx4PG49TrH4NPmwGdVlbUrRyA0xsWrAx/pCBZusvmj6V/rLfFeg9P2TyZXj5Wwl9Y8xT7u9BEfkb4GrggA/biMhW4KCrvgc4M3n8DOCpE3aShROCWYTBxnpNGRk7POLhqwEM2aFtXvINmeCw6FPbsu7IshaDyafMeMteBEkNlqbT0Gqd1740gpkShVTqGP9b0rrpTXvBf00VRM0+HJ68UX++AvfIATYduRzEnc+6SnuyHynyF517Bs/fherHYpianmLvwR4GWF5aZnFlia600MYKemvhW6v/C1+5n+kJobeo+S/v+jD/zz9/U8LYvr8064a4XCNxE5MvpTvGwM5HPPPJGwtGW8u9kHgNE93/qIjdmkmyAbAuoOOptCZto4Ep0jWYbI0m67M6KxnS84VL45VQ87tnw5qAH2cWkqnwUsIf+RgjbJEGK89KNJkalqgAJ3gdf6MUqES5JUe/NBWv1K1BAiva8PATS1x21oR9x4ZT3CHtN/NOrQJqPssn7wPXTxrRyLwJ4wYoyr3AyI9/tNT/nxb6IjIJKGPMnPt+LfAfgM8CvwL8J/f3M+6RzwLvEJFPYBdwZ0bH820xiRDxSJREuknjTmsTxIOt6nO9NdWVnBNFLIT0mTQDop4CWrXK0ohPCltKtLWUwOyh0bnoIBgzyNzI2ITJn3YCCU/ogXAMrVbLZSgRrOsc0uZiDe/EKvUWTFqnsjuxTF8jiFPfyq11eLiM9zCi3ZfiRFdsyzR0lx/F7XZkG2Hjug3c9vgj9LXm2MxRm282VqAKm5dvRKEoECmYXjOFDFb48Hv/kM2bt1BqoVCOFgMTi/UQvGBzAOkIVAJfEV56EddgkxEom2WUjiudA1/bLm+oYFVW1w2CcMEL0QbBmXSrnYCT7NncwxQT5zZrhwZF4YU31nJOvbXwbBI3StM8wwmimT3WvCgf+SKHNac8V0ORKSbfWgjdSMRfGs5Jx1vnAUvz2o3XDAzjG6cxUtr5SQ48yy11x9sSQ4PGeYmNXrwzOLNxBaMAXPaErer4ys/hqPK3sfQ3A3/jAG0BHzPGfElEbgGuE5FfA54AXufqX49N13wEm7L5lhN3IcQXmRMshNSkVapAa7tAZ8JLVuqpgbZ+NQZ/MkVllK9UZLT4FvuEwakQX3YhEfhOMPtYY6jr+yQKM/EwN0ymUp3ay6iD1VkZa6D9SpymdNaXNiYuRppInBlolRLfBZIueEqS/ZhbNKrlFoW1x0citH1/nuGMrhxr6/P8icdQEGz/0BbgdmkXQbB1p8bZt/cg17z4xdz0/e/SUi16vb57Y5pCiXLuvUINQIuhLEsKVViPUmLbxs25j6Fmlp83CoJAdrSjCgzpiY4Obje0ZFkv+TciIzCzxO9WR7p23bymRqCV5Q2CP2k6mCw1k97hcQSbSMILaUnb8wZJkFQJTaVOdqiXafPcUk/TWJsEfH7F82i0qm0s3KD827aclVxVcvV2EiNIxFnqQmmgP9DsWoSVpQVYNQmlP1AxDDqxrxILPxhfkdezfr1CIdJWsBUCSHG2RRX1+R1S/qeFvjHmUeC5DdePAK9suG6Atz/tjsS7+CrkM6cMOPBZE8aAtIJr3PiqJi8M3cx6FzQXjLlCsDiOaj8VSiJFnZMkpdSK1VvzsSUwiCFujqrdM54I3NMmjsFaT/nZJP6LJ9Jq/z7/N7UqgzBNjJJqlnSKkxqjSU6LGU4zuHRQSh6m0gmzKusqVSQpkTkERplEsJIpAP83ZbIWBRPT48wvzjHenaDf6zE5Pk5v0AdRlFihXyAcOLSXiW5Bq2UoCihFnLkgSdQhEdz+XvI9CDjvCXmlrdLZF4yKGRjGaEcHNl2vJgEzXOfKIFBWAp8x1eN6yXCWX08aaBD0QwVKmOOEZxr6CMeLJ3QxLHRUNZx8jD1TTk3KKKM5hz/35jVPRskm+cjHKQDpTtqkI6UKu9Drxwdse+HLmRjfwCWFcPuN30T3DmOzvSwl2HWihE4zKz2lz3zTol2vUoHnUz6KmUNJNlF4ZevJif1/ADty88H7mJk/kiHEdh3ytNY2zxsigWQpUVHi+BXwzPCVnGjDok7AqX0+LCXVrpMQZKQqbwGbEC5K6+FJNC++sSDwvWVMU+0Ar0pd6DpCnYcdQwGpW5s2bRKTKlMmJv0dGTguauWhhzQEIBRxPNkRs55JI+QB9lSQJThIMyn8dJT+Jeoh7GQotWZ61RSbt25mdmaOVqdNv99naaVH2whaWYE/u7DImulVrFuzgd7KDGPdCdAGg0KLZ0o/3oTpUhgDyhJhL4I94ylPvRsYm+GxuNRjrlRMFIZVY5Ye/es9/Qmw/qA7Q9zIlSq1xsVH7xkT6SCP++ceSoZrkz9XKzLsXuQBncx/BCkPydgXxUSVkR5WFtdJTk6c5fXyAXkvy/OGZPewJ1SWziDJ8uBtKXUCjHtWVAezahxWSu7YeTsvvuwslFih7z03v65XY3aiqpaKUePz78N6S/qcNzQMGK0pWi3bn7HrQpmBNaSc0kLfiARXWlQU/MEiddInDSGooh7kl5ZY+YKN80aiN4HYU1fY6mmfWWFyk8QJNALDe/vOtlmWZfZi9NzitQIkVcqmUidchLjaFEdSqVAZZ8CPO4QO7Ms6Wo6IKm1FqNKW8z4iI0kcZcJcZTmgaDXsD3APG2NFXeGFk2cGjU1J8/ENp9Al+PyOZUxcO1GOMX272dw4nBZF24Wp7DuOxdh9DMu9Ae3OOIvz+xmUpRuLQCFAwb75HqvWbOXhvbvpbDuPlaVjDAYlmIGLQ9vzbMSd8+8XFIMCDIqdjF78mqvFSUFKMYhiZXwDC50JnvuCq/nAv/2XrOp2eOkLn0OrKOIbrHw4yTha9/iXCq4bFBI4+gqCNGY5+Rz0TCa58ZjqXIZufNsJ9VSVjZsQCUZW3k5cC7AhkvT9B8pnvYgk4dOKB9XcW2omxLo2FhhDPNjBpfQKlk+y46yLJFziaDLstsbG/xWCmAIjmte8+Vc5vPMbGNFoIQsTNYWTtfZefSWFtzKqaglGhFNeOhJTYqyNLqOXkE+JImHBBBHLRY5gVNGyAsHfE7ul3n9snqtCGxurtS5ei5CtgcuvFuW+23aUajnGKBDVxqJJxT6wmR5lMEVsP6IKilY7tEkCg1Vgth1DhDGt4/ux4/H547GtoOpR2cdaz8rGjUWhkzqqKKwFEDg7fuxipIfPwaM8nuP1gC/tD+dyHxFUq+2EjYpvQPLjNIJIgZIiKvAE1wZhz8Gj3HrXndx6993cfuddIYMmzI8qQl9aO0OgggcbD07nUqxlZiKsnY5izeo19HV8IcjKyjLGWIEzOzfP5JRiZmaW6clpZGyS2bklLr32F3nn+/8K0+5A0WZFjfGJb9xDd8M53PCN77Bq/RYm1m6kM961oQEPn5tvo+wYUIpSwIS5toJjYnwaLYZ+qe1Y3UFq3/7ON7j+S19wgsiOz3g6qtCABNqJyiHQWYpDxMV+BW0k3DcodEKXusJH6Uc72o/zmeA+0K8K/WnjYEg/UmAyeCU8p91cl84L9+14o0MbMrjFzb+tp5KP+22sUve/Ix8ndGwcb7oxGVF5W+Lxb+nXH1qoBivIYAVaBTLe5e5djzN98TU8eHCBEI/3+A90odw8+LnM+yp1Pj6dwSEZj5tEFuUwj7b1T2lLH6LlmeQ1uP+9G6kq1kDUhjFs4YIORayVHgsQ3DBcFoUxlI6kgrUQakbIVNEKnWoX26inYiVu5hDfyxpcScxEPIG7MJb3RqqLvkl4QTyzp6GU1G2vdZ2GJuy4lXIE7dkhxCCdZVTE8/HzRi2egpsqfh3GWoWtdptyMMCHi5QCrZ2CUYrDx2fZtG4tWsW3WcUxist/tjuyY+6zj2vaTVztzhj3P/oIZ+84i1Wrp+j1+vSXBxg0RhUMKGi32mzZtJVj+/cz6JdQCIfnjrDz9jsY33wmizNzLA2WGZ8cZ9XkNKtXr+b2G29EdcYQCjSaub6iNbGK3/uDdzHW7fLuD3yMQ0ePsW3zRv7Jz70i0FG0lK2FGE6D9fhx45xfWkC1JjG6RAphUNrwpF69kZX5fUH51X286OHk0QOntE31QJC4ZpRa6nWKGHWtatVX2sicVc874D2zvKXKsybpK4QMFaUug+ch7loKfVO2lDEm7CupphCX2r5QJ72mCmvQZAmm3ksxtr2i5WL6XvALFBs3Ylrj6HKFstfnrvt3cc8D/4lXvPTFVrnrMuEPa/4bsF6ojnxsnRH3263PeU9Aa52kY1bxLQE+Uvo6QTr4qS/0QyyTjBhIfnuG8kipRGMCsl2DCdH7rd5uz6VEfCkpEqESG/SZMuEVfp73UoL3vJG5wbGZ8EYcX8TkTODnX+J9O7mJW2g8I8Qx1DbPVAS+Sb+LPW9Ghw1QWOsKr1B9fDBn9Jx3Teg/xy+IalG0WqhCWFlcdjXtPJWOg5UolpdX2LxxI+Wg596BYAk3oi9uGhPiqxPBKoje+GoW5o7Tn5tlbsXwH//4L5kY67J981re8guvZWFxnrGJKf74I5/nyiuvYmb+OLOzi3Q6LcxgwGR3gi/f9Aiv/blz2XzGGeg77mK5N2BpoDk0u0IpR5k2woPHx1knS7S6XVav20x/MGD52DFk7SrWrlvD3OKyw59XSUk6oiMQS4VFoAhj00nQxrC4uMTS0hI/+uIruOHr34buGAcPLKArOckm0Ndw4est/fyW5SNt6vWb2gjhn8rtGKpwFJUuslZaCokDyQvg8zbSeu5cHGN/D0pN2736tNQ2WSM99GRkCEOSfTHOiLO5HTZMrIVA3eC9iiQenq5FOWYOMX0vpRFY6mG6y5iWQmG46PwdfO/G7zImL6IoOgzcRi1vqHphEduyAMY5cXwuYr1GvGc2vISkFuOVljRPb1JO8fCOEF5nhwTB7ndOelcshEec2xY+foIK54LiXFLvWnlvQClQikHp3DHXn1cO4icbsfH6NFzjXcXkE1zHNGwi4nbkKmsxZ8/EeqUhuLjeJTTOctQCJM96ODTYGGRDeyaBz3s+3i234QZ3cmVlDAE/zt13p9DgwzPt7iSrVq9lvi8YKaxIdgyrWi3ueWg3f/RnH+O9H/goxuNMjfGhT19PCMe1u5iiQJclg4FLz3Tuu/bhDCUoVTCz2OPT13+T6z57Azfc+AM++9XvcHRmnn37DzA3t8CjT+7l+7fu5LLLLkLrkkefOMCf/sVH3GFfwnh3gif3PMl4d9IteoEUina7Awa2bN3K7MISPd1i/749jBWaVdMTFKIxSvODm2/hLz7yKczEGpCC8bEuU6tW0esbZmdmWVyat+En43HkaAjhoSf2hhAGorj3mGF5YGXLQGsG2oDRvOxFz+PYoeMcOX6YzWum2bp1FaURdGkSVz+hr/RTmXvtVKQ2gnahN+sTWUFhPyp5JtJI+rdKhzHkEudaV2DxfdefiSFFG33zoZ/Yh3ba/pGjh/nkZz9HqzsFRcvRj0rGVO/TOOE8cGHIUhu043cKRRnGYkM2PnQZQl9uzrSxIeFS+7FYntRJeE2L2JCfgEiLQb9kojvG2Refj1Zuf4gP0STPWLhzfBhjYS3de5tLbay35+cglSXVea/gO9Le8HKKC31s7NETsmMcncTX7AKVCszm47vWeHeI0pEh0lhn+gFlFySdkEOEVqeL6nSQVgdTWAKJsc/CPVuE56ux5TxWXrj4piCqVY8b+hi8ajnlkMfaM6aESLx+4sPO0gJPcCnheeWYEk9QbuKZGPc7H0O2liICLeHu229hfMMWPnXdX/OD730bpGClV9IZn+A7N93Bk/v3ceUrf5HWhrP48P/4Cp/8/Lf4yy9+lwNHj4BYgaFLzUO7HuXW2+7lzgd2sVS26XS7iFIcn51Hi/DInPDhT13PdZ/5ApObNvLo4/tZ6Le59fb7ue7TX2T9hrVMTE0z3u3y0hdcQ9kvKUuDFIrjM8ft3AOgWFxcojs5iXJhIq3tOgFKeGrfU0xMdlEt4fCxWfr9HkoUbVUwMTHJWGeclUGfd7/ng6i2YnG5z7Fjx5hZWGJsbIzCxWO9ULLMaOf9yLFBYHwRxUXnnsfOex/AIKwMerQnp/jkJ77EBz7+df7qm7dTFqsZqBYrK4uoorDrJk55a/JPEPioQF/BwnY0qTprOTg/wf65vqWBEEOnQmOWrmPbIdCXCPr82qCsrPOQCrZ6jNrH2W14lUyBOcJgsezx4IN3MLc04KPXXYc2MLASMNJk2p5yMXejENVCqRYG+z2Ni1fX04wL02jH16X7WENHKNuTPLL7SUonsFXRsgrU8a4sLWGWlpFeH110mOi22HrudkqjMX59R6xQ14gzaJzCkBxfSilakxNsPvtspNMJBlRVmFeVXZgXr1hMQ+isUk7p8I4nMEsPLswjClWIz7cMiMR7R66ucm6R95x8PNkf01vdfp76REZrSoQvfPse9u3fi17p8RtvfgO6N5/5lU0vrY/HBuROmbWyDaDCIpV/xmesNLlxIlCaEkHxuc9/iZ95zU+5DUWhRvJxJWSAJVHdLISUwmfJJs1iynCRPmFRSLtosfW8i7jz9tuYmh5noA3jW87jnf/mX7Nu9WouuOhClhaWOWfdWhaXl9m+fQdz+/fQLpdR2ublKwRj7C7Y4/OLdMe67H9qH+96318yPrWWi599Odds3Ma9N3+P+x7bx2R3nN1fu5HxzgSHjxxlYnKSvUdnWBkYZpZ6rDvz2Vxw+ZXc8wf/NyVQlob1azdQjHUoETpjHVSroOz3rKLWhqLdcnOj0IOSlZUeyASLyytopikKBYW1wFaKFV72prdz+OD97Lr7e/RNnx3Puxp9fJGdN32LVqfFv/9//wQz6PF7//a3rQuvFBNX/Dx3/83bmdi8g0u3ttm73KE/f4Cp8TGKqdV86E/+gqkzrmZhdp722DT93gx7Dy7wxL57OXNjweNHV7jje98GsSGSV/3Ey/Gv+LQ06LxIBKNwKab2+se/tISWgqJ1nFa7w957v0irEN7+tp9xAlcF3klXALR/o5yS5FTWnC7qdBo94+y6KpDqkQwSBVOMNnmaLBBaqNYYZbkQEhEonHFl/Bu8kq2KbptznetssWmhMYTrY+GiXBilrJxPLzb190t3PMF9dz/Bv77oYga9RbfeopzhJZhWi1JamEEfpTTSalOWbQa9AR/58Md4/RtfH/HhwrP+fHy7tmN8RIfH9+5hw/oN3Hn7HVx66WXZxk/7lj8rV2IozaSxvsqIRwa/Tn1L3xM0eEKx1plX/CYl2MTqr1r23tX2mtBbID77IGQDFG27Ql4U7H3qMLsefoQn9u2jr6E0Kmh67az8YF1JgZECVCt810ZhpIWRFiItENe2FPZa0bL1izZGFWhVuOwOX8e7s6DUGFc85xL+6lOfw4h7jpbzNBxDuLZ9hoRvx2ZLtAIsRgpLrKpNOXkW7/3I57n9rl2MT69DWi1K2oxNrkKKth0vioERawUZxfKgZHr1as48+1zOv+L5fOum+3nn7/8eC4sDHj9wiIePjbG3v4ptW6cp2h16S0ssryyxvLxIv9+ndIK/1epQAiu6xfjEFAOjWVwWXv4L/yuP7DvMoZUWP/+W1/GPX/kKZo4eot0Z46rnX8lDjzzI/MIsF1x6CaunN/JEfw137ZvhP//+OznSsxu6NAZjNB/5mxtYdc4V3HvP3SwuLaJaXbuSp+xxBq1WCwS+v3MP7/6TT/P9b97IY0/sY3G5R18AZSgN/OM3/gvu27WHiy59BccPHGX7li2YXouZo/u56OLL2LxuPVraqO40N+28h874BGPdCXY/uZ+DRxfYu3sXA2341hc/x/GndnPrvY/z0b/+MvMzM+iBYd2a9aiiE2LpUhT8+Bv+F+Zlgp/5p/+Ka3/9XzGxYRN/8mef5Mvf+D47b7/HzY2z8kMIIYYT9+15GNErrJpo0WGZouUEMAothQ3tKXF0VoQQhg/nldVsrRGZJjEbqG6J+nZC2LLRWo3PDyhB292uSMHM3CL37D7Ee//7J2yYyqhoPdcyXephj0EJxhQYz78InclVnP+Tv8Stu466DK7E09UCMsa+IytMbHkOpbe6jVWILqZDb2EB051CtcfZv/cwx1Zt59F772Ng+ph2J8DVnVrDzfc+zKMHjjrvQjJPXwMLcwssrazQ6/W89Rhwqolw6wqubHi2ivfRYv2UtvTBu0Musu62wyOK1niXP3n3e+n3BrQK5QSr8I7f/LWwEh5Oa7Q/MN7a1Sbm4Rq/8cUqlNKAkQ7GQHusw2R3HI1hRSsKWviTX4JuFbfw4r5LmqSrUnua6I24K2WmkO1NIyZ6EAZKgXZ7zMLd6bI8GGCk7dYiAHR4gZePX4deXQpDXEis9i/cdN8ulpeW2Hn/w9x+/6OcddW13HHDRxkbH2N5qcc//423sLu/he986r0oVbDUGuOCSy5m185b0brk0kvOQLcUfSP0ypL+iqbsdrnsOVey2O8xGMD+A4fpKkXZ6zMwhtIp4VIJUrRRRtMZH+OhR57gjBdey7rNG7n8sucwt7iXBc5BWsLk5ASXXXYZE9MTnH32OcwcnqEoxpnvL7PS07ztN36Df/Frb0aMQShYd+GVzM8dYubwDB/84Af5N3/839i37wB//cH3uBetK1b6ffr9Piu6ZGnf4ywuL7Jj7TSbtm4GNEobBEVvqUen1eHi88/hs3/+TqRQHDl0jDe/8Zf5w9+7kfVr1zAxOcXqNWspy5JvfO87HFhs8/juB3jT77wApftMTK1FFS1+5LkXcfToIWaOzbF/cT+IYm5+gdaaMSeoDIXYoxVuu+V7dLtTfPgH32ZmfpFzztzGqqkpjh47zqGDh3juFZfb8+YLu5BoEDd+u6jX6w3YedvtXHzRszhjx9nRojeCUcKgFMr2BJf+xBtYeupx9GCFnoadX/sc29evRbkN5zVD0vElLu7cbGdK9st/j6nD9reS6HmLS1nVWpiemqBotVFFi/Gp1ezbtZerrnmRDb36FV9U4mH4Vj2TpT6qt5Ytaw5KYXzDhRw7cpxzrngJB44eYl15kJaYEOo8MujSKQyq7PP+P/sIb/3ln/cOAo7paSvFYOEYvdYEm7Zv4fjRp1i88BJuu2Un5aCPj1Qcb63mjGc/jwdvu5krrnkFDz/0EMoY1rZ7zuYXzjjzDCanJhifuBRpdyhLTbe7isn169AUTG9cT7mwzJ5H7kWJCd5R3PDp/IemTXqVcopb+unCi4/lF2il+MiHPsHY1CRnnruDYwvz9OkxPjnJu//LBym9NqWV57n6fGdVxGtiLeXUavLk0tc9Dh89wtLKCstLfex6QhGsjDRX1nKGirG8BgtJm3o8L8bkTRxrGns0im9867t8+StfRfc1Z194IRpYMgVf/epX+PznPm/XIkzU+MHikWScSIihBtxqw7YzzqZodRgMBmhgz+57aXValGWJFk1pNA/ceTOzc7Mcn53hySee4NFHdtNbWWR5pYdmgKLNwb37gQItBTOzM7Qnpji+OKDX7/Po40+gnPeh3UJ1aRQDCvbuP8p8zzA+1WXz5s1c+pzno4oJikJzpHUm88UWjh2bQZeG+cVFFhcWmOiOs/Hss5jv9XjPO/8rb3jTLyCqYPu2Lbzkqh/hVa/5KV56+Vkc3v0gRw4e5OhTBzmw5ylWeivs2f24w4/dXVTuRAAAIABJREFUfdkZH2e8M05reYYtXcXi4gwXnHOBTZcrod1u0RrrsOvhBzh6+Dgry0uIKBaXl/ngn/4p3a4wPzfLkSNHOHb8OPOLi/zsv/xDrv6xV7F7/xz33nEbq1ZP8uCeffT6Jdd/4Wvce9d9TE2Ms37DBiucypID+/eBKRGt3PoJrF23CVEFz33eFUyvWQPtDp5lp6cnGWi44NVv51mvehvn/eSvcutj83Q6k5Qug+qSiy9m67ZtHDlylIcefABdlvjMrNIo1pyxnXOedR7fvu7PeOrJhzl8cBdP3vM9zPoLOHD8eIjrax9JII3nx2s6fJoWKp1V7ha5j8wt8dRsyf6VDnsXW3z/wcPct3eRT3/luy6ry21ebBUsLi7Q6Y5RojnzjO2s3bTO0TX4XH/brm1bG8fDJoHbWONq6eyXM3/Wy/jAJ6/nkWPLLCzN8aH3f5BPfewTfPemH6Am1rj69hTMibEOP/lT16KKgk7L2sbpwqtGWC4NRXccpQa0x1rMLy9xxTWv5MDBGS688FncdPPNGGDdqkmmWi1UOaCzajXnXng+l1x6Mf1+aa15A088tZ/5xRUe2vUoZV+jEc748Z/j61/9Gjtvu4mH77qVyUuvYn7JrnX596mXGEqXnuv35+gTpGye4kIfDH7x0boyWgpKYy2h9RvWUuoBrbZiaXEZxNDqdJxLFDekUCHS7GOs9WOwqXOl1vavy30dn5yi1RrDKHuvLLVzV/0z8byUeLW64OLDUR6OuCvTM4wXxt5A8RkmPV2gyz4PP/QAq9ev5+bv/AAlwti6DRw8cIB+v2T9urXBo0l8nKC8/Dhj/j9B+B49ftwZDUI5GFAW48zNLrGwsEBvedmOVZdgoNdfYWJ6imNzA178smt56ctexPe+vZOJ1WsYmxi3FpcxvOmf/Dqbd5zJzEJJt9OlLcLCwqK1wbRQGrup67HHn6DTblG02szPL3Pk0BFWpGBZ9zg+WGF21QVs6AqYHp3uGGvWrGOsO8X6jZvQWjMmfZaWlrn/tpt58tGHmD1yhNvvvIObbvk+X/zc52i1OyiBpeUlNm3exNT0NBu2bHXnjheUYDOLCgWqw/6j82zcvoPzL7qAqYkuc7OzHJ85wszxOWRlnm07NlHQRpeavtY8+znPZt26zaxduw5EWF5eYX5hgRc873k8efAwrTVrePnLXsGYKjj4+IMslh0mJqY4eOwY+w8d5PChQ2AM7dYYnck1dnHZlDbkhGL/oaNc8xOv4KLnv4B/8vZ38Nq3vR1ddJlf7DMzM0NpDB9/3x/wu7/1z/jT3/0dvvGlz/J/vuu/8skvfosLf+IN9Msez770Yi659FLarTbtdgutDaUoSlPw4P6S1voddDodznnej3LmxT9C2RqjoGQg1jjSgV78ArVLgXQ0pbWj/VTwilDistBMkonlDDFpFWzbupmlpWUol5iZPcxlz76Ud7//L1je8lw+8FffojsxSbs7xqAsaUuLdRvW06KLXbjwi6lxgTQNfWgk7PhutduMjbU4dvQoszPHeOkbf5ObbrwNY2BifIrnXvk83vjaN9B35+3YtNCCfm/AoYMztLqTdDqdYNyVQbko669Kl6I9Tl/Djs1b6RQlC4sLjE2vp1eWzPeFb9y4k56Gpf6AstSsDAylKljp90MYempqNYPxVXS7EyGE9PiNX2ClM8mRmRmW+oaZh+9GTIv1l13DQ50d6EteSTG1ERG3zmAIf0eVUz68o43fmuLdOqxLi2L//kOYckBnbIxer4SiRb83b/OCiQseXti6n/ZPcCuJbyryay7GuknloKQoWigBXWoGZhDOttbabcf3Dp/YjIR0IdSkHeLdUGthtlotBoNBshBjAYgLTbb17edfiv72DUytmrYGoHuP79y+gzz/mpdw9MA+Hnx0N5OTa1g7PcHS8hJ6YMM64Ux1bcIGj9sf2UM5d5DnX/0ClpeWWFpaplca1MAerTzdnuB1v/IWFns9vvHXH+H9730/K+WAojNBoQrWTE7znTvvoX38IV77utez0utz9OhRxtz09LXhpp13sXndNJ3xCRbKFS657Fn0FuZAhPVbzwBp8R/f9V9ZPTnN6okOy/1FFpZKpDvGeeddwL49h3jRi6/lIBNsGStY7q9QlgMwmqKAheVlOi3F7kcfY+O2jfzgKx9izeoJJlrL3Hn3LsbaBRvWT9NdP4ERYe9T+zh4+CBLKyVnbd/EnYf301spWWkJr33dP+Mb3/oW66/8Zaa7BV/87/+OH7ztbWzZtJmNa9bS6feh3eIlL30hn/ij32Xz5tUc3H8YozXP/ZEruPe22+gtL7Fhw2a0LlGtgs6qaQ4f2E+n3ea//e5vYozQ6y/z5399A+tXr+Hlb/zfuPHD72bT+g30BiWd6QlWVnoc6/dsrLjXc/NX8KmP/w2vef1rueH6r/Kil7yEsrBeYas9hhjNi1/yQl7/2tcxwPCZj/wFyxTce/N3ede/+DUefHQV6zadwY4dZ3Peeedz32032beQGbuA+fIfezF79+/j4NGj3HX7TubnDqOWllFjU3TWbWTFwBhlCDf6zYHGxTnCRrQ0vKIUPTNGWULR1nzyU7fy8z//Ynq9ZSY6Bb3BHItLffq9Hv3eCgZNp93isSf3Mj87x3ve9V6mJ9cwPjHB/ELJ83/0JWiBv/6rTzPeHeOXX/2PENVmqTfgO3fspijarG8tcOWVV3Ds+AyXv/oXueUzH2XNeMH+w/tpt2e54Ut386I3X0y73aYoFIXSrF87zQvO7HKwXOLmnTfy7B1nRsNIBN1S3LlzJ0qto2cMpQlbNbl973G2nXUWR+95mHbrSdqF4txnX8SevftYv3UzRXc1x+YW2bfQ4uJtl3PV5Rv53AfeRQdNG03XaBTQG5RMiMKIYcv559Fut5lfv5ElA2MG7rzvEUxrkm1bNrBm4yYefOB+5kzJE1//Eps3n8njt3yTA0/tZ3N3wFnbNofDgM0JLP1TWuh7UrIvrsaF6gym1GhtGOu00WWbw0dm6BQFE+Pj9FZW3HEuThwbCC/UFhfiwLi4v8n68fLZ7wK87ZZbUYWiLDX/7nd/H9EDBrpEqQIxsLIyYP3GzRw4uI/xdptOMYZpwX/+D79j2zUGpWBqegpdCvPzcxQuV395pUfL5+1jBf/S4hIfv+6T9Po9tm7awkCX/OpvXcVyr0dLWizNzdMeG8MY2HLWDr7wmU+ybtUqnjM+Rm96G//9o+/j13/1Vzhy5FDQ9pPTa7j9iRkeufkGfuonruWGL97A237z17nuEx+FosNcsYqOaLRRiBjue+R+nnvmOONjU1x15aWUpY3AT06u4qvfvQ1pF+hyDinXMxgssdxb4NJLns2+R+/j/AvPhhIuPHc7N3zoncwcPYIeDFjudjh0+Dg7ztzO+Obz+PQ3b+Hyyy9n9+5H2X9slg0bt3DGmTuYWezxnt96Mx0jnPOeP2PjZJuFhYPodefxjn/zZj704U/wj66+ijvv+kvaY2Ns27adxx57jDPP3cDs/AKP7dmP3Zjfsi6vO0L3rPPOpduZpt0dsPHqX+DyC36KMVlg//4nOTx+Kax9lG6ny4fe/ZtMdzsYBVf/yPmsmupwyy23o7Vm94N38MBDj9DqrmV2eYXznn0l1338Onbv2cPmdevYt/8pNqxfz9LyMh/6849x9Ytfyht++ZcZHH6Kv7ru41xy1cs5dnyWx+78Nrd/+v1MT7Q5dmQf46vWo9pt1k6u4vCBgqKMay9zPcXqtZvQA2HD6rWsmppEioIDy4bx1oDPfvZL/Os/ejWzM/M88tgT7NnzFMv9ktmZOV70Y6/izofu5PHHnmBxYYUNGzYw0IZr3/RWNl55DabV5fs7b2Z2/wy773mEYtUmprsFZX8JRPM3n/gEv/SLr0/3F6K1YWUAYy1xfKKYWTSsmTB87ft3sDg7x2U//tM8eMtdbD3/bCbXjbGiD3C0mOKWW2/lx37sZXTGFphbOg5Ap9NhcWGRstvlqaeepBxozjj7fA48eSd33nqEsfEOX//iV/i51/wMq6fXsDI3R2mEgbR50kwxuXkHm7Zv4+Du+3nfR/4HP/1Lv86T+xb42te+wetefS1zcwv0V55kYXGegZQMlgbcfee9LPZ67Nl7iOnxNutNwb5Dh0FvDdLg8e98i4fOeD0//dpf4pJLzqfbfit3fOZjlneN4ewzdzA+MUarPc6RQ/tZWO5z5rPO4rFde3hs12O88Cd/llu/9VVe+KM/ytnnncuN37mRpaUeqg0lLUoFbSVc9IKrmBqfYmx8nC9+6tMsLi8xv9yD8Y1sahuWV3o89PAj0NvGti2r2bpuLZNqmSsuXAdjqzh0tGTr5Db27NlnvcQkzj+qnNJCH/wOVGdTu7SlvtYURYHqdOn3ShYXlxh0CmbnZugt9UO4BQBvSONOIvQegM9BDHUTn8jYulrsi7mVKPoaxCj6A6HTaYOULPUXmZk7TmlgZVCyQg9KZwFpmz1y6+13s+eJJ1gsDRumJhAF9937IK2xDkVR0FLCxESHt7z1rXz0wx9j9ugMxpTIFsP0xBQLvT6q1UFawsT0aqCFNpoH77qLNd0uM/MLFBvPZWJqI8u9Htd/4Qae/6Kr0LpkudR84fNf5ol9x7lsxzqMCH/03z7EjV/7Kodmehw9coj22CGed8Ul3Hf/o6CFy551AZe+8AWc8+zL+fjv3mtTxxRQtDFYRh1XqzCdCWbmepz9rHO577ZbmF1Y5sDxPh2lufvfv4M1G9ZxwXOey+0338o1r/5Vtmxcyzev/wJXXf0i9uzZxYFH7mVhboFOp82YavPAww+yedNmirKPtNqs7ZRMrllCjsOOy17EnuPLzJTwsff9MYuDPtu3bePJ3Q8xOTXJ7FKL57zyrWy+eoWbP/0hyt48ux56iOXOWq591as5fPAQuw7PcXyxxBSb2LDlDA4/+nWmp1fTWxmwtNhHFR3WTIzT6/foDQZ8+YZPs23TOl7+s7/FwXIT198P5/3sH/C+P/zf2Tph2HfbLs7cAOecfQ6zRw7T7w8s/fUG7N27l1e+7Ap+7x2/wpFDB1laWqJYu5l+r8elZ2zn+OwRtm3fwt5Hn2Bicorjx2eYXmPorazQdemMSimWZuZY7C3Q6/XZs/dJnlNeTmkM6zafQdmC3vHD7Nx5J0eOHqXf69PqjlGuzNMem2Bq1Sp2nHUu//T/eBN/+Z73/H/UvXeQHOX97vvpMDnP7s7moA1a5YAyyrJElMgZDCIZk2ywDcZgbGyMTTRggpEJIoicRAZJSEJIKOe82px3difn7unu88fKv+N76nd9q+65dcvnrZqqqXe6+51/5plveJ7ny7GmJgIlXjSTjXXfHcDv93Jg+yZAR7ab6B3ox2mzE+tupW5CBYIB6byOSRpuDusnf0SS9E9VLxiSTK5oJIJygr5gGEXNY7FAaX0FU0+dgNfrZP3HH+F3efC63WA2MFlMeH1utLxGXzCI3WqmuKiIA/v2YQgGSs5FPq/R3xuloqqWUXUVaEBV3Qg6mpuH+f2ije72PspGN1AWKGbLuy8h2e24iu188PaLpDIKqg42m0xKNJNKqjgsdgRZo2FUA+HjWxESQwzFQiiGiabjxxjf0Mg/x80v/fMLHGpRGVdnkBk6wbrv9uO3/rPbJ5BMJ+kZCtEweS7HmzqYNWMmR1uGyPpKcHvcLLvoEo5s20JXKMpit5ua+kaavl9DKhEeNvy1uBADJUTaO4gO9mFxuJg4bSr5XJZIJErx2DlIVhvlfEtGUZFF0HQz7X3doGqklSBOVw5RlLH5PIh9g/yzhI3xv4xk/m/Wfzzow/8EfkESMQydaCxGcHAAT0EBeUVFlmWsFhupdBKv0/9fXhTD5ZL/CfLiyUhfgP+KYAwDmpqP0dXRw+Ili4fvFQUCBUWUlZRhscig63iLAqi5zHAN1mRG03XSyRQnThxnRE0VoihgsTlw2p0oah4BAafdxtbdu9GTaTzVI9i09wiTx4zCardh6BpmQcDusIOhY7KayCkqggEOl5uWriAlfheJTAav309/bzdbt+9GMlvJawY148ajxYIkcyqRSIxidxGRaIJv23azdv1OrvvlLfhMJkTcpJKdVE6/Er2onEOHDxAOR3AWFOMtKGQgnGWgL0QqncEQRIKxBC1NbWzbsAWL142QzpFJxpDNZgRRZCATYvHShWz7/EMmTh5HRekImlvCTJs2HyM1SEdbO6lUFlUxKPC58LnsXHL99fzt7p9RWlnKzl07Oe+S8/ng0G4MQycSiWK3WFHUDN4CN/90z7TbHLg8Er0hnbVffcGll1zETbf9kjWrnmcw2Es6naK4qhrBgFQyS1PLcSZPnELDvHNxOW1MUvKo+TyjRo9CMMm89uRD2A0F74Tz8JfUYjbbCRSVUF5biRafSM7IoenisAJXMxg3ZgyDwSAtnV3YHVFaO3sJ2EyMr5KwmEpIZQbJphQ0ScRkNlFQWIjb7wZbMXa3h3gsiiCKmCxWvAWFtBw7TknNKQwOBsnls3R39pHXNFqPHOJHV/6cvCHRdXgnksWCiITNZqH9cBsVY2vo7O7AZBJJDIYxlAzdfWnOv/h8RkyZwa4Nq7FZLXh9PtDA5nbgijkoHDWNitYg675bj2pKM39eIR09Ofavf4f5599Gd28XvoJCZNEgNZBnXOMofCVFtJoE9LyOxWbl7TffY8GFtxHw6az75hsuXDSVRDaH0yIjCCZ2tNk4vOUvCKKAo6iKtt3bKS+qwiq7iQYjtLS2YDJZOXD0CHsOHmLSnJmomSyJTAZf0TBN12TYiUYjqJrGkyteIZHVeeFvm/jJTXez8tU3mb5oKaJswnS8j3OWnU9z7xAlZaCoGUbW1WMVJfI6aIk4+384iBEXyWY0dE0Hw0QklERRFGxmE6oh4XC7sZhl8vksTrsbzWzhppt/SU/rMWwnYWPfl++QNdzcuuIH5kyaw/4NH3DF+YsxGPbpaW1to6i4BI+Ux22B2ppK9KJCUkNhyosDCIaObmg4bFZ0VSedSmJ2Oulti2AS8mS0HPHefjRVI57JY85FObxnOxaXFX9RgE9X/J3l191Id3gAxYDKQACb10O8rY1kOoOWSVBTV43ZbKbYV4C1sJTapUvB0Gn+/F3E/2aY/L+u/3zQP1nvFiQRSZR58m8vcvoZczBbzeSzCtlcdjiyFsBitWItKgSGKWtmk4TT6SKeTPDBOx8wGOxHyStYZTMWm4sbb7qBjJrFLEuk0wnef/89LrvqKuxmK8+veI7WjlbsZisms0RrRwcm2YSu65gkiUw2SyIVx+Ny09HRgclsRZKGDaJey8aIDwXxFfkpKa0kNDhENhql0ONg5/4D1AZ8ZLI56qZPZfO3a5BMNiJhhVg0DqJORslz6sLzObDrS0Ld/Rw+3EpetCM3LGLvNw9w9E9PUFNVSWtrC4qmIYmfoNt9NFT4KS4ScHjcFNWO5ePnHqEnmKCkvJRUfxNNqSjvv/QsQ7EIfo+fUTOW0XtwNWmXDbvNTt/gIFoohFmATT9s4/TTp7Ntyw9geLG3D1A9fRlrN+5g53efM3fyKE5dcDpffv4JN9x6J7LDxSevPUdJWSVdnV1oqsK2nftRkilefuUNuju68QZ83HXfAzS3teH2DlMYyy1mNFWnubWFnGoa5vCrGrffeRvnnPdjRo8azdnnXE7NyJE8+/hf8YgiiUQKi0VGy+uYZYm8omC3WHB53RQWeLFYreSULJlUBj2ToKMtiFvWCQcHmBIwCBsygtVFW0cP3379MSW1p+AoNKFqGoKaQzCbCPb3IskSm778B5mkBsjstlZQac+SMlLoeppiv4fwYIgit5enP1pLb2cXbo8Pt8fBtUtPo7DEz7Pvr+b2S84jr+exubz4vH56m4/gLatn1vwZuAOFbFm/l6riMpbf8mPi0RiqlqOsuIwZZ51DLhLm7huuwVkUoLXwGO2dfbjsXo6dOMTs0+czUFFGJpVGttsYPXYMpeNmsvarr8AQaNq/mxnnXsRlt/yaT955m4lT5rNm8xY2fLYSQ7JTM7KOWEbltPOW8cmb73HNT29j3vwlvPjyyzgsbjr7Qrz78p+54KyleM0CK1a+TdXoUwgU+hHUNFo+x6RTJmByefnkg9VYHE66hvpobWqhYXQN3W1dCCIE+4MUFBayf9deqr1WcnkNTTBRPnoC+/YeJRRLMHrOMjbsOMxQVKS9KwaeegLVVaR1D+++uoJwNE5bAvoObcdhEamf9SP0ZIxv13/KnX/4LY/c/wiTJ0xla3obLUdUbG4P0yfO4IuHtqJLEtFoFMlqQ9PyJJJJ+vqDVBW5yKsKTSdO4DGbEbT/IoKiyTrnnXUBr7/xPlWW4YAsEosx7bKbiW79I4WFZbz90dvUjh7PqhUvMHriaPp6utmyfg33zphK8/F2Fl15Mxs/fosfNq7nhlt/iuWKy7nt5t/w2LMPoegCRzs6aWwYwaETQ+w7eIxbbrmRUCSC1+Ni/8ED5FIZTLKFjv440fgBhHyKsXXFtLSpaDkD0axyvL2DcMbCrZdegqGo/OqGK9D+3bgz/g8AfVEQ6Oru4/0PPkOUZTLZNBs2bCeXzmGxSYTCUVTNQE8mGRgMMckVQLeVEKit5ve33UptXQVHDh1g6ikTSSaTRINDVI0fTdPBA7y6ciWytwG/M8VAMExfOMXDjz1PJqvAScpeXs+jZFRkScJusSCYTZjNMg7NiU/xMBiOMGb0GASTiJAfZgClEkNEszpCJI3mcGGSI5xobsdpt+KwOUhnVPrSORJbd7DgzAs5tG09q9cdpbMvCmYrdnOeD999gwULl/D2Sy/x9zdf5ON/PElSkCgsLMEQIJrI4C0sGWYbaQoqAoJmEEvlGHfGhdx+/c0YuQh/fOwJMARsksy7b79DNKVQU9tIR2sHHreV0soa0tEhNENg3KQFBKoqsfndlAVcfL9uMzlV49S5E2g+eoyupv1MnDGZrT17SOZl9vRm6eoZZM5lM3n/iXsQ8gLBVIKKmgaK5ixlcN8WBhNJJkwcR/fWb/C4XNz1m3sZ2VBLV2c3x44doaBxLu9+9D63Lb+K/lA/iq0YNRXDksqj+cbyzJ/uxySKfK4ZFBYVILo8w2m4MdyczuQUhLxKpLeNtsMWOlqaGDtrAXoyzAfvbGLyjNnYA6MpX3gnO1bcT+dLK1EVjYt/cidCWsFb4EYw8lSWVCHJFqwWD6l8dlhPkFNxmJyk1EHyQh5nvptQ1MS8uafQduIgOdWgPy6gG3nmNdYjyTIOhwONPLqqMhgKsXjiFPwFPm765W8pLitmIDjIKXNn0dnaxDefruaam2/F4ZQZGjjE+Jk38tXqh9GzMabNmUPg8H6qR43F7bQyadYcRo+p58iOXbS399O87xBffLWWRadOwWYxYZas9ARD1JW6mXDL1STiGR5+5lEyiRR2l4nbll9ELm+wcOEMUqk4yWSGkuIiLFYbj/321/z0jl/w7F9+g8lk4s7f/YVnH7yfMfWVmGWJ/s7j7D/SAgjY7IV8u24zS5ZdwsCR9Uw753o6urs459bfYbVZwW0j0buONkMgnFFweUuZN38u3e1dWKU8gSInRw63ouTy/PGBvzB56nRajx1FEQUWL1lCNCshSWYsdpGrb7qeo0d6KfD78HqLESQfbVkDn9uBmtApLXBSX1eLP+AjnoiTTIcJhYawyGYee+p5rvvdUxT5RyOLQVq7OrCZzEgWGzPmnMaI8fUc3Lwae3E1mOOgOyi32dnVlSejJzhw6DDnX3QJCxbM4PDG1cRUEdnuZ9dn7zJj4igE3aCgoRohH6ekxEU+2EONX6Bm5ljeePBeiutqWffRG0wYNx6TbBCPx/BZrGTSSfYc6iSbjKCZzFh9jcycPZbOQzt54923MLAgeMqJhmKkVZV0IkcyD4UFxWRiKXKawVA0jqekkFBMoba8hH3f7GTUuKlEBzrZGXKRSSb/Lab+R4P+UCjM6+99RCKaIZlTQFGwuqzEc2nMAmh5Ba/bTVIU8VSUMqq2nr5jbax673UCXi+tnZ2Y3R5s3jr2HO3BbLcje0to6w5iLaxgUAUjlWL/7t1IBtSOrKc/GEQUwFLkxxIMoYsakt1BKhRG0zQ0RSEvC1hEiWQmhd3i4OiJEwiiiGjoqKpCQWEJ/sIy8qLEBVdcyvuv/APZ7CSrgEiegymV5VddzMoVL9Dd9za6nud471vkDAGLnmMgkcIqW/nim6+RJZELTjsLQc8g+fahphJIkkgsq5FMpTj36otp2r6fgcEh6uZfiaZqBBMGacOMz+6i5chhXMVVtIdE9uzZgc3moy+RZvrpl/PZhysRDZ2Av5JcSmXq+Ols+HQlFtNCjja14nXbcNhM+CuK8eWsdG75lppTLkDFRUHdqbQc6eaUxecT6TxI7cyz+GzlY2RVibL6MbhtLoLZBD+/70EOnThBJJFi/PxraG9+kYXzFjF0bA8TZ8xmxKmXcddtt7L40kvZ89WHmASJobCTVCbFO4/eDVY71931JBteuQeb34uWziCZTAiGgJrPYjZbaWtqIhmJUDv+DGrGjWTbhu8Z7O9g4XnLGWjahbdUZ+/a95HyKhowb/4pVPhTGBkNx+SLCLXvJJjUEU+m5WZJIpdVkCSBSDROTssjCDJqLo/ZZmPdhs3UjfCBZnD5pT9m41cfc9by29mx9hOMXArZkBAtFswmCxSZMMkmaifOoTcYpryximQizkhXOaOnnUYopaLEhzh+4AjHDv4CXdPQMPju22/ZtH4jN//iDjyuYrZu/I7Du34gp4sIdhtnzplOy4koxRdVsvbLz1BsZZSVVXPs4BE6jzVx+kXn8fRDjzBj0TxGlNbiKnBgMVtJpRWUeALxZBacFyUUs4VX3ngDf2EJff0DvPTU43SFomjpFEUFbnJ5lcIiN2aLmfajm/A6FbLZNLmcjt1VQG/794Tje7EombCpAAAgAElEQVSabSw+8yw8fifX3nQjB3ZsGxYSKWnqyv2Iuk5aE5hyymR8fi8rX3keQdP+y2Y4nk0zZsJU7hswWPG3rzCEPFbBwqgxUwkZcZx2G6IoYZLM1I8fz7ebjlLitxMLJnB5Cnn0wUcIh2LokoLPZsfQBfpzMl09STLrPmbSrCvwVbrZtncDJ07spaS8AaenHjWXo6n5KN1mNz1hG4mBo1xz2+1ohsDWV77Gmh9m3BmCgWAIGHn9XyxYhjU6upY/6X6rk0ynaWtrJp7IcHjnQXQjz+EDv8NstZHRsjz36EMEoxKVJWa+/mETt//sQUKRIHMXzUcyWViz4TvMcjUTp0xlcCDMZ+tW0957BEES+L7JYFxtPQCrt++iprqUmJrmwqsuJ9g3yI7NOxg3Zfq/xdX/aNBPqQp7woPIKZ2KyiqG+vvJi1ayhoYga1iLizFEHX0oSbClhxNt3dRXlZPtHODEgcPU11WSTUShwI/uttOVTmPkEsSULIWBUgbauzGkZvw1FVw0dzb79+6haEwtB7s7MMwqIT2D2+OhrqQIraqUtnSEQsmM3+ZAKismOhhkMJehq7mdoiI/4WAER4GfhJShO9GH2evgrqd+h5jJoPskBnv68djsKFaVtMMg4rGiZ5PUNoxAykskmtvIKTqGppOXFUQEyqZMIDKU5L7fPkGhv5hcTiMW7CIQqOS3v7uDVa+8hmVkBeUjAqzbsJLK2tGkIwqKP0WwLcQXe39g/57n+dHsy1FUBcGcpLFqBm0dbajpFLLJQleuG1HV6W/+kgKHmd3fb8Tr9ZHVFfo6OliigZZV0HM52rubOO2iq4cHkUgmjh/r5ItjhxndUI8sFzChsZLoYD/hL17DwMyjf3uNIredMXUj0ZQkl1z0U9ItMUoLx3B8qJviAjefH2vikWefpnnLBgYHB3G5XKQyeWaceRETGot598XfcSLYTk1wCH9lOW2tA5TX1GO2F3HHnT/lzVffxOFxI5okRNFGXk2jywaaYOK7rZu5ZPRsWg9/h2SyohmwZe2HtB37ntJx51E+cgx6XkbXdARBwzB0NGRSmSh2u410OgnICKKAKElomkKB00UykcFlkdmw8UtEWxWfvv8xPq+VyRNGcPjgMfIyGKrBzfc/yudvvcKKlS9SHShj0ZKpfPvJe9gcHhonnIJh6Pz8jw9yYOsWbA43mqpxdPu3OB0BDLIkE1HmLJnH97t38ZM77qNlz3b+/uwzPPvpZqotAh+uG0WBr4pEPElfTzPnLplAdXU1uUyGa2+9mXQmhsNu55NVryHabJxz0WXE8woNZTWsfv9tNu/YyW33/Yz9mw9x+qKF/PmRR0lFBzmwex9zfnQqNgOSmQxd7d3UN46k1G3nSEeEvkg3y+95kpWvfYmgiOSVPIquIposTDvrbh59ah0zZ9ciRY6RzeZw2OyIImQEE5JkIKWSxOMpcpk0Hp8fXckRiSc4aGnHKrlRNYXyBifBLjA77PTu6OZn98/nm/f/TlpzUmoM4vRZ2XWgj0B1LYWFHrr7BpBNOha7E4+/hInjqnkl/DVenwfZZmPW3FJefPp5DCGPqLq45PILeOShh1BzOex2G3fdfyN/efApZHsh37z3OuMmT6S6ovQkC88YplH/l5Bm2OBqWJGsI52c+YAAmdywARtkiCpZZBEETUMVDExmM4oGXq+EYmj8+ra70OxmrrjzDxgqiDLcMGYRGCKyJFM2SmbW7PMRtR5ARDxJt33jrQ+Y0jia4ppJaCM1gt1xDu3fSWffERqV8f8WV4X/dkjyf8hy+13G6Ml1FDVUE+ofpNBfSHRoiFhoCLduwoyMWTaj5Q3y6RSS20ZOySJqGlgsWBSVbM4gnlaw1fnp7+khUFFMuiOEt66EdHMXuBwUllWi5BVkr5NcOoXF4qCnrwer1YojqzK+spwvDh6gwGxHBNLpNKLdRl7TcTjtLDhlIvsG+gi2dCMYEA0NUVBRgaKqFBSXEO0b4Prrb+LFN14gEwrjlG0sPe9sNu3eyVBHF4YGvvJSsvEkcj6PklYxNZYhpWTydhE1EsFbVEzaBPU1NWi5PMf2HcBlM5FXVGLhIarLqukOB0nGk3j9fjLhMN6CQpJ5BbMoMhgdoq6kkmwsS8ZmkA0rFMsCrtIA+ahCT0cTk6dPplVTEGQRb3mAwd4+jLzGL5ZfxzNvvMupjYuRRCsgYjGb0NQoR/ceRZYUurtaSHpUqhsa6D/RzMcvreLDD1bj9hexfddeDjXvQXAIlFSU03eolT8//CIrH3kAX1Ux9993L3uak2zfsZfNH61k7uy5tLQcJ5fLoAoC/X09VJeVcs8TT/CX3/6G85aeyfH0eKyyzq6dW+ja/Q0/v+MannnmFdzeQq75yU0k8jIpxYXHptDSOcTql+9FEk1YZImGChexbIZs9UROnzyPI00tJEWNo1s2YVYyaHmRkeUCmqbR3N6DYJjRdQ3ZYqO8qpCmI22UBMxYzDZMkgPJ5SeTiOOtnEHD1EUImk5ZuZ1YNM/ZF87h+Qfvoa8pgqBnmLn0dux2B28/8zN+8ch1qPk0H7z8HnmTleuvupihfJyNX25AxsRl1yznRFcXF511EY/+9i8MpPoxuSQivVHuuPsPdHeEEPJgc1lwWEyYPIWcMiLP8w89TV7X+Mk9vySdjbJlzXecuXQpcTVLoeAkHE+SzKXYsvE75i2ajsXvZdv6vcw5dRbPPfwnHLLEmu3bGTO6kVKfF5MksHv/IZx+Lz09Q9Q3lnMo58DmLqOqeiL1gXLG1lXz+Zov6Wv/ApejjuLGGYSjMRrrPJiTYXo6B5B9Hh564HfccecfECQ78VA/UyaNZPK5N/DuM4+zY+3n2Bzm4Uaorg+TNwSRZ5/9Gx0dQ/jrKvnq5X9g8TlwWt0cPnAQl8tNRUMtwbyfCr+DMVPGsWPD1yxedi57D7SydNkZJ7MnnfXffMX5y87gYHsfYysLsFqcRONJnB4nMgLPv/M+4VCQ8XUNdPd0keoboqpuDHv3rWPxhAY2b93NZVdcQXfrCURBIJZX0XWDjq5BquvLKTEZZBWNeDyG1eFAkiQkRHTyvPPpelRZIBsapGDxAna/+w0TSos5a/kNfPH5e5xz3vl0D4TY1LSHgpjB7HkL8QYKOLx5PThdTB5RQUvISaynmfsf/A3333IdLr+HqGZiwogKNHKUjplOf1sLDZVlzDnzvN2GYUz973D1Pxr07R6HcfqVS+kc6kfO5qipqycXimPNZjh64ChOkxlJtmNx2MhoCkk5h9WQkS02fOUFpLIKbmcBTdu2UTthLH3RIdSeQfwVJeTaekhkU/hHj8LqcRFJxEhFIthdblRdIBMZxKKZuOOOuyktKue3j9xDJp6myOnGEXAxFIqhKTnUdJa8pqOaTTgkiXwyiVmQMFsdJBIRNElEFmVsJgeansTh9dDX0cMFy87ks41b0eJZLFYorK3GsFlIH2xFn1RFMhLGFFaoHN1Af2cPFp8bySyjqDqSVcZiMXNo+w5KnH5cNjMBTzGdHe2oWg5FBKvZjGAyIVmtFLo9BLv6mTt3AUuWns3TK54mMRDEVFCAKuogGtx78Y20pPvYsHkbEVSWzpzFq++/Syadpc5ZR+OYBjyJLGGbHY/Vy6GdG5hz4c1sWP8t5lQX8UiIeGgIW30RqqGhRFIsO/dPhCJBAoVVXHv1bN54awPxHHz9wVssOX8ZXqebbz58nsVzl7Bnzzcsv/1eZKuF9oO76W3ZT0e4j+X33M3zb77K4vEX8taqv1KqG8yZNZljR45y7kWXEo9EGD9lOqUjx/LKY4+QMVQGO5q57LLLeeH9T5g4ooGf3/d7Nqx+DVQD0WrBO3IaL7z6V9p6e3E6zai9aQYcOkJaZX7lKC6+6hLMgkh/dJA7bv4Vb7z3JslomN17dvPGK6/y1dq1HD64j5Wvvsk7733Mnm1r2fPDdqYtXMxHXx/g4jMmYrE7kSSRG2+4iuU3vkI2l8DlKyQS7MXp8fDCIzehqFkMVcdqt2Iyy4hAJplAkk3ohk5eVfEtnIhbl+nbdYCM04qaVfBZrLiqKynSE+Ty4C2roUNM8fPlvyC1axM2k2m435HNEEqkCLg9JLNxBFHm9CWnoWpgsllYveptBDP4CkvJpHPMXzCPF598BCWT4lBPhPvuuQ+bz07D2KmomkZfby+BQAA1q5ITFbZu2MKSM0+jv2cIXU8SCw7RGsrS09bKzkM7OP1HZ+Opm4FN1vns/ZWc/ePb0NN5BHF4yMmwjbiMllN477G7MPQ0giBjFgR0SSedyuBwOmhvb8XrLyKbzaDrYDXJpNMKej6L1Wrl6dde5LmnX6O8YQHBvjBbtr7EZVfeQDKuYbeB123nlQ9eIdkWwRRwYXa4sYg6UjKIVzG47r4/suaFh4nWV0NhCUsaFiCZzLT1tXFk7yBFcheNU2fi8ZXjcVswMlBtS9Cm2HF4/GQSMdLxJC3dXXT19CObDeyyjMNmx1tcis3sQBAF3D43x3bvoKKuDgmd0kAhuqbzwTurKBw/nrtuvpHbf3UHzz32BKKmIRoGq9dsJZNJEU8kyKbSDA0OkVc1QuFBJA3skkCgyEsoOITZYuV3T/8FVdUpcvr/34O+IAivAEuBoGEY407u+YF3gRqgHbjEMIyIMOz08zRwFpAGlhuGsefkPdcAvz352D8ZhvHa/xPom62yccriqYR7BhHMMomhMPVjx6DkcogWCUGWQddwprOcvfg0/vrZ+9SNqGNo63FsNvuwoFqS0HQQBeOkh8hwGiaIEulwP1PH17OnuQ9NtiFJEnpewypBxgEZJYM5o2ExRFQJ5CIXal5FzmrDfjXRGIqWRzLM4K1Bjzeh6wYmhs3fNCF/UkssAwLJZBJfoBTv7DHs+OxLLvzpLXzwj5cpslmwIiIaInfctwKbxcruvcfAamXXV29w7c2/4u2X/4ZVFjj36mt57+UVZPUMwb5WBJNETskxYfR4jp44RlRQceaH3SOzkoApm8dVW8rVp9/Avh1fc2LfHqIFHsrkqcwYX4Oj1MrUsfNpb/2cyYsuYceJbRzctoN8Tx+YzCjJOJW1tQgmM9H+AdJqnp2dHUyoP5VpC5bx7lur8JsUwoO9xLNDLP/xjWh5J5cvHsfKTQO0x48T6WgmI2fwOn0cbNqH1+1DS2W56Se/4fUnXmDRWfNYftVlvPruV0SjChv2vUtdWQV9epZoYghneRkm2YzXkEm291JcV0GwV2fRpPPI5kGUZRKhEG5vEUZewGI3o+SyKFkFp1lFla1kkkNYHMUYSpg1q/6EIZnQFZHnXnqSh35/N3ZZ4lhrCADJZEKV3YSjHQSsfpAl0FRsM6o5cewoE6dNpUIt4MDmrQiagWgR+eazTznttCU88dSj3HjLL3B4a5DVQV579TnOvexmJo4qQ5Q8JGNhHFYHpZVFRGI5lPQggmQQiaVwGCKqTUbXNGIWA73IgSiZceQlBtNR3KUBXnzgecw2B2Je4+67Lmdk7ThioSA5i42W3jakvEBVVSm2vhDFYxs43tGNE5HIYISolmPxvMUsmzgZt8/Ohx9+we6mQ/zp8d/z3Uffs3jxAq6//iYmjKpk14EQj73w5HCUbBhYZRNvrWlBN0S8Fgvhw6+jGwYmqwdHcTFLTlvGm08/iGw2029oNMVi1JaNwW/10mv00dfVRiaa5DcPrOKdT1agKCFycZXl59/KD+s+Ie7QqS6pYmJtKVvX/UCbGGXHps2cd/Y5WFIiMjacpQUEB4M0VtUjSTIOj4s1G7/A6nAxf/J8jg814Td7aagfh2gWGOzqIa6k2bF7F/0tHUycM5poNoZFsLL69W9YsOxU1nyxgUk/mk4iEcXuNCEoGtP9tehOCwdy3YiShDtlQzWpxGIRGoQCNq7fStmMUVT7i/h+y/eMX3IqUl7kpgtvJKupNHXv4/tNO7BUeWk/dpyeNTspKvBw1lXnc/1l1yNIMjbLsIeXzWpmKJEjH+7jpsf+QFFlCdm+fspLqzhj/lIKy2r5069uIu1yIdslQvuaOOvMm9m79wtmnzGfa678MZI+PBUs0dXPrrYsZ54+mqLC8v8t0J8HJIHX/wX0HwXChmE8LAjCPYDPMIxfC4JwFnD7SdCfATxtGMaMk38Su4CpDLOidgNTDMOI/LuznUUeo2Z2I7m8ipTRsBd6CDV3YxYkTJIJq81CVV0VR7ftIZNTkO0WnF4f+WAcl9kBDHtpC4KAaAjogkE2m8Usy4iCRCo2yOTGCrYd7sRfVIYhioiCSF5NELFomC1W0kNh3JINTCKG3YSsGuQSKUT9pO5NMIjlFYrKKxns78FXVo7HgHBvP4qWRZbNiIaESZLJqjmUXA5nRQnl82ZhyStU27188OE76JE0gbJS7rp/BU+vfBCrw4kSzqBqCRYuOJtNX3+NzQJRJY1uiFTZLDS1NCHa7JgkGU9NNUm/lWkzpvHKX59iRFk5SS1PJBpmVN0YDh/fx/SZpzLKF2Dn99uZVX8xPq+PwkI3O3cM0NW3ingmjh5wISZTzG4YjZpVMJnN6BpYrTZUTaV7KMbCpQtY+8U6IklIGG5qvCZqplWzftcB6upnsXTWdD59721ShXmktMbg0BBms8SUs5fQfOAg4f4BdAM8mhkhb0NwOokOdYAoMmvOxWzZ9CaF5cXYKwPs372TkKFT4HRQrlvpHxpiwpJF5IbCDLQPYBfB7vGRTWeZNPpU6kY20tM+yJ6j31JdMZILzlpMKq3y1hsvM3/haZgMnVeffRZrfTFqoYvQQCeBEQ3ox4M889RrmAWD5/90N1LATxcJnr7t13y6cT0f7lpPwOsl43bSuWc/U+pHc92FV5JJw6iSMnrSITZ/vZbcUBtabQ27TjSzsGYKUqmbwzu+5/EHnuHCe65GVfPcuPg81n23nq5cCsJRipMy46ZN49KbbyAeDfHx62+TjJoprCxjwZwJBKMpHr//HmwWM1n3cACx4q9P8PjLXxJxBXno0pu44Pxz8U8dTSId58m7HsXukFE1GBiMEh/IMWFyOWs3fE9NbQnj68fwt3dfZ97kaZSX1aAM9XD84DFGT53Cps+/5KzLrmCwu4VoJM2cRfOwme3s2LGN1rCXVf/4M5dceSd0reFHV13N3/9wDzMWX8DMuYv4+0N3cc/fVvH4Hdfy6Mo3uXTJEp566e8c78lyxvyJnDh6iP5wmFJ3AE3QCadiWCxWPty0jRFGhuJAEQeOnMAQRL769GtOmTWd/XsOMWbSKCprx3L1NVfxxMN/psjnQjW7iUbDWCxW8prC9kwbHd2tNI4YS661jV/feAf9rR1cetnlpBMJRJeLwZ5uPl39Ib+89/dkcmmefPgJ9mf6IKkwqnwkYxoamDC+EV9RgIt+cTW6aDDQ1kFlbS02pwOry06yZ4C59fOIZVJ0xzqZUDEOQ9ORdIOeWIRupQ8xkWNC/WRMhsaWrZuZMfdUTp+/AKcEgslEOm9Q6LaiY8LqsPLkA7+j40QnESlP7Y+mUegvJBGJkBkMU3vKAoIHDnMg14kaioHdSi6R5MIFVxIIVGExiaRi/QhpiXhKBjScJSP41Q2L/vfKO4Ig1ACf/wvoHwcWGIbRJwhCKbDRMIxGQRBWnHz/9r9e98+XYRg3ndz/v1z3f7d8JQWGfUwAJxKl5RV0DHQj5cBuMZMZSiBJAiazBZ+3gMIiD0e37yEwbhRDh9pwmK3D3/2kn80/xclqLodkEvnpT5fz1uvvkEoniIZTuP3+4QHYgkgunSAfcJNPJMnGYnhMVnSLBUwGNllGkCTSQ3GuX34NVhv89aNPqCkuIWnS6e/rBwR0JYMjpGCSJNBBFwVyioIkSlRX1WGd3MCeLZswZXKkFZWAycxAR4SCGQ2IAkQHQ0iaRiiVwW2zUuIrIq7nMJtMyEAykcSbzpBMZHEunUHH/qN4RtSSjcdJ7zmC0+6m6kfTONHeicdkoaSxlm3frKV6bCPVDY0c/nwtCxsvoTPeSd4Twy8aSDmVVDRO1XmLWfXSK1xz8SUIgkh/ayeB/gSyLGJzOjnQdILmriBXnrmYzfsPUlpSg3VsJevXfA6GyIJFZ/D97k2MHjWO8o4hzrv0Am7/xzOkohFsbifVxaVEwjFEBQrsRYw7bRobPvyCysnjyLkDxFv2EYyEKS4vpqm3B8FlpcpdiDoYYaCrC9/IBmqrKuncd4yqskq62jro6e2npqYGf0U1hSUeRMPM0X0HqKospqdjgJq6CTgdjVjFFBs/foGiuWM52N1M44SxmFMW1EGYNf4S8qKIquYYMHbjKhJo+WEnFXMnsWbVe0w9bxnmvIrS2U/tzJk093QRPtTOnCnnsOHAR9Q53WR0lWOtxzHsburrapCsVo6s3cwNN99CHo0fNn+HntcRPFZ8gWKCu47y3qp3WPnHe9kjCjRWjGD25BlMmT6dOx75Lbl4nAnOAhYsvpoPtn7MrDFTmDV9Bi3dx/nkkw+JDcY4dfLVHB/YQyBgYtMP3zK1pJqYLKCVFhPs6iFl1hhsG2Qw3MKEMXM4d/zFGJLAJcumsHzRElZ++zlvPPcwN9z9ENs/fpdvd3yH08jgrFmCxWEn5Z7Aph1vU+Dw0Na6h5HTJqOoJob6Wxhatw2T3c68c65mwwcrQDChqXmeWPEM5VUVdJ04wZRpUyET5977f8P3J45TbKvkwcee4J7n7icRDXPs0HGumHcpM6aN5JsvN9BQV8OP5sznkcef5sLLl1JUOgK/x8H4UY28+tc/ki89hdJCBx0D7XSlIoQSIbqVKJlEAotsY1zlCK6deSZ5NceGTfu56fbraW46wfdtexnlr+fwgR1c95NbyOdzmC0u/vL7X3Lnz3/Oj+/9BQwmKJk5ia72YxT6Czh8YC/1U05hSv1Yvvzsc5ZOPYvrrr8OQ8wjCvDiO6sQ1fH0htqpKMkyacR4Etk8kmwinOzD53MRivfRfFTEJFiZNaOQv//pCczeEjRD4b4H/8wf774FPRvn9ntu5avDu4m39PD8sy+SCMfZ+v0OdrbsxJNVWP7Ta3nyiZVcd+sNfPXWRyw+ezFHd+xi4cUX0Nveg6JrjBwzhn+s2s3vbz/z/3PQjxqG4f2XzyOGYfgEQfgceNgwjM0n978Ffn0S9K2GYfzp5P79QMYwjMf/m7N+AvwEQLaZppQ0lmCzO0gOhEHLIwjgcLowW2xE+vuIFbkIZET8I6uRUjmqC8vJReN09PYinnSfsxk6BhKyLKPkFEySjlU2kCVAtHLFDdczsnEksslFOpNkx+5dzJg2fbgZWlJCNByjp6eLgoJCYvEotQ31SIIZ2YCWjhO43B58vkLMZhOapnPlbVchW8xMmTSVeImfno4WLAZk+kKISFy99CKefefv9LcNUFk6LM+X0xbkGg9KLInL4yEeCYHVhGGW0OM5rFqGfGEBRiqD02YnF0mgJuIoVjNywIfDYqNo/EjsmsFgazdZtwO/w05rWwd+yYLZbsc/vgGTkoVEls6hIL1Hm8iazCiygRhOMGXkKOJ6GmdJKf3hIJ3f7WXCmfM5tHM33rjG9EuWMiaR5tPvdjBx6ixEm5XDP2xi6aUXUlJdylffbeZQexPu+mpGB0oIdwfp37WPD1/6G6ff/Rtki41ZC+fQHYrT9f1OHCVFlFWOYO/29XhNBWh2mYqR1ajRFD3d7VSfMp4tW7czafFcAqpEtKOXQYtG3hCRBQN7JIPT5OHovj243UVMmDqZ3v4QJklAd5oJWzPYg1kKysrIWA2MsEEyE6drzwFGzBqNy1/Mifbj2EIZvO4q7r3jfrbuSRJPDtBn3oGiZsgnEmRFjUg0zYi6KqpGj4bDrbShIxgqiZ4oukkjUFrEjjc+pWB6HZF0DkExcFkl5s+YzScffM7sM5cQz8TYvXs3EyaMIzeUI2lkGWrtpMQkU1hRQ1JUcRQGGFNSQ07TaYl0oYRjON1efnr2tTzw9uOIyQw/u/CnNHc3093chs0ToP3wATJ+M2anjcF0CFdGIWoFwWojPjjE3LlzWeAu4/H33mTMuDpERefKy3/O6MpqVn/6ESMnzsAuaYwfOwpRltn//WZmzZ3Lw7++E9WUY01nL6888QaCkeO5r15k75btSLJIsDnM7EmTKbS5CVWZWH7O5by54k3uvf2XSEqWFY8/xrIfX00yGmXnpjU0tZzA5ffS0d5L1dhRrDm+k8kzZ3LluKn88aO3EKxmTq+Zw6XnLCMYGmD1qlWMbWxg7eZNjBk9nukz5jBl2mR+e/dtGDmdE2UutFycESPq6E+EyacS4PIRaevAnnVx2fyfUGwepD3Uz1nnnIVokgj2d1FV1cj+vXuYOWMWVreHZ15/jlNrRvPJpo0YTg8b939F5EQrSAIWXaS4ppK2Y+1UN9bywdOvkc4N0zNlk8wrzz3K4lMXk8qmaO8a4NTTFhPp7ubZpx/hhN2gsLIcn2TB73Bzxqzr+PrTb9m65kNiOCgzd/Pnj9/CZXXjSsbw+IvQtSyZVBR/ZSVuQeLqCy/mpjvvYteuXdicbubOW4Bugkj/IM7iADZDw2WzUllTTSwWJpUf9tevLav9/w30vwD+8r+A/t3AIsDyv4B+2jCMJ/7duS6vy3BX+jApGtl0GkMSsLscDGZTmP1Ops+YTaKjj0wkTdvxozgLSigMlJAKhdHFHBIiJQUF9HZ0omfylPqd3PSzn/PXx5+huMBP32AHsuhDOpkVyIKJvJ4nlctgs9mRDAFBMIYHFUsSgmCAriMKJiRZQM+rCAjkUMGQTw6AMFAdGdLpDF5/AXVnL8Uiaxz87juyvUPoSg7BaeXcc5fxw0cbmXfWuax+cxULF87FXVHOK2+9RGVtJUJORxF1VFXj9LGT2dRxjPDgAEY6Q2lVDZHePpR0Clk0oaGTkCXGLJjG/i3bqamuxVXio2nHbnyVNRRXllNWWcy6j7/AEVGYcfYSPv9gNeOWnNd/wZUAACAASURBVEZeSZMTBWqqqmgODZLq6RgWaFnM6JEkbcebOXXuTL5c/QkeiwMxFsdAYtTiH5GXstTVjiQ0EKetv5mBpmYqKyo40NbM2bPns/WjL5m8bAmp/n7MI6oI9/bgb6wj1xkiOjRIOBrDCA5Rf+oM4r1hRtTUsGfDBpxlxWQsOmWBUo4P9aEkUlR4CwlbJBpHVBMZGqJ96340XWdK9SSC/X1kZB1vbSnVM8exdcMWxtbWkE0mGdx7jG4lS4WvBCGexxvwERnqomT2JGKqhtwXQ49mKCuvxe8tY8ToCxnKrUWocNLd2kx5VS2b1q+huKqG/liYbN8QSSVHkcvNxNmzaD10FFnUqGocjV8R2NNxDLvbQ7Xby4Zv1jGupoHvvt3AJTdfS78Z4gdb8dVW0LN3P9m0Qk8kSH1RCWlRxxoIYNF8pHr7cZbaSPT0IdeXIbUnMBwCNkcA3ZynSHbwxD0PUOxzsnH7NsJHjjJhwRw+XvMFXxw/hCvgQQ0GsXTFGYgkWPPFl6z77GsSoS6293ZyaNMP1BYVk0/HmTCugX2pLLdffycWGR76w2O8+tpL2NwuenuCFJcWoOsaO9Z9xZb9zcybNZWXnnqEYAK++PorBnua+WDVi6w4sJf6yhpmOgu5+a7fk+1r4rVXV3LhtbfRfLSF0iIrD/7hEe74+W0MxTMsOudc3l/1Gpcsv4av3nuH6rGNfP3DGgytij/c+mMS6RzPPv4w0YROniSl5WX4TFYuvvFWLlw4A39dLX/4w58Z6G7npXc+oc8SJ9regaeslDf++CxWs0BLUzMV1bUgyZjNJnTDQMmmyWVzpDMZLCYTT/z+12yMtXPdvAvI5zMMRKIc7O8m2tPKaWecyUA8xJAkIvvcGKk0BTEV2gZxndKAbnFyMNRC5mAXF57+G9556pfULD6FaC6Fz+8lYla4bekV2CUzmz/9klg6yfmnLSbS082Iyhqe/XYTR0NN1JdVMMIdQOuPMX/ONOKZFCbRxZH1a+mPRejuiSIHxvLnp/5CsOsEad3Et+s3smDRBGpKi8Aw0DUNi0Umj4lYPMrc6XP+zyzvWN22/0HdWwbJVe5tv79l7T093eOu0Zm4EyEQIVhwd5dsAmyBDRsIsrFsATbsoAlOQoAQQRLiIW4TmchMxl172nXJ+2GoXed8eJ/31KlTp55n9Yde1dV1r/Vh1XX/1/++7utn5JRmUzJpAk17DhILBhE0Hd1hQTYEsnKzCPjD6L4g3nCQ3PJyREkiGo0Qj8WwIZEIBtASSW674RYC/gCqHkfVDNweD0erT9LTHSAZ17CZzP/J6Rkk0Ui/RckOxhTfc9fVLP94DQKDNCuRQd+upiWRJIVYxIvZlgoIdHmSuAyBdIuFAZsFPRHDbjYTaOoilogz7pK5pKZ66NxxECMvnScfehFvKMTU8cO4dO5MRs+ZQl1LCyGfD2+/F3eGB29fP0MnjaV2xx4ETSART6JG49z+4hN89fa72IpKcAeT1PfWYdFF4i4r8y6cS4+u4u/qoLSwiN0rN5CfXchA/wDKiCKEWIyMvCzqauoI9HSiiCKZJXnEBqLYUpzodhN9VWfAZiPZ3svcpx/FUJMEujrZv+5H8saOIVDfRAoKeVPGo1hkTvy4iaRhDJKBrHbCSRWHrJA6YwK+zjbsWTn0HKiirKScgC+Av7sbq8eFkpZJOODDHtewiBI+MU6ZK5OpU2YjpjrZvGcLveYkWa40Is2duPJyKEoq/LJlB7LJibsoB8WiUHVyP8MKixFSUpgwaRxbvvyOZCxJ9tByCp05HD16ivzbptK29yDZQ4Zi9ukktQRySKRgVgWXDF/IZ9s/pmx0GTa7g1+2bWHy+DEMiALtx07R4etn5siJNDSeo2LmZLS4Sld/D8SieDJzqKs9ixiMkFZWwrmTJ5k3eSrbN/5K+eUzKc0r4MevVuPIycaIJ0l1uKg/VIUt1UPRhZMI9/vILC2lbucBSocVk1FcxulD+8g329F1J67yXKqPnuSnt1fw+C0P8/Kyl9i57nvm3XAjP3/6ISNLCjlVW4c3KXHnot/RWl+DoRvEknEURWbj5+/T19tLxdhp1NTW0NHVQSwUI8OTyZ+WLCFpsWG1Kexev46IX2XGwisYNryMhG5w0VUX8s7zf8OwWBB0HUEU+OnTFcy4fCEh3wCtkQRzp01D1w1++OwDTp+sxmKWsaZYWfLGcgYCQQ7t2cm4iVNY+806Hlq8iG+//o5Lrr2WvRvXklZQQlNtDbIaZual16AisXfbLn767nOe+8cbKCYbtdUnObR9K7WnD1F53hVcOH861lQ3AJoKgqjzh3sf4du1n9Pjj4IADWdO01LfQFphPmmF+fT29NDZ2cmUCRMxyyaWPvkwTz/zKhvWr2XrprVkj5iIqoY4Hmgjpagca6qV1j2HCOoqzhQnrpw8Yj4fmiIxeswogoEALWfrKCmeTKVJwjJ+Nv5963jo8SfQVQPV14MpJZ1wMoCUlEjxZGNzWBnw9bPolScIRsOYzRYEk0JKbSutHRpX3ngvW1Yt483vPqOjoZERlcM4t28PldNn4jTb6OgfQLA5CPX34UpxoOv6bwziwR1joiQxtKj8fyv6/283Z60H7gBe++173f/l998JgrCKwYVc/28TwybgFUEQ3L/9bz7w1P/pIolonMwLJ2D0BhDdNoRIBDWpYYpr6LEEneEmFIsFSVIY8+D1nP3iF1LcqcR9YVxuD4lghDG3XUNxRh4Xlo8mEQzw52ee5rW/vkxWXjr7dv/K4vvuoSA7i6effRyz3Y2GOPgRVLwDISRpMPHwrTfepjQvD388wfU3XkvNiSMMHzGE79dtYsKEEYyoGMX7769G1TVmu7Ipcsk0BVQuHzuRu++/h+UffYxzdiprdx2jwl7ENXPPp65sJLv2H2LpHx/k7eXvs+mHNUQ9KdTHItQ11FFRXoHJZCa7IJfMscPRegNYC7KRXA6ipxvRctzEzQKi4mTe2DksmLOAf3z+Nzzpdo7uO8i2b9eRMXYcwbo6Tm3bR+mYkXScbKJoZAVCZhoWyUw8kWDc+Al0NDSSP7yc5u5ODPqYNmcO3339FUpMZ8Jtl9J9rJpf13xD7pBiosfacRtWWo+fQAmoaOkuQhs3kzVkGDnlQwh1eCERQcGMUzYjCgamQAS7ptB+sApLHCqHjebkkcNEBRFZ1SjIcdPc383tN9/N6q8+4+HbH0T0DvDg00/w+9tuJl/Q8EaT9LQ388idD3Hu7Fk6mtq46OJL0cM+1ISK3SpyThDobesiojbSWl3NlFGz+OST5byx5Ek+XreekfPO5/l5NzH1xRWoyTj/fnUJH67+how5E+mI9iKYIjTWnqW3pwO7BtFEgO8+/4L5N9+CnGInQ9T4+MmX+PLdN0n0xbjjD8/y/OOLKcrI4IU3P0QYVcT6F5axZ98Brr5sDANhP2sjQaR4gi5vP8MrK2hq7iJuxEHR0dMdlOUXEejspF/XUXo78WSmUFd1lL/fuhh1xiVoSYEUVwr3LnqFssxKZs+5lq0/fs7BrZsYNnUaGz75EJvNjKhIXHfvw3ijST744AfmX1gOgogsm4jHVXq8fsKBIAO93bz2r3/yxcef8867H/LWFysJRmNIyQSr//0hiiKTl5dD8fASIrrKPffcws1X30HhqPHUHD+CJEkgCFx9/928u+xbHv3jQ5TEYigmK5//6xXKcjOZ9OyrFObm8f336+kNhPjirX9yx2NPsPbzj3BZTINwIUnGUFX8/d1s3r6L9prT5A4fzs6N60EQ6Ory0drnxYSEbDJROmIknoxMhtdW0tjUjdWdBuhoqkYwHEJSFLREP78eOETN8ROgC0xZeClbl39AwiFgeFLobW+lNDUdZ5aDl+57FkmKMWP+VWQ4bOi6gaNiCs39a3B4HCQjQdpPVuMozCQtqfLpa+9gESwseft1GrtaMdq8DI1LvPePj0iikIwm6OhtYdifX2LbsS3s+OBbFj35GKKmcdn0edQ11XCq6hj7t25n957tJN059Aa7yZ5QSaCjg5deX0phThHEY9x9z3w03aBDHAQRtfiSNK5ayeU334HNYUdVk7hcTnRdI5FMIokSktkMgo6aTPyXuvr/xL2zksFKPR3oBpYAa4HVQCHQAlxnGIb3N8vmO8ACBi2bdxmGcfi3ce4Gnv5t2JcNw/j4/yT6WQW5xoArhtETwGRIpDpcyEAynsDQdERRx2S30W4BT0oWcl8feblDSMQjmE0merwDlM4dSyKUZIw/jtViRpBEzFYrIa8Xk8U02L5B4OsNm7FZHWiGhjstE79vALPJymtv/hNPhocUk41vP/sILZlEsZjxD3jp6+1i5JChBEMBPLklZGYXsGvvYZ5f8ntuvfxKXv/wE5Ysvo0/Pvcae/bs5tDh08ycPYn3PnifUXfewus33c76VSvZt20LZSNHUVqQz02LFzPmsrloukC8v4fi6efR1nSOQDLG7Ivm0XGmmZqzp4m2dyFlp2OWTUyYdQF7Nqzl+gceoKuzldo9pxmalceve7fgLivgkiuvpLq6iv5zzXTVNaKl2Jk4fwGN52oY6BqgMM2NZVg+XY0NmFMcJAYCXLLgItZ9shJHaSGOJFx63UJqOzvZseobZs2/gl1rvycl04XW2o8m6qTk5aMFA5gMBZ+vD5tiZvWPm9m0cSONp07g9fmprj1B5qgRmP0hZlWOJz0jnU9Xf0tOppu4LtDc3Y2uJsnJyuWTT1ay/LWnmHXrIta99QErN6xk+LASkJz8/e1/sXfjz7hzcmmrOUSq3cnqtfuYNiGXm/74HCv+9SaKoDKybATzb74LEZ3H77yGUeMnsKb6CHu+383Hf38ep82BpiaIJiJYBInps6ZRMvFC7r7lRqbMms+O7Tt5Z+kSXv/3Ci6fPx+by8Hqb77l9deXctNlc+nu7mPx0y8Q84bpbD2EWVEgPRunaOb8hTew8cef6T3xC2HN4KBDpL2/F60nRJrbQ180TLCmloLhFdQePsSchx7g6KZNZBYXkZriJDU1lVHmS9C0EIqg0ufrIzM7n2QyxtY1K1lww21kpOuUlBQzZnQl0aAPTbKyce1qWgbMzLlgCtVHq7n2+vnYzDKxZILaU6dpqqlHcHnISXfi7/WSWzyEzAw3Hk8Khq4TDEfwhwaTT88eq+K7zzbw5qr3WbFsA1F0Hnvkamqqq5FlGU2L09MXYNSoCtRYlHeXLkEGrrrqalZ98glTL7mFuVdeQltzM+npGZjtNtYsfwezpHDkaCtz5sxDoZ/TZ89SnF+AxWwikBDI9tjYXnWScaNGku/2UD5lCoLZSUNLK0WFBZgkqDq0n862Xs62tTJu7ChOHTvFBXMX8MhtVzK6sgTZkDlRc4qb/vhnli1/l0mTp9DS1cjU8edxtqGO+tN1hKqb8Q30IUlW5s2dRVtzAwvvfIStuzZy1t9M1tBiYie6ycu2884/PgBDRzabWfHqEo4cP8PHq75BN8skExrVx06RnZ2B4rCw8+QhPntzGYvvvpPOzg727jrC7DnTOLx1K39+5x00AVo6W6koLmLugzczbsw4zlQd4t3X3mPKsAlU15zk9InjVIyqoLh8BO1t7ezaspeRI/KomDiekC+CIQ7CpDRVQ9d1BEFk19Yd7Ny6nd89v4TpI0b+z9yclZWealx38WzMLhvvrVmHRRMwKzLhhMoTi+4jEVFRyrLZtvEXThw9S8KIk+V0IoqptDTWM3nOHHzxAGa7lTmpqYPgRMEEkkh3RzPpbjeCJBBOJFj9yx6yrWYuv+YGmnp7yS0fQlruEI6u/ojqHCdzM4vIkhUMQ0cQJeKREJ9+/hlZ+QWkZXmYWDmOG2+7hb1bfwIkdDWJbLJisZqQJSuaqKBYzGz++Wda29q44IKpVE45nzHDhxD0h3EqsHPPbpYufZOeWJSR182jpa6RSfPnsHPdTyRdZrTWXvRQnLKrL6M50Im5ux9dFNH8Ufy+AYSeAaZfcxk2iwuP28XYoZPZ9+Nqjh47SmZaPoYhYagDeFJSCHlS6AuFGahtwJaTTvup00y5aiE1O/aiSCJ6IMzAgJ/hV8yFaIiQL0xqWgqnTpyhxJOLUFlIqKoO0evjlssvpe74MWwK2GwWHn7+TT779DM0ZDrbmiiygyQYHGgPIEkGzY11PHH3vZzZv4U957xUlGUybu7VjB89Aqfdii0jj1SrhT+99HuO17bgHpKPTXCSaJnJtMUL6ar6koK+RnJKy2g7dZQUpwPFlsrEaXPQUyz8uvoTgv09ZBQMY8yUmWzbs53+ji6yPOkUl5QwY8Gl7Pj+S46dOM2kiy/n6Jaf8PvjmNFRBYFL7n8It9tBisNOTlomPt8AP/30ExMrKtEEiZbGBt585WU6urt45tWlRKJWdu1fCwP95BaU8ZdXXiGZSLLhs4/xCF6qa5tRZBPHu+OkOWS84Sae+fPruNJSaW1uoby4kIFQkB07d+BKy2D1xp+paWxk6oS7sFqyeO2ZyxAMg37/AO+/8BThwADOsY+hJhsRDRGTrHDnzXN57aUlGEmZ1JKxqIaAKIFk5OAPh8jM8KDEu7BaNVIcmXRH7CQjjZhlcTBmXBRB00iq6iBwUNBZ/fUqvly3mg3ffI0mZBL09WAyO3ls0ZW8/vo7/O6px7DIIOjqYN9clJAFgZf+/BR3Lv4jZpsJT6pt8F50gWQoSF9fP10tTbQ1d+MNhYglkzTWnkVVVTJSU3EoCp7cDPIK88nMzsbjdmKxODA7nWgGWJ12XnnyGVRvC+eaO+gMStzx0It8sPSPKClJpKROMmYgmAxEzWDc7Qvo7ffR1t7C8PKhJDWV7nPniKoGM86byYmas5z7YT8mGRSTk9QMOx+tXsVH7yxjqDuF9MrxTJs6Gd0wyPG40AyJ2sZWHnvgIcrzbJSPnsbtD97PgZ17ceSkMrZyGPf/+Y8UluSxq6qKCl+M6rp2FMmBN+Hjpx2bIQkWm42lT/yFaqWPxICPNe98RsQfpri8guauBhTZSmtnA+MqJ3F290FsGS5+2bCWaxctIhZPYtENoskE8f5+ft1/gIkXns8LT/2FuqPHQBQ529D8P1P0M9wpxjO/f4C2pmaSJgfjx42krbWebZv3Mqq8GMlsGsS/CSK6IXLLPffxl7/+lbzscg4cqSIejpCdlUNfXxfZaS5UVSMYjtDrj3LF5BIsFhOiINDoi9La2MC4kRWE1TCnTp3lsoVX0lzfimg2kzlkFtG+U+SlOTGZTUiSma7OFj779EtyCnPIy8ukuzOIxWrhgukT2L23mpnTKkGWsNmcWOwubO4MuurPkEiEUcRBdKEoSoQjAWIJiZycLEYMG0I0GUNL6vh9QXp7ekBM8u6JQ4Q7ugnEExRUDqXH209G4TAcKTYCrS2E1BjxYBA5ojL1/PPw9ojIVjN9XbXkluUyqrKSuuYWrHaFPFM6V89cyI4je/n16A5SHSYivjA7d27HbXNhTk/DZbHhr+2g7PJp9NXV09fTSywUJWvEMMoNJ6+9/haJWISdm9bz3t/+yrZfDyJabNgsNroGAmz9+UeaO7vpaGqhKFWnKD8fIRHBWjKO5e+9j8fjoqbmHEldZdiwCpa+92/6u7pIqoOuiK/Xf8eAaNA90MS0KxZSs+YH9m3eybxRE1FEkeJxk7CaLAiCweiyMk60d2NFYNrUiZxsaqN231bK8zxUt/uZPvNCtm7ZQWnlMOJ9Prq7uzh29AhqUmfytEk898Y7fLPsNaqOHsNiMhNLJnCluPndU39BjWlY7E7qW/po6/Fi0r309/eQl5nD5u1HGT15KtPmTSDcN0BObg7PPbGEF/75ChbDwBB01LjOjxs3cPbkKbzd7bTWnsNqEbGZzIiCRjSWwGFPwUAFQUKRQFKsBJMRNm3bRU7paJ5/agmzL5xKW/05ZJeTzV99jqDF2bJzO3GczFhwMTlZ2VxxxeV89M9XIerFG7Hw+1eX0tcf5s1lWxkzIofm1hb+8LuLMSsa7774NN1eAaFwIopixgBkUSKp6qiagSQLiAJ88cFybn/gWSShB10YxJb6/P3k5Y3jozde56q7F2GVQ0hSErPJQkzTsFokVr7zJnOvfxxNtyGZxEGztCAiomO3y6hqEhkRHY10q4OatiZEUUASRRRJJqLq6IkEPm8MyaSAoCNLEmoygcVqZ+M37+C2RRAM0AWBWxf/m4//8TgIARTiOOw2xo8fxsGjR6nr7cWTm0n5xHEMzSsi6VJwySZO15xjwtgJvP/v99m1cQcndu9leGExv2zcyLn6cwzEHDz61EO8/7f3uPeRm6jefZBb7roX2azw4J33kdAS3H/3zXS0tlM0ciz5xQXsPniI7Zu+p8WpEhcUUhr78KeYSAoS0+bN4r4F17P8i48Im3T8HT0Mzy3k9uvvxCyYiMfiCOgoioSaiGOIIp2dXZSWlIMBmqFjUxRiWpyutg7S0tMHecvefr789jjr33oEfzJJXn42LS3ttHf3/3/e0///5RAVBW9HOw6rSMDbyRcrdvPHJ19i+oxLaG1sQRBFUrPSaG/vZ/OWPTzz0od09MWwx88wLMMCGRZ0PUxGfgomWcEwZEg1UZrpRBfhloce5+D+Q/j3baHf4WbYlGlsWv8tjz72GOlp2Rw/VMULL73E3177G5qqM9AmASKIBs898wR5RbkYhoHVLLPsvZWYBZ2Ro0YwfdpkkoZAenY2//jbWzzw4H2YBIVp40bw9Ref8s2mnWiaRiIe5ZI5M0E0UX2uDm9fLwbGIMdTkgcznTRwFubgjUYoHTEUb0MzY0ZPxJXuZv++X7lo3sVsWL2aouFjsFoFrFmZKEIXbefO0N/URuroYSSCGkVpxSiKRAKDf3+3kt07f6S8cDjO4VOpHJvDqIqLWX9kHTkOJ75kgIKRQzl66igTp0zh7PqfKZs6HrfdwcZNW2l49GEevOZ2Hnj4DwQNM1JqNkueeZLf/+FJFi64GMEsM37sBFINH0caLJzr7sblkXnyxmlsWfsVBcXl9PoGCA6EyMnKpSg3j7bmFmRZAkHCPbKCE7s301zfxu5Ff+KCuQvwemF/bTc33n0bN99xC7u3bqW1qZnN+w5w6NfdaIoDV1oq+7ZvY0RZMRHdzMH9v2LoJg7+uoVtG9fR39tPdmkxHkc6U+ZMoKSgmI/efoPdO3fT2dSAbLKR4XZjyDLP/uFRbDYTiigyduYVuPOyyS0YxobnliPIJl5etpxXn3qIM1veo3DGkyx7ZwlqyMuLf16Ko3g+LXV15Bd6mDUpi8bjHxANh1FMDqrPtCMq0n9oVIro562v3iPNk4EWjxJXE8TjCRY9IWJIIr1tTSCbyR82FH/Qj2Gz0XqmHofThSmcYN+WjXiDGrnWVO5+/An6fX5OnTrBVytXYNMEbphdQCzey/zp40mxO+jtbOP+Z/+GJIlUnzpFWmoKvT1eXnj2FS64+hZi3n4yPS56WjsZUebGIjdyw3VX43CZQTUwRJm33vmFYDjA9QvH8OXqn5k9dRz1jS0EvQFE3QKCiC0lk2gojJZUEWQZNZFAUaRBLKdiRTc0BMwMJOL4g350/2ECQR+JKPR2djL38sUoeWkc2PQWFpsFQxfQdZXzFzyIJCZJSbESHfBicXn4eOl9iLIHT1YqvZ1ttPb6GOZy4xw1mtEWFS2hYTKgPxbi0K+HGVYxku7OXt7f/g/uXfx7JhSO5P7HniWpSkw4fzYPPv4IX3zxBVu++4Zx00dTdaye0lETOF5fR1pGJm99+B793gGsosjzqz7hpSFDOHb8BA0t52hJ+Bg/Yjp7T1Rx66338tcv/8Ur1z3M8p3r2GBxsb+uGtEwKM0vYcOWH7lu9jxkQeHAnn1EgmFOnjjDFXfdRbCvm9rq43xccwrRZOai6+5moLudH5Z/waK/LGLx3Xdz3lXPEgvFsWenUzjpYmobfqWjpQtD/K9l/b91pW/LSDVuvnMhzftP47bakCQZAQPdGKQdqJqGIou09cbpi1iJJ0LEwp2YBAVZkhFFZXAgEURhEGwsAIH+HsZMHEJBbsZgLKquY6CBqhEeCJKWakUWlP+gGbdXdZPUfgO0CwLdXR3cdctcjHAfiAKGLgymMIoijvQ8gr3tJKIRkCVkUURHQEDHADzuTH7eexKTScYfCHLpBTMIJTTiCQ2PVUKS5UEUpCQhKyZEReHtA1vJLiqiOeDHf+wUd/x+MTu/X09fUyP2zEySikC4rZukImDJzmXG6FHs/G49lhljKRo+HGdbO1pcQxRN2O2pIMKBwwcYNnwoOelZ1B86ScAlkZ5TRtWWH0lP85Azejgtbc3IOgQDIYrz8nAV5NNwoApXihvDVsw10+5B0DpIRuJs2fAFU6dPZ+nfnyccjnJg7y6+/nIlLy19CSORxCGKRAIBqo4f5szZU1jtdkorRtNYXc3iJ57n52++xOkwIXncjK0YxzUP3khU0xk5eQLHzpwl1ZJC449HWHjnK9htAooYYdGjN2GRwNvZRH97Fx8tewdRi6EJNpa8t4KXn3iIFFHD39NJQjchmuz0dHdR09RKMqaRNJKYzC4EUUDVDBRFxjBAkpXf0JwgSzJd3U2YbCN5dMmrXHtFOS6Xh6B/gBVLHsUA+iIW7O4UxowZxdwL53D7vX8mw6liJKIUFbipPtuAokgYhsiNDz/C8e0HOHbkAMFQBMkCU6fdiTM/F0NWyc60k5ubhU6Y4pISqg4fZfjo0XTV1lLTUMeQ0jKGDy8nnEiwdtU3rF35NffcdRMX3XIP+VlZRGNRzCYzJ09Us+nH7xgxZChxVadk2AgmTJjEgK8PRbGAIKAoEtUnT+Cwp3LqxHGOVp1k7oWzyE7Pp+H0UWrb27j+5luJBf2EQgFMosa2XXup7shg14bvWfzEFZzwJrhj9jAk0UxrR4Capn4+f28ZV9z7Op++cSs33b8cHQNRFBEFMElJ0EO0NTcxPfyj1gAAIABJREFUYtwkPGkeqk4co//Uelw2mUgojMVmY+uOKhbe/Qr1Rz5h7IhSBkNdTaz6ehMRzYZLCaJIZgIhL2ZnBpEgpHlUQoEern/6EXr7emnoasftTiEQDtPe0k5abhrVP+5h8jUXk/D6aGzvItLZzYXz5pFvn4RizUPXdSwWK6oWQ1EMHNJgDEUsGkERdOJJFVGG5sYG0vPLyEjzcLzvAJNHjOfqOXOY8cBVzJlxPhX2HFpjXtZ++TU5o4uZOXMOgfZeetUgh374BXNZJjtWbOCzVZ9w/3X3ohoG9155PW+vWoUmaaSZzYO8Z1lCV3UiagRFNJGMhLjh8ovo7U2wcNFbdLZ2ktD66G06QVu4Bm8kgL+5jURH8H9mpY+qsuXoEeYWFJPuzqejq5fm1pP096hYLB4GAr0oZoX+gQBWmwsEDUNLDmalGAaGrmL8xrlVff1YrHZ0RQJDp6y4AFVVf4vDFjA0AV0USKga0VgSu92MosiIqkZ2VgEJNYQrJZWAz487RSYc9GGTBjN2TDYzhq6jWOw4nGkMdDVjtjsAHUQRIZFEEGV03cDrDZLQNbTk4IKyJkrIipVo3ItuyOhJDcMQUSQJQTbhyczmnitupMuk07RyFYIZVq/8DJMqENcNTIJOfkYhtopKgs1tNLW3UlIxlL37MhmSlcPR1d8zZPZ0Qj4vRZ4MEkk/iihz4fkz+emnH4lXVtKvR4h1xsjBxMhxk2nta2RgoJ/i4cNprz5DwdiRtB6vQXDaSc3PxmFykGUtwZnq4OvNP3LFtBtoavFztuEAnoIdaLKIGohz6FATN1x2P5v3b8AwDCR3Gt59h2hvPAeazqH9e4hHIuze9gsmswlBUlAFjTPxBKJsorPpHMf2HqN41mhqftiNzeygO+alyDWUPr/Cy3/fgtNuIRr14XTZ2L77NE++8hzjZ84hFosTCIbp9fs4Xl1HqiudZ/7+Ej0dnVwlitgVmaKSEqKRCLKs8PbSpTgyPMR83djsGZTlZVLdGWHBeSM4fKoVs+Hnlmsr6O3rJy01jY+e+x2CKCEpJorT03l3xVdY0rJZ++iztHac4cL7HuSN117mksxL6BkIYjebsdrNFLjSqFh8D+OOT0YyKYi6xsqPluPucpIzfREtPRqNjZ3cf+9kJEmiOD+HZNjPmJnTyc7PQzB0/OEIgg7zLr2MrTsPUTh+MloiSMLwoOs6STVBTmEBUdXOoYNHuHXRH9iy8Wc+eX8FVk3n6X++jqbrqEmR4ZWjOHWyGj3aw6UXzSanII/+7h6yivMorxhC45mTfLd6NQtvug5vf4hfdm4krKrY7Umk3CJ6+zfzRW2cbMHCj/t2smDaPEbeMJWoHmX4dZfxzfZ3uO2yP7Hhk1e57LYn8KSmEQsH6fMeQo0r9Per2Cx59AkGkknElZVKMBBGVw0SmkIiIRCI+TF0GbfbghrTECQDQTZhMluxaG70ZAyzxUU46EUQDD5a8i+m3XkpZ2rPMX5cBX6fj+ycLBrO1CJbzUSjMTJysikpKqHZ10lOTj6FQ2xsXvkp3nYfJWUF3HXfQ+zZV82AmksiqYFoxSQqqLKGJIqEZQ23kE5/VMJsFLKv+gQbjm/HJYk0nKrGm93Fke27cZYWI5lldh74FS2ZJNYTpXRyJUFvmPte/gNpchZvLfuatvZ2hp93E+98sAtN07CbBFBA1ARcdie+oB9d17BYUunsiiIIAtF4HEWG7d+/T8htJ0ONkldRSkFlBUc//PZ/K6v/rUVfMZkJxcL4xThifxMmUSfSF+Huay6hL+DHkzYZTddJcaZy5HQPGzZuAEFHUHQQwG5OoAUNZl06nWMHj6GLGmVlJYTi+Wiq+h9gOgggSYiCQCweJ6YIiIRJSDKK2UxL81Ekw6BDVbHZzcRkP07nSNRwD6IgkEwkEWQZyRCxpXpwpLhRDR1JlLDYHKhJlXgiiiQIPPrUs3zy6Tekp7txurMxUDFZJNZ/9TWZZcXk5qax+ZefEZIqNpsJwzWZXe3NnKg/R7ihkaEzxlGz5yg4nCiaxsU3Xsu52lraT56js6UFk0mhp7mFeCjMkc3bEE0KA109CDaZkNvJiMxCzLpIW0MdJlGhqaed2WNGsKexnsPdjUyYNZNplSVs/3YNo8qGc8YfItUbwioreBvbiGsqDe0+Skf4aVi7F93tpGngHCEpSGphOWtrPmVexfV4CrJJqgL10R7mP/M4hbESsAuEzQES1lSatx3G0DQMTUc2SQwtLWPWvAtY+re3sFpdTLvmdkZMvp9IKEn48Arcoyqpqz6H1t/Pd5teo7ezH5MSxWK14HLZmHX9I+w6e5Qfv9+AVVFw2i20NbSRkeXGAF5bvoyCvAL2bliLicEAqG27jvLYU0/x2ecreP6tZWzasB671cS+A8f54Ntt/PDTGv7+11ewZxdy8vhZNqxZR35eKYe3b+Jss5cRYyspKh3Bpo0bSaJy8Oe1fPT9BkRRoqurjdkz16EKGk8/eIhQNEEwEifhiyGWWqgYO57m5kbsdhtjx1WycvV6HO1vgC4yffJszJbZ9PX0UFRWypHDhwgEQhQUF9NSf45kIonZZCKZTPLsi08QaK3nl8NV3PTQIiw2O5qhk+o2M2pcBbVNAl3nqji86RsuuuJaDu89gYaBJEkYgJpMEgiFaeoMEE3UkJGbzfsffUB99Umycjy408sIeZv57tNlxNDJ9qSy98BhQkzkXKSJ7T/9yk23XkYfce6++Q5aT5+m+tAxZjw8jtM9EZzpfkJ6Pwtu/T2xpIYvFAUMxk6cQySpYjI0NDWC3xti5LBSGhsbiMXiCJKBpIjYnVYM0UY8HqHP148hgCEJJFWDoBoGQNUFNEMlFgljMyvMvmI+1hQnU+bMJNeSgoqM5guiqOBIc0M8Ts2Jatob65g6Zx5rPv+CWVdeTHe0l9LCIroba/h02Vu0eA3GT7uKoWU5jBqVhz8YIxYKEwirVAwZic2eyr9/WoGuteFOS2Oozc45fxCPLQ0dg3HzZ+GRymnznabh6AEy0vMJhvpwRO0MqZhIQ8dpjmzdz21/epiMZA6i4iGhCSiyQkJXUXSJuAG94TiaJoEuIKoqhgGqrmGgYQgCatBP/qg8FE8e/eEQzhTXf6mr/63bO5YUm2HKtDImM4dTVTUoFjPFGXZc7mz8AR/frf6C5/76NrG4zNm6dlqajyMpIhbFjKyY2fDVMpa+9wnbjx1EsVsZON5AUVEerjQPw0pzUUwmNF1DV3VUXUUy2zl5/AyKLBONJ7AoIlkZGQzEIBbXiIkJ0myp9PR24DEbpJpBMMmYRJFwXCMtr4Dc4mHI3kacDiuK1QS6jC4LCLpBXE8imcy4MzPwOD38fek/kRQLkllBU1UUxYSqagiCgGwycaa7l8yLzyMzLZNEPM6hb9diszuxW+0EjDChWByP2UHqkBLaTzVx9z23cbz2GMc370cuSGXihHEcPFKF/0wzWnEGFlnB2u2jfMQQuhwKZl+caQ6DbS1+pOwUWqqqKRo1Gi0Uo6u1EYs1BbfViViQRld94+AD1hfCYYiII/IxRTSShkHa8GI6j1VTNGIMnnwP+1Z+hyu3AHPITFCMcckdt9Fw+BA5E6ZStelrvKeaGD1zJsf3HcQTFpFliWWfr+DfKz8h5u/HpZqZMHEca776Fq83yF9ff45/vP4GvoFe0jIKEaxWho6bBeEewn4/TfU12N35PP6nR6mtP4VZNbFj0088cu/FPPnki6w7ehhZl1nx4jOoapKkrmM2WehQpqFY0khx6EjmOHffeyXHjxzi/GkT+fiVp1j13RqKC8oIxRL09gVIGmamXHQ9d95zM689cQ9ZNpnqM+fo9QfAkEEx89P2LSgmCdls5sSRQ1itMu3nTvG3198hEVd58rEXmHLV+YS8fWTlZHL2TA21VVUcOXSEhx5fzD//+iLlY27n/kfm0dvTgyc1FZPFzOkTx7E4nQz4fDht1sGWpGEQD8ewulIYXl7BmYZOzpzdzekTp7nvttv5YsXXxFITXD1zPpu3bOGOB+9jz697OHHmJK3HjmNxysTCOnHNhigEcVl0dEHA0HXMFhvbdp0mkZGC3t2PajPhSMqohsbEBy7H5MyGhJ8jO7cy79qbaGipJ9zj5/iRKoqy0rh44Y38suFbpGgYLdVMWt5Qyq0L8aR6SCRj2Mw21N+IWcGQl9aqlfjCsUHQSjhJ47lTXHnfG5zYsRzRKlM+dRwn22oQZBlFNONM1xmfWsS3//oSW4aN7LlTOPbRKqwWkYl/fJjumlOc2n+EDHcKsy6awdbtuwkPBLn4+ms5uWc/rafbsNmhu7GLZ9/7O399agl33HEXmaqC02zm6oWXoMsShaXlJEUz4VAIs3UQWq9rKvV19Xz13t+56akXuO7RO3AYIvZUC5FInKIRZVhdTiK9/ZyobsCdVoClo5ewrpEIdTJ01GROHt1NZmkJhWOH4NDsLL7hMXwhif07f2LC3Ivw9WnYTD1k5uWTGAhgTXVhCCrrvz3IyneeQpRFrlz0L4xYhKqedTSfrMFTlI0lxUYirnLow+/+Z7p3UrLTDUuWCSEYZ3r5EGQEoskkkiAgGCImewq1zQl0HXRdp73lGIZoYLc6UWQTI4ZmoicTg57ixODMKMsyWjKJrMiouoAg6CiyGT0Zx4D/9N5VzQBDR9M0dCQQBVRdR5YEVFRMosjAQAKL1YyoaVhMZnSzjM1VQEdbLZIhIEsium4gyAKaNohcFkWRhJpE01QCwehvNlIBAZlEIoIoDbafrCYDS142prHD8UX89B04jmSykpLpxmRRiPaG6elox1NYQGdzAxWz59Jx6gRBfxB3io1wKM7oKy/E293NQCDEuGGjCCcjdLS3kTBLpKdn0H6kmtyJFSR6vfi1BB0HjyJYbFROnkJ/ZwdtR6pJLSwgBZmMKaM5dqQKRdOxOiwUlJUzcLYBVYRgXw+5oyvpGxjAX1NPztByhoyu5NCGrdg82VjKPXSdqmHorMn461oJ+AJYTGa0hj5KZ4zn5I593P3iS3y49GXuvOH3DM/L4c7bFqIJIv0dXXS1tdDQ3ozJkOlraeL7NRuYM3sqAZ8fSdSIhYIMBCKYTCKeFCeB4ADoIiUlldz37F84e6aGzV99OFjeYyAKEjoGNz/4KCazGZMCB/Ye40DVGXoGFNKKJ/PzZ4+ixmJIsoRmDDpLBMlKKJ7Czb//Oyteuwch1s4Lrz5HYCDM7j3bkJJxXv3nMiwpgwklhqBTe/YUgf5ewn4fLz73El8s/5zUEUNIxgffUpxmM0cOH8GS6kRUDZa9+k/kaIxXV31BLBrFajFjMZsRzCaa6mowrA60oB+bzY7fO8Cmb7/j/Cuvomr/HlwFOYRkgx9+WMdQVwG+WD+1tbVccfvtJNv6qQ9243ClICYitLd3ET1TS2tngpkPXcvWtevo6+xnyrwZ7P1pE+dfeyVxQSOjtARNMOhqasKGmcPvr+GeD5bQ1tJBW087x7fuomLeTHJTMrC43cS6e4l7gwwZX4Gkanz/1XeYs9J4+k9/4uMVH5BfPJkZoy+ksngIPf1e1v+wHUdKFqd3fkyvPY4pOw2v30dhTi4ZecWoFo22xhbCfT04Xak4bBbqDh6muLKchHeAiTNmU910ljOHTpFVlEnC72fipIlku7Px93XTFfWTGIgSIUHVuq2IHguSxYxDtJI3aigmw6BEcVHoyeP+e24n4vczEIiyZuX33HrfLeSWjaDH58NuUjCbzIiigKbpDAwEWb7m30wddSFV9cdpqKlFzLew49Bh8pQU4qEodVUnqJw9jTnT5rFr706SLpHjP+9i6LQJOKwScmoa5w0bz7Vjyti0qY2Eewh7Nn3DefNuw+8PcHTXG8y66GFK8wOcrrcza4LExj0CvbVrObxvP5ct+hdVLT/TfOxX3KU5uDPSaG1sJXtkKfte+fR/Zk8/FgyRVVDEgBpg8vQ5JA0Vd5qbl59fiiybcLkLEEQzug5Z6U5amjTMFhsiEqqmc7quB0UQQAQMEZc5SCKigclOTFMQMJgxq4KL58ziL0uWgQAGArpuIAoChgE6gxZm8TfBEAQRQRi0ikXDETAiuJwSLptBxfBJbN5xnAUXjGfq9Em8/Oq/0Q1hcNz/zK2DJ7qhEQkHcFkVBFFE1zVMogGGSF9/gKlP3s3hvgBqTwu5BYU0aEkKy4fQf/wMdsVKyfSJhNQgSUMjJT2dljOHGT5+CvWHj4NokLAanFzzM5rJDA4rNZazGIJMMpFEjCY5se8Xys6bRPUP21E8KRiaysRrFmIyDGTFQbevF0tBBjFZJVDXTtAmMzo3l9N9XQSTCUJ+H2FVJc1qJTmsGEUSKZg0isDZevqa24n7I0gmCxFvJ5awjeyhpfS0tBJp6yHa249qsyJEYhza/BPZY8fw/aoVDLlkJmsPfIlDUvho3wbS3BbOz1lAabGTBZddQQoSLz37DCt/XkcgFOK1Z59h7IhyqvbuZ9LkKXz21SpSU908+/TjvPvuSqZcsRBVT7D9q48QkjqGKKIjIsgCPd0JzBYbLe0hsjNEflz1IYtfWAq6yq7t23h88SJee/1FhpZU4u1qxRsK4SkopLe2kRGWwxQ6Qxh5lSx5YSnZk+ZShIDTZCEpCGzZ/CvDhxaQ7nFTUllBU/VpUrOyWLnxJ5KBKLohYBgi0Vick7t2MmHOBbS0dWHNcvPye//ESMRZ//VqaqtrmHHRTM7U1DP/kkt4+emnkPJTEVt66OvtQgVsZjNHj+9FGlKC1FNLsr6FW+69h7U/b2T40FJGnj+bsLeTlIpi+tefxOvvJje/nIjbiXLeOIYoCq2+buZes4CYKNHSVE/m5FF0eLvJKCugvfkcETRmTJvJ1q/XMPPPd3GupZWtG35m9KRxlJ03gfqDJ8lcMIfv165h/mWXMLl8CPUdXeiSQKCzlSKXkyVLnuN3D9/D1v37+OlQI9/t0rCELYydNYuW1nqsM4oYbbaza+d2TKLM3qPHGDprCvFAGFGRscsi86eOpepULVbN4MyBw1SeP41g2EegrolMj5OrZlzIwYZqVE1nX9VBRg4bihbQ6O1vx2xzkEBl4fyLOPDLryz50x/Yv2kH2R4nObnZDB82lPTsYshUKZRMWN3p5BUVoesGWiIBsoRhGP8pMAU03IEks2ZMZ9OO7Rw7dYIPFr/LuSPVHN+2h9zJI9GTGlfPvJhfWxrwCzH89T2k5pRy9tAxLjhvEp7MHDq1AMX5xZgtPVjtqTz41J+IBnROnTW4Z/H9NNaouNLSsHcORr2YzG4O7d+PASyYVYK2aQqJggZOHzzB0Mtm4R5ZRv3+Y/+lrv63rvRlu8WQrCDoOjZDITMzjcz0LM5Un0QxuUhJyQbBjKZrWMw6LY1nmX71HKp+OYyIQFl2Gs40mSuvWIgoKJSOGcuj9z7AQw8+QCDgx5Hi5oMP3yPFaeLSixaQmV2IJOpIkpWpU8ez4Mo7f2Nh/t8PUZJY88Xb/Lj+J2bMnsejjy0iIyeTyePHcPnC6zlcdZii0jJGjZ3E3Onno8m234Tf+E38DQzDIBjoJa9sJB3NZwaTIX973Y1pKtNuu5q6qJ+m9iaMui6k7DRcskGk30+uNQ2fNYnsV7Flp5JUBabMOJ91HyzHabdRXF7KudpaZLNCJBhARyKvchi9vb1oiQRuq5WoL0gkEEJz23E6HOQOKSIuyER8AdILMqg/cQalK8zYK+ax//sfUQQTxRdPo+PEGRRZQchKJy6phKvOUXbBVPzeATpP15GfnoHVYqXldA0TrryEY1t2I2lxJLONMeeN5+jPO1ENg7JZE7APK6WrpYWC1HSSJpG2hmasGiQkA0m2c/6QuZTnzaGzrRGH00607wRWReC++66nvbkNu9NFXkEef3vlFR594k+YFZlgwI8sCPh8Awx0d+ALBLDLVvbu28nZquOYHVNRI0fA/L+oe68oOcsz+/f3hcqpu6tDdc7dCi2plVGWQIgskTFJYDC2x3GwDbaxPcYYPDZ4PB4bGzAZkzMSQgQllHOrlTrn6lDdlXP4wv+ideaci+O5Oeus5ambb9VdrVXf2u9+97OfvZuZu3gG7721nSf+9D1+eN+PkCzlbLhyJg319Wz/eBvXXreRl556iqFRH5l0itrWpYyGVYrUcRIpncLl11FYUsT5vV8w1nGKUk8+zRUeVl5zNe+9+DI3b76Hno5OauvKiAT9rLvpRpLeAN0j/YR9fhZfsoZkKs7U2bN8vPMzcukUBqNEIBwGTUe1GGBOA+s2XEWoc5DuySGSwRD1WZgaGqK/34uuifgTKWTZyrzrFrPh8uuYGhqksqaOAyePI8kyc2c04BuZIEGOZCDEzh07uWXznZzsOk1BaTmJoVHa29oJjnv51m8e5aM338ZukEkk4sRFHVuJB4cgEpzwk1dWQkVTM6F4FE3NoUxESWhpjDYHhlQas83KxIiPpdesZfLkOfKNNnIGndNHThGKRpnZOgsdDUtxPg31DcgmG6GxKZQcRMJB2g63MX/dCrqPnCQlCcxdu4RsJEpfezsr165EQqCutpYd+3bhT0ZZNGsu5qzG6ePtnB8b59//8Bs++mgLE4M9GLIi9nIPK+a38tJTT9HkqWEwGyHZNsyJjkG8AyOISpIyTyFTgTCDPX1YTGZ0ScJZWIAkyLTOm83kVICCfCeybEDXdXI5hVgkyuEvPmb5phu44ysbCZWa8J/uRQ2nyGSyzLrhYsJTU5hVGZfVRdqaZrRtmPlXrWF8ZJzBL49TvWweFruVn9zxAAmjwOAphUAyghE7KhqbLq2Z7nxOBYikrYiZMfYdT/HmX7+DrmlEg1OYrBaMS5vx1Fcw8uVJJIcZo8vOwLZD/5DpSw8//PD/f6j9//HzyMO/fLisrpBUUkE2iCSCcaZCQTRVR0dkZlM9/mAMNaciSgKTIR/uymKGh7y8/OwfmBo8x7VXbKKyaR5HD53ghZdfxCjIzKxtwGa0Mm/ZCr749BP6B8YYH41ypqebmTNnUdvQwtTEOFs+2T39Q4QLzP+CACQgkMqmGA0kOXa6g/LaJkqrZ5BSjLSdPM1UOEr7qQ5OnehESQTIIFBRUUwwFAWmbxA6kM2mqGuaxdT40LR1VNfR0NFyOoVV5bSfPg4TU1hKi1DHJ8loGq0z5pESBAJjPpLJFLl4BrPBwIlD+zHbrDTNnsXpg4cu3HhAyynomRw5o4G6GY1YzBaiY5OU11UzOTKK5jJhSCmEJwIEB72IaJhNFiLBKK6SQno6z1C7ZjnpRARVyVLdOp+gniTsm6C2up60XcLf0Q/BNLliG7lcjrFICD0SxtvbD7pO/aplDA70M3yun0xCZsaGxfi8XiKhIKNH20ml0ugqhDp78AUCeKqqmDzdRdeJGLNmtOCLj3Py/JeoWpaqqiZ27DmBdyrGj+9/EPKW8sbzLxPK1nLiaA89nedZuXoJ7oICqiqr+eKz7Vgdbo7v3cM3HnqYpRfP4epbb+Gy69bQPKuOm2+9AkdBIdfcfivX3Hw5i5Yto7FpBmVV9cgmOxetvoT1mzayfP1lzFs8nyuvWsvclauZvWgR85s9NFfm8d3v3ceRPVuoqfCgkeXM8b3YTQLdnWfo7T5L28ljeEf7OfzlbjrPHWdybJyUnuXKa2/Dme9m+4evghbHahKni7c1jdFxPwXrl+Pr7mU04COlp2jbugdvZyepeg/eIz3kFAFEmV+/8xRHPz6A2WxAFIyYix2898FbzJ+3iP3791BZXsmefV/Sf6Kd4fEx5JRGn3eYzp2HSFpkZi5s5fjBI3hq65izcB5mycLqqy8mFo9RVFlF55eHcReWULdsIYHIFHaHAxKgxINISYGKshriU34K6oqRddD0DCZR4MsPPqU7E6ey1kPX3lPMu/xiBvbtZ7J/GKfHTde5TmqbGtE0nalkDGt+HkbRjLerE2d+HsJYmoHzbeQVuKgsL+PT97aSjEXonRzF6x2nac5sek+dZjIcweg209BcT9vRE5xrP0Vg0k9K01i4Zjmnz59n8fzF7N+3D09tGcHhAHlFl7N0SSWJdI5B7xQ5RWHe4iUcPHCUsZ5TpBMx7BYDlbUNZJUc77zyAslQgOqZLfR1jWC2mDl29AAtC2bz+e7txCQVxShzybK1nBsZpqqkjJraGqZCfiSjge79p6mtr8ZaU4RvZIx3n3yOt7Z+wIaFKzkydI5tr29BkKwUOCoRZRmDAL2DMbr6pugfSjI47GfEp5OKRek/f5BUOoag61jqKrDqBsxpAeOsUjK6QsQfJj3iH3/44Yf/9v+Gq//coP/rXz3s8OSRi6VA1TCajeRds5jkuREkycjQ0DBG2YyGTpw4iQqRSnc1hmob5rEQJquD0dExes+fAS1LpcdDdXkZiWSCktJSjuzbQV1VFQvnzqO6vIiq0mJCkz56zp2hb3SMtol+UgE/6WQcg8FMJDKFouQwGi2UN1QzGTUTz2gIBge5nEgiqaPINkRTHgWFFcQVI2fOHiOZTpOMjpJTp9U04cIBkkklCIcT5JQ4OTWLxWZCE3TC8QwBPUJhZQWZaJpSt5tgOMzFm29i75vvk19dgUkTWLBhJQYFes91YjU5cZmMVHmKKdZkllaVMBCNQDqDye0kJoIQShDsGyamRFEjGWz5DurmtDDa0UXT8gUUzJ+JiESif5jq+S1UzZ5FWhboP3SIspbZTJkFZFkgk0pi0Kb3EkqKS0lpKp7mWuLhJJWL5xLZdYzChmoEBMyykWyXFzmdQ0PGvaQSt2hl4OQpYqEQQjSKq7mBrKgy1TeImJkupwiFY7gIMOSNY9LDnN77CZdddj1FhQVEIxFKSzwc37ufhtnLOH/6OGeUNoJCksrixQwPJnl3y2GOn54gmTZxxbUXs3vHJ5w5shvFaKFn0Mv53n7SyQT+QIigL4AoihhNZhKxOJLJhM1pp6SsFE91BY2NjTS1S/LQAAAgAElEQVQ0NVJfV0dldR3V1dU0t8ymubGZ6voGDAYTTuKM9XeQS8UoKSpANJgQUSgqcDAVSTA+GWLEG2XUF2dkLEx/v49zZ72cPDfEJ+++yZgvwtBwgBHvFH2D4xRuWk1fTwebNm/m7JGjJINRXJUVZANJrrjxBm77+m1kbGaG28+z9MoNFFWXsWLTevI8hQx09jOzpomPP36X/hPnWbTyImprKyiqqiaaVdhwxWWcOH6E+ZuupvPkCdasW8PcFSswu2xE41EkAwxM+Rhq66Z53hzczTX09/SiBtPoWZ1kLEFpeRHBWJr48Ai5CjslTXU4C8uIZxIUFhZx/lQHtcsWMG/JAnq37CHjD7D65qtZvXY9gaFRenYdouXqVfR19hLwjtH72W4cVeVMDPdRXFFC/8Ag6WySdDpLNhUl3+Igr6GUhauWMh7xEzvXT7B7mJoZjUx2evEHI1Q11nByzwEkX4RFV29AlwSGz3ehqDlOHTlJbWEFiqoRjwaZ33o9/uE+trz2AjNKHDRWe1ATUS67dDmVlbW8/MLzlDW0kExEsTpLMNvNhCNx3vpoBy2zaigpKaO36zRP/eVpzogJXGUFFDmL0ExQXlvGN7/3A3bs2Er/4S6MqkpBZQkFCxqIdo5SVlrMthfeprKpgvbe84wPjBGLB1mxfiO33boaf9BHOKyyfl0tFRVOvP0+Fi6poMpjo2s4QPvut0EUyGWzkFbImgVki0Tnjr3Y8gtwOV0Eu4f/Iej/U2v6eU4ngYFJZIOMPc/Jopuv5Njug4gXWPHCubNI1LmJdI4i1rlZYLcxMDhKfUM1Nus069TkHLoGCAKSJIMgYMrL5/mXX2T1smWIBglRlDAYZXRNQ2V6keuld94ng4xBFBGkaZCWZQlJltDQ6OobZqxvHEXX0TQdi9lKOpNFEDQEpmvLFCWHhIbJYqKpsZ4zZ3tBEFFy0+XQIGA2W8ikBGQkUHRKl85HTEUxOywMt5+jdsZsJFFDFxR2v7sVq8uJ4Hbg6+vF3uclaciy8sYb+ctXv4opv4D7H3wAgyxztm+MFx//DU889jsWL7+YfJcFi2RCspi54ooNrL/lFvyCwtjxdix2Jz0HTlO2bC6J3kHSTiupz3YRX3sRGGVmbbyclJKlKm2j+/gpamc0UX7pRcS9Y5w+2Y7TaiGcSFJS6aG/7TTG2bXEgzFQszjmtBA5P0TZsoV4RwZJ+KaIVpixlBRTWO4hJ4PJbCY+7sNRWIikCJjy8zB0DBHRNFRtJ+lJE9/58bOoyWH84TCeEg+CJIMKrrwC6pbXM6mH0IyTvH/kFW5e+3W+HN7BhpabyWDjnfe7eGvbOa6//Vuc6rVRWlSE3WlkdMrB6OQUBQWF6KMpQuFRQr4pKisr8UfDBPxBrDYD+Q4XJqsFq9mMP5ygoaIC78QY+YX59Hf1kFeQx7t/epGsriKJoOthlFwOQZTIZaZjjTXdgsEkTO9roKOrKoqWwmgzkclkEKVprVhyO8hbU8dITyerVl/M5+++z4++8T0+/eILrtu4iaGRPnZ9sZtCi5FELks2pXDowE6sdhcH9nyJounMndfKh399nlBonIr5dfjGJ5DzXIye76G/7TQrl8yl1FOCGo/SsnAh29/7hOG2U1z/w29RUuDiyXt/TtUdl5IGus/3YrJbWLB6Je7CYlJ6hp59bWSsFoweJ5aSBWT9fk6c28e8WXPpP3iEjKDTfMkKYqrCnh27KGkuIxOZZOvfXiE2NYmjtAhEA6MjE3jHJkme6KFlYQtJPYbL6SSvuJR5pcVosTQTA6PUFtrxp9NUGYq4v3YptZvuJJOBt7Z8yuuvv0hxkRNLRSHp4VEaZjXhT0TBaiCv2Il7djPDZ7pYs2kDe1/aRvPlF2FSQNUyJMKD3HzLJqpmzSWZUvngraMsuzhG/2Afsy5aQYnTSjIaY2KwA9/QCBa3FUnNsX3Lx5TXttAydzGaaKYkG+bo/o8Z9QWwezwIsQxP/OoX9LWdp27pHMaOdmOwyjgGxnEU5ZOVBKL1Vk5t243TU4SlIp/Cpmp279zKyKkeamcuByQe/vbtWO0iS69+lDeffAhjsRub53qk2hLsK+eS7fSSOduPbBDpPnmC1lXLSGUzjA16/0dc/acGfVXVsVot5BSFTCbLgJqmeMlcahZeRMyiM3qqk1c2380PH/wx5TEbUjDMkqJa8g15CALTjgvBiKZq6OiI0nRfrkEWqa+vQ7jQiSsKAkaTEU0DowSaqmHRLfQMnEDPKOgmGVkX0AUVQZbRkfnmnffhMVtR1Sz7Dh3Cba8k6BtBlI3Y7Pm0NFSjqRkMsoGoUWPc56PQZUGQJMKxOKrNhi6pTGphclYHssFAJpXhXy6/l42XL6HvzDnu+PmDGCQTk72dLF++hmhOofPQYfxT45RX1zE+Okw8kmCW4sTsbsAiZrhi1VU4rDISMpPjaW76yt188dGH3Hj73XjKKxFM4B0L8+FrH+J2SizfeA0pVaG6uJBEJo0hliXunSIlaORJAlldIxVLEx3zYUrlKJRtaIkMFiXHxKluDKEYlQ0NjB05i7WyGKssYSrJg4yGVlpJmTsfsTaFKZWlQDaiNNYT9fnJRmN4o2HMLhdyxovZZkfxx1BFiYFjbUg2K/maSDYao7yhhJee+T3Nc6qZ2zQTU7GDne+8hCBN68BdB9pwryjBH8qS8WnE41G6zh3EkrByyaobiSWzqPEsCWuGTDaAGIFU3MwkPopLyhkbHMcgSRQU5hMxJfFFYig5hba+Q6jZKGUF8+gfO45RyqexYibt7e2YRQlRllCULI5QhJwOmqKh6hqaqiFKIqqiIskGNB206aIGNDTQQdcVorEoFSYToiyjKApZReWiuzaSSkQwLnGQmvCDEbZs38ZgZw87PcUY02nqaxo5su8gRSXl/OS53zA6PsmipYv4+Y9/xP0PPMgvH/gZG2+5kfiOL3DZSujrG2DNunVsaTvOdTffSjIDitnCrKULSA2M8Pneo2g2J1NTPka9Iyz9xg2Yi4vxqkZyySzB7lGGHCILli/FP+XDNquOTDRKwDuO3WLFrJlZsGop2VSO2jXLGTnXgRDViGtR3HmFFOc5EefOZMXKdex+6nm0eAZFkrBmoDQtMG40EMx3kDl4hoKiImLpOM48B4mcwkXLW3jmaz8kmVZJZDNISKQ0EZPDxE03XM/tt90MoplfPfhjJBJsyw5Rm+9mc/0yzh05ylcvvRPtEgUQsFz7dWx2OxajAYvNyrYPp/D2DTBv+ZXsPeFjzcZ65s+ZR1NtDa48F17fJHkOBwaDxEtP/id2dwHf+8WjWGyWaW+ILlA+ex4bsinuOriXS1YuYudAG8JUhKFzI3iqqhg73glzKqhpncvk2Q6GIxFyXWNkM2kKGmpZePlq9r3yPoUhG0OJEeT5OdqPdHN561088O+/BC3HiXMShhm1nBjooqjoC4qWzmD8fDsOVwHiyloiZ4fQytzE3Fb6vjxLdVUtobMD/xBX/6lBP5XOUlLtIR6KIyxtIOmbJDsRxuubpMDl4oPf/Ad//POzJHM60VgGo9GEFk8QiMRorK9GEKTpUvQLYC8KIMoGZNGI2WTCYDJesEzqaKqGIEuYTGay2QzBaIBv3v1NkpkcBlnGYbMgGWRMFhuqqhJNZamvb8TnHUQQJUbHvSCAkksTDk4gS1UoCggqnDl4+oIzCIwGGQEJKZmmpsCJu6yRjtMn0TSZRFbi72+do2+sAEmUKffcRDqict9td7GqpYzvPbGNay+/nPL8HJ999CSuiQAeq5PQxAQGWSClmRjr6yIV8WE0m1A1nX/94XcZ6jjNicO7LswmJDRdRxBBRCQRjGCWBXyJYTIBiVQ0gV0ATRXQbFYs4Ri+M+eYvWI2Jz/ej7GmCL/XixaIMTw2hkFT8J46h6ulgZDPi9NVjN83iU2UKSnKp+3oURxmC2ZZZKhnCNFhR/P6WLDhUs59uZ9cMoshq5LIhlCicYqvWUdy92EcWZ1MOknr9Zdy9NUtVJcvAyWObHMQC0eYqjYR682iGy0kgzE86SKcuow3O0Cn7xQ3bvhXKotmYjULBJI5JJeLfNFJ+6nXiKyqI/jhKdzuEpLxJJJNwOV0YTKasVjMRAsWUZVXwYPf+T7x1Clml9Vy7XeeZ9tf/o5ZtBCJBZkcHSOvIJ+3to+QkSwoOqiaCugIosBkMEhleSlKTiGdyaHrOqIowYWlGkGQOH98FzMWXISS0xAq7ShjYfrPnqd/oAcHEoIKc+YupqS0hJqKUgyKyPGBIW65/jrCgSlqK8sZ6B1GIUd3dzczFq7k1NF2Zl+6lqExL/kFbq7ddBW/++ljfP0793H75rsor6/jZFs7d95wC4888nPs2MHh4oqrL0ayGOnYt5ORoQnKNixn6nQndU3zMG9YhDmTY8o7jqBCsKsXk82GM2ZkeKCHGbNbGBqbQo9GCZ7tpnzpIoqqSmnffY4Vq1Zy8tPtlJR6iAeixBJplixvZedHe5nsGeHxp/9I28mzPPvaG1QuX4p/YJDoyDgzHXb0dJYXvvszRgMpJiamcLvdJFMpjEYDRhVEQWCwf5yPX38KiQRmqwVtQuWxB36BSdFYtuJihsZ8tLhdhJJJBFUnGUsxpcSxGEPU1Vdy1aYrWLHifhpWFFI/6mL4TC/1dVXkL27FIAjYrGY0XcdqMmA3irz9yl7Sgh0ll0I2ZKfdYJrKvJpLGYt6sUckjK11xDthon0AV76LypzIWFcHk8fPM/fiZUyZo+juAhovWcyZ8+3c9a272fLiJ8xbtYaC4hbSagjJpPAfj/w7P3n4x0RzMTqD4/i7ehnYc5iaqy8hkUpgttgJdvSzaONlRAeCDB45hVGVSEQD/yOu/lODvq7rJJNpCtwudJeLUP8A5aU1vPLQz9n53qc89fKbZHM5zBYniYxKOhMjmkpjkG0YJDM5VZm+Ml8oQhGEC09pmuEbZHm6akyfbgISdO2/7ZWSJLJ42TK+/HIfIpDJKRhkAw6jhUQyQUHNEs51HKSn4zxKTkFHQ5IkBETMDgNoCoqmIhlMaBfAYPXsCmSjTCBjoHdwnGAoij90Ak0XkSUdDQGzy0EkFsNd5GDDmiXkhw/gYhCLZMUZ2sPnr72Pp7yUyvImgmoviUiMlGqlZ6CbBa1LQYccOmQVBEQCwTC5nIrBaARBR9PBKArogoAoCuTiGQTrdOYP8QxOg4RFNCCvm4c1lSI4OE7jzBkEBqeovmYlWa+f+jmV7Nmyjfz8QkRVJRtP4Ml3Eos6CXX2ItksJAsdqNEMeTMaiRw9hVZfRtmsRhJjQUpuuJyOj3dQ0jKLiVMd1N+6kUDvMJlogmBXP2VFRaSmgqhonNm6h/wiD96JM9hKC9l9fjsnDu+krKqK1stmc2DXk0TKw0waJUrSGQxGE3LUQNvRNyi85af0HHmRpou+iZLTKSyqxtE0k7FzHfSMdrH+hmUcf+0DSqacFOSlyebSSAYRfWaIPYenyArf56ODf6LMXIgtY+Q/33udgb1nKXEXXMh2Ejm4cw9XfeOPZDJpFCWLqOVQFZXZd63BltDp/OQYXHgvlFwWySCjKaBqaQRdQdEhg0ZBaxN5S0AVZWprarApMsWlJXxt8738/OFfsnHTRk7s2U9TVRVul4OahlrSShZzvomOzhEy2SwHj+2jtqKSooICYv4ws1sX8e6b71DcUMWunQeYGhthMujnzOHjdI93ke4Jcvu/3cX5M6fJLyygr7Ob+x95hG9v/irGcJKZCxdx4sBhakuXkMhmmOgeIs9ThFGQkBSVUGgMp83FqYPHUKN+JLuTlevXcG7HUQbPdSJmVLy9vdjy8nCVFBMd7ScdSqB7Krn/pT+Sb3Zy5vQ5Bvp6+epXb+VvT/6VmuUX4cRAfDLItv/4E+OhDAVmnYKyPPr7ewlM+ens6cUki1x6y92YbWYMBhM2q8RAIM6Bp1/BYLEiKJBWM3z89F/4VNb59gM/xWY1UVBSTtA3SjQZI4vIxHiCr9xzHTuPv8zrzx7h5LHDJJMZUokURpMBHQEBHUGW8dQ1EJk4zL9+97sYTBae/tvLnB7oZ8wcQ3S4OPXFXpwWAzNaquicPIskSChmM2NTMZwBG1pGJxmMUbFxKV1H2vGe7cWQzLBv2z7SOnQNHCDfr3DZ2q+QDWR54JdPYcs3M5z4mKkRL5Uzm0iUl6LH4hgkE8nxKYwzq4gIAmN9ZykvKse6ugplIsDEsb5/iKv/1IPcRx997OG0SSckplg0dz45k5Hn7vgan7zzCROBMIKucPDIUdSchIqRZFZkxTXfw102G4sQRM3lkCQRTb3A5jVAEpGNBvy+cew2O6IsoarTvhxdA43pMLeuzn7u+c63mbtoEfMXL6e2oYmWBQtJhP2s3XAlR/ft5dCxDgSjCdnkJJ2TsDrykYw20M2MB+JMBRN4R6cwWpzomRD94xHiioXJUBRJFnHllSOJApmMQk7MQ1eSSOkEqfHj5AID+PqPMjQ2xS03bKJ1/jKuu3wFieAE8+bOIjzuJRGP4XK7ENNx3nrlFV5/7kkuXr+GpUtXU1HTQN3smUQCkyy94gbWX34FB3d+hiBPB8mJ8nTsxKGzp5GQprt/1WlLaciUI97WT1JQSEZCJMZ8xPxB/ONeIt1DxLNpbFVVVHsqMJYW4MCA93wXocExLBYLSX8AqzsfzW1j9twWpOJCAr0jFOUVkfR6YTKCyWwnZ5cpsNk4t3c/UbOKsbiQWE8PSjBO2dwZ2KuKiXuDyK3lSIVuqlrL8Y0Mc/36W9m75UPC4QQTwz00blhOZZ6HE1s+pmhmC1PdRxGzIgtXXUvYe4xRo4DDI7F09lLeOvki9XoZy69dz8jJ0/h6B9AcEvMbq8EqEwhPMer3UVJRyKyKJUTSQ/QeP0rJjBpyokL3lwdIRoL4RoeQrKWEJkaYsfwaek58is+VoaAwn9lfuYRILklvXy+CL8ENv78fk8PK6NlecqkIgmy+wPwFahasou/cEZpaZ+EbHiI1PoXV7Wb1ylV0d/XRcfosp9pPk4yGGOjupbiqin2ffc5kaJxh7yhGRWLTjVex84s9LJ4/h2wuTX1tI3lWB7LVTiYeQ3bYaG2dQ211De+++Hdkm0R4wEtpVTlB3zg2ZD546u9UtFQQ9ifIlOZjkXUGo1MY0zluv/5rdAx0kg3HMOa5SAxN4rQUkVMzZBIJjHYTtS2zCHknyBoEdATkaJZ8l4u+nrNYCwtJj/oRdSNX33sLsWCCWMBPc3kVH/z+vzCYDHQebWPW0kWM9QxRkJ/Hqw8+gqJLSIKId3CIaCyF21NG/axWPnrtRUJBP4vWXUpOUTh38ihvvfcR4yMjrL/xTnrPdJDKpKlpqEdXFUpr65mIZdAkiUHvKE9/8AH79+1h+aKFuIsc/OG533Pw+H42rr2MPbv201hZga0gH12blukQBPZ/9hl1C+ai51S2vvYu733yCedPd9J15hjFpkYiwQw3ffVf2L1rP4V2DyPtJyipraT17ksQ7UYKyosY653Cb0ozcvIsRaVlyLpGaNjHeGcPipqkZd5CDJkslUWNpEkzEUvx3FsvcvLTdzFoSYYPniHcO8rjv/wNZ/vOktBUDLEkZlkipWYYGhsheaiLUncJ3v7/pYNcVVWYf+N1jAeHCUQjXG+yseXdd7BYzNSXO5FkE6t+8E2yOTMf7dxJ65JrkWXIGrJEByOIApglM6qWwVlQTDgUuMDsdUxGM6IMJpMNTY0hyhecNTpooo6qw+joGJl0koqyUuw2G4qio2Q0UrEM/R3nObL3Db7ctRMtkyGtaFisFoKxJIIoYTUbyWXSLFi4DEnL8tCPfkT7qfMUOmUEo4TFZMJolDFZyskkp33sG27+JnXOQgTVz/tbP+WJR/8Do9WEZDASzWo8+9TzPPboIxzvHeHnjz/Oey//nQMHtnFk12EsVhPZbJZD27ezJfo+X/vmvVSXz8KQ30w0GGQgmeT7v/4jxuQUTzzxOCaTCVEUKa6swu+dQNAhmclgWdiEKRDCKmVxz20hEPAT94eprq8jfq6fZL4Z1WWjQBXoOXaS/CUtVF29ksDZc+RPRSm0OogebsOhQlFzI2OdAwwePY6WUukcHkJURWSblcaVizh59Di5wnyaZl5Nz9bPSU5kqV2ykFDHAMNnuqlbvQTrqplYVAHfyBCTR0WKLm6hbfAEpasXIMXTJGWVtD+IbyxH2fyZ9O34gtpN69GHJhFkgb3+DjbOvoWD/h3snfocl9lF0i1y7MQJ3LWlGEeKMVYU0xuexLVkDqHIBM5QmisWf4NoMoFFlZEqS8nJIke2fE5DYSGSJJPLKWi6wFQ0iDPPRsXc2ZhdITS7jb2H9yDJEhsuvhhlhUZWUcjkgZbLkRFzoKlIgoiiahS48sil0xz6YCsmi5Vv/NtPeO3FV0nNz1LfUINRB49s56v3foODe/dx5NBeVq+9lHMnT/HjX/yQRDqN3x/k2w/8gJeefpr5i5fy+m//kx//9rf89c9/wWiUMZcW0lxXz7FT7RTb7WQDWf71oYf48uBhDny8jflzWikvdeGw2/GHfWiZHGNdI1StaWUoq3N4pI2GpfM5452iMJtH1BFHlCTMdheJSIqKpnJCg6PIikTFwgVkD7aTHYvw6t9/T3VpNVPjw/gDATrPnOb9/Tt5/mf/Rs+Qnz07d3HZ6vVce8dm0skUoqihXpGhcfbs6UVCTSXfbCC/qRlRAMFg4LGHfgEiCLIEqo5stFBZUY3FZCSbU3n1+VdprnMzGnLTNLOeRDbH5x9tYXDYy08f+w1///sbHPpyD9U11XCfhV//7jnSgTDF2MllFNDgzTdf5we/eBiDzYh4YafGbLEy0d1HUVEJ8+bP4Pq77iWTySBJRt5+8wPqZzXy7X/9MZu/8lM+O/EsHk8lss3O4R0HWbVhLYM7+7jq69/hkz//mqqW2aDpWKsqGD/QwUU3X0UyKeDtHuCxh75PcKSb7d05POOjxPQeMrFxcg21zFi+iVggxBN//S2ZbJqC6lpSXT1MnOkkl8xgCWUxOZ20zJ7HoR37/iGu/lMvZ5mtVr104xLGdxyj4dIVtGQNCFkFWWQ6MEqf1k81RUcXJXRVJ5VNoCs6sVAAR6ENm8VBVXkF1XX1VNbV4HQ6Kc63kk0kyCkmhrxDiKJOJhEjm1EJh6YPAH9wklwqjtFoIp1MoQsmskoOUZ5eyZc0DZfDzcf72xBlAVmUEEURk9GAql0YHAsSotnJzffeRzQcochtZl6pmaNt3dQ2NZNTcijZHIIAuZyGw2kHVLLBcToGJli0bBn3P/ALBnt6eey3v+YXP/0Zd958Ez976Nuc6p5AE+DxXz2Cw2nm5LFj6JrKMy+/htlo5lvfuINbbr6DFevWIzAtlTktJg4cOcY9995LMjrOH373n/xh92eYXGZiwyNUX34JAzt2Y1JlZrTMpqOvE0ddObFACC2UxNRcg0cxEsqEwe2mpLaKNND78eeULF2A7+BR7GmZtJ6h4fI1lHnKSCRTDO87islqR9YUeru6cS+aheS0UbughWKHiy1/fhqzyUk2HCGvqgyTww66SEbNUDKjHu/xs5S3tlKJga7RAewz65k63Ufr6qV0f34AxTdBcDyM58rlGEQDiZFx5rRcQnXZcvafe4Gu3rPk2zwkJkNYMjEi0QDLrr2K9vPnSY9NsXT1Gg5++gU2Tx4XX3EVu99+F2OBk5rKegbHR5k/czbFM2s4+Nwb6EkFkywTjsdpbF5DtjiObvYg5aVIJOMkk1FWrFhGX1sHtppSPn/0WWxzPGSzOUr0fOqvXI3b5WL/E2+jamlu+f6/88Lj91O+sJmcXae4uBRdNLF21Sqqiot47vf/RSgepb65lkVLl6JpIvMWz0PUdD798CM+27GLjRs3koonaO/poMhVQCzoI2GQkZIaI/4J3FkjKSVOOq0jyjpX3nIbu958m+vuvo1PPviAe/7lG+AsZqyvkzNHjnPbD77Gf/38d6ScEkbZyoz1q+g52IYyGeT1Vz7kkqsupraxGW//MJu/spl9+z/gmQf/jUBgkjNtp+nr7cYkGRFkmTu++e0LibfqtFCi6/ztT0/gtNkxmW0YLWY23nYXZ0+1sXDRHApLqilwONB1dbqlTgcECV3V0CR45AffYjopUeRffv5bFEXh49ef5dm/vYiSU8ivnsGylkrGFJXbrrqK0bEgM2c00dU/jCrAeDCFwWbCGwkz5O9C7J5gwdrVHA5PIObZMCgCRYMTPPrrx1A0lf8rGP2Z3/6WiroKnO4iNm26FhB57unnqWyq5lcPPkRRsY0oBcTMJuqaNnD09DO4SvOYN2cu/f3DhCMRhFwGi7OcwnILqf4JEsEEvcfaufaGq3EWzGTnoS0smz+bgSk/zfX3Mnr6b3ijASwuO4LLQspgYGKgj6QviDNmIBYPU9hUg1jlobSgiDNvbOGRN7ew46232P73F/53Zu8YjEY9r6GISDKOGysF5gJGR8cQAYtRoqm+gYrKamw2I0o2SS6nklVU0FVySgZFBXQBQRCQRIlcLofJZCSbmX6iTWvbMD1k03QNSZy+nur/j8GcounTPfOaNv3CCSK6rjE6HiCV1RAkAUkQQNARVAlV0xEkECQjMxau5NZ77kTNJRltO8o1163jmd/+imQyg2Qw48xz4faUkE5nUFUVp91ONpubzvDOpJEkM6quIYoSVosVSRT4+vcfIOTtpX/Eh2Y2s+2tl6isrgZdx222MWP+DOxWM2YDiCYn8XiGcDiGd3CQwYF+QqE4gqYiSCovnzuKvSgfVdXo7xsgv9xDfHAMU2ER1XVVTPUPkFVEooEJtCIn9rCCoaSQyZgPaTiAaU4dyYFxDKIBQVXRYmksVjNCnYdC0U7KIOId78WSBmtKJ6mmSWXiNH3lVrT+QcbIop7rp6yqnMlkHC2VQS+w4y5xY7DZ0YP9ZwsAACAASURBVDMaQf8ktqwGtWUk/BEysSCqN0j58oV4P9tL8YoluCJpBIeNSDiGkDWgSCm0sICl1ojRYGd432FaNm+i85MvsZmtBMI+xHQWNc9JfdkM+tsOUTSjnmjPKIsvXcexXbvBJKFpAmJ5HtXGPMY7B0gkosytmUUwFKCieQUTkR68UoSSgnyqFsymffsOktEQhBTyF84gNDLGpWvXU3HJCl556FFy4wHuefBHbH3uXZRAkBu/9Wte+9NPEUUNyWLmwed+z/jQKMf2H6OoLA9PZQXv/PE58iqK2XTT9TTPqOXpJ5/msssvp6m5mS937MFd62Gwb4jTO/aw6ooNfLztQ2L+BD/746/ZuuVTFi1aypmBQbRMjLtuupMHbrkbVctgMBiwWhw88sffIeW5ePOdN5g43cWCO29i6zN/IxFKUlfViN+qIucEpITKDVdezyxZ4OIb1nPqaBu7Pv4USRRRFIUcOtdct4ktWz/jptu+Qi6bpaKuaVo3VRUQBUREnnziUYoL3ehImG02rrjhVmqrSvjgrS1svu8e0FWEXA5dBEEQAQFdENn+9hscOrAbk81KOp3jW//2OzQN3n/hz7z88us4bTbCCYVXn/oPjHIOIb+QZ599m8GRMf76+t+RRH06Ql1TGB4Z4dTxs0yODeMuK6GqpopiTwUOqwlRBL9/AkkXaW87RTAUxiiIaIKG1TRtAlEzWZ54/AmKCl0IAoyNR1iz8buYixtp795PKniEYDRIoGcYubqYRPcIZk8+bocHoVjGXlnExNlelPEQqkEkv7IKa3kRLz34E5IxhR8+/Z9IWZ2CXI6//PrP/OD5v3Bsy3tosoCcSKMYZUSDkYqr19H+p1cpLavAVlDC5h8+RCIa5LFv3vO/M3tHUzUarlnDwNEObLKB7v1dlBUUEPGP4SppZtgXpW/kBCazGZvNhohAPJkgGY1jMBowWyzIBiOqpqAoKrqmoSOQSiZAMGAymZAlGVXX/jtmWRKlaXYhCag5ZfowQEMUZVRNnQ5cuxDilkrEqaoqpH84iKYL08M9Ydp/bzIYUdQksZjMm68fYPPlray59FoEIUdWFzFaLMiykWwux8T4OCIioiSTSaZBkjAajMiSCaPJBIKIZDAiSjKReJJPt29juLcT//gogqZiEg1MjYyCJDChKJzv6UJRFQQddE1HUxUUNTcdJAToaIjidCHMNdWtWC1G7vjaN7DKGlfdeitanpM/3fU1PvtkOz0RhUwmRXr2fGz5Vk5+sZc5KxeT7FYxrKohz+pg9pIV7H9tC6l0nHmts2k7cApjLIH7gXsY232E0oZmUmd6sUgCoVwK8ouY2rqLdDpL+fx5jMkmwr4wTUvmEJMEsskEI729WBqrsE2mUEf95IrzUEaDrFi3llHvCNnyCLLNzqU/+hb7/voiwRIPVjWHmE7hapxBZnQIY5WZnKoztvcgKzdv5sAHW2mcM5uqCg8733if6nVLmRryEo34EOrLqJrZiKOohrzKOswlJ5mxci3OKBw+sJOANs7CtSsYHBigZ8jL1euvhrnlhNrCFEdtBHv78CxopXHlKvr2HyUmhonGI8hmI32Dg+z/6zmuuPNGpoIBnv/rf+FMuDAgEktn0C7YhpNKilfef4uMN4zdZuHi1pWcPX4WJZWisKqCHVu3YXffSE19DYvXLONsRweaRaIs30PQ6cNSUsjI6Q4WLlxK/Zy5DPeNUV5Ry9yqeg5/uQdRgJeffpYb772d1//0AtfcsonG1lYiqoIlEaWs0ENH9ARHt27n7Ucfp7VlBrLFiSiZCfmnmAwFyWQ1aqursAgKlU3z+OlvVuMd6KKrcxBPRTmJRILb77yDl5/5G7fcfTfhUIj8/HySmRw2mwVRFJEliUw6g7uimiWrLiE0OYnN6QCDZdrOioAgS9MZN7qOrmuIEhzctwsEyGVzyJLEhy+/gsFux2SYliol2Uijx4DisGM1CnS1d3Lft7/GT37yewZGJimpKSGbjBL2BfBNTXHRumVUlFwzTfB0nZzyfxs56vMKQICa5mZSyRRWq4WsqiJqQCrJ5k2XU13upnc4gC6IqLpOv/c4xz7/K2o6RP3SWbhUC/lrFyKl0+SvXcLeZ95BXtpEkaeQjre/RFMV1my6DB9ZokNBXEh85Tvfp8xRhbXBTCacomj+1Vy07iKMgkR5cyuJ0QF84RAIEooaxfvSxxTm5ZEMhrBK8NnbL3P9Xff9j7j6zw36mkbH9gPMu3odx55+i+K8EooKCwn6hknEkwTCQSrKy1A1gXg8QSqVxmCQMVotWK1mclmVaCyG0WQglUpht9rIpuM4LVmSqhlN11BUBZj+00VRRNOmv+fSOSRJAlVFFEUymSSyLJNIpnnprSe5747vk8yk6e3qRjAVIAoy6NOHiiCIpJUcDruD8vJyMrKR2tI4P3vwq/zqd49P7wUYjUwEJUwmhXynNF3pBQiShCzJCKJ4weOtIxsMiLKMbDBhcchIGAEBm91BOpVCkgVUJTftOhJEVF3DKBtQcjkUTZse3CJOzyo05b/D5HRNxRdMUu4pxGIyk1J1PvnwM6RMlM92fEpfTz+ZVIZ4IoHQ1YlgMvHnH/+ES1avodRdwN/efI2/nNrNnlffpfGGSzn9xk5i3hC6rpHLZOnr7kYIhAl19eCZ14xTsFBZW0Lf2X5i7V1kM1m8Y8OYcyrpdIKu/cfIGXTyWmdz9dfvYefnnxObnKBk3kwmOjtQx30clHWSRhBCMaqteez6fB9yTqNu+WzG956kcMUi7FmB8WyCqvpqsqEU7rs3ka10UlxUgM3tpHNyFFE2kOwZQUskaL5yHSd27OLEJzvJzyuhXhTJdxRx4sudXHvD7YhHJIqrGzl7upvAxDgui51jw2dQvZ2UNdRQsmgeXl2j+8BJiotdZGMp7I4CYv3D2BpmMtLVT97MSg69tY3MpJ97HvoB+7fswhZTsdosiKqO5LYwc91iamvryZQlsRlM7N17hOIyDwZNp3XNRXz0h2ep9tRhXmFn3859LF2yBDtWdKNAWVU9h7buoTcXoikvn672M/T3jRAeHSEQDJFnsmMpyceQzPDuq6+x7LLVlM+ZQ1VTA3kmK5988TnfvWEzV9TOZVlrPQ/d/xCiycRN3/o2BlFGFAVESUISJUZHxxEFgRd+/5sLVmiJuYuXT1sbbVYMksD3fvoARosdRAOoCg6ng0QqjaJo3Hv/g0jidKx5LJ7hL//1Z9Zds55v3HsbuiiCrqPqItl0ikQigdVm49jBI9MxIE0z8E0GyKST5FJjBH1RyqobKXS4efqp3+GPJjh6cB/vfnKUfJsZyyc7MRsFeoYsbPl0L1arg3RaoaOzE09JhMJ8O9lUGg2RZDyNyWzEYlRIxGOYDAIFHiPFbicL5rVQW+5mMpIgFIkzMhFFEQRURZsmiKrCvMXXs2D1TWx970XSQxMExwao3LiMjs/aqLDISM35hAcmSExGWXLLlex75m3Oh8fwfdGOvc6DzWKmNL+EQG4C45iVrKqyb/tz2GpLiEciTIV6QVQprC1DS6vkVRQgm0xMeX0sWbCOtVdtxCAbEE3/i+sSBUHUTS4ToDFv/Rpi5/ygaUxODiNqJvLcBTgceYRCITLJJLooIYgCpSVlTE2NI8kmksk4JrMZg9GAoGmkMymU1BSSpRRZNiAI4vTmrCRPs3pNRRQlJElG0/8Pc+8dXdlZnn3/nl1PL9JRl2YkjUaj6c3T3LuxsQFTYhxqIJgktDchIR8hCQQCJPSEYLpDC8ZgjLHBuLcZT/H0Ko1Gvdcjnb778/5xBF/efAl8K+8/2WtJZ+9nP9pb66xzrn0/933d1xVU9WsCEEo1Lw4SJz+BFqknVywi/CJGOFO1n1NUhKoiRBWwXdvlujv/GGFE+fO7OxifGGVqYZnmVISRiVls18GxS6xb3cLPHv4lqzu7MQzjN4CvaDq6YaJqVdtEzQjjBpK13Ws4e/glFAIqlTKqovPNf/0OSiDwgUgohJDVZh/f97nz9puRvoeq60ghqysZJNJxeMs97+Yrn/kSydoaKhUL26rQs2Mrp8+dIZNp4KUXn8V3PTav38jOvbtoXdVFXXMDaihGa0sr+flJLlzq5f3/8Cnqr96B9dJ55oWL0dKAv5gn2phBL9jMzEzj6R6JVIqZc4NsuuVyvJyDFQTM5eaQjkPNmk5cq0Imk2Z+JMvc+BANDY20bOphpm8Av6uR4v5TiM5WShcHufyW2yi6Nue+8zC1O7rINDdx8cmDqIYgkqkhcfUWSktFGu2AxVQYrX+O6Zlpmhsameq9gK4Z7LrjRrSwgZqspffQfmrjzVx46QDt3WvxlmymZ8dRpYtVcrnida9haHoUu1DEswR/+Mk/58tf+Cyt6XrqW1qxl/OcOnuIzqv2UrgwSaypBmtunn03X8sjD/0MaQtuf9fdhF3Jkf1HyT57jhve9yGef/EHpLd3U1MIqAvHOHHiNG2rOnECD3s+R2GpQOvqZobOneHuP3sXkUiKA+cOs2NVN5oloTbOA1/7Fn/8kb/k3g9/jBvf9Fq0gsIjD/2Ed/zp+/npt+9l36vu5OLpUzS2tHDsiZdYt76dcxd6efOfvo+vf+LztK1q4ubrb+P1t99JRNcI/IBkbZqW5mYEAeAjUCiWyvT3XSIaDtF77iz3fe+HvP+978YpF2nuWkM0nkZdCZf7B6cZvTTCNTfuQlV0fN9BKAp2uYIZCVWb1RSFCIIPf/Cv+MK9X6S5pYXF7DypVA1Crdqnl3J5zjz5CE+/dADdjJArlJnLltjQnWF9zyZ2XnUtv3roF4wu5jl49CSZmI5QVRQ9xrHTg+QWl3jV+77A6pZGoobKfHaJRDLF0NAgtekUyXiU6fkSU2PD1DfVk66tuneZugZoeG6FTCbDwtwiOy7bRnY5x5c//Er8oNoA6vnV+sOr3vV3xFOt+F7AD+//c/QIzJwaRsSTXP2WV2OuCnP+5ePMHD5HOBqv5ubjcdb+3jUsjU1z5F9+zg13XodIpWleu4nX3P5mCoUiiucycOEMG3ZcBlJn8tJpmrq7WZqbY2Z2hp3btrO8VCYIAhRN4/EnH+LRr3z9v5/TF0LcB9wOzEkpN62MfQx4FzC/Mu2vpJSPrZz7MPBOwAfeL6V8YmX8FcA/ASrwLSnlP/xO0FcUWX/7DjRhsPjMcZpqV5FfnscPTFa1tuF7Lpdt6aRk+5w43Y9hGtSkayiWi4wOj6DoGhEjRiKdBCSu4+I6Fp5fQUoTTTcQQkHXdXzPRyiiKqdg2fiBj6KqhMNRyqUi4UgYy64gpKBcmMII17K4OEksWo9Qq/r769a2IoRgbHyBkBnCcTzu+pOPMzM7z4c/eAuLfcc5fuo8mZhOsVjC1AR+ENBaX8MjB85TlwgBoOnVqF7RdDQjVP0/NQPdDOEGAWs7Orl09gTlSgnpO4SNCEfOnUHKgJb2NUwPj3Dy5DHWdG/g3OmTvOE1t+JaHiFDw6f6FBNCoAbQvGUfb3/znUyMDPONnzxBZ3Mjxw4+x9HDx9i4dS2Tw8M4ls3nvvxVQnoYgcfB557h6aOjSN/lw3/1Prq62nErOVzP5W3vfjf9qkPFVLCPnaXhyh2sueJqXrz3WzSk63HjBktDfaiRGpKRBPOTY0Q7mzBr64mGYpiJCIvFZezxGZS6NKW+YSKKRqS5gWRdLXPZJXbeciPHHniQMBrlmIY/MostA9a/7lbKR07jd7RQKBYIAklE1WnvXsvIyyconR3Gb4oQzjTRvWUzJ14+hFu0iSFo37CBeH0d488fZ3luHm1zJ1u3rufMCwdp37GOk48+TdPm9ViOizs1j+hppmfbNmqiEayihTebY3RmgkQ8zOTsEpolCTemGH/hCPHWJlbdtJP5p05R2FiH2z9FMDRF9xW7adm7gwvPH8DMpEmocazJKfou9bFu7Wa8skMynsQ2bdJqkumlKW68/lrygUVrezeXjh1n+97dPPPMs5zf/yJqOMF1N91AkIzQsqqFHe09fPEzn2HHlVfzyHfu42Nf/hwffvf7iBHBsitsu/wyTh4+jRLT2bb3MvoOHOJnP/gpP3zgIdq713PNzTcTCRu8fOBlGhvrMSMhAlUhlkohPY+l2Rl61qymJh4jwMUt5Ji5NICRbsR2bP7hk89RLK3lM/duppTLV3sUApfnnnyWq2+8AYHA9V2sikUymcQpl3B8j5ACHd3dPPjDB6lvWc3DTz7D6lXNxKJxVretJhqNITWX7MwsC1OT/NsDj7K6JYURuGQLDnNLLoWSBbLqvjc3P8vdf/516uszlAsWpeISjusQXmnQLJbKrGpZTX//JbKLSzhOkUg8iqlpVCyb5sbGqn9y4JGpzxAECicf/kuOnx3i13lhCSyWCtQ09qCtD7O2pZOx0gip2lqMs1mmWgJGXzxCU10TifVtzJ0eItGYpHFTD8NHzxNZcgiWc7ReuZvB6VF233ANs5ZLwbMZHRhkXXMjmgzwXZ+0EmbGyePIAE0RvO/2D+B7LopQ8AKPRw8+zBOf+eb/VU7/O8C/AN/7D+NflFJ+7v8AaSE2AG8ENgLNwNNCiO6V018BbgImgKNCiEeklBd+O+oLCuMztG3sYcEJcCtlNC1EOl5DPB5nenqK5186gGOViNd0gJBMTk5Syi8j/SVQdVat6mE5n8NxfBzPwyrliMRTeK6sdvAGHrqu09PdQaYmjBCw/0gvbtklrOsUywV27exCEwrHjl4kUFRC0XqKuUkCzwclQEqBrgpmZyfxHA+IYVkVFFXhR1/5a25681+yWFHp6tnMoROniEZTVPJ5VGGgKT6KgNq4hqyKBIFUqhIRSrWjWCgKmlZN+VRR28fxPVRFwXEkju+gqCrSg2I+X200U1Rsx8XzAnQ9hC6q0YhcsVtDgus4ZGrj5B2FhtXdvO22AlNLJU4eCPjQRz/KX3/gfdz1+29k7+VXYYgAx6uAUNh+xdVcHPkBywvLuJU8l3ovEE+maWhpIly26X/8VwhZYe/db6D/8FkKp0eobWikedc2Tnz7JyTa6um4bTcTJy6SKdaDkUDTFGq7mpGKwuShcbR4FH98gW1bdjDcf4mlvmFyF4ZJdLfz0vd+SEushuFLlzBUA2Fq7LzlOk7+8nnWbehhbnyaPAFJB5ZmJghsm9nTfUR3bGDV7u10NdTy6Je+xvad++g9fZa4MJm9eAknkyS9YR3lcp7lQydYiMTwsjku/mI/m26+jvH+UTLr1iIaM9S2NnPu6Cn80Wl23Hkrk4PjNPS0Y+QLpNe3MJefY0t3F2Nnz2CuruHiz56g66o9TA0OEEoomNdt5+LSPH2f+xqRxnrSVsDQ3CAtV/SwIbmTYKnM0OkLbL1yN5XRLGpGUBup5ZnHX+D619+Km1tm95W7OHHkHKZm8Mq3vY38cpbp5RlK8xoVr8zZwyfYe9k++o6e4C8++3lm80V+7553cP93H2RTxzr23XEbQU2EcjyK7hq46SjnJy0+9PGPo4gVTVkp2HvtPpxCHjSBqYfQNBNXCFqaG/GBvABFGJQ8j1k/yvn9x+nZvom/+IfXYqo6llumfW0nuqKgCEnCVMlmc+hmiEcefIQ77roT3StRX5/g5OHjmBu2cOddf8CazjUkRqaJmQpvf/97UT2JVa6g6dVUqt3j8an3v4fOxjCBFuHlE/1IqH5vFBUpIDc/QFjAg1+4B8MMo6Bx27s/Q9iM4roWy/kcyUic+fk5DEMh05CmJtbCUqGAogSEo3GQAYVCgfq6BuLRGJPTs3RvWM/RM4PIoFoP9GSAqqdItHZRG/U489DDlIoWq97+CqZTDsKOoJRgcW6c5YEpbvz8X/Don/09kyeHiFiw54abGIv62PkSv/fH7+Ghp35GNJYkqoYJ+9DS1kVz0xp0p8TujZeh2AGBXeGBZx9D0VWkXzWI6j30Enduv4kn+OZ/Cau/E/SllC8KIdp/17yV7dXAj6SUNjAshBgAdq+cG5BSDlWxXPxoZe5vB30ZYOQ9Bn72AldceyWHXjhGXSpNS1sb4+PjRCMRopoLxCkFBpZl43oO8USMunSSIAjIFfOUikWi0QTFcoV4IoFExzAErmujKIJKpcS5M2eRXg5fSjyRJByO4gce4ZDB4QMvgpRo4QYUqpINmqohhYtEQQiJomqkTIGrCrJlD0XRCHyJInwmjnyPXyRr2LWuQnlxjknPxjCUaiu3UHAtDxWFQKm2lqMIPN9H0cRKJLESTcjqL8vxULUQFcsBAbFojOXlZeKROPnlReamZ/H8AEWR+EGAoap4UsH1XVBUHMdFkQE5VxKJRpGiavdY372VNZqkJZNgej7Pjx56EMdxUBQFV1aZFKoikAF88d5/5qN/+kH+6SN/xt9+6uNoZZWRi3lufOUrGB2doqulkZd//BhLsxO8+h1/QF92kdFnD1PT1oyW1on6YbRAI+vbXH/NXg794hmyIZO5wjJrVzezKHymZxcZvdiLv1xB83zSG3tYtaGbEz/9BQumiRkPo0qFRG0tJ594kfrt6zi//yBCaMQbGyhKwYYbb6axrLNwVYIT/aeYOSGYb0zTsvMyzr90iFA4jlKXpNA/yPzAQ9StaqU2Xk9tJMGll0+i1aewtYCh0/00ROLc/uqb+e6XvkZloUjx5HloTOIO5VDiKhfPnsPQJXNnj5OJpnjxwgDqYhHVV/FdyfRClg1bNlOemGd6cIYN27ezKHXKZY+Z0VHcxRL2I1li6TRxVeWa199GuDbN6aefRTdCbLruGkqBj5cvcGZwgHzfBEHEoGZtM4HvMT8zh12xKU3P4NWnaQyZPPfiIe5652v5xne+wcZ1m3DLBZKaYGpykm994jMomo4UPoshgyuvuopzYzl67z2EisTzKxiiSEtbhNnZOeaWC5TzEjvvkKmtY/sV3Vy+dwt6SDIzMU8sFGbTnu1s2bMDhMCXEseXJBSwAVsRuCWL0fkKZ0/1YZhR9t5yG+VABS3EXW//X6RiEWLhR2hLR3BtnycOnaC0PEfFeIx0pgbbLuCWFqlL6Wzc3MGxC4N4rsBxZlA0HXVFyFBZea3YLuFQDaoCBB6KppJKJJidmyWdiGGYYaSU6JpCd1cdw0OjWLZHU3MLy4uLOK5HMpUirQocy6L/0gAdnR08+dhpgiBA1zRUVSWwbd78jr/Bidfz8q9+TusVW9Hb6xgbnCRVn8GfLxJRdYqyAgRkj/YSaq6jZ+dmlLzDYJBlbHQB3bcYePh+OtasZXl6Ck3zacikCUfDHDj8NF65xIVLvaRtnduuvo41jQ30959mVTyNKyVjpWlOHRj4rbD6f1PIfa8Q4q3AMeCDUsoloAU4/O/mTKyMAYz/h/E9/9lFhRD3APesHFC7bjVOWPLykUN0d/bg2Da9F/ro6Ggnn19EBhLTVBmfzGKGTBKJJKlYFI1FkILRsXlSyTi+79LW0sziwnhV5RCJ47ioioKigAxcFBGgqyqZTCOlcjVH5tkOqipArkgVSDBCGnalSuN0HR/DqOqg63oIy7JRhImUv8ZryaXBCbYrBht27UISEHFy9J4/TcTQUVWBH7i4noeqaVWnLq3KIpJBQBBIAiAIJCFNQ9H0KtvIc1FVcL1qr0LYNHHsCppUKZZLdKzpQjd0VFWpFiSqlCRARagm3/35Md5yc/tvVhdSCLxAsOxKGtZspmIfpVyqoBlVRpKiKFXmhOcRMg1OHjnOa974JtQ3vYlEbQ2zUxOgaFx51fXYhSJ9g4PoQqW2tYH9v3qWxbEh1r3q1ey543rOHjvJkR89zIYN29l20zaOnzxFbWsr2fkc/tQcfqqZcu8gXZ1rGXnhEGgabds2kdzYhU+Am47gjU4Qal+NkohRqhRxupup2bSJqYkJNm/aTKarHdtyaAgleOKhn0I0zuXv+H3Kk1kW3QITP32cnldfj5EOM9Q3SMf1u5kaGkXVTJRVKeIVjatu3cfobD8Xf3aQNbduZWpkjPt/8hMUz2NpYREzHCEoWsQ7EyyOFGhL1TB5qRdxcYblaBYfl/arr2R+YhzVUygt5BjrnwQp2bptGzNOluXheZzxOSKZJJtefRNTJ86RnZijZfdW5pw8jRWdLW+4hcr0MlLxaYpEOX3yLIlMjK23Xsv04jwTIyNs3bSTcu0igwODbLn+Op586EHqSbD59utYLhT53Cc+zmIpx2c+9jnys3PU1zVSKORp7FlHbXc71990HZ996/v5X5++i3hNDb0XB0klIjR1bWN0apLJmSj1mdXEkzpz8/PkXJezZwsMj5wiV3HxyxVSdRmsch8xM4rrLlO0F7n68h72Xb4Jz3LoGxylpaWVdTu3sGHHtipdOoBypcLff+iDrMoYOMCp3hk8XyC0IqhhVE3FQUUPhwkUHWHGKasa+4+VkIEGAhS1GjAJRanmWmSV5lnXvAEnN4UjQVEUpAjIZvOEQxECFGzbIhoJky8VObn/IH1n9nPPB/+OSyOXqEnXE4lEmZ6dI5Opw4wkiKghPE/n9OlzIBVUNYb0qoyj+cV56mMZtu3aRLbcyqmD9+MULKiPUJmdx0jFab9lJ6ImRdau0L5zG5OXhqjZt43psVHU5lrqE3FCyRou9p2nubmNpBLnys4tPNT7IvncEjfsvo7jRw+y+vLr+fYzDxHXwkwXstyxaR+b12zkNbe8jr+597dnzv+7oP9V4BNU395PAJ8H3sFvOCj/x1Y1h/3Px/+/g1J+A/gGVHP6E70XqU2lmJfL2I7HUnaRWDRNLruEaZqEolUufTwRIggk8ViciYkROlanqVgW6WQSwwxhuy7L+SV8z8eVLuFotMoBDiSarmJVHKRQ8HyJ5/loqs7ff+xtfOOr3+Ht93yE+771Td5xzx/wkb/9Lq7rVaWadRVVEwRS4NkOtq2i6TrSqVK/PD8AX+JiIVQNV4mzsaudfHae0tHD4FeleC0vwAt8fFeuUEwDAs9FCUAXGr60HMx7bwAAIABJREFUIazg+h5SaJi6XpWAVlUUoZBdXqatqek3GtulXIGlQpFQ2ISgqgzKSpTv+xLHh1gkieUrSFHVJHr0oUd57RvvwrFL2Eiau3dQmwgxdLEXRVWoqa1FN3RkxWJ8fJzZmTGOHD5CqbhMWNeolEq0dnTRvaWHkZFR+k5eoGSV0ENhNAUCIZFtSQ7uf4k19U1Qm+F8/1lCa5rRFBUjk8TKL9C0awuFsErUDDN86iwtl21l7EIfYV3n5Pd+TNuVu6iPpigslsmEY0wuz5PpWYeSL3D2a//K+ttu4MKvXqBx5yKOZXFkbo6ua68gPL3AqX/+AZm9l1Eo5mh75TXUbuxkfniGpekpcvvP0HrzXmzLJ4iEcJIqz335+wTCYf3mrdghn2hLhtaeTmhrQ/XDDJw9gN0/xfFHnya0uo2LA8dgKkvDlnUkjAST/RdYOj9AeWqOq9/5erIGnP3hT+nauYeBoWGUVbWojWmatnex8NhRli9O0dG1gbneUfpeOE7DtnXUb69j4dwwYcOgYfMWGtvqGDx6gtqWVp5/6mlSiRS7r7uSkYlBZpfy5GYXGTt0gutecSuNTc3EImFKdpnR0VEe/NmDjJ45jaaazE7PcPWfvJU7bnoF/efP8c1PfYlP/vT79L0wRu2mDjzfgiDO3OwCWjiM7wfMzM5SLrs0NjUxOj1Ce1s7hWIRTdPRYxGsis3Y2CSX7d1DqSDQFYOjpywGxy5x5tRZ0jUpYqklNKFQLlbQhYdKia17Ozl/bpDF5RJBoKKbod/gQeDaKKj4mORLLpFQiGI2h5GOo4QFtuejwG+0taqWhgGhULjqby0lbuAg0fD9oKqkqxu4vo9l21Xgd3xUCV2ri7z7jz+IEuTJlVuoWBbLCwvEY3F8z2M5m0XTNAK/QsiMUi6Xq5aq0seyLZ758acRakDnq65gbHGR2liSgq4w8PCL9LzuBlJ6O4bQmV9YYuTkWWp61hLdsZ6871BSJC2RCEI1KXgWphnCcy0G8wuMTA0Tr0niZAtI12ZpdJqXlf1owmdS5FjV3spTM2f54emnEZEkb3vPPXzi58//l+D93wJ9KeXsr/eFEN8EfrFyOAG0/buprcDUyv5/Nf7b7kS8u5PFgxfQVRWJj6mF8H2PSDRNsVSkJuLhuD6gUlNTSy63jO/7CM9Cw0UoURRFxdAVsktZdAVCpgGBJGRWr6WqCkL6K48hQcWyUFSdr33ta5TLDp/+1BdwPZtv3fdzEFQ/JIqKKqqiW0hRXRX4XvV6uknFslGFQNUUKmUXRRH8/MFDvPqaGMm6uirVUsoq6LsOjuMQMkOEzBClio0eUnE9j1xuAUUqNK1uI6Cq1+JLSShsUi7aBFKyqqWF3v4+rLJFPBnHdm08x2JydgZN13DdAD8A3w/wUSnaPj3rNxAwBUFAEAQ0NtXzR3dfx13v+DMuv+o6JAoLBYd/+tLX0WQF17Gr7xMCsZLvheoiwnZ8hNC5NDjMyPgEEtBMnXQ4vbLckXiuS3tLK7NnLzJLAX39asShLCcO7mfTHbeT7x9Ajs8S2riO7PAExvp2Nm/tYa53gMAPyA6N07F3N9m5BdINGQrL8ywLh/aeHnwJIhLGaKxn6LEXCZprqW9uoRTYhDNJJl48SCgRR7F9xg6fxzMrXP6mN3L08ClKx/tYs62bREsPZ547RLJzNX2Hz7KmsxPf9kk01XJhapjOtXWUcjYjR88hFYXC4Ah1e7awdd1m+qbHaaxpIRAW4VQzE5cGyRsGFYKqubICpx5+ilKxQjKSxCuWWXXdFZx/4Oes27WNhfEpYnU1lO08E5ZO9yuuwLZdjNo4E/0XmZ+apfOybaxdtYqnX3ySrdu2smPnJpSKV+0Q9yWxSJzrb9pN5fpr+eXjv8LOLrFhz05KhRK/eOAxxq7Jcfapl0nUZyiPL/Dh795Lf38f3/7Sl5CGzrve80d8/E/ez2vv/CjSt8mkkzQ21zE/t0BtOEFNOoVrO2iqw/TkKJF4lGyugASSiQiuY2PqYSzXY3JshmjEJHAF8boYiqpSW99APBZCKCa+71Ao20TiBkJNMzqss7BsEzF1LEcSeC6oVUl0FBNJQCxmEDF1KsU8QioIKQmsygqvX/7mMyl9STQaxbJspkbO0tS5E01V8GVVaypQVGrr0oyNjhGOxoiaJpVKmYrtkAhVVXd9JJZVomx5JJJVDZ7sUpZYNA4S5uezGIZCpQK+62GEwxi+h++B5VQ4+eMn2PaW13L6yAES4Rh1zauQo1mMLZ34gaQ8vYgQGsmJZSZeOE7Q0UKqo5XlE/0sdGSI1qcR+QITvYM0pprQG+sZOTtGpi7Jj//1PlItjdhzeVb3rCN7sY+lYAzL87lr9x28dOIg/3rvvb8VVf+zCPx3bkKIpn93eCdwbmX/EeCNQghTCNEBrAVeBo4Ca4UQHUIIg2qx95H/P/eKOC7N7a24lkuxUKJil2mobySVaWBuYZZT54Y52zdBPJEil8thWRZoKn3DE0xNzpFIVbtNlws5orE4KAEEEtPQq7z8FZVNpEDTBZohkDIgsIvYTkChZIOyYpKuGUgpiYZCBB54no1QVDRdJRKLkCvnKdkVPNetGq6o1eVmuVIiN9WPIwy0mtX4ns9SwcKyKlQqFeanplBUFRQDLRSnrrkFIxxh72vezmzF5cXJGM8en2ByaoZiqYRjO9i2gwwEZihCvuIQeD6GaVApltAlhEMGqZo0uq4TTSURqiCWrCEUMpGRRg49920sS0fRFBzPo1IqgqLwzMM/qi6DV8xhpCJIpJOYIQNd19B0BVXT0DQVRVXQNaP6o5tEY/Fq1KfpaLqBouroulF9MCoKcy+dJ7Ojm4gZJ3v+Eh6w7TWvZOLcafKeRfs1e1mamERqGvn+IUaPn2GhUqSxvY3w+hYWz1zAaKxneXyCwJLYF0bwTJXJY6conB9Gz1VY84prUGcWGXjxEBPnLuK4Lmv27aZ+505kRxOaatOxfh2D8zPgeJRti8mj5xmSy2iRMM7QFKtXrSFbF+LWv7uHpiu20bZ3F3UNLUjVQQpI6CGSa5qRk7OMXxyEhSJUXKaeOoHY1IVO1QdA9yXW5DyN69YgY1H8iEJyVw/jy7MsLUwTbkwxcuw01EZwa6Mo7bXMv3SKhss2I5qbufTCEdRMgr1vfRV3330nv/rRD7nxxhuZHBpgYGiachCwec8eJpcXuTA7xunhfh597DGyhTxX7NzK/l8+xvjgEG/4vTtIBj5Gcy3RcIR9b30dx4+e5MzR4wyfukjv0RM88atfEm1pJpGKUczlUQFdFei6gmU7VcAkwDBVfD+gbBWrqq2+j2s5WBULz3NpbW3CNBSyuSyO7bI4t4hVsdBMDRSDUrnI3JJFyDCp5B1ipo5mGNiexZ7t3QSBxEMipVoFcekiVLW6UkXgBQFmNESAhicMoEp40IyqfwFAobCMIgqgBAQIXN/Hc72qtDgqszOzRKIRIqEQhWIR01SJxiLomkmh4KKqYQIfQqEQtmVRLJaIx+IkEglsxyYUDSMVg8D3qWtqWwmINKSQ+H5AOBpj6PgpUkacSt8omUwtc2eGKb1wlqUj54ikU8S3rWPIcEjccQ3RgovdN0HRFERUk4ynE7iCSCiKldCZmxlj9a5OrMkJTCvA8BQWSssce/koG/ZsIZe3GCsu8vX9P2DSXSRcDn4rpv7OSF8IcT9wLZARQkwAHwWuFUJsoxobjwDvBpBSnhdC/JhqgdYD3iOl9Feu817gCaqJ5fuklOd/170VobC2q5vxxjyrfQ9rEcLJJH7gMnTpIk11zThehsCXFAoFyuUKQkJtqp5Iop3hgXFyy1kEkKlJE4vEGR2fR0qfcsXC9T1i4TBPPfp1vvzpfyQSS3DDG17H848+hqKbvPad7+CNt70CBZ3v3P997v30l2jc3khE10mmdtDc3s4b77qdPVfdhQxUXJHGNA0C24UgwJeSQLoQCJq6NiMDlYIdIh5I/vrjn+Jtr38lIcOkbVUL8/NLRMwY0Y2bWdeyAU+poT5Y5K8+8E7u+r338c+/+D4f++u/pr9U5JUf/xRzw5cIDBXpw+JyjvMnz1H2fdLNnQyc7aM2FcVxLVzbRTd0ovEkiq4RTsTQlhb4/Te/maCYRSgqhq7T2NzE1s07yC0t4QX+StW4KhIGOmaouir6dYgvFKUaMagqghXJakWgrnxZda3awaysyFaEFJVUTzNjz53CWy5St6qBBRlw+pEn8HSJGRhouRJoGpXRSdT6BsqqjzM8zbymIlNViYX2pEbFCGE0GjTeuJfBM+dIpeooDI7hBD4Djz6DCJkorkckFmHmcC/ZzlnEogULBcyIQClUGD85Tqwwz+qN61gq5iieGIeIRuiybnKuQNhlHvvxg3Rv3oJbKjLfe55AEegazE9OkNDCTI9NsGH9OoJMmMUzw7Tv20aNZVHsaSe0VMA1JA2pGhLpOgpBkfyjE4wsHKDlruuZfPIlOjq60NfXsqQIEutWIQs2Na+5gtnpJeqbMlhdHSzmcqQiCYrLebbccAULxTnKMZWJi0M09XTyT9+6l+7ODeiRNBdOnSYdTnDNLZfjOJLXvuMP+NE37yM7v8DYhYtEhWBhfJrJqYdIhuJ0dLWjhkLccOONzC7liCzl8XyNfN5G0Q0qlkuAR11dG8XlJRIxjf6LA+h6jNXNnfheVbrcDxw818N1CrhWGT2Zwl4so0eTyBVpk9zCEqR8fF9Sn45QLJaoq2sgXyqimWV0r8DZs2eQ6CgoSOlXvR8EuF6AZhp4vlctmvqScqlKn5YCfAn5bJb6+jZKxQJC6Cur++q1DF2j4lXNa1QhMU2DuvoMY2OTmKaBoYfwXAeJQl1NFKkKkuk4+eUini8xQgaqpjIzO0U6U0dtpgFTW/GloBoghcMqpbJXDXAcj2Q+YD4oodTUMnZ+gMwdl1G8OEp5OMsrXnc7zx7YT8w0aUymmNjSQTIRIa1EmRzsY6lSIJy36LruasYnhwinw/T/cj+ZLV2s3ryJuaEhNly5i1OPPcuBb/6IxlWriQQlhGrg1Slk1nXBkwf/+6Avpbz7Pxn+9m+Z/0ngk//J+GPAY7/rfv/hjxh85igzhSyi4lIXbwOhMDs7TyyeoFgukU7VYjsV5hcWiYQjpNIpYvEY87OLJJJxcss5MvX1aLpBdimLkAqW7RKLhogaJlohj2s7XLh0kT03vILHn3qeucUC2aVZ/u3W25Gehy4E+YUphgcv0rn3eiwpEWFJT2MLB08tEQ7HKVfK6EgKy2WEJrFdH9+1CfwAV0qMsIKixTj3i6/yta9/i7q6GlraN3H3G17JsXPDrFpvEgmnCaTPqbE82bk5eh94kpnJOZo71/KHf/IRJIIrN7bxyMP309K1ljXpBH/7N99g0TcJjA00NJn4xRmkdPnMZ/+RVGM9nm2zlJPU1cVwPA9FVXn8iacolct4FUFANTWVydTQ2rEWL7iICP7f9E1lpQ2eFWDXDbMq7RD4aJqOFFUBOqBaiPb9lYJ3gCI1FFVB8TxEoDJvV+i8fCcXjxymkjTREo3YcwWiq1txZ5dYciqE0xmckEJDZwuiPoVsn6VYLBBO1tJ4yxXUXXUtZ57/Mg1veAVTFwepU8PMWnmcSgUtFkPFx9ANPCFZOHIeYUI9bUzPThGNRSkVSywMjlFezGM0ZlCLFUTRRdSbeMNZEvNlFsyAcFli6lGml7MUT15Eb0gSLJRQO9eQO3OJQkcjWtjk3NHjxFNpXNtCLGsUlhax5vN4nsPWO66j/4UTDJ/sRVdMtIiK2rWKVXVddFwTZdTLkRubwfI9Us0dTJ0+yMbrruDcY08xW5ti9e69hOw8UU3ngR/8iD//5N+waBUYON5LeRWUvAJX77uW4f5LNNU3kOroYn5qinMjo4hiiWVVkp9eoJK3KBk+s+cucuNrX43csIrizAK7Nu7gXa2tlD2Xf/nUZyklQoTqVGRZx556jHOnpzBjO0gl0pRsi599/i9I18co2Bnu+sMPoalhLLdMOBpFUTUamjLUORbFQh5D01BVQaFYIJlMYYZ9pJenUJRANUW5kF1EUzTwQAllGM8uYxopNEXFCySBkATeSso08FDVMK5XlRDRNBUlUEEYSOmhUUYPpREVC1UB111GUaqNl77rEiDwAh9NlaRq6xgYHiMaNtF1nWKlTE0yCU61S194KqVCGceXaKaBLqCQLxCLJBB+wMW+vmqOJJDEQjCvaLgeeJ5XbeD0PWpu3U54Zh7NDFEULqblIOrTmM21PPrYo2hCo6t7Hf3PHKQ0Oo12+zWIqMQ0Ndo2bGfwoSfpPX+acMmjbFVINaRZutCH21wk6ilMHz9PrK2RoL2B0el51LxNanWEmd4R6uLNvxVW/0fLMCAEkxNTRKNRXAJq6zNMjo9T19DE0sI0NfUtyMAnu7RMPBbFMEJomsHiQpaJqV4a6ruob2isAq9jY1sV7EoZKUwQUVRN44WXH2ZiYoxExODqW27nfX/4br7yvfs4fvIMne0dbN/czHMvHCGSrOWmu9/Gv33tn4mEQyTCEc499Rz3fOJhHKeCoMT2XTdR8QWW7VGxVZayy6TSDZQth+98+auEwir7tobwhcrE/AIDIxO8dOgg4VU3oeqSiBkhHIvT1FDH4YN9RCImkZpVlC0VlBj3f/0DPPD975NuaSIWNhBCkC2UqKDjOh41MsNdr+7maEsaEUlSLrmoms7IpcOk0legCIXA9bjh2mtWIrQAVVTTNWXLRQiBbdnVcrwEoSqogY8qNAI1QEFFoqBoCioqQtEQgio9TtHQFIVA/LrHQENKUFQFVVHxA52UqyHzZcwKREMJCrPjGJaL9APC8TiBopObmoGyjZycY+rECVbt2EKpb5QgnSUaTTI5NcuG999N79P7Sa1uRVci7Iy1cGBqnBAaBAGFpTwypbHmsk0sDk4wfvwsjfu2Mnv4DGY0TFD0iEQjOGWLJX2W5tZVxCo+U2kbJxYhlTBZGh2gqbuD4WNnCaEQi8SYq/WoxCVbXnkD56fHScSjLOdz5I0K8Z52CgfOEREaju3QtK6LCxcuEovHSNfVsXxxlM6tm5hQLQ7f96+k2laz/ubLOXb0HNHaFAsDZzFNjf6XT1Czby+N8QgLp05RXCoxUxtHaazl0swUjz/xFG98090cP32KkBolpxYxGjKITILy4jKpDe0oiknO8zhx/4+ZzC7QunM3PV1deMtlDu8/QHNpC5fv2MX+Xz2Bcf0NHDp4mNnRCZLRBPODsyQzDeD5vP5tb0E10xw9WSI3N8M/fuXvUUyNZ58+SsHxiegeqXgNtuWh6ybPPfAPhI0Cl7/285RsSSKWIByKIIB4oo7Wxgbm5mZR1BgL2SyGaeL7AYVyGdu20JQwUggCGSClAkh8vyqG6HqCSr5UjfQDiWW51eDErzZVShQKto2qm1iVPDFDRa4EKlJVcEo2uhHC9wImJiZIxJNY5TyTU1OoEmKhLoZHxplZGEf4kmTn69B0hVKphKMKGprqKRXL5PNZYok0sWiExtYmLo2OoQqB7fjE43GKhWVcNWByfJKNW7awuLTI6CNPsesNt5JKpznwrZ+grWshEgnjtzRibOwgvH0NkXgcN1+mqaaRuYNH6L7mMgZGRqhraGCpd5jSYomID9t3beCF+39I69ZN9KzpZnioj2uvu42c4jJx4AT1q7ooDI/+Vlj9nw36ADpUKmVQBbqioKkalXKJ9o516AakogYd7XUrImIKqlA535snU9NBQ309iqIyvzBPeSlHxXIImxrhaC2qHiJwffK5LJ/+279DCVT6R0a4533v4/mnX6SxrY0tV+zh4OP309bZiRSCTMsqPvB3n0U1NHTNQNUi7N5osrajlYHBPsZm5wl8n0QyTKGgULJcjFIetBheEJBM1dGyOorrV3BthyBw8TWV2nqV3IxFwSpTLPiEdA1FjyMDj2x2CSF0dCPMT376HLFkhnQ4gqGbLC0WqU+0Uqzk0QyNPT3tNKzfRv7xA+y9bCPnT/eCojIzNYMmFALpoylV3R/X9XEdu9rrBSRTSVRNQ1F0oJq+kYEkZGr4KxRXT4IiAzTdxHNcdF1H/kZ5VCCpahjpigrIqpOYUvWJ1MwwSrHE0PkhavdsoHBugM59Wxh5/jBpdFwjwJ/PoUQ0FMUkjEpYGkwfPENcGpRHFmm8cw8XjxzDaG6iIdPE7KVROnbt5MSjjxH2TIyYTnTPJiqX+mltq2d4YhYtFaP98s3MPHEETVUJPJ+GrlXMDg6TuHo7TZEEswMjMLVEprkRdI2wq7NQF0ZNhJCOTaCGEb5KvCDJPnmKcn2SkO1j7F1PqqWZxb4BjESFZCTBwtwcNakUkycv0NjeRj63TPTKbZRMi3MLo6jCRCgaRtllav9J/KklnJJLyXFRVJWmvdtI+QEjh47SvH4tkTUm4719vOr1r6Uwu8ANN17NsZcPoyfjKPEY4yNjGDGNymKe0ydPcPlV1zA9Ncb88Ahrr7mSjGWTSNQw5xXItyVJLRjoToXHH3iIttWthOIhTvzyCRLJJFNjYxTKOdriIUrLIZLJBFIxkX6JSrlEON5EgELg+URMHV3oOI6DETYJfEkQ2Lz5PX9C76V5vEoFLV5LKaiQqkky+Ny36d8/T2bj22lpSSL9AC0UQQinWgfSIwjKSKmsAD/gBwhVA18QSyZYWlomlkgwMT5BMhXHdhwUXcP3bBzHJuJ6uI6LaYRRVR/XcRGKTuCDGY6grnTetzbXEk+nGbyYY+2adkqlHFLxqGu/FRRJbTKGr2osTi2iCYOKaxGpWOiGQThUj+3ZWBWLhaUSilJNZ5aLBcKxMEhJx1tvI5ZKMDAxRf2qOtbecgVyucKLP3mSQPVZ19XF8PQklVOnyfUOU7elB+EGZE/0orTUE1E0ZkfHsKamcZNJnLBOzx+8koFDxzl8/ADhNatRQia333EXwnP48rP3c/O+Gxg9dR61XGHXvsvpe+7Qfwmp/6NBv6d7Dd+778tVvrovqalroFiyuf+73+PQ0eNkJxcZKOfQlAA1UPBtGz0UQYoEqUSSkGkyN78AARTzcxiaRsRME46E2H3ZBspzc8SSSQKvgq6pNGbqkbW1tEkYGx1jblll7+XX8LOHHuaG667lF1/9HIqmEGDygb//R0KRGMvzw3zhM3+FakYoWBYRM4KiePhoKKIql6sFkgf+7QGGx2cx9HUEbtUa0XM9FDXE+eeeQLolvvjFT2LqNqGQSiK8hvd+8NMs5i1qEwmImKxf/wb++L0fojZVRyqmYwWCv/jHjxIOhXE8j5AW5iPvfB3xZJK33PIq9m3v5PY/+n+ora/Ddz2Ghi4xOjbG5vUbaFvbRVkIhFtBCFhamENTVYqFfBXApUQIgaZVP8h+AItzc6Rra6s6RZpaFXjTjGr+VamKxhlmqKoKKqq8fkWoaGGD2mSSoz95kB3X3ky6LoN2mcFgXy+JHevIWkVMS1AZn8M1JZorWXIqONNZJJKSquKZOrMvHGLr21+D0FWmnjvE1o0bGbzQT1DK45V8crrCnnfcRenpp4lkGmmcnGH6Bw8zpSiIsGDt6s3kC1mmrUVExMDPWRQH5ignQ6zfvoFxq0hxeIxEpha/UGLgqYNoQsMPgayJ0hGJMhZAuVRADRScqUWc7ibUsUl0TaGgQHRHN4VTw9Q01ZFY10RINjPy+AHW33QFF472o62qp/uGPZw9dASGprjqztuYG59ibHSYRDzOwtELLGgKJCJkZ6cYujTN3jfdwYNP/ZJ73vN+Hv/FIzQ3t1LX0sZzTz1OOlPP4uQ8S4bJ7n37GBu6BIbJ6o1b6d1/hLo1rUgkreka/Lo2lsQ8jqeimxqnnzvMUO9FwtEYCzPzxCIxwqpOuVxgfm6WH953H21de0llttHc2IQnDVQJSqBRXM5SU78a3/ewLJtkOokZD7OcXcDXalAjSSzPQdNNypaDHpRJJcLU1CSJxaLM4CGUAKtSqQYgrocmfNRwGE3V8HwLhWr60XZsfOkRMjWKVhkzpBP4Poau4jkOqpDVQq/qIUTwv9t772hLrvrO97MrnlMn3pxD39tBnXNSq7sVuyWBREYSCAuMCQIsDAwGm7EN4+c3Bo9ZzDDYBBMNCCwLhFButZDU6pzz7Xu7++acTj51Ks4fdaSn5wW88RvbatT3u9ZZVbWr7ln1rbvPr/b+7d/v+0PRQ0yPjtLUWI/pFIOBCRKe44FsMDw8QZXpgAhCtfWQwcz0NJIMqhwinGwgV8hRXVdHMZ9DdsBXZMxiCSH5VFVUoJWVPSVJkJmeJBxN4JQ85r9jG7Isc/75Iyzavp7xoXHisiA6r4HapjqkaIKiYyNkH832aKloIH22j4yXp2XtBlJDQ1S3NdBz4gyVS+cx7JjI07MMHT1JoqEKTUmgaTL18Ua+9tDfkU8qKKkCD/3gH1i8eg3hcILNm67nH/nb32hXr2ijPzI8xl9+7ku4voeqKlimhes5FPN5FF2hsb6SDrWB1tYm6qqrcewiZrGIqoBLCE9YGNEW6qtquGHHrSSrqnAVgarquKqHlzOZmplBFvDuj/8xWTNPJGwgBLS1NiOAiFLiI5/5HD/+wbf4T1/67wghsCwLWXKorIhy7PAZHvrxgxx+6SDvf+APOX3uEiNjgySNJA4CyS4QiiQpzI6wcct1jE5M4Uk+M1MpLpzdy8MPP88jv9rLRz74ezz33S+y63AXJcfHMCK4ts22NSspRRPcdNsbQIvi2SXmb9iOUKo4sucJ/vqP/pCCbZPOZNjxxjczODJN1I3gSoJffOshDh8+zIbN15G3TNrmz6d94SJkVcV0HM6ePcfo+BhLl6/kySefYOGCdmzPfaVegECw9Y3v4fy+h/Fcj6raGmSpHKYKSHI5MUaIQOBKSOXiMYFSIkIGWQZJZrpoM+mrfOvvv0btvBZuvOdualYuxysWMbunsCYeVufMAAAgAElEQVRTVFXXMDs1S6y9nqn+AVqv6STSWk/qXC+hlnpmB0eYLeTIHT+PI/ucGxxm8+130F9XRd+PniN51x1EtBjFlEW4SnBx10tEfYW21Rs598t/puf86SADuj6GZtrMHDzFdX/6EezdezEjGtaFYULVcUTJJlQApED0TtTFyPaP0b5sBYXTF/DzFs2b1jJw8BRiaIaFnYvoOnOK6upatKYaapYtpuehZ+h6Yh9aUw2x9kYGDpwmtLKT9Q1LuTg2yLp113F21wuMjI7gVIXQL3lkRybQQmGiVUmmh8aZSeeRZImTu1/gujfczq7HHsPxBFrM4OCp/aDLFGYzzFzuY+s77mRmZJrqljayk2MMHz8LmoZtO3S/tI/OFYuw1DD18SS9Z7pw0gUUXaKloYGuk+cIhXVs26ZYMrE9D13TeMd992JZKpfHI6RsC8kr4csy1fUVuOE4tlMirIcwQmGK+RyO5ROJxDGHiuB5mAULyzGJJKLEElW0tjQxIykUTBMjGgsSCvUSqq6jaQLXA89zcSQfIQI3DoDp6pRsB4SKbRaIRRJk8lmqEgl83w2ifSSBYSTJ2TaZbJbrbnsbh/eeQlF1ZFnF98sDGTyMWBTLtklWVqNrKqNDwxjRBGbJJhQOg5AY7B/HclwkbOrqK4lGdfLpHJGIzuT0FIqiUcibGIYeJFRKEiFV5uLDL2E7Lh3vfgtOURCpqSbtFhg+c5pwaw3R+lqsTBqGc8Q2LYPxS9jDk9Rcv5qhAyfoWNBKvn+SaLSCWqWadIPExGyGmCRRV1nD8GQ/W9ffRM+ZLsZmUmhDeeo7FiBHZAb3H8epMjjef+y32tUrukbul/76rz/f2daOIstIkoKqaWiqxujYOC2NjahaIJhWKBYZnpgiXbDwfI9cwcS0iphFC8u0mJyaZM+LL3Lq2AlefG43u594ksMv7GP9xk18/b99ifzELNdctwNdU5FxghGroqApKjWxEC4aN29ahilHcN1gMVQLRcjMpvFUhbrGNm5601tRjSiRZAV1yTjDvd00d3SSqKghn0szPDbFRO8o7/3w+7hxx23ce88b+N73v8e+gwfZs+sZjry4i6IaIVLZTG1jA0a8Asf1OHnmFMuWr+bU6XNs27SMnKNh5aep8gaxPZlQvIpIZQ2RRBVLOudhyWGSFZVUVlXyi3/+JZ/4xEfxnTyXL/SSrAlG6YoSZNk2NjWyeMliJEXhxhtvYKCvl9MnT3DLG94CgBCCuNrE33/5b2htb0BWZAzDAF+gaoHss6oowRQcgayoQXaeJAXVjjw/eMEKCRSF6miE9uZ6/ut/+hS1yTgTmSzZ6RlUV2DUVjM7NIobUVFkFW9shvj8Nnqf2g/zalHa2rCaoiTSFn4I9IZ63FSO4XNnccam6GztoGhl0MNJLl84w/SR04iQwp2f/QQv/OO3qe9YjG85KOs6ME/0klixiNW//3bOHDiJGtPBkTBTU+QnMqzafi3j5y8j6wqW7+CNpdE9hbHJUUTeonZRB70HT1LT1ICZy5GdSSF5EnlKiOkiQ36OtqXXULV8AYloiELXOGarQf3KhZw9eZLCxUFydoGkHmX03CVmRRExW8ITAsmFfCqDJCTsbJ7Kxjpmp2aYDkE0lkCoGmdPnkT4KrFwmIWrruHSkTP0jw+TL+UYPX+JSFMT9Q21WLMpLCFR39GKWjQZfPEgM+PTxCSDDXdcz3jvMDfe906UlnpWrF9HbWM1n3jg06RmfWbGjrJkxUokNUzXhVnGR8a4ptPAsi3GRjN4Ui0IFdcLkgQt2yEzepLe810k6ldSchx0XUdTQyTiYU7u+wWOW0COLMIyXQpmCUWSg4xvX6b7xHPgl/A8BURZh0oEGlKqU6Bz/U4SsTiTE2O4vh/klisqF088iyzLmNlpEtXzKBUcTMsknzFBCDwhWLGokb6BERRNx7FhwapbA6kTx2Z6agY9rFFTV0s4JAda/bpKxFCoroyh6yUGzpxj77O7iRkasYpKfFxyI4cZHZ3ElxVcq4imG6RzWTzPRomFqdvcgabKTJ3uYmp4HMOVqGltYurgGczRGaq3rGZ4eAA3rBBSIhQ8k/lb1tDz6AuQKVBVXcOgNUW+Zxg9a6PIElJVJZrt4KSKLOq8hlu3385Qfx9iIsOKrVsZyE8Rn9fAG5ffzOGndv1u1sgFEbylKSuElXN7M9kUvgjKEyKD77qosoRpW1QkIhTyDjFdI28WiapBZl40FqNkW2iajuv4yJLEkcNHeNcHPsrAUB/DF46TK+TRdBXbtjFCUSTgkhQo9V0AVN0gFFbxXImGplrWLF/F93/0E5rrWyjZObq7uxG+Q11dNUtXryGfLwTF1+sbsc08RcfiG3/3HYZGR2hunoewRrCKBW55+7tx8VCERHNHOz/5+v/k7Xe9i7A+xD/85EGqKivp751gz0vPMz4yQqlYZNG6pXS98CTrVy8lO9HHve+7n/nNTVhOiQMv7SO28S4q0qd417s/xA9/9E1kJIbGZ0jENFK5EkKWcTwHx3WZmpigZJrc+eZ3YutB4XQIRi89fYLB4XGuU1cHIyVFA98GIaNpCoLAjaMqCpoaFIVBgOd42J6HbVvctG07dZUJ/vyBB9AiKj2TKWZTWVK5aYyGOmYHJ7BlCUWS8WeKWLMF5NoKsmaW6K1rSaxZhjudxSlCWpNYtXI7QydOMjU1iWFa5ByX6UUJGvQqLo70kGippe2G67H3Hqc7NUG8qYVpvYS0uonS4ASNt2xieGqSU0/sInfsAomGeqZHpwipGqrjEspbOBJQLKGGNTDAxUGVDQq+xcT5S0iqYOzSIC2dbQyPjuC7DnG9Ai1qcO3ydbz01R8CAklW8GwPZmZp2nAdo+cnkZoS5IYmKNoeckjHu5xCiRuYswVs4SDkoB6DpmlMD47huhaNRhzHtxnt7kNSZMz8LKHKFo7s3oMWi2L4OravsO7OHYydP0t/9wjj3X0sWL0CSZEZ7R8FX1DdVMvUwAi/+skT2I7JT//7P6BKcNaBD3/mgzz0yA/Q5LVUNrTSf+YMew9fpKrzJvALdJ3pIp1K47gR1KhOLBJH1UMUywux77n/A8xOTnDizCTocbLZLIYRI5vKoeoamqwifDkw2kKiWLJQNRXTMvGFGvjxhUCCcmEjCdeFolVCVxSmpycwQmEs10PT9cCnryj4+Nxx73t57snnUdUQcUPHKjl4uPg+hGJaoJWFAAFhQyZfNKmurCBiRDDzeWZn0yhYVNfE8SiQKuTx8VE9lePP/pR0cYjhnidoapnPA3/xeXp3B0VeIkoIkyCYIRLWKdkeRTPPxOgkxb4JGuo7KJ0+QTam49clibU0Em+sZnZ2BtWGzNHzVG5ahVPIM/DEXkqFInV338hsPo9+McPCFcsZPt9LxcJOBp8/yI733MvJ4S6mBs+wZHwES/EIX7uYAz0nCDfXMT40wHDbot9qVa94oy9kBcssopW14H1fIharClb3y7HkQg7Eyk4cOY6zZAGViQSpTIFnX3yBd9x5O2apQFSJ4jpuUOQhIZPJFtjz0h68vQcIaRqO5+IhUGUVIUmkcg6yJKPqGkIOohMoFdGKLtFkJcMzNk2zKb711a/SuWoTvi/hlkMd5YvD2LaJkBSmJtO4noMerQDHwiw51FTVgWfjG01E1GrMbBrXLJKoayA3OcGb3v1hJmZnCDc2MaPVcGkoy/CFY9y5Yz0/++dHaW5v5fv/+FMMSWblxrV884vP8KmPfZh1q9eQSCZIVtcSz57hvve9n3vf8lbuuft9/PjB7xBSL9A9lsLzQREi8Jk6Lo7nMzQ4RD6d5k233onv+8xmCgghMTaSZeu2G1B1A9dzEUJGDwehmaqqB6nvnl/WDRLIqoIkK5iuSX1DNTfdfDN//ocPoOjQn0pDKqjmpUgCueTjFkxq25qYuDyApGugyWiREBQs5LxF1JDJnzlH5fpNVHu1XO7u4cAPHyS6diXu+CyV61cRb2qhdftmTj63H+PSJbS4wbldu1HO9mFODYLis61zLXsPPYeeKjE9cBq/VCAb0rj2M+/n9PceQ5EVSp6DrwgOPfY0fsnF9hxUy8UjCLktjk4RqaykOD0FrmDF5k1cOH4sWLhOhilm8zQnF2KOzaIvbKDUM8myD7yR4197mLvf80Ee+8E/4dkW3mgaoUpggRKXwFKwbJtIbYLSbJ5QRYyGZQsYevEoHe/YyR037eDxh/8Jva6SsCITjRnULVvM0MXLKEKioq0OayLN/EXzOfHwkzglh3hIY941i8i4PpWqxoo37ODYd3/GxOVhwoZBanYST/bpWL8USVXJnruIhMRQbzdLV7UTkjczUsxy78fewMH9w1z/vluJx6JMT6dRhMJPHzqMX68Tl4NM90QySc9gBemUQIvk0aIJrKJFNBpmwfw4q5Z8lPTMOGcvegjh43kOUSOO4wUDOlEWFhSSgi8I2vDBL6EpoaCOxuQMuh4mbGgUTBNZkRFyiFJmgt1PPB+EEOMjKSrp1CR2YZpIJIYsqnAdF0ULZE4QPvPmNTI9ncbMm1RUVpHPZek59D0unt5PZWUNW+79Er7r4nkuac9BlO8xW/Q42WOiKBKOVcSnAiEErusiqyor7ruRcddEqq9EbalndmSY+s2LmU6lCOccZuwCY73dVFfVkUTCqatE8X1iddVMn+lmwf1vp++R55l35zampy5wue8AN73pDna/8DS+ZTF86jQjz72I1F4Fy9eyfum17B86ytT0GHct3kjbspvZe+rwb7eqV3IRlcbmTv9jn/4i6UyR9vYOuk6doKYqQdEsMNp7jn379tBQWY0SzqFrcRzLoiqhk8mmqKmu5dlnd7PjpusCvQ1dxQiFEUIKtHYsl6xt0VBb/0pesuf5yKqK5wtkWQkWJSUJWVbQQwaypqOHwoQiUSLhGJ0NIVasWEHRtPGFj1OyUUISEj56OFGOfJTwXBPX9XFcB00NIRB4ikQxmyPnOBgIcrkcE1PTFLJZLA+2bVxHyfaDSmAhBbeQBSOC6bjYDozNZgj7HuNjwwxcusDYwDCXLlygkC4EBVMk0HyfEjZFXyKTnqC1pZ6tt9zG/JXXkclm0auaGD53lGiiIpCk0EC1JJYuXYwRi5LO23zjG6OcP/o11q+txTItJEVCUYLoHN2IIwT4noOmGWRzGVQ9hCx73L7zZn76/e/TffYIl4dmQQhsJ5B3HhpNUTRNHCxcx8GVJdSIhjmbI9HZQimi4PWNIzwXs1Ci6lO/h3mhl3nLl5LzHUqexdieI4SnTaJblmLmXbyGBPHpNFvuuYsXv/lDjJULsfCpKQqmZwaY/OVLmOMpKtctQZIcUqf6gsQy4SEJCV3TKThFdEnFtT1K6TxChvqFbUyMjONkTLSQiu966MkoVrZIa8cCNqxbT1e2D7MyQvbSMOlSAa2plvzlMVTLwWitIzpSYKx3kGI2j48DkoSCiu+7IAusUglN1ZDVwCXmOg5CFqgRjdrWRvT1y8iPTtC+bDGuomBe6KOn7yJhI4qUM6ldvoD+y32oQzNUtDYhVyZoW7+KPT/4GevuegPtDfX0nekmMzjGeGoSfSRD2nOw82n8kkcxneVtH7uXxtomIpVhXtg1xJZr70PTNbLZDCFFIp0t0tnRzNDQMLYLZj5LS/sCsqkcRTOPpmuE9DAT4zMYEYNEMkEmPYuqyISMMFYxR31dDeOjk0iqXq4jLeE6Pp5n8/PvfA7FyVDyVBQlhO3YKGoIRBjXKvKBP/s7hocmUDWZXC5PKKQhIXj8258OIvdkBSEkJB/GxwaQJA9N0wkbBtuuXcnTzx5E00J4ssGdH/gi1bU1TI5NoIV0VE2imCsyff5hEoZJfVsTXsVtOG6QJ/Ctv/wIEcPER2CKBO/9+BcZOvBldu3aR7yikdTMMLKigqJimzk8RVCyZGq3d5JP2ThOEWk2g0hEkZqrCE0WsStC5C8PU7VsPv7AJOm+USJv3kzC9NBrq4mXXCasDJ4rY53oRdTGsFN5sqNjtN24CeE46JMuuUKGkb6LNK5dRXWkmvfe/T4OH9rPtz//hd/NGrmyJMjNZCg6Ls898zTrNlzL5OQItTWtuCLEtck2WloasNJnKNo1yIrE2+5YxVtvvImbd9zIhi3rgn+G6+B6HkWziOP7VFRW4EvgO8EPEIlAQK0snibJCrKiBT9ORUNWNYSqomg6SigUdEYtxGf+9LOoskQpG9TMLRUKxBJJbMfCkV1KBZOqRBLHlQEPXfYQioLv+yiyTKBuqaAIFT2sEQ6HiVXVUNUyn+OH9tI/NsbU9BDFVIFCpoBjuhhGhKiu4ss+uhAI/WUd/qD+tBDlCl+eT973gxeM72EYUaZnCjz4o3+m+Rc/Y9Xaa+nceAu/2n+c97zzLUHZSAdQBOfOd3HNkmvQZIV4IsmGbW/Dzx1H0fOEQ2Ec4QXx0XiYuSwzM5Ncc80SLF3m1ltvIDs+wX/59MfpvjyEEjYQIpCKHhmZwvaDTEbHdbBdByEJJMfDThWJ1FdRHJnAdktIvoKoitO0eR0jB4+w4e63kU3lmE1NUuNYaH1TWJrE+POniS2sI1TMMSM57P2/v0apOknd2YsUSiWmlyxgYM8pwraDvKiFyeEhJNNEtz18x8VzwXJskk0xclMparcvofeFk9Ss6KCUM8l6HvPfdwcTp7rIHOnDo0hxOoevCoaG+8jMzJAr5cg2honXVLN47RoOfe9BVMfAW9pA9rFDTIdVRCSMpAhM00EVCr7qIikysizhWy5qRMd1PFzXRlZVED62aRPZuBpJ8Wles4rh3n5a5rdzzspS0VyPkrOZyk/Rd/wc4ViMomnjRhU6Nq3m8C+fpn1JJ2f3HeBMwaU4Mc6GpdeipXs5m0qx+Y6b6Dp9mrrKarqPnuHU6S5im2N4Eoyf3kd857vI5FR6erpYs2EzXqbI9GwexwmEBHPZIpKQyBeKeMJDRUNSZNSQRnNzLeOTU0iSRySaYGJyDFmovLTvKPPmLyakh8hlUnimQzxmkE/nkBzI5Qts++wDHPjGT8hYJWJKGNmy8ADbs4kYIGNjK2BbDrqmEMwSglyQwf7TLFu5itEhm5ChoSgyrucjK4HarA8okoZhaBQyGWrqq9AUnanpSSLxOBkjTP/wCP0jaRZt34KihMhnc8TiVRQLl5FklUhMR1EEuh4hGPpAorKSdCqNLsmYtoOshtBW1DGx5zxLP/EuoqUSQtFJ904xNHCJmZPdNN7/FryKCuyhUYqXRgmtbKUhWctk7wD0jtFz5jLp7BTxtUuwW6K8efXNPP34k8id9bQ3dbD38V1UGRUs7FjIlvXbeGbPU0iRLP/wxHd59/Vv/q129Yo2+o7rMJVLs2zJcqbHRxgb66O6qpaTxw+xas1qjLDOD//Hp9nxxls5cPQY3WcO8ej3JBoa65idmaG6ZR4JqcTqLdfy6FPPEjIqqaiv45Y33gYIopEYj//iYSCQChBCRpGCAuWyqgSdRVGQNQ1V1dB0nUgkjicJFFVmQccCXLOAVWHjE+iQ+L6LEBEARHUw1n956uo6bnmUTFmP9GXfuYKsKTiSQAqF0YwYx198EkmBsBukjSdrgxAx3/PxfR/XcwP/pyzw/aAGri8H+vm+F0TQvPwCkMrrH57vo0kSZ8aKHH/wZxj/9AT3/fGnwYcVK5eTzRXIZ7Kk06mgXkE0hjX7z4z0XaBYNAlrKrqq45g58qZJplDgvR/8II111Zgli2sWzOeT93+Q/sF+TBFG0kN4TuBXHRrL4njgOcVgPUYQpLG7ZQ1qH8yxFMigKTrGqvnMJjVGdu1jyYfeyZlnXsAvWSRra+h76SjL3nQjZ/YfJuoLpL4xchI0Xr+V/lNPo/UL0osX4LQ3Idk+6rJ51DdvIXfgKMl33Io/MEJDWwsHv/BNZEWifeFCerq7qZjfRN/+k9TdsYJCpoQ9PoXZ1sj5x3bTsWYFfsUUrdt3cvnJZzGzeRzLphCzyc9micnVhFImR3/0CEt37qDrqedZ0jyPrsuTuFBWTfXRJT3QmndcIvWVmBMZXMfDypj4AnzFx0jEMYVPzYJ2Lp07wyf+9HO8dHA/0fYmxoYnWLhwEcK2yBcs2javRhU+Y0/tI7FlGVI4zPNf+TYtnQsYPXWe/Mws9SsWY5s2Lz7+c9pXLSYcNTj//GE8XaF1URvFJQ6ZkXFa29sZGxli/c7tFAqCUELj+C++ysK2JkBg+yYFM084HKO2pYGSbaPqCo4rU1GR5OLFHiqSlYxNzGCbFigS07MpYrEEkqQxLxxBkh08x6JULFJTXY0sq4zNZjCLJbwag/7+ATq2ryObynLx4CniagxNkhjrvYwajWCENaqTUVA98kUJ1xPMTPYjsBC+x9TYDAgPRBCpg+cFgoNuMKOQlGDtzFUkLNumVDTRdB3f8ygWrPLsTyYZTeDg4xRlClYJ4bnIsoRt+2RzFqZZwpcUUqlxhB/IUShqsB7mWRbr77ydgW2jFEdSlBSBqaTIymmaGhtROtqZ7hnFrdFxxyaIrZ6Pqfpk+kdQRqexlndgSzKqbCC5KvLwBHtD+9HXNCIPZeg9e4kdO3dSKRu0zZvHN370Taobazm3Zz8LtAjfHf3+b7WrV7TRF0Li0dOPYGgq9fWNNDe3UsgVqWtowHXhR9/5W2xcpqYmaauvRUknqU3qKIrG2++9i8XL1vKXX/g8M/sO8/GPf4p8qQQhg3hjK67tgRrUs/XLxZ2FpIAkBxLCQiDJKrKqvVIzV9UNbNdFkfUgBKwcUhYoWdpIshRocRDIu75cyOFlyIr0qkMRVMUSQcEHSZJQQyFkSUaTVSThB5ELiopdKgbf4wcRNUGEzKuKqUuBW8CnzEOWyqc8JBQUVcUqmcjCRw1FmL00hO77ZP0if/2Fv2HepvfjcYj21kbiEZ94zKMhKaHIPqP9I3z+r7+Co8kMdHdRNAskEgkmJ6fQFBkJieaWFv74I/eTzqWZyJggGcGz8X0GRjNBlaNSHkMBI6pTskp4ikLJKlFeByZakSQ1OU2yopJiLo8jJJItDcyox7FlH2uon/q163GzBSRVYfZUH7ZZxIgkWHj3nQzMZHAPHyUhwlRsWkzuYh+dt2zFVw0G9rzI8EsnURSN4nceJj+dobdgB+GYSZ3LvReJt1ShJmPUt9Ux9NxxFt/xJvRFy2las4AXv/I9Bh/diyQJzj70CKKc0SYJQXEixdYb3siBF3djeT6JqgiXntxP65u3c36wn+pV8xjf1xWoo7pekKzmBS4lR/axhI3TFEZOVuD0DCDJBumZGTZ/6n0cO3aE1dfv5Mc//gH5iSmSzU0Up2epiLeTOXaO1hs3033kCPnzgzi5Et7gGM2tjczbuRHr8hSlokXYiFHqnUL1FSoaa2moa6Am0cDFE8eov3kT58+dZfOOjRgRg5GBETRFY3iyB48fcu7sSVA9Hvnu37L5LR/CsSx8zyOejOGYJvl8Htu2iUaiFPNpKiuTxOJRHKuELMkYRhQjEuHI4ROEwyFq62qhHHcvyRIF0yQcckkkEqALEnWtDO47THLLWkJaBes/eDdmPkXq8SPEoxJHB59m8MxJajraGd17kk/91RdpnFfN5OhpNM0gpIdxHB81FML1PCTXw3dKyJqK49gYRgxwUYwwmckporF4WTxQIZ/LY1sOZiZDyfGQVZVSoUg0maDkWMQkBdeyKCoFJEVBSKCHIwhXUMpPEU/Ese1S+fcu449NkD50muZ1CygmIxQujhOLRhnVHEKYRBY1o/UPU1ixADcWIZwqMnD5IjV5nYq0zYSwqW9uIH95gtU7diJHJIZOnqVu02oqsyEGxoYZrAqzLr6J9Ws2M9YzxP2f/Que2fUkfX76t9rVK9roz2TGaOuOsG/2l9zyh/fyzKlH2Fq/laWLF/ClP/8DLLtER3sbmXSBlc063mSEeCKMJaII1cDyfZqbGpgdG6NjxSoGhseoamlmaiqL7Rbxy3HlAAgJVVdxvcBg6+FIUORBiCBTVVGCxRxZQpalcmKGhO36KJqCJyRkz8d1bXwRiMWBXy6mHih3ilcSlsQrEgVCSAS6NuUXkAeODx4+2C6SLqOFI9imGdyrTyBsJkmv6N+4nofnOkhSoOopyTIC8DwPWdMChUTPw3EsPNsjFDYoTGW4MKoTj2bJPPc/WX7zAwxe7mFt2wzRcAO9XeNIns/uZx9jcOQy4WiSztW3kUgmaEikaKkNs6i1lT/75McRskfPyAS+7waLupLM2EQ6UGfEw/MsNM9ElcMUzCKapqIClYaCpIdJFwrkZlPoEZ18Og0IND2GkzNp/syHmM3mcVcuYap/kIUrlmKd72cmplEp2lh082b6u84y+uRe1t6ynaHTPSR9H8cIc/zBh4n6EvV1FUycGyC0oAq9OknxmWNIC+toXraY3oMnkAyVzNA0HTdsZ2D/cSq0BLnUBMMXpjn9rZ8SikUxlrVRONuHXXDQVAGqius44Av2PPVLZEUl3lBJJpsFz2L60FlUC9wNtcy/fTNdj7yIIuRAsRVwbJtc7ySKrFBRV0ehf5Qlt99A75FT1L/jToxwJQkjydSZ4IVhuS65vhGqm5updDUyVYEIW8uCa3BaOslOTZErmuj11UgdTVSE4uR6RpAiGpOpSVQElusz0NvLyGAfRk0toViI5s1b6TlxGkfxiesqp4930blyMSf2nicz66DgocgF+i6dY8fNt9I7MExqZopwOIKqacSMIHKrqirO+FQeWZbIpoqgCLK5PI7j0txST319PTPTKVxPEDFUEIJoKELfcC+JSJJ4spLV2zeQCsUZOH6C7uF+5p0fJl2tYMZ9zqf7OLj7CCI/xMTEKFXL13D48CiOEyjfSlKwPmCEDUwrB45DyS5S/Y4bmM2YKIr2yiCrkCugqjp6yMAqmVheULBdC+no0RiqB7l8EU3VyObz6DJ4WidhLcq8zg4isQgpXdLC8IEAABDPSURBVOX6d7+PR7/591RV1VC0PTwR1PaQ8Bl89ii1N1zDyMFuqrdcQ75vHL84hrF6ISE9QurSCLmefmKL28jvPYs3nUUTEqKxiaFLl+jUaikULCwJRErDmioxPDBE29INPPP8kyzeeR2Zvd30LclQv3g5B/KXGeg7iqgIUZFoIMPvaEauZdkUZwZobQzz5I+/TdrM45lHUSSZa69bz8WeXjLZAmHLYfV73kokrLJg5Rqq2jpQ9RCz6SzTM2n+4IFP0n3+HN/5zg9Zv3UrDgJrdgL0MEIKNOJlScJxHCRZAwlcz0ELxxACXM8rV5+SXjHYHoDvoYaCAuuy66CqCiXTxLassoMdPPfl6ITAuL88Og+EDQSaFsL2PXwRzAS0cJiwpgZx2r6H4vvgBWqCAgFyuYqVJBCuRCKRZGp6OpCgkGUQglAogmnmUFUVZDVQOtRVPNfBzGfZ1NHCw/0HkRSP5mV30N99iv0P/xWhpp3sebaX25Y7vPkP7kfTI7QtXsvGW2/jS5/6KE88/Ajf/OZnqa+I8Z8feAA9JDg/MI4kibJry6O3fxw1FLykLKdALCQRCklkHZkgK9JE1jRkSRDWQ8iyj+mDpwTp7PrGRcz29VGztoOps10k8ylKXghD6FipWWIJg+ljF6i8cwuz9YKz//hTCpMpFq66hsxkhp1f/zue+uxnaN26CfOZfUzNpgjPViF8F5EuUsgU8Va0UiNULr90hPmb1zFWyFNTX8up7/+MivYmmjrnc/b5fTRdfy1Zz6d62wqcC8PY86px0nmYLeFYDp7l0LBsEdPdfTjCIW3mCBthTNelNJ1C10KM/fIg2WSUbR9/L7/6hx8RKoEv+0iuoLqxlsnRSQpdw6ghnZ6n9uE5HkNffwTl929n5YY17H7wIRqXLUZyFKZHRpkZGqOkyCzauIam5jZ2f+t71N22kXg8iutaDD5/EJ5yyE9Msub6bUzn0qxctxS9ropMoUBv1znq5A5EbQ3nH3qG4apKdt5zJ5IuU5uopHPFckp5j5tvqaE6lOTP/uhzuHgUh8/yyNcfx3IsOpatY/G1H8B34OHv/CVRPUfrineydP1WHMenIhnHskw0XcX3HFRFUCiWKJaK4PpEIkmEb4HQqauuw/cdSvksJ85dZOz8BVoWLaY2XsNZexIjq1GxtpOcV6K2Pkp8yU569uyhekk7PWY/SmUcWQg8z0YAJc8mNTuJocj4uobdNcFlVwE8CoVckM1broJXKuVRFBUjbFAo5Eil0+iqjOP4hHQjkCJxc4S0MDFjgpI5hKJWY1keiq/x829/k203XsfJYycBj0gkSjE9g+f7jPX2Ud8WJ7RzDdODw8SXzUPtnSE/OoqtaCgt1WjJBXgFh5qF88mODFG5dgnJymoYmMVAo6Ghk2OlXgb0MfRLM9x419sZ6b7IvLYGpnq6iC9K4moWp5/ezX+59yMMjY/Rdb6HQxOnf6tdvaKTs77693//+babVtM9OU44ncVRINpUw8HsKKNdQ6SlIjNDkxh+nsVLl3LwwH7G+/s4duAA5w8d4mL3BTCL1NdX8/iDP+Ca627h1jvfwIMP/hP7f/USBw/sZ9GCTnwhv5IIEhjnIPFDUiRkVSOkhxBCoIU0kIJEMRmJgQsnA4OqaDhOoPftui6yXH4xvOLiITD2kkCStWBELkRZg1sGSQqyWRWViup69EgFA+eOBe4gCLRIXAtJSGih8CszCVWScNxyRixBXQAhB8bTsSxkVSWWrMB1LCRJxjJN1EiUM2cvsOaahQykQ4TDKmMD3bQtv5Wp3l+i+T71ldDfd5kNO+5AVNfTd+oI777nTdz7zh38zWc+w94XnuFs3yjTqTxCCMySyfRMlrGpPFo4RDGXIiQ7RHUFz/dQpJdzH1SmZ7KEDS1whwmClPlCqVwSEiTPppRKEdIVYquXMHp5mJr6WvLDgyhFm94XD9O5YRslN8eCeB1TPf34pRKFKRNrUydh1WGitw8RiRDfvoGVd+ykdL6P6nfehKWq5C5cZkFNCwPTw2jJCI31dUhNjazYfgMbb96K3dzAqcefIKLq5C+OoFQaaCEdkYiiRqNYjo+iqJRmsujz60j3D6JIMsIXSAUbrxhIWVvpIk6xhKJrlLImvXuOoXoicP1VhpGLLgXTxHd99JCOnTeJNNVglQr4rseGe97Evmd30bFsJaMnzrJ060YkTSN1povGa1cj6waDly/zxre/lcM/+SXeWIrps33Y6SKuadHS0U5+YQ0rN61nNJulKllBU1Mdly700bD0GshkWX/bNkrTk+SnUjQ11vP0zx5lenSEWDLBhVNn2P30LtbdtI2CKDLR3Y8ibKricWzPo6lzMw4KqYH9fOKTH+b6mxcxNBWjkC/wg699FrV4lpFLB7h8uosFKzeTzxfQdQPPzWMYYTTZpGR7hEIhLMfl4pHniDt5+tN5KmUdDxtv+XIi+07i9PRTUIs01dTTe/4UjeEKtOoKVtbdxKA0TurUMYTr4SmC6Ntuxesbo6KxGk2o5IeG8At5HBdCIYPWJVto7FhEsiqG59gkYhFOHD+KhM+77ttJY3MTK9euo3coi+8JhARnD7yErhYJxxNMjE6xYN3NpHtfIl5Twaljp4MFYkWmkM9jl4q4ksSGP3grZ558jvjCTvLDE9TUNjIzNoK6sBWlMoo7lUY5NUYpoTA1NkS0shapvoKh/n4ikSSZmI6nSoxmRvn+X3yN48eOMmpO4lYnaa9u4dKlC4jBHGEfbr/zzcRlg7/5xEfpTw8SKpSYvjTyG5Oz/n8VUfmPgm5oZKMGjShsuO8eZj2PnR/9MFI8zsJ7bmPB1jXUtc1n+fqNnD51itq6elRVpSoaQlN9VCtLbXsb1VV1LL7+FiqraghL0FhdyZKlS1AN7RUjSTneHOEhK3J5bVdF4Af68kIE5Q8JFiBlLfBZClnGtkuvuFMUpawuKUCR5VemlC+7cBRFQZJVhBRE70BQmtGVZGZCGm5Z4dL2y45jIaGEdJBUHCGQtTCJxQuIxJMgBSUbtVAYIavouoGmhZBlGTUUQZYCF4Sq6oT0MJKsYpulYJo/MoRi91KR0IhEZaYvP47lRNm+XCOmCVLjo3zwHXfQ89g/snHlcr70yc/wf/3xA/SMjnK6dwRFDso3ur7H2GSeQsnHsS3cYoYKI9Awl2UFyqn1L5ey8z2QCOqYpk2Xy+MzwQvS8bBLNnbfDJqaYHpgGj+s43gWlZUx8lPjCNNGS8bo7jtB5sIA5598nlKhCLZP0+/fwZIlyzn5s2dZeucbWLR9G+3zF2K6PhOtFcQam1n47nfSuHwpQ/19RHwJd9Vyeg6dYvDHP+fQl/+Op59/lqMvPY9fG+WOR3+M2liLJSB1sptQZRIvFGLRbTcS7WgmUm1gj88iWUEoKh74ksCVPJychaIqyEIBWRDSQ+iKimu7qLqGNFsM5CmsYJHdKpggC2Yvj+AXfYQD+598jpgeR45GWX3jdZx+6RBqsUR8xSLSx7vRBUylJnn24Z+xeNN64gvn0bRlBR13bsT1bSLNtZRkMDSVwsVBui9dxEclPJ2h+6HHiFgWFUInkahk8aa1aEaEnW99EzVtLdS1ttDY1sKb3n8XHYs7Wb56ORUdBmvfsJUSPjV1jVieF8zuFIODJ47xlb/8Mtlchi1rDOora3jbu+7ig/e/l1T2FLu++wDxcIhCMY8r6/zqR3/Foad+jmv55AoWAqhp66DxmiVs/tC9jFRqxOIJjPMXMNUQYT/GR+77K2bamshcuMiCt9/CjPCxlTyxzQtxPQ/bc/B8qEsq2JqKZDrYxRyyLLPj1h0oihZE2kTjGNEwlmmRz+UYnxyjfV4bkZjBnr0TTOZauDRRSSyRQDNU6hvCrL1uJR/7z1/gjrvuoalzEarw0cMRuk73gCRhGAa27eD6Lh5Q88ZNzJpFWm69keLAONpkkYGnnicZrqCwr4vcSxcoHOtGNiSk7gkSKZ+YbpB78TwVTfMIdzRSmOmnN3UZ3ff40Mc+wP0f+CPyl6aJKHDw5IskQhU01Tew7fY7+fmvHsMNhZBmfZShHIzlf6tdvaLj9IUQWeDCa30frxGqganX+iZeA8zxvrowx/vfB22+79f8uhNXtE8fuPCbEgxe7xBCHLkauc/xvrowx/s/Hle0e2cOc5jDHObwb4s5oz+HOcxhDlcRrnSj/2tXn68SXK3c53hfXZjj/R+MK3ohdw5zmMMc5vBviyt9pD+HOcxhDnP4N8Sc0Z/DHOYwh6sIV6zRF0LcKoS4IIS4KIT47Gt9P/+nEEJ8RwgxIYQ486q2SiHELiFET3lbUW4XQoj/UeZ+Sgix5lV/c1/5+h4hxH2vBZd/DYQQLUKIXwkhzgshzgohPl5uf11zF0KEhBCHhBAny7y/UG6fJ4Q4WObwUyGEVm7Xy8cXy+fbX/Vdf1JuvyCE2PnaMPrXQQghCyGOCyEeKx9fLbz7hBCnhRAnhBBHym1XVl/3ff+K+wAycAnoADTgJLDktb6v/0NO24A1wJlXtX0J+Gx5/7PAF8v7twNPEqTsbgIOltsrgcvlbUV5v+K15vb/wbsBWFPejwHdwJLXO/fy/UfL+ypwsMznn4C7y+1fB+4v738E+Hp5/27gp+X9JeX+rwPzyr8L+bXm97/B/5PAj4HHysdXC+8+oPpftF1Rff01f0i/4cFtBp5+1fGfAH/yWt/XvwGv9n9h9C8ADeX9BoJkNIBvAPf8y+uAe4BvvKr9/3Xd78IH+AVwy9XEHTCAY8BGgixMpdz+Sj8HngY2l/eV8nXiX/b9V193pX6AZmA3cCPwWJnH6553+T5/ndG/ovr6lereaQIGX3U8VG57vaHO9/1RgPK2ttz+m/j/Tj+X8tR9NcGo93XPveziOAFMALsIRqsp3/ed8iWv5vAKv/L5NFDF7yBv4CvAH1MWoyXgcTXwhqCY1jNCiKNCiA+W266ovn6lyjCIX9N2NcWW/ib+v7PPRQgRBR4G/sj3/UwgQvfrL/01bb+T3H3fd4FVQogk8HNg8a+7rLx9XfAWQrwRmPB9/6gQ4vqXm3/Npa8r3q/CFt/3R4QQtcAuIUTXb7n2NeF+pY70h4CWVx03AyOv0b38e2JcCNEAUN5OlNt/E//fyecihFAJDP6PfN//Wbn5quAO4Pt+CniewG+bFEK8PNh6NYdX+JXPJ4AZfvd4bwHuFEL0AT8hcPF8hdc/bwB83x8pbycIXvQbuML6+pVq9A8DC8or/hrBAs+jr/E9/XvgUeDllfn7CPzdL7f/Xnl1fxOQLk8LnwZ2CCEqyhEAO8ptVyxEMKT/NnDe9/0vv+rU65q7EKKmPMJHCBEGbgbOA78C3l6+7F/yfvl5vB14zg8cuo8Cd5ejXOYBC4BD/zEs/vXwff9PfN9v9n2/neB3+5zv++/mdc4bQAgREULEXt4n6KNnuNL6+mu98PFbFkRuJ4j0uAR87rW+n38DPg8Co4BN8CZ/P4HvcjfQU95Wlq8VwNfK3E8D6171Pb8PXCx/3vda8/rf4H0dwdT0FHCi/Ln99c4dWAEcL/M+A/x5ub2DwHhdBB4C9HJ7qHx8sXy+41Xf9bny87gA3PZac/tXPIPr+X+id173vMscT5Y/Z1+2W1daX5+TYZjDHOYwh6sIV6p7Zw5zmMMc5vDvgDmjP4c5zGEOVxHmjP4c5jCHOVxFmDP6c5jDHOZwFWHO6M9hDnOYw1WEOaM/hznMYQ5XEeaM/hzmMIc5XEX4XwNBAv3fPD+yAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(stitched_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cv2.imwrite('test.jpg', stitched_new)\n", + "\n", + "# Careful young man.. this is a dangerous road ahead..\n", + "# cv2.imshow(\"Stitched\", stitched)\n", + "# cv2.waitKey(0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAACUCAYAAAB/RfmvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9S6wtW3ce9I35qKq11t773Pvb2LJsS6Fh0aGBiBVHQkKhgQUWUugEAY2YKNJPB9q4gYQENCJ6oYNwI5LTIJBOFAtZhChSmki2EeIlAhYK8Y+tGOe/95y916rHfAwaY8yqWmuv91r7/Pf43+PedfZ6VM05a9ac4/GNRxEz453e6Z3e6Z1+PMj8qAfwTu/0Tu/0Tp+P3pn+O73TO73TjxG9M/13eqd3eqcfI3pn+u/0Tu/0Tj9G9M703+md3umdfozonem/0zu90zv9GNFnZ/pE9K8Q0T8got8jol/73P2/0zu90zv9OBN9zjh9IrIA/k8A/zKAHwD4bQD/FjP/759tEO/0Tu/0Tj/G9Lk1/T8D4PeY+f9m5gHAfw3gz3/mMbzTO73TO/3YkvvM/f0sgN+fff4BgF+aH0BE3wfwff34pw3R249qt4tbjJ8jw/0MV/JO7/RO96QjvOC7XMsgM/8xM/9T+3773Ex/H9/bmjtm/nUAvw4A1hhe1v7g2YeZ6An2Snvf7id+NcSLu6RzDrqQ6OCHa9u6SyN3Pvy8bVXa2j367YUs7en1HsduH3nZmVfSHTq4/xh53597tnyXk+4zLp7aubFBBvDShf/n0O+fm+n/AMDPzz7/HIA/OPvsMhk0fdy/sQ//cjEnoHmHPO3A+d9Tp78Fs79Tk3SPhs5oYs6Y7zUbu+28HZM/xHYv2Z2X7eRT13Z3BnsHyTJv4j6CSq+aeGqT79P2IUXhR9nW2M49B7eHPjfT/20Av0BE/zSA/xfAvwng3764lbM4x4GDGCDa9+sZM12gpnIo7epjhz7dTnPZc2MrO+8uOO0Cjn3osMsuQbb3hXL2ZHvXtXCI7Z5q61R/1+3sQ7fkJj5xaHouaPRtBO9s3RJQ1gQgQuAeLZ/VzJsy4/neVK3/yv5O3YPPyvSZORLRvwfg7wCwAP4aM/9v1zU28eCLaC/D1wavMwPO/PZ6+pIY/ptc+56/14/kreyMa4+7ZTz86ux9/HqfZnxQW943nJOg7H56O1hqF5+9Hf+5aKwHpOzdhC9oYvwgUS7vOJGfW9MHM/8WgN+6tZ3zMWHa+9VhHna9mvNWDO/yhl+fcNXY6MD7e7R9Yfefv/cvgU6zqrmwnB95Mw85k8O9MVKxBZ++7uNySO3icb7ZBZKORzlVwbbuQJ+d6d+Nzt7rl2jw+0z289Sce7Kee+P2Z3d6GK3ae8iBw+42nMt7uKfH4EuhY+tzG2WnnWPuBg0dmvIdLfjNndGvLubUwF6bsaS/fXd8BjtWzR0m8Ytj+tdt6R1udik0tHMs8ZbxdV+6WSW/sqkz+OW5KPaPju4wsre+uM8S53eOiVaEwGdMznzj3rYY7UFptm+hv56vScu+sPOd/m695m3hcR+N/4tj+vdYOaf39eGFQW/B7Gnrz3Un39j3G/dyZutvJEhLoycsmc9Gb415XESHbaqLmN7xpkuDn+XSX7GILYZ8iVeoKHcXjnrn8Ltfc4lEubLVL4fpqz+jvL+uCbpAaLw2fre7vUH6lFN3/VFnn3ztr9cceA86t7M76oL7urzimu+unZ7pJzlIhwbzBmo0qYpzftMnjtpd77f7X0929arti/k3zQ69EAy783LeL8iKADi/oy+C6d+Occ9OvAb2PXjOnru6Px50z3F73x7o4zSdddQF1335VB9a4YcwZzr468Xd3okOAyGvaddoOLbl7sqPDzV2GXe+ubvDR++j0y18Fsx/vi8v6HD/oWcKgPk+vzEI57ggo7Nhn+8+078TV6Dp7XUdH5zPGTZzliUyV/N5D+u7XCodPPpKzfZ6OnH2eOnHGP5sIvcxsjsx+Vub2Qf+Hbtz1+gZZ3e+7/c7CoEL9dsTLbz+euTDrM42vhlYetXzXr/uFajNTeOiycJ5EwE3wj7HW//uM/2b6D4M/6xTT97Fbbv+MNu7keHfAGFczwiPnHlgo51l3RQ870Tz50YUvbUj+p7tHlMDzhIIu3/POvnycd2VVBmYPDufyelxxkUdNxAum5VRAL0VrnXCb/GdZ/p3YUQ37MaTp44HzFWrw2fdizHcu53DWvcVjd3WysVdnQuAWe+RwwAmI1olgMt33l119iN9vEaSbxPMO43t0oXDfCM0CQBANK3K14rrGwuCC7X/ww0cbmQ3cvBz+/O/80z/crp2W7xm2KcZPs9OOb0F3oThv5Xaem7DFyj5t9IxfnWW0GI5kowFUry61cvolvW47xt+xVbugubsG+YZUPVn0ce3Lvg6W+PiOTrC/O92zeehMXv7P3raiSX3J4zp78AyF++3aTqPFiKbe2SoLIG31/Dfzkq4EhO6vZUzOjnPCXjOSNjo4yPonMdIvJk0vZG2t/w+NOciOOjcrk4wwZv7OjKE/VErOABjHGbtV93RA9d9+co8oPWXX66QJNcKnz8hz8glvGL4N7V2iKPNmPsWrLPb4/4gr1toNCbmX9yFV1+oqu/p923ZIx3pgw68DrRk/fZpXzQdvubdS9u1XS8W+vvW3Wecw4Pd7Eq8w1++ySAu62F30mZ35TOvxS9Y078XrnDOwSxaxSvOe6iN7c11mwDC6013E52Yt30y7IwF/xbrdtJa79A6AZwzQECKEfZalfSkbf2jon1q+etfD9+pKy9sVwGYnf5Zpmh3kx00C8qP85o2V/Z184XN7THe/vrC9q/R9r8gpr/PcN1zyPEj9tCxNne1+j2dHR/K9XQ3LloE0BlL40yGf386vHTv0r02wlkhkeLEPbSkzoHzz9QVDrb9ZhzxvBnbFRGnbdML4hovOPzz0qGFff1gr7+V29KKrhNDV43hC2D6Z3Kgqxj+KWa/q0Z8Bg5Ie9+eccJrjn3c6D/c7x0Ou4Dmc7u9dE/y3mOrfc+Jxhjk0vKxW3rrRZaBH2v7uGL+ur03pPOaPyUMdpio6kr3KAx5lQN2PrR7n7Sz5e4jw2eNvrHg/AKY/gm6mEnuHj3tui12eeXGvxdTPG1H7HKLi1j8BQddffiBM49xue3jTva3uymOnDCEhH7zDcyYGJaxXDSneriOLpmoc459QyZwO8M6ITXHDo71sjuK82yPi4Z2tiN230kHjt7h07feHmlj1tIb3fcvl+kfWAmvWcoFdvqNHPsui3NvO2+gjr6JZn8Ocz95sXr6BdvoLMZJU/w3AcxfYAzDfEq+0zDKRIQSZFMwtvkPr47E9kF72rplIDtNn27vwk1yt3uxu0f4rvf5y2T6R/jGIXDjVHu3aui3M/xT5vMd6E3Rqd3G93R2oP99et70z32un3lmOVxk9p8DLhyG2I6M6NxB7O9q97sLMJB9NuJnkx0n8bo5va1pc1nrZ0BAbyaIaTbu2xv/spj+G2EWb8oLj/S780bpOGxzdrPXnX7i1H2w0tknv2rlvMNvYUl7tIOTTR0SXpfgMOfQqfu++/2+gRNelao4pTvM1/tn4vQHp/0kH91/MdLeCejl1ICgU0fX+B1e37u9QUM3DPFgt69yEy5v+Mth+ke0xFtu/D3pTHaI44G5dxjYXa/tDA3+iv4vF2WXLu7XIN/8yaP72/+RiP/ZGI59f+NmP9D8dwYdOkOR3hZ/xxSj82FBLqffNBG0w+evx+RPDuWVVXd5J999pn9yH164YfXwe23vg0uPigpBe3483s61Azmvjb1gym3juQxJu5Lmi/vN794XQPuEwb652WcpTGtymtWrMI+3oSMC4PJIowv8QnfF5HecBxcM5azmZ91su7xPd/LdZvpn438Xqpb6/lb2cRySwAmN/kdJN47rSv57n9m4rpW8x4Yf5fKfGNo3N+fCU+cpJ68n7DRHu1GJnt5e5c88LgC22ORdmfOefs9s/yL5MyJ85z/T77vN9A8Szf49edi1P19BZ6vbt4/h7BMv72HvGcf4yQX0IwNRmEFkkDnBOY8UA142PQBgtaj3nnJX5e87TBddY1FkXp10Ulpc0suBvm9tbnuMvOfd1mEX9nH4cHr98Yi2cZWL4YKTbopbI6J/SET/CxH9T0T0O/rd94jo7xLR/6V/v9bviYj+cyL6PSL6n4non7+wt9nrDCPgzTgLjf8Jk5+/3qrPseuD10ZbPx458IwuXvV1k2SicXTHx3lzZyeGQrCuLPczVC1SnxlhK9Rz90Xlvl/z+pLpzGuahPy+A8+1Qqa2XvV//umviLbe7RnfhffpomEUnrFDt4Skngss3CNY+V9i5n+OmX9RP/8agL/HzL8A4O/pZwD4VwH8gr6+D+C/uEPfr+mMCz//5hxZ1Z9r4251fZyD3KpL0dUM6RwOcEnDF6zg81s8DeUcmGexnvdfI+P18We/5hv/RgZ2LX0OS+Zw1P3u3ysW4JvN2859OtHB9cx63n5RJm+gM05/iwyVPw/gN/T9bwD412ff/3UW+h8AfEVEP3O6uQsWwc03/sTC+5xa2l4GdJjOgk32HTBr/rqFe3oy9h5x6rL4nIMOdLRrfRFmD+bA/gs9IvF22dKRAV9HNA5yT29vu+jeileyvq6X3XOhui9i53Df59JlsBaOMn+6tL0DA9lWIoC3uO+3Mn0G8N8T0e8S0ff1u59m5j8EAP37U/r9zwL4/dm5P9DvtoiIvk9Ev0NEv8MHVDPa/XCzXDjRwBvtuaPM8IJOLxreET5Cez+d0ljP7HO3qWNj2vvaw0G2mPtx6UWGMK6nA6b1nBhmHOic8RwK+LzrAjkIFZ6a93Puzfb3b6Xp792jV7Wzez1nrMN9PPNet2eL+U+vm53VB+83Dv34il45pA/QrY7cf4GZ/4CIfgrA3yWi/+PIsfuG8mqumPnXAfw6AFhrjs/lFTdSNOIzTjxwyNvoW6XhN2v9rKZfz83t46FXb25tUBs6tDJe9VNYMsEYZeKct7GeHQFgfIWUGMZZ8NCd3NBvBpEcm7MTz0E93sC2MDtOl18dH3i/NZwzmz2/9z2NH+nv5ns2a5uvjJc/2ObeJo63f0mvN2n6zPwH+vePAPwtAH8GwD8usI3+/SM9/AcAfn52+s8B+INL+7yed4g4Pf5ErNnrTWhHBXmlpV5HhzTQw9dzo+Z+Dr31XF7YLhGNfJ6Zt7T3XeqHhJwzYkh43nS3jPLt6NCtO2ZNnf7qzI72r5ntTIADrfN4wNm9X047Y9tp5B4RZLvrJ+ULL+xIm8f3zf4fL+n1aqZPRCsieizvAfwygP8VwG8C+FU97FcB/G19/5sA/qJG8fxZAB8LDHR557jgKs84+IL2LpPjezZHMQ/pCLO+gk6b04e58Jxf3BI9sK+LXYTuRxUCaYwZE5CYea8yWL4plTi7dg1jjm2RN7TMrqF9jH73fuy89p53VccF5ih/D7DWXUPySN/32R/aCdGWcXRz0MNOG2T2Xdj5jOW6/INtgXvubbwF3vlpAH9LHWQOwH/FzP8dEf02gL9JRH8ZwD8C8Bf0+N8C8CsAfg/ABsBfuqHvGb2a/stPv8vhB34pwzvy8y20ffXXtTbXWi6SpVccRxedXEZ0h61PhJwyvPcIIYxC9zD+IALrMPR/bFzzk747kf4HHykLTEO+EZ14vRZ352LPvH226SqRWNh3888m3vmQSluGDjR55eSetfTLjjr/ISx0yFn6XSBrDa+a7cSZ/ZvwfGZHr95cRnQOF7+Ae96uK9K+P/do8YIf9h24PQnX6SRzul03a/sBRISUklTd1MUkyVnTmEIWITH0Au0sm2ps43baVVA+z/47u5crh3O/qyjW2N0anLV67g+nO2cAxnnhBwTEEEHIZ04EH/l01iknW3ve9L87C6Pfoi8rI3cmSC/TGOfnXHzanhPOgIvuRuf3daG8uaa3C87Yx/Cv6+Gy83ZnQIPgDMFYK8/JLb/wzpEqCIgMABUKW066e9DrtTT3MZi7rp0r6A4a/y0k1hXtkYfXD+isM7f6u0AYq+KQYoRz5sz52z7oVtF/qbX/5TxJYou5nY+VbZ1L5wQ97OJxOyb/qdMuvHuHccsj13gELryVZ7waz9jXvnmhs1Syz8s/9gloGhn83LKl2T+ZGTAGKecRnxVm/LajZzJg4+DqBYYQMIR44owD92HPi8fX/Lzd92d0c2z8uO/9JaLX6++SAe3QWejI3n17uL99bfp6p5THGfM23acz6Eh7l87/l8P0R7qQ2c/U313Nbv/B59NeR9gVXHd/aYLr6OYNWBj8buw7sJ/Bn5l9c2hcKWeEGMfXWxERQMZsjYMxOXQzM4jKX4nRZwZc3WDddtMUEKEbIshYDMMAMkZeu7H1Z9xSBkaIaXR86niGMKDvh9ONnHf1R96f8brP0jxJexWOvXRorEfaOtXxUTrdH4iQUgZZN4vkOd7i1PWZk7tzyLUC9wtk+ldc6EzB2dbzbtAe5jzx4sHsamQXnnpsXFdR2dwnOrgyvXIeWr9vjHkGuVxNREg5yVuzhwEr2Z1onMwZIQYZX2ZAmT/p4xXjEDCfeKmWTXhZrxEzY9N2eFlvsOn6qa9D07TLJzCzPIolUn4hc9X9ZFzPDA7TjpWgkTB8Y6jx1UM4cdDV/OEA8YH3k8CWf2PK6NpuO/v7zHYvpVvO/cKYPs3+PXHY3oPKorhxoZ51+myT3KomzU87424fPuSIxrIztHswjsI494VtThoOtsMi903VMUFHhAwRHMzAetPiZd2i64ZR+yYQ1q0w5cwszH02xmEQYWGslbGpAZCZR4EUMyErYy7j5ZzFD2AMzg6IOLAUmBnMDO8d+mEAM5APaIy7TOhtGP2+funVvcP4/vo1vnfsV1zM9tguHMsZCtWpIVlrwDlPXOoqBW1HwL4BfUFM/8wJeHXYfe3SUwmh19403vn76vSLmpzw3KPXf8bUHFzshaEfOC+mhE3bYdPOk5sIXT9s9X90s49jE8beDQO6fsAQAvohjEyZmZFyxhACnJfYhJQyNl03tlNCNl+PuQgeOzLurBvXjBobI4SAtutUuxVBQsYAPDH/Q5MV09ySIcQ8CZb5JVeVB+eMzBmGCNbSVpOH3r81HevrcDTdbfsucZ7grTOaOCwerx/DpRARATB2h6XudH9em2Xc8wZo69db6Atg+q9v2sGLptnxPH6xl85znuiCmxXumsNDr5nq7YJlfgnTF+ee+fnM7RgCyBj0XS9x75gw6hAjcs5wVQMyFl0/oOsDumGYQTnC0FJKiDEixqi3TK5BtFxCYqDrevRdDzJGwy2BECO6vodRPJ1AqHw1WRUkzHiC7WmKztm9GAJyTqNZnnMeHbiEYrHIoZtNC5BEReec1Qcwmfn74EPO88+AtQ4hinVRxtR1AzbdgG6IKNuyPMz9Zr2PDDLT3gfJHKJzrYfzWty/Tw6dywykFMFg9H2/3dFFFukxa+SwIjS2SXQcemT5Z1QDiGDsHljusD7wqm8yU82nfQfcQ9B/GSGbdPTjRFsC8vQWObCORgohIrMwjrqu9h4z7/JWKpFF2+0RykiHYUBV1dhePsd7fzW+uwyWYKxDjHGqDGwsNuu1aKjOghmwRIjMokXnNOt8exCZGQTRxDexBZGBdQ6VIcQQEVMGEZAUXy+MNmcWjZkBsg7OOcTNi1w3KwyjQmQUpvx67kbtWR9vOQmOMvey2XyzBOeIFAYwAOs9kBkhDBCcfwMAeHxYTWvLNQjdJ8AYOCsQETiNjuXNpgUZrwyewMjIGehThDUi9MIwjFNWV/vX4T7qRqMqy7wl+WJ54KEx87m4mKZlehbxzty/7p0whVxhWjL8+sjbaJ8GLe9CzIgpY1Fb7A9imPD88QH1Ou5+GFDX1dnjzFms0JQDrLWvft9SJl6t48vou6/p72FSxyCH2/ub2siZkVM+6Wi8aaPsjZTZpxERnHWq+Vyp1e87nCzarkeMSaNW5MCiPRfaxo4ZxhCMsbDeYwgRm81mhFlSJmSmmamrevPOQi3tM9OkLTOhapZImZEB1E2NqqrGe+C9CBtmhnUOxhgkEGLOWK83ylSnPtp+ANnpnN0KluV2h5Cw2fQIQ0DK6dWeqpslUkqwrkLOLA5hJmTOcM7Dkhnv4xAiyoN2Uk4CQyXR7Ie+R04JMSa0XT/mDZiZ/wEQoVY1CzAIzXKFerEEkcGm7TAMAXEr0mn/uskpAqN1s2+VTkKYDxxxlPjA+yOHn6WZ03aTmRkxsczXeV2dJiLYqkZMeU+bam0yg+g1Ay5UlIRimTKJJVraL3YaaWTPMUvrmE/o3rzuy9D09xARoddFMF4+AfVuvOwZJG3MV9ps8c20vWPL7bDVcPnNmbe1NbYrb/QEm7weWYgFLhFGZHyFOHQgVbSWiwaJDULfSltEsNYhRdEanT6Natw4LMc457cwcgCv4t6LMCMwQAYxJVhfgYyBdw7MGQw7RtM450BEsNaCs1oHLNr+YrHEc/g4zrZxXqy0nNFuWqyenpBzRrfZbM1uwdaT4vKG6FW9nQLBWGvRt+vxmhbLBdbrQRk2weocD2FAVohisXoCjWGgIrQKLCQMnyZhpJp+ud8xBhAIbRhEyBkDQyJocgSc8zi6JhUGc87CmG3mNQUzEFzdgJVZMYA49KMQOkonfr+OOdMoqEQKkvpjEpz3F1sUu+MZ9xRZ5MwwzoM5g8ay29tjJwB91++19EXhlntnjDhxrbWIKmzHfsnAWFkPtqpHBWAuZgtMaba0/EkZIi3xkDVCbWuwF07Id1/TP0DDMEyTPUNg+xI6dxEd1nJGXPhMc2q+mQ7uijN5d+kxhIAhBGFKuigYkGSeYdhz5s4YDggLhi42/cQQ7ZBmnTOAGKNoq6qxppQAjTYp/eQ0z3TNoukUhppmEQ3YXqKCn8sQjTHKyFRThQGTmYQGJgYskTaMzWaDpmlAkHDMynuxDpwFJ/Et5JyRk0T3yIaj8XpRLBrOmg2b4aybzYHMX4wRnPWaVSC2m8248Zmzwk2MZvkIX9VImYVxG0LMCWCg7wexqkAwmvmLEiU0ao46qyooirCb38fikLb1ErZewNYLhMRbxzi1hHLmSQOd3QdjBEYbuhY5J3nFACZ7Ef6/S8e0cWZGZoyvmDJSZvRD2HfwJMStmTnWt6/jrDEZDxiPrh+QsnCMvusw9L3kh+xGaBChqvzRLiZlqoA8DOs8ODOstUhqjdGoPGLE/XchnBKQkGfC13iPEANSisgpgewUbHCLufOFMv2Z9JsQWf3perOHd17SHL0+6EQrV5nKJ8aVUoIxBjGUhWTGMEXzyvlzfu9zxl3+ZmXo02+zvySaqa8qVJVHGISpzaepaRYw1oxY/VY/o+OCZoxIBUTOGh3DyGAwuXGBEkn1Sxo18dIeI8WAlBJy5lFA9n2H0UZihlEtedJ4XzOQnBlkLKyzol1yFmsjZxAYxhoVEDIXzjvV0CYYKzPDe68YrUFVVdJ2SircSDV9eZW5mNbZdO9yzvB1BecrLJZL1IulrK2ZEtK1a6yfP2GzfsYw9HhZb9D1A2zdgMFwTnwdW/dc/8YMgETDtK6CcW7bcj5DlZ/LhkugF2NLmCsrRGaxaTuwcej6MMJwRZkzmjA3e3DxmT3p2FRpcfUCMSZdygTrHOpqDzrAJWR2f1+T+3b615JRJQAozn5mIIbitNeG+fVcjUJ9Di9H8WGxWrPFGiPrkMkA1o0W4iX0nWf6+xeRStYSKjfTqi8vIHeBtrDLA6+luZ15oi1jZcPuCp+cpWKksRrRgtnCKTTykamTqNEyRZOd6r5MQrNpFqiaBkRAu2mRwjAO2qjWOww9jCYQzePJGeoAH8MjGc7ZcRMXnH+93khIHkM3hwgUay1Szqh8BWelv91iCOXYIgiHvsPQb0DEiCmJVkSkfgcprSBMljW6gseNVDdLkHWwzSP84gkhMT59/IRN24GUIRIRfOWRw6APYpHRFAiLOY/M36qZnnMGCNi8PI8z03ZinVbLB5lLY2GsHSOK5survO+6HoBEseSUdparCJjVaoXFYomq8qjqCpkzNs+fkGIcBavb4xysKhl/zpKgFkKYjA1zIjmM94932ovy6voInuHbxVqbW5IEsQaZGa1GR5X8Dq+QTj+UKLFiaTGGmNTZmpTJQuATbVuEa0LfD1twDSA+KWek1lGMe6wMwqip71LMotjFJNnk5bgCERYrNzMBxsJW1aiszWdpPsHjOqBJYUxJLGbJ+hb/EEMj58DIKcp6522f4yn29MVi+kJlB8hFjxrXtrpygnY13em7ubNs07ZbG7NIdGM0vHAGgS6XC8gCF02XSDWDGW5YAhO2RsJTiJrRGPBm6cbzeHaSsRZdq9ircwAZdH2LRdNMpjmLNRQTkMKAqqow9AMWy8XYz4QgC6WU4IwyupmGSEQYQoBkivJ4fcyiTeYUR5PVWouh2wjMw0AiEQzWGpCx6IcI5x1SSkjKMI2ViJ/N80cQCPbxSSrVcgLIYrlaoGs7VLVH7IQxWA3hFK1RN4lO8Pw+WWvH+2B8A28lAirnhEwOIIF82s2nUbhWXjZhCUdNMSKmCIL0ZZ1H13VIKcMY0r+ivbZtB19VaBYLcE7ouw7OV+CckWJA7Fq5tpxUsAAwBtiKcNJlTEa1UjOOLTNgSaCi1WMtDvSUBMKCJJ/ZqkaIQbRD5rEERd0sYLxAaCEGcGakmEaNX7g5oe87NE2DXSruBy6H6uchiKPcVTVSiGIVGQKQwTAIcUDlPYh3igCz7BLBqgUWyTlqZBhhGAbUdS3McKZcZBiQkX2SU0LXDaiaBkmtvbqaBHKxKMCi9IgWL0qJgTDxOeUYkEwNX9cqLGvEoZ+gJmNVtyKB9VSZKFCi8x4xBjjnYaxFDEF5ga5IjfQxbhL4QeFbZqhFKapOSlmCBohVAVKEgyQUWBIDt5n+Kdb33Wf6Rxg4qflXrpk1fu8inn9OR7MjymGyjHjUKnSv7B4tePgMtwaEsZaSrHIdhKZu0Pf9lqUyZrOqV3UeD55jlEXAAkkU7aIfBnh18DEYQx+QMsNZOffx6QnDMEhkkmKmzjvFmRUO8NzxnNoAACAASURBVB7WOXTrl73zQCi1aRjWWcQYRqyWAKT4DDJiOscQUNVLGEMY+gHee2VQaQxTlHPSln/BEECGgYwxYiYD6DYb0egMIapGzyBYv0DtGaHrAGQx4YlQ1Q2y4sZyrwzIEjj24/yWKS7zyQB6zQGomiUyDPoIuPoRm/UzDAEpJFgjAkU0rcJggJQTKnJ4+fRxskaNAZjh9HhjDFitoXIfJsagKygzmBIYXpmiWn1FC2dG1LDiUUNX2KI4nperBdrNRpz0RuZqGCKMMaNAK5ZJcZja4pznbcNxXOqjRCUwWRDS6Hchtea8dyBDGPp+hOaKAVDUDJk3scaKfjXCV4qLW7UMrbFILEKRIT4k4ywMGYS+U41YymGP1mvZLwVmJMmajVEuQsKxxWKcW0J++QCTGNaKYI4hbUH+BSqy1iPlBGcdUuJRcFZVhaR+sOJ/SrpHdGBiSaUkTmRocILec2Od8JgYZ0Z6yV3hrftChsBpW1E4Rd99po/Xi08yMXn0aAMYoQQz3ujzYb+kYZnee/1mggYKGZqevEQqh6EbvEAWok3OEFEihBI2ZyxSTKJ10va49eSpfaJRg2RMzD7EOG4Y6xygmz3nrJoyIwwRYYholotRs2BOsG4BGDuGLpIxsONcihMxEwB1+oUQ9GHi88kUBlXVHqHvwdnJZkSGryqA81SrnicMvlkssHl+hrUGIUTUTY1+E/VeZhC/ZnklISoDGIYOdVNjuVyiV6fjllM7s5S29R62Eq3QVTzNE4BusxZ24RrB9YlgjZV7x24LrgDECZpzFic0yZwwEZwVoceYoEUCQMaqBmZUmExWnTFGhJp1Y+JX0cpjiqgbwepzDBNTJBGE1tkRoim1gXJm1E0D6z3C0GHMDpaJE0bjPGzK6AeB5qqKkBIhDh2qWsJPiyO5WGtkDCYvC6HrOlTNEoZYNO7Kb2msIRHSsJExk0GMAYZEqGZmsDqsoxbTc95v+SPKdRZN9eHxSS2lgMViiU4tJCICYkZV10g5j5DfljNUBSBE/k5f5yIAxp09wkMEAozAmTmncfWloQeDsO5EW0+h12uXZnJOArnoXBgrcfwl+mtcwzquEnyQcxItnzGG6oocYKQUR2Hd9/0I0wFQnxmNzl4gj7xJrofUeoNCscfpi2D6Ey+QCXHezZzmczRRJOjWqboBhyGMmlgxzSS8k/WzLuxaHG/FdC/3MCPP+pkkftGOtiRMnyWk0NAkLPTYmBJswbqtl8QeFGfNBMt4XyHGQbRUjSUm6xGHDeKmHaEN6a8HyMAaEVZFu+jbjYSlGQPOCYlZmCZnGDKwvkYeenDBEnNGJom0CUNAVTvEYQBgQJRhfYVhiIhhgHcWvqrQ9z0WyyVABn27gTF2dFoGNfnbthXhCIPlaiWWjiEYNqMAHRmb7qzn50+o6wWss6jqBtZatOuNGD25CMJJvS0bxhixHZiK5ZelXDJEuFWmMAGZv77vYK0Hjb5haTMr1DL0m3GJBbKwBLByFkOk80t4+vprEdSqcX785hsYQ3j88DU+ffuNCm+BJDhFkLWoKw8yBsMQYY3BYrkQaE7hAl81AGc8f/wIMgbRRLkWMkgxSv5CKR9BGq3jPAYtdRFjgK8bNMsVuq6F9xX6MGDoFR5TSK1qavRth8VyCVtVaNt2XA9du0ZTVSAAbdtJbgQZFO7qvDgTe9XoM+eZsBK/Buc8BiGYGQJrnFiYOTOsrzQZEhIJRlYsWBi0XSuCnYGcgkB2vgKYEQZZf5vNRpLzOIKT7HvvK2zaqOtqWiusWr5V3pBTev0cAwKqqhaLD5MvwlYNOG5ALBGExloMXQfrrDxXOSU0ziGlDF/VCMOAGAPqugFVFTbrFovlAoD4AKwxSKpo1XU98pSkMJSsRYU5wbCWMA/EKijCZi2hxHXlcYq++0xfF00fxPnIzKP3vdxAAOONdOrMNMai3Wx0khKsdWAWjJGMQ04Jw9DL4iIe4Y627bcxx/lQaETlxs9ihrpJEkA0lwzAjBJGbmpJeGIILhtilNC+EPRh3Ko5kmD7vvLouw4PT48Y2hY80+iKtr5LZWE+f3oBkLF6eNAxE/quU7NU8HSnpnjBSp2vxixWYwhhCGBIbHlKUbVph5ADGISQhZGS9eg1EzazWB2mqpFDACfRIlOQAmgvzy8jQ0gxgpzHV199hU8fPyLlDJAZzWA2DpuXFxABPUOdqAbT/qQRzss5IUVCThFOGULfDXDeg4yDqVYI7QvatgUYaJYrsF4noFYDFehqwuwKIwMAg4ScCVXltEyA3Edk4If/3x+rxjtBCjkTfvjH/wTGEJarBw2fzEDlkWJC3wnDIgJyjnB+gbBZCwxUeZgYYJ3AJL6qxMltA1LKiDGiH3rByVWJyTnDGsJy2YAz4/HxUZkIsGwauZeVH5WfIiDX6xcsl0tsFM5brR6wWa8F8iCxZqOWjSAyGIaAqq6R4wBfL5ByQr1YoRS44zxADFwRdL6qFNKUPpO2tV5v4J2sxQigqqoJziSgWTSjIIUVSFFQFLGUDQm8ZsykNJV71bYd6uUKRBbG0kyBE2FgrUUKPWAsQCzJhKQRTSwBAVVVSTJgGBRmIcShH6EgsfBlIJwl5Nc4i6HdwFiDEAb1J2Hm4OXRaa1mApyRUGkJv6bxuBL9wwBcgSLVUhIfocxnCElzVzKSaDt7+Veh7zTTF7iiYGETTldqksjH4twwcNYgpywSeMQpLUASESIn6MYjoxgvgxVQFCeSxpQbA+J5SOHoOJCk9nEcU0nf8jtpJAdDksWGbl5ulZGylHXouw695gEg9+Pv5Z4Ng2g1nz5+1HbjTMjJ/FRNLfhhzrDVYvytzE2KUvs9ZxbHtGqnvmrGxwEaMupAcghDB1A1CSmSuOIMDw4DrLFgEIz1SDHDVTU4R1hfo28Vb680tBGM5eoBMRU4pkZKLSpfoRvhmAbPnz6hbpoRmy04eLd+BoiwWDxiaF+0wNmE2xXoK6UIzj3ssoJ1tfosMqp6gRQDjIFcl05MVXkYkk1HvkFOAbtJ10UxFEgFRb6I03IIsOojaZoGQ9+jXixFiRA8bGZ5yH0Qv0RWjZDhvIXzlQoNYeIpPI/iJvQDwjBgsVwpox2mR7ASofYeKTJMbTEMHRgSCcQxIceIqqmxXq9FWBirDB6j1SnNTPBI23YCQ6WMdrNBYoH8iqUqwpGQ4qAuJvWdkZH5Y4Eeq7oCGcJisRCIUDieRDWpOiWWOuHp8eHVfrfOYf0CdO0UMeasR1aLXEZBwlxDGgMpiAzazWYMqijqUGYJIuDQw7kaZAkxJKQU1SFrUZSyTIScBQ6t1Ykd+jBTMs4jBtRnJRAdg5HaDaAz0HUtmHVtxIi6FgvPOQcCjc+VsNaBiTHEAUOUNUh5Kg8eUoRhuT/eV6oQR1FCj9B3nOkDkRnEGJNMxt8A1XRVGqrn3Bgjm4in8LzCJLLi07KIjZqRAFmDyjmkKAkQIiDU0Wk001ITVghGnYwynoLPkiGFdIqTTcKt1u0GxCxwQ+YCjYMJyGoFFGwyz+02QDFoh8zCPIv3vpjL6/UafdcB1sBagyF0KvEBNgxOjCFGxNih8vWIxxrrJ+wdhEQZxEBOIizjMIx4fi5mpgrelBKqejFuhBQz+hTh1FfhVHDmQQTKZtNKeJy1ADKaegFODGssYhaYqU8Jj3WNGIbRocgM+KqBdwZd+4KYE2zOGqIq1gTBjFE98wxOgAFihZgGWOc1g1hGPQwdUhxgXAPjHLY98MJoioNtNwSYURy+RQAMILLouk6u0zvBllVILB8e0bctWoW+6tph6CUctMTPLx8eJAxP769YRWVtZ4m6CkGgsRCw2Wyw6QdYArrBwpBVmCKirj3YSsTPYrmU6yBC17UgEOqmkegfa9F3HUIIWK6W4mupPNZribqKIaKqvGqpGK1lQ1LyInPGYvmItut1fQBMMne+WmK9GeArC85RbkdZu+MsYtTOi2BhZnDMI+RnrNGAJkKOCYtlLY5aMIzuqRgzTGWU+U/QLema61nnkgDnDbqx6qsIqHbTjvd8sVzqZ0Loe1jnXj1/4RWPGlfV7DtmyTdhHh/OU667WPr6MxZ1AxBQ14vxmHpk2gRYYOE8gG2tZBiCCnMLNtJniuJQt/YL1vTVEwJYwb3I0pgVSQCQ5iFuMv3FjARoy1lSTDAyBsgsC3RU5yTkTLw0oikIbGFAumBDiuNiBBgoODsRKu8QVVCMjhvVSgvzbKoGXd9NzGSGtRfHEAwVPw9IN27WzbBppXyA1Sp+SZ26pPAMK0RVNHTRrGn8PIROtHRmhDRI/4o/Iys8kjI04l+FbJIoA0Po+wDva0wlIaBmsMBuQxhkTkkExVdPH9BpZcwYIvoQgBhgrEWOCQ8PT4jrF8TQ4asPTzL/xiOFVhzqnJBChxjkXjhjsHp8xPrlBYvlAokFUlu3ASlELFcLbNbPIGOwWEjNGlbGN8VPy7CtOr0jJ9QcwcjIqR9XERgzhWFreUnUUEyKTZdCblqLyHqQreAtYHStWl8BfS81nFIGGQ/rl+jWn+Aq0TI/fvwGAGGxkHDbQaNqFouFYMR1g34IeH5+HhWGx6dHpCQKEUgTg5STdJsWDGCxWoJAGIYezWIxhvIWmInBEl6s18g8zoBATsywJA55QT0yhphhnZG4/vULrHWw1sLZCv3Qo908K6Ti0fVRosZYFCMYwsNqhefn9WjROWfh6wpd2yIO/aiggRkIMpCmeYCUTcgKOdGYb2KIEAYGjENVe40Y0/DkIWD18PVkPQ0DVg8PI5YOIrGk1ITqhh6k2bLixBfne0pyP0KMqOt65DEZhRWIMlKAQWvNCI0VGoagkEyG8Q5xiLCK3Q9hQOXFEgw5wfCUhZ3UOrdG6llxzmiaBpy7cR7kNwlaoLwvc3mHrV6ezPT5iIjYV36sdGmsQYmRnIc9TuWkRlxDcb4J4pDQOmHKxUnF0DYLhsbbGaQEzS41Bpt2g+KdJzOFT+n/0u04BsXuOYOpsAbRQIsXvq78GNtMAKgskpjBTmGMzDDOjpZEaQOQyJay6EmZtDhDeRwBFGMWZ7MkPPlaHHWcszq9ZfTLZoHEGSEEKXTmvAophiUrDjxmZO0vxQBfL0TT5YSS5EN28jnU9UqtL4vFwqPrAjIDQ9ehamoYIvTdBlVVI4Yei+UKIGk7J3FaLlZLbLoOlavRtRsYQIRsSqjrBswSF22tQ7teq2kd0TQNNn0Pbx2Wq5VAWaqeG+exadeK8xKQNXKJGZV1qLWsQ+aMT5+e8dVXHxQeC2g3Lb7+3teIMaJtW3z14WuEIIlDvqrR9wFN7Ufm9enTRywWT6MiwGrJbNafxvUDohmvm+1HBqiSrOQUoiguzDAgkLUw0DVsLBIYy8UKHIZR2y2hhSXaBZAqnWV9dJ08BrLAe1Xl0W7WIhAzY6UMUSLFlLmpMlOsKCmGJ/sq54zErAXlAqqqBlkPAqPvO1TNYtosOyQ+obnezOP+zZrPMEb9FNha7+fD44PAU1ZKIITQoW6aYmyDSBg6l31EJVNbLNxmucTQtWBjAGPgreQx5JzEkqAMa930WEwGDGkIMBmUKLqUxS+n0y/72hSoEyMUWSJvSl5HGAaQtWjqGpt2g+ViOe7LIURdJmoJKd8pYb4AtB6T8qvFAgzGp4+ffpeZf3HfXJ9k+kT01wD8awD+iJn/Wf3uewD+GwB/CsA/BPBvMPM3JDb2XwXwKwA2AP4dZv4f9ZxfBfAfarP/KTP/xtGO5RyWMr2TObj9lCVlpAx459CHIBpazDMpu0/qFQ1fCiSNST1lNdHsqDlHL9BBsc8U3hEGawBOE8MdW5jGUDa+8RZhGFA3C/RdJ3CRHrNYPIgEVwkfhx5Ns0DftSACqrpB34mJyzmNAss5J9g+Qa0ToCSEGWtQVwvEMEi8sDEwcPBOwgyd88hpgKtqhBQ09E2tKJ6cnKzWTUgJznl4XwusQeVhJhmLUhmycuhC1o0gwkiil6IyGWFS7aZFVXssmgZtJ4XFCkyVUQSJncSmQjs5Myo3JQ+VqIdxt7EmupCWxeA8QiZ9+zLek6enR7y8PKOEyU4rxIC5hDXKN+Ql5NV7DwOjj1KUpr7+6it88803eHx8xKdPzxJ5whkfPjzi24+fRg21RB5ZW6IySoSLxurP1h5U0BcBRMbg6eFp9A89P38LZ91YvqJEQFlrQRrGG9VHJQ9nEWdprc7hvusRUsTDwwOGfkBdVfj46RO8swgh4+HpsUwuQIRuSMrwgBzLA2okuKCqagmLJUICI2mAgwEhIUuYbWasVk/o+hZAVgt4gRB6MEksvtP8gYSsSVa17sFJ2bLq1JXkOcly9s5rhBhpdivGsNgQIzhlWD/xkqEP8JVDGAKsdygObzDgjDqwS8gkl2iwDAsZX8kRiDFIiW0GmqoWK1yTy2BE2cpBlDNfey35MPEkZSNAzth07ZhsZcjAO4nu6tqNRNhBrsn7CilFOOekPlBZoVnm3TmLT59uY/r/IoAXAH99xvT/MwA/ZOa/QkS/BuBrZv4PiOhXAPz7EKb/SwD+KjP/kgqJ3wHwi7qefxfAn2bmb472bYinqnNTDfUyZeIok/C1UUdQuGLbwpmluY9MXZm+MYglmxJFly5OKho1M21mxC/nxJhpcZpgxKNAKCduH2u8E18FifkN9Qcsl49o+w2mDERx0oRhGE1ugGBJrJ1yoWQtmCRtvdu0Gn8uzEKidSTyxpHEyntbq9ViEENGyh1G/wczvLNb11kwWXGQSmav+DjF52G9xRACrKtQeyeCSQ0JwekBV0u2Jms6uSmsnEjr7QPeNxiCOBXJGkS1PAwRDMRKcnUFaBE1uecl8UnM+5wyQpTIiUbD4Nq2RVVCDzcbgcUUwjLWAinj6fEDAKB9eRZIEYyn5QrdMKAP4u9gQ0ghwluHRdOAlUkkzghDL9dhLUJKqKwHDCGGAY8PT/j2+SMAxqJqMAwDkjijYJjgvBctjTP6tkNm0eCryiFnxloFU1lKT4+PWLc9MmU8Nkt8++23IGVqj6vHUX/JWbRD5406oA2cddh0LSrvx2cdpJjgvBPm3zTIKY11hEpmcmJC127QNEsg9aiaBTbrF/iqhvcV2vUzlo8fsHn5hIfHJ3z69ls8PD4iZVbrLI4hxECJvCP0IcCCNUlLS1APg4RgavintQ51U6PdbOQ+lP2h8xE5IeUEaxyQEhbNQizqusZYAFDzFhbLJaBrIqrD2hqrMJUFGYPntZTPyEmgGyomQ85wRvIVMmdYU/aJFiREngQHxBp3zsH7GU6PKfcGEH9LEVDGuylJMLPUQ4oJCVNBPmbhCUUhmYJMlEGRQdeur2f6uuH/FID/dsb0/wGAP8fMf0hEPwPg7zPzP0NE/6W+/xvz48qLmf9d/X7ruIP9GsNkFRwhTTcuWvZs3ERGQ8GiaIGz+PpZazoxslDqutZ45inRa6s4mNQAmCCfwve1Yc6MuqlBkMf4FaEx1d7nyUrA+JWY08aCnKRnk5rKBrJBydlpDMXEBcZqoqMAY5ZzmUGVl3ozai5yFBzfVk4rXBKMM6LVWFnccRjgbYPMkjBCqh2DGaau0LUdmlquL+UMkzR6ouCpKaOpKoSoURDOiPCCZCSGEGSzJpmn53Yjm9RI+YQSJmrIwFUOQzfAeCknkVPQzEQj1SmJpF69JksZZzXkLqqlJiUIrNVaNhqpEmPUfIYseCc5EBhDt4GpnJZydpIclgHvmhEmzBxBBkghwFQOQ9vBNzVUlYOtNLM4JnhfY4j9GFYXk+Kw6tyOhdEAU1VUVVhyiPjw4Su062dEiLZbeQ/vPT6tX0SYkUFVNehCD+/cqOn1fQfODO8WiFmjlMIAZyS7ExrNJsEGck3OVaidaJtN7fDxm2/w4euv0G42WKxWCF2PIQwgMMhKYhSTwxA7GDJIKcA60S5zTsiDlH/2dTOV3wbw8Pg45pJ41aTX67WsF7JYPTzgpX0R7TQl1L6Gd3YUTJX32Gxa2WNaLM9ai67dAEYYY8pJfF5ZfVHKE5yxqEscf0hoFoLDhxQlmTDGMToHECVgsWjwvJZwWeOc7ieFhp34LcIQUDm/Vb69G3qAS5Y1wxmHKTyzBCXkMbbeOYO+7UZlrVks5JpY9klICZwzlsslWCPuUk4gZlS15A1UVS332fkxRLnwHWMMhpCOMv1rHbk/zcx/CADK+H9Kv/9ZAL8/O+4H+t2h718REX0fwPfHL9S0m9eRpjKpOYMNweSETHbEz6wxr4oQAZPnHJCHWWhrWCyasYIiY5LOoyM2i1QvuGIxLwFZ+MvFAkRT/Pjz+gUgcawUbbJo/4Bip30npmoRIgyQQlnFISems/xYrnWUAorXigaTRlyfIPV0WLFHuUIGp6wVHzFCNkOSSpRM4j/wVqoscoiw1qDbtHC1l6QaBlxdwSm2671Hgpq8qjFmJ4w0ZNEac84YUsTSSmQCGQNfeSltm+Rxi7AGXdeBIBabcVInJ6u5xllj1qHwnhehmHJS2c9aYM2MxdpIYmpFK88ZxhlpLwt8lCEQmHNeHOJaXdN7gxC0nAJlrW0ikSNGcW3J8E0jlCJCcICzFqHrQd6ixFbmnFF5jwgaw1ZjkrlBFkstc8a3334zlopmAAhAr6HKnBnBZHjmsSjakuVcUWAt+n4DGMjDayDwmyh9Aql479E4i3WXQMgYQotFs5Ts6sUCQwm9ZbHGYAy899i8PEtGdG7x9PABAGMz5NHhKn4icThmSlh9eELXdlgpJt1uNqibRh76EgZwzvDWIeWErt2MNfKXdY1N30vEkBMIRPI9xHru+x7OWTjnUTcLrNcv4mNQJ7HAWawFOA1CiogxofYNrNXM4qpCpdVPq7pGDJJtSyTBEJItL4lmIQ5SsygppJIzYggafVVvG/o5wzsJY85ZHfhJwjITTaXLiQje1eIzK9AjMkAsDneWsFPn3AhBSa7MgLqpEWNCCFGfnIdxrFaPL8EJDMB7g67dx12F7h29cwRA3/v96y+Zfx3ArwOC6RcnxsjAqDz8jWErcdwgM3KMgqubvGX2lXj9glw0TS2VC2mKve9UAIzKLvhAnfr5RY6A0asLKe1ImJuYpimEMZqo7XvUVY0wBHhfYeh7qVViLbq+G2Gr0rp3HiEnoFyH2YksyVKK2LBRzVvM0VjeW6vVKHvxf2jVP1eJNsQEWC8QBac0liCmWopZ1aphxBDG4lSZAFCGWzSIOSOFHlnLTAjOWYk1Udf4tN7I4hw1MonkyJyRhwjrSw1yo6WazWjNkTEyd2rSFyshBU0cM0Z8BAQkTrCVwzAEOGMlEiolDCnCkh3bk5Bb6d+oFWeINDu3BlMSjTAlWOeloqgKlNh1o2/Jez9i5mQM6sVCtHwrlsnQ9xKnraUDEsnTzwwZJI5j8ACMESFmDJCBQWvw56w11GPCS1qLT8Iw+qHHw+oBlqQIXjYEV0n0TB8ZsATKGUgiNB6elhj6ActKNMkYAtr0IjCBs2hDj+ViiRQD1usNnp6eAAD1cgVjDJYQZ2MICbX3YA7IifETX3+txc5atMMgWr2GRyJN9RCYpRR3WG+wWEg8ua9r2E4crkMvgmIIg8CF1sAwIdBUyA6QzHfyXktaWDw0S+m/l8gxcdQCT6tHGUJKMMbDzSx1W5zh1oI5Y7NeI3AGfKXWtvgFmOT+5mKJqxK46VogZbXIxX8R+g6VX6Dv1rBJ/QNW1lntBVKMISCETqw4K0mQfYhou1YKDkIhyqL4QXNsCBqSbNEsFwqNEmLMcB4oRSZLBnmZ72N0LdP/x0T0MzN454/0+x8A+PnZcT8H4A/0+z+38/3fP6ejkoiRtfjQpAlDCxZhNOtG1GemEGcNpawqwXZjjLDOSrxxwiwEdF6ZkSZRpX/rupJSwNhh9eNxPJpsmbQkGQk8sCv3nHNjsknMESvNnHTOYlCtJqU8wktBNUKnBczy7Lrr1QJ924KsRY7TgxhYtcyMCVOHarRhGMSEzWmsUpg0TNBYgRzErAc4ZQx5ADLDLcUk5pwR+l7S6IcOBMB6B+M9Yi/QQNC0/NCLL8IY2UCUMnIIcNZpOCqQo4SGBq2sSCJ5QWAsfQWQwRD6MUQOOcP5ChYFLjFjVdJ+04oTOCV478cEN6nIKI5Y01QC2yj8Uko2sAGsBYYhwZHgu/0gReIYAGfxHVVaNA401egZ4TUwkDKyJYGynEVKFgkSytcPA7J62o0KMAbDqAJD1iIPWcsweESFycAEchL++vT0hOdvP+Hh6QE5JdHW2w0qa9UiAhaPj0hJS/4qLj60AyhnLOpG8fWMEMVZLaVBCI+PjxhUsHmF9wDJN3lcPQIELFcPAAGblxet9++xck5DbYF+sx6rZHbtBqsHWd/NooF18sjPChNUWqxkZ6xYpcporfMiEB4kuCHFqFn2Zsy6ts5hpVYYwHh5WY/RLEYfZJKTRJWVUNWcZS+V/fq0fMAwDAhhgNFchGTk+c5EEh7NEVoDpwg1mdNS8iPmIIlp1oOjBGnoZgFAMLWZrlVRihymevkJGZQzuk6y9OPQY7Faady9QY4RRHJNmTOq2osSQyUya2bZv6opsU3X1tP/TQC/qu9/FcDfnn3/F0nozwL4qDDQ3wHwy0T0NRF9DeCX9buTRN5uMVQAcnGssb/K8G1dzXDwyVFiaw/fNHDejc9XrXwlUAcz6rrGcrEAIIW1BN+Wl3JWgBld26GAOnVVwVkjtVMI8M5OZWgZ8GRQqfSuncfTwyNq57GoG4lrJoPGV2jqBpYM2vULnJpybAiJWeELcbQaa8ZiVQKJaDTN+AxaQmUrrFYPElWjDsvQD+CUkWPC0PUgZ5XRS4amVWeTcw7WOgmxI4EnXF2NFpKrK1jvEPpearQrjptj1NBXRhwGgUGsHRc2gcaQUrA4tXMIAq1oZIfcJobVHIWFzuNisUDlK6xWK6ljr1eaY8KiWcIbrRtTjEaUtgAAIABJREFU1ai8gzMEX+CtlJFjRN+2cM7jJ3/iJ1E5hxADbOXxWDf4ya9/At97+gq1OspgtdwCSfG2YRi0qFyeEnpIQoE/rB6xdB4+M54WK7gM1GQwbFqklPG0fERlLB7qBawyIPEdKbNR5SUTwEZr4GhqviTeEVIIWPkaH5YPWC1WeFytkIYMSw4//OG3ePjwKLiu9+jbjUCBJBhxs1hg0+48QY7L05kkserx8RFVVSNnFqVD90vXbkRJ0HEBEnba1IsxdLO0Vy8a9L3AJN55EEjrLxGa1QOWD4+SicyMrt2MVu3Ek4p/LEt2etchhIj1yzM2L8/ou83WE7+staiaBnXdAJiVIWGF5KQxeZBO38uatxYhDOj7Dm3fou1bxCjPQf708RNiTPj46Rn9+EQtpxm+smYlo118ho/LFR4WS43xB5AZNgOPywesmgZ11cAZoFksEVOUirA6Xy+fnsVKTQlD16LVchvTU+YymsUCDw8PqCuH1cODxtuLQppZ8gxKFnqBjEYUhGV9zgCIg3RS0yeivwHR0n+SiH4A4D8C8FcA/E0i+ssA/hGAv6CH/xYkcuf3ICGbf0nuCf+QiP4TAL+tx/3HzPzDM/qW+ORRkyeMavyMMgSHlmO0PBIVv6QwUETRzLxzYylgZy1yishJNb3SrIZNEQjL5XKMyJE0e4wOmhQjKnVSMTMWTYMQI5aLBV6eP2H58IjNy7NmXrJEzXgnxdzAWNW19A/BAK0x+PrpCd98lJryKUXJJlU82FcVANaa4CII+66Dqzy6oQUb8UHEkOCMQ0iS4SqYYNRHBkpClbeVPm1KIpjISsINqd+AysuLlVXXNWLOCF0nhaS09LCG8EiIYnFi69x9+Oor9EOPrGVmo4Z6kj6asKlrtF235dht2xbGWDR1g3b9oinp8qAUpya1dxKh4apKCnCRRddLEbjvff09tPocXGetxoZLFcNV06CLAqm1Gl5oiLBcNCDI4/GsqzC0Br6Scg5fPT1gvWlR2wrkSRLOICWspbqpF4daDnhYLABjEMOgpbIHcIxYeIeQpfDbmJQHIPeDPK6w71Etl4h9Dy6Zzd6j69OoeGSWPAuAkUNA2w6Sxs+MeiHRKAwtFJjFbzSEKM54tWTq5UqTfYw8vN1YPD590CUvylWzWI4lgYe+R9f1ePzwAW3bo217LBa1tgEVupXuO2CzfhGrzzp0mzV81aBpaqSc0CyWE1MCsH5ZCzzW98g5qYPaCdZtaMSvSwFBEGlSlYWtLSgExBCQVJBKKK0ofn0nWbUpSdhk4ASvZZC984gpaQ2m8rByGgumOQsE1kd8WivVYhlYLaeSEZYBTozlw2JksiUJ0pDBEAb0nQRChCCPx2yaBuuXFzTLJVwlTymzxuB5s1b5MfG4lPOYWySWpPCm8lyIMYR9h1/GEBB3nNR7+ep3OTnLGGKvmWl9mGpgMIRh6AoRD3ep76KCoTzMoGRi+lmIFEjLERcnKiQJwpBUtyymIRmD1PdIoxY5N5t4rLkudX/EyVNqlBdIZx6aRSSZeVLGWevWa1lWgjxIYdNK6KStPHLKcJUXCa/hYmDAVhUSizmonlvRUjPD19W4+JwT7bxg+2JKaslmkscZ8hilkODreoR5CrRkK63NryGlSSNioFgzOKOp6hF/JCIsVg/ouk4YW8rQMjUIin+nJM7vFAYMKcNpRUmnsBuMhSFxiMeYNGTOgJOHX9bIoYPlNJrv5cHk3lcAEYZeks+MdXC+0lo8CVadvb6WdP4YInxda6glUNJb68VCK6ROEEzfS+QM6/g36zVyloJ2zIQh9ICG8K0eHwFmgd2I9VkFQMgaUcwJD6tHwe3V75NZ/EjGGHR9j5gSvJcAgceVOO8yZ7QvL6J0uBUYUzngRVNhvV6LAN6qvWLVByELRTREI091QsIrmvGDru/w4cMHffSkOFVBhOWixnrTikJE01ovtFHmBkh9GYZmmiuTzRptVSygpHBlqQ9k1LotvqlSAln8coTNeg2JiJHcg2axQrd5wRaD0NR21+izGHLaKnfCLOHNMSW1XKHWEuHh8VHzZyTm33mxcMrzCHJKWK/XUtVWQ0ljiKN1tN5sJPw0RVguD/cRrfzh8RFFe+/aFklLdD8sVzoHJQhFfDrOOt1bEjbrtTLwiC5z1rBWp6Gfck9z5rtH73w2KinRta8E29LiVKx1c6Cliq0TeKLtOp3wpCVT9ZxZlExmRuWmx8GVrEWpG5PUAURIg2gK3ngwJ2VqgNyQqQIeQZ7WUzT5GBKclxT7khErlkGaYBVmxCEgYNAFJQxpqWVXOTMyCSMPIC37IMIoRokkII2xZh1TySPKSc4NQeL1/aIZNRFHDpUX4RRiAKmlkighDYMUmiPRZFxdjf4BZnF2euvw8CBMbRh6tJs1FouFbBgIlDH0vcxzkgeNGMVqra/RaVnojZq+zjksHx7HB5cnZnTtiwgMTqgWNWI/YOha1D4irVsJGSRp3zs3OlMBHkv1Ol0DxiR9MIg4kgetXQPIpq/U2oo5oGRRD12L5Wql/gNWZ6JTTV0ci1XVwHkPX3twzlgsajw/v2D19KgMRDI9+77XyJoMZE2eI8Jm/bIFQ46kPg2OCZE7PDysAOij+wxp7XaDoX8Gg1DV9cgcrVppOUesHh6RmbHZDHBOQidXS2EY7fpFhJydHkJfaMpJFzi668TSkrGJBdx2EX0XABpGq3rm/kI/RLAJ0HT0cmHjfpCNp1mp4vAZ4TsGITKAwGCelVlRvxmRPASGZvHQXA5QIUJEo/Y/tJ2UVnBujO/3ujbIEFIf8eHrryT814iW3rWtWDGLWpi/NUgholKrSaxRIzXvNV/EOYcQI4Z+o0EFkn+RCYCzcN6j9h790I/72ziLVbUYx14ssrE+DyanMwBUGjlUEvwE3hHlrX+RPTM+ye8IfceZPo1VL5kzhkFMFzGnpwcMlAqSbdeLaZqTaJeKidkCC+lXZYHVtYRCcZRiV8Y5hDCgaRoQGfSxw6JZouukHG+abdAS5gltuet6EImQKhqhMQZt26FppGaNcxZ930sdGgYYjEofXbf7rEuavSN9yLhxDpxE+guME1BpTXtr5RkD4kzMCltplAFL8knZmG3fIQySvGRcBUcGzlUYNAEpQxxkMQY47xH6QRy1JI+v+/j8jEXdYKEP6gYZLc+7wrfffgtAYDQCIySJJDEELBuPwXaw/z91b88rybZtCY25PiIiM/euOue+5/Al0UZjgIOF3Q4C4SC8tjHAoH8AWCC1C8IBITVSC+HQwnzCQcLCpNtAiEZCegIkHkhg3Hur9s6PiPUxMcacKyJ3Vd3Tek+iz42re6oq987MyMgVc8055phjBIrIwaCOaBr8/qlDStjKhlY7tu19SO5utRlmvaAYW2QrBWUrlqUFfq5EnnrZeJ3LtmFbV1Z3NkmZczKN/iu2so33Dyaw9/72NtpIOS+myZKG5+3rp894f/uKut0Qpwu+3N6B3nF9u0IMOoshIOewuyYJdXv8df3Gfv386SBvwGTifMHY2ABSRT0DHEwfpZ48xx8CTucLYbRauGYBLBNZKtNCemLvHacLJ21ZAfL+eX+/YpoXiJp4YOuIUSDShl2hH/c7seVlTrQpTAm1dUD76A3I8JHAgejgS3p/LdeW0l7hks+ukMrv8/50vXI+2Uu4wKGYhMM+sUstKoGkhHgAQboqG+ORkMnjfseynPD73/6eg3GJNN5lYbOZaymNTLrZoOblchkQy3294hyiNcbpWeFDZdM847E+cJpmrLUYG4nfZwgRpRRMpqzp5katseJWIwe4gm+e+JhTOG+3B1JeDO2gtEjv9RcDPvArh3ckiE5TRq+7FjaPD5i+AuruS+pZ3yGD+ZBMaVekFJ4lHex1yc3mkzxI1tqf3lF7x2zd8+cTtsXu4msf3xgMymWoMDLo+8vs94ILefE/j7pRHlkVWivm84lNWtckEQw6qISAnDhZKRbYpO/mMX7zluIsJptoFmO3mMJjTHEsOLeuc3iHcErEnE9MB6HY1gdyznh5eYGCFL/H44GX1xdYMmjsqTKYHdGkI86XlyFHgUBY6svXL1CAm469Z1sr5tPLgBTOZ9PI6axGbrebFdGCl0+fcX37yvc1mhss6DmcwO8oPKep+9UfBx2P2Fyb58Qyvyvu71+NUyBDzmKaJnz5SktFqJo9Xx1f7nI+o27Eo10vJU8no6nCKkEGzBg5wBdzQq9tUIBJ6wMe1vw8nRZMy4nPs2y4Vg5vpZjstciucRVTP/y7qJXSAdM02RAWTbeXZRk9KwHNiGoPKOuK02VG7YplSiy6rSp63O+Ylhc87l+xLK9P94ffZ159BYNne109RwMEKFvFtFzQqvdy+AI0Oad3GWxNwaoHCUwO59OJdODuw1Em5xEC2laQpolQk/VYcs4IkuBy6Mdvf1f1cjxlXxMS2H9pWpFiwpQTvl7fSYww+LSsGyRRUkF7R4eibQWIAa+XF2zbijkzg7+9v+N0eQFkr7f8kniQUChu7+/oCuT5ZLpHncKN2MkAUPzxwjulNeLpdhF5g9tO753vrk/Zw3cPff46vw34AL9is+877hkhsKlpNzui3VzjF6x0hdjC+aADMbIdwO3bKEgp4/neOH5+AjHleZqhQt9W2J9HkVBi7MkUO/uYSo0hoK4refCgboiPvk9TxrpuDCC22QEdMdGPdcg31DqCjmPcIoIALvhHWTHnBa0paiuQuI2PUGvHl99/xc8//zQuRTfKKcAeBlTxZfvt0/VyUY3eKgfDcqKuuYg5HjHrvV5dArpbFVJxeX0ZDT0X2CuF1NTL68uY1ha42iav4e16PQii0ZuhNsU0RZTaIehYlmSZVMDt/Yt9dWKCfA8s54j17R29VUznM27XK+YwjeAuQv5+Op/QSh5r7HG/Q7og5jNaJwZ8OjED9J5PnjJCc2kNZtDzPHOCNWWrEnypW7NYiQMvZ/L0H3dm/26sA2DAIDAJ52hTvCEEzNYzWdcV8zKjdTUuvU1wh4DeNzwqq+etFEx5QpzZB0rzhLXcsUxnrI8rpuUyJAZ6L4jqsiq73ShMJnhANvZ5/FqPm2fcd/s9OOZubnfkZTLiQBzXw2m2ikOFqd2gVTaufRJ8mUnKoAbTx/faqzTe9cTvt8reQG8NKkxwXDeqVPbKHNZRpXKuIODRjRSQJqxbHVDP/nYyKkDeA3uY4GtvAxaUGNjrcl2o7xy/8qBPrItJvGXwqpgn43ybCQTFsnRc2PFs4YXKVm4BJk38C8WNB3Tli6CbJjh8s0FHsmEfe8JYFDvW5om6A54KGJ0rrCu9RIOrXHLBsXkl2DZy+8lacOZHM9EoG/QybvO0zEMOoBtu3y2zr9tmm6JtjkEQhYuQGL9N16bEoZ3ekKaMnCZsjwfSnFANhgHAuQgQ749J0dZiQ1aUJ5aYsdY7prRY0AE6On53fUdUo5mKiYNt1a+wBeCEaWYzUiSwYZVP7JuUO4JVBegdj+1qwZvXPYggL2f85k//ZNj2iUEjvrm/fPpEOGd9H1vrtlWcXy643+94ef1kz2UVdHus+Pnnn3F9f4eEiFo71seKGCLKtlLawRrxzD45pPP5p58B7NO4APD+9evIlmGYbcpp77OkhMdjRW3sNUx5gkg2jjZhAAajiN7rIelRvLxc6LpUC5bTeV974u9RuXluD0zzwirTL7pBjF3V6IoVIUy4P+6s6EIYfSNuGOx9ldqgSKY3VDAvzJCXZeF71Yp8SsBG6nNHx7ScDxuTIuWJm4d6QDNefW/j/sOoTJ2x4vCnUxWfb2R/Xp5IZmAGT8G3wTJjOWC+2JwI3taVTDDT4lIbOOsKpMSNMFqi5yy/GPakBwaJRREU3WVbUs4QBHSlsc2A8FTML7mhlw3TshhDMIyY40KO6nfJ+Kh7xbE/RJKFBEKzv5QA/7qDvl0gb5ZAYIuO+NflcsHjQXvD3nQEXw+4l/MFj3VFMbqmmorioH4e3wp7bGbJbpo1welsIAQC6lrXevDVFKIcbuACuEDiDhH5zbia2YYIyNUdP1P0rY3zADAwxBACkjAw90qevcu5lQc1wFUVpzMnQsvKDDjnTN9R56H3jtaJU3bh+WYBtlotYzZmhTmGFXMg4/WwG9YE7zrUJl47CtEehER44n7/OhYhANPJKYgxo24btJJuWUpBsOt9frng9rgjT+R75wg8HtTreXm54Hq7GQxBBynq4HTDQSvq+sCW2LRf7w9s24rL+YS39yt+86d/Aihwv74PrSPXlLndCkQS7ivNuGspeD2dcX9/w5ff/5b9B5PMvd3uyNOM0+mEdeUE8m1dLVsVBk6DV4KJxUEEp/MJ1+sNgDWFE6+nY78S2GM4nS+0LJQAv9tVCD/UMROBof/ugT+khCkSV6+VFMHzsqBuBRqYKcaUkWeym263G5r1sfi9Ws4qQLFGY4zRPA66qcnu6zKfZkBMrE5gn72h1of54NJgiIJ4ilJJw40yjUD2EUITCbxPQbjMA1o3ZlrMXP9hTny2KFKIWO/cqMOUUB8ucMOsvtmQYZ4ySmfMmOZp0Jd9ePB0uVAyYp6HbLVTUemrIIfEjn9v3Rr+pxPer1dI55S6QEy+mcGktA1BOLOjZsUYQPXcECLSxAp9nijeV2shTVO5tQ0KtUFPZasj2vvGGHOy+EjW3r4bfP/4lWP6wftCSJaxPYM04ixGEI+3L92CrStNinhSoGOhP2Xj3zvs9/erM3L/8U89oDg+mSfiWjs/3m3H+X689N7s8vUVwtDj6ZV+aeLsmk6c0s1OYp7QWzUeOD9jnCa49aBju26kHAKn/EJKewOtckIwGfbbSx3laXBHKLg0cBwwjfbOCV8l6yQk6u/XdRv6Or1WpCmj17Zf/0rhsrptOL284H694rScEWPEaTGa4qGhJRAbu1+tF+KRcdcXd4gGYPVwfnkhvn0QI/FvxrnjAhibqZl+SsZ6f4OrpO7rhGyJ5fyK+/ULoA0vry9Qgz2gitdPn+Cj8QD2YK0d7+9XfP78eejsEA4kBOOB/G60y5efPo9A4xUjJ2w9CHAT39YVk1GFxQx21nVFEuoNtdownxagKarNl4htPmozKvk8s9HdCCOVbTOmyM4c8TH/el9xer2MTLkWDrxFCTvUqt00ioD1sUIC510e9wdCTMhpGg5r21YgElC3O4NmIAMshsDkxiq2o4Jts6l6tcnsZlo79Nsgk8aptt3WtsKw9JGMGRMKiiiU8liWeUzorysbpsG8Z8f3YEdXxbo9kGJmE7d1IJiFoeE/Do3mZJu20BchJkcoSPXOkUq3KhG1bkiJ8GSrK1KeEYQWqykCpQm0bVRFnU9ond4TnmSpTR+3tfyRYvq6Sxb7IhLhgAz/vt9cQQQVnsUbGtMOW6Ia3GO6PJ1ECDr35IT7cYLxgMHv3/SHCM309ykBiCGh1H3Q5Das2X708XRHfw6vq6pIy4Kq3MgYJCzrqFSdDDlBq2VgIaA3qgE2K98VgrZuthEJqrRxTQFCPzGnAQEBFNvy4Abt7F2AmiYqIM5tm4aXuUEEmgjdONOhtw7tZUBLYlTDQf8cPRhlxpMS1scdcZ6wlgekCO7bihCAKcyIUTDPbNq+v7/jp59+QlfF9f3dtN8Lcs7m86q4XM6436iKqVBsj/twJPOP1+wcKPULrI87zi/kUG/bhvP5RC62yVVQT4WuX0kKoigQM8f+TRLCq6JtJYMohL1ZLRLw+eefnspyn2TmkFkHogwN+/XxQKuVOkmtYZ4mvL+/Q6JQ5qHvVWupNOFAp/je6XTCY92QbE6BvP4IXfeGvQYBXbycLcNNtrWGkAndhMiEQkF66/ZYkc8LamtD+phwY0WYprEBZcnmJAeuX0m4Xq/DN3crd6wFEJOUpqZORBLTxwen06lTv0OAU4qkWgLUjsqWsJh5+pyY0QN0uUrWs3Hqp4LDZHUrONu5BFPojT5Jbj3jWfZNQcez99gCYPh4lFJQW8XLckG7s8IIFtinNKH2ZveRz7qw1xAMjokhoAo38tnkulvrRgk1BWDbuIjhG6MnBaAmQLuxxRKZfu078xeH49ed6YuMbqk3wmjEzMD3Eabppu7YHL8XAYIMbDXEhPvtahrbvMiOAeecn5q7KSW8vV9/eG6vLxdsG4PN9XpFCGKmBiwfQ4xIMeHLl68/LCfYYIq7Cuf+E2rPW+Mare/8+d7JDBBAKLoOgDflagbs0VQD9+YW9YuOfHtVtxAUgyN2Sefgz+9KGMauUZgyNUAATi0LoKWZ8F0fcxFiWWmeZ24qxFPoH2tCdjFnykLYcyA2BQlf3FQlTGGiOYYItPO9T+d97iDGiOv1aoNC++d1z2SH6UgBrYBkQCsADt2sjxWvn874+oU2f9OcqLljzcv77UaOvVILpqnSsUqBkMmRr9uG3kh/TCEgLzPW+wPzcrKslInLtCzQ1hkEWkc26ZBe6+gLCHw604JMjpRLqG3g3VGZ/TajmfpUaV4SpmkZA19sLJIq7BLL2rmpzadlDO1p7yjmc3B6IZNKbC2oYKjXerY9XOh40x0anVaBtI48Z/TS7B5Vq3h0T95c5kFkmPOoklKZch4eGRywZMWSc7IMPQy1ypQorEcJ4o7L5cJpadscxNhg6/1OET2wGv3p59+M4OhaPd3UatVgZABjvuPIeNrPdUPKE67vb+iBG65DYX5PeNxiEkqYSns35VZOmC8zJ2hb00G0ACyo2zuSndhRq2IzCesBNbiukMHYIoJe219NT/8f1yEi6lizAB8ycBmDW/7v3o1P2you5zPKtlITxLSwayMe5mYaMSfcrrcBk4iIMRisu36zi/udoO3wguPDziwYkIBi6HH78FdzmQI7dly3Hh8FlHo3pZJnPiAL4Q1Mh5w+ynxntTjbw022HYqEZanejHJjCLfg26ELHRtAs+zJ8dRuGv0hJZP1ZRndjC4pKsSPrVJBd+xLkKZMlyllYyTNFCmDUL/Hp5+73egxZ/RSAU04nc7o2mgzZ01Pn6a+3284XT7hcX3HfLoYLt1xPh200u83xMhKwu0Yg2+gevwueO1d16TauRy/K1uTe1PWMNyUM95+/7shr8AgwWs64DQReNNZRIAQcLm8QBW4X9/Iwbf1pNZojPPEKiEyKyzmLBanDN32NfPy+RXvX94RU6DMdaTC5zTNWLcV88SpZPXyljs/oYaJ2v0Pl784LRRoy3HMPxSTiwi+Scdowa0DHbZeDF7R3Vxke6xAZL+iPDakeeIAoALRzGGmeR4wDIMVYSPn4autPxFm/xxK3CfufVpVDFolLOL8L0G2AcMg9Htgf6nhdP6EeTKvYPtuY4zY1g3umMZpXAbvbWMTP00TWuVg17aumOcJ79crdZRUkQPNhJK5k3lyQulmwrW9dlxOJ1xvNxPzU7TaEUNi//A5GoxEyCvwsj2MFAAqqhpMqMZk065A63/8QR+wbD8nLviBze/ZuYrpSkMp8fqj1zU876jR/7Sh2JuthVQ2QkNm4mI3LWVXMRpqT1i8YYYKoG6rbQS+HRze0uiBir1UVwuaEsMo1aiE2ZGXGeX+oNlIV2vgWMPK8M5oujQhCDYbmIFx+YNlawzuNhGZrMmaM7P33vn8RKnn1ip6MdomrEow3DOY6mAzEbduz2v3x6ClAftGoBCETPy0Or6qipBtwtagqWCbOQXZJsQoKBs9dN2YI8ZISuTpgvV+gyZOOk+J2bcLZUE5Lfv+9hUCRZrmAWfFQ2UXjBZMSHHv++CQ9Y2M1jE99YUDrI8bZye0m5kNRo+mtj6ousAuzZGySew+bp4oj6AfFw54LacTtsdjrI9eGubLCdlYQ+Wx4vLpdajHAoQ+ggjWbaVpvE319k7dpSllPB4PRMPvz+czFO47vd8OrZTBauFr+mQuhncBKqEZ56yrBblaKtloMaA+qE8/X84MvgZdpdNsPQDi32mahodsq21PoizBU4Nja21cKwYp9sqp9OTUXlXEIRio414L1gztreG0vCKIopQN85RMooFVRG8dt/sNeZqpS2XVuPaO2jqmiajAtq5m7ajDuMeTgnleqKlvVGefpvaqQZvDZx3eKJ6mBZPNpfTOTF+BsWEAhHbKyPRtHZo+UW9t9OD+UKb/q8b0vWHpJUu0nd2PFIlN0uRbhuRCDLuB8bcvyhfethUppj2L//DnduS5eplxiNkUK/ulDXPfQWIkHvnNyRzPU4GQ4xC88hLQkkaUbRtfcNMGsbI4zzNejPb1buPYrXV8ulxwu92QjLrmVLJpmvD7rxws6pYpNePDq0FnbSsIE3fCOBuTwbKoGJNp4DdqjoiPi1uw9YCv4N9bJzTkmH6QoR7qlZJDB5YWA9U8AmRF7YLz5ROgtPAb2ZCafMWUzHSl41EeWKYTtr5hDgsoQlbxWCuW0wm17Zl+62EoSqIpVOtYP5wJMfaUZeliMEAKwUzCxbI+Gs4cFofvEHvl97ThH1rEton4zyUIkLjZTpnU2bPx7Od5RpsbtnVDmPgqqoqtrPBpZIBTpev9TnZNjtZk5NxDKxXIadAHU85YV24Oy/nEmYOv74jLNAIOLMlx6ei2VU68BgEmJiDVMH73OYgmR71t5lutVNIc3zNMDbV3qE28KqzRHALiZFVD64je3EXAKWTEM3HvdaN6ZjCIA61jeGqLafkIk5E0TSiPDdEGyXjtGuZ5Mm19UnhTVvNR2G0L0RvvC07cjYrDtXwCCPV0T0KV077N5Jd7bYDKM0wUZHhHSGA1X2qxGQm+LkUBgZRPhHREIGFiDIgUOHRG4pAaUetb/oHjVx30xz1hf+8gmyDENLr6l2nC7f5AsMwqSsTwsDqmLYd/C4xeebgP98GP/bGffvr8zWNetl/f30cG6MYlx+baEFITo2P2g8CbckwcwRaf9yZUseQF00QI5e16BRkrFSlZGViqDZTE0WBMEKpcApjy7IksemfGsW0r0rzE+1hOAAAgAElEQVQQRrHHP3/6jCDA7758QQcQowWojkHZVP+vmia/wpgJrFy4mJULu1T2HQAzA2EjOIZgTlU+0BNH2d5qH3jnGKuHZfwGs6iyervfr3RPMgkKH1TrvaNuBWEKZHJZFdJqwaaCKS9wTjeXSB/zFkC1CsVotsHMOqxJXRvlE2JIaL0AoL9s1Z2LDaUa6XGd7STIo5LNYVnbgtaukCSj8oA18FUVyDL0pVYzY2E1R3XYYk5Ol08vJuCX8f72hvPlgve3dzYEtxUiTDamOGEtdTQKYZmxNjJoYFBeqx35RIvC5mu1NXTBYHVR2qMP2qOAPwOAkLOtC14HH+iD6e2X+8N+Zgw7mNNbYBUTDlWWKpBzwstyGq/nl1lEMM/TsC68Xdl/azaot4SMWosJM9qFn2Y7X7Ekijh+ShmldqSJ368njWN6WYDH4w6RgOV0esL3Q0zIULyXwqZuJ67v/gqkSxMq0sakBZasiYm5VaNYd+2QyIQyxQnL6QRAabUYg/W8ykApRARIgeskiMVE8/t+RpKfjl910B94uQJIlPHtuuN/l+W0G5uMpEnRVPfS3eLpfsj3HjwEd8sDVIdqIbBDOH4Tq+IJIjp642oHZPdLfsrwx7sqM5FRyoI3wro1tM4NKQZa2C3zjJwC3m8bew4CbNsdsJJ1f2/Y8M7OJT2fTkZpK0D9dkrP+yW96eARD5TLstBeiPHWrbBx3Dt0LXCDmlbaMGVxGQpurEZHtBufjaYA9IY0zbTQU4+dDMwyZ6irHiqnOstjRYx5fMldFT1gDKKMqgIC1YrWC+bpTDaDOFNLDHZ4QKeI/ihjgMwhnObZvCSqZZ7PUKXE7e+/3vHzp8/chC3ghSB4rLtEx5Hg65Oefo0/fPsAgFrJUFEFxGz2WqX8gQNPKWWrZrihltawzDP61of/L0ChuZgnlFKJnZs+zzxPuL1fkc7ULAoxopY6pH4FpFrOxuFv1gQN82ROaAkyZYhVPlBwSM/uy+7ZrEEpvZL9EyIb3DlPxkkPY0N2GKY3qpTWWvFYV6s0mb0SqlK8ns7k/HeHzXx96rjv2Ng0OK4Dl/MZ0H2TiiL7hqEgnKoYRjVfvlzZD+nsKcQYDrTKfa5ABNjWuldph+87xcy4xAyKv2GbYgCv2cjGbaMMib2QaZlR1mLVhdN5yeCajYFGTSH6RIRBV2b1wOawJWFP6+37x6866PshVl47Bn5eziilYHUIZiRKhw97/F6+TbYs7MvzAx8OOlU5BZLTg/BMJLBh3Frbo7tl7OJw0IfXzXGfNfBO/TCJ8PN1qEQEOScErRCwSStaUNYNzTnM9plViXOnlL+BtHxkfySTx1OyTPX4Q8/cJCe7qa1kbrs9ZQyEEgZ7ys5XIYNSStiNC7uXih4DZwJ6RzBWT4gJvVbEZTYXNAsaYdfXr2uxEXpi9FvdUAvtC/OcULYbNHQXmeBn6QzuYbmglTtipim5G9I3Y8JMy4TyeCB0gZpAmABA6thKh+KMtdwQECAK3B4P1K1SzdKuYtk2zOfXfe1ZRRGXCaLg1PJxp//OXwGFpATJ/E6jz0aEwOGf93fKdpuxfTCJaJdDqKZQWoqJ6FnVlFLG+uC1oqQ3ZTpqqTbhrVgu9FpwXaXzywVvX75C7PmlFMRAAcE+qg1YxdgHfu9MkjxNaBtnHkT1wCEP1EBSBULA6dMLAsQmhhuWZcb9TgVVASu2z5cXUhaFNofUTOoo1nvI8wKRXam0d8VPL6+HeADrh6hNK2NU5P59sRqeUOqK9VHx2ar70b853Ctcl5VGP0KRxWZ6OhDhwBsof9KqbTKCMbxnNywpsUZtBhR1Y+O5d1Jqs/H054Xn3LVgeAb7sJbdd3DygPX+fGN02Od7x68+6BMKUSSJ6CHgnCeUzVULgdoqvGkKCBt1ClArXA/B9MPr4liG77/quh6EaOgo5efBLjw9Xdd1Ra2OQXpJur84VQdhZ8WuevGAxgcH/qcj3Ci0FbROmQVA0aA4n+ha9On1Bff7Y9ygCluI2vH29StE6DgVYx4ZbG8N8+lkcsYHCupxQY/ztBtBAGxlTPo2l2Gg9yKNPlJCBEtKdBpHu+ohcVtvvCU0y/LHghxNQRMVezyAyIYZWkNXMqsAoJcGpABRgSSxJtwZ9/sVhUp7SHNGkIjtfkecJtT64CZpcE3tBXnOZpFZkRCRzycGq660SUyctO6t7Ywiu75tK6ay2KiYaZPGIWa/mHbdzDt3ZoZZe4NAMb9c0EplQxN7kPI4AKEmD9llhDCnzInl243Y8LZxICcHylI7GhlDZMC8PTBPE41GYqTZvViPQMX0ZQJuVzpbdWv8FlNWfbxdkU8T+fEzXeWayYnPmSwgL4TpRRtHJShBEEJGK5YECXVgYGJ+PqMRJGC5nNGbmYSkjPX+QIgR5VFpIm/wxKvpywMY1FQGtYRtpXZ+tmunIL4PUJpbazcBvIg8MRFqFhRb57VU7VjmBSJAqStKrZhzxu16xzJPoyE69mY12BId99uNxk2dBk3RrD/n5UwWlFfMkf2mAVtuHU0VsD6HQ3wO1QSh2ZJjM7VzwrqbaU3rTDDPlzMe28qYowqTWWW1ZdaYf+j41Qf9mLNN1SkyDC4Axoj/Ms+APR6T3YQ+hIU91nuz0XeAEfME7p3xzeHwhXPPgbFZo7eGz59fTDSMP/FG33h9xXDNul1vHCzxTNrSJcGujJjniZONIM56OV8G5KSgquLlckZtHelywfZ4oJQNxZqpAJtMmyqWZUEMiQNWna5Np8sLRF2N0j5+iGOCVQHitZ2YfTA5X1fZ1NqgIbBprmD2nSMNX2qjIxYEzfj0Xr7S/QyjqpHApjwnUQNimtHWDeiN33flc9KUIRN52JwQ5rh9aSxxYdi73zgxJbR1Q1wmmlcD2HrFnBaUvqF0VicaqK8TYoB0Zketd0im2JwoMOeT3VTCayhAXTfDezECUnfdlZQggRnfZgNv8zRBfV8IDkmQc+1FVrAX22wW4nS5UM8966FRKFhOJ5StoBRCfLVUXC5nyxA7zpcz7kYBfFyvOL+80kFMYFz1yM9sEMj5cqEs9bpCUoI7VA2YpnWETDmA0sjeqr0jaNg3FPj07D5rElOii11XfPr0smfWnT4Ya9lo/Wi9hClnTGZ/6IvQpbFh10diGuvVsfunGBHc4EipjxQFoq6XgyHDfb5QlqUWVo9YgPudwfPAAcS6rTi505ffFyKDSRdTxGmexxrYTKb8erthnheUulpSwyoo54xWGvKyoDzuYyZGQoDapLraGj8tC+cmGsDRLatKYkBMhHUe68p4E4LBYc2ulzGdQkT7nkGO3/O/espmjjbanxCBA8b+/Lv64S9uaeh4sv9/cOot+Dse7tfh+OeT8NrHcwMz9c3YROL//Wbz8Ck7RbAytdZm5fnxhPeNDL2j9o6cMt6vN/TWcL6ccbveMM8TzucTKwkA96FJQ6jr5fUTBMD7+xvmeaab1H49UWrBslAS+Xa74W6MIG2NjlwGmaWUWEX5GLqS6x8M04axbwCgrRsbeOZ/q6A3cQgmIeF697CNwjjMwRgS2532dswaXbPHdWUID4WcEcH+iBgjImfj/9sgVpwyM7/WKZQVMrZ653sKISPxBGKeURvNeLIPoMWAaZoJCdjwUGsUpAspWhNSx7nFlIGgUIQh66tKrZxWGyQGbNc7JAULLAFxnqgfdaVD2nJ+xf32xkAnTjAQqlWGgPvtit7ZLM/WLE224W3rinUjqweq1KYxGFS9H2MzFNxsAIg199cV87JgXVczwQlD1XS5LLi938wDRRAnZvHaOz5/+gm/+/I7ZrcmvVy2Fa/nC6mdtfKzW7LizcjjUr/fb4f7kPdHrdWmVOOhUfoMhyloyejH6XyBghDOw2AcCQk5BTSll7WL1jVrijtcdBx8TDmjHjRVQus4nc9Pd/FqxinUtOI95c5599uNFS74/xgzanvsg2zN4SRWP8HkEhzOzFNmw70WxETdohhm9Gb+IJYluoQ617GhD3QpYk9qK1guF5Pu3v44KZsAOI0KQGtDE5diBSC2w1vm5Wqr6vAMvIlG+mJzjOsI9xwklL+HAn0T7D/8Qu9lPDYCuFoaaCcZkxuFc/IyxYxWHybGhbEpOaPjyAzYthVTTkBmk/R0Wixzi7Rh6x2nywXb+sDJzCXI9En4ZOP8PrDSlcJk2tWyJbtOHmQNMvLJ3aa6j8hLGNVWNx567zYfYKUkOfb7gFdvnTRIWMNV1SoqgdaKsCzQUrHZ3RzMKGbIOxit0yUbtFZUo3j2UoBGN7ReCzcEo3tqJz2ulhVFV0i0zKcUpIW9BNIb14GJcjLTmmf3OzeBbRtSAltVxFYHFpxi2jHh1tHQELpQkmDd8LDqT1ICoiCnjDhPuL9d0W93nC5nmG/ieF+fplw+ndFaZ+8mCvJEtzFuPsyCb+9XTPOEaWKV67LB3Lhp2KFdcXl9wbpuwxcWUCzzgvcvX6GgWbkgjI2mFEpql8o/tVGHv2zbWPaPxx2v84JswmVl3ZAl4H6nQug8z2i1MXv/2MA+QuRHiEt1SH0vi4WkcQ/tL1GG/AqsIft8pzqJYJ5sownBHO0KLi+vvjoBcDOstaIHwklLII3VmT2eDPpwpYzBO040QxUPs1Tkeuf0upihSrAko5SV5IfmtHIjFphMuwQKSErokChYrIK4GzstiOC8nHHbVvRCCMuRCQ5LRrS1oAd3VWOC8B3Oxjh+9UE/HKZB+ScxbLJWqE0jlpEALKH3mPsx7fYsnv8atLu/7KGm0+1UzYEV+VuxlF/XgnmiDsr4kewLf2ffPG8YhImONwwzzG3bLID38aMjg2c0h4/n8YOPMJvj1rycIAJ8+fIVGgSvy8L3UauaLDuvVspqA5DJYY85ozxWqPa9+a0KOS/QjRQzNZ9YZpsBfbXp0pzpE2oTvr5n9lbJgug6KGmwrLz3Dg3MzKbzmZWC37CqO6XNKqe2FeTTgrKuiCkhxoDtsQ4f4q4diNHMqt0fWXgTdzZIO9Q0cih/ME8zkCJ6VQTlaL9my4q3amW5OV21jnK7Yz7N6J2YsOjO7Bk5iCrujwfhNQFSmse1DCFgXVcsYUE01km1jcIhFO/15JQpGWGcb1I8GTDu9zvm04LH7Y5pmQkZgBtyCAFVGcg/v7yQHmvZuJuSANYQhxmzvDAxcMEzNWjxYe+z0y+PCY1VcSEOH2uHRcfxMdmXgya9wyqPx46T2hEDyI4RzlAsy4Lb7U7KtEGdahWQz698PBQY0JpP5x8hPaji/e0NR2tCwmwNtTCZ8PmaaPCupAl13YDJzs0gzzyl0R8QCK43UkN3h8qMN3Nr8+EutYFRBdA3g3a7AoFS13naq/vvHb/6oN9sGrRtRv0Tgaso+1Qo8BzsjwH/+IWJN57EMnLPzL+T5qt3yIEP1YHi8nLB9XqFwporT0/c/ymWhQFADIrb7R1nKxuJn/I0n9bdj/7uZ3P4Zecy72/87aHjmd//+S5BwX9//vwZAt9Y2oC50CrQBK/nCybTKbo/HrjXDeXxQJwn1EfZB0PUmElKnndIxGVzDGZR2cbveMBzppTkiOl04kh8N2zZtPRL2QZ+GRHIMVeTl7UBM1GDX+yGjacZiDLK8yEGVglbpdkye1MFpXhaMGu6BSjkY7s3s4igtArtpHPCppVbKQeeOXXZJZLlFVLkxtgVy+VC+WsLhKIAAuUqYkzQyHx0c+wZQJ4yHjdKJaRJsK3UfRK7g0OMwLqhQZECrS6b470m0eEWi+vjwf5RMmc160Oc5hOmmJBTxPsbB4Pm03lfigN9ZFJxN69hAXtvviYBsJrBfm859RFKCXBWhbbRXW+Y5gmLKauOtav7/Vu3vcndfRQeHb3pYDS9vOx2kfTRBcQbvF3GPAKgNvfgrLM9GTQkZVRyLILEoCdX7nSDnuNtpYhpQkwTq0jro8UpkdIMAaJPxFO6o64bYaayM5yGflTndayV8KtDdYBBOlYNA9wwQsqm348PcePb41cf9NFp1hFzgjYd8AEs4AtcE5yHAmMHHp9dPVbqWHh7beABHtgz7UOG7cdIUjiYNR542iyed46hj2ELfl5mlFrNtk7Z+FMau2w25ff8Zt++99MHHXcUTHlUvnm2QjH/gZ3/fD7hfrvjfrszQGPXA0rebAWo2JjyqLC6dszzgmmiPszb7YY0Z6jLMccAVMP+haPtww+1UqQN9r1104Tx8lSEOjPobfRiEEyi2V5fW0OYqatUHw8O9sSIdt8MAhNmUFCE1tCcEbGVMY3aO0XPAGrAVFNdpI9qRFDBeiUHvLUNeZnRQhs3/ulywe16RezMqEU7cdkpcwo5keI6nYidA8B8OY3vrJWGOCkwRWaGVlXVUgcls9rnrTa74P2J2hvEfWiC4HG705Pg7Z1CXh2o5YHThTIVeV54boFwI6C43+44nU+4XW/UhVESI7oC55cXboA+73IIjG6xOE0z7o8HzqcT70vvmdkzausDsx7rcmT9HmCFSdT7lVaNxkLxxrII4HLNEJdu1jG1nlKyHgfw2DYOSsI3HzN80Q6JZddc6jCDGddF2lEDGOPLblsicKbpr73ZxO937k1LIkUCpmnBut04ob5yowkxImbShXully5hy4ZkkhGv5xe8vb/B9a9yotEMdJ+HADDkFrxqiTE+TeGW8gewHeDQtP7BISJ/V0T+XxH5nw+P/Qci8n+JyP9o///XDj/790Tkz0XkfxWRf+Xw+L9qj/25iPy7v/S+43nJuNVW5rpSpI9yu6uN79COj48MFXgqAY//9cJMDj8fKe+4ht8v/wAL6ofNgVojzyWqGDXLtUkwzouMgTAWfzi81Mes/Dtl7+F0BRyTzzlhnmekTHkJlpZ7KSGjDpLxv1IbXj69spkXE1KmWTy15ft4u+V0GkqkpWy4Xu94e3uHdjoV/fz5Mz6faYe3G7KYls5EpcQAr0w4Wayts/kLDD15N7eG9qE91NYdy6ThCCUBWilorRg+2owJFBCmDLjOiQIhJU5BmlsYBMinBTC1xrrVfXCmMSvuIkjzhJAC0jJToMy1mlSBSMbYNM9DOVKV3PY+6LqEJLcH5ZMDBFsp5HeXQjqf2DXurFRbbYNPr43VJteU7BTaRginNTaLSylQ7bi9X2mqrUBIAa+fPlF4baF+z+l0wraR+VFLRU4J9+sdTk9eV2r8rCspjDwtasuX0lArCQYSozXyEz59+sT+wjwjhQBxmFGB9VGxlZ355kc9BCWXkri8XAxnLzZpTrbathW83+4oTRFiRpwm5HkhDTlR/+rt7R1bpUOYgLLZtfYnE3pvHHse1touieAy0uxV6ZgH4N/7wPIBjL5OjN+alayPG9bHHVu9c00EQVzcO6Cx0mt9yC4HW6utsqH89esXnoPFrbWuWOuG+/ZA1Yq1rFi3FbVXrNsDW91Q2k5f/xgbfnT8o2T6/wWA/wTAf/nh8f9YVf/D4wMi8s8D+JsA/gUA/ySA/05E/jn78X8K4F8G8BcA/r6I/Jmq/i+/9Oba+9CTV0vZg2Hd2pWL0xotAA4iS16e7cJffNilETwb4M9i3J2eam3YR+h1bCrOmBniax8y+6Pipx/b40YDYyU+WKtx1MeGoX7tDvClWGV8gHLGBXn+ky+zr74jG8s3lydYyIKuN7R8kwwxYplI0asFOJ8vuL6/YV4WBlm//hAzrngwO0JHq67OyWzxTz7/BEDx269fGNxtPiGkjPowVsOczdkowDehEDmJrM1wysYg6naQADOc7fFANPNuhxDSRMw02QCY49SOQ/dK1lDIGSkI1tudJXZhoOi1QSaqIErhZtRtjbXVFCJdC8mqj1rZUE7zbGJzpLsmo7rmSC0aiQH1sVJttJn87WSa87fbYe0qQo6IwiqoWbWljXhtQMC2bpjMNcyd0QSC+XTixKZ20wjUQRespeD88oKuiuV0wuNOw/Q8Txyi8wpS6P51vlye7sE85bGunjBwn6WA15wcI6wbyQTnywyXo3CMHABknoamFjWFWG3FIKiF7KyvX7/uGvcCLKac+pRlR5qEO8xR6qE35veAUUnX+/sI8tNy2RMwW317v8I3B78v996LVzLOCKp1n8UZQGoIbD9tnMlIU0YPdk5WyWnvyOcF5fYAKjd9d7NTZdW5lQ0uGSGwPopQhoMSL3zPrexaZAArwRwTKjb86PjFoK+q/72I/LO/9Ht2/OsA/p6qrgD+dxH5cwD/kv3sz1X1fwMAEfl79ru/GPQBMkOiTVJyGGqXGub1lBHEPHN/0rk5NJHGn/yhf0riz+1bJUQAQ/p4KHp+Hx6HN3I/VgC9rCgi0MiMobuq5qhE9rM/BvcP/uwf3kzGDj8aZRAo9obbHzpXwCl8PHMKpiVEAUI4oXfFp8/u3oT9uthLvry+4Pr+jvv7u6k4BmNtUAIghojffP4JvXd8+fqV5ivFBab2SqODzI2ybujCwJcC9Xp6rwzslmWFFMkmWVf0aDCcfS912xBSQjUTDmdbpGlCUEHPgtoKegFKDAhG9xQRVgq1odugkAirx1bKmHhsxnGf5wn3252SArXuzAwx2ANAt6G9rbanKNV6H9VErx0pJ+rOKLVaYJLZIgwceZ44hXwjZEVfWVDgzMb6AUFIZphuVfAuQEjBs+U04/64D9aRgFXL/XrbV4OwWqxNUe+WiVvSEM1qs1s1otZYTjkiJxIBameFlHIaOjwjcEKeYmPvavcU6Y+eXn19Y2CWFdYbgVUxCmAbw30wfZ2YAjdR5bo/3i1++3FveVZA8sB9hKIAmCk8B6CGbAQOVQJM8jpEfreH91EF5vlE/+dSEHI0Zli3gUW7P/1+qn3QgqFkuDWbj9nKtr//YeK4Nvavmun+55QoRtfbSCQ7qDv1h45fhHf+wPG3ROR/MvjnZ3vsnwLwfx5+5y/ssR89/s0hIv+WiPwDEfkHgPGWTc0wjJ3WmRkeNDE62j4h6+UO+fr2YcP+cfU7/7eX2iVkD4/Jxwe+e+7f/4VmmHU0/DH4ZKr/T8fG/UNUaZyfB2DvQxyeMF5Ddec7y/c+geCxtW+ez+BP02ZeXt1hpBHw+b61VMzzgvPLK0JwCqPyJrYGrW/SP//0E/7k82fCHxMDVzG6G01nTImROuD8PnyWwf5NPXeyeyBiqoeBMI5gsG8QAs3dl4nNyhhRaqEB/MLJZhFBXzc2TucMFZpeiJl6iEkC59OCkKk1FFJEh+LxWIm9uyWmWmNNZDSOHUrqrZkaqbEtOmcW1JyTupKZpIUDYWme4aYmEsKguqZl4kyAMNMuNqGZp4nnZRj4UM60TbSsxdylFC8vL5hNrlktQDN75XDdcjljfTz4TTvGDTawWxe0LhBJCDFxoE8FtSoea8XtXrE+Gtat4XoruN0LbrcNt/uKUnYmWW2NTlEpYV4WzAuhyBAC7ve7KcHCvH4Jz+xQrEFcIhTtk4BSLWsZa/x5mSswhAiPB7n6x8qX90zZNmwrK9E+qnpvvto9YPLMzSiwe/BwTwtYY5mGQ/5cyk8IwpQQ5mzikcmYaEx+xNQzgwSbbDboNqbdQCfGMRC41g2tU5bCqdQ55eek7zvHX7aR+58B+Nv2cf82gP8IwL+J74dDxfc3l+/moKr6dwD8HQAQEe02xTpycudte5p6kE3wP/0m8E1gLJxDw9fLO/vH08/81M6nGY/HitmMsOd5frZV/PBx9eMn+vCAgroc3gwbAM5T9LXNzAdq7DyPlcfHDcg9RfkqiqA7LjjKB91f2xewHl7MnaJ8BwpG13N3IbGyF8pstLc2sjC/lDHGUZE188L1bBwA5WTLxglOYbaXIuEd2HRiyGlYPDYTl3K3rnp/IEzZzF0I8/VOf16ooroMw1YQjOFRbGhLmqLe7pR47tRbF3eU6p3cahvZV9ssi8klx8Qeidg0pvECmVG1ZoNd0f7tdD3CT70yyObTwqne+4M0Vd+0giCkzM3AfAJ6bfwMOUGTSVjANmPrZUhg81+Ext8u9a2d3sbTPI2N3yuJx7qa6QirgnxaKN3QKu7XG14+f0LbGkLyKXET8zMsvJnRS4iUM0iSDvchf6f3boqwHdCAWtVM0wlrSlC7NbwKUKRkjC41Bt5TD+BwV/p94INU8r177unW2OPG4b4ZqKrsjxNCUcyXEwSKolZVdMf+1aoGjH1Gn95OUTf2RDjJvCvI9q0gTHm8v7oKZ4xsyOI5SB6lOrp2bCYr4R9Wu6KiYdQ3xkgrBndO84y17lXcx+MvFfRV9f/xv4vIfw7gv7F//gWAf+bwq/80gP/b/v6jx//gIcbx3h/wPw6jFiN271icnSmO+82+0MbJf/jd54OMGMXjzunJXdHzw+t8fA2xBWr/8O1kWyumLAPDdUxRRyDGUwkIwCY5MBbHvnB3dckYAzZr6OwUNI7SH1e+36CcJk0AdkwyhIC3r7/HspzH5KcqcLvf+Ql2LOhw/cbHAMDs5zgjsFcasPOM6LWiwzxbS0XdCtI8mdUc5wG6NSiTa5EDI2t2iimUvr0xJivBATWdHBpWMCMLQcZEMAC0rQKiSHmhRaBRgiUYQyZG9FKouaQwiYaGaEHAPYh7o5pkTgm1NwShKqSIZ4FGC7XPX9d1D2hK0/r6eJAnbywlVVOINbYLNfDbsNmLIWArG3JKbNbrvoTJpsnQKWPdNgquZb7m+ljRNA/xOm0d50+vDPb3GwDB6XTC9e0d83yx9SCDBcfZPRlwoDdBd9zbAtIh8I/zcp2icGjo6h7AFawi9tfy+2isdLuu8u39rce/HJIiO53eK4J5ZhzaXtzMtFnmfkyEDi/r/TBLHndf58Pf/Xdkp06r0oCdrmcUYKPUuDJZAIYYmnQjOwQaJmlzrwm+9pCudphIaCYkwteT6BUJ4wCH8Cq29ZiYfnv8peAdEfknDv/8NwA4s+fPAPxNEZlF5K8B+OsA/gcAfx/AXxeRvyYiE9js/bN/pOi1YeUAACAASURBVDc7NGnHtKZBON5db70/BUEAZtCw75g7rv/dAoOfC4elY1/oN5kE9kzk48jTYAyp5fAjGzE6GAA3CjnCOztLhs9xalmeSJ8rXVCqe77qeK6fi53qXrIDY7HtC9veWwBIQN0e4yZ2BgUAbOsDH5b/uOHEPtI3aJGduxx+OJ4zgCEOkgSbUPZgnhZSPjuwQyEG37RSrQx2m7k6poGh4ECUcEJXa4N0C5idN16vHICJOVOrJ9LPMSTqyHh13kpF8wjaTEArAPPLieX4B/9kb1qj9eElDFX0rQJuejN2QmNr2FqQlFgpdddbN/aRiFFSmeHDNzAR5NOMZVmwPR6kyLY2WCUpZ7JVekdtjV67XZFzwmY6/Msyk8YY+Z3k04xaC9U2S0MtBeu27Tzxg26VCA6Bdv9zPKaw5IXXwK8TGVgHcsOh2u6649s7Jq7Ixmp5Ttu+fe9vF58cNgu/1583h6fXHNn7h83Gq+rxSjJ6GBi4vv8yX9g366dzErHqdFcG1sbZFDWrRYmECyWbqUs7QEiWKfg5+WAZ+p6ksb/Q6L+s7AlsdTskmz8+fjHTF5H/CsDfAPCnIvIXAP59AH9DRP5Fuzb/B4B/2y72PxSR/xps0FYA/47Sih4i8rcA/LcAIoC/q6r/8JfeG8AwYRbspZ8CQ88cQ7xqD9Ai1EKh5oV15WUvQRWA6N6keX0542Gm4hzBLwy684zr2xsAwcvLCx73B0L04MdSe5oyvnx9ty/iKMalQ4cGIFzCa8TzPZ3OeH/7CogMpyaBcDAoRVBmS3E6LXh7e8fl0ytutxuaKi7nM7aD1SMHUqzZHMyv1DN+W4+DESQBon2HcrAzZ1LKg/kyDvUM5+OGOUqup0X23NfQw+NsOLYxZMPPXNdt/L7DKm4Er6JA67tNozq/m5t+cAaQZa9QMm38JERkyDp7YBb77l0gLjq2btOtMJExwMS7DDrqhwrGDbR7b3Rfs0YwB8OoUeRKic66UHDepPeCsEzoK2cB4JVKIh4f5onZdQhQw29D58BOmiaoVTjN1BRv5gEsQv0l8sQJU82nEx20tA+IyCeKg4g1rbnmqQWvYz2xQrVVfVhT1T578ORlrBOYBMo+gXtcI8Of9/BdBvGAyf9XEw77ftA6YDI4bkT2ndisxP6+Byr2d5YupSv6WE/+41GZiOwQqUGU7LXI6D0cT0Fk8A343ipDcrm3hjCxgY/ekSfO6wjM7S9aYgUMA3tYNe4NZ59PcW2lECO9F7YyFGsBgQbfeP+YBdfCnsEf/XD3itLKs77vxlx0nskRm/SF6KPxe6mpeHm94H69jqnCbmYP3qwRAOfzGffbHSHl8f4pJYhQ6tZ32KeM4nBtzy+f+L6dFm8ipP3NU36igvrzur1/ty/YXzib05JPUt5uD3T1EhqAdrRW8fryahXStzipa6szMCyD5lhLQWsVy3mn7F3f3xHDXr4eKvRjQb3/8THp8Wuiinul21OrZbBrYLxvz/AZwJs1ZYVSzoYve1Cs1xvCTA3+AMINMEnfAXnYzQGQp++2kANW0F3cjSwJDLu9DsIBHcyOtbShlRMMooLztNUyOc9aD5lymk2SYQQ8BWLkQFjrlJ9w166U0cuGZKYjEJqcEwAR1FJweXlBR8d6pzhcdGaRkRx4OduYvA0xoW4r3dCEG900Uz5Ce+fAnQ2B3a83KBTLcgE0QNtqASePHsR6fzeYJ9ikrsspcH2MCVHdrSad6eOQDy2b5SlghiBY7+97Rn0IwvaCmJbzt5sJgO1hqpvaITHZOuJzSOLgBjyeJYL59PoEQfFhAXpByqw2hniuf3Mj2+ff63rbxdwM7Pf1BlBw8HsxAYAleLbxVIM1bbZGOzfZXgrlxj2GAabVE/Zz8nvRqiqXNY+kCv/xCq4dJ808mDtP/hgk/QvhF0QohJLIh9/Z03x/Rbx+ehkBJ+cJ1+sVl8uF7kUhIkUOMEEEeZ6xWkUgwiGT5fw6vlWXdva32RtPwHp/AMKgreDnaLVz4jWSpyzinqyBmYCIMSX4+p9e2FB22AY4ZGWqALiJlBqsquH7t1oGjQ4AM0Hsi5LUSbveP/oiPmb0h/8+xfwPvzfyKLuZ/eI4K8LfcEB4Jt2A1tELJRi0EodnY7kjnRZmONYEzhJQ+sHU27LHaP2BXirClIYNo78/lI5EIZp8s+jQbXH2UCsFniRoADQAaZ6Y8UaBFqPVpQjd6p4pxgPFONF7OMSELopyv0NCRJqNZx+CDbJZtp7pjkb2hw5P4Wpa8MuyUIfG4QjbvPyzwNZXXR9GE82cJO008g5K+KdsG2Sibv8Q1mv7fTUvCyBsxmrveHm9AKCcAW856yHZRlvWG0QUaXoBzU3CCN/B1CW76Dg/D4gDQhnHIbA/FZ3HgK/fLNZBlTbGnu63OYffPJs+bEiOBMQQ0XpD35gMSZxGNq++PvVA/7YExXW3xppWbgDd5ciVjfU4ZVZj62bYvhiWrwzuo/oRaKvmRHf0b+aJxBCoLBsDovCcs+kn0bMiPm0+3zv+KpTN/9+PEUx0pyQG47pGy3w82yDE480jfrk7rz2MV1NV3O9kabTeMC/LCLgp2TCV764hYDmfMZ9OmJczlvMZKXISl+vKOfJ6wPe9SPaFH3yV81E5ZM8WhBzqAYx7bfzo1Xjl3iDlIjFhJxGkGDn6b8Jnfr1+ROE6ZiFPTdfj7xwe0/H7hyj/3Vpcvv3T7sJWTMnTgqpDLjzRHUryl+7lgI2mhD7Mo8OA+OpWLO0RyEQ8PKaEph0aAuIy0YyFF3lMtko2g3dVK5nDeG/1E9D9k4gCulbqQNnkrsQANDWRNDtP2DCYGiQQAzQFNG07Xq40GEd32mYdVM0AXieJgfi+KiYbaJosSHvgab3D/SMor03YqbWKmCfkaR5m4RpdJkGxmWIlBNQBMujnGNQ4qMRr4I/7euCfu1yBX6f5RNluW9pj3bf2wLZen9fi4fV+sJD2pWYb0aji/S3H3qDj+30uR70B7QiANamjcNOymKFQhDBBZEKINlSmh9fEIXaoveNho3qqXKZM+NJnibKZxxuUGa0C7609OVyp9SFh6/2I4ZNSbHMJFtdSzpjnBVXbUEplsvNHbKISQsD5fDpkgzawsW3E/yxIAnsJ5jjewMhshzxmtQCQrMQdTU4YP9/WSzN+bUoZ27YxM3o8xs8XM1nQ3nE5Lxg3AI7/sQxX6ezDBe/NKhkLtJUNgOJyuUAGBTXjer0/lbwxTnh/v1oFw9c4X3bdb4Hg+v4VIoK3L1+QU8R0Oo9Nqx18OuNgA9mm1J99BXB4VTth4ssS8D3XmT28HwP9/pgEwW8+f8Zvf/c7BuxM+zvJaZS7xwylQ/dzstfq24Zkk5ltK3TlMm0VYsowNc2NMgG9oz9WoptiTB/VZ2/dRu35lAJdl9oOj7i3AACoCGIUMwvvfLPW6d1shi0dYMbvtoKR/2/rZhPIDYgUVqsmD53nifLMzUzBS+X5mgaN1oa8zNS9P5+xrit54E7ZdE65cLiqG787pkQtoRiAzsCWjPvvX3HdilE4Dybgtga0d+thZYjJDitkF5HtfXDgB3zoEIcYVAGj87K2tU1jT8T2CvW4jr4N/s5G23//UGd+pzRlkrCbrB9eyLJwTjcfV+2Rkce+oUJg2f24LnyR4L2CcU77tYsTQyqdwfa1LTEgdD5vnJFaf8N0qYLBU2KsLYn7rEZvhBhDFyAwVm1lM2Y3Zwx8sDDFhPJXmcj9x3n03vG4kzZ5rNf2rMMzkjB4+bvAAP+bhAYDKefx+8fDA8u0LIdNA4P3LuDo+rauWD4YK3hja9tW1NIwLzOaSfXui1cHHOXj+f6+P//8GetasJWKZZlR1juhJHtnQJHNSHnKE3yRsvcQUMuG2/v7gJKmiU1AWLXz+fUTio/yq1pF5DcqzbS7EgN095+PR54WtMrvIMA3xe8F/B9kathvmA7g0+srJEb8/ssXQjceeK20Hdrljfx7x/hhQ0td+2i6ttaQpxktBLTHhrAwQ/PqoW00dYkpE+qwZrerFmqpSJczdNt4Y7d96G804UVM26cDKZk6KCieVaj8Ga2pFkIwhyPq6jczkpcYBrPHB21SmlAtEdAgkIZvKHqwZn3dCvI87VQ8kV1muHOjysuM3qyK6f1gkg0z5yDsE4QByW+pGIJp1OzDfX7MpwVQo1QCZoFoQ47WPBwstQHb7f7GHiQ92AdzIDtWDaqCYwx9Sif8H3qgROLQkxE5/OIerFUVaTJZaku61J8L+eb5O9wDj/rodSc07NIMpsvk0JRBXMejba43Ne2QD3TMZQx6q1WcaGoqmaQnByMdcAqFEsu+IQURdHTkaHMZygrT2X7d+lqt/7iJC/zKg75dfxxqPADM3o8aIGy6Pn/xY/Uq0ERRHw+yBQ6rejHnINFDtvLxHOxmWJbp0J3nuTjmlqcZefLMPiBotyAQR/bTO7VQTpcTcsoQUdzuD7TWUEvFrRXbvOL4nNr7EPXayoZTXJCNwRFg7CW4lycX8bCMBPD16xs+GR+7Fg6DHD9TNu0UheJ0OlG2+EPmlWLC43ZFznH/Qg535lNmtic/49pD9jjSGwPk9f0dOUZKM5h2vI+sjyd6FbRukEy9GwSBNN0DcescjFKlpIFp9LDRZpaFrxc8rjdO81pmrluF5IQ0M+M+Nha1U7O/tm0PhO1oAG54/VathFcLsLZhlYYa+861145eGjTS8KIUOn2p6fe0cmgK20d3eQVVlxLuVI+09VTMCIbfd8RWK7Z144bVSUkNY8aBWkCE1rZRNaaZU7tpniGJzJzeaNRTaocPnHpmDLV06nCeOCwF3yDJeKL94Q7SwSimCgnOYtvvr+PSOWbWH277UZF8exzWoFqQtT4cQOOZav/WfWkNCPZISfbHXOROLctuNjg3JnyfoCl76/1D2RCamLQ134/2iEbdtknq8bgqE4nNuP2RxkWoBwhpXAOeSwoZZdvGd+4m9ClEbOXHgf9XHfR/eHwDQXzv8CBs/xqbgdcBzNKneTbc3HZO24lHFsAng7fhDlnQaDpiW00nw3dzGD00sgErTI0Q7Jwfj3XQy8RgiTztOuIhBqyPB+Z5Rofg5fXVvmhlw81uQEkJrbjAWDNP3AhgI+abZojWEfgFVB8cVDSHN4SBokvHNM04snx5jXjD+gZB2EbHz4+XWyBG2xu3MBSKKVMy9/r2DhHqtAy+ttMt/dqqmsCYNevnPHx71b6PnDK5/b0PdkOPEQEcpJJA5gtKRXW1TlEgE4oJbly+brwJXfrAP4pn+YfMb/9UOiCU3vqO3VrSwF5QppjWYRmiK2IO6LUP32IuCRmbiqpDGfub+/BNMEikV7JTVAmvlK0MLSO1YN5rGxtgNFbI0OmxzbXYsNh6u49zPJ1PeKx3iFCSoreKrTQEIxq0WhkUIZAAfCRJLMsCVUooACYt4Jntfuvsx3EdHtbM4ePb/q/7Z96zjacEbppnlM2b7vvq8+rjePgpHcXVRjYdnv8NALXQIKg3Xr/ldEIvx0TxkHDatehdgd4gEoFejY58aLo7atGMvQZl30kBmU0jqXUzlTdZjkKZ6qac84jOVIpxrHvtHT08f96Pxx9F0H8q+QB8s8Xa0RrLI+cB11ox5Tyy4P2p9vNS91jjL30oI+0R+C0/BAyEBighKB7rg9ObT8ch6I3N36oMdW0fhZqNorNN3B5wmhcuihAoyGWTe9OUTHc/DH32lBPutw3l/Z3iV5ZBilYsy4K3r19H4AfazjYYp2nB1AKxa+/7ouxdqYd+XNyOSz5/KftPrWwPgRzw6/sbNx3tT/e12A3Che06K948VECtNK+N6piWwZXHA5I5hBVsmjZOmQHQFDrrViAmgQAAOWa6R/kUJEjTzOcF9WGT1nZe5TjReMhIvdHqrKNkCpYQsPJQ40h3JdZfO9JpRr2tmJcTtrttBEfGh/f1gV2YKwRWE6UgLjPmaSJrzMp4zjywnyEAubrGFvHPIiBV1eIl0jSjPB4GIfkp6KApqyUsvVMXCMhoqlhOM2rpmJaJ697WxbrWp6Ap4pO17Pk4a02sF5LiiRtCe7qo+OZ4gmz8nuVr9e6bx6HiEAG0j4A/vjbtwMDaw8eXpLiaT7vbZ+h1RbH1k+fzXv0d9yIFdkmgbyITtfF5k+/JhCUtAvaqvOkfAHTZP6PCEhIzA1JlQz/nPOC83jopw4GJ5WAdaccUs5n2/GF451fN0w8h6jwv42ZqvY+Arr2RVunB6KlMVKM9FuS0Z6j7GvPf+lZc7WMgOz5HDl/QkTk0jiPs8Z0F/YxD+s2+S0kMhhE4A/B0Dp4V2ft4g6h36uCQsdEGjrp/SnsvY6fkTPEu56m7KYeMJ5C15Jnn/dHRyh0ph8MO5p/xaLDxjJNOU8b6II7uG42fS28+UawDR2VQ3cXL9DBeLpcFqKZ3b99cN7xevC8QOHSWF0rWSmajOqhdo5UBnxOQOyTj5y7i34VBPZ75pTiUF5+qRjW7wGzTveHAfok+LAY2c5uOn31zPGUcz+uIaywAmQ2+odtvcINn0SGZ8bdVHuT4J5THijTTYL0ZU6Rr39VkR39JMZ+XIZVQto6c6cfs8Jv3hDygOPSkpnHk19Cn4HeWzQ6bOF//25xfsT6u2EF1vx4yrsdyvgzSxpiJwIGnf3he77sxu7PwStlluKf5AjdrIdxlsE7b4IweFTceUqz3K/ZDMC1ndPO5ljGDIOPcBsgwDFd03L8IwiE4TyIMw1fj6ot9bj8nft99lCdq3zf8squa/lSEwAUMK8q6/hHz9C0TrbUa+6Ibp1uQjJZJw1YGoJyJGUsWTkuOu0qhPt4cgGcDc3yn9vzwAzn8KSylb7fbc1F6KPf8u3btjuNLfO99xGAEDm1F1PowOds+SkYvJ58gz+OLPt0zQ6hhLLjeFeu6ImwrUsqIeUIplWbM/197Zxdq23XV8d+Yc6299jk3lybphwRTTAJ9aB5Eg2hLRYpo1SA+9SFFMKgg6IvigyQUBB/1QYogtIK++VFFxRCQGNr6mtrapE2J19xKwJLSi0jjPR97r485fBhjzrX2vufc5NIke99z1oDDXnutdfaeY+65xhyf/zEZTj8MVBP/f7VoQG+1imxOLRCV08QWC6vqPT46KhWPeWjJ3ThlIyoH/iDngGkZi6W7pa6jdusnaTJXmbt7tO2RKiDDQAK641NUhOCwxqny/Hwwf36aCl9XsfFge1LCwv31Oc0Ra7eY+sGKtMiFgBTESmXMpY91TX/qUBZVQNduCUwnYjLX4hZkiR8wrsmcVopYNk72K/e+YYtaRtXQDWWTRqxBe7e2bI6+6+jVNv26qgnJ8H3qpi4gaEPf03tHN4DUd8iiQdUyrDJS57QfbM6Gy5p/FrIwFe5s+OE77whmFsPoEnNDF1V1y2vtnz8+O1q+Y7Sgt5+nlCxjhskSmlr5NsLNTajMs4jBIqdkWEvVuNmZOTbkHyyLgHFcbqFvjCea/z4uF+W51MGUVR3MbVmKD13458buojpRICIaDGmz7/qSudMPlsocPT2597oNw2aquR248p4L/RxUiebHchztnA4lGmjX1gxjGDqGYaBr3S83iWrHWFkRjJgQzovbtJqzpmciiP1t2YEnbqKcZz4V+tlml1s/bvtw6ys3hX8G9hIf5/YKH+MTt35P1linny2TK73nDMu6LRlJVRZyuRo5ay+6Nkz7rH36JpKzJJYHBwV/pIqRo5s3S7rr1AofBcb5lmUpxBOsoEkMobA6aOi916k4Jk3VLEzTUgpUQ1zUFvgFtIqoQwVQBWKoDc+/aSBZnn937CiarsFKtMBqaMwtot7ucVi3BvYWErFeWIMMl1SaLRRMY+u9X/CwbqlCZAipLItt1rOwgFGrK1YPZmX0fc/hlStexBdLFWjWBGNuZNJ2SG1JAO3JqeEHuQ8+d2rqWoeVELWes76GNZo2GRvr8FQt6rKB9O0JMd5TfrsS+AyhKCFZ8OUMpqKoiFmvJSNukjmWBb64oAVKmmosro1h1KA9MyUrPa74+tqa5LqnrUnWydxuPTPblteYtjk+535h4/9Vc9qrTCwdMMXTeKsWtTe0mahIMrrusqvKrNuYGbFNIEY2YmtJGbB0X0nGb11VCGYJrjsL7KfBWkW27fnpmrD3Qh+61FELZNgCXMtB8dZvvmtn08kFU+1NplerFaoGOlVcCVkYbKjM44F7OSYXZPO2TBNvh5Ybzhbrmxry2ZSzHc7dGG65906vecBPhzKek+MTYr1E6VwLM40lusWShsSVK/fYRjT05WGdpqWGEDi+edMwbLaY3DDJKdmSdm46suLPHm+QnOInWN51VRfrzIJepu7FpjGN01svhtoqYC2DRkhdYmgdhmG1QpMylOfU6wWiOBBWRWp7YtMgTUWoI93JaWnZ2G8hGGpK1HVj8QLXKoe1oSz2ybpp6VZ3o01S9/+K9RRm1Hi7ri9V4KYNxhF3xas8h946k1nqq1iRYlNbDUG2PHNmW473SGDoO2sk0/fUXi06pIwp1AMr70xmbQDr5mD8XSRnweioYGgq7qExNdIVq64fXVXb3OuYiSchWjFebQKtWpplr97kvE9WVxCiBTUPrhz6JuO9DaaK05Sm2hsT18rUep848BNKJRMLgPGp1vFBHy214tacrOikVq/hYHvqVq+Kq17u5lF3Z2Y3jSiOC6YlGytDe6fB4gNB3VKSsSgzDYmF90FObyJp9lroqyphUAbtraAldVRSEWNgvbLCpZjTnbIbxVRlsv+7wMP67prTo3JQ1b6IDVltb6cm4TkkZ3uIdPL+nK849/Om/z+enyzKO6Ut/yBoWajWGEPR7pRYH5KGniroWF7uG+uQTOOK1cIfXltsMQZrEi/W9We0P2SCrpi1Jy3CIj9rwceXLQyRUVPL5f3h8MDGXmW/doQhYPHCSLWoDbd+3ZmGmvPTRehXa9sEgqN6ZhN66D2f3nPt3fSOdeUtHM0fnYZkrhqRUnR11o/bufIhuREM6pXEQB3cArnVoiwQu9FqEXILybhcmJIjhtZYZtGhQcQmqFjBeOm9ohbUjY6umrNodNSEc4FerlYPtW8cYhB/vVvRfTeUJSdY8LuurYF3qRj3/4ERhtkGmzViG3mMwYXzpitIREpswipMK5Lz3KdE9N9ZBXq19GXUQBSlquj7iXjLz2JRvOx3kEmrxyL7/cZptk35kI3nRYqygsSiWWdLo24a2tX6llRw8EryOhbBX9yW/tuoV2KLu4HKGNxSyskeFm/3QHNKVGpNgUoHtuCbpWf0FL5uA7i210IfzDwMWPMNFLxe0dA30xj4jJU1KbDOPhnt0tICm6ZhGAbativBMHSSJnj2N5frtpecp8HL5seobnzkmwv6W+/Y8Bfmg3P//YyqRtkMqmr+UA8EVTGU3pohLkhDT78+hrigS4lFpSyWBy7oK6pFw8nRTdr1mqtXrfn50dFN175yGZyNIU2DTj7+zT1r3P42x+dX6uj59NGaqgTJeiOaBkTMRy9NjQZrSqKqji2jLK5epT06Ii6sMYnVUmQ/gG/2VTSgNsfST+7f7Vdr75pl+dJhUaMYQiJDTrV0IZGf0Qnmfw4wZi1YgLQ2yIT6cEmXs3ec6eIKceTKvDEMp2tYNlR1TbtaGficz23ukRDrmhAi7ekpoamLSzO1nbs0ElVdk1SpojWST6qkvveNItCvLBNssbSgZXD/sBX62QZ5fPMIsI2y7a3va6xqYr0EhfX6GEGJ1bLUiEhBfZywqxRFa6oVB4ckULwFZD8QHE0yZ3uF2lIagwhSLyyrKQYGcnzPPm6U6Sk/CMiQyMm4Y2ooG4rQmLY54gFtPLkCGZ2qxCAQ2vXaAvmldeL4LKaUCIOUIHwO2JY1GMQyvBQPiI9+/dIeNFjfiCQJknVE0wxBknF5xDJ8loumxACHNNxW199roW+padH8yy6j1bVQyWlJqgRMUxxSImk3kSu2aydN9G1HrGrqumLlRVGqyqKuz5HMo/5eBO/0vu1ZPUOVf0va/Rk8b49g48vKA7O9tegtd+fNKvfize/7YaCuKtpeAdOcYtUw9NagQdVw9Q1tU+i7litXDFXx5OgIxGAqhEnmg3pnIRm1o6krp4xNx00ga2VFS1Icb0ShN9Apwwy3jUAQutM1cWEtGaMYng2K5a83FSH1RQuWZUMVAsPpmnCwsOBY11s2SxrcHWj+6apeUNcGpNafntq68YYseJWzBV0nEAy5p2qefg8uIzI5Nuul5O0zTkzWwIuLII7poLGKdB5LGDpzwSRJDF1LqE1I933H8tDhk5FJ7r8JkhQsmWHwuatioM0uh5RYHDQMXU/f9VR1VcAEY6zoWouRLRxczgDZKNC+ZdMTa8ASYqDtjdf16tg7ooGqUHsGnilIo9Zd3CcKqAlozYsEkKqCtjWNNsYCJxwd1bQKNX0YV7sKyKJC1jqmwmb0VZ/pnAE2QnVLyWBbHhy4q8haNpZnUW3c2TKJFSWGlTvgZasgU9VYxXW2/qypTwIvsCNZHr5Gd2u6+TDkfrc4FAnKYXNYXHwaxOpRvHd0Yigxyna1Kmv6drTfgGsyire4qFGsLyhiGQqxskrNmIsTtnx6ggdOXGMtoE3+PzbRZ3/veWOZvp8Wa43n38QtlN1PZ5AnKQLb37V5v+Sxb1yWYtqJn9wYyUZgCi/VzqY1pMEaiteO7a0pcfONNxjaFVWMnBwdc3J801rfuRDxcO7El29acJBbhnw2v0pxIxW5P9gvXrp+ARnGAvdzDqknDQN925JTP8NyQVVVdCurMo11PTadjlbhWC2XXrno+e2VZUSk1Zru5IS2ba2xehAW976naJEFlhmxRusxlMyL6djzVG/4/Nh6CDf8x/6SN+VhFKbdui1ujzpj9WBFeTlGkFKiXa8NgjlGQl2ZP9/XvX2dlBRP/zIGr2LOAcuqNjz+RdMQggnXqHhwNwAABVRJREFUEAPNwZJQRQPvC4YZpIzaeeav63tOjg1evK4NJbZZNiwPlqj2tCsrysuJut36pLjExk3KLKxq2ZDElZU+l0QKy+Uh6pAcoanJaoxMG6+4Aq3Fu2N31ROE2Wn2TtbuDbwRcxdpYEgZH8jcVlUdWR4cUi9sfvK8DsOYkjrauhQ8KQNa82ycrkeYNFPJysKg9luIjJhNXpiYlYLT0xMrnHSrevDMHREh1rX1TM6T4NbE7Wiv8/RF5CZwbdfj2BG9D/ifXQ9iBzTzfblo5vudoR9S1fefdWGv3TvAtfMKDC46ichXLiPvM9+Xi2a+333ab/fOTDPNNNNMbyvNQn+mmWaa6RLRvgv9P9v1AHZIl5X3me/LRTPf7zLtdSB3pplmmmmmt5f2XdOfaaaZZprpbaRZ6M8000wzXSLaW6EvIj8vItdE5LqIPLXr8Xy/JCJ/ISI3ROTlybn7ReR5EXnVX+/z8yIif+K8f11EHpv8z5N+/6si8uQueLkTEpEPisiXROQVEfmmiPy2n7/QvIvIUkS+LCIvOd9/4OcfFpEXnIfPixhwu4g0/v66X39o8llP+/lrIvJzu+HozkhEooh8TUSe9feXhe/XROQbIvKiiHzFz+3XWh8r0/bnD4jAt4BHgAXwEvDorsf1ffL0U8BjwMuTc38EPOXHTwF/6MePA/+M1ex9BHjBz98P/Je/3ufH9+2atzfh+wHgMT++Cvwn8OhF593Hf48f18ALzs/fAk/4+c8Cv+nHvwV81o+fAD7vx4/6+m+Ah/25iLvm7y3w/7vAXwHP+vvLwvdrwPu2zu3VWt/5JJ0zcR8Fnpu8fxp4etfjehv4emhL6F8DHvDjB7BiNIDPAZ/avg/4FPC5yfmN++6GP+CfgJ+9TLwDh8C/Az+BVWFWfr6sc+A54KN+XPl9sr32p/ft6x/wIPAF4KeBZ52PC8+3j/Msob9Xa31f3Ts/CPz35P23/dxFox9Q1e8A+OsH/Px5/N/V8+Km+49iWu+F591dHC8CN4DnMW31e6qaAfanPBT+/PobwHu5C/kGPgP8HmMPq/dyOfgGQ8D5FxH5qoj8hp/bq7W+rzAMZ8F1Xabc0vP4v2vnRUTuAf4e+B1V/T85H5HtwvCuqgPwIyJyL/CPwIfPus1fLwTfIvKLwA1V/aqIfDyfPuPWC8X3hD6mqq+LyAeA50XkP25z705431dN/9vAByfvHwRe39FY3kn6rog8AOCvN/z8efzflfMiIjUm8P9SVf/BT18K3gFU9XvAv2J+23tFJCtbUx4Kf379PcD/cvfx/THgl0TkNeBvMBfPZ7j4fAOgqq/76w1so/9x9myt76vQ/zfgQx7xX2ABnmd2PKZ3gp4BcmT+Sczfnc//ikf3PwK84Wbhc8AnROQ+zwD4hJ/bWxJT6f8ceEVV/3hy6ULzLiLvdw0fETkAfgZ4BfgS8Em/bZvvPB+fBL6o5tB9BnjCs1weBj4EfPnd4eLOSVWfVtUHVfUh7Ln9oqr+MhecbwARuSIiV/MxtkZfZt/W+q4DH7cJiDyOZXp8C/j0rsfzNvDz18B3gA7byX8d811+AXjVX+/3ewX4U+f9G8CPTT7n14Dr/veru+brLfD9k5hp+nXgRf97/KLzDvww8DXn+2Xg9/38I5jwug78HdD4+aW/v+7XH5l81qd9Pq4Bv7Br3u5gDj7OmL1z4fl2Hl/yv29mubVva32GYZhppplmukS0r+6dmWaaaaaZ3gGahf5MM8000yWiWejPNNNMM10imoX+TDPNNNMlolnozzTTTDNdIpqF/kwzzTTTJaJZ6M8000wzXSL6f86tHKWE5omBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "rows, cols = stitched_new.shape[:2]\n", + "\n", + "vig_size = 3000\n", + "\n", + "# generating vignette mask using Gaussian kernels\n", + "kernel_x = cv2.getGaussianKernel(cols,vig_size)\n", + "kernel_y = cv2.getGaussianKernel(rows,vig_size)\n", + "kernel = kernel_y * kernel_x.T\n", + "mask = 255 * kernel / np.linalg.norm(kernel)\n", + "output = np.copy(stitched_new)\n", + "\n", + "# applying the mask to each channel in the input image\n", + "for i in range(3):\n", + " output[:,:,i] = output[:,:,i] * mask\n", + "\n", + "plt.imshow(output) \n", + " \n", + "# cv2.imshow('Original', img)\n", + "# cv2.imshow('Vignette', output)\n", + "# cv2.waitKey(0)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "#lets find the willis tower\n", + "scale = .2\n", + "gray_image = cv2.cvtColor(output, cv2.COLOR_BGR2GRAY)\n", + "gray_willis = cv2.cvtColor(willis, cv2.COLOR_BGR2GRAY)\n", + "\n", + "gray_image = cv2.resize(gray_image,None,fx=scale,fy=scale)\n", + "gray_willis = cv2.resize(gray_willis,None,fx=scale,fy=scale)" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(366, 1077) (130, 40)\n" + ] + } + ], + "source": [ + "print(gray_image.shape, gray_willis.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGsAAAD8CAYAAABw3Fr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO19ebBk11nf7zt36e63zLw3b6TRLFrGkgAZg8F2gQmE2NhUGWKwK0BiKgVmSZxUsQcq2EBCJRUqppIQSKVC4opNDBgcx3YFpXBhg8tmtYW8CIwtI8uSPRpJs8+8vbtv3/Plj+87556+fXt5782zbkv3V9XV3feeu57zfec730rMjAbzAfNM30CD2dF01hyh6aw5QtNZc4Sms+YITWfNEQ6ts4joVUT0t0T0KBG98bCu81wCHcY6i4giAI8A+FYA5wE8COB7mfkzN/1izyEcFmV9HYBHmfkxZu4DeCeA1xzStZ4ziA/pvKcBPBH8Pw/g68c1jhYXOT527JBuZb7QP3/+CjPfUrXvsDqLKrYN8VsiegOANwBAtLqK0z/1k4d0K/OFx3/6Z744bt9hddZ5ALcH/88AeCpswMxvAfAWAGjdfrvvSI7km/LRk1IuY4ANADrAXFs1lPYKd/ngXKyTCtmbcP4KHNac9SCAe4noLBGlAF4H4P5ZDqS8uqMAgCMGRzzcUUzyqTxZ6Tfh5nRUeL5wk9WOYpT4yDDYFB27FxwKZTHzgIh+FMD7AUQA3sbMnz6Maz2XcFhsEMz8PgDvO/CJCBNH6VR2OCMlHTYLC1F5jRm4eqPBmCMcGmXtGSSju3LU3ax5Zgw4gh/Z5blk7D3tF9M4xQTUp7O+RKic2Hl0v+ugvXQUDVRajSdJF7Ofr4yGDc4RakVZZCsmesZNYYOzisplitqLiD2RolybiP16ca9oKGuOUA/KouqJHZB5gKOKEesG54TBHFLquOv66+lvtxJwmpSxKGswphGVO/8+qQqoM2WphoBjLjQDIaZoCYAxHTVO2bEHxUh4fzND75cTnqilmYT6dlaDEdSDDYbw7EK+x+nRZhEAyI5hZzNQxJ71xOE5ecx2KFvf51tvKGuOUB/K0jli1gl+qgAwoc3EucjdjruPirZTqW6PMkT43JNQn87CwUxU09Zj4UtfOXsdAHDj8dXx7c343go3hZ066/1XnXuWAdSwwTlC/TtrVmqjQtwOPyPNLPDy05/Dy09/rpDXqz6lY8bpCKeK+KV2TMWfiktNRP07q4FHbeassaNzL5N1eZgyjc4PBGwMOqVt44e3GQSnq9KkTJt3ypIKsf89C0WGqE1n3RSUnz7sBP1NA8KReHd4vwEwhs3ZGDAZinYotS2rPcJtVTzyANJJwwbnCPWhrIA97Pv4SdBhaWPgizsVDqXlYes0JIlF50l5TVt3CU8kS0X7PKCm/a49Zjyuoaw5Qn0oa69UNctorBqKEaNvZ3/seDNC/6jOd5meMOZiSeGEjrxi3pk0n+0DDWXNEepDWXuhlHFOLOWhV+VJlBO+8djnAQB/E91ZbB9zeY4YWVv/eCqquJeIi2VGla3qQLo0QX06axZUddIk3sDBMU6pS4wdm462LVt8naU6J7ilml3g4XOVr88V226iG9u+2SAR3U5EHyKih4no00T0E7r9GBH9IRF9Tr/Ha0sb7AkHmbMGAH6ame8D8FIAP0JEzwfwRgAfZOZ7AXxQ/99cmOBThdDkru3YsNdmJJQjoRxMDB4RCoY/lVqLce0dLAqKMqXPAZYn++4sZn6amT+hvzcBPAwJonsNgLdrs7cDeO2+767BEG7KnEVEdwH4WgAPADjBzE8D0qFEdOv0E2BPw4YNy8K0YjsA0JBKR79ceyY80RXO7DxoEcFTmG/n5zACJ6w/2e+jrDi2fC3nP0hMo4LLNEqdgAN3FhEtAXgPgJ9k5g2i2ch8KPLx2Mr4hhZFR4YvvtKCO7yRDY8IDkTA/zjzEQDA2firRo8dETQYtm2Le9F9VQ6d5etXnu8AONA6i4gSSEe9g5nfq5svEtFJ3X8SwKWqY5n5Lcz8EmZ+SbS0dJDbeM7gINIgAXgrgIeZ+VeCXfcDeL3+fj2A39v/7WGYzThfQUK1cOCahftK/oWmVzyy6RuYvhk6nxNEOOaCehIrn0CQIKZqShqHaX6GoVAyBgdhg98I4PsAfIqIHtJtPwfgzQDeRUQ/DOAcgO85wDUaBNh3ZzHzn2H8WHnFnk9Y5u3leGAEQkAwqiupq2qeCM73cH9Hdic82o6HvzkCouvymvJF669fdd3C0Fncb/k+adwrm8Fbqz4aDOedVNExDhM7qHyuEjq3SAd1+0uw/iLuxKPtw+smd24DAOzFBQBA63KE7m2D0WtVGpJLz5Fjpo6pQqPInSPUh7JGLPJV/no8sn+I9UyYwLtPLfrfxpGAm9BjjLC/EEkiVNTT/727u0BXyUPXamQrol24ghvEY0T8GdBQ1hyhPpRVwjTBwVNUed8MuMVRQHlZEJyn0FYEJ1YTfquTobeZSLuopN0ooVIQ2ae5pFadNfNDzNoxQTu/ZiLG8UhZ4iyXixkRFccCwha7ZZZXZTvDHoSiGdCwwTlCTShrvDYCQEEhk/RsIbV5lsaAKmajHRmXi/es458+8Y2yW5WxHHExbMvnZiDLlV9qm4U0w+YEsX/o8JtAUQ4NZc0RakJZFagasXbCPuLCh8+BC+28i9Xa+ewKTp39azndQl6cz/v/BecDkFyJcPzLZFH8xUVxxrDBeYe9at11J9xnuH2MhmUc6kNZJQvtxDZVYBIXsZgrrcicsnyS4A25dqFtzCl+1fW5fzrDi9fO4cVr54BeBPQivPzU54avu9d1U0m5PHZbCfXprAZTUX82OOv8zBhlZeFuU/Cmr+ycl5+erY533W6fS3H/JU3vuyJsM6F82MdiL5iiaZmEhrLmCPWlrL1KvGMWpX63Ul2+YHFXckWvoUM8sdWOmQC6tw3wVfedAwB86rOS9tdyaY6b4fpD97lP1LezqjCJNY4zVegxJ+6WDvoHtz8Eq8kzTn5Yvpee6GPnZAsAsH6XiI2t63KS7dsJl+5YGjrXUtQbfek3bzk1Fg0bnCPMF2XthzUmIglc2xB94K9/4u/h9+5/JQBg9RMXAAD906s48sePAQCOPqiO7U6Bywz8hvy8+K/lBi5ly3A+1TSQ8T6iWA7vIbz3WdllBRrKmiPUl7Km6QFnHJ13vUu+U52Dds4kOPKXKrrHMj/FG13gFnXJ7/aHT2At+MY6AOD5vyDBxY+sPg/Hvkle3bUXq3nfEio1F1WL3yrMIHjUp7OmqWZm2V56WWYpw86twtayJemYxSd3gYG+4EgYi1nfBoyyM91GeeEXRsekIzl21uEcJz50EQDQ2hCH46dfZve+NtyjZNiwwTlCfSgLGDJpFNsOdsqlp5StudFuGWi3dFtAAtaOv5zbF+TEQC4Ls6HMM/tdZ4Uu4hPQUNYc4WYEJkQAPgbgSWZ+NRGdhRQ3OwbgEwC+TwueTUdoZtjXzbhvFasJuPxCoSIrLhMwWQu3/+5ludzKcvggeg8l8shtsS3Y55JXmuwmuCLMSDI3g7J+AhKb5fDLAP6zBtNdB/DDU89AwMSkV1VJsCYlx1JTijEWyRYj2WJ0Lstn4ZIFokg+DrkFBrl8ykhiIE3kY4x8Wik4TcBpgngnR7zj0o5iOisknq1dBQ4aRXIGwN8H8D/1PwH4FgDv1iZvRxNMd9NwUDb4qwD+JQDHT9YA3GBmNxWfh0RD3lyM82sII0cAZDsJbKI+GH3ZeOVrgGMf1QDwKkpy25TlkeVCZHdsMCskjagf2EomWYr9Le/BolzCQUJ+Xg3gEjN/PNxc0bTyzRLRG4joY0T0sXxze7+38ZzCQUN+vpOIvh1AG8ARCKWtEFGs1DVSPtBhqIzgXWcmc/BZsrNYKkJAXfOI8ZLv/ysAwONv/HIAQGsjAS9JCjvactnRKsaYWyQbjAodzH7RbLqOEuPJFHLAJQhwsJCfNwF4EwAQ0csA/Awz/2Mi+j8AvhsiEb4eswbTORXSOGeYaaiK1TWMz/wnCUXtfpmc2GTAsuskf/6Ki0YB0ymzy6Dzoh0n6LZGHXrGal948v4xOIx11s8C+BdE9ChkDnvrIVzjOYmbosFg5g8D+LD+fgxSVHpvuAlsYuSUhhH1ZLgn2zIubRzEe1kd4YOsECKU/SHQDSLQCY5coz8Y2VZ9M1O4w1y5ojWYivroBi32R10TxN8ossgWZDxe/LtCFe2nE6x9Ug2MAVVka2KcTC6IOcRRWH5sEdSTY40zn2SDQl/o5j+zUm2IrMpgs0/Up7P2S+NVaxl9WXluYJRz3fM7zu40AGWqhHUvOjJILuj+krARXdsWLQZQsMGwjRNEaIK1uHyfVftmkKEaNjhHqA9l7RdDmTR1m5pZbGaweUbG41MvF00u9Q2+4r9vyf5jonhhY5AfEa1Gnkh7J5hE3QFoVyzEnjiIAkEk0Av6/RPIxLlmT2tXgYay5gjzQVk+O2MF459Qli9u5aJlB7AiyTtBuQW3hMrMhubDiAxMT6gncQdnwRxW1mBYW5j/Az2hv8/KhX34e3/uTfXpLFNhJZ7U1qEcAQJ41kjGIltwdip5ua11C5vKummIrbiX7tZUoRBRpeEod2BcEXI01H78LrnGlP1o2OBcoT6U5Vy5JlpUpwzPaDobIsuIL8laymstgIKinOYitA47YcJtCymNAxY9i8njAOushrLmCPWhrLIQEf532xzlZASkdrRdPtwuTXNEqnRwOsGdW2Ok18UPML4qIvzu2VV0Hr8+fD+OekIqCqnPbXeL4mnOm1X7fYab2ebrhrLmCPWgLBcrnNPovBT+dz/HjcTSpt2dFEsDOchJhZ2rtvC21fmm89i14BylkzCPbgttXd4rKrh+SE1V85gpbZxRCq5HZzlEHDhjltjhLKhY58Rd2dY7UphIfGeFOr+yKO4wLuevO4fTFybsk25NjMIPn2cvz4aGDc4V6kVZQDES/cKWwWU2MeOAjOLct/UUdpSQL4ge0GxM8MGovLfAEVRZIfdUgpm0IAaqqagGZv0Gh4T6UVYJbAlDWVyAaj1bRcL7fBAh3pW5pbsSjMsKd+iRfSEVubktpEBVT5ELcgjn22nY58K4Pp21F+VmmLcirHBQfgkMDNRS7NZbZBmcVDCUkoGRU1X27nSRHRfXtfV7JUfu2kcvgXYlryfvCiu9+7csPv+P5Byd46Ig7nUT2H5FQtw9Onc6NGxwjlAfygIwVAK2ykA3KbtnBaIkh42kQbol7HD5s9e8v4XzbmIDUCk8lTZUu/GCM/6yCxfFjGKX24jUi5gWNCP1o5fw/H/vqF0OeOq/LqHbFwrt7Wrmz5wa4+NzAfWirGlUVNW2orK222fzCJ3LQg1qzkK2tojBojx2ap1+MfLeSl7Dnggl2MQgVhfpbFmOi7spolhfnZvr+hk8mauQctvPA9QTCjz3yzLvba+3Aw3H3iisNp1VZZCtagOU2lU9qMtLy8DurfLSs46qm67lGHSkQxZMhYTofCoy7eSYkD4hSt7kI08DAHZe+dVIjmieXe3k7PQqoi1hpc5ljfpZwF47FQ/0JWSDRLRCRO8mos9qOcFvaMoIHh4OSlm/BuAPmPm7iSgFsAApHvNBZn4zEb0RUkbwZ2c5WZVNL8Q0yitOVDRM14VS+srCdo5HXoz3zW1wYid06MVu3BMj2pWK4a6oautqz9+M8+eIN3sg9ePwDxJHw0rfA+Ig8VlHAHwzNPCAmfvMfANNGcFDw0Eo63kALgP4DSJ6IYCPQ+KL915GcAJmVdsxw1NUld0w0toU/SNBGQob5kVQGNJj5TveYQwWZWE7RIEOA3WjDs+VjQYrGGP9Pc3MIUo4SGfFAF4E4MeY+QEi+jXsoXLqUBnBtZXCu8klsKowkZD+5sEoQ6gMsYpzRFrczL1o0weypQpJxXWEU9CqCaRz1WL7Nk1rd0On3zywcUVubYWik5zgYu2wnwdK6rMJ916FgzDU8wDOM/MD+v/dkM7bexnBI4tVTRqUcJDStxcAPEFEX66bXgHgMzhIGcGyYa5kVmBLMjLdvtJ+iiwosn5fPoiQtwzylgETgYkw6BCSbUayrdRBJFRlSD7MEoYaGVBkwIZAFiALZIsxssVYdIvZQD45yycbgCzLZ5CDBjlABMoGQ46gFHIKCqiq4nnKOKg0+GMA3qGS4GMAfhAyAJoygoeAA3UWMz8E4CUVu/ZeRnC/CEYj52ZoGxHDZDL3ON1g/2jk0y0MRTc6lISIhad72D0mQvv680RMX36CkF7QudAZH+OoOJ/P62SHk6McELXRYIwDEYP3WRyMiJF35GU5dVP7qsWWRpYMrYGcsKHSIFpiTU4urGP5qHTSla+S1zVom6JjHB/LBoX/uzulIWGHAGKVBvcrCQKNIneuUBPKYtAEPVnVvknUFrYvJ8KyMcGoosGJ1RQGdvugcBUK0gSt68Lqki15XTZBQSJh9hmn1eio9bjXB6uiN7dKdRGLmQRovJuezagJZRGYaSJ1lZqD4HR4AYVVjFQ3Vzn36XQzx+5xHeVVuZvcnKUmEF5sI1rvyqauaM7NIIjL0m9eaBfnCDUYSllpXFyrahE8y7PXpLPGs0HOjaydhpt7hMeNsEZibw5xjjNsCFG35DBTGYulGo8LV8HHjgIAlp+QTtg6FXv2VvbuBVCZnSYy+xOSQjRscI5QE8rCWF8KiivWQkCl21cVdbpNjsKiHiNyAoZ6MFFug0DuYRHeHl+FubEJAGhfkNe1deqopyhup2MfSS44XJ+w0ml1RjSUNUeoD2XtFZPinhyYgpjiYnNcmrM4MoWJw0cyynf/xCLaW+IHaK5uAACi3hGwm4OCeY+dtl018cP0w8VXoGHZC+ays9gSjCvmXPW8FVxmoJ1mBoGFwjm7VNifnA9GnpoRtZTJ4QURZyn2VmIU+8AMTt0rrmDnswy48LqzNWtQB9SGsmYxwDlraw5TUFQ4OssWYmIYJZo8Ldy+Bmmhz9MTAy6tbzScWqF/JMKCUo/bZmNZf8l1HSuNCvanCbzsUhvmhriiWVfOlVBQ0pCX1gzPP71Jg7qgNpRVhpt8w4Wudfq1Ki+ocZ5RTl5QCTtbKKJNvPt0OJ+oCM990QfaGMhOrwAA0i9elePyYI5yuXRjI0bIAGarW4j4POFVzyjJ16azyqG7+zKLuE4I+IXRF2idLLEolmIAhUQXOHt6zURHVEs2IXTX1FxyRdVNeXCMSyk+sIUDTqDGcsrigdrajOEqUWMmNGxwjlAbyjJmmO1NWoOEVDckmJRVg1QocGNNHd9fAahMtdZ68Zyssregio9zvc6XxfTBBHDi8ubqcXmgFA5Ed2dJzjkduffigYa5wTg0lDVHqA1lOdwMI2QhnMDXt2ptyI/eqkGuwgZtawB4Kw3Sp+r53DqZgd5R2ddfEcrqHSVPWSYLUrH2h4WOEE44qn6w8btC1K6zymAmv76q6hivd62wZREVGTmN5qjoXGb0V5yDZpAe3LExJ72psJBuW+RtedHX7pP1VrLBRYrwoD6J99i1KlFGxnd+njtJlgNWP+NLUDRscI5Qe8qa5t1URVEh8pYmhbymLOqW1PtgDBXqLLmgkbKy9MYAbOQ19VaEEvMOgba77gaL77yUnToq9IqDrHBJ26+luKGsOcKBKIuIfgrAP4EsRz8F8cg9iX2WEQypaBYRfhqMYeSq1svbMrKTbfYaeBd8IBEjeh2nide5qHVxC8Tii7+jvhvZEo0IERR4Mo0kkwSQazBFnOT79oM8SHzWaQA/DuAlzPwCABGA12EfZQTF57uw8RAxjLFDgsVeHpCMBRkLawnZknzi3Rzxbo5008L0ANMDqN2SpCOhCaSfFVKdO5/6sJ/4s+s48WfXkbcAXL4mn6vX5UPk23kwgzc35bMVy2eC9DoNB2WDMYAOEcWQqMen0ZQRPDQcpH7Wk0T0HyHBB7sAPgAJqLupZQQdpQHFWsVRnNxHlUZADY1lrygA8XaOo4+XLMXt1K+58tvW5FgtfUG7PSR/LVFLtCpeTotPMWhR8l+whitxGCUXfh8/NvI8+2XxB2GDq5CQ1LMATgFYBPBtFU0r72iojOBGU0ZwFhxEwHglgMeZ+TIAENF7Afwd7KOMYPvu0zyUx6KEKopyGBqdpdwY1hIGbfm9fVIkjXTTen2hy7tEkcH219wOAFh8+KLsUxdo20rBa1IGw5W54Biwa0fcDchXlnsfDPJ+Gda7V9Ng8px72KL7OQAvJaIFLXnrguk+BCkjCOw1mK7BRBxkznqAiN4NEc8HAD4JoZTfB/BOIvp3um32MoJjRpeJyjUXx4zSUsaWKLLI1fo+6DhNuEGyI/uzF9wpzQeM/hGhgM4FnZ+Wl/XahcoIHTnZrf/3UVDLKRgDDXv5djotMfcDiHcKuihT0axz10GD6X4RwC+WNu+vjKA7p7MGV7A8j/DhKlLqDHlD62lWHxGNQ54YRBpg56yANjXeZY3SktMmkfd7x66cg0K/dofQSqyaEeobQB1EW1dE0Ojduf81ZKPBmCPUTjc4QlFhWrsKVI3SKh+M3eNCMTfuiRCpWi/Zkp3tdSsxVwBYqcIsiAmfV5a97x8Ngnsr59AIte5hYIJq4F0ejrFodIPPLtSKstiayXNVBXz7CgpkJgw0xUbnisu7mvoc79miUOVOYtC+ruquxVJOjtwWNSI1wxnHUeEo4+KzguQk7IQPZtCSS0TpbpiHVGt7QW06iwhDcVh+qWJ4xEW6MqXOmAe3iWwfqCK3fTVDtiBrqFilwt1bi9BVZNqpkQoR1oJ2hi3AVOG9BGN84J7vyK0dcLc3dK1xmMnJdXqTBnVBbSgLkIAD8hEWxXb32xkabUV8U0hthT2Q4XwrXbIsmxi0NK3dQM31eZu82QTJsOg+REXbEk1CaRqEswbtnWDhHD8XOyAX7uqpriIcl0a5RxUaypoj1IqywrxGVVQU/p6lGA9QaJEjjSmOeoUDjMuEmm4wusf1YBW1PZUMcv+bVIMh81PFxUJXagBmI/MLZO89XZHLd1bUqrNCVLG6EGW2EUU8ckzIbtbvloXU0lO5f1cuR8agTYUGy2hGGickhCnofGcU0qCzLHMSFQ6fu05IMYDRTJ9B2ZMqltcIGM8y1IqywhE3aaSFLM9HlVryvyMfFUlgFd17R9Ug2TfoXBMKiLfV86hNSDf15CuiwIUm4QcC8dxRURr7tdfQfSUu42cQoJBX5NqgUSFqFjSUNUeoDWUZMzrnjMO4es/lkSop7GRjdkRGc7JFXjhgl3Vmy4Kctl+DvX1wYqc1FMIDqI7QV6RTvWF/ACQuA1tRHTy/VVwBov5kYWKa/yNQo84CxP5U5VNR1YlVyWHKEmQUAXlbtqXX5AXunmTEXdm/oNbbaNei1VeX51WxANN1iczPF1JvSnEWYOoPRlKAszEFaxwUEqVZ17WZXfb3mE8rjDYGDRucI9SDsryvIKNIR1GMvigaDkywlrwQ4ajIVKzRAICch7SaKAaLQHdNgxQk6hR52/jcTg4uTJUGdkSaYWOKDJ6qoaXAVZrU75CT2LPJ8Pxldm0MeyfQSWgoa45QD8pSiPhdNT8NGxgdVQGFp/JYc4OLEQgcuHfOCLktPC0CwcLlHNmSnKjjFZEaf7W+DbuyJKfaUfJMk5GV7VDSEj+3Zd6lOt7O/TMW9/4s0WBUIYzgn+ROXexjWBUwjj2sL9Mm2NDk5lt3qjS4bWC0+LQrD4jA9OE6ydmpqNsL3KSL+CwfleI6spWCdsQsHfXEKTSKrI/VGnq2GTquYYNzhLmirImhngGG/DFSmdidY+fCJYtsSfPWKtWtnzVYfFqp1lGUEzBaqbdveKGiCqFiVymQW6n31TBuaTDOkbWC2kYuMbVFg9qgVpQ1nDKBR7aFqPJjqPJ0SpZlvjEDNeX3uPCHUES9QneYHxOfiWhdlYW5BeV9dwE9oHD89BmsdzPvBOryu8Na76PhYpCJIqAi4vumuE8T0duI6BIR/U2wrbL6HAn+CxE9SkR/TUQvmnoHFTdd/jhYS7CWfCRG+TPycMai3c7QbmcwfQvTt4h3LBafZiw+zUg3CekmYec2RvcW+XBkipcNAIbA/b5fdwGQ9ZR+fK2RTuD4GRYZ0Xgv2u2Ddvsa0M6ldeFsTkKzsMH/BeBVpW1vhFSfuxfAB1GUYvo2APfq5w0Afn2mu2gwE6ayQWb+EyK6q7T5NQBepr/fDuDDkFKBrwHwmyyWu49qTciTrvjZOBCgoy0fiRix1nitRri+qmIbbrRGemxkLFqJWmqNiM40sOhccT4Yqnglgsswl7c0nNW5UVv2weDe3JEmPi3DUP4nV3tL9xEz+Pq6bOtI7a215SK8yegzbPXSmYSn/QoYQ9XnALjqc6cBPBG0O3AwXYMCN1vAqJIGxgbTQSvTpZ0VrP72ErZui0BaGWLrDjUQntrxxzgdYWWWaQJ6j4jG/NSfq8vybo7umpa+XZZj+ksGkZrzl89Lu01E2JKAEl8BaGiOctdw1BaFdY2VJEPdYFBMJrvvDgBAck2eY+nnO7BtuadoW6/xy7vY3m1VvaYh7LezLjr2Vqo+dx7A7UG7mYLpjiyf5vbVPkw/8ewoXZcfV46kWFjZnXpDSZRj+a+kE1zWzu5KioE6xSTKffK02N9X9zSOCOkNva8KRxjPBsO8Gf7C+gpzC7ssQoZV3/hos4dYaxd7G1cvR6S+GmZTnut4Zxv9fHrppv2ywXHV5+4H8P0qFb4UwPq0+arB7JhKWUT0uxBh4jgRnYfEY70Z1dXn3gfg2wE8CmAHkhdjKqg/QPqFK7j+yjOSeBGBZdWwZ39F/qPi2FAx6gPmFBwBfV0/Oe+ixUs5ol25yI17hK3FO+z3+zy7FbksigvlRfJ9l5YhMqCe1sra6ft2PitlmFK8ogBaPoOAMYs0+L1jdo1Un1Mp8EemXrXBvlAPDQaRlJowQMG6nTaikFoKN+piERmaSBwVRT1nJIQPU906oxqKNMLCFdnWvqFzXFJchFwEY0hRFZERPr9uOux3AQSiOxWp7rwvYRwVGdXUSGmIsbFdEU1ZQj06yxhwK/5DdakAAA12SURBVMWtf3zJT9LXny+S3enfi8H/TFRGN3Y0b23AMsIsNC4gLtbOijJgW3uhc6nY1tP44WRH13IRfErxbKlUV5i5kO7cNpc6HPD+FhRxwRIDljdS9ikbeEuyE1R2BulM9UkaRe4coR6UBQARgTspdk9p8BkXrMwh1GpU6dOsW/JorZG8BRx5XIUTFddtXJS6iHuO9xXX8Ure2IWmDsC+Yqpu294FL+qawInxuR1xuaJBPrIUoGxQ8HOlxIW4P1Nuqoay5gj1oaycQdb6YAE3h6TrAzhdgpurkihHXuVfqFOJ86fIFsifx+lRzCBo51LZEUD6Jtw85hfAgOgCEWgmWqmfiziYzygslwExlVCp6Ay30oICtzf99oWFaRHiNeksn3o7A1pXxWehu6p2pW7ua/w6ZHmENJYXMwiEDZsG0h0Ak8FrRNz6jSMgXR+W7swA3gejrx3to0iIik6KgzWTSoMuppkjU+QbDNmhc0tzFVZt4dpGjpWiUKlNQsMG5wi1oCxigLIcZC1oW9gB2UW/b1Cxuu8P5NadoEHEfq3kc1pQQFnO8SgqovRdUDblwM4JucbihZIyNoQLjMu4CKxThS5lgUu1Y4MGnoUWDxsEaOn3wEYzldBqKGuOUAvKArOI6kS+hESisVMcEzqJ8P3r3PGHjIapFgZElyaBmP385cwiJoMPNHChqel6QZVOxPf5cwMNu98WCglhpmkHby1N/Nw3FCnptB1BRbzBYLrWvR6dBfiHMWpSyM9oRZ0rOXaV5VVxJichRlHu11lOWOBAM+E6IVuElwzb1+RHtkQgFUCc3tVlPeMs8ywx7DivrXDW4057tGrQIC9u2rm4Of8NwBeithjOyTsODRucI9SLsgY57Jr4lTunzMFCgvOPitfA2p3XAQC7/aQyPovjIqBbdsLnFnS+7nmLkG7KyO6uuowxQKaJORMXnRqusxzi4HU5SolLvhjAcF2T0o1ymoxUbh1Y02gwnm2oD2Upok23khdvJBBw9r0yyr/wakmwePK+S9joag5bX1qQYfqq/1Np2WRAV4vEDEWR3GK0nc5FFmhfDQSQAJSEGnaltiQp5p2wAjgNz1lMVFCRf0ACnCu1ivXjdJ1l1KeziISlqITkpDgmYP1ueSG3fEwj7z91AovfI24fO73iZTnfdceSxNqs2gynvtq2XmnbPVqkA3LxxezsWY7lVbHDwaDY77QWQXITl7QkzO7pfTD6gyLJsXbktd0FLHemq5saNjhHqA9lMQ/V93BeSRwbxKo6c9RhBozlVEbinUdE6Hjgb+5G+5S4MPEjEmxtE/iMO0tPCh/cvTXxCtzlJ+WEO7cWr2Hgyg9nLp6Lh0V2AIjjYQOkQ2ltQf0M3NGYrszV1Io8RbnE/ytvXsNgqeJ8JTSUNUeoB2URgdMYZn27KBXbccZC8tqH/pLq9LqMFx87BwD4f7/zTQCA9iIQPeYqdctX9xh5wSJblvM6/wwA2F1T8ZsL0wiXqvdgMADra/IUFnIBJ5J30iJSJMylW/LpoF6/EPfdwjsx3qwzCQ1lzRHqQVmWJRwmib2W2lMAAQsXhTxaGjSwdTJGT/VCW89zExlj6fNawmIj9EySL2enam1YxDvDTiw7JxJwJBTiFtE4JplhbDtFdFncdb15v7cDOJFd7VWUBfNV6EvonGOcCE9UBItrnnjTXx6JGatCTTorB21siR7uqKgSctVCXP7qGKf+QsX5lmxbe2gDf/SbLwUA/MMf+AsAwNnWZfz2nV8PALj2p7cBkLXVK173lwCA9UwklhcuP4GVSCSWf/OR7wAA3PPWXZz/Fq3ao1qQrVO3AABO//6FwnCoujza6XqvJh9Ml1sfMYLjq0U7GyhwAfD6OrCga0h1WYu2eug/r1BSj0PDBucIs7hPvw3AqwFc0gp0IKL/AOA7APQBfB7ADzLzDd33Jkg1uhzAjzPz+6ddo3VPjrO/dQPv+4uvBbe05OxlGZELFwjRrlBWu6s+elmOlc/Ltk/+6NcAAN79PW3E2+rIuSrnaF82WNLUMidTGfVtyvDIrlAebcrj91cinPpzaeeiTrzmYWNr1BAZx0DPZaAJokjWVobbRZHU60Pga7i2CttxrteqNVnfhhkcnfaa9h35+IcAXsDMXw3gEQBvAgAiej6klOBX6jH/jSSItsFNwL4iH5n5A8Hfj6IowfQaAO9k5h6Ax4noUUgRmY9Musb6xgLe/8EXYfUxYFHKV+H8K2Rkby4QbnloeExRnsOqfSpal0n6jj9IvK6vuyrjY/XT6/jsq0/Ig6ruLSaLL2yIjtFR8eKDX0R+UdRXR9oyL2Xf8Hy5Vrs14uc3lEbBqaNyCvI56f40gb1yTTa5eQoArZc8fI8uY/Xjlye9Irn3qS2m44cA/G/9fRrSeQ6zRT6mjPxUD/a+HfTeLZPz4rnCQ8mmGrqqbNC2U++y5pNamcLAuHBJXmB/tY2vWJbe/5OL9wAAVtq7WFLtR2dNQ0eWFxEtn5Xf+qJN35UA4oL/hEmOFd4LKjjWVxa3LJ1dRqlSuF1sw2xO93A6kIBBRD8PqZ31DrepotnYyMemjODesG/KIqLXQwSPV7B3NNhf5OPCidv5yINt9JfaWOipS7HGUmYLQK6UFd9Qz6csBznTva7LOCJvzvfaAgbed07YmQsE3x0UOrjuVkvPt14EdGsIqTcmRmbEG0lfgHsPsqvXL6jI58HgUe19HBf1tdT8Yrr9US+oCuyLsojoVZDo/O9k5pB+7wfwOiJqEdFZSIqFv9zPNRqMYr+Rj28C0ALwhzqyPsrM/5yZP01E74LUfhwA+BFmrki/PAw2QLYs/nuLT2jRzAckR0p8+ykMzp0HAEQnxLyfX7mK6MQLpZ2K2IOO8fNYpPMN2aLM7BGdp1bbO+gqdfFu5B4StlRtzs2TyO1IitUhc70LVojjwp7lqCSJAQpK40KEI2+cdAJJPoP6AvuPfBxbx5GZfwnAL810dXdMVCQcZn1JyemT8j+JEd19lzRUw2R0+iQGdngqNIOi+rZjm+l6HysL0vlrbZkXL3eXcHFzSQ8qJdcCADUcDhaC9ODOg8kJEElcVAkPjZNRkGALKvw4DYdrz8V9hqzWFVSbhEaDMUeohW6QciBZl1DR3ooqY4fyJynbcGm5Lfs0dMllNZfnDKNB47GK+KY78EbK5UTWY5986gy+696HAAAfSL5Czt9KxTcCgE0jf77iBktCbh74AzoBw1ofMWI0ISRHBuRE8sC8wrrf+yamSUNZzzbUgrKSjRy3f2AdMAZW54x8VfOgb+2OFMNkQ0g31DShld9aNzJYHb3RhurtshyvPyla+XdcEI38d937EL6wswYAuL4uk/+xduYTjThTiVsdsqFq84WLzHRJJNM0METqkmC3B3tU8+vawrhJS6rhD8pgVJXLKKMWncWRQX+1LfWDneKgrVEim8GE7Eoj9TOfJCvRF2Qjg0RVT14Jay3ec/nFAIDVVASNiCy+8/gnAQCfX1/TO2h7wSZP1E0tLUJNixvVHgyktzBFUH5clLG9W8XckWx1PLtuXxR2uHtyESZz0qoc2jp3bTgh8hg0bHCOUAvKAokXk2XAqP9CvqBs6eQK8paK81uqB4wMEmWDvTtElxhvFl6cZl3VV8bg/JaYLTbVKbR3S4z3P3kfAODieTn2SNJDpteLVIPiAhUwyAtX6TBixCt3c//tWJm7NxcZAxSCS3qjD9NVY+qSUKV9Sx9tNYjim8e/poay5gi1oCyyjHjLjUbZZoK6U+m6hgG1gsVrSRAgBqJLmohRDX3Uy9BST9u+ZnpJTI527PR0OhcS+eu6Qp5O94g8H9FgcLcH3pQIBlJtRX5jHZEKO9nX3Q0AaF/YRltDmDa/XOazZNtiV0347WvyjOcuryHrTe+KWnSWw1A5RLfOMTTcSUFb+XbCBxV2piDl3IuOXQAAPHTtDABgOe7Cuov0jT/WRa34YLqOnqPTLlidC/pOEvS/XtZo8b8SE8ylzZPY2JRO6HxK2NuZP9rFF39BBZeBCD9JOsAd/1ZZ7Tm5N/NDZ4Amw8yzC8TM01sd9k0QXQawDeDKM3wrx2twD3cy8y1VO2rRWQBARB9j5pc81+9hEho2OEdoOmuOUKfOesszfQOoxz2MRW3mrAbTUSfKajAFtegsInoVEf2tFpx54/Qjbso1byeiDxHRw0T0aSL6Cd1eWRSnDnjG2aC6Vz8C4FshrmwPAvheZv7MIV/3JICTzPwJIloG8HEArwXwAwCuMfObdeCsMvPPHua9zIo6UNbXAXiUmR9j5j6Ad0LcsA8VzPw0M39Cf28CeBjiPfwaSDEc6PdrD/teZkUdOusZLzajvvxfC+ABjC+K84yjDp01s8v1oVycaAnAewD8JDNvfKmuux/UobNmdrm+2SCiBNJR72Dm9+rmizqfuXnt0rjjv9SoQ2c9COBeIjpLRCkkvuv+w74oiSvxWwE8zMy/EuwaVxTnGcczLg0CABF9O4BfhcQJvk29eg/7mt8E4E8BfAreTQc/B5m33gXgDmhRHGa+dtj3Mwtq0VkNZkMd2GCDGdF01hyh6aw5QtNZc4Sms+YITWfNEZrOmiM0nTVH+P8oRJfb4hDb0gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "noise_level = 0\n", + "gray_willis_noise = gray_willis + np.random.randn(*gray_willis.shape) * noise_level\n", + "\n", + "plt.imshow(gray_willis_noise)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "corr = signal.correlate2d(gray_image, gray_willis, boundary='fill', mode='same')" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "y, x = np.unravel_index(np.argmax(corr), corr.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:17: UserWarning: Matplotlib is currently using module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot show the figure.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAALPCAYAAADBzhNiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9bXBbWZoe9lx7yVkD2BlBNgDZolwEmDS1JYD2iCkRrFjMNMAk0lQRdKo79oDZpDdpcqrSm4iUvTOpJju7E7tFpWba26IqM11ZUlXb+yEo2ZHXBFPbmi2CbUtKEVDS7CwBVkRtEWBKZC8B7La4awBxk4pvfkDPy3MvAZKi+KVuvFUqUuDFveeej+e87/N+HE3XddSkJjWpSU0ORv7KYTegJjWpSU2+SlID3ZrUpCY1OUCpgW5NalKTmhyg1EC3JjWpSU0OUGqgW5Oa1KQmByg10K1JTWpSkwOUGujWZE9E07QfaJr2u1v8fU7TtG8dYJNeSDRN+880Tfujw25HTb58UgPdmuxYNE3r0TTt/9Q0raBp2p9qmvaRpml/byff1XX9jK7r/3Kfm/hcomnaf6xp2l1N0/61pml5TdP+laZpIQDQdf33dF3/j5RrdU3T/p3Da21NvixSA92a7Eg0TftHAK4BGAbgAvC3AfwEQPdhtmu3omna6wB+H8BvA2hA+Z1+DUDXYbarJl9+qYFuTbYVTdO+AeCfAPgVXdf/ua7rRV3X13Vdn9B1/XvKpfWapv32M81xTtO0f0+5x6KmaZ3Pfv+rmqYNapq28OzaTzRNO/XsbyOapj3WNO0vn31+XrnHX9M07UNN055omvZ/a5r2fU3TlpS//6Kmaf9S07TVZ88PVXkfDcBvAPinuq6P6br+F7qu/1td1/+Vrut9z675ZU3T7j/7/e6zr/7xMy3/H2qaltI0rUu5Z52maX+madrffbHersmXXWqgW5OdSDuAnwfwB9tcFwJwC8AxAFEA/1OV6/4RgDCAbwP4OoD/CkDp2d/+DwB/F8BxADcB/L6maT//7G+/DqARgAfAfwjgl3hDTdPqAEwA+CMATgD/LYDf0zStucLzmwGcAvDTbd4HAKDresezX/+Orus2Xdf/F5Q15F9SLvs2gD/Vdf3/2sk9a/LVlRro1mQn8tcB/Jmu60+3ue6+rut/qOv6/wfgdwD8nSrX9QJ4R9f1eb0sf6zr+p8DgK7rv6vr+p/ruv5U1/V/BuBrKIMkAPwDAMO6rj/RdX0JwHXlnn4ANgD/o67ra7quTwH431AG90rvAwB/us37bCW/C+DbmqZ9/dn//3OU37kmNdlSaqBbk53InwP4G5qm/dw2160ov5cA/HyV75wCsFDpBpqm/eNn1MFfaJq2CuAbAP7Gsz//LQCPlcvV3/8WgMe6rv9b5bP/B8DJCo/582c//2bVN9lGdF3/DMD/DuA1TdOOAbgI4Pd2e7+afHWkBro12YlMA/g3AP7+Ht3vMYAm84fP+Nv/DmWN1q7r+jEAfwFAe3bJn6Ls9KKcUn7/DMApTdPUOf23ASxXeP78sza8ttsXeCYfokwx/KcApnVdr/SsmtTEIDXQrcm2ouv6X6Ds2f+xpml/X9M0yzPH0UVN0364i1uOAfinmqb9u1pZWjRN++sAfgHAUwB5AD+nadqvocz5Uv5XAG9rmmbXNO0kgP9G+VsCQBHA95+17VsoRyLcqvA+Osq88n+vadp/qWna1zVN+yuapv09TdN+s0qbsyhzyar8CwBnAfSjzPHWpCbbSg10a7Ij0XX9N1AGqndQBsXHKIPev9jF7X4DZQD9IwB/CeAGgL8G4GcAPgLwCGVq4N/ASCH8EwBLADIAJlF2hH3xrH1rKDvyLgL4M5TD2f4LXdcfVnmfnwL4hyg78T5DGVTfBTBepc0/APDhs8iIf/DsHv8vgNsA3AD++fN1QU2+qqLVipjX5GUVTdP+awDf0XX9PzjENvwagFd0Xf+lbS+uSU1Q03Rr8hKJpml/U9O0f/8ZFdAM4B9j+zC2/WzPcQBvAqhGSdSkJpukBro1eZmkHsD/DOBfA5hCmQr4yWE0RNO0PpSpj490Xb+73fU1qQmlRi/UpCY1qckBSk3TrUlNalKTA5Qtg917enp2pAZbrdYXboh6j2Kx+ML3e9E2HLZYLJaKn3/vxz+G/S//ctPnT77+dfzoV35lv5tVkyMkpVJp+4v2QA5rPe6XFItFWK3WfX2vmzdvatX+tl2G0bbyokBV6fv7CcBHCVhVqQayZjlWAXC3+vzLKjabDYVC4bCbcahinjP7BcJcM18W8OX7HJai98Kg+yKyEwDcTce87MC6lax+/esVNd3Vr3+9wtVHV2w226He48sI2Or82g8ANq+rLwsIAwcLwIcGursBRnPHHFVw3U/5o299C//JH/4h6p9u1J5Z+7mfwx9961uH16gdyk5AslAo7AkgP29bKoFwtXYcVcAulUoCvBaLRf6/3xow8OUC4P2WF3KkHSbovWyAuxdaLgD88Zkz+INvfxtPvv516ChzuX/w7W/jj8+c2ZP775WYAWunQHoQgFvtuXz2dm1Qrz1KYp5j+wm4ZnnZ1uNWst/vcmia7pdZU90rgK0mf3zmzIGA7E54063A5ygC03ayU+DlNUdV66VwLu43+JrX88uu+Zp57L10vO0adF8EML+sYPtlkucBn6+yVOqfalSFSp0cNFjvt9ZrXtNbrXEVvFQw2++Igt3IfmDVoWi6XyYtd7+12pq8fFJto1I/324z2w9QPgiedyeyFUAfZW15r9r23KB7mGB5UKbSds9/GUXVsLZzENW028OX/aIuVEcbcHhraSdSKVriqISvvYhW/tyOtL142ZdVyz3KE3Qr2amGVQPboyUHMR4vgyKh0g9HSaxW667atGPQ3e0Dqsl+7VTqJLJYLPLP/LfnvZ96n5dBzJzsTrWmGvAeLTkIbv2oz+1qCVR7jUm7ledtx47ohWqcy/PKi95np5pmtQmk8lkqr2UOKq8UenPUpdKifB4OsSZHV1Tg3U8H3MtAOXwZZFvQ3au6CsVicV8daCqIbgecW2m+Rw1gVbA8qMSBl1mOCue3X2KeD/shldKLD9v5tpVUS5o66Dmw0+fua/SCORxkv0TVXvn/l12201xfJuHY+3w+xONxw2c7kZ1u1pxrz7O5q8VPKjlHjrI3/aDihKutKxWEjwooHxW6YSvZktN90Rc4qEmqarhHYeBrUhYz17VbS2en36lUyOR5v6Nyhc8Te3pYclTiqY/iujuK4wUcgKa7H1JtV31ZNVxz4PzLLFuNudPpRDqdPsDW7L0cRfrioDhfs1Rab0cNfI/ieB1qlbG9lJcVcCkvK+A+z8bqdruFXnjZ5SjTDocp+13pbLdylMbrpQPdalEHR02qaR0vI7geVTPtqMhu+2c/Fv9BONp2Kjtdn+p6PgigrjReX5l6us8jlaIPjqK8jGFaW2XX7CXgZjIZAGUwqAH5/svLUJAHONrreT9kz0F3LxfTyzAYh1XAZK/E7EgyFyPZS3E6nQAAl8u1p/d9WeWoF3v5KslLW8T8q6K9HOVwru3CnnbyfWDvJ14sFkMkEpH/+3w+eL3ePX3GyyhqDPt+yHZKwVFTGo4yJ3zopR33Wg5Tq61Udu+ogOhORI0z5f/34p57KS6XC7lcDkB5rJPJZA10n8lBaLk7KcxulsMG4q0yS/dTKhXa2cvx2RPQfdEFelCAuxXH9bJxsS9DDKkq6qQ9ShpMTarLUdOCKQetDe819XDomu5Barjq5HkZgFWVow6qNfnyymHU/t2pHHSs8F7Qb4d6BPthUQovE+B+WcDW6XRiZWWlpuWa5MvgPNvJIZ9fJqmWMr5TOXRN96DkKAPtlwVYt5IvA7jsh3wZjzVXfSSHAcD7XS3tRdfroZ0csV9a7lGryvVVANSdSLFYlLHYzWL4qoRU7bSwz3bXHXZfbVcT4iAL9aiyl0C8W673S6Hp7uRMqoMQcxRBTTaEfZLL5eDxeLCysoLx8XGUSiWEw+Ftv3/YIHKUZCfz66hr0IcVLbEfWvDz9u2OQfeoAslR0GT3Olxrr6TSTvw8JRL3UrLZLDwej6HgTbWJf1B9eNSAaD+lWp++KD+5l3KQKcx7Cb7Pq/Eeiqa7F9TCYYFttaNDjpq8yGawHwkSNptNxr1apbGD7sejAjaHKer8+KoC8F7JTvvvwEH3ZQXcowisFBUk9+poJfP3d7sQ1Xvk8/kdXXeQspUG+FWTahv0YffFfsYL77XG+8Ka7lEGmv2Uo/bez1vEez/bsNvaDOq15HSB6pPd4/EgGo0eatbaVu+3XT9UWnzPY0EcFY0TODxKyiz7qf3uBfjutA9eOkfafmq5RwFsj0IbtpIXaZ9Zk+IEN98zGAwil8shl8sdGvhs954v8vfn2USPCvBuJwddr/Yo0g97ounupRzVimEHCXLmqlJfJVGpj2w2u6VGkclkMDg4iHA4jNHRUfT09BxUM4+c7HSeHCVwPkgAJuBWOoz2eeWgEnf2HXSPKtgCBw98X1XABcoZaSx4w5+VxGq1Ih6Po7e3F9Fo9NCjU46ybOUoPSogvF/a+l5rtweZKbnlwZS7FYvFIv/2Wvays/dzYlqt1qr/jpJUi8bY63ZaLBYUCgX4fD7D55W4UbfbjWKxeCSSW46y7ITCOApzbr/n/lFJLT8QTvcwtNijvggPe4Lvpg3VrjebiS+itdhsNthstqrV0czPYsFzdZPdi749KhrgQchuIln2q3/2477t7e1Ip9PIZDLI5XJobGzc82c8jxw5Tne3ctRB9jDlIJMInjfe1wzS5u9V8hZnMhm43W5xoFH28j2rRRq8TE6r/ZS95mPNlsxe3FPdiD0eD4AXUwD3KzW4muwadA+idsJByF6m7R5EyNZhyG6ebQbNYrGIxsZGLC4ubjpclNeS9yXwHoRQAy8UCpiamkJbW5uYwtXAeDf9od7rZQD4vQbcvbonYKyLnc1mxTF7lP1HquyK091vwD0qISDPK/uxkPabkysWi0gmk/Jvr8WsIVutVoNmof5OMLLZbHA6nSiVShgYGEAkEpG54XK5MDExAWADMPdjo56amkI0GhWQfFFeslI/HDW+nyck7Afg7rVwzIvFosyhxcVFeDye554P++V/qibPrenuZeMOo1DNfk/s3WrOe51N9jySz+dhtVpfaGxzuRyKxSLcbjcmJibgdDrR1tYmf5+amoLVaoXb7UY8Hjdot5FIBOFwWJxn6XRa/q6eq8br+bnL5cLCwgKA8pzZSeEcs9BZp8YE8xmVOOj9lsPmXvdCDqptVqtVxiqbzaJQKODmzZvw+/27Kiu53yUhKc+l6b4o4KqayX7TCNU0ioOQ3Uy6SiE/LzJ52cdbaa82mw3FYhEOh2PXY5tMJkXztFqtGBkZwcrKyqb2NzY2olgsyjHswEZEAxcHtWCn0ynfzWaz8nN0dHRTn5RKJZRKpV1bR+o85BzhBnEULa79OMSy2j1fRKs/qPWWy+WQzWaxuLgop0y/KGhyLeyX9rtjTXe3DTiM8oqVfj+sNryomLlAis1mQzabNWhm6t+SySRSqRQAGMK0JiYm0NXVZbj/VqKOH81tNZSrq6sLHo8HN2/eRE9PD5xOJwqFAhYWFpDNZtHX1wegrE2rYApsXhz8m8vlMhTIUYWLeWVlBS6Xq2KUg1nUvrPZbHj11Vfx8ccfy3cKhYJo4VarFdlsFl6v98g4cQ9Dq81ms0ilUvD7/S80n/nd/XCo8V4+nw8ulwupVAonTpzYk/tWAt690oD3PHphLyfqVoNz2PyXWfabdzXff3p6Gp2dnbh27Ro8Hg/a2tqQTCbh8/kQi8VQLBbR1taGRCIhmigAqXkAlMEmk8mIadbS0rIpvTKbzSKRSGBhYUEmnc/nQzweh9/vl2s7OzuRy+U2gZ8K0NSqzcKJzXdMJpOwWq2GEwjI3ZHG4PXVYnnVzyYmJgzUw4MHDxCNRhEIBOT7iUQCs7OzALBnC1eVnSbGHAVHGzXHQqGAeDyOYDD4wvesFioIbL2pTE5OorOzs+LfqKGnUinMzs6iqalJ7rsbK8Xlcok1ttU8fVHw3RHo7kbL3YvA9rGxMbjdbmQyGfT29r7QvfZTDmMD8Pl8SKfT0scejwejo6NYXFwUjZJgOjw8jOHhYQCVN8VcLieRA+RQvV4vfD4fEomEgaJQAdJqtSKZTCKfz6OtrQ2hUAiTk5MyKVUaiX1UKpUM/aVGMlC7VUGH34/FYhgZGRHu1WazCfDHYjEAwPDwMKxWK/r7+2XReTweFAoFTE9Pw+fzoVgsihlqs9kwOjoKl8tlAPmVlRWsrKwI10uLAQACgcCOx2hqasrw7gR1av/V5CAB9yhww5W0YUpnZydSqVTFwkecg06nUwCX98jn8xWBs5rk8/kDi4DYFnSfpxF7cYy5eZc3x2zutTzPvYvFImKxGEKh0J493+Px4Nq1a7LgqZFRO8tms7BarfB4PAJ+VqtVYlqtVitmZ2dlQa+srBhMaZvNJoDLzyr9TpAKh8PIZDKYnJxEb2+vwcFGoKMjLJ1Ow+Vy4f3330c+n0c0GjW8m81mQzQaRVtbm2wCBFYCLX9SG0+n0+ju7hawo6Osr69P+j+bzYrGOzs7K+9rsVhgs9kwMTGBtrY2xGIxDA0NweVyYXFxUUA3nU4jmUzKfappyn6/H9lsFg6HQ7QgOvCsVqvBUVhJSMXw+qMoO2kXtb9sNrsnWi9Qnvd0orrdbkN7uP4LhQLy+XxVrZVWQS6XQ1tbG9LpNCwWiwCuOq6ZTGZLZ7GqFGwnL6rx7ppesNlsmzzLVqv1hQFJBVyHwyGe9f2Q573vi7ajEjfLhU/J5XKiuY2OjiIcDmNiYkJogZ6eHul3mn50NtGpAADd3d3yO7W2ataHxWJBS0sLZmdnkUwmhVONxWIIBoOYnJxEPp+XBaCCuuqwZLhXqVSCz+eD2+1GNBpFNpvFwMAAisUiLl26JJomsDHeamHzWCxmiCAoFAooFouIx+Ob4nf5PAAGjTmRSKBQKMj1vF8mk8Hs7KwANLV8AiSF1AsXc7FYlHtx81DbX2luWK1WeL1eMdPN4nK5ZOPkvfmeZv77IMUMJtXM7d0KeXOCOC0ms+TzeQOtVUlyuRwsFgtyuRxcLpfMefLRQHnsnU4nEomE4FOxWMT09PSW7UylUjLHOUZOp/OFteFd114wazXbfb4b2S9HxvOCZyqVQiqVQrFYlAwYYCOWcyfPM8dpUorFomEQ6d1XvfqqJBIJASLVEaSCkd/vh8fjgcvlQltbm4AlOVHz81Vutru7WxxvBCWzqeZ0OuHxeGC1WgVMUqmUAJvP54PD4RDApdOPzipVHA6H4d6hUMgAQGyHWQiS5sVaKpVw7do1+Z3XcrGpvC03Mj7P/By32410Oi39YW47AHznO99BKBRCV1fXprYsLCxgcnISi4uLaGlp2fRdoLxxDg8PI5lMIpPJyIajRnnspaixuPyXy+UwNjYm16gJK5R8Pv9Cm4DT6YTVakUqlUI6nUY6nUYul8P09LThvuom5nA40NLSsslRbBabzYZMJoNEIgGXy4V4PF5xo8tms4jH40in08hms4ai+nyuuhb7+voMa5dhjcCLVTV7oYI36oLZb0dSpd/34n47uVb9pw4kQU/V3HYj6k5O77/6uTrp6Dzq7OwUrZeOJkpnZ6eB71LNb3WiqNolHVXqZyro22w2uN1unDhxwrDxAMDHH39sqCLGyQ2U+6ZQKBiAvZJYLBZxioTDYYlMYF1dNUqD7XK73RgeHq44+b1eLywWiwDl5OSkvAffczvzMJPJoLu7Gx6PB6FQyBAFwjbcuHEDQ0NDeOeddxCPxzEyMgKXywWfz4eWlhb4/f6qNQG44bW1tclPVeuudqzRiwq1TPVZgUAAN2/eRCKRQCqV2rSevV6vYS7tZr1T8ydHvl3Eic1mw+zs7JbXUYt1u92GbMJSqSTKSSKR2IQhlZyVbrfbMCfMm6g6HhaLBR6PZ1fA+0LRC2oRapWn2ysxdzY7aS9Sd9VO3+peHo9HtFzzdWpwvvme1SSRSCCXy6Grq0u0DMarcpIwuDsajWJkZATAxg5Mfo3RBqrZC2yEiwEboWI8qaFUKkn7eF+zFkFALRQK6OrqQqlUEuDihCaXm0wm5YQHUkF8H9WJVigUZKER9NR+8ng84qAaGRkRp2lXV5dsQj6fD4ODg4ZJrlJc6vzL5XKiKQ4PD8s8ojY5PDyM999/X9pnpjJUicfjEq3h8/k2XePxeOD3++F0OuUdydFTk7bZbFU3ZoIL34GbFLU38wb3vGJ2QtE/oPKmNptNNiW212KxwO/3CwAnEgmk02mZC9wggbJG393dDaBsZXHDpak/NTUlY6rGP7MvI5FIVX680pio1qCqmMRisU39zL5PJBLwer0yhysBLn/yvTKZjChbbB9/0jcAbDiidyq7Al3zojHLXpXky2Qy0umq+WN+hvn3gYEBw7WxWAyFQgHd3d2bwNa8A8ZiMXkmTXTeFzCCn9vthsPhEBP03XffxeXLl2WyAeUBicfjEtZFjY2ebaBs6jISoVQqIRQKVaw/MDs7K5oJJ8nY2NimvlEXCt+zqakJCwsLm8CWgMj36+/vB1AG7ImJCfh8PtGsuWCZpMDTff1+v4BzsVjEysqKYUzUiIVwOCw8GeOM2U62jc6neDxuAEYCwcTEhDg0/X4/0um0YWE2NjYagIaA6HK54HA4EIlEhF6gNsUxV81GNZnD7/cjmUwKrUPAVx1L/Nxms6GtrU0WbTabRTKZhMViwTvvvCNzTtUcgY0z5AhoWykDnLscA/YjaQ6mUhMoeT8CD4UOQjUphaZ5Z2en9GtjY6M4aYvFInw+H5xOJ5LJJBYWFjA+Po7Lly9LOwhOtMLM7+LxeISHNdMAqVQKvb29m8IS1XfnXFOFcyUcDiMSiYilx+vi8bhsDkA5EoXr0Ov1blJg1DazkhnXzYvwutuC7nbcBRePuaF7Bbxm58ZO/0ZJpVLSWZlMRkrBqSb3iRMn0NXVhZs3bxp21nQ6jWAwCIfDITtepeer4P3++++jp6dH7k9+CSgvpv7+fjFDVccatV3+n840VVRLghN2bGwMyWQSgUAAi4uLACBard/vx+zsLKLRKC5fvoyWlhaMj48LyHLz5IJTn0EulpQKQUvVkDhBLRaLgDKdD5lMBlevXoXVapXoiXQ6LVrW2NgYrFYrAoGA4Z6A8eRgRnPE43H09fVheHgYDocDwWAQfr8fXq/X4ESx2Wy4desWstksFhYWDCnOHo9HwLapqUmeSYvBLIVCQULnqI3ZbDZ4vV6JYyVIqQuU7zE7O4urV69ibGxMzGpez02bmh83Y3Ueb2c1qRuXGinBsDjei/OdG4HZ+QmUN5VcLgev14tIJILe3l7RWi0WC1KplGH+jY2Noa2tzRB+R640nU4jEAigVCrJnFQpOgC4efOmKEFmvpsbv7qhqeuBRZFILfCzQCCAXC4Hn8+HsbGxilagugHwffk7sLFBe71eg+ZcLG4UbOJ17Jfnxbkdabpm4DWb5TabTczL3UgulxONqZqogfAqnZHNZuFyubbdedjhuVwODodjE49qNrfUZzHN1LyR8H19Pp/EeeZyOTGROWickP39/dKGrq4uLC4uYmVlRYCAIMidv5KGUCgU0N7ejunpaTidTgltUlNhOV5qHC/vxzCwoaEhuZ6gxe9SqE2888478vvY2Jj0BTnXUqkkiRkEUdIQPp8P/f39uHLlCoANTbe3t1eARp1HfEe32y2OMmpzqjgcDsl6U8csFApJdhI1bIIZNWLOG3UM1cLpbIvqrHQ6ndJHNJcZI6wCCjVdhpvFYjE4HA6kUil4PB5EIhE0NjaiVCqJM1KlEVR+XvUZxGIx0cYIlrlcDpOTk2JCZzIZCYVT2wMYNbNMJmOwdPhMdYNzOp14++23cfnyZfke47YJUGz/+Pi4JNKoWqs5WcYckaGa7io4EmAnJyfFCjRHRbEfGFWgKlZqFp3P55Ox5t+Ayg5tzhXeRwVcWghmgCUF8zxhZM+dHDExMSE7tCrqBFeFE4RB8yqQmDtycnJS1P/x8XED2LPjKnn1VU2b383n83C73UJ205QsFjeiBUKhEKLRKGZnZ+H1emUhAOUJNTs7K6YbB4y8oNvtFu6UEx8og4HT6ZTBIBhx51SpALNprG5m0WhU2sCFzIWWSCRw5swZ0Z4CgcAm54QaRrW4uGjQyMgJs82MLmAbOD7URtTP2F51MasLSeXUuChIE6iha8x0UzVqtf18xo0bN2S8hoaGDO+mzstoNGrQ4t5//314PB785m/+ppyxRnBiWNzQ0JAkhLjdbuHZad7fvHkTExMTePfdd9HU1CSbgMPhQCKREC5XDdVzOp0CXgxb6unpkWeOjY1JJAAjG3p7ezEyMoIrV67A7XYL6HADZ7tu3ryJzs5Owxlz5P8nJyeF/mEfqOuCCgEVllQqJY4jRqeoBcFtNhtaWloknZzjMTs7KxQYUAbod955RzIjS6WSRAjwjDvOBXWemK02NQyP13d3dyMWi8k4k+biXJ+amkIgEDBwr9xwOBaRSAQrKyvo7u5GIBBAIpGoGCJIXpprjDjGuU+aqRo9yTjzncQxbwm66qSml5ygx05SFwm/s7i4iHA4jMHBQcko8/l8kt7JhkajUTFruNMRMNlpFHKcdNKoGouZPOeAFgoF0TTozaTm6vf7EYlExNlE049AygkZjUYNoSJ8lqodAhuDw3uPjY0hHo9jcHBQrkkmkwYA466qOtD4nuS8zBrX0NAQLl26hLm5OVy+fFnMfppTQHkyMLFiamrKYLqOjIzI4mIfhcNhiYlUrQCfzycFbCjmnZ5j4PV6BUi9Xi88Hg/GxsakzkNXV5cAS7FYxODgIKxWq9ACBAhzwoa6SV65ckWcWWxToVCQTVD9fqFQDqzn+A4NDcncozZ+5coV4f/Hx8cFPAgwt27dgsvlQqlUEk2H/ZNMJnHz5k20t7dLv7OfuajJUbMvARjmA2V4eBiDg4OyqQwODmJ4eFgANJ/PGzzpBMnFxUWJKqAGVyiU6wKvrKygpaVFHKKZTEbijqipx+0AACAASURBVCkTExNCE3k8HiwuLkphItUE5/xTQYp8q2otkWuNx+OYmpqSd/b5fIb51tPTI8kvjDzgu9CXkkgkDCF6fM7k5CQaGxtRKBTQ2NgoCREAZB4SqKmwcGxIx5gTrnw+H1KplMEHwu+oPwFItBY/czgcyGazcLvd8qztakFruq5X/WMgENC5Q6oOHNWRZo5cUDNCuBjIGXLikI5QNV+CZyWTWgVaCp/HZ6jtUTcEgj4Bl/cPBAKbkju2kmpOO1UY10fNmB5vLtixsTH4/X6EQiHEYjHRaNjGrq4uTE1NIRQKiXZBjioej8PhcKC7uxvj4+Pi5EilUujr60M0GkUymUQkEhHtIh6PG4CH/CcnRSAQgNVargw2MjKCSCQi2oIamXH58mWMjo5iYGBANBq+GzVZoMzFqVozNQSn04mbN2/KZso5c+LECQQCAdnYyP2qfaxOYHUeqJZFPp9HOBzeVJBHHW/SKXQwqQuK/WUeT5vNhoGBAYyNjYmWfvPmTbzzzjsCRjdv3sT169cNYML5qJrxZk2vEm/v9/sxMjIiGwnnRiXO0Ov1IpPJyGbHteT1epFIJLCyslIx3Zj9ZzbzKYxGUYXgFwwGhYsn1eHxeDA9PY3FxUVJNuAzOjs7RdHgOHGOA9ikGKj0FE18zp3tQg7NFOjExIQoadWudzqdcDgc6OnpkflJa53cvZrWruIcrWT2n6qs+P1+XLt2TavW1i013bm5OZk0DocDuVwODx48MIQQ8QVUsFS5KC60ZDIpAMxAebNZSgDly7HTeR0nos/nM3BxbAuvUwE6n8/LpFUpCtW84QLlNWYzJ5vNSsgLzUmCqAr29JhyIvK9k8mkTJp4PG5oB51OVqtV6iYQxCo5B0lzqNwj03CBstak8pXkkWOxmJhljY2NmJiYEM0tEAiIw0R1SnV3d4uJVigUDNEZdAQRYDg/gA3tiHUPnE6nge+n1h0IBCqGRDEmmJuOmoZstVrh9/sNmUpWqxWjo6MYGhpCOp3GxMSEaI+kdKanp9He3i5ZcqSegLJTSF1AqVTKkPpLusDpdOLjjz8WbrxYLKK9vR3BYFA2M25snJscezpRx8bGDPxjLpcT5yqw4Wx0OBxSeEdN/ya/zXrFPp8PV65ckXdxOp3wer3wer2YmpoyWGmqmK1DlbumtLW1iTaqcrlqbQ/SFBwfdc4GAgGxbjlWKv/p9/tx5coVsYC8Xq+MAzfHnTqqtgLXSn/n/1lMh2nmZqn2OX1QxD3eT41KqiZbgi4XB00sVaM0mxvmnYZ/V+Po5ubmBFDN3AkAnDlzRjgmLlaCobpoGRIDwLCLqs/kd6l5M4yEi5hOBi5svis1e7YFKE9Qcsyc3JxMBGV+V+WU1L6IRqPyDGoyqgOyWCwanGk+n8+g5TE7xzx5VNPf7XaL+cRQMjrTVEfg1NSUABdQNmdHR0cRj8eFHgHKJjf7nnGyIyMjaGtrE+fHxMQEksmkmMS8H/uNBcnNFkKpVJKgdZrEW1kR6ibJvlQXs8vlwsjICPr7+4VCoRec2ng8HpfykwRlAEIpMOqEdAfHMxQKYWBgQMZbtc76+/s3ARhphf7+fvh8PinEw8/p/KkU9sT5ZXZoqhlq3Jhpons8HgSDQYnrtlgsaGpqEqcsqRYAQqlwXdF6ikajBt9EoVCQ2N22tjbx8qtWzOzsLE6cOCHzOhgMSmU7Oh5HRkakv77zne8Ij87xIzc8NDS0idfP5/Oi0QNlwFbT3tlPqnXNz4LB4CbNl9Z3e3u7bGRcm4wT5+bHtaamAgNl7vfy5csS6cQxW1xchNVaLjO5nVN/S3rB7/frKkiqEQqqBuJ2uw2FKdTQInKUNFlVJwCwERDOAeV3ea/Ozk643W5EIhHpVAJjJpPZ9IIEXC5ss0nKz1kKkW2hhj03N2eY5GyfakLw/uZiHOadnoPC3HWbzSbcNjezSnSK6q3nc0+cOCHaY1tbGwYGBtDf3y/atdnEoYbGv6nmELBRdd9sAlNzZhhPOBwWMKPWzHch70ytLxqNymJkONCzeSSTmZoqOdZAIIDR0VHR6lZWViTMKhwOG9rt9XrR29srIBaNRhGLxaRIz+DgICKRiEHr6+/vN5R1ZH9X4lbNwvGiA43zlHOKTlqPxyMRDSr3qoIzF24wGJTPY7GYof+DwaAAczKZRFdXF1wul1gMKiXCe5L6o5OIji62sa+vD+l0GqlUSgCukuf+/fffNyhO6lqp9D5cy8xSLBQKAsxTU1PweDzS7/QlmC1ZzmVGPdDRyeeoYXbmKmNsB0MQ+R1iBzFLtUS52ZE7ptAvQsoxFAoZvltNVMuO2j/BOxwOV6UXtgRdn8+n86bsKFUjJHAQSLl7mU8HqCbqTrYVeKrCiWYWM6hUE4JRJBKReqqqBh4KhcRJQY2UZiGfQ6Bju9UJqgaiB4NBTE9Py9/7+vowOTkpjkWal2fOnJFY4dHRUczNzW3K0FE3ObPjSOVoGWNIrYCFX9RNSP0eOedQKIShoSH5LhfR1NSUcFzUxAOBwCZnDjeErSYqF4VaGyESiRhKMarj/+abbxqiFzo7O6XID7VwvhM93QRlAIY0YIJkLBaD2+3G0NAQxsbGDJlY169fF289EwuADc2c4NjX14dXX30V7e3tBmBqa2uT9zhx4gQaGxvFKeRwOBCPx9HU1CQaeCwWE+eN0+lEb28vent74fP5sLCwgKtXrxr6hEk2o6OjBu3L4XBIbWV+rgI9sEGbNTY2Ih6PGzZxMzjR6mK4FmtpMH3aZrNJRAWtlcbGRtEK6cjipgWUrROCvkqN8XlOp9NQF4Ofk0rh/G9paUEkEoHFYhEFhhvjiRMnZC6qsehcM21tbbJBszIZi/ozKoj0DseE1gKtZq7dQqFgUCwoXH+9vb27A91AIKDPzc3hzJkzhuwwitm5xL/ttBgEJ/JWhHe1+/Ez/lSD44HNHkTzpkEHBSc978+DEClmDR/YmJjqZhQOh5HL5USLZWhPIpGQCag6D81RAiTs1faZheQ+AHE+cNDZDi5Ys5muJkuofQhANF6ae9wYaIaRX2XbyWWpnms6xsgpRqNR2Gw2yem32WyyCbC2rdfrFSByu90IhUJihpMz6+3tRSQSEQ2W6Z7sn0KhgBs3biAWi4mmTocagZPtSCQSsFqtsrCoFZKfJidMzzmjB1QKhOB5+fJlOJ1OjI+Po7u725BNFwwGDUH7apQGf2eYWigUMoS60TLk+1GTJa2TSqVknvf29uLdd99FZ2cn/H6/cO5XrlyRcbx+/bqE/rndbly7ds3gYItGo0gkEkLLcINuaWlBW1sbBgcHJfGFkUkEazUKgFl37e3tSKfTGBoaQjKZlA2S7x+Px3H16lUUixsx32o8LLX7N99802BhcpPnT8a2mwvOM/GFmwj/XynNmBjBwkxcY3QQUzNWrRdiHWOB6b8wbyBbOdK21XRVhDeLCngk27cDUTNIViK6K1EEgJG2ILABEKeKalpQzLn6HGQCHe9LakFtm7k9qlCbIH9Eh4nq7aQTg+bY5OQk3G43WlpaJACd76ImSNCx1dLSYgjZoUk2PT0tjkdyq3zPfD6PYDCIWCwGn88nnC+pEI4Vx5NcMYHMZrPJYpmdnUU+n5cJxjAhtl0NkmebWOehqalJUl/Z701NTXA4HLhx4waCwaBoUdRoAoGAbBZ0+tHMvnHjBt58803xktN0ZTw2r1c1JlIk4+Pjop0xzpyLJJlMCv/NrCZWZ2MIl9VqNZzMEQwGkUqlEIlEhPOlAy6bzWJsbEzoEwLV9PS0jD0BVaVPhoaGhFtXN8NCoSAaXaW1xAgIvhsXPhUHlufMZDKIRqOitYXDYWkvwZKmfnt7u3yXIXBM+2Uh+XA4LBotzXNV6aGZzQJGACQ6xuv1it8gFothcnISPT09snGpYZO0FPv7+yWKge0DyuVPqZnmcjk0NjaKgsSynKWSsboeN33VN6QqYuT3AYgmv7Kygs7OTqEKzRaeKolEAqOjo1VB96/+4Ac/qPY3fPDBBz949OgRlpeXUSqVoGka1tfXsb6+jrq6Ovl9dXUV9fX1qK+vh9Vqld/X1tY23ZPfJXja7Xb09/fD7/dLnOrrr78OTdMk1bO5uRnd3d2or6+H1+tFR0cHfD4fmpubUV9fD7/fj7Nnz8Lv9+PixYu4e/cu7HY7rFYrWltb5fdSqYTW1lY0Nzfjo48+AlAG4idPnuDp06eGtmuahrW1tU1mXC6Xw9raGjRNw+rqKiwWC1ZXV1EoFKQQjN1uR3NzM548eYJ4PA5N01AoFHDx4kWsrq7izp07OHnyJObn56XsHyd4XV0dVldXcfz4cXEYJZNJfPbZZ6ivr4fL5cLS0hKcTqe0oaOjA9lsFi0tLZJJ09DQgDt37qBYLOLixYu4f/8+GhoaYLFYcPz4cei6Dk3TcPr0aXz00Uc4efIklpeXxfm1urqKU6dOiVb40UcfQdM0CRUqFApYX18HADx8+BBAGXzX1tawuroKoLyZ5XI56LqOpqYmSRHleWkszP7w4UO0tLRgfX0dDQ0NqK+vx/r6ujgUl5eX4ff7ZZ7puo6vfe1rEhTPeTc5OYm1tTV0dnYKreLz+XD//n3ouo4TJ07giy++wKlTpzAzM4O6ujrkcjncuXMHn3/+uYGnz+VyWF1dlTnOZJePPvoIdrsdqVQKq6urKBaLWF5exvLyMtbX17G2toZUKoWHDx9C0zTcu3dPuMtHjx7BbrcLB2iz2WS+ZTIZme/19fUIh8O4c+cOVldXMTk5ie9///uSEba8vIzV1VUJI2xqakJ9fT2GhoawurqKoaEh2O12vPfeexJZEYvF8PDhQzQ1NeGLL77A1772NSwtLcHj8eD111+XpB+PxwOPx4P19XWkUimcPXsWH374oTh7Q6EQPvroI9y9exeapmFpaUnWENfK48ePkUgk0NDQIBvb8ePHRYM8ffo05ufnZX587Wtfk/nMMWHRdACor69HLBbD06dP8cu//MsGPLl79y7cbjfW19dhtVpx9uxZOJ1O3L59G+l0GktLS3Ifu92O+fl55PN5wa1gMIjXXnsNHR0d8Pv98Pl8OH36NKxWK44fP46f/vSnsNvtksDDs/Pq6uoMc9Vut8v8bGhowNmzZ/+Hari6ZfQCQ4qqpfdyx2bgNYBNmq6ZgyWfSnM4n88LxwdUD/HYSsz0g7p70XPOxTQ9PY1SqYQzZ85I2/mugUAAN27c2BRoTy1C1fZp9vF9GUY0NjYmu3wikRBtt62tTWJp3W43Hjx4IJwy+42aGc22YDAoBzBSqF2Q7mFyic1mM2ii1CQ6OzuxuLgofBo1G5/Ph+npaWSzWYmn5GfUWKmJMqqhvb1dcs/Zn+wrNYqAi29hYUE4rmg0Klov4zuZ7WcOQRwfHxfNn0kV5P7ZTmpV3BTI63Izp6auxnE7HA5MTk5K0gD7npYINctUKoXFxUWhOGZnZ/Huu+/ixIkTaGpqwtTUFAYHB8Wxe/36del38oVNTU3iPGSEQD6fl/4nH0oLYnh4GNFoFFNTU7Ie+vv7RXOlVkqHZi6Xw/DwMNra2jA8PIzZ2VnR9OhbYV9MT08L+HJe9/f3Y3R0VGK8+/r6JIJFDTMbGRmRSBpm4WUyGYTDYTkyihQdExXeeecdoXE4d9kecsgEXDVDk/QQ8YMUnepoj8VihoiclpYWTExMIBgMIhKJCGVEJYtOSJvNhoWFBdHQSdMx+oa8NUWtH8xwQ+IFo0dIP6kRLds534BtNN2BgYEf0Dmk7vpE99XVVdntVQ24rq4ONptNduT19XU0NzfDbrdjaWkJdrtdSGpN09DQ0CC7D4X34z1pDgHlBV5XVwegvMhXV1fxyiuv4LPPPsP6+jqcTieePHmCfD4Pi8WC5eVlMc9feeUVOYAxl8uhs7MTx48fx2uvvYaLFy9ieXkZX3zxBZqamsS0J9DU19fL+zidTrzyyivI5XLo6OjAN77xDdEwP/nkE1itVil1+MUXXyCfz+POnTvweDzIZDJ44403MD8/j7q6OiSTSbS2tiKZTOLevXvw+/24ffs2AGBpaQn5fB6tra2oq6vD6dOnYbfbMTc3h7q6Ong8Hty5cwfLy8uor6/H0tKSaBfr6+uYn58XL288HpcxWFpakr58/PgxbDYbXnvtNdy7d09A4I033hCzkQtgaWlJNoWrV6+Kabm+vo5Hjx7hyZMnSKVSmJmZEa2O4UIc41deeQWapsFut6Ourk60PaC8kbtcLjlocHJyEqdPn0ZdXR3y+TwuXLgAv9+PO3fu4IsvvsDFixdl/pHKWV1dRTabFcvg3r176O3txczMjGjcmqbh1KlTSKVSWF9fx8WLF3Hy5EnkcjmEQiGhWHK5HJqbm9Ha2orV1VU4HA709fXhe9/7Hi5evIgPPvhAtFK32y0A9cMf/hAtLS14/fXXcerUKdTX12NmZgbZbBanTp3C2toaPv/8czx69Ajr6+tSQ/j8+fMYHR01nHxw584djIyM4I033kAul4Pf70cwGMTt27fh8/nwW7/1W7h+/TrOnj2L1tZWfPDBB/jwww+xtraGyclJvPfee6ivr8drr72G8+fPY2lpCa2trXj06BF8Pp9oq/wMABoaGgTs+/r6EAqF4PF4cOXKFdjtdrEwGxoahHLp6OjA3bt38frrr4v2t7S0JBEIt2/fxueff47V1VXRpmdnZ+FyuTA/P4/PP/8cAwMDSCaT4uR9/PgxZmZmkMvlsL6+LvPP4/FA0zQsLCwIWDc0NMDv92N9fR1vvfWWwSK+e/cubDabZKbSCiHGfPHFF1hdXUUsFsMv/MIvYGZmRpyaHR0d0HUdPp/PUC61vr5efDtmsPX7/VU13S1Bd3h4+AeBQAB1dXVYXl6G1Wo1gCEB+NixY6JxEYz5N05mFoGemJjAG2+8AY/Hg5/97Gf45je/ifPnz+PTTz+FxWIR0CZ9QQC+ePGiDE5HRwfOnz8vJ9CSjpifnwcArK2tSXTAyZMnUSqVsLa2BrvdjoGBATQ0NMiCWl9fx8zMDLq7uzE/P49kMinmJ4GWwOH3+/HkyRM4nU40NDTg+PHjsNvtuHfvHtrb23H27FmJ3z1x4gRSqRQ6OjqQy+Xw8OFD2QlXV1dx7NgxeDwePHnyBHa7HYlEAq2trfD5fGhoaBBTfW5uDhcvXsTKygo6OjoQi8Xw6NEj1NfXo6OjA3fu3JHx0nUda2trEoOs67qM05MnT6Qv8/k8bt++jY6ODuG1i8WibIjXr19HJBLB1NQU3n77bUxMTODx48dCHYyNjWFtbQ137twRzbahoQHNzc1YWlqCruvCo3m9Xty+fRuPHj3C3bt30draCpfLhR//+Me4cOEClpeXBTyy2Szq6upw+/ZtaJqGRCIBj8eDbDaL48ePC4f+q7/6q4ZU6WKxiGPHjuHGjRuwWq34/d//fXR0dOCnP/2pcK6rq6s4f/68XM9Fc/bsWRSLRaytrSGdTqO+vh7Ly8tYWlrC66+/Lqanx+OB3W7H+vo6rl27hvfee08SSVZXV7G2tobjx4/j1VdfRS6Xw9TUFJqbmw0aUCwWw9raGk6dOoXR0VFZC2+99ZbM9bGxMTGVuaivXbuG1tbWTdyh3+/HT3/6U3z/+9+XuToyMoKzZ8+irq4OTqdT+ntkZAR+v1+y706fPo21tTXMzMzgzp07uHv3LlKpFH70ox9hZGQEY2NjuHv3rtBTDQ0NWF9fR2trK/x+P9bW1tDQ0CBziu2/ffs2mpubcfv2bRw7dgxTU1P45JNPxMG8tLQEv9+PTz75BPfv30cikcCjR49QLBZlU85ms/jFX/xFZLNZfPrpp2hoaMCxY8fwxhtvoLm5WbDlwoULePr0KXp6etDc3Ayg7JT2+/344Q9/iFQqhdbWVqytreH27dvCpy8vL4u/gY5NjsvAwADcbjfOnz8v7+ZyufDo0SNYrVbBJSoJ6s9MJoP6+nrY7fYt6YUtQXd0dPQHLpcL9+/flwaYhVrv8vKyfHbs2DEBzkePHuHYsWOYn5/H/Py8mOMPHz7EyZMnAZS1ucXFRZRKJQN3DJRNLDqG1tfXcerUKQDAzMwM0uk0jh8/LuAZDofx2muvobu7G8vLy+jv78fPfvYzhMNhnDp1CplMBg8fPsStW7dw7Ngx9PT04PHjx9L+1dVVnD17VlIdqVXwnZaXl9HQ0CBHjayvryOdTqOhoUEIdzqiWltbMTMzg88//xydnZ1YXV1FS0sLPv30UwBlk/PJkycolUpYWlrCxYsXMT8/j1wuh8ePH0PTNHzyySfo7u7GnTt3YLPZsL6+jkQigYsXLyKVSgnAApsdkcViEffu3ZNwoGPHjgmXqGkadF3Hp59+KiYgzSly26FQCPfu3cPy8jJu3bqFYrGIzz77DE6nUzhALj6r1YobN27A5/PhJz/5CZaXlxEIBNDW1oaRkRHU19fjJz/5Cbq7u5FOpzEwMIBbt26Jlun1euFyufC9730PFy5cwK1bt4QO8Xq9OH36NJxOJ7q7uyXe9Ec/+hGWlpZEo6qrqxPn1507d0SDe/r0qSgC7BNuqjMzM3C5XJiZmUFHR4dEEdTX16Ourg52u12uY4nQ+vp63L9/X/hBdTNjeNj8/Lz8/ezZs3jllVdw8uRJXLx4ER0dHSgWizh16pRw38Viubym3W7H+fPn4fP5cPbsWdGO+/r6xDq5cOGCIWrg1KlTAui3b9/GkydPZDO22Wx44403sLq6igsXLgCAbNjso+bmZjQ0NMiGv7q6itbWVilr2t7eLlws2+p2u0X75KafSCQwMzODhw8fSrjW7/zO76C5uRmPHj1CS0sLZmZmcPHiRdy+fVsiezh/z58/j/r6eqECc7kc7HY73nrrLTx8+BCXL1+GzWYTPv3x48dobW1Fa2sr1tfXhbarr6/H3bt38fTpU1ESPv30U9jtdmQyGbz++uvy3p2dnZiamoKu68jn87Db7fD5fLKulpeXZdPPZDLQdR0ul0swj8LfP/zwQ8zMzODp06d47bXXqoLutiFj5Evn5uYMKjR5S1ZtUosuq6Fcao48ReVtKA8ePIDVajWE6rDgNKMN1OerITzk48LhsPBLFPUZzA4CILVY1bCg6elp3LhxQ7z7brdbvOwEU8bVqqmJaoFjNdzEYrEIH6qWomRbyClmMhnk83mEQiHxrPI9WMOVXCvv4/f7JVa1u7vbUI3sypUrotF0d3cLbzY5OSkhcewrtQoaDwlkrVACH0Przpw5g6tXryIej8viUzlxFl6hB57gQB7f4XDISQu8h5q7z/nD8pP0nOdyOam6Rj6N4U1AOfWZxVtsNptwooxIoLbJEoGsl8BYa3K+dGZOTExIfKjf78elS5cAbPDWAwMDUpCe487aEXS2qIlC5roifE/2jzlGVp1XrK2gJviEQiFJnQU2lwBVC+eon7MvqDRwLjIMjFw8x8nlckl7Vd4yk8lgdHRUqtWxHghFjR5SfQlM7eXYq++pzqHh4WGJhXe73RKiyGifsbExyaZsampCKBQS/8CzugcSV04AB8pYoJ6MzQNfS6WSJP6odYhpTdF6ZZF4ChUa+i3Ue2ez2d2FjPn9ft2cDLHVefKdnZ2IRCKbjjs2O7qYFKEG+5M75v/VUCiGTnFg+MI8JkYN8WIoCIlvFQDJzVLUGEyeKqAKJ49aao9t5ETg4BOU29vbN5WFY5oinxkKhTA2NibhTeYsP2b48V34eXt7u4AjJ+3g4KBo5mq/MOxlZGTEkMlHZ4+azBGNRoUvByBFbQCItprNZg2FcwBIJTEerEjQZioqU1RVYcJFOp1Gb2+vJJuYDwpkxhgtDhbYKRaLomWfOXPGcNw2wZAL48GDB7JgCNyVHLTcQPnTarVKog1jXrlRsX+YQRUMBmXTIugCZQstk8mI45bJDwDkOrbbnP6shs0R3NXPrVarFD2qJKyVwdrFqqjzhM8DKsfCV4pN53f5XnRgmo9N4tioGaBqPVuOZzKZlPmjtp8xzLTEGHpmtVrFYcYkChbOUUHU5/NJQsbCwoKAM7Mm6YCllWVOzgE2H8PD95+amjIc25NKpWS+KCUJdge6PT09OmMu1TROAiGFf1MztLYT5kbbbDbZ0Z1Op2TbABsZK5ViFOntBTbqZhYKBUNsJQApNQhsgASL0TDGdjtRS1LSY6tqJ9zFSYOYNxy1QhJ3R5ZXZCC91+s1VLtnBSRVS+a7sl8mJyeRSCRkETNCgpEB3O3VHHH1YMBYLCZtI6DwPfv7+yUInaZbIpHAwsICbt26BY/HI3WVqekTDM+dOyeFzwHIpuDxeCSOUs3yUeeLGmROURMOmMufTCYlyL+trU2qRLFqFAChh9599125V6V4cxb2oWaraqLpdFpAnGPQ29sr8ZoEJioAwIbVxmOi8vk8ent7cebMGSlqBGwcq8RiRI2Njejr65M2cp6o7aGFxAgKRiDwetYA7u/vl0w4M7CrQlBUi49TWQgEAlInlnODc5aWF+Pz1fkOlDVc1iRhn1DR4pyi1Ugs4ZizkA8VrULBeLgkf1JrZnWyZDIpGZSMkmAR/OnpadHI3W43mpqaRJNWC0RRieP7qskPap9FIhF0dnYaNi81imvXoOt2u3VqN5UmK4WaWLXQMtXE4fVer7eixqwer0KhJkw5c+bMJpMG2ChSrQ52JVGz65jKye9XajMTHljMA9iYmBw0ggUHnLs1F5jNVj43i1ozB5LAyGuohQIbFISa2JDJZAzFeHgsSiwWQ1dXlwS5A+XjwTs7OxEMBjdluBWL5fRG0jdsO9Mjqd2q9Qbm5uZw5coVMYsZlUDh+V/ZbFZKIHJSskCLKjsNCyT1cOXKFfT39wtYqeYcUI58CIfDCAQCaG9v35SkobaR9Qg4dqTL2F5uRslkUjRd0hsUbpLhcBhOp1PGhX3FTY2bCCN21LHgu/A4IG7KXPCsbUFqkMf6dwAAIABJREFUQC2c39LSIhQZAKEN1DKcZm3XvKFxTFTN0WotV9Dj6SdqBiJLj6plHFXznetEzdwix8uUe1qxTMvmsT8qPWkWcwYqw8RoUfEQArY3FAphcHBQrDNmr7GOBoFX7T+2he9VSQqFAgYHB6VkAOeSGjr6bA3vrrRjqVSSBnJ358CrNTwBGCZLJVHJfwBVKYpKYjZz5ubmDKaVuYMq7Uz8v1pMWf1+NZBmiBC1SmBjF+cCYFwr416pBbI26blz5wAYz3nq7OzE6Ogo3G63IROOPCnji8k5Wq1WmUBqKrFaPZ+58eppF5FIBH6/3zBhv/vd7xqy3Ng/PBVCrS5GPp1WBc09mmgTExOSiTg+Po7h4WHRDAnA7KexsTEBcpUj5N/YjpWVFQlUV2sThMNhFArl4tU8RoYb9PXr13Hu3DlMTk7C5XJhcHBQTjNmO5j4EQwG5ewzoEwX0BRlu8jzMgrmzTffFL8Ggbe3txdvv/22fJex39wQC4Vypa729nZDfCm5WACGOhmAseA3tbWRkRGpwcwSnORHp6amZG3FYjH09fXJ2giHw5iYmJBaw+pJLepGwDarFesqCakhtRaFupHyvScmJnDlyhXE43E5ckdN9S0UCrKpvfnmmwDKazCVSkm9C1IGqqgUiIolpM3Y5yynqnLFtP5U6xqAUA/qs7aKtWX8r3oNT2+hVW0uzmOWbUs7UsjZkG+lmcs0uHg8vsmJxYHlZORkrgbMqqhJEubraYJTzHwXNUiKCqojIyOGQH3K5OSkaDIMo2K9BGoVDx48kIXNCaCaS2qFL25Q586dk89Zm4DPAyAONG5kNHGj0aikb7KdbDcnPIO/gY1NjGmfaoox01ypadG0U4XaGit4ATA4kMiH5fN5KRBN4Pf5fFI7VjVH1Xz2SCQi92fcJlDmTMfGxqSmLPnUGzduSD0Lvks0GjWcNEEt5ebNm7IYnE4nbt26hUwmg1u3bgGAJBNQMeAYcb7QGTw2NgaLxWI4R4u0CgChB1T/wtWrV5FOpzE9PY22tjZD5T0CKGtAsPaEWTgmhUJBqDJSWvSp0DFKJy+1Um6eampuNptFW1ubWI30I/BZlegbVTjfuPYIlPSJVKtvwnt2dXUJzcWNg5shtXymnTP7LBQKoVAoiMXMUqocC9UKoHUBQLRoKmbcjJLJJM6dO2fQbkmPqP6bubk5tLS0GEoMVMIb9fdKoJxMJsWBup1CuSXoslNVjunVV18V7autrU1q1Jp3JaC8oG7evClcr3mQKomqgVUTh8Mh+fT8P+sXcNJX01xVfo/RBKqTUBVqemoEAIuic0HNzc0BgBSFoVbIRTc5OYl8Po9AICCL0+fziRNLrXuQSqUk6+rMmTOSfab2GxcS6zyo/c6EgmvXrsHlcol2wb5ghSlgI6+f/cxiKax/oNYeYMlEALJ4GMHhcpWP0B4fH8ebb74Jm82GfD6PoaEh9PX14cqVK6Lhq44mVcMlb89MqO985zv47ne/K5yqWuaSJ+vevHlTTinm/FT7Qq32xpJ9hYLxxARqmVzQg4ODGBwc3GQ5sdAMi/qrzihGYDBTK5fLSeW0SCQiRc15qgijO1jpi9olN3Hy7Q6HA3NzcxVpPdatBTboD9aCIO9LJy9Ds1TtshJoqCVczWtPNc1pDZw5cwZNTU1SXEit8scsMM7f9vZ2ocYYDUTqhFEy0WhUInWamppkHpqd0vydESqkUehboRONFqRqdQAbdVaYEWqxWCSqRaXN1GPkVam0aZ47d07GiQkYW8mWnG4oFNJV866SqKFfatgPsAFEZlOfjdtOqpH/5merJhk/fx6pNAlVfolpuzTxVKcB+alKFc7Umr0cQHOKtBrpwYpu/JzvRFOYE5OUj5l2UcOfqCGSt6a3lvwhAAnHiUQiAqxdXV3i+KGmns/npZ1cMARS80m9Zk/89evXJXLALGqRcXqVSXOo5RnZ12oEB4uj8NgjHhqqptECG2ffFQoFOXpHNf+4wOiUGR8fx+XLlw0Ljm34+OOPAUAqnakaGounUKslhcKkhCtXrmB4eBjBYFBSiEkJ0WnKDZj1FBYWFtDS0iJmfC6XkwIwXV1dBodpJpORI+d9Pp84LLPZrPDKTK92Op0SacIi53RAqSm3VGTUsVUL21CB4JjziCeeTq06wtQ62ZzbpN34jqoTc2RkRKwvYPMaZcRLX1+fhJdNTk4KJaXy5oFAQNK6qQCq9YAvX74smwfBm8oEC/3QD5XJZESRCofD0n88FYcSj8d3V/BmeHj4B6QEGhoaYLfbcerUKSQSCck6A4C6ujq4XC5JRaWsrq6iVCpJujCD1PnZ+vq6ZFExeJ1JB7lc+WhvpndW+8fBpaYyMTGBtrY2XLhwQRIRqkmxWJQUVAY8W61WQ0qqzWbD6uqqFKLhJlUqleu9ptNpfPrpp9A0DY2NjbBarZJ+vLi4KN9zOByor69HOp3GqVOncP/+fYlO4LPr6+vR1NSEzz//HIuLi1hfX0coFJKA82AwiHv37qGjowOJRAK6rmN5eRlnz55FLpcT87VYLB/myOwqZg8tLS0hmUxC0zRJ9uCE8ng8sNlsePjwIe7fv4/Z2VncvXsX+XweqVQKFy5cwMmTJ/H06VN88sknuHbtGu7fv4+zZ8/CbrdLoSFSEYlEAh988AEaGxvx3nvvGTIYgTKQdXR04N69e3C5XLhy5Qq+//3vSwZgMBjE1NQUfvu3fxu3bt2CxWJBOByWtPDl5WUUi+VkBzpQ5ufncf78eWQyGSk+4na7MT8/L5EbqvYEAJ9++ileffVV5PN5nD17Fp2dnZifn8cHH3wgyRdXr14V4FxbW8N7772HVCqFJ0+eYH5+Xg5hzGQyePToES5evIhf//Vfx/Hjx4XqYYGcRCIhh2tS67JarWhqasLq6ipcLpcs7tOnTyMej0t69+effw673Y6WlhYkEgnJLozFYjh//jzS6TSamppk7dXX12NiYgLf/OY3MTExIQkIQNl6/clPfoJgMCgFnrhZxuNxQxrvw4cPYbfb4fF4cO/ePZw+fRozMzNobm6Wda/Gu6dSKdTX12NlZUW0x0wmgydPnsBqLWd1vfXWW5Jlx4JFanihz+eD3W6XdWqWVCoFTdPgdDqh6zqi0aicFJzL5SThobm5WXwVS0tLgj+6rgtQnj17FplMRt6Z7fF6vVhfX8exY8dk3pVKJdF2fT4fvvjiC/zJn/wJ7Ha74bSRgYGB3SVHuFwunS9t5oKohlNU7Y4m0rVr1+RYacbJ9fb2itOAGk6xWNx0XpbX6xXztpIMDg6KZnft2jUx11mkmJEDNOsqyVbOP7fbvan+LUOBqF2rVgA5TXOIl7kQN0VNEFG1HQCGgG6G57BNqjZMSoS7OkN3eB21cACbTuygp53asGrqEhD4fY47+5VJI6lUCufOncPw8LCcqqvy7fTA05HFv6tF7+PxuME0pQbGwkFTU1MynzhHWLZSLadJoVMzmUyK89diKZ/uwOI9bAsL5EQiEYm35nhzTrBCGN+ftYpJJfCdrNZy+Ufy8OYMQfXd1UxHFmhRa+SqjkyGfKnFfaiNARtn5hWLG4XH2a9sf2Njo0SpcC7bbLZNMdSMGWfhI54KAUD6mo5iWjd0fJ44cQLT09MYGhqSsVTj5elH4CYfiUSkRCjbwb5RsYZYYQZeRsOEQiH09/cL9875yhBUsyXJIlLqQQAtLS0GLODYm+c/+5tUI69nmJkaMptMJncXvUAwnJqa2kS+AxsVxegFVQs/0ARkDGE8Hsf7779v+L5qAjA7iuYjwRjYTGyzbbOzs5idnRXNgTwSsBECA0ACtSsR/9UAWV1UwEb0BcGKfQIYeWieVaVWoAI2jv1RFyStCE42lXrg4LHCESMA1EnjcDgMcbLq34rF4qYC7aQLgA1znVQFNXTSEZOTk4jH40IzqIuBnmEeBjkxMWHwTtMBB2wsNhbKpnOImw0TBhh+o4JdsVgUTzxNU5fLhWAwiEKhfLS4zWbD4OCgwRRNp9PC+5tPICaAcaPkHFNjw0kXmQvax2Ix2fDUuUHqgJyx2+2W5IXJyUlcvnxZTmpmW1hbNhAISFgV6SSGMkUiEdhs5TPtzp07J2YyAAOA8p3J5dJHoMa2qgkDBD+brXySBDeapqYm8SkwNZyi+io4j0np8Pnt7e1SSY8bN+kWOgmJIzwBROXsWQyKQEl8KBaLUuZUPTWEDjquT6fTKUDJTZLzicdwAeXNjFST2+0Wysycf1DN6alyy+rvHJetwmuBbUAX2DiJFChPlnPnzuHBgwcANmIMKZz0DodDNChVCwE2jjThPzNZXSgUhCfhAJnBns9UO8h8ACNQdgB4vV7RUCtJsVgUh4qadmrWZsmlzs3NiTYNlAH9wYMHBq2RXlmajmqRbQKganbxPlxgfG/WKlBPEy4Wizhx4oR8j7w5fzY1NckipmeYmha9uel02qD5qunJzKzjOA4PD0t2EEFKLTVJYZnCQCCAW7duyTUEJ2rrnCNcgBwX8rmMhuFGUGmSmy0UFVDppVazodTvqmPA75j5ZnLHDNOj89DpLB+uyiN3nE4nBgYGEIvFEI1GMTY2Juec9fT0IJFI4MGDB5ienkY8Ht90Ogb7ggXr1aiJ8fFxcdJxPnMOkUNWi/h7PB7RwlmKlMdAraysSJ8x9G5oaAhut1sOKaXTr1Qqobu725AxFg6HMTo6KnOUdXy5TimMGsjn83IPNbmA852ObyoanAfkWIPBIN5++21Z9z6fTwrTMxOQVN7U1JQhHZ1n+qnRCeqcowZPHlgNy7TZbGKNMJJJ5XjJ/5stf4vFIv1QLG5Ea1WTLUHX6/XKYgIg5D+FgKKmx5oBsloMrPqileTjjz+u6rzj5KEzZTthGyu1DzDGEKvZcUxEePDggbyD2+0W040phufOncPly5fx/vvvS51QcpCsbavW9ezv78fbb78tkQ/FYrnCUqlUkslSLBYxPj4uBUeKxY2wIkZG0OQ0h/9wsjNgHygDK5/BMCa1bjCBlplABCxqDPF4XFIm2VesW8oTKk6cOCEH+7FdDFMDytETdGAwMiEUCslGww2YGgjfRw0H5P3MGoYaSUJRTfxKmy4jUVRh+q7D4UAqlUI8HkdfX5+koaq1IKh0hMNhCfkbHx8XSy2RSCAUCqFUKslmNzAwICUDqe3F43Fx8BE0ent7kc/nDccrsZIfx8zhcMhz6YyanZ3FjRs3xHLgezJWlw5T9gdPuuD/WX2Pxz7RkeRyudDS0iKWD/uU7Umn03L8uNfrlcxMghqtNTVZiNl0BGv2VzweR3d3NxKJhCSwtLS0YHZ21nCwJzcltoOONdUqJ2YR8EkNMbWY1xCcWaQf2AhHI6WVyZTPR6PysrKyIgooMw25mWwl29IL6mTlbqWakpwk6sJXTTVV1M9ZErDS36nlhsNhQzwtdx1+nwuTnae2Vy2MXclM4O6qDhDN75aWFgEOctIcsFQqBYfDgWAwiIWFBUPIGM+j4uJgu1iDgOc/5XI59PT0IJfLYWRkRCYENQ3V5CWPl06nhTfO5/MSG8wwNRb/AcqJF9FoFD6fT+J21Wwbeqb5XtxImQxD05KgCmxwetzluQkxkoGaKTVNZmsNDg6iWCxKKA2zh9hnxWJRDjnkP94rkUhgZWVFCmx3d3fL4mI/0USvFKZTLXRnq5AeAin5VKvVKuOoHvPicDgEsHiENxcbAToYDErEQiAQEFqFoEzzmuPtdDrlFGT2g6qJqZwooxNIwczOzqKlpUXqHnBuk/+enJxEW1sbrl27Jt/L5XJCITBWnNlV7KfGxkY51UUdIwoBk9YCLQKG0DG6A4DMf64/tbaI2+0WZUelmHjtu+++i5aWFgFZChNcuEEUCgVDyvGDBw9kPrGtVDzUNPYzZ85gbm7OEFKpFjUicLOIDvuNY9TY2Gjw02wlO4rTVfO32YHhcBj5fF462xwKpv5/J+FhFLVD1eOk1XvzZbmzVPputXuaRd21CQ65XLmi/crKCnw+n3i+uVAYPkL+WA08VyvOc3PgwJGjq/R87sjqhOaEYpgQHWUOh0OAjqYmQ7vIEZOrKhbLaYrqGV+MG1Y3Iz5XTXXmu5F/VGNaU6mUwYziQu3q6pI6uLwWKM8H9iFDlSqZ/AyI56RX+xWAOMT4Xab9qs5LAIac+mogG41G8eabb6JYLEo4IDcObizUnHw+HyKRCCYmJsTP4ff75Tscr6mpKVgsFqEPBgcHMTQ0hMbGRgDlk4SnpqYkW0zl1NUkGB5YyftyHpHbpFDbJXfKsQcgJ1+Q2iDgXLp0CdevX0coFBJQZGZjPB4XYHQ6nejp6ZH5q1otKvUzMTFhyPhkIXJaABw31QSnFszaGAyzKxaLUqmPHD5FDU00C51hBFP6OXgfVdPlfKCjnM5qxgmTjmEaNdvLokys8wCUrQj6SZix+EKgq5LwrMRDs4aqN2A041QzvFqCQiUQrATMPMCRbQAgQdrsYLO3s5rTTSXm6fU3m6j8G01gv9+PxcVFeb9EIiEcEnnEUqmEyclJMbu4WCu9j/kztpnZZWo7zp07J6BJk5/t57ExjBe0Wq3iNCQwU+NQwZVjSNqIXDNpEGoequONTkGea5ZIJATwqUnzemaKUTPnScA9PT0yftRyU6kULl26JM4lNSOIQMYMK47LtWvXDJQUOTh1flDIz6sOz0rzQhWa5NzMe3t74ff78fbbb8v19LYThJxOp2QKkuukFcL6uoypLhaLYoKPjo7iwYMH6O3txezsrNR+YFIKLRuat7lcDisrK3LwpxrjrY67OSkA2MhWZOLK4uKiHFLJcLZwOIzx8XGZ84VCQQ6hpJZoLgnZ3d0tY0OljJabevAkACkVqdbz4JxpaWlBOp3G5OQkbty4IX8zrxf2g1ptjOBnsVgMmxSBlnOD1orX6xUFhM51laLy+Xyylkh90Oeh+imoBBC41WiIShSmKts60ughZUeTpOeg0huvFrog/8IBMXdgpUZVAmiGJ3GnZcWltrY2TE1NGXKr1YVljipQ+Vr1eoIxgYC8IJMBVKcWi8PE43GMjo4aOLDp6WnRdt1utwT9AxsZQ4y9ZLiJGQjUPlHrMZALY3QCACnWwkF2uVxS9UmdQKRmeFqxOcSM15JuoNmsclJ0DDBY3OPxGGqk8vlqggi916pWRC2JmyjpGPYDFyl5bJX28fv9ooGo/LNKIXEsotGogWO1WssRJ5lMxhDJUEnonedGF4vFkEgkxHHJjD5qZaw419fXh+npacNp0NSCgQ1tlBsyk23YfrVmQTgcxqVLl4QjnJ2dlcxP1Z9CLZEJAQyJamlpkUwxblBqynZXVxfi8TgGBwdhsVhw9epVQ5IFfRCkctR5wEzMS5cuGZImOO+owU9NTcmJv5yzly5dwsDAALLZrNTi5fjncjmxwq5duyZHA6lis9nE4T06OiqH2KprlzHKTBLhHGE/M0VdTZ7geP//7L1/cFXnee/7fYUkjLZsI2xJYGNHEi64tURbMgOijdPY0NPjSTCd0/Q2uPdMOwXf085t/aN32nuwfXuTppBze3oa8J2Tnoztua1vY3rOaToxZE5uWsBxTQ2kCbQ2JAYbpMSSjbYMyLC3YiShdf/Y+/vuZ797ra0lCa+09fczo5G09vrxrrXXetb3fd7ned7x8XFff+KBBx7woYp2YJaD5XT9AKgy2hSCMzGj0qWvgjcP3+ZcFg52LV26FPl83r+9gIpBjVOASQNtxWIx1kCxmAXlP2vHJvmHGZLEgSh2XePgBeRke5ySenx8HE8//TTOnj2Lxx9/3L/16XO1dSJslMHRo0f95JOMjnj44YerBgBtW6igbSQBR/1bWlr8Q9zR0eG7NPT1sZA5b8JisRQCxGpn9DXxGN3d3T59lbVy8/m8j/SgoWI1NwbyE6rs9vZ2r+Q4WEejRwXOm/To0aNVxX1YoLuzs9P7nnnjr1692hcEsnUq6rmqCoWCV0EMP6ICYk8izHDi/qjYqfY7Ojp8OBWVKEfLN2/e7JVNoVDw6p5hboziKBZLdWdZ/e3w4cN48skn0draioceesin7nIwkc8XAD+otGLFCt99t0a0paXFXzv6fRmfOzIy4jO2wlkf8vm8f5GfOHHC+5A7Ozvx4IMPemMeCiNet+eee67muttaAywAT4rFoi+ez54SZ60eGRnxzyWTnJKeTV4TxsTa54wTTXIcgfUPwprUW7Zs8c8T4RgNaz6sXr0aTz/9tI9eoHBjqq8dV2IYnO15p2HGgjfsxjB7I6k7R6zlt9A3y5ucFy0cKOOF3LFjhx9Bt2UjOUhlB2uA2kpkdlTV+hVHRkZ8cRseyx6bv1lQ4/nnn/eqhGqbNzLjEhnDaNN9d+zY4QPDeexcrpQMsmPHDhSLRT8AyeQAO2BH9cA3qlWuvMlZ9IRftu0urV27FmfOnPHuBQ7AMHOKPnE+iOx+0eACFZ+y/Z5YAcy2kSqSLwK+3Bj5wi41AH+OnGWXx2F3d+vWrV7V8YHZvHkzWlpafP0EC4/Pym/79+/3Rt/GTG/dutWXA+zt7fXJHLZdAPysCR0dpVlAOPsCSx0yEoWDXuzl2YSQYrHojQ/DAPfs2eN7GX19fXjmmWdw1113+aQY+sBZKYy1i1esWFGV7MCC4XzoObfcvn37fNEp1o0GUBPeVywWfc1q20NkPLi9P7i+NYaDg4M1Lz474MqBX+tqe/DBB/1gFPezceNGPPfccz5UzroGk9yP1u8NVHomLKbEpA6Gq9mZL2x6Nu9n2jBOevvqq69W1Zjm/WljlvkccsCV9olG/qGHHqoq+hRH3Yy01tZW/yF9F/bmsgV/Q2bya9juY72BrnrQ2MRl/3D55s2bvfqjAWB32gbKx7UlbllLS4uPPOBARTg7g1UXPE8q6HCGBFbW4sgqg6tpFHmO+Xze+6Js8WiOurJtfDFy9JbHsn7s7nLNBZsNZeOM7XfKh4TFSugiYHsYXmVfqjwWH1bGg27ZsqVKtQLwVcqsf57T+4RT1dguYz6f9+F8jDShv5VJEXTpAJUBQp4jrxMHlfh9P/XUU8jn895NwKlxGN/KkLyNGzf6QaDNmzfjwIEDvrA6Xxq7du3yXW2qpHXr1vmEIS7fsWOHFwpUvixew16Bvf8efPBBH3LGUovE+qWLxWJNNx2An86G9yiv38jIiC/oTiNo42j37Nnjx3IY+pjL5fz9T3fBjh07vALny4e+Xj5TfH5oiBmWxnV4TgMDlVlO7LPe2trqZyjh/fTQQw/5lPDwnrdhoeyd0dfLZ5cKmoac14DT1XOgzL4g1q5dixdeeMH/z7Gdp556au4ZaQxNIVRMPNGkAanQeNX7Py1x+7FdxhA+WHY0nl1HG1UR+q7i/MN2dJ3Vrey+eY3oD7b7qwczfGxmFh9w6yO96667fD0KGg6OttKRz+4+owvsW5ffE9vDm6q3t9erT3aXbe8mTOllm/k/YxzpYgBKCpztBOAzqphlyBoIVCZHjx6t6lnQ/9jS0uLD37gdM7dYSLu3t9dn4TF0zKpwGq18Po+tW7f62FgO4IU9Nk4l1NLSgscff9y7sug/ffTRRzE4OOjdVEwsYMrx3r17sWnTJl8CMpfLeQPe19fna+MyCuH+++/37hXONMH55Gw5Tt6HHFA9ceKEn/qcPlE7TrF7924/71f4rNlZlOmOASplEfl92215T1lsqCC3YcgXXR5btmypmsuNPU8OttlZVQj3w7aG7SgWS6GI1hZRULHnQxcoB+8oENiLY3ytTcIpFou+pCTX6+np8S9JPltsB1ApgkToE6/HjANpg4ODPtyFB+LJxhnOmYxp2OjZGF+uyzCccJ/19nfvvffiscceqxp84iCE7bLEdXGskg4D7mcyqjMR+qMZuM6Bu3A5j0mFsHPnTm8gqVgZ0mTD92hYmS1oewn0ebIGw6uvvuqrjVFZA5WRaPp7+TcVFQfQOH8Wu/xU1lTD3JbhYwC8H53B8QBqRuFbWlp8wXb65lhbYMWKFT4emj49+sbp+6QSs/UV+HBzwKVQKODee+/FiRMnvGuB4VbFYtHPlcYeCh8yulD4HRw+fNj7/6iEe3t7vYqlUeDxW1pa/IScPT09eOyxx7B9+3Y8+uijNYPRvOdsMXQObrILbscNeK40LDZxolAoYMeOHT7ZKDTSjB9nmrMN/bIx3nT/MBSQrpf9+/f7z9gTsvHGvJfD5y2sYcL2sncdCiVeA95TFIRr165Fa2urdwkxo4whlrwuNjqIIoYD1NZn3d7eXlOThfcPM2RnChmr615wzlV9aI2M7ZKHn/OLSxqhn8l/MxP2uDPta+vWrd6Xxm4Di7XYt7kdNbfnA9ReRPoarY+b8cpxapy1QeN47LHHfEaSPdbGjRt996xQKPiBCLsfdsuKxaKvZkX/qM2ssWF1NL7MY2cXLyysQtcEi4rQcO3Zs6fqfNjtBOCNPVDxkYahg9zn1q1bfawop9VhexmXbF0KAKrKKLJ3wIGdpUuXev8t42WtO4Pf1b333utfIlSoDJfL5XL+xcIsO8ZHMwKE6pHRIzREu3fv9nUB+CI/cOCAL8TOdtP9wO8eKIUmsd30Ndt70yo6e4/l83k89thjvk08B6t2z507hyeeeKLqnguVI18e3N4ONlqFzZobNKz9/f3YsmWLr59gffe8f+gaYE/G9kppIzjIbKMswvTtMO6a19C+UOhe4Hdr3Wv2pUqVy3hb9tKY7kzXVPjc8j4ODS6XkXJ89tzmSHPORSzCHBccbf1NNrDf3ij2ovCzUJnGGe96JBlvfqH2BmVwMw3H3r17q9Ipie2mhO2wfiQ+ZLarRcc6ax9wihqGBrENcTCigV1Tug64P472P/nkk/7BtdO6P/roo1X+Xzt9OUfE2UXnoM3q1aurVDSPaVU/B1bCCmc01iwiz4cml8vVTFgIwF8T6wfmtaEbgzczXQK8t+iWRgA3AAAgAElEQVSioAFjl4+V1phay3WoLKm2be1XfmZrC3NQ0E7KSOVmozVstS9mDbKQ+qOPPupdA7zu9E0y1Iszq7DmAe951jGx99mTTz7p1RqrltkaJ1aZ8RrbLC4+hzS69Ena+33//v1V013ZKeK5PwB+SnomazAqgffJyMiIn7KJBsjW8SDj46UpzsNBUOsq4/9hT5jtCcdtrM81/M373PZomJ3Gz/kyoK+f9xtfrnTbcHbhpHEjAFUZkcViqXj8wYMH5250c7lcVQ0GnoSdCdX6Val0gcpgm21Qks/UXih74wAV1RT6SuP2FefDYuYNgKpq/kBlVD4s3hOncu2IsVW6uVzO35B80MPkA7Y5hFWmaLyobtml27Jli5+4z8KRfPqbeDMxTpXnbW90Vr2yUwTx4aWPrVgsVmUwURmHaY9h9483a8jAwIAPt2FsK9WxHQTs6OjApk2b/Ciy7frRAIWuGI6Is7vPh4kxpF1dXXjmmWeqYm+p4tl+W66TDx1LXNpYWvsQW9XG7ioHxfgdd3V1edfcM8884wvkWEVoI3F47Xbu3Fkzx1YoEJJ6drwe/N7sIJpVmBRRQMmw2sE3xmLv2LGjKuWWseehiGKUEYCaAV2rNG17OcNInBGuh3VPsP5FKNpsCnkul/Pp2cViZcqhXC7na1HwnGy8L6sS8kXLSBqKTpuha9PagUrK/65du+Y2kEY44Rp9L/SZhG9f/m1vBmuY4hQst7P+oXBdG85UD5tJZdc9c+YMDh8+7G9CexMz2y5p3+FbjvsPfY025zop/7qeqi8WKzUHaLitGiU0PNu2bfMFTHbu3OknQOQNmctVahVzokgO6HA/4TlZVwOjGGyeeS6XqyrxZ31xVKLsulllaFMz+fAzwcUqtCeffNIrJi7n/zRuNLD0wVGR2OttR8Wti4WDTXyQ1q9fXzWQwoLgNBr0RdP1w5j1gYFSXV0qNSp421Wn6+eZZ57xUQx0l9gKbzQGQCkczMah8zrQOLNQEO+B/v5+70ZiijZfUNx3SD6f9+4B9lrYG+BMzy0tLf4Fdu7cOZw8ebLqxQTAz0/HqBNiK7iF93jcfczj8WXKez98vpgRWSgUqmLWLZw1uVAo4J577qnav60EBpRsAg0oY55bW1v9scJBZAB+UtAzZ85g6dKl/n6wtpDr1SOV0WWqoDUQ/M0vw14gvgV44Wbrt41Tq2lgrdEwmuHkyZPo7+9HZ2enD5C2hiQuZCypDTbUxq4fOv3D2OMQW4DGGmM+DN3d3b6MXXh8rrdhwwaf8bNx40a/zIb55HI5PPPMMzhy5IifAodKAEBVvjlfevxNpc5eDbv3uVylQA/bwvRXxgVv3LjR33yMZ6b/lu4N/m+Pydx2/s/uP8PK6PtkcD+/a05vwweGXXAabeuO4L7pkrHX3EZo8L5g95YPcS6XwxNPPIGHH34Yvb29GB0d9fWg+WBzPcYHW3831RaPTT/zK6+84tvO3gd9qAw1pPIGSg83DXRHR4cv5m/dDTQmDIXi/R4mTXCgjKGL9l5jkR6mv7KNLO1Yb+DI9ojjlLkVKqwuRxcYnymqTuvbjnND8O+jR4/6626jcmyRLA44xyVmUXTwO2c5gmKxEoLHkquEvdVwkC+OGY1u2JUJXQnhBacy4s0eNwIZXvwkf+fWrVvxuc99zoe1UOEkrc8MohBeBHa7Ojs7/Y2ftC+2K5fLxapduw6/nPHxcR8uVe+8gNrBuccee6yqWhsNqB3w40BG3EAiDbitDRsabKpPPnhHjx71A2fcJ2MYmaTBbej2sdBHCpRqF3Mgi66fQqFS5o5Fehj6xvOnK4AzXTADiBls/M7trBoAfElEKq1169b5CAw+DDwndgGZPs1wMzvdN0s1cuYT3sPsVhYKBZ8Cf//992P//v0YGChNcc8aBHZgZdOmTb7+AicJZUIFnx++MNetW4edO3f6pBlCtW4fYut6o3FgyrUNleM6DA9jBTE7pxpQUZy2hkbc4BFfYlzGF1acvzO8t8PnzCpQrs/IFF6TcN+2fkISLFHJ0EIbtWOL91MkWIPL+53PO885rM9gxQnPhbaJLqi42GjLjEaXcts6qUNjYh3g9sbjtqEbIjS+4ZfC5Xv27EFXVxcOHDhQNVo4k7GsRz6f9/UxSb192Rve+m54w7C7yv0wJTDcNjw3Wx6TD8zWrVt9zVJuz65t+EYOa1lQRYXhb6G/K/SL2yIqzBRjmTy+pF544QUfNshuHrv3NFz0ydsX7vr1630EAG/gkydP+oEwW9YPQFV5Sj6YFqp/XhvGXnIgzQbD011DxWKNVaFQ8P7t3t5erxbZC7IV2+gn5bFpoFn71p4z/eTsVbC7y6xF+2DS5TAyMuJToHfs2IFHHnkEuVyuytdOo2+fl3Bwl9h6GNatx/uMdRaoiGkgrKG0BWzsvULjyCSpmUKj6NO29yC7+aEbgpEOITYpYiafL6+Pnd6J91CYcMR4el5L+7Lid8T2MPyQLysbx2ufpxUrVuDVV1+tSTUOaaj7KWqd21a5FItFHwTO2qNUuoODgxgcHKwqym0vzkzuA65vj5900bkvW1YxhMaIFYgsVh3abjm7HzYqgkbVtoXqjG9POzho22fPmdNiW8bHx31Rn/D8GM5lkzqSsNfX/s0bzw7c9Pf3+3awcDXbQSPG4uN86/Ma0H/LaA122egb5THy+bzv3haLRaxbtw4rVqzwxoCG094/fX19uOeee3DXXXdh3bp1vqYHu8WMgmD0A0OBOGDK82W9Bs69xheGndcKgE+yYP493RktLS2+Ni5fsqy2BVRcWoODgzhw4IB3CbFCGl/ydiCQ030zbffgwYP+BRd+j0DFXUU3B+8/axjtvRQONhKeu40asJ/btG/ux8Z6k6S4datMeV1CxsfHY5/pJLeetQNxRt6KPLs+X1wM7aORpV+fPQX7GZ/d0I4w+YfuFb7EeZ+SmXy5ZEalGxcqxouQNGBmXRDhKHR4YYDSCCiLhdvi3OFDEX4hTIm0I/hx+7fwM5Zti/NTW8VK53pvb6+fPYHXhH5rfmkMqyoWi9i2bVuVKqBh4E3G7nBooFnLk1gjHjIbvzcNt82Yy+VyePLJJ6sy0qw/lyFjNjWZyo6+V6CSEFAsFquiXNrb2/HCCy94dcjvz/o+c7mcHy1myJmNMmAhHZbUZCU0m7SxceNGjIyM+AeQaobnQ0VTLBa9j5iZelQsNM69vb0+ZhuoFHZ/+OGHcfbsWZ+bz/aHGVw0stYff/jwYe+75n3FmQhyuZyPFT558qSfLJPnYEPveL7WANHw0iizHTYMLEzz5m9uy/uIoVM8niXO+Fqo9m3b7D1HQsMZ/m+TRcJ1wlTg0KbY54E9KJah3bRpkw/BtOdULBZ9urnNquT1oRK2A3m2984sODt56bym6+GFixtUsjLc+pDsNvzbXky735DR0dGqG9qGdfX39/t6n5T6XV1dVSPo9GtyYIg3FRMHGExub2BbiNp2YeyXbmfJtSXewsIiNsOot7e3rlEMu8407Ek3ddL3MNM1Jfw+rMElNluNgzeMUeR1sgNuhULBz/XF+cPi9v/Nb34TmzZtqso843rf/OY3q9IqgUqlL3bpgcogLgfXqM4Y/dDb2+ujMmjMODhlVaDNguNAEoCq2TdYy2J0dNQbf67DtFq2jbG+LS0tPiuNboJXXnkFDzzwgJ+kcfPmzd4VUigUvCLK5XK+7gKrwXH5wYMH0dXV5c99cHDQF7qxvQagMuIf9qhyuUrc8saNG70/N4l67gLefzSq4X1q3WyWJBcFUO0aCY8dp2z5fIaRDVbs8Ti8drlcDvfcc0/VpLDcL19qfEHbc2HP1boPbMozYYYaY/WtTziJBZ/+9KcTP/zMZz7z6ebmZhSLRUxOTqK5udk3anJyEuPj45icnEQul/Of2dHFtra2qm1DQ1wsFvGFL3wBX/7ylzE+XpoZltk/o6OjuHLlCjZu3IiJiQl0dnbi0KFDGBgYwMWLFzE0NIQTJ07gwx/+sA8n4gPJue3HxsbgnMPFixdx7NgxnDp1CosXL8Zbb72FsbExDA8P49SpU1Xn09zcXOVn4v6mpqbwJ3/yJ1VFzJubm3Hs2DF0dHQgiiJMTExg/fr13qg3Nzejubm5SpXZLxYAmpub0dPTg0OHDvkbgIMJQMkQ8WbmNU6i3ufNzc0oFApoa2tDPp/H4sWL/ffC74Y/k5OTACqj7KdPn/b1ZdevX4+enh4cO3YMFy9ehHMOp0+f9tezubkZuVyuyh8a+pa5f+ccli9fXuUj5KwQbW1tGBsb8/cTBzNWrlzp/ZAcbOvp6cFHP/pRFItFRFGEzs5OnD59Gh0dHXDO+Z4ae0vNzc2+dsGxY8ewfPly5POVKXBWrlyJ2267zfuceV8sX74cL730Etra2nDx4kWsWbMGg4ODuO222zA8PIwoitDa2orbbrsNhULBuyGGh4cxNjaGAwcO4NixY2hra0N/fz+am5tx6tQp7Nu3D7lcDsPDw7j77ru9Yr7vvvv89SgWi/jkJz+J/v5+DA8PVxnd5uZmOOfwta99DVNTU777zO/24sWLPuSMbe/s7MTFixfR2tqKyclJHDp0CE1NTf47am1txcTEhP+fpT8BVK1H/+nk5CSKxaL/jN+xNUJ8zu68805MTk6COQK0I319fThx4gSOHTuGW2+91W/X1NTk1yG8jrzneB24zvLly7F8+XJMTEzg9ddfR0dHB9ra2nydYg7cTk5Ooq2trSqmePHixZiamsLg4CCWL1/uXzajo6NYtWoVvvnNb2Lx4sUYHx9HU1OTN9irVq3ybdm2bdtnkp7FVEXMSTgQFvqguMw+aKHCsX/T72JDlThhXEdHpZ4puwF2am+gdGPQOW4HZOzobJyPN3TKs9tK48Z20O/DL+PIkSN+FtJcLudVLoCq6kxHjhzx062EqaxsX5wCAOoPmMWRxsUQDlZwgIkhYXaU3A5wsLsEwCtIlhu0g1V2dJc9Bho5KkCrGBi7e9ddd/kZMNiljhtksbGT9CPTLcHuIw0VB+yA6hFw+mi5vLu727s8OMhmw+B4P1Atbtq0Cfl8vmomaNaDzeVy6Orq8lO/M2Nq/fr1Pjrj3Llz/n4H4KMeNmzYgG3btvl7x17Hem6lUN0RRmbQRQNU7jdWR+N52bDGUFXG9bjscxMqUTvQzf+BWp8rUMmgo/LkvcfeVuhvD5XjTCGedCUAlcFc9t6sf5wvIroQef9T6fK5pJ0ZGBjwPRD67cfHx30JSO4/zi5a6hpdm20CVEZEGR8YhhBZaLCs+4HL+cCEhS7CrBl+sTSCto6oHeW1MzWENypvLBaMGRkZqWk3/TLbt2+vMnK2AAjL1T3++ONVoS5M6+SDu2PHDrS2lqbB7uvrq6riRP8ia6oCM1chI1TyNk54JoMbhgA9/fTT+NSnPgWgUj+CkwFyBN920UJyuZw3uAB8hS27/sMPP+xrmZ45c8anogKVkow29IfuCWKnzLb3ztq1a32QPpfRD2szI61/mvefzXJjST+2ifn3NBrWrUEDySLjjz/+uE8MocoG4Lvt/f39PvmBhcJZw8G2b+nSpTh58iSefvppf/3YNbXnx/CyMEMNqMTfcr80olxuU3F5f1ojy21Y5pTMlClmExmsAY67V+JcknxmOSgYty1FlvXl2nXjEnt4Thyw5Da89rzfObZi3SXsadlQWCbH2EE2hv7xWQyLHLE+8rxCxuIyouxJh8VMwsQB5qHbG4Dr5HI5PPDAA359O7UztwXgBxoGBgZqCk/z5mQFfk5zYsvc0ce2efNmP4cXv8xdu3ahWCziueeeq3o4bVA4UMmeYmYX33ybN2/2lZ6YQsoMt/b2dt+dZUgTH1Zr2Fm6LknRbtu2Dbt27aqbNRdifV/W/1YsFv00R9xnS0uLN0i83kAlMSLsqTAbhwM0LBh+9OhRbNq0qeqFZrPTgIq/l3GUHBWm35aKg+vyPuEAJRMObL1Zq7YJ044Zn8nEBCoQtr1YLFalHNvQRzugeObMGfT39+Pw4cM+k4lJHkBpoGzjxo2+fXRzUV3df//9/mWwf/9+/zzkcjnvUgoHwAD4F7aNoybh/WL9u1S4oZ8TQI2ituMQQLLCtYSDiOzZ0GAzFp7GKVTk9p4MM9doWBkbbsPUbI8tbowjl8v5msl8ufIlwZ4GUKkPYcsL8Fm19xF7AOyt2jBCZkbyJUcBcPToURw9ehS7du2quY4kVUZaiP3C7d+2e0alEAZB27cQ66oyGwaoGNLQNWHjFkPV3N3d7SsMdXV1+dCf9vZ2vPLKKxgdHfV1Mu3svgzV4Yi7nQLHuic4wELD2dJSKmT+3HPPVbk0OJkgv9iDBw/iwQcf9AMvcSqc58oar+HDxIfSTl0d3mwAam7MJBVRLBbxB3/wB1VqiMe0oTInTpzwxovV1+hqYVlDjnavX7/ep6gODAz40LNQbdIXzn0DFWXLsnxsB9tqjT8NBgc+rYHkvcAHly83jlZzIM5mvvF8qKLj1L0dhOOEoMVi0b94isVilbAoFAp+HT7YLCFqowO6u7t9DYddu3b5wbbOzk4vGngN+L2H7bIFfcjnP/95X8/V3itWRYfbWEMzk9K1A832WQbg6yOHPUmbHh63H/7mvnheTKXO5/P43Oc+h1wu519Ecc8AsW6BfD5f5W7kvcXCRbyvw6I/NjaXP+wxUMgxEobiY//+/d4+1GNORjfOl8ST5cVIGpW0y+z8ZjwpWyDHYqsR0fi2trbiqaee8gNPR44cwYoVK7wfjTMHU/VR2XDEGSh1De655x4ApRtu/fr1vrpSX1+fj6l86qmn/LYrVqyoKV4OlLrWe/bs8Z9xim/OcGpnQeDx7LV7+OGHa3LKQxcMr3/c9Uz6sjdv3oxcLudfTMViscrIhD5nQtXOG//MmTMA4G86Lj937pwPL9uyZQsGBwexYsUKnDx5Etu2bcPzzz9flTJMN8X+/fuRz+e9e4ffP9tk7yN7v/EFbHPjraLjy94arn379nklbruWAKoqfcVdA3uNGLnCF7CtDAeUwtfoyuJ9x3uK0Ajs2rXL75elCKnI7733Xl+Dl98tn5fVq1f7l7C9hzjxI1Bd9S8UMXzWqESte6ee0rXd/NBorl27tiqrzWLbGIoDG8pGQ2lfYIVCpUgNr5Od99B+b9Zg0uBSNAHwL2J7j1mVa2cMtgNrXIeRJIw/t0WuKDIYWlaPORndJD+k9T3xzWZvGqA63o8G1/4fqi+g2lnOTBHe9EePHq16U9t8aF4U217+bRWHNfJ0kHMqHt6Q+/bt8wkArNTV3d2NTZs24ZlnnkF7e7uvbUCfbS5XCpuyhpfnGhpfuj74AmE7+cZPMgrhTW73u27dOvT09HhfdZxxDdNreeyOjg7/9n/llVeqVB5rxrIK1+rVq6uyyjgVULFY9PNXAdVhYnRdPfzwwz59k1ilG95rXM8aXuvTsy6MgYEBr3BPnDjhY3PZhjAG3R6D6mzDhg1Yt26dD1fkJJGcGZjHzOVKyTQ0uLwPuD8qeXZTc7lcVaoxDYM1lNbHuHHjRmzcuNHPckw/Ynd3d9UMI0BteGZHR6mCW1z32caj2/sxzvha4x0mRXBQzJL0Mid0IfBY+/bt8z3jLVu2JLaDbY+zQ3YQjW4Pex1tfDhdIdZ424p49t5ib6tQKFUW6+rqQqFQ8MX7eZ1Z36MedUs7Pvjgg5F9G1p/E2MjrWPdOqN5QqETPiTOlxkuCweOeMxcLleTRWO3YdwkieuS2JucN2CxWKyaciNuG2sU6buj6guhumRtW2bF0f9mFQhQHQ/ILjcfMnsNw+tkB9rY9eF8YXad0MCGfjH7li8Wi1U3Mqe55sPPxAS6Vzjzgy0M0t/fj507d/p9AagqeM3jWuNplW/48HKd9vZ2n2pKpR2maPJ6MMIhdE/ZaxB+zu4tB8NYK5nT0RPGjoflPPfv3++jWqii6J+1ER/FYimZhvu2L1/7PdnMSHsd4q4ht7HnaZfZ+6G1tXq+sTiooqkgue6ePXtiY9vtGIF1L9BFEMbEj4+P+ypeK1asqKoTcvTo0aqs0W3btvlJacPaFDwGfa/ct1XBVNc2yYmFy8PrxoF8oNLrYSw3ByK5PwB+YoC9e/fOfY40fim84AwZ6u7u9jch/XicH4ol+mYyuAwHI0nG1v5tjfyePXsSB/vI3r17Y7s0SS8ADiwk7TfpPGZazuuxd+9e/8J6+OGHfRymHWxkCBcVLo2GDb/hTW2LyNPf9dBDD9WEaQG1CRnhIIs1eEDlrW+vDwfS6NviW55GmTM1HDhwAH19fejs7PRTx/A75MstNHQ0sDRcfPmsX7/eF4uxhsYaY1vkhn5c7ifunPnQxd1jdrCJ15wqv7e313d37cuJ17avr8+7r2igqPZZr5jhjQMDA36Qdu/evT7yg6FMvOb0JfJcmPATZqzZl64VS9YQMyzLqkh+tnnz5hrhwLA7qmF77YDKPc6Y9iRRQ2xyQvg8ct1XX33VZzuG29NfawlfKvzeeB2s+8T2lu1AWtzAMQd5Ozs7/TRFzGqz6eZ8hg8cOODrRNejrtG1GT1k6dKlGBkZ8QaXBbfZWDq8GULD2qIDAwM1EQoAqtIlrbsh7qJag8uBlTinfz0/cvg3CWMWZ3KGJ+07bnn4m7NBPPbYY3jwwQd9N8XOaMFuK3P0AVSF9/T39/sK/szbf/75532FLGuQwgSFej55wu9wdHTUF0mhP/H555+vmiWCD79Nu6XBLBaL2LVrF/bt2+d9lAcPHqzxyfIeYdgWq31xxgLbhbMvAt4b1k1CQ2TrMIfnSwMRvngIBwGBSvW6YrEULsmoBaBSUpJRMVRkbCfVVj6f9+FxtvBKoVCo8hPyu2VP4ejRo7j33nu9geAYBdvIdtuXr/XTWv9oX19fTQypfd7YM6RxsTMt8Puyrj26FGydhbhrbZ+t0JVn47LDbcKXgt0HjxO6S+z2fDZsr9uu09JSKWJvjXChUPAvQ96T9tlZt26dHzTr6OjwL0ru06YaxzGj0eVgFA9o33j2TcvP+RZl5AAvDN/W9fyTcX7cmdoXMhtjea1IMvRJcMaElpYWP7fW4OCgj6LgCC5QMX6bNm1Cf39/VZotu0d9fX34/Oc/H+tDs0ac29iRbBLXTQsHsUZHR3H27FnvFmEoF33gjF6gP5WlDXfv3u0NoJ3u3KoK3tysvVssFn2qsZ22Pi42vK+vD/v27fP3Vj6f98ajtbU1sSQgj2+7lVyX3dP+/v6qaccZ08kYXPb02D1l0gcL9IS+Tz4PfLEMDAz4sQMem+3gZJ1Hjhzxbhm+AEMXgvW1Uu3ae+jo0aOx2YEM6SL8Lvr6+rza5MtjYGAAIyMjvrYE222NrlWscfeR7a0l+Y2B6lq7dn92+zhXEeFLjMaW156uB6AyWGvFG6+RDRncsGEDWlpa/JhAPp/H5s2b8corr1RNhMqeTThdUUjdNOA/+7M/+7S19ocOHfKzah47dgzDw8NoaWnB8PAwAGBiYsJ/4UwHdM6hWCzid37nd3z6ok3XGxgYiE1ftctsaq5N+Tt16pRfp7W1Om1xNtDYt7a2+jTWoaGhqmX19m3TIsO2xG3PFOXJyUl/M69Zs6bqBhodHcXp06fx7LPPoqWlBadPn8bQ0BDy+TwuXryI5uZmdHR0YPv27Thy5EiNwaWP2aZO2lRsXse2tjYAwNjYGHK5nF9/1apVGB8fx3333eddS+yqvfbaa3DOIZfLYfXq1cjlcvjyl7+Mrq4uDA8PVynXgYEBrFq1yt/EnGmXfmLnnE8hvfvuuzE0NFTlcjh48KBPFx4eHq5KRy8WKym9ZHJyEpOTkxgaGsLk5KRP/wwVEY85OTmJpqYmDA4O+mW/8iu/4pUWB1UGBgZw22234cqVK+jp6fH3THNzM5qamrBq1SpEUYSenh7ceeedAIA333yz6rvmsXiNmUo6OTmJ1tZWvPnmmzh16hSKxSK+/e1vVxmKJUuWVIWm8Rliqn1fX59Pl7XXhtvzvuY14j6Yvn3x4kUfX0v/PLvqd955J4rFUjbi8ePHfd2JtrY2nDp1qqrH4pzD2NiY/456e3vR1NTk74vJyUmsWbMm9jk6ffq0b+vKlSv98rGxMVy4cMG3f82aNTh16hT6+/v9Nvb757nxe+/o6MDQ0JC3T0CpBzA2Nobu7m6cPn3af0/WCLMtAwMDGB4exvDwMG699VZMTk7iwoULPjbXzqDB72TOacB2mg6OPNtakWF3lS4FWn2g5OPjCHKxWMTevXurfCz13An273pq0hrNpNHO2WDblLQ/Hmvp0qWxg2dJ6xNeu97eXrS3t/uCJzzfLVu2oLe3F+vWrUN/f783rk888QRyuRy2b98OoHaEOM6VwOOFy+KuM6uocbDPqgymSA4ODmLTpk0+S5DbjY6O4qmnnsKDDz7o06CLxaJXHVRcVHiMkeVABKfvodpi95n1be+55x4/IBPnHgnPlb7wXK6UYMPJDEO/LhWPTdHl1N22zivPg/7qXC7nZ8SgMWSpRl4TRp9Y/yEAH0bW0tLiC+fQpUKV39HRgUceecQra87UsHHjRp9Us3v37qrplULVyutp3QNWARO6PriOTUSgAaIf3/r+49J8Q199qMaBdL3D0DbYAavOzk6fkmsH7axSBkq9SoY+si3hID/bFBa9Cd2XvG85PsMe45EjR3Dvvfdi3759VTH+SdRVus8+++yn77//fkxMTOCjH/0oOjs7MTk5idHRUaxZs8YrjJ/8yZ9EPp/3b5aBgQGcOnUKp06dQlNTEz784Q/jy1/+MjZs2IC+vj6cPn0aq1atQlNTE4aGhmqUrlUz/G39uVxui10UCoUZFWkc4T7b2tqQy+USwz6oXIGSsme30x6XhUYmJiaqzo3rHD9+HO3t7ejp6cHw8DBOnjzpz4dqbmhoCMeOHYNzDseOHcPv/rjr0igAACAASURBVO7volgsZc/t27fPF/UhAwMDXk3xbW9VLX+sYbLKl8usK+jOO+/0SnFkZASnTp3C2bNnsXz5cpw+fdorOR6fA5arVq3yEx6yQtaaNWswPDyMjo4Or3pWrlzplcLIyAg+/OEPV/lsqRBZwGZiYsJ3m9l+nh/P2aos/s3CRDzXTZs2eYXE/VDl8Bqx27h+/XocO3YMmzZtwpIlS3DlyhWf4ssX3EsvvYRcLofjx49XXevm5masWrUKbW1taG1txbe//W1MTEygr68PQ0NDuO+++7BkyRKcOXMGS5Ys8b2+1157zWc2LV++HL/wC7/g/YuLFy/2sdN0QzBul9/n6dOn/cDOiRMn4JzzhW56enp8D4DXt6OjA8ePH8fQ0JB/Mba2tuLuu+/2PSy6NY4fP44TJ06gqakJvb29mJqaqip6s3btWoyNjQGouMCsAl++fLm/JlSeY2NjGBsbw6pVq7BmzRrcfffdGB4erjLcPT09mJiYwPLly70ftaenp8q1wXu/q6sLy5cv90ZxaGgIra2tvjiXc85HjzjnfKH10dFRtLW1oaenB01NTdiwYQMOHTqEXK4UV85nolAoYHJy0icEffKTn8TExAS+/vWvY2BgAE1NTXjkkUfmpnTz+TzOnj3r3yQM6ubAgJ1NIHwr8S3GEVvOOEqn9e7du6tK7KUhaaDNMpPa5edx+7FhJPX2yRFs+3lcO/lj43LpfmGWVnt7u39bs6gK4fXatm1bVWKDPY6t7Ums0qjnG7cqJLwO3d3dvoYwrwm7t1TBdvBn+/bt3t95+PBhP+U2ozQ4ieaJEyeqSj1SFRaLlZqk9OV2d3fjqaee8kHpQKWMIfdtY23tQ2qvQzhAyGNaf3d4TVpbW73y6+7u9kavWCz6ClWtraX0UuvLBipqlrNJ7N6926cD79mzx8+QQb+ojaRgphNjeHmfrVu3Dr29vX4W6PD75lRDrNQFwBdS5+zO9BtTOW/atMn7IfmiYeIHpzaib5W9V96/XC8uEcDGTwOoqlPL753nwP3TXnAQjyrT7p8RBnze4tLUgepyBPTnMhrGigNGMvA7DsP6nn/+eV/qgBlqNmyW0Tmss21jsetRN05XCCHEtWXG6XqEEEJcO2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0hRAiQ2R0xfuGc67gnOsp//2nzrk/KP/9MefckFnvpHPuYz+kZgqRKTK6IhXOue3Ouf8RLHs9YdmnACCKotYois7OtO8oiu6Kougbs2jLL5cNesE59wPn3LT5v5B2P0L8MJDRFWn5WwA/7ZxbAADOuaUAmgCsCZbdUV73fSOKoi+VDXorgPsAvMX/y8syxznX+MM4rvjnh4yuSMvfo2Rkf6L8/0cBvADgVLDsTBRFbwGAcy5yzt0x046dc4POuY3lv9c6577lnLvknBtxzv3xXBrrnOtzzr3knBtzzr3inLuvvPxHnXN5s96fO+e+b/7/S+fcr5f/XuKce9Y5d84596Zz7v90zjWUP/t159xB59x/ds5dBPDv59JO8cFDRlekIoqiCQBHUTKsKP9+CcChYNl8Ve5uALujKLoBwAoA/222O3DOXQfgqwC+AqAdwO8A+O/Oue4oir4LIHLO3VVe/acBXHXOdZf/vxvAi+W/vwTgXQA9ANYC+HkA/9Yc6qMA/gHAzQD+02zbKT6YyOiK2fAiKgb2bpSM7kvBshdjtpsNkwDucM7dHEVRIYqiI3PYx93l338cRdFkFEVfB/A3AH6pvPxvAfyMc64LwGUA+8r//ygARFH0Xefch1A6r9+Oomg8iqK3ATwJ4FPmOGejKHoqiqKrURT9YA7tFB9AZHTFbPhbAB9xzrUBaI+i6HUALwP4qfKyXsxf6W4FsBLAa865v3fOfWIO+7gFwPejKIrMsu8BuLX894sAPoaSUX0RwDcA/Ez5h+3/EIDrAIyWXRRjKKnwTrPPN+fQNvEBR85/MRsOA7gRwP8C4O8AIIqiS865t8rL3oqiaGA+Bygb8i1l3+m/AfCXzrmboigqzmI3bwG4PVh2O4Bvlv9+EcD/AeASgP8PJUP7H1EyslTqbwIoAGgLjHdVc2fRJiEASOmKWVDuQn8LwG+j5FYgh8rL5h214Jz7n51z7VEUTQMYKy++OsvdvASgwTn3iHOu0Tn3swD+FYD/Xv78BIAFAH4RwN9GUfQOgHEAH0fZ6JZfHkcA/KFz7nrnXINz7keccx+Z1wmKDzwyumK2vAigAyVDS14qL7sWoWL/GsDJcrztbgCfiqLovdnsoLz+JwB8EsB5AH8M4JeiKDpT/jwqt/mtKIoYyfAiSv7kE2ZXWwAsBvAagAsA/iuq3QtCzBqX3HMSQghxrZHSFUKIDJHRFUKIDJHRFUKIDJHRFUKIDFGcrkjF7/3e72nENQW///u/737YbRD/tJHSFUKIDJHSFXNiwYIFAICrV2vzFqampqrWcW5+4m++21sYImn32dBQ0h7T09PX7DhCJCGlK4QQGSKlK+ZEnMIljY3xt1UURYmqlcvjlOi1JG6/VLhpj93Q0CBVLOaMlK4QQmSIlK6YN6FKnWm9+a5Dfli+2LjjKZ1epEVGV6SCxrCeoXu/XAIhHKCjoWObyPvV/U/7chGiHnIvCCFEhkjpin/ShCoWqFWaofqercpliFvSAGDScYWYC1K6QgiRIVK6YlZQRVp1+X6EecUp3JnaFLYtLTMpXFIvIUSItEjpCiFEhkjpilQkqceGhoaatN+QNKP+aVRqqKTD/SYd3xKq8jR+Wq4rhSuuBVK6QgiRIVK6Yl4457xPNEmtplGTSQrXOZe4fbg8jXqdi9+Z+2tqagIAvPfee6lUtRBxSOkKIUSGSOmKOWH9nFSpSWo1jb+W68QpyLTqdC5xtHbfScqZpI3nFaIeuntEKmiA5jJ4Nd91Zmt049afzYDZbFBqsJgtci8IIUSGSOmKWTFfRZc2kcJ+fscddwAA3njjjbrb0H0R18bweLYdsz2nhoaGGV0RQiQhpSuEEBkipSvmzWzSgEPfcNK+yPT0NHp6egAAZ86cSd2mmQbvZqNM41Ty+z3DhfiXi5SuEEJkiJSuSEU9RTefUX8SFiS3SnJiYqJmWT0Y2gUkR0VYRT3bedvqzfUmxExI6QohRIZI6YofCjON/vP/qakpNDc3Vy2baW60xsZGTE5O1l03LikiVLZhG+PUsXy7YrZI6QohRIZI6YpUXKvMq7SKkAq1sbERly5dqrsOoZptamrCm2++CQA+8iGMZmCZRufcvFSqFK6YLVK6QgiRIVK6IhXzUbhp1GBSPO2CBQtmXTz80qVLWLx4MQB43y6L1IQ1I65evZroTyby24priYyuSMVsDM5MA112nXD/oXG/evUqbrnlFgC14V9JL4LGxkYsWrSoahsa7rBtCxYsmHFmCBlbcS2Re0EIITJESldcc5IUbr16ulStYV1d51xVsoMlVMfc/9TUlF/W0tJStb+4toTbz3QeQswHKV0hhMgQKV3xvlFP2ZIktWpDu/h3kt839Lk2NjbOOPAXlxwRhpWF7bdhZkLMFSldIYTIECldkYo0qjVpmzjfaFLBcapIbhNFEQqFAoBKIRvr77XrWiXMmXvDUpIMIbM+Xn4WhpWFbdMMwOJaIKUrhBAZIqUr5k3oC01SoJZQRSb5bZ1z+MhHPgIAOHToUOw+4vzCjNOlH5afxc3km+T/1aST4v1ASlcIITJESlfMG/o6Q19o0rTtlqSUW3LlyhX/N4uZL1y4MHYfVMtXrlzxPl3rG45rWxrSKF7F9Iq0yOiKVKSpR5BkZOsZujRhYGNjYwDgDWlSnVu6EhYsWIALFy4AAHK53IxtiJutYqZtQjTIJtIi94IQQmSIlK5IRZLLwDmXqDzTKMSkLntnZyeAkkshrWvA7qu7uxsA8PbbbwMA8vk8AGDZsmU166YdSLNKWoi5IqUrhBAZIqUrUpFGXSata0O50qrgoaGhmv3ZmSHs/3Ft4DrkjjvuAFAZmGOSxPT0dGLJyLCtYfKEEHNBSlcIITJESlfMizQRCTaFeC7FYq677joAyUXM4/zMhH5YRjFcvnwZQEW11mtP0mcqeCPmg5SuEEJkiJSumBVzSSpIQ1hQxypRKt20vtTGxsaatGL6eMM04IaGhsTEBs2NJt4PpHSFECJDpHRFKtKovTAdt15JRxIWxaEPdnx8HACwcuVKvPTSSwBqyzLyd3icKIp8GUgej6nDYXGeNOcjxLVESlcIITJESlfMizg1WG9aGy4LJ5sMIx2oYr/zne/gx37sxwBUIhDCfYT+29HRUb9Na2tr7P5thEWozGdSuHF+4LkUeRcfTGR0RSqu1QAajV+Y4BDS3Nxc87mdN80Sugxuu+02n+77+uuvA6ikBX/ve9+rasdciGuzqoyJtOj1LIQQGSKlK+ZFvZCrOLjuTANadnlbW1vVNjOp7sHBQYyMjFRtG6rkuRStUQiZuBZI6QohRIZI6Yp5MVtfZr1wMgsVaUtLS81gWDjTb8gtt9yCvr4+AMCJEyeqtg3bPRulLoUrrgVSukIIkSFSuuKaU0/NhsuSQq9WrlwJAFi1apVXqQcOHAAADA8PA6gUOu/q6gIAP0XPhz70Ib8sTAMO1aqiDkTWSOkKIUSGSOmKa85c1CMVLhXpu+++CwB48cUX8ZWvfAVAKVECADo6OgAA3/rWtwAAr776KoCKiv27v/s7PPfccwCA7du3AwB+8IMfAKhELTCluF5SQ6jY0/qjhaiHlK4QQmSIlK6YF/VG/+eiDP/iL/4CQEXpLlu2zCtZqtRCoQAAWLx4MYDS5JWW6elpv85nP/tZAMD1118PAFi7dm3V76tXrybG387kf7YoDVikRUZXpCJNN3w2n4dddoaFtbe3AyiFigHAyMiIDx/jujSo/D/OuN9www0AKoaa+3j55ZcBAJcuXQIAbNiwoaZNaZCRFXNFd44QQmSIlK6YFWHdW+Daqr5z584BqCQzTE9P++I3SQkOcSR9xnbbz9Mq3LjznE9asfhgIqUrhBAZIqUrZkXcDL9zIaxry99M32Xo2OTkJJ5//nkAFb8vCWcdJtPT035ZUglHhozNpq1xSOGK2SKlK4QQGSKlK1Ixl2Iv9Uohhp+F4WCcFWJiYiJxXjWSNJOw3Y+dXRioJEvM1E6L9WcrekHMFd05QgiRIVK64n2jnnIM/bHFYhFARZEy4WHNmjU4fvw4gNppegiXWz8ulTOXhXOyWZ9u2JakJAkbFzybWYWFsOiOEUKIDJHSFdeMNL5RqtLQx0pl+hu/8RsAgEceeQRAKXOM2Wnj4+N1929VZxi1YON+AeDKlSv+/5nSlaVmxbVEd5MQQmSIlK5IxUx+z6RlITayIG5bFqi54447AJR8r6dOnUp1HKtIQ/9vqHzfe++9mnW535mUrXNO8blizsjoilS83/OD0Yix2x8OrAEVw8lBMG4T5x4IC92EzCY5Is25a/40kRa5F4QQIkOkdEUqqCLno+iiKErcnoqWg2Yf+9jHAJTmQ+OMvqE6ZT3dd955B0BF8d5www0+5Iy/GTLG87AzSYTKmYRtlZoV1wIpXSGEyBApXZGKaxE2ZZViWDiHSpQ+2C996Ut+PX5GdcptqHBDBXrp0iWvnMNBsvB8nHOpBs5m+iypsI4QIVK6QgiRIVK6IjMWLFhQozzpY6Vfdfny5QAq0+hMTEzg6aefBlCZgofbstQjVS33ceXKlaqQMLsNVW2YOmzXScKmGcu/K+aKlK4QQmSIlK64ZsyUTpsUMwsA1113HQAgn88DAM6cOeP3xel6GLvL44TRDPT9OucSp/YJfchAJWohSb0qikFcS6R0hRAiQ6R0RSpmUrH1tiF2WyrRMKuMcbpc9/Lly4mpw1SrcUo1SY2GCrixsbGuAo/bJg6pX5EWGV2RChrBNJXE0oSXzdSlt0b+4sWLVduE+wjbFkWR3z6pvbbq2GxnjhBiPsi9IIQQGSKlK1KR5CqwsyjwNxUoB7o4EGbXZZee63Idpu3SpdDe3o53330XAPzvW2+9FUApRdgSzixs9x+mMYdKOI56iQ/cH9s5G7eL+GAjpSuEEBkipStSYWfCBaqVb6iCqQzrqcDQP8pwMA6OcUDtnXfeqUlkGBoaqruvuOSFsI1WxYYK2fqG4/Zv9yWFK2aLlK4QQmSIlK6YFeEsu3aOsdlgC85YmL7LlN+mpqYa/2lcCq+lXpRB6FNuamry6jrcXz2Fq3nTxFzRnSOEEBkipSvmhJ3FNylxYjblDpuamqr2QcV74403YtGiRQAqft/ZxMuGftowhXimxAi7Tdx+hZgtUrpCCJEhUrpi3oQxsEmj/rYQTaiCbVnGkKRtws/t8en/DdtA/y3jghcsWDDrAuRSuWI+SOkKIUSGSOmKVMxF3YXKd3p6OjZrzK5D/y2V73vvvZdY8CaMZuD/V65c8QXOe3p6AADHjx/3n9nfzz77LD71qU8BKGW/AZVpgZgdF6Ii5mI+yOiKWRHXlU9bb7aeobLdfQAoFAoAgLNnz/pZf0M3QGgUOdC2YsUKv4z1eZlsMT4+DqBSv/fNN9/EH/3RH1Xtf9euXQAqhpn7tYV1ZHTFXJF7QQghMkRKV8yKucyiEKeKQ8XMAa7z589XLV+8eLF3OYQFdcLZIOheaGxs9Cr4xhtvBFBRrdzWzqsWtunxxx/3nwHAzp07AQBjY2O+bWnLQQoRIqUrhBAZIqUrUlGvzGHadeNUYRgOdvPNNwOoDKhduHDB/51UWIcDaVTLjY2N+P73vw8AOHHiBABg7dq1AIBcLgegopI7Ojq8z5bqmPtJGkhLOhch0iClK4QQGSKlK2ZFUqjXTMvS7o+Fyq+//noAwE033VQz62+4/1At33HHHT6NmHDKH65jZximorWpzYCK2oj3B91VQgiRIVK6Yt7Mxr8ZjvonJUsw2uCGG27wSjSpYHi4j/HxcR+Xm6S648o5cllIWIZytmnDQlikdIUQIkOkdEUq6hWzCVUqfaJxyjFJFbO0I/23VLUTExM+pTfJlxuWljx//jyWLl0KALh06VLVZ6Hfdmpqyrcz3E845Xu4j3rnI0QSMrpiVqRJjmAIV71BtzDBgcaWxpfbLlq0qKaOblJVMxpNO+sw3QwcWAtfBFNTUzWhZ2HNXWJnEJ5LkogQgNwLQgiRKVK6IjOsGgzVMFUklSgL3tx44401s0qEhG6HfD6PJUuWAAC6u7sBlArbAKXZhYGKil2wYEHNvGlJ7gUhrgVSukIIkSFSumLeJM2RNhuoeFlykf+fP38ey5cvrzoOCQf1qIjfeecdDA8PAwB6e3ur9hv6g6empmr2y8+ofMMZkIWYD1K6QgiRIVK6IhVpUmKT1qmngMNtwuiCpqamKv8rUDuDbxh90NTU5Msw0jdMFcx1rXrlsoULFwKoFLoJZ6awil7RCmKuSOkKIUSGSOmKVIQFw9MQRiZYxZukFMOC5IVCwSvPUOGG+6J6XbRokVe4YXxu+Ju+XruMsA1UyfXaruI4Ii26U4QQIkOkdEUq6im5cJSfhKP9dh+hn5fqkX5VFrxpaGjwajVpipwwM+38+fO44YYbAABDQ0MAgGXLlgGoqFc7yWTSOYa+XCGuBbqbhBAiQ6R0RSrqjdZTPSYRF986k3qk4p2cnPS+1jAzjUo0VMA33nij9+kyA41Kl9uyiHk9wjbWK+QjRFpkdMX7Tpo6tPyMBWqs+yF0L4QDc3HzrP3gBz8AUJmJgvuIq5YWDsTN1EbnnFwOYs7ozhFCiAyR0hXvG+z+0/0Qp3ST3Bactffq1at+O+4nqXtvZwMOB+rC9F+6FyYmJmpmnuDxwlCxuHYrNVjMFildIYTIECldkYrZpL0mhY4552acIy0cNHPOeVUazvDA/8MBrhtuuKGmGDpV8qJFi6ra1NDQ4LdnujH9ypcvX65pf3hORGnBIi1SukIIkSFSumJe2KlxSL3peupN4WP/Z8hYS0tLTXRC0vFsYZyOjg4AwNtvv121DlOKqZYXLFhQk148Pj5edZx6flspXDFbpHSFECJDpHRFKpJScOdauDyMuSVhxEMul6uZmDLchutSHTc3N6OtrQ0AfInHMKXXloMMky1IWEpS0/eIa4GUrhBCZIiUrkhFqPLSlHpMKmoT/m3/p2qlul28eHGNT5X7Dadvt8tZspGRCOH+GekQV26Sx6P/NzyeJUmxC5GEjK6YE/WMTJIbIM5ohd19rnPp0iUAwJIlS3zIGFN5GQ7GbcM5zaIowuLFiwEAFy9eBFCqxwDUGl3nnDfac5n5QgNpYrbo9SyEEBkipSvmDZXgTLPmRlGUOBhFxcg6ulSi+Xzeq1YqUf6msg27/8Vi0bsX7rzzTgCVwjdUtWzj1NRUzRxrSQraHlcKV8wVKV0hhMgQKV0xb0K/bBJpQq4Y9kVfbHt7u1enSWFfYTsuXbrk/6ZK5oAaSz7a9OMwmSMsHcnjE82RJuaD7hQhhMgQKV0xK8Kwqunp6Wui8sJZgOmTLRaLNYXNwzaEpSPPnz9fVdAcAFpbW6uOQyYmJvz2SQqaoWNU4ULMByldIYTIECldkYqkZIYFCxbUxNjORvmG/tPrr78eADA6Ouo/58y+jNcN42ZDn6td5+jRowCAj3/84wAqacFsvy2oQ/g/C99wvrW4edXkyxWzRXeMEEJkiJSumDfhxI5JBWLiohu4LCmyYXx8HAMDA1XrhhlqS5YsAVCJTLhy5QreeOMNABXlPDw8DKDiK+Z0QLawevibWWzheQJSuGLu6M4RQogMkdIVqUgzEeNMJRDjCt6E/mAq0c7OTgClKXO4P2arUWWuXLkSALwSZnRBU1OTV6lUw4xQ4HI7PVA4ZVCYYZc0EWbSuQlRDxldMSvqGRcaNlLPQIf1eWngaHQ5l9n09LR3G6xYsQJA9VxoQCWRgts0NDT4gjk0xH/zN38DADVzp8W1kdvQuLPiGbGuBRlbMVvkXhBCiAyR0hVzIk14WJo50pJmouBAWGNjo1e24UAakyZChe2cq3FJJCU2WKUbzrXGUDGGr/X09Pg2aiBNzBXdOUIIkSFSumJOWKWXNH9ayGxmA+YcZz/yIz/iB8MuX74MoFLgnP5ZKlSq2dbW1prPSJhYYUs7JhVdp1quh3y7Ii1SukIIkSFSumJWzCXVlzQ0NCSqYi5nYRpGJJw5c8ZHKTChgT5drsOIB9tG+oFZrCYssM7PbXgb9xuq77jSj1K2Yq5I6QohRIZI6YpUhPG0JIqixJKIcbGwMylE+mJtMXNGKTBelokTVLFUrbYgTjjZZOjb5XnE+aYZF8z98/96SPmKtEjpCiFEhkjpilkR+nTjUnvDco2WUP2GKbiMuaW6nZyc9JNK0nfL/+njDeN0raqlSg0z0WyZxnDCy7AIT1Kb4z4TYiZkdMWsCAfQGhoaaoxr+L81UjOFl3E5jeXk5KR3NfAzho5xVojwRXD16lX/d5jSW29+MxrZcE62uNRhuRPEXJF7QQghMkRKV8yLOBdCiO16U03WU8NApbjNW2+95ZdxYItuhtCdEVebN1Sx4bxqNs04rGIWqu56rgQpX5EWKV0hhMgQKV0xK5LCwuqtaxUiFW6oSvk//aeLFy8GUFK3Fy5cAFAJGaPSpW+XCRW2BCP3S0XL/cbVxg1nE6YvNwwzs+csZSvmipSuEEJkiJSuSEW9MLAk6pVxTPqMflum/l6+fNkfm4qUijZMZiALFy6sUamheuW+Jicn/d92NgmgUnSHbaqHSj2KtOhOEUKIDJHSFbMi9MFaklRwXGxuqJy5X065c/78eQDALbfc4ks7UoGGabqc8Zc+3uuuu66mLWFaMHHO+f1SBXMdFjGPiwMWYq5I6QohRIZI6YpUJKX4xsXghjP82tjcuIw2C1Un1W0ul8NNN90EoKJ+Gb3AdYjNJEtK3eX+rXrl39zexvACtT7jOMWeZsZgIQApXSGEyBQpXTEr4hQuSZpWnaQp/h1GMQDA7bffDgB4++23AQDvvPMOgErBm1CFFwoF7+elGmacbthuqlv7Wah4qXStn1jRCmKuyOiKa07Yta9XgSv8jK6D1157DUDJ0DF8rKurC0AlZCxM37U1ckNjSyMetmlqasoPjIUJGtxHuP+4gTQZYZEW3SlCCJEhUrrimjOfBAqWYmTXPp/Pe1cBVXB3dzeAirshLMnY1NTklad1H8x0fCpcOwMFUFHU9RS7wshEWqR0hRAiQ6R0xayICqzixAAAIABJREFUK3gz06wJ4ewQdj+h0qX/1vprQ+VMH+uNN95YtY1NZgh9uGG5RqrjqampmkLnocKlWq43CKgCOCItUrpCCJEhUrpiTtRTr2FSRJr5w6gy6be1vlgWMu/o6ABQSg0GKtEFcam9VLr0DbNNYWQFVW7cZ2F0RKia444txEzojhFCiAyR0hWpCGfMjUujDRUuqTcZZDidTjgJ5NTUVE36b+iXpVq1CRBhO6l4wxl+GxoaatpCWECH+6cP2W5PtT2biA3xwUZKVwghMkRKV6TiT//0TwEAS5cuBVBRf11dXVi+fHnVuqGatHAZM85eeuklABXFuGTJEgCVKXhaW1u9f3d4eLhqX8xQswXJQ6h+wwkxbfZa6O+lL5fxwO+++y4AYPv27QBKcbxs7x/+4R8CAMbHx2uOLUQcMroiFRcvXgRQW5f23Xff9d1uzrRQDxrI48ePA6idE431dBn+1dTU5NdpaWmpOjbbVM99EdbIDdsxPT3t98vjMM2YhjSsB3H16lX/Ges/qMqYSIvcC0IIkSFSuiIVDNv66Z/+aQCVbvrExETNYBjVZahA7WATFS3htlTNrOw1Ojrqu/IrVqyo+iwMGePvuBA1tilM8W1oaPAKlvsLC+AkJXIknZsQ9ZDSFUKIDJHSFakIB6ToEwWSZ/aNmyWCn1HRhmqVCpiDc01NTT5kbGxsrKot3FeoTMO/7bpcHjfYF6YK8xzD0o6Tk5M1qcH0QQsxE1K6QgiRIVK6IhVUl0eOHAFQiSRYuXIl/uqv/goA8Fu/9VsAamfRJQ0NDTWFwulPDUf/R0ZG/HIWtGFUQRiZwLaQKIpq1DePR2xUQzgbRqigiS2AE5aOlE9XpEVKVwghMkRKV6SC/kz+ZvGZOFUZlyocEvpLqUTPnj0LoBJl0NjY6JUs1w2jFEI/7dWrV70C5TL6jplKbNuYpHDD86LSdc75c0uae02IJKR0hRAiQ6R0RSrCCAGqvqmpKV8YhoRFZuL8nVSIzOiimg2nxpmamqrJSAujC5gdZn2w/Izrch9xKpbHTCrqQ6i+oyiqiVYI/cpCJCGlK4QQGSKlK1JB5UhVyJjZxYsX+wiE0HfLdUOVCVRUIz8LfbBcd8GCBb7gTLhf/qZatr7ZsPxj6P+1/maeW+jbZZtY3McWxqFvWIjZIqMrUhF2+5mKOz09XVNPN8QWyQlnnAhDuULjvmDBAm9U6UbgZ52dnQCAc+fOVe3TQuPNbUIDOjU1lVhPN2ybTbAIjbcQaZF7QQghMkRKV8wKqj0OHI2Pj3t1mhQ+FTePmk2ptcv5m8snJye9Wm1vbwdQqW/L/cYVsSFJoV1xqcpJ6/I3z7OhoaEmmUOlHUVapHSFECJDpHRFKkL1Sv/qsmXLcOHCBQDVyQNxTE9Pe2UZ57u1/1O95nI5f2weh7NKUAGHSntqaiqx6E7of164cGHNumFYWTjrxPT0tB9IU1KEmC1SukIIkSFSuiIVVHRUgSzN2NjY6Msxct6znp4eAJW03bgi4FSn4Qy/VNAMQ1u4cKFPvuB0QFTDbAMTFcICNUDtzMRhOnO90o5hu21oWRi9IMUr0iKlK4QQGSKlK+aEnf2WSpAlHj/xiU8AAPr6+qrWnZ6e9uuGhW4YrcAJKql0gUrUApUmFe0777xTtS2xBdZDvy+VKX3Gtv1xhXksVMdXrlyp2d9M2wpBdKcIIUSGSOmKVIQj+WGKL1Dx5R49ehQA8I//+I8AgAceeABApbwiUJmWhwqRypdw/8Vi0a/DYub0A4fKN0whtoTr2G2TJtYMz92mKtOHy8LqKngj0iKjK1JBIxN2oxctWpRY7YsGiUayra0Nx48fB1CZA+273/0ugOoKXgDw9ttvAwBuvvlmb9C4jO4Gwv3bVOWwnTSoYWovkFw3lynDYRWyKIp8GvTOnTsBVIzuL/7iL9bsXwiL3AtCCJEhUroiFVSIDM+icrRKl91vFqihO2Hp0qUAgC9+8Ys+seH1118HUFGPS5YsAVAZQOM+rNuBIWNh1z5UtdY9EM4yEYaFLVy40Lc7dCsk1RBesGBB1cwWtr1CzISUrhBCZIiUrkgFFWeYcmuV6OjoKICKf5YKl4rxjjvu8Ar59OnTAIBLly5VHYeqksrx8uXL3n9KOD9b6EvmQFtzc7Ov92sL59i28X9bqCYM/+Jnto4ut+V5U5mrxKNIi5SuEEJkiJSuSAX9p1R/9M1ed911+PEf/3EAwOHDhwFU1OSJEycAAF/4whcAAL/5m7+J66+/HgDwne98BwBw8OBBABXFvHXr1qr/b7rpJh9F8LWvfQ0A8MwzzwAAPvaxjwGo+JdvueUWAMD+/fv9NoxsoH85DB2bnp72acZMK+a6YUlHrnfdddd5NUwVLp+uSIuUrhBCZIiUrkjFV7/6VQDAgQMHAFQU5MjICN566y0AFYVIlUpVfPbsWQDAr/3ar/k4VkZBMGphZGQEAGpm/m1sbPRFy+n/pe/25ZdfBlCJaqBftVgs1sTehkXTqXgbGhr8/sJ1CdtEJbxw4UK/Pc9DRcxFWqR0hRAiQ6R0RSqodN944w0AFWX6sz/7s96f+eqrr1ZtE05/UygUvF+WflKq1FOnTgEAPvnJTwJA1WSRFy9eBFBR1/QVM0KBPuTe3l7/P5VuGHlAqFSnp6e9+g1LOFJZ0z9MqG6Bim+bbRJiJqR0hRAiQ6R0RSoYGUA1uWfPHgDA4OBgTQwsfbpxMbFUsFS/jO2lX5U+3u9///sAShlv3M/NN98MoOLv5W8qVMbM2oLi4RQ8xK4TlnbkZ3F1Gvg5FTTVty11KUQ9ZHRFKlg5jCFfNKz5fN4bPxopdss5uMTfjY2NNUYwnHGBSRNhnV2gErIVzqvGdfl/Q0NDzUy+hAbWJjrQqIdGN6w6Zv+nC4KGPslACxEi94IQQmSIlK5IBRUuVR/DxL773e/6bj9dBZz9gYqXn0dR5Ovohum54Vxj7LYvWrTIK1t24W2xGgvVpp11mITzntm50kKXB1VsOPhm04SV/ivmipSuEEJkiJSuSAUTAwhV4U033eSV4bJlywBUfK433XQTgGo1GBaR4X7or2X4Gf3ExWLRJ0eEM/mScGbhxsZGr8jDMLC4Mo6h0g19xrY4On+Hg2/y6Yq0SOkKIUSGSOmKVDARgQqPIV6cQgeoqD6qSipDqtYLFy54hUmfaFgikX5aRhR873vfw+rVq6uW8Xc435lV1EnJEGH0wvT0tN+ObeF50IccRjVcuXLFK9vwtxAzIaUrhBAZIqUrUsESjOHMuddff70vbxiO5FNNMm12YmLCRzRw+7BgzJ133gmgEq+7evVqv02Y9hvG5yal/FqoVunbbWpqqomGoOKlf5nbcL2WlhZ/LCpoFbwRaZHSFUKIDJHSFamgDzccyQcqvs9w8keqSSpI55xXpYxW4DZUjiwDyUgE5xy6uroAAOfPn69qUxhXSwVsIxPC/YfbNjQ0+MgMRluwYDuVLo/LeOOpqamaqeLpkxZiJmR0RSpo2AiNr50NmIYsHICiC2HZsmVVFbrsZ1yX4WF0WSxbtgxnzpwBUKnHEIaIhQkWV69e9cY9DO0Kq49NT0/7c2FbQndCOHPElStXvEH+4he/WHXuQsyE3AtCCJEhUroiFWEVLasUCZUiu/kh1iXBGrlhYZtQNTc0NMyYnsvUYpt4EaYBs/tPBc19FYtF/1lnZycA4J133gEAnDt3DgDQ3d1dte3tt9/u28+6wvzs537u52LPXQgipSuEEBkipStmhS36ApT8p1SeSQrXFrMJfathqcelS5cCqCjI5uZmr5CpSMOkCCphKl47h1k4o+9dd90FAPjMZz4DoFSUh37kf/iHfwAAfOMb3wAAPP744wAqCprn99nPfta3L0ycEGImpHSFECJDnN7QQgiRHVK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK6QgiRITK64gOPcy5yzt0xx21/2Tn319e6TeJfLjK6H1Cccw84577lnCs45952zn3NOfeRH3a7/injnOsqG+hGLoui6EtRFP2rH2a7xD8vZHQ/gDjnfhvALgA7AXQCuB3AFwBsjlm3MVz2T5W4tv5zar/4YCCj+wHDOXcjgN8H8L9GUfRXURQVoyiajKJoXxRFv+Oc+7Rz7i+dc3/unLsE4Fedcwudc7ucc2+Vf3Y55xaW93ezc+6rzrkx59wF59xLzrmG8mf/u3Nu2Dl32Tl3yjm3oU67PuKce7m8nzedc7/K9jrnnnXOjTrnvuece8Ls/1edc3/nnPu8c+4CgE/HLSuv+2vOue865y46577unPtQQjs+7pw77py7VG7Hp83Hf1v+PVbuIawvH++Q2f6nnHN/75x7t/z7p8xn33DOfbbcvsvOub92zt08u29Q/LMniiL9fIB+APxrAFMAGhM+/zSASQA/j9JLeRFKRvoIgA4A7QBeBvDZ8vqfA/BfADSVf+4G4ACsAvAmgFvK63UBWJFwzNsBXAawpbyPmwD8RPmzZwE8D+D68j5OA9ha/uxXy+fyWwAay22NW/bzAN4A8KPlZU8AeNkcPwJwR/nvjwHoK5/7agAjAH7enENkr135eIfKfy8BcBHAvy0fZ0v5/5vKn38DwBkAK8vt+gaA//DDvif0k+2PlO4Hj5sAvBNF0VSddQ5HUfSVKIqmoyj6AYBfBvD7URTloygaBfAZlAwLUDLQywB8KCop5peiKIoAXAWwEMCPOeeaoigajKLoTMLxfhnA/iiK9pT3cT6Kon9wzi0A8EsAtkdRdDmKokEA/8kcGwDeiqLo/46iaKrc1rhl/w7A56Io+m75vHcC+Ik4tRtF0TeiKHq1fO6vANgD4GfqXtEKHwfwehRF/2/52HsAvAZgk1nn/4mi6HS5Xf8NwE+k3Lf4F4KM7geP8wBunsHX+Wbw/y0Avmf+/155GQD8R5RU5F8758465/49AERR9AaAR1BSznnn3F84524BgHLXnD+3A7gNJQUYcjOA5phj31qnrXHLPgRgd9l1MQbgAkpq/NZwQ+fcOufcC2V3xrsAfr3cjjSE1ymuvefM3+MAWlPuW/wLQUb3g8dhAO+h1OVOIgr+fwslw0VuLy9DWYH+b1EU9aCk6H6bvtsoip6Lougj5W0jAP9XeXmr+fk+SkZyRUw73kFJSYfHHq7T1rhlbwL4d1EULTY/i6Ioejlm2+cA7AVwWxRFN6LkOnF1jmUJr1Nce8UHHBndDxhRFL0L4PcA/Gfn3M8751qcc03Oufucc3+YsNkeAE8459rLAz+/B+DPAcA59wnn3B3OOQfgEkpuhavOuVXOuXvLA27vAfhB+bM4vgRgo3Puf3LONTrnbnLO/UQURVdR6oLvcM5dX3YH/DaPPQv+C4Dtzrm7ym2+0Tn3iwnrXg/gQhRF7znn1gJ4wHw2CmAaQE/Ctv8DwMpyOF6jc+6XAPwYgK/Osr3iXzAyuh9Aoij6Y/z/7L1pVM/r+/b/oiIllcKudqFZogGxMxS7oq2o7BDtjEUy08YWMkZSEqEMkSkzGSLSgLQNSeZkKElISJPKeT/Yv1/r/7/X+u617vvB78G9HA8/w3u4rvd1XOd1nMd5vf8hrxD+IZJiYDpw8j/8ZRVwC7gH5AN3/uszABPgEvCVf6LoWBFJ5x89dy3/RKtv+ScJ99d/uJ4i4DdgHv8s/e8CVv/19QygCngOXOWfSHTX/+H9nuCfKPvQfzky7gOu/+Hn04AVzZo1q+SfyeXw/+c41cBq4Np/SRV9/rfzlANu/3Uf5cCfgJuIfPg/ud4f+H8bzf7JefzAD/zAD/zA/wR+RLo/8AM/8AP/g/hBuj/wAz/wA/+D+EG6P/ADP/AD/4P4Qbo/8AM/8AP/g/jXzUBsbGzk6NGjODk5kZmZiZGREYMHD2bo0KEkJiby9etXvnz5Qm5uLm5ubvj6+rJlyxaWLVtGZWUl48ePJzc3l0OHDmFpacnZs2e5ePEiAwYMYO3atVy/fp2//vqLwsJCrK2tqaur45dffsHR0RFFRUUqKirQ0NCgT58+qKioEBwczMuXL3n+/DmRkZE4Ojqya9cupk2bRsuWLXFxcaGoqIhRo0axadMmbty4wZUrV6ipqcHKyoodO3bw4sUL9PX1ycrK4uXLl/z888+cOXOGmpoa/vrrL7p160ZVVRUbN25k9OjR5ObmMmnSJKytrRk1ahRdu3blyZMn+Pv7U1NTQ3l5OdbW1oSHh5OQkMDNmzd58+YNLVu2JD8/n9DQULS0tIiJiWHGjBm8evUKdXV1WrduzYIFC2jZsiWvX79GV1cXRUVF/Pz8cHR0ZPHixWzevJmTJ08SGBhIUVERT548YdOmTWRlZSEiKCkp4eLiwrNnz+jduzdJSUlUVFSgr69P9+7dGTRoEGVlZejq6nLixAmWLFnCqlWrWLlyJdOmTUNLSwtnZ2datGjB8ePHycvLQ0lJCWNjY7p3787Tp0/R09PDysqKgoICLly4QGVlJS4uLnh5ebFv3z709fXp378/I0aMQERISEggKSmJjIwM7t27x4ULF4iMjCQvL48PHz4wYMAAsrKyMDY2xtzcnI4dO5KXl4eCggI5OTmcOHGC0NBQgoODUVRUJDk5mXbt2rFmzRocHBwYNWoUOjo6PH/+nNWrV5Obm8uzZ8+wtLTkxYsXDBkyBBMTE2pqanBycuL58+d4e3vzyy+/kJ2djZeXF5mZmRgb/7OTY01NDfb29uzZs4fAwEBCQ0NZsGABtra2mJiYsG/fvqb2mDt3LmFhYbRt2xYjIyPGjBnDo0ePUFZWxsrKitzcXJydnSkvL8fExISYmBiqq6sREdTU1Dh+/Dj19fVMmDCBs2fP0qFDBxISEqiqquLChQuUl5czYMAAnj17xuTJk4mLiyMkJIRr164xcOBA8vPzMTAw4Pfff+fp06ckJiZy8eJFnj9/Ttu2bWnevDnz58/n5s2bzJo1izFjxuDk5ER0dDTv3r1DV1cXFRUVBg0axKJFi0hMTGTLli3o6ekREhLCxIkTUVZWxtramg4dOnDr1i0+fPhAZWUlJ06cYNGiRVy4cIFJkyahr6+PiYkJd+7coU+fPjRr1ozJkyfj6+tLUlISUVFRjBkzhrKyMmbMmMGNGze4e/cuUVFR3Lp1i6ysLNzd3fn06RPv3r0jJyeHkSNHkpGRwfXr1wkICKBNmzbs2bOH58+fM3v2bL58+cLZs2fZs2cPL1++xNnZmXXr1rFu3Tp27NhBfn4+VVVVzJ49m1GjRtGjRw9UVVW5e/cukZGRWFpa4ubmRkhICIaGhhQUFODu7k5AQADz5s2jqKgIc3Nz9uzZQ3V1NY8ePcLExISWLVuyZs0abty4QWBgIEuWLKG4uJiMjAxMTU0ZOnQoHz9+ZOPGjfz000+4uLgwadKkZv+RWP+tRnjp0qWirq4uhw8flq5du4q5ubl07NhRiouLpUOHDmJkZCTm5uaip6cne/bsEQMDAykvLxc1NTUZOHCg6OnpyaVLl+T333+X8+fPS58+fWT//v1SX18vHh4eEhMTI2pqauLn5yeWlpbSunVr+fPPP2Xnzp2SkpIinp6e8unTJzlw4IDk5+dLRESE3LlzR65fvy4LFy4UNTU1+fz5szg6OkpKSoosXrxYxo4dKzExMeLk5CSnT5+Wnj17SnV1tRQXF4uHh4esXbtWbt++LYqKijJ48GBxdnaWqKgo0dPTk9TUVPH395c9e/ZIcnKyGBoayt27d6Vdu3ZiYGAgy5cvFy0tLUlLSxM/Pz8pKCgQT09Padeunbx8+VIOHTokL1++lEmTJkleXp48e/ZMPnz4IKqqqpKfny/du3eXoqIisbS0lLy8PAkPD5cnT56IoaGhzJ49W+zs7CQyMlKCgoIkLCxM9u7dKy4uLuLq6ipt27aVnj17SkNDg5SWlkpYWJhERUXJypUrZcmSJeLr6ytKSkqSkZEhRkZG4uPjI8+fP5fTp0/L6tWrxcrKSj58+CDh4eHy6tUrsba2ljVr1khUVJRoaGhIUVGRvHz5UiIjI0VLS0usra1l3rx5snbtWpk/f76MHj1aLC0tZebMmaKuri43b96UDx8+iJGRkaxcuVL++OMPuXnzpujp6UlDQ4OsXr1aFBUV5dixY+Ls7Czx8fGio6Mjurq68v37d0lJSZGamhpJSkqShIQEOXHihHz8+FF0dXXF2NhYdu/eLWFhYeLi4iI6OjrSs2dP+fPPP8XDw0OWL18uW7ZsEUtLS0lOTpaoqCi5du2aqKioSEFBgVy6dEnCwsLkypUrsnbtWmnTpo0sWLBAvn//LleuXJE9e/bI8ePHpaqqSlq0aCEzZ84UDw8PefPmjcTHx0t+fr68efNGZs6cKcnJySIioqmpKRYWFuLn5yc7d+6UHj16SH19vbRv3140NTXl2bNnMnv2bGnevLkoKytLfHy8rF27VoqKiuTkyZMyatQoKS0tFWtra2lsbJSLFy/Knj17JC4uTvLz82XEiBGyaNEiad68ueTl5UlsbKwEBgbKpUuXxNPTU7Kzs8XZ2Vnc3NzkyJEj8vbt26b7GTZsmOjr64uCgoJs3LhRIiIixMfHRx4+fCgBAQGSk5Mjfn5+0rNnT3n8+LFERERIfn6+ODk5yfHjx+X9+/fy7NkzGT9+vKipqUlkZKQYGhrK9u3bpby8XFauXCmAuLq6ioaGhpibm0ttba2oq6vL06dP5cGDBxIfHy/t2rUTIyMjcXd3l5kzZ0pAQIB8+/ZNJkyYILm5ufL582fJzMyUEydOSFZWljx48EDev38v7du3l1OnTkllZaVUVVXJiBEjxNvbW27duiVbtmyRsrIyuXXrlpw6dUpOnTolp0+fFgcHB6mpqZF+/fpJYGCgHDlyRIYOHSoTJkwQe3t7CQ8Pl02bNomIyOPHjyUoKEgsLCykZcuW4uTkJP7+/uLg4CApKSly5coVcXd3F0tLSykvL5cVK1aIubm5VFRUyLt378TT01Pc3d3FyspKWrVqJbt375ZWrVrJ5MmT5eDBg5KVlSU7d+5sGqO2trbyb7yqEBoa+h8J+fHjx6E9e/bk+PHjpKSkEBUVxbBhw3j06BHZ2dnk5OTw+++/Y2Jiwv3793F3d0dZWZnRo0eTk5ODjY0N6enpnD59GhFh3759zJo1C1tbWx4+fMinT5+IjY0lISEBS0tL7t27h5WVFYmJicydO5e0tDQ+fvzI7t27mT17NmVlZdjZ2VFRUUFNTQ1nzpzh06dP+Pv7k5aWRlVVFRMnTqRly5acOnUKbW1tPDw86NixI4MGDSI7OxsbGxtOnDjB8+fP6d27N7169eL169eMHj2azMxMUlNTWbhwIVu2bEFVVZX79+9jZfWPZbSyspKgoCC6d+/OlClT0NTUxMLCgsrKSh4+fMjJkyc5ePAgLVq0oFevXixcuJCBAwdiaGjI1q1beffuHV5eXrRv355Tp06hpaXFp0+f+Omnn3jx4gXBwcG4urpSVFREv379OH36NG3atKGxsREfHx8mTpzIihUrKC0tJSgoiFatWhEcHIyXlxcZGRmUlJSwceNGvLy8aGhoYPfu3dy/fx9zc3NmzZrV1Cd6enps3LiRgIAA7t69y4YNGzh58iQnTpxAW1ubFy9ekJ6ezuDBg4mIiKBVq1Zs376d0NBQUlJS2LdvHy4uLrx8+ZJffvkFPT09njx5woIFC3j9+jVTp07l0qVLHDt2jLy8PN6+fUtkZCSmpqZMnjyZU6dOERISQnx8PMuXL8fGxoa3b99SUlKChoYGiYmJDB8+nNraWnbu3EmnTp3Ys2cPL168YP369SQkJFBWVsb9+/d59uwZ7dq1w9TUFFNTU1auXImDgwMBAQGMGTOGffv2kZ6eTrNmzQgJCWHu3Lk0NDTQpk0bXr9+TWNjIy9fvuTYsWNkZ2djYGDAhg0bmDt3LqWlpaxbt461a9fi4eFBdHQ0qampXLt2jV69eqGkpMSBAweYOHEibm5u5OXl4enpyeHDhykrK+PJkyckJyezcuVKdHR00NPTQ1FRkS5duqCrq0t1dTUKCgpoampiY2NDQUEBa9asoXv37ri5uZGenk5kZCSXL19GSUmJvLw8dHR02LdvH/n5+djY2ODu7k5qaipZWVns2LGDjx8/cvv2bfz8/GjevDn79++nrKyML1++8P37dyoqKvD09MTX15cvX76wfPlyVFRU0NXVZdCgQfj7+1NRUcHTp09JSUlh06ZNTJteFrbRAAAgAElEQVQ2jWvXrjF37lx27NiBl5cXRkZGKCkpoaysTEFBAWvXruXRo0csWrQIDQ0NBg8eTKtWrXBycsLX1xdVVVUePnxIWloa48aNQ0VFhSFDhvD27VvevXtHz549uXXrFmlpaQwaNAhXV1e0tbXR0tIiODiYgoICrKysSEpK4s6dOzx8+JC2bduyfft28vLyGD58ONOmTSM7O5sNGzagqqrK/PnzKS4ubmqzsLAwJk6cSFpaGocPH6ZXr16EhobSoUMH+vfvT7t27Thw4AAvXrzAy8uLmJgYevTowdy5c/Hz82P16tVcvXqVLVu2kJ+fz759+7h06RIeHh506tQJa2trjI2NSU9PZ/bs2cv/E6/+q0/X2NhY3r17x2+//UZSUhLa2tr079+frl27MnToUO7fv8/QoUN58uQJ4eHhDBkyhNraWlatWsW6devQ09Njy5Yt1NfXk5+fT3JyMm5ubqSmphIXF0dAQACurq7Y2toSFRWFhYUF+fn56OrqUldXh42NDREREXz//p20tDSmT5/O06dPefDgAY2NjRw/fpyQkBB69uzJ6NGj6d27N7dv3+bOnTsoKSmhoaHBmjVrmDp1Kps2bWL48OHcunWLefPmsXv3bhwcHAgODubhw4e0bt0aPz8/ioqKqKqqon///ujq6lJbW8vr168xNTWlT58+7Nq1i6FDh7Jv3z4qKirYv38/Xbp0Yd++fXz//p0dO3bQqlUr+vTpw8KFCzl79izz58/n8ePH9OrViz59+vD9+3cSEhIoKSlhwoQJ6Orq8v37d+7du8fLly/p3bs3CgoK+Pr60r9//6Zl4LFjx4iOjubNmzcMHz6c2NhYWrZsybdv3xg2bBirVq3Czc2NkSNH0rVrVzw8PPjtt9+4dOkS586dY9y4cTx8+JBdu3ZhZGRE8+bNcXR0xM/Pj86dO2NqasrLly/Zv38/Xl5e9OjRg7Nnz6Kvr8+dO3cIDg7G2dmZyspKrl+/zqtXrzh06BB//PEHKioqfPv2jbdv35KTk8O5c+ealpMzZszA2tqa7t278+zZMxITE1FQUCA0NJTGxkYqKys5d+4cKioqzJw5k+vXr2NtbY2pqSlnzpzhxo0bJCYmcuDAATZt2sTt27c5f/48qqqqODs7o6Wlxbt377h+/TotWrSgXbt2lJaWMnPmTB49eoS+vj4DBw4kOzubFy9eMGfOHLKzszEzM8PLywsfHx+Sk5P5+vUrioqKXLlyBTMzM3JycoiIiGD48OEcO3asaSJzdnYmIiICBwcHnj59yqpVqygsLMTS0pLffvuNESNGcObMGV69eoWTkxNGRkYkJyezdOlSLl68yLZt2/jtt98wMDBgxowZqKqqsnXrVhYtWsT79+9xcXGhV69edOzYkSFDhnDnzh0iIiIYPHgwxsbGNGvWjOPHj2NoaIiIcPjwYbS1tenbty/29vbo6+tz5swZSkpK+P79OwsXLiQ+Pp7+/fvTpUsXqqursbGxoU+fPqxYsYKBAweye/duGhsb0dTUZPDgwaxbt46ff/6ZhoYGgoOD6dWrF/n5+cydO5fw8HBiYmLIz89n0aJFAPj5+WFlZcWrV684deoUWVlZ/P3332zfvp3Y2FiWLVvG3r17mTNnDg8ePGD9+vVER0ejr6+PjY0NiYmJtGvXjqSkJLZv346vry8+Pj6cOnWKlJQUwsPDcXNzY9asWRQVFbF69Wp++eUXIiIisLGx4fjx49y8eZNnz55RWFjIoUOHsLe35/PnzxQWFlJQUMCYMWPw9vbGzMyMS5cukZWVRVZWFleuXGHkyJFcuXKFCRMmMGzYMNTV1RkzZgwrVqzg+vXrVFVV8fXrVzIyMkhNTWXEiBG8ePECJycnPn36xKBBg3j16hU+Pj4cPXqUHTt2/Ed54V813ZUrV3L27FlevnzJ5MmTefHiBY2NjRQWFtK+fXusra1RU1Ojrq4OU1NTlixZQnx8PHfu3MHW1pYDBw40RbdWVla8fv2a7OxsJk6cyOvXr9m3bx+3b9/m4sWLNG/enN9++4327ds3PWTNmzfn4sWLJCcns23bNq5cuYKtrS0jR45k3Lhx3LhxgzNnzvDHH38QFxdHXV0d9+/f59WrVyxYsIBjx47h6OhIeHg4U6dOxdLSkuDgYAACAwPZvn07ZmZmdO/eHT8/P548eUJoaChPnjyha9euvHjxgufPn/PkyRM8PDywt7cnLS2NO3fuMH78eEpKSvDw8ODp06cMHz6cKVOmUFFRgYWFBcXFxU26X1VVFfX19Tx69IgnT54wcuRIFBUVMTc3Z+HChZiZmeHk5ERZWRlTpkxh0aJF2Nvbk5SUhJaWFlOmTOHYsWNMmjSJgwcPsmDBAv766y/OnDlDeHg4AQEB/P7775w+fZpZs2bRpUsXXF1dOXnyJBoaGvzxxx+ICKWlpSgoKABw9+5dVq5cyeTJk7l69SoLFiwgIyODyZMn069fP7y9vbl9+za3b9/m8ePH5OXlcejQIaKjo5va9erVq6xbt44//vgDNTU13r9/z82bN9m4cSPHjh3jy5cv+Pj4UFJSwpUrV9DU1CQiIqKJ4FevXs2AAQOIiIhg4sSJODg4oKysTIsWLXj06BETJkwgLi6OkpIS6uvrOXHiBLm5uRw7dozmzZszYcIEQkND6datG6tWreL+/fs0NjYyffp0WrdujZubG926dUNTU5OUlBS8vLz49u0bixYtYurUqRw7doxPnz7x/ft31NTUsLCwICQkhBMnTuDo6EhYWBjfv39n0qRJBAUF0aJFC/bs2YOOjg6amppUVFQ0TeopKSn069cPFRUVFi1ahJ2dXdPgzsvLY/r06URGRhIaGoq6ujrW1tY8ffqUpUuXsmTJEsLDw5k3bx63bt1i4cKFGBgYoKioSJ8+fTA0NMTY2JihQ4fS2NjIgQMHGDNmDFOnTqW2thZnZ2cWL15M//79uX//Punp6SgqKrJv3z7atWvH+PHjOX78OFOmTOHevXtkZGTQvHlzDAwM2LhxI2FhYYgIRkZGdOrUiejoaL5+/UplZSUGBgZs27aNjh07oqamRr9+/Th58iSDBw/GxcWFixcv0tDQgK+vL0FBQVy4cAFzc3M2bdpERkYGOTk5vHr1ivz8fIYNG8bFixdpbGxk69at+Pj40LJlS06fPs27d++ora3l7du35OXlERgYSPv27QkJCaG8vBxdXV3ev3/PoUOH8Pb25rfffmPPnj34+/tjaWmJsbEx69atw9fXlxMnTlBfX89PP/1Ez549iYuLw8HBgfnz5+Pi4sL8+fOJiYnBwsKC1NRU6uvr2b17N9+/f8fExAQ/P7+mScLDw4N79+5x8eJF3NzcmDRpEpMmTaJfv39esrJ48WJyc3Np164dGzduxMPDg5s3b/4brf67pjt16lQJDw8XRUVFsbS0lMWLF8vevXslPT1drK2t5cGDB2JpaSm3b9+WTp06ib+/v7Rs2VJ69OghYWFhMmLECImJiZEHDx7I/v37Zc+ePeLj4yNaWlry5csXcXFxkZcvX8qiRYvEzs5Ofv/9dxk/fryMGzdOamtrZffu3bJt2zZZvHix9OvXT5SVlWXTpk3SrFkzyczMFA8PD9HQ0JDdu3dLbm6uvHnzRvbv3y+ZmZlSV1cnxcXFcufOHUlOTpaSkhLJyMiQrKwsKSwslM+fP0v37t1lw4YN8urVK3nx4oU4OzvL1KlTpaGhQVauXCnW1tZSWVkpS5culaFDh4qmpqakpqbKnDlzxN/fX4YPHy7Lli0Tb29vSU5OFhcXFzE1NRVFRUVxdnaWoUOHio+Pj3Tq1En09PRk2bJlkpubK71795aGhgaJjo6W79+/i6GhoeTm5oqWlpZcv35devbsKc+fP5dHjx6Jp6enfPjwQWJiYqRNmzbi6uoqVVVVMmnSJNHS0hJ1dXXZu3evJCcnS0VFhaxevVr69esnycnJEhAQIIMHDxZzc3PJysqSjIwMiYmJkdu3b8vbt2+lurpajh8/LoGBgWJmZiaRkZFy+fJlWbBggbRp00YGDx4sAwYMEB0dHfnw4YP89NNPEhQUJO/fv5eZM2dKs2bNpLS0VO7duyc9e/YUe3t78fX1ldmzZ0t9fb1MmTJFLl++LI6OjhIbGysODg5SUlIinp6ekpaWJsXFxVJVVSXDhg0TQ0NDqa+vl59//llyc3Olrq5OoqOjxdjYWLKysuT48eNy4cIFqa2tlYsXL8qCBQtEQUFBXF1dpaCgQHr06CHXr1+XFStWyJw5c+TBgwfSr18/uXbtmhw4cEBiYmLE2dlZFi1aJH379pXFixfLihUrxNjYWFq2bClKSkoyZ84cuXnzpkRFRcnSpUvl8ePHEhAQIH5+fuLg4CDPnj0TVVVV2bZtmyxbtkyWL18u+vr6oqqqKrNmzRJtbW05efKkXL58uUmPf//+vdjZ2cnFixdFXV1dzM3NxdHRUWpqauTChQvSvn17efDggVy5ckUOHjwoCxcuFA0NDbGzs5Ps7GxJSEgQQIYMGSLq6uri4+MjEyZMkCdPnsiCBQtk69atIiJy+/ZtKSoqkvT0dAkLC5Pbt2/LjBkzxNjYWHx8fOTatWtSUVEhe/fuFSUlJXnx4oUsXrxYTE1Nm3TmVq1aycKFC+XChQsSGhoqdnZ2smPHDrGyshItLS0ZOXKkuLq6yrBhw0RdXV3S09Nl48aN8vnzZ1FSUpIePXrIunXrZNy4cZKQkCDTp0+Xs2fPStu2bWX06NFSX18vQ4cOFUtLS0lMTJQLFy5IRUWFtGnTRry9vcXR0VEKCgqksrJSnJycRENDQwYPHizKysry9OlTycnJkcDAQPn999/F09NTzM3NRV9fX9TU1OTatWsyefJk6dSpkyxZskRGjx4tYWFh0qlTJ/nw4YMcPnxY1q9fLyoqKlJcXCxr1qyR3NxcsbS0FDU1NVm6dKlUV1fL2LFjpbS0VJ49eybZ2dlN2rS5ubn88ccf8uDBA4mIiJCCggJp3bq19OnTR+bMmSOKiopSVlYm3759k+fPn/+rpvuvpPv9+3dZs2aN+Pr6iqOjo7i6uoq+vr5YW1uLurq6dOrUSWxtbcXU1FT+/vtvUVJSEj8/P9m+fbts2LBB7O3t5dGjR9KsWTO5cuWK+Pv7i4GBgWzatEm2bt0qPj4+8vPPP8vgwYNl2LBhYm5uLhMmTBBfX1+xt7eXO3fuSElJicTHx4u6urrs2bNHamtr5cOHD+Lp6SmxsbGiqqoq58+fl7i4OJk+fbrU1tbKx48fZe/evTJjxgz59u2bPH78WCwsLMTS0lJWrFghlZWVMn/+fPn1119l3LhxsmzZMklKShIzMzNJTEyUtLQ0sbW1lejo6KZOUVVVFWNjYzE3N5eUlBT59OmTbN26VaqqqiQgIECqqqqkvr5e8vPzZceOHZKTkyPOzs5ibW0tMTEx8vjxY8nMzBR3d3eJiYmR69evS35+vqxZs0YqKyvF0tJSYmJiJCIiQiorKyUtLU0aGhrk0aNHEhcXJ8nJyXL8+HFZsWKFtG7dWnR0dOTXX3+VgwcPiqqqqpw9e1YaGxtlx44dEh8fLw0NDZKdnS26urpy+PBhOX36tKipqUl+fr7Mnz9fGhsbpbGxUerq6qRdu3YSEhIia9asEUVFRQkMDBQ9PT3x9vaWyMhImTlzpujo6IiCgoKsW7dOTE1NJS0trekZCAgIEFVVVTl16pRs2LBBtm7dKqWlpdKnTx9p3769JCcni6urq8yePVs0NTVFSUlJVq5cKebm5lJdXS2qqqqyZMkSUVZWFkVFRRk9erTk5OTIkydP5O7du+Lg4CBnz54VJycn0dTUlKNHj8qSJUtkw4YNMmHCBOnevbuYm5vLmjVrxNPTU169eiU+Pj4yZcoU6dGjh1hZWUllZaUsW7ZMDAwMZOzYsWJubi7Z2dny6NEjefLkiYSEhEhZWZlMmjRJ1NXVRVFRUSZMmCADBgwQd3d36d27t6xdu1YSExNFU1NTBg8eLE5OTlJZWSnq6upy7949GThwoGRnZ0tZWZn89NNP0qlTJzl69Khcv35dfHx8ZODAgXLp0iVxdHRsOratra28efNGRowYIWPHjpUNGzbI8uXLpUWLFuLt7S39+vWTQ4cOyenTp8Xb21tOnjwpmzZtknXr1smoUaOaxpyampq8efNG1q9fL1lZWWJubi719fXi5+cn+/fvl8uXL4uFhYUUFxdL27ZtJSIiQurq6qR169YSFhYm48ePl2HDhsn69eule/fuYmpqKv369WsiuoqKCqmpqZGXL19KamqqFBcXy9OnT6WsrEyys7Ola9eukpiYKImJiZKRkSFhYWHi7+8vqqqq0tjYKN++fZPU1FTJyMgQU1NTSUxMFH19fWnVqpVERkbK3bt3paamRkpLS8XX11dSUlIkJiZGjI2N5cKFC3LgwAHZsGGDnD9/XiwsLMTX11f69OnTxEcVFRWioKAgNTU1cuPGDVmzZo2YmZlJVFSUFBcXi4KCgtjb20tAQICoqKjIyJEjpbi4WFq3bi2urq6yc+dOKS8vl/3790vHjh3F0tJS4uLi5Pr166Kvry+PHz+Whw8fSlJSkkRGRkpmZqYMGTJEUlJSRFFRUUJDQ8Xf31/Gjh0rmZmZ/0q6/+rT1dXVxdzcHH19fU6fPk1mZiaVlZVMnz6d9PR0rK2t2bx5M5WVlQwcOBA1NTWqqqpQUFBospPZ2NgA8OTJE9zd3dm6dSuzZ8+mZcuWhISE8Pz5c0JDQxk4cCADBgwgNTUVJSUltmzZgomJCRoaGqxevRozMzOOHj3K8+fPef78OYMGDeL69et8+PCBU6dONSU64uPj8fT0ZObMmZibm5Oens7Dhw9xcHDgzp07LFu2jNraWn799VdOnjyJkZERLVu2xNDQkLq6On7//Xf69u2Lrq4ut27dYseOHU22nrdv37J48WJqamqYNWsWEydOpHXr1uzatYuIiAjat2/Ply9fWLZsGYmJifx3EhJAX1+f6upqAPLz8ykrK0NPT69pqdW3b1+WLVvGy5cvsbGxoaioCDU1Nbp168auXbuor6+npqaG0tJSDhw4gKamJjExMdjY2PD48WNKSkrYsmULhYWFtGzZkilTpnD06FGGDx/OgwcP6Ny5M/369aO8vJwRI0Zw7do1evfuTYcOHfDy8qJFixZs3LiRz58/07t3byZNmsTatWsxMTHBxMQEc3NzDh06xNKlSykvL8fAwICcnBw8PT3JzMykqKiIoqIi4uPj6du3L506dcLf3x9DQ0M6derE06dP0dLSorq6ml27dpGXl4eioiLR0dGMHz+e0tJSFixYwNy5c6mvrycoKIhv37416cSenp6EhIRQV1dH7969ef36Nerq6tja2pKQkMDEiRN5+/YtaWlp+Pv7U1pair+/PwB9+vQhNjaWFStWoK2tzcaNG3n27BnZ2dncunULc3NzLl26xOzZs0lOTub9+/fY29s3aYurVq3i7t27mJqa0qtXLwYNGkRpaSkiwo0bN9i7dy8i0iTp1NbWMnv2bHx8fLh58yaKiopYWlpy//59PDw8SE5Opn379pSVldG/f3/Cw8MZPHgwffv2ZcCAAQwdOpSIiAh0dHR4+/Yt06dPb7JJqqmpcenSJTp37syzZ884fPgwHz9+ZMOGDairq7NhwwZatGjBzZs3iYqK4t69e0ybNg0vLy9GjhzJt2/fOH/+PLt376Zz586EhYVx5MgRwsLCuHr1Kr/++ivjx49n7dq1hIaGUlFRgZ2dHXPnzkVLS4vExERsbW3R0tLC29ubJUuWcO7cOerq6pqseO/evWt6VhQUFEhPT6dfv36MHz8eZ2dn4uLimD17NrW1tRQVFfH777+TnJzM7t27+fTpU1PiOz8/n8mTJ9OuXTtGjRqFmpoagYGBxMbGcuHCBTZt2sTmzZv/cQQoKLB06VLmz5/P9OnTef/+PatXr0ZZWZm9e/eipqbG9+/fad++Pebm5jx8+BB1dXVGjBiBs7MzdnZ2tGjRAnd3d3JyclixYgXh4eEkJiby/PlzPDw8aGhoIC4ujg0bNrB582Z27dqFqqoqBgYGREZGkpCQwLt377C0tPxXdeFfNV1VVVXc3d3R1tZm+fLlnD17lqKiIoKDg5k1axYBAQHMnTuXuro68vLyWLduHUFBQUycOBF3d3ecnZ3x8PBAS0uLFi1aEBQUhKmpKa9evcLV1ZXQ0FBKSkoYN24cWlpa5OTkUFdXx4ULF2jbti0bN24kMDCQS5cuUVFRgaKiIikpKXTu3JmTJ0/yxx9/4OjoiL29PVpaWsydO5dVq1Zx48YN9u3bh5OTE2PGjCEkJISysjK2bt3KkSNHmDp1KgsWLKBnz56EhIQwb948Pn36xKVLl+jUqRN2dnbEx8ezYsUKbGxs2LVrF8ePH+f69eskJSXh5ubGsmXLuHz5Ms2bN+evv/5CWVmZoKAgzMzM8PDwQENDgy9fvpCWloaysjIKCgpNxObj48PLly/p3LkzgYGBnDt3jm7dupGbm0t5eTm9evWioKCArKysJl3Vzc0Nd3d3hg4dyqRJk1BXV6empoa6ujry8/MpLS1tcnjU1dXRokUL/vrrL5SUlIiOjubFixc8evSIFy9eoK6ujre3N2fPnqVv375s2LABTU1NNDQ00NXVJSwsjOHDh/PhwwfOnTvH0aNHWbBgQVO/3bp1i9DQUJKTk7l//z7W1tYEBgaSmppK165diYuLo0OHDiQlJVFcXMz379+pqakhMTGRkJCQJlIJDQ0lMDAQOzs7OnXqBMC6dev4+vUrSkpKGBkZ0a5dO8rKypg3bx7Kysp06dKFtWvXYm9vj4qKCiLCiRMn8PDwwMTEhPj4ePT09FBRUSEnJ4c2bdrQuXNnXFxcePv2LUuXLmXTpk34+/vz8ePHpn7Yvn07U6ZMISsrCwsLC9atW9fkRNHX1+fo0aOUlJQQGRlJbGwsly9fJiIiAhHBwMCAY8eOERUVxfv379HQ0GDlypVs3ryZzZs3Y2RkxLVr1+jRowcfPnwgMTGRW7du0dDQwM6dO2ndujXW1tbcuXMHRUVFNm/eTN++fXn+/Dnv379nxowZBAYGYmRkhIODA+/evePixYu8evWKMWPGNHmMjxw5gqmpaVPCe8GCBXz9+pXc3FxUVVXx8vJi3LhxnDx5kkOHDlFcXIy5uTmrV6/Gx8eHOXPmcOzYMW7fvo2SkhKXL18mPj4eEWHt2rVNeZzHjx9jb29PZGQkmpqaLF++HCcnJzQ0NBg3bhzv378nOzub0tJSUlNTqa6uJiMjg+nTpxMbG0v37t35+eefMTExITc3l3379jX1h7+////PF378+HFOnz5NYWEhWVlZjBgxAnNzc2JjY0lPT2fevHkMHToUR0dHDA0NsbS0JDw8nBUrVuDl5dUUYBw5coS1a9fSsmVLbt++Ta9evXBxcWHlypXY2dnx/PlzPn36RN++fRkyZAidOnVi3rx5jB49moaGBqKjo1mxYgULFy6kT58+mJqa0tDQQGJiIklJSejq6qKqqkqrVq0YNGgQV69e/Y+8+q+Rroiwfv16kpKS+PjxI4aGhly5coWOHTsSGRnJtGnT0NTUZObMmZSXlzclh6ysrDh27BhmZmaEh4cTGBiIs7Mzbm5ulJeXo66uztatW/H29iYsLIzPnz8zcuRIdu3axdy5cxk8eDC1tbVcu3aNBw8e4OTkhLKyMpGRkXTq1InZs2fj5ORETEwMnp6etG7dGmVlZS5cuMDly5cxMzNjw4YNnD17ltzcXFq0aEFDQwNpaWk0NDSQk5NDhw4d6NevH23atGH27NnMnj2brl278u7dOyZOnMiWLVvYtWsXhw8fpqCggCNHjvDzzz8zfvx4Bg4cyJgxY8jMzMTV1ZXjx49z7tw55s2bR1hYGGvXruXx48dkZmbi7e3NkCFDCA4OpqKioqktAwICWLduHSdOnODp06e4u7uzd+9ekpOTCQgIYMqUKdy9e5egoCCOHz+Ora0tFhYWlJSUsGrVqqbzDx8+nMrKSry9vRk9ejTh4eFoaWmxfft2oqOjuXTpEp8/f2b//v1oaGhgbGzMmjVrePjwIYqKihgbG6OpqUl9fT1fv34lPj4eNTU1Pn/+jIODA9ra2lRUVPDp0yfq6ur4/Pkz9fX1dOnShYMHDzY5Hdzd3TE0NGTQoEE0a9aM8PBwVq1aRd++ffHz86NTp07o6enx119/ERQUxG+//YanpycAaWlpnDp1ih07dnDp0iWOHDnCgwcPmD9/Pu/evePx48ekpqYSHR2NgYEB06ZNo0OHDuzcuRMlJSUuXLhA165dOXz4MJGRkU2Wqe7duzN79mxGjBiBra0t7du3x9XVFS8vL0JDQ1FSUmLChAnU19cTHx/PkydP2LFjB76+vnTs2JFZs2ahqqrK2bNnefbsGa9evWLo0KGMGTOGiIgI0tLSmtr+2rVrFBcXU1tbS7NmzWjTpg3h4eEcOnSIadOmERISgqWlJbGxsRw5coT169ejrKyMh4cHQ4YM4erVqwwZMoSgoCBGjx7N0qVL2b9/PxMnTuTdu3fcv3+fX375haNHj/L27Vvc3d1Zv349aWlpzJ49m23bttGsWTOsrKyoqKjAz8+PqKgoTExMMDIyIiYmhitXrpCTk0P79u0JDw+nd+/ejBw5krq6OmbNmkWbNm1YvHgx0dHRaGho8MsvvxAcHIyCggKDBg2idevW1NbWcubMGYKDgzlz5gzNmjXD1NS0KYrv0qUL7u7uTJ06lQkTJvD582e+fPlCixYtCA4OJiMjAxEhKiqKO3fusHr1aqqrq1FRUWHUqFG4u7uzY8cOTp48yebNm7Gzs2sKeurr6zEwMKCuro5t27bR2NiIg4MDBw4coEOHDrx584a4uDi6du1KRUUF4eHhHDt2jKSkJBYtWsTw4WHI5yEAACAASURBVMMpLy+nffv2/PLLLyxevJgvX75w8uRJPD09uXr1Km3atEFTU5PDhw9z4sQJrl+/zsyZM3nx4gWHDx9m+fLlVFdXM3bsWC5evNi06vhv99XmzZtJSEj4v490/9vqY2Njw/Lly/n8+TMdO3ZEXV2d0NBQOnXqxKBBg1i+fDkHDhxg1KhRzJkzhxMnTpCfn8+ZM2dwd3fHycmJpKQkoqOjef36NUpKSnTv3p3y8nL8/PzIycnB1taW8+fPU1VVRVpaGnv27EFRUZE5c+bQs2dPOnToQHFxMc7Ozujr67Nq1Sq2bduGkpISvr6+2NraUl1dTVJSEra2towdOxYTExN8fX3p1q0bQUFB/Pzzz/j6+rJkyRJ++uknDhw4wKlTp+jduzf+/v44OjqSkpJCaGgoCgoKrFy5kqlTp/LgwQOGDBlCaGgoW7Zs4ebNm7Ro0YK8vDyUlZWpra1lz549jB49ml27djXN/LW1tXh5eVFSUsIff/yBqqoqjY2NaGho0K9fPwoKCmhoaKB3795MmzaNu3fvMnbsWDw8PPj27RtmZmZs27aNLl26MGnSJKqrq2nevDlqamps2rSpyTa1bds2li5dSnFxMdu2bcPd3R0XFxccHR0JCQlhyJAhWFpaEhUVxYcPH3B0dCQqKgotLS3MzMxYvXp1k6f269ev5OTkoKioyIQJE2jVqhWHDx+mR48eWFhYkJuby969exk1ahRbtmzB39+fwsJ/3rQzYMAA5s6dS3x8PEOHDuXcuXMYGBgwfPhw8vLysLS0bKrIi42Npby8nGbNmvH06VM6dOhAYWEhJiYm1NXVUVZWRo8ePfD39ycwMJCCggJGjx5NYWEhV69e5cGDB/z555/0798fV1dX0tLSMDU1RUNDAzMzM7S1tRk2bBja2trs2rWL6Ohohg8fzpYtWwgMDOTevXt4eHhgbGzclGU/f/48kydP5ueff+bdu3d07dqVly9fUl5eTmxsLNra2qSlpfH69Wtu3rxJ8+bNGT16NAsWLCA/P58nT57Q2NiIiooKI0eOxMLCAhUVFXx9fbGwsCAsLAxVVVVmzpxJ7969uXPnDq9fv2bOnDkUFhZy/vx59PT0uHLlCr/88gvNmjUjISGB69evk5ubi4eHB0ePHiUrK4sHDx5gY2NDcHAw+/fvx8LCgk+fPjFt2jTGjh1LaWkp9+/fbxpP5eXlWFhYMGfOHP766y/evHlDeHg4GRkZ6OjoUFtbS+vWrYmNjeXbt29UV1fTo0cPRo4ciYqKCnfv3uXVq1dERUXx9OlT3rx5w+7du3F0dCQjI4OGhgY2b97MkiVLuHbtGqtXr6Zbt26MHDmSwsJCli9f3lRlaGBgQExMDM2aNcPOzo6zZ89y5coVUlJScHBwYMyYMVhZWfHs2TPS09Np27YtmzZt4unTp1y6dAlra2t69erFx48fmzzgWlpabNmyhSlTpmBiYsKYMWN4/PgxYWFh1NXVERERQY8ePSgoKCAvL49Tp05x6tSppirGqKgoNm7cSHV1NX/++Sffv38nLCyMffv2MWrUKOzt7QkODqZz585oa2ujpqaGrq4uX79+bXIdff78GVVVVXr37k15efn/XaS7YcMGdu7cyf79+9HR0SEtLa1JA+zWrRtv375l5syZ6OjokJeXh4eHB9+/fycrK4uEhISmEuAvX77QrVu3JgP9jBkzcHd3p6SkBE1NTdavX4+vry9OTk68f/+esrIyHj16hJOTE1lZWdja2jJs2DC6dOnC169fSUpKoqioiFu3bhESEsLr16/JyMigdevWeHp68vjxY/bu3cvWrVsxMDCgQ4cOTfabQ4cOUVFRQXV1NbW1tVy9epWrV682kay2tnZT1N6zZ08KCwsJCwvDysqK5ORkCgsLad36n9daxcTEAHDv3j3u3LlD27ZtWb9+Pdra2rRt25bs7Gzs7OxwdnZm7Nix3Lhxg4MHDzZ5QENDQxk6dCi3b9/G0NCQ8+fPk5WVRV5eHuXl5ZiZmdGmTRumTJmCnp4e6enp3L59G3Nzc2JiYprkD09PTyZOnEjnzp2ZMmUKGzZswMjICDU1NaKionB0dMTFxYXi4mImT57MuHHj+PXXXzl69CijRo0iJyeH4uJi9PX1yczMZPv27Rw8eJBZs2Yxf/58evfuzaxZszA3N6d58+a0a9eOdevWce3aNT58+EBmZiY+Pj4oKCgQGxuLqakpiYmJ9OnThzVr1vDx40cKCgqwtLQkMzOTJUuWUFhYSEREBCoqKiQkJGBiYsKbN29YsWIFnp6eZGdno62tzcCBA+nfvz9+fn7k5uaSkJBAYmIiXl5eNDY2MmzYMIYPH05hYSE1NTXExcUxd+7cpvJxEUFZWZnbt28zYMAA0tPTiYiIYOXKlURGRjJx4sSmAXXhwgWqq6u5evUqr1+/ZtmyZfTt2xcXFxemTZvGuXPn2LFjB5cvXyYuLo7+/fs3Fc60bNkSR0dHIiMjmTBhAk+ePKFXr16MHz+eCRMmYGtry6NHj1i6dCn29vZER0dz+fJldHR06NOnD+PGjUNNTY2ffvqJfv36oaSkRFhYGCEhIQQHB9OzZ0/s7e0pKChAV1cXKysrpkyZAkBxcTEODg5kZmYSFBSEr68venp65OXl4ebmRlZWFt26dWPnzp0cOHCAQYMGcfDgwaZxU1FRwa1bt5oIdd68efz000/o6enh7e3NokWL6NatG+fPn2fNmjX4+/vj5+eHuro6VVVVNGvWjGPHjhEWFkZCQgJjx45FRKivr6d79+4UFRUBMGLECOrq6ti/fz9BQUHs2rWL/Px8Ro8e3RTJPn36lNjYWP7++2/27NmDnZ0dMTExqKmpMXXqVDQ0NBg4cCDr1q3D0NAQbW1t2rdv37QFQF5eHvX19ezcuRMdHR0ePXqEubk5NTU1WFpasmjRIq5evUpNTQ2dO3fmy5cvBAYGYmtrS7t27Thz5gy9evXCwMAAHR0dDhw4QK9evTAzM6O4uBgrKys+fvyIt7c3zs7OREVFNZXDv337lqioKFq2bPmvke6/VqS1atUq1MzMjPLyclRUVFi8eDG1tbVs3bqVxsZGQkJC0NbWpk2bNnTv3h1jY2NUVFTIysri4MGDzJgxo2nZtXnzZr5+/YqbmxvV1dXMmDGDmJgYUlNTmxJQXl5eiAipqakUFhayaNEitm7dyrlz57h69WpTAi0pKalJ+P7111/5+PEjxsbGFBcX8/r1a169ekViYiKKiorY2dlha2tLVlYW1tbWbN++nVatWlFfX095eTmurq6ICG/evGHw4MG0bduWRYsWoaamxvDhw2nfvj0RERGYmZnh5ubGt2/fePPmDefOnWPmzJmICP7+/hw+fJhRo0ahra1NaWkp2tranDx5ki9fvjBu3Dj69OmDpqYmISEhDBgwgG/fvjFo0CD8/Pxo27YtJSUlVFVVMWTIEM6dO8fnz5/59OkTRkZG2NnZERAQwKNHj9i/fz9xcXEkJyezYsWKJkO8qalp0z4A/935ubm5hIaG4urqSps2bdi1axddunQhICCA7OxsUlJSOHPmDAEBAYwbN460tDTevn2LoaEhpqam+Pv7U1ZWhrW1NY8ePSI1NZWQkBD8/PxobGykTZs2TTJGx44dsbCwYPr06Rw6dIjRo0c3+VltbGyws7PDxcWFurq6pujHycmJNWvWsH79epydnbG1tWXRokWcPHmS5s2b8/jxY7p3746JiQkfP35ER0eH9PR0Hj9+jIaGBtu3b8fNzY179+4RERHBpk2b+PLlC1OmTMHLyws3Nzdat27NtWvXCAgIwM7OjqioKKKjo2nTpg0HDx7kzJkzTfKIvr4+K1asaNKyzc3NGTduHG/evEFNTY3OnTsTERGBvr4+bm5uTJ8+nZMnTxIWFsaMGTP4+++/MTMzY8SIESxevJgOHToQFxdHRUUFW7duxdzcnKtXr6KpqcmmTZtwcnLi3r17xMXFcffuXczNzXnz5g3KysoYGhpiYGDAw/9F2rvG9ZT30d9LOjh0oBMdRT+JGpLfVJM0fpQ0Eo1QE9EoahKaJF3IVHJISjUOpRSNUHRUyqnUqOggcgoRXQpR1JWOrPvB/z/79bof3NeD637eg9+rvfd3f/b6rPVejx7h0qVLmDx5Mtrb2/HXX3+hvr4eEokEkZGRwmJzwoQJsLGxgZ6eHnbv3o0ZM2YgMTERfn5+AICTJ09CSkoKjx49gpGREcLCwjBr1iysXLkSo0ePxp07dzBnzhyUlJQIU1peXh5EIhESEhIgKyuLAwcOYOfOnejq6sLixYshLy+PjIwMVFdXY9myZdi1axfCwsKwf/9+XLp0CQ8fPkRFRQXi4+OxYsUKLF68GCtXroScnBwUFBRw9uxZ5OfnIzs7Gx8+fMD27duhoqKCEydO4Ndff8UPP/wAJycnSElJ4ebNm7C2toaSkhLu37+PefPmYfLkyXB0dIS7uzuys7PR2tqKzZs3w8rKCp2dncjPz0dHRwf09PRw7Ngx2NnZgSRqampgamqKgwcPoq+vD9u2bYOsrCz+/PNP9PT0CEs8Q0NDvHnzBnV1dSgsLIRIJMLkyZOFwFZKSgoWL16MiRMnwsvLC0pKSti3bx8ePHgAd3f3/89E2n+1jM2ePZvJycmUSCTcuHEjFy1axOLiYoaHh7O7u5tHjhzh5s2b6ePjQ2NjYx4+fJgjRoxgTU0NS0pKmJ+fz2XLltHf35+jRo3i69evKRaLWVdXxxs3bnDMmDF0dHSkp6cnzczM+Pr1a9ra2lJRUZGzZs1iYGAgP3z4wPv373Pz5s0cGhri7du3GRERQTU1NUZFRTEyMpKPHj2ihYUFzczM2NnZyZ07d7Kuro5tbW18+/YtGxoauHTpUpqamvL69euUSCSUSCSUkZFheXm5YFkaPnw4AfD58+dUUVHh5s2baWFhwbi4OO7YsYNOTk7csGED6+vrKZFIaGFhQbFYLNi5Nm3aRGNjY3p7e3P9+vUUiUS0s7OjsrIy09LS+OTJE+7fv59isZgWFhbs6+tjbm4ubW1tGRISQktLS6amplJGRoby8vI0MjJiREQEu7u7aW9vz/7+fu7bt4+GhoY8f/48w8PD+fjxY86ePZvOzs68e/cuk5KSWFNTwzVr1nDGjBn08fFhamoqraysWFRUxGnTprGsrIyBgYHs7++nkpIS7927xwkTJtDCwoIikYiWlpbU09Ojnp4ex40bx1GjRjEpKUlgSZiZmXFwcJAjRoygt7c3v379KrAcpKSkGBcXx5aWFubm5jIxMZFjxoyhmpoaBwcH6eXlxUOHDvHt27fs6emhpaUlp0+fzsrKSiYmJlJTU5OhoaEkyeDgYIrFYqqrq7Ouro4GBgYcPXo0raysKCsry+PHjzM0NJStra00MDDgrVu36ObmxtOnT9PQ0JAaGhr08PBgX18f4+Pj+fr1a+rp6TEgIICfPn2irq4u79y5Q0VFRYrFYorFYp47d46rVq1iYmIir1y5QhsbG966dUuwJlpZWfHhw4e8ePEilyxZwgULFnDcuHHU0dGhvr4+o6OjOX78eCYlJfHJkyc0NjamrKwsP3z4wOzsbIpEIlZXV9PLy4sTJkzgmTNnmJKSQmlpaZqZmXH27Nm0sLDg8ePHOX/+fJ4/f55r1qyhsbExU1NTKS0tzVOnTtHc3Jz+/v58+vQpT506xdTUVObl5bG3t1ewzLm7u/P69escN24cHz16xJiYGEokErq4uNDIyIjz58/nrVu3eO3aNZ4+fZq3b9/mmzdv+PHjRxYXF/PUqVN89eoVHz58yLi4OJ49e5ZXr16lk5MTm5ubOXfuXC5YsIBWVlZctWoV7e3tGRERQRcXF3779o3a2to0NTWlubk5T548ydWrVzM5OZkAaG5uTm9vb6qoqHDUqFEcPnw4N27cyOLiYjo5OfHZs2dUVlZmTU0NPTw86OLiwujoaOro6LCuro5Pnz7lmDFjKCUlxcuXLzM3N5dycnJcsGAB1dTU6OHhwbKyMq5atYqysrKsra3l1atXKRKJ2NXVxdzcXH7+/JkXLlzguXPnOHfuXN64cYM9PT0sKSnh2rVrOWbMGKalpdHR0ZF6eno0MTFha2srRSIRk5KSWFtby48fP9LU1JS5ubm0s7Ojk5MTt2/f/l8tY/81BlxWVsbRo0dDT08PP/30E7y8vBAREYFNmzZBRUUF165dw59//olZs2YhKCgIISEhuHz5MpSUlDBs2DB4e3tj0aJFeP/+PZKTk3H37l20tLTgwoULePbsGS5duoQ1a9Zg2LBhKC4uxrZt2zB16lS4urqir68Pnz59gpOTE8rLy7Fjxw60trYiMzNT0EalpKTw+vVr3L17F/Hx8bh48SJaW1tRWVmJZcuWQUVFBbt27YKlpSVyc3Px7t071NfX4/fff8cvv/yCP//8Ez4+PhgcHMT9+/exZ88edHZ24uPHjxCJRLhz5w727NmDyMhIdHd349SpU/j5558F8pCioiJsbW2Rm5sLX19f9Pf3w8bGBjY2NliwYAHGjBmDnTt34sKFC3j58iVGjhyJ8PBwTJkyRdi4SktL4/bt2ygtLUVaWhouXryIo0eP4ueff0ZUVBQ8PDwgJyeHiIgILF68GHV1dXB3d4esrCxMTEywYcMGTJw4EQUFBaiqqoKBgQEKCgpw+PBhODo6QltbG/Ly8vj+++9haGgINzc3nDp1CgEBAfD29oaUlBREIhGOHDmCqKgoDA0NCUSrrKws9PX14ciRI3j58iXk5OTw3XffQVtbGxKJBH19fZCWlkZ3dzfCwsLw+++/w8PDA9euXYOUlBRGjhyJFy9ewNvbG3v27AFJ5OTkwNHREVJSUigvL4eqqipSU1PR19eH9+/fo7GxEc3NzVBXV0dGRgaGDRuGsLAweHh4oLOzE+3t7ejs7ERPTw/u3r0LS0tL/Prrr2hoaICbmxt0dHQQGRmJ2tpaTJ06FdOmTUNpaSlIYuXKlaioqMCJEyewdOlS/Otf/8KJEyewceNGhIWF4evXrwgKCsL69evR3NyMrVu3wsDAQEjfFRUV4fDhw3B2doahoSGcnZ1x9uxZODg4oKCgAJ6enkhKSkJdXR3evXuHAwcOYMSIEVBQUIClpSV0dXWFhdTff/8NeXl5YTKbOHEiysvLBf17zpw5glRGEmvXrsVvv/2Gc+fOYdGiRbC2tkZ3dzeqq6vx008/YdGiRfDy8sLQ0BB++OEHJCQkwM7ODsePH4eOjg4ePnwoPAfS0tK4desWDh8+jPj4eGzbtg2///474uLiICMjg9bWVhgYGODdu3fYs2cPEhMTsXHjRujr6+Phw4fIz8+HnZ0dfv75Z0RERMDX1xdOTk7o6enB06dP4erqiszMTPj6+mLChAl48eIFTE1NYW5uDjMzM6SkpCAkJAROTk6YOXMmfvjhB7x58wbd3d24cuUK3r9/j8mTJ0NZWRmZmZno6urC/PnzkZ6eDnV1dejr6+PMmTMoLy/Hv//9b7S0tMDOzg4jRoyAn58fJBIJAgIC0NTUhMDAQPz4449YuHAhIiIi8P79e+Tn56Orqwvh4eH4/PkzHBwcYGpqioqKClhZWSErKwu+vr7w9fXF48eP4e7uDkVFRZSWluLBgwfw9fVFU1MTduzYgZ9++gl37tzBhAkT4ObmhqCgIBQXFyM8PPx/o4xdu3aN8fHx3L9/P6WkpGhra0s9PT2SZEdHB01NTRkdHU1/f38aGhrS1dWVa9asYU9PD798+UIPDw8OHz6cBQUF/PLlCxsaGpiamsrKykru2LGDBw8epKenJxsaGigWi/n48WPu3buXLi4u3L59OxUVFamoqMgDBw6QJFNTU3ny5EmGh4fz3r17FIvF9PHxoaysLDdv3kw5OTk6ODjw+PHjHDduHO3s7JiSksL58+fTxMSER48eZWhoKBcuXMiYmBiqqqry48ePPHr0KE1MTOjv78+CggKSZFJSEr9+/UojIyPGxsby06dPvHv3Lpuamujq6sqsrCxaW1tz+/btDA0NpampKdesWUMlJSXm5uZy9erV9PX1ZWFhIevr6+nm5sby8nK+f/+e5eXl1NPT4507dxgcHEx9fX3Gx8dzzJgxVFBQ4IwZM1hTU8OsrCx2d3dz7ty5XLlyJauqqvju3TvGxcXx9evXVFdXp5ycHGfMmEFjY2PeuHGDS5Ysoa2tLR0dHdnb20uRSEQPDw8+e/aMZmZmHDduHB8+fMgvX74wLS2NDx8+ZG1tLdPS0hgZGUkPDw+Wl5fz2LFjzM/PZ3l5OWfNmsXo6GhKS0szJyeHL168oKurKz09PXnz5k02NDQwISGBfX19NDExYUpKCnV1dWlhYcHy8nIaGBjQw8ODVlZWdHV1pZWVFbu7u/nkyRNWVlYKU+fOnTsJgLKyskxJSeHKlSspLS3NV69ecfPmzcJUW1hYSCMjI4aGhvL06dPcvHmzcK9ZWFiwv7+fmpqaNDU1paurKzMyMmhra8tv375x7dq1lJGRoaOjI0UiEWfNmkVXV1fGxMRw1KhRbGpqooaGBmfNmkV1dXVOnz6db968YXBwMA0NDblmzRra29tz165dVFdX5+7du6moqMjbt2/TwcFB+EIoLy9nVFQU6+vraWNjw5CQEIpEIq5fv54NDQ20t7enpaUlRSIRtbS0+H85J8zPz+fjx4+pq6vLpKQkisViIWEYHx/PyspKNjY28uzZs2xvb2dSUhI7Ozv5448/Mjk5maNGjeLIkSO5d+9e9vT00MnJiUpKSuzu7mZLSwtPnDjBkpISHjlyhAMDAzxx4gSnTJlCiUTCkydPMikpiadOneLChQvp5ubGpqYmrlixQqDUBQcHMzk5WSD+ycjIsLu7mwoKCkxMTKSpqSk/ffpEZWVlBgYGsrm5Wfj7T58+0cLCgoGBgUxISKCLiwsfPXpEDw8P+vv78927dxw7dizd3d3Z0tLCH3/8keHh4bS0tOSLFy9oaWnJlStXsrGxkcuXL+fNmzdpb2/PDx8+sKKign5+foyKimJraytdXV1ZWFjI1tZWJiQkMCIignl5eYyMjKSSkhLHjh3L4uJi+vj4sKamhtu3b+f+/fs5fPhw1tbW0szMjM3NzVRXV6etrS3V1dW5ceNGXr16lSoqKvT19eWWLVt49+5dFhYWUkNDQ0i5nTt37n9PpIWHhzMjI4Px8fE0MTHhoUOHmJmZybi4OHp7e1MkEjE4OJja2to8deoUR44cSbFYzKCgIMbHx7Ojo4ONjY2Uk5NjX18fJRIJMzMzhc8qWVlZ2tnZccuWLZw0aRKnTZvG/Px8vnjxgllZWRw1ahS1tbU5fvx4enl5UVpamtLS0oyPj6ePjw9TUlJ4+vRp7t+/n7t27WJcXByrq6s5MDBAiUTCgoICamtr08nJiYGBgYyPj+exY8eYmprKu3fv0snJiZs2beKiRYsYGRnJ/fv3097enpqamszOzqZEImFycjLV1NTo4+PDhw8fcunSpZw2bRr9/f0pLy/P8PBwampqcsyYMVy3bh0tLCxoa2vLtLQ0ITEzNDREd3d3IWZsY2PDuLg42tjYMCcnh7W1tVy0aBHFYrFw0CsrK/PRo0c0MjKiqakpz549y7S0NLa0tDAmJobGxsZMT09namoqjx49ylOnTlFOTo7d3d10cHAQsIxtbW20tramWCymnJwcY2JiePr0acbExDA7O5uurq7cvXs3r1+/zu7ubi5YsIBSUlKMj49nUVER1dTUKCUlRbFYzP7+fra2tnJoaIi7du1iWloanz9/zmnTpglYu4GBAaamppIkIyIi+PbtW5qamlJbW5sXL15kVVUVNTU1aWRkxL1799LHx4eLFi2iSCRiXl4eb9y4wXXr1tHJyYkjRozg/PnzWVhYSA8PDzo5OTEiIoKamposKCjgyZMnKRaLmZeXx1mzZlFJSYk6Ojr88ccfaW1tzYCAAI4ZM4adnZ2MjY1lX18fa2pqWFtbS0NDQzY0NDA+Pp79/f0sLCxkc3MzjY2NBUnjn3j3P0jH/v5+xsTE0MHBgYaGhkxPT2dsbCyXLVvGvr4+Ghoa8vLly3RxceH58+dpbGzMjIwM1tTUsKKigs+ePaOjoyPNzc15/vx5fvjwgaqqqly9ejXr6+vZ19dHKysrNjQ0CDjLt2/f8vnz51yyZAlDQ0NZV1fHr1+/0tjYmK9evWJubi5HjRrFCRMmMCUlhcHBwezu7qazszMXLlzIoKAg/vHHH3z37h03btzIxsZGDhs2jCdPnuTXr1+5f/9+rly5kn19fayoqGBCQgKtra2poKDAoaEhXr9+ncbGxnRycqKTkxN1dXX59OlTHj16lPPnz2dPTw8lEokwmKxZs4ZisZjLli3j4OAgBwYGKBKJ6Ovry9OnT1NWVpZbtmyhWCxmS0sL7e3t6e/vz8+fP3Pr1q18/vw5SXJoaIhnz56lnp4eg4KCaGdnx4GBAe7YsYOamppUUFBgc3MzxWIxR44cye7ubu7du5ePHj1iR0cHra2t6e/vz9evXzMoKIiGhoa8ePEiX7x4QSkpKXp4eDAmJobjxo1jbm6ucOj/80woKyvTzMyMo0ePFp4LLS0t7t27lwkJCWxra2NeXh6tra154MAB9vf38+LFixw1ahQ1NTX/90NXVVWVubm5PHbsGM3Nzdnb28uDBw8yJSWFLS0ttLCwYFtbG+3t7TkwMMB9+/axpqaGtra2/Pz5M7dt28Z79+6xsLCQb9684caNGzkwMMCVK1dy8+bNPHfuHMViMTMzM4WJxN7enp8+feKuXbv46tUrLliwgCEhIWxtbaWKigrz8vJYUlLCcePGMSUlhbKyslRUVKSLiwt3797N6dOnMycnh+bm5pw9ezZ7enpoaGjIsWPHUkNDg1u3bmVsbCzj4+Npb2/PwMBAVlVV0cTEhGvXruWPP/5IkUjEuXPnSHgQCQAAIABJREFU8smTJ6yurmZYWBi1tLQoJSXFAwcOsLu7m5qammxoaGBJSQmDgoKEmygwMJAGBgZ0cnKioqIiW1paeOrUKS5dupT6+vrMy8vjly9f6OzszMePH9Pe3p43btzgrVu36O7uzhUrVtDGxobh4eHU19enp6cn9fX16eHhQRkZGT5+/JiKioo0MjISdOzs7GxWVFRQJBLR0dFRODzi4uJoZmYmaG2fP39mU1MTRSIR+/r66ODgwKtXrzI/P592dnbMzc3lrl27ePnyZbq5udHPz48AuGrVKn748IGurq5CdHJgYIAdHR00MDCgoqIiSXL58uVMT0/nunXr+PXrV4aHhzMvL4/+/v5sa2ujoaEh5eXlqaysTJJcuHAhS0pK2NLSQhMTE86dO5cSiYRpaWnct28fHz9+zDdv3tDDw4PLli2jWCymg4MDb9++zRUrVtDExISampqMiIjg5cuX2d7ezoiICC5fvpwSiYQfPnxgbGwsw8PD2d7eztraWorFYhobG7OlpYVBQUE8fvw4R40aJfzGb9++cfPmzRw3bhxv3rzJrq4uTp8+nfPnz+eVK1doYmLC8PBwvn//nk+ePGFCQoIw2RYXF1MkEtHJyYmurq789OkTd+/eTT09PdbV1XH69Ol89uwZZWRkuHbtWr5584bv37/nx48f2dbWxh07djA0NJSbN29mQ0MDIyMjuWPHDq5evZq3b9/mzZs3GR4ezj/++IP6+vp89OgRV6xYwaKiIr5//547d+6kvb09g4ODmZWVRSsrK5qbm3Pv3r3cvXu3wOKwt7cX+Capqam0t7cX4r7R0dHcvXs3/f39qaKiQrFYzPb2do4YMYLR0dEMDg7m9OnTuXTpUi5dupQxMTEcGBgQuNX29vYcOXIkJ0yYQFlZWe7cuZOdnZ38+vUrR4wYwRUrVrC6upqHDx9md3e3EJvW1dVlU1OToKeamZlxzJgxXLVqFRsaGjhhwgRu376d0dHRTEtL45gxY3jv3j1aW1vTxsaG2dnZwrUlSVVVVY4bN44ZGRnU0tLisWPHWFJSwpiYGOEFcuzYMSEiLJFIGBoayqysLNrb23Pfvn18+fIl79+/TyMjI/b09FBZWZnd3d308/Pj4OAga2pqhC/bkpIS4Wth9erV//XQ/a8+XbFYDIlEAmdnZ9jY2EAkEqGwsBBeXl5ISUlBQ0MDnj9/DgcHB/znP//BgwcPMH36dCQmJqKiogJaWlq4efMmEhMTkZycDGlpaezcuROJiYlYt24doqOj8enTJ9y+fRvjx4+HtrY25s2bJ2hcAFBTU4MnT56gq6sLCgoKmDlzJrq7u3Hz5k2kp6fjypUrWLt2LXR1dbFr1y4cO3YMe/fuhbq6On766SdBl/yHEOXn54fjx49DLBYjJSUFQ0ND+OmnnyAvLw8dHR0MGzYMHz58QHV1NX755Rf8/fff2L9/P4yMjGBra4vJkyfDxMREoPC3t7dj+fLlKC4uRn19PVxdXfH69Wt0dHTA0dERixYtAgC8fPkSLi4uSEpKQlxcHN6+fQtpaWkkJyfj4sWLePHiBXR1dVFUVAQtLS2MGTMG+/fvR25uLvLy8qCpqYnCwkIBGblixQo8evQIT548gYeHB+Lj47Fz50788ssvKC4uhry8PDQ1NdHR0YHGxkbB5B0fH49Hjx7h/v37mDJlCpqamlBcXIy6ujq8fv0aU6dORVlZGTw8PJCSkoJNmzbh3LlzuH79Ot6/f4+0tDQoKChAVVUV69atQ3Z2NmxsbLBy5Uq8f/8eOjo6OHz4MAICAiArKwuSmDJlCmxtbaGlpQULCwuB+PUP/evMmTOYPXs2MjMzsWLFCsyfPx+Wlpbo6+sT+Mfx8fFQVVUVElbZ2dm4fPky4uPj4ePjg+vXryMuLg5DQ0O4e/cuZs2ahcmTJ2P06NHIycmBra0tNDQ08N133wke5g0bNmDkyJHQ0dHB0qVLERISAjMzM2zduhVdXV3w8PCAvr4+srKyMHnyZEF31tfXx4kTJzBp0iRcuXIFBw4cwIkTJ+Di4oKSkhIMDg5CTk4Ob968gbOzM+7fv4/e3l7Iy8vDw8MD6urqCAoKwrZt26Cvr49Lly7Bz88PY8eORWpqqhCjjo6Oxpo1a7Bnzx7MnDkTioqK2Lx5M+zt7eHg4IDx48fjX//6l8DSVVNTQ0FBASIiIpCdnY3ffvsNb968wffff4+goCC4u7vDzs4OkZGRUFBQgIGBAfz9/fHs2TOcOHECJ0+ehJmZGWbOnIm9e/diypQpaG9vx9SpU3Hw4EEcOnQIfX190NXVRXNzM+7evYu8vDykp6cjPDwc4eHhSE9PR3FxMTo7O1FZWYkHDx4gLi5O0OffvXsHf39/TJw4ESEhIdDW1kZxcTHmzp2L/v5+aGho4OXLl6ivr4e1tbWwewGAoaEhdHR0oLOzEzNnzoSSkhL+/vtvTJo0CWVlZQCAyZMnw9nZGQ8fPkRRURGWLl2KjIwMhIeHw8DAAB0dHSgqKkJ1dTUuXbqEjIwM5OTkYMaMGbh06RKOHDmCSZMmYebMmf8v1nZtbS1+++03LFu2DIODg5g4cSK0tbVx6NAhbNu2DZaWlnBzc8N3332Hw4cP/7dj9b9PumfOnKGGhgbt7e3p5OTEjo4OikQiKigocOzYsZSXl+euXbs4MDDAoaEhWlhY8MmTJzxw4ACLior4+PFjzpo1i+3t7bx69SorKiro4eHBw4cPs7e3l9XV1Vy7di137drFxYsXCxv9hw8fsry8nLW1tSwtLeXRo0d57949ZmRkcHBwkNevX2dWVhb7+/tpa2vL8PBwWltbCzqfk5MTc3JySJLFxcV0dXWlg4MD586dyzt37tDV1ZWvXr2ioqIilZSUaGtrS3NzcyooKDA9PZ3jx4/n169fefPmTV69epUTJkzggQMH+PHjR1pZWfHmzZvU0NDgiRMn+OTJE44YMYKfP3/m0qVL+f79e4rFYvr6+tLOzo6HDh1iQkICX716xa6uLr58+ZI9PT1sbGykvb09zc3Nqaamxnfv3tHY2JiBgYFsbW3loUOH2N3dze3bt9PKyooLFy6kmZkZV6xYQRkZGfb391NFRYXXr1+nm5sbi4uL6eXlxQ8fPnDUqFG8c+cOjx49SgMDA6qoqPDmzZvMy8vjli1bmJycTDMzM546dYpfv36lhoaGQP2aNGkS+/v7+fbtWxoaGrKrq4uZmZns6elhX18f1dTUWFBQwBkzZnBgYIDh4eFMS0ujhoYGg4ODuXz5coaHhzMxMZH6+vp0d3dnUFAQ1dXVhclx1KhRPHr0KNXU1NjV1cVt27bRycmJM2bMoJycHLOzs3nlyhXu37+fpaWlAtTm9u3blJKS4uvXr+nl5cXnz58Lk2VbWxu9vb3p5OTEW7ducdeuXQwICGBCQgLv3bvHqqoqRkdHc3BwUJBPCgoKBAeNlpYWIyIiaG5uThMTE+bm5jI1NZUODg60sbGhm5sbOzs7KRaLee3aNYaFhVFZWZkmJia8desWL1++zLi4OFZWVnL79u1ctWoVPTw8BGnO3NycFRUVzMjIoIKCAleuXMmBgQFaWFiwvb2dCxcu5Pr16+nt7c1r167x5cuXXLBgAU1NTVlfX08fHx8C4OnTp3n06FEGBwdzcHCQpaWlNDY2ZmlpKf38/Oji4sKNGzfy4MGDbGpqYmVlJR0cHNjY2EiJREJlZWXu3r2bmpqaNDc3Z3Z2NrW0tOjv789Zs2bR2NiYq1atooaGBrdt28bz58/TwcGBaWlpXLp0KQcGBoTpTlVVVZAAFy5cSAsLC0pLS9PQ0JAJCQl0cnJidHQ0DQwMOGbMGCYnJ7Orq4u3bt3irVu3uGrVKtbU1JAk6+rqWFpayvb2djY0NFBXV5dnzpwR7seFCxdyypQp1NDQoI+PD69cucLm5ma6urqyu7ubSUlJfPfuHe3t7VlZWcmTJ09yxIgRNDY2FoA5YWFhjIuLE+4pZWVlxsXFsbOzk9LS0tTQ0KCbmxsHBga4bt06Tp8+ndHR0ezt7eXo0aN548YN7t69W7g26urqVFdX57Zt21hZWUktLS1KJBJGRUX97+6FefPmMTExEVFRUVBUVERlZSUyMzNRUlIivGF7enowatQolJSUoL+/HxUVFRg5ciQKCwtx48YNWFlZITAwEBoaGtixYweeP3+OoaEhzJw5E01NTUhOTsb8+fNx8uRJvHz5El1dXbCzsxOii4mJifj+++9hbW2N8ePH46effkJsbCw+fPiAnJwcaGhooLOzEyUlJdDV1YW+vj7s7e3R0dGB9PR0/P3336ivr0d5eTnS09OhpKQkJFKGDx8OZ2dnzJkzByNGjBAA1f+0M/zTO6aoqIgDBw4gLCwMHz9+xL/+9S8UFxdDIpFAS0sL0dHRKC0thZycHCZOnIhJkyahr68PLS0t0NLSwrVr17B161Y4ODjg8ePH0NXVRWhoKPT19aGlpQVPT0/s2LEDUVFR0NXVRUhICExNTWFnZ4fc3Fx0dHQgKSkJUVFROHbsmJAACw4OhoWFBdauXYuwsDDo6Ohg8+bNuHTpEiwsLFBcXAwVFRV4e3tj06ZNGDlyJPLz8zFv3jxhwi0uLsbff/+Nnp4etLa2oqOjAw8fPoSxsTHevXsHQ0NDiEQiaGpq4rfffkNcXBySk5OhoKCAhoYG5OTk4IcffsAvv/yC3bt346+//oKfnx+OHDkCJSUlFBcXw8fHBz/88AO0tbWRn5+PDx8+4MGDB7h7967AbZWRkUFKSgpkZWWxe/dujBw5EnPnzoWamhpGjBiBsWPHIi8vDzo6Oli8eDEGBwdx8+ZNxMbGYtmyZejr64OjoyM0NDRQUlKC48ePY9GiRZCSkkJ9fT2amppgaGiIS5cuISUlBdXV1YiPj4e2tjbWrVuHRYsWobS0FENDQ0hNTRXaGxQVFbFp0ybMnTsXZ86cwapVq/Du3Tv8+eefWLNmDYKCgpCYmIjDhw8jIyMDpqamyMzMxN69eyEtLY2QkBCcPHkS58+fx8WLF3Hp0iW8ePECcnJyUFVVxfPnz+Hs7AwFBQWQxPXr1/H69Wvk5eUhMzMTe/bsgUQigbq6OubOnSswOU6fPo07d+7A3NwcR48exfnz5xEeHo7ff/8d//73vzFz5kx4eXnh+++/R19fH9zd3fHbb7/hxYsXGDVqFCoqKnD58mVoaGhg06ZNGD58ONra2uDs7IyxY8eiu7sbAwMDSEhIwOHDh7F48WK0tLSgpqYG3759g62tLQwMDBAcHIyHDx/iwIED0NHRwS+//IIpU6bAwsIC8vLyyMzMhKenJ7Zu3QolJSU0NjZizZo18Pf3R2BgIJKTk7F161b8+uuv+PXXXwWQUm5urhBp/+677yAWi/Hbb7+hvLwcFhYWCA0NRVVVFVRVVVFcXIylS5fC1tYWQ0ND0NDQQGJiIubPnw9paWlMmjQJU6ZMgZaWFj5//owLFy6gvr4egYGBCAkJwZ07dzBx4kSoqamhpaUF1tbW2LRpE/r7+9HX14fY2FjMmTMHenp6+PTpE16+fIn58+fjypUraG1thbKyMr58+QJFRUX09vbi7du3uHv37v/mXrhz5w77+vro6enJiIgIAmBdXR1fvHjBQ4cOUU9Pj+np6fzjjz8Ef6OBgQH7+vq4du1aWlhY8MaNGxwYGGBoaCj9/f3p7+/PHTt2MC0tjc7Ozly6dCm7u7spJSXFrKwsTpkyhY8ePRLeoqNHj2ZsbCzPnTvHp0+fUkFBgWVlZfT392d4eDhlZWVZXl7O1tZWbtu2jfHx8Rw5ciS3bNlCExMT9vb2cnBwkBMmTOCMGTPY2dnJsWPHsq2tje7u7ly7di337dvHpqYmqqurU1tbm7a2tszMzKRIJGJMTAzPnTtHTU1NYbN/9OhRAfPn4ODAXbt2cdy4cfz8+TPl5eU5bNgw9vf3c+3atSwpKWFdXR3Xrl3LkydPsq2tjcrKyuzr6+Pq1asZGxvL6upq6uvrc/ny5dy5cycNDAzo7+9PHR0dYUJfsmQJDx8+zPj4eLa3twvb9n+0TD09PQEPqKqqyvPnzzMjI4OampoCcq+vr4+dnZ1ct24d79+/z5qaGubn53Pr1q1MS0vj4sWLuWTJEsbFxfHjx4/09fXlhQsX6ODgQHl5eYaGhrKhoYHjx4/n8+fP6eLiIniqQ0JC6O/vz02bNrGqqooAaGJiQicnJ8rJyTEuLo6rV6+mvb09Z8+ezfz8fJqYmPCPP/7gixcvWF1dzfPnz3Pr1q3C76+rq6OJiQllZWV59epVbt++nTExMZw0aRIjIyM5fvx4QXvNzMykvb09Q0JCODg4yLFjx3LlypUCqvHVq1esqKigiooK7e3tuXv3bn779o2BgYHcsWMHT506xZSUFBobG7O3t5dLly6lrKwsZ8yYQS8vL86ePZsyMjLMyspiQEAAJ0yYwKCgICYlJfHw4cO8d+8eJRIJr1+/TiUlJb59+5ZaWlq8cOGCgEKNiIhgTk4Ob9y4wfv37zM/P587duxgX18fs7Oz6ezszG/fvjEpKYnx8fG0sLBgcnIyW1tbaWRkxOLiYvr5+VFFRYXPnz8X9hESiYSbNm2ip6cnfX19GRYWxsbGRmHJWVlZSVNTU+rp6fHZs2ccMWIEtbW12dDQQBMTE+bl5dHFxYUfPnxgYmIiDQ0NmZKSwvDwcFZXVzMjI4Pfvn1jeXm54FTIyclhSEgIy8vLGR4eztmzZ9PKyopTpkwRuvn+WTL19PSwqamJnZ2dXLVqFQsKCigWi2lmZibcB35+fuzs7GRwcDBHjx7Nc+fOUVlZmTY2NpwxYwbfvHnDo0ePCj5bT09Pjh07lkuWLGFtbS3Nzc2Fa7B69Wru3LmTX758oZeXF3V0dLhp0yb29fXx+vXrNDc359ixY6mvr8/Tp0/zyJEjPH36NFNTU+nq6sqgoCC2trZy/vz5/PTpE+vr64VF2T86/j/L5+nTpzMzM5NTpkxhQ0MDjx079v/Pp/t/BXlkZGRgaGgIFy5cAPB/MvYlJSX4z3/+Azs7Oxw5ckTIyo8fPx5fvnzBkiVL4O3tLbTL/kPsOX36NKqrq7Fz5078/fffqK6uhry8vNDaq6CggPfv3yMrKwsbN25EdnY2ACAyMhK///475s+fD3l5eVy7dg3GxsbYsmULcnJyoKioiLa2Njg4OMDf3x/37t3D7du3UVRUhNraWgQEBGBgYAC6uroAgMDAQJAUyFk7duyAnp4ebt++jaSkJFy6dAmampro7e3Fp0+foKuri507dwpR3Q0bNmDVqlUYPnw4Zs+ejdGjR+Pjx49QU1PDxYsXsXHjRkybNk2oeDl48CAWL16MdevWIT8/HwUFBUIL6ePHj7FlyxZ0d3ejubkZt2/fRnl5Ob59+4YrV65gwYIFqK+vR2NjI4qKivCf//wHjx49QlxcHOTk5BAWFoZJkyahsLAQaWlpKCkpwZIlSwQORXd3N1RUVODr64sxY8Zg0qRJKC0txdOnTwXNdXBwEENDQwgICEBVVRWePn2KlJQU3L59G/fv38fXr1/h4+ODSZMm4ciRI+jv78eNGzcwZswYoeaks7NT8KDa2toiODgYAQEBePfuHXbu3Im0tDRs2rQJ69evh4KCAgBg2LBhuHv3LnR0dLBhwwbIyspi7ty5qKqqgru7O/T19QVQ0KJFi2Bubo7Vq1dj6tSp2LZtG6ZPn47Zs2cjNzcXsrKyGDduHHp7e5Gfn4/p06fjwoULUFRURFFREXR0dFBRUYH6+nqYmZlBRUUFFhYWmDZtGgwNDTF16lQcO3YMP//8M8rLy+Hh4YELFy7Azc0N3t7esLGxwb59+2Bra4ukpCQoKirihx9+gIyMDBQUFFBTU4MtW7ZgxYoVQg5/3bp1uHPnDuTk5ODq6go1NTUoKipCTU0NGzZswF9//QVHR0ckJydj/fr1kJKSgrS0tPB/+af92cnJCX/++Sdu3rwJdXV1hIaGoqysDNbW1tDV1UVWVhYOHz6Mvr4+TJo0CS9fvsSSJUsQERGB/Px8YbLOyMiAi4sLpKWlUVZWhqCgIHR1deHNmzc4cOAA4uPjER4eDn9/f7i5uWH48OGYM2cOWltbUVVVhTlz5uDf//43fv/9d6Snp8Pb2xuKiorYt2+fgE6dM2cO9u7di507d6KpqQlxcXFwd3fHwYMH4evrC1dXV4hEIujr62Pv3r0oKCjAly9foKOjA+D/YGD/6U2UlZWFlpYWKioqsH//fty6dQtnz57FuHHjsGrVKty5c0cgwRUUFCAmJgZHjx5FWVkZLl26JHAVHBwcIBaLceDAAcjLy+PUqVPo6urC/fv3BYbHv//9b4wePRp79uzBkydPkJ2djbdv38LHxwdlZWXCbukfEM+ePXtgZmYGXV1dqKqqYvr06ZCXl8ecOXNQWVn5/znp/lf2wqxZs5CRkYHHjx9j3rx5WLFiBfz8/FBcXIwrV64gLy8P8+fPR2FhISQSCX744QdYWVlh1apVmDt3LmxtbREREYEPHz5g5syZ0NXVxdDQkBDh9fHxgUgkQnNzMzZv3oz+/n5YWlpi69at2LNnD8rKynDlyhWhlDE2NhYPHjyAhYUFTp8+jR07dmBoaAgTJ05EdXU1zp49i9evXyM3Nxd//vknoqKi0NHRgV9//RWdnZ0YGhqCn58f+vr6cOXKFSQlJSE+Ph4yMjJYunQplJSUUFNTg4kTJ0JGRgarV69GWVkZioqKcPnyZRQXF0NbWxszZsxATU0NioqKkJycLGTfvby8kJiYiJCQEJw9exZycnKYMmUK1q1bh9evX8Pf3x9lZWVwc3NDa2srhg0bBhUVFezduxdlZWW4du0aoqKihFjltGnT0Nvbix9//BE+Pj5Yv349RCIRQkNDsWDBAiFabGdnh/v37+Pt27cwMjKCl5cXpkyZgq9fv2L48OGor69HV1eXcNM+evQIDg4OGDlyJCIiItDT04NJkybhyZMn+PXXX2FjY4MvX74gOjoaxcXFmD59OhobG6GgoIDGxka0t7cjNjYW7u7u6O/vF2LZ0dHRwvX08vJCcXExmpuboaOjg/DwcOjq6qKwsBAGBgb4+vUrYmJioK2tjdu3b2P16tVYtWoV1q5dK9T/SCQSfPv2DePGjYNEIkFoaChEIhHa29tx7NgxyMrKYvjw4ejo6ICmpibCwsJw9+5deHp64tatW5g2bRrMzMxw8OBByMrKYs6cORCLxXB0dBQKCVNSUqCoqIhRo0bhyJEjUFZWRkZGhoAH/edQPH78OJ48eYKPHz/il19+QW9vLy5cuACxWIza2lp8+fIFN27cQEBAAI4ePSrU3nh7e8Pe3l7g8R45cgQSiQQaGhowNDTExIkTMXr0aCxYsACJiYmQlpaGr68vfvvtN4SFheHChQu4e/cuysrK0NraCicnJygrK0NDQwORkZEgiY6ODojFYpiZmeHAgQPw8/PDnDlz0NLSgu+++w5VVVWYOnUqqqqqoKmpiczMTCgqKiIpKQmGhoZwdHTEiBEj4OTkhAsXLiA4OBhnzpzBX3/9hcbGRnz58gV//PEHtLW1MXXqVMybNw/fffedwG/w9/eHgoKC8JxHRUVh3rx5IAk5OTls27YNhYWFGBoawqlTp9DR0YENGzZAX18f48ePh4GBASwtLTFlyhSYmZkJ2MuxY8ciKysLt27dwoMHD1BWVgZNTU28e/cOL1++RF1dHa5cuYKEhAS8ffsWJ06cgI+PDxQVFaGioiKgVdXV1XHy5Enk5OQgMzMT33//PfLz81FVVSVIPXPmzMG3b99w7do1WFlZ4d69e4iKisLkyZMxMDCAtWvX4saNG0Ll0IgRI7B+/XqUlpais7MTEokEP//8M4qKioRKsP9JXkhOTubGjRspLS1NGRkZmpmZ8fPnz5wwYQINDQ154sQJxsbGMjQ0lBMmTGB/fz/j4+MpIyNDPz8/fvv2jWpqaszNzRXEfiMjI/r7+7O0tJTNzc189+4dnZyc+O7dOx47doxFRUVctmwZnZycmJaWRmNjY7a3t1MsFgvk/MHBQUZFRdHa2poJCQns7Oykh4cHb9++zfLycq5bt476+voUi8V8+vQpR48eLTQIGBgYMCkpiSNHjuTAwAC7uro4fvx4wea0e/duPnnyhNevX+cff/zBbdu2MTExkc3Nzayurua6desYHR1NXV1dVldXc9q0aezu7uayZcsYEhIi1Dv39PRw2LBhHD16NLdt28bPnz9z7dq1LCsr45EjR9jW1kaJRCIsJ/6JV0dERAjRy38sMOPHj2d4eDjPnz/PyMhIysnJ8du3b/z48SNbW1v5+vVrBgcHc/z48WxsbGR8fDzv3bsn2Gv+sdjZ29sL9T0dHR1sa2ujnJwc09LSWF9fz8WLF1MkEnHJkiXcsmULlZSU6ObmxoMHD1JRUZHh4eEcMWIEFRQUBOJ+eXk5bWxs2NDQwLdv3wo2QBMTE7a0tAh+5YSEBHp6ejIjI0MIdPz4449MSEgQDP0DAwP09/fnrl272NfXRz09PUZERLC1tZXl5eUMDg7mhAkTaGNjwylTprCuro4nTpygh4cHN27cyICAAD579owFBQW8d+8eHR0dKSUlRU9PT4aEhNDExIRDQ0OUSCTU09Pj/fv3GRAQwMjISIaGhvLt27cMDw+nqqoq9fT0mJmZyYsXL3LYsGE8fvw4e3t7efnyZUokEqFt48yZM+zv7+edO3cE//k/IQ6xWMzZs2ezsrKS9fX13LBhA3fv3k0pKSneuXOHO3fu5KNHj+jn58eMjAzOnz+fIpGInz9/ZlxcHPfv38+KigrBJvfy5Ut6eHgItfcyMjIUi8VsbGxkU1MT9fT0qKamxrq6OgYHB7OwsJAvXrzg8ePHWVpaKjRo7Nu3jyS5a9cuoXInMDCQz549Y0ZGBiUSCU1MTAQ5tWBCAAAgAElEQVQJ4vnz5zx06BDj4uLo6OhIf39/FhcXMzc3lxKJhIcOHWJgYCDl5OTo7u5OR0dHFhYWcnBwkNnZ2Rw3bhybm5uppKTEkydP8vPnz0KdjoqKCp2cnOjj48NXr17xjz/+EJaL06dP58qVK0mSNjY2PHDgAM+fP089PT1u2LCBRkZGvHfvHtPS0piamkpNTU0eOnSIzs7O9PX1ZXV1NdPS0igtLU0lJSXKyMhwy5YtrK+vF6TJsLAwent7s7GxUaivsrW1ZUlJCY8dO8bKykquWbOGX79+5erVq/n+/XuWlpaysrKSYrGY8fHxfPnyJY8fP87ly5czIyODmZmZ/7tPt62tjS4uLrx16xb37t3L2NhYvnnzhteuXWNZWRldXFzo4eHBbdu2cXBwkOXl5VRSUuLixYv58OFDfvr0iYqKirSxseH06dO5YcMGSiQSzp49m+fOnaOLiwtnz57N2NhYysnJMTg4mFZWVhw2bBjPnj3LGTNmCEb+O3fu0M/Pj4aGhlRUVGRkZKRQlXH69GmqqqoKunFOTg5dXFwoFovp6OjItrY2zpo1i/7+/kxNTeWnT59ob28v5MWnTZtGAwMDWltbC8yADRs2MC0tjenp6VyxYgXPnz8vmMutrKw4Y8YMZmVlsbe3lxUVFZSVleXu3bvp6urKgIAA1tbW0svLi3p6epw2bRpVVVV55swZkqRIJOLVq1d58OBBmpubc+7cuczIyGBzczNlZGQYGxsr6MVbt25lVlYWRSIRa2tr6e7uzmnTpjEmJoaKiorU1dWlrKwsq6qqOHr0aKqoqDA/P5/e3t4sLy9nS0sLZWRkuHXrVtbW1rKgoIAmJiacMWMGs7OzOWPGDHZ0dFBKSoplZWVsaGjgoUOH2NLSwrNnz9LS0pJaWlpMT0+ntrY2Y2JihBqa7u5ulpeX093dnaqqqly3bh03bNhAY2NjlpSU0MzMjKtXr2ZWVhbT0tJoYmIiuDrGjBlDfX19Xr9+nc+ePaOtra3AJnj+/DlbWlro4+PDlpYWOjs7c8eOHczJyWF5eTlJcu/evXR2dmZBQQF9fX25fPlyZmZmct26dUKvWWVlJW1tbbl+/Xqmp6fz+vXrVFFRoaenJxcvXkxXV1euXr2aenp6HBgY4KNHjxgUFERbW1v29PQwLCyMhoaGwgHs4ODA2NhYWlhYsLCwkP39/QwPD+eLFy9YWlpKHx8fXrhwgW1tbczJyeHbt2955swZenp6UiKRMCAggPX19Xzx4gUtLCw4bNgwHjp0SAjwWFhYcNmyZXRxceGCBQv45csX+vv708bGhhs3bqSKigq/ffvGR48e0dnZmR4eHnR0dGRcXBzT0tLo6enJ3t5e2tnZ8c2bNxSLxWxqamJVVZWwj3j79i2fPHnC9PR0amlpMSYmhpaWlrx8+TInTZrEuXPnsqmpidXV1YyMjGRWVhYHBwc5e/Zsrl69mtu2bePy5csZEREhDBz/sB48PDwYFBTEu3fvcnBwkIqKijQwMOC5c+eYm5vLoaEhVlVV8caNG2xsbKSysjJv3LjBCRMm8OrVq+zu7qaysjLt7Ox49epVzp49m/7+/tTS0qJYLGZSUhLb29uZnp5OdXV1RkVF0dDQkEeOHKGTkxPr6uqora3NpUuXMioqiqGhoRwcHOS3b9/o5ubG5ORkysjI0NnZmb29vdTW1hZqml69ekVLS0s+ffqUhw8fpkgk4s6dO9nX10cjIyNhAFJXVxeex48fP7Kjo4O1tbV89uwZjx8/zkWLFtHKyuq/Hrr/VV6oqqqChoaGkC3+8uULNDQ0kJ+fD2lpaSQmJmLevHlQV1fHkSNH4O/vDx8fHyQnJ2Pfvn3Iy8vD/v37sX79esjKyuLr16/w8/PDwoULERUVJQCUnZyc8ODBA4GaP3z4cIwePRoWFhaYOXMmSktL0dTUhLFjx0JeXh7379/HuHHjMG3aNJiammLixIkIDQ3F2bNnMXbsWNy+fRt5eXnYs2cPFBQUYGRkhAULFmD8+PG4d+8eWlpacOTIETx//hx79+5FQkICGhoakJycjIULFyIoKAgfP34UWAR1dXUICAhAe3s7rK2tce3aNXR3d6OoqAhz586FgoIC2traYGJigtjYWFhZWUFXVxfu7u7w8PBAaWkpGhsb4ef3/3B2nuFY9/Hff7VkNFA2hVRacqGhZERD60pDKaFN2slIS5MmbSXtYaQhFSpJJEpLKAqpUFEoW9/7wX30O477wf+6j+N/PvHEg9Pp/H5/n/F+v1/LOHDgANra2nTp0gU1NTVMTEwYPnw406dPp3///jx48EDCV8+ZM4eWlhaysrIYM2YMQ4cOpaysjEWLFmFtbc2QIUOYPn06N2/eRAjB8uXLGTRoEH5+fuTm5jJ//nzCw8N58OABS5cuRUZGhpkzZ9LY2EhCQgJ5eXkoKSlRX1/P8uXLyc7O5s+fP+zduxd3d3fU1NQwNzdn2rRp6Ovrs3jxYgwMDKQM1IcPH2Jra0vPnj0JCQlBV1eX0tJS9PX1mTp1Kps2bWLAgAFs2bKFxsZGwsLCaG5uxsrKCm1tbQ4dOkR+fj6jRo1CXV0dd3d3tLW1efPmDcrKymRmZrJlyxbCwsKYNWsWOjo6bNy4kWfPnqGoqMjatWvR1dXlxIkT/PjxQ/LRl5WVYWxsjJeXFyNHjiQjI0OaG169epW8vDwuXLiAu7s7o0aNwtzcnKdPn/L161du3rzJjh07GD16NLW1tTQ1NbFr1y62b9+OgoICBgYGvH79mjdv3rBkyRIUFRWpqKjg5s2bfP/+nSFDhhAcHIyRkRELFixAU1OT/Px8goODpc17YGAgU6ZMYfjw4XTs2JHi4mLGjRsHwPfv3zEwMKCyspJ79+5hZmZGXFwcxsbGJCUl0aFDB8zMzHB3d+f79+94eHhQWFhIYmIi6urqvHv3jp07d7J161ZGjBjBr1+/uH79OnV1daxduxY/Pz9u377N2rVrMTAwkHBcERER9O/fn8TERDZv3oyzs7MUuv748WOuXr3K9OnTWbNmjXQO7ezsJDyTubk5O3fuJCUlhTt37nDw4EHatm0rERsiIyPR1dWlsbGR3NxcCgoKKCsrw9LSkk+fPmFkZISNjY2Ek4qJiWHlypUoKSmRlJSErKwsSUlJLFq0iMmTJ2NkZMSQIUPo1asXx48fZ9GiRfz+/ZuBAwdy584dUlJSePHiBbW1tZiZmaGnp8fYsWPR19dHR0eHLl26UFVVxdq1axk+fDivXr1i8+bN3L59m5UrVzJlyhRat26Nra0t2traJCcnk5qayuvXr6mvr2fRokW8evUKS0tL5syZQ15eHv7+/rRp00ZClP1Pr/80RygpKVFZWcnKlSspLCyU3sizZ884ePAg06dPJyMjg/v377NhwwaOHTuGu7s7V69eJSwsDFtbW9avX8/ixYv5999/CQ8PZ9GiRXh4eBAdHc3y5cuJiIhgw4YNPHr0iNraWtTV1VFXV+fUqVMkJCRIIntHR0dGjx7N9evXcXZ2xszMjNmzZ9OqVSvq6+sxMzOjrq6OZcuWYW9vT0VFhSQrCg8PJyUlhfz8fMzNzZGVlSUrK4tjx47x7NkzvLy8SEpKoqSkBDMzM3r06MHMmTPJy8ujsLCQJ0+esH//fqqrq3n06BGVlZUUFxeTlZXF0qVLqamp4ciRIxgbG+Pt7c3Dhw/R19fn6NGj7Nu3jyFDhpCYmEhCQgILFiygtLQUOTk5Dhw4QG5uriQLGzRoEEeOHEFZWZlu3brxzz//cPnyZYKDg2lqapLQRpcvX+b8+fPY2NiQnZ1N586dOX36NNu2bUNXV5dfv34xduxY2rdvz9ixY4mJiUFfX1/K+/Xy8kJZWZnKykpSU1MlVpu9vT2HDx+mW7duUtRkYmIigwYN4sGDB2zZsoWAgACmTJlCTU0Nzs7OPH78mKFDh1JVVYWOjg7Nzc306dOHrVu3oqenh62tLbW1tdTW1nL9+nU+fvxIcXExHTp0YP/+/aipqZGTk4OHhwcrV64kPj6eoKAg1qxZw6JFi/Dy8kJeXh6AzMxM9uzZQ48ePSQSxM+fP4mJicHc3JzY2Fi6d++OkZERq1evplevXqioqPDvv//S0NBAbW0tkydPZu7cuZw4cYJt27Zx8+ZN6ZB+/vwZRUVFfH190dHRQU9Pj0GDBvH8+XNqampQVFQkMzMTPT09srKyqK6ulnJjLS0tcXR0xMTEBG1tbR48eMD169dJTk6mrKyM5uZmFixYwJEjRwgNDeXhw4eMHj0aOzs73r59S3FxMcOHD+fFixc0NDTQtm1biSwyYMAA3rx5Q1lZGQsXLqRLly44OTmxceNGdu3aRd++faXF9ZQpU8jIyGDHjh1ERERQX1+Ph4cHSUlJaGpq4uXlRW5uLjo6OhQVFXHp0iWKi4tZtmwZ58+f5+fPnxgbGxMVFcWzZ8/49OkT7du3p1evXtjZ2aGtrU1JSQk+Pj6UlJQwc+ZMEhMTycrKIiMjg+fPn9OzZ0/U1NSYPn0627ZtY/bs2ZiZmXHv3j1OnTpFfHw8MjIyxMXFMXfuXCZOnMj69es5c+YM7969Iz8/HxcXF969e8etW7dwc3OjT58+5Obm8v79ezIzMxk9ejSpqanIyMhQUFCAu7s7nz9/ZvXq1aiqqiIrKyshnaqrq3n48CHnzp2jT58+mJubk5aWRl5eHlZWVmzatImxY8eiqamJv78/b9684ejRo1hYWHDixAkSEhJITk5GW1ubESNGUFlZKeHalZWV8fb2xtLSkt69e0tz+f96/ad6YcyYMUJVVZUbN27w8uVL6Y2+e/eOM2fOYGhoyNq1a+nUqRNFRUVkZWURFxdHYWEhSkpK7Nixg61bt1JeXk5UVBTHjh0jLCwMTU1N8vLy2Lp1KwsXLmTKlCkcP36cgoICrl+/Tk1NDebm5nz69AkHBwdevXrFiBEj2LBhAwEBAWhpabFt2zYyMzPZtGkTq1evZujQoTx//pzy8nIpy1ZRUZHBgwdjYGDArFmz6N+/P7q6ulhYWJCRkcGuXbs4e/YsZWVlHD9+HEdHRxwcHOjSpQu7d+/mzJkztG7dmsTERLZv305ISAi+vr48ffqUu3fvSmgTPT09rl+/zvfv37G0tGTdunUcP36cAQMGsG/fPl68eIGrqyuampr8+++/ko7Y3NwcPz8/0tPTmThxIlu2bJGqzhEjRhAYGIiXlxd1dXW8efOGhIQEMjMzSUhIQEZGho4dOzJnzhzy8/O5fPkyP3/+pLi4mPj4eH79+oWtrS06OjrU19cTHBzMrFmz2Lp1K7W1tYwfP57Zs2dLgFFnZ2caGxsldpmuri7Kysr0798fY2NjWrduzbt376ipqWHYsGFUVlaip6dHq1atkJWV5dOnT9TV1REVFUV8fDzz588nLi6Orl27kpCQIF3ed+7cQU1NjQ4dOlBUVERoaCiBgYH8888/2Nra4u7ujrOzMy0tLSxdupTY2Fh+/vzJvHnzMDY2Rl5enkGDBmFiYkJJSQlKSko8evSI2bNnc+7cOdLT02lsbMTe3h4ZGRmcnJy4cOECL1++JCoqChcXFzZv3oysrCzXrl0jOzsbVVVV2rRpIzmX/gI+T506xalTp7h06RJXr15l4MCBKCsr0717d9TU1PDz8+Pdu3eUlJTw8eNHLl++zLlz58jLy5MudWdnZ16+fMnXr1+pr6/H3d0dR0dHnj17hoGBAdHR0Zw5c0ZKuPr165eE+Tl48CA3btygvr6egoIC3r59y6tXr4iLi2PAgAEYGhoyYsQI6f/2F5+lpaVFdnY2t2/fpkePHowePZr8/HwyMjK4fPky379/p7CwkKCgIEn9c/36dc6dO4eFhQXbtm3jyZMnVFVV4eTkxKxZs/D396e2thZ/f3/at2+PqakpYWFhVFVVYWpqiqenJ58/f6ayshJra2uOHDnCmTNnaG5ullxvgwYNYtq0aZw+fZrz588zatQoysvLmTp1KtevXyckJIQhQ4ZI6ozdu3dz8uRJevfuzdq1a/n9+zeampqUlZVRX1/PkiVLuHr1KhUVFTg5OTF06FA+fPiAtbU1ysrK2NnZce3aNVasWEFqaiq/fv2isbERf39/qcjT19dn4cKFaGlpcerUKebNmyeFvZuZmZGens7kyZNJSkpiz549PHnyhOfPn/P582ecnJw4cOAAzs7ODBw4kLq6OqZPn46ZmRkNDQ3/O/XCmDFjMDExwcDAgHXr1vHp0yfu3btHWFgY58+fJyUlhczMTF68eEFVVRUGBgY4ODhw5coVFBUV0dLSYtCgQXTq1ImJEyfSpUsXlJSUKC0tRV5eHh8fH37+/Mnr169xd3dnw4YN0hMqISEBT09PZs2aRWRkJJ07d+bWrVv8+fOHefPmERERgZaWFhkZGQwbNoxZs2YxePBgcnNzsbGxoaioSEKCLF26lGXLlqGoqEifPn348OEDcnJytLS0kJKSgouLC4cOHeLu3bvMnTuXW7dukZKSwpUrV+jZsyeDBw+WUCdFRUVYW1vTo0cPFixYQFZWFgUFBWhoaDBixAj69++Pq6sr5eXlODo6Ym1tLWFrZGRkyMnJITk5WZKQqamp4ePjg4+PDw0NDZLNV15eHg0NDfbt20ddXR0bN25EXV0dY2NjiouL6devH1OnTqW6upq9e/eiqKhIeXk5jx8/Rk5OjitXrkgSrfv370vcLWtra7Kzs5k4cSIBAQG4u7tTX19P+/btiYiIIDw8nOrqai5evMjAgQM5ffo0vXr14tixYzx8+JBx48axa9cuSSzu4ODA3bt3+fTpE5MmTZIQTt27dycmJgY1NTXatGmDkpIS3bp1Y//+/RQXF5OZmYmcnBx9+vSRwrr//PlDYmIiu3fvxsPDg+TkZHx8fIiJieHBgwf4+vqSkJCArq4unp6eyMrK4ujoyJgxYyguLkZDQ4OKigqePXvG2bNnMTU1xczMDEdHRz58+EC/fv1obGzkzp07bNiwgbi4ON68eYO5uTne3t58+PABgJkzZ7JkyRJu377N6NGjOXz4MHV1ddy4cYPNmzdTV1fHjBkzcHJyQl9fnw0bNtCvXz/evXtH69atOX78OHJycjx79ozJkyeTnJzM4sWLUVJSYsqUKTx9+pQ3b97w5csXrl69SmVlJcuXL8fe3l6q/gYMGEBISIjEUlNUVGTEiBGsX7+eFy9e0KlTJ37+/Mns2bPp27cvs2fP5s2bNzx58oT4+HgGDRpEU1MTxsbG/Pr1Cz09PRYtWsTo0aORk5OjoqKCxsZGzp8/L124w4cPR09Pj4cPHxIUFCQZTkpLS8nKykJGRoY9e/Zw6dIl0tLS6NevH6WlpRw6dEi6TJ8+fUpQUBCdOnWiqakJTU1NiouLUVFRoWfPnvz8+ZORI0diamoqdTulpaVoaGiwe/duJk2ahK2trUSTBqipqUFLS0sy4PyFmH79+lWCCYwYMQI3NzeGDRtGRkYGgYGByMjI8OzZM27cuMHJkydZt24dCQkJLF26FBsbG+bOncvNmzeZMGECiYmJ2NjYcO/ePZSVlTEzM6NDhw6sXbsWBwcH8vPzefr0qdRxq6ur4+HhgbW1Ne/fvychIYHm5mZatWrFpUuX/rPS/U9yxIsXLzb/+PEDABkZGaZOncq+ffu4du0axcXF0lzJ09OT7du3k5WVxZQpU3j9+jW6urq0atUKbW1tVFVVKSwsZMCAASgoKODu7k5qaqpUwltYWNDY2MiKFSt4+fIlxcXFvH37lsDAQDIzM3FxceHjx49s374da2tr7O3tcXd3p6CggHbt2qGhocGZM2fYs2ePVO2kpaVJFWJgYCBbt26VskEVFRU5dOgQ8fHxDBw4EEdHR/z9/SktLWXDhg307NmTbdu28fjxY4qKivDw8CAiIoLY2FgiIiLo0qULrq6uNDU1ERERgbm5OUuWLEFBQYGCggJu3bqFqqoqMTExrF69msbGRnR0dOjevTtycnLcvn2bVatWYWdnR0NDA+rq6qSlpZGUlCS1yi4uLgAUFxdTV1dHQUEBpaWllJeXExoaSnFxMW/evOHq1ausWrWKTZs24eXlxblz5/j27Rv3798nLy+Pdu3aYWZmRlVVFerq6gwfPhxbW1uuXLmCjY0NycnJaGlpkZOTw9u3b+nRowc+Pj7MmzePmTNnMmvWLNTU1GhpaZEIzRs3bkRPTw9fX18WLVpE586dWbx4MbGxsWhra5OTk8OTJ0+YPXs2UVFREmHh69evdO3alU2bNvHx40c6dOjAmzdvsLCwACAsLAwLCws8PT3Jz8+XkO1/dd9Pnz7l8ePHXLp0iaKiIomrNW3aNBwcHNiyZQs+Pj7cvHmT1atXSxrM3r170759e5qamqQM3sTERFauXMnIkSP5+vUraWlpEt+sTZs2hISE0NDQwP79+6mtrSUgIABvb29u3rxJt27d6Ny5szTb19HRISQkhEOHDnH+/HmJOXb69GksLS0xNzfH2NiYiRMnMm7cODIzM1FRUUFeXh4LCwuMjIw4c+YM48ePp7GxkeTkZJYsWULr1q1ZvXo1BQUFzJgxg0+fPnH58mW6devGsmXL2LdvH2/evJE0v507d6a8vJyDBw/y/ft38vLykJGRYdWqVURFRUnjuKCgIFpaWnj+/Dny8vKcP38ec3Nz7t+/T3l5OeHh4Tg7O3P69GkJkKmtrU1TUxOFhYUoKyvT0tKCgYEBJ0+e5NGjR2RnZ6OkpERRURHm5uZYW1szaNAgsrOzMTMzY8yYMSxatIhbt25RXV0tUUNCQ0NJSUmhoqKCzMxMFi1axO3btxk0aBDu7u68fPkSf39/ioqK2LlzJ+np6bx48YILFy6wYsUK9PX12bhxI3V1daiqqnLs2DGuXr3KgQMHePv2LR8/fqRt27ZMnz4dExMT3r59K41U3r59i4GBgZQR/P37dxQUFGhoaGD16tWEhITg4eHBwIED+f37N0lJSSxcuJCNGzfSs2dPEhMTuXHjBvHx8ZKj8m9lrKur+z+SI/6z0s3KysLAwIArV67Q2NhIc3MzgwYN4unTp1JYyrp16zh16hRLlizh2LFjHDt2TBqqw/+dCxcWFuLv709KSgrz589n8uTJLFy4EB0dHTQ1NXn69CnV1dW8efOG+fPnSxTT3NxcRowYIX2IdXV1ODk5kZeXx/r162lubmbhwoW8fv0aS0tLAgICWLRoERMmTCAyMpIJEyZw+PBhTp48Kc25Pn36xMePH1m5ciXJyclMnjwZc3NzCS3UqVMnrly5goqKCi9evMDb21sK7f7LSzp9+jRnzpyRFhLp6elUVlYyf/58KioquH37NmfPnmXnzp3cv3+frl27EhoayocPH5CVlWXu3Lncv3+fzMxMvn37hry8POHh4QQGBmJra8uOHTt49OgRjx8/lizU+fn5Er0WwMHBQQIlLlmyhN27d9OrVy82b94szSDbtm0r6WOvXbuGvr4+7u7uEgvr+fPn2Nvb8/v3b27cuEF1dTX19fWcO3cOdXV1tm3bRlhYGEZGRiQkJJCTk0NpaSlhYWFcunSJvn37EhMTQ25uLgcPHuTly5fEx8dz5coVXr16xcmTJykvL5dIwvfu3cPFxQULCwsMDAzo3r07bdq0kbTLhw4d4vHjx1y5coULFy5w5coVKioqKCwsxMLCgqCgIF68eCFRZufMmcO1a9fw8fGhvr6egIAA7O3taWlpoaCggJMnTzJ48GDGjRvHypUr0dfX5+3btxQUFPD8+XO+ffvGnj17OHXqFLt27eLbt2/k5OSwdu1anJyc8PHx4dq1a/z584fIyEiePHmCoaGh1NqOHDmSf//9l5UrVwKQk5PDx48fOXHihKQ9NzQ0ZMeOHURGRqKsrExVVRVCCObMmYO9vT1WVlZUVVUxd+5cNDQ0CAgIwNLSkq9fv2JlZYW/vz9lZWWkpqayc+dO3r59i6ysLHv27OHbt2+SsUFFRYXu3btz7949WlpaCA4OJj09XbILb9q0ibt379K2bVvS09N5+PAh9+/fl75na9as4eHDh1y+fJmWlha+fPmCnJwcdXV1nDx5El9fX6myfPjwIR07dkReXp7Kykp69eoloXGWLl0qGS8CAwNJS0vj+PHjHD16FFdXVywsLCgvLyckJAQDAwNWrlwp/W9///7NuXPnGDNmDO7u7pSVlTF37lxKSkp4+/YtHTp0ICsrC3Nzcx48eEBoaCjTp09HVlYWGxsbPn36REFBAVeuXGHatGlMmDCB58+fY2lpycSJE0lPT8fb25v4+Hgp9LyyspK+fftiamrKunXrMDExoby8nKVLl2JkZMSPHz/o06cPz58/Z9KkSaSlpfH9+3fJdPXo0SO6dOnCnTt3KC0txcTEhPv37/9npfufE9/Tp0+jr6+PkpISjY2N3L9/nw4dOkjD9dLSUtatW8eGDRv4+vUrioqKaGhoMHHiRLy9vXFxcSEpKYnk5GRsbW0JDAxk5MiRDBs2TDqM1dXVUoLVX9pmly5d0NPTQ1VVlfj4eLy8vJCTk+PXr1/k5uayY8cO0tPT+fnzJ6mpqZJhw9HREYCVK1cydOhQNDU1aWpqYsSIEQQHB3PlyhX09PRwdXVFX1+f1NRUli9fzqhRo+jXrx/e3t5SItqXL19Yv349ampqmJmZ4evry4sXL5CXl+f58+fExMQgKyuLlpYWJiYm0qz43bt3PHnyREpeevnyJQsWLMDIyIjQ0FDmzZvHkiVLGD9+PN7e3rx48QIrKysUFRUJCwvj48eP9O7dm3nz5rFs2TLu3LnD4sWL0dbWluZNISEh1NTUSJkYEydO5NSpU9TV1XHhwgWUlJRwcXFh4cKFJCUlER4ejhCC6Ohoqe36u1gAUFRUJDs7m7y8POrr61FWVmbVqlWEhoZy5MgRFBUVMTQ05MKFC3Tr1o2SkhIMDAyYOXMmtVe6KPIAACAASURBVLW1/48L69SpU9TW1mJiYsLUqVMxMjJCQ0OD8+fPo6ioiLOzM1u3bkUIwefPn9HQ0GDOnDno6uqyYcMGrK2tiY+PJzIyUtreGxoa0r9/f4yMjDhy5AheXl6kp6czadIkjIyMmDFjBp6entjZ2aGhocGlS5dwcnLiwYMHJCcn07ZtW6ZMmYKvry89evTA1dWVNWvWEBUVRbt27QgJCeHp06fs3r2bVatWUV1dTVBQEEFBQdja2kpOpc2bN+Pm5oaCggIDBgygU6dOtG3blsmTJ7Nq1SoWLVpEUlISt2/fpqysjNraWkaMGMGzZ89ISEjAyMiIyspKDh06hLOzM+/fv2f16tWYmJgQFxdHWVkZLi4unD59mkGDBqGqqoqzszM6OjooKSnRtm1b9u7dy+3bt6WiJicnh0OHDmFnZ8ekSZMwMzMjNjaWlpYWTp48SWJiIqNGjWLZsmU0NTWxefNmRo0axePHj/n8+TPz5s1DTk6O+Ph4ZGVlUVVVxcbGhsuXL9O9e3d+/PiBg4MDiYmJaGlpce/ePfbt20dWVhatW7dm6tSp9O7dm9TUVBwdHbGxsWHPnj3Mnz9fck6+fPlS2mv8+fOHbdu2UV1dTXFxMVOnTiUyMhIDAwNpmfv3jP38+RNPT09qa2uJjo5GVlaWI0eOYGJigre3N3PnzpVMOWPHjqVjx47Iysri6uqKs7MzsbGx6OnpER4ezoQJE7h27Rr29vaMGzcOXV1djhw5QocOHYiIiCAqKoo/f/7QtWtXzp8/z7dv37hw4QJNTU1YWFgwfPhwfH192b17N0eOHOHu3bv07NkTVVVVmpubMTAwkPZdVVVV/3np/mele/78eZqbm3n06BGenp6sW7eOR48e8fHjRxQUFIiOjkYIIf2xaWlpEkiysLCQu3fv8v37d5ycnLCxseHo0aNkZGTQ0NBAfn4+BQUF1NbW0rZtW9LS0oiJieHPnz/o6ury9OlTVqxYQUtLCxkZGcyfP5/IyEju3LnDhw8f2L59O0OHDqV9+/bY29tLS7avX78SGhqKvLw8ixcvRlVVlYcPH6KqqoqpqSnnz5+nV69e3Lt3DzU1NdLT0wGIiYmhpaWFsrIyhg0bRlZWFvn5+VhbW3Pu3DlKSkrYtGkTmZmZ9O3bl1atWlFVVcWFCxfYtm0bOjo6XL16FTc3N96+fUtubi4RERFcvHhR+hJpa2vj4eFBVFQUcnJyTJw4EYDDhw/j4+ODra0tv3//5sSJE9KCxNvbGx0dHbKyslBVVUVGRoaysjLpAffPP/+QkZGBrq4uZmZm3Llzh/j4eMrLyyWn2/v37wkPDyc9PZ1du3ZRVFRETEwMFy9e5NWrVxgYGNCmTRu0tLTo06cPeXl5TJs2jT179rBlyxYMDAz4+vUrHTp04NKlSyQnJ+Ph4cGsWbP48OEDLi4uzJ49m1u3bjFw4EA0NTX58+ePVL1PmTKF9+/fo6CgQGVlJQcPHiQwMBB3d3fS09Pp2bMn8+bNY/HixbRp0wZHR0e6deuGkZERkyZNIjExkeXLl3Pp0iXU1dWlhd2///7LwoULOXHiBPLy8qioqLBhwwby8vLIz8/n9evXTJ06FWtra8aMGSNBBPv378/SpUtZsWIF9fX10uFvaGggNzeXdu3acf/+fcnVl5iYSLdu3Xj58iXr168nIiICVVVV6uvrSUxMZMSIEZiamlJUVISWlhYhISGMHDmSUaNGcfHiRaqqqujRowfBwcGEhoZiaWlJZGQk3t7eZGZmIoTA1NSU0NBQVq5cSUNDAx4eHhw+fJh//vlHgoz+HQNNmDCBhw8fMmTIEObOnSt1arKysty5c4chQ4bw+fNn/vz5Q0BAAOXl5cycOZOsrCwWLFjAnDlz+PXrF9ra2pK19fTp07i7u7Nz504iIyNRV1dnzJgxaGtrs3TpUry8vPj8+TPDhg3j8ePHGBkZsWjRIsrKytDS0pIq5r/OSlVVVTQ0NLhz5w6tWrWSZp9v376VHiavX7+WlDyzZs3CxcUFAwMDOnfuTFZWFhEREdy+fRtZWVkJC+bl5cWlS5cYNmyYBNccPXo0KSkpDB48mH79+pGUlERqaqq0L/qLUPLz82Pv3r38+fOHYcOGMXz4cHbv3s3r16/Jzc3l69evbNmyBRkZGek78vTpU37//s3Vq1cl6vHx48fJzMxkyZIlvHz5EgUFBR49eoSbmxtBQUFSFOX/+PovEW9MTIzYs2ePuHXrlhRxdvv2bbFr1y7h4OAghSO/evVKyMnJicTEROHs7CwcHR3Fhg0bRHNzs8jNzRU6OjrC2NhYxMbGit+/f4uhQ4eKkpIS8erVKzF06FAxZMgQsWvXLlFRUSE2btwoHB0dRXJysnB2dhYNDQ0iPj5eBAYGCjs7OyEjIyNiY2NFamqqyMvLE87OziIjI0OUlZWJW7duiaFDh4ri4mJRU1MjUlNTRUtLi1BTUxN+fn6iV69eYuvWreL69evi5MmTYsaMGSImJkZ4eXmJqqoqcerUKYkm4ODgIIyMjISPj49wdXUVy5YtE7GxseLz589i+fLlYujQoeLGjRti48aNon///lLMXJs2bcSNGzeEkpKSGDJkiNi/f78wMDAQEyZMED9//hRZWVli7ty5Yvv27cLLy0u8fv1aWFlZiRcvXggLCwuRn58v+vXrJ+Tl5UX//v2FoaGh5KA5e/asePHihdDV1RVlZWXi9OnTYvz48cLPz0/Y29uL4OBgkZOTI27cuCGcnZ0l585fFNHZs2dFVFSUKC8vl6L8Tp48Kbp27Sq6desmNmzYIAICAsTw4cNFWFiYKCkpEVOnThWenp5CW1tbNDc3i+nTpwtvb2/h7+8vcnNzRXV1tdDS0hJt2rQRtbW1wtXVVSxdulQcPXpUdOnSRUyfPl3MnDlTvHr1SlhbW4u5c+eKuXPnivbt24unT5+KL1++iKysLGFnZydFKra0tIivX7+KpUuXipycHLFixQrRsWNHoaKiIuzt7UVcXJwYMmSIuH79uoiOjhZVVVXiwoULwsvLS0RFRYm9e/eKgwcPip07dwpLS0vR0tIiTE1NRUpKijAyMhK9evUS6urq4ufPn6K0tFRkZWWJvLw8ERkZKVxdXcWPHz+EpqamsLOzE/7+/qKxsVFERkaK2tpasWLFChETEyMFmu/bt0+4ubmJhIQEKWqxU6dO4u7du2Lq1KnCyspKTJ8+XVhYWIhnz54JLS0t0bt3bwlz0759ezFq1ChhaWkpzp07J2JiYoSOjo6YPXu2mDt3rujVq5cYP368GDp0qBSgbWVlJebPny9kZGSElpaWqK2tFQcPHhTbt28XRUVFYuvWrSI8PFwYGhqKtm3bCldXVyEvLy/BOpcvXy68vLzE6dOnRV5enqipqREODg4SimvatGni5cuXoqSkRPj6+oo3b96IyMhIsWbNGqGpqSmePHkiOnbsKNavXy9MTU1FYGCg2L17t6ipqRFpaWniy5cvol27diIjI0MkJyeL8PBw0aVLF5GRkSE8PT1FfX29OHLkiHBzcxPGxsbi/fv3Ehg0Li5O5Ofni2/fvonFixeLP3/+CBsbG5GXlyfs7e1FdHS0+P37txg9erQoLi4WL168EMuWLRMaGhoiNjZWdO3aVToPsbGxYs2aNWLt2rVCUVFRLF68WFhaWorAwECRn58vYamcnZ1FS0uLRIM5ePCgiI2NFaampmLLli3Cw8ND/P79W6xZs0bs3LlT5OfnCxsbG+Hp6SkKCgpE165dRUpKivDx8RGHDx8WxsbG//sQ88DAQKysrIiLi5NazgMHDjBx4kTMzc3x8PAgMDCQ9evX8/DhQwwMDJgzZw6ZmZkUFRWxe/du6urqcHZ2pqioiObmZtTU1Ni3bx8hISGEhYWhpaWFjo4O3t7eTJgwgZ49e1JbW8uPHz9ISUnh69evGBgYMGLECFpaWmhsbMTa2pqioiKCgoIAcHR0ZMaMGZw8eZILFy7w6tUrfv36hZaWFuPGjUNDQ4P27dujqqpKeXk5DQ0NnD17lqtXrzJy5Ei8vb25ceMGVVVVxMXF4evrS3l5OXFxcXz69IlZs2bxzz//8PnzZylPobq6ms2bN0ut/vLly8nLy2P06NGoqqqyePFiFixYQE5ODhERETx58oTGxkaWL1/O4sWLOX36NP369ePOnTu0bduW5cuXM3ToUEJCQjh48CBqamoMGTKEvXv34ufnR0BAAGVlZbRr1w4nJycmTJiAh4cHx44dw9bWVmrXtm7dypIlS9DX18fV1ZUJEyawZ88e6urqOHDgAEOGDMHHx4e1a9fS1NREWloaHh4epKWl0apVKyZOnMivX784cuQIDx48oFOnTnz79o34+HgArly5wvXr1zE2Nubu3bv8+vWLKVOm0LVrV+D/Bk0nJiby/v17ampqOHbsGGvWrEFdXZ2DBw/i5ubGrVu3UFZWxsbGhuPHj6OiokLbtm1ZvHgxb9++JTs7m3nz5tG9e3e2bNmCuro67dq1kxQvKioqdO3alb59+5Kbm0tSUhJ+fn7s27eP6OhompqapOg+OTk5YmJi0NPTo2fPnlLA+/DhwxFC8O7dOxQUFEhKSuLRo0dSWE9cXJyUl7FlyxYiIiLo2bMnRUVFGBoacu3aNRITE3FwcCArK4vCwkJMTEyYOXMm2dnZmJqaSrNyTU1N+vXrh6GhIcOHD5fw33+17n9VPBcvXsTb2xsVFRWUlJRYuXKllLfg4uKCoqIi/v7+kuHn5MmTFBYWsmHDBs6dO4efnx8nT55kwIABHD58mIyMDPz9/Tl69CgAnz59om3btpLk7sOHD1LEaO/evQkKCiI3NxcrKysp5P7bt28kJyezaNEicnJyaGxsxMnJiX79+uHs7MzatWvJzs7m3LlzBAYG4uPjw549e/j8+TNnzpzhw4cPaGhoYGBggI6ODg4ODixYsAAVFRWampooKSkhJCSE1atXS6HnQUFB9OrVi4MHDzJlyhTU1dVp3749Dx48wNraWgprOnLkCPLy8piYmHD27FnCwsL4/fs3cXFxPHv2jO7du0uB+RUVFfz+/ZuUlBQOHjxI3759iYuLo6WlhUOHDjFr1ixGjRpFamoqHz9+ZMOGDRJIYOTIkcTHx/Ps2TOuXr2Kvr4+HTp0oK6ujqamJurq6rC2tiYsLIxJkyaRkZHxn4Xuf+p0c3JyxJgxY5g/fz6VlZXs3buXU6dOYWhoyNGjR6moqGDOnDlcvXoVQ0NDbt++zblz57h//z6tW7cmNDQUFRUV3N3def36NRoaGigpKZGfn48QgsLCQlRVVTl79iwhISEkJyfTvn17HBwckJeXx83NjdTUVCIiIiTnioODA0ePHkVHR4fr16+zZ88eLl68iKamJqmpqTx+/Jh27dpRVVVFeXk5MjIy/Pnzh/r6eqKioqivr6dDhw5UV1dLF2l6ero0d46MjGThwoX07NkTGxsb6urqGDFiBA0NDdy4cYP09HQOHz6MnZ0dDg4OUpaus7MzhoaG/Pr1Czs7O7y8vKTkrb/LxQULFjB27FjWrl1LWloau3fv5tOnT5Ij6uLFiyxfvhw3NzcWL16MjY0N69atQ0ZGhqtXrxISEsLjx49JSUlBTk6OxsZGhg8fzvz58zExMaFt27YMGTKEf//9l5CQEDZs2MDr16/x9fVl8+bNZGdn06dPHx48eEBqairHjh1j+/btTJkyhdOnT6OmpkZpaSljxoyhb9++aGpq4urqSnh4OOrq6tLPv0SHwYMHs337dhwdHenYsSPdu3cnKioKU1NTevfuTWRkJPHx8ezfv58PHz4QGhrKggULAJCVlcXLywt9fX38/f0BGDRoENeuXePdu3d8+PABPz8/rl+/zqxZs7C2tpaCVTw8PLh27Ro3b95k2rRpWFpa0r59e+7evUtzczMjRozA3NycOXPm0KlTJ1auXMmJEyfYtWsXOTk53L17l44dO7Jv3z50dXVZv349enp6dOvWTfoM4uLiuHjxIps2baJdu3ZkZ2eTmppKbW2tNOKxtLTE3t6e9evXc+3aNbZv387kyZPR19dn27ZtUmvr6upKly5dGDFiBOvWrSM5OZni4mKKi4uZM2cOFy5cYOjQoTx69Ijx48czefJkWrVqhYmJCbdu3eLYsWOoq6vTr18/IiMjycvLo0OHDkyZMgU/Pz/atGlDcHAwFhYWlJWVYWBgQH19PQ8ePOD3799oaWmxdOlS6TLW09OjubmZtm3b8uPHD9atW8efP3/o3LkzJSUlTJo0iaqqKn78+MH79+8JCwsjOTmZnJwcgoOD+f37N127diU6Oppu3brh6urKp0+fkJeXp1WrVowfP56AgAAmT57M7du3efr0KfPnz5dIytOmTUNRUZFx48Zx+/ZtDAwM6NOnj0RkbmhoYOTIkYSEhLBw4ULq6upo3749gwcPJjo6moSEBElBtXHjRl6/fs3r16/59u0bysrKVFRUkJqaSl1dHQ0NDXz69ImsrCxpbDhs2DCEEFhYWLB161Z8fX0JDAzEw8OD48ePU1VVxdSpU9m+fTsfPnzg2rVr7Nq1i4EDB2Jvb8/o0aMZMmQICgoK7Nmzh8DAQJqamnB0dKS0tJS1a9cSFRX1P+p0/7PSLSgoQAjBrl27KC8vZ8KECZiamnLw4EEePHhAz549mTBhAunp6fj6+rJmzRpCQkJQVlbGzc2N1atXc+nSJUJDQ2lqamLnzp1MmTJFOrB/9Zk9evSgqqqK1q1bY21tjaenJxYWFhQUFKCoqMjAgQPZv38/vr6+PH78WFoAzZw5k9DQUCwsLIiOjmby5Mncu3eP/fv38/v3b/r164eOjg5z587F0dGRHTt2oK+vT69evdi/fz+PHj2SZEABAQGcPXuWCxcu8Pv3b/bt20dJSYkU8ejl5cWxY8e4desWr169Yt++fQwYMIArV67Qvn17KYFs69atpKam4urqiqenJ7169ZIwK+bm5tIm/unTp9TV1XH79m309PRISkpi5MiRpKamsmfPHuLj46Xf79q1K0uWLEFFRQVFRUXGjh1LdnY2CxcupFWrVlRXV6OsrCwtjR49esTgwYMJDQ2V5DeampooKiry6NEjRo8ejZubG6dOneLTp0+cP3+ely9fsnHjRk6cOEH37t3R0tJi4cKF9O3bl5qaGhYuXIiCggKtWrVi5syZkmpk48aNKCoq8uTJE3x9fVFQUKC2thZvb2+eP39OaWkp1dXVXLlyhT59+rBx40ZMTU05fPgwW7duJTo6mtOnT+Ps7MzIkSOJi4tDXl6ey5cvM3z4cObNm4e9vT0aGhpoamoydOhQhgwZQkFBAcOHD0dTU5M9e/ZgbGzMuHHjGDhwIDExMWzatInw8HAOHTrEunXr2LFjB/379+fAgQMsWbKEwYMHk5CQwOXLlzl+/DjR0dFUVlZKevDi4mJ69eqFlZUVXbp0oVOnThLCxcHBgZEjR3L58mXatGnDnTt36NatG8bGxhw9epR27dqxdOlSqquraWlpoampiaioKCZNmkTHjh0JCgqiW7dujBkzBkVFRWxtbenXrx+DBg1ixYoVXL16FTU1NWnZO3/+fAoLCwEkbFZWVhYVFRV4enqiqqpKQ0ODZBR48uQJY8eOZdeuXdTU1NCmTRtevnxJQEAAhoaG3L9/n/Hjx3Pp0iX09fW5efMmnTp1wtbWluDgYDp16kRtbS0+Pj6Ympqybds2Ll68iL+/P2PGjMHPz4+amhoePnwoLfl8fX0RQhAfH09xcTHbtm1DX1+fjx8/4unpSUtLC4WFhdLCasCAASQlJREQEICdnR1jxozh0KFDEvb+1KlTJCUlERkZSWRkJEOGDMHMzIyKigpKSkro0aMHaWlpdO3aFUNDQ1q1aiW5EJcvX05dXR1XrlyhpqaG7t27o6urKxWNXl5e/PPPPyxYsIDo6GhevXpFREQEysrKvH79miVLltCzZ08+fvyIlZUVS5YsoV+/foSFhbFs2TLJ3aigoEBxcTFBQUE4OjpSWVnJmTNn/r863f9cpCkpKbFgwQLc3NwIDg7Gw8ODVatWUV9fL8myIiIicHNzQwjB8+fPMTc3Z8KECezevRsnJyfevHnDjBkziIyMJCgoiAcPHnDr1i3q6uoICAigoKCAoKAgXFxccHV1xdXVlRkzZtC5c2cSEhIoLCzE19cXNTU1lJWVSUtLk5QIf+MPw8PDKSoqkmLvFixYwLdv31i8eDEWFhbY2NiwadMm0tPTCQ8P58uXLxQVFfH48WN8fHzYuXMndnZ2fP78mZ8/f7Js2TIsLS1JT0+nd+/e3Lx5kx8/fkii/ZKSEo4ePcrw4cN58uQJt27doqCgADk5ORQUFFBQUJCE+np6epSWlkoXzl8//N82zcrKChUVFYnIIISQMhViY2Pp2LEjsbGxLF26VLJPL1q0CCMjI8LDw7G0tKS0tJQjR47wzz//cPfuXTZs2EBgYKC0DMjNzSU7OxtdXV1u3rzJjRs32LRpE6mpqcjKyhIZGck///xDcXExnp6e6Ojo0Lt3b/z8/DAyMkJGRkZaHAwdOlSSpV26dIno6Gjq6uqIj48nLi5OWh6uWrWKkydPYmBggJ+fHw0NDezYsYO7d+/y7ds3tLW1cXFxkTh8dnZ2vHnzhrq6Ory9vdHS0mLevHmcOXOGwYMHExYWxu7du+nbty/m5ubSQq+2thZLS0umTJmCl5cXHTp0oKmpiU2bNiErK0tzczM1NTUSkaNVq1Z06NCBEydOcPbsWT58+ICZmRkqKiqsXLmSlpYWpk2bhhCCgIAAzMzM2LdvH2lpaZiZmUkZCn8frE5OTuTm5jJt2jTev3/P0aNHefr0qcTJu379OqNGjUJPT0+SQVlZWQFIGtqRI0fi4uJCcHAwT58+RUNDg+7du3Pz5k0WLlzI5cuXsbKywsDAQNITjxw5kqKiIvz9/amqqpI6qFatWjF9+nTmz5+PgoIC5ubmBAcH0759ez5+/MjUqVMZNGgQjo6OzJ49W9Le7t27lzt37uDr60tDQ4MUnWhubk5NTY1kooiMjCQnJ4dTp04xf/58TE1NefPmDZWVlYwbNw53d3eio6Oxs7OTXIhjx44lNTWVly9fMm7cOF6/fk1eXh6tW7emrKwMeXl50tPTpa7UwMCAixcvYmxsjL+/P4GBgezdu5empiY6dOiAmpoapqam3Llzh+/fv2NlZYWWlpbEhjMzMyMnJ4dz584hJyfHmTNnpJzs3Nxc7ty5w+fPn9m1axcKCgr07t2buLg4Tp8+LT18/sax3rt3T3KBWlpaUlFRwYEDB+jSpQs9evRg7ty5HDhwgIyMDHJzcxk8eDD6+vr/een+5yKtU6dOIjU1Vfj6+or58+eL4OBg4ejoKPbt2ydevHghdu7cKby9vaXBvqampggODhZNTU2isLBQaGtrC1VVVXH27FlhYGAgOnXqJNTU1ERubq7Iy8sTBw4cEGZmZqKmpkbo6OgIAwMDYWNjI5ydnYWKiorw9PQUKioq4vLly6K2tlZ8/PhR9OrVS6xYsUL0799feHp6Ch8fH6GhoSHi4uJEamqq2LRpkwgICBDNzc1iwYIFon///mLjxo1i/fr1IjQ0VEyfPl3cu3dPjBkzRgwdOlTU1dWJ8vJy0dTUJJycnMTw4cMldlbnzp3F7du3RX19vUhPTxdubm7iz58/IioqSsycOVNYWlqK4OBg0b9/f+Hn5yc2b94sTp8+LaKjo4WNjY34+vWrCAsLE05OThKiXV1dXYSFhYmOHTuKL1++iE2bNonm5maRn58vDAwMxJkzZ0SPHj3EpUuXxIMHD8TOnTtFbGys0NfXFzt27BApKSlCTk5OdO3aVTg6OoqysjKRkpIirl27JpycnERMTIyoqKgQK1euFFVVVWLBggXC3t5eTJ8+XXz+/FkUFxcLNTU10a1bN1FeXi5mzJgh3N3dxf3790Xbtm3FmjVrhJ+fn/Dw8BAzZ84UBw4cEGVlZWLZsmXCz89PzJkzR8TGxoqDBw+KSZMmif79+4v6+nrRoUMHUVFRIRoaGsSePXvEli1bJALDX8KDjY2N0NHREdHR0WLixIni7du3ErK9devW4vPnz+LYsWNi1apVws/PT5iamoqqqioxdepUMW3aNAlR/uzZM1FSUiJqa2vFw4cPhaysrESOOHz4sMjNzRXFxcXCw8ND9O7dW0ycOFGEhoYKZWVlUVpaKnx8fIS2trZwcnISDg4OwsrKSpiamoru3buL2NhYAYhRo0aJtWvXipKSErFo0SJx9epVERYWJl68eCHatWsnkZkXLFgg2rRpI7p06SKOHj0qbt26JQwNDUVBQYGYOHGiuHbtmujbt68wNDQU9vb2olevXqJv377C1NRUGBoaCn19feHg4CAmT54sXr58Ka5duyYyMzPFgwcPROvWrUVdXZ2YPXu22Llzp7CzsxNXrlwRampqYtq0aeLOnTuiqalJmJiYiPbt2wtVVVXx5csXcfDgQWFtbS2cnJyEoaGhePLkiUT1NjMzE76+vuLs2bMiNjZWCCFEVFSU+PDhg5gxY4YARFRUlOjWrZtwdHQUAwcOFC0tLcLLy0vEx8cLLy8vYW9vL1GnP3z4IAwNDUWbNm2Eh4eH+PLli/Dz8xNhYWFi4sSJ4uPHj+Ldu3ciIyNDVFdXi8mTJ4u3b9+Khw8firVr14rdu3eLGTNmiJSUFPH8+XMRFBQk6urqpKjKmpoaUVlZKSwsLAQgxo8fL65duybc3NwkQkRlZaU4cuSI2Lp1q1izZo1wcXERx44dE8HBwUJdXV3s27dPtGvXTlRUVIhhw4aJ69evi8jISNHS0iISExOFoaGhGDZsmHj27JkwMjISsbGxIjw8XCgrK4tLly4JY2Nj0b9/f4k0nJGRITw8PES3bt2EqqqqaNWqlUTF+PPnj5g2bdr/nhzh6OgozM3NMQCfiQAAIABJREFU+fr1K6dOneLXr1/Mnz+fJUuWYGJiwr1793j+/Dl6enpSsIyioiKRkZHo6OhQXl6Ov78/WlpaNDY20qVLFzQ1NRkzZgytW7fm7du3UohwbGwsFy5cIDMzE2VlZbKzs2lpaUEIwZIlS1izZg0fP35k4cKFLFu2jOrqaszNzRk9ejRfv35l1apVjBo1ilu3buHi4kJTUxNbt26lqamJ4OBgUlNT0dPTIzExETc3N5ycnKQq3czMjLy8PAICAjh69CguLi5MnjyZrKwsunfvTkNDA/3790dJSUnyVz979oyUlBQpmWj69On4+flhb29PWloaW7ZswdPTk3HjxmFhYYGtrS22trbY2dmRl5cnpZxt2bKFGzdu4OLiwrdv31BUVKRnz55kZ2ezatUqPD090dbWxsrKCn19fWRkZKSnfW5uLv7+/vT6P5y9aViO3f++vSsRZWo2pwxNCBGKJDIUCpkJKTJliJDbrHBLMmcqoclckpKUaBANmpQkpZQopEmx/q+c2/a8+N3Ptn299qKuzmuda33Wcex7//4EBAQwZcoUxo8fz6VLl1BXV0dOTo779++Tl5dHfn4+R44cYffu3ZLv6uvXr4SGhmJoaEh0dDROTk6sW7eOtLQ0Tpw4IcVjvn37JnmmsrKyePv2Lffv30dLS0vKvaakpKCoqMjo0aM5evQo0dHRxMbGcv/+fSlStmfPHiwtLXF0dOTMmTN8/fpVypb26dOH6upqduzYQadOnTAzM8Pb2xtZWVnevn3LwYMHycjI4NWrV8yZM4ejR49ibm7O8+fP2b59O7Nnz8bKygpnZ2euXr3KxIkTmTZtGtXV1bx79w4jIyN27NhBz549mTp1Ko8ePeLr168MGzaMBQsWcPr0aVRVVaUstKKiIjt37uTjx49S+eDUqVPY2dlRUFCAoaEhvr6+rF+/nnXr1vHnzx+uX79OS0sLOTk5rF27VnKraWtrIycnR0hICDExMXTq1ImePXsSFxfHwIEDSU9Pp7y8nG3bthERESEZMz58+MCDBw84ffq0ROuSl5fHzMyM2tpaPDw8iIyM5Ny5c3z+/Jna2lpcXV1RV1cHkABHly9f5uPHj/z584devXphbm7O6tWrGT58uGTP3r9/P76+vkRHR6OsrCwxRyIiIqTCiImJCadPn6a8vJzp06cTGxuLs7OzNGNeuXIl6enpjBs3jj9//hAWFsacOXM4cOAAurq6eHl5UVpaysqVK/Hx8SEjI4Pu3bsTGxtL165d+fz5M2PHjqWyspK6ujpatWqFnp4eMjIy7N69mz59+lBfX8+aNWsYMWKExM/4axspLi7m/fv3xMbGsmfPHvr37y89+zY2NiQkJGBjY8OePXsoKipCRkYGeXl5Dh48yOfPn/n48SM/f/7kyZMnjBw5kgULFvDixQvk5OR4+fIlWVlZhIWFceTIESwtLbGxsWHevHkA/Pz5k4KCAubPn8/bt2/ZtGnT/zbTnTJlikT0qqioYM6cOezduxddXV0WLlyIgoICoaGhLFiwgA0bNkjSu5CQEIyMjNDQ0GDlypUUFBSQlJTEkCFDUFRUxNjYGEtLSzp27EivXr2YP38+q1evlhTN7u7uvHv3jgkTJuDk5ERLS4tEnCopKeHly5esW7eOvLw8qUrctWtXXr58iaysLPHx8bRv357JkycTExODl5cXp06dYvz48Tx79oy4uDiSk5OZOXMmGRkZpKamcvPmTUpKSlBVVeXw4cOEhoZSUVHB1atXWblyJSNHjmT58uVoaWlx48YNjI2N8fb2xtfXl+DgYKysrFi2bBm9evXi9+/fhISE8PTpUz5+/Mi4ceNITU1l3bp13L59m7t375Kbm0tubi4tLS1S427WrFmMHDkSR0dH6YuTlZVFSEgIw4YNo0+fPnTq1Ilx48bx7NkzLl++LB21oqOj8fHxYePGjbRq1YrFixfj7OzMvn37+PLlC/v378fCwoLq6moSEhLYvHkzs2bNIioqipMnT/L27Vs+f/7MzZs3SU5OxsDAgDVr1jB27Fh+/vxJZGQkT58+xcrKisePH7NixQp2797NwoUL8fDw4Pv375iYmFBQUEBkZCRbt25FR0cHJycnrl+/TmBgIL9+/SIrK4vx48fj4eGBi4sLnz59Ij8/XzJj2NjYSFXZv62zadOmsWDBAiIjI6mqqmL16tUMGjQIW1tbEhMT2bBhg1SC2b17N48ePUJHR4fc3Fz69+/PrVu3mDBhAikpKejq6mJiYsLHjx8lUWWPHj24ffs2v379QldXl4SEBBoaGujSpQvZ2dkUFhYSExNDWFgYrVq1Ql9fn379+lFeXk5OTg41NTX4+/uzcuVK5OTkuHz5Mt+/f8fHx4dx48bRpk0b6S7i8+fPeHh4SFVkT09P9PX18fT0xNramh49euDq6srw4cNxdHSUatrnzp2jtrYWXV1d6bg9f/58unfvztmzZ6Wx0bt373jx4oXE5pg7dy7Z2dn8+++/uLu7U1BQwJo1a1ixYgVt2rShR48eeHh4AKCtrU2HDh3o3LkzTU1N/P79m4yMDC5fvszZs2cZMGAAfzdp8vLyNDQ00LFjR+Lj47ly5QrW1tZYWFgAsGPHDmpra6Uc+aVLl3j9+jXt2rWTMtN/X9q7d+/GzMwMf39/5OTkUFVV5f79+2RlZWFnZ4eTkxMzZswgMTFROub//PmTkydP8vz5czZt2iS1ROfOnYuKigqbNm3C2dkZAwMDNm3aRJs2bRg4cCCzZs1CR0eHXbt24ejoyJ07d3j//j1LliwhPj4eJSUlfv78SWhoKJ6ennTr1o2fP39y5coVFBQUsLGxoaKigm7dutG3b18qKys5cuQIWlpaZGZmoqurK4lj/69//znTDQoK4uDBgxw8eJAnT56wfPlyFBQU6Ny5M4qKipw5c0aaUzY3N+Pi4kJgYCBnz54lJiaGyspK/P39adWqFZ8/fyY7O5vAwECUlJSk9tXf+U9gYCCPHj3izJkz2Nvb4+npiYWFBYmJiRI6LSQkhPz8fGJjY1mwYAFr166lZ8+e7N69m7i4OCwtLaWfNSgoCBUVFSZOnEhYWBiDBw9my5YtvH79GldXV16+fEmPHj1ITk7mwoULbN68ma5du/Lp0ycCAgLYu3cvy5YtY+nSpZKSw9fXlz179vD161dJ8/Lo0SNCQ0OZOnWqhKRs3bo1TU1NHD16lMTERJycnFi7di2dOnVCQ0MDRUVF9PT0uH//PmpqasTGxpKQkED79u3x9fUlLCwMa2tr6bOIiYkhPT2d1q1bM27cOLp06cLjx4+JiIiQyGl/L34WL15MfX09+vr6uLi4sGDBAu7cucOpU6f4/v07q1atwtbWVmrFqaqqMmDAAC5evIifnx9OTk78/PmTS5cuSX18T09Pvn37xv79+3Fzc+PixYuUlZVhbGwscZUDAgLw8PBg9uzZyMjIEBQUxOzZs6VZvKenJ6NGjcLe3l4y+v5FVH7//p3+/fvz69cv3Nzc0NTU5PLly7Rq1YobN27w69cv9uzZg4aGBuXl5URHRxMYGMjTp09pbm5GV1eXWbNmoaWlxeXLl8nIyEBXV5dz584hKyvLy5cvuX37Nv/88w9NTU1kZGSQlpbGmDFjUFFR4cqVK6iqqkrc379+sr81cg0NDd6+fYu9vT21tbUoKCjQ0tLCgwcPOHLkCEuWLOHdu3dYWFgwdOhQDA0N8fT0xMTEhLi4OIYPHy4R0168eEFjY6PUipw3bx4TJkxg4MCBHDp0iGPHjjF9+nQMDQ2lHXRpaSkVFRXcv38fFRUVvL29yczM5NChQ2RkZEhM3kuXLjF37lxGjx6NvLw8Dg4O9O7dGxMTE9TU1LC2tsbHx0d6pl+/fs3z588ZOXIk1dXVEhdkw4YNTJ06lQ4dOrBs2TLU1NSIjIzk/v37nD17lq5du6KtrY2SkhLr169n4cKFUjOyVatWuLq6kpqaKhWiBg8ezMyZM9m3bx9paWl0796dkSNHcu3aNU6fPo22tjZt27Zl4MCBNDQ0kJycjKqqKtXV1TQ3N+Pk5MTUqVMxMjIiLCyM0tJStm3bJjExLCwsqKyslLyN9fX1JCYmkpWVxcCBA/Hy8sLKyopv374RFxeHvLw8jo6O0mm6a9euGBkZ8fr1a379+kVBQYHUajQ1NaV///4sXLiQJ0+eIIRAUVGRXr16Sfcynz59Yvjw4XTv3p0tW7ZgbW39n4vuf850/9oty8rKRE1NjaioqBDFxcVi586dQkZGRqxatUrY2toKExMT8fTpU6Gnpyeam5uFhoaGCA4OFr9//xZFRUXSXO3kyZPi4sWLQlNTUyxdulSapfn4+AgfHx/x8OFDYWlpKYqLi4W+vr4oLCwU169fF2fOnBHGxsZCR0dH7N27V0RHR4vMzExhZWUlli1bJr5+/Srmz58vHj16JPLz88WJEyfEvXv3xPv374WOjo5ITU0VNTU1wtbWVsyfP19cvXpV6OnpiYMHD4qLFy+K3NxcoaCgIFRVVYWGhoaIj48XiYmJwsDAQFhYWAh7e3sREREhOnXqJMLCwkR0dLRYtmyZOHHihFizZo1ITEwUhw8fFjdu3BAmJiZCR0dH5OXlicGDB4v6+nrh4eEhjI2NRXx8vLhy5Yro37+/uHnzpmhoaBBdu3YVHTt2FDdv3hSampqib9++4ubNmyIhIUE0NTUJExMTsXLlStGuXTuhpaUlkpKSRMeOHcWAAQPE/v37xeTJk0V6erqwtrYWW7ZsEbNnzxYWFhbi9+/f4vnz5+LJkyciISFBDBgwQMTHx4sJEyaIyZMni0uXLoni4mLh4+MjzM3NJTvqunXrxOTJk0VCQoJYtWqVqKurE8uWLZMC/k+ePBEbNmwQFy9eFL179xaWlpZCSUlJ6Ovri5iYGMmKWlBQIOzs7ERJSYkYOnSoUFVVFUOHDhU6OjqitLRUHD58WJrLW1hYiOnTpwshhPj+/btYs2aNOHbsmDTvz8nJERoaGsLT01PIysqKLl26iIsXL4rOnTuLT58+CVtbW1FbWysF1vfs2SM2b94sFi5cKPT19cW0adMkdUtpaakoLS0Vfn5+4tixY+Lz589i48aNwtLSUjQ1NQl9fX3x5csXcefOHbFlyxZpntulSxexceNGce/ePWFkZCTq6upEeXm5eP78ufjx44d49+6diIqKEqdPnxZPnz4V+vr6oqSkROzfv1+0bt1anDlzRhQUFIixY8cKOTk5kZqaKql/Jk6cKPbu3SsyMjIEIAYNGiTMzc2FkZGR9LeZOHGisLS0FKNHjxbTp08X+/fvF9++fRM3btwQqamporKyUowdO1acOHFCbNu2TWRkZIiTJ0+K0tJS0aVLF6moUlFRISwtLYWsrKyYOHGicHV1FQMGDBAxMTHCwMBAFBYWivbt24s3b96ITp06ibq6OuHo6CiamppEWFiYiI2NFSdOnBBv3rwRBgYGYvHixWLt2rUiNjZWJCQkiG3btglFRUUREREhbGxsRF5enti1a5cwNzcXS5cuFQEBAeLw4cMiLi5OqKmpiS9fvghtbW0xduxYYWtrK+Tl5YWNjY3o27evuH37tjh06JAoLCwUCQkJoqioSAQHB4vRo0eL+Ph4sXfvXtGhQwfR3NwsysvLRVxcnLC1tRXp6enCyMhIuLi4iOLiYnH16lXh4eEhPReFhYWShUReXl6cPHlSyMrKCldXV2FhYSGKi4tF+/btRWNjo0hPTxcrVqwQeXl5Yu3atWLjxo0iMDBQODk5iaCgIHH+/HnJfu7u7i6ePHkicnNz//eZ7qVLl8SBAwewtrbG3d2dvn37Eh4ezvDhw7l//z7q6upUVFRQVVXFmzdvcHV1lYjqpqam3Lhxg7Fjx0o4x27duiEnJ0fnzp2JjY1l0qRJDBgwgFmzZgGwaNEiOnToIB0Hb9y4wdmzZ7ly5QpbtmyR4jOFhYUoKyvz5s0baXZTVVWFk5MTXbp0YcGCBXTt2pXExEQ6dOjA4MGDSU5O5uvXr0yePBlzc3M6dOhAUlIS//zzD506deLJkycSdLqwsJDo6GiOHDnC06dPMTQ0ZOLEiezevRtZWVkuXLhAbW0tkydPZv78+Tg5OVFSUsLcuXM5duwY2dnZyMnJSWWSv5lCFRUVZGVlMTQ05OvXr+Tm5tLc3Mz169exsbFBV1cXeXl5jI2NGTx4MG5ubqSkpHDjxg1CQ0OZPHkyMjIy2NnZsWLFCk6cOEFFRYWUNjh+/DgODg6oqamRk5PDwIEDsbOzw9/fn0ePHuHi4sKHDx+4efMmT58+5dSpU0yePJmamhouXbok9dW/fftGeXk5BQUFaGlp4eXlRVVVFV27dqWsrAwlJSU0NTX58eMH379/p1evXmzdupV27dphYWFBVVUVEydOZMWKFUycOJHk5GRaWlrw8vJi8+bN/P79GwcHB+Lj4zEzM0NdXZ36+npGjRpFeXk5UVFRZGVlsXv3bk6fPs2PHz8kO/FfzOfMmTNRVFQEoG/fvvj4+ODq6sr27dsZN24cHTt2ZPXq1bS0tNDS0oKDgwNOTk4oKytz/vx5FBQUsLOzo6KigoMHD6Kvr090dDSysrLk5+cTExPDxYsXJVD26NGjCQ8PZ9iwYWhqauLt7U3//v1xcnKidevWUg746NGj0qnH398fBwcHLly4QL9+/VizZg22trY8ePCAqqoqjh07xpo1a+jXrx8dOnRg2LBhJCUl0dTUhLKysoSt1NTU5Pjx4wQHB9OmTRs6d+7M0aNH0dfX58SJE5SWlrJx40aWLl3K5cuXuXfvHo6OjtIOOiQkRKo3a2tr888//7Bhwwbk5OQoKChg27Zt5OTkYGRkhLq6Or169eLLly/06NGD+vp6UlNTCQkJwdLSkpkzZ0q38y4uLnTu3JlLly6RkJDA+PHjCQsLQ0NDg8DAQNasWcO9e/f49esXd+7cYf78+XTu3JmdO3eyd+9eSR754sULnj17hpKSEm/evGH+/Pl4enqyZMkSOnbsyLp16yQ0alRUFI6OjtjZ2eHu7s7y5ctZv369JIRUUFCgQ4cO6Orq0rNnT4yMjAgODmbevHl4enpKIP327dszZswY3r59S25uroTS7NmzJ/v27UNBQYHBgwejoaHBzZs3MTAwYMiQIVhaWtLS0kLnzp1paWlBQUGBvLw8du7cSXFxMRERESxduhRXV9f/jaf75MkT+vXrx6BBg3Bzc2PhwoXk5eXx6NEjSX984sQJkpOTpTzd1atX+fLlC7du3WLBggVs2rSJ9PR0qZv+ly166NAhHBwcyMjIoG3btkRHRzNmzBhkZWUZNGgQLS0tuLm50aNHDzp06ICvry+6urpcuHBBOpq+efOGZ8+eoaqqSm5uLqdPnyY3N5cfP36Qn59PZGQkCgoK6OnpYWpqypYtW6S4jrW1NS0tLcjJyUlZVgUFBdatW4eBgQFLly4lMDCQ8vJy4uPjefbsGT4+PqxcuZITJ06wadMmVFRU6NWrF6ampigpKfHlyxccHR3p3bs3s2fPZuPGjURGRhIWFoaOjg7KysqYmJhw4cIFAgMDJVvBX9TjiRMnaNeunTQnNDU1pWfPnvTs2ZOzZ89y/vx55s+fT2ZmJr9+/WLZsmUsW7aMW7duER8fz6BBg+jbt6/URtu9ezdOTk4UFBRItuXBgweTk5ODq6sr27ZtIyYmRmpf7d69mytXrtCzZ0/ev3/P79+/WbFiBQMHDsTAwIAfP35gamrK4sWLpeLK5cuXOX36NK1atWLnzp2sXbuWBw8eUFRURGVlJadPn0ZWVpa1a9eSk5PD8OHDCQkJoVWrVgwbNozBgwcTFhbGiBEj0NXV5caNG7S0tLBgwQK2b98uLWQmJiZ07tyZhQsXSjrswYMHY2pqyvjx43n79i3a2tqSeunq1auSKVhfX58LFy7w4sULamtrqa2txcXFBUtLS6qrqzl69CilpaUsWbKEwMBA/vz5w6BBg3j9+jVz5swhPj6eb9++MWPGDIKDg7GwsGD58uUsX76cq1evIi8vT3JyMlOnTkVfX59///2XjIwMNDU1UVZWJjs7m+DgYLS1tTly5IhUvOnTpw/t2rWjqKiIGTNmcPXqVebPn8/8+fN5/Pgx+/btIzs7GyUlJWRkZMjLyyMuLo6ysjLu3r1LZWUljo6OaGlp8fPnT+zs7JgxYwYqKiq8evWK4OBgFi1ahIaGBkOGDCE/P5/27dtTWVnJ58+fefnyJZqampJk4NWrV7Ru3Zrc3FyUlJQ4duwY+vr69OrVS2I4VFVVSYwRDw8Pdu/ejZeXl/T/d+7cKY0XFyxYAIC6ujq1tbV06dKFHTt20NDQQG1tLc3NzUyePFka3/zdSD169AglJSW6d++Ou7s77dq1o6WlhVGjRkljDQ8PD37+/EllZSVRUVEkJSVhbm6Os7Mz5ubmpKWlMWTIEDw8PKiqqqKwsJBWrVpJ3OLS0lIaGhrQ0tIiMjISLS0tXrx4QVZWFioqKqxatYrp06cTFhZGQUEBcXFxKCgocOTIEYKCgrCysqJdu3Z8//6dFStW4OzsTFVVFfb29igoKPzndOE/d7rHjx8Xf1mT2tramJqa8vTpU1RVVampqcHV1ZXfv38TFBREu3btsLOzY8SIESgoKLBixQoyMjJwd3eXLnn+Nn9UVFRISEhg6NChbNmyhU+fPvHs2TMJEF5VVcWGDRskn/yMGTN48+YNaWlp/PnzBzs7Oy5cuICdnR0/f/7kwoULfPz4kezsbJydnblw4QLz5s1DSUmJ169f09DQQEVFBTt27OD79+9kZWWhoaHBkiVLcHBw4MiRI9jb2/P8+XPk5ORwc3MjLS2NqKgoGhoauHr1qqR/fvz4MTY2NuzYsYMNGzbQ2NiIlpYWQ4cOZf369cTExLB69Wq6d+9OVFQU/v7+3LlzR2pxAbi5ubFixQpycnKkskJaWhr79u2jd+/etG3bVlrQNm/eTFBQEElJSXz9+pV79+4xYcIEVFVVsbW1JSgoSLpg1NHRoaioiOvXr7N06VKJlLR3717pttzX11eCXS9fvpxjx45RU1ODk5MTx44dY9y4cdTV1dHQ0CDdZPv5+TFlyhRCQkJwcXEhOTmZDh06sHLlSnbs2EHnzp1p1aoVhYWFEif4L4f55s2b/Pz5k9OnT6Ouro6MjAzfvn2T6Fd6eno8f/6cV69esX79eoYOHYqlpSWjRo0iODiYiIgIdu7cyePHj+nRowcWFhaS+lxNTQ0PDw9u3bpFREQEbdu25fr163z8+JHJkyczfvx46uvrefjwIQsWLODu3bukp6ezdu1arly5wuXLl3n69CmfPn0iJCSE7OxsDh06hIaGBvb29ly5cgU3Nzfu3btHYmIiOTk5REVF4eLiQteuXdHT02PKlCk0NzcTHh5Oeno6q1ev5u7du9TV1fHp0yd27txJc3MzFhYWkprd1dUVW1tbioqKSEpKYsWKFXTs2JGUlBSpHPNXI1RaWsr27dvZt28fHh4edO7cmf79+zNs2DBpF/bt2zdJV759+3YJ3P8XRNOtWzdKSkqYPHkyGzZs4MaNG9TW1kq6ofj4eA4fPsz+/fsJDw8nICCAzMxMRo8ejYyMjPSZ/LU8HD9+nPXr16OkpMTMmTMZN24cRUVFaGlpYWxsLH0mlZWVaGlp0dLSwsePH1FUVJTq4YaGhjx69AgzMzPk5eXx9fVl//79KCkpce/ePUpLSxk3bhzv37+nW7duBAUFMXDgQKZOnYqdnR3e3t5YWlpKiqSamhoWLlzIuHHjpJ1xdnY2FRUVFBYWEhoayowZM0hNTcXV1ZV//vmHxsZGWrdujbe3NyYmJhgaGpKbm8vYsWNRU1OjpqaGlpYWdu7cSV1dHSUlJdKCnJqaSu/evUlJSaFPnz7MnDmT58+f8/TpU65du4auru7/ttOtrq6WQtJ/0YtDhgxhz549eHh40KNHD+Tl5YmKipIurZqbmyksLMTU1JR79+4hJydHQ0MDO3fuxNLSUvqyHT9+nLFjxwIwcuRIzpw5w7lz51BQUMDW1pavX7+SlJQk7VL/0t1bt26NnJwc69evx8bGhuPHj2Nra8vjx4+ZNm0aJiYm6Ojo0L17dz58+ICdnR1qamp8+PABIyMjJk6cKD0E69evx9/fn4aGBg4ePMjFixe5efMmkZGRKCsrs337ds6ePSsR0CoqKggJCWHt2rWkp6cTFxfH9evXCQ4OxtzcnHv37qGpqcn06dMluPiLFy+4f/8+SkpKHDhwAFdXV8aNG4eNjQ0tLS1cvXqVDh06cO3aNQYOHMi5c+fQ1dWVmJzR0dH8+PGDTp060djYyK5du/j+/Tu7du0iKSmJ3NxcCgoKqKio4Nu3b9IF0O/fv8nMzGTw4MEYGxtz8+ZNrKysJCB2U1MTTU1NfPjwQXK0Xbt2DQ8PD/r378+IESP48eOHRG37WwaZMWMGgwcPJjAwEEdHR6lZ5OjoiIGBAdeuXcPY2Jjy8nKsra1xcnJi/fr1DBgwgDZt2khOPXNzc8aPH4+hoSHx8fFUVlayYcMGtm/fzpw5c7h//z4rV67kyJEjzJw5k8zMTLS1tSkuLpYugqZOnSq5qk6ePMnYsWNRVFRk4cKF0snk1atXVFdXM3r0aKla2rZtW1xcXPDy8qK8vBw5Obn/jxtMXl6erVu3sm3bNtq0aSN5t/7WrAsLCzl16hRxcXFYW1uzaNEibt++zevXr2lsbMTHx4dJkyZJO1Y1NTXJ/HDz5k06d+7Mq1evJJ2ToqIiSkpKmJiYoKyszI4dO5gzZw6XLl0iJCQEKysrKYUSGhpKdnY2ZWVlzJ07V4q/OTo6smfPHg4fPoympibBwcFUV1eTlZXFuHHjiI+PR15ens2bN6OsrMz06dNJTk6W0jedOnWSeBQdO3bk0KFDfP78mbZt23Lo0CEUFRX58uUL9vYUhc0MAAAgAElEQVT2fPjwgSFDhhAbG0tjYyPZ2dmsW7eO5cuXY2RkhLu7O1++fCE3N5eDBw9y+fJlioqKaGxslMZgZWVlzJs3Dw8PDx4+fMj379+ZM2cOd+7cITU1lYiICL5//05qaiq/f/+Wvr+/fv1i8eLFjBgxggEDBnD06FHS0tJwd3cnIiKCw4cPY29vL510tbS0GDJkCOfOnSM2Npbbt29z7949TE1N2bp1KwEBAVLipbGxkYKCAnJzc5k+fTpv375lx44dFBQUUF1dzZEjRygpKUFZWZnbt29TU1PD9evXpXijg4MDu3btYuDAgf+50/3PyJiOjo5EbR86dCiPHj3C0tKSkydPcu/ePdatW8eDBw+orq7mzJkzaGlpERcXx5gxY1BSUsLQ0BBzc3NJofH9+3dJLxIVFUVJSQlLlixh8eLFbNy4kcDAQH78+MGjR48wMjKSvGxXrlwhNDSUNm3aICcnx9KlSwkPD5dEhuXl5aSmpkqtkM+fP9OvXz+am5tp37499vb2/P79m5qaGg4dOkRcXBwWFhaMGTMGPT09EhMTOXPmDLt378bKyoqXL19y69Yt2rRpg4mJCQsXLqR9+/akpaVha2vL0KFDycvLY+zYsZiamqKtrU11dTVaWloSF8DDwwMvLy+0tLTw9fXFwcGBS5cuERwczIwZMyQwjYKCAp8+faKxsZG6ujp69epFcXExubm56OvrM3v2bGprawkKCuLMmTNcvnyZgwcPSmjJv/jMvwtcQUEBrVq1oqamBjs7O4QQHD9+nOXLl2NiYsKbN2+4fPkyL1++JCoqSgLg2Nra0tDQwNmzZ5k9ezZmZma8fPmSiIgIHB0dGTlyJAYGBrx+/ZqZM2eirq6OiYkJx48f5/3795LwMiYmhsmTJ9OrVy8qKipwd3eXZoDKyspUV1czePBglJWV0dPTw9XVVZqtbd++nWnTptG3b18UFRWpqKiQcqhlZWU8fPgQFxcXDAwM2LZtG0pKSuzfv1+ShGpra6Oqqoq6ujqzZ8/m4sWLpKen4+3tzdq1awkICEBRUZEHDx6QmZmJmZkZ165d4/379xgbG2NjY8OjR48YOnQoGzZsQE1NjdzcXCZOnMjNmzcxMzPj3LlzhIWFoaWlJe2unz17xsaNG6W5dElJCa1ataJdu3Y0NzcTHR3Nrl27OHz4MBoaGpJ89G8c0sbGhq1bt0ri1nfv3vHq1SuWLl2Kv78/1tbWPHz4kLVr17Jr1y7evn3LsmXLeP78OT169ODDhw8UFxfTq1cvHB0dOXbsGHv37pWysCoqKkyaNInx48djbW2NkpKSxFA5deoU+vr6jB49msbGRv79918KCgqQlZUlJyeHsrIyWrdujbm5OV++fOHu3bvs27cPGRkZwsPDmTVrFl++fEFeXp558+ZhYmIiJWH27NlDc3MzTU1NlJSUSMwSRUVFdHR0qKioQFNTk2nTpuHs7MzTp095+fIlX7584eLFiyxdupRHjx6xbt061q5dKy34bm5uLFq0iKVLlzJu3DgJTHP+/Hk2bNiAjIyMlIYIDw+XWpABAQFMmjSJqqoqamtrSU9Pl76Lw4cPR09PT9Jr3blzh/r6es6cOYOPjw+fP3+WTgZWVlYUFRXx8uVLEhMTSU5OJjw8nIULF9KvXz9mz579vy+6MjIyvHv3Dnt7exITEwkICMDf35+pU6dib2/PsGHD6NKliwRLCQ8Pp76+nkGDBlFeXs6TJ0/w8PAgJSUFe3t7xo8fT2BgID4+PpiYmEi7n6lTp1JeXk5jYyMLFiyQuumenp4UFxdLO7jS0lL27NnD9evXOXXqFMrKyuzdu5f79+9Lb8O/PAcPDw/++ecfioqKmDRpEuXl5bi4uBATE0NqaipWVlakp6fj6ekpCefatGmDtrY2sbGxkhLe3d2dO3fu4OnpSU1NDYcPH8bKyorg4GCJ9XD69GnJB3bhwgXc3d15//49bdq0ITQ0lBMnTkh664ULF7J8+XL8/Pyorq4mLy+PxMREVqxYwdy5c/Hy8kJbW5uUlBTevn2LkpISgwYNQklJiWvXrtGvXz8yMjJYtGgRioqKmJubIyMjI50WXF1d6du3L0OGDOHGjRv07dtXejAbGhooLy9n+PDheHt7S8qW5ORkHj58yN27d1FQUEBeXp7S0lL27t2Lm5sbPj4+koSzrq6Odu3asWbNGtq3b0/fvn1RUVGhZ8+efPjwgaNHj6Kurs6SJUv49u0bo0aNQk9Pj4EDB1JTU8OJEyc4fvw4/v7+LFmyhDlz5rBu3TouXbokUffbtWsHQNeuXXn8+DH+/v6MHDmSnTt3Sj9rY2Mjd+7c4cmTJ7Ru3RohBLNnz8bU1BRbW1suXbrEw4cPOXv2LMuWLePkyZMMGjRIAuAbGhry+/dvnj59yp8/f0hMTCQoKIghQ4bQv39/1NXVpZf8ihUrJNJYUFAQDg4OVFVVERYWJhHpnjx5IglBN27ciBBC2ggsX76cc+fO8f79e6ytrdHU1CQhIQEVFRVOnDghaaqGDx+OoqIiLi4upKamsmvXLrS1tdm8eTNFRUWkpaVRWVnJsGHDyMvLY9KkSeTl5eHs7EyHDh3o2rUrhw8fli6NduzYwaNHj6QoYnFxMSNGjGDChAmYmZmRm5vL+PHjpZPlmTNncHNzw9/fn23btrFlyxZiY2O5e/cuDg4OkrBVS0uLgwcP0qdPH2bPns2PHz+QlZXF29tb+v0TExPJzMwkOTkZIyMjOnbsiJGREVOnTqWsrIw+ffqwefNmkpOTWbZsGbq6uixfvlyqd8vIyKCnp0doaChPnjxBTU2N169f4+TkhJqaGt26dSMqKkq6uFdRUaF///5Sfn779u28fv2alJQUfv78ibKyMq1bt6a4uBhTU1PS09OZPXu2xCt59+4daWlpzJ07l8mTJ0t55nHjxmFvb8/q1atZs2aNdFH5F2L1/v17hg0bxqxZs0hJSaFfv37MnDnzPxfd/5zpvnz5UvTu3ZsDBw7w+fNnzp8/j7e3NxMnTiQnJ4eioiJ+/fpF+/btsba25s2bN9y+fZuRI0cSERFBUFAQKSkpKCkp8enTJ2l4npiYyIwZM7hz547UzjE0NERdXZ3x48fj5eXFkiVLOHv2LJcvX2bNmjUkJSURGhrK8ePHuXfvHj179iQiIgI7OzvevXuHlZUViYmJyMjIMGfOHGlO+Bdc4+TkxI4dO7C0tOTq1ats2LCBjx8/SsfHPXv2YGJigqOjI1VVVWzbto2AgADMzMwkstXChQuprKykrKyMQ4cOkZKSwuDBg7Gzs+Pbt288e/aM69evs2nTJvr160ddXR01NTXcv3+fb9++STqev5qPyspKxo0bR319PXPmzJHC3qNGjSIsLAxDQ0Pc3Nx4//69lFFWU1MjJSUFX19fFi1aRFVVFZGRkWzbto2uXbvSuXNnDAwMyMnJAUBPT489e/bQt29fKRy+dOlSnJ2d6dq1KwD19fVERkYyatQoQkJC6NGjB/PmzSMvL4/jx49TVVUlGR3S09N5/fo1P378QF5enoCAADZt2sSxY8fw8/MjICAAX19fXr58KRVhXr9+zejRoyULxtatWwkJCcHY2JijR4/So0cP3r17R3p6Otra2rx8+RJ3d3eOHTsmdeYHDRqEo6Mjhw4dkqA1EydO5OjRoyxZskQ6iVy4cAF5eXkJtDJgwABycnJoaWlh06ZN9O3bF3t7e44ePcrQoUMJCwvj9+/fFBcX8/btW9TV1aX0watXr0hMTGTVqlWoqqpKaqkpU6ZIf+fu3buzefNmzM3N0dbWpmPHjqSnp0sbjvz8fIlINWXKFLy9vXnx4gVDhgzBxMSEa9eusWXLFtTV1Zk+fTrW1tbSfH7GjBnMnz+fVatW4eXlhaWlJbm5ucyaNQs1NTX27duHlZUVHTp0ICUlRUphxMbGkpGRQUREBNXV1cjKylJQUCAZFP4aNKqrq5kzZw6nTp1i5MiRfP36lXfv3kkjMn9/f06ePMn169c5ePAgFy5cYNeuXURGRuLv78+ECRPw8fEhKyuLzMxMvn79yqZNm2hqaqJdu3YkJCRI8Ku/u9u/KM8BAwaQlJTEt2/f2LdvHz9//iQlJQUvLy/evXtHSEiIBBNavXo1ioqKODk54enpSXx8PLGxsUyfPp2oqCiGDRsmwX/+OgR9fHyk9UdZWVmCrV+/fp2srCxMTEzQ09OjXbt2TJ06lU+fPtGxY0f+/PlDcnIyLi4uuLu7s2HDBjp16iTJEPLz84mKiiInJ4eMjAwiIyMZMmQI+/btIz09na9fv/Ls2TOA/3Om+5+LbuvWrcXkyZN59OgRenp6XLx4ES8vL1avXo2Ghga+vr6Sumfq1KkEBQVRUFDAmzdvGDFiBKGhoRQXFzNo0CD8/PwICQmhS5cuKCgoMHXqVL59+0Z4eDhqamps2bKFnz9/8vnzZ0JDQxkwYAD37t1DW1ubU6dOsWTJEnx8fEhNTZWo8tu3b0dGRoYVK1YQHh7O0KFDOXfuHFeuXKF169Zs3boVTU1NqqurKSsrQ05OjvDwcD59+sSoUaM4d+4cY8eOJT09nZiYGIqLi5k8eTKNjY0kJydLN/UNDQ34+fnRq1cv+vXrx/bt20lISMDPz4+vX7+Snp7Os2fP6NKli8RH9fLyYtSoUaSkpCCEwMzMDGdnZ27dusXw4cOxtramtLSUqqoqHj9+TFZWFlu2bEFOTo6SkhKePXtG//79pYfy9u3b0q6tV69ebNq0iUWLFtGpUye0tLRo3749NTU13LhxA19fX27fvo2WlhZNTU1cu3aN+fPnU1tbS1lZmcRzHTNmDMHBwSQkJEgvTW9vb6lp5efnh5WVFV+/fmXkyJFs2LCBN2/eMG3aNEltUl5eTm1trQQM+ivzbN26NbNmzWLLli2Sv0tHR4djx45Jcz81NTUpnfCXyHb+/Hnc3NwYPHgwY8eOZe3atVKMytTUlOzsbEaPHi0lT6ZMmUJMTAyOjo7Y2tri5eVFVFQUhw8flri48fHxGBsb4+vrS/fu3ZkyZQo9e/YkPDycpqYmYmJiaGpqYtKkSYSEhODp6cmWLVsYMWIE69atIyEhgcWLFyMvL09xcTGqqqo4OTnRrVs3Vq5cCSBpyd+/f8/58+eZMmUKgYGBfP78WVLt2NvbM3z4cNTV1SWjsLKyMleuXGHUqFF8+fKF/Px8nJyc0NDQYOzYsWRkZNCjRw9iY2OZOnUqampq1NfXM2HCBOl0cufOHf7991/i4+MJCAjA0tISDw8PRowYwf379ykqKuL+/ftSCaJNmzZYWVmxevVqDhw4wLlz5+jYsSO+vr7SCOTVq1dMnDiRxsZGVFRUKCkpQUZGhjFjxiAjI8OTJ0+kDYeZmRkuLi4UFhZib2/PtGnTGDJkCL6+vlhbW7N+/XoOHjyInJwclZWV6Onp4efnh6WlpeQua2xspKmpSWquxsbGEh0dTZ8+fbh79y4NDQ0MHz6cvn37Ul5ejrOzM/X19Tg4OFBbW0tSUhIfP37k+vXrZGdn8+PHDx48eEDXrl2RlZUlJiaGwYMHc/bsWUaNGsXTp0/x9PQkMzNTio4aGxvj6emJpqamVD4qKiqipqaG6upq8vPzJejPixcvuHnzJikpKbx+/ZqYmBgJ7/nmzRs+fPjwfy66/1mOWLp0qZg3b54wNjYWwcHBQlVVVaSkpIjZs2eLCRMmiKamJomUPmfOHGFgYCCWLl0qampqhIeHh+jcubMoLS0V3bp1E3v37hUjRowQqampIiAgQBQUFIju3buLgoICoaqqKqKiooSSkpKYP3++2Llzp1BRUREFBQXi5MmTIiQkRFRXV0sAkkmTJgk7Ozvh5uYm8vPzxbx580RdXZ2orKwUOTk5wtbWVri5uYlJkyaJpUuXCi8vL9GpUyfx5MkTcfPmTdGtWzcxZcoU0dDQIEJDQ0VgYKD49OmT6NKli5g7d64oLy8XkZGRIisrSwwdOlSUl5cLJSUl4ePjI2pqasS///4rmpubRXFxsVBQUBCOjo5CU1NTODg4iNraWiEvLy/69+8vPD09RUFBgVi1apVoamqSwv7du3cXpqamkqEhNTVVaGtri4sXL4oLFy6IvLw8CczS3NwsLC0txa9fv0RDQ4N4+vSpuHHjhhgxYoT4559/xIQJE4SZmZkwMzMTT548ESkpKeLMmTPi7NmzIjo6WvTo0UOYmZmJ58+fiwEDBggLCwtRWloq2Ts6deokLl68KAwMDETv3r1F//79xYMHD4SsrKy4e/euyMjIEO7u7qK2tlZ06NBBLF68WOTm5oq4uDgRFBQk1q9fL6KiosSrV6/EyZMnhZeXl6ivrxfnzp0TEyZMEPr6+uKff/4RY8eOFfv37xeZmZliwoQJYt++fWL//v1CUVFR3Lp1S3z69ElMmDBBrF27VsjIyAh3d3eRlpYmNDU1RVlZmcjMzJRsDrm5ucLV1VV06tRJjBgxQuzZs0e0b99euLq6iurqapGbmyt+/folbG1thb29vdi3b58ICAgQRUVFom/fvuLhw4eirq5ODB06VCxZskRoaWmJ2bNni7t374px48aJ0tJSUVtbKwwNDYWCgoIwNDQUT548EbW1teLt27dCRkZGzJs3T6iqqgpFRUVRVlYmjIyMRK9evcTSpUslg0FBQYFYsmSJ+PHjh4iNjRURERGif//+QkdHR/j7+wsLCwuxaNEisXv3bmFoaCiCg4NFbm6uSEpKEhs3bhS+vr5i1qxZ4vr168LExET0799fhIeHi8OHD4vMzEyxdu1aYWZmJnr37i2uX78uBgwYIJycnMTbt2+Fl5eXePDggdi+fbuoq6sTSkpKws3NTcjIyIiSkhIxffp0sWXLFiEjIyMmTZoklUzat28vdu3aJcLDw4Wzs7Pw9vYWhw8fFp07dxY9e/YU3759E0lJScLAwEACOZWWlooHDx6IDh06iJEjR4q8vDxx9epVkZubK+zs7IS5ubmYM2eOEEKIrKws0bZtWzFy5EhhZGQkEhISJBhOXl6eyMzMFKtWrRIJCQmiS5cuIikpSaiqqoqCggLh5eUlYmJihIqKilixYoWQkZERzs7OYu7cucLPz0+oqKgIc3Nz4eDgIOLi4sTVq1eFn5+fWLhwofjy5Yvw9fUVI0aMEJqammLOnDli/fr1YtmyZeLDhw8iNTVVuLm5CQcHB+Hn5ydat24tWlpapBJVSUmJUFBQEJ06dRI6Ojpi586d4vbt28LPz0/k5uYKe3t7UVJSIpKSkv5/gTf/qWDPy8vb8/cNs3jxYgnYMXbsWGRlZcnKymLAgAGMGjWKzZs38+vXL6ytrRkzZgz79u0jJSUFOTk5Hj9+jJWVFWfPnkVbW5t///2X58+fo66uTnZ2Ns+ePUNbW5tFixYxb9486W1uaWnJ0KFDKSgoICYmhpCQEEaPHs2tW7cwMDCgqKiIuLg4lJWVMTY2Zt68eURGRnL+/Hnmzp1LTk4OioqKkglBV1eXHz9+MHDgQJycnNi4cSN+fn58+fKFxsZGvLy8SEtLIyYmhs2bN2NmZsaXL1/49OkTcnJyrFy5kg4dOmBtbU1DQwNJSUmMHj2awMBAqqqqGDZsGP/88w/a2tq0atWKAQMGUFdXR319PWlpaezatYvVq1ezbds2unXrxqdPnzh9+jTOzs5oaWlx7tw5rl69ipOTE/v372fz5s14enry6tUrAgICGD9+PGpqamhraxMXF8eMGTOIjIykffv2nD17FlVVVQ4ePIiVlRWDBg1i1KhRGBgY8PDhQ+7fvy+VKNzd3VmwYAFOTk4UFhYSHBzM1q1bpdn9X3Dz06dPOX/+PJWVlSQlJUmOsZMnTzJjxgwp41tWVkZFRQW7d+8mOjqauLg4TE1NCQgIYPny5RQXF5Oenk5NTQ2dO3emrq6ONWvWoKqqypkzZ/jw4QPLly+XjvKOjo4YGxvz588fsrKy6NWrF2ZmZsyfP59BgwZx6NAhGhoacHR0JCkpiZ8/f5KQkICFhQXOzs54enrSpUsX2rZtK6nKlZSU2LlzJ1VVVdjY2HDgwAHevHmDqakpRkZGzJ07F19fXwwMDHj8+DGzZ88mIiKCAQMGEBISgre3N8ePH8fNzY2rV69KTOeHDx8CEBYWhqurKytXrsTAwIDZs2dLETA9PT3evHlDu3btmDlzJv369SMmJoasrCxUVVVp27Yt586dY9WqVbRt21aad+fk5FBYWMjdu3dRV1fn3Llz+Pj4oKioyL1799i7dy+rV68mPj6ejx8/kp+fz7Rp06ivr2fZsmXcvn0bWVlZNm3ahIuLCzdv3uTff//FxsaGadOmSQDu0aNHo6ysTGlpKdnZ2djY2EiXeX+NwUII1NTUpEhgv379WL16NcuWLSMtLQ0LCwu2b99Odna2VE75e4Gnra3N79+/2b9/P42NjbS0tEiXse7u7mzdulUywixfvpydO3fy69cv+vbty8SJE+nduzdVVVVShv7w4cOcP3+ed+/esX79ekpKSggKCiIqKor8/HxcXFykuffIkSP5/v07zs7ORERE8PjxYz5+/EheXh5aWlosX76cESNG8PHjR2RkZJgwYQKHDh3i8OHDDB8+XJKO7t+/n1mzZiErK4u5uTk9e/bkwIED7N+/n549e/L7928mTJhAfX09KioqTJky5f9UsP/notu9e/c9tra2nDhxgj9//rB//34cHBxITExk/vz5PHz4UCLljxo1ivDwcFRUVIiOjubAgQOMHz8eKysrXF1dyczMJD8/XwpTm5qa8vbtW9zc3NDW1qampoaKigpcXFxoaWnh1KlTTJ8+nbi4ODw8PNi2bRv+/v5SR76uro7Nmzfj5+fH9OnTCQkJYcOGDaSlpdGxY0c0NDSkEHrHjh3Jz8+nubkZFRUViVM6ZMgQFBQUuHv3Lg8ePKBnz540NzezZs0aCgoKiI6OZsGCBaSlpbFo0SK6d++Ot7c3mpqaUmzpr+mgqqqKqqoqDA0NWbFiBbt27aJLly4MGzaMTZs2YWZmhq+vrwRKnj59Ovr6+kycOFGScWpqatLc3Ey/fv1YtGgRtra29OjRg0OHDkkqkMWLF/P792/OnDlDYWEh5eXl5ObmcuvWLTw9Pfn48SP79u1DX1+f4uJiFi9eTHNzM2lpafTo0YPm5mZMTExIT08nPj4ec3NzsrOzpdvcZcuW0dDQwODBgwkPDyctLY2hQ4dKKYx+/fpRWFhIXV0dQgg2b97MzJkzsbKyYtOmTfz69YvQ0FDGjx/Pjx8/WLZsGe3ataNHjx6MHTuW8ePHM2HCBG7evImDgwPGxsbcvXuX0NBQlixZQn19Pbdv3+b+/ftYW1tjYGDAyZMnKS0tRV1dnadPn5KcnMzz58+pra2Vjr1xcXG8ffuWWbNmSTfYWVlZ6OrqcufOHWRlZTl//jxhYWEkJCRQW1vLx48f+fDhA3379iUiIoI/f/5gb2/Py5cv0dHRkWAof0cXz58/JyUlhZSUFOzs7Dh+/DgzZszA2NiYt2/f8v79eywsLNi5cyeGhoZoaGhgY2PD0KFDOX78OKNGjeLQoUOcOXOGs2fPYmNjQ1lZGQoKCkRGRnLmzBlu3bpFQkICr1694vLly5JNV1ZWVtKnr1ixAn9/f/z8/GhsbMTJyQkfHx9UVVWpqKggPDwcMzMzunbtKjU8/0bHgoODMTQ0JDIykmnTppGZmcm1a9fo2LEj1tbWXLhwgdevX/PmzRsuXLiAg4MDCQkJXLt2DUdHR4QQeHt7c/r0aRQUFLC0tJTM2cuXL+fVq1fExMRIipxPnz5JoKm/Gi0rKys2btxI69atmThxonSv065dO378+MHIkSN59+4d3t7e6OrqYm5uzpo1a0hLSyM/P5+Wlhbs7e1ZtWoVY8aMkRRKvXv35vbt20RGRlJYWMjRo0cZMWIE9+7do6qqiqKiIm7dusWHDx+orKzE1dWVzZs3ExISQnh4OGVlZXTp0oUXL16wdu1aUlJSKCwsZPz48Xz48IHAwEDmzJmDqampFJv8f5y9WTjVfdj+fQqZx2SOQlKESpRUpFKZEsmUiCKV6taAqNBAGSolJalkrChSSoVEhsgQScgQybhwK/P1bjxvv+N4Nv73xrO1dlnDd33XdZ3n5+Pt7Y2XL19ixYoVmJiYwM2bN/8q7/+fh+5/jheGhobIwMCADhw4QF++fKGxsTGampqiwMBAsre3p0+fPtHGjRuJxWKRkZERlZeX04cPH8jJyYkOHz5MgYGBFBgYSM7OzsTPz0/m5uZUUFBAs2bNYn4OiYmJUXFxMRkbG1NWVhZVV1fT+Pg43bhxg+rr6ykqKor5+To1NUV6enqMAHHWrFk0PDxMLS0tJCMjQ729vaSurk4AiJeXl5ycnMjc3JxYLBbV1tbS2rVracaMGaSoqEgDAwMkKytLPDw8ZGRkRPHx8fT48WMyNjam2tpaEhMTo+rqavrw4QNt2LCBfHx86N69exQTE0NRUVEkIiJC4eHhdPfuXQoJCaGjR49SV1cXVVdXk56eHmloaJCsrCx5e3tTbm4uGRoa0tatWykqKooiIyNJW1ubEhMTSVdXlzQ1Nenq1avEYrGotLSUNm3aRLNnz6b79+8TAIqJiSFubm6Sl5cnYWFhsrW1ZSSa1tbWdOPGDfr06RO5ubmRkJAQKSkpUVFREQUFBTH8hpcvX9KRI0foyZMnVFdXR1FRUTQ0NESGhob08eNH0tPTo5cvXxIXFxc1NTVRX18fmZqaUmJiIvX29lJERATFxMSQg4MDpaamkr6+PqmpqdHY2BiNjIwwHfj29nY6d+4cpaSkkJaWFrGxsVFdXR2dP3+e2tra6OnTp7Rz506aOXMmycvLU11dHbGxsZGxsTFlZ2fT8ePHSVBQkGbMmEEWFhYkJydH+/btI3l5eRocHCRPT0/69u0bASAhISGSlRmf65cAACAASURBVJWlW7duUXR0NGVnZ5O1tTWlpaWRmZkZaWlpUU9PD927d486OjroxIkTpKKiQm/fvqU9e/bQpk2bSFpamoaHh0lLS4v6+/vpwoUL9Pz5c9LU1KT9+/fT27dvaenSpRQXF0fPnz+nhoYGGh0dpStXrjDjnt7eXtLQ0CB7e3tSU1OjgIAAcnJyok2bNlFSUhKpq6tTXV0dAaDNmzfTp0+fKD09ne7fv0/r168nAHTr1i1KSEigzMxMhs3x931z7tw54uDgoK6uLvL396f4+Hji5OSk5uZmWrFiBU1OTtLevXtJRUWFSktLmc+au7s7eXp6koWFBaWlpREPDw+VlZWRrKwsdXZ2kra2NomKipKBgQHdvHmT2tvbiYeHhzg4OEhJSYlOnz5N+fn5ZGtrS/v27SMZGRnS0tKixMREUlJSopKSEnJwcCBpaWlyd3cnZ2dnkpaWpri4OFJUVKSJiQlGHGppaUkWFhZkbW1Nd+7cofHxcXJ3dyciYl5nNzc36u3tpcDAQFJSUiIlJSVqbW2l8vJyOn36NPHz8zPs7eLiYnJ1daWtW7dSZWUliYmJkYCAACkoKFBkZCT5+PjQ4OAgFRcXU0REBPn5+VFDQwOFh4dTSEgIrV27lvz9/UlAQICysrJoeHiYiIiEhYWJk5OT1NTUKC4ujubMmUNHjhwhW1tbCgsLo8bGRpqcnKT4+HhatmwZVVZW0q9fv0hOTo7S0tKInZ2dEhMT/3O88J/liJSUFPT09OD169dITk7Gq1ev4OzsjBs3bsDQ0BD5+fm4fPkyODk5YWNjg9evX+Pq1av4/PkzcnNzsXPnTlhYWDB12b+95bS0NAwPD2PLli1gY2ODg4MDCgsLwcvLCyMjI4bTe+3aNaaZZGZmhvv37+Pbt29YuXIliAhFRUWYP38+ioqKUF5eDjY2NlRWVsLFxQX29vaYNWsWXF1d0dTUhPnz5yMoKIixK4iJiWH//v3g4eFBVlYWzp07B15eXpibm6OmpgYBAQGIioqCs7MzWltb4enpieXLlzNM0Nu3b6Ompgb79+/Hq1evcOLECRw/fhz+/v6Mp23GjBkwMjKCtLQ01NXVYWdnB1tbW4yPj+Pff//FkiVLUF5ejtjYWDQ0NGDGjBlob2/H1q1bkZeXx9RHvby8kJ+fDzY2Nri5ueH79+8ICAjA7NmzsWTJEnh4eOD06dPo6OhAXFwcFi1ahOLiYnR3d2PdunU4ceIETExM8Pv3b4bg9fc2fvfuXQbFOW/ePOY2ZmFhgcTERFRVVWFoaAiGhoZ4/fo1+vr6cPbsWXz69Ak1NTVQVVXFnTt38OrVK1RUVEBSUhJycnJYsmQJli1bxrAhYmNjGVJWTU0NgoKCEB8fDy8vLyxZsgTbtm2DkZERkpKS4OHhgdbWVly6dAni4uKor6/Hu3fvICcnBz4+PiQnJ+PLly9Yvnw51NTUEBUVhWXLluHMmTN4/fo1+Pj48OfPH2zYsAEeHh7MTVxfX5/hHCxcuBCmpqb48uULXFxcoKKiAjU1Ndy+fRtlZWUA/oeRunLlSmzZsgWGhoaorq5GRkYGYmJisGjRIjg6OqKqqgqbNm1CQUEBdu/ejV+/fqG5uRn8/PwICQmBhYUFnjx5AlNTU1y+fJnRdcfGxiIpKQn379/H9u3bGbFlWVkZODk5YWZmhosXL2JwcBBSUlKYnp7Ghw8fMGvWLKb59eDBA/j6+iIlJQVpaWk4fPgwTp8+jR07duDNmzdoamqCiooKvnz5gr1792Lx4sXo6OhAaWkpdHV1UV9fD2lpaZSWlqK6uhq/f/9GZWUlSkpK8ODBA3z69AkVFRUIDQ1FaWkpYmJiEB8fz7BD1qxZAwcHBzg7O+P79+8YHh7G7du3wWKxwMnJidraWujo6DC6o/v372NgYADGxsbIyMjA0qVL0dTUhK1bt8Ld3R03btyAqKgo/vz5g97eXhw/fhy8vLx4//49o7b/8+cPNm/ejLa2NnBzczMY0b/FjvDwcIiJiUFKSgqTk5NQVlaGl5cXli1bBicnJzx69AihoaEYHR1FQEAAvL29oaKiwqi25OXl0dzcjAcPHuDs2bOws7NDd3c3IiMjwcnJCXFxcYY7curUKSxduhRjY2Oora0FFxcXKisrMTk5+V/H6n+PFzZu3HgmJiaGcc9fvXoVoqKieP36NX7//s3AYoyMjMDPz4/k5GQ4OTnh5cuXTH7z70EZEBAALy8vODo6YmpqCsrKyjh48CAsLS0xOjqKnp4e9Pf3M0Dxv09MQUEBiAgJCQng5+fH3Llz8e3bN0xOTiIoKIgpMJw9e5ax+/b09KCsrAzHjh3DunXrEBQUBH5+fvj7+4ObmxtycnJ4+PAhmpqawGKxsHv3bkhJSYHFYiErKwt6enrYuHEj5OXlERsbi9zcXLS0tGB4eBi1tbW4evUqFBUVwc/PD0lJSbi6usLMzAyioqJYtGgRvLy8MDo6infv3sHCwgL5+flMbKy0tBQ6Ojp4/fo1kx/28/ODq6srVqxYwUCRPTw84OfnB1NTU/Dy8uLdu3fMvHrevHlgsVjQ0NBAXFwc1q9fDzs7O2zduhXbt29Hc3Mz8vPzmVLGvn37IC0tDWlpaeTk5DCFlPDwcMyaNQt8fHwQEhKCg4MDTpw4gcTEROTm5jKP379/h6CgICQkJPD8+XNs3LgRY2Nj4OTkRGtrKyMonTNnDnh5eWFra4v79+9j586dUFBQwL1798DLy4vPnz8jKioKw8PDYLFYsLe3R2NjI8LDw2Fvb8/Ef6Kjo+Hv7w8DAwM8ePAAa9euhaCgIJ4/f46JiQloampCXV0doaGhqKmpgaKiIpqamvDnzx9kZmbi48ePyMjIgK2tLZSVlZkK8+TkJJYsWQIiQkFBAXJyciAhIYHe3l7Iycnh1q1b2Lp1K1xcXMDDw4Pr16/DxsYGdXV10NLSwtu3bzEyMgIzMzOYm5sjLS0NPDw88PPzQ2ZmJnJzc8HHx4d3797B0tKSyQs/evQIY2NjePHiBdTV1REYGIiysjJERUUhKysLpaWlYGdnx69fv+Dp6QldXV3MnTsXEhIS2L59O7Kzs7Fr1y6sXr0aLBYLLi4uiIiIwPDwMAICApjXEQBiYmKwfPlyeHp6QllZGQkJCYiLi0NzczNUVFQgJSUFDQ0NHD16FIsXL8bQ0BCuXbuGoKAgxr69cuVKbN68GTY2NmhtbUV7ezu+fv2KkpIS2Nvbo6mpCQEBAcjMzERTUxMiIyOhpKSElJQUuLi44NatW9DR0cHt27eRkZEBVVVVaGpq4uLFi1i3bh2mp6fBxcUFQUFBxMfHIzs7G5s2bcL169eZuOiGDRvQ2dnJ7FBaW1tBRBAWFoaBgQF2796N1NRUWFtbQ19fH1euXMHY2BjY2NhgZGQEIyMjdHV14cCBA7h27RquXbuGO3fuQEdHBwoKCgzu82+lffny5dDT04OZmRmuXr3KxMG8vb0ZJnZtbS3Cw8MZuA4bGxuqqqogKSmJCxcuQEdHB0VFRX+LEv/P8cJ/3nSVlJRw4cIF3L9/H+Pj40yV7u/hlpeXBz8/P+YQaW9vR3p6Ot6+fcsQjDo6Ohhx5OrVq5Geng5TU1McOXIEZ8+eZcwDUlJSqKysRG1tLTPjy87Ohp+fH4aHh2FkZISYmBjs2LEDHh4eDDFobGyMIYTNmTMHDQ0NsLGxwZs3bxAbGwsNDQ2YmpoyPrX79++jsbERbW1tcHNzQ1hYGPOtrKmpiaGhIZiamoKLiwv5+flwcHBAd3c3dHV14e3tDXV1dRw7dgxr1qyBtrY2JiYmEB8fDz09PaxatQqnT59GREQEIiIi0NvbCwcHB4yMjKCyspKBuHd2djJAlwMHDiA1NRWjo6MIDg7GvXv3EBwczPz/NjY2+P79Ow4fPgwbGxvU1tbC1dUVra2t6OrqgqurKxYuXIh169Yx/X91dXWMjIxg+/btSE1NBTs7OwAwTOL9+/djz549uHLlChOW7+jogJubG0ZHR9He3o6QkBD8/v0bW7duRWdnJ8bGxiAsLIzBwUHk5uZidHQUenp6TJD/+/fvqK6uhr29PS5duoTc3FymTGFpaYkzZ86Aj48Pp0+fZljF3d3dDPj7r/H4rzn279JycnISHz58wO3bt+Hl5YWmpiZ0dXVh+fLlICI8e/YMa9euxffv3xEYGAhra2uYmJhg4cKF8Pf3x507dyArKwtfX19YWFigsrISISEhmDlzJgYHB5kly9DQEHbs2MFkrM3MzNDX1wchISEcO3YM0dHR8Pb2hre3N/T09ODg4MAwX9euXQt9fX0oKyvjxo0bePLkCQoKCrBr1y7k5OQwM9ObN29iyZIlaG9vx/DwMLi4uDBnzhz4+vrCxsYG9fX1sLa2xuHDh/Hq1SsMDw8jKysLSkpK4OLigo2NDcMKKS8vR0hICKSlpaGjo8NA0dXU1DA+Po7s7GxG9Pl331BfX48rV67AzMwMANDW1oaamhrmhlpXV4cfP37g+fPn2LJlC3bs2AE+Pj4oKipiaGgIvb29OH36NERFRTE0NIQzZ86goaEBLBYL9+7d+1/z0PT0dBw4cAADAwNIT0+HsLAwhoeHER0djb6+Pnh5eTEAIRkZGXz//h3c3Nw4c+YMPD098fXrVxw9ehQjIyP48uULWlpaICIigsjISLx48QKPHz+Gq6srrl27hjdv3qC2thbKysrIzc2FqakpHj16BG9vb4aENzw8DGFhYXR1deHevXsIDQ3F1NQUTp06hfLycgwMDCAqKgrA/2Tb+/v78erVK4SEhGBsbAyGhoY4f/48cnJyUFVVxVi+nZycoKCggOnpady8eRPLli1Dd3f3f950/zOnm5qaSsPDw/D29sbHjx/R3t6OmpoaWFtbM5XVvx3ruXPnIicnB9euXcOSJUuQn5+PhQsX4sePH7h8+TJ6e3uhrq6O06dPQ0NDA0JCQliyZAmcnJwgJCSE0tJSfPjwATNmzEBycjLKy8uRkpKC27dvo7m5GYcOHcL09DQKCwvBxcWFZ8+eobOzE7t27YKwsDA2btyIT58+YcuWLSgoKMDVq1fx4MEDeHl5QVFREebm5kw9MDc3F9HR0fDw8MDQ0BAOHDiA9evXIy8vD2/fvkVUVBQGBwdx6dIliIiIIDU1FW1tbeju7kZzczMWL16Md+/ewdzcHB8+fMDcuXMhJCSEoKAgnDt3DuvXrwcHBwcjcTQ3NwcXFxc+f/6MN2/eMES2iYkJcHFxYWxsDI6OjnB3dwc/Pz+jP/oL3jhw4ADmzZsHf39/nDlzBu7u7qisrMSFCxdgZGSE169fw9fXlyF0/bXUxsTE4PHjx7hy5Qo2bNiAvr4+2Nraoq2tDX5+fli3bh0DHOns7ISSkhJUVFQwODjIgLPj4uIQEBCAZcuWgcVi4ezZs5CTk4OSkhK6u7vx5s0bSEtLIyIiAs+ePcPu3bvx77//IigoCPPnz2cOura2NixduhR5eXl4//49Y6XYu3cvDA0NmdeJjY0N6urq4ObmZrTW58+fR11dHa5du4bo6Gj09/ejra0NfHx8SEhIABHh8+fPyM7ORmhoKMrKyvD792/s2rULHR0dDAylsLAQjY2N2Lt3L4O2DAgIgKysLFRVVXHt2jUGPhQWFoaHDx9CS0sLa9euRUFBAUJDQ3H8+HHY2Nhg3rx5ePXqFfPL4S8gfGBgAOLi4mhra0N5eTk+ffoEdnZ2yMrKgp2dHXFxcYzIct26dZiamsLNmzcxOTkJHx8fTE1NQUZGBjIyMvj48SP4+Pjg6emJJUuWoKWlBe/evYOysjJMTEwwZ84c2NnZ4fXr17hy5Qru3buHXbt2Yd++ffD29mbkiQYGBkhOTsbIyAh+/foFLi4uxMXFgYeHBz9//mQWu8ePH8eJEycgKCiIwcFBHDx4EAsXLoSNjQ1qamoQHBwMRUVF8PHxoaKiAvn5+SgsLMSWLVsYs3VKSgq2b9+OxsZGaGlpISAgAGJiYrh27RpEREQgJSWFW7dugYgwNTUFLi4u+Pr6Mpnn69ev48CBA9DW1saXL1+goaEBW1tbFBUVgZubG3fu3IGMjAx8fHyQmpqKP3/+QEtLC3Z2djh9+jQSExMhLy+Pp0+f4tmzZygtLUVubi56enrw/PlzrFmzBlpaWgCAHz9+IDk5Gc+ePcOGDRuwZ88eFBUV4eHDh7CyssLU1BQaGxuRn5+Pbdu24cmTJwxrZcGCBfj9+zeCg4Nx8uRJZpzV1NSEe/fuYWRk5P+W07116xY9fPiQ5OXlSUZGhuLj4yktLY1ERERITU2NBAUFqaWlhQICAsjS0pIZOA8PD9PJkydJW1ubhIWFqbOzk8n9VVRU0J49eygqKopkZGQoJiaGVFVVaf369TQ5OUlcXFxkYmJCpaWlVFBQQD4+PpSbm0tKSko0NjZGcXFxpKurS6qqqiQlJUUuLi6kqalJDQ0NNDAwQIGBgRQWFkaBgYFkbGxMeXl5pKWlRfr6+qSgoECCgoKUlJRE+/btI3FxcWptbSU/Pz9ydHSkVatW0dy5c+nmzZvU399Ptra2pKmpSZOTk9TT00OdnZ3k6OhIu3btYjLJ+vr6lJ6eThs3biQFBQW6f/8+ZWVlkYyMDJ04cYKsra0pPj6eHBwcyNbWlojof8kSZ8+eTXJycvT161favHkz7dy5kyQlJUlNTY2ePn1KYWFhdPjwYTIzM6OMjAxasGABRUZGkrS0NOno6NCmTZtIWFiYrl69SjU1NbR3714yMjKiqakpqqqqojVr1pC5uTnNnj2bZGVlycHBgbS0tGjv3r2kqalJz58/p69fv1J0dDRFRUWRkpISaWlpUX19PcXExJCXlxeJiopSfn4+8fPzk5ubG7m7u1NFRQUJCQlRVFQUSUlJ0YIFC8jJyYkOHTpE4+PjJCQkRIaGhsTJyUmjo6O0efNmZtF29+5dsrS0JBEREdLW1qaCggLKysqiZcuWkZWVFfX29lJVVRXFxMSQo6MjaWhoUFdXF5WUlJCWlhZJSkqShYUFWVpaMiDtZcuW0cmTJ6m3t5d4eHiopqaGxsfHmUy1rq4uhYaGkoiICPHy8lJoaCi5urqSuro6xcXFUUNDA719+5a6u7uJnZ2dZs+eTVeuXKHo6Gi6f/8+cXJykr+/P5mbmzPLzPHxcWpubqampiZ6+vQp/f9lIrK1tSUzMzNas2YNbd++nYSFhUlRUZHi4uIoLi6OKioqaHh4mHR0dMjIyIgkJCQoMzOTuLi4SFpamhQUFEhSUpJOnTpFzs7O5OnpSX/+/GEg8ba2ttTW1sZ8BkxMTKi4uJicnZ1JR0eHgoODqaCggDZs2ECbNm2itLQ0+vbtGxkYGBAXFxepqKjQyZMnKTQ0lMbGxig2NpY0NDQoISGB9PT0SEdHh+Lj48nW1pbevXtHo6OjFBsbS4qKioxQ1dnZmb5//85AyPPy8oiHh4eRk7JYLAJAR44cITc3N1qwYAE9fPiQLCwsaGBggIKCgigtLY0Bz/9dYAoKCpKjoyPV1dWRhYUFFRQU0I4dO0hHR4fJJ3d0dDACgTVr1lBVVRVdvnyZNDU1ac6cOaSmpkZiYmIUGBhI9fX1pKysTFFRUWRtbU0pKSn04cMHMjAwoBUrVlBfXx+pq6uTs7MzGRsb065du4iHh4d+//5NTk5OlJ2dTQMDA1RSUkILFiwgKSkp0tfXpzlz5lBbWxvJy8vThg0bqKamhnp6emjGjBn05MmT/1yk/eehOzg4SIWFhXT48GFSUlIiGxsbGhgYoJMnT5KRkRHFxMSQk5MT2draEj8/P7PdHBkZoa6uLjpz5gzl5ORQV1cXDQ4OEicnJy1YsIAiIiIoLy+PDh8+TI2NjaSlpUWdnZ3k5ubGENsNDAxobGyMpKSkqK+vj0RFRam2tpakpaUpMjKSWCwWZWZmkr+/P5WUlJC9vT1t2LCBeVO1t7fT0aNHSUJCgr59+0YFBQWkqKhIV69epW/fvpGKigo5OTmRiYkJDQwM0JEjR6ioqIixWOTk5BARUXx8PFlYWNDPnz9JQECANm3aRPHx8SQrK0upqal08eJFio2NJVNTU8rOzqa4uDgqKiqiT58+0d27d+nKlSuko6NDXV1dFB0dTTU1NbRs2TLasGEDcXNz069fv0hCQoKOHj1KvLy8NHPmTDp//jw5Ozszf0dhYSFt3bqVFixYQMbGxkRExMvLy6QOtLS0KCQkhHh4eKi6upoOHDhAgoKC9PbtWzI1NaXv37+ThoYGFRQUkLKyMtXU1NDIyAgVFxeTvb09jY+P0+HDh0lTU5MMDAyotbWVsrKyKD8//399YR46dIgMDAzI0tKSqquryd/fn3Jzc6mwsJBOnDhBr169ory8PDp37hw5OzvT4OAglZaW0qxZs6i/v58kJCRodHSUhIWFqbm5mTEzWFhYUFhYGD169Ig2bdpEjx49IjExMTIzMyMLCwvi4eEhfX19UldXZ7b9xcXF5OXlRTo6OrRgwQIqKSkhS0tL0tXVpZycHKqvr6f4+HgiIgoKCqKfP3/SpUuXKCUlheLj48nGxoaampooIiKCduzYQfX19WRgYEAXLlwgY2Nj+vTpE+3bt48qKytJS0uLrl+/Ttzc3KStrU0rVqyg+vp6unjxIpWWltKlS5coJiaG+Pj4KD4+nn7//k1BQUGkrq5OysrKlJqaSjY2NmRjY0NiYmLk5eVFVVVVFBwcTLt27aLS0lISExOj8vJy+vPnDzU2NpKDgwMpKChQS0sLqaio0I0bN8jJyYn8/PwoOzubHj58SF1dXVRWVkY/f/4kNjY2cnR0pObmZnrx4gUlJCSQpKQkNTY20tevX6mgoIBu3rxJ1tbWtG/fPvr58ycJCwvTnz9/SFxcnBISEujPnz+Ul5dHkZGR1NzcTAkJCbRjxw4aGhqi3t5eWrFiBXV3d5ONjQ1zKPPz81NnZye5urpSSUkJvXnzhm7dukVfv36lyspKYmNjI3t7e0pPT6egoCBatGgR9fX1UVhYGO3bt4+EhYWptLSUTp8+Tebm5iQgIED79++ne/fuUXd3Nw0NDdGaNWvo5cuXZGtrSxwcHNTQ0EBDQ0OUmZlJExMT9PTpU1JQUKDHjx/Tnz9/yMzMjCYmJsjf3580NDQY03RLSwtlZWWRk5MT5efnU2ZmJk1NTVFmZiY1NjZSdnY2paamkrCwMI2Pj5OPjw+dOHGCurq6aNeuXZSfn0/V1dWUmppKAgICJCsrS4KCgpSXl0dr166lly9fEh8fH9XW1v7fzRH//vsvZWRkoK2tDYqKijAzM4OamhpiY2Px5csXZGZmQlNTk4GJ6OnpMR3t/Px8uLq6IikpCaKiohgeHoauri54eXlRUFCA1tZWhi8qIiKCyclJFBcXo6ysDLa2tlBQUMDg4CA+fvyIwMBA5ObmYuPGjRASEsKHDx/w/ft3ZgD/V0qpqKgIa2trXL58GX5+fli9ejU0NDSwYMECvHjxAvz8/IxN9u+mf2xsDEVFRUwHn42NDXl5eejs7ISVlRV4eXlx4sQJEBGOHz8OWVlZLFy4EPv372cyyhUVFfjnn3/g4+ODiIgI/Pr1C6qqqli6dCnk5eVx6dIl3Lt3DxcuXICTkxM0NTXBxcWFdevWQUxMDEeOHEF1dTWWLl2K2tpa+Pr6QllZGRcuXGB4DvHx8Qzrtr+/H9nZ2fj58yfGx8dhZWXFZInXrVuHbdu2ITExERcuXMDevXtx9+5drF69GkVFRQgODkZGRga2b9+O4OBgzJ07F3fv3sXNmzcxc+ZMPH36FEeOHEFHRwe2bduGxsZGhldgbW3N1LHj4+Oxa9cuvHv3DpcvX0ZiYiIyMjIwNDSE3bt348GDB/D394e4uDhqamrw/v17FBcXMzDu169f4/Pnz9i/fz9aW1tRXl6OtrY2xuvGz8+P1NRUWFlZQVFREdzc3AgLC2OymCwWC8rKyoiIiMDOnTvR3NyMmTNnoqysDK2trZCQkMCdO3dw+fJlhmX84sUL5OTkMMud6OhoJCYmgo+PD3V1dbCwsEB7ezucnJzw+fNnCAsLo6SkBIGBgXB2dkZDQwO0tLSQlZWFU6dOQVNTE8uXL0d9fT1kZWXh7OwMExMTDA0N4ebNm8zy7cyZM0hPT2eqy7W1tSAi/Pr1C/Hx8TAwMEBcXBxMTU2ZdMHfperhw4dx8uRJGBkZYWRkBPr6+khKSsK3b98wMjKCmJgYHDlyBDY2NpCSkoKtrS26u7shLy/PMCIqKyuxYMECCAgIIDU1FWZmZlBSUoKOjg62bdsGXl5eJCUlITAwEElJSWCxWJg5cyYWLFiAjRs34sqVK0hLS8OSJUugoaGBz58/4+fPn7C3t8epU6cgICCAnz9/oqOjA/Hx8VBSUgIRITk5GUVFRfj48SMyMzNRU1PDlIPWrl0LFxcXbNq0CUJCQlBRUUFHRweUlJQwb948zJkzB/r6+khPT4ehoSHmz5+PhIQEJjN+6NAhFBUVMUbm7du3Q05ODoWFheDg4ICKigqOHDkCbm5ubN68GYWFhUhNTYWCggLevn0Lf39/WFpa4ujRo8jPz4egoCDMzc3R1tYGAQEBODg4MLD75ORkhIaGwsnJCbdu3YKUlBRycnKgqqoKNzc3DA8PIy0tDY8fP8a8efMwNTWFW7du/d94uqdOncL09DRsbGzQ29sLNTU1SEpK4smTJ1i+fDnD0d2yZQueP3/OCA/HxsZw8eJFzJ49G2vXrsWWLVuYeUdJSQmio6MBAKOjo7hz5w42b94Mbm5ulJeX4/Pnz+jr64OgoCDD5ywsLAQRISAgAKdOnYKwsDCzLFu0aBFMTU3h7u4OTU1NfP78mVk+XLx4EVevXkV9fT3++ecfpstub28POTk52NvbQ01NDby8vFi2bBkzc46KikJtbS2ys7NhZGSE2tpazJw5kwnCZ+Ld6gAAIABJREFUS0pKQklJCYmJiQwIIycnB7NnzwY3Nzdqa2shLS2NrKwsPHjwAH19fcjPzwcnJyfev3+PtLQ0mJub4/Dhw+ju7sb169dx8+ZN3Lp1C/39/QzzwcrKChs2bMD169dx584dZGdnw9DQEPHx8UhISEB2djbS09Px+PFjODg4wM/PD5ycnNi2bRu6u7uxaNEiqKiowNjYGGNjYzh//jympqawb98+AP9jz0hPT8fQ0BBSUlJARIiNjYWJiQkkJCQYBdKePXvAYrGwf/9+CAkJwdDQEGJiYsjIyMDDhw+xbds2HD16lGHWSklJob6+ntmqExHD7li/fj1cXV2xbNkyLFq0CP7+/pCVlcWjR4+Qk5ODf//9F25ubuju7sby5cuxbds2fPnyBTo6OpCQkICTkxOjjTEzM0NUVBS8vb2RmpoKIyMjKCgoICkpCd7e3li1ahUyMjIwPj6OxMRE+Pn5ISMjA2/fvoWuri6sra1RV1eHefPm4cePHwzMffXq1Qz05C+yUFJSEmfPnoWlpSVj2bWzs0NeXh5kZWWxZcsWODk5obGxEUJCQnjw4AGqq6thYmKCR48eISMjA2JiYhATE4O1tTUGBgZw7NgxvHr1CosWLcL79+9RXl7OQHZMTEywZs0aqKqq4s2bN6isrISIiAgiIiKgra0NVVVVREREoK6uDv/++y9ERUWhra0NDg4OHDp0CLKysmhubkZJSQnc3d1x+fJlyMnJoa+vDxoaGli1ahVcXV1hbm6OHTt2ID4+HvX19XBzc8PAwACSkpKwcuVKFBcXM8vK169fY+HChdDU1ISpqSlsbW0RHh6OxMREzJgxA1lZWZg1axYkJSVhZ2eHmJgYJCcng42NDUFBQVBSUsL27dsREhKCnz9/4sePH9DW1oajoyOqq6uxdetWeHh44OXLl8wMtbGxEfPmzUNmZia0tbWRkJAAPj4+VFdX49KlS/j8+TMWLlwIX19feHh4QEtLC0pKSrh06RJ2796NS5cuYXR0FNevX0deXh5zHrGzs0NGRgbDw8Pw8PAAi8ViNFEvX77Es2fPcP78eRw9ehS/f//G4OAgPn36hISEBCxevBji4uJITEzE5OQkkpKSICUlxeBJ/9qV/08zXQDEz89PKioqBIB6enroxIkT1NLSQmZmZsTGxkapqakUEBBA0dHR5O/vT5qamuTs7EwsFotcXV2psrKSLC0tqaenh3x8fEhJSYksLCyouLiYampqKDw8nCoqKujly5e0d+9eGhwcpNmzZxMPDw8ZGBhQb28vNTU1UVlZGXFycpKDgwO9fPmStLS0KDIykpYtW8bI70xNTSkuLo7u379PioqKtHTpUpo1axZ9//6d1NTUyM3NjdjY2MjQ0JBu3rxJjx49otbWVpo5cyaZmJhQSEgI+fn5kba2NllZWZGDgwPFxMSQjY0NSUhIUHt7OykqKlJ0dDQ9fvyYSkpK6NOnT7R+/Xr69u0bpaen0927d0lVVZUOHjxIbW1tdPDgQerv76eGhgb6+vUrbd26lXR1dWliYoKMjY3p8ePH1NfXRxERERQWFkbR0dFUV1dHmpqa5OjoSCMjI2RkZEQWFhb09u1bKiwspMzMTJqcnKSpqSlydnam+Ph4mjFjBsnIyJCDgwMTLGdnZ6fh4WGSlpampKQkKigooPb2dvr27Rt9//6dnJ2dKTMzk3p6euj48eM0NjZGc+fOpby8PDI1NSUfHx9qb28nIqJDhw6RpaUlaWtr09KlS0lWVpYRJf6dHRobG1NGRgZ9/PiRUlJS6MyZM6Surk6fPn0iVVVVMjAwoEOHDpGPjw/Z2tqSoaEhsVgs4uLioj179lBERAT19fWRt7c3Xbp0iVpbW6mlpYXOnDlDnZ2dJC4uTp6ennT//n2SkpKipKQkOnjwIBERSUhIEC8vLz169IjMzc3JzMyMbG1tacWKFRQfH0+FhYVUW1tLjo6ONDU1RTdu3KBZs2aRkpIS3b17l7i4uGjr1q105swZioqKon379tHr169p1qxZFBoaSk1NTWRhYUH79u2jwcFB+vPnDxkYGNDo6CjdunWLLl26RBYWFjQ2NkZ6enq0bNky2r9/PwUEBNDz58+pv7+fOjo6SFhYmFatWkWRkZH07ds3MjMzIxERESoqKqLo6GhSVFQkZWVl8vHxITc3N5KSkqIjR45QVVUVvXr1ikxNTenbt2+krKxMpaWltGzZMhIVFaXIyEiysrKir1+/koSEBDU1NZGWlhalp6fTpk2byMfHh/j5+SktLY3u3LlD0dHRBIDU1NTo6tWrtHnzZvL09KSioiJKT0+nkydPkpKSEhkYGNDx48epo6ODgoKC6OXLlzQ6Okr29vY0e/ZssrGxoefPn5OzszPt2LGDZs6cSZs3b6bExESqq6uj+/fvk6qqKoWFhVFQUBDNnTuX4uPjqbi4mGJjY8nCwoL4+flJWlqa5OXlSV5enpYuXUqioqJ06NAhMjc3p8DAQCIiMjExIX5+flJVVaXIyEjS0dEhLi4uUlVVpatXr5Kenh719PSQrq4uRUVFUV1dHR05coSRklpbW1NERAT5+PgQAFq7di05OjrSnDlzGF6HoaEhaWlp0fj4OHl6ejK8iLCwMKqpqaGXL18Si8WiY8eOkbOzM01MTFBHRwe1t7dTeHg4KSsrk4mJyX+OF/6Tp+vp6YmsrCyEh4dDSUkJ0dHREBcXR15eHvbs2YNZs2aBn58fRISgoCBMTEzg1q1bcHNzw/z586GnpwdXV1csWrQI3NzcqKiogJGRERoaGnDy5Ek0NDQgKioKVVVVEBcXBzs7O2bPng0ODg78+vULq1evRmpqKvz8/Bi55F9FT1tbGwYGBrBkyRIkJibC1tYWKSkpWLduHb58+YJfv34xque/PfGWlhbIy8szkbW+vj4cP34cExMTMDc3h6+vL6ysrLBx40YcOnQIRARdXV1MTEygpaUFvr6+UFRUxMjICOrq6rBixQrExsaCnZ2dCa63tbUhOjoat2/fxp49e3Dnzh2Ii4tDS0sLDx48gK6uLkpKSlBbWws1NTXMmDEDnz9/Rnd3N+bNmwdfX1/ExcXh6tWrsLOzQ2JiImRlZeHp6Yl3794xcswXL14wenB2dnbs2rUL8+bNY3Tpf/78waNHj1BXVwc/Pz/s378f09PTGB0dRW1tLZPJ/YsBDAsLw8GDByEkJISnT59CQ0MDmpqaEBQUZHQ4cXFxSExMxPfv35m44L179zB//nzs3LkTHBwcGBkZwe7duyEtLY2VK1dix44daG5uhoeHB+zs7PDjxw8YGxujpaUFoaGhkJaWxpIlS7B161aGAcHOzo7c3Fy8ffsWly9fxsuXL8HJyYm9e/cCAHR1dZGXlwddXV2cPHkSZ8+ehYCAAMMdWLRoEXR1dVFYWAhJSUkcPHgQOTk5KCwshI+PD+rq6lBRUYHBwUHU1dXB0dER3Nzc2LRpE758+YKamhpoaGhg79698Pb2hqCgIJM+2LJlC0ZGRnDq1CnY2NigoKAAtbW1yM/PR3t7O8TExPD7929cvHgRAgIC2LRpE54+fYqmpiaIi4vj+PHjEBISwtGjR1FdXQ1JSUm0tLSgq6sLz58/R11dHQwMDJCWlgZJSUlUVFTgxIkTDCPB0dERoaGhYLFY2Lx5M/r7+yEgIICZM2eirq4Oampq+PPnD16/fo3Tp0+Dn58fly5dgoSEBGpra2FgYAAFBQVMTEzg+fPnKCwsZJ6b8PBw/Pz5EydOnEBqairy8/PR0dGBiIgIWFpaYv78+UhJScGOHTvw9u1baGlpQUdHB7KyslBQUEBmZiYmJydhZmaGsrIysLOz49q1axAXF4elpSXOnTsHe3t7bN26FSdPngQ7OzuePHmC06dPM0yPQ4cOoaamBra2tiguLoa9vT1CQkLw/PlzJCYmYmxsDD9+/MCjR48QGRmJ+/fvQ0ZGBlZWVozi/ffv34w37c6dO9i9ezd8fX2ZUstfX5q1tTVmzJiByspKuLu7w93dHZ8/f4aGhgampqYQGBjIqIO2bNkCHh4eBAYGws7ODtra2pg3bx6qq6vh4eGBRYsWwcTEBFlZWVi+fPl/XnT/c6br6OhIZWVlyMjIQFxcHLKysvDixQvY2dnhwYMH4OXlhaKiIl68eIG2tjY8efIE379/h4iICD59+oTs7GyMj48jLCwMWVlZ4OXlxdGjR/Hjxw/s2bOHkQYeOnQIS5cuhZycHBobG7Fo0SKUl5fj5cuXaG9vx7lz52BrawsXFxdERkbi5MmTzPzxr6rn2LFj+Oeff2BlZcVkTJ89e8YcDmxsbLCwsICoqCh0dHQwe/Zs1NfXM71rT09PeHl5Yc+ePeDm5oaIiAiUlZWxbt06lJaWIjU1FXx8fPDw8EBZWRnTrgsPD0doaCisra2ZkcHmzZtRW1vL9MJtbGxw6NAhhklgZGSEvr4+zJgxAxcvXoS7uzsyMzMhIyMDAQEB2NnZITAwEC4uLrh+/Tr6+/vx+/dv5OXlMY/Pnj1DRUUFRkdHoaKiguTkZNTV1aGsrIxhm+rp6aG0tBQBAQGws7ODkZERFi5ciHfv3kFCQgIHDhxAbGws7OzssH79ekhISOCff/5h2l/+/v7IyclBfn4+Dh48CBaLhd+/f+Pw4cOYO3cu+vr60NHRAUdHR9y5cwcFBQWQlZWFiIgIpKWlmS/mv7yJb9++YcWKFejo6MDChQvR3t6OGTNmYP78+bh37x7a2toYb9iGDRvAw8PDMCsiIiLw4cMH+Pn5YenSpTh//jw2bNgAR0dHLF++HAoKCowZ4+/zv2bNGkRHRyM4OBgHDhzA2bNnwWKxMDk5CQMDA4b9EBcXBxcXF6xduxbS0tLIz8/Hli1bMDAwgNWrV2Pbtm3MnN/Ozg5fvnxBSUkJVFRU4OPjg4cPH6KjowP6+vpob2/HwYMHISgoiNzcXMTHxzNfaGpqaujs7ISDgwPi4+ORkZGBtWvXwsvLCy9evMCpU6dga2uLnTt3Mr6wvyyQhw8fYu7cuWCxWNi1axc0NDQYpdP09DR8fX1hYmKCwsJC2NnZwdfXFxISEqioqGAgUqKiojAxMcHExAQKCgpw8uRJxMbGMj/V9fT00NfXh+DgYDx8+BBfvnzB1NQU1q5dCx8fH3BwcMDHxweDg4PMKOLp06fw8fHB9PQ0NDQ0MDQ0hPHxcXBwcDAz8L/CARUVFWhra8PQ0BAzZ84EBwcHNm7ciO7ubmzfvh3v3r1DQ0MDmpqaICAggN7eXsZzN2fOHFRVVaG/vx8ODg6wsrLC0aNHceDAAQgICCA3NxevXr2CsLAwxMXFoaOjA0FBQTQ0NKC4uJgpeezcuRMfPnwAPz8/BgcHcfz4cTQ0NICIsH79eoSEhIDFYiEkJAQxMTEIDQ3Fq1evsGrVKuzduxcuLi4wNTVFZWUlTE1N4e3tjYSEBNjZ2SEsLAwfPnwAFxcXUlNT/2883czMTPqrSB8fH4e6ujokJCRQV1fH1P5aWlqYZcKOHTtw8uRJjI2NwcvLC3Z2dmCxWGBjY0NXVxcWLVqEjRs3gsViQVdXF8eOHcOjR49QVVWF1tZWKCoqQlFREdXV1QgKCkJERAQ0NDQgKiqKM2fOMMZYKSkpaGtr4+jRo5CQkIC2tjba2trw9etXhIeH49q1a1BQUMD27dsxf/58RgFkbGyMDx8+oL+/H4GBgVBTU2MsDPLy8vDz84O3tzd0dHTg4+OD9PR0yMrKYt68efDx8WEg50JCQrCzs8POnTvR3d2Nqqoq1NfXY2BgALq6uoiNjYWZmRni4uJw5MgRaGlpIS4uDjU1NUwrqLW1FVlZWZCSksL4+DguXrwIa2tryMnJYeHChVi8eDGTca6oqICcnBwGBgZQXV3NPPccHByYM2cOY6SQlpZGXl4eDh48CA0NDXR2doKfn5/R4QCAn58fLC0tMTk5iaGhIXh4eCAnJwdnz56Fu7s7JCUloaKigoqKCgwPD4OdnR2pqano7+9He3s7WCwWCgoKoKqqiuDgYLx58waPHz+GhYUFioqK4OzsjEePHjHh/OzsbCQnJ8PKygr9/f24fv06Ux8+deoUoqKioKuri48fP+L48eOQl5eHra0tBAUFsWrVKoSGhuLOnTtQUFAAPz8/oyOSl5dHSkoKVq9ejdu3b0NSUhIPHjyAkZERtm3bhlevXqGmpgY8PDwQFRXFkydPICIigl27dkFISAgZGRnQ0dFhqp8dHR3o6elBVVUVenp64Orqil27djHiTn5+frS2tuLLly9M4eLvB09UVBQFBQVISUnBiRMnMD09je7ubkRERMDPzw8FBQWYnJxknG23b9/Gz58/oa+vj9zcXDx58gRjY2NISEhAREQEkpOTYWlpiYsXL6K/vx8PHz5EbW0ttmzZgtHRUVy7dg1hYWHg4OBATk4Os1RuaGiAqqoqnJ2dYWxszNgqdHV1ERQUhLdv3yI4OBhubm4YHBzE6tWrISUlhZUrV2L27Nlwd3dnbvfPnj0DNzc3xMXFUVlZyew8pqensXLlSvj6+jLKrI6ODpiammLx4sUIDg7Ghg0bGNvJ48ePkZaWhtTUVGzevBlmZmbo7e1Fb28v7t27B19fX2aJ6eLiAg8PDzx+/BhDQ0NYsGABsrOz4evrC1NTUzx48ADS0tKorq6Gk5MT6urq4OHhgaSkJMycORNv3rxBQEAA1qxZgytXrjDz3L6+PvT09EBMTAzp6elQVlbGnj17YG9vj56eHrCxsUFZWRk3b97EmzdvcOnSJTx79gwLFiyAsbExQkNDkZaWhv7+fvz77784ffo0du7ciV+/fjEwdADo7OxEQkICiouLISUl9f88dP+zBiwnJ3fm9evXSEpKQlZWFqMpVlZWxvj4OLZs2QIBAQE0Njbi3LlzzHX89evXcHJyQn9/PyIjI/G3SszDw/OXqg57e3vcuXMHx48fx759+6CqqgoXFxfU1dUhJCQEdnZ2TBOHn58fPj4+SE5OhqurKz5//oyUlBS0tbWhrq4OkZGRDMrvL4XpwoUL+Pz5M9zd3WFlZcXUhhctWsS00davX4/q6mosXrwYjx49wvLly5kDc+PGjeDg4MA///yDyMhI7Nu3D4cPH8b+/fvh4uKCjRs34t9//8XmzZsRHBwMCQkJxiP18+dPHDx4EF5eXnjw4AH279+PtWvXgpeXl6GPubi4wNXVFe/fv4eHhwfOnz8PNjY2yMjIQE9PD8uXL8f09DQaGxvxzz//QEtLiwGt+/r64saNGwxWcObMmQxXwNnZGR8+fEB8fDyUlZXh4uKCkJAQ6Ojo4NevXwgNDYW+vj6z0Y+JiYG4uDjmzZvHCBCbmpoYt1VtbS2uX7+O8fFxzJs3D2fOnMG2bdswOjqK5ORkJuHw93Z06dIlJtzPy8uLFy9e4OvXr/j69SvS0tJQU1ODkpIS1NfXQ0xMDC4uLti2bRtmz56Ny5cvQ0pKCu/fv0dWVhajivL19cX09DQuX77MGASys7Nhb2+PhIQETExMQEtLC8bGxvjx4we0tLRQUlLCHK4BAQHg4eHB79+/wcnJifLycsbNxcfHhytXrmB0dBSqqqowMDCAmJgY3r59ix8/foCXlxcKCgro7e3Fx48fYWZmBgMDA9TX18PT0xPh4eGMkDQ+Ph6BgYGorKyEiooKoqOjUV5ejrGxMejr62N6epqxWISHh+PVq1fw9/dnXsOkpCRoamoiIiICoqKicHFxwfLly/Ht2ze0tLQgODgYHz9+RE9PD7q6upixkqOjI+Tk5DB37lxcu3YNO3fuxIIFC9DZ2YmAgAC8f/8eZWVlUFJSwpkzZ2BjY4PJyUlMT0/j6tWrKCkpwbVr12BjYwMZGRnMnTsXW7ZsQXNzMywtLaGqqorp6WnMnj0bbGxsUFVVRVFREfbs2YOnT5+isrKSsXR0dHRAQUEBPDw8EBMTYywXf99nWVlZsLOzQ3l5Oerr68HFxYWvX7+iubkZe/fuhYiICG7evImqqipGZjtnzhxG785isTA6Oor6+nocOHAAd+/eRWZmJrq7u7F//35MTExg8+bNkJGRQUVFBa5cuYLAwEC8e/cObm5uTMX6+PHj8PX1ZUYkoaGhGB4eRkFBAdNo8/HxwcmTJ+Hm5gYzMzO0tLRAUFAQb968gaOjI9ra2iArK4u5c+eCjY0NBw8eZEYL4uLi/zfKmLq6Or17944uXLhAX79+peDgYHrx4gV9/PiRzM3NSVNTk3x8fCg2NpY2bdpE7e3t5OzsTDw8PGRlZUXDw8MkIiJC3t7e1NzcTIcOHaKSkhJSU1OjNWvWEBsbG23YsIE6OztJUlKS5OTkqKGhgWxsbKihoYGWLl1KYmJilJycTIcOHSJJSUmyt7en8+fPU2pqKvHy8jLkrKdPn5KqqipdvHiRUlJSqK6ujhITEykyMpJaWlooMjKScnNzadasWaSurk7e3t6kr69PP3/+JHNzc5KXlycODg4mqD8wMMAE0rW0tOjo0aMkLy9PiYmJpK2tTbNmzaKIiAh6+PAhtbS0UHBwMEVGRlJ/fz8pKSmRv78/k6+0tbUlRUVFamxsJDMzM7p37x4N/3+cvek7l+sbvn2QzCpjEpIpocyJikQiRYYMDQqVWqUMRSUqlaGBhFTSMrQMDYiVKSFjkjIkYxIlyRQJGc7nxe/p3p7fi2e9+P4BlT4f23Vf93kex76PjpKBgQFZWlqSvb09GRoakq+vL/X29lJRURFdvXqV0tPTSVpamqKioqirq4tGRkYoLS2NVFVV6fbt22Rqakr79++n+vp6evXqFQ0PDxMLCwu9fPmSXFxc6NevXzQ2Nkbt7e305csXMjExoWfPnpGpqSmlpqbSnTt3SFVVlV6+fEmrV68mV1dX2rlzJ4mKipKAgACxsLBQfn4+sbCw0IIFCyggIIAGBgYoPj6eSktL6e+//6bU1FRqaWmhxsZG2rZtG5mbm9PIyAgZGRnRqlWryMTEhEZHR+nTp090+PBhsre3p4KCArK2tqaHDx8SHx8fKSgoUE1NDbGzs9Pq1atJQECAuLm5KTc3l0RFRcnJyYni4+Pp+vXrdPz4cbK1taWEhATi5+enr1+/kq2tLfn5+ZG4uDiJi4vT+vXrqaenhzIzM2lsbIxUVFRoaGiIiouLac2aNaSpqUlFRUUkKipK9fX1xMfHR6qqqtTX10dSUlK0fv16mjNnDv348YN6e3tpfHycdHV1ycXFhYyNjSknJ4cePHhADQ0NND4+TgoKCmRkZET79u2jhoYG2rRpE23atIm4uLjo3Llz5OfnR8PDw/T06VPatWsXcXFxUWBgILW2tlJISAiVl5fT+Pg4JScn040bN2ju3Ll06NAhqqyspIKCAoqPjydtbW2ysbGhBw8ekKioKImJidGWLVtIVVWVREVF6dSpU/T3338TLy8veXt70+DgIJ06dYp6enpo2bJllJGRQU1NTdTV1UVxcXFkampKV69eJX9/f2ZRy8nJSWNjY6Snp0elpaVMjldAQICeP39OTU1N5O3tTezs7GRra0vGxsaUn59PZmZmNGfOHKqoqKDY2FiSkpKiNWvWUHNzM7P0trW1pcLCQoZ2l5mZSaampuTk5ETHjx+nqKgoGhoaou3bt1NjYyPdvHmT9u3bR/n5+dTd3U0ZGRnEy8tLwcHBFBQURPn5+RQWFkajo6NUXFxMPDw85OHhQUREgoKClJ+fT9bW1tTb20siIiLExcVFenp6tGfPHjIzMyMeHh5KSUkhf39/EhQUJCkpKVq8eDEZGRnRjRs3aHBwkAYGBmjevHnU3d1NkpKSBIAaGxtpzZo1FBISQry8vCQlJUUeHh5UX19PwcHBJCwsTOPj4/97OSI8PJy6u7upu7ub3rx5Q48fP6b58+eTr68vDQ4O0pYtW+j79++0cOFCGh4eJhEREZo3bx4JCwszeEdBQUFiZ2cnBQUFysnJoatXr9KqVavo69ev1NDQQJ8+faKcnBxKTk6msbExSk1NJTY2NpqYmCBlZWU6evQoVVdXU3FxMfHx8VFbWxuNjo7Szp07qbm5mWxsbGjnzp0UERFBOTk5ZG9vT/n5+fT161caHR2lsLAwsre3p/j4eCIiWrVqFT169Ihyc3NJVVWVampqyMTEhN68eUMaGhqUm5tLGhoapKqqSrm5ufT792/i5OQkZWVlSkxMpGPHjpGlpSW9f/+eOSBOnTpFXl5e9PXrV1q9ejXt3r2buru7qaCggCIiIigxMZFaWlooMzOTHBwcaM+ePcTJyUlSUlJUUVFB1dXVJC8vT5ycnFRdXU03b96k2NhYunz5MvHz8xMnJycJCgqSgYEBLVmyhB4/fkz9/f1UXV1NpqamVFpaSkZGRvTy5Uu6desWYwy4desWRUdH08GDB6mvr498fX2pqamJ1q9fT2lpaXT8+HHavn07NTc3k4ODA4WHh1NDQwOtX7+eJCUlKTQ0lHp6eujQoUP0/ft3mj9/PlVVVdGWLVto48aNtGzZMsrLyyMvLy8SExOjf/75h1hZWUlXV5fmz59PMTEx9PXrV1JWViZ/f39qa2ujkpISCgkJoYCAABIUFGR+FlFRUTp27BhFRUXRpk2bKCwsjKKjo0lJSYlyc3Pp169fTCD9T+nkzZs39OjRIzpz5gy9f/+eIiIimIfjoUOHaM2aNdTW1kbT09PU1tZGv3//pidPnpC7uztVVlbSrVu3SEBAgEZHRykxMZEMDQ0pMzOTrK2tqbq6mpKTk+ns2bPk4eFBNTU1pKqqSrOzsyQhIUHXr1+n6elp6ujooM7OTtLX16fg4GCys7MjZWVlUldXJwcHB6ZYsGXLFgoNDSVJSUnS1NSkgwcPkpubGyUmJlJQUBCVlpbSjx8/aPHixWRoaEje3t7k5OREo6OjxMrKSk5OTnTo0CGysbGhDx8+kJ6eHhUWFhIbGxuCyo8QAAAgAElEQVQ5ODiQgoICLVy4kMLDw6m8vJzq6+uJi4uLSktLKTg4mO7cuUOmpqZMkkdERIT4+flpcnKStm/fzqANb926Rffu3WOQj9bW1nTw4EEKCwujxsZGOnbsGKWmplJ5eTnl5ORQbm4uSUpKMnjM+vp6UlFRoXnz5pG4uDgJCwuTgoIC8fHx0ZMnT6iuro5EREQoIiKCSktLKS0tjfT19UlaWpr5XiMiIujYsWOUlpZGTU1NZGhoSGFhYbRt2zYmifDr1y9atWoVqaioMM3H5uZm2rp1K+3bt4+ysrKIh4eH3N3dSVlZmVhYWKiqqopmZ2dJU1OTVFVVqaSkhK5evUqJiYnU0NBAUlJSdPnyZTI0NKR58+ZRa2srLVy4kDo7OykvL4+am5tpzpw5VFdXR/39/TQ8PEwHDx6kW7du0atXr2jNmjU0OjpKlpaW/3s5IiMjg/T09LBz506sWbMG27ZtQ35+Pmpra8HBwYG5c+fi5s2bePfuHZKSknDixAmoqKhgenoaRITy8nJs2rQJmpqajAdp8eLFSE5OhqurK+7duwcxMTHU1dXh9u3b6OjoQHV1NR4/fozTp0/D0NAQPDw82LZtG7S0tKCqqoqioiIEBwfDzMwMixcvRnV1NbKzs8HPz4/Kykq0tLRg165dGBoawrt37+Ds7AwNDQ1wcnIiLS0N09PT4OTkRGtrK9jZ2aGkpARNTU3s2rULK1aswJs3b5igd1paGjIzM6Gnp8dovZcvX47y8nIMDg6isrISJ0+eRH9/P7S1tVFXV4eDBw/C0dER+fn5iI+Px6dPn8DJyYnXr19jwYIFWLlyJSwsLGBhYQFdXV3k5eUhISEBiYmJYGNjAwsLC3bs2IEbN26Ag4MD169fBwDU1NTgypUrqKiogIaGBnh5eeHj44MrV67AwsICBw8eRFFREaysrFBbW4srV65g9+7dePLkCV6+fInMzEwsXLgQ6enp8Pf3R0ZGBmpqahjM5OPHj1FeXo6oqCg8fvwY/f39KC4uRlhYGLq6uvD8+XMUFRVBXV0d27ZtQ3p6Oh4+fAgPDw/8/v0burq6WLRoESYnJyEoKIizZ8/iwIEDGBsbQ319PRwcHKCsrIy8vDwmuSAhIYHv37+jsrISYWFhqKqqgpqaGvLy8mBjY4Pt27fD0NCQCbo/e/YM7u7umJmZQWlpKaSkpHDixAloaWnhzJkzUFNTw8WLF/Hu3TtERETA2toa7e3teP78OW7cuIHBwUFYWVlh//79YGNjw/3795lAvLq6Ok6cOAE3NzfY2Nhg27Zt+PbtG9zc3HD+/Hns2rULHh4e6O/vh4KCAlxdXZnfueDgYCxZsgQzMzPMSOj06dM4dOgQOjo6ICcnh82bN2PVqlXo7u5GTU0NwsLCsG7dOtTW1kJaWhozMzM4f/48Hj16hK6uLvT390NQUJABcFdWViIzMxNmZmZQVFTEz58/4ebmhuLiYmhqaiIiIgLbtm2DtbU1amtrMWfOHFhaWuLhw4dIS0tjCH9/CGkcHBy4dOkSAgMDsXLlSty5cwcXLlxAfn4+rK2t0dvbi8ePH0NAQACTk5NISUnB+fPn8fHjR5w6dQoWFhYYHBxkcq6lpaXMKO7atWvYtGkTbGxsMDAwgFevXiEoKAipqaloampCdnY2ysrKMDExgefPn8PIyAhNTU04efIk7ty5AzY2NtTV1eHp06fIysrCypUrERQUBE9PT+Tk5GDjxo24ePEitm3bxvy5/fv3Q11dHTdu3ICuri5iYmLg7u4ODw8PZGRkgJWVFQcOHMCtW7cwMTGB6OhofPr0CSYmJlBXV8f9+/exdetWJCUlQVFRESoqKli8eDHs7OxgbGwMY2NjaGlpwdraGuXl5bC2tsbdu3fR2dmJ8fFxZrRx+PDhP1ny/22RtmfPHhodHQU3NzcKCgrAwsICQUFBXLt2jTkEr1+/jqmpKdy9exePHj3C169fUVZWhl27dqG+vh5RUVHIzs5GUVERREVFUVtbC3Z2dtTX18PFxYVhbF69ehU8PDwICQmBoqIiWlpaGBbp6OgoTpw4gR8/fkBWVhbJyckoKyvD+vXrwcHBAXNzc0RFRaGnpwf37t3D+Pg4ent7oaOjA3FxcZw/fx7e3t6Ynp7G6tWrcePGDWRlZcHMzAxeXl7g4OBgFjjJyckoLCxEVFQUiAhz586FhYUFVqxYwcwPz58/Dw8PD9y7dw/Hjx/HqlWrcPbsWYSGhoKDgwM5OTno6elBcXExLl++DDs7O7i6ukJLSwv+/v5obW2Fp6cnli9fDmlpacjLyyMqKgqvX79GRUUF/vrrL4b2lZ+fj/Pnz2NqagpDQ0P48uUL9u3bBzY2Npibm4ODgwOdnZ2Ij4+HjY0Ns3wSFBTE3LlzsWXLFty4cQOenp4QFhbG4sWLIScnh8jISMZwHBYWhtevX0NVVZXhr/6JLP3RtEtKSmLHjh3w9PRER0cHPDw88O7dO9TW1sLPzw8jIyOwsLDAokWL/q/Z4ezsLGRkZFBWVob+/n4cO3YMra2t0NXVhaGhITIyMhgq1r///gtfX19GwS4mJobw8HBwcHBg3759UFNTg5GREVxcXJCfnw9nZ2cICgri/PnzaG1tRUhICOTk5HDnzh1YWFjA3t4eiYmJePfuHXx9fVFWVgZzc3PIy8tjyZIlGB4eRklJCeLi4tDW1oaRkRFER0djdHQUWVlZUFNTw7dv3zB//nzs3bsX8vLyqKurw7FjxxAbG4va2lpER0czxCsVFRXcuHED69evh5WVFaSkpFBRUYGjR49ibGwMrKys2LBhA1paWlBfXw9BQUH8/fff2LFjB1auXAk3Nzf8/PkTixYtQldXF4KCglBaWora2lr4+/sjNTUVysrKAIDCwkLo6ekx+puWlha4u7vj7du3OH78OC5dusQsmqytreHq6orExETU1dXh4sWLiI+Px+fPnxEbGwtfX1/cunULmzdvZhJDgYGB6O/vh5WVFTg5OVFbWwtDQ0NG7CkuLo6tW7dCTEwMbW1tyM/Ph7u7O+rq6nDq1Cnm3w8KCsLPnz/Bw8OD58+fM3NRa2trZGVl4fPnzzhy5AiEhISwYcMG6Onp4devXzhw4AAaGhoYpY+ioiJ0dHTQ3t4OSUlJPHv2DHl5ediwYQMGBwexcOFCNDQ0IDExEerq6tDW1sbjx4/BycnJLNDLysrw5s0bRl2Vm5uLxsZGnDhxAiMjIzA2NkZwcDCEhITg7++Pjo4O9PT0oKamBt3d3QgPD4evry+qq6vh5uYGDg4OiIuLo7q6GlZWVuju7sbMzMyfxdv/Brw5d+4c1dfXM1LFV69ekbW1Nb148YJaWlqouLiYtLW16fnz52RjY0M8PDzU3d1NJSUlFB8fTykpKZSWlsaYAqSlpenAgQM0NDRE6enp1NvbS6KionTt2jUyNzcnWVlZUlZWJllZWXr79i3JysrSy5cvKSkpibKyskhXV5eUlZXp0aNHNDk5SQBo/fr1lJGRQe3t7XT37l16+PAhbdy4kZKTk+nmzZu0du1aOnv2LKWkpND09DSFhYXRly9f6MqVK5SZmUlnz54lISEhCgwMJC4uLrp8+TJZWlqSh4cHRURE0KdPn2hwcJCeP39OIiIiJCkpSd7e3pSenk4nT56khoYG0tfXJx8fH8rOziZ2dnbq7+8ne3t7unDhAjU2NpKIiAi1tbVRcHAw1dTUUGlpKfX391NnZydduHCBVFVVCQCNjY1Rc3Mzpaenk4SEBImKilJERAT19vbS48ePqampifbs2UMfPnygRYsW0aFDh6itrY06OzvJxMSEhoaGSEREhAwMDCgwMJDs7Ozo5cuXVFxcTNbW1mRra0uHDx8mSUlJmpiYID4+PrK0tKTQ0FC6du0avX//nhQUFGj9+vVUVFREXl5e9PTpU9qyZQvx8fGRmZkZaWtr05MnT8jY2Jj6+/vp+/fvdO3aNbp58ybJyMjQ9PQ0eXt7k7q6OpWXl5OAgAApKyuTmZkZsbCwkJ2dHfHx8ZGrqyuxs7OTuLg4OTk5UUlJCb1//55cXFxo48aNZGFhQfv37ydeXl4yNjam5uZmKi0tJXd3dwoODiZWVla6dOkSxcXFUUpKCrW0tJCuri45OTlRT08PwzJoa2sjPj4+KiwspDVr1lBBQQHV1tbStm3b6NmzZyQjI0MNDQ306tUrWrt2LUVHR1N2djYdOHCAJicnKScnh5SUlEhTU5NiYmLo7du3lJCQQPr6+rR27VoSEhKiy5cvM4YVGxsbUlBQIG5ubmpqaiIlJSWm0KCoqEjXrl2j79+/08zMDJ09e5YMDQ1JUlKSODk5aXR0lF68eEGnTp2ic+fOUWxsLDk6OlJgYCCNjY0RKysr8fDwUExMDPHx8dGPHz/I2NiYkbE+evSIODk5KSkpif7++28qKSmh7Oxsqq2tpfz8fJKXl6fBwUEKDQ2lmpoaio2Npd7eXtLX16ffv39TaWkpBQUF0YULFygrK4uio6OpqqqKTp48SY2NjSQrK0tbt26ljo4O0tbWJklJSRoYGKD/93JGR48eZXgnR44coZMnT5KSkhJT1OHg4KArV64QHx8fcXFxUUBAALGwsBAvLy+1tLSQgYEB1dXVUVVVFe3Zs4cOHz5MHh4epKioSN7e3nT8+HE6fPgwKSgo0Nq1a5mxXWhoKMOi+Pr1KxERRUVFUXl5OdnZ2dGlS5doenqaWFlZSVRUlIKDg+nbt2/U1dVFt27dosnJSTIyMqKMjAxGlpuXl0f79u2jtWvX0rlz50hTU5Pi4uIoLy+P/P39SVJSkmJjY+nLly+krKxMly5dopqaGtq6dStVV1f/7+WIZcuWISMjAyoqKsjPz0daWhqqqqrw119/4ebNm1BQUEBBQQEePnwIT09PzMzM4Pv37zh69CjCwsLAxsYGQ0NDtLe3M0LLhw8fYv369YxjTVlZGVeuXMHv37/R1NSEvr4+zJkzB/z8/PD19YWOjg7ExMQQHByM+fPno6SkBKampgxEWldXFxEREcjIyMCnT58QExOD0dFR/Pvvv4wk0MPDA8XFxYwxIjw8HEuXLoW/vz8SEhKwYsUKNDY24tevX+Dn54efnx/y8vLQ39+PsLAw5Obmws/PjylJLFmyBCUlJeDi4kJaWhr++usvXLlyBTk5OZidnYW1tTXU1dXx/v17rFq1CtbW1mBjY0NnZyfKysqwadMmBAQEgJ+fH58/f8Zff/2Fjx8/QltbG7KysoxVITw8HOXl5eju7gY/Pz9+/fqFjx8/YmhoCHZ2dsjKysKuXbugqqrKVGirq6vR1dXFQNh7enrQ0tKCe/fuQUtLC9++fYOFhQX8/PxQVFSEiooK3Lt3D2/evIGuri727t2Lqakp3L9/HzIyMkyho7q6GiYmJoiNjWWYvUZGRnj58iXWr1+POXPmQFlZGQ4ODnB1dUVAQAB6e3shLS0NNTU1rF69GnPnzsXQ0BATShcWFmZSHP7+/ti6dSsGBgYQGhqKBw8e4NevX6ipqYGYmBiioqIYS4OFhQVaWlrwzz//YO/evcjJycGHDx9QXl4OLS0txMTEoK+vD5OTk7CyskJmZiZUVVXh5uaGI0eOYNmyZdi3bx+8vLzg6uqKyclJlJaWoqKiAt+/f4elpSXu3buHdevW4dy5c9i3bx/OnDmDpKQkhIWFoaKiAlxcXNDQ0MDixYuhrq6Ojo4OPH/+nOFe7N27F1evXsX79++hp6cHPj4++Pr64uDBg1BSUoKQkBBu377NbMvnz58PRUVFqKurY/78+QDAfAaOjo6QkJBg9PBSUlJoaGiAj48PJCQkcOvWLfz69QtVVVX48eMH7O3tcfToUXz58oWB3+vo6EBSUhKHDx+GgIAAMjMzGfGpmJgYBAUFERAQgLt376K2thYNDQ3o6+tDd3c3ZGRkUFdXh/7+figpKUFYWBgxMTGYO3cu6uvrGb6FlJQU/Pz8oKenh8nJSUxMTDCoSTk5OSxfvhzHjh2Dvr4+NmzYgKioKBQUFODLly/IysqCubk5ZmZm4O3tDQBgY/s/x9P/FzPq5OQEISEhaGhooKCgAFlZWejp6YGKigrU1NQQEhLC4GZ//vyJpUuXIicnBwEBAWhtbcW1a9egra0NLi4uVFVV4fz5/xMyCAgIAAA4Ojqis7MTRkZG2LRpE4yNjWFoaAgXFxecO3cOMTExiIyMRHt7O8rKysDOzs6UjCIiIhAWFgZxcfH/Olb/m73w51U3NDQUDx8+hK2tLdrb26Gqqor58+czbZP4+HiGQj8zM4Ouri4GcHP48GEcOHAAUVFRcHBwgJaWFiwtLZGXl4eUlBSsW7cOS5YsgZubGwQEBMDDwwMJCQmEh4fjwYMH6OjogLe3N37+/IkPHz5AQkICIiIi2LhxIzo7O9HZ2QleXl5cv34dUlJS6Onpgb+/P+zs7ODt7Y1v377B29sblpaWTIg5Li4OxsbG+PDhA1paWrBs2TJ0d3cjIyMDN2/eRFpaGi5evIjJyUlUVVUxeUthYWF8+/YNL1++xODgIExNTXHmzBl8+fIFBw4cQEREBOrq6vDhwwdm/tfR0YH58+djdHQUDg4O8PDwQF9fHxwdHXH58mVUVlZieHgY58+fx8KFC/H8+XOsXr0aBw8eREdHB7S0tHDhwgVwcXGBk5MTubm5UFdXx969e5GSkoL79+/j8+fP0NLSgrOzMzZs2IDCwkIcPHgQTU1NCA0Nhbi4OFJTU+Hp6Ynk5GSsXLkSr169goGBAX7//s3Ml//YamNiYmBvb4/BwUGIiooyAsjo6Gjk5eXh27dvEBERgaysLGZmZmBhYYEFCxYwIsCenh5s3boVcXFxaGxsBCsrK7y8vLB7926mHfjnFba8vBxr164FHx8fqqurISQkBDExMeTk5ICPjw+vX79GcnIyBgYGEBUVhbdv32LLli2MJTo+Ph6qqqoYGhrC+vXrYWpqiq1btyIyMpIpjrx69Qqenp749OkTxsbGYGVlBT8/PxgaGmL58uW4f/8+/v77b/Dx8eHAgQOYmJgAEcHa2hqVlZWIj4/HtWvXoKioCDk5Ofz+/RteXl44evQoFi5ciJSUFCYnOjs7i+npaQYCNTU1hX/++Qdfv36FhIQETExMsGXLFgQFBcHAwAB2dnbIyclBTEwMnj59Cn19fTg5OeGff/6Bmpoabty4ga6uLkxNTWHdunUYGxtDREQEtLS0sHfvXnR2dqKlpYWBdjs6OsLMzAyrV6+Gj48PPn78yDSutm7dCklJSURERKC0tJQBlBsYGODmzZuIjIzEly9fsH//fqxYsQJVVVVwd3eHp6cnnj17hoKCAly5coXhzQKAoaEhWltbERMTg6SkJOzevRuvX7/G6OgoxMXFERcXh66uLqY5WFFRgQ8fPqCoqAiysrJYvXo1lixZwsxN37x5gxUrVkBRURHu7u7YvXs3PD09GUZ1cHAwDAwMsGTJEhQWFmL//v3g4OBAR0cH/Pz8wMbGhjdv3kBMTAzv37+HmZkZkpOTkZKSwkTvuru7wcbGBl1dXYSEhMDMzAwVFRXQ0dHB0qVLISUlhdu3b0NWVpYZ0cXFxTEW8OfPn8PX1xfx8fFYu3YtFBQU8PbtW3z69An29vZMDPB/OnQfPHiAZcuWITExEWJiYpCTkwMAHDx4kNHNODs749mzZwCA48ePQ1lZGTMzM2hra0NfXx/U1NQgLCwMUVFRFBQUYHBwEKWlpaivr/+/srMeHh4oKyuDvr4+UlJS8OHDB7x//57xhfn5+eHLly9Mzba5uRm8vLxIS0tDfn4+2tra0N3djaNHjyIqKgqXL1+GiIgI/vnnH0hJSSEpKQkdHR0wMjKCnZ0dpKSkICAggMbGRixYsACPHz+Gk5MTeHh4kJWVheXLl+P8+fMYGxtDT08PGhsbkZSUBCcnJ2hqasLZ2Rnr1q2DsbEx+Pj4YGFhgfb2digpKUFKSoqhF4mJiTH2BW1tbUxNTaGhoQGnT5/G4OAgc2P+9u0bQkNDIS8vj7lz58LOzo4hXaWlpcHT0xNPnjxBbm4u5syZg8HBQfz48QOhoaGwtbXF8ePHIS4ujt+/f8PZ2RmnTp2Cjo4O3N3dkZaWhtOnT4OTkxOurq54+fIl5OTk8PTpU+jp6TGHSFJSEjIyMuDp6QkLCwukp6fj3LlzyM/Ph4mJCVJTUzE6Oop58+bh3r17SEhIwKdPn9DZ2YmcnBycOXMGu3fvxpo1azAwMICBgQE0NjZCWloaIiIijBtr7dq1cHBwQHt7O4D/Q+r/+PEjHBwcEBAQgEOHDmHfvn0wNjaGr68v1NTUmLJLREQEsrOzMTw8jNbWVrCxsaGhoQENDQ3g5+dHUVERMjMz8fXrVwQGBuLFixcgIigrK0NBQQGenp6YmprC5cuXmf+/t7c3WFlZ8fv3b/T29uLDhw/w8/MDETEliqqqKtTV1YGbmxs7duxgXGtNTU3Yu3cvRkZGsG/fPmhra6O/vx+qqqpgZWWFlZUVEhISYGJigi9fviA0NBSDg4M4ceIETpw4wdRQh4aGkJaWhry8PBQUFMDZ2Rk+Pj6IiIjAokWLEBUVhX379iE1NRU8PDxISEjAggULEBAQAC0tLTx//hwPHz5EYGAgZmdnMW/ePKirqzNviLt374aIiAi+fv0KBwcHyMnJMQrzjx8/wtzcHFxcXPj48SNKS0tx+/ZtBAcHo7KyEh0dHfj69Sv27t2L5uZmlJaWIikpCa6urowBwsTEBCEhIWhpacH79++hoqKCFy9ewMbGBtHR0cjKykJgYCAaGhrg4uKCzZs3o6GhARkZGUhOTkZNTQ1WrlwJMzMzWFpaQkpKCra2thgZGQEfHx/k5eUxMTEBFRUVuLm5ISoqCjY2NsxyfMOGDWBjYwMvLy/OnDmD5uZmcHNz4/HjxxAWFsbOnTvx4MEDqKqq4vTp0zhx4gSSk5Nhbm6OwMBAPH/+HE5OTgyN7syZM3Bzc8OOHTtARFi1ahXi4uLQ3NyMY8eOwc/PD3V1dWBhYcH4+DiICKKiotiyZQvc3Nz+89D9z/FCR0cH5OXlmSrfgwcP0NPTg8rKSoyPj0NbWxu/fv2CsLAwXrx4AWdnZ3h5eUFXVxfx8fEoLS3F0NAQTExMwMnJicLCQvT29oKVlRVxcXE4dOgQIiIioKSkhLa2Nnz48AHp6elMe6ynpwf379/H169f4ezsDCUlJSgoKCAqKgq+vr5oaGjA27dvkZycjKmpKQgKCqKtrQ3r1q1jxJl5eXlwdXUFLy8vOjo6UFdXh2fPnkFdXR0WFhZ49OgRTExMmNfJY8eOgY2NDSkpKVi7di0aGxuZqp+MjAxKSkoYS4W6ujq4ublhbW2N3bt3Q0BAAB4eHujq6kJCQgIsLCywceNGsLGxQV1dHUpKSszTWkZGBgoKCpg7dy4jDhwbG8P169chJCQEIyMjjI2NQUVFBaWlpeDk5MS7d+8wd+5cREdH4969e9i8eTPu3LmDOXPmYHZ2FmFhYdi7dy8SEhLg4eGB1atXIzMzEwkJCVBVVYW1tTWePXuGGzduQFtbG2NjY7Czs8ObN2+wY8cORn+ura2NJ0+eICEhAfr6+jA1NYWXlxfmzJnD1FHHxsYQHR2N1atXQ0NDA4sWLWLwdzo6OggKCsLChQsRFhYGAMjNzWWqnceOHcPExAT6+/vBwsLCPIi+ffvGLFyfPHmCVatWwcHBAebm5pCQkEBKSgosLS2hqKgIdnZ2yMjIgI+PDxISEti7dy/ExMTg7e3NjI48PDzAzs4OOTk5sLOzw97eHg8ePAALCwtqamrg5+cHFxcXBAUFQUJCAvfu3UNMTAyUlZWxY8cO6OjoIDo6GleuXGHKMr29vYyY1NTUFA4ODoiNjUVxcTHWrVuH7u5ubN26lVm4yMjIIDIyEkuWLEFISAji4uJw5MgR/Pr1C0SE/Px8SEpKwsLCAnl5eejp6YGZmRnExMQwf/585gFx+fJlfP/+HYcPH0ZlZSXk5ORQUlKC2dlZyMvLIyAggPks/zjjVFRUYG9vDzY2NpSVlcHY2BhOTk7YtGkTsyCtra1FR0cHli9fDm1tbWhoaKCsrAzR0dHg5OTE5cuX0dLSghcvXmBgYADS0tJwcXGBjY0NYmNjcezYMWhra6O+vh7S0tIwNjbG8+fP8ePHD1hYWGB2dhZPnjxBfX091qxZg0OHDqGmpgYRERGIjo6Gubk5Hj16BG5ubvz111/o7+9HW1sbamtr8eHDB2hoaEBOTg6bNm2Cubk5mpqaoKysjKNHjzLJn+PHj6Ovrw8TExPM29vv378hJCSE4eFhcHFxQUlJCXFxcUzN/PXr1+jv78eSJUugo6ODjIwMAEBBQQFjvKiqqoKsrCxWrVqFw4cPo6ysDMLCwtDS0oK8vDxmZ2dx6dIl6Ovr4/Pnz+js7ERWVhYkJCT+89D9z/RCdHQ0ycrKQl5eHuHh4TA1NUV9fT3OnDmDJUuWIDg4GIWFhcjPz8fdu3eRkJCA6elp9Pf3o6enB4aGhpg7dy7Cw8OxdetWHD9+HEZGRujo6GAYnbm5ueDl5cXLly+xe/duxm8lICAAAwMDWFhY4J9//kFISAjWrl3L1Bz/HISioqIIDg6GtbU1WltboaCggJs3b+LSpUsoKChAfX09bt++DV9fX9jb20NSUhIVFRVoaWmBgYEBcnNzkZ+fj6mpKYSGhkJPTw86OjrQ19eHkJAQ5s+fD2lpaSgrK2NwcBAhISHo6+vDmzdvsH37dvDz84Obm5vhRyxYsABHjhxBRkYGTE1NwcHBgebmZnh4eODatWu4efMmFi1ahAULFqC2tpYZfbi7u2NwcBCrV6+GpKQkIiMjsX37dmRlZWHz5s1ISUlBe3s7LC0tsWTJEkhISCAyMpLhGVhaWuLZs2ewtbVFbW0tlJWVERMTg9+/f2GZZY4AACAASURBVKO5uRmSkpKMDklXVxerVq1CamoqM6cWERHB9evXISsry0B6duzYAS4uLmRmZuLVq1f4+fMndu/eDSUlJejr60NfXx+GhoawsLBAUVERuLi4EBYWhhUrVjBNwsbGRsYe/MdIKy0tjc7OTnz+/Bn9/f3Izs6GoaEhnj59CldXVwgJCcHd3R07d+7E5OQkOjo60NDQgDlz5mB6ehpNTU2Ii4uDm5sbWFlZYWJigm3btsHU1BSqqqp48+YNqqqqwMrKCnV1dczOzuLZs2e4fPky6urqkJKSgp07dyI1NRXz5s2Dm5sb5OXl0djYiMjISKxZs4ZR9Zw+fRpGRkY4cuQIZGRkoKSkhOHhYRw6dAhjY2M4e/YsTp48CX5+fnz8+BFEhKysLGhqauLs2bNoaGiAuro6ysrKcPHiRfj7+4OHhwf29vaoqalBXV0dZGRkEBoaCm1tbTx9+hReXl7Q0dHBxMQEysvL0dPTg8TERBQWFuLBgwdQUFDAoUOH8PjxY3z58gV+fn4IDw9Ha2srU2H//Pkz6uvrYWFhgQcPHsDBwQHnzp0DJycnrl69ig8fPoCXlxdfvnzB5OQkJCQkYG1tDU5OTgQFBUFGRgaSkpL49u0bHj58CDk5OSQlJaG3txfj4+M4f/48w65NSkpCfn4+ZmdnwcPDgxcvXqCurg4A8P37d4iLi+PJkyewt7dHYGAgHj16hI6ODigpKaGxsRHh4eFYs2YNHB0d8ffff+POnTvYs2cPVFVVkZiYCGtrayQkJEBeXh58fHyQkpLC3Llz4eLigqdPn8LW1haRkZFwdHSEoaEhUlNT4e/vDx8fHyxZsgQsLCwoKCjAypUrsWDBAigpKWHJkiUgImhpaaGmpga9vb3o7+9nZthlZWUoLy8HLy8vE7P8A/ji4+PD4sWLsXnzZggLC8PGxgZ9fX3o7e3F3bt3cebMGbCzs/9vPN3Ozk5oa2tDXl4ezc3NYGVlxa9fvxAbG4vt27ejv78f8vLysLOzg7m5OVxcXDA4OMj4j0xNTRlKkqurK6ysrMDKyorIyEgoKCiguLgYRkZGWLp0KXp6ehgA96tXr7B3716wsLBgdnYWAgICyMnJQUZGBpYtWwZLS0ucPXsWsrKyjOPswYMHePToEWxtbcHFxYXbt2+jr68P4eHhsLKyAgcHB8LCwsDOzo7IyEi8e/cOAgICuHTpEr58+YLp6WkEBgbi2rVr4OTkZCI88vLy6OjogKGhIZKSkpCSkoLu7m7o6Ohg4cKFMDIywvDwMJ49e8aIIv9Ad2RkZHDhwgW0trbC3d0dd+7cgaOjI2JjY1FWVoaMjAzs2LEDk5OTTNzIy8sLzc3N+PHjB5YtW4aJiQl4eHjg48eP+P37N+bMmYP79+/j5cuXsLOzw8jICFpbW1FeXg4lJSVs3rwZBQUFuH//PkxNTbF//36YmJigvr4e+/btAxHB1tYWmZmZ4ODgwJ07d7B3716YmJhgfHwcioqKGB8fh7CwMLKzs5Gfn4/CwkJoa2tDSUkJ7u7uYGNjw+bNm6GhoYHExERISEjg4MGDWLhwIT59+oSqqioICQnh5cuX8Pb2Rk1NDZ49ewYhISHk5eUxbqri4mIoKirCx8cHfn5+sLKygr6+PuLj4/H161d4enoiKysLjx8/hp+fH1pbW8HFxQUeHh4sX74cBQUFDKf29OnTOHDgALKzs0FEOHr0KMNDHRsbg66uLrq7u3H69Gn4+fkhIiIClpaWOHPmDOzs7HDlyhWkpKQwmdOOjg4cP34c3NzcSEtLw/79+8HCwoK4uDh8/fqVsVmbmJggPT0dvb296O3txerVqzE1NQVpaWmYmZkxItOIiAioqqpCTEwMx44dQ2VlJWxsbJjvMigoCA8ePMD09DRevXqFpqYmvHv3Djw8PMzhIyoqitTUVISFhaGvrw/p6eloaWlhqHP6+vro6+vD06dPISwsDGNjY3h6emLRokV4+/YtFi1axPBvOTk5ER8fDz09PTx79gyJiYlgYWEBHx8fhoaG4OLiAlFRUZw+fRpv374FBwcHvLy88O7dO7CysqK1tRVmZmb4/fs3JiYmMDs7Czk5OWRnZ2NkZAS/fv1Ceno6du3ahdTUVLx//x6Dg4NwcnKCs7MzRkZGmB0QBwcHCgsLISoqikuXLuHYsWPQ09NjYp3nzp3DlStXsGvXLgQGBkJOTg4VFRXQ09NDe3s7DAwMoKuri4SEBAQEBMDGxgadnZ2QlZVllqxGRka4evUqbt26BXl5eUbCqqqqiqSkJCb+Gh8fj4iICJw+fRrs7OzQ0NAAPz8/rK2tMTo6Cjs7O1hYWOD69evQ0tKCpqYmsz+xtLSEra0tfv78+Z833f88dOXl5TEwMABLS0sG5FtTUwMXFxfIy8vDxsYGv379wpkzZzAzM4O0tDQmK6qmpobx8XEGfPEnaL9gwQIGFzkxMQF1dXXY29ujs7MTmpqaaGlpwa1bt3DhwgUcPHgQTk5OSEtLQ1FREd6+fYuFCxciMDAQERERMDIygqWlJT59+oSEhASEh4cjJCSEMYTa2tpi6dKl4ODgYMSZHBwcGB8fBw8PD2JjYxlSWWVlJfj4+LB06VKws7Pjy5cvcHd3R2RkJBM+/8NN4OHhwdDQEDM3TU1NxY4dO8DGxob58+fD3NwcP3/+hKysLM6fPw8rKyvo6uri58+f+PTpEyYmJlBdXY2+vj5ER0ejt7cXnZ2dTG5VUVERz549w5EjR1BdXQ1BQUEsWbIEo6OjqK+vh6OjI+Tk5KClpYUnT57AwMAAP378QFNTE4aGhuDu7g5JSUno6OiAk5MTe/bsgZ6eHgwMDPDvv/9CREQERUVFOHnyJB49egQXFxekp6dj/fr1uH37Nrq6uqCtrY3Ozk44ODhg2bJl8PDwYNIif9IP/Pz8yMjIgLi4OIaHhxEXF8eQ03p6elBXVwdvb2+kpKTAwsIC+/fvh5+fH5ycnPDz50+YmJigqKgIDx8+RE1NDbZt24YjR46gr68PU1NTOHXqFAMvOXLkCIqKivD06VMcP34ctbW16O/vR3V1NVauXIm+vj4GfvLPP/+gqKgInJycCA4OZubzK1euhKurK8TExNDX18eQ3vbs2QNvb2/MnTuXgWIrKCigvb0dJSUlsLGxgZubG8bHx5GZmYmmpib09PTA19cXMjIyjEGYm5sbw8PDCAoKQltbGywtLREaGorLly8jNTUVQkJCkJWVhY+PDywsLBAWFoaYmBhwcHDg1KlTcHR0xJo1a8DDw4MNGzaAlZUVzs7OWLx4MURFRXH48GF8/vwZ27dvx8DAAPr7+5lgf0FBAZSVlWFsbIz4+HhmCcTNzQ1tbW18//4dW7ZsQVVVFZ4+fYrbt29jZmYGu3btAj8/Pzw9PdHV1YU1a9Ywt+k/y1Z7e3u8fv0aK1asgIODAwwNDeHp6YnW1lbMzs4iNjYW6enpqKioYPK2AgICDPns58+f0NDQwP79++Hi4gIfHx9MT0/j2LFj0NHRga6uLsTFxeHn54ekpCTmIWJlZYWWlhZs3rwZ9vb2zOjg9evXaGpqwvnz55GTk4ORkRHMzs5icHAQqqqq2Lt3L7PAvn37Nuzt7fH161cICQmBnZ0d+/btQ1NTE2pqaiApKYnbt2/jr7/+AvB/cLYjIyNwcHDAp0+fICcnh97eXri5uTEoUB0dHXh4eGDOnDmQlZVlyIhtbW3o6urCyMjIfx66/zleCAwMpIqKCmzYsAHOzs6oq6uDrq4ufHx8MD4+jsrKyj9qChw5cgSmpqZgY2NDQUEBjhw5gt27dzPX9fLychw+fBgnTpzAq1evMD09jf379zPB6ri4OKbo8O7dO9TV1TG4RR8fHwwMDEBLSwvFxcXQ0tJCSkoK81oVEhKC4OBgqKmpobGxER0dHeDn50dISAikpaXR1NTEBKWFhITQ2tqK4uJi7NmzB7Ozszhx4gSkpKTQ19eHRYsW4fnz55ienoasrCwSEhJw584dlJeXw8LCAkSEFStWQF5eHocOHcKlS5dw+PBhhv7FxsaGX79+4efPn/j9+zdSU1MxODgIBQUFfP78mVFnl5SUoL6+HsPDw/jw4QN8fHxw5swZXLx4ES9evMDPnz9x/fp1dHV14c2bN1i0aBHk5OTQ3d2N+/fvo7i4GGxsbMjKysL+/fvx+fNnjI2NQUpKCkeOHIGzszPi4+OxaNEisLCwICAgAOHh4ZiamoKamhq2b9+OoKAgzMzMwNHREffv38edO3cQGRmJ8fFxmJubM7daLy8vhISEQEREBBUVFVizZg3Ky8sZU3FoaCgUFBQQHx+PuXPnYnh4GC0tLeDm5gY3Nzc+fPiAT58+YcGCBYzuhouLCx0dHSgtLcXNmzdRVlaGz58/4/bt23B0dAQHBweTjli8eDE6Ozuxc+dO/Pz5E21tbZiZmUFISAiuXr0KeXl5+Pr6QlxcHFVVVWhtbUVmZiZ27drFHMh/OMq7du2CgoICuLm5sXLlShQXF4OLiwtJSUlYuXIlVFRUICgoyLSwduzYgaKiIoiIiMDLywtLly7FiRMnwMLCgp07d0JVVRXbt2+HpqYmvLy88Pr1a7CxsUFNTQ0CAgLo7e3F9+/fERQUBFdXVxQWFsLW1hbnzp3DvXv3MDg4iHv37iEyMhLZ2dmIi4vD/fv3mSXTyMgI+Pn54eXlBRMTE6xduxZycnLMW5iCggI2btyI3Nxc9PX1gZ2dnWlcqaqqMuCnP8vGP2aQkJAQ6OnpQUFBAby8vNi8eTOqqqqwZcsWdHZ2IiwsDNnZ2bhy5Qrc3Nxw/fp1HDhwAHl5eczfuWjRIrx8+RJDQ0MoLCxESkoKHB0dGaPu33//jYsXL8LY2BibNm2CpKQkGhoasHLlSkxOTuLOnTuwtLTE0NAQREVFISwsDF5eXnh5eaG4uBgbNmxAfHw83r59i5s3bzILy4CAAIyPjzPm4tnZWQQFBcHGxgZiYmIoKSlBV1cXrK2tYW5uDhUVFZSVleHEiROQk5MDBwcHtm/fjnnz5kFSUpI5Y2ZnZ3HlyhUsWLAA69atw48fP6Curo6SkhLMzMwwJnQAePHiBYSFheHt7Q1BQUEUFhbi0aNHICJcvnwZPj4+/7/jhf9cpP2ZYbCyskJLSwtFRUXw9/eHpaUlJCQkoKmpieXLlzO66j/DbE9PT2hoaMDNzQ0dHR3MUNvCwoJx2z99+hRKSkrg4eFhvnhhYWGkpqYyehtLS0v8+++/KCoqwtGjR6GjowNubm6sW7cO8vLy8PPzg7GxMa5fv47U1FSsWrUK8vLyOHv2LGxtbREREcEQrNavX4+CggIUFRUxqD1paWlUVlYiOTkZ//77L3bs2AFpaWl8//6deY0XFRWFoqIiuLm5wc/PD1tbW/j4+EBdXR1XrlyBtbU1eHl58eLFC0hISKC7uxsCAgJ4+fIlbGxsmFGFiYkJQ1iytbVFR0cHXr16hSNHjmDhwoXg5+fHwMAAjI2NkZ2djczMTFhZWUFNTQ2zs7MoKSmBk5MTfvz4gZaWFlhYWMDHxwfOzs7Ys2cPrl27xjR0/oC0lZWVoa+vj127djE68nPnzuHq1asAAF5eXsTGxmJ8fBxSUlKIj4/H1NQUBAQE8OXLF2hqakJAQAB1dXW4d+8e0tLSEBoaCjs7OyxcuBAyMjKQk5PD+vXrGc1JXFwc7OzsYGNjg5ycHDg5OcHDw4OZo0dEROD79++YmZmBlZUVJicnMTU1hVWrVjH6pj9tw/b2dmhpaaGlpQX+/v4YHh5GR0cHPn/+zBxCf245Tk5OUFFRwcDAAK5fv85wWK2trdHX14empiYcPnwY379/x8WLFxEQEABdXV1ERkZCR0cHUVFRSExMxOzsLPz8/GBra8s03PLy8jA4OAhvb2+kpaXB2NgYLCwsUFBQwMDAANTU1FBaWgohISFER0dDRUUFBw8eZA5uNTU1rF27Fs7OzhgaGmKywvfv30djYyNaWlqgoaEBY2Nj3LhxA8ePH0dHRwfmzZsHBQUFbN++Hb6+vnB0dISBgQFmZmbw+vVrZGdnw8PDA83NzYx6/MWLF3jy5AmTSDh+/Djy8vLg4uICaWlp6OvrY2JiAhUVFZCUlAQRwc7ODpaWluDl5WWWxBMTE8jPz8eWLVvQ2NgIbm5u9PX14fz584ws4MKFCxAVFYWtrS327dsHHR0dbNiwAXx8fODj40NnZyesrKwwMjKC6elpdHR0wN3dHdu3b8edO3eYN4fBwUF8/PgRGzduhLi4OF69eoW3b99CVlYWBw8eRH9/PzO7j4iIQEBAAB48eIAnT57Azs4OJ0+ehK6uLrZu3Yq7d+/i4cOHOHz4MDZu3IjTp0/j6NGjaG9vx+DgIPLy8rB3716YmZmho6ODQQnEx8djzpw5KC8vBzc3N4qLi9Hc3Ax5eXlGHWZkZISenh4ICQnB09MTHBwccHR0hKurK/766y/morVz587//aYbGhpKmpqamDt3LuMq6+joYAoM+fn5yM3Nxfv376GoqAgZGRm0tbUhJiYGW7ZsgYODA27cuIGYmBh0dXVhz549qK6uhrOzMx4/fgxvb288ffoURIT29nacOHEC3t7esLGxASsrK9LT0+Hr68tU+tLT07Fu3TpwcHBAQkICg4ODkJeXR2lpKY4ePYqNGzfi5s2bmJycxIkTJxAUFIStW7dCSkoKlZWV2LJlC/bs2QMODg7Mnz8fb968wYsXL8DNzY05c+bA2NgYnz9/hpCQEAYGBpin6qNHjzA1NcVsmT9+/IiMjAz8+PGD6da/ffsWHz9+xPbt2zE+Po6hoSFoaGjg9OnTjMHByckJGzZswNKlS5m51szMDDQ1NZkb+Lx581BbW8tkkHV0dJgll7y8PDZv3ozU1FSIiYnh7NmzjDASAEO7P336NNjY2JCcnIyioiLMzs5CTEwMnZ2dKC4uxosXL+Dj4wNeXl4UFRWBiLBw4UI8evSIWXAdPXoUt27dgrm5OcMN+AOt/zMDy87OhoGBAQz+H87OMyzn9v/jb+0QoShtRWlbDa0rKZEobVG4JSlklW6UrJRkJO2M0BYNFQ2kRalItFQqLaUhTX3+D/6H78P7wc/DjupyHH2v8zrPz/l+v176+qipqcE///wDExMT3LlzB6mpqdDU1ERGRgZSUlKQnJyM+/fvY8mSJVBRUcHSpUsREBAAdXV1qKurIy8vD+/evYOUlBT4+fmZMVVPTw9zobNlyxbcunULtbW1WLZsGb5//46PHz+Ci4sLsbGxuHLlCjw8PLBy5Ups2rQJaWlpOHLkCNrb2zE0NARjY2OcOXMG/Pz8GB4eRlhYGAwMDPD792+oqqqir68PV69eBQB4enrCy8sLRUVF6O3tRW1tLRYtWgQdHR2UlJTAy8sLJiYm2Lt3L3h5edHY2Ag/Pz+cOnUKEhISkJWVhbKyMhQUFNDV1YUrV66gvr4eq1atwv79+zF37lyoq6szpyRpaWnEx8fj/PnzsLe3R2hoKPz9/aGnp4eFCxeCi4sLExMTCAsLAxcXF+rr67FmzRosWrQIdXV1OHDgALi5uXH58mXMnDkTHBwcjGQ0JycHe/bsQV1dHSQlJSEhIYHFixczO2dNTU1YWFgwp4zm5mZMTU3BwMAADg4OOHz4MG7evAlDQ0MMDw8jKioKwP+zmf+iLF+8eMEshn+5FH9Zwn8dgydPnsTk5CS2b98OCwsLREdHMzvg/v5+WFtbY9u2bfj27RtycnIQEBCA0dFRVFRUgJ+fHxwcHJCQkICqqip+//6N9vZ25lkRFxdHeXk5bG1tmepwX18fWltbMXv2bOTl5cHExAS1tbUoLCxEf38/Vq9ejQsXLmBkZAQyMjI4ffo07O3t8erVK0hISEBdXR3Jycn49esXFixYgOXLlyM0NBTs7OwoLCxEe3s7Ixt1dHQEFxcXkpKS/o4W/7eLtPHxcWhra4ONjQ1HjhxBeXk5Hjx4wABt/kIfvnz5gq1bt8Lc3Bxr1qyBv78/SkpKoK6ujrNnz8LV1RVcXFwICwtjwNr79u3D1atXce3aNRgZGeHPnz/48eMHZGRkICgoiJSUFJiammJiYgIbN27Ex48f8ezZM3z8+BHfvn3D7NmzMTAwACEhIUxPTyMlJQV9fX04ceIEFixYgNbWVoiLi0NQUBA6Ojrw9/eHs7Mzbty4AWNjY5SWliIgIACLFy8GAJw6dQocHBwYGBiArq4uent7ERcXh7/pjSdPnjBz0lu3biE9PR2amprQ1NREV1cXdHR0mIC9kZERJicn4eTkhLa2NgYQcuHCBQawExUVhYGBAZw9exYBAQH4+fMnenp6YG5ujtzcXCaPeejQIfT19SEsLAx+fn6Ij49HUFAQM4OaM2cO4uLiEBwcjIyMDMjJySE0NBTq6upobGxkmKdbtmyBuLg4MjIysHz5cvT09MDQ0BA7duyAkZERxsbGsG/fPlRWVuLw4cPw9PSEu7s7GhsbkZSUhPPnz0NVVRWrVq3C0NAQ86B+//4djx8/BgcHB8M6trS0ZPgRK1asQENDAzZu3Ii9e/diYGAAioqKYLFYyMnJQWVlJS5duoTBwUEEBATAxMQE2dnZmJqawrZt22BjY4MbN25AXFwcmZmZaG9vh6+vL9jZ2RlDwt8ZbU9PDzZs2IDh4WHw8PBg3759+PPnDy5evAheXl6cPXsWmzdvhqGhIUxNTeHi4oLq6mqGYfs3M75z507k5uaCjY0NlZWVSE1Nha2tLRISElBeXg59fX0kJSVBUVGRWSA2bdqE2tpaGBoaory8HAEBASgrK4OHhweam5uRkpKC2NhYlJWV4f79+8wHv7a2NkxMTJCTk4OBgQF4eHjA0dER586dg4GBAeLj4yEkJMQkRUJDQ/HPP//g2rVrSE5ORnt7O0xNTfH+/XuIiorCx8cHIyMj0NPTg7m5OcLDw7FixQoMDg7C398fHh4e6OzshLCwMMrKytDQ0ICamhq4u7ujrKwMjx8/xvbt2/H161cICAjg9OnTEBISAhcXF/N8cXNzY3JyEtu2bcOrV6/g5+fHpJe2bduG7du3Izk5GcXFxVi6dCn4+flx7do1yMnJoaqqCidOnEBFRQXD6C4pKcHZs2fR2NiIvr4+8PHxwc3NDfn5+cjLy8OePXuYC7O/cccFCxYw+qWEhARmbCcuLo6KigpERESgsLAQW7duxblz59Da2oqJiQnk5+djfHwcEhISePDgAR49eoRHjx4hLy8PycnJqKyshLGxMXx9fXH9+nXmTmr27NmMiXvt2rVoaGjA8PAwJicncfnyZdy4cQO8vLzQ1NREUVHRf+50/3PRlZCQYPxT4+PjmDNnDkxMTCAjI4P09HSUlZVBWFgYP3/+RGZmJi5evIgvX77g+fPnGB4expEjRzBv3jzo6emhs7MTY2NjEBQUhIKCAo4cOcKUJJKTk+Hm5oba2lrU19cjNzcXubm5iI+PR29vLz5+/AgNDQ0ICAhAUVERDx8+RG9vL379+gUWiwVnZ2eoq6tj8+bNWLx4MTIyMjA8PAxra2s8e/YM1tbWKC8vx8TEBGRkZJCQkIDR0VG0tbXh8ePHaGpqwubNm7FgwQI8fPgQubm5CA8PR3FxMQYHB5Gamgp/f38EBARgenoaDx48YCq0oaGh+PDhA1asWIFTp04hPDwc1tbW+PLlC5Pr+/79O6ysrCAtLQ1fX1/cu3cPkpKSMDAwQFNTE3R1deHv74/169dj6dKlGBkZweHDh/H7928m2nP69GnmRNDT0wN+fn6oq6vD2dkZy5YtY+hSfw3Gly9fRlVVFbZt2wZzc3OIiIgwC8TY2BgKCwvh6ekJT09PPHz4EA8fPoSBgQGqq6sxOTkJDQ0NnDlzBtnZ2QxE+u7du+jt7QWLxWLiXDNmzMCmTZsYShYnJydWrVoFFxcXXLp0CcuWLcPbt2/h7++PQ4cOQV5eHl++fMGePXsgKSmJiIgIODk54dSpU/Dz82MynGFhYeDj44OdnR1zzMvLy8O3b99w7tw5eHh4ICUlBT9//oSenh7q6+vBxsaGqakpvHnzBm/evMH8+fOxd+9eTExMQE1NDc+fP4esrCyjD5+amoKysjKCg4Ohrq6OsLAwnDx5Ehs2bICrqytCQ0Oxd+9ebNy4ETNnzkR4eDgiIyMBALW1tVizZg2uXbsGLS0tCAkJQVtbG87Ozrh//z4z34yOjkZMTAxcXFzAwcGByMhILF++nNm9amtrIyIiAm/fvoW2tjZGRkaYfOvU1BQzP2VnZ4eOjg4SEhKgoKAAXl5erF27Fl+/fkV0dDS+fPkCIsLg4CCuXbsGPj4+CAsLw9LSEu/evWPuCiQkJJgEw9GjR3H58mVs27YNRISqqirU19fD3Nwco6Oj6O3tZeJ1O3fuRGZmJlatWoXq6mp4e3vj6dOnyMzMZDY1UlJSKC4uxqxZs3Du3DlwcHAgPz8fkZGRmJqawokTJyAiIoKRkRGsX78e586dw4YNG0BEOHr0KNTU1GBvb4+lS5di0aJF4OXlhb6+Ptzd3REaGoqysjIUFRVBTEwMk5OTWL58OcbHx2Fvbw8xMTFYW1tDRkYGX758gaCgIJ4+fYpPnz5h3bp1qKiowPv37zE1NYXt27ejpqYGoaGhMDY2hoODA1RUVBAUFISZM2dicHCQ0UotWrQICxYsYMYdkZGRePv2LQ4ePIiamhrcunULGRkZsLGxgZWVFdP+/K9//znT3bNnD7KysiAkJISrV69iaGgIwcHBcHNzQ2hoKFasWAElJSUoKCjg4MGD6O3txfbt27F582ZYWlqCl5cXt2/fxqxZs2Bubs7sWs+fPw8DAwNMTU2BxWIhLi4OVVVVMDQ0BBcXF758+YL4+Hg4OzszzZjk5GR8/vyZIXIZGRnh1q1b6OrqQnFxMS5evMhEwCIiIrBmzRrcu3cP6urq6zC2nAAAIABJREFUeP36NQAwn1QiIiLQ0tKCnp4ejIyMoKenh+bmZjg4OEBKSgrT09OYnJyEqKgoZGVloaSkhLS0NAQFBUFWVhYFBQUoKCjAhQsXUFFRgby8PPz48QORkZEwNTVFV1cXnj59yqAUExMToaSkBG1tbTQ0NMDe3h5EhK1bt0JTUxPBwcEIDw9HW1sbQwLT0tKCs7MzDh48iLq6OgwNDTE3z+Pj4xAXF0dYWBjy8/Nx9+5dKCsro76+Hjdv3gQPDw/S09Px588fuLq64vTp04iKimKIXtPT00hISMCvX7/g4uLCzPsWLlwIOzs7HDhwAMrKyhAWFoaCggI0NDQwNjaGAwcOYNeuXVi6dCm+fv0KW1tbsLOzo6OjA4GBgVBWVgY3Nzeqq6uhoqICZ2dnWFtbg4ODA7du3cKuXbsQHByMmTNnIioqCo6Ojnjw4AESEhKwZs0alJeXIyoqCmfOnIGsrCxERETg6+sLNTU1rF+/HsHBwVBRUYGxsTF27dqFqKgo5netXLkSycnJ2LBhAy5dugQeHh7MmDEDtra2kJKSYkSf7e3t2LBhA2MnuXnzJoyMjKCuro4VK1bA19cXqqqqGBsbw8jICM6dO4fbt2+DjY0Nq1evRnZ2Nqanp+Hr64vU1FSEhYXB09MTS5YsQUBAAHR1ddHR0YGtW7di165dyMzMRHFxMVMvnTVrFnR0dNDU1IRLly6BiNDR0YHCwkLm/VNTU4PMzEycPn0awsLCmJycRHR0NFasWIGIiAiEhYVBRUUFISEhkJKSgra2Np49e4bQ0FA4OzvjwYMHyM/PR3l5OQIDA2FhYYETJ04wi+7JkyexZMkSzJkzB8nJyeDj44OcnBw2bNiATZs2obKyEo6OjqioqEBBQQHu3buHx48fw93dHRUVFeju7kZkZCSys7Px7ds3jI2NMcWXv3aXAwcOQFtbGxs2bGBIcbq6uoiIiEBiYiKePXsGLi4uvHr1CuPj4/D19UVFRQXc3Nzw6tUrSElJ4fbt28jNzYW5uTnq6uqwbNkyzJ49Gy9fvsTChQthZWWFzs5OlJSUIDg4GDt27MCsWbPAw8MDV1dXDA4OMgmQnp4eKCsro7GxkdkkxMbGorOzE4qKisjPz8fRo0chKiqKNWvWwMvLC3V1dTA1NUVDQwOam5vx9OlTBAUFMZXkjo4OTE9PY9++feDm5oa0tDSGh4ehqqr6n4vuf1LGNm7cSGxsbGRgYEDl5eX0/v17Gh4eps+fP9OnT5/Izs6OfHx86MyZMzQ2NkbKysrEzc1NSUlJZGFhQaqqqrR//36ysLCglpYWamtrIwUFBZqcnCQXFxdav349iYuLk4iICHl6epKWlhbt2LGDSkpKqLKykl6+fEnKyspkbm5OWVlZxMbGRlNTUxQfH0+ysrJkZGREVVVVZGpqShYWFjQ9PU1Hjhyh58+fU29vL128eJF27txJlpaWVFBQQPr6+qSvr0+Kior08OFDOnnyJGlra9Pdu3cpPT2dHj16RF1dXRQfH0/+/v7U0dFBc+fOJX9/f+rr66Pc3FxSVFSkpqYm+vjxIykqKpKbmxutXLmSzMzMyN3dnaytrUlGRobu379PO3bsYOhfBgYGNDIyQvPnz6fdu3fTmTNnaHp6mk6fPk1dXV0kLi5Oc+bMISKi3bt3U0hICM2ZM4dsbW0ZfXRzczMlJiYydDJ/f38SERGhr1+/kpeXF0VERJCdnR19/PiRVFRUKCQkhJYtW0YTExP06dMn2rBhAzU2NpKLiwtVVlZSU1MTlZaWUnFxMR08eJAUFBTI29ubBAUFydDQkDFEDA0NUU9PD6mpqVF6ejpVVlbSnz9/qLCwkJKTk0lQUJDMzc3J19eXcnNzaffu3cTGxkb5+fk0OjrK2DhcXV0pNTWV8vLyqKWlhdzc3Bi4e1paGl27do1iY2MZA8iCBQsY3fePHz8oNzeXXFxcSF1dnWxtbcnKyorRefPx8ZGLiwsZGRnRy5cvGdpYbm4uERH5+PjQ+Pg4ubq60ujoKFVVVVFBQQF9//6drl27Rvb29rR7926KiooiRUVFunHjBr148YLu3r1LLS0t1NfXR6tXr6a0tDTKzMykvr4+qqqqotbWVrp58yZZWFiQs7MzOTk50enTp2n9+vU0Z84cOnPmDElKSlJiYiINDw9TSkoKBQcHM8+Irq4utbW1ka2tLcnJydHTp09JW1ubkpKSKCoqirq7u8nHx4dkZGRIW1ubxMXFSUJCgnh4eCgvL4/6+vpIRESEsbbMmTOHAgMDqb+/n+Tk5Gh8fJwGBweZ/99f48X9+/dJW1ubXrx4QTNnzqT09HS6fPkyqaurk4GBAZ04cYKysrIoODiYeHh4yMPDg+rq6qigoIDOnj1LLBaLbG1t6c+fPwxlbGJighYtWkS+vr5UUlJCGhoaJCIiQqtXr6bBwUFSUVFhYOfFxcUM5SsiIoLGxsbow4cP5OjoSEeOHKHS0lIqKSmhr1+/Um5uLpmbm9Ply5dJUVGRbGxsyNjYmMLDw0lRUZGKioqIxWLRjh07qLq6mlatWkUzZ86k4OBg2r17N2O/0NbWZqwqhYWF9OTJEzp79iwFBAQQFxcXXblyhQQEBCgtLY1iY2OpsrKSIiMjacaMGWRqakpeXl7k5OREdnZ2tHXrVrKzsyMeHh7auXMnaWlp0cWLF+nQoUN/38f/G2XswIEDYLFYuHz5MmxtbZGamopnz55h586dDGQmICAAa9asgaioKMzNzdHd3Q1FRUUcP36cAQ7/hdgkJCQwOuwHDx7A3Nwcf/78wZs3b/D9+3d8+PABnZ2djNX22bNnKC8vx/bt26GoqAh2dnakp6fj+PHjePbsGVRUVLB27VqkpaUhIiICPj4+YLFYTDaUnZ0ds2fPxtGjR3Hnzh2oqKhAWFiY6dZPTk4yyu5Dhw5h586dsLe3x6ZNmxAdHY2Ojg7o6enh6tWr0NTURHFxMZPf+/jxI3p7e5lhPAAMDQ1h3bp1SE5ORlVVFbKysqCmpgYRERFwcHDgwoULmJqawrVr17Blyxb09fVh7ty5cHJyYnrzxcXFTP3VwsICixYtgoCAAHh5eZGXl4fS0lIUFxczAsVHjx4x3qeYmBgMDQ3B2dkZKioq8PPzQ3l5OXR1dWFkZITk5GT8+++/WLFiBXR0dCAnJ4fk5GR4e3sjICAAra2tjMiwsbERV65cwfnz5xEQEICioiIEBASgr68PDx8+RGFhIaSkpFBRUQFdXV2cPHkSFRUVcHd3h6mpKYSEhDA4OIj79++jvb0dRAR+fn7Iy8tDRkYGAgICsLe3Zy5C7OzsYGxszMBZ9PT0MDk5ibNnz0JaWhqKiopoamqCm5sb8vLyMDY2hqGhISQkJEBTUxOzZs1iUiZaWlqIjIxEXV0dfHx8YGNjg/HxcTQ2NoKdnR29vb1ISEjA8ePHkZeXB3d3dxw4cAAHDhyAh4cHk09NTk6GkZERrly5gvb2doiIiGB0dBQAMGPGDKxbtw7R0dEQFxfHnDlzMDIygrt374LFYqGlpQXe3t5QUVFBTk4O4uLimJFGfX092NnZ0draitTUVOY5ZmdnR1paGrZs2QJFRUWUl5fjwoUL+PHjB2bNmgVhYWG0t7ejvr4e3d3dzLw0Pj4eGhoaGBwcBCcnJzo7O1FXV4fDhw8jNDSU8e+NjIygtLQU1dXVEBISQmZmJnJycvDo0SPw8/NDTEwMaWlp8PT0xNGjR3HgwAH4+flhYmICX79+hY2NDRQVFZGVlYXy8nL09PRAWloaEhISOHToELS0tHDnzh3U19fj0qVLOHbsGCYmJtDZ2YmBgQHw8PCgo6OD4S781dH/nYGmpqaiv78fDg4OePr0KQCgq6sLiYmJSE9Px/79+zE6Ogo/Pz+4uroiOzsbL1++xKpVq6Cjo4OZM2dizpw52LRpEwMTHxkZwbdv38DDw4OpqSksXrwY2traaGlpQWlpKdatW4fp6WlwcnIiOTkZQkJCiIuLQ1paGg4cOMCsC25ubggJCYGrqyu6u7shKSkJcXFxcHFxwcDAAPb29oiKioKmpiZ0dHT+952umJgY3b59m3bu3EllZWWUlJREx44dIyKi2bNnU05ODr18+ZI0NDTo5s2b9OHDB7KysiI1NTU6cuQI8fLyUnd3N5WWltKLFy9IXl6e/vnnH1JQUKAvX75QSEgI/fnzh+rq6mjevHmUlpZGvb291NPTQ6qqqrR+/XrKysoibm5umjFjBnFwcJC/vz+9ffuWsrOz6e7duxQSEkIVFRV05swZOn36NJmYmNDjx48pPT2dkpKSKCcnh5ydncnNzY3Wrl3L7AIiIiJo8eLFlJSUREeOHKH09HTavXs3/fnzh4aGhoiIiJubmwIDA6m2tpaamproy5cv9PnzZ9LQ0KDv37/T5OQklZWVUWdnJxkbG9OyZctIQ0ODnj17RlNTU+Tk5ESioqJUWVlJ7u7uJCoqSjIyMmRlZUWNjY1kaWlJ3t7e9OTJE4qJiSFubm6Ki4uj8+fPk7CwMC1atIiIiDlRODo6krGxMQUHB1NFRQX5+PjQzp076dq1a6StrU3d3d1kZ2fH7MYVFBTo8+fPdOTIERoeHiZpaWliZ2enu3fvkrCwMFlaWtKxY8dobGyMPD09af369bRgwQIyMzMjPj4+Gh4eJklJSVqwYAGpqKiQi4sLHTp0iKysrBjVEjs7O6Wnp9P79+9JRUWFuLm56enTp/T69WvS0NCghIQEcnBwYP5OaWlpdOPGDerr66N//vmHPDw8yNTUlDIzM8nQ0JB4eHhIS0uLAJC5uTkNDw9TUVERtba2ko2NDe3fv59ERETIzc2NPnz4QKtWraLVq1fTt2/fqLq6mnbs2EFaWlo0f/58SkxMpEuXLpGIiAhdv36ddu/eTeXl5bR69WqKjY2lJUuWkJycHCUnJ5OHhwepqqrS58+f6fz58xQYGEgsFosCAwPp0KFD9PPnT8rOzqacnBxisVgkLCxM5ubmJCsrS93d3dTY2Ejfvn2jly9fkoCAAM2bN48cHByIj4+POjo6CAB9/fqVTp48Sebm5vT792+SkZEhGRkZUlZWpkePHpGoqCglJSXR+fPnadeuXfTkyRPi4+OjuLg4Cg4Opo8fP1JhYSG9fv2adu3aRXV1dRQZGUknT56klpYWunnzJrm7u9PGjRtpy5YtJC8vT2xsbCQuLk7z5s0jDQ0NCgwMpObmZlJRUaFdu3bRwYMHqaWlhZYtW0ZPnjwhLy8vevr0KbGxsdHGjRtJX1+fTpw4QTIyMhQUFEQqKiq0evVq6uzspOfPn5O/vz91dXUREdHo6Ch5eHhQYGAgw+OVl5cnFxcXOnXqFBkYGFB8fDxxc3NTZWUl7d69m9LS0oiPj4+kpaVpZGSEFi5cSBs3bqSUlBTi4uKiy5cv0+/fv0lAQIDRb9nb2xMAsrKyInNzc+Ln56fg4GDi4OCg2tpaamhooB07dtCWLVvI1dWVeHh4yM/PjxISEujly5c0b948am5upvDwcAoJCSF5eXlisVgkIyNDe/fupSVLltDNmzcpODiY1NTUqLm5mVavXk2hoaE0PDxMy5YtIxUVFea95uDgQKtXr6aHDx/SwMAAJSYm/u+6nvb2dtLT08OFCxfQ09MDAwMDdHd349atWxgcHGRKBbW1tXj48CFSUlJgY2ODjo4O9PT0gIeHB5WVlWBnZ0d0dDTmz5+PN2/eID09HRISEmhtbUVGRgYiIyPR3t6O8fFx1NfXY/ny5UyvnZ+fH05OTli/fj20tLSgoaGBvLw81NbWoqenB58+fcK9e/dgaGiIdevW4f79+/Dy8kJzczNmz56NqqoqpKamIjs7G4GBgZg5cyZWrFiBwMBAWFpaIjIyEtPT03jz5g0kJCRQX18PBwcHpmnHyckJWVlZGBsbMymGv1nOffv24ezZsxgfH8eKFSuQkZEBKysr/Pvvv0hNTQU/Pz/WrFnD6HAyMjJQVFQEa2trCAgIQEpKCmlpaXjy5Al+//4NdXV1bN26FVxcXHj69CkuXbqETZs2wdnZGUuWLEFFRQVCQ0MRHh4OVVVVbNu2DVFRUfj48SMTmxkeHkZ3dzdmzpyJsrIyJju4efNm7N+/H6tWrUJ6ejq0tLTw+vVrPHjwANzc3AzOMDY2Fnfu3AEHBwd4eHgYjkJCQgKqq6uZosJfndLPnz8RFRWFxsZGxMfH4+jRo0z0aXR0FL9+/UJ/fz/Wr1+P48ePQ1JSEjdu3ICOjg5qamowODiIV69eISQkBNLS0oiJicHIyAg4OTkhJyeHsbExnDhxApGRkQyDNTU1FdLS0jA1NUVaWhpWrVoFfn5+eHt7o6urC9u2bcPRo0exd+9eKCsr4/Pnz4iIiMDhw4fh4uICVVVVxMXFobe3F3Z2dpicnERgYCAmJiZQX1+P9PR0vH//HnJycrCwsEBLSws2b96MBw8ewN/fH5mZmZCUlIStrS3evn0LT09PPHr0CP39/UzvPzs7G4KCgkhNTYWRkREuXryIiYkJcHFxISUlBSkpKWCxWMjOzkZERAS2bNkCZWVlrFq1CjExMRATE0N6ejpu376NgoIC/PjxAywWC9LS0pg/fz6EhITQ39+P6Oho3L9/HxkZGXj79i26u7uxbds2KCoqorKyEkFBQfj48SM0NTURFhaGXbt2YWpqClu2bEF+fj7ev38Pf39/XLlyBWVlZXjz5g0KCgpgYWGBJUuWICYmBgcOHEBwcDBKSkqQn5/P8J//6qPMzMwA/D/UqLW1FTt27GDaZvr6+tDU1MSXL18QERGBqakpTE1NISkpCffu3UNDQwNWrVoFaWlp3LlzB2pqasjNzYWsrCxWr14NGRkZ/P79GxwcHFi0aBEMDQ0hJCQECQkJ5Obm4ujRo7h16xaMjY0ZJZGSkhIaGhrg4uKCkydPIi4uDjt27EBSUhKOHTuG7OxsuLq64sGDB5g7dy5kZWWhoaGBAwcO4NWrV1BSUsLWrVuxadMm9Pb2goODA4mJiVBTU8OXL1+wfPly9Pf34+rVqxAXF8fGjRvx48cPvHnzBocPH0ZeXh5UVVX/t8iYra0t1NXV8enTJ8ybNw+Tk5NMRfPo0aPw8vJihvUZGRkoKSlBW1sb7t+/j8OHD+PevXtYs2YNzMzM0NraysC5/5KRGhoacPXqVXz69IlBvlVUVEBNTQ03b95EV1cXJCUlsX37dri6uqK0tBT79+9HQkICMjMz0dzcjPDwcEhISMDCwgIFBQV4/fo1CgsLkZKSgoaGBnR0dKClpQWfPn1CfHw81q1bx2RhX7x4AS8vLzQ1NaGjowOLFy9GcnIyenp6oKenBzMzM9jY2EBdXR0qKirYu3cvfHx8EBAQgIMHD6K6uhqdnZ3Q1dXF1q1bISoqisWLF0NAQABFRUUMhObly5fYs2cPent7sWDBAggLC+P69euwsLCAtbU1DAwMsHLlSvz8+RPfvn3Dnz9/0NraipqaGgwPD0NWVhZLly6Frq4ufv78CXFxcaZ1IyIigsrKSkRFRYGPjw9Lly6FgIAA6urqmFtqFouF1NRUxMfHIzU1FYaGhpCRkYG3tzecnZ3x9u1bXLlyBbKyshASEsK9e/dQXl4OIyMjxMbGoqurCyYmJmhoaEBdXR0cHByYGmpHRwckJCQgJCSEhoYG2NjYICwsDCwWCyEhIUw908nJCRoaGtizZw98fX3x69cvRtG+YMECHDx4EFu3bkVbWxvS09MxOTkJHx8fCAkJwcHBATw8PBgZGcHr16/h5OQER0dHcHBwYGxsDNHR0fD29sbChQuxZ88enD9/Hjt37kRgYCB+/PgBfX19+Pj44MuXLwDAQNiVlJSYhuPZs2cxNjaGWbNmISIiAvLy8ujq6oK4uDiUlJSgpaWF+Ph4GBoago2NDZ6enrCxsQEvLy9sbGzg4+ODkJAQHDlyBPfu3YOgoCCysrIYPc5fP9rfDHdkZCQWL16Mzs5OlJWVISYmBiIiIszF8d+2nIKCAmJjYxEeHo4dO3bg9u3b4OPjQ1lZGUpKSnDgwAGoqqoiJiYGr169Qk9PD8zMzPDjxw84OjoCAFavXo13795hxowZTDrmx48f2LRpE2JjY7Fnzx5cvnyZGVvU19dDS0sLKioqKC8vx/379+Hr6wsdHR2mpGBlZYWJiQk8e/YM3NzcDDr03Llz2LlzJxMV5OTkxK1btyApKQlJSUnk5ORAVlYWtra22L9/PxYuXIi7d+9CQ0MDQ0NDMDU1xfz58+Hl5YXc3Fy4u7vD0tISDx8+BB8fH+bMmYPTp08zaMYZM2bAwMCAWbC3b9+OyMhIbNiwAZKSkigrK0N6ejo2b96M7u5uiIqKYu3atZCQkMD4+DgGBwdhbW2Nzs5OnDx5EgkJCdi/fz/S0tIQEhICAwMDGBoaQl1dHfr6+nBycsLevXvx7t07iIuL49evX5iamoKlpSWMjIxQU1MDc3Pz/328cOzYMRISEiJDQ0NKTk4mOzs7kpeXJ1dXV6qrq6PKykqSlJSkwsJCMjY2poULF1JLSwtpaGiQmJgYXbt2jS5fvky3b98mGRkZunfvHhUVFZGqqiqZmZlReHg4tbS0kK+vL6mqqtLFixepoaGBzp8/T+fPnychISE6fvw4aWlpUVZWFpmZmdG9e/coJiaGFBQUaOHChXTq1CkqKSmh+/fvU35+Pt24cYMyMzNJUFCQvL29SV1dnezs7OjMmTP0+vVrOn78OOnq6pKXlxcFBQXRz58/KTo6mlJSUig8PJxOnTpF2traVF9fT/X19cTGxkZDQ0PU1dVFN2/eJHNzcxIXF6eCggISFham4eFhcnV1pZaWFnry5AmpqqrSu3fvSENDg7y9vamqqorKysqIk5OTKisrqbm5mbKyssjBwYFERUXpyZMndOTIEXr58iVJSkqSrq4umZiYkLKyMn38+JEMDQ3JxsaG9PT0KCUlhYyNjWnHjh10/vx5Cg0NpeTkZOrv76c/f/6Qubk5dXR0MEeq6upq8vf3J29vb1q8eDFFRESQsLAwxcXFEQ8PDwkLC5OysjINDw+Tg4MDrVy5ksTExGjmzJnk4eFBREQFBQXk4ODA/ExYWBg5OjpSWloaGRsb09WrV4mbm5tyc3NpamqKZs+eTfn5+WRsbEyXL1+mvr4+GhoaosWLF9OTJ0+otLSUZsyYQaGhoXTy5EmKjY0lNjY2srCwoGfPntHo6ChlZ2dTUVERPX/+nMrLy6m1tZVMTU2puLiY0T99+PCBYmNj6cOHD9TS0kIsFou0tbWpuLiYhISEyMXFhebNm0f6+voUHx9PnZ2dFBgYSO7u7mRra0vj4+PU1tZG2traVFFRQWVlZRQSEkKqqqrk5OREX758IVVVVfr9+zedOnWK1NTUKC0tjUZHR2lgYICuXLlCP378oLKyMnr//j21tbXRggULaMaMGZSVlUXq6uq0ZMkSEhUVJUtLS/r48SNVV1eTgYEB/bVsDw8P065du+jx48fU3NxMGzZsIGlpacrMzKTe3l5ycXEhBwcHev78Oenr69P09DQdPHiQLl68SHl5eWRra0v19fX0+/dvam5upi1btpCwsDAFBweTvr4+ffjwgcLCwkhGRoZycnLo58+fNGPGDCosLKTh4WHS19cnXl5ekpOTIxcXF/r9+zddvnyZiIix2wYGBlJYWBgJCwuTrq4uNTQ0kKqqKu3atYvCwsJIXV2d+vv7qaioiDo7O6mhoYFMTU1p8+bNZGNjQ3fu3CE7Ozuqrq6mrq4uGhkZobi4OOru7qagoCAaHR0lFRUV6uzspKamJmpqaqLU1FQqLCwkJycnGhsbI0FBQWpra6PMzEzS1tYmNzc36urqIisrK+Lg4KAPHz7QkSNHqLCwkA4fPkycnJyMxXpkZIQmJyeptLSUhoeHKSEhgb5+/Ura2to0MjJCL168IBaLRW1tbZSVlUW6urrEz89P7u7u5OLiQnx8fJSYmEgLFiygu3fvEhcXF8nIyNDx48epq6uLRERE6Pv372RjY0OioqIUHBxMoqKi/zle+M+dbmZmJkpKShAfH89APv62WTZt2oRz587h7t276O7uxsDAADQ1NXHixAk0NjYiIiKCoeoXFRVhcnISly5dAj8/P96/fw8pKSmmcx4dHY0nT55g2bJluHDhAqKjo6Gurg4RERHs378fUlJSeP78OU6cOIHPnz9DX18fX79+RUZGBurq6qCmpsbkBffu3QspKSls2bIFK1euZOAqLi4ujIV248aNePDgAaysrBiNTldXFyIiImBsbAw+Pj4oKyujpqYG7e3t2LRpE1pbW2FmZgZ+fn5s374dxcXFUFBQQEtLC169eoXk5GSYmJhAWloaFy5cwJkzZxAZGQkRERGYm5sjOzsb7969w+PHjyEhIQFBQUEMDw+jra0NoaGhaGpqwvLly3Hv3j18+PABlZWVEBAQwOPHj7Fnzx7Y2dlBU1MT7OzsMDExwYMHD5jLmLNnz6K3txffvn3DvHnzAADc3NwQFhbGokWL8Pz5cyxcuBDm5uZQVVWFiYkJnJycoKurCwsLCygpKeHt27dQUFBAUlISHB0d8fr1a4Z8paenh3/++Qf6+voYGhrCq1evGOZoVVUVjh8/jrdv38LMzAwVFRU4d+4cU5+NjIxkyjCNjY0wMzNDU1MTHBwcsHXrVrx79w7FxcXw9PREQUEBSktLwc7OzlgkOjs7sXHjRsTHx0NKSgrx8fHIyclBVVUVRkdHMTAwAB0dHXBycqKyshLp6el49+4dbt26hcOHD0NZWRmHDx+Gt7c3AODnz5949OgRjIyM8O+//8LBwQFlZWVQVlZGXFwcfvz4gcbGRpSVlcHLywuBgYHg4eFhLnX/nvisrKxw8eJFNDU1QV9fH3fu3EFYWBi4ublRXl7OnERCQkKwfPly/Pz5E93d3dDR0cHhXtR5AAAgAElEQVTDhw+Rnp4OdnZ2VFVVQU9PD/PmzcPGjRvx4sULHD16FNra2pg7dy5evHjBGKD/6mc+fPiA169fIz8/H6GhoaisrISEhAR4eHgwOjqKixcvIigoCJ8+fcLx48eRm5uLO3fuMPDxv6//V6Can5+PFy9eQFtbG3p6enB2dmb+zqKioliyZAmKi4uhoaGB69evo6GhAZ2dnZg/fz6srKywaNEiLF26FEpKSvj27RsDh5o5cybS0tLw/PlznDlzBj4+PsxldEFBAXp7ezE5OQlOTk7k5OQwde7k5GQ8fPgQa9euhYODAxwdHcHGxoZnz56hpKQET58+hZiYGDg4OBAeHo7o6GjIyclh7969zKjn7du3SEhIgJKSEuLj4yEpKYkrV65AXl4eL1++hICAABwcHODr64va2loICwsjICAATk5ODLDp2LFjOHv2LFpaWhAbG4vMzEysXLkS/f39CAoKAjs7O3x9fRl86aJFixAeHo43b97850b3Pxfd6upqXL9+nTleVVdX4+XLl3j37h2EhITg5+eHoqIiZGZmIiwsDKmpqZienkZHRwcmJiagra0NHx8fyMrKIjAwEJGRkaitrQUHBwfmzZuHrVu3Ql9fH2lpaUhPT4exsTHu3r2Ljo4OKCoqMm2xnJwcHD9+HCtWrICHhwfc3d2xYsUKhISEICoqCgsXLkRdXR1ERERw7tw5xsi5adMmWFtbw9bWFq6uruDh4YGtrS1u3LiBdevWwdTUlLkxbWtrQ3NzM/T09BhC1P79+5GTk4PAwEBGN19dXQ1TU1N8/foV//77LzZu3IiysjJYWlpCREQElpaWmDdvHnJzczE+Pg5JSUlcv34dfHx8OHz4MNTU1BAbGws9PT3o6uri6tWrkJSUxK5du1BVVQUFBQX09PTA0tISUVFRSEtLA4vFgpSUFOzs7MDJyYl58+YhKysL9vb2OHToEObPnw9ubm6sW7eOoR39TYt8//4d+vr66OjoQE1NDdN2e/HiBTg4OODo6AhRUVH09fUhLy8P379/Z2AzN27cgJeXF549e4YtW7ZAVlYWvLy8qK+vx8ePH7Fz504YGRkxuWkxMTHExsZidHQUO3bsgKSkJJKSkpjXNjExQVZWFr5+/Qp2dnacOHEC09PTkJeXR3h4OPr7+/Hr1y8mp7t06VKMjo6iqKgIdnZ2WLZsGeLj49HX14fNmzejuroaWVlZuHLlCkZGRpiv19TUgJeXF8rKyjh9+jSCgoJQWFgIeXl5DA0NobCwEOnp6RgdHYWdnR1evHgBGRkZLF26FGVlZTA0NERpaSmio6Nx+/ZtqKuro7W1lUH5KSoqoqurC+fOncPw8DDc3d2ho6MDY2NjuLi4MM64kZERODs7o7GxESwWC1euXMHcuXPh5+cHeXl5WFhYMNnOhw8f4sqVK2hsbIS9vT0cHR3BycmJiIgITE9PIzU1FTExMQxE29TUFKqqqrC2tgYXFxc+ffoEFouFwsJCuLu7o7m5GSoqKsjNzcWnT5+gp6cHb29v9Pf3o7OzEwoKCjA1NYWCggJ0dXVx+fJlbN26FbW1tQgLC0NiYiL6+/tx/fp1PHv2DIaGhujo6EBAQACMjIwwPj6OuLg4lJeXg5eXF/b29jh27Bi4uLgwe/ZsFBcXg8ViQUVFBVFRUbhz5w4sLCwYBKOgoCCICPHx8RAUFER1dTUeP36M8PBwHD9+HCEhIZCXl4e2tjasra0hJiaGhoYGFBUV4cGDB2htbWVogDIyMuDj48OWLVuQkpKC4eFh5OTk4PHjx4xoYGJiAjdv3sTXr1/h5uaGsrIy6OnpYWhoCHfv3oW2tjajNsrPz4epqSk4OTnR2NiI3t5eODs7o7+/HwAQExPD3AtERUVh1apVCAoKAicnJ4SEhCArK/ufi+5/XqTdvHmTkpKSYGhoyMSIBAUFmcjGX7ZnREQEWlpasH//frS3t6O3txe+vr5MS4qPjw8ZGRnw8/MDDw8PgoODcf36dcZt1NjYyFgnFi1ahKamJuzfvx9EBG9vb0hLS2Pu3LlYvHgxhoeHYWpqCgsLC/z8+RPPnz+HoKAgeHl54eXlBU9PT7i5uSE2NhaOjo7Yv38/zMzMwM7OjuDgYCxcuBBfv34Fi8XC4sWLUV5ejr6+PqSnp6Ovrw9aWloAADk5OcTFxeHt27cYHBzE0NAQ1q5di6CgIERERCA9PR0NDQ0MPrKoqIhRVP/9vsrKSoaRW1NTg5MnT0JNTQ1nz56Fi4sLwsPD4enpiYyMDAgJCYGPj48Z7KuqqkJBQYGZHR08eBDfvn2Dp6cn/vnnH3BxcaGwsJCZw926dYvB5V2+fJkhR4mJieHgwYPYtm0bvL29sWXLFtTW1qK4uBg/fvzA3LlzGZ380NAQ5OTkoKWlhbNnz2LWrFkgIpw+fRqqqqpwdnZmLr9u3rwJS0tLhISEYOPGjTAwMIC2tjZTG/38+TOqqqrw77//oqenh6F3LVmyBGvWrMHKlSuxYsUK3L17Fx4eHvj+/TvU1NTw4MEDsLGxwcDAAH5+figpKYGMjAz8/f2RlpaGzMxMGBgYgJubGwsXLkRycjIsLCygq6vLKIdkZGSYum5nZyc4ODiwfv16hquQkpICDg4OBj1ZWlqKLVu2YHBwEFu2bIGSkhI0NTXBy8vLFAb+XpYWFBRAQUEBHh4e0NXVxYwZM+Du7g5HR0cYGxsjLi4OPDw8EBQUxODgIBITE+Hg4IBHjx6huroaAwMDYLFY2LBhA75//461a9eio6OD4R60t7czWFN+fn4QEWbPno3CwkKws7Pj2rVrEBcXZ2hf7OzscHd3R3l5OXh4eDBnzhzIyMjg7t27ePToESIiItDZ2Ymamhp8+PAB8+fPx6NHj+Dt7Y2WlhYA/8/sSEpKwsqVK2FhYQF1dXU8fPgQGRkZCA0NRWNjI2xtbRlnYGJiIm7cuMG4ExUVFRmmwbx589DQ0AA9PT28evUKNTU1ePv2LU6fPo2YmBhcuHABY2NjOH36NAwNDaGmpobBwUH8888/YGNjAxsbG/79918UFBSAnZ0dkZGRKCkpgZSUFMOnGBwcRFFREaamphjs47FjxyAsLIz+/n4cP34cw8PDSExMxKlTp7Bu3TrIycnhx48fcHZ2RnR0NAYGBtDf34+VK1ciJiYGhYWFsLe3R0hICMMIDgsLg7GxMSYmJlBdXQ0TExMsWbIES5cuxdmzZ1FUVAQeHh6GNWNpaYmuri7Iycnh169f/xtlzNbWFhERERAVFUVMTAw+ffqE9vZ2REVFYfv27UhLS4OMjAxjttXW1saZM2cYylRVVRUuXLiAnJwcJCUlQUBAAHJycli8eDGeP3+OZcuW4fz587h06RKePHmCpqYmrFmzBklJSTAyMsKlS5ewfPlysLGxwc/PD7q6uli/fj2Tjzx06BBYLBaTj5WXl8f09DSCgoJw48YNHD16FEFBQSgoKICUlBTMzMygr6+PAwcO4Nq1a+jv70d+fj4EBQVRWlqK0dFRWFpaYmBgANu2bYOnpydev36Np0+fMh6mkydPYt26dWhpaUFycjLMzMywadMm9PT0oKamBkpKSrh37x5iYmLQ0dHBnBKMjIxw7Ngx/PnzB93d3RATE8OyZcuYi5K4uDiMj4/j33//RXd3N/Lz8+Hr64uFCxdi9erVGBwcRFtbG969e8dYgHl5eSEnJwc3NzecPn0ac+fORWRkJCoqKrB06VK0trbCx8eHYb4aGhrCzMwM1tbW6OnpAR8fH2xsbJjLtr6+Pvj6+qK4uBgDAwN4/PgxlixZgqysLISGhoKfnx/i4uJQUFBAVFQU1q1bh5KSEsjKymLu3LnIz8+HsLAwTExMwMnJCSUlJZSXlzP8ZXd3d3z69AnZ2dno7OxkLj//tssePnyIo0ePws/PDywWi7mo4uHhQW1tLQICAmBtbc2kVxQVFeHr64urV6+iqamJyZE2Nzfj8ePHiI6ORmZmJnbt2oXZs2ejq6sL3d3dWLBgAfLy8rB06VLcv38ftra2EBERgZiYGHh5eXHq1CmwWCz8/PkTfX19iI+PR2JiIiYmJqCiovL/sZ8ZM+Dk5AQ3Nzf4+fnh0aNHWLNmDVxdXZGZmYlFixZh8eLFUFdXR11dHerq6kBEDNP45MmTWLBgAcTExFBWVgYREREMDAxAVFQUhw8fhoODA27duoWenh6oqqqisbERnJycSExMhKurK969e4fr169j1qxZGBsbw8GDBzE9PY1fv37h48ePMDY2hqioKOMZi4yMhIWFBU6dOoXExERYW1vj8uXL+Pz5M4yMjKCgoAAlJSXmBMHPz4+SkhIsX74cvb29+PLlC65duwYRERFcu3YNV65cwfPnz6Gvrw8PDw+8fPmSqcw6OTlh8+bN2L17N9LT0xEZGYmdO3dCWVkZjx8/xuTkJGbNmgV/f3/4+fkhPT0d2trajNXj8OHD+PDhA1paWiAuLg4AUFJSQk9PD2OlmDlzJnp7ezE4OIgfP35ASkoKKSkp2Lp1K/78+YPJyUnk5ORgcHAQMTExaGlpYUZ/Dx48wMOHD6Gurg4rKyuIiYlBVFQUvLy8sLCwwPPnz3Hr1i2UlJRAWFgYZ86cgbe3N1pbW2FiYgIvLy+oq6vjyZMnSEtLg46ODrKzs8HGxgY3Nzc0Nzf/5073P8cLJSUlmJqaQn5+PgYGBpCeno4NGzZg/vz5yMzMxNGjRyEgIIBZs2ZhcnIScXFxjOPs169fePv2LQIDA2FnZwcjIyOkp6czqmQ+Pj54eXnh5s2bTPni+/fvsLOzQ0lJCUPn0tHRgbW1NZYuXYqQkBDY2NiAiLBv3z709/cz0Zv8/HyMjo5i5syZWLZsGe7cuQMiQkFBAZ49ewZLS0twcXFh3bp1ePToEbZu3crsAnbs2AE2NjacOHECGRkZePPmDQwMDPD48WPo6+ujuroanJycOHr0KLZv3473799DSEgIMjIy8PDwwJs3b7Bz5058/foVHBwczMNWWloKNzc3cHFxQUVFBdHR0ZCXl2eO1lVVVeDl5UV1dTXzmsuXL0dpaSna2tpw7tw5tLW14eXLl0x8Kzw8HKKiorh06RJDX8rIyMDg4CBWrFiBe/fuYXp6GqqqqjAzM8PAwAC8vb1x/PhxCAoKQlpaGoWFhVi+fDlaWlqQn5+POXPmQFFREbNnz2Y0Sd3d3Yzi5saNG2hra8O2bdsYcpuqqirzfbdu3YKsrCw2btwILy8vvHv3DjExMbC1tcX27dshICCA1NRUCAgI4NKlS8jMzERWVhZjlPDx8cHr16+Z6E9LSws2bdqEffv2YXh4GI2NjaiqqgKLxQIPDw94eXlx8uRJXLt2DUFBQZCWlgaLxWIsG/b29qipqUFkZCRycnLw5MkT3Lp1CwUFBVi7di2UlZWhqamJffv2gcViwcrKCioqKujv74enpyc6OzuZD8KVK1dC+/84O9N3LtewbR8alKEMoYgoQpIsZE4pJZGIQuZkLFNKoVAWicpURJFIk1aSkCFjRSpDIiGJROZhZah0vh/erXvbng/P+vD8B/x+XPd1n+dx7LumJgQEBP5HTHLfvn1oaGiAmZkZJCUlMTs7Cy8vL2RmZkJVVRVDQ0NYu3YtIxH9/v07lJWV0dHRgQsXLsDf35+ht/15oI6NjUFAQAB3794FDw8Pli9fjo6ODiQmJiIqKgrKyspwdHTEsWPHEBkZiR07diA7OxvXrl3D4sWLkZCQgF+/fmHx4sXw8PBgKt4/fvxgIoz79u3D79+/oa+vj3Xr1sHS0hJeXl5Ys2YNnJycoKCggKKiIpw7dw43btxAdHQ0vL29ERERwTCLxcTEsHv3bjg4OKCgoACKiooICAhASEgIXF1dUV1djfDwcNja2jJgqz834Q8fPjBV96GhITx//hzXrl3DgQMHMDw8jJ8/f+LDhw8wNDREVFQUHjx4wNjHNTQ0sGbNGly6dAkPHz6Ek5MT7OzsYG5ujr6+PvT29uLr168QFhZGYmIiNm/ejCNHjqCpqQkJCQlQUFDAtWvXcPPmTfj4+EBBQQEzMzNYtWoV4uLiYGNjg+3bt2PDhg2Qk5ODv78/1NTUmOJPe3s7FBUV0djYCH19fbS3tzN4U0VFRTx69AhNTU349u3bfx66/3nT3bJlC+Tl5XHmzBmGdPVn+PwHlzg6Oorz588jMDAQYWFhWL9+PdasWYMTJ04gOjoaIyMjePXqFczNzXHt2jW0trZCU1MTjY2NyMnJwe7du+Hk5ARLS0tUVFRg4cKFzALk7NmzDIxmYmICixYtQmRkJGxtbZkr/pMnT/DXX38xs5s/rrNr167Bx8cH/f39SExMxMKFCxEWFoZVq1ZBTk6OyTa6ubnh1KlT0NPTg56eHoyMjPDlyxdISkoyt4rGxkY8f/4cO3fuREJCAlauXAkFBQXMmzcPr1+/xuTkJLi4uKCoqIi8vDwICQlh1apVTM+cm5ubcZYNDQ3hwIEDTN7wD/Sbj48P/Pz8ePDgAXbt2oV///0X9vb2TMtLTU0Ne/bswejoKK5du4aNGzeit7cX0tLSePbsGWJjY5GRkYE7d+4gOjoaHh4eePbsGW7fvo3y8nLIyclhamqKUftYWFhAW1sbR44cARHh3Llz2LZtG8rLy/H+/Xs8evSImSkfPHgQ8fHxSEtLg56eHpSUlFBUVIS7d+/i9u3bjII9Ly8Pk5OTiIqKgrq6Oj59+oSmpiaMjIxASEgIMTExcHBwwMDAAKysrLBz505s2rQJly9fRmhoKL5//45Hjx4hLCwM9fX1kJKSwtq1a5Gfn4+QkBB8/foV3d3duHDhAvr6+uDq6oqLFy+ClZUV8+fPx+nTp3H69GnG9DE6OgpWVla4ublh79698PX1ZeSjQkJC+Pr1K+7cuQMjIyPcuXMHLCwszKJp6dKlsLW1RVNTEx49esREkDZt2oS0tDSkpaXh3bt3yMzMZGzGf+SsCgoKaGlpgYeHB6KiopCfnw8ODg50d3fj9u3b+PDhA9TU1LB+/Xr8+++/WLFiBdzc3NDZ2Ylt27bB0dERMjIymJycZHRXSUlJiIqKQk5ODvbs2QM+Pj6oqqriyZMnzGVk+fLlWLNmDZ4+fQpzc3NERESAm5sb9+/fR2pqKu7duwcvLy+Ii4vj+/fv6OvrY+JcbGxs4OPjg5+fH4qKihjpo4SEBEJCQlBXV8dcpoqKitDZ2Yna2loMDAxg3bp1ePr0KR48eIDh4WGYmJhAR0cHCxcuBBHh/fv30NHRQUBAACQlJTE5OYmIiAj4+PggISEBIyMjMDY2hoqKCoSFhVFUVARhYWEICgrC39+fWQRzc3PDz88P27dvx+LFi9Ha2oq///4bmzZtQnBwMJSVlTFv3jy8fPkSf//9NyYnJ3H9+nVMTEwgKysLW7duRU9PD3JycjAxMQEFBQWMj4/j9OnT4OLiwsaNG9HT0wMTExN0d3dj37590NHRQUZGBhITE+Hp6Ynm5maEhIRAXFwc3NzcMDc3x9jYGMLDwxEZGclYzmVlZf9vN934+HicOXMG3t7euHz5MgwMDJCVlQUnJyeMjo6irKwMvb29cHR0ZCDCf2Zb+vr6mJiYwIMHDxiUXl5eHgICApjtdGNjI4qLi2FtbY3Ozk4ICQkx+pkbN25AV1cXMjIyDHrvDzhGXl4eqqqquHjxIvz8/HD58mWcP38eHz58QE9PD8TFxTE5OYmSkhLMmzcPxsbGOHjwID5//gwWFhbw8vJCQEAAZ86cwfz582FpaQlfX1+G1t/d3Y1ly5YhKysLHz9+xO3bt6GlpYWQkBDw8PAwVUY+Pj68efMGFRUVjNo5LS0N2dnZ6O/vh52dHS5evIj6+nqkpKRAUFAQS5YswebNmxEXF4c5c+bg8ePHDGpu0aJFiI2NxfT0NN68eYPMzExUV1fjn3/+QVdXF3bt2gUJCQlUV1fDx8cH/v7+uHPnDtLS0tDf34/Y2FgEBQWhp6cH2dnZaGhogKmpKTZu3Ijp6Wk8ePAAP378gI2NDfbu3Ys1a9agsLAQTU1N+P37N+bNm4cvX77A09MTR48eBREhLS0NY2NjSEhIQE9PDxYvXowlS5YgKCgI09PTSE9PR3FxMe7fv49Vq1Yxskw5OTmwsrIyn1t4eDiUlZXR3t4OJycn3Lt3DydPnmQ8XxEREcxMuKGhATdu3MDs7CzevXuHw4cPY/ny5cyc8Y/MVF1dHd+/f8eGDRuwcOFCREZGorS0FGJiYggNDYWPjw++fPkCTk5OzJ07F5cuXcKePXvQ2tqK4eFhZGZm4siRI/Dy8sLbt2/BysqK9vZ2zJkzB1++fIG5uTni4+ORkZEBVVVVLF++HJKSkvjw4QNaWlqwcOFCTE5OIigoCENDQzh06BCKi4vh6emJqKgo7Ny5EzY2NsjMzERpaSlWr16N2NhYxMfHw9bWFjU1Nf8DBpOZmYnIyEgMDQ0x8ta9e/eir68Pa9euxcaNG1FdXc2YnHNzc/H27VuEhIRgenoaP378QFxcHOOly8rKgq+vL8bHx+Ho6IjVq1cjPz8fbm5u0NbWZsZz09PTjKYnNzcXtbW1zJy3vr4eaWlpGB8fx9TUFOTl5cHGxgY3Nzd4eXnByMgIGRkZUFNTY+avc+bMYZRJMjIy0NLSwuTkJKytrVFZWYnY2FgoKysjLi4OJiYmDG7xT2LE3NycAdy4ubkx4zUrKyscOnQI+vr68PT0ZPYrRkZGTDZ4enoa+fn5WLFiBebPn48rV67gr7/+Yir4N2/eRHx8PJqamjA4OIjPnz9j165dWLJkCXbu3Indu3fD398fDQ0NsLGxgYODA0pLS5mbbXNzMwBAR0cHgoKC2LFjBzIzM1FYWAg7OzsUFBQgODj4P2+6/7lIs7a2ptDQUHz69Ak3btxgQMDnz5+HhoYGI1jMyMjA4OAgqqqq8O7dO+jp6cHOzg7FxcUYHR3FnTt38PTpU2hpaWHevHl48+YNjI2NmUKAhoYGHj9+DBcXF0hLS6Oqqgrj4+N48uQJzp07h3v37uHEiRMAgAsXLkBDQwPV1dV4+/YtvLy80N3djRMnTiA5ORljY2PYtGkTbt++jdWrV0NGRgZGRkY4ePAgnj9/Dnl5eRw6dAgvXrxAcnIytmzZgv7+fiQnJ4Ofnx/T09MwNzeHnp4eLl++DFVVVTx79gz6+vp4+fIl2NjYcPDgQZiYmODly5d4/Pgx2traICgoiMOHD6OgoAAaGhqQlZVFY2Mjw5z9o2c5cuQIqqurmbhabGwsQkJCsHnzZsjIyDCqbxYWFqxcuRIsLCxITExEeno6srKyoKWlxYDE1dXV0draCjs7O2Y59vTpU2ZUEBUVhStXrmB4eBjFxcWws7NDaWkpE7dauXIl3r9/j6VLl8LS0hI6OjooKysDLy8vODg4oKmpCW1tbRw6dAhaWlpgY2PD6tWroaKiAkNDQ1hYWGDLli34+PEjIiIiMDo6Cnt7e0aQycbGhpCQEDQ2NsLHxwfXr1/HkSNHsGXLFsyfPx9ycnKor6+HjIwMpqencf36dSQnJ+PXr1+wsLCAv78/ODk5ISMjg4yMDOzcuROSkpJ48OABNmzYgI6ODnh4eCAnJwdVVVUIDAxk9OBnzpyBra0tUlJSYG1tjVOnTuH27dsQExNjuA+Ghobo7u5GcHAwVq9ejdnZWQwMDGDVqlVISEhAV1cX9uzZAwEBAUxNTWHz5s1YvXo1+vv78ezZM+Tl5UFNTQ3bt2+HmJgYTpw4AT4+PuTn58PY2BgvXrxgbrnGxsa4efMmBgYG4O7ujp07d4KXlxd1dXXQ0dHB0NAQjIyM8OvXLzx//hxHjx5FY2MjOjs7YWxsDCsrK3h4eMDNzQ2LFi1CT08P7ty5g3379iEmJgbs7OzYsmULmpubkZWVherqagQHB0NGRgaqqqpwcXHBu3fvYGtri2vXrkFKSgpfvnwBFxcXtm7diq9fv+LVq1c4c+YM0tPTERISAikpKXR2dmLhwoWwsbGBm5sbzMzMYGFhgcrKSvT392Nqagqenp5/sAH49u0bwwn543mbmZnB8PAwODk54ezsjMHBQVy+fBnR0dHg5uZmGNJ/xn02Njbg5OTEzZs3ISkpib6+Pnh5ecHe3h7GxsZ4/vw56urq0Nvbi/Xr10NeXh5Xr16FpqYmPD09oampiY8fPyI+Ph4tLS2or6/HvHnz4O7uDhUVFfz7778ICQlhJJM9PT3w9PREdXU1lJSUYGJiAg4ODqxcuRJVVVXIyspCcHAwU9g5d+4c0tPTMXfuXGYevH//frS3tyMlJQVJSUkgov91kfafh66ZmRmNjIxgfHwcr1+/xqdPnyAuLg5vb28cOXIE4uLiePLkCdzd3SEgIMBEohQUFFBWVoaNGzfix48fqKurw6JFixAVFQVRUVG8fPkSBw4cwN69e5lbQGdnJ5KSknD8+HHEx8czN8qHDx8yXNTc3FysWLEC4eHhuHfvHtLT0/Hw4UMoKSlBSkoKrq6uDLJt1apVzLynqKgINTU1+PnzJ5qampgPvqSkBGVlZbh16xYAICMjA11dXXj37h02bdqEnJwcXL58Gby8vGhsbAQ3Nzd+/vwJPj4+VFVVgZeXF4cOHcLly5dRWloKTU1N6Ojo4Nu3b3jx4gUmJiZw6tQpnDt3Do6Ojnjy5AkAYP369Th06BASExMBAOLi4nB1dYWnpycyMzPBycmJS5cugYWFBVpaWlBRUUFzczOuX7+OtrY2fP/+HQkJCYiLiwM3Nzfz83V3d6OwsBB3796FgIAAMyP28/NDcnIyqqqqEB0dDR4eHtTW1iIoKIhZOExNTSEzMxMcHBxQUFCAmZkZUlNT8fLlS2RkZMDX1xdycnIoLCzEly9fYGhoiOjoaCQnJ8Pe3h7Lli3D0qVLsX79ety9exdVVVXo7e2FoqIiKioqMDo6Cjk5OaynWR4AACAASURBVJiamuL48eNQVlbGwMAAqqur8fTpU3z8+BEvXrxAUlIS1q1bhzlz5uDt27dMVOvPUtbe3p7B93V2duL06dNgY2PDxo0b8evXL4iLizNxvvb2dsjLy2NiYgJNTU1MHTk4OBguLi749OkTRkdH8fjxY9y8eRMdHR34999/cfToUezcuRPx8fFISEiAv78/IiMjkZqaCjExMWRkZCA2NhbOzs64fPkydHV1cfz4cYSEhMDY2Bjh4eHIzc3FggULMDs7i0WLFkFeXh5///03pKWlcevWLXR2doKdnR3bt2/HzZs3ERkZieTkZBgbG6OlpQXp6enYs2cP2trasGfPHqYR9ffff2Pu3LlISUnB/v370dbWhh8/fjCL5nXr1kFJSQnS0tI4evQoAKC9vR0rVqyAoaEhWltbsX//fhgbGzMmDT8/P+zcuROsrKzYu3cvtLW14eDggOzsbKxcuRJeXl7Izc1FWVkZREREmEMbAIqLi6GlpYW9e/dCWVkZLCwsqK2tRWxsLBQVFREXFwcFBQWsWLECdXV1OHDgADQ1NZncfldXFwIDA2FmZgZ9fX1G7unp6YkdO3ZgdHQUJ06cwLp16/DgwQMAwO/fv5nLxJ9cdU1NDfj5+ZGamorJyUl0dnZi7dq12LdvH3R1dVFbWws3NzdGinvy5EmIiorC2toafX19+Pr1K4qKipCTk4MjR47A3NwcQkJCDDBfW1sbg4ODKCsrw8GDB1FQUICJiQls3boVBw8eRE9PDzQ0NJCVlYWSkhIMDAz8r4fufzbSsrOziZOTk9ra2ujKlStUXl5O+vr6lJ6eTl5eXpSbm0uPHj2ir1+/EgAqLS0lJycnEhMTo6GhIdLW1qb79+9Ta2srBQUF0b59+2h8fJwePXpE5ubmxMXFRUFBQWRkZEQnTpwgLi4u8vT0ZAASP3/+pODgYAbUcfnyZbp16xZJSUnR1NQUjYyMkISEBF24cIEaGhro+fPn9O3bN/Lw8KC+vj4aGhoiOTk5ys7OprNnz1J4eDgVFxdTTk4O9fb2koKCAn38+JEEBQXJysqKRkdHKSIigjQ0NOjXr1+kp6dHKSkpxMfHR2VlZZSXl0dBQUG0fft28vX1peHhYeLm5qaAgAAiIvL29iZBQUHy8/MjIyMj0tPTo58/f1JOTg7Nnz+fFBQUSEpKioiI7t+/Tx0dHaSrq0tsbGwUFBREtbW1dOPGDRITEyNZWVlKT08naWlpSkpKIktLSzI1NaWPHz9Sfn4+ycnJ0a9fv0hTU5OWLFlCJ0+epKKiIjp//jz5+vrSsWPHqKqqiuTl5am1tZU8PT1pwYIFVFtbS6OjoyQhIUH29vakra1NAQEBxMnJSZ6enqSurk6SkpIUFxdHGRkZVFFRQQ4ODlRWVkaRkZFUWFhIdnZ2ZGxsTKdOnSJ9fX1asWIFBQUFUWdnJ7GwsFB2djbl5ORQYGAgaWpqkoaGBoP+nJ2dpeHhYVJSUiITExPKyckhMzMzOnHiBIWGhpK5uTk1NzeToqIihYSEUEtLC3379o18fX3JxcWFtm7dSoqKipSamkp2dnZkaWlJy5YtI1FRUWJjYyNVVVWqr6+nb9++kZKSEm3bto2uXLlCMjIytGDBApKVlSU7Ozvi5OSkzMxMOnPmDHl7e9PWrVtpcHCQfH19mYba79+/aWxsjIiI6urqSEdHhzZv3kwyMjIkICBAbW1tdOzYMaaB1dvbS6ampjQ5OUkLFy6kQ4cOESsrK1lYWNCxY8eoqKiILl++TGJiYtTS0kJHjx4lGRkZ0tTUpImJCQoPD6ecnBySkpKi5ORkOn78OO3bt49evHhB58+fp+LiYjpz5gwVFBRQR0cHaWhoUFlZGS1evJjY2NhITEyMHBwcSFBQkBwdHWl2dpbu37/PIB95eHjIzMyMJCUlycrKigoKCoiVlZVkZGRIQkKCrly5QvLy8mRgYEDp6ekkIiJCoaGhlJWVRX5+fkRE1NzcTJ2dnbRs2TJKSkqiwsJCiomJoR07dhAA6u/vp0+fPpGNjQ15eXlRVFQUKSkpMfjNHz9+0J07d+jbt280MjJCjo6O1NbWRuPj46StrU0ODg4kLS1NhYWFpKysTDY2NhQZGUkGBgY0MzNDixYtIhsbGzp37hxVVlaSjo4OaWhokISEBJ07d45OnTpFDx8+pDt37hAvLy9ZWVnR58+faenSpTRnzhxSUlIibm5uYmNjo7lz55KxsTEJCAiQsLAwXbx4kXR0dGh4eJgAkJ2dHUlJSdHdu3epqqqKfH196erVq2RoaEi6urrk7OxMXV1dJCIiQn5+fnT79m2qqqoib2/v/zva0cbGBoODg0hMTMTg4CAUFRUxNjaG4eFhDA8Pg4WFBdra2rC3t4eRkRHU1NRQUVGBlStXQk9PD+fPn2cMoH+67I2NjVizZg3u3bvHFBxYWFjQ3NyM6elplJWV4cmTJ4iJicH58+fx5csXlJeXg4eHBxkZGYiKioKkpCQKCwsZkLS7uzskJCSgq6sLaWlp6Ojo4MaNG5CSksLff/+NY8eOwcXFBU5OTvj69SvU1NQY+LCQkBAUFRXR2tqKq1evIjIyEjdu3ICDgwNiYmJQUlKCoKAgxvYwZ84cXLp0CatXr4aamhoDrdbT00N9fT1GRkZQX18PDg4OJCYmYs+ePcxMloODA7KyspCQkMDChQvx9etXvHz5EpcvX0ZtbS0DWK+trYWtrS2Sk5ORl5eHpqYm5ObmQlRUFFu2bMGOHTsQGhqKhIQERu2Sk5MDV1dXuLu7M2CZP+UPHR0d8PLygpWVFfHx8TA1NUVPTw/c3d3Bz88PFxcXyMvLw83NDdHR0cy88vfv31BTU2PSBKtWrcKqVauY22ZpaSn4+Pgwf/58CAsLQ0NDA0ePHkVpaSlz6+Hi4sKJEycwMDCA2NhYJCYmIjY2Ftzc3GhsbISgoCCsrKzw9u1bvHv3DtXV1Thy5Ai+f/+OkJAQ5ObmYnR0FKdOncKWLVsgLi6O8PBwlJWV4fDhw5iYmAA7OztMTU2hrKyMGzduwMjICCtXrsTg4CBTdlFRUcHv378REBCAhQsXQldXF7a2tujs7ERlZSUUFBRgaWkJdXV1LFmyBA8fPmQWksLCwkhLS8M///yDzs5OrFy5Ep6ennj8+DE6OzuxYMECxs8nISGBmZkZhIeHQ0tLCykpKbh9+zbExcXx/v17XL16Fenp6UhISMCbN29gbm4OY2Nj6OjoYP/+/YyhorGxEbOzs/Dx8UF1dTUuXbqE4eFh5rVcTU0N+fn5yMrKQkdHB/j5+eHn54erV68iKCgIQkJCuHr1KszNzSEsLAxlZWXcuXMHAgICEBAQwMqVK+Hr6wt3d3ccOXIEd+/exefPn9Hb2wsfHx+IiYlBSUkJmZmZWL16NdTV1aGiosLwVfj4+FBRUYGfP38iLS2NwY0+e/YMs7OzePv2LSIiIlBdXY2uri4EBATA3Nwcfn5+TBtu/fr12LVrF/bu3cssbWtra7FixQooKytDRkYGDg4O8PHxgbKyMjZt2oT+/n5cuXIFd+7cwfDwMN6/f4/m5maUl5fDwsICb9++xdGjR5k31n///RdEhG/fvuH79++YnZ2FvLw8kpKSICAggP379+PYsWNwc3PDunXrwM7OzthPFBUVMTg4CAEBAcydOxeTk5PYtWsXCgsL8fbtW5iamuLkyZOIjIxkfr7ly5czrdD/03iBg4ODTE1NMTAwgNzcXMjJyWHJkiUoKirCmjVrsHr1arCwsKCyshLCwsKIiYnBmTNnsHjxYqxbtw5CQkLYvn07zp49i6ysLPzzzz+wtLREXl4elJWVcf36dbx48QJr1qxhZpM7d+7Et2/f4ObmhtjYWNTX10NLSwv3799n5q07d+5EdHQ0dHV18fPnT5SVleHXr1/Iz8/H4sWLwcLCgu3bt6O8vBylpaWIiIhAb28v4uLi8OLFC9y/fx88PDwoKyuDtbU1Mx8+ffo04uLi8OjRI0hLS0NNTQ2CgoIwMzPD8PAw+Pj48PjxY0bXzMPDA3l5eRQVFcHMzAyKiopwdHSEhoYGHB0dGeV1c3Mzow5xcHDAzp07ER4eDkVFRWzbtg2/f/+Gh4cHDh06BG9vb8yfP59RhmzatAmenp64d+8e2tvbER4ezsSqiAitra14/fo1AICNjQ379u1DXV0d5syZAzExMbi4uOCvv/7Cy5cvsXHjRmRnZ8PS0hKLFy9mRge8vLzw8PDA1NQUbt26hcLCQuagPH/+PHp6elBSUoLMzEysXbuWMYm0trYiICAA8vLy0NLSQnV1NZYvXw5vb29wcnJix44dDEUtICAAHBwcuHfvHkZHR7F//364ubkx7Z8/87ujR4/i8ePH8PLywsmTJ2FoaAhDQ0OUlpaiuLgYkZGRMDAwQGVlJX7+/ImVK1di69atePv2LdjZ2Zno0YULF3Dq1Cn4+/vD398fysrKzCyUnZ2dUb+PjY0hJCQEHBwc2Lt3L/j5+Zl/rKqqKlhaWmJqaoppNgoJCUFCQgLNzc2MSTcgIAC1tbVIT0+Hh4cHnjx5AiEhIWzevBnNzc1QUVHBhQsXkJqaCmFhYTQ0NOD48eOwt7dHR0cHMwa4cuUKIiMj0dvbCw4ODma+vHv3bmZ8tXz5clRUVCAuLg7j4+Pg5OREQUEBLly4gGPHjsHQ0BBubm4QEBBAaWkpPn78iJGREYZWx8fHh/r6eoiJiSE7Oxv79++HhIQE1NTU8ObNG+Y2VlxcjIGBAVRUVEBERATOzs4ICAjA4cOH0dHRgbGxMeY7ePXqFTZt2oSzZ8+ira0N0dHRiI2NZebA8fHxSE1NxcWLFxEUFAR2dnZcvHgRY2NjzGji9u3b6Ovrw/T0NOLj4xlrybJly7B3716YmpoysbrJyUmsW7cOnz9/RmxsLHx9feHq6sqwp+Pj49HR0YGlS5fi69evmDNnDnx8fBAYGIiYmBgoKyszZ9fQ0BBevXqFw4cPw8bGBgcOHEBFRQVaWlqYOOz09DSWL1+OiYkJPHz4ENbW1tDQ0MD4+Dh8fHxgZWWF1NRUPH78GOPj4wgMDERxcfH/Ol6Y+1+btvDw8GBra2ssWbIE5eXluHbtGuLi4vDlyxfIysrCzs4OPT098PDwQEdHB+Tl5WFmZoaioiJ8+PABO3bswPv37xEYGIhHjx5hzZo1yMvLg4SEBKKiophf7I+Z8/Lly+jt7YWcnBwqKirw6tUr+Pv7Y/PmzYiOjsbY2BgePXrE/OHy8/NDRUWFCVr7+/tj8eLFUFRUBAcHB1JTU+Hg4ICvX7/i/fv3sLOzQ1VVFYSEhCAiIgIzMzP89ddfePjwIUpLS3Hq1CmEhYVh165dmJqaQlNTE5YvX47u7m7ExsaCl5cXsrKyOH/+PDo6OsDBwYEvX77g7t27zOG/dOlSxMTEoKamBuPj40w98/Dhw0wjJiYmBqOjo8jKykJqairzJY+OjqKmpgZEhJaWFkaZfvLkSbCysiIvL4+hbV29ehVOTk7Q1dUFGxsbiAgBAQGIjY1FXV0dampq0NXVhcjISCgpKaGvrw+FhYUYHh5GWFgYLCwsmHz1ypUrMTo6ivLycrS0tDDFg4mJCTQ0NMDQ0BAbNmxASkoKLC0t8e3bN8yZMwfr1q0DJycnIiMjMTIygpCQEPz+/Rvnz59nom4hISHIz88HDw8P/vrrL6ioqODYsWNYtGgR2NnZsXbtWuTm5uL+/fvMG8arV68wb948JCUlMWWbwsJCcHBw4Pv37+js7MTMzAwCAwMhLy+PdevWIS4ujok1SUtLw8nJCSEhITA1NUV0dDRERUVBRAgLC4OZmRkUFBTQ1tb2PxpibW1t2LBhAy5dusRkqeXl5XHr1i0GTWhqagoODg78/v0bFRUVCA4Ohp2dHVpaWiAvL4+YmBgoKChg9erVzGJ3fHycoWpduHABmzZtQkREBHR1dZGYmAgzMzPo6ekx6RR3d3d4enpizZo1ePXqFQwNDeHh4QEODg4cPXoUly5dAhcXF6ytrRnh4p8D+cyZMzhw4AC2bNkCX19fzJkzBz9+/MDAwAD6+vpgZWWFwcFB1NTU4Pfv35idnYWtrS0SExNhaGiI5ORkuLm5QVFRkbEP37hxAxs3bkRaWhrc3d0RHh4OAODi4sLIyAg+fPiA6elpJiHg7+8PNzc3XLlyBbKyskwr7PHjx1BXV0d6ejoDZQ8ODkZwcDB8fHxgYWGB8PBw+Pr6wsfHB9PT05CRkUFOTg6WLl0KRUVFaGhoYNeuXZidncW1a9fg4eGBFStWgIODA1ZWVpiZmUFhYSGTFBofH8eCBQuQnp6OvLw8ZGRkIDs7GzY2NuDj40NmZiYDaP/jNnz//j3u378PbW1tpuYuLCwMIsLU1BSsra2Z7HdNTQ16enpQVFSE58+fo6qqCr6+vhAXFz/9vx6s/zV7EBUVpZqaGgYAzcrKSs3NzTR//nzi5OQkR0dHGhsbo/r6ehIXF2d0OTMzM6StrU1WVlaUkpJCoqKiJCwsTG1tbSQrK0tJSUnk7e1NRkZGxMXFRadOnSIbGxs6efIkZWRkUFJSEikoKFBwcDAVFxdTWVkZM0OSlZWlhoYGSkpKorKyMhobG6OZmRmqqakhHh4e2rp1K0VFRZGXlxctW7aMnj9/ThERESQhIUFxcXF069YtGhsbo4CAAOru7iYJCQkyNTUlDQ0Ncnd3p7i4OJKWlqbc3FwaHh4mBwcHcnd3J1VVVVq6dCmJiIjQhw8fyNnZmT5//kxDQ0PU09NDPDw8ZGpqSiMjI8TGxkbW1takqKhIXV1dVFxcTKysrMTNzU1cXFx08OBBkpSUJHt7e+rq6qLz58+TsbExubi4UEZGBkVGRpKKigotX76cTp06RUpKSiQuLk5CQkIkJiZGRkZGNDExQQYGBqSnp0eurq7U2dlJ4+Pj5OLiQoaGhiQnJ0cSEhKUn59PZWVlxM3NTZOTk1RSUkKfP38mMTExKikpIVFRUfLw8KDw8HAaGRkhDw8PCgkJoYaGBhIUFKTw8HDq7OyksLAw4ubmJllZWQoJCSFjY2Pi4OCgoqIiMjc3p+7ubgoJCSE9PT0SFRWlsLAwMjQ0JBsbG5qcnKScnBxqamqiV69ekZ6eHj158oTKy8upvr6eHjx4QAoKCsTKykpycnKUmZlJoqKiJCsrS2/evKEHDx7Q27dvKTw8nE6dOkUsLCy0YsUKio6OJkdHR1JRUWFg+qKiojQ9PU1hYWHEwcFBKSkpFBoaSrKysiQhIUGtra20b98+mpycpIsXL1JBQQF5eXkx4GstLS26f/8+WVpaUnV1NY2MjJCBgQHt2rWLDh48SEZGRlRYWEgWFhY0d+5cys3NpaamJlqxYgXt3buXxsfHKTw8nJqbm6mhoYHq6+tJW1ubdu/eTadPnyZjY2MqKSmhRYsW0apVq8jJyYlaW1vJ2tqaJiYmyMLCgtEWWVpaUnZ2Ni1cuJBycnJIVlaWLCwsSFtbm0REROjq1atUWFhI7e3t9Pz5c7K3t6fExERavHgxrV27loaGhkhdXZ2srKxo+fLlVFdXR6KiomRhYUEPHz6k48ePk5CQECkpKdGrV6/o8OHD1N3dzdDR1q5dS0uWLCErKyvq7e0lUVFR+vXrF4mIiNCOHTuos7OTpKSkiIODg+rr66mvr4/a2tqovb2dli9fTrdu3SJPT08SExMjHx8fRt3Fz89PjY2NdPjwYZKRkaGSkhJ69OgRqaioED8/PxkZGZG3tzctWrSI0tPTSUNDg7y9vWnZsmUkJSVFfX19dOHCBTIyMqK0tDTi5OSkyspKsrGxIVVVVdLU1CRVVVVycnKiJUuW0OzsLAEgaWlp8vHxITMzM/r58ydJSUlRTEwMff36lfz8/Cg+Pp5ev35N79+/p5ycHDI2NiZFRUXi5uamqakpSkxMpIsXL9LDhw9JQUGBJCQkqLi4mLS0tMjAwIAKCwuptraWbG1t/+8Q88HBQaqvr0dkZCQ0NDSQmZmJrVu3Ynh4GDt27ICMjAz+/fdffPv2Dc7Ozgx5rKysDI8ePYKtrS3k5eVhZWUFIyMjbNmyBfX19fjy5QsMDAywa9cuFBUVwcjICAICAhAVFcX169eZGJmpqSlSU1NhYmKCgwcPMpnY0NBQDA4OYv369dDX18exY8eQnZ0NU1NTrF27Fs+ePcOhQ4fQ3NwMKSkpfPr0Cbm5uVi/fj02bNgAdXV1PHv2DCoqKigvL4e/vz9GRkYYytXMzAyCg4Ph5+cHMTExPHjwAHPnzsXFixeZuiQPDw9MTU0xb948ODk5YeHChXj16hWqqqrg7OwMJSUlTE9PIysrC5WVlbh58ybMzMyQl5fHALAlJCTQ29uLu3fv4siRI7hw4QKOHj2Kw4cPw8rKChISElizZg0aGxthZ2eH+/fv4+XLlygvL2dyt39YBkVFRdDR0cHHjx8RFxeHs2fPgpubGzo6OhAREcHatWsxOjoKU1NTTE9Pw8XFBadOnUJKSgoTY9LV1cXNmzcxPDyMAwcOYHZ2Fn5+fpCQkICwsDBmZmZw8OBB7N27FyYmJuDk5MTZs2eRlJQEVVVV9Pf3o6GhAc7OzmBhYWG4x56enuDk5GTMvIKCggwpamxsDO3t7UyhIjU1Faampli0aBHDxPgDxB4eHoalpSXq6uqQmZmJ1NRUbNq0Ce/fv4eKigrk5ORw9epVpKWlITExkeG3Ojo6YsuWLSgtLYWGhgZevnyJCxcu4OHDh/D29sazZ8/w8OFDFBUV4fbt2+Dj44OWlhY2bdqE6upqNDY2IiwsDNLS0oyee+PGjRAWFkZWVhZ27NgBbm5u9PX1QVBQEDU1Nairq0NqaiqkpKSgoKAAZWVlLF26FCIiIti/fz9WrVoFVlZWRnM1d+5csLOzQ05ODlFRUfj27Ru4ubkxMTGBtWvXQltbG9PT00z1noWFBRs2bMDHjx+hq6uLlpYWeHl5ISsrC+np6ZCWlsbAwABev34NU1NTuLq6wtTUFGVlZZicnERxcTH4+flhYmKCDx8+QFpaGv39/Uwt+fHjx9i4cSPGxsZga2uLiYkJPH/+HAYGBvDx8UF5eTnGxsZQWlqKV69eYenSpViwYAG8vLxQUFCAxYsXIzY2FnJycnB1dYWfnx9ERETQ29sLbW1trF+/Hvfv38fdu3fBwcEBU1NTbNu2DTMzM5g7dy7u3bsHJSUluLi44NevXxAREUFNTQ2srKwwMTHBkAXDwsLQ0dGB7OxsRgf1999/Y+XKlZidnYWoqCgMDQ2RkJCAtWvXYuHChdi8eTP8/PwQHx/PvLEHBgZiz549SElJwejoKGxsbJgK9Llz5yApKQleXl6YmZlBUFAQK1aswNDQEEpKSvDo0SMMDQ3Bz88Phw4dQmFhIczMzP5vkTE1NTVqaGhATk4Oent7UVJSgtLSUujp6UFXV5eZd/yZefwhQ1VXV+Pq1asYHBxkbJ/Nzc0wMjJiMqE+Pj5gZ2fHtm3bcP78eXz69Ak/fvyAuro6XFxc4OjoiJmZGTx8+BDbtm2Drq4utm7dykCr16xZg9HRUezduxd1dXUwNDREWFgYDAwMIC8vz6ip3717hzVr1gAAHjx4gK6uLnh5eeH27duws7ODsrIyeHh4wM7OjuTkZJiYmGDDhg3g4uKCrq4u02SprKxEXFwcampqsH37drx69Qp79+6FsbExo4lOTU1FW1sbODk5Gb9aY2MjVq9ejfT09P//gbOwwMfHB3fu3EF+fj6EhIQQFhbG0KiuXbsGKysrhIaGMkuDnp4epKen48uXLwwwemJigsFY2tvbQ1lZGQEBAXB1dUVVVRVCQ0Nx9epVqKurY2JigrEzv3z5EtbW1jA0NERSUhJevHjBAKj/dPVnZ2dhaGgIcXFxiImJYXBwkJnBy8vLY968edi+fTu6urrw5csX3Lx5E3///TfOnj2LU6dOoaqqCseOHYOwsDDze5WXl0NGRgYrVqzA5s2bmQfehg0bGO24vb09JCUl0dzczMSn0tLS4OXlheLiYly4cAH5+fnIzMzE4OAgAyp//fo1bt26hYGBAYSFhSEsLAxqamo4evQo1NXVERoaCnd3dxQUFEBWVhaRkZHYuHEjxsfHmQdXa2srtm3bhv7+fvT394OdnR3s7OxwdHRkxiBtbW34559/oKioiJ8/f8LDwwMvXrzAkiVLmB2Ds7MzzM3NUVpairGxMVRUVODMmTN4//49srKyoKKigh07duDJkydIS0tj7CS3bt3C06dPceXKFUhISMDAwABtbW1oa2vDtm3bYG9vz+wURkZGcOfOHXR2doKXlxdWVlbYsGED3r59i6mpKfz48QMRERH49esXODg4YGBggLlz54KVlRXOzs7o6OjAzp07kZWVhaqqKrx8+RJHjx6FgoIC1q9fjxMnTmDPnj0oKytjlpZ1dXXw8/NDYWEhAgMDmWqypKQkE0lTVVXFrl27kJCQAEtLSyQlJYGXlxcRERG4cuUKampq4O3tjf7+flRVVWFmZgb6+voYGxtDdnY2pKWl0dPTA2lpafzzzz9MBjkxMRGOjo5wdXXF8PAwqqurUVVVhYKCAoZOp6enh9nZWXz9+hVmZmYYHBxEfn4+7ty5A0lJSRgYGOD169eoqqpi4nB/gFXGxsbM6PCPTfuPGby8vBwdHR1YsGABLl68CCUlJbx58waysrKQl5fH9+/fMTk5ierqagwNDaG7uxvl5eX4+PHj/80cMTAwAAEBASQlJaG2thatra3o6uqCsbExjh49irq6OuzYsQM6OjoIDQ1FRUUFTExM0NHRgdLSUmRmZjL/kLy8vOjt7cXZs2dhZGSEEydOIDc3F8nJyRgaGoKrqyt+/vwJFhYWzJ8/Hz9//kRJSQkCAwNx6dIlyMjI4P79+9DR0UFDQwPk5OSwZcsWvH79GlNTU6itLoBZpgAAFRFJREFUrUVVVRXa29sxPT0NT09P5gbm5OSEoqIixMXFISsrCwAwNDQEZ2dneHt7Y2pqChEREbC2tkZ4eDi4ubkhLS2Nz58/w9XVFYsXL4aQkBBu3ryJ3Nxc1NXVwd/fHx0dHXBycmKoRJaWltizZw9qa2thZmaG/fv3Q15eHhYWFjh37hwEBATw/PlzbNiwAdevX4eZmRkzq+3o6GBuVGpqamBlZUVwcDBsbW1BRDhz5gzu37+PmZkZXL16FS4uLrC0tISYmBhWrlyJ6upq+Pr64smTJ2htbcWcOXNw5coVhnrm6+uL58+fw8HBAbW1tUxHvLu7GwUFBcjJyUFaWhrU1dWxe/duXLp0CR4eHti+fTtYWFiwbds29PX14a+//mJU1nV1dQgPD4epqSm4ubnR398PZ2dnFBQU4MCBAygoKICXlxdKS0shLS2Nvr4+LFu2DOfOnUNQUBBCQ0Ph5uaG0NBQ5OXlgY2NDfHx8Xj37h00NTWRkZEBcXFxZlkiJCSErq4uJCYmgpOTk0FcOjs7Q0pKClNTU/j8+TMcHR0xf/58sLOzg4ODA3v27EFISAiTUKitrUVOTg58fHxgZ2cHFhYWnDhxAt7e3sxbxtq1a/Hp0ycGQPSHTDU5OQl/f384OTlBU1MT/Pz8kJOTg729PQIDAyEnJwceHh7k5ORATEwMXFxcqKurw5o1a1BQUIDTp0+DhYUFBw8eBCcnJ/MA27x5Mz5+/IgFCxYgOTkZXV1dGB0dxbFjx3Djxg1UV1cDAFM60dDQgLGxMU6ePMkYDX7//g0TExP4+fkhMzMT0tLSEBERQVVVFRoaGqCtrY2pqSmcOnWKYTAvXrwYAgICiIiIgKenJ2ZnZ3HkyBF0dHSgvr4et2/fxq5du2Bvbw9TU1PEx8cz9fuioiL09/dDSEgIsbGx+P37N4yNjaGhocHwmxMSErB+/XqMj4/jr7/+Qk5ODkJDQ6GiogJlZWU8ePAAurq6THbeysoK0dHRuHXrFkRFRTExMYGFCxciMTERBw4cADc3N/bu3Ytv375BUlISCxcuxLt37zA1NYXU1FQ8fPgQAHDx4kUcP36cYRxbW1vDyMgIioqKkJWVxYsXLyAnJ4cNGzagqamJKTMpKysjIyMDCQkJ8PLywufPn5GQkAARERF8+vQJT548QVVVFZqampCRkYHfv39jZmYGeXl5DNCro6Pjv47V/57pxsfH07Jly0hcXJzWr19PQkJCjLpYQECA7OzsaOnSpRQbG0tTU1P06tUr4uDgoMrKSioqKiI2NjaKiYkhWVlZOn78OL1+/Zr09fXpxYsXxMXFRX19fRQZGUnfvn0jUVFR8vLyotevX5OgoCBpamqStLQ0ycvL0+7du6m7u5tcXV3p8OHD1NLSQuPj4xQZGUlnz56lqKgoOnr0KGVnZ1N1dTVpaWlRdHQ0WVhYUGBgIMnKylJHRwfJyclRWFgYqaqq0uzsLNXX15OqqioFBwfTy5cvqby8nA4ePEjKysq0ZMkSJkvp4eFBgYGBZG1tTdu3byczMzOSlZUlX19fEhUVpebmZvr06RNFRUVRSUkJ9ff3M5pxb29vSklJIR4eHvr69St5e3uTvb09RUZGMnPvhoYG6u7upvT0dNLR0SEuLi6Kjo6m/Px8UlJSosjISHJycqKOjg5G425iYkIdHR1UUlJC/Pz81N/fT4cOHaLs7GyanZ0lTk5Oev78Oeno6FBPTw9JSEhQY2MjXbt2jWxsbCg3N5fJECsrK9PFixcpODiYzpw5Q+np6VRUVETz58+npKQkOn/+PJ05c4Z4eHiopaWFXF1diZubm5SVlYmIqLi4mNrb26mmpoa0tbUpJiaG0tPTydbWlkpLS0lVVZUaGhro4sWLtH37dpozZw41NDSQuro6cXNzk4uLC4mLi5O0tDSJiIhQc3Mz/fjxg4KCguj69es0MDBAr1+/ppGREWpqaqLZ2Vmqrq4mPj4+am5uZj6zlJQUkpeXp7S0NLKxsaFt27YRGxsbNTY2UlBQEFVUVBAvLy9lZmYSFxcX2dvbk6enJw0MDJCenh6VlpZSYWEhvXz5kmpqaigmJoacnZ0JAA0MDFBvby/l5+fT5s2bqbS0lNauXUtycnJ06NAhRpF++PBhxgxiYmJC8+bNYwwNeXl5pKGhQUZGRvThwwdqaGigRYsW0evXr2l8fJyysrLoxYsXJCcnRyYmJrR7927q7+8nBQUFMjY2phcvXtDU1BRJSEjQ5cuXyd3dnaqrq2l0dJRiYmKooqKCeHh4yM/Pj0ZGRmhycpI8PDyosrKStLS0KDg4mBobG+nGjRuUmJhIrq6uFBwcTC0tLSQhIUETExM0MDBAq1atovr6egoODqbCwkLS1NQkFxcXGhsbo+TkZMrJyaHZ2VmaM2cOPXz4kFRVVenChQsEgE6fPk3u7u7k7e1N+fn5lJubS/39/bRgwQKamJigTZs2kaenJw0NDZGsrCyNjo6SqqoqJSYm0vv37+nVq1ckJiZG2tra9PTpU1JXV6erV6/S79+/6efPnzQ7O0uurq5kampKbGxsdO7cOXrx4gXNzMwQGxsbHT9+nDg5OSkmJoYmJibo8OHD9OTJE2ppaSFtbW3i4+NjhKf29vYUFRVF3d3dZGdnRxYWFhQQEEAfP34kR0dHyszMJA4ODlq0aBE5OTkRLy8vSUtLk42NDZmampKsrCwlJiaSt7c3RURE0NKlS8nPz48kJCT+c6b7n4fu8uXL6cOHD5SRkUHLli2j8PBwUlJSonnz5lFSUhJduXKFrl+/To2NjRQQEEDi4uLk4+ND9+7do02bNlFFRQVpampSfHw8cXNzk5ycHG3dupXk5eWpubmZfH19KS4ujoKCgmjFihV0+/Zt4ufnJykpKero6GAKD2JiYtTc3MyE+bW1tam9vZ3u3btHg4ODZGlpSVJSUuTo6EjZ2dlkbm5ODg4O1NLSQqKiorRq1SratGkTPXr0iFasWEHLly+n//+8IZozZw7x8vKSoKAg6evrk6WlJaWkpNCNGzcoJiaGzp07R79+/aL29naqrKykpKQkCgkJoadPn5K9vT2JiYlRRkYGbd26lUJDQyk8PJzCw8NJXV2diouLyd3dnT5+/EicnJwUHR1NCgoKJC0tTcLCwjR//nx6//49LV26lJSUlEhKSopycnLo+fPn9ObNG3ry5AkFBwfT+fPnSVNTk3p7e+nkyZM0b948CgwMpIGBAWppaaGuri5ycXEhPT09YmdnJ0NDQ+rq6iJxcXHKyMigtLQ0+vDhA4mLi1NzczNNT0+TsbExiYiIMNoZaWlpam9vp+PHjzNB++joaBISEiJZWVkiIuLg4CB9fX2qrKwkXV1d4uHhoVWrVhERUUpKCklKShInJyfJyMjQ7Owsbd++nQwMDGh2dpZKSkrI3d2dtm/fTseOHaP8/HxKTk4mZWVlSk9Pp4GBATp27Bjl5eXRoUOHSENDgywsLOjTp0+UkpJCNjY2lJiYSIcPHyYLCwvi4eGh6elp6ujooJCQEIqKiqLjx4/T7Owsffz4ke7du0cWFhakpKRE6urqFBYWRl1dXaShoUHm5uYUFxdHgoKCdP36ddLX16f58+fTP//8QytWrKDv378z5l1XV1eysLBg/g6XLFlCwsLCVFBQQPLy8rR161ZKT0+nc+fO0aJFi0heXp6UlJRodHSUsrKySEFBgaKiooifn5/09fUpKCiImpubydbWlpydnSk0NJQ5PF++fEkGBgb0+vVr8vX1JQcHB0pMTCR3d3caHR2lHz9+UElJCaWmptKTJ09IRESEBAQEyNbWliorK8nb25skJSWJg4ODli1bRvHx8bRq1SpydnYmV1dXevv2LbMQXrp0KTU3N1N5eTm1traSh4cH/fjxg0ZGRpilbHR0NBkYGFB0dDSJiYmRoaEhCQsLU2VlJYWHhxM/Pz+NjIwQDw8Po8uJiooidnZ2EhMTo/r6+v/X3t3/VFn/cRx/ghE3sVFgKGPlmTKgydnpFA7GXUCQgaYzykSCDWQRjgFjlNxpBWOgJIIHRI42M04gkIYHUAmBwemARawbrGRCgHi0A7IcJyAg/PTDd14/fn9ozZ+ux39wtut6b+d637zE+Pi4mJ6eFv7+/uKJJ54QfX19YnR0VHR3d4upqSkREhIiRkZGRGxsrLh7967o6uoS69atE729vcJsNouKigphsVhEXV2dWFxcFK+++qrw9fUVxcXFwsPDQ/j6+gpPT09hb28vioqKxPDwsGhqahIHDhwQFotF3Lp1S7i6uoqQkBAxNTUlCgsLxczMjDhy5IiIiooSCoVCTExMiP7+fmEymURJSYmYmpoS8/PzYmZmRnz88ceiqKhIXL58WWRkZIilpSUxOzsrGhoaRG5urrh3754YHBwUFotFbN68WRw+fFg0NDT8+0ba6dOnxa5du9BqtWg0GmkWdXV1lY6ODgApODIrKwtbW1t2795NVVUVZ8+e5d69e/T392MwGDAajczNzUkrqsXFxTg4OHDlyhXc3Nz4+eefSU5ORqfT8eSTTxIeHo6npydms5kbN26g1+uxt7fHZDKxtLRERUUFPT09vPfee7S2tkrNq6CgIGpqatDr9QwMDBAWFsbzzz/PyZMn2bZtG9u3b6empoaYmBgGBgawsbHh+vXrZGdn4+zsjFarxcvLi/v371NRUcHU1BTLy8tS9M/Q0BBlZWW89dZb7NmzR0oPPn78OKmpqdKI2Z07d9i6dSvr16/n0qVLrKyssHXrVgYHB7G3t5fOzVVWVuLv7091dTV6vZ59+/YRHh6OQqFgdnaWyMhIQkNDeeyxx3B1dcVisVBfX8/8/DzNzc2kpKTw008/YWtrywsvvMDMzAybNm3CZDJJt2GLioqIjo5GoVBgY2NDTk4OeXl5pKSk0NraSkREBJ999hmrq6solUouXbrE0NAQCoWC/v5+vv76a+zt7Tlw4AARERHcvXuXd955BysrK3Jzc8nPz0ej0aDT6WhpaWF2dpaCggISEhIIDAyU0gL8/Pz466+/iIiIkGYvH567HBsbIzk5Ga1Wy5kzZ3Bzc0OhUDA/P4+fnx9RUVF4e3tz5swZXnzxRerr6zEYDFL69Llz51hdXcXX15fo6Ghqa2tpbm7GycmJN998k5aWFj766CNeeuklVlZWSE1N5datW1IMzsWLFzl27Bizs7N4eHgwPT1NcHAwv//+Oxs2bMDHx4dnnnlGOgLz8EYCwBdffIGXlxfz8/PEx8dz/PhxEhMTKSgowN3dndjYWNrb26X16IWFBfr6+sjLy+Pq1ascO3YMo9GIyWRCo9FQWFiIq6sr6enpnDhxgqCgIGxtbbG2tiYnJwdHR0csFgt37tzh2Wefpb29ndDQUD7//HMpOXt4eJi6ujry8vLIzs5Go9GQn59PVlYWFy5cQKlUSu+kRqPB0dGR5eVltmzZQlxcHI6OjoSEhNDW1sZXX33Fzp07+eGHHygoKKCxsRGVSsWmTZvw8vKSGp8uLi5SUy8qKoqGhgbOnz/P4OAgu3fvJikpSfprvri4iL29PT09PVRXV3Po0CEKCwtRq9XodDpiYmJYXl5mcnISvV4vfe9ev349QUFBBAcH09TUxHPPPUdDQwMqlYrOzk6Kiop4+umnaWlp4ZtvvmHNmjWo1WopsDUwMJCKigpKSkrYsmUL4+PjNDc34+zszLfffovRaGRpaYmjR49iZWUlPYujo6Po9XppCebQoUNs3LiRuro6MjIyeO2110hNTSUpKQkHBwcsFsu/a6S9/vrr4sMPPyQ6Oprg4GBsbW0ZGhrC3d2d27dvY2VlRVpamtRZbmpq4vz583h7ezM3N8f4+DinT5/m2rVruLm5ERgYiFarZX5+HicnJwYGBlAqlWi1Wtzd3QkLC5MOkHR3d3PlyhV+/PFH/v77b65du0ZcXBynTp2S0mkDAgJ48OABXV1d0pyjjY0Nc3NzjIyMUFhYyLvvvounpydvvPEGExMTJCQk0NfXJ/2mmpoaXFxcGBsbY3l5WUqTaGtrQ6VScfToUdasWSM9CBMTE7i5uTE7O8vIyAjwv5sND+Oba2pqsLOzw9PTk6tXr1JUVERrayuvvPIKLi4uqFQqXF1dWV5eljKWHn/8cXx8fFhcXOTUqVN88sknAGRlZVFfX8/333+PXq/Hzs4Og8FAbW0tHh4eJCQk8NRTT5Gens7o6CgGg0GaEa6srKSqqorMzEz27t1LaWmpVMyNRiPJyclUVVVRWVlJREQEb7/9Nk5OTrS0tDA5OcmGDRuorq5GrVbT1dVFaWkpQgjKysqIj49nZmaGs2fPYjAY8Pb2pquri6SkJOrq6hgfHycqKoqAgAByc3M5ePAga9eupaqqCqVSycrKCpcvX5bSJjo6OqTL/42NjVJCSHl5Od3d3YSFhVFeXk5aWpo0GdDR0cH+/fvp7OyUmihKpZJPP/0UNzc3amtrSUtLk75lm81mSkpKuH37trSf39zczPbt25menqa9vR2z2YxWq8VgMBATE0NJSQlxcXH09PSg0+kIDw8nOTlZarKFh4fT2dkpvWgPl1fi4+NZWFhg48aNDA4O4uPjw86dOzl8+LB0n3nz5s3ExcVx8+ZN1q1bJ6VOfPDBB+zatQuz2UxPTw9qtZr9+/ej0+lIT09HrVbz8ssv09vbS2NjIydPnuTIkSPs27cPOzs7wsLCePDgAVNTU6jVaq5fv46Xlxft7e3S3KuzszPR0dFkZ2fj4OBAQUEBDg4ONDY28uuvvxIZGckff/yBp6cnGRkZpKSk0NnZiUKhIDQ0lICAAG7cuEFOTg5GoxGVSsXKygoXLlxgx44dDA0Nce7cOSYnJ2loaCAzM5MTJ05IF/tGRkb47bffGB8fx2KxkJOTw3fffUd5eTl79uwhNjYWPz8/TCYT77//PgsLCyQmJuLh4UF1dTUajQaj0cjw8DCZmZlkZWVx8+ZNpqensba2xmQy8eWXX0rnYw8ePIi1tTVhYWH4+/tLt6J9fHy4ePEiiYmJ7Nixg7Vr17J3716Sk5P55ZdfyMnJITIykvv371NWVoZWq6W4uBh/f3+ioqIwGAyMjY2Rn5/Pn3/+iY2NDb29vbS1tVFaWvrviq5MJpPJ/lv/d3pBJpPJZP8tuejKZDLZIyQXXZlMJnuE5KIrk8lkj5BcdGUymewRkouuTCaTPUL/AGaOsvHm3OoHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, (ax_orig, ax_template, ax_corr) = plt.subplots(3, 1,figsize=(6, 15))\n", + "\n", + "ax_orig.imshow(gray_image, cmap='gray')\n", + "ax_orig.set_title('Chicago City')\n", + "ax_orig.set_axis_off()\n", + "\n", + "ax_template.imshow(gray_willis, cmap='gray')\n", + "ax_template.set_title('Willis Tower')\n", + "ax_template.set_axis_off()\n", + "\n", + "ax_corr.imshow(corr, cmap='gray')\n", + "ax_corr.set_title('Cross-correlation')\n", + "ax_corr.set_axis_off()\n", + "\n", + "ax_orig.plot(x, y, 'ro')\n", + "\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#PARKING LOT\n", + "#stitched = cv2.copyMakeBorder(stitched, 10, 10, 10, 10, cv2.BORDER_CONSTANT, (0, 0, 0))\n", + "\n", + "# gray = cv2.cvtColor(stitched, cv2.COLOR_BGR2GRAY)\n", + "# thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)[1]\n", + "\n", + "# cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,\n", + "# cv2.CHAIN_APPROX_SIMPLE)\n", + "# cnts = imutils.grab_contours(cnts)\n", + "# c = max(cnts, key=cv2.contourArea)\n", + "\n", + "# mask = np.zeros(thresh.shape, dtype=\"uint8\")\n", + "# (x, y, w, h) = cv2.boundingRect(c)\n", + "# cv2.rectangle(mask, (x, y), (x + w, y + h), 255, -1)\n", + "\n", + "# minRect = mask.copy()\n", + "# sub = mask.copy()\n", + "# while cv2.countNonZero(sub) > 0:\n", + "# minRect = cv2.erode(minRect, None)\n", + "# sub = cv2.subtract(minRect, thresh)\n", + "\n", + "# cnts = cv2.findContours(minRect.copy(), cv2.RETR_EXTERNAL,\n", + "# cv2.CHAIN_APPROX_SIMPLE)\n", + "# cnts = imutils.grab_contours(cnts)\n", + "# c = max(cnts, key=cv2.contourArea)\n", + "# (x, y, w, h) = cv2.boundingRect(c)\n", + "\n", + "# stitched = stitched[y:y + h, x:x + w]" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/challenges/Challenge 4 - Panorama.py b/challenges/Challenge 4 - Panorama.py new file mode 100644 index 0000000..ca219f9 --- /dev/null +++ b/challenges/Challenge 4 - Panorama.py @@ -0,0 +1,196 @@ +#!/usr/bin/env python +# coding: utf-8 + +# In[1]: + + +import numpy as np +import cv2 +import glob +from scipy import signal, misc +import matplotlib.pyplot as plt + + +# In[2]: + + +paths = sorted(glob.glob('../data/Photos/IMG*')) +print(paths) + + +# In[3]: + + +images = [] + +for kImage in paths: + image = cv2.imread(kImage) + print(image.shape) + ## + images.append(image) + + +# In[34]: + + +stitcher = cv2.createStitcher() +(status, stitched) = stitcher.stitch(images) +print(status) +print(stitched.shape) + + +# In[35]: + + +plt.imshow(stitched) + + +# In[36]: + + +willis = stitched[750:1400,6400:6600,:] + + +# In[47]: + + +border = 600 +stitched_new = stitched[border:stitched.shape[0]-border,3500+border:stitched.shape[1]-border,:] + + +# In[48]: + + +plt.imshow(stitched_new) + + +# In[49]: + + +cv2.imwrite('test.jpg', stitched_new) + +# Careful young man.. this is a dangerous road ahead.. +# cv2.imshow("Stitched", stitched) +# cv2.waitKey(0) + + +# In[70]: + + + +rows, cols = stitched_new.shape[:2] + +vig_size = 3000 + +# generating vignette mask using Gaussian kernels +kernel_x = cv2.getGaussianKernel(cols,vig_size) +kernel_y = cv2.getGaussianKernel(rows,vig_size) +kernel = kernel_y * kernel_x.T +mask = 255 * kernel / np.linalg.norm(kernel) +output = np.copy(stitched_new) + +# applying the mask to each channel in the input image +for i in range(3): + output[:,:,i] = output[:,:,i] * mask + +plt.imshow(output) + +# cv2.imshow('Original', img) +# cv2.imshow('Vignette', output) +# cv2.waitKey(0) + + +# In[71]: + + +#lets find the willis tower +scale = .2 +gray_image = cv2.cvtColor(output, cv2.COLOR_BGR2GRAY) +gray_willis = cv2.cvtColor(willis, cv2.COLOR_BGR2GRAY) + +gray_image = cv2.resize(gray_image,None,fx=scale,fy=scale) +gray_willis = cv2.resize(gray_willis,None,fx=scale,fy=scale) + + +# In[72]: + + +print(gray_image.shape, gray_willis.shape) + + +# In[73]: + + + +noise_level = 0 +gray_willis_noise = gray_willis + np.random.randn(*gray_willis.shape) * noise_level + +plt.imshow(gray_willis_noise) + + +# In[74]: + + +corr = signal.correlate2d(gray_image, gray_willis, boundary='fill', mode='same') + + +# In[75]: + + +y, x = np.unravel_index(np.argmax(corr), corr.shape) + + +# In[76]: + + +fig, (ax_orig, ax_template, ax_corr) = plt.subplots(3, 1,figsize=(6, 15)) + +ax_orig.imshow(gray_image, cmap='gray') +ax_orig.set_title('Chicago City') +ax_orig.set_axis_off() + +ax_template.imshow(gray_willis, cmap='gray') +ax_template.set_title('Willis Tower') +ax_template.set_axis_off() + +ax_corr.imshow(corr, cmap='gray') +ax_corr.set_title('Cross-correlation') +ax_corr.set_axis_off() + +ax_orig.plot(x, y, 'ro') + +fig.show() + + +# In[ ]: + + +#PARKING LOT +#stitched = cv2.copyMakeBorder(stitched, 10, 10, 10, 10, cv2.BORDER_CONSTANT, (0, 0, 0)) + +# gray = cv2.cvtColor(stitched, cv2.COLOR_BGR2GRAY) +# thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)[1] + +# cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, +# cv2.CHAIN_APPROX_SIMPLE) +# cnts = imutils.grab_contours(cnts) +# c = max(cnts, key=cv2.contourArea) + +# mask = np.zeros(thresh.shape, dtype="uint8") +# (x, y, w, h) = cv2.boundingRect(c) +# cv2.rectangle(mask, (x, y), (x + w, y + h), 255, -1) + +# minRect = mask.copy() +# sub = mask.copy() +# while cv2.countNonZero(sub) > 0: +# minRect = cv2.erode(minRect, None) +# sub = cv2.subtract(minRect, thresh) + +# cnts = cv2.findContours(minRect.copy(), cv2.RETR_EXTERNAL, +# cv2.CHAIN_APPROX_SIMPLE) +# cnts = imutils.grab_contours(cnts) +# c = max(cnts, key=cv2.contourArea) +# (x, y, w, h) = cv2.boundingRect(c) + +# stitched = stitched[y:y + h, x:x + w] + diff --git a/data/Photos/IMG_20200602_164740.jpg b/data/Photos/IMG_20200602_164740.jpg new file mode 100644 index 0000000..75ae2a2 Binary files /dev/null and b/data/Photos/IMG_20200602_164740.jpg differ diff --git a/data/Photos/IMG_20200602_164742.jpg b/data/Photos/IMG_20200602_164742.jpg new file mode 100644 index 0000000..0e61ac3 Binary files /dev/null and b/data/Photos/IMG_20200602_164742.jpg differ diff --git a/data/Photos/IMG_20200602_164745.jpg b/data/Photos/IMG_20200602_164745.jpg new file mode 100644 index 0000000..d172b2e Binary files /dev/null and b/data/Photos/IMG_20200602_164745.jpg differ diff --git a/data/Photos/IMG_20200602_164747.jpg b/data/Photos/IMG_20200602_164747.jpg new file mode 100644 index 0000000..86f16e6 Binary files /dev/null and b/data/Photos/IMG_20200602_164747.jpg differ diff --git a/data/Photos/IMG_20200602_164749.jpg b/data/Photos/IMG_20200602_164749.jpg new file mode 100644 index 0000000..5df73f0 Binary files /dev/null and b/data/Photos/IMG_20200602_164749.jpg differ diff --git a/data/__init__.py b/data/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/data/abba.png b/data/abba.png new file mode 100644 index 0000000..bc1657f Binary files /dev/null and b/data/abba.png differ diff --git a/data/class.json b/data/class.json new file mode 100644 index 0000000..e2c3ddf --- /dev/null +++ b/data/class.json @@ -0,0 +1 @@ +{"age":{"0":31,"1":28,"2":28},"job":{"0":"data scientist","1":"data scientist","2":null},"city":{"0":"chicago","1":"new york","2":null}} \ No newline at end of file diff --git a/data/haarcascade_frontalface_default.xml b/data/haarcascade_frontalface_default.xml new file mode 100644 index 0000000..cbd1aa8 --- /dev/null +++ b/data/haarcascade_frontalface_default.xml @@ -0,0 +1,33314 @@ + + + +BOOST + HAAR + 24 + 24 + + 211 + + 0 + 25 + + <_> + 9 + -5.0425500869750977e+00 + + <_> + + 0 -1 0 -3.1511999666690826e-02 + + 2.0875380039215088e+00 -2.2172100543975830e+00 + <_> + + 0 -1 1 1.2396000325679779e-02 + + -1.8633940219879150e+00 1.3272049427032471e+00 + <_> + + 0 -1 2 2.1927999332547188e-02 + + -1.5105249881744385e+00 1.0625729560852051e+00 + <_> + + 0 -1 3 5.7529998011887074e-03 + + -8.7463897466659546e-01 1.1760339736938477e+00 + <_> + + 0 -1 4 1.5014000236988068e-02 + + -7.7945697307586670e-01 1.2608419656753540e+00 + <_> + + 0 -1 5 9.9371001124382019e-02 + + 5.5751299858093262e-01 -1.8743000030517578e+00 + <_> + + 0 -1 6 2.7340000960975885e-03 + + -1.6911929845809937e+00 4.4009700417518616e-01 + <_> + + 0 -1 7 -1.8859000876545906e-02 + + -1.4769539833068848e+00 4.4350099563598633e-01 + <_> + + 0 -1 8 5.9739998541772366e-03 + + -8.5909199714660645e-01 8.5255599021911621e-01 + <_> + 16 + -4.9842400550842285e+00 + + <_> + + 0 -1 9 -2.1110000088810921e-02 + + 1.2435649633407593e+00 -1.5713009834289551e+00 + <_> + + 0 -1 10 2.0355999469757080e-02 + + -1.6204780340194702e+00 1.1817760467529297e+00 + <_> + + 0 -1 11 2.1308999508619308e-02 + + -1.9415930509567261e+00 7.0069098472595215e-01 + <_> + + 0 -1 12 9.1660000383853912e-02 + + -5.5670100450515747e-01 1.7284419536590576e+00 + <_> + + 0 -1 13 3.6288000643253326e-02 + + 2.6763799786567688e-01 -2.1831810474395752e+00 + <_> + + 0 -1 14 -1.9109999760985374e-02 + + -2.6730210781097412e+00 4.5670801401138306e-01 + <_> + + 0 -1 15 8.2539999857544899e-03 + + -1.0852910280227661e+00 5.3564202785491943e-01 + <_> + + 0 -1 16 1.8355000764131546e-02 + + -3.5200199484825134e-01 9.3339198827743530e-01 + <_> + + 0 -1 17 -7.0569999516010284e-03 + + 9.2782098054885864e-01 -6.6349899768829346e-01 + <_> + + 0 -1 18 -9.8770000040531158e-03 + + 1.1577470302581787e+00 -2.9774799942970276e-01 + <_> + + 0 -1 19 1.5814000740647316e-02 + + -4.1960600018501282e-01 1.3576040267944336e+00 + <_> + + 0 -1 20 -2.0700000226497650e-02 + + 1.4590020179748535e+00 -1.9739399850368500e-01 + <_> + + 0 -1 21 -1.3760800659656525e-01 + + 1.1186759471893311e+00 -5.2915501594543457e-01 + <_> + + 0 -1 22 1.4318999834358692e-02 + + -3.5127198696136475e-01 1.1440860033035278e+00 + <_> + + 0 -1 23 1.0253000073134899e-02 + + -6.0850602388381958e-01 7.7098500728607178e-01 + <_> + + 0 -1 24 9.1508001089096069e-02 + + 3.8817799091339111e-01 -1.5122940540313721e+00 + <_> + 27 + -4.6551899909973145e+00 + + <_> + + 0 -1 25 6.9747000932693481e-02 + + -1.0130879878997803e+00 1.4687349796295166e+00 + <_> + + 0 -1 26 3.1502999365329742e-02 + + -1.6463639736175537e+00 1.0000629425048828e+00 + <_> + + 0 -1 27 1.4260999858379364e-02 + + 4.6480301022529602e-01 -1.5959889888763428e+00 + <_> + + 0 -1 28 1.4453000389039516e-02 + + -6.5511900186538696e-01 8.3021801710128784e-01 + <_> + + 0 -1 29 -3.0509999487549067e-03 + + -1.3982310295104980e+00 4.2550599575042725e-01 + <_> + + 0 -1 30 3.2722998410463333e-02 + + -5.0702601671218872e-01 1.0526109933853149e+00 + <_> + + 0 -1 31 -7.2960001416504383e-03 + + 3.6356899142265320e-01 -1.3464889526367188e+00 + <_> + + 0 -1 32 5.0425000488758087e-02 + + -3.0461400747299194e-01 1.4504129886627197e+00 + <_> + + 0 -1 33 4.6879000961780548e-02 + + -4.0286201238632202e-01 1.2145609855651855e+00 + <_> + + 0 -1 34 -6.9358997046947479e-02 + + 1.0539360046386719e+00 -4.5719701051712036e-01 + <_> + + 0 -1 35 -4.9033999443054199e-02 + + -1.6253089904785156e+00 1.5378999710083008e-01 + <_> + + 0 -1 36 8.4827996790409088e-02 + + 2.8402999043464661e-01 -1.5662059783935547e+00 + <_> + + 0 -1 37 -1.7229999648407102e-03 + + -1.0147459506988525e+00 2.3294800519943237e-01 + <_> + + 0 -1 38 1.1562199890613556e-01 + + -1.6732899844646454e-01 1.2804069519042969e+00 + <_> + + 0 -1 39 -5.1279999315738678e-02 + + 1.5162390470504761e+00 -3.0271100997924805e-01 + <_> + + 0 -1 40 -4.2706999927759171e-02 + + 1.7631920576095581e+00 -5.1832001656293869e-02 + <_> + + 0 -1 41 3.7178099155426025e-01 + + -3.1389200687408447e-01 1.5357979536056519e+00 + <_> + + 0 -1 42 1.9412999972701073e-02 + + -1.0017599910497665e-01 9.3655401468276978e-01 + <_> + + 0 -1 43 1.7439000308513641e-02 + + -4.0379899740219116e-01 9.6293002367019653e-01 + <_> + + 0 -1 44 3.9638999849557877e-02 + + 1.7039099335670471e-01 -2.9602990150451660e+00 + <_> + + 0 -1 45 -9.1469995677471161e-03 + + 8.8786798715591431e-01 -4.3818700313568115e-01 + <_> + + 0 -1 46 1.7219999572262168e-03 + + -3.7218600511550903e-01 4.0018901228904724e-01 + <_> + + 0 -1 47 3.0231000855565071e-02 + + 6.5924003720283508e-02 -2.6469180583953857e+00 + <_> + + 0 -1 48 -7.8795999288558960e-02 + + -1.7491459846496582e+00 2.8475299477577209e-01 + <_> + + 0 -1 49 2.1110000088810921e-03 + + -9.3908101320266724e-01 2.3205199837684631e-01 + <_> + + 0 -1 50 2.7091000229120255e-02 + + -5.2664000540971756e-02 1.0756820440292358e+00 + <_> + + 0 -1 51 -4.4964998960494995e-02 + + -1.8294479846954346e+00 9.9561996757984161e-02 + <_> + 32 + -4.4531588554382324e+00 + + <_> + + 0 -1 52 -6.5701000392436981e-02 + + 1.1558510065078735e+00 -1.0716359615325928e+00 + <_> + + 0 -1 53 1.5839999541640282e-02 + + -1.5634720325469971e+00 7.6877099275588989e-01 + <_> + + 0 -1 54 1.4570899307727814e-01 + + -5.7450097799301147e-01 1.3808720111846924e+00 + <_> + + 0 -1 55 6.1389999464154243e-03 + + -1.4570560455322266e+00 5.1610302925109863e-01 + <_> + + 0 -1 56 6.7179999314248562e-03 + + -8.3533602952957153e-01 5.8522200584411621e-01 + <_> + + 0 -1 57 1.8518000841140747e-02 + + -3.1312099099159241e-01 1.1696679592132568e+00 + <_> + + 0 -1 58 1.9958000630140305e-02 + + -4.3442600965499878e-01 9.5446902513504028e-01 + <_> + + 0 -1 59 -2.7755001187324524e-01 + + 1.4906179904937744e+00 -1.3815900683403015e-01 + <_> + + 0 -1 60 9.1859996318817139e-03 + + -9.6361500024795532e-01 2.7665498852729797e-01 + <_> + + 0 -1 61 -3.7737999111413956e-02 + + -2.4464108943939209e+00 2.3619599640369415e-01 + <_> + + 0 -1 62 1.8463000655174255e-02 + + 1.7539200186729431e-01 -1.3423130512237549e+00 + <_> + + 0 -1 63 -1.1114999651908875e-02 + + 4.8710799217224121e-01 -8.9851897954940796e-01 + <_> + + 0 -1 64 3.3927999436855316e-02 + + 1.7874200642108917e-01 -1.6342279911041260e+00 + <_> + + 0 -1 65 -3.5649001598358154e-02 + + -1.9607399702072144e+00 1.8102499842643738e-01 + <_> + + 0 -1 66 -1.1438000015914440e-02 + + 9.9010699987411499e-01 -3.8103199005126953e-01 + <_> + + 0 -1 67 -6.5236002206802368e-02 + + -2.5794160366058350e+00 2.4753600358963013e-01 + <_> + + 0 -1 68 -4.2272001504898071e-02 + + 1.4411840438842773e+00 -2.9508298635482788e-01 + <_> + + 0 -1 69 1.9219999667257071e-03 + + -4.9608600139617920e-01 6.3173598051071167e-01 + <_> + + 0 -1 70 -1.2921799719333649e-01 + + -2.3314270973205566e+00 5.4496999830007553e-02 + <_> + + 0 -1 71 2.2931000217795372e-02 + + -8.4447097778320312e-01 3.8738098740577698e-01 + <_> + + 0 -1 72 -3.4120000898838043e-02 + + -1.4431500434875488e+00 9.8422996699810028e-02 + <_> + + 0 -1 73 2.6223000138998032e-02 + + 1.8223099410533905e-01 -1.2586519718170166e+00 + <_> + + 0 -1 74 2.2236999124288559e-02 + + 6.9807998836040497e-02 -2.3820950984954834e+00 + <_> + + 0 -1 75 -5.8240001089870930e-03 + + 3.9332500100135803e-01 -2.7542799711227417e-01 + <_> + + 0 -1 76 4.3653000146150589e-02 + + 1.4832699298858643e-01 -1.1368780136108398e+00 + <_> + + 0 -1 77 5.7266999036073685e-02 + + 2.4628099799156189e-01 -1.2687400579452515e+00 + <_> + + 0 -1 78 2.3409998975694180e-03 + + -7.5448900461196899e-01 2.7163800597190857e-01 + <_> + + 0 -1 79 1.2996000237762928e-02 + + -3.6394900083541870e-01 7.0959198474884033e-01 + <_> + + 0 -1 80 -2.6517000049352646e-02 + + -2.3221859931945801e+00 3.5744000226259232e-02 + <_> + + 0 -1 81 -5.8400002308189869e-03 + + 4.2194300889968872e-01 -4.8184998333454132e-02 + <_> + + 0 -1 82 -1.6568999737501144e-02 + + 1.1099940538406372e+00 -3.4849700331687927e-01 + <_> + + 0 -1 83 -6.8157002329826355e-02 + + -3.3269989490509033e+00 2.1299000084400177e-01 + <_> + 52 + -4.3864588737487793e+00 + + <_> + + 0 -1 84 3.9974000304937363e-02 + + -1.2173449993133545e+00 1.0826710462570190e+00 + <_> + + 0 -1 85 1.8819500505924225e-01 + + -4.8289400339126587e-01 1.4045250415802002e+00 + <_> + + 0 -1 86 7.8027002513408661e-02 + + -1.0782150030136108e+00 7.4040299654006958e-01 + <_> + + 0 -1 87 1.1899999663000926e-04 + + -1.2019979953765869e+00 3.7749201059341431e-01 + <_> + + 0 -1 88 8.5056997835636139e-02 + + -4.3939098715782166e-01 1.2647340297698975e+00 + <_> + + 0 -1 89 8.9720003306865692e-03 + + -1.8440499901771545e-01 4.5726400613784790e-01 + <_> + + 0 -1 90 8.8120000436902046e-03 + + 3.0396699905395508e-01 -9.5991098880767822e-01 + <_> + + 0 -1 91 -2.3507999256253242e-02 + + 1.2487529516220093e+00 4.6227999031543732e-02 + <_> + + 0 -1 92 7.0039997808635235e-03 + + -5.9442102909088135e-01 5.3963297605514526e-01 + <_> + + 0 -1 93 3.3851999789476395e-02 + + 2.8496098518371582e-01 -1.4895249605178833e+00 + <_> + + 0 -1 94 -3.2530000898987055e-03 + + 4.8120799660682678e-01 -5.2712398767471313e-01 + <_> + + 0 -1 95 2.9097000136971474e-02 + + 2.6743900775909424e-01 -1.6007850170135498e+00 + <_> + + 0 -1 96 -8.4790000692009926e-03 + + -1.3107639551162720e+00 1.5243099629878998e-01 + <_> + + 0 -1 97 -1.0795000009238720e-02 + + 4.5613598823547363e-01 -7.2050899267196655e-01 + <_> + + 0 -1 98 -2.4620000272989273e-02 + + -1.7320619821548462e+00 6.8363003432750702e-02 + <_> + + 0 -1 99 3.7380000576376915e-03 + + -1.9303299486637115e-01 6.8243497610092163e-01 + <_> + + 0 -1 100 -1.2264000251889229e-02 + + -1.6095290184020996e+00 7.5268000364303589e-02 + <_> + + 0 -1 101 -4.8670000396668911e-03 + + 7.4286502599716187e-01 -2.1510200202465057e-01 + <_> + + 0 -1 102 7.6725997030735016e-02 + + -2.6835098862648010e-01 1.3094140291213989e+00 + <_> + + 0 -1 103 2.8578000143170357e-02 + + -5.8793000876903534e-02 1.2196329832077026e+00 + <_> + + 0 -1 104 1.9694000482559204e-02 + + -3.5142898559570312e-01 8.4926998615264893e-01 + <_> + + 0 -1 105 -2.9093999415636063e-02 + + -1.0507299900054932e+00 2.9806300997734070e-01 + <_> + + 0 -1 106 -2.9144000262022018e-02 + + 8.2547801733016968e-01 -3.2687199115753174e-01 + <_> + + 0 -1 107 1.9741000607609749e-02 + + 2.0452600717544556e-01 -8.3760201930999756e-01 + <_> + + 0 -1 108 4.3299999088048935e-03 + + 2.0577900111675262e-01 -6.6829800605773926e-01 + <_> + + 0 -1 109 -3.5500999540090561e-02 + + -1.2969900369644165e+00 1.3897499442100525e-01 + <_> + + 0 -1 110 -1.6172999516129494e-02 + + -1.3110569715499878e+00 7.5751997530460358e-02 + <_> + + 0 -1 111 -2.2151000797748566e-02 + + -1.0524389743804932e+00 1.9241100549697876e-01 + <_> + + 0 -1 112 -2.2707000374794006e-02 + + -1.3735309839248657e+00 6.6780999302864075e-02 + <_> + + 0 -1 113 1.6607999801635742e-02 + + -3.7135999649763107e-02 7.7846401929855347e-01 + <_> + + 0 -1 114 -1.3309000059962273e-02 + + -9.9850702285766602e-01 1.2248100340366364e-01 + <_> + + 0 -1 115 -3.3732000738382339e-02 + + 1.4461359977722168e+00 1.3151999562978745e-02 + <_> + + 0 -1 116 1.6935000196099281e-02 + + -3.7121298909187317e-01 5.2842199802398682e-01 + <_> + + 0 -1 117 3.3259999472647905e-03 + + -5.7568502426147461e-01 3.9261901378631592e-01 + <_> + + 0 -1 118 8.3644002676010132e-02 + + 1.6116000711917877e-02 -2.1173279285430908e+00 + <_> + + 0 -1 119 2.5785198807716370e-01 + + -8.1609003245830536e-02 9.8782497644424438e-01 + <_> + + 0 -1 120 -3.6566998809576035e-02 + + -1.1512110233306885e+00 9.6459001302719116e-02 + <_> + + 0 -1 121 -1.6445999965071678e-02 + + 3.7315499782562256e-01 -1.4585399627685547e-01 + <_> + + 0 -1 122 -3.7519999314099550e-03 + + 2.6179298758506775e-01 -5.8156698942184448e-01 + <_> + + 0 -1 123 -6.3660000450909138e-03 + + 7.5477397441864014e-01 -1.7055200040340424e-01 + <_> + + 0 -1 124 -3.8499999791383743e-03 + + 2.2653999924659729e-01 -6.3876402378082275e-01 + <_> + + 0 -1 125 -4.5494001358747482e-02 + + -1.2640299797058105e+00 2.5260698795318604e-01 + <_> + + 0 -1 126 -2.3941000923514366e-02 + + 8.7068402767181396e-01 -2.7104699611663818e-01 + <_> + + 0 -1 127 -7.7558003365993500e-02 + + -1.3901610374450684e+00 2.3612299561500549e-01 + <_> + + 0 -1 128 2.3614000529050827e-02 + + 6.6140003502368927e-02 -1.2645419836044312e+00 + <_> + + 0 -1 129 -2.5750000495463610e-03 + + -5.3841698169708252e-01 3.0379098653793335e-01 + <_> + + 0 -1 130 1.2010800093412399e-01 + + -3.5343000292778015e-01 5.2866202592849731e-01 + <_> + + 0 -1 131 2.2899999748915434e-03 + + -5.8701997995376587e-01 2.4061000347137451e-01 + <_> + + 0 -1 132 6.9716997444629669e-02 + + -3.3348900079727173e-01 5.1916301250457764e-01 + <_> + + 0 -1 133 -4.6670001000165939e-02 + + 6.9795399904251099e-01 -1.4895999804139137e-02 + <_> + + 0 -1 134 -5.0129000097513199e-02 + + 8.6146199703216553e-01 -2.5986000895500183e-01 + <_> + + 0 -1 135 3.0147999525070190e-02 + + 1.9332799315452576e-01 -5.9131097793579102e-01 + <_> + 53 + -4.1299300193786621e+00 + + <_> + + 0 -1 136 9.1085001826286316e-02 + + -8.9233100414276123e-01 1.0434230566024780e+00 + <_> + + 0 -1 137 1.2818999588489532e-02 + + -1.2597670555114746e+00 5.5317097902297974e-01 + <_> + + 0 -1 138 1.5931999310851097e-02 + + -8.6254400014877319e-01 6.3731801509857178e-01 + <_> + + 0 -1 139 2.2780001163482666e-03 + + -7.4639201164245605e-01 5.3155601024627686e-01 + <_> + + 0 -1 140 3.1840998679399490e-02 + + -1.2650489807128906e+00 3.6153900623321533e-01 + <_> + + 0 -1 141 2.6960000395774841e-03 + + -9.8290401697158813e-01 3.6013001203536987e-01 + <_> + + 0 -1 142 -1.2055000290274620e-02 + + 6.4068400859832764e-01 -5.0125002861022949e-01 + <_> + + 0 -1 143 2.1324999630451202e-02 + + -2.4034999310970306e-01 8.5448002815246582e-01 + <_> + + 0 -1 144 3.0486000701785088e-02 + + -3.4273600578308105e-01 1.1428849697113037e+00 + <_> + + 0 -1 145 -4.5079998672008514e-02 + + 1.0976949930191040e+00 -1.7974600195884705e-01 + <_> + + 0 -1 146 -7.1700997650623322e-02 + + 1.5735000371932983e+00 -3.1433498859405518e-01 + <_> + + 0 -1 147 5.9218000620603561e-02 + + -2.7582401037216187e-01 1.0448570251464844e+00 + <_> + + 0 -1 148 6.7010000348091125e-03 + + -1.0974019765853882e+00 1.9801199436187744e-01 + <_> + + 0 -1 149 4.1046999394893646e-02 + + 3.0547699332237244e-01 -1.3287999629974365e+00 + <_> + + 0 -1 150 -8.5499999113380909e-04 + + 2.5807100534439087e-01 -7.0052897930145264e-01 + <_> + + 0 -1 151 -3.0360000208020210e-02 + + -1.2306419610977173e+00 2.2609399259090424e-01 + <_> + + 0 -1 152 -1.2930000200867653e-02 + + 4.0758600831031799e-01 -5.1234501600265503e-01 + <_> + + 0 -1 153 3.7367999553680420e-02 + + -9.4755001366138458e-02 6.1765098571777344e-01 + <_> + + 0 -1 154 2.4434000253677368e-02 + + -4.1100600361824036e-01 4.7630500793457031e-01 + <_> + + 0 -1 155 5.7007998228073120e-02 + + 2.5249299407005310e-01 -6.8669801950454712e-01 + <_> + + 0 -1 156 -1.6313999891281128e-02 + + -9.3928402662277222e-01 1.1448100209236145e-01 + <_> + + 0 -1 157 -1.7648899555206299e-01 + + 1.2451089620590210e+00 -5.6519001722335815e-02 + <_> + + 0 -1 158 1.7614600062370300e-01 + + -3.2528200745582581e-01 8.2791501283645630e-01 + <_> + + 0 -1 159 -7.3910001665353775e-03 + + 3.4783700108528137e-01 -1.7929099500179291e-01 + <_> + + 0 -1 160 6.0890998691320419e-02 + + 5.5098000913858414e-02 -1.5480779409408569e+00 + <_> + + 0 -1 161 -2.9123000800609589e-02 + + -1.0255639553070068e+00 2.4106900393962860e-01 + <_> + + 0 -1 162 -4.5648999512195587e-02 + + 1.0301599502563477e+00 -3.1672099232673645e-01 + <_> + + 0 -1 163 3.7333000451326370e-02 + + 2.1620599925518036e-01 -8.2589900493621826e-01 + <_> + + 0 -1 164 -2.4411000311374664e-02 + + -1.5957959890365601e+00 5.1139000803232193e-02 + <_> + + 0 -1 165 -5.9806998819112778e-02 + + -1.0312290191650391e+00 1.3092300295829773e-01 + <_> + + 0 -1 166 -3.0106000602245331e-02 + + -1.4781630039215088e+00 3.7211999297142029e-02 + <_> + + 0 -1 167 7.4209999293088913e-03 + + -2.4024100601673126e-01 4.9333998560905457e-01 + <_> + + 0 -1 168 -2.1909999195486307e-03 + + 2.8941500186920166e-01 -5.7259601354598999e-01 + <_> + + 0 -1 169 2.0860999822616577e-02 + + -2.3148399591445923e-01 6.3765901327133179e-01 + <_> + + 0 -1 170 -6.6990000195801258e-03 + + -1.2107750177383423e+00 6.4018003642559052e-02 + <_> + + 0 -1 171 1.8758000805974007e-02 + + 2.4461300671100616e-01 -9.9786698818206787e-01 + <_> + + 0 -1 172 -4.4323001056909561e-02 + + -1.3699189424514771e+00 3.6051999777555466e-02 + <_> + + 0 -1 173 2.2859999909996986e-02 + + 2.1288399398326874e-01 -1.0397620201110840e+00 + <_> + + 0 -1 174 -9.8600005730986595e-04 + + 3.2443600893020630e-01 -5.4291802644729614e-01 + <_> + + 0 -1 175 1.7239000648260117e-02 + + -2.8323900699615479e-01 4.4468200206756592e-01 + <_> + + 0 -1 176 -3.4531001001596451e-02 + + -2.3107020854949951e+00 -3.1399999279528856e-03 + <_> + + 0 -1 177 6.7006997764110565e-02 + + 2.8715699911117554e-01 -6.4481002092361450e-01 + <_> + + 0 -1 178 2.3776899278163910e-01 + + -2.7174800634384155e-01 8.0219101905822754e-01 + <_> + + 0 -1 179 -1.2903000228106976e-02 + + -1.5317620038986206e+00 2.1423600614070892e-01 + <_> + + 0 -1 180 1.0514999739825726e-02 + + 7.7037997543811798e-02 -1.0581140518188477e+00 + <_> + + 0 -1 181 1.6969000920653343e-02 + + 1.4306700229644775e-01 -8.5828399658203125e-01 + <_> + + 0 -1 182 -7.2460002265870571e-03 + + -1.1020129919052124e+00 6.4906999468803406e-02 + <_> + + 0 -1 183 1.0556999593973160e-02 + + 1.3964000158011913e-02 6.3601499795913696e-01 + <_> + + 0 -1 184 6.1380001716315746e-03 + + -3.4545901417732239e-01 5.6296801567077637e-01 + <_> + + 0 -1 185 1.3158000074326992e-02 + + 1.9927300512790680e-01 -1.5040320158004761e+00 + <_> + + 0 -1 186 3.1310000922530890e-03 + + -4.0903699398040771e-01 3.7796398997306824e-01 + <_> + + 0 -1 187 -1.0920699685811996e-01 + + -2.2227079868316650e+00 1.2178199738264084e-01 + <_> + + 0 -1 188 8.1820003688335419e-03 + + -2.8652000427246094e-01 6.7890799045562744e-01 + <_> + 62 + -4.0218091011047363e+00 + + <_> + + 0 -1 189 3.1346999108791351e-02 + + -8.8884598016738892e-01 9.4936800003051758e-01 + <_> + + 0 -1 190 3.1918000429868698e-02 + + -1.1146880388259888e+00 4.8888999223709106e-01 + <_> + + 0 -1 191 6.5939999185502529e-03 + + -1.0097689628601074e+00 4.9723801016807556e-01 + <_> + + 0 -1 192 2.6148000732064247e-02 + + 2.5991299748420715e-01 -1.2537480592727661e+00 + <_> + + 0 -1 193 1.2845000252127647e-02 + + -5.7138597965240479e-01 5.9659498929977417e-01 + <_> + + 0 -1 194 2.6344999670982361e-02 + + -5.5203199386596680e-01 3.0217400193214417e-01 + <_> + + 0 -1 195 -1.5083000063896179e-02 + + -1.2871240377426147e+00 2.2354200482368469e-01 + <_> + + 0 -1 196 -3.8887001574039459e-02 + + 1.7425049543380737e+00 -9.9747002124786377e-02 + <_> + + 0 -1 197 -5.7029998861253262e-03 + + -1.0523240566253662e+00 1.8362599611282349e-01 + <_> + + 0 -1 198 -1.4860000228509307e-03 + + 5.6784200668334961e-01 -4.6742001175880432e-01 + <_> + + 0 -1 199 -2.8486000373959541e-02 + + 1.3082909584045410e+00 -2.6460900902748108e-01 + <_> + + 0 -1 200 6.6224999725818634e-02 + + -4.6210700273513794e-01 4.1749599575996399e-01 + <_> + + 0 -1 201 8.8569996878504753e-03 + + -4.1474899649620056e-01 5.9204798936843872e-01 + <_> + + 0 -1 202 1.1355999857187271e-02 + + 3.6103099584579468e-01 -4.5781201124191284e-01 + <_> + + 0 -1 203 -2.7679998893290758e-03 + + -8.9238899946212769e-01 1.4199000597000122e-01 + <_> + + 0 -1 204 1.1246999725699425e-02 + + 2.9353401064872742e-01 -9.7330600023269653e-01 + <_> + + 0 -1 205 7.1970000863075256e-03 + + -7.9334902763366699e-01 1.8313400447368622e-01 + <_> + + 0 -1 206 3.1768999993801117e-02 + + 1.5523099899291992e-01 -1.3245639801025391e+00 + <_> + + 0 -1 207 2.5173999369144440e-02 + + 3.4214999526739120e-02 -2.0948131084442139e+00 + <_> + + 0 -1 208 7.5360001064836979e-03 + + -3.9450600743293762e-01 5.1333999633789062e-01 + <_> + + 0 -1 209 3.2873000949621201e-02 + + 8.8372997939586639e-02 -1.2814120054244995e+00 + <_> + + 0 -1 210 -2.7379998937249184e-03 + + 5.5286502838134766e-01 -4.6384999155998230e-01 + <_> + + 0 -1 211 -3.8075000047683716e-02 + + -1.8497270345687866e+00 4.5944001525640488e-02 + <_> + + 0 -1 212 -3.8984000682830811e-02 + + -4.8223701119422913e-01 3.4760600328445435e-01 + <_> + + 0 -1 213 2.8029999230057001e-03 + + -4.5154699683189392e-01 4.2806300520896912e-01 + <_> + + 0 -1 214 -5.4145999252796173e-02 + + -8.4520798921585083e-01 1.6674900054931641e-01 + <_> + + 0 -1 215 -8.3280000835657120e-03 + + 3.5348299145698547e-01 -4.7163200378417969e-01 + <_> + + 0 -1 216 3.3778000622987747e-02 + + 1.8463100492954254e-01 -1.6686669588088989e+00 + <_> + + 0 -1 217 -1.1238099634647369e-01 + + -1.2521569728851318e+00 3.5992000252008438e-02 + <_> + + 0 -1 218 -1.0408000089228153e-02 + + -8.1620401144027710e-01 2.3428599536418915e-01 + <_> + + 0 -1 219 -4.9439999274909496e-03 + + -9.2584699392318726e-01 1.0034800320863724e-01 + <_> + + 0 -1 220 -9.3029998242855072e-03 + + 5.6499302387237549e-01 -1.8881900608539581e-01 + <_> + + 0 -1 221 -1.1749999597668648e-02 + + 8.0302399396896362e-01 -3.8277000188827515e-01 + <_> + + 0 -1 222 -2.3217000067234039e-02 + + -8.4926998615264893e-01 1.9671200215816498e-01 + <_> + + 0 -1 223 1.6866000369191170e-02 + + -4.0591898560523987e-01 5.0695300102233887e-01 + <_> + + 0 -1 224 -2.4031000211834908e-02 + + -1.5297520160675049e+00 2.3344999551773071e-01 + <_> + + 0 -1 225 -3.6945998668670654e-02 + + 6.3007700443267822e-01 -3.1780400872230530e-01 + <_> + + 0 -1 226 -6.1563998460769653e-02 + + 5.8627897500991821e-01 -1.2107999995350838e-02 + <_> + + 0 -1 227 2.1661000326275826e-02 + + -2.5623700022697449e-01 1.0409849882125854e+00 + <_> + + 0 -1 228 -3.6710000131279230e-03 + + 2.9171100258827209e-01 -8.3287298679351807e-01 + <_> + + 0 -1 229 4.4849000871181488e-02 + + -3.9633199572563171e-01 4.5662000775337219e-01 + <_> + + 0 -1 230 5.7195000350475311e-02 + + 2.1023899316787720e-01 -1.5004800558090210e+00 + <_> + + 0 -1 231 -1.1342000216245651e-02 + + 4.4071298837661743e-01 -3.8653799891471863e-01 + <_> + + 0 -1 232 -1.2004000134766102e-02 + + 9.3954598903656006e-01 -1.0589499771595001e-01 + <_> + + 0 -1 233 2.2515999153256416e-02 + + 9.4480002298951149e-03 -1.6799509525299072e+00 + <_> + + 0 -1 234 -1.9809000194072723e-02 + + -1.0133639574050903e+00 2.4146600067615509e-01 + <_> + + 0 -1 235 1.5891000628471375e-02 + + -3.7507599592208862e-01 4.6614098548889160e-01 + <_> + + 0 -1 236 -9.1420002281665802e-03 + + -8.0484098196029663e-01 1.7816999554634094e-01 + <_> + + 0 -1 237 -4.4740000739693642e-03 + + -1.0562069416046143e+00 7.3305003345012665e-02 + <_> + + 0 -1 238 1.2742500007152557e-01 + + 2.0165599882602692e-01 -1.5467929840087891e+00 + <_> + + 0 -1 239 4.7703001648187637e-02 + + -3.7937799096107483e-01 3.7885999679565430e-01 + <_> + + 0 -1 240 5.3608000278472900e-02 + + 2.1220499277114868e-01 -1.2399710416793823e+00 + <_> + + 0 -1 241 -3.9680998772382736e-02 + + -1.0257550477981567e+00 5.1282998174428940e-02 + <_> + + 0 -1 242 -6.7327000200748444e-02 + + -1.0304750204086304e+00 2.3005299270153046e-01 + <_> + + 0 -1 243 1.3337600231170654e-01 + + -2.0869000256061554e-01 1.2272510528564453e+00 + <_> + + 0 -1 244 -2.0919300615787506e-01 + + 8.7929898500442505e-01 -4.4254999607801437e-02 + <_> + + 0 -1 245 -6.5589003264904022e-02 + + 1.0443429946899414e+00 -2.1682099997997284e-01 + <_> + + 0 -1 246 6.1882998794317245e-02 + + 1.3798199594020844e-01 -1.9009059667587280e+00 + <_> + + 0 -1 247 -2.5578999891877174e-02 + + -1.6607600450515747e+00 5.8439997956156731e-03 + <_> + + 0 -1 248 -3.4827001392841339e-02 + + 7.9940402507781982e-01 -8.2406997680664062e-02 + <_> + + 0 -1 249 -1.8209999427199364e-02 + + -9.6073997020721436e-01 6.6320002079010010e-02 + <_> + + 0 -1 250 1.5070999972522259e-02 + + 1.9899399578571320e-01 -7.6433002948760986e-01 + <_> + 72 + -3.8832089900970459e+00 + + <_> + + 0 -1 251 4.6324998140335083e-02 + + -1.0362670421600342e+00 8.2201498746871948e-01 + <_> + + 0 -1 252 1.5406999737024307e-02 + + -1.2327589988708496e+00 2.9647698998451233e-01 + <_> + + 0 -1 253 1.2808999978005886e-02 + + -7.5852298736572266e-01 5.7985502481460571e-01 + <_> + + 0 -1 254 4.9150999635457993e-02 + + -3.8983899354934692e-01 8.9680302143096924e-01 + <_> + + 0 -1 255 1.2621000409126282e-02 + + -7.1799302101135254e-01 5.0440901517868042e-01 + <_> + + 0 -1 256 -1.8768999725580215e-02 + + 5.5147600173950195e-01 -7.0555400848388672e-01 + <_> + + 0 -1 257 4.1965000331401825e-02 + + -4.4782099127769470e-01 7.0985502004623413e-01 + <_> + + 0 -1 258 -5.1401998847723007e-02 + + -1.0932120084762573e+00 2.6701900362968445e-01 + <_> + + 0 -1 259 -7.0960998535156250e-02 + + 8.3618402481079102e-01 -3.8318100571632385e-01 + <_> + + 0 -1 260 1.6745999455451965e-02 + + -2.5733101367950439e-01 2.5966501235961914e-01 + <_> + + 0 -1 261 -6.2400000169873238e-03 + + 3.1631499528884888e-01 -5.8796900510787964e-01 + <_> + + 0 -1 262 -3.9397999644279480e-02 + + -1.0491210222244263e+00 1.6822400689125061e-01 + <_> + + 0 -1 263 0. + + 1.6144199669361115e-01 -8.7876898050308228e-01 + <_> + + 0 -1 264 -2.2307999432086945e-02 + + -6.9053500890731812e-01 2.3607000708580017e-01 + <_> + + 0 -1 265 1.8919999711215496e-03 + + 2.4989199638366699e-01 -5.6583297252655029e-01 + <_> + + 0 -1 266 1.0730000212788582e-03 + + -5.0415802001953125e-01 3.8374501466751099e-01 + <_> + + 0 -1 267 3.9230998605489731e-02 + + 4.2619001120328903e-02 -1.3875889778137207e+00 + <_> + + 0 -1 268 6.2238000333309174e-02 + + 1.4119400084018707e-01 -1.0688860416412354e+00 + <_> + + 0 -1 269 2.1399999968707561e-03 + + -8.9622402191162109e-01 1.9796399772167206e-01 + <_> + + 0 -1 270 9.1800000518560410e-04 + + -4.5337298512458801e-01 4.3532699346542358e-01 + <_> + + 0 -1 271 -6.9169998168945312e-03 + + 3.3822798728942871e-01 -4.4793000817298889e-01 + <_> + + 0 -1 272 -2.3866999894380569e-02 + + -7.8908598423004150e-01 2.2511799633502960e-01 + <_> + + 0 -1 273 -1.0262800008058548e-01 + + -2.2831439971923828e+00 -5.3960001096129417e-03 + <_> + + 0 -1 274 -9.5239998772740364e-03 + + 3.9346700906753540e-01 -5.2242201566696167e-01 + <_> + + 0 -1 275 3.9877001196146011e-02 + + 3.2799001783132553e-02 -1.5079489946365356e+00 + <_> + + 0 -1 276 -1.3144999742507935e-02 + + -1.0839990377426147e+00 1.8482400476932526e-01 + <_> + + 0 -1 277 -5.0590999424457550e-02 + + -1.8822289705276489e+00 -2.2199999075382948e-03 + <_> + + 0 -1 278 2.4917000904679298e-02 + + 1.4593400061130524e-01 -2.2196519374847412e+00 + <_> + + 0 -1 279 -7.6370001770555973e-03 + + -1.0164569616317749e+00 5.8797001838684082e-02 + <_> + + 0 -1 280 4.2911998927593231e-02 + + 1.5443000197410583e-01 -1.1843889951705933e+00 + <_> + + 0 -1 281 2.3000000510364771e-04 + + -7.7305799722671509e-01 1.2189900130033493e-01 + <_> + + 0 -1 282 9.0929996222257614e-03 + + -1.1450099945068359e-01 7.1091300249099731e-01 + <_> + + 0 -1 283 1.1145000346004963e-02 + + 7.0000998675823212e-02 -1.0534820556640625e+00 + <_> + + 0 -1 284 -5.2453000098466873e-02 + + -1.7594360113143921e+00 1.9523799419403076e-01 + <_> + + 0 -1 285 -2.3020699620246887e-01 + + 9.5840299129486084e-01 -2.5045698881149292e-01 + <_> + + 0 -1 286 -1.6365999355912209e-02 + + 4.6731901168823242e-01 -2.1108399331569672e-01 + <_> + + 0 -1 287 -1.7208000645041466e-02 + + 7.0835697650909424e-01 -2.8018298745155334e-01 + <_> + + 0 -1 288 -3.6648001521825790e-02 + + -1.1013339757919312e+00 2.4341100454330444e-01 + <_> + + 0 -1 289 -1.0304999537765980e-02 + + -1.0933129787445068e+00 5.6258998811244965e-02 + <_> + + 0 -1 290 -1.3713000342249870e-02 + + -2.6438099145889282e-01 1.9821000099182129e-01 + <_> + + 0 -1 291 2.9308000579476357e-02 + + -2.2142399847507477e-01 1.0525950193405151e+00 + <_> + + 0 -1 292 2.4077000096440315e-02 + + 1.8485699594020844e-01 -1.7203969955444336e+00 + <_> + + 0 -1 293 6.1280000954866409e-03 + + -9.2721498012542725e-01 5.8752998709678650e-02 + <_> + + 0 -1 294 -2.2377999499440193e-02 + + 1.9646559953689575e+00 2.7785999700427055e-02 + <_> + + 0 -1 295 -7.0440000854432583e-03 + + 2.1427600085735321e-01 -4.8407599329948425e-01 + <_> + + 0 -1 296 -4.0603000670671463e-02 + + -1.1754349470138550e+00 1.6061200201511383e-01 + <_> + + 0 -1 297 -2.4466000497341156e-02 + + -1.1239900588989258e+00 4.1110001504421234e-02 + <_> + + 0 -1 298 2.5309999473392963e-03 + + -1.7169700562953949e-01 3.2178801298141479e-01 + <_> + + 0 -1 299 -1.9588999450206757e-02 + + 8.2720202207565308e-01 -2.6376700401306152e-01 + <_> + + 0 -1 300 -2.9635999351739883e-02 + + -1.1524770259857178e+00 1.4999300241470337e-01 + <_> + + 0 -1 301 -1.5030000358819962e-02 + + -1.0491830110549927e+00 4.0160998702049255e-02 + <_> + + 0 -1 302 -6.0715001076459885e-02 + + -1.0903840065002441e+00 1.5330800414085388e-01 + <_> + + 0 -1 303 -1.2790000066161156e-02 + + 4.2248600721359253e-01 -4.2399200797080994e-01 + <_> + + 0 -1 304 -2.0247999578714371e-02 + + -9.1866999864578247e-01 1.8485699594020844e-01 + <_> + + 0 -1 305 -3.0683999881148338e-02 + + -1.5958670377731323e+00 2.5760000571608543e-03 + <_> + + 0 -1 306 -2.0718000829219818e-02 + + -6.6299998760223389e-01 3.1037199497222900e-01 + <_> + + 0 -1 307 -1.7290000105276704e-03 + + 1.9183400273323059e-01 -6.5084999799728394e-01 + <_> + + 0 -1 308 -3.1394001096487045e-02 + + -6.3643002510070801e-01 1.5408399701118469e-01 + <_> + + 0 -1 309 1.9003000110387802e-02 + + -1.8919399380683899e-01 1.5294510126113892e+00 + <_> + + 0 -1 310 6.1769997701048851e-03 + + -1.0597900301218033e-01 6.4859598875045776e-01 + <_> + + 0 -1 311 -1.0165999643504620e-02 + + -1.0802700519561768e+00 3.7176001816987991e-02 + <_> + + 0 -1 312 -1.4169999631121755e-03 + + 3.4157499670982361e-01 -9.7737997770309448e-02 + <_> + + 0 -1 313 -4.0799998678267002e-03 + + 4.7624599933624268e-01 -3.4366300702095032e-01 + <_> + + 0 -1 314 -4.4096998870372772e-02 + + 9.7634297609329224e-01 -1.9173000007867813e-02 + <_> + + 0 -1 315 -6.0669999569654465e-02 + + -2.1752851009368896e+00 -2.8925999999046326e-02 + <_> + + 0 -1 316 -3.2931998372077942e-02 + + -6.4383101463317871e-01 1.6494099795818329e-01 + <_> + + 0 -1 317 -1.4722800254821777e-01 + + -1.4745830297470093e+00 2.5839998852461576e-03 + <_> + + 0 -1 318 -1.1930000036954880e-02 + + 4.2441400885581970e-01 -1.7712600529193878e-01 + <_> + + 0 -1 319 1.4517900347709656e-01 + + 2.5444999337196350e-02 -1.2779400348663330e+00 + <_> + + 0 -1 320 5.1447998732328415e-02 + + 1.5678399801254272e-01 -1.5188430547714233e+00 + <_> + + 0 -1 321 3.1479999888688326e-03 + + -4.0424400568008423e-01 3.2429701089859009e-01 + <_> + + 0 -1 322 -4.3600000441074371e-02 + + -1.9932260513305664e+00 1.5018600225448608e-01 + <_> + 83 + -3.8424909114837646e+00 + + <_> + + 0 -1 323 1.2899599969387054e-01 + + -6.2161999940872192e-01 1.1116520166397095e+00 + <_> + + 0 -1 324 -9.1261997818946838e-02 + + 1.0143059492111206e+00 -6.1335200071334839e-01 + <_> + + 0 -1 325 1.4271999709308147e-02 + + -1.0261659622192383e+00 3.9779999852180481e-01 + <_> + + 0 -1 326 3.2889999449253082e-02 + + -1.1386079788208008e+00 2.8690800070762634e-01 + <_> + + 0 -1 327 1.2590000405907631e-02 + + -5.6645601987838745e-01 4.5172399282455444e-01 + <_> + + 0 -1 328 1.4661000110208988e-02 + + 3.0505999922752380e-01 -6.8129599094390869e-01 + <_> + + 0 -1 329 -3.3555999398231506e-02 + + -1.7208939790725708e+00 6.1439000070095062e-02 + <_> + + 0 -1 330 1.4252699911594391e-01 + + 2.3192200064659119e-01 -1.7297149896621704e+00 + <_> + + 0 -1 331 -6.2079997733235359e-03 + + -1.2163300514221191e+00 1.2160199880599976e-01 + <_> + + 0 -1 332 1.8178999423980713e-02 + + 3.2553699612617493e-01 -8.1003999710083008e-01 + <_> + + 0 -1 333 2.5036999955773354e-02 + + -3.1698799133300781e-01 6.7361402511596680e-01 + <_> + + 0 -1 334 4.6560999006032944e-02 + + -1.1089800298213959e-01 8.4082502126693726e-01 + <_> + + 0 -1 335 -8.9999996125698090e-03 + + 3.9574500918388367e-01 -4.7624599933624268e-01 + <_> + + 0 -1 336 4.0805999189615250e-02 + + -1.8000000272877514e-04 9.4570702314376831e-01 + <_> + + 0 -1 337 -3.4221999347209930e-02 + + 7.5206297636032104e-01 -3.1531500816345215e-01 + <_> + + 0 -1 338 -3.9716001600027084e-02 + + -8.3139598369598389e-01 1.7744399607181549e-01 + <_> + + 0 -1 339 2.5170000735670328e-03 + + -5.9377998113632202e-01 2.4657000601291656e-01 + <_> + + 0 -1 340 2.7428999543190002e-02 + + 1.5998399257659912e-01 -4.2781999707221985e-01 + <_> + + 0 -1 341 3.4986000508069992e-02 + + 3.5055998712778091e-02 -1.5988600254058838e+00 + <_> + + 0 -1 342 4.4970000162720680e-03 + + -5.2034300565719604e-01 3.7828299403190613e-01 + <_> + + 0 -1 343 2.7699999045580626e-03 + + -5.3182601928710938e-01 2.4951000511646271e-01 + <_> + + 0 -1 344 3.5174001008272171e-02 + + 1.9983400404453278e-01 -1.4446129798889160e+00 + <_> + + 0 -1 345 2.5970999151468277e-02 + + 4.4426999986171722e-02 -1.3622980117797852e+00 + <_> + + 0 -1 346 -1.5783999115228653e-02 + + -9.1020399332046509e-01 2.7190300822257996e-01 + <_> + + 0 -1 347 -7.5880000367760658e-03 + + 9.2064999043941498e-02 -8.1628900766372681e-01 + <_> + + 0 -1 348 2.0754000172019005e-02 + + 2.1185700595378876e-01 -7.4729001522064209e-01 + <_> + + 0 -1 349 5.9829000383615494e-02 + + -2.7301099896430969e-01 8.0923300981521606e-01 + <_> + + 0 -1 350 3.9039000868797302e-02 + + -1.0432299971580505e-01 8.6226201057434082e-01 + <_> + + 0 -1 351 2.1665999665856361e-02 + + 6.2709003686904907e-02 -9.8894298076629639e-01 + <_> + + 0 -1 352 -2.7496999129652977e-02 + + -9.2690998315811157e-01 1.5586300194263458e-01 + <_> + + 0 -1 353 1.0462000034749508e-02 + + 1.3418099284172058e-01 -7.0386397838592529e-01 + <_> + + 0 -1 354 2.4870999157428741e-02 + + 1.9706700742244720e-01 -4.0263301134109497e-01 + <_> + + 0 -1 355 -1.6036000102758408e-02 + + -1.1409829854965210e+00 7.3997996747493744e-02 + <_> + + 0 -1 356 4.8627000302076340e-02 + + 1.6990399360656738e-01 -7.2152197360992432e-01 + <_> + + 0 -1 357 1.2619999470189214e-03 + + -4.7389799356460571e-01 2.6254999637603760e-01 + <_> + + 0 -1 358 -8.8035002350807190e-02 + + -2.1606519222259521e+00 1.4554800093173981e-01 + <_> + + 0 -1 359 1.8356999382376671e-02 + + 4.4750999659299850e-02 -1.0766370296478271e+00 + <_> + + 0 -1 360 3.5275001078844070e-02 + + -3.2919000834226608e-02 1.2153890132904053e+00 + <_> + + 0 -1 361 -2.0392900705337524e-01 + + -1.3187999725341797e+00 1.5503999777138233e-02 + <_> + + 0 -1 362 -1.6619000583887100e-02 + + 3.6850199103355408e-01 -1.5283699333667755e-01 + <_> + + 0 -1 363 3.7739001214504242e-02 + + -2.5727799534797668e-01 7.0655298233032227e-01 + <_> + + 0 -1 364 2.2720000706613064e-03 + + -7.7602997422218323e-02 3.3367800712585449e-01 + <_> + + 0 -1 365 -1.4802999794483185e-02 + + -7.8524798154830933e-01 7.6934002339839935e-02 + <_> + + 0 -1 366 -4.8319000750780106e-02 + + 1.7022320032119751e+00 4.9722000956535339e-02 + <_> + + 0 -1 367 -2.9539000242948532e-02 + + 7.7670699357986450e-01 -2.4534299969673157e-01 + <_> + + 0 -1 368 -4.6169001609086990e-02 + + -1.4922779798507690e+00 1.2340000271797180e-01 + <_> + + 0 -1 369 -2.8064999729394913e-02 + + -2.1345369815826416e+00 -2.5797000154852867e-02 + <_> + + 0 -1 370 -5.7339998893439770e-03 + + 5.6982600688934326e-01 -1.2056600302457809e-01 + <_> + + 0 -1 371 -1.0111000388860703e-02 + + 6.7911398410797119e-01 -2.6638001203536987e-01 + <_> + + 0 -1 372 1.1359999887645245e-02 + + 2.4789799749851227e-01 -6.4493000507354736e-01 + <_> + + 0 -1 373 5.1809001713991165e-02 + + 1.4716000296175480e-02 -1.2395579814910889e+00 + <_> + + 0 -1 374 3.3291999250650406e-02 + + -8.2559995353221893e-03 1.0168470144271851e+00 + <_> + + 0 -1 375 -1.4494000002741814e-02 + + 4.5066800713539124e-01 -3.6250999569892883e-01 + <_> + + 0 -1 376 -3.4221999347209930e-02 + + -9.5292502641677856e-01 2.0684599876403809e-01 + <_> + + 0 -1 377 -8.0654002726078033e-02 + + -2.0139501094818115e+00 -2.3084999993443489e-02 + <_> + + 0 -1 378 -8.9399999706074595e-04 + + 3.9572000503540039e-01 -2.9351300001144409e-01 + <_> + + 0 -1 379 9.7162000834941864e-02 + + -2.4980300664901733e-01 1.0859220027923584e+00 + <_> + + 0 -1 380 3.6614000797271729e-02 + + -5.7844001799821854e-02 1.2162159681320190e+00 + <_> + + 0 -1 381 5.1693998277187347e-02 + + 4.3062999844551086e-02 -1.0636160373687744e+00 + <_> + + 0 -1 382 -2.4557000026106834e-02 + + -4.8946800827980042e-01 1.7182900011539459e-01 + <_> + + 0 -1 383 3.2736799120903015e-01 + + -2.9688599705696106e-01 5.1798301935195923e-01 + <_> + + 0 -1 384 7.6959999278187752e-03 + + -5.9805899858474731e-01 2.4803200364112854e-01 + <_> + + 0 -1 385 1.6172200441360474e-01 + + -2.9613999649882317e-02 -2.3162529468536377e+00 + <_> + + 0 -1 386 -4.7889999113976955e-03 + + 3.7457901239395142e-01 -3.2779198884963989e-01 + <_> + + 0 -1 387 -1.8402999266982079e-02 + + -9.9692702293395996e-01 7.2948001325130463e-02 + <_> + + 0 -1 388 7.7665001153945923e-02 + + 1.4175699651241302e-01 -1.7238730192184448e+00 + <_> + + 0 -1 389 1.8921000882983208e-02 + + -2.1273100376129150e-01 1.0165189504623413e+00 + <_> + + 0 -1 390 -7.9397998750209808e-02 + + -1.3164349794387817e+00 1.4981999993324280e-01 + <_> + + 0 -1 391 -6.8037003278732300e-02 + + 4.9421998858451843e-01 -2.9091000556945801e-01 + <_> + + 0 -1 392 -6.1010001227259636e-03 + + 4.2430499196052551e-01 -3.3899301290512085e-01 + <_> + + 0 -1 393 3.1927000731229782e-02 + + -3.1046999618411064e-02 -2.3459999561309814e+00 + <_> + + 0 -1 394 -2.9843999072909355e-02 + + -7.8989601135253906e-01 1.5417699515819550e-01 + <_> + + 0 -1 395 -8.0541998147964478e-02 + + -2.2509229183197021e+00 -3.0906999483704567e-02 + <_> + + 0 -1 396 3.8109999150037766e-03 + + -2.5577300786972046e-01 2.3785500228404999e-01 + <_> + + 0 -1 397 3.3647000789642334e-02 + + -2.2541399300098419e-01 9.2307400703430176e-01 + <_> + + 0 -1 398 8.2809999585151672e-03 + + -2.8896200656890869e-01 3.1046199798583984e-01 + <_> + + 0 -1 399 1.0104399919509888e-01 + + -3.4864000976085663e-02 -2.7102620601654053e+00 + <_> + + 0 -1 400 -1.0009000077843666e-02 + + 5.9715402126312256e-01 -3.3831000328063965e-02 + <_> + + 0 -1 401 7.1919998154044151e-03 + + -4.7738000750541687e-01 2.2686000168323517e-01 + <_> + + 0 -1 402 2.4969000369310379e-02 + + 2.2877700626850128e-01 -1.0435529947280884e+00 + <_> + + 0 -1 403 2.7908000349998474e-01 + + -2.5818100571632385e-01 7.6780498027801514e-01 + <_> + + 0 -1 404 -4.4213000684976578e-02 + + -5.9798002243041992e-01 2.8039899468421936e-01 + <_> + + 0 -1 405 -1.4136999845504761e-02 + + 7.0987302064895630e-01 -2.5645199418067932e-01 + <_> + 91 + -3.6478610038757324e+00 + + <_> + + 0 -1 406 1.3771200180053711e-01 + + -5.5870598554611206e-01 1.0953769683837891e+00 + <_> + + 0 -1 407 3.4460999071598053e-02 + + -7.1171897649765015e-01 5.2899599075317383e-01 + <_> + + 0 -1 408 1.8580000847578049e-02 + + -1.1157519817352295e+00 4.0593999624252319e-01 + <_> + + 0 -1 409 2.5041999295353889e-02 + + -4.0892499685287476e-01 7.4129998683929443e-01 + <_> + + 0 -1 410 5.7179000228643417e-02 + + -3.8054299354553223e-01 7.3647701740264893e-01 + <_> + + 0 -1 411 1.4932000078260899e-02 + + -6.9945502281188965e-01 3.7950998544692993e-01 + <_> + + 0 -1 412 8.8900001719594002e-03 + + -5.4558598995208740e-01 3.6332499980926514e-01 + <_> + + 0 -1 413 3.0435999855399132e-02 + + -1.0124599933624268e-01 7.9585897922515869e-01 + <_> + + 0 -1 414 -4.4160000979900360e-02 + + 8.4410899877548218e-01 -3.2976400852203369e-01 + <_> + + 0 -1 415 1.8461000174283981e-02 + + 2.6326599717140198e-01 -9.6736502647399902e-01 + <_> + + 0 -1 416 1.0614999569952488e-02 + + 1.5251900255680084e-01 -1.0589870214462280e+00 + <_> + + 0 -1 417 -4.5974001288414001e-02 + + -1.9918340444564819e+00 1.3629099726676941e-01 + <_> + + 0 -1 418 8.2900002598762512e-02 + + -3.2037198543548584e-01 6.0304200649261475e-01 + <_> + + 0 -1 419 -8.9130001142621040e-03 + + 5.9586602449417114e-01 -2.1139599382877350e-01 + <_> + + 0 -1 420 4.2814001441001892e-02 + + 2.2925000637769699e-02 -1.4679330587387085e+00 + <_> + + 0 -1 421 -8.7139997631311417e-03 + + -4.3989500403404236e-01 2.0439699292182922e-01 + <_> + + 0 -1 422 -4.3390002101659775e-03 + + -8.9066797494888306e-01 1.0469999909400940e-01 + <_> + + 0 -1 423 8.0749997869133949e-03 + + 2.1164199709892273e-01 -4.0231600403785706e-01 + <_> + + 0 -1 424 9.6739001572132111e-02 + + 1.3319999910891056e-02 -1.6085360050201416e+00 + <_> + + 0 -1 425 -3.0536999925971031e-02 + + 1.0063740015029907e+00 -1.3413299620151520e-01 + <_> + + 0 -1 426 -6.0855999588966370e-02 + + -1.4689979553222656e+00 9.4240000471472740e-03 + <_> + + 0 -1 427 -3.8162000477313995e-02 + + -8.1636399030685425e-01 2.6171201467514038e-01 + <_> + + 0 -1 428 -9.6960002556443214e-03 + + 1.1561699956655502e-01 -7.1693199872970581e-01 + <_> + + 0 -1 429 4.8902999609708786e-02 + + 1.3050499558448792e-01 -1.6448370218276978e+00 + <_> + + 0 -1 430 -4.1611999273300171e-02 + + -1.1795840263366699e+00 2.5017000734806061e-02 + <_> + + 0 -1 431 -2.0188000053167343e-02 + + 6.3188201189041138e-01 -1.0490400344133377e-01 + <_> + + 0 -1 432 -9.7900000400841236e-04 + + 1.8507799506187439e-01 -5.3565901517868042e-01 + <_> + + 0 -1 433 -3.3622000366449356e-02 + + -9.3127602338790894e-01 2.0071500539779663e-01 + <_> + + 0 -1 434 1.9455999135971069e-02 + + 3.8029000163078308e-02 -1.0112210512161255e+00 + <_> + + 0 -1 435 -3.1800000579096377e-04 + + 3.6457699537277222e-01 -2.7610900998115540e-01 + <_> + + 0 -1 436 -3.8899999344721437e-04 + + 1.9665899872779846e-01 -5.3410500288009644e-01 + <_> + + 0 -1 437 -9.3496002256870270e-02 + + -1.6772350072860718e+00 2.0727099478244781e-01 + <_> + + 0 -1 438 -7.7877998352050781e-02 + + -3.0760629177093506e+00 -3.5803999751806259e-02 + <_> + + 0 -1 439 1.6947999596595764e-02 + + 2.1447399258613586e-01 -7.1376299858093262e-01 + <_> + + 0 -1 440 -2.1459000185132027e-02 + + -1.1468060016632080e+00 1.5855999663472176e-02 + <_> + + 0 -1 441 -1.2865999713540077e-02 + + 8.3812397718429565e-01 -6.5944001078605652e-02 + <_> + + 0 -1 442 7.8220004215836525e-03 + + -2.8026801347732544e-01 7.9376900196075439e-01 + <_> + + 0 -1 443 1.0294400155544281e-01 + + 1.7832300066947937e-01 -6.8412202596664429e-01 + <_> + + 0 -1 444 -3.7487998604774475e-02 + + 9.6189999580383301e-01 -2.1735599637031555e-01 + <_> + + 0 -1 445 2.5505999103188515e-02 + + 1.0103999637067318e-02 1.2461110353469849e+00 + <_> + + 0 -1 446 6.6700001480057836e-04 + + -5.3488200902938843e-01 1.4746299386024475e-01 + <_> + + 0 -1 447 -2.8867900371551514e-01 + + 8.2172799110412598e-01 -1.4948000200092793e-02 + <_> + + 0 -1 448 9.1294996440410614e-02 + + -1.9605399668216705e-01 1.0803170204162598e+00 + <_> + + 0 -1 449 1.2056600302457809e-01 + + -2.3848999291658401e-02 1.1392610073089600e+00 + <_> + + 0 -1 450 -7.3775000870227814e-02 + + -1.3583840131759644e+00 -4.2039998807013035e-03 + <_> + + 0 -1 451 -3.3128000795841217e-02 + + -6.4483201503753662e-01 2.4142199754714966e-01 + <_> + + 0 -1 452 -4.3937001377344131e-02 + + 8.4285402297973633e-01 -2.0624800026416779e-01 + <_> + + 0 -1 453 1.8110199272632599e-01 + + 1.9212099909782410e-01 -1.2222139835357666e+00 + <_> + + 0 -1 454 -1.1850999668240547e-02 + + -7.2677397727966309e-01 5.2687998861074448e-02 + <_> + + 0 -1 455 4.5920000411570072e-03 + + -3.6305201053619385e-01 2.9223799705505371e-01 + <_> + + 0 -1 456 7.0620002225041389e-03 + + 5.8116000145673752e-02 -6.7161601781845093e-01 + <_> + + 0 -1 457 -2.3715000599622726e-02 + + 4.7142100334167480e-01 1.8580000847578049e-02 + <_> + + 0 -1 458 -6.7171998322010040e-02 + + -1.1331889629364014e+00 2.3780999705195427e-02 + <_> + + 0 -1 459 -6.5310001373291016e-02 + + 9.8253500461578369e-01 2.8362000361084938e-02 + <_> + + 0 -1 460 2.2791000083088875e-02 + + -2.8213700652122498e-01 5.8993399143218994e-01 + <_> + + 0 -1 461 -1.9037999212741852e-02 + + -6.3711500167846680e-01 2.6514598727226257e-01 + <_> + + 0 -1 462 -6.8689999170601368e-03 + + 3.7487301230430603e-01 -3.3232098817825317e-01 + <_> + + 0 -1 463 -4.0146000683307648e-02 + + -1.3048729896545410e+00 1.5724299848079681e-01 + <_> + + 0 -1 464 -4.0530998259782791e-02 + + -2.0458049774169922e+00 -2.6925999671220779e-02 + <_> + + 0 -1 465 -1.2253999710083008e-02 + + 7.7649402618408203e-01 -4.2971000075340271e-02 + <_> + + 0 -1 466 -2.7219999581575394e-02 + + 1.7424400150775909e-01 -4.4600901007652283e-01 + <_> + + 0 -1 467 -8.8366001844406128e-02 + + -1.5036419630050659e+00 1.4289900660514832e-01 + <_> + + 0 -1 468 -7.9159997403621674e-03 + + 2.8666698932647705e-01 -3.7923699617385864e-01 + <_> + + 0 -1 469 -4.1960000991821289e-02 + + 1.3846950531005859e+00 6.5026998519897461e-02 + <_> + + 0 -1 470 4.5662999153137207e-02 + + -2.2452299296855927e-01 7.9521000385284424e-01 + <_> + + 0 -1 471 -1.4090600609779358e-01 + + -1.5879319906234741e+00 1.1359000205993652e-01 + <_> + + 0 -1 472 -5.9216000139713287e-02 + + -1.1945960521697998e+00 -7.1640000678598881e-03 + <_> + + 0 -1 473 4.3390002101659775e-03 + + -1.5528699755668640e-01 4.0664499998092651e-01 + <_> + + 0 -1 474 -2.0369999110698700e-03 + + 2.5927901268005371e-01 -3.8368299603462219e-01 + <_> + + 0 -1 475 2.7516499161720276e-01 + + -8.8497996330261230e-02 7.6787501573562622e-01 + <_> + + 0 -1 476 -2.6601999998092651e-02 + + 7.5024497509002686e-01 -2.2621999680995941e-01 + <_> + + 0 -1 477 4.0906000882387161e-02 + + 1.2158600240945816e-01 -1.4566910266876221e+00 + <_> + + 0 -1 478 5.5320002138614655e-03 + + -3.6611500382423401e-01 2.5968599319458008e-01 + <_> + + 0 -1 479 3.1879000365734100e-02 + + -7.5019001960754395e-02 4.8484799265861511e-01 + <_> + + 0 -1 480 -4.1482001543045044e-02 + + 7.8220397233963013e-01 -2.1992200613021851e-01 + <_> + + 0 -1 481 -9.6130996942520142e-02 + + -8.9456301927566528e-01 1.4680700004100800e-01 + <_> + + 0 -1 482 -1.1568999849259853e-02 + + 8.2714098691940308e-01 -2.0275600254535675e-01 + <_> + + 0 -1 483 1.8312999978661537e-02 + + 1.6367999836802483e-02 2.7306801080703735e-01 + <_> + + 0 -1 484 -3.4166000783443451e-02 + + 1.1307320594787598e+00 -1.8810899555683136e-01 + <_> + + 0 -1 485 -2.4476999416947365e-02 + + -5.7791298627853394e-01 1.5812499821186066e-01 + <_> + + 0 -1 486 4.8957001417875290e-02 + + -2.2564999759197235e-02 -1.6373280286788940e+00 + <_> + + 0 -1 487 -2.0702999085187912e-02 + + -5.4512101411819458e-01 2.4086999893188477e-01 + <_> + + 0 -1 488 -2.3002000525593758e-02 + + -1.2236540317535400e+00 -7.3440000414848328e-03 + <_> + + 0 -1 489 6.4585000276565552e-02 + + 1.4695599675178528e-01 -4.4967499375343323e-01 + <_> + + 0 -1 490 1.2666000053286552e-02 + + -2.7873900532722473e-01 4.3876600265502930e-01 + <_> + + 0 -1 491 -1.2002999894320965e-02 + + -2.4289099872112274e-01 2.5350099802017212e-01 + <_> + + 0 -1 492 -2.6443999260663986e-02 + + -8.5864800214767456e-01 2.6025999337434769e-02 + <_> + + 0 -1 493 -2.5547999888658524e-02 + + 6.9287902116775513e-01 -2.1160000469535589e-03 + <_> + + 0 -1 494 3.9115000516176224e-02 + + -1.6589100658893585e-01 1.5209139585494995e+00 + <_> + + 0 -1 495 -6.0330000706017017e-03 + + 4.3856900930404663e-01 -2.1613700687885284e-01 + <_> + + 0 -1 496 -3.3936999738216400e-02 + + -9.7998398542404175e-01 2.2133000195026398e-02 + <_> + 99 + -3.8700489997863770e+00 + + <_> + + 0 -1 497 4.0672998875379562e-02 + + -9.0474700927734375e-01 6.4410597085952759e-01 + <_> + + 0 -1 498 2.5609999895095825e-02 + + -7.9216998815536499e-01 5.7489997148513794e-01 + <_> + + 0 -1 499 1.9959500432014465e-01 + + -3.0099600553512573e-01 1.3143850564956665e+00 + <_> + + 0 -1 500 1.2404999695718288e-02 + + -8.9882999658584595e-01 2.9205799102783203e-01 + <_> + + 0 -1 501 3.9207998663187027e-02 + + -4.1955199837684631e-01 5.3463298082351685e-01 + <_> + + 0 -1 502 -3.0843999236822128e-02 + + 4.5793399214744568e-01 -4.4629099965095520e-01 + <_> + + 0 -1 503 -3.5523001104593277e-02 + + 9.1310501098632812e-01 -2.7373200654983521e-01 + <_> + + 0 -1 504 -6.1650000512599945e-02 + + -1.4697799682617188e+00 2.0364099740982056e-01 + <_> + + 0 -1 505 -1.1739999987185001e-02 + + -1.0482879877090454e+00 6.7801997065544128e-02 + <_> + + 0 -1 506 6.6933996975421906e-02 + + 2.9274499416351318e-01 -5.2282899618148804e-01 + <_> + + 0 -1 507 -2.0631000399589539e-02 + + -1.2855139970779419e+00 4.4550999999046326e-02 + <_> + + 0 -1 508 -2.2357000038027763e-02 + + -8.5753798484802246e-01 1.8434000015258789e-01 + <_> + + 0 -1 509 1.1500000255182385e-03 + + 1.6405500471591949e-01 -6.9125002622604370e-01 + <_> + + 0 -1 510 3.5872999578714371e-02 + + 1.5756499767303467e-01 -8.4262597560882568e-01 + <_> + + 0 -1 511 3.0659999698400497e-02 + + 2.1637000143527985e-02 -1.3634690046310425e+00 + <_> + + 0 -1 512 5.5559999309480190e-03 + + -1.6737000644207001e-01 2.5888401269912720e-01 + <_> + + 0 -1 513 -6.1160000041127205e-03 + + -9.7271800041198730e-01 6.6100001335144043e-02 + <_> + + 0 -1 514 -3.0316999182105064e-02 + + 9.8474198579788208e-01 -1.6448000445961952e-02 + <_> + + 0 -1 515 -9.7200004383921623e-03 + + 4.7604700922966003e-01 -3.2516700029373169e-01 + <_> + + 0 -1 516 -5.7126998901367188e-02 + + -9.5920699834823608e-01 1.9938200712203979e-01 + <_> + + 0 -1 517 4.0059997700154781e-03 + + -5.2612501382827759e-01 2.2428700327873230e-01 + <_> + + 0 -1 518 3.3734001219272614e-02 + + 1.7070099711418152e-01 -1.0737580060958862e+00 + <_> + + 0 -1 519 -3.4641999751329422e-02 + + -1.1343129873275757e+00 3.6540001630783081e-02 + <_> + + 0 -1 520 4.6923000365495682e-02 + + 2.5832301378250122e-01 -7.1535801887512207e-01 + <_> + + 0 -1 521 -8.7660001590847969e-03 + + 1.9640900194644928e-01 -5.3355097770690918e-01 + <_> + + 0 -1 522 6.5627999603748322e-02 + + -5.1194999366998672e-02 9.7610700130462646e-01 + <_> + + 0 -1 523 -4.4165000319480896e-02 + + 1.0631920099258423e+00 -2.3462599515914917e-01 + <_> + + 0 -1 524 1.7304999753832817e-02 + + -1.8582899868488312e-01 4.5889899134635925e-01 + <_> + + 0 -1 525 3.3135998994112015e-02 + + -2.9381999745965004e-02 -2.6651329994201660e+00 + <_> + + 0 -1 526 -2.1029999479651451e-02 + + 9.9979901313781738e-01 2.4937000125646591e-02 + <_> + + 0 -1 527 2.9783999547362328e-02 + + -2.9605999588966370e-02 -2.1695868968963623e+00 + <_> + + 0 -1 528 5.5291999131441116e-02 + + -7.5599999399855733e-04 7.4651998281478882e-01 + <_> + + 0 -1 529 -3.3597998321056366e-02 + + -1.5274159908294678e+00 1.1060000397264957e-02 + <_> + + 0 -1 530 1.9602999091148376e-02 + + 3.3574998378753662e-02 9.9526202678680420e-01 + <_> + + 0 -1 531 -2.0787000656127930e-02 + + 7.6612901687622070e-01 -2.4670800566673279e-01 + <_> + + 0 -1 532 3.2536000013351440e-02 + + 1.6263400018215179e-01 -6.1134302616119385e-01 + <_> + + 0 -1 533 -1.0788000188767910e-02 + + -9.7839701175689697e-01 2.8969999402761459e-02 + <_> + + 0 -1 534 -9.9560003727674484e-03 + + 4.6145799756050110e-01 -1.3510499894618988e-01 + <_> + + 0 -1 535 -3.7489999085664749e-03 + + 2.5458198785781860e-01 -5.1955598592758179e-01 + <_> + + 0 -1 536 -4.1779998689889908e-02 + + -8.0565100908279419e-01 1.5208500623703003e-01 + <_> + + 0 -1 537 -3.4221000969409943e-02 + + -1.3137799501419067e+00 -3.5800000187009573e-03 + <_> + + 0 -1 538 1.0130000300705433e-02 + + 2.0175799727439880e-01 -6.1339598894119263e-01 + <_> + + 0 -1 539 -8.9849002659320831e-02 + + 9.7632801532745361e-01 -2.0884799957275391e-01 + <_> + + 0 -1 540 2.6097999885678291e-02 + + -1.8807999789714813e-01 4.7705799341201782e-01 + <_> + + 0 -1 541 -3.7539999466389418e-03 + + -6.7980402708053589e-01 1.1288800090551376e-01 + <_> + + 0 -1 542 3.1973000615835190e-02 + + 1.8951700627803802e-01 -1.4967479705810547e+00 + <_> + + 0 -1 543 1.9332999363541603e-02 + + -2.3609900474548340e-01 8.1320500373840332e-01 + <_> + + 0 -1 544 1.9490000559017062e-03 + + 2.4830399453639984e-01 -6.9211997091770172e-02 + <_> + + 0 -1 545 -4.4146999716758728e-02 + + -1.0418920516967773e+00 4.8053000122308731e-02 + <_> + + 0 -1 546 -4.4681999832391739e-02 + + 5.1346302032470703e-01 -7.3799998499453068e-03 + <_> + + 0 -1 547 -1.0757499933242798e-01 + + 1.6202019453048706e+00 -1.8667599558830261e-01 + <_> + + 0 -1 548 -1.2846800684928894e-01 + + 2.9869480133056641e+00 9.5427997410297394e-02 + <_> + + 0 -1 549 -4.4757999479770660e-02 + + 6.0405302047729492e-01 -2.7058699727058411e-01 + <_> + + 0 -1 550 -4.3990999460220337e-02 + + -6.1790502071380615e-01 1.5997199714183807e-01 + <_> + + 0 -1 551 -1.2268999963998795e-01 + + 6.6327202320098877e-01 -2.3636999726295471e-01 + <_> + + 0 -1 552 -1.9982999190688133e-02 + + -1.1228660345077515e+00 1.9616700708866119e-01 + <_> + + 0 -1 553 -1.5527999959886074e-02 + + -1.0770269632339478e+00 2.0693000406026840e-02 + <_> + + 0 -1 554 -4.8971001058816910e-02 + + 8.1168299913406372e-01 -1.7252000048756599e-02 + <_> + + 0 -1 555 5.5975999683141708e-02 + + -2.2529000416398048e-02 -1.7356760501861572e+00 + <_> + + 0 -1 556 -9.8580000922083855e-03 + + 6.7881399393081665e-01 -5.8180000633001328e-02 + <_> + + 0 -1 557 1.3481000438332558e-02 + + 5.7847999036312103e-02 -7.7255302667617798e-01 + <_> + + 0 -1 558 6.5609999001026154e-03 + + -1.3146899640560150e-01 6.7055797576904297e-01 + <_> + + 0 -1 559 7.1149999275803566e-03 + + -3.7880599498748779e-01 3.0978998541831970e-01 + <_> + + 0 -1 560 4.8159998841583729e-03 + + -5.8470398187637329e-01 2.5602099299430847e-01 + <_> + + 0 -1 561 9.5319999381899834e-03 + + -3.0217000842094421e-01 4.1253298521041870e-01 + <_> + + 0 -1 562 -2.7474999427795410e-02 + + 5.9154701232910156e-01 1.7963999882340431e-02 + <_> + + 0 -1 563 -3.9519999176263809e-02 + + 9.6913498640060425e-01 -2.1020300686359406e-01 + <_> + + 0 -1 564 -3.0658999457955360e-02 + + 9.1155898571014404e-01 4.0550000965595245e-02 + <_> + + 0 -1 565 -1.4680000022053719e-03 + + -6.0489797592163086e-01 1.6960899531841278e-01 + <_> + + 0 -1 566 1.9077600538730621e-01 + + 4.3515000492334366e-02 8.1892901659011841e-01 + <_> + + 0 -1 567 5.1790000870823860e-03 + + -9.3617302179336548e-01 2.4937000125646591e-02 + <_> + + 0 -1 568 2.4126000702381134e-02 + + 1.8175500631332397e-01 -3.4185901284217834e-01 + <_> + + 0 -1 569 -2.6383999735116959e-02 + + -1.2912579774856567e+00 -3.4280000254511833e-03 + <_> + + 0 -1 570 5.4139997810125351e-03 + + -4.6291999518871307e-02 2.5269600749015808e-01 + <_> + + 0 -1 571 5.4216001182794571e-02 + + -1.2848000042140484e-02 -1.4304540157318115e+00 + <_> + + 0 -1 572 2.3799999326001853e-04 + + -2.6676699519157410e-01 3.3588299155235291e-01 + <_> + + 0 -1 573 1.5216999687254429e-02 + + -5.1367300748825073e-01 1.3005100190639496e-01 + <_> + + 0 -1 574 1.7007999122142792e-02 + + 4.1575899720191956e-01 -3.1241199374198914e-01 + <_> + + 0 -1 575 3.0496999621391296e-02 + + -2.4820999801158905e-01 7.0828497409820557e-01 + <_> + + 0 -1 576 6.5430002287030220e-03 + + -2.2637000679969788e-01 1.9184599816799164e-01 + <_> + + 0 -1 577 1.4163999259471893e-01 + + 6.5227001905441284e-02 -8.8809502124786377e-01 + <_> + + 0 -1 578 1.9338000565767288e-02 + + 1.8891200423240662e-01 -2.7397701144218445e-01 + <_> + + 0 -1 579 -1.7324000597000122e-02 + + -9.4866698980331421e-01 2.4196999147534370e-02 + <_> + + 0 -1 580 -6.2069999985396862e-03 + + 3.6938399076461792e-01 -1.7494900524616241e-01 + <_> + + 0 -1 581 -1.6109000891447067e-02 + + 9.6159499883651733e-01 -2.0005300641059875e-01 + <_> + + 0 -1 582 -1.0122500360012054e-01 + + -3.0699110031127930e+00 1.1363799870014191e-01 + <_> + + 0 -1 583 -7.5509999878704548e-03 + + 2.2921000421047211e-01 -4.5645099878311157e-01 + <_> + + 0 -1 584 4.4247999787330627e-02 + + -3.1599999056197703e-04 3.9225301146507263e-01 + <_> + + 0 -1 585 -1.1636000126600266e-01 + + 9.5233702659606934e-01 -2.0201599597930908e-01 + <_> + + 0 -1 586 4.7360002063214779e-03 + + -9.9177002906799316e-02 2.0370499789714813e-01 + <_> + + 0 -1 587 2.2459000349044800e-02 + + 8.7280003353953362e-03 -1.0217070579528809e+00 + <_> + + 0 -1 588 -1.2109000235795975e-02 + + 6.4812600612640381e-01 -9.0149000287055969e-02 + <_> + + 0 -1 589 5.6120000779628754e-02 + + -3.6759998649358749e-02 -1.9275590181350708e+00 + <_> + + 0 -1 590 -8.7379999458789825e-03 + + 6.9261300563812256e-01 -6.8374998867511749e-02 + <_> + + 0 -1 591 6.6399998031556606e-03 + + -4.0569800138473511e-01 1.8625700473785400e-01 + <_> + + 0 -1 592 -1.8131999298930168e-02 + + -6.4518201351165771e-01 2.1976399421691895e-01 + <_> + + 0 -1 593 -2.2718999534845352e-02 + + 9.7776198387145996e-01 -1.8654300272464752e-01 + <_> + + 0 -1 594 1.2705000117421150e-02 + + -1.0546600073575974e-01 3.7404099106788635e-01 + <_> + + 0 -1 595 -1.3682999648153782e-02 + + 6.1064100265502930e-01 -2.6881098747253418e-01 + <_> + 115 + -3.7160909175872803e+00 + + <_> + + 0 -1 596 3.1357999891042709e-02 + + -1.0183910131454468e+00 5.7528597116470337e-01 + <_> + + 0 -1 597 9.3050003051757812e-02 + + -4.1297501325607300e-01 1.0091199874877930e+00 + <_> + + 0 -1 598 2.5949999690055847e-02 + + -5.8587902784347534e-01 5.6606197357177734e-01 + <_> + + 0 -1 599 1.6472000628709793e-02 + + -9.2857497930526733e-01 3.0924499034881592e-01 + <_> + + 0 -1 600 -1.8779999809339643e-03 + + 1.1951000243425369e-01 -1.1180130243301392e+00 + <_> + + 0 -1 601 -9.0129999443888664e-03 + + -5.7849502563476562e-01 3.3154401183128357e-01 + <_> + + 0 -1 602 2.2547999396920204e-02 + + -3.8325101137161255e-01 5.2462202310562134e-01 + <_> + + 0 -1 603 -3.7780001759529114e-02 + + 1.1790670156478882e+00 -3.4166999161243439e-02 + <_> + + 0 -1 604 -5.3799999877810478e-03 + + -8.6265897750854492e-01 1.1867900192737579e-01 + <_> + + 0 -1 605 -2.3893000558018684e-02 + + -7.4950599670410156e-01 2.1011400222778320e-01 + <_> + + 0 -1 606 -2.6521999388933182e-02 + + 9.2128598690032959e-01 -2.8252801299095154e-01 + <_> + + 0 -1 607 1.2280000373721123e-02 + + 2.6662799715995789e-01 -7.0013600587844849e-01 + <_> + + 0 -1 608 9.6594996750354767e-02 + + -2.8453999757766724e-01 7.3168998956680298e-01 + <_> + + 0 -1 609 -2.7414999902248383e-02 + + -6.1492699384689331e-01 1.5576200187206268e-01 + <_> + + 0 -1 610 -1.5767000615596771e-02 + + 5.7551199197769165e-01 -3.4362199902534485e-01 + <_> + + 0 -1 611 -2.1100000012665987e-03 + + 3.2599699497222900e-01 -1.3008299469947815e-01 + <_> + + 0 -1 612 1.2006999924778938e-02 + + 8.9322999119758606e-02 -9.6025598049163818e-01 + <_> + + 0 -1 613 -1.5421999618411064e-02 + + 3.4449499845504761e-01 -4.6711999177932739e-01 + <_> + + 0 -1 614 -4.1579999960958958e-03 + + 2.3696300387382507e-01 -5.2563297748565674e-01 + <_> + + 0 -1 615 -2.1185999736189842e-02 + + -7.4267697334289551e-01 2.1702000498771667e-01 + <_> + + 0 -1 616 -1.7077000811696053e-02 + + -9.0471798181533813e-01 6.6012002527713776e-02 + <_> + + 0 -1 617 -4.0849998593330383e-02 + + -3.4446600079536438e-01 2.1503700315952301e-01 + <_> + + 0 -1 618 -8.1930002197623253e-03 + + -9.3388599157333374e-01 5.0471000373363495e-02 + <_> + + 0 -1 619 -1.9238000735640526e-02 + + -5.3203701972961426e-01 1.7240600287914276e-01 + <_> + + 0 -1 620 -4.4192001223564148e-02 + + 9.2075002193450928e-01 -2.2148500382900238e-01 + <_> + + 0 -1 621 -6.2392000108957291e-02 + + -7.1053802967071533e-01 1.8323899805545807e-01 + <_> + + 0 -1 622 -1.0079999919980764e-03 + + -8.7063097953796387e-01 5.5330000817775726e-02 + <_> + + 0 -1 623 2.3870000615715981e-02 + + -2.2854200005531311e-01 5.2415597438812256e-01 + <_> + + 0 -1 624 2.1391000598669052e-02 + + -3.0325898528099060e-01 5.5860602855682373e-01 + <_> + + 0 -1 625 2.0254999399185181e-02 + + 2.6901501417160034e-01 -7.0261800289154053e-01 + <_> + + 0 -1 626 -2.8772000223398209e-02 + + -1.1835030317306519e+00 4.6512000262737274e-02 + <_> + + 0 -1 627 3.4199999645352364e-03 + + -5.4652100801467896e-01 2.5962498784065247e-01 + <_> + + 0 -1 628 5.6983001530170441e-02 + + -2.6982900500297546e-01 5.8170700073242188e-01 + <_> + + 0 -1 629 -9.3892000615596771e-02 + + -9.1046398878097534e-01 1.9677700102329254e-01 + <_> + + 0 -1 630 1.7699999734759331e-02 + + -4.4003298878669739e-01 2.1349500119686127e-01 + <_> + + 0 -1 631 2.2844199836254120e-01 + + 2.3605000227689743e-02 7.7171599864959717e-01 + <_> + + 0 -1 632 -1.8287500739097595e-01 + + 7.9228597879409790e-01 -2.4644799530506134e-01 + <_> + + 0 -1 633 -6.9891996681690216e-02 + + 8.0267798900604248e-01 -3.6072000861167908e-02 + <_> + + 0 -1 634 1.5297000296413898e-02 + + -2.0072300732135773e-01 1.1030600070953369e+00 + <_> + + 0 -1 635 6.7500001750886440e-03 + + -4.5967999845743179e-02 7.2094500064849854e-01 + <_> + + 0 -1 636 -1.5983000397682190e-02 + + -9.0357202291488647e-01 4.4987998902797699e-02 + <_> + + 0 -1 637 1.3088000006973743e-02 + + 3.5297098755836487e-01 -3.7710601091384888e-01 + <_> + + 0 -1 638 1.3061000034213066e-02 + + -1.9583599269390106e-01 1.1198940277099609e+00 + <_> + + 0 -1 639 -3.9907000958919525e-02 + + -1.3998429775238037e+00 1.9145099818706512e-01 + <_> + + 0 -1 640 1.5026999637484550e-02 + + 2.3600000422447920e-03 -1.1611249446868896e+00 + <_> + + 0 -1 641 -2.0517999306321144e-02 + + -4.8908099532127380e-01 1.6743400692939758e-01 + <_> + + 0 -1 642 -2.2359000518918037e-02 + + -1.2202980518341064e+00 -1.1975999921560287e-02 + <_> + + 0 -1 643 -7.9150004312396049e-03 + + 3.7228098511695862e-01 -8.5063003003597260e-02 + <_> + + 0 -1 644 1.5258000232279301e-02 + + -2.9412600398063660e-01 5.9406399726867676e-01 + <_> + + 0 -1 645 -3.1665999442338943e-02 + + -1.4395569562911987e+00 1.3578799366950989e-01 + <_> + + 0 -1 646 -3.0773999169468880e-02 + + -2.2545371055603027e+00 -3.3971000462770462e-02 + <_> + + 0 -1 647 -1.5483000315725803e-02 + + 3.7700700759887695e-01 1.5847999602556229e-02 + <_> + + 0 -1 648 3.5167001187801361e-02 + + -2.9446101188659668e-01 5.3159099817276001e-01 + <_> + + 0 -1 649 -1.7906000837683678e-02 + + -9.9788200855255127e-01 1.6235999763011932e-01 + <_> + + 0 -1 650 -3.1799999997019768e-03 + + 4.7657001763582230e-02 -7.5249898433685303e-01 + <_> + + 0 -1 651 1.5720000490546227e-02 + + 1.4873799681663513e-01 -6.5375399589538574e-01 + <_> + + 0 -1 652 2.9864000156521797e-02 + + -1.4952000230550766e-02 -1.2275190353393555e+00 + <_> + + 0 -1 653 2.9899999499320984e-03 + + -1.4263699948787689e-01 4.3272799253463745e-01 + <_> + + 0 -1 654 8.4749996662139893e-02 + + -1.9280999898910522e-02 -1.1946409940719604e+00 + <_> + + 0 -1 655 -5.8724999427795410e-02 + + -1.7328219413757324e+00 1.4374700188636780e-01 + <_> + + 0 -1 656 4.4755998998880386e-02 + + -2.4140599370002747e-01 5.4019999504089355e-01 + <_> + + 0 -1 657 4.0369000285863876e-02 + + 5.7680001482367516e-03 5.6578099727630615e-01 + <_> + + 0 -1 658 3.7735998630523682e-02 + + 3.8180999457836151e-02 -7.9370397329330444e-01 + <_> + + 0 -1 659 6.0752999037504196e-02 + + 7.6453000307083130e-02 1.4813209772109985e+00 + <_> + + 0 -1 660 -1.9832000136375427e-02 + + -1.6971720457077026e+00 -2.7370000258088112e-02 + <_> + + 0 -1 661 -1.6592699289321899e-01 + + 6.2976002693176270e-01 3.1762998551130295e-02 + <_> + + 0 -1 662 6.9014996290206909e-02 + + -3.3463200926780701e-01 3.0076700448989868e-01 + <_> + + 0 -1 663 1.1358000338077545e-02 + + 2.2741499543190002e-01 -3.8224700093269348e-01 + <_> + + 0 -1 664 1.7000000225380063e-03 + + 1.9223800301551819e-01 -5.2735102176666260e-01 + <_> + + 0 -1 665 7.9769000411033630e-02 + + 9.1491997241973877e-02 2.1049048900604248e+00 + <_> + + 0 -1 666 -5.7144001126289368e-02 + + -1.7452130317687988e+00 -4.0910001844167709e-02 + <_> + + 0 -1 667 7.3830001056194305e-03 + + -2.4214799702167511e-01 3.5577800869941711e-01 + <_> + + 0 -1 668 -1.8040999770164490e-02 + + 1.1779999732971191e+00 -1.7676700651645660e-01 + <_> + + 0 -1 669 9.4503000378608704e-02 + + 1.3936099410057068e-01 -1.2993700504302979e+00 + <_> + + 0 -1 670 5.4210000671446323e-03 + + -5.4608601331710815e-01 1.3916400074958801e-01 + <_> + + 0 -1 671 7.0290002040565014e-03 + + -2.1597200632095337e-01 3.9258098602294922e-01 + <_> + + 0 -1 672 3.4515999257564545e-02 + + 6.3188999891281128e-02 -7.2108101844787598e-01 + <_> + + 0 -1 673 -5.1924999803304672e-02 + + 6.8667602539062500e-01 6.3272997736930847e-02 + <_> + + 0 -1 674 -6.9162003695964813e-02 + + 1.7411810159683228e+00 -1.6619299352169037e-01 + <_> + + 0 -1 675 -5.5229999125003815e-03 + + 3.0694699287414551e-01 -1.6662900149822235e-01 + <_> + + 0 -1 676 6.8599998950958252e-02 + + -2.1405400335788727e-01 7.3185002803802490e-01 + <_> + + 0 -1 677 -6.7038998007774353e-02 + + -7.9360598325729370e-01 2.0525799691677094e-01 + <_> + + 0 -1 678 -2.1005000919103622e-02 + + 3.7344399094581604e-01 -2.9618600010871887e-01 + <_> + + 0 -1 679 2.0278999581933022e-02 + + -1.5200000256299973e-02 4.0555301308631897e-01 + <_> + + 0 -1 680 -4.7107998281717300e-02 + + 1.2116849422454834e+00 -1.7464299499988556e-01 + <_> + + 0 -1 681 1.8768499791622162e-01 + + -2.2909000515937805e-02 6.9645798206329346e-01 + <_> + + 0 -1 682 -4.3228998780250549e-02 + + -1.0602480173110962e+00 -5.5599998449906707e-04 + <_> + + 0 -1 683 2.0004000514745712e-02 + + -3.2751001417636871e-02 5.3805100917816162e-01 + <_> + + 0 -1 684 8.0880001187324524e-03 + + 3.7548001855611801e-02 -7.4768900871276855e-01 + <_> + + 0 -1 685 2.7101000770926476e-02 + + -8.1790000200271606e-02 3.3387100696563721e-01 + <_> + + 0 -1 686 -9.1746002435684204e-02 + + -1.9213509559631348e+00 -3.8952998816967010e-02 + <_> + + 0 -1 687 -1.2454999610781670e-02 + + 4.8360601067543030e-01 1.8168000504374504e-02 + <_> + + 0 -1 688 1.4649000018835068e-02 + + -1.9906699657440186e-01 7.2815400362014771e-01 + <_> + + 0 -1 689 2.9101999476552010e-02 + + 1.9871099293231964e-01 -4.9216800928115845e-01 + <_> + + 0 -1 690 8.7799998000264168e-03 + + -1.9499599933624268e-01 7.7317398786544800e-01 + <_> + + 0 -1 691 -5.4740000516176224e-02 + + 1.8087190389633179e+00 6.8323001265525818e-02 + <_> + + 0 -1 692 -1.4798000454902649e-02 + + 7.8064900636672974e-01 -1.8709599971771240e-01 + <_> + + 0 -1 693 2.5012999773025513e-02 + + 1.5285299718379974e-01 -1.6021020412445068e+00 + <_> + + 0 -1 694 4.6548001468181610e-02 + + -1.6738200187683105e-01 1.1902060508728027e+00 + <_> + + 0 -1 695 1.7624000087380409e-02 + + -1.0285499691963196e-01 3.9175900816917419e-01 + <_> + + 0 -1 696 1.6319599747657776e-01 + + -3.5624001175165176e-02 -1.6098170280456543e+00 + <_> + + 0 -1 697 1.3137999922037125e-02 + + -5.6359000504016876e-02 5.4158902168273926e-01 + <_> + + 0 -1 698 -1.5665000304579735e-02 + + 2.8063100576400757e-01 -3.1708601117134094e-01 + <_> + + 0 -1 699 8.0554001033306122e-02 + + 1.2640400230884552e-01 -1.0297529697418213e+00 + <_> + + 0 -1 700 3.5363998264074326e-02 + + 2.0752999931573868e-02 -7.9105597734451294e-01 + <_> + + 0 -1 701 3.2986998558044434e-02 + + 1.9057099521160126e-01 -8.3839899301528931e-01 + <_> + + 0 -1 702 1.2195000424981117e-02 + + 7.3729000985622406e-02 -6.2780702114105225e-01 + <_> + + 0 -1 703 4.3065998703241348e-02 + + 4.7384999692440033e-02 1.5712939500808716e+00 + <_> + + 0 -1 704 3.0326999723911285e-02 + + -2.7314600348472595e-01 3.8572001457214355e-01 + <_> + + 0 -1 705 3.5493001341819763e-02 + + 5.4593998938798904e-02 5.2583402395248413e-01 + <_> + + 0 -1 706 -1.4596999622881413e-02 + + 3.8152599334716797e-01 -2.8332400321960449e-01 + <_> + + 0 -1 707 1.2606999836862087e-02 + + 1.5455099940299988e-01 -3.0501499772071838e-01 + <_> + + 0 -1 708 1.0172000154852867e-02 + + 2.3637000471353531e-02 -8.7217897176742554e-01 + <_> + + 0 -1 709 2.8843000531196594e-02 + + 1.6090999543666840e-01 -2.0277599990367889e-01 + <_> + + 0 -1 710 5.5100000463426113e-04 + + -6.1545401811599731e-01 8.0935999751091003e-02 + <_> + 127 + -3.5645289421081543e+00 + + <_> + + 0 -1 711 4.8344001173973083e-02 + + -8.4904599189758301e-01 5.6974399089813232e-01 + <_> + + 0 -1 712 3.2460000365972519e-02 + + -8.1417298316955566e-01 4.4781699776649475e-01 + <_> + + 0 -1 713 3.3339999616146088e-02 + + -3.6423799395561218e-01 6.7937397956848145e-01 + <_> + + 0 -1 714 6.4019998535513878e-03 + + -1.1885459423065186e+00 1.9238699972629547e-01 + <_> + + 0 -1 715 -5.6889997795224190e-03 + + 3.3085298538208008e-01 -7.1334099769592285e-01 + <_> + + 0 -1 716 1.2698000296950340e-02 + + -5.0990802049636841e-01 1.1376299709081650e-01 + <_> + + 0 -1 717 6.0549997724592686e-03 + + -1.0470550060272217e+00 2.0222599804401398e-01 + <_> + + 0 -1 718 2.6420000940561295e-03 + + -5.0559401512145996e-01 3.6441200971603394e-01 + <_> + + 0 -1 719 -1.6925999894738197e-02 + + -9.9541902542114258e-01 1.2602199614048004e-01 + <_> + + 0 -1 720 2.8235999867320061e-02 + + -9.4137996435165405e-02 5.7780402898788452e-01 + <_> + + 0 -1 721 1.0428999550640583e-02 + + 2.3272900283336639e-01 -5.2569699287414551e-01 + <_> + + 0 -1 722 9.8860003054141998e-03 + + -1.0316299647092819e-01 4.7657600045204163e-01 + <_> + + 0 -1 723 2.6015000417828560e-02 + + -1.0920000495389104e-03 -1.5581729412078857e+00 + <_> + + 0 -1 724 -2.5537999346852303e-02 + + -6.5451401472091675e-01 1.8843199312686920e-01 + <_> + + 0 -1 725 -3.5310001112520695e-03 + + 2.8140598535537720e-01 -4.4575300812721252e-01 + <_> + + 0 -1 726 9.2449998483061790e-03 + + 1.5612000226974487e-01 -2.1370999515056610e-01 + <_> + + 0 -1 727 2.1030999720096588e-02 + + -2.9170298576354980e-01 5.2234101295471191e-01 + <_> + + 0 -1 728 -5.1063001155853271e-02 + + 1.3661290407180786e+00 3.0465999618172646e-02 + <_> + + 0 -1 729 -6.2330000102519989e-02 + + 1.2207020521163940e+00 -2.2434400022029877e-01 + <_> + + 0 -1 730 -3.2963000237941742e-02 + + -8.2016801834106445e-01 1.4531899988651276e-01 + <_> + + 0 -1 731 -3.7418000400066376e-02 + + -1.2218099832534790e+00 1.9448999315500259e-02 + <_> + + 0 -1 732 1.2402799725532532e-01 + + 1.2082300335168839e-01 -9.8729300498962402e-01 + <_> + + 0 -1 733 -8.9229997247457504e-03 + + -1.1688489913940430e+00 2.1105000749230385e-02 + <_> + + 0 -1 734 -5.9879999607801437e-02 + + -1.0689330101013184e+00 1.9860200583934784e-01 + <_> + + 0 -1 735 6.2620001845061779e-03 + + -3.6229598522186279e-01 3.8000801205635071e-01 + <_> + + 0 -1 736 -1.7673000693321228e-02 + + 4.9094098806381226e-01 -1.4606699347496033e-01 + <_> + + 0 -1 737 1.7579000443220139e-02 + + 5.8728098869323730e-01 -2.7774399518966675e-01 + <_> + + 0 -1 738 5.1560001447796822e-03 + + -7.5194999575614929e-02 6.0193097591400146e-01 + <_> + + 0 -1 739 -1.0599999688565731e-02 + + 2.7637401223182678e-01 -3.7794300913810730e-01 + <_> + + 0 -1 740 2.0884099602699280e-01 + + -5.3599998354911804e-03 1.0317809581756592e+00 + <_> + + 0 -1 741 -2.6412999257445335e-02 + + 8.2336401939392090e-01 -2.2480599582195282e-01 + <_> + + 0 -1 742 5.8892000466585159e-02 + + 1.3098299503326416e-01 -1.1853699684143066e+00 + <_> + + 0 -1 743 -1.1579000391066074e-02 + + -9.0667802095413208e-01 4.4126998633146286e-02 + <_> + + 0 -1 744 4.5988000929355621e-02 + + 1.0143999941647053e-02 1.0740900039672852e+00 + <_> + + 0 -1 745 -2.2838000208139420e-02 + + 1.7791990041732788e+00 -1.7315499484539032e-01 + <_> + + 0 -1 746 -8.1709995865821838e-03 + + 5.7386302947998047e-01 -7.4106000363826752e-02 + <_> + + 0 -1 747 3.5359999164938927e-03 + + -3.2072898745536804e-01 4.0182501077651978e-01 + <_> + + 0 -1 748 4.9444999545812607e-02 + + 1.9288000464439392e-01 -1.2166700363159180e+00 + <_> + + 0 -1 749 3.5139999818056822e-03 + + 6.9568000733852386e-02 -7.1323698759078979e-01 + <_> + + 0 -1 750 -3.0996000394225121e-02 + + -3.8862198591232300e-01 1.8098799884319305e-01 + <_> + + 0 -1 751 8.6452998220920563e-02 + + -2.5792999193072319e-02 -1.5453219413757324e+00 + <_> + + 0 -1 752 -1.3652600347995758e-01 + + -1.9199420213699341e+00 1.6613300144672394e-01 + <_> + + 0 -1 753 -5.7689999230206013e-03 + + -1.2822589874267578e+00 -1.5907999128103256e-02 + <_> + + 0 -1 754 -1.7899999395012856e-02 + + -4.0409898757934570e-01 2.3591600358486176e-01 + <_> + + 0 -1 755 -1.9969999790191650e-02 + + -7.2891902923583984e-01 5.6235000491142273e-02 + <_> + + 0 -1 756 -5.7493001222610474e-02 + + 5.7830798625946045e-01 -1.5796000137925148e-02 + <_> + + 0 -1 757 -8.3056002855300903e-02 + + 9.1511601209640503e-01 -2.1121400594711304e-01 + <_> + + 0 -1 758 -5.3771000355482101e-02 + + -5.1931297779083252e-01 1.8576000630855560e-01 + <_> + + 0 -1 759 -8.3670001477003098e-03 + + 2.4109700322151184e-01 -3.9648601412773132e-01 + <_> + + 0 -1 760 5.5406998842954636e-02 + + 1.6771200299263000e-01 -2.5664970874786377e+00 + <_> + + 0 -1 761 -6.7180998623371124e-02 + + -1.3658570051193237e+00 -1.4232000336050987e-02 + <_> + + 0 -1 762 -2.3900000378489494e-02 + + -1.7084569931030273e+00 1.6507799923419952e-01 + <_> + + 0 -1 763 5.5949999950826168e-03 + + -3.1373998522758484e-01 3.2837900519371033e-01 + <_> + + 0 -1 764 2.1294999867677689e-02 + + 1.4953400194644928e-01 -4.8579800128936768e-01 + <_> + + 0 -1 765 -2.4613000452518463e-02 + + 7.4346399307250977e-01 -2.2305199503898621e-01 + <_> + + 0 -1 766 -1.9626000896096230e-02 + + -4.0918299555778503e-01 1.8893200159072876e-01 + <_> + + 0 -1 767 -5.3266000002622604e-02 + + 8.1381601095199585e-01 -2.0853699743747711e-01 + <_> + + 0 -1 768 7.1290000341832638e-03 + + 3.2996100187301636e-01 -5.9937399625778198e-01 + <_> + + 0 -1 769 -2.2486999630928040e-02 + + -1.2551610469818115e+00 -2.0413000136613846e-02 + <_> + + 0 -1 770 -8.2310996949672699e-02 + + 1.3821430206298828e+00 5.9308998286724091e-02 + <_> + + 0 -1 771 1.3097000122070312e-01 + + -3.5843998193740845e-02 -1.5396369695663452e+00 + <_> + + 0 -1 772 1.4293000102043152e-02 + + -1.8475200235843658e-01 3.7455001473426819e-01 + <_> + + 0 -1 773 6.3479999080300331e-03 + + -4.4901099801063538e-01 1.3876999914646149e-01 + <_> + + 0 -1 774 -4.6055000275373459e-02 + + 6.7832601070404053e-01 -1.7071999609470367e-02 + <_> + + 0 -1 775 5.7693999260663986e-02 + + -1.1955999769270420e-02 -1.2261159420013428e+00 + <_> + + 0 -1 776 -6.0609998181462288e-03 + + 3.3958598971366882e-01 6.2800000887364149e-04 + <_> + + 0 -1 777 -5.2163001149892807e-02 + + -1.0621069669723511e+00 -1.3779999688267708e-02 + <_> + + 0 -1 778 4.6572998166084290e-02 + + 1.4538800716400146e-01 -1.2384550571441650e+00 + <_> + + 0 -1 779 7.5309998355805874e-03 + + -2.4467700719833374e-01 5.1377099752426147e-01 + <_> + + 0 -1 780 2.1615000441670418e-02 + + 1.3072599470615387e-01 -7.0996797084808350e-01 + <_> + + 0 -1 781 -1.7864000052213669e-02 + + -1.0474660396575928e+00 4.9599999329075217e-04 + <_> + + 0 -1 782 -3.7195000797510147e-02 + + -1.5126730203628540e+00 1.4801399409770966e-01 + <_> + + 0 -1 783 -3.1100001069717109e-04 + + 1.3971500098705292e-01 -4.6867498755455017e-01 + <_> + + 0 -1 784 2.5042999535799026e-02 + + 2.8632000088691711e-01 -4.1794699430465698e-01 + <_> + + 0 -1 785 9.3449996784329414e-03 + + -2.7336201071739197e-01 4.3444699048995972e-01 + <_> + + 0 -1 786 3.2363999634981155e-02 + + 1.8438899517059326e-01 -9.5019298791885376e-01 + <_> + + 0 -1 787 -6.2299999408423901e-03 + + 3.2581999897956848e-01 -3.0815601348876953e-01 + <_> + + 0 -1 788 5.1488999277353287e-02 + + 1.1416000127792358e-01 -1.9795479774475098e+00 + <_> + + 0 -1 789 -2.6449000462889671e-02 + + -1.1067299842834473e+00 -8.5519999265670776e-03 + <_> + + 0 -1 790 -1.5420000068843365e-02 + + 8.0138701200485229e-01 -3.2035000622272491e-02 + <_> + + 0 -1 791 1.9456999376416206e-02 + + -2.6449498534202576e-01 3.8753899931907654e-01 + <_> + + 0 -1 792 3.3620998263359070e-02 + + 1.6052000224590302e-02 5.8840900659561157e-01 + <_> + + 0 -1 793 2.8906000778079033e-02 + + 1.5216000378131866e-02 -9.4723600149154663e-01 + <_> + + 0 -1 794 2.0300000323913991e-04 + + -3.0766001343727112e-01 2.1235899627208710e-01 + <_> + + 0 -1 795 -4.9141999334096909e-02 + + -1.6058609485626221e+00 -3.1094999983906746e-02 + <_> + + 0 -1 796 7.6425999402999878e-02 + + 7.4758999049663544e-02 1.1639410257339478e+00 + <_> + + 0 -1 797 2.3897999897599220e-02 + + -6.4320000819861889e-03 -1.1150749921798706e+00 + <_> + + 0 -1 798 3.8970001041889191e-03 + + -2.4105699360370636e-01 2.0858900249004364e-01 + <_> + + 0 -1 799 -8.9445002377033234e-02 + + 1.9157789945602417e+00 -1.5721100568771362e-01 + <_> + + 0 -1 800 -1.5008999966084957e-02 + + -2.5174099206924438e-01 1.8179899454116821e-01 + <_> + + 0 -1 801 -1.1145999655127525e-02 + + -6.9349497556686401e-01 4.4927999377250671e-02 + <_> + + 0 -1 802 9.4578996300697327e-02 + + 1.8102100491523743e-01 -7.4978601932525635e-01 + <_> + + 0 -1 803 5.5038899183273315e-01 + + -3.0974000692367554e-02 -1.6746139526367188e+00 + <_> + + 0 -1 804 4.1381001472473145e-02 + + 6.3910000026226044e-02 7.6561200618743896e-01 + <_> + + 0 -1 805 2.4771999567747116e-02 + + 1.1380000039935112e-02 -8.8559401035308838e-01 + <_> + + 0 -1 806 5.0999000668525696e-02 + + 1.4890299737453461e-01 -2.4634211063385010e+00 + <_> + + 0 -1 807 -1.6893999651074409e-02 + + 3.8870999217033386e-01 -2.9880300164222717e-01 + <_> + + 0 -1 808 -1.2162300199270248e-01 + + -1.5542800426483154e+00 1.6300800442695618e-01 + <_> + + 0 -1 809 -3.6049999762326479e-03 + + 2.1842800080776215e-01 -3.7312099337577820e-01 + <_> + + 0 -1 810 1.1575400084257126e-01 + + -4.7061000019311905e-02 5.9403699636459351e-01 + <_> + + 0 -1 811 3.6903999745845795e-02 + + -2.5508600473403931e-01 5.5397301912307739e-01 + <_> + + 0 -1 812 1.1483999900519848e-02 + + -1.8129499256610870e-01 4.0682798624038696e-01 + <_> + + 0 -1 813 -2.0233999937772751e-02 + + 5.4311197996139526e-01 -2.3822399973869324e-01 + <_> + + 0 -1 814 -2.8765000402927399e-02 + + -6.9172298908233643e-01 1.5943300724029541e-01 + <_> + + 0 -1 815 -5.8320001699030399e-03 + + 2.9447799921035767e-01 -3.4005999565124512e-01 + <_> + + 0 -1 816 -5.5468998849391937e-02 + + 9.2200797796249390e-01 9.4093002378940582e-02 + <_> + + 0 -1 817 -1.4801000244915485e-02 + + -7.9539698362350464e-01 3.1521998345851898e-02 + <_> + + 0 -1 818 -7.0940000005066395e-03 + + 3.3096000552177429e-01 -5.0886999815702438e-02 + <_> + + 0 -1 819 -4.5124001801013947e-02 + + -1.3719749450683594e+00 -2.1408999338746071e-02 + <_> + + 0 -1 820 6.4377002418041229e-02 + + 6.3901998102664948e-02 9.1478300094604492e-01 + <_> + + 0 -1 821 -1.4727000147104263e-02 + + 3.6050599813461304e-01 -2.8614500164985657e-01 + <_> + + 0 -1 822 4.5007001608610153e-02 + + -1.5619699656963348e-01 5.3160297870635986e-01 + <_> + + 0 -1 823 -1.1330000124871731e-03 + + 1.3422900438308716e-01 -4.4358900189399719e-01 + <_> + + 0 -1 824 4.9451000988483429e-02 + + 1.0571800172328949e-01 -2.5589139461517334e+00 + <_> + + 0 -1 825 2.9102999716997147e-02 + + -1.0088000446557999e-02 -1.1073939800262451e+00 + <_> + + 0 -1 826 3.4786000847816467e-02 + + -2.7719999197870493e-03 5.6700998544692993e-01 + <_> + + 0 -1 827 -6.1309998854994774e-03 + + -4.6889400482177734e-01 1.2636399269104004e-01 + <_> + + 0 -1 828 1.5525000169873238e-02 + + -8.4279999136924744e-03 8.7469202280044556e-01 + <_> + + 0 -1 829 2.9249999206513166e-03 + + -3.4434300661087036e-01 2.0851600170135498e-01 + <_> + + 0 -1 830 -5.3571000695228577e-02 + + 1.4982949495315552e+00 5.7328000664710999e-02 + <_> + + 0 -1 831 -1.9217999652028084e-02 + + -9.9234098196029663e-01 -9.3919998034834862e-03 + <_> + + 0 -1 832 -5.5282998830080032e-02 + + -5.7682299613952637e-01 1.6860599815845490e-01 + <_> + + 0 -1 833 5.6336000561714172e-02 + + -3.3775001764297485e-02 -1.3889650106430054e+00 + <_> + + 0 -1 834 -2.3824000731110573e-02 + + 4.0182098746299744e-01 1.8360000103712082e-03 + <_> + + 0 -1 835 1.7810000572353601e-03 + + 1.8145999312400818e-01 -4.1743400692939758e-01 + <_> + + 0 -1 836 -3.7689000368118286e-02 + + 5.4683101177215576e-01 1.8219999969005585e-02 + <_> + + 0 -1 837 -2.4144999682903290e-02 + + 6.8352097272872925e-01 -1.9650200009346008e-01 + <_> + 135 + -3.7025990486145020e+00 + + <_> + + 0 -1 838 2.7444999665021896e-02 + + -8.9984202384948730e-01 5.1876497268676758e-01 + <_> + + 0 -1 839 1.1554100364446640e-01 + + -5.6524401903152466e-01 7.0551300048828125e-01 + <_> + + 0 -1 840 -2.2297000512480736e-02 + + 3.6079999804496765e-01 -6.6864597797393799e-01 + <_> + + 0 -1 841 1.3325000181794167e-02 + + -5.5573397874832153e-01 3.5789999365806580e-01 + <_> + + 0 -1 842 -3.8060001097619534e-03 + + -1.0713000297546387e+00 1.8850000202655792e-01 + <_> + + 0 -1 843 -2.6819999329745770e-03 + + -7.1584302186965942e-01 2.6344498991966248e-01 + <_> + + 0 -1 844 3.3819999080151320e-03 + + -4.6930798888206482e-01 2.6658400893211365e-01 + <_> + + 0 -1 845 3.7643000483512878e-02 + + 2.1098700165748596e-01 -1.0804339647293091e+00 + <_> + + 0 -1 846 -1.3861999846994877e-02 + + 6.6912001371383667e-01 -2.7942800521850586e-01 + <_> + + 0 -1 847 -2.7350001037120819e-03 + + -9.5332300662994385e-01 2.4051299691200256e-01 + <_> + + 0 -1 848 -3.8336999714374542e-02 + + 8.1432801485061646e-01 -2.4919399619102478e-01 + <_> + + 0 -1 849 -3.4697998315095901e-02 + + 1.2330100536346436e+00 6.8600000813603401e-03 + <_> + + 0 -1 850 2.3360999301075935e-02 + + -3.0794700980186462e-01 7.0714497566223145e-01 + <_> + + 0 -1 851 3.5057999193668365e-02 + + 2.1205900609493256e-01 -1.4399830102920532e+00 + <_> + + 0 -1 852 -1.3256999664008617e-02 + + -9.0260702371597290e-01 4.8610001802444458e-02 + <_> + + 0 -1 853 1.2740000151097775e-02 + + 2.2655199468135834e-01 -4.4643801450729370e-01 + <_> + + 0 -1 854 3.6400000099092722e-03 + + -3.9817899465560913e-01 3.4665399789810181e-01 + <_> + + 0 -1 855 1.0064700245857239e-01 + + 1.8383599817752838e-01 -1.3410769701004028e+00 + <_> + + 0 -1 856 0. + + 1.5536400675773621e-01 -5.1582497358322144e-01 + <_> + + 0 -1 857 1.1708999983966351e-02 + + 2.1651400625705719e-01 -7.2705197334289551e-01 + <_> + + 0 -1 858 -3.5964999347925186e-02 + + -1.4789500236511230e+00 -2.4317000061273575e-02 + <_> + + 0 -1 859 -2.1236000582575798e-02 + + -1.6844099760055542e-01 1.9526599347591400e-01 + <_> + + 0 -1 860 1.4874000102281570e-02 + + 3.7335999310016632e-02 -8.7557297945022583e-01 + <_> + + 0 -1 861 -5.1409997977316380e-03 + + 3.3466500043869019e-01 -2.4109700322151184e-01 + <_> + + 0 -1 862 2.3450000211596489e-02 + + 5.5320002138614655e-03 -1.2509720325469971e+00 + <_> + + 0 -1 863 -2.5062000378966331e-02 + + 4.5212399959564209e-01 -8.4469996392726898e-02 + <_> + + 0 -1 864 -7.7400001464411616e-04 + + 1.5249900519847870e-01 -4.8486500978469849e-01 + <_> + + 0 -1 865 -4.0483999997377396e-02 + + -1.3024920225143433e+00 1.7983500659465790e-01 + <_> + + 0 -1 866 2.8170999139547348e-02 + + -2.4410900473594666e-01 6.2271100282669067e-01 + <_> + + 0 -1 867 4.5692998915910721e-02 + + 2.8122000396251678e-02 9.2394399642944336e-01 + <_> + + 0 -1 868 3.9707001298666000e-02 + + -2.2332799434661865e-01 7.7674001455307007e-01 + <_> + + 0 -1 869 5.0517000257968903e-02 + + 2.0319999754428864e-01 -1.0895930528640747e+00 + <_> + + 0 -1 870 -1.7266999930143356e-02 + + 6.8598401546478271e-01 -2.3304499685764313e-01 + <_> + + 0 -1 871 8.0186001956462860e-02 + + -1.0292000137269497e-02 6.1881101131439209e-01 + <_> + + 0 -1 872 9.7676001489162445e-02 + + -2.0070299506187439e-01 1.0088349580764771e+00 + <_> + + 0 -1 873 -1.5572000294923782e-02 + + 4.7615298628807068e-01 4.5623999089002609e-02 + <_> + + 0 -1 874 -1.5305000357329845e-02 + + -1.1077369451522827e+00 4.5239999890327454e-03 + <_> + + 0 -1 875 -1.6485000029206276e-02 + + 1.0152939558029175e+00 1.6327999532222748e-02 + <_> + + 0 -1 876 -2.6141999289393425e-02 + + 4.1723299026489258e-01 -2.8645500540733337e-01 + <_> + + 0 -1 877 8.8679995387792587e-03 + + 2.1404999494552612e-01 -1.6772800683975220e-01 + <_> + + 0 -1 878 -2.6886999607086182e-02 + + -1.1564220190048218e+00 -1.0324000380933285e-02 + <_> + + 0 -1 879 7.7789998613297939e-03 + + 3.5359498858451843e-01 -2.9611301422119141e-01 + <_> + + 0 -1 880 -1.5974000096321106e-02 + + -1.5374109745025635e+00 -2.9958000406622887e-02 + <_> + + 0 -1 881 2.0866999402642250e-02 + + 2.0244100689888000e-01 -7.1270197629928589e-01 + <_> + + 0 -1 882 8.5482001304626465e-02 + + -2.5932999327778816e-02 -1.5156569480895996e+00 + <_> + + 0 -1 883 2.3872999474406242e-02 + + 1.6803400218486786e-01 -3.8806200027465820e-01 + <_> + + 0 -1 884 -3.9105001837015152e-02 + + -1.1958349943161011e+00 -2.0361000671982765e-02 + <_> + + 0 -1 885 -7.7946998178958893e-02 + + -1.0898950099945068e+00 1.4530299603939056e-01 + <_> + + 0 -1 886 -1.6876000910997391e-02 + + 2.8049701452255249e-01 -4.1336300969123840e-01 + <_> + + 0 -1 887 1.1875600367784500e-01 + + -4.3490998446941376e-02 4.1263699531555176e-01 + <_> + + 0 -1 888 1.5624199807643890e-01 + + -2.6429599523544312e-01 5.5127799510955811e-01 + <_> + + 0 -1 889 -4.5908000320196152e-02 + + 6.0189199447631836e-01 1.8921000882983208e-02 + <_> + + 0 -1 890 -1.0309999808669090e-02 + + 3.8152998685836792e-01 -2.9507899284362793e-01 + <_> + + 0 -1 891 9.5769003033638000e-02 + + 1.3246500492095947e-01 -4.6266800165176392e-01 + <_> + + 0 -1 892 1.3686999678611755e-02 + + 1.1738699674606323e-01 -5.1664102077484131e-01 + <_> + + 0 -1 893 2.3990001063793898e-03 + + -3.4007599949836731e-01 2.0953500270843506e-01 + <_> + + 0 -1 894 3.3264998346567154e-02 + + -1.7052799463272095e-01 1.4366799592971802e+00 + <_> + + 0 -1 895 -3.3206000924110413e-02 + + 6.1295700073242188e-01 -4.1549999266862869e-02 + <_> + + 0 -1 896 2.7979998849332333e-03 + + -4.8554301261901855e-01 1.3372699916362762e-01 + <_> + + 0 -1 897 -6.5792001783847809e-02 + + -4.0257668495178223e+00 1.0876700282096863e-01 + <_> + + 0 -1 898 2.1430000197142363e-03 + + -3.9179998636245728e-01 2.2427099943161011e-01 + <_> + + 0 -1 899 2.2363999858498573e-02 + + -8.6429998278617859e-02 3.7785199284553528e-01 + <_> + + 0 -1 900 -5.7410001754760742e-02 + + 1.1454069614410400e+00 -1.9736599922180176e-01 + <_> + + 0 -1 901 6.6550001502037048e-03 + + -2.1105000749230385e-02 5.8453398942947388e-01 + <_> + + 0 -1 902 1.2326999567449093e-02 + + 3.7817001342773438e-02 -6.6987001895904541e-01 + <_> + + 0 -1 903 -8.1869997084140778e-03 + + 5.6366002559661865e-01 -7.6877996325492859e-02 + <_> + + 0 -1 904 3.6681000143289566e-02 + + -1.7343300580978394e-01 1.1670149564743042e+00 + <_> + + 0 -1 905 -4.0220400691032410e-01 + + 1.2640819549560547e+00 4.3398998677730560e-02 + <_> + + 0 -1 906 -2.2126000374555588e-02 + + 6.6978102922439575e-01 -2.1605299413204193e-01 + <_> + + 0 -1 907 -1.3156999833881855e-02 + + -4.1198599338531494e-01 2.0215000212192535e-01 + <_> + + 0 -1 908 -1.2860000133514404e-02 + + -9.1582697629928589e-01 3.9232999086380005e-02 + <_> + + 0 -1 909 2.1627999842166901e-02 + + 3.8719999138265848e-03 3.5668200254440308e-01 + <_> + + 0 -1 910 1.1896000243723392e-02 + + -3.7303900718688965e-01 1.9235099852085114e-01 + <_> + + 0 -1 911 -1.9548999145627022e-02 + + -4.2374899983406067e-01 2.4429599940776825e-01 + <_> + + 0 -1 912 6.4444996416568756e-02 + + -1.6558900475502014e-01 1.2697030305862427e+00 + <_> + + 0 -1 913 1.0898499935865402e-01 + + 1.4894300699234009e-01 -2.1534640789031982e+00 + <_> + + 0 -1 914 -3.4077998250722885e-02 + + 1.3779460191726685e+00 -1.6198499500751495e-01 + <_> + + 0 -1 915 -3.7489999085664749e-03 + + -3.3828601241111755e-01 2.1152900159358978e-01 + <_> + + 0 -1 916 -1.0971999727189541e-02 + + 7.6517897844314575e-01 -1.9692599773406982e-01 + <_> + + 0 -1 917 -1.1485000140964985e-02 + + -6.9271200895309448e-01 2.1657100319862366e-01 + <_> + + 0 -1 918 2.5984000414609909e-02 + + -1.1983999982476234e-02 -9.9697297811508179e-01 + <_> + + 0 -1 919 4.2159999720752239e-03 + + -1.0205700248479843e-01 4.8884400725364685e-01 + <_> + + 0 -1 920 -4.7697000205516815e-02 + + 1.0666010379791260e+00 -1.7576299607753754e-01 + <_> + + 0 -1 921 4.0300001273863018e-04 + + 1.8524800240993500e-01 -7.4790000915527344e-01 + <_> + + 0 -1 922 1.1539600044488907e-01 + + -2.2019700706005096e-01 5.4509997367858887e-01 + <_> + + 0 -1 923 1.6021000221371651e-02 + + 2.5487500429153442e-01 -5.0740098953247070e-01 + <_> + + 0 -1 924 5.6632000952959061e-02 + + -1.1256000027060509e-02 -9.5968097448348999e-01 + <_> + + 0 -1 925 -1.0726000182330608e-02 + + -2.8544700145721436e-01 1.6994799673557281e-01 + <_> + + 0 -1 926 1.2420000135898590e-01 + + -3.6139998584985733e-02 -1.3132710456848145e+00 + <_> + + 0 -1 927 -5.3799999877810478e-03 + + 3.3092701435089111e-01 1.3307999819517136e-02 + <_> + + 0 -1 928 1.1908000335097313e-02 + + -3.4830299019813538e-01 2.4041900038719177e-01 + <_> + + 0 -1 929 -4.3007999658584595e-02 + + -1.4390469789505005e+00 1.5599599480628967e-01 + <_> + + 0 -1 930 -3.3149998635053635e-02 + + -1.1805850267410278e+00 -1.2347999960184097e-02 + <_> + + 0 -1 931 -2.1341999992728233e-02 + + 2.2119441032409668e+00 6.2737002968788147e-02 + <_> + + 0 -1 932 -1.2218999676406384e-02 + + -1.8709750175476074e+00 -4.5499999076128006e-02 + <_> + + 0 -1 933 -1.6860999166965485e-02 + + -7.6912701129913330e-01 1.5330000221729279e-01 + <_> + + 0 -1 934 -2.4999999441206455e-03 + + -6.2987399101257324e-01 5.1600001752376556e-02 + <_> + + 0 -1 935 -4.5037999749183655e-02 + + 8.5428899526596069e-01 6.2600001692771912e-03 + <_> + + 0 -1 936 3.9057999849319458e-02 + + -3.2458998262882233e-02 -1.3325669765472412e+00 + <_> + + 0 -1 937 6.6720000468194485e-03 + + -1.9423599541187286e-01 3.7328699231147766e-01 + <_> + + 0 -1 938 -1.6361000016331673e-02 + + 2.0605869293212891e+00 -1.5042699873447418e-01 + <_> + + 0 -1 939 6.1719999648630619e-03 + + -1.1610999703407288e-01 2.5455400347709656e-01 + <_> + + 0 -1 940 4.5722000300884247e-02 + + -1.6340000554919243e-02 -1.0449140071868896e+00 + <_> + + 0 -1 941 4.1209999471902847e-03 + + -4.1997998952865601e-02 3.9680999517440796e-01 + <_> + + 0 -1 942 -1.7800000205170363e-04 + + -6.6422599554061890e-01 3.3443000167608261e-02 + <_> + + 0 -1 943 7.1109998971223831e-03 + + -5.8231998234987259e-02 3.7857300043106079e-01 + <_> + + 0 -1 944 -4.9864001572132111e-02 + + 6.1019402742385864e-01 -2.1005700528621674e-01 + <_> + + 0 -1 945 -2.5011999532580376e-02 + + -5.7100099325180054e-01 1.7848399281501770e-01 + <_> + + 0 -1 946 3.0939999967813492e-02 + + 5.6363001465797424e-02 -6.4731001853942871e-01 + <_> + + 0 -1 947 4.6271000057458878e-02 + + 1.7482399940490723e-01 -9.8909401893615723e-01 + <_> + + 0 -1 948 -3.1870000530034304e-03 + + -6.6804802417755127e-01 3.2267000526189804e-02 + <_> + + 0 -1 949 -2.4351999163627625e-02 + + 2.9444900155067444e-01 -1.3599999947473407e-03 + <_> + + 0 -1 950 1.1974000371992588e-02 + + -2.8345099091529846e-01 4.7171199321746826e-01 + <_> + + 0 -1 951 1.3070000335574150e-02 + + -1.0834600031375885e-01 5.7193297147750854e-01 + <_> + + 0 -1 952 5.9163000434637070e-02 + + -5.0939001142978668e-02 -1.9059720039367676e+00 + <_> + + 0 -1 953 -4.1094999760389328e-02 + + 4.5104598999023438e-01 -9.7599998116493225e-03 + <_> + + 0 -1 954 -8.3989001810550690e-02 + + -2.0349199771881104e+00 -5.1019001752138138e-02 + <_> + + 0 -1 955 4.4619001448154449e-02 + + 1.7041100561618805e-01 -1.2278720140457153e+00 + <_> + + 0 -1 956 2.4419000372290611e-02 + + -2.1796999499201775e-02 -1.0822949409484863e+00 + <_> + + 0 -1 957 -4.3870001100003719e-03 + + 3.0466699600219727e-01 -3.7066599726676941e-01 + <_> + + 0 -1 958 2.4607999250292778e-02 + + -3.1169500946998596e-01 2.3657299578189850e-01 + <_> + + 0 -1 959 -8.5182003676891327e-02 + + -1.7982350587844849e+00 1.5254299342632294e-01 + <_> + + 0 -1 960 2.1844999864697456e-02 + + -5.1888000220060349e-02 -1.9017189741134644e+00 + <_> + + 0 -1 961 -1.6829000785946846e-02 + + 2.1025900542736053e-01 2.1656999364495277e-02 + <_> + + 0 -1 962 3.2547999173402786e-02 + + -2.0292599499225616e-01 6.0944002866744995e-01 + <_> + + 0 -1 963 2.4709999561309814e-03 + + -9.5371198654174805e-01 1.8568399548530579e-01 + <_> + + 0 -1 964 5.5415999144315720e-02 + + -1.4405299723148346e-01 2.1506340503692627e+00 + <_> + + 0 -1 965 -1.0635499656200409e-01 + + -1.0911970138549805e+00 1.3228000700473785e-01 + <_> + + 0 -1 966 -7.9889995977282524e-03 + + 1.0253400355577469e-01 -5.1744902133941650e-01 + <_> + + 0 -1 967 7.5567997992038727e-02 + + 5.8965001255273819e-02 1.2354209423065186e+00 + <_> + + 0 -1 968 -9.2805996537208557e-02 + + -1.3431650400161743e+00 -3.4462999552488327e-02 + <_> + + 0 -1 969 4.9431998282670975e-02 + + 4.9601998180150986e-02 1.6054730415344238e+00 + <_> + + 0 -1 970 -1.1772999539971352e-02 + + -1.0261050462722778e+00 -4.1559999808669090e-03 + <_> + + 0 -1 971 8.5886001586914062e-02 + + 8.4642998874187469e-02 9.5220798254013062e-01 + <_> + + 0 -1 972 8.1031002104282379e-02 + + -1.4687100052833557e-01 1.9359990358352661e+00 + <_> + 136 + -3.4265899658203125e+00 + + <_> + + 0 -1 973 -3.3840999007225037e-02 + + 6.5889501571655273e-01 -6.9755297899246216e-01 + <_> + + 0 -1 974 1.5410000458359718e-02 + + -9.0728402137756348e-01 3.0478599667549133e-01 + <_> + + 0 -1 975 5.4905999451875687e-02 + + -4.9774798750877380e-01 5.7132601737976074e-01 + <_> + + 0 -1 976 2.1390000358223915e-02 + + -4.2565199732780457e-01 5.8096802234649658e-01 + <_> + + 0 -1 977 7.8849997371435165e-03 + + -4.7905999422073364e-01 4.3016499280929565e-01 + <_> + + 0 -1 978 -3.7544999271631241e-02 + + 5.0861597061157227e-01 -1.9985899329185486e-01 + <_> + + 0 -1 979 1.5925799310207367e-01 + + -2.3263600468635559e-01 1.0993319749832153e+00 + <_> + + 0 -1 980 -6.8939998745918274e-02 + + 4.0569001436233521e-01 5.6855000555515289e-02 + <_> + + 0 -1 981 -3.3695001155138016e-02 + + 4.5132800936698914e-01 -3.3332800865173340e-01 + <_> + + 0 -1 982 -6.3314996659755707e-02 + + -8.5015702247619629e-01 2.2341699898242950e-01 + <_> + + 0 -1 983 7.3699997738003731e-03 + + -9.3082201480865479e-01 5.9216998517513275e-02 + <_> + + 0 -1 984 -9.5969997346401215e-03 + + -1.2794899940490723e+00 1.8447299301624298e-01 + <_> + + 0 -1 985 -1.3067999482154846e-01 + + 5.8426898717880249e-01 -2.6007199287414551e-01 + <_> + + 0 -1 986 5.7402998208999634e-02 + + -5.3789000958204269e-02 7.1175599098205566e-01 + <_> + + 0 -1 987 -7.2340001352131367e-03 + + -8.6962199211120605e-01 7.5214996933937073e-02 + <_> + + 0 -1 988 3.1098999083042145e-02 + + -7.5006999075412750e-02 9.0781599283218384e-01 + <_> + + 0 -1 989 3.5854000598192215e-02 + + -2.4795499444007874e-01 7.2272098064422607e-01 + <_> + + 0 -1 990 -3.1534999608993530e-02 + + -1.1238329410552979e+00 2.0988300442695618e-01 + <_> + + 0 -1 991 -1.9437000155448914e-02 + + -1.4499390125274658e+00 -1.5100000426173210e-02 + <_> + + 0 -1 992 -7.2420001961290836e-03 + + 5.3864902257919312e-01 -1.1375399678945541e-01 + <_> + + 0 -1 993 8.1639997661113739e-03 + + 6.6889002919197083e-02 -7.6872897148132324e-01 + <_> + + 0 -1 994 -4.3653000146150589e-02 + + 1.1413530111312866e+00 4.0217000991106033e-02 + <_> + + 0 -1 995 2.6569999754428864e-02 + + -2.4719099700450897e-01 5.9295099973678589e-01 + <_> + + 0 -1 996 3.2216999679803848e-02 + + -4.0024999529123306e-02 3.2688000798225403e-01 + <_> + + 0 -1 997 -7.2236001491546631e-02 + + 5.8729398250579834e-01 -2.5396001338958740e-01 + <_> + + 0 -1 998 3.1424999237060547e-02 + + 1.5315100550651550e-01 -5.6042098999023438e-01 + <_> + + 0 -1 999 -4.7699999413453043e-04 + + 1.6958899796009064e-01 -5.2626699209213257e-01 + <_> + + 0 -1 1000 2.7189999818801880e-03 + + -1.4944599568843842e-01 2.9658699035644531e-01 + <_> + + 0 -1 1001 3.2875001430511475e-02 + + -3.9943501353263855e-01 2.5156599283218384e-01 + <_> + + 0 -1 1002 -1.4553000219166279e-02 + + 2.7972599864006042e-01 -4.7203800082206726e-01 + <_> + + 0 -1 1003 3.8017999380826950e-02 + + -2.9200001154094934e-03 -1.1300059556961060e+00 + <_> + + 0 -1 1004 2.8659999370574951e-03 + + 4.1111800074577332e-01 -2.6220801472663879e-01 + <_> + + 0 -1 1005 -4.1606999933719635e-02 + + -1.4293819665908813e+00 -1.9132999703288078e-02 + <_> + + 0 -1 1006 -2.4802999570965767e-02 + + -2.5013598799705505e-01 1.5978699922561646e-01 + <_> + + 0 -1 1007 1.0098000057041645e-02 + + 4.3738998472690582e-02 -6.9986099004745483e-01 + <_> + + 0 -1 1008 -2.0947000011801720e-02 + + -9.4137799739837646e-01 2.3204000294208527e-01 + <_> + + 0 -1 1009 2.2458000108599663e-02 + + -2.7185800671577454e-01 4.5319199562072754e-01 + <_> + + 0 -1 1010 -3.7110999226570129e-02 + + -1.0314660072326660e+00 1.4421799778938293e-01 + <_> + + 0 -1 1011 -1.0648000054061413e-02 + + 6.3107001781463623e-01 -2.5520798563957214e-01 + <_> + + 0 -1 1012 5.5422998964786530e-02 + + 1.6206599771976471e-01 -1.7722640037536621e+00 + <_> + + 0 -1 1013 2.1601999178528786e-02 + + -2.5016099214553833e-01 5.4119801521301270e-01 + <_> + + 0 -1 1014 8.7000000348780304e-05 + + -2.9008901119232178e-01 3.3507999777793884e-01 + <_> + + 0 -1 1015 1.4406000263988972e-02 + + -7.8840004280209541e-03 -1.1677219867706299e+00 + <_> + + 0 -1 1016 1.0777399688959122e-01 + + 1.1292000114917755e-01 -2.4940319061279297e+00 + <_> + + 0 -1 1017 3.5943999886512756e-02 + + -1.9480599462985992e-01 9.5757502317428589e-01 + <_> + + 0 -1 1018 -3.9510000497102737e-03 + + 3.0927801132202148e-01 -2.5530201196670532e-01 + <_> + + 0 -1 1019 2.0942000672221184e-02 + + -7.6319999061524868e-03 -1.0086350440979004e+00 + <_> + + 0 -1 1020 -2.9877999797463417e-02 + + -4.6027699112892151e-01 1.9507199525833130e-01 + <_> + + 0 -1 1021 2.5971999391913414e-02 + + -1.2187999673187733e-02 -1.0035500526428223e+00 + <_> + + 0 -1 1022 1.0603000409901142e-02 + + -7.5969003140926361e-02 4.1669899225234985e-01 + <_> + + 0 -1 1023 8.5819996893405914e-03 + + -2.6648598909378052e-01 3.9111500978469849e-01 + <_> + + 0 -1 1024 2.1270999684929848e-02 + + 1.8273900449275970e-01 -3.6052298545837402e-01 + <_> + + 0 -1 1025 7.4518002569675446e-02 + + -1.8938399851322174e-01 9.2658001184463501e-01 + <_> + + 0 -1 1026 4.6569998376071453e-03 + + -1.4506199955940247e-01 3.3294600248336792e-01 + <_> + + 0 -1 1027 1.7119999974966049e-03 + + -5.2464002370834351e-01 8.9879997074604034e-02 + <_> + + 0 -1 1028 9.8500004969537258e-04 + + -3.8381999731063843e-01 2.4392999708652496e-01 + <_> + + 0 -1 1029 2.8233999386429787e-02 + + -5.7879998348653316e-03 -1.2617139816284180e+00 + <_> + + 0 -1 1030 -3.2678000628948212e-02 + + -5.7953298091888428e-01 1.6955299675464630e-01 + <_> + + 0 -1 1031 2.2536000236868858e-02 + + 2.2281000390648842e-02 -8.7869602441787720e-01 + <_> + + 0 -1 1032 -2.1657999604940414e-02 + + -6.5108501911163330e-01 1.2966899573802948e-01 + <_> + + 0 -1 1033 7.6799998059868813e-03 + + -3.3965200185775757e-01 2.2013300657272339e-01 + <_> + + 0 -1 1034 1.4592000283300877e-02 + + 1.5077300369739532e-01 -5.0452399253845215e-01 + <_> + + 0 -1 1035 2.7868000790476799e-02 + + -2.5045299530029297e-01 4.5741999149322510e-01 + <_> + + 0 -1 1036 5.6940000504255295e-03 + + -1.0948500037193298e-01 5.5757802724838257e-01 + <_> + + 0 -1 1037 -1.0002999566495419e-02 + + -9.7366297245025635e-01 1.8467999994754791e-02 + <_> + + 0 -1 1038 -4.0719998069107533e-03 + + 3.8222199678421021e-01 -1.6921100020408630e-01 + <_> + + 0 -1 1039 -2.2593999281525612e-02 + + -1.0391089916229248e+00 5.1839998923242092e-03 + <_> + + 0 -1 1040 -3.9579998701810837e-02 + + -5.5109229087829590e+00 1.1163999885320663e-01 + <_> + + 0 -1 1041 -1.7537999898195267e-02 + + 9.5485800504684448e-01 -1.8584500253200531e-01 + <_> + + 0 -1 1042 9.0300003066658974e-03 + + 1.0436000302433968e-02 8.2114797830581665e-01 + <_> + + 0 -1 1043 -7.9539995640516281e-03 + + 2.2632899880409241e-01 -3.4568199515342712e-01 + <_> + + 0 -1 1044 2.7091000229120255e-02 + + 1.6430099308490753e-01 -1.3926379680633545e+00 + <_> + + 0 -1 1045 -2.0625999197363853e-02 + + -8.6366099119186401e-01 2.3880000226199627e-03 + <_> + + 0 -1 1046 -7.1989998221397400e-02 + + -2.8192629814147949e+00 1.1570499837398529e-01 + <_> + + 0 -1 1047 -2.6964999735355377e-02 + + -1.2946130037307739e+00 -2.4661000818014145e-02 + <_> + + 0 -1 1048 -4.7377999871969223e-02 + + -8.1306397914886475e-01 1.1831399798393250e-01 + <_> + + 0 -1 1049 -1.0895600169897079e-01 + + 6.5937900543212891e-01 -2.0843900740146637e-01 + <_> + + 0 -1 1050 1.3574000447988510e-02 + + 7.4240001849830151e-03 5.3152197599411011e-01 + <_> + + 0 -1 1051 -6.6920001991093159e-03 + + 3.0655801296234131e-01 -3.1084299087524414e-01 + <_> + + 0 -1 1052 -3.9070001803338528e-03 + + 2.5576499104499817e-01 -5.2932001650333405e-02 + <_> + + 0 -1 1053 -3.7613000720739365e-02 + + -1.4350049495697021e+00 -1.5448000282049179e-02 + <_> + + 0 -1 1054 8.6329998448491096e-03 + + -1.6884399950504303e-01 4.2124900221824646e-01 + <_> + + 0 -1 1055 -3.2097000628709793e-02 + + -6.4979398250579834e-01 4.1110001504421234e-02 + <_> + + 0 -1 1056 5.8495998382568359e-02 + + -5.2963998168706894e-02 6.3368302583694458e-01 + <_> + + 0 -1 1057 -4.0901999920606613e-02 + + -9.2101097106933594e-01 9.0640000998973846e-03 + <_> + + 0 -1 1058 -1.9925000146031380e-02 + + 5.3759998083114624e-01 -6.2996998429298401e-02 + <_> + + 0 -1 1059 -4.6020001173019409e-03 + + -5.4333502054214478e-01 8.4104999899864197e-02 + <_> + + 0 -1 1060 1.6824999824166298e-02 + + 1.5563699603080750e-01 -4.0171200037002563e-01 + <_> + + 0 -1 1061 9.4790002331137657e-03 + + -2.4245299398899078e-01 5.1509499549865723e-01 + <_> + + 0 -1 1062 -1.9534999504685402e-02 + + -5.1118397712707520e-01 1.3831999897956848e-01 + <_> + + 0 -1 1063 1.0746000334620476e-02 + + -2.1854999661445618e-01 6.2828701734542847e-01 + <_> + + 0 -1 1064 3.7927001714706421e-02 + + 1.1640299856662750e-01 -2.7301959991455078e+00 + <_> + + 0 -1 1065 1.6390999779105186e-02 + + -1.4635999687016010e-02 -1.0797250270843506e+00 + <_> + + 0 -1 1066 -1.9785000011324883e-02 + + 1.2166420221328735e+00 3.3275000751018524e-02 + <_> + + 0 -1 1067 1.1067000217735767e-02 + + -2.5388300418853760e-01 4.4038599729537964e-01 + <_> + + 0 -1 1068 5.2479999139904976e-03 + + 2.2496800124645233e-01 -2.4216499924659729e-01 + <_> + + 0 -1 1069 -1.1141999624669552e-02 + + 2.5018098950386047e-01 -3.0811500549316406e-01 + <_> + + 0 -1 1070 -1.0666999965906143e-02 + + -3.2729101181030273e-01 2.6168298721313477e-01 + <_> + + 0 -1 1071 1.0545299947261810e-01 + + -5.5750001221895218e-02 -1.9605729579925537e+00 + <_> + + 0 -1 1072 5.4827999323606491e-02 + + -1.9519999623298645e-03 7.3866099119186401e-01 + <_> + + 0 -1 1073 1.7760999500751495e-02 + + -3.0647200345993042e-01 2.6346999406814575e-01 + <_> + + 0 -1 1074 -3.1185999512672424e-02 + + -2.4600900709629059e-01 1.7082199454307556e-01 + <_> + + 0 -1 1075 -5.7296000421047211e-02 + + 4.7033500671386719e-01 -2.6048299670219421e-01 + <_> + + 0 -1 1076 -1.1312000453472137e-02 + + 3.8628900051116943e-01 -2.8817000985145569e-01 + <_> + + 0 -1 1077 3.0592000111937523e-02 + + -4.8826001584529877e-02 -1.7638969421386719e+00 + <_> + + 0 -1 1078 1.8489999929443002e-03 + + 2.1099899709224701e-01 -2.5940999388694763e-02 + <_> + + 0 -1 1079 1.1419000104069710e-02 + + -1.6829599440097809e-01 1.0278660058975220e+00 + <_> + + 0 -1 1080 8.1403002142906189e-02 + + 1.1531999707221985e-01 -1.2482399940490723e+00 + <_> + + 0 -1 1081 5.3495999425649643e-02 + + -4.6303998678922653e-02 -1.7165969610214233e+00 + <_> + + 0 -1 1082 -2.3948000743985176e-02 + + -4.0246599912643433e-01 2.0562100410461426e-01 + <_> + + 0 -1 1083 6.7690000869333744e-03 + + -3.3152300119400024e-01 2.0683400332927704e-01 + <_> + + 0 -1 1084 -3.2343998551368713e-02 + + -7.2632801532745361e-01 2.0073500275611877e-01 + <_> + + 0 -1 1085 3.7863001227378845e-02 + + -1.5631000697612762e-01 1.6697460412979126e+00 + <_> + + 0 -1 1086 1.5440000221133232e-02 + + 1.9487400352954865e-01 -3.5384199023246765e-01 + <_> + + 0 -1 1087 -4.4376000761985779e-02 + + 8.2093602418899536e-01 -1.8193599581718445e-01 + <_> + + 0 -1 1088 -2.3102000355720520e-02 + + -4.3044099211692810e-01 1.2375400215387344e-01 + <_> + + 0 -1 1089 1.9400000572204590e-02 + + -2.9726000502705574e-02 -1.1597590446472168e+00 + <_> + + 0 -1 1090 1.0385700315237045e-01 + + 1.1149899661540985e-01 -4.6835222244262695e+00 + <_> + + 0 -1 1091 -1.8964000046253204e-02 + + 2.1773819923400879e+00 -1.4544400572776794e-01 + <_> + + 0 -1 1092 3.8750998675823212e-02 + + -4.9446001648902893e-02 3.4018298983573914e-01 + <_> + + 0 -1 1093 2.2766999900341034e-02 + + -3.2802999019622803e-01 3.0531400442123413e-01 + <_> + + 0 -1 1094 -3.1357001513242722e-02 + + 1.1520819664001465e+00 2.7305999770760536e-02 + <_> + + 0 -1 1095 9.6909999847412109e-03 + + -3.8799500465393066e-01 2.1512599289417267e-01 + <_> + + 0 -1 1096 -4.9284998327493668e-02 + + -1.6774909496307373e+00 1.5774199366569519e-01 + <_> + + 0 -1 1097 -3.9510998874902725e-02 + + -9.7647899389266968e-01 -1.0552000254392624e-02 + <_> + + 0 -1 1098 4.7997999936342239e-02 + + 2.0843900740146637e-01 -6.8992799520492554e-01 + <_> + + 0 -1 1099 5.1422998309135437e-02 + + -1.6665300726890564e-01 1.2149239778518677e+00 + <_> + + 0 -1 1100 1.4279999770224094e-02 + + 2.3627699911594391e-01 -4.1396799683570862e-01 + <_> + + 0 -1 1101 -9.1611996293067932e-02 + + -9.2830902338027954e-01 -1.8345000222325325e-02 + <_> + + 0 -1 1102 6.5080001950263977e-03 + + -7.3647201061248779e-01 1.9497099518775940e-01 + <_> + + 0 -1 1103 3.5723000764846802e-02 + + 1.4197799563407898e-01 -4.2089301347732544e-01 + <_> + + 0 -1 1104 5.0638001412153244e-02 + + 1.1644000187516212e-02 7.8486597537994385e-01 + <_> + + 0 -1 1105 -1.4613999985158443e-02 + + -1.1909500360488892e+00 -3.5128001123666763e-02 + <_> + + 0 -1 1106 -3.8662999868392944e-02 + + 2.4314730167388916e+00 6.5647996962070465e-02 + <_> + + 0 -1 1107 -4.0346998721361160e-02 + + 7.1755301952362061e-01 -1.9108299911022186e-01 + <_> + + 0 -1 1108 2.3902000859379768e-02 + + 1.5646199882030487e-01 -7.9294800758361816e-01 + <_> + 137 + -3.5125269889831543e+00 + + <_> + + 0 -1 1109 8.5640000179409981e-03 + + -8.1450700759887695e-01 5.8875298500061035e-01 + <_> + + 0 -1 1110 -1.3292600214481354e-01 + + 9.3213397264480591e-01 -2.9367300868034363e-01 + <_> + + 0 -1 1111 9.8400004208087921e-03 + + -5.6462901830673218e-01 4.1647699475288391e-01 + <_> + + 0 -1 1112 5.0889998674392700e-03 + + -7.9232800006866455e-01 1.6975000500679016e-01 + <_> + + 0 -1 1113 -6.1039000749588013e-02 + + -1.4169000387191772e+00 2.5020999833941460e-02 + <_> + + 0 -1 1114 -4.6599999768659472e-04 + + 3.7982499599456787e-01 -4.1567099094390869e-01 + <_> + + 0 -1 1115 3.3889999613165855e-03 + + -4.0768599510192871e-01 3.5548499226570129e-01 + <_> + + 0 -1 1116 2.1006999537348747e-02 + + -2.4080100655555725e-01 8.6112701892852783e-01 + <_> + + 0 -1 1117 7.5559997931122780e-03 + + -8.7467199563980103e-01 9.8572000861167908e-02 + <_> + + 0 -1 1118 2.4779999628663063e-02 + + 1.5566200017929077e-01 -6.9229799509048462e-01 + <_> + + 0 -1 1119 -3.5620000213384628e-02 + + -1.1472270488739014e+00 3.6359999328851700e-02 + <_> + + 0 -1 1120 1.9810000434517860e-02 + + 1.5516200661659241e-01 -6.9520097970962524e-01 + <_> + + 0 -1 1121 1.5019999817013741e-02 + + 4.1990000754594803e-02 -9.6622800827026367e-01 + <_> + + 0 -1 1122 -2.3137999698519707e-02 + + 4.3396899104118347e-01 2.4160000029951334e-03 + <_> + + 0 -1 1123 -1.8743000924587250e-02 + + 4.3481099605560303e-01 -3.2522499561309814e-01 + <_> + + 0 -1 1124 4.5080000162124634e-01 + + -9.4573996961116791e-02 7.2421300411224365e-01 + <_> + + 0 -1 1125 1.1854999698698521e-02 + + -3.8133099675178528e-01 3.0098399519920349e-01 + <_> + + 0 -1 1126 -2.4830000475049019e-02 + + 8.9300602674484253e-01 -1.0295899957418442e-01 + <_> + + 0 -1 1127 -4.4743001461029053e-02 + + 8.6280298233032227e-01 -2.1716499328613281e-01 + <_> + + 0 -1 1128 -1.4600000344216824e-02 + + 6.0069400072097778e-01 -1.5906299650669098e-01 + <_> + + 0 -1 1129 -2.4527000263333321e-02 + + -1.5872869491577148e+00 -2.1817000582814217e-02 + <_> + + 0 -1 1130 2.3024000227451324e-02 + + 1.6853399574756622e-01 -3.8106900453567505e-01 + <_> + + 0 -1 1131 -2.4917000904679298e-02 + + 5.0810897350311279e-01 -2.7279898524284363e-01 + <_> + + 0 -1 1132 1.0130000300705433e-03 + + -4.3138799071311951e-01 2.6438099145889282e-01 + <_> + + 0 -1 1133 1.5603000298142433e-02 + + -3.1624200940132141e-01 5.5715900659561157e-01 + <_> + + 0 -1 1134 -2.6685999706387520e-02 + + 1.0553920269012451e+00 2.9074000194668770e-02 + <_> + + 0 -1 1135 1.3940000208094716e-03 + + -7.1873801946640015e-01 6.5390996634960175e-02 + <_> + + 0 -1 1136 -6.4799998654052615e-04 + + 2.4884399771690369e-01 -2.0978200435638428e-01 + <_> + + 0 -1 1137 -3.1888000667095184e-02 + + -6.8844497203826904e-01 6.3589997589588165e-02 + <_> + + 0 -1 1138 -4.9290000461041927e-03 + + -5.9152501821517944e-01 2.7943599224090576e-01 + <_> + + 0 -1 1139 3.1168000772595406e-02 + + 4.5223999768495560e-02 -8.8639199733734131e-01 + <_> + + 0 -1 1140 -3.3663000911474228e-02 + + -6.1590200662612915e-01 1.5749299526214600e-01 + <_> + + 0 -1 1141 1.1966999620199203e-02 + + -3.0606698989868164e-01 4.2293301224708557e-01 + <_> + + 0 -1 1142 -3.4680001437664032e-02 + + -1.3734940290451050e+00 1.5908700227737427e-01 + <_> + + 0 -1 1143 9.9290004000067711e-03 + + -5.5860197544097900e-01 1.2119200080633163e-01 + <_> + + 0 -1 1144 5.9574998915195465e-02 + + 4.9720001406967640e-03 8.2055401802062988e-01 + <_> + + 0 -1 1145 -6.5428003668785095e-02 + + 1.5651429891586304e+00 -1.6817499697208405e-01 + <_> + + 0 -1 1146 -9.2895999550819397e-02 + + -1.5794529914855957e+00 1.4661799371242523e-01 + <_> + + 0 -1 1147 -4.1184000670909882e-02 + + -1.5518720149993896e+00 -2.9969999566674232e-02 + <_> + + 0 -1 1148 2.1447999402880669e-02 + + 1.7196300625801086e-01 -6.9343197345733643e-01 + <_> + + 0 -1 1149 -2.5569999590516090e-02 + + -1.3061310052871704e+00 -2.4336999282240868e-02 + <_> + + 0 -1 1150 -4.1200999170541763e-02 + + -1.3821059465408325e+00 1.4801800251007080e-01 + <_> + + 0 -1 1151 -1.7668999731540680e-02 + + -7.0889997482299805e-01 3.6524001508951187e-02 + <_> + + 0 -1 1152 9.0060001239180565e-03 + + -4.0913999080657959e-02 8.0373102426528931e-01 + <_> + + 0 -1 1153 -1.1652999557554722e-02 + + 5.7546800374984741e-01 -2.4991700053215027e-01 + <_> + + 0 -1 1154 -7.4780001305043697e-03 + + -4.9280899763107300e-01 1.9810900092124939e-01 + <_> + + 0 -1 1155 8.5499999113380909e-04 + + -4.8858100175857544e-01 1.3563099503517151e-01 + <_> + + 0 -1 1156 -3.0538000166416168e-02 + + -6.0278397798538208e-01 1.8522000312805176e-01 + <_> + + 0 -1 1157 -1.8846999853849411e-02 + + 2.3565599322319031e-01 -3.5136300325393677e-01 + <_> + + 0 -1 1158 -8.1129996106028557e-03 + + -8.1304997205734253e-02 2.1069599688053131e-01 + <_> + + 0 -1 1159 -3.4830000251531601e-02 + + -1.2065670490264893e+00 -1.4251999557018280e-02 + <_> + + 0 -1 1160 1.9021000713109970e-02 + + 2.3349900543689728e-01 -4.5664900541305542e-01 + <_> + + 0 -1 1161 -1.9004000350832939e-02 + + -8.1075799465179443e-01 1.3140000402927399e-02 + <_> + + 0 -1 1162 -8.9057996869087219e-02 + + 6.1542397737503052e-01 3.2983001321554184e-02 + <_> + + 0 -1 1163 6.8620000965893269e-03 + + -2.9583099484443665e-01 2.7003699541091919e-01 + <_> + + 0 -1 1164 -2.8240999206900597e-02 + + -6.1102700233459473e-01 1.7357499897480011e-01 + <_> + + 0 -1 1165 -3.2099999953061342e-04 + + -5.3322899341583252e-01 6.8539001047611237e-02 + <_> + + 0 -1 1166 -1.0829100012779236e-01 + + -1.2879559993743896e+00 1.1801700294017792e-01 + <_> + + 0 -1 1167 1.5878999605774879e-02 + + -1.7072600126266479e-01 1.1103910207748413e+00 + <_> + + 0 -1 1168 8.6859995499253273e-03 + + -1.0995099693536758e-01 4.6010500192642212e-01 + <_> + + 0 -1 1169 -2.5234999135136604e-02 + + 1.0220669507980347e+00 -1.8694299459457397e-01 + <_> + + 0 -1 1170 -1.3508999720215797e-02 + + -7.8316599130630493e-01 1.4202600717544556e-01 + <_> + + 0 -1 1171 -7.7149998396635056e-03 + + -8.8060700893402100e-01 1.1060000397264957e-02 + <_> + + 0 -1 1172 7.1580000221729279e-02 + + 1.1369399726390839e-01 -1.1032789945602417e+00 + <_> + + 0 -1 1173 -1.3554000295698643e-02 + + -8.1096500158309937e-01 3.4080001059919596e-03 + <_> + + 0 -1 1174 2.9450000729411840e-03 + + -7.2879999876022339e-02 3.4998100996017456e-01 + <_> + + 0 -1 1175 -5.0833001732826233e-02 + + -1.2868590354919434e+00 -2.8842000290751457e-02 + <_> + + 0 -1 1176 -8.7989997118711472e-03 + + 4.7613599896430969e-01 -1.4690400660037994e-01 + <_> + + 0 -1 1177 2.1424399316310883e-01 + + -5.9702001512050629e-02 -2.4802260398864746e+00 + <_> + + 0 -1 1178 1.3962999917566776e-02 + + 1.7420299351215363e-01 -4.3911001086235046e-01 + <_> + + 0 -1 1179 4.2502000927925110e-02 + + -1.9965299963951111e-01 7.0654797554016113e-01 + <_> + + 0 -1 1180 1.9827999174594879e-02 + + -6.9136001169681549e-02 6.1643397808074951e-01 + <_> + + 0 -1 1181 -3.3560000360012054e-02 + + -1.2740780115127563e+00 -2.5673000141978264e-02 + <_> + + 0 -1 1182 6.3542999327182770e-02 + + 1.2403500080108643e-01 -1.0776289701461792e+00 + <_> + + 0 -1 1183 2.1933000534772873e-02 + + 1.4952000230550766e-02 -7.1023499965667725e-01 + <_> + + 0 -1 1184 -7.8424997627735138e-02 + + 6.2033998966217041e-01 3.3610999584197998e-02 + <_> + + 0 -1 1185 1.4390000142157078e-02 + + -3.6324599385261536e-01 1.7308300733566284e-01 + <_> + + 0 -1 1186 -6.7309997975826263e-02 + + 5.2374100685119629e-01 1.2799999676644802e-02 + <_> + + 0 -1 1187 1.3047499954700470e-01 + + -1.7122499644756317e-01 1.1235200166702271e+00 + <_> + + 0 -1 1188 -4.6245999634265900e-02 + + -1.1908329725265503e+00 1.7425599694252014e-01 + <_> + + 0 -1 1189 -2.9842000454664230e-02 + + 8.3930599689483643e-01 -1.8064199388027191e-01 + <_> + + 0 -1 1190 -3.8099999073892832e-04 + + 3.5532799363136292e-01 -2.3842300474643707e-01 + <_> + + 0 -1 1191 -2.2378999739885330e-02 + + -8.7943899631500244e-01 -7.8399997437372804e-04 + <_> + + 0 -1 1192 -1.5569999814033508e-03 + + -1.4253300428390503e-01 2.5876200199127197e-01 + <_> + + 0 -1 1193 1.2013000436127186e-02 + + -2.9015499353408813e-01 2.6051101088523865e-01 + <_> + + 0 -1 1194 2.4384999647736549e-02 + + -3.1438998878002167e-02 5.8695900440216064e-01 + <_> + + 0 -1 1195 -4.7180999070405960e-02 + + 6.9430100917816162e-01 -2.1816100180149078e-01 + <_> + + 0 -1 1196 -2.4893999099731445e-02 + + -6.4599299430847168e-01 1.5611599385738373e-01 + <_> + + 0 -1 1197 2.1944999694824219e-02 + + -2.7742000296711922e-02 -1.1346880197525024e+00 + <_> + + 0 -1 1198 1.8809899687767029e-01 + + -1.0076000355184078e-02 1.2429029941558838e+00 + <_> + + 0 -1 1199 -7.7872000634670258e-02 + + 8.5008001327514648e-01 -1.9015499949455261e-01 + <_> + + 0 -1 1200 -4.8769000917673111e-02 + + -2.0763080120086670e+00 1.2179400026798248e-01 + <_> + + 0 -1 1201 -1.7115000635385513e-02 + + -8.5687297582626343e-01 7.8760003671050072e-03 + <_> + + 0 -1 1202 -2.7499999850988388e-03 + + 3.8645499944686890e-01 -1.1391499638557434e-01 + <_> + + 0 -1 1203 -9.8793998360633850e-02 + + -1.7233899831771851e+00 -5.6063000112771988e-02 + <_> + + 0 -1 1204 -2.1936999633908272e-02 + + 5.4749399423599243e-01 -4.2481999844312668e-02 + <_> + + 0 -1 1205 6.1096999794244766e-02 + + -3.8945000618696213e-02 -1.0807880163192749e+00 + <_> + + 0 -1 1206 -2.4563999846577644e-02 + + 5.8311098814010620e-01 -9.7599998116493225e-04 + <_> + + 0 -1 1207 3.3752001821994781e-02 + + -1.3795999810099602e-02 -8.4730297327041626e-01 + <_> + + 0 -1 1208 3.8199000060558319e-02 + + 1.5114299952983856e-01 -7.9473400115966797e-01 + <_> + + 0 -1 1209 -2.0117999985814095e-02 + + 5.1579099893569946e-01 -2.1445399522781372e-01 + <_> + + 0 -1 1210 2.4734999984502792e-02 + + -2.2105000913143158e-02 4.2917698621749878e-01 + <_> + + 0 -1 1211 -2.4357000365853310e-02 + + -8.6201298236846924e-01 -3.6760000512003899e-03 + <_> + + 0 -1 1212 -2.6442000642418861e-02 + + -4.5397499203681946e-01 2.2462800145149231e-01 + <_> + + 0 -1 1213 -3.4429999068379402e-03 + + 1.3073000311851501e-01 -3.8622701168060303e-01 + <_> + + 0 -1 1214 1.0701700299978256e-01 + + 1.3158600032329559e-01 -7.9306900501251221e-01 + <_> + + 0 -1 1215 4.5152999460697174e-02 + + -2.5296801328659058e-01 4.0672400593757629e-01 + <_> + + 0 -1 1216 4.4349998235702515e-02 + + 2.2613000124692917e-02 7.9618102312088013e-01 + <_> + + 0 -1 1217 1.0839999886229634e-03 + + -3.9158400893211365e-01 1.1639100313186646e-01 + <_> + + 0 -1 1218 7.1433000266551971e-02 + + 8.2466997206211090e-02 1.2530590295791626e+00 + <_> + + 0 -1 1219 3.5838000476360321e-02 + + -1.8203300237655640e-01 7.7078700065612793e-01 + <_> + + 0 -1 1220 -2.0839000120759010e-02 + + -6.1744397878646851e-01 1.5891399979591370e-01 + <_> + + 0 -1 1221 4.2525801062583923e-01 + + -4.8978000879287720e-02 -1.8422030210494995e+00 + <_> + + 0 -1 1222 1.1408000253140926e-02 + + 1.7918199300765991e-01 -1.5383499860763550e-01 + <_> + + 0 -1 1223 -1.5364999882876873e-02 + + -8.4016501903533936e-01 -1.0280000278726220e-03 + <_> + + 0 -1 1224 -1.5212000347673893e-02 + + -1.8995699286460876e-01 1.7130999267101288e-01 + <_> + + 0 -1 1225 -1.8972000107169151e-02 + + -7.9541999101638794e-01 6.6800001077353954e-03 + <_> + + 0 -1 1226 -3.3330000005662441e-03 + + -2.3530800640583038e-01 2.4730099737644196e-01 + <_> + + 0 -1 1227 9.3248002231121063e-02 + + -5.4758001118898392e-02 -1.8324300050735474e+00 + <_> + + 0 -1 1228 -1.2555000372231007e-02 + + 2.6385200023651123e-01 -3.8526400923728943e-01 + <_> + + 0 -1 1229 -2.7070000767707825e-02 + + -6.6929799318313599e-01 2.0340999588370323e-02 + <_> + + 0 -1 1230 -2.3677000775933266e-02 + + 6.7265301942825317e-01 -1.4344000257551670e-02 + <_> + + 0 -1 1231 -1.4275000430643559e-02 + + 3.0186399817466736e-01 -2.8514400124549866e-01 + <_> + + 0 -1 1232 2.8096999973058701e-02 + + 1.4766000211238861e-01 -1.4078520536422729e+00 + <_> + + 0 -1 1233 5.0840001553297043e-02 + + -1.8613600730895996e-01 7.9953002929687500e-01 + <_> + + 0 -1 1234 1.1505999602377415e-02 + + 1.9118399918079376e-01 -8.5035003721714020e-02 + <_> + + 0 -1 1235 -1.4661000110208988e-02 + + 4.5239299535751343e-01 -2.2205199301242828e-01 + <_> + + 0 -1 1236 2.2842499613761902e-01 + + 1.3488399982452393e-01 -1.2894610166549683e+00 + <_> + + 0 -1 1237 1.1106900125741959e-01 + + -2.0753799378871918e-01 5.4561597108840942e-01 + <_> + + 0 -1 1238 3.2450000289827585e-03 + + 3.2053700089454651e-01 -1.6403500735759735e-01 + <_> + + 0 -1 1239 8.5309997200965881e-02 + + -2.0210500061511993e-01 5.3296798467636108e-01 + <_> + + 0 -1 1240 2.2048000246286392e-02 + + 1.5698599815368652e-01 -1.7014099657535553e-01 + <_> + + 0 -1 1241 -1.5676999464631081e-02 + + -6.2863498926162720e-01 4.0761999785900116e-02 + <_> + + 0 -1 1242 3.3112901449203491e-01 + + 1.6609300673007965e-01 -1.0326379537582397e+00 + <_> + + 0 -1 1243 8.8470000773668289e-03 + + -2.5076198577880859e-01 3.1660598516464233e-01 + <_> + + 0 -1 1244 4.6080000698566437e-02 + + 1.5352100133895874e-01 -1.6333500146865845e+00 + <_> + + 0 -1 1245 -3.7703000009059906e-02 + + 5.6873798370361328e-01 -2.0102599263191223e-01 + <_> + 159 + -3.5939640998840332e+00 + + <_> + + 0 -1 1246 -8.1808999180793762e-02 + + 5.7124799489974976e-01 -6.7438799142837524e-01 + <_> + + 0 -1 1247 2.1761199831962585e-01 + + -3.8610199093818665e-01 9.0343999862670898e-01 + <_> + + 0 -1 1248 1.4878000132739544e-02 + + 2.2241599857807159e-01 -1.2779350280761719e+00 + <_> + + 0 -1 1249 5.2434999495744705e-02 + + -2.8690400719642639e-01 7.5742298364639282e-01 + <_> + + 0 -1 1250 9.1429995372891426e-03 + + -6.4880400896072388e-01 2.2268800437450409e-01 + <_> + + 0 -1 1251 7.9169999808073044e-03 + + -2.9253599047660828e-01 3.1030198931694031e-01 + <_> + + 0 -1 1252 -2.6084000244736671e-02 + + 4.5532700419425964e-01 -3.8500601053237915e-01 + <_> + + 0 -1 1253 -2.9400000348687172e-03 + + -5.1264399290084839e-01 2.7432298660278320e-01 + <_> + + 0 -1 1254 5.7130001485347748e-02 + + 1.5788000077009201e-02 -1.2133100032806396e+00 + <_> + + 0 -1 1255 -6.1309998854994774e-03 + + 3.9174601435661316e-01 -3.0866798758506775e-01 + <_> + + 0 -1 1256 -4.0405001491308212e-02 + + 1.1901949644088745e+00 -2.0347100496292114e-01 + <_> + + 0 -1 1257 -2.0297000184655190e-02 + + -6.8239498138427734e-01 2.0458699762821198e-01 + <_> + + 0 -1 1258 -1.7188999801874161e-02 + + -8.4939897060394287e-01 3.8433000445365906e-02 + <_> + + 0 -1 1259 -2.4215999990701675e-02 + + -1.1039420366287231e+00 1.5975099802017212e-01 + <_> + + 0 -1 1260 5.6869000196456909e-02 + + -1.9595299661159515e-01 1.1806850433349609e+00 + <_> + + 0 -1 1261 3.6199999158270657e-04 + + -4.0847799181938171e-01 3.2938599586486816e-01 + <_> + + 0 -1 1262 9.9790003150701523e-03 + + -2.9673001170158386e-01 4.1547900438308716e-01 + <_> + + 0 -1 1263 -5.2625000476837158e-02 + + -1.3069299459457397e+00 1.7862600088119507e-01 + <_> + + 0 -1 1264 -1.3748999685049057e-02 + + 2.3665800690650940e-01 -4.4536599516868591e-01 + <_> + + 0 -1 1265 -3.0517000705003738e-02 + + 2.9018300771713257e-01 -1.1210100352764130e-01 + <_> + + 0 -1 1266 -3.0037501454353333e-01 + + -2.4237680435180664e+00 -4.2830999940633774e-02 + <_> + + 0 -1 1267 -3.5990998148918152e-02 + + 8.8206499814987183e-01 -4.7012999653816223e-02 + <_> + + 0 -1 1268 -5.5112000554800034e-02 + + 8.0119001865386963e-01 -2.0490999519824982e-01 + <_> + + 0 -1 1269 3.3762000501155853e-02 + + 1.4617599546909332e-01 -1.1349489688873291e+00 + <_> + + 0 -1 1270 -8.2710003480315208e-03 + + -8.1604897975921631e-01 1.8988000229001045e-02 + <_> + + 0 -1 1271 -5.4399999789893627e-03 + + -7.0980900526046753e-01 2.2343699634075165e-01 + <_> + + 0 -1 1272 3.1059999018907547e-03 + + -7.2808599472045898e-01 4.0224999189376831e-02 + <_> + + 0 -1 1273 5.3651999682188034e-02 + + 1.7170900106430054e-01 -1.1163710355758667e+00 + <_> + + 0 -1 1274 -1.2541399896144867e-01 + + 2.7680370807647705e+00 -1.4611500501632690e-01 + <_> + + 0 -1 1275 9.2542000114917755e-02 + + 1.1609800159931183e-01 -3.9635529518127441e+00 + <_> + + 0 -1 1276 3.8513999432325363e-02 + + -7.6399999670684338e-03 -9.8780900239944458e-01 + <_> + + 0 -1 1277 -2.0200000144541264e-03 + + 2.3059999942779541e-01 -7.4970299005508423e-01 + <_> + + 0 -1 1278 9.7599998116493225e-03 + + -3.1137999892234802e-01 3.0287799239158630e-01 + <_> + + 0 -1 1279 2.4095000699162483e-02 + + -4.9529999494552612e-02 5.2690100669860840e-01 + <_> + + 0 -1 1280 -1.7982000485062599e-02 + + -1.1610640287399292e+00 -5.7000000961124897e-03 + <_> + + 0 -1 1281 -1.0555000044405460e-02 + + -2.7189099788665771e-01 2.3597699403762817e-01 + <_> + + 0 -1 1282 -7.2889998555183411e-03 + + -5.4219102859497070e-01 8.1914000213146210e-02 + <_> + + 0 -1 1283 2.3939000442624092e-02 + + 1.7975799739360809e-01 -6.7049497365951538e-01 + <_> + + 0 -1 1284 -1.8365999683737755e-02 + + 6.2664300203323364e-01 -2.0970100164413452e-01 + <_> + + 0 -1 1285 1.5715999528765678e-02 + + 2.4193699657917023e-01 -1.0444309711456299e+00 + <_> + + 0 -1 1286 -4.8804000020027161e-02 + + -9.4060599803924561e-01 -3.7519999314099550e-03 + <_> + + 0 -1 1287 6.7130001261830330e-03 + + -7.5432002544403076e-02 6.1575299501419067e-01 + <_> + + 0 -1 1288 9.7770001739263535e-03 + + 3.9285000413656235e-02 -8.4810298681259155e-01 + <_> + + 0 -1 1289 1.4744999818503857e-02 + + 1.6968999803066254e-01 -5.0906401872634888e-01 + <_> + + 0 -1 1290 9.7079001367092133e-02 + + -3.3103000372648239e-02 -1.2706379890441895e+00 + <_> + + 0 -1 1291 4.8285998404026031e-02 + + 9.4329997897148132e-02 2.7203190326690674e+00 + <_> + + 0 -1 1292 9.7810002043843269e-03 + + -3.9533400535583496e-01 1.5363800525665283e-01 + <_> + + 0 -1 1293 -3.9893999695777893e-02 + + -2.2767400741577148e-01 1.3913999497890472e-01 + <_> + + 0 -1 1294 2.2848000749945641e-02 + + -2.7391999959945679e-01 3.4199500083923340e-01 + <_> + + 0 -1 1295 6.7179999314248562e-03 + + -1.0874299705028534e-01 4.8125401139259338e-01 + <_> + + 0 -1 1296 5.9599999338388443e-02 + + -4.9522001296281815e-02 -2.0117089748382568e+00 + <_> + + 0 -1 1297 6.9340001791715622e-03 + + 1.5037499368190765e-01 -1.1271899938583374e-01 + <_> + + 0 -1 1298 1.5757000073790550e-02 + + -2.0885000005364418e-02 -1.1651979684829712e+00 + <_> + + 0 -1 1299 -4.9690000712871552e-02 + + -8.0213499069213867e-01 1.4372299611568451e-01 + <_> + + 0 -1 1300 5.2347000688314438e-02 + + -2.0836700499057770e-01 6.1677598953247070e-01 + <_> + + 0 -1 1301 2.2430999204516411e-02 + + 2.0305900275707245e-01 -7.5326198339462280e-01 + <_> + + 0 -1 1302 4.1142001748085022e-02 + + -1.8118199706077576e-01 1.0033359527587891e+00 + <_> + + 0 -1 1303 -2.1632000803947449e-02 + + 4.9998998641967773e-01 -3.4662999212741852e-02 + <_> + + 0 -1 1304 -8.2808002829551697e-02 + + 1.1711900234222412e+00 -1.8433600664138794e-01 + <_> + + 0 -1 1305 8.5060000419616699e-03 + + -6.3225001096725464e-02 2.9024899005889893e-01 + <_> + + 0 -1 1306 7.8905001282691956e-02 + + -2.3274500668048859e-01 5.9695798158645630e-01 + <_> + + 0 -1 1307 -9.0207003057003021e-02 + + -8.2211899757385254e-01 1.7772200703620911e-01 + <_> + + 0 -1 1308 -2.9269000515341759e-02 + + 6.0860699415206909e-01 -2.1468900144100189e-01 + <_> + + 0 -1 1309 6.9499998353421688e-03 + + -4.2665999382734299e-02 6.0512101650238037e-01 + <_> + + 0 -1 1310 -8.0629996955394745e-03 + + -1.1508270502090454e+00 -2.7286000549793243e-02 + <_> + + 0 -1 1311 1.9595999270677567e-02 + + -9.1880001127719879e-03 5.6857800483703613e-01 + <_> + + 0 -1 1312 -1.4884999953210354e-02 + + 3.7658798694610596e-01 -2.7149501442909241e-01 + <_> + + 0 -1 1313 2.5217000395059586e-02 + + -9.9991001188755035e-02 2.4664700031280518e-01 + <_> + + 0 -1 1314 -1.5855999663472176e-02 + + 6.6826701164245605e-01 -2.0614700019359589e-01 + <_> + + 0 -1 1315 2.9441000893712044e-02 + + 1.5832200646400452e-01 -7.6060897111892700e-01 + <_> + + 0 -1 1316 -8.5279997438192368e-03 + + 3.8212299346923828e-01 -2.5407800078392029e-01 + <_> + + 0 -1 1317 2.4421999230980873e-02 + + 1.5105099976062775e-01 -2.8752899169921875e-01 + <_> + + 0 -1 1318 -3.3886998891830444e-02 + + -6.8002802133560181e-01 3.4327000379562378e-02 + <_> + + 0 -1 1319 -2.0810000132769346e-03 + + 2.5413900613784790e-01 -2.6859098672866821e-01 + <_> + + 0 -1 1320 3.0358999967575073e-02 + + -3.0842000618577003e-02 -1.1476809978485107e+00 + <_> + + 0 -1 1321 4.0210001170635223e-03 + + -3.5253798961639404e-01 2.9868099093437195e-01 + <_> + + 0 -1 1322 2.7681000530719757e-02 + + -3.8148999214172363e-02 -1.3262039422988892e+00 + <_> + + 0 -1 1323 7.9039996489882469e-03 + + -2.3737000301480293e-02 7.0503002405166626e-01 + <_> + + 0 -1 1324 4.4031001627445221e-02 + + 1.0674899816513062e-01 -4.5261201262474060e-01 + <_> + + 0 -1 1325 -3.2370999455451965e-02 + + 4.6674901247024536e-01 -6.1546999961137772e-02 + <_> + + 0 -1 1326 2.0933000370860100e-02 + + -2.8447899222373962e-01 4.3845599889755249e-01 + <_> + + 0 -1 1327 2.5227999314665794e-02 + + -2.2537000477313995e-02 7.0389097929000854e-01 + <_> + + 0 -1 1328 6.5520000644028187e-03 + + -3.2554900646209717e-01 2.4023699760437012e-01 + <_> + + 0 -1 1329 -5.8557998389005661e-02 + + -1.2227720022201538e+00 1.1668799817562103e-01 + <_> + + 0 -1 1330 3.1899999827146530e-02 + + -1.9305000081658363e-02 -1.0973169803619385e+00 + <_> + + 0 -1 1331 -3.0445000156760216e-02 + + 6.5582501888275146e-01 7.5090996921062469e-02 + <_> + + 0 -1 1332 1.4933000318706036e-02 + + -5.2155798673629761e-01 1.1523099988698959e-01 + <_> + + 0 -1 1333 -4.9008000642061234e-02 + + -7.8303998708724976e-01 1.6657200455665588e-01 + <_> + + 0 -1 1334 8.3158999681472778e-02 + + -2.6879999786615372e-03 -8.5282301902770996e-01 + <_> + + 0 -1 1335 2.3902999237179756e-02 + + -5.1010999828577042e-02 4.1999098658561707e-01 + <_> + + 0 -1 1336 1.6428999602794647e-02 + + 1.9232999533414841e-02 -6.5049099922180176e-01 + <_> + + 0 -1 1337 -1.1838000267744064e-02 + + -6.2409800291061401e-01 1.5411199629306793e-01 + <_> + + 0 -1 1338 -1.6799999866634607e-04 + + 1.7589199542999268e-01 -3.4338700771331787e-01 + <_> + + 0 -1 1339 1.9193999469280243e-02 + + 4.3418999761343002e-02 7.9069197177886963e-01 + <_> + + 0 -1 1340 -1.0032000020146370e-02 + + 4.5648899674415588e-01 -2.2494800388813019e-01 + <_> + + 0 -1 1341 -1.4004000462591648e-02 + + 3.3570998907089233e-01 -4.8799999058246613e-03 + <_> + + 0 -1 1342 -1.0319899767637253e-01 + + -2.3378000259399414e+00 -5.8933001011610031e-02 + <_> + + 0 -1 1343 -9.5697000622749329e-02 + + -6.6153901815414429e-01 2.0098599791526794e-01 + <_> + + 0 -1 1344 -4.1480999439954758e-02 + + 4.5939201116561890e-01 -2.2314099967479706e-01 + <_> + + 0 -1 1345 2.4099999573081732e-03 + + -2.6898598670959473e-01 2.4922999739646912e-01 + <_> + + 0 -1 1346 1.0724999755620956e-01 + + -1.8640199303627014e-01 7.2769802808761597e-01 + <_> + + 0 -1 1347 3.1870000530034304e-03 + + -2.4608999490737915e-02 2.8643900156021118e-01 + <_> + + 0 -1 1348 2.9167000204324722e-02 + + -3.4683000296354294e-02 -1.1162580251693726e+00 + <_> + + 0 -1 1349 1.1287000030279160e-02 + + 6.3760001212358475e-03 6.6632097959518433e-01 + <_> + + 0 -1 1350 -1.2001000344753265e-02 + + 4.2420101165771484e-01 -2.6279801130294800e-01 + <_> + + 0 -1 1351 -1.2695999816060066e-02 + + -2.1957000717520714e-02 1.8936799466609955e-01 + <_> + + 0 -1 1352 2.4597000330686569e-02 + + -3.4963998943567276e-02 -1.0989320278167725e+00 + <_> + + 0 -1 1353 4.5953001827001572e-02 + + 1.1109799891710281e-01 -2.9306049346923828e+00 + <_> + + 0 -1 1354 -2.7241000905632973e-02 + + 2.9101699590682983e-01 -2.7407899498939514e-01 + <_> + + 0 -1 1355 4.0063999593257904e-02 + + 1.1877900362014771e-01 -6.2801802158355713e-01 + <_> + + 0 -1 1356 2.3055000230669975e-02 + + 1.4813800156116486e-01 -3.7007498741149902e-01 + <_> + + 0 -1 1357 -2.3737000301480293e-02 + + -5.3724801540374756e-01 1.9358199834823608e-01 + <_> + + 0 -1 1358 7.7522002160549164e-02 + + -6.0194000601768494e-02 -1.9489669799804688e+00 + <_> + + 0 -1 1359 -1.3345000334084034e-02 + + -4.5229598879814148e-01 1.8741500377655029e-01 + <_> + + 0 -1 1360 -2.1719999611377716e-02 + + 1.2144249677658081e+00 -1.5365800261497498e-01 + <_> + + 0 -1 1361 -7.1474999189376831e-02 + + -2.3047130107879639e+00 1.0999900102615356e-01 + <_> + + 0 -1 1362 -5.4999999701976776e-03 + + -7.1855199337005615e-01 2.0100999623537064e-02 + <_> + + 0 -1 1363 2.6740999892354012e-02 + + 7.3545001447200775e-02 9.8786002397537231e-01 + <_> + + 0 -1 1364 -3.9407998323440552e-02 + + -1.2227380275726318e+00 -4.3506998568773270e-02 + <_> + + 0 -1 1365 2.5888999924063683e-02 + + 1.3409300148487091e-01 -1.1770780086517334e+00 + <_> + + 0 -1 1366 4.8925001174211502e-02 + + -3.0810000374913216e-02 -9.3479502201080322e-01 + <_> + + 0 -1 1367 3.6892998963594437e-02 + + 1.3333700597286224e-01 -1.4998290538787842e+00 + <_> + + 0 -1 1368 7.8929997980594635e-02 + + -1.4538800716400146e-01 1.5631790161132812e+00 + <_> + + 0 -1 1369 2.9006000608205795e-02 + + 1.9383700191974640e-01 -6.7642802000045776e-01 + <_> + + 0 -1 1370 6.3089998438954353e-03 + + -3.7465399503707886e-01 1.0857500135898590e-01 + <_> + + 0 -1 1371 -6.5830998122692108e-02 + + 8.1059402227401733e-01 3.0201999470591545e-02 + <_> + + 0 -1 1372 -6.8965002894401550e-02 + + 8.3772599697113037e-01 -1.7140999436378479e-01 + <_> + + 0 -1 1373 -1.1669100075960159e-01 + + -9.4647198915481567e-01 1.3123199343681335e-01 + <_> + + 0 -1 1374 -1.3060000492259860e-03 + + 4.6007998287677765e-02 -5.2011597156524658e-01 + <_> + + 0 -1 1375 -4.4558998197317123e-02 + + -1.9423669576644897e+00 1.3200700283050537e-01 + <_> + + 0 -1 1376 5.1033001393079758e-02 + + -2.1480999886989594e-01 4.8673900961875916e-01 + <_> + + 0 -1 1377 -3.1578000634908676e-02 + + 5.9989798069000244e-01 7.9159997403621674e-03 + <_> + + 0 -1 1378 2.1020000800490379e-02 + + -2.2069500386714935e-01 5.4046201705932617e-01 + <_> + + 0 -1 1379 -1.3824200630187988e-01 + + 6.2957501411437988e-01 -2.1712999790906906e-02 + <_> + + 0 -1 1380 5.2228998392820358e-02 + + -2.3360900580883026e-01 4.9760800600051880e-01 + <_> + + 0 -1 1381 2.5884000584483147e-02 + + 1.8041999638080597e-01 -2.2039200365543365e-01 + <_> + + 0 -1 1382 -1.2138999998569489e-02 + + -6.9731897115707397e-01 1.5712000429630280e-02 + <_> + + 0 -1 1383 -2.4237999692559242e-02 + + 3.4593299031257629e-01 7.1469999849796295e-02 + <_> + + 0 -1 1384 -2.5272000581026077e-02 + + -8.7583297491073608e-01 -9.8240002989768982e-03 + <_> + + 0 -1 1385 1.2597000226378441e-02 + + 2.3649999499320984e-01 -2.8731200098991394e-01 + <_> + + 0 -1 1386 5.7330999523401260e-02 + + -6.1530999839305878e-02 -2.2326040267944336e+00 + <_> + + 0 -1 1387 1.6671000048518181e-02 + + -1.9850100576877594e-01 4.0810701251029968e-01 + <_> + + 0 -1 1388 -2.2818999364972115e-02 + + 9.6487599611282349e-01 -2.0245699584484100e-01 + <_> + + 0 -1 1389 3.7000001611886546e-05 + + -5.8908998966217041e-02 2.7055400609970093e-01 + <_> + + 0 -1 1390 -7.6700001955032349e-03 + + -4.5317101478576660e-01 8.9628003537654877e-02 + <_> + + 0 -1 1391 9.4085998833179474e-02 + + 1.1604599654674530e-01 -1.0951169729232788e+00 + <_> + + 0 -1 1392 -6.2267001718282700e-02 + + 1.8096530437469482e+00 -1.4773200452327728e-01 + <_> + + 0 -1 1393 1.7416000366210938e-02 + + 2.3068200051784515e-01 -4.2417600750923157e-01 + <_> + + 0 -1 1394 -2.2066000849008560e-02 + + 4.9270299077033997e-01 -2.0630900561809540e-01 + <_> + + 0 -1 1395 -1.0404000058770180e-02 + + 6.0924297571182251e-01 2.8130000457167625e-02 + <_> + + 0 -1 1396 -9.3670003116130829e-03 + + 4.0171200037002563e-01 -2.1681700646877289e-01 + <_> + + 0 -1 1397 -2.9039999470114708e-02 + + -8.4876501560211182e-01 1.4246800541877747e-01 + <_> + + 0 -1 1398 -2.1061999723315239e-02 + + -7.9198300838470459e-01 -1.2595999985933304e-02 + <_> + + 0 -1 1399 -3.7000998854637146e-02 + + -6.7488902807235718e-01 1.2830400466918945e-01 + <_> + + 0 -1 1400 1.0735999792814255e-02 + + 3.6779999732971191e-02 -6.3393002748489380e-01 + <_> + + 0 -1 1401 1.6367599368095398e-01 + + 1.3803899288177490e-01 -4.7189000248908997e-01 + <_> + + 0 -1 1402 9.4917997717857361e-02 + + -1.3855700194835663e-01 1.9492419958114624e+00 + <_> + + 0 -1 1403 3.5261999815702438e-02 + + 1.3721899688243866e-01 -2.1186530590057373e+00 + <_> + + 0 -1 1404 1.2811000458896160e-02 + + -2.0008100569248199e-01 4.9507799744606018e-01 + <_> + 155 + -3.3933560848236084e+00 + + <_> + + 0 -1 1405 1.3904400169849396e-01 + + -4.6581199765205383e-01 7.6431602239608765e-01 + <_> + + 0 -1 1406 1.1916999705135822e-02 + + -9.4398999214172363e-01 3.9726299047470093e-01 + <_> + + 0 -1 1407 -1.0006999596953392e-02 + + 3.2718798518180847e-01 -6.3367402553558350e-01 + <_> + + 0 -1 1408 -6.0479999519884586e-03 + + 2.7427899837493896e-01 -5.7446998357772827e-01 + <_> + + 0 -1 1409 -1.2489999644458294e-03 + + 2.3629300296306610e-01 -6.8593502044677734e-01 + <_> + + 0 -1 1410 3.2382000237703323e-02 + + -5.7630199193954468e-01 2.7492699027061462e-01 + <_> + + 0 -1 1411 -1.3957999646663666e-02 + + -6.1061501502990723e-01 2.4541600048542023e-01 + <_> + + 0 -1 1412 1.1159999994561076e-03 + + -5.6539100408554077e-01 2.7179300785064697e-01 + <_> + + 0 -1 1413 2.7000000045518391e-05 + + -8.0235999822616577e-01 1.1509100347757339e-01 + <_> + + 0 -1 1414 -2.5700000696815550e-04 + + -8.1205898523330688e-01 2.3844699561595917e-01 + <_> + + 0 -1 1415 4.0460000745952129e-03 + + 1.3909600675106049e-01 -6.6163200139999390e-01 + <_> + + 0 -1 1416 1.4356000348925591e-02 + + -1.6485199332237244e-01 4.1901698708534241e-01 + <_> + + 0 -1 1417 -5.5374998599290848e-02 + + 1.4425870180130005e+00 -1.8820199370384216e-01 + <_> + + 0 -1 1418 9.3594998121261597e-02 + + 1.3548299670219421e-01 -9.1636097431182861e-01 + <_> + + 0 -1 1419 2.6624999940395355e-02 + + -3.3748298883438110e-01 3.9233601093292236e-01 + <_> + + 0 -1 1420 3.7469998933374882e-03 + + -1.1615400016307831e-01 4.4399300217628479e-01 + <_> + + 0 -1 1421 -3.1886000186204910e-02 + + -9.9498301744461060e-01 1.6120000509545207e-03 + <_> + + 0 -1 1422 -2.2600000724196434e-02 + + -4.8067399859428406e-01 1.7007300257682800e-01 + <_> + + 0 -1 1423 2.5202000513672829e-02 + + 3.5580001771450043e-02 -8.0215400457382202e-01 + <_> + + 0 -1 1424 -3.1036999076604843e-02 + + -1.0895340442657471e+00 1.8081900477409363e-01 + <_> + + 0 -1 1425 -2.6475999504327774e-02 + + 9.5671200752258301e-01 -2.1049399673938751e-01 + <_> + + 0 -1 1426 -1.3853999786078930e-02 + + -1.0370320081710815e+00 2.2166700661182404e-01 + <_> + + 0 -1 1427 -6.2925003468990326e-02 + + 9.0199398994445801e-01 -1.9085299968719482e-01 + <_> + + 0 -1 1428 -4.4750999659299850e-02 + + -1.0119110345840454e+00 1.4691199362277985e-01 + <_> + + 0 -1 1429 -2.0428000018000603e-02 + + 6.1624497175216675e-01 -2.3552699387073517e-01 + <_> + + 0 -1 1430 -8.0329999327659607e-03 + + -8.3279997110366821e-02 2.1728700399398804e-01 + <_> + + 0 -1 1431 8.7280003353953362e-03 + + 6.5458998084068298e-02 -6.0318702459335327e-01 + <_> + + 0 -1 1432 -2.7202000841498375e-02 + + -9.3447399139404297e-01 1.5270000696182251e-01 + <_> + + 0 -1 1433 -1.6471000388264656e-02 + + -8.4177100658416748e-01 1.3332000002264977e-02 + <_> + + 0 -1 1434 -1.3744000345468521e-02 + + 6.0567200183868408e-01 -9.2021003365516663e-02 + <_> + + 0 -1 1435 2.9164999723434448e-02 + + -2.8114000335335732e-02 -1.4014569520950317e+00 + <_> + + 0 -1 1436 3.7457000464200974e-02 + + 1.3080599904060364e-01 -4.9382498860359192e-01 + <_> + + 0 -1 1437 -2.5070000439882278e-02 + + -1.1289390325546265e+00 -1.4600000344216824e-02 + <_> + + 0 -1 1438 -6.3812002539634705e-02 + + 7.5871598720550537e-01 -1.8200000049546361e-03 + <_> + + 0 -1 1439 -9.3900002539157867e-03 + + 2.9936400055885315e-01 -2.9487800598144531e-01 + <_> + + 0 -1 1440 -7.6000002445653081e-04 + + 1.9725000485777855e-02 1.9993899762630463e-01 + <_> + + 0 -1 1441 -2.1740999072790146e-02 + + -8.5247898101806641e-01 4.9169998615980148e-02 + <_> + + 0 -1 1442 -1.7869999632239342e-02 + + -5.9985999017953873e-02 1.5222500264644623e-01 + <_> + + 0 -1 1443 -2.4831000715494156e-02 + + 3.5603401064872742e-01 -2.6259899139404297e-01 + <_> + + 0 -1 1444 1.5715500712394714e-01 + + 1.5599999460391700e-04 1.0428730249404907e+00 + <_> + + 0 -1 1445 6.9026999175548553e-02 + + -3.3006999641656876e-02 -1.1796669960021973e+00 + <_> + + 0 -1 1446 -1.1021999642252922e-02 + + 5.8987700939178467e-01 -5.7647999376058578e-02 + <_> + + 0 -1 1447 -1.3834999874234200e-02 + + 5.9502798318862915e-01 -2.4418599903583527e-01 + <_> + + 0 -1 1448 -3.0941000208258629e-02 + + -1.1723799705505371e+00 1.6907000541687012e-01 + <_> + + 0 -1 1449 2.1258000284433365e-02 + + -1.8900999799370766e-02 -1.0684759616851807e+00 + <_> + + 0 -1 1450 9.3079999089241028e-02 + + 1.6305600106716156e-01 -1.3375270366668701e+00 + <_> + + 0 -1 1451 2.9635999351739883e-02 + + -2.2524799406528473e-01 4.5400100946426392e-01 + <_> + + 0 -1 1452 -1.2199999764561653e-04 + + 2.7409100532531738e-01 -3.7371399998664856e-01 + <_> + + 0 -1 1453 -4.2098000645637512e-02 + + -7.5828802585601807e-01 1.7137000337243080e-02 + <_> + + 0 -1 1454 -2.2505000233650208e-02 + + -2.2759300470352173e-01 2.3698699474334717e-01 + <_> + + 0 -1 1455 -1.2862999923527241e-02 + + 1.9252400100231171e-01 -3.2127100229263306e-01 + <_> + + 0 -1 1456 2.7860000729560852e-02 + + 1.6723699867725372e-01 -1.0209059715270996e+00 + <_> + + 0 -1 1457 -2.7807999402284622e-02 + + 1.2824759483337402e+00 -1.7225299775600433e-01 + <_> + + 0 -1 1458 -6.1630001291632652e-03 + + -5.4072898626327515e-01 2.3885700106620789e-01 + <_> + + 0 -1 1459 -2.0436000078916550e-02 + + 6.3355398178100586e-01 -2.1090599894523621e-01 + <_> + + 0 -1 1460 -1.2307999655604362e-02 + + -4.9778199195861816e-01 1.7402599751949310e-01 + <_> + + 0 -1 1461 -4.0493998676538467e-02 + + -1.1848740577697754e+00 -3.3890999853610992e-02 + <_> + + 0 -1 1462 2.9657000675797462e-02 + + 2.1740999072790146e-02 1.0069919824600220e+00 + <_> + + 0 -1 1463 6.8379999138414860e-03 + + 2.9217999428510666e-02 -5.9906297922134399e-01 + <_> + + 0 -1 1464 1.6164999455213547e-02 + + -2.1000799536705017e-01 3.7637299299240112e-01 + <_> + + 0 -1 1465 5.0193000584840775e-02 + + 2.5319999549537897e-03 -7.1668201684951782e-01 + <_> + + 0 -1 1466 1.9680000841617584e-03 + + -2.1921400725841522e-01 3.2298699021339417e-01 + <_> + + 0 -1 1467 2.4979999288916588e-02 + + -9.6840001642704010e-03 -7.7572900056838989e-01 + <_> + + 0 -1 1468 -1.5809999778866768e-02 + + 4.4637501239776611e-01 -6.1760000884532928e-02 + <_> + + 0 -1 1469 3.7206999957561493e-02 + + -2.0495399832725525e-01 5.7722198963165283e-01 + <_> + + 0 -1 1470 -7.9264998435974121e-02 + + -7.6745402812957764e-01 1.2550400197505951e-01 + <_> + + 0 -1 1471 -1.7152000218629837e-02 + + -1.4121830463409424e+00 -5.1704000681638718e-02 + <_> + + 0 -1 1472 3.2740000635385513e-02 + + 1.9334000349044800e-01 -6.3633698225021362e-01 + <_> + + 0 -1 1473 -1.1756999790668488e-01 + + 8.4325402975082397e-01 -1.8018600344657898e-01 + <_> + + 0 -1 1474 1.2057200074195862e-01 + + 1.2530000507831573e-01 -2.1213600635528564e+00 + <_> + + 0 -1 1475 4.2779999785125256e-03 + + -4.6604400873184204e-01 8.9643999934196472e-02 + <_> + + 0 -1 1476 -7.2544999420642853e-02 + + 5.1826500892639160e-01 1.6823999583721161e-02 + <_> + + 0 -1 1477 1.7710599303245544e-01 + + -3.0910000205039978e-02 -1.1046639680862427e+00 + <_> + + 0 -1 1478 8.4229996427893639e-03 + + 2.4445800483226776e-01 -3.8613098859786987e-01 + <_> + + 0 -1 1479 -1.3035000301897526e-02 + + 9.8004400730133057e-01 -1.7016500234603882e-01 + <_> + + 0 -1 1480 1.8912000581622124e-02 + + 2.0248499512672424e-01 -3.8545900583267212e-01 + <_> + + 0 -1 1481 2.1447999402880669e-02 + + -2.5717198848724365e-01 3.5181200504302979e-01 + <_> + + 0 -1 1482 6.3357003033161163e-02 + + 1.6994799673557281e-01 -9.1383802890777588e-01 + <_> + + 0 -1 1483 -3.2435998320579529e-02 + + -8.5681599378585815e-01 -2.1680999547243118e-02 + <_> + + 0 -1 1484 -2.3564999923110008e-02 + + 5.6115597486495972e-01 -2.2400000307243317e-04 + <_> + + 0 -1 1485 1.8789000809192657e-02 + + -2.5459799170494080e-01 3.4512901306152344e-01 + <_> + + 0 -1 1486 3.1042000278830528e-02 + + 7.5719999149441719e-03 3.4800198674201965e-01 + <_> + + 0 -1 1487 -1.1226999573409557e-02 + + -6.0219800472259521e-01 4.2814999818801880e-02 + <_> + + 0 -1 1488 -1.2845999561250210e-02 + + 4.2020401358604431e-01 -5.3801000118255615e-02 + <_> + + 0 -1 1489 -1.2791999615728855e-02 + + 2.2724500298500061e-01 -3.2398000359535217e-01 + <_> + + 0 -1 1490 6.8651996552944183e-02 + + 9.3532003462314606e-02 10. + <_> + + 0 -1 1491 5.2789999172091484e-03 + + -2.6926299929618835e-01 3.3303201198577881e-01 + <_> + + 0 -1 1492 -3.8779001682996750e-02 + + -7.2365301847457886e-01 1.7806500196456909e-01 + <_> + + 0 -1 1493 6.1820000410079956e-03 + + -3.5119399428367615e-01 1.6586300730705261e-01 + <_> + + 0 -1 1494 1.7515200376510620e-01 + + 1.1623100191354752e-01 -1.5419290065765381e+00 + <_> + + 0 -1 1495 1.1627999693155289e-01 + + -9.1479998081922531e-03 -9.9842602014541626e-01 + <_> + + 0 -1 1496 -2.2964000701904297e-02 + + 2.0565399527549744e-01 1.5432000160217285e-02 + <_> + + 0 -1 1497 -5.1410000771284103e-02 + + 5.8072400093078613e-01 -2.0118400454521179e-01 + <_> + + 0 -1 1498 2.2474199533462524e-01 + + 1.8728999421000481e-02 1.0829299688339233e+00 + <_> + + 0 -1 1499 9.4860000535845757e-03 + + -3.3171299099922180e-01 1.9902999699115753e-01 + <_> + + 0 -1 1500 -1.1846300214529037e-01 + + 1.3711010217666626e+00 6.8926997482776642e-02 + <_> + + 0 -1 1501 3.7810999900102615e-02 + + -9.3600002583116293e-04 -8.3996999263763428e-01 + <_> + + 0 -1 1502 2.2202000021934509e-02 + + -1.1963999830186367e-02 3.6673998832702637e-01 + <_> + + 0 -1 1503 -3.6366000771522522e-02 + + 3.7866500020027161e-01 -2.7714800834655762e-01 + <_> + + 0 -1 1504 -1.3184699416160583e-01 + + -2.7481179237365723e+00 1.0666900128126144e-01 + <_> + + 0 -1 1505 -4.1655998677015305e-02 + + 4.7524300217628479e-01 -2.3249800503253937e-01 + <_> + + 0 -1 1506 -3.3151999115943909e-02 + + -5.7929402589797974e-01 1.7434400320053101e-01 + <_> + + 0 -1 1507 1.5769999474287033e-02 + + -1.1284000240266323e-02 -8.3701401948928833e-01 + <_> + + 0 -1 1508 -3.9363000541925430e-02 + + 3.4821599721908569e-01 -1.7455400526523590e-01 + <_> + + 0 -1 1509 -6.7849002778530121e-02 + + 1.4225699901580811e+00 -1.4765599370002747e-01 + <_> + + 0 -1 1510 -2.6775000616908073e-02 + + 2.3947000503540039e-01 1.3271999545395374e-02 + <_> + + 0 -1 1511 3.9919000118970871e-02 + + -8.9999996125698090e-03 -7.5938898324966431e-01 + <_> + + 0 -1 1512 1.0065600275993347e-01 + + -1.8685000017285347e-02 7.6245301961898804e-01 + <_> + + 0 -1 1513 -8.1022001802921295e-02 + + -9.0439099073410034e-01 -8.5880002006888390e-03 + <_> + + 0 -1 1514 -2.1258000284433365e-02 + + -2.1319599449634552e-01 2.1919700503349304e-01 + <_> + + 0 -1 1515 -1.0630999691784382e-02 + + 1.9598099589347839e-01 -3.5768100619316101e-01 + <_> + + 0 -1 1516 8.1300002057105303e-04 + + -9.2794999480247498e-02 2.6145899295806885e-01 + <_> + + 0 -1 1517 3.4650000743567944e-03 + + -5.5336099863052368e-01 2.7386000379920006e-02 + <_> + + 0 -1 1518 1.8835999071598053e-02 + + 1.8446099758148193e-01 -6.6934299468994141e-01 + <_> + + 0 -1 1519 -2.5631999596953392e-02 + + 1.9382879734039307e+00 -1.4708900451660156e-01 + <_> + + 0 -1 1520 -4.0939999744296074e-03 + + -2.6451599597930908e-01 2.0733200013637543e-01 + <_> + + 0 -1 1521 -8.9199998183175921e-04 + + -5.5031597614288330e-01 5.0374999642372131e-02 + <_> + + 0 -1 1522 -4.9518000334501266e-02 + + -2.5615389347076416e+00 1.3141700625419617e-01 + <_> + + 0 -1 1523 1.1680999770760536e-02 + + -2.4819800257682800e-01 3.9982700347900391e-01 + <_> + + 0 -1 1524 3.4563999623060226e-02 + + 1.6178800165653229e-01 -7.1418899297714233e-01 + <_> + + 0 -1 1525 -8.2909995689988136e-03 + + 2.2180099785327911e-01 -2.9181700944900513e-01 + <_> + + 0 -1 1526 -2.2358000278472900e-02 + + 3.1044098734855652e-01 -2.7280000504106283e-03 + <_> + + 0 -1 1527 -3.0801000073552132e-02 + + -9.5672702789306641e-01 -8.3400001749396324e-03 + <_> + + 0 -1 1528 4.3779000639915466e-02 + + 1.2556900084018707e-01 -1.1759619712829590e+00 + <_> + + 0 -1 1529 4.3046001344919205e-02 + + -5.8876998722553253e-02 -1.8568470478057861e+00 + <_> + + 0 -1 1530 2.7188999578356743e-02 + + 4.2858000844717026e-02 3.9036700129508972e-01 + <_> + + 0 -1 1531 9.4149997457861900e-03 + + -4.3567001819610596e-02 -1.1094470024108887e+00 + <_> + + 0 -1 1532 9.4311997294425964e-02 + + 4.0256999433040619e-02 9.8442298173904419e-01 + <_> + + 0 -1 1533 1.7025099694728851e-01 + + 2.9510000720620155e-02 -6.9509297609329224e-01 + <_> + + 0 -1 1534 -4.7148000448942184e-02 + + 1.0338569879531860e+00 6.7602001130580902e-02 + <_> + + 0 -1 1535 1.1186300218105316e-01 + + -6.8682998418807983e-02 -2.4985830783843994e+00 + <_> + + 0 -1 1536 -1.4353999868035316e-02 + + -5.9481900930404663e-01 1.5001699328422546e-01 + <_> + + 0 -1 1537 3.4024000167846680e-02 + + -6.4823001623153687e-02 -2.1382639408111572e+00 + <_> + + 0 -1 1538 2.1601999178528786e-02 + + 5.5309999734163284e-02 7.8292900323867798e-01 + <_> + + 0 -1 1539 2.1771999076008797e-02 + + -7.1279997937381268e-03 -7.2148102521896362e-01 + <_> + + 0 -1 1540 8.2416996359825134e-02 + + 1.4609499275684357e-01 -1.3636670112609863e+00 + <_> + + 0 -1 1541 8.4671996533870697e-02 + + -1.7784699797630310e-01 7.2857701778411865e-01 + <_> + + 0 -1 1542 -5.5128000676631927e-02 + + -5.9402400255203247e-01 1.9357800483703613e-01 + <_> + + 0 -1 1543 -6.4823001623153687e-02 + + -1.0783840417861938e+00 -4.0734000504016876e-02 + <_> + + 0 -1 1544 -2.2769000381231308e-02 + + 7.7900201082229614e-01 3.4960000775754452e-03 + <_> + + 0 -1 1545 5.4756000638008118e-02 + + -6.5683998167514801e-02 -1.8188409805297852e+00 + <_> + + 0 -1 1546 -8.9000001025851816e-05 + + -1.7891999334096909e-02 2.0768299698829651e-01 + <_> + + 0 -1 1547 9.8361998796463013e-02 + + -5.5946998298168182e-02 -1.4153920412063599e+00 + <_> + + 0 -1 1548 -7.0930002257227898e-03 + + 3.4135299921035767e-01 -1.2089899927377701e-01 + <_> + + 0 -1 1549 5.0278000533580780e-02 + + -2.6286700367927551e-01 2.5797298550605774e-01 + <_> + + 0 -1 1550 -5.7870000600814819e-03 + + -1.3178600370883942e-01 1.7350199818611145e-01 + <_> + + 0 -1 1551 1.3973999768495560e-02 + + 2.8518000617623329e-02 -6.1152201890945435e-01 + <_> + + 0 -1 1552 2.1449999883770943e-02 + + 2.6181999593973160e-02 3.0306598544120789e-01 + <_> + + 0 -1 1553 -2.9214000329375267e-02 + + 4.4940599799156189e-01 -2.2803099453449249e-01 + <_> + + 0 -1 1554 4.8099999548867345e-04 + + -1.9879999756813049e-01 2.0744499564170837e-01 + <_> + + 0 -1 1555 1.7109999898821115e-03 + + -5.4037201404571533e-01 6.7865997552871704e-02 + <_> + + 0 -1 1556 8.6660003289580345e-03 + + -1.3128000311553478e-02 5.2297902107238770e-01 + <_> + + 0 -1 1557 6.3657999038696289e-02 + + 6.8299002945423126e-02 -4.9235099554061890e-01 + <_> + + 0 -1 1558 -2.7968000620603561e-02 + + 6.8183898925781250e-01 7.8781001269817352e-02 + <_> + + 0 -1 1559 4.8953998833894730e-02 + + -2.0622399449348450e-01 5.0388097763061523e-01 + <_> + 169 + -3.2396929264068604e+00 + + <_> + + 0 -1 1560 -2.9312999919056892e-02 + + 7.1284699440002441e-01 -5.8230698108673096e-01 + <_> + + 0 -1 1561 1.2415099889039993e-01 + + -3.6863499879837036e-01 6.0067200660705566e-01 + <_> + + 0 -1 1562 7.9349996522068977e-03 + + -8.6008298397064209e-01 2.1724699437618256e-01 + <_> + + 0 -1 1563 3.0365999788045883e-02 + + -2.7186998724937439e-01 6.1247897148132324e-01 + <_> + + 0 -1 1564 2.5218000635504723e-02 + + -3.4748300909996033e-01 5.0427699089050293e-01 + <_> + + 0 -1 1565 1.0014000348746777e-02 + + -3.1898999214172363e-01 4.1376799345016479e-01 + <_> + + 0 -1 1566 -1.6775000840425491e-02 + + -6.9048100709915161e-01 9.4830997288227081e-02 + <_> + + 0 -1 1567 -2.6950000319629908e-03 + + -2.0829799771308899e-01 2.3737199604511261e-01 + <_> + + 0 -1 1568 4.2257998138666153e-02 + + -4.9366700649261475e-01 1.8170599639415741e-01 + <_> + + 0 -1 1569 -4.8505000770092010e-02 + + 1.3429640531539917e+00 3.9769001305103302e-02 + <_> + + 0 -1 1570 2.8992999345064163e-02 + + 4.6496000140905380e-02 -8.1643497943878174e-01 + <_> + + 0 -1 1571 -4.0089000016450882e-02 + + -7.1197801828384399e-01 2.2553899884223938e-01 + <_> + + 0 -1 1572 -4.1021998971700668e-02 + + 1.0057929754257202e+00 -1.9690200686454773e-01 + <_> + + 0 -1 1573 1.1838000267744064e-02 + + -1.2600000016391277e-02 8.0767101049423218e-01 + <_> + + 0 -1 1574 -2.1328000351786613e-02 + + -8.2023900747299194e-01 2.0524999126791954e-02 + <_> + + 0 -1 1575 -2.3904999718070030e-02 + + 5.4210501909255981e-01 -7.4767000973224640e-02 + <_> + + 0 -1 1576 1.8008999526500702e-02 + + -3.3827701210975647e-01 4.2358601093292236e-01 + <_> + + 0 -1 1577 -4.3614000082015991e-02 + + -1.1983489990234375e+00 1.5566200017929077e-01 + <_> + + 0 -1 1578 -9.2449998483061790e-03 + + -8.9029997587203979e-01 1.1003999970853329e-02 + <_> + + 0 -1 1579 4.7485001385211945e-02 + + 1.6664099693298340e-01 -9.0764498710632324e-01 + <_> + + 0 -1 1580 -1.4233999885618687e-02 + + 6.2695199251174927e-01 -2.5791200995445251e-01 + <_> + + 0 -1 1581 3.8010000716894865e-03 + + -2.8229999542236328e-01 2.6624599099159241e-01 + <_> + + 0 -1 1582 3.4330000635236502e-03 + + -6.3771998882293701e-01 9.8422996699810028e-02 + <_> + + 0 -1 1583 -2.9221000149846077e-02 + + -7.6769900321960449e-01 2.2634500265121460e-01 + <_> + + 0 -1 1584 -6.4949998632073402e-03 + + 4.5600101351737976e-01 -2.6528900861740112e-01 + <_> + + 0 -1 1585 -3.0034000054001808e-02 + + -7.6551097631454468e-01 1.4009299874305725e-01 + <_> + + 0 -1 1586 7.8360000625252724e-03 + + 4.6755999326705933e-02 -7.2356200218200684e-01 + <_> + + 0 -1 1587 8.8550001382827759e-03 + + -4.9141999334096909e-02 5.1472699642181396e-01 + <_> + + 0 -1 1588 9.5973998308181763e-02 + + -2.0068999379873276e-02 -1.0850950479507446e+00 + <_> + + 0 -1 1589 -3.2876998186111450e-02 + + -9.5875298976898193e-01 1.4543600380420685e-01 + <_> + + 0 -1 1590 -1.3384000398218632e-02 + + -7.0013600587844849e-01 2.9157999902963638e-02 + <_> + + 0 -1 1591 1.5235999599099159e-02 + + -2.8235700726509094e-01 2.5367999076843262e-01 + <_> + + 0 -1 1592 1.2054000049829483e-02 + + -2.5303399562835693e-01 4.6526700258255005e-01 + <_> + + 0 -1 1593 -7.6295003294944763e-02 + + -6.9915801286697388e-01 1.3217200338840485e-01 + <_> + + 0 -1 1594 -1.2040000408887863e-02 + + 4.5894598960876465e-01 -2.3856499791145325e-01 + <_> + + 0 -1 1595 2.1916000172495842e-02 + + 1.8268600106239319e-01 -6.1629700660705566e-01 + <_> + + 0 -1 1596 -2.7330000884830952e-03 + + -6.3257902860641479e-01 3.4219000488519669e-02 + <_> + + 0 -1 1597 -4.8652000725269318e-02 + + -1.0297729969024658e+00 1.7386500537395477e-01 + <_> + + 0 -1 1598 -1.0463999584317207e-02 + + 3.4757301211357117e-01 -2.7464100718498230e-01 + <_> + + 0 -1 1599 -6.6550001502037048e-03 + + -2.8980299830436707e-01 2.4037900567054749e-01 + <_> + + 0 -1 1600 8.5469996556639671e-03 + + -4.4340500235557556e-01 1.4267399907112122e-01 + <_> + + 0 -1 1601 1.9913999363780022e-02 + + 1.7740400135517120e-01 -2.4096299707889557e-01 + <_> + + 0 -1 1602 2.2012999281287193e-02 + + -1.0812000371515751e-02 -9.4690799713134766e-01 + <_> + + 0 -1 1603 -5.2179001271724701e-02 + + 1.6547499895095825e+00 9.6487000584602356e-02 + <_> + + 0 -1 1604 1.9698999822139740e-02 + + -6.7560002207756042e-03 -8.6311501264572144e-01 + <_> + + 0 -1 1605 2.3040000349283218e-02 + + -2.3519999813288450e-03 3.8531300425529480e-01 + <_> + + 0 -1 1606 -1.5038000419735909e-02 + + -6.1905699968338013e-01 3.1077999621629715e-02 + <_> + + 0 -1 1607 -4.9956001341342926e-02 + + 7.0657497644424438e-01 4.7880999743938446e-02 + <_> + + 0 -1 1608 -6.9269999861717224e-02 + + 3.9212900400161743e-01 -2.3848000168800354e-01 + <_> + + 0 -1 1609 4.7399997711181641e-03 + + -2.4309000000357628e-02 2.5386300683021545e-01 + <_> + + 0 -1 1610 -3.3923998475074768e-02 + + 4.6930399537086487e-01 -2.3321899771690369e-01 + <_> + + 0 -1 1611 -1.6231000423431396e-02 + + 3.2319200038909912e-01 -2.0545600354671478e-01 + <_> + + 0 -1 1612 -5.0193000584840775e-02 + + -1.2277870178222656e+00 -4.0798000991344452e-02 + <_> + + 0 -1 1613 5.6944001466035843e-02 + + 4.5184001326560974e-02 6.0197502374649048e-01 + <_> + + 0 -1 1614 4.0936999022960663e-02 + + -1.6772800683975220e-01 8.9819300174713135e-01 + <_> + + 0 -1 1615 -3.0839999672025442e-03 + + 3.3716198801994324e-01 -2.7240800857543945e-01 + <_> + + 0 -1 1616 -3.2600000500679016e-02 + + -8.5446500778198242e-01 1.9664999097585678e-02 + <_> + + 0 -1 1617 9.8480999469757080e-02 + + 5.4742000997066498e-02 6.3827300071716309e-01 + <_> + + 0 -1 1618 -3.8185000419616699e-02 + + 5.2274698019027710e-01 -2.3384800553321838e-01 + <_> + + 0 -1 1619 -4.5917000621557236e-02 + + 6.2829202413558960e-01 3.2859001308679581e-02 + <_> + + 0 -1 1620 -1.1955499649047852e-01 + + -6.1572700738906860e-01 3.4680001437664032e-02 + <_> + + 0 -1 1621 -1.2044399976730347e-01 + + -8.4380000829696655e-01 1.6530700027942657e-01 + <_> + + 0 -1 1622 7.0619001984596252e-02 + + -6.3261002302169800e-02 -1.9863929748535156e+00 + <_> + + 0 -1 1623 8.4889996796846390e-03 + + -1.7663399875164032e-01 3.8011199235916138e-01 + <_> + + 0 -1 1624 2.2710999473929405e-02 + + -2.7605999261140823e-02 -9.1921401023864746e-01 + <_> + + 0 -1 1625 4.9700000090524554e-04 + + -2.4293200671672821e-01 2.2878900170326233e-01 + <_> + + 0 -1 1626 3.4651998430490494e-02 + + -2.3705999553203583e-01 5.4010999202728271e-01 + <_> + + 0 -1 1627 -4.4700000435113907e-03 + + 3.9078998565673828e-01 -1.2693800032138824e-01 + <_> + + 0 -1 1628 2.3643000051379204e-02 + + -2.6663699746131897e-01 3.2312598824501038e-01 + <_> + + 0 -1 1629 1.2813000008463860e-02 + + 1.7540800571441650e-01 -6.0787999629974365e-01 + <_> + + 0 -1 1630 -1.1250999756157398e-02 + + -1.0852589607238770e+00 -2.8046000748872757e-02 + <_> + + 0 -1 1631 -4.1535001248121262e-02 + + 7.1887397766113281e-01 2.7982000261545181e-02 + <_> + + 0 -1 1632 -9.3470998108386993e-02 + + -1.1906319856643677e+00 -4.4810999184846878e-02 + <_> + + 0 -1 1633 -2.7249999344348907e-02 + + 6.2942498922348022e-01 9.5039997249841690e-03 + <_> + + 0 -1 1634 -2.1759999915957451e-02 + + 1.3233649730682373e+00 -1.5027000010013580e-01 + <_> + + 0 -1 1635 -9.6890004351735115e-03 + + -3.3947101235389709e-01 1.7085799574851990e-01 + <_> + + 0 -1 1636 6.9395996630191803e-02 + + -2.5657799839973450e-01 4.7652098536491394e-01 + <_> + + 0 -1 1637 3.1208999454975128e-02 + + 1.4154000580310822e-01 -3.4942001104354858e-01 + <_> + + 0 -1 1638 -4.9727000296115875e-02 + + -1.1675560474395752e+00 -4.0757998824119568e-02 + <_> + + 0 -1 1639 -2.0301999524235725e-02 + + -3.9486399292945862e-01 1.5814900398254395e-01 + <_> + + 0 -1 1640 -1.5367000363767147e-02 + + 4.9300000071525574e-01 -2.0092099905014038e-01 + <_> + + 0 -1 1641 -5.0735000520944595e-02 + + 1.8736059665679932e+00 8.6730003356933594e-02 + <_> + + 0 -1 1642 -2.0726000890135765e-02 + + -8.8938397169113159e-01 -7.3199998587369919e-03 + <_> + + 0 -1 1643 -3.0993999913334846e-02 + + -1.1664899587631226e+00 1.4274600148200989e-01 + <_> + + 0 -1 1644 -4.4269999489188194e-03 + + -6.6815102100372314e-01 4.4120000675320625e-03 + <_> + + 0 -1 1645 -4.5743998140096664e-02 + + -4.7955200076103210e-01 1.5121999382972717e-01 + <_> + + 0 -1 1646 1.6698999330401421e-02 + + 1.2048599869012833e-01 -4.5235899090766907e-01 + <_> + + 0 -1 1647 3.2210000790655613e-03 + + -7.7615000307559967e-02 2.7846598625183105e-01 + <_> + + 0 -1 1648 2.4434000253677368e-02 + + -1.9987100362777710e-01 6.7253702878952026e-01 + <_> + + 0 -1 1649 -7.9677999019622803e-02 + + 9.2222398519515991e-01 9.2557996511459351e-02 + <_> + + 0 -1 1650 4.4530000537633896e-02 + + -2.6690500974655151e-01 3.3320501446723938e-01 + <_> + + 0 -1 1651 -1.2528300285339355e-01 + + -5.4253101348876953e-01 1.3976299762725830e-01 + <_> + + 0 -1 1652 1.7971999943256378e-02 + + 1.8219999969005585e-02 -6.8048501014709473e-01 + <_> + + 0 -1 1653 1.9184000790119171e-02 + + -1.2583999894559383e-02 5.4126697778701782e-01 + <_> + + 0 -1 1654 4.0024001151323318e-02 + + -1.7638799548149109e-01 7.8810399770736694e-01 + <_> + + 0 -1 1655 1.3558999635279179e-02 + + 2.0737600326538086e-01 -4.7744300961494446e-01 + <_> + + 0 -1 1656 1.6220999881625175e-02 + + 2.3076999932527542e-02 -6.1182099580764771e-01 + <_> + + 0 -1 1657 1.1229000054299831e-02 + + -1.7728000879287720e-02 4.1764199733734131e-01 + <_> + + 0 -1 1658 3.9193000644445419e-02 + + -1.8948499858379364e-01 7.4019300937652588e-01 + <_> + + 0 -1 1659 -9.5539996400475502e-03 + + 4.0947100520133972e-01 -1.3508899509906769e-01 + <_> + + 0 -1 1660 2.7878999710083008e-02 + + -2.0350700616836548e-01 6.1625397205352783e-01 + <_> + + 0 -1 1661 -2.3600999265909195e-02 + + -1.6967060565948486e+00 1.4633199572563171e-01 + <_> + + 0 -1 1662 2.6930000633001328e-02 + + -3.0401999130845070e-02 -1.0909470319747925e+00 + <_> + + 0 -1 1663 2.8999999631196260e-04 + + -2.0076000690460205e-01 2.2314099967479706e-01 + <_> + + 0 -1 1664 -4.1124999523162842e-02 + + -4.5242199301719666e-01 5.7392001152038574e-02 + <_> + + 0 -1 1665 6.6789998672902584e-03 + + 2.3824900388717651e-01 -2.1262100338935852e-01 + <_> + + 0 -1 1666 4.7864999622106552e-02 + + -1.8194800615310669e-01 6.1918401718139648e-01 + <_> + + 0 -1 1667 -3.1679999083280563e-03 + + -2.7393200993537903e-01 2.5017300248146057e-01 + <_> + + 0 -1 1668 -8.6230002343654633e-03 + + -4.6280300617218018e-01 4.2397998273372650e-02 + <_> + + 0 -1 1669 -7.4350000359117985e-03 + + 4.1796800494194031e-01 -1.7079999670386314e-03 + <_> + + 0 -1 1670 -1.8769999733194709e-03 + + 1.4602300524711609e-01 -3.3721101284027100e-01 + <_> + + 0 -1 1671 -8.6226001381874084e-02 + + 7.5143402814865112e-01 1.0711999610066414e-02 + <_> + + 0 -1 1672 4.6833999454975128e-02 + + -1.9119599461555481e-01 4.8414900898933411e-01 + <_> + + 0 -1 1673 -9.2000002041459084e-05 + + 3.5220399498939514e-01 -1.7333300411701202e-01 + <_> + + 0 -1 1674 -1.6343999654054642e-02 + + -6.4397698640823364e-01 9.0680001303553581e-03 + <_> + + 0 -1 1675 4.5703999698162079e-02 + + 1.8216000869870186e-02 3.1970798969268799e-01 + <_> + + 0 -1 1676 -2.7382999658584595e-02 + + 1.0564049482345581e+00 -1.7276400327682495e-01 + <_> + + 0 -1 1677 -2.7602000162005424e-02 + + 2.9715499281883240e-01 -9.4600003212690353e-03 + <_> + + 0 -1 1678 7.6939999125897884e-03 + + -2.1660299599170685e-01 4.7385200858116150e-01 + <_> + + 0 -1 1679 -7.0500001311302185e-04 + + 2.4048799276351929e-01 -2.6776000857353210e-01 + <_> + + 0 -1 1680 1.1054199934005737e-01 + + -3.3539000898599625e-02 -1.0233880281448364e+00 + <_> + + 0 -1 1681 6.8765997886657715e-02 + + -4.3239998631179333e-03 5.7153397798538208e-01 + <_> + + 0 -1 1682 1.7999999690800905e-03 + + 7.7574998140335083e-02 -4.2092698812484741e-01 + <_> + + 0 -1 1683 1.9232000410556793e-01 + + 8.2021996378898621e-02 2.8810169696807861e+00 + <_> + + 0 -1 1684 1.5742099285125732e-01 + + -1.3708199560642242e-01 2.0890059471130371e+00 + <_> + + 0 -1 1685 -4.9387000501155853e-02 + + -1.8610910177230835e+00 1.4332099258899689e-01 + <_> + + 0 -1 1686 5.1929000765085220e-02 + + -1.8737000226974487e-01 5.4231601953506470e-01 + <_> + + 0 -1 1687 4.9965001642704010e-02 + + 1.4175300300121307e-01 -1.5625779628753662e+00 + <_> + + 0 -1 1688 -4.2633000761270523e-02 + + 1.6059479713439941e+00 -1.4712899923324585e-01 + <_> + + 0 -1 1689 -3.7553999572992325e-02 + + -8.0974900722503662e-01 1.3256999850273132e-01 + <_> + + 0 -1 1690 -3.7174999713897705e-02 + + -1.3945020437240601e+00 -5.7055000215768814e-02 + <_> + + 0 -1 1691 1.3945999555289745e-02 + + 3.3427000045776367e-02 5.7474797964096069e-01 + <_> + + 0 -1 1692 -4.4800000614486635e-04 + + -5.5327498912811279e-01 2.1952999755740166e-02 + <_> + + 0 -1 1693 3.1993001699447632e-02 + + 2.0340999588370323e-02 3.7459200620651245e-01 + <_> + + 0 -1 1694 -4.2799999937415123e-03 + + 4.4428700208663940e-01 -2.2999699413776398e-01 + <_> + + 0 -1 1695 9.8550003021955490e-03 + + 1.8315799534320831e-01 -4.0964999794960022e-01 + <_> + + 0 -1 1696 9.3356996774673462e-02 + + -6.3661001622676849e-02 -1.6929290294647217e+00 + <_> + + 0 -1 1697 1.7209999263286591e-02 + + 2.0153899490833282e-01 -4.6061098575592041e-01 + <_> + + 0 -1 1698 8.4319999441504478e-03 + + -3.2003998756408691e-01 1.5312199294567108e-01 + <_> + + 0 -1 1699 -1.4054999686777592e-02 + + 8.6882400512695312e-01 3.2575000077486038e-02 + <_> + + 0 -1 1700 -7.7180000953376293e-03 + + 6.3686698675155640e-01 -1.8425500392913818e-01 + <_> + + 0 -1 1701 2.8005000203847885e-02 + + 1.7357499897480011e-01 -4.7883599996566772e-01 + <_> + + 0 -1 1702 -1.8884999677538872e-02 + + 2.4101600050926208e-01 -2.6547598838806152e-01 + <_> + + 0 -1 1703 -1.8585000187158585e-02 + + 5.4232501983642578e-01 5.3633000701665878e-02 + <_> + + 0 -1 1704 -3.6437001079320908e-02 + + 2.3908898830413818e+00 -1.3634699583053589e-01 + <_> + + 0 -1 1705 3.2455001026391983e-02 + + 1.5910699963569641e-01 -6.7581498622894287e-01 + <_> + + 0 -1 1706 5.9781998395919800e-02 + + -2.3479999508708715e-03 -7.3053699731826782e-01 + <_> + + 0 -1 1707 9.8209995776414871e-03 + + -1.1444099992513657e-01 3.0570301413536072e-01 + <_> + + 0 -1 1708 -3.5163998603820801e-02 + + -1.0511469841003418e+00 -3.3103000372648239e-02 + <_> + + 0 -1 1709 2.7429999317973852e-03 + + -2.0135399699211121e-01 3.2754099369049072e-01 + <_> + + 0 -1 1710 8.1059997901320457e-03 + + -2.1383500099182129e-01 4.3362098932266235e-01 + <_> + + 0 -1 1711 8.8942997157573700e-02 + + 1.0940899699926376e-01 -4.7609338760375977e+00 + <_> + + 0 -1 1712 -3.0054999515414238e-02 + + -1.7169300317764282e+00 -6.0919001698493958e-02 + <_> + + 0 -1 1713 -2.1734999492764473e-02 + + 6.4778900146484375e-01 -3.2830998301506042e-02 + <_> + + 0 -1 1714 3.7648998200893402e-02 + + -1.0060000233352184e-02 -7.6569098234176636e-01 + <_> + + 0 -1 1715 2.7189999818801880e-03 + + 1.9888900220394135e-01 -8.2479000091552734e-02 + <_> + + 0 -1 1716 -1.0548000223934650e-02 + + -8.6613601446151733e-01 -2.5986000895500183e-02 + <_> + + 0 -1 1717 1.2966300547122955e-01 + + 1.3911999762058258e-01 -2.2271950244903564e+00 + <_> + + 0 -1 1718 -1.7676999792456627e-02 + + 3.3967700600624084e-01 -2.3989599943161011e-01 + <_> + + 0 -1 1719 -7.7051997184753418e-02 + + -2.5017969608306885e+00 1.2841999530792236e-01 + <_> + + 0 -1 1720 -1.9230000674724579e-02 + + 5.0641202926635742e-01 -1.9751599431037903e-01 + <_> + + 0 -1 1721 -5.1222998648881912e-02 + + -2.9333369731903076e+00 1.3858500123023987e-01 + <_> + + 0 -1 1722 2.0830000285059214e-03 + + -6.0043597221374512e-01 2.9718000441789627e-02 + <_> + + 0 -1 1723 2.5418000295758247e-02 + + 3.3915799856185913e-01 -1.4392000436782837e-01 + <_> + + 0 -1 1724 -2.3905999958515167e-02 + + -1.1082680225372314e+00 -4.7377001494169235e-02 + <_> + + 0 -1 1725 -6.3740001060068607e-03 + + 4.4533699750900269e-01 -6.7052997648715973e-02 + <_> + + 0 -1 1726 -3.7698999047279358e-02 + + -1.0406579971313477e+00 -4.1790001094341278e-02 + <_> + + 0 -1 1727 2.1655100584030151e-01 + + 3.3863000571727753e-02 8.2017302513122559e-01 + <_> + + 0 -1 1728 -1.3400999829173088e-02 + + 5.2903497219085693e-01 -1.9133000075817108e-01 + <_> + 196 + -3.2103500366210938e+00 + + <_> + + 0 -1 1729 7.1268998086452484e-02 + + -5.3631198406219482e-01 6.0715299844741821e-01 + <_> + + 0 -1 1730 5.6111000478267670e-02 + + -5.0141602754592896e-01 4.3976101279258728e-01 + <_> + + 0 -1 1731 4.0463998913764954e-02 + + -3.2922199368476868e-01 5.4834699630737305e-01 + <_> + + 0 -1 1732 6.3155002892017365e-02 + + -3.1701698899269104e-01 4.6152999997138977e-01 + <_> + + 0 -1 1733 1.0320999659597874e-02 + + 1.0694999992847443e-01 -9.8243898153305054e-01 + <_> + + 0 -1 1734 6.2606997787952423e-02 + + -1.4329700171947479e-01 7.1095001697540283e-01 + <_> + + 0 -1 1735 -3.9416000247001648e-02 + + 9.4380199909210205e-01 -2.1572099626064301e-01 + <_> + + 0 -1 1736 -5.3960001096129417e-03 + + -5.4611998796463013e-01 2.5303798913955688e-01 + <_> + + 0 -1 1737 1.0773199796676636e-01 + + 1.2496000155806541e-02 -1.0809199810028076e+00 + <_> + + 0 -1 1738 1.6982000321149826e-02 + + -3.1536400318145752e-01 5.1239997148513794e-01 + <_> + + 0 -1 1739 3.1216999515891075e-02 + + -4.5199999585747719e-03 -1.2443480491638184e+00 + <_> + + 0 -1 1740 -2.3106999695301056e-02 + + -7.6492899656295776e-01 2.0640599727630615e-01 + <_> + + 0 -1 1741 -1.1203999631106853e-02 + + 2.4092699587345123e-01 -3.5142099857330322e-01 + <_> + + 0 -1 1742 -4.7479998320341110e-03 + + -9.7007997334003448e-02 2.0638099312782288e-01 + <_> + + 0 -1 1743 -1.7358999699354172e-02 + + -7.9020297527313232e-01 2.1852999925613403e-02 + <_> + + 0 -1 1744 1.8851999193429947e-02 + + -1.0394600033760071e-01 5.4844200611114502e-01 + <_> + + 0 -1 1745 7.2249998338520527e-03 + + -4.0409401059150696e-01 2.6763799786567688e-01 + <_> + + 0 -1 1746 1.8915999680757523e-02 + + 2.0508000254631042e-01 -1.0206340551376343e+00 + <_> + + 0 -1 1747 3.1156999990344048e-02 + + 1.2400000123307109e-03 -8.7293499708175659e-01 + <_> + + 0 -1 1748 2.0951999351382256e-02 + + -5.5559999309480190e-03 8.0356198549270630e-01 + <_> + + 0 -1 1749 1.1291000060737133e-02 + + -3.6478400230407715e-01 2.2767899930477142e-01 + <_> + + 0 -1 1750 -5.7011000812053680e-02 + + -1.4295619726181030e+00 1.4322000741958618e-01 + <_> + + 0 -1 1751 7.2194002568721771e-02 + + -4.1850000619888306e-02 -1.9111829996109009e+00 + <_> + + 0 -1 1752 -1.9874000921845436e-02 + + 2.6425498723983765e-01 -3.2617700099945068e-01 + <_> + + 0 -1 1753 -1.6692999750375748e-02 + + -8.3907800912857056e-01 4.0799999260343611e-04 + <_> + + 0 -1 1754 -3.9834998548030853e-02 + + -4.8858499526977539e-01 1.6436100006103516e-01 + <_> + + 0 -1 1755 2.7009999379515648e-02 + + -1.8862499296665192e-01 8.3419400453567505e-01 + <_> + + 0 -1 1756 -3.9420002140104771e-03 + + 2.3231500387191772e-01 -7.2360001504421234e-02 + <_> + + 0 -1 1757 2.2833000868558884e-02 + + -3.5884000360965729e-02 -1.1549400091171265e+00 + <_> + + 0 -1 1758 -6.8888001143932343e-02 + + -1.7837309837341309e+00 1.5159000456333160e-01 + <_> + + 0 -1 1759 4.3097000569105148e-02 + + -2.1608099341392517e-01 5.0624102354049683e-01 + <_> + + 0 -1 1760 8.6239995434880257e-03 + + -1.7795599997043610e-01 2.8957900404930115e-01 + <_> + + 0 -1 1761 1.4561000280082226e-02 + + -1.1408000253140926e-02 -8.9402002096176147e-01 + <_> + + 0 -1 1762 -1.1501000262796879e-02 + + 3.0171999335289001e-01 -4.3659001588821411e-02 + <_> + + 0 -1 1763 -1.0971499979496002e-01 + + -9.5147097110748291e-01 -1.9973000511527061e-02 + <_> + + 0 -1 1764 4.5228000730276108e-02 + + 3.3110998570919037e-02 9.6619802713394165e-01 + <_> + + 0 -1 1765 -2.7047999203205109e-02 + + 9.7963601350784302e-01 -1.7261900007724762e-01 + <_> + + 0 -1 1766 1.8030999228358269e-02 + + -2.0801000297069550e-02 2.7385899424552917e-01 + <_> + + 0 -1 1767 5.0524998456239700e-02 + + -5.6802999228239059e-02 -1.7775089740753174e+00 + <_> + + 0 -1 1768 -2.9923999682068825e-02 + + 6.5329200029373169e-01 -2.3537000641226768e-02 + <_> + + 0 -1 1769 3.8058001548051834e-02 + + 2.6317000389099121e-02 -7.0665699243545532e-01 + <_> + + 0 -1 1770 1.8563899397850037e-01 + + -5.6039998307824135e-03 3.2873699069023132e-01 + <_> + + 0 -1 1771 -4.0670000016689301e-03 + + 3.4204798936843872e-01 -3.0171599984169006e-01 + <_> + + 0 -1 1772 1.0108999907970428e-02 + + -7.3600001633167267e-03 5.7981598377227783e-01 + <_> + + 0 -1 1773 -1.1567000299692154e-02 + + -5.2722197771072388e-01 4.6447999775409698e-02 + <_> + + 0 -1 1774 -6.5649999305605888e-03 + + -5.8529102802276611e-01 1.9101899862289429e-01 + <_> + + 0 -1 1775 1.0582000017166138e-02 + + 2.1073000505566597e-02 -6.8892598152160645e-01 + <_> + + 0 -1 1776 -2.0304000005125999e-02 + + -3.6400699615478516e-01 1.5338799357414246e-01 + <_> + + 0 -1 1777 2.3529999889433384e-03 + + 3.6164000630378723e-02 -5.9825098514556885e-01 + <_> + + 0 -1 1778 -1.4690000098198652e-03 + + -1.4707699418067932e-01 3.7507998943328857e-01 + <_> + + 0 -1 1779 8.6449999362230301e-03 + + -2.1708500385284424e-01 5.1936799287796021e-01 + <_> + + 0 -1 1780 -2.4326000362634659e-02 + + -1.0846769809722900e+00 1.4084799587726593e-01 + <_> + + 0 -1 1781 7.4418999254703522e-02 + + -1.5513800084590912e-01 1.1822769641876221e+00 + <_> + + 0 -1 1782 1.7077999189496040e-02 + + 4.4231001287698746e-02 9.1561102867126465e-01 + <_> + + 0 -1 1783 -2.4577999487519264e-02 + + -1.5504100322723389e+00 -5.4745998233556747e-02 + <_> + + 0 -1 1784 3.0205000191926956e-02 + + 1.6662800312042236e-01 -1.0001239776611328e+00 + <_> + + 0 -1 1785 1.2136000208556652e-02 + + -7.7079099416732788e-01 -4.8639997839927673e-03 + <_> + + 0 -1 1786 8.6717002093791962e-02 + + 1.1061699688434601e-01 -1.6857999563217163e+00 + <_> + + 0 -1 1787 -4.2309001088142395e-02 + + 1.1075930595397949e+00 -1.5438599884510040e-01 + <_> + + 0 -1 1788 -2.6420000940561295e-03 + + 2.7451899647712708e-01 -1.8456199765205383e-01 + <_> + + 0 -1 1789 -5.6662000715732574e-02 + + -8.0625599622726440e-01 -1.6928000375628471e-02 + <_> + + 0 -1 1790 2.3475000634789467e-02 + + 1.4187699556350708e-01 -2.5500899553298950e-01 + <_> + + 0 -1 1791 -2.0803000777959824e-02 + + 1.9826300442218781e-01 -3.1171199679374695e-01 + <_> + + 0 -1 1792 7.2599998675286770e-03 + + -5.0590999424457550e-02 4.1923800110816956e-01 + <_> + + 0 -1 1793 3.4160000085830688e-01 + + -1.6674900054931641e-01 9.2748600244522095e-01 + <_> + + 0 -1 1794 6.2029999680817127e-03 + + -1.2625899910926819e-01 4.0445300936698914e-01 + <_> + + 0 -1 1795 3.2692000269889832e-02 + + -3.2634999603033066e-02 -9.8939800262451172e-01 + <_> + + 0 -1 1796 2.1100000594742596e-04 + + -6.4534001052379608e-02 2.5473698973655701e-01 + <_> + + 0 -1 1797 7.2100001852959394e-04 + + -3.6618599295616150e-01 1.1973100155591965e-01 + <_> + + 0 -1 1798 5.4490998387336731e-02 + + 1.2073499709367752e-01 -1.0291390419006348e+00 + <_> + + 0 -1 1799 -1.0141000151634216e-02 + + -5.2177202701568604e-01 3.3734999597072601e-02 + <_> + + 0 -1 1800 -1.8815999850630760e-02 + + 6.5181797742843628e-01 1.3399999588727951e-03 + <_> + + 0 -1 1801 -5.3480002097785473e-03 + + 1.7370699346065521e-01 -3.4132000803947449e-01 + <_> + + 0 -1 1802 -1.0847000405192375e-02 + + -1.9699899852275848e-01 1.5045499801635742e-01 + <_> + + 0 -1 1803 -4.9926001578569412e-02 + + -5.0888502597808838e-01 3.0762000009417534e-02 + <_> + + 0 -1 1804 1.2160000391304493e-02 + + -6.9251999258995056e-02 1.8745499849319458e-01 + <_> + + 0 -1 1805 -2.2189998999238014e-03 + + -4.0849098563194275e-01 7.9954996705055237e-02 + <_> + + 0 -1 1806 3.1580000650137663e-03 + + -2.1124599874019623e-01 2.2366400063037872e-01 + <_> + + 0 -1 1807 4.1439998894929886e-03 + + -4.9900299310684204e-01 6.2917001545429230e-02 + <_> + + 0 -1 1808 -7.3730000294744968e-03 + + -2.0553299784660339e-01 2.2096699476242065e-01 + <_> + + 0 -1 1809 5.1812000572681427e-02 + + 1.8096800148487091e-01 -4.3495801091194153e-01 + <_> + + 0 -1 1810 1.8340000882744789e-02 + + 1.5200000256299973e-02 3.7991699576377869e-01 + <_> + + 0 -1 1811 1.7490799725055695e-01 + + -2.0920799672603607e-01 4.0013000369071960e-01 + <_> + + 0 -1 1812 5.3993999958038330e-02 + + 2.4751600623130798e-01 -2.6712900400161743e-01 + <_> + + 0 -1 1813 -3.2033199071884155e-01 + + -1.9094380140304565e+00 -6.6960997879505157e-02 + <_> + + 0 -1 1814 -2.7060000225901604e-02 + + -7.1371299028396606e-01 1.5904599428176880e-01 + <_> + + 0 -1 1815 7.7463999390602112e-02 + + -1.6970199346542358e-01 7.7552998065948486e-01 + <_> + + 0 -1 1816 2.3771999403834343e-02 + + 1.9021899998188019e-01 -6.0162097215652466e-01 + <_> + + 0 -1 1817 1.1501000262796879e-02 + + 7.7039999887347221e-03 -6.1730301380157471e-01 + <_> + + 0 -1 1818 3.2616000622510910e-02 + + 1.7159199714660645e-01 -7.0978200435638428e-01 + <_> + + 0 -1 1819 -4.4383000582456589e-02 + + -2.2606229782104492e+00 -7.3276996612548828e-02 + <_> + + 0 -1 1820 -5.8476001024246216e-02 + + 2.4087750911712646e+00 8.3091996610164642e-02 + <_> + + 0 -1 1821 1.9303999841213226e-02 + + -2.7082300186157227e-01 2.7369999885559082e-01 + <_> + + 0 -1 1822 -4.4705998152494431e-02 + + 3.1355598568916321e-01 -6.2492001801729202e-02 + <_> + + 0 -1 1823 -6.0334999114274979e-02 + + -1.4515119791030884e+00 -5.8761000633239746e-02 + <_> + + 0 -1 1824 1.1667000129818916e-02 + + -1.8084999173879623e-02 5.0479698181152344e-01 + <_> + + 0 -1 1825 2.8009999543428421e-02 + + -2.3302899301052094e-01 3.0708700418472290e-01 + <_> + + 0 -1 1826 6.5397001802921295e-02 + + 1.4135900139808655e-01 -5.0010901689529419e-01 + <_> + + 0 -1 1827 9.6239997074007988e-03 + + -2.2054600715637207e-01 3.9191201329231262e-01 + <_> + + 0 -1 1828 2.5510000996291637e-03 + + -1.1381500214338303e-01 2.0032300055027008e-01 + <_> + + 0 -1 1829 3.1847000122070312e-02 + + 2.5476999580860138e-02 -5.3326398134231567e-01 + <_> + + 0 -1 1830 3.3055000007152557e-02 + + 1.7807699739933014e-01 -6.2793898582458496e-01 + <_> + + 0 -1 1831 4.7600999474525452e-02 + + -1.4747899770736694e-01 1.4204180240631104e+00 + <_> + + 0 -1 1832 -1.9571999087929726e-02 + + -5.2693498134613037e-01 1.5838600695133209e-01 + <_> + + 0 -1 1833 -5.4730001837015152e-02 + + 8.8231599330902100e-01 -1.6627800464630127e-01 + <_> + + 0 -1 1834 -2.2686000913381577e-02 + + -4.8386898636817932e-01 1.5000100433826447e-01 + <_> + + 0 -1 1835 1.0713200271129608e-01 + + -2.1336199343204498e-01 4.2333900928497314e-01 + <_> + + 0 -1 1836 -3.6380000412464142e-02 + + -7.4198000133037567e-02 1.4589400589466095e-01 + <_> + + 0 -1 1837 1.3935999944806099e-02 + + -2.4911600351333618e-01 2.6771199703216553e-01 + <_> + + 0 -1 1838 2.0991999655961990e-02 + + 8.7959999218583107e-03 4.3064999580383301e-01 + <_> + + 0 -1 1839 4.9118999391794205e-02 + + -1.7591999471187592e-01 6.9282901287078857e-01 + <_> + + 0 -1 1840 3.6315999925136566e-02 + + 1.3145299255847931e-01 -3.3597299456596375e-01 + <_> + + 0 -1 1841 4.1228000074625015e-02 + + -4.5692000538110733e-02 -1.3515930175781250e+00 + <_> + + 0 -1 1842 1.5672000125050545e-02 + + 1.7544099688529968e-01 -6.0550000518560410e-02 + <_> + + 0 -1 1843 -1.6286000609397888e-02 + + -1.1308189630508423e+00 -3.9533000439405441e-02 + <_> + + 0 -1 1844 -3.0229999683797359e-03 + + -2.2454300522804260e-01 2.3628099262714386e-01 + <_> + + 0 -1 1845 -1.3786299526691437e-01 + + 4.5376899838447571e-01 -2.1098700165748596e-01 + <_> + + 0 -1 1846 -9.6760001033544540e-03 + + -1.5105099976062775e-01 2.0781700313091278e-01 + <_> + + 0 -1 1847 -2.4839999154210091e-02 + + -6.8350297212600708e-01 -8.0040004104375839e-03 + <_> + + 0 -1 1848 -1.3964399695396423e-01 + + 6.5011298656463623e-01 4.6544000506401062e-02 + <_> + + 0 -1 1849 -8.2153998315334320e-02 + + 4.4887199997901917e-01 -2.3591999709606171e-01 + <_> + + 0 -1 1850 3.8449999410659075e-03 + + -8.8173002004623413e-02 2.7346798777580261e-01 + <_> + + 0 -1 1851 -6.6579999402165413e-03 + + -4.6866598725318909e-01 7.7001996338367462e-02 + <_> + + 0 -1 1852 -1.5898000448942184e-02 + + 2.9268398880958557e-01 -2.1941000595688820e-02 + <_> + + 0 -1 1853 -5.0946000963449478e-02 + + -1.2093789577484131e+00 -4.2109999805688858e-02 + <_> + + 0 -1 1854 1.6837999224662781e-02 + + -4.5595999807119370e-02 5.0180697441101074e-01 + <_> + + 0 -1 1855 1.5918999910354614e-02 + + -2.6904299855232239e-01 2.6516300439834595e-01 + <_> + + 0 -1 1856 3.6309999413788319e-03 + + -1.3046100735664368e-01 3.1807100772857666e-01 + <_> + + 0 -1 1857 -8.6144998669624329e-02 + + 1.9443659782409668e+00 -1.3978299498558044e-01 + <_> + + 0 -1 1858 3.3140998333692551e-02 + + 1.5266799926757812e-01 -3.0866000801324844e-02 + <_> + + 0 -1 1859 -3.9679999463260174e-03 + + -7.1202301979064941e-01 -1.3844000175595284e-02 + <_> + + 0 -1 1860 -2.4008000269532204e-02 + + 9.2007797956466675e-01 4.6723999083042145e-02 + <_> + + 0 -1 1861 8.7320003658533096e-03 + + -2.2567300498485565e-01 3.1931799650192261e-01 + <_> + + 0 -1 1862 -2.7786999940872192e-02 + + -7.2337102890014648e-01 1.7018599808216095e-01 + <_> + + 0 -1 1863 -1.9455300271511078e-01 + + 1.2461860179901123e+00 -1.4736199378967285e-01 + <_> + + 0 -1 1864 -1.0869699716567993e-01 + + -1.4465179443359375e+00 1.2145300209522247e-01 + <_> + + 0 -1 1865 -1.9494999200105667e-02 + + -7.8153097629547119e-01 -2.3732999339699745e-02 + <_> + + 0 -1 1866 3.0650000553578138e-03 + + -8.5471397638320923e-01 1.6686999797821045e-01 + <_> + + 0 -1 1867 5.9193998575210571e-02 + + -1.4853699505329132e-01 1.1273469924926758e+00 + <_> + + 0 -1 1868 -5.4207999259233475e-02 + + 5.4726999998092651e-01 3.5523999482393265e-02 + <_> + + 0 -1 1869 -3.9324998855590820e-02 + + 3.6642599105834961e-01 -2.0543999969959259e-01 + <_> + + 0 -1 1870 8.2278996706008911e-02 + + -3.5007998347282410e-02 5.3994202613830566e-01 + <_> + + 0 -1 1871 -7.4479999020695686e-03 + + -6.1537498235702515e-01 -3.5319998860359192e-03 + <_> + + 0 -1 1872 7.3770000599324703e-03 + + -6.5591000020503998e-02 4.1961398720741272e-01 + <_> + + 0 -1 1873 7.0779998786747456e-03 + + -3.4129500389099121e-01 1.2536799907684326e-01 + <_> + + 0 -1 1874 -1.5581999905407429e-02 + + -3.0240398645401001e-01 2.1511000394821167e-01 + <_> + + 0 -1 1875 -2.7399999089539051e-03 + + 7.6553001999855042e-02 -4.1060501337051392e-01 + <_> + + 0 -1 1876 -7.0600003004074097e-02 + + -9.7356200218200684e-01 1.1241800338029861e-01 + <_> + + 0 -1 1877 -1.1706000193953514e-02 + + 1.8560700118541718e-01 -2.9755198955535889e-01 + <_> + + 0 -1 1878 7.1499997284263372e-04 + + -5.9650000184774399e-02 2.4824699759483337e-01 + <_> + + 0 -1 1879 -3.6866001784801483e-02 + + 3.2751700282096863e-01 -2.3059600591659546e-01 + <_> + + 0 -1 1880 -3.2526999711990356e-02 + + -2.9320299625396729e-01 1.5427699685096741e-01 + <_> + + 0 -1 1881 -7.4813999235630035e-02 + + -1.2143570184707642e+00 -5.2244000136852264e-02 + <_> + + 0 -1 1882 4.1469998657703400e-02 + + 1.3062499463558197e-01 -2.3274369239807129e+00 + <_> + + 0 -1 1883 -2.8880000114440918e-02 + + -6.6074597835540771e-01 -9.0960003435611725e-03 + <_> + + 0 -1 1884 4.6381998807191849e-02 + + 1.6630199551582336e-01 -6.6949498653411865e-01 + <_> + + 0 -1 1885 2.5424998998641968e-01 + + -5.4641999304294586e-02 -1.2676080465316772e+00 + <_> + + 0 -1 1886 2.4000001139938831e-03 + + 2.0276799798011780e-01 1.4667999930679798e-02 + <_> + + 0 -1 1887 -8.2805998623371124e-02 + + -7.8713601827621460e-01 -2.4468999356031418e-02 + <_> + + 0 -1 1888 -1.1438000015914440e-02 + + 2.8623399138450623e-01 -3.0894000083208084e-02 + <_> + + 0 -1 1889 -1.2913399934768677e-01 + + 1.7292929887771606e+00 -1.4293900132179260e-01 + <_> + + 0 -1 1890 3.8552999496459961e-02 + + 1.9232999533414841e-02 3.7732601165771484e-01 + <_> + + 0 -1 1891 1.0191400349140167e-01 + + -7.4533998966217041e-02 -3.3868899345397949e+00 + <_> + + 0 -1 1892 -1.9068000838160515e-02 + + 3.1814101338386536e-01 1.9261000677943230e-02 + <_> + + 0 -1 1893 -6.0775000602006912e-02 + + 7.6936298608779907e-01 -1.7644000053405762e-01 + <_> + + 0 -1 1894 2.4679999798536301e-02 + + 1.8396499752998352e-01 -3.0868801474571228e-01 + <_> + + 0 -1 1895 2.6759000495076180e-02 + + -2.3454900085926056e-01 3.3056598901748657e-01 + <_> + + 0 -1 1896 1.4969999901950359e-02 + + 1.7213599383831024e-01 -1.8248899281024933e-01 + <_> + + 0 -1 1897 2.6142999529838562e-02 + + -4.6463999897241592e-02 -1.1318379640579224e+00 + <_> + + 0 -1 1898 -3.7512000650167465e-02 + + 8.0404001474380493e-01 6.9660000503063202e-02 + <_> + + 0 -1 1899 -5.3229997865855694e-03 + + -8.1884402036666870e-01 -1.8224999308586121e-02 + <_> + + 0 -1 1900 1.7813000828027725e-02 + + 1.4957800507545471e-01 -1.8667200207710266e-01 + <_> + + 0 -1 1901 -3.4010000526905060e-02 + + -7.2852301597595215e-01 -1.6615999862551689e-02 + <_> + + 0 -1 1902 -1.5953000634908676e-02 + + 5.6944000720977783e-01 1.3832000084221363e-02 + <_> + + 0 -1 1903 1.9743999466300011e-02 + + 4.0525000542402267e-02 -4.1773399710655212e-01 + <_> + + 0 -1 1904 -1.0374800115823746e-01 + + -1.9825149774551392e+00 1.1960200220346451e-01 + <_> + + 0 -1 1905 -1.9285000860691071e-02 + + 5.0230598449707031e-01 -1.9745899736881256e-01 + <_> + + 0 -1 1906 -1.2780000455677509e-02 + + 4.0195000171661377e-01 -2.6957999914884567e-02 + <_> + + 0 -1 1907 -1.6352999955415726e-02 + + -7.6608800888061523e-01 -2.4209000170230865e-02 + <_> + + 0 -1 1908 -1.2763699889183044e-01 + + 8.6578500270843506e-01 6.4205996692180634e-02 + <_> + + 0 -1 1909 1.9068999215960503e-02 + + -5.5929797887802124e-01 -1.6880000475794077e-03 + <_> + + 0 -1 1910 3.2480999827384949e-02 + + 4.0722001343965530e-02 4.8925098776817322e-01 + <_> + + 0 -1 1911 9.4849998131394386e-03 + + -1.9231900572776794e-01 5.1139700412750244e-01 + <_> + + 0 -1 1912 5.0470000132918358e-03 + + 1.8706800043582916e-01 -1.6113600134849548e-01 + <_> + + 0 -1 1913 4.1267998516559601e-02 + + -4.8817999660968781e-02 -1.1326299905776978e+00 + <_> + + 0 -1 1914 -7.6358996331691742e-02 + + 1.4169390201568604e+00 8.7319999933242798e-02 + <_> + + 0 -1 1915 -7.2834998369216919e-02 + + 1.3189860582351685e+00 -1.4819100499153137e-01 + <_> + + 0 -1 1916 5.9576999396085739e-02 + + 4.8376999795436859e-02 8.5611802339553833e-01 + <_> + + 0 -1 1917 2.0263999700546265e-02 + + -2.1044099330902100e-01 3.3858999609947205e-01 + <_> + + 0 -1 1918 -8.0301001667976379e-02 + + -1.2464400529861450e+00 1.1857099831104279e-01 + <_> + + 0 -1 1919 -1.7835000529885292e-02 + + 2.5782299041748047e-01 -2.4564799666404724e-01 + <_> + + 0 -1 1920 1.1431000195443630e-02 + + 2.2949799895286560e-01 -2.9497599601745605e-01 + <_> + + 0 -1 1921 -2.5541000068187714e-02 + + -8.6252999305725098e-01 -7.0400000549852848e-04 + <_> + + 0 -1 1922 -7.6899997657164931e-04 + + 3.1511399149894714e-01 -1.4349000155925751e-01 + <_> + + 0 -1 1923 -1.4453999698162079e-02 + + 2.5148499011993408e-01 -2.8232899308204651e-01 + <_> + + 0 -1 1924 8.6730001494288445e-03 + + 2.6601400971412659e-01 -2.8190800547599792e-01 + <_> + 197 + -3.2772979736328125e+00 + + <_> + + 0 -1 1925 5.4708998650312424e-02 + + -5.4144299030303955e-01 6.1043000221252441e-01 + <_> + + 0 -1 1926 -1.0838799923658371e-01 + + 7.1739900112152100e-01 -4.1196098923683167e-01 + <_> + + 0 -1 1927 2.2996999323368073e-02 + + -5.8269798755645752e-01 2.9645600914955139e-01 + <_> + + 0 -1 1928 2.7540000155568123e-03 + + -7.4243897199630737e-01 1.4183300733566284e-01 + <_> + + 0 -1 1929 -2.1520000882446766e-03 + + 1.7879900336265564e-01 -6.8548601865768433e-01 + <_> + + 0 -1 1930 -2.2559000179171562e-02 + + -1.0775549411773682e+00 1.2388999760150909e-01 + <_> + + 0 -1 1931 8.3025000989437103e-02 + + 2.4500999599695206e-02 -1.0251879692077637e+00 + <_> + + 0 -1 1932 -6.6740000620484352e-03 + + -4.5283100008964539e-01 2.1230199933052063e-01 + <_> + + 0 -1 1933 7.6485000550746918e-02 + + -2.6972699165344238e-01 4.8580199480056763e-01 + <_> + + 0 -1 1934 5.4910001344978809e-03 + + -4.8871201276779175e-01 3.1616398692131042e-01 + <_> + + 0 -1 1935 -1.0414999909698963e-02 + + 4.1512900590896606e-01 -3.0044800043106079e-01 + <_> + + 0 -1 1936 2.7607999742031097e-02 + + 1.6203799843788147e-01 -9.9868500232696533e-01 + <_> + + 0 -1 1937 -2.3272000253200531e-02 + + -1.1024399995803833e+00 2.1124999970197678e-02 + <_> + + 0 -1 1938 -5.5619999766349792e-02 + + 6.5033102035522461e-01 -2.7938000857830048e-02 + <_> + + 0 -1 1939 -4.0631998330354691e-02 + + 4.2117300629615784e-01 -2.6763799786567688e-01 + <_> + + 0 -1 1940 -7.3560001328587532e-03 + + 3.5277798771858215e-01 -3.7854000926017761e-01 + <_> + + 0 -1 1941 1.7007000744342804e-02 + + -2.9189500212669373e-01 4.1053798794746399e-01 + <_> + + 0 -1 1942 -3.7034001201391220e-02 + + -1.3216309547424316e+00 1.2966500222682953e-01 + <_> + + 0 -1 1943 -1.9633000716567039e-02 + + -8.7702298164367676e-01 1.0799999581649899e-03 + <_> + + 0 -1 1944 -2.3546999320387840e-02 + + 2.6106101274490356e-01 -2.1481400728225708e-01 + <_> + + 0 -1 1945 -4.3352998793125153e-02 + + -9.9089699983596802e-01 -9.9560003727674484e-03 + <_> + + 0 -1 1946 -2.2183999419212341e-02 + + 6.3454401493072510e-01 -5.6547001004219055e-02 + <_> + + 0 -1 1947 1.6530999913811684e-02 + + 2.4664999917149544e-02 -7.3326802253723145e-01 + <_> + + 0 -1 1948 -3.2744001597166061e-02 + + -5.6297200918197632e-01 1.6640299558639526e-01 + <_> + + 0 -1 1949 7.1415998041629791e-02 + + -3.0000001424923539e-04 -9.3286401033401489e-01 + <_> + + 0 -1 1950 8.0999999772757292e-04 + + -9.5380000770092010e-02 2.5184699892997742e-01 + <_> + + 0 -1 1951 -8.4090000018477440e-03 + + -6.5496802330017090e-01 6.7300997674465179e-02 + <_> + + 0 -1 1952 -1.7254000529646873e-02 + + -4.6492999792098999e-01 1.6070899367332458e-01 + <_> + + 0 -1 1953 -1.8641000613570213e-02 + + -1.0594010353088379e+00 -1.9617000594735146e-02 + <_> + + 0 -1 1954 -9.1979997232556343e-03 + + 5.0716197490692139e-01 -1.5339200198650360e-01 + <_> + + 0 -1 1955 1.8538000062108040e-02 + + -3.0498200654983521e-01 7.3506200313568115e-01 + <_> + + 0 -1 1956 -5.0335001200437546e-02 + + -1.1140480041503906e+00 1.8000100553035736e-01 + <_> + + 0 -1 1957 -2.3529000580310822e-02 + + -8.6907899379730225e-01 -1.2459999881684780e-02 + <_> + + 0 -1 1958 -2.7100000530481339e-02 + + 6.5942901372909546e-01 -3.5323999822139740e-02 + <_> + + 0 -1 1959 6.5879998728632927e-03 + + -2.2953400015830994e-01 4.2425099015235901e-01 + <_> + + 0 -1 1960 2.3360000923275948e-02 + + 1.8356199562549591e-01 -9.8587298393249512e-01 + <_> + + 0 -1 1961 1.2946999631822109e-02 + + -3.3147400617599487e-01 2.1323199570178986e-01 + <_> + + 0 -1 1962 -6.6559999249875546e-03 + + -1.1951400339603424e-01 2.9752799868583679e-01 + <_> + + 0 -1 1963 -2.2570999339222908e-02 + + 3.8499400019645691e-01 -2.4434499442577362e-01 + <_> + + 0 -1 1964 -6.3813999295234680e-02 + + -8.9383500814437866e-01 1.4217500388622284e-01 + <_> + + 0 -1 1965 -4.9945000559091568e-02 + + 5.3864401578903198e-01 -2.0485299825668335e-01 + <_> + + 0 -1 1966 6.8319998681545258e-03 + + -5.6678999215364456e-02 3.9970999956130981e-01 + <_> + + 0 -1 1967 -5.5835999548435211e-02 + + -1.5239470005035400e+00 -5.1183000206947327e-02 + <_> + + 0 -1 1968 3.1957000494003296e-01 + + 7.4574001133441925e-02 1.2447799444198608e+00 + <_> + + 0 -1 1969 8.0955997109413147e-02 + + -1.9665500521659851e-01 5.9889698028564453e-01 + <_> + + 0 -1 1970 -1.4911999925971031e-02 + + -6.4020597934722900e-01 1.5807600319385529e-01 + <_> + + 0 -1 1971 4.6709001064300537e-02 + + 8.5239000618457794e-02 -4.5487201213836670e-01 + <_> + + 0 -1 1972 6.0539999976754189e-03 + + -4.3184000253677368e-01 2.2452600300312042e-01 + <_> + + 0 -1 1973 -3.4375999122858047e-02 + + 4.0202501416206360e-01 -2.3903599381446838e-01 + <_> + + 0 -1 1974 -3.4924000501632690e-02 + + 5.2870100736618042e-01 3.9709001779556274e-02 + <_> + + 0 -1 1975 3.0030000489205122e-03 + + -3.8754299283027649e-01 1.4192600548267365e-01 + <_> + + 0 -1 1976 -1.4132999815046787e-02 + + 8.7528401613235474e-01 8.5507996380329132e-02 + <_> + + 0 -1 1977 -6.7940000444650650e-03 + + -1.1649219989776611e+00 -3.3943001180887222e-02 + <_> + + 0 -1 1978 -5.2886001765727997e-02 + + 1.0930680036544800e+00 5.1187001168727875e-02 + <_> + + 0 -1 1979 -2.1079999860376120e-03 + + 1.3696199655532837e-01 -3.3849999308586121e-01 + <_> + + 0 -1 1980 1.8353000283241272e-02 + + 1.3661600649356842e-01 -4.0777799487113953e-01 + <_> + + 0 -1 1981 1.2671999633312225e-02 + + -1.4936000108718872e-02 -8.1707501411437988e-01 + <_> + + 0 -1 1982 1.2924999929964542e-02 + + 1.7625099420547485e-01 -3.2491698861122131e-01 + <_> + + 0 -1 1983 -1.7921000719070435e-02 + + -5.2745401859283447e-01 4.4443000108003616e-02 + <_> + + 0 -1 1984 1.9160000374540687e-03 + + -1.0978599637746811e-01 2.2067500650882721e-01 + <_> + + 0 -1 1985 -1.4697999693453312e-02 + + 3.9067798852920532e-01 -2.2224999964237213e-01 + <_> + + 0 -1 1986 -1.4972999691963196e-02 + + -2.5450900197029114e-01 1.7790000140666962e-01 + <_> + + 0 -1 1987 1.4636999927461147e-02 + + -2.5125000625848770e-02 -8.7121301889419556e-01 + <_> + + 0 -1 1988 -1.0974000208079815e-02 + + 7.9082798957824707e-01 2.0121000707149506e-02 + <_> + + 0 -1 1989 -9.1599998995661736e-03 + + -4.7906899452209473e-01 5.2232000976800919e-02 + <_> + + 0 -1 1990 4.6179997734725475e-03 + + -1.7244599759578705e-01 3.4527799487113953e-01 + <_> + + 0 -1 1991 2.3476999253034592e-02 + + 3.7760001141577959e-03 -6.5333700180053711e-01 + <_> + + 0 -1 1992 3.1766999512910843e-02 + + 1.6364000737667084e-02 5.8723700046539307e-01 + <_> + + 0 -1 1993 -1.8419999629259109e-02 + + 1.9993899762630463e-01 -3.2056498527526855e-01 + <_> + + 0 -1 1994 1.9543999806046486e-02 + + 1.8450200557708740e-01 -2.3793600499629974e-01 + <_> + + 0 -1 1995 4.1159498691558838e-01 + + -6.0382001101970673e-02 -1.6072119474411011e+00 + <_> + + 0 -1 1996 -4.1595999151468277e-02 + + -3.2756200432777405e-01 1.5058000385761261e-01 + <_> + + 0 -1 1997 -1.0335999540984631e-02 + + -6.2394398450851440e-01 1.3112000189721584e-02 + <_> + + 0 -1 1998 1.2392999604344368e-02 + + -3.3114999532699585e-02 5.5579900741577148e-01 + <_> + + 0 -1 1999 -8.7270000949501991e-03 + + 1.9883200526237488e-01 -3.7635600566864014e-01 + <_> + + 0 -1 2000 1.6295000910758972e-02 + + 2.0373000204563141e-01 -4.2800799012184143e-01 + <_> + + 0 -1 2001 -1.0483999736607075e-02 + + -5.6847000122070312e-01 4.4199001044034958e-02 + <_> + + 0 -1 2002 -1.2431999668478966e-02 + + 7.4641901254653931e-01 4.3678998947143555e-02 + <_> + + 0 -1 2003 -5.0374999642372131e-02 + + 8.5090100765228271e-01 -1.7773799598217010e-01 + <_> + + 0 -1 2004 4.9548000097274780e-02 + + 1.6784900426864624e-01 -2.9877498745918274e-01 + <_> + + 0 -1 2005 -4.1085001081228256e-02 + + -1.3302919864654541e+00 -4.9182001501321793e-02 + <_> + + 0 -1 2006 1.0069999843835831e-03 + + -6.0538999736309052e-02 1.8483200669288635e-01 + <_> + + 0 -1 2007 -5.0142999738454819e-02 + + 7.6447701454162598e-01 -1.8356999754905701e-01 + <_> + + 0 -1 2008 -8.7879998609423637e-03 + + 2.2655999660491943e-01 -6.3156999647617340e-02 + <_> + + 0 -1 2009 -5.0170999020338058e-02 + + -1.5899070501327515e+00 -6.1255000531673431e-02 + <_> + + 0 -1 2010 1.0216099768877029e-01 + + 1.2071800231933594e-01 -1.4120110273361206e+00 + <_> + + 0 -1 2011 -1.4372999779880047e-02 + + -1.3116970062255859e+00 -5.1936000585556030e-02 + <_> + + 0 -1 2012 1.0281999595463276e-02 + + -2.1639999467879534e-03 4.4247201085090637e-01 + <_> + + 0 -1 2013 -1.1814000084996223e-02 + + 6.5378099679946899e-01 -1.8723699450492859e-01 + <_> + + 0 -1 2014 7.2114996612071991e-02 + + 7.1846999228000641e-02 8.1496298313140869e-01 + <_> + + 0 -1 2015 -1.9001999869942665e-02 + + -6.7427200078964233e-01 -4.3200000072829425e-04 + <_> + + 0 -1 2016 -4.6990001574158669e-03 + + 3.3311501145362854e-01 5.5794000625610352e-02 + <_> + + 0 -1 2017 -5.8157000690698624e-02 + + 4.5572298765182495e-01 -2.0305100083351135e-01 + <_> + + 0 -1 2018 1.1360000353306532e-03 + + -4.4686999171972275e-02 2.2681899368762970e-01 + <_> + + 0 -1 2019 -4.9414999783039093e-02 + + 2.6694598793983459e-01 -2.6116999983787537e-01 + <_> + + 0 -1 2020 -1.1913800239562988e-01 + + -8.3017998933792114e-01 1.3248500227928162e-01 + <_> + + 0 -1 2021 -1.8303999677300453e-02 + + -6.7499202489852905e-01 1.7092000693082809e-02 + <_> + + 0 -1 2022 -7.9199997708201408e-03 + + -7.2287000715732574e-02 1.4425800740718842e-01 + <_> + + 0 -1 2023 5.1925998181104660e-02 + + 3.0921999365091324e-02 -5.5860602855682373e-01 + <_> + + 0 -1 2024 6.6724002361297607e-02 + + 1.3666400313377380e-01 -2.9411000013351440e-01 + <_> + + 0 -1 2025 -1.3778000138700008e-02 + + -5.9443902969360352e-01 1.5300000086426735e-02 + <_> + + 0 -1 2026 -1.7760999500751495e-02 + + 4.0496501326560974e-01 -3.3559999428689480e-03 + <_> + + 0 -1 2027 -4.2234998196363449e-02 + + -1.0897940397262573e+00 -4.0224999189376831e-02 + <_> + + 0 -1 2028 -1.3524999842047691e-02 + + 2.8921899199485779e-01 -2.5194799900054932e-01 + <_> + + 0 -1 2029 -1.1106000281870365e-02 + + 6.5312802791595459e-01 -1.8053700029850006e-01 + <_> + + 0 -1 2030 -1.2284599989652634e-01 + + -1.9570649862289429e+00 1.4815400540828705e-01 + <_> + + 0 -1 2031 4.7715999186038971e-02 + + -2.2875599563121796e-01 3.4233701229095459e-01 + <_> + + 0 -1 2032 3.1817000359296799e-02 + + 1.5976299345493317e-01 -1.0091969966888428e+00 + <_> + + 0 -1 2033 4.2570000514388084e-03 + + -3.8881298899650574e-01 8.4210000932216644e-02 + <_> + + 0 -1 2034 -6.1372999101877213e-02 + + 1.7152810096740723e+00 5.9324998408555984e-02 + <_> + + 0 -1 2035 -2.7030000928789377e-03 + + -3.8161700963973999e-01 8.5127003490924835e-02 + <_> + + 0 -1 2036 -6.8544000387191772e-02 + + -3.0925889015197754e+00 1.1788000166416168e-01 + <_> + + 0 -1 2037 1.0372500121593475e-01 + + -1.3769300282001495e-01 1.9009410142898560e+00 + <_> + + 0 -1 2038 1.5799000859260559e-02 + + -6.2660001218318939e-02 2.5917699933052063e-01 + <_> + + 0 -1 2039 -9.8040001466870308e-03 + + -5.6291598081588745e-01 4.3923001736402512e-02 + <_> + + 0 -1 2040 -9.0229995548725128e-03 + + 2.5287100672721863e-01 -4.1225999593734741e-02 + <_> + + 0 -1 2041 -6.3754998147487640e-02 + + -2.6178569793701172e+00 -7.4005998671054840e-02 + <_> + + 0 -1 2042 3.8954999297857285e-02 + + 5.9032998979091644e-02 8.5945600271224976e-01 + <_> + + 0 -1 2043 -3.9802998304367065e-02 + + 9.3600499629974365e-01 -1.5639400482177734e-01 + <_> + + 0 -1 2044 5.0301998853683472e-02 + + 1.3725900650024414e-01 -2.5549728870391846e+00 + <_> + + 0 -1 2045 4.6250000596046448e-02 + + -1.3964000158011913e-02 -7.1026200056076050e-01 + <_> + + 0 -1 2046 6.2196001410484314e-02 + + 5.9526000171899796e-02 1.6509100198745728e+00 + <_> + + 0 -1 2047 -6.4776003360748291e-02 + + 7.1368998289108276e-01 -1.7270000278949738e-01 + <_> + + 0 -1 2048 2.7522999793291092e-02 + + 1.4631600677967072e-01 -8.1428997218608856e-02 + <_> + + 0 -1 2049 3.9900001138448715e-04 + + -3.7144500017166138e-01 1.0152699798345566e-01 + <_> + + 0 -1 2050 -4.3299999088048935e-03 + + -2.3756299912929535e-01 2.6798400282859802e-01 + <_> + + 0 -1 2051 4.7297000885009766e-02 + + -2.7682000771164894e-02 -8.4910297393798828e-01 + <_> + + 0 -1 2052 1.2508999556303024e-02 + + 1.8730199337005615e-01 -5.6001102924346924e-01 + <_> + + 0 -1 2053 4.5899000018835068e-02 + + -1.5601199865341187e-01 9.7073000669479370e-01 + <_> + + 0 -1 2054 1.9853399693965912e-01 + + 1.4895500242710114e-01 -1.1015529632568359e+00 + <_> + + 0 -1 2055 1.6674999147653580e-02 + + -1.6615299880504608e-01 8.2210999727249146e-01 + <_> + + 0 -1 2056 1.9829999655485153e-03 + + -7.1249999105930328e-02 2.8810900449752808e-01 + <_> + + 0 -1 2057 2.2447999566793442e-02 + + -2.0981000736355782e-02 -7.8416502475738525e-01 + <_> + + 0 -1 2058 -1.3913000002503395e-02 + + -1.8165799975395203e-01 2.0491799712181091e-01 + <_> + + 0 -1 2059 -7.7659999951720238e-03 + + -4.5595899224281311e-01 6.3576996326446533e-02 + <_> + + 0 -1 2060 -1.3209000229835510e-02 + + 2.6632300019264221e-01 -1.7795999348163605e-01 + <_> + + 0 -1 2061 4.9052998423576355e-02 + + -1.5476800501346588e-01 1.1069979667663574e+00 + <_> + + 0 -1 2062 2.0263999700546265e-02 + + 6.8915002048015594e-02 6.9867497682571411e-01 + <_> + + 0 -1 2063 -1.6828000545501709e-02 + + 2.7607199549674988e-01 -2.5139200687408447e-01 + <_> + + 0 -1 2064 -1.6939499974250793e-01 + + -3.0767529010772705e+00 1.1617500334978104e-01 + <_> + + 0 -1 2065 -1.1336100101470947e-01 + + -1.4639229774475098e+00 -5.1447000354528427e-02 + <_> + + 0 -1 2066 -7.7685996890068054e-02 + + 8.8430202007293701e-01 4.3306998908519745e-02 + <_> + + 0 -1 2067 -1.5568000264465809e-02 + + 1.3672499358654022e-01 -3.4505501389503479e-01 + <_> + + 0 -1 2068 -6.6018998622894287e-02 + + -1.0300110578536987e+00 1.1601399630308151e-01 + <_> + + 0 -1 2069 8.3699999377131462e-03 + + 7.6429001986980438e-02 -4.4002500176429749e-01 + <_> + + 0 -1 2070 3.5402998328208923e-02 + + 1.1979500204324722e-01 -7.2668302059173584e-01 + <_> + + 0 -1 2071 -3.9051000028848648e-02 + + 6.7375302314758301e-01 -1.8196000158786774e-01 + <_> + + 0 -1 2072 -9.7899995744228363e-03 + + 2.1264599263668060e-01 3.6756001412868500e-02 + <_> + + 0 -1 2073 -2.3047000169754028e-02 + + 4.4742199778556824e-01 -2.0986700057983398e-01 + <_> + + 0 -1 2074 3.1169999856501818e-03 + + 3.7544000893831253e-02 2.7808201313018799e-01 + <_> + + 0 -1 2075 1.3136000372469425e-02 + + -1.9842399656772614e-01 5.4335701465606689e-01 + <_> + + 0 -1 2076 1.4782000333070755e-02 + + 1.3530600070953369e-01 -1.1153600364923477e-01 + <_> + + 0 -1 2077 -6.0139000415802002e-02 + + 8.4039300680160522e-01 -1.6711600124835968e-01 + <_> + + 0 -1 2078 5.1998998969793320e-02 + + 1.7372000217437744e-01 -7.8547602891921997e-01 + <_> + + 0 -1 2079 2.4792000651359558e-02 + + -1.7739200592041016e-01 6.6752600669860840e-01 + <_> + + 0 -1 2080 -1.2014999985694885e-02 + + -1.4263699948787689e-01 1.6070500016212463e-01 + <_> + + 0 -1 2081 -9.8655998706817627e-02 + + 1.0429769754409790e+00 -1.5770199894905090e-01 + <_> + + 0 -1 2082 1.1758299916982651e-01 + + 1.0955700278282166e-01 -4.4920377731323242e+00 + <_> + + 0 -1 2083 -1.8922999501228333e-02 + + -7.8543400764465332e-01 1.2984000146389008e-02 + <_> + + 0 -1 2084 -2.8390999883413315e-02 + + -6.0569900274276733e-01 1.2903499603271484e-01 + <_> + + 0 -1 2085 1.3182999566197395e-02 + + -1.4415999874472618e-02 -7.3210501670837402e-01 + <_> + + 0 -1 2086 -1.1653000116348267e-01 + + -2.0442469120025635e+00 1.4053100347518921e-01 + <_> + + 0 -1 2087 -3.8880000356584787e-03 + + -4.1861599683761597e-01 7.8704997897148132e-02 + <_> + + 0 -1 2088 3.1229000538587570e-02 + + 2.4632999673485756e-02 4.1870400309562683e-01 + <_> + + 0 -1 2089 2.5198999792337418e-02 + + -1.7557799816131592e-01 6.4710599184036255e-01 + <_> + + 0 -1 2090 -2.8124000877141953e-02 + + -2.2005599737167358e-01 1.4121000468730927e-01 + <_> + + 0 -1 2091 3.6499001085758209e-02 + + -6.8426996469497681e-02 -2.3410849571228027e+00 + <_> + + 0 -1 2092 -7.2292998433113098e-02 + + 1.2898750305175781e+00 8.4875002503395081e-02 + <_> + + 0 -1 2093 -4.1671000421047211e-02 + + -1.1630970239639282e+00 -5.3752999752759933e-02 + <_> + + 0 -1 2094 4.7703001648187637e-02 + + 7.0101000368595123e-02 7.3676502704620361e-01 + <_> + + 0 -1 2095 6.5793000161647797e-02 + + -1.7755299806594849e-01 6.9780498743057251e-01 + <_> + + 0 -1 2096 1.3904999941587448e-02 + + 2.1936799585819244e-01 -2.0390799641609192e-01 + <_> + + 0 -1 2097 -2.7730999514460564e-02 + + 6.1867898702621460e-01 -1.7804099619388580e-01 + <_> + + 0 -1 2098 -1.5879999846220016e-02 + + -4.6484100818634033e-01 1.8828600645065308e-01 + <_> + + 0 -1 2099 7.4128001928329468e-02 + + -1.2858100235462189e-01 3.2792479991912842e+00 + <_> + + 0 -1 2100 -8.9000002481043339e-04 + + -3.0117601156234741e-01 2.3818799853324890e-01 + <_> + + 0 -1 2101 1.7965000122785568e-02 + + -2.2284999489784241e-01 2.9954001307487488e-01 + <_> + + 0 -1 2102 -2.5380000006407499e-03 + + 2.5064399838447571e-01 -1.3665600121021271e-01 + <_> + + 0 -1 2103 -9.0680001303553581e-03 + + 2.9017499089241028e-01 -2.8929701447486877e-01 + <_> + + 0 -1 2104 4.9169998615980148e-02 + + 1.9156399369239807e-01 -6.8328702449798584e-01 + <_> + + 0 -1 2105 -3.0680999159812927e-02 + + -7.5677001476287842e-01 -1.3279999606311321e-02 + <_> + + 0 -1 2106 1.0017400234937668e-01 + + 8.4453999996185303e-02 1.0888710021972656e+00 + <_> + + 0 -1 2107 3.1950001139193773e-03 + + -2.6919400691986084e-01 1.9537900388240814e-01 + <_> + + 0 -1 2108 3.5503000020980835e-02 + + 1.3632300496101379e-01 -5.6917202472686768e-01 + <_> + + 0 -1 2109 4.5900000259280205e-04 + + -4.0443998575210571e-01 1.4074799418449402e-01 + <_> + + 0 -1 2110 2.5258999317884445e-02 + + 1.6243200004100800e-01 -5.5741798877716064e-01 + <_> + + 0 -1 2111 -5.1549999043345451e-03 + + 3.1132599711418152e-01 -2.2756099700927734e-01 + <_> + + 0 -1 2112 1.5869999770075083e-03 + + -2.6867699623107910e-01 1.9565400481224060e-01 + <_> + + 0 -1 2113 -1.6204999759793282e-02 + + 1.5486499667167664e-01 -3.4057798981666565e-01 + <_> + + 0 -1 2114 -2.9624000191688538e-02 + + 1.1466799974441528e+00 9.0557999908924103e-02 + <_> + + 0 -1 2115 -1.5930000226944685e-03 + + -7.1257501840591431e-01 -7.0400000549852848e-04 + <_> + + 0 -1 2116 -5.4019000381231308e-02 + + 4.1537499427795410e-01 2.7246000245213509e-02 + <_> + + 0 -1 2117 -6.6211000084877014e-02 + + -1.3340090513229370e+00 -4.7352999448776245e-02 + <_> + + 0 -1 2118 2.7940999716520309e-02 + + 1.4446300268173218e-01 -5.1518398523330688e-01 + <_> + + 0 -1 2119 2.8957000002264977e-02 + + -4.9966000020503998e-02 -1.1929039955139160e+00 + <_> + + 0 -1 2120 -2.0424999296665192e-02 + + 6.3881301879882812e-01 3.8141001015901566e-02 + <_> + + 0 -1 2121 1.2416999787092209e-02 + + -2.1547000110149384e-01 4.9477699398994446e-01 + <_> + 181 + -3.3196411132812500e+00 + + <_> + + 0 -1 2122 4.3274000287055969e-02 + + -8.0494397878646851e-01 3.9897298812866211e-01 + <_> + + 0 -1 2123 1.8615500628948212e-01 + + -3.1655299663543701e-01 6.8877297639846802e-01 + <_> + + 0 -1 2124 3.1860999763011932e-02 + + -6.4266198873519897e-01 2.5550898909568787e-01 + <_> + + 0 -1 2125 1.4022000133991241e-02 + + -4.5926600694656372e-01 3.1171199679374695e-01 + <_> + + 0 -1 2126 -6.3029997982084751e-03 + + 4.6026900410652161e-01 -2.7438500523567200e-01 + <_> + + 0 -1 2127 -5.4310001432895660e-03 + + 3.6608600616455078e-01 -2.7205801010131836e-01 + <_> + + 0 -1 2128 1.6822999343276024e-02 + + 2.3476999253034592e-02 -8.8443797826766968e-01 + <_> + + 0 -1 2129 2.6039000600576401e-02 + + 1.7488799989223480e-01 -5.4564702510833740e-01 + <_> + + 0 -1 2130 -2.6720000430941582e-02 + + -9.6396499872207642e-01 2.3524999618530273e-02 + <_> + + 0 -1 2131 -1.7041999846696854e-02 + + -7.0848798751831055e-01 2.1468099951744080e-01 + <_> + + 0 -1 2132 5.9569999575614929e-03 + + 7.3601000010967255e-02 -6.8225598335266113e-01 + <_> + + 0 -1 2133 -2.8679999522864819e-03 + + -7.4935001134872437e-01 2.3803399503231049e-01 + <_> + + 0 -1 2134 -4.3774999678134918e-02 + + 6.8323302268981934e-01 -2.1380299329757690e-01 + <_> + + 0 -1 2135 5.1633000373840332e-02 + + -1.2566499412059784e-01 6.7523801326751709e-01 + <_> + + 0 -1 2136 8.1780003383755684e-03 + + 7.0689998567104340e-02 -8.0665898323059082e-01 + <_> + + 0 -1 2137 -5.2841998636722565e-02 + + 9.5433902740478516e-01 1.6548000276088715e-02 + <_> + + 0 -1 2138 5.2583999931812286e-02 + + -2.8414401412010193e-01 4.7129800915718079e-01 + <_> + + 0 -1 2139 -1.2659000232815742e-02 + + 3.8445401191711426e-01 -6.2288001179695129e-02 + <_> + + 0 -1 2140 1.1694000102579594e-02 + + 5.6000000768108293e-05 -1.0173139572143555e+00 + <_> + + 0 -1 2141 -2.3918999359011650e-02 + + 8.4921300411224365e-01 5.7399999350309372e-03 + <_> + + 0 -1 2142 -6.1673998832702637e-02 + + -9.2571401596069336e-01 -1.7679999582469463e-03 + <_> + + 0 -1 2143 -1.8279999494552612e-03 + + -5.4372298717498779e-01 2.4932399392127991e-01 + <_> + + 0 -1 2144 3.5257998853921890e-02 + + -7.3719997890293598e-03 -9.3963998556137085e-01 + <_> + + 0 -1 2145 -1.8438000231981277e-02 + + 7.2136700153350830e-01 1.0491999797523022e-02 + <_> + + 0 -1 2146 -3.8389001041650772e-02 + + 1.9272600114345551e-01 -3.5832101106643677e-01 + <_> + + 0 -1 2147 9.9720999598503113e-02 + + 1.1354199796915054e-01 -1.6304190158843994e+00 + <_> + + 0 -1 2148 8.4462001919746399e-02 + + -5.3420998156070709e-02 -1.6981120109558105e+00 + <_> + + 0 -1 2149 4.0270000696182251e-02 + + -1.0783199965953827e-01 5.1926600933074951e-01 + <_> + + 0 -1 2150 5.8935999870300293e-02 + + -1.8053700029850006e-01 9.5119798183441162e-01 + <_> + + 0 -1 2151 1.4957000315189362e-01 + + 1.6785299777984619e-01 -1.1591869592666626e+00 + <_> + + 0 -1 2152 6.9399998756125569e-04 + + 2.0491400361061096e-01 -3.3118200302124023e-01 + <_> + + 0 -1 2153 -3.3369001001119614e-02 + + 9.3468099832534790e-01 -2.9639999847859144e-03 + <_> + + 0 -1 2154 9.3759996816515923e-03 + + 3.7000000011175871e-03 -7.7549797296524048e-01 + <_> + + 0 -1 2155 4.3193999677896500e-02 + + -2.2040000185370445e-03 7.4589699506759644e-01 + <_> + + 0 -1 2156 -6.7555002868175507e-02 + + 7.2292101383209229e-01 -1.8404200673103333e-01 + <_> + + 0 -1 2157 -3.1168600916862488e-01 + + 1.0014270544052124e+00 3.4003000706434250e-02 + <_> + + 0 -1 2158 2.9743999242782593e-02 + + -4.6356000006198883e-02 -1.2781809568405151e+00 + <_> + + 0 -1 2159 1.0737000033259392e-02 + + 1.4812000095844269e-02 6.6649997234344482e-01 + <_> + + 0 -1 2160 -2.8841000050306320e-02 + + -9.4222599267959595e-01 -2.0796999335289001e-02 + <_> + + 0 -1 2161 -5.7649998925626278e-03 + + -4.3541899323463440e-01 2.3386000096797943e-01 + <_> + + 0 -1 2162 2.8410999104380608e-02 + + -1.7615799605846405e-01 8.5765302181243896e-01 + <_> + + 0 -1 2163 -2.9007999226450920e-02 + + 5.7978099584579468e-01 2.8565999120473862e-02 + <_> + + 0 -1 2164 2.4965999647974968e-02 + + -2.2729000076651573e-02 -9.6773099899291992e-01 + <_> + + 0 -1 2165 1.2036000378429890e-02 + + -1.4214700460433960e-01 5.1687997579574585e-01 + <_> + + 0 -1 2166 -4.2514000087976456e-02 + + 9.7273802757263184e-01 -1.8119800090789795e-01 + <_> + + 0 -1 2167 1.0276000015437603e-02 + + -8.3099998533725739e-02 3.1762799620628357e-01 + <_> + + 0 -1 2168 -6.9191999733448029e-02 + + -2.0668580532073975e+00 -6.0173999518156052e-02 + <_> + + 0 -1 2169 -4.6769999898970127e-03 + + 4.4131800532341003e-01 2.3209000006318092e-02 + <_> + + 0 -1 2170 -1.3923999853432178e-02 + + 2.8606700897216797e-01 -2.9152700304985046e-01 + <_> + + 0 -1 2171 -1.5333999879658222e-02 + + -5.7414501905441284e-01 2.3063300549983978e-01 + <_> + + 0 -1 2172 -1.0239000432193279e-02 + + 3.4479200839996338e-01 -2.6080399751663208e-01 + <_> + + 0 -1 2173 -5.0988998264074326e-02 + + 5.6154102087020874e-01 6.1218999326229095e-02 + <_> + + 0 -1 2174 3.0689999461174011e-02 + + -1.4772799611091614e-01 1.6378489732742310e+00 + <_> + + 0 -1 2175 -1.1223999783396721e-02 + + 2.4006199836730957e-01 -4.4864898920059204e-01 + <_> + + 0 -1 2176 -6.2899999320507050e-03 + + 4.3119499087333679e-01 -2.3808999359607697e-01 + <_> + + 0 -1 2177 7.8590996563434601e-02 + + 1.9865000620484352e-02 8.0853801965713501e-01 + <_> + + 0 -1 2178 -1.0178999975323677e-02 + + 1.8193200230598450e-01 -3.2877799868583679e-01 + <_> + + 0 -1 2179 3.1227000057697296e-02 + + 1.4973899722099304e-01 -1.4180339574813843e+00 + <_> + + 0 -1 2180 4.0196999907493591e-02 + + -1.9760499894618988e-01 5.8508199453353882e-01 + <_> + + 0 -1 2181 1.6138000413775444e-02 + + 5.0000002374872565e-04 3.9050000905990601e-01 + <_> + + 0 -1 2182 -4.5519001781940460e-02 + + 1.2646820545196533e+00 -1.5632599592208862e-01 + <_> + + 0 -1 2183 -1.8130000680685043e-02 + + 6.5148502588272095e-01 1.0235999710857868e-02 + <_> + + 0 -1 2184 -1.4001999981701374e-02 + + -1.0344820022583008e+00 -3.2182998955249786e-02 + <_> + + 0 -1 2185 -3.8816001266241074e-02 + + -4.7874298691749573e-01 1.6290700435638428e-01 + <_> + + 0 -1 2186 3.1656000763177872e-02 + + -2.0983399450778961e-01 5.4575902223587036e-01 + <_> + + 0 -1 2187 -1.0839999653398991e-02 + + 5.1898801326751709e-01 -1.5080000273883343e-02 + <_> + + 0 -1 2188 1.2032999657094479e-02 + + -2.1107600629329681e-01 7.5937002897262573e-01 + <_> + + 0 -1 2189 7.0772998034954071e-02 + + 1.8048800528049469e-01 -7.4048501253128052e-01 + <_> + + 0 -1 2190 5.3139799833297729e-01 + + -1.4491699635982513e-01 1.5360039472579956e+00 + <_> + + 0 -1 2191 -1.4774000272154808e-02 + + -2.8153699636459351e-01 2.0407299697399139e-01 + <_> + + 0 -1 2192 -2.2410000674426556e-03 + + -4.4876301288604736e-01 5.3989000618457794e-02 + <_> + + 0 -1 2193 4.9968000501394272e-02 + + 4.1514001786708832e-02 2.9417100548744202e-01 + <_> + + 0 -1 2194 -4.7701999545097351e-02 + + 3.9674299955368042e-01 -2.8301799297332764e-01 + <_> + + 0 -1 2195 -9.1311000287532806e-02 + + 2.1994259357452393e+00 8.7964996695518494e-02 + <_> + + 0 -1 2196 3.8070000708103180e-02 + + -2.8025600314140320e-01 2.5156199932098389e-01 + <_> + + 0 -1 2197 -1.5538999810814857e-02 + + 3.4157499670982361e-01 1.7924999818205833e-02 + <_> + + 0 -1 2198 -1.5445999801158905e-02 + + 2.8680199384689331e-01 -2.5135898590087891e-01 + <_> + + 0 -1 2199 -5.7388000190258026e-02 + + 6.3830000162124634e-01 8.8597998023033142e-02 + <_> + + 0 -1 2200 -5.9440000914037228e-03 + + 7.9016998410224915e-02 -4.0774899721145630e-01 + <_> + + 0 -1 2201 -6.9968998432159424e-02 + + -4.4644200801849365e-01 1.7219600081443787e-01 + <_> + + 0 -1 2202 -2.5064999237656593e-02 + + -9.8270201683044434e-01 -3.5388000309467316e-02 + <_> + + 0 -1 2203 1.7216000705957413e-02 + + 2.2705900669097900e-01 -8.0550098419189453e-01 + <_> + + 0 -1 2204 -4.4279001653194427e-02 + + 8.3951997756958008e-01 -1.7429600656032562e-01 + <_> + + 0 -1 2205 4.3988998979330063e-02 + + 1.1557199805974960e-01 -1.9666889905929565e+00 + <_> + + 0 -1 2206 1.5907000750303268e-02 + + -3.7576001137495041e-02 -1.0311100482940674e+00 + <_> + + 0 -1 2207 -9.2754997313022614e-02 + + -1.3530019521713257e+00 1.2141299992799759e-01 + <_> + + 0 -1 2208 7.1037001907825470e-02 + + -1.7684300243854523e-01 7.4485200643539429e-01 + <_> + + 0 -1 2209 5.7762000709772110e-02 + + 1.2835599482059479e-01 -4.4444200396537781e-01 + <_> + + 0 -1 2210 -1.6432000324130058e-02 + + 8.0152702331542969e-01 -1.7491699755191803e-01 + <_> + + 0 -1 2211 2.3939000442624092e-02 + + 1.6144999861717224e-01 -1.2364500015974045e-01 + <_> + + 0 -1 2212 1.2636000290513039e-02 + + 1.5411999821662903e-01 -3.3293798565864563e-01 + <_> + + 0 -1 2213 -5.4347999393939972e-02 + + -1.8400700092315674e+00 1.4835999906063080e-01 + <_> + + 0 -1 2214 -1.3261999934911728e-02 + + -8.0838799476623535e-01 -2.7726000174880028e-02 + <_> + + 0 -1 2215 6.1340001411736012e-03 + + -1.3785000145435333e-01 3.2858499884605408e-01 + <_> + + 0 -1 2216 2.8991000726819038e-02 + + -2.5516999885439873e-02 -8.3387202024459839e-01 + <_> + + 0 -1 2217 -2.1986000239849091e-02 + + -7.3739999532699585e-01 1.7887100577354431e-01 + <_> + + 0 -1 2218 5.3269998170435429e-03 + + -4.5449298620223999e-01 6.8791002035140991e-02 + <_> + + 0 -1 2219 8.6047999560832977e-02 + + 2.1008500456809998e-01 -3.7808901071548462e-01 + <_> + + 0 -1 2220 -8.5549997165799141e-03 + + 4.0134999155998230e-01 -2.1074099838733673e-01 + <_> + + 0 -1 2221 6.7790001630783081e-03 + + -2.1648999303579330e-02 4.5421499013900757e-01 + <_> + + 0 -1 2222 -6.3959998078644276e-03 + + -4.9818599224090576e-01 7.5907997786998749e-02 + <_> + + 0 -1 2223 8.9469999074935913e-03 + + 1.7857700586318970e-01 -2.8454899787902832e-01 + <_> + + 0 -1 2224 3.2589999027550220e-03 + + 4.6624999493360519e-02 -5.5206298828125000e-01 + <_> + + 0 -1 2225 4.1476998478174210e-02 + + 1.7550499737262726e-01 -2.0703999698162079e-01 + <_> + + 0 -1 2226 -6.7449999041855335e-03 + + -4.6392598748207092e-01 6.9303996860980988e-02 + <_> + + 0 -1 2227 3.0564999207854271e-02 + + 5.1734998822212219e-02 7.5550502538681030e-01 + <_> + + 0 -1 2228 -7.4780001305043697e-03 + + 1.4893899857997894e-01 -3.1906801462173462e-01 + <_> + + 0 -1 2229 8.9088998734951019e-02 + + 1.3738800585269928e-01 -1.1379710435867310e+00 + <_> + + 0 -1 2230 7.3230001144111156e-03 + + -2.8829199075698853e-01 1.9088600575923920e-01 + <_> + + 0 -1 2231 -1.8205000087618828e-02 + + -3.0178600549697876e-01 1.6795800626277924e-01 + <_> + + 0 -1 2232 -2.5828000158071518e-02 + + -9.8137998580932617e-01 -1.9860999658703804e-02 + <_> + + 0 -1 2233 1.0936199873685837e-01 + + 4.8790000379085541e-02 5.3118300437927246e-01 + <_> + + 0 -1 2234 -1.1424999684095383e-02 + + 2.3705999553203583e-01 -2.7925300598144531e-01 + <_> + + 0 -1 2235 -5.7565998286008835e-02 + + 4.7255399823188782e-01 6.5171003341674805e-02 + <_> + + 0 -1 2236 1.0278300195932388e-01 + + -2.0765100419521332e-01 5.0947701930999756e-01 + <_> + + 0 -1 2237 2.7041999623179436e-02 + + 1.6421200335025787e-01 -1.4508620500564575e+00 + <_> + + 0 -1 2238 -1.3635000213980675e-02 + + -5.6543898582458496e-01 2.3788999766111374e-02 + <_> + + 0 -1 2239 -3.2158198952674866e-01 + + -3.5602829456329346e+00 1.1801300197839737e-01 + <_> + + 0 -1 2240 2.0458100736141205e-01 + + -3.7016000598669052e-02 -1.0225499868392944e+00 + <_> + + 0 -1 2241 -7.0347003638744354e-02 + + -5.6491899490356445e-01 1.8525199592113495e-01 + <_> + + 0 -1 2242 3.7831000983715057e-02 + + -2.9901999980211258e-02 -8.2921499013900757e-01 + <_> + + 0 -1 2243 -7.0298001170158386e-02 + + -5.3172302246093750e-01 1.4430199563503265e-01 + <_> + + 0 -1 2244 6.3221000134944916e-02 + + -2.2041200101375580e-01 4.7952198982238770e-01 + <_> + + 0 -1 2245 3.6393001675605774e-02 + + 1.4222699403762817e-01 -6.1193901300430298e-01 + <_> + + 0 -1 2246 4.0099998004734516e-03 + + -3.4560799598693848e-01 1.1738699674606323e-01 + <_> + + 0 -1 2247 -4.9106001853942871e-02 + + 9.5984101295471191e-01 6.4934998750686646e-02 + <_> + + 0 -1 2248 -7.1583002805709839e-02 + + 1.7385669946670532e+00 -1.4252899587154388e-01 + <_> + + 0 -1 2249 -3.8008999079465866e-02 + + 1.3872820138931274e+00 6.6188000142574310e-02 + <_> + + 0 -1 2250 -3.1570000573992729e-03 + + 5.3677000105381012e-02 -5.4048001766204834e-01 + <_> + + 0 -1 2251 1.9458999857306480e-02 + + -9.3620002269744873e-02 3.9131000638008118e-01 + <_> + + 0 -1 2252 1.1293999850749969e-02 + + 3.7223998457193375e-02 -5.4251801967620850e-01 + <_> + + 0 -1 2253 -3.3495001494884491e-02 + + 9.5307898521423340e-01 3.7696998566389084e-02 + <_> + + 0 -1 2254 9.2035003006458282e-02 + + -1.3488399982452393e-01 2.2897069454193115e+00 + <_> + + 0 -1 2255 3.7529999390244484e-03 + + 2.2824199497699738e-01 -5.9983700513839722e-01 + <_> + + 0 -1 2256 1.2848000042140484e-02 + + -2.2005200386047363e-01 3.7221899628639221e-01 + <_> + + 0 -1 2257 -1.4316199719905853e-01 + + 1.2855789661407471e+00 4.7237001359462738e-02 + <_> + + 0 -1 2258 -9.6879996359348297e-02 + + -3.9550929069519043e+00 -7.2903998196125031e-02 + <_> + + 0 -1 2259 -8.8459998369216919e-03 + + 3.7674999237060547e-01 -4.6484000980854034e-02 + <_> + + 0 -1 2260 1.5900000929832458e-02 + + -2.4457000195980072e-02 -8.0034798383712769e-01 + <_> + + 0 -1 2261 7.0372000336647034e-02 + + 1.7019000649452209e-01 -6.3068997859954834e-01 + <_> + + 0 -1 2262 -3.7953998893499374e-02 + + -9.3667197227478027e-01 -4.1214000433683395e-02 + <_> + + 0 -1 2263 5.1597899198532104e-01 + + 1.3080599904060364e-01 -1.5802290439605713e+00 + <_> + + 0 -1 2264 -3.2843001186847687e-02 + + -1.1441620588302612e+00 -4.9173999577760696e-02 + <_> + + 0 -1 2265 -3.6357000470161438e-02 + + 4.9606400728225708e-01 -3.4458998590707779e-02 + <_> + + 0 -1 2266 6.8080001510679722e-03 + + -3.0997800827026367e-01 1.7054800689220428e-01 + <_> + + 0 -1 2267 -1.6114000231027603e-02 + + -3.7904599308967590e-01 1.6078999638557434e-01 + <_> + + 0 -1 2268 8.4530003368854523e-03 + + -1.8655499815940857e-01 5.6367701292037964e-01 + <_> + + 0 -1 2269 -1.3752399384975433e-01 + + -5.8989900350570679e-01 1.1749500036239624e-01 + <_> + + 0 -1 2270 1.7688000202178955e-01 + + -1.5424899756908417e-01 9.2911100387573242e-01 + <_> + + 0 -1 2271 7.9309996217489243e-03 + + 3.2190701365470886e-01 -1.6392600536346436e-01 + <_> + + 0 -1 2272 1.0971800237894058e-01 + + -1.5876500308513641e-01 1.0186259746551514e+00 + <_> + + 0 -1 2273 -3.0293000862002373e-02 + + 7.5587302446365356e-01 3.1794998794794083e-02 + <_> + + 0 -1 2274 -2.3118000477552414e-02 + + -8.8451498746871948e-01 -9.5039997249841690e-03 + <_> + + 0 -1 2275 -3.0900000128895044e-03 + + 2.3838299512863159e-01 -1.1606200039386749e-01 + <_> + + 0 -1 2276 -3.3392000943422318e-02 + + -1.8738139867782593e+00 -6.8502999842166901e-02 + <_> + + 0 -1 2277 1.3190000317990780e-02 + + 1.2919899821281433e-01 -6.7512202262878418e-01 + <_> + + 0 -1 2278 1.4661000110208988e-02 + + -2.4829000234603882e-02 -7.4396800994873047e-01 + <_> + + 0 -1 2279 -1.3248000293970108e-02 + + 4.6820199489593506e-01 -2.4165000766515732e-02 + <_> + + 0 -1 2280 -1.6218999400734901e-02 + + 4.0083798766136169e-01 -2.1255700290203094e-01 + <_> + + 0 -1 2281 -2.9052000492811203e-02 + + -1.5650019645690918e+00 1.4375899732112885e-01 + <_> + + 0 -1 2282 -1.0153199732303619e-01 + + -1.9220689535140991e+00 -6.9559998810291290e-02 + <_> + + 0 -1 2283 3.7753999233245850e-02 + + 1.3396799564361572e-01 -2.2639141082763672e+00 + <_> + + 0 -1 2284 -2.8555598855018616e-01 + + 1.0215270519256592e+00 -1.5232199430465698e-01 + <_> + + 0 -1 2285 1.5360699594020844e-01 + + -9.7409002482891083e-02 4.1662400960922241e-01 + <_> + + 0 -1 2286 -2.1199999901000410e-04 + + 1.1271899938583374e-01 -4.1653999686241150e-01 + <_> + + 0 -1 2287 -2.0597999915480614e-02 + + 6.0540497303009033e-01 6.2467999756336212e-02 + <_> + + 0 -1 2288 3.7353999912738800e-02 + + -1.8919000029563904e-01 4.6464699506759644e-01 + <_> + + 0 -1 2289 5.7275000959634781e-02 + + 1.1565300077199936e-01 -1.3213009834289551e+00 + <_> + + 0 -1 2290 5.1029999740421772e-03 + + -2.8061500191688538e-01 1.9313399493694305e-01 + <_> + + 0 -1 2291 -5.4644998162984848e-02 + + 7.2428500652313232e-01 7.5447998940944672e-02 + <_> + + 0 -1 2292 2.5349000468850136e-02 + + -1.9481800496578217e-01 4.6032801270484924e-01 + <_> + + 0 -1 2293 2.4311000481247902e-02 + + 1.5564100444316864e-01 -4.9913901090621948e-01 + <_> + + 0 -1 2294 3.5962000489234924e-02 + + -5.8573000133037567e-02 -1.5418399572372437e+00 + <_> + + 0 -1 2295 -1.0000699758529663e-01 + + -1.6100039482116699e+00 1.1450500041246414e-01 + <_> + + 0 -1 2296 8.4435999393463135e-02 + + -6.1406999826431274e-02 -1.4673349857330322e+00 + <_> + + 0 -1 2297 1.5947999432682991e-02 + + 1.6287900507450104e-01 -1.1026400327682495e-01 + <_> + + 0 -1 2298 3.3824000507593155e-02 + + -1.7932699620723724e-01 5.7218402624130249e-01 + <_> + + 0 -1 2299 -6.1996001750230789e-02 + + 4.6511812210083008e+00 9.4534002244472504e-02 + <_> + + 0 -1 2300 6.9876998662948608e-02 + + -1.6985900700092316e-01 8.7028998136520386e-01 + <_> + + 0 -1 2301 -2.7916999533772469e-02 + + 9.1042500734329224e-01 5.6827001273632050e-02 + <_> + + 0 -1 2302 -1.2764000333845615e-02 + + 2.2066700458526611e-01 -2.7769100666046143e-01 + <_> + 199 + -3.2573320865631104e+00 + + <_> + + 0 -1 2303 2.1662000566720963e-02 + + -8.9868897199630737e-01 2.9436299204826355e-01 + <_> + + 0 -1 2304 1.0044500231742859e-01 + + -3.7659201025962830e-01 6.0891002416610718e-01 + <_> + + 0 -1 2305 2.6003999635577202e-02 + + -3.8128501176834106e-01 3.9217400550842285e-01 + <_> + + 0 -1 2306 2.8441000729799271e-02 + + -1.8182300031185150e-01 5.8927202224731445e-01 + <_> + + 0 -1 2307 3.8612000644207001e-02 + + -2.2399599850177765e-01 6.3779997825622559e-01 + <_> + + 0 -1 2308 -4.6594999730587006e-02 + + 7.0812201499938965e-01 -1.4666199684143066e-01 + <_> + + 0 -1 2309 -4.2791999876499176e-02 + + 4.7680398821830750e-01 -2.9233199357986450e-01 + <_> + + 0 -1 2310 3.7960000336170197e-03 + + -1.8510299921035767e-01 5.2626699209213257e-01 + <_> + + 0 -1 2311 4.2348999530076981e-02 + + 3.9244998246431351e-02 -8.9197701215744019e-01 + <_> + + 0 -1 2312 1.9598999992012978e-02 + + -2.3358400166034698e-01 4.4146499037742615e-01 + <_> + + 0 -1 2313 8.7400001939386129e-04 + + -4.6063598990440369e-01 1.7689600586891174e-01 + <_> + + 0 -1 2314 -4.3629999272525311e-03 + + 3.3493199944496155e-01 -2.9893401265144348e-01 + <_> + + 0 -1 2315 1.6973000019788742e-02 + + -1.6408699750900269e-01 1.5993679761886597e+00 + <_> + + 0 -1 2316 3.6063998937606812e-02 + + 2.2601699829101562e-01 -5.3186100721359253e-01 + <_> + + 0 -1 2317 -7.0864997804164886e-02 + + 1.5220500528812408e-01 -4.1914600133895874e-01 + <_> + + 0 -1 2318 -6.3075996935367584e-02 + + -1.4874019622802734e+00 1.2953700125217438e-01 + <_> + + 0 -1 2319 2.9670000076293945e-02 + + -1.9145900011062622e-01 9.8184901475906372e-01 + <_> + + 0 -1 2320 3.7873998284339905e-02 + + 1.3459500670433044e-01 -5.6316298246383667e-01 + <_> + + 0 -1 2321 -3.3289000391960144e-02 + + -1.0828030109405518e+00 -1.1504000052809715e-02 + <_> + + 0 -1 2322 -3.1608998775482178e-02 + + -5.9224498271942139e-01 1.3394799828529358e-01 + <_> + + 0 -1 2323 1.0740000288933516e-03 + + -4.9185800552368164e-01 9.4446003437042236e-02 + <_> + + 0 -1 2324 -7.1556001901626587e-02 + + 5.9710198640823364e-01 -3.9553001523017883e-02 + <_> + + 0 -1 2325 -8.1170000135898590e-02 + + -1.1817820072174072e+00 -2.8254000470042229e-02 + <_> + + 0 -1 2326 4.4860001653432846e-03 + + -6.1028099060058594e-01 2.2619099915027618e-01 + <_> + + 0 -1 2327 -4.2176000773906708e-02 + + -1.1435619592666626e+00 -2.9001999646425247e-02 + <_> + + 0 -1 2328 -6.5640002489089966e-02 + + -1.6470279693603516e+00 1.2810300290584564e-01 + <_> + + 0 -1 2329 1.8188999965786934e-02 + + -3.1149399280548096e-01 2.5739601254463196e-01 + <_> + + 0 -1 2330 -5.1520001143217087e-02 + + -6.9206899404525757e-01 1.5270799398422241e-01 + <_> + + 0 -1 2331 -4.7150999307632446e-02 + + -7.1868300437927246e-01 2.6879999786615372e-03 + <_> + + 0 -1 2332 1.7488999292254448e-02 + + 2.2371199727058411e-01 -5.5381798744201660e-01 + <_> + + 0 -1 2333 -2.5264000520110130e-02 + + 1.0319819450378418e+00 -1.7496499419212341e-01 + <_> + + 0 -1 2334 -4.0745001286268234e-02 + + 4.4961598515510559e-01 3.9349000900983810e-02 + <_> + + 0 -1 2335 -3.7666998803615570e-02 + + -8.5475701093673706e-01 -1.2463999912142754e-02 + <_> + + 0 -1 2336 -1.3411000370979309e-02 + + 5.7845598459243774e-01 -1.7467999830842018e-02 + <_> + + 0 -1 2337 -7.8999997640494257e-05 + + -3.7749201059341431e-01 1.3961799442768097e-01 + <_> + + 0 -1 2338 -1.1415000073611736e-02 + + -2.6186600327491760e-01 2.3712499439716339e-01 + <_> + + 0 -1 2339 3.7200000137090683e-02 + + -2.8626000508666039e-02 -1.2945239543914795e+00 + <_> + + 0 -1 2340 3.4050000831484795e-03 + + 2.0531399548053741e-01 -1.8747499585151672e-01 + <_> + + 0 -1 2341 -2.2483000531792641e-02 + + 6.7027199268341064e-01 -1.9594000279903412e-01 + <_> + + 0 -1 2342 2.3274999111890793e-02 + + 1.7405399680137634e-01 -3.2746300101280212e-01 + <_> + + 0 -1 2343 -1.3917000032961369e-02 + + -8.3954298496246338e-01 -6.3760001212358475e-03 + <_> + + 0 -1 2344 7.5429999269545078e-03 + + -3.4194998443126678e-02 5.8998197317123413e-01 + <_> + + 0 -1 2345 -1.1539000086486340e-02 + + 4.2142799496650696e-01 -2.3510499298572540e-01 + <_> + + 0 -1 2346 5.2501998841762543e-02 + + 6.9303996860980988e-02 7.3226499557495117e-01 + <_> + + 0 -1 2347 5.2715998142957687e-02 + + -1.5688100457191467e-01 1.0907289981842041e+00 + <_> + + 0 -1 2348 -1.1726000346243382e-02 + + -7.0934301614761353e-01 1.6828800737857819e-01 + <_> + + 0 -1 2349 9.5945999026298523e-02 + + -1.6192899644374847e-01 1.0072519779205322e+00 + <_> + + 0 -1 2350 -1.5871999785304070e-02 + + 3.9008399844169617e-01 -5.3777001798152924e-02 + <_> + + 0 -1 2351 3.4818001091480255e-02 + + 1.7179999500513077e-02 -9.3941801786422729e-01 + <_> + + 0 -1 2352 3.4791998565196991e-02 + + 5.0462998449802399e-02 5.4465699195861816e-01 + <_> + + 0 -1 2353 1.6284000128507614e-02 + + -2.6981300115585327e-01 4.0365299582481384e-01 + <_> + + 0 -1 2354 -4.4319000095129013e-02 + + 8.4399998188018799e-01 3.2882999628782272e-02 + <_> + + 0 -1 2355 -5.5689997971057892e-03 + + 1.5309399366378784e-01 -3.4959799051284790e-01 + <_> + + 0 -1 2356 -6.5842002630233765e-02 + + -9.2711198329925537e-01 1.6800999641418457e-01 + <_> + + 0 -1 2357 -7.3337003588676453e-02 + + 5.1614499092102051e-01 -2.0236000418663025e-01 + <_> + + 0 -1 2358 1.6450000926852226e-02 + + 1.3950599730014801e-01 -4.9301299452781677e-01 + <_> + + 0 -1 2359 -9.2630004510283470e-03 + + -9.0101999044418335e-01 -1.6116000711917877e-02 + <_> + + 0 -1 2360 5.9139998629689217e-03 + + 1.9858199357986450e-01 -1.6731299459934235e-01 + <_> + + 0 -1 2361 -8.4699998842552304e-04 + + 9.4005003571510315e-02 -4.1570898890495300e-01 + <_> + + 0 -1 2362 2.0532900094985962e-01 + + -6.0022000223398209e-02 7.0993602275848389e-01 + <_> + + 0 -1 2363 -1.6883000731468201e-02 + + 2.4392199516296387e-01 -3.0551800131797791e-01 + <_> + + 0 -1 2364 -1.9111000001430511e-02 + + 6.1229902505874634e-01 2.4252999573945999e-02 + <_> + + 0 -1 2365 -2.5962999090552330e-02 + + 9.0764999389648438e-01 -1.6722099483013153e-01 + <_> + + 0 -1 2366 -2.1762000396847725e-02 + + -3.1384700536727905e-01 2.0134599506855011e-01 + <_> + + 0 -1 2367 -2.4119999259710312e-02 + + -6.6588401794433594e-01 7.4559999629855156e-03 + <_> + + 0 -1 2368 4.7129999846220016e-02 + + 5.9533998370170593e-02 8.7804502248764038e-01 + <_> + + 0 -1 2369 -4.5984998345375061e-02 + + 8.0067998170852661e-01 -1.7252300679683685e-01 + <_> + + 0 -1 2370 2.6507999747991562e-02 + + 1.8774099647998810e-01 -6.0850602388381958e-01 + <_> + + 0 -1 2371 -4.8615001142024994e-02 + + 5.8644098043441772e-01 -1.9427700340747833e-01 + <_> + + 0 -1 2372 -1.8562000244855881e-02 + + -2.5587901473045349e-01 1.6326199471950531e-01 + <_> + + 0 -1 2373 1.2678000144660473e-02 + + -1.4228000305593014e-02 -7.6738101243972778e-01 + <_> + + 0 -1 2374 -1.1919999960809946e-03 + + 2.0495000481605530e-01 -1.1404299736022949e-01 + <_> + + 0 -1 2375 -4.9088999629020691e-02 + + -1.0740849971771240e+00 -3.8940999656915665e-02 + <_> + + 0 -1 2376 -1.7436999827623367e-02 + + -5.7973802089691162e-01 1.8584500253200531e-01 + <_> + + 0 -1 2377 -1.4770000241696835e-02 + + -6.6150301694869995e-01 5.3119999356567860e-03 + <_> + + 0 -1 2378 -2.2905200719833374e-01 + + -4.8305100202560425e-01 1.2326399981975555e-01 + <_> + + 0 -1 2379 -1.2707099318504333e-01 + + 5.7452601194381714e-01 -1.9420400261878967e-01 + <_> + + 0 -1 2380 1.0339000262320042e-02 + + -5.4641999304294586e-02 2.4501800537109375e-01 + <_> + + 0 -1 2381 6.9010001607239246e-03 + + 1.2180600315332413e-01 -3.8797399401664734e-01 + <_> + + 0 -1 2382 2.9025399684906006e-01 + + 1.0966199636459351e-01 -30. + <_> + + 0 -1 2383 -2.3804999887943268e-01 + + -1.7352679967880249e+00 -6.3809998333454132e-02 + <_> + + 0 -1 2384 6.2481001019477844e-02 + + 1.3523000478744507e-01 -7.0301097631454468e-01 + <_> + + 0 -1 2385 4.7109997831285000e-03 + + -4.6984100341796875e-01 6.0341998934745789e-02 + <_> + + 0 -1 2386 -2.7815999463200569e-02 + + 6.9807600975036621e-01 1.3719999697059393e-03 + <_> + + 0 -1 2387 -1.7020000144839287e-02 + + 1.6870440244674683e+00 -1.4314800500869751e-01 + <_> + + 0 -1 2388 -4.9754999577999115e-02 + + 7.9497700929641724e-01 7.7199999941512942e-04 + <_> + + 0 -1 2389 -7.4732996523380280e-02 + + -1.0132360458374023e+00 -1.9388999789953232e-02 + <_> + + 0 -1 2390 3.2009001821279526e-02 + + 1.4412100613117218e-01 -4.2139101028442383e-01 + <_> + + 0 -1 2391 -9.4463996589183807e-02 + + 5.0682598352432251e-01 -2.0478899776935577e-01 + <_> + + 0 -1 2392 -1.5426999889314175e-02 + + -1.5811300277709961e-01 1.7806899547576904e-01 + <_> + + 0 -1 2393 -4.0540001355111599e-03 + + -5.4366701841354370e-01 3.1235000118613243e-02 + <_> + + 0 -1 2394 3.0080000869929790e-03 + + -1.7376799881458282e-01 3.0441701412200928e-01 + <_> + + 0 -1 2395 -1.0091999545693398e-02 + + 2.5103801488876343e-01 -2.6224100589752197e-01 + <_> + + 0 -1 2396 -3.8818001747131348e-02 + + 9.3226701021194458e-01 7.2659999132156372e-02 + <_> + + 0 -1 2397 3.4651998430490494e-02 + + -3.3934999257326126e-02 -8.5707902908325195e-01 + <_> + + 0 -1 2398 -4.6729999594390392e-03 + + 3.4969300031661987e-01 -4.8517998307943344e-02 + <_> + + 0 -1 2399 6.8499997723847628e-04 + + 6.6573001444339752e-02 -4.4973799586296082e-01 + <_> + + 0 -1 2400 3.5317000001668930e-02 + + 1.4275799691677094e-01 -4.6726399660110474e-01 + <_> + + 0 -1 2401 -2.3569999262690544e-02 + + -1.0286079645156860e+00 -4.5288000255823135e-02 + <_> + + 0 -1 2402 -1.9109999993816018e-03 + + -1.9652199745178223e-01 2.8661000728607178e-01 + <_> + + 0 -1 2403 -1.6659000888466835e-02 + + -7.7532202005386353e-01 -8.3280000835657120e-03 + <_> + + 0 -1 2404 6.6062200069427490e-01 + + 1.3232499361038208e-01 -3.5266680717468262e+00 + <_> + + 0 -1 2405 1.0970599949359894e-01 + + -1.5547199547290802e-01 1.4674140214920044e+00 + <_> + + 0 -1 2406 1.3500999659299850e-02 + + 1.5233400464057922e-01 -1.3020930290222168e+00 + <_> + + 0 -1 2407 -2.2871999070048332e-02 + + -7.1325999498367310e-01 -8.7040001526474953e-03 + <_> + + 0 -1 2408 -8.1821002066135406e-02 + + 1.1127580404281616e+00 8.3219997584819794e-02 + <_> + + 0 -1 2409 -5.2728001028299332e-02 + + 9.3165099620819092e-01 -1.7103999853134155e-01 + <_> + + 0 -1 2410 -2.5242000818252563e-02 + + -1.9733799993991852e-01 2.5359401106834412e-01 + <_> + + 0 -1 2411 -4.3818999081850052e-02 + + 4.1815200448036194e-01 -2.4585500359535217e-01 + <_> + + 0 -1 2412 -1.8188999965786934e-02 + + -5.1743197441101074e-01 2.0174199342727661e-01 + <_> + + 0 -1 2413 2.3466000333428383e-02 + + -4.3071001768112183e-02 -1.0636579990386963e+00 + <_> + + 0 -1 2414 3.4216001629829407e-02 + + 5.3780999034643173e-02 4.9707201123237610e-01 + <_> + + 0 -1 2415 2.5692999362945557e-02 + + -2.3800100386142731e-01 4.1651499271392822e-01 + <_> + + 0 -1 2416 -2.6565000414848328e-02 + + -8.8574802875518799e-01 1.3365900516510010e-01 + <_> + + 0 -1 2417 6.0942001640796661e-02 + + -2.0669700205326080e-01 5.8309000730514526e-01 + <_> + + 0 -1 2418 1.4474500715732574e-01 + + 1.3282300531864166e-01 -3.1449348926544189e+00 + <_> + + 0 -1 2419 5.3410999476909637e-02 + + -1.7325200140476227e-01 6.9190698862075806e-01 + <_> + + 0 -1 2420 1.1408000253140926e-02 + + 5.4822001606225967e-02 3.0240398645401001e-01 + <_> + + 0 -1 2421 -2.3179999552667141e-03 + + 1.5820899605751038e-01 -3.1973201036453247e-01 + <_> + + 0 -1 2422 -2.9695000499486923e-02 + + 7.1274799108505249e-01 5.8136001229286194e-02 + <_> + + 0 -1 2423 2.7249999344348907e-02 + + -1.5754100680351257e-01 9.2143797874450684e-01 + <_> + + 0 -1 2424 -3.6200000904500484e-03 + + -3.4548398852348328e-01 2.0220999419689178e-01 + <_> + + 0 -1 2425 -1.2578999623656273e-02 + + -5.5650299787521362e-01 2.0388999953866005e-02 + <_> + + 0 -1 2426 -8.8849000632762909e-02 + + -3.6100010871887207e+00 1.3164199888706207e-01 + <_> + + 0 -1 2427 -1.9256999716162682e-02 + + 5.1908999681472778e-01 -1.9284300506114960e-01 + <_> + + 0 -1 2428 -1.6666999086737633e-02 + + -8.7499998509883881e-02 1.5812499821186066e-01 + <_> + + 0 -1 2429 1.2931999750435352e-02 + + 2.7405999600887299e-02 -5.5123901367187500e-01 + <_> + + 0 -1 2430 -1.3431999832391739e-02 + + 2.3457799851894379e-01 -4.3235000222921371e-02 + <_> + + 0 -1 2431 1.8810000270605087e-02 + + -3.9680998772382736e-02 -9.4373297691345215e-01 + <_> + + 0 -1 2432 -6.4349998719990253e-03 + + 4.5703700184822083e-01 -4.0520001202821732e-03 + <_> + + 0 -1 2433 -2.4249000474810600e-02 + + -7.6248002052307129e-01 -1.9857000559568405e-02 + <_> + + 0 -1 2434 -2.9667999595403671e-02 + + -3.7412509918212891e+00 1.1250600218772888e-01 + <_> + + 0 -1 2435 5.1150000654160976e-03 + + -6.3781797885894775e-01 1.1223999783396721e-02 + <_> + + 0 -1 2436 -5.7819997891783714e-03 + + 1.9374400377273560e-01 -8.2042001187801361e-02 + <_> + + 0 -1 2437 1.6606999561190605e-02 + + -1.6192099452018738e-01 1.1334990262985229e+00 + <_> + + 0 -1 2438 3.8228001445531845e-02 + + 2.1105000749230385e-02 7.6264202594757080e-01 + <_> + + 0 -1 2439 -5.7094000279903412e-02 + + -1.6974929571151733e+00 -5.9762001037597656e-02 + <_> + + 0 -1 2440 -5.3883001208305359e-02 + + 1.1850190162658691e+00 9.0966999530792236e-02 + <_> + + 0 -1 2441 -2.6110000908374786e-03 + + -4.0941199660301208e-01 8.3820998668670654e-02 + <_> + + 0 -1 2442 2.9714399576187134e-01 + + 1.5529899299144745e-01 -1.0995409488677979e+00 + <_> + + 0 -1 2443 -8.9063003659248352e-02 + + 4.8947200179100037e-01 -2.0041200518608093e-01 + <_> + + 0 -1 2444 -5.6193001568317413e-02 + + -2.4581399559974670e-01 1.4365500211715698e-01 + <_> + + 0 -1 2445 3.7004999816417694e-02 + + -4.8168998211622238e-02 -1.2310709953308105e+00 + <_> + + 0 -1 2446 -8.4840003401041031e-03 + + 4.3372601270675659e-01 1.3779999688267708e-02 + <_> + + 0 -1 2447 -2.4379999376833439e-03 + + 1.8949699401855469e-01 -3.2294198870658875e-01 + <_> + + 0 -1 2448 -7.1639999747276306e-02 + + -4.3979001045227051e-01 2.2730199992656708e-01 + <_> + + 0 -1 2449 5.2260002121329308e-03 + + -2.0548400282859802e-01 5.0933301448822021e-01 + <_> + + 0 -1 2450 -6.1360001564025879e-03 + + 3.1157198548316956e-01 7.0680998265743256e-02 + <_> + + 0 -1 2451 1.5595000237226486e-02 + + -3.0934798717498779e-01 1.5627700090408325e-01 + <_> + + 0 -1 2452 2.5995999574661255e-02 + + 1.3821600377559662e-01 -1.7616599798202515e-01 + <_> + + 0 -1 2453 -1.2085000053048134e-02 + + -5.1070201396942139e-01 5.8440998196601868e-02 + <_> + + 0 -1 2454 -6.7836001515388489e-02 + + 4.7757101058959961e-01 -7.1446001529693604e-02 + <_> + + 0 -1 2455 -1.4715000055730343e-02 + + 4.5238900184631348e-01 -1.9861400127410889e-01 + <_> + + 0 -1 2456 2.5118999183177948e-02 + + 1.2954899668693542e-01 -8.6266398429870605e-01 + <_> + + 0 -1 2457 1.8826000392436981e-02 + + -4.1570000350475311e-02 -1.1354700326919556e+00 + <_> + + 0 -1 2458 -2.1263999864459038e-02 + + -3.4738001227378845e-01 1.5779499709606171e-01 + <_> + + 0 -1 2459 9.4609996303915977e-03 + + 4.8639997839927673e-03 -6.1654800176620483e-01 + <_> + + 0 -1 2460 2.2957700490951538e-01 + + 8.1372998654842377e-02 6.9841402769088745e-01 + <_> + + 0 -1 2461 -3.8061998784542084e-02 + + 1.1616369485855103e+00 -1.4976699650287628e-01 + <_> + + 0 -1 2462 -1.3484999537467957e-02 + + -3.2036399841308594e-01 1.7365099489688873e-01 + <_> + + 0 -1 2463 3.6238998174667358e-02 + + -1.8158499896526337e-01 6.1956697702407837e-01 + <_> + + 0 -1 2464 6.7210001870989799e-03 + + 7.9600000753998756e-04 4.2441400885581970e-01 + <_> + + 0 -1 2465 9.6525996923446655e-02 + + -1.4696800708770752e-01 1.2525680065155029e+00 + <_> + + 0 -1 2466 -3.5656999796628952e-02 + + -3.9781698584556580e-01 1.4191399514675140e-01 + <_> + + 0 -1 2467 1.0772000066936016e-02 + + -1.8194000422954559e-01 5.9762197732925415e-01 + <_> + + 0 -1 2468 7.9279996454715729e-02 + + 1.4642499387264252e-01 -7.8836899995803833e-01 + <_> + + 0 -1 2469 3.2841000705957413e-02 + + -6.2408000230789185e-02 -1.4227490425109863e+00 + <_> + + 0 -1 2470 -2.7781000360846519e-02 + + 3.4033098816871643e-01 3.0670000240206718e-02 + <_> + + 0 -1 2471 -4.0339999832212925e-03 + + 3.1084701418876648e-01 -2.2595700621604919e-01 + <_> + + 0 -1 2472 7.4260002002120018e-03 + + -3.8936998695135117e-02 3.1702101230621338e-01 + <_> + + 0 -1 2473 1.1213999986648560e-01 + + -1.7578299343585968e-01 6.5056598186492920e-01 + <_> + + 0 -1 2474 -1.1878100037574768e-01 + + -1.0092990398406982e+00 1.1069700121879578e-01 + <_> + + 0 -1 2475 -4.1584998369216919e-02 + + -5.3806400299072266e-01 1.9905000925064087e-02 + <_> + + 0 -1 2476 -2.7966000139713287e-02 + + 4.8143199086189270e-01 3.3590998500585556e-02 + <_> + + 0 -1 2477 -1.2506400048732758e-01 + + 2.6352199912071228e-01 -2.5737899541854858e-01 + <_> + + 0 -1 2478 2.3666900396347046e-01 + + 3.6508001387119293e-02 9.0655601024627686e-01 + <_> + + 0 -1 2479 -2.9475999996066093e-02 + + -6.0048800706863403e-01 9.5880003646016121e-03 + <_> + + 0 -1 2480 3.7792999297380447e-02 + + 1.5506200492382050e-01 -9.5733499526977539e-01 + <_> + + 0 -1 2481 7.2044000029563904e-02 + + -1.4525899291038513e-01 1.3676730394363403e+00 + <_> + + 0 -1 2482 9.7759999334812164e-03 + + 1.2915999628603458e-02 2.1640899777412415e-01 + <_> + + 0 -1 2483 5.2154000848531723e-02 + + -1.6359999775886536e-02 -8.8356298208236694e-01 + <_> + + 0 -1 2484 -4.3790999799966812e-02 + + 3.5829600691795349e-01 6.5131001174449921e-02 + <_> + + 0 -1 2485 -3.8378998637199402e-02 + + 1.1961040496826172e+00 -1.4971500635147095e-01 + <_> + + 0 -1 2486 -9.8838999867439270e-02 + + -6.1834001541137695e-01 1.2786200642585754e-01 + <_> + + 0 -1 2487 -1.2190700322389603e-01 + + -1.8276120424270630e+00 -6.4862996339797974e-02 + <_> + + 0 -1 2488 -1.1981700360774994e-01 + + -30. 1.1323300004005432e-01 + <_> + + 0 -1 2489 3.0910000205039978e-02 + + -2.3934000730514526e-01 3.6332899332046509e-01 + <_> + + 0 -1 2490 1.0800999589264393e-02 + + -3.5140000283718109e-02 2.7707898616790771e-01 + <_> + + 0 -1 2491 5.6844998151063919e-02 + + -1.5524299442768097e-01 1.0802700519561768e+00 + <_> + + 0 -1 2492 1.0280000278726220e-03 + + -6.1202999204397202e-02 2.0508000254631042e-01 + <_> + + 0 -1 2493 -2.8273999691009521e-02 + + -6.4778000116348267e-01 2.3917000740766525e-02 + <_> + + 0 -1 2494 -1.6013599932193756e-01 + + 1.0892050266265869e+00 5.8389000594615936e-02 + <_> + + 0 -1 2495 4.9629998393356800e-03 + + -2.5806298851966858e-01 2.0834599435329437e-01 + <_> + + 0 -1 2496 4.6937000006437302e-02 + + 1.3886299729347229e-01 -1.5662620067596436e+00 + <_> + + 0 -1 2497 2.4286000058054924e-02 + + -2.0728300511837006e-01 5.2430999279022217e-01 + <_> + + 0 -1 2498 7.0202000439167023e-02 + + 1.4796899259090424e-01 -1.3095090389251709e+00 + <_> + + 0 -1 2499 9.8120002076029778e-03 + + 2.7906000614166260e-02 -5.0864601135253906e-01 + <_> + + 0 -1 2500 -5.6200999766588211e-02 + + 1.2618130445480347e+00 6.3801996409893036e-02 + <_> + + 0 -1 2501 1.0982800275087357e-01 + + -1.2850099802017212e-01 3.0776169300079346e+00 + <_> + 211 + -3.3703000545501709e+00 + + <_> + + 0 -1 2502 2.0910000428557396e-02 + + -6.8559402227401733e-01 3.8984298706054688e-01 + <_> + + 0 -1 2503 3.5032000392675400e-02 + + -4.7724398970603943e-01 4.5027199387550354e-01 + <_> + + 0 -1 2504 3.9799001067876816e-02 + + -4.7011101245880127e-01 4.2702499032020569e-01 + <_> + + 0 -1 2505 -4.8409998416900635e-03 + + 2.5614300370216370e-01 -6.6556298732757568e-01 + <_> + + 0 -1 2506 2.3439999204128981e-03 + + -4.8083499073982239e-01 2.8013798594474792e-01 + <_> + + 0 -1 2507 2.5312999263405800e-02 + + -2.3948200047016144e-01 4.4191798567771912e-01 + <_> + + 0 -1 2508 -3.2193001359701157e-02 + + 7.6086699962615967e-01 -2.5059100985527039e-01 + <_> + + 0 -1 2509 7.5409002602100372e-02 + + -3.4974598884582520e-01 3.4380298852920532e-01 + <_> + + 0 -1 2510 -1.8469000235199928e-02 + + -7.9085600376129150e-01 3.4788001328706741e-02 + <_> + + 0 -1 2511 -1.2802000157535076e-02 + + 4.7107800841331482e-01 -6.0006000101566315e-02 + <_> + + 0 -1 2512 -2.6598000898957253e-02 + + 6.7116099596023560e-01 -2.4257500469684601e-01 + <_> + + 0 -1 2513 2.1988999098539352e-02 + + 2.4717499315738678e-01 -4.8301699757575989e-01 + <_> + + 0 -1 2514 1.4654099941253662e-01 + + -2.1504099667072296e-01 7.2055900096893311e-01 + <_> + + 0 -1 2515 3.5310001112520695e-03 + + 2.7930998802185059e-01 -3.4339898824691772e-01 + <_> + + 0 -1 2516 9.4010001048445702e-03 + + 5.5861998349428177e-02 -8.2143598794937134e-01 + <_> + + 0 -1 2517 -8.6390003561973572e-03 + + -9.9620598554611206e-01 1.8874999880790710e-01 + <_> + + 0 -1 2518 -3.9193000644445419e-02 + + -1.1945559978485107e+00 -2.9198000207543373e-02 + <_> + + 0 -1 2519 2.4855000898241997e-02 + + 1.4987599849700928e-01 -5.4137802124023438e-01 + <_> + + 0 -1 2520 -3.4995000809431076e-02 + + -1.4210180044174194e+00 -4.2314000427722931e-02 + <_> + + 0 -1 2521 -1.8378999084234238e-02 + + -2.8242599964141846e-01 1.5581800043582916e-01 + <_> + + 0 -1 2522 -1.3592000119388103e-02 + + 4.7317099571228027e-01 -2.1937200427055359e-01 + <_> + + 0 -1 2523 6.2629999592900276e-03 + + -5.9714000672101974e-02 6.0625898838043213e-01 + <_> + + 0 -1 2524 -1.8478000536561012e-02 + + -8.5647201538085938e-01 -1.3783999718725681e-02 + <_> + + 0 -1 2525 1.4236000366508961e-02 + + 1.6654799878597260e-01 -2.7713999152183533e-01 + <_> + + 0 -1 2526 -3.2547000795602798e-02 + + -1.1728240251541138e+00 -4.0185000747442245e-02 + <_> + + 0 -1 2527 -2.6410000864416361e-03 + + 2.6514300704002380e-01 -5.6343000382184982e-02 + <_> + + 0 -1 2528 -8.7799999164417386e-04 + + 3.6556001752614975e-02 -5.5075198411941528e-01 + <_> + + 0 -1 2529 4.7371998429298401e-02 + + -4.2614001780748367e-02 4.8194900155067444e-01 + <_> + + 0 -1 2530 -7.0790001191198826e-03 + + 2.8698998689651489e-01 -3.2923001050949097e-01 + <_> + + 0 -1 2531 -4.3145999312400818e-02 + + -1.4065419435501099e+00 1.2836399674415588e-01 + <_> + + 0 -1 2532 2.0592000335454941e-02 + + -2.1435299515724182e-01 5.3981798887252808e-01 + <_> + + 0 -1 2533 -2.2367000579833984e-02 + + 3.3718299865722656e-01 4.5212000608444214e-02 + <_> + + 0 -1 2534 5.0039999186992645e-02 + + -2.5121700763702393e-01 4.1750499606132507e-01 + <_> + + 0 -1 2535 6.1794999986886978e-02 + + 4.0084999054670334e-02 6.8779802322387695e-01 + <_> + + 0 -1 2536 -4.1861999779939651e-02 + + 5.3027397394180298e-01 -2.2901999950408936e-01 + <_> + + 0 -1 2537 -3.1959998887032270e-03 + + 2.5161498785018921e-01 -2.1514600515365601e-01 + <_> + + 0 -1 2538 2.4255000054836273e-02 + + 7.2320001199841499e-03 -7.2519099712371826e-01 + <_> + + 0 -1 2539 -1.7303999513387680e-02 + + -4.9958199262619019e-01 1.8394500017166138e-01 + <_> + + 0 -1 2540 -4.1470001451671124e-03 + + 8.5211999714374542e-02 -4.6364700794219971e-01 + <_> + + 0 -1 2541 -1.4369999989867210e-02 + + -5.2258902788162231e-01 2.3892599344253540e-01 + <_> + + 0 -1 2542 -9.0399999171495438e-03 + + -6.3250398635864258e-01 3.2551001757383347e-02 + <_> + + 0 -1 2543 -1.2373100221157074e-01 + + 1.2856210470199585e+00 7.6545000076293945e-02 + <_> + + 0 -1 2544 -8.2221999764442444e-02 + + 8.3208197355270386e-01 -1.8590599298477173e-01 + <_> + + 0 -1 2545 6.5659001469612122e-02 + + 1.1298800259828568e-01 -30. + <_> + + 0 -1 2546 -3.1582999974489212e-02 + + -1.3485900163650513e+00 -4.7097001224756241e-02 + <_> + + 0 -1 2547 -7.9636000096797943e-02 + + -1.3533639907836914e+00 1.5668800473213196e-01 + <_> + + 0 -1 2548 -1.8880000337958336e-02 + + 4.0300300717353821e-01 -2.5148901343345642e-01 + <_> + + 0 -1 2549 -5.0149997696280479e-03 + + -2.6287099719047546e-01 1.8582500517368317e-01 + <_> + + 0 -1 2550 -1.2218000367283821e-02 + + 5.8692401647567749e-01 -1.9427700340747833e-01 + <_> + + 0 -1 2551 1.2710000155493617e-03 + + -1.6688999533653259e-01 2.3006899654865265e-01 + <_> + + 0 -1 2552 2.9743999242782593e-02 + + 1.2520000338554382e-02 -6.6723597049713135e-01 + <_> + + 0 -1 2553 2.8175000101327896e-02 + + -1.7060000449419022e-02 6.4579397439956665e-01 + <_> + + 0 -1 2554 3.0345000326633453e-02 + + -2.4178700149059296e-01 3.4878900647163391e-01 + <_> + + 0 -1 2555 -1.7325999215245247e-02 + + -5.3599399328231812e-01 2.0995999872684479e-01 + <_> + + 0 -1 2556 -8.4178000688552856e-02 + + 7.5093299150466919e-01 -1.7593200504779816e-01 + <_> + + 0 -1 2557 7.4950000271201134e-03 + + -1.6188099980354309e-01 3.0657500028610229e-01 + <_> + + 0 -1 2558 5.6494999676942825e-02 + + -1.7318800091743469e-01 1.0016150474548340e+00 + <_> + + 0 -1 2559 -5.2939997985959053e-03 + + 2.3417599499225616e-01 -6.5347000956535339e-02 + <_> + + 0 -1 2560 -1.4945000410079956e-02 + + 2.5018900632858276e-01 -3.0591198801994324e-01 + <_> + + 0 -1 2561 5.4919000715017319e-02 + + 1.3121999800205231e-01 -9.3765097856521606e-01 + <_> + + 0 -1 2562 -1.9721999764442444e-02 + + -8.3978497982025146e-01 -2.3473000153899193e-02 + <_> + + 0 -1 2563 -6.7158997058868408e-02 + + 2.3586840629577637e+00 8.2970999181270599e-02 + <_> + + 0 -1 2564 -1.4325999654829502e-02 + + 1.8814499676227570e-01 -3.1221601366996765e-01 + <_> + + 0 -1 2565 2.9841000214219093e-02 + + 1.4825099706649780e-01 -8.4681701660156250e-01 + <_> + + 0 -1 2566 5.1883000880479813e-02 + + -4.3731000274419785e-02 -1.3366169929504395e+00 + <_> + + 0 -1 2567 4.1127000004053116e-02 + + 1.7660099267959595e-01 -6.0904097557067871e-01 + <_> + + 0 -1 2568 -1.2865099310874939e-01 + + -9.8701000213623047e-01 -3.7785001099109650e-02 + <_> + + 0 -1 2569 2.4170000106096268e-03 + + -1.6119599342346191e-01 3.2675701379776001e-01 + <_> + + 0 -1 2570 7.7030002139508724e-03 + + -2.3841500282287598e-01 2.9319399595260620e-01 + <_> + + 0 -1 2571 4.5520000159740448e-02 + + 1.4424599707126617e-01 -1.5010160207748413e+00 + <_> + + 0 -1 2572 -7.8700996935367584e-02 + + -1.0394560098648071e+00 -4.5375999063253403e-02 + <_> + + 0 -1 2573 7.8619997948408127e-03 + + 1.9633600115776062e-01 -1.4472399652004242e-01 + <_> + + 0 -1 2574 -1.3458999805152416e-02 + + -9.0634697675704956e-01 -3.8049001246690750e-02 + <_> + + 0 -1 2575 2.8827000409364700e-02 + + -2.9473999515175819e-02 6.0058397054672241e-01 + <_> + + 0 -1 2576 -2.7365999296307564e-02 + + -9.9804002046585083e-01 -3.8653001189231873e-02 + <_> + + 0 -1 2577 -7.2917997837066650e-02 + + 7.3361498117446899e-01 5.7440001517534256e-02 + <_> + + 0 -1 2578 -1.3988999649882317e-02 + + 2.7892601490020752e-01 -2.6516300439834595e-01 + <_> + + 0 -1 2579 4.3242998421192169e-02 + + 4.7760000452399254e-03 3.5925900936126709e-01 + <_> + + 0 -1 2580 2.9533000662922859e-02 + + -2.0083999633789062e-01 5.1202899217605591e-01 + <_> + + 0 -1 2581 -3.1897000968456268e-02 + + 6.4721697568893433e-01 -1.3760000001639128e-03 + <_> + + 0 -1 2582 3.7868998944759369e-02 + + -1.8363800644874573e-01 6.1343097686767578e-01 + <_> + + 0 -1 2583 -2.2417999804019928e-02 + + -2.9187899827957153e-01 1.8194800615310669e-01 + <_> + + 0 -1 2584 5.8958999812602997e-02 + + -6.6451996564865112e-02 -1.9290030002593994e+00 + <_> + + 0 -1 2585 3.1222999095916748e-02 + + -1.2732000090181828e-02 6.1560797691345215e-01 + <_> + + 0 -1 2586 3.7484999746084213e-02 + + -2.0856900513172150e-01 4.4363999366760254e-01 + <_> + + 0 -1 2587 -2.0966000854969025e-02 + + -3.5712799429893494e-01 2.4252200126647949e-01 + <_> + + 0 -1 2588 -2.5477999821305275e-02 + + 1.0846560001373291e+00 -1.5054400265216827e-01 + <_> + + 0 -1 2589 -7.2570000775158405e-03 + + 2.1302600204944611e-01 -1.8308199942111969e-01 + <_> + + 0 -1 2590 -5.0983000546693802e-02 + + 5.1736801862716675e-01 -1.8833099305629730e-01 + <_> + + 0 -1 2591 -2.0640000700950623e-02 + + -4.4030201435089111e-01 2.2745999693870544e-01 + <_> + + 0 -1 2592 1.0672999545931816e-02 + + 3.5059999674558640e-02 -5.1665002107620239e-01 + <_> + + 0 -1 2593 3.1895998865365982e-02 + + 1.3228000141680241e-02 3.4915199875831604e-01 + <_> + + 0 -1 2594 -2.3824999108910561e-02 + + 3.4118801355361938e-01 -2.1510200202465057e-01 + <_> + + 0 -1 2595 -6.0680001042783260e-03 + + 3.2937398552894592e-01 -2.8523799777030945e-01 + <_> + + 0 -1 2596 2.3881999775767326e-02 + + -2.5333800911903381e-01 2.6296100020408630e-01 + <_> + + 0 -1 2597 2.7966000139713287e-02 + + 1.4049099385738373e-01 -4.9887099862098694e-01 + <_> + + 0 -1 2598 1.4603000134229660e-02 + + -1.5395999886095524e-02 -7.6958000659942627e-01 + <_> + + 0 -1 2599 1.0872399806976318e-01 + + 1.9069600105285645e-01 -3.2393100857734680e-01 + <_> + + 0 -1 2600 -1.4038000255823135e-02 + + 3.4924700856208801e-01 -2.2358700633049011e-01 + <_> + + 0 -1 2601 4.0440000593662262e-03 + + -3.8329001516103745e-02 5.1177299022674561e-01 + <_> + + 0 -1 2602 -4.9769999459385872e-03 + + -4.2888298630714417e-01 4.9173999577760696e-02 + <_> + + 0 -1 2603 -8.5183002054691315e-02 + + 6.6624599695205688e-01 7.8079998493194580e-03 + <_> + + 0 -1 2604 2.1559998858720064e-03 + + -4.9135199189186096e-01 6.9555997848510742e-02 + <_> + + 0 -1 2605 3.6384499073028564e-01 + + 1.2997099757194519e-01 -1.8949509859085083e+00 + <_> + + 0 -1 2606 2.2082500159740448e-01 + + -5.7211998850107193e-02 -1.4281120300292969e+00 + <_> + + 0 -1 2607 -1.6140000894665718e-02 + + -5.7589399814605713e-01 1.8062500655651093e-01 + <_> + + 0 -1 2608 -4.8330001533031464e-02 + + 9.7308498620986938e-01 -1.6513000428676605e-01 + <_> + + 0 -1 2609 1.7529999837279320e-02 + + 1.7932699620723724e-01 -2.7948901057243347e-01 + <_> + + 0 -1 2610 -3.4309998154640198e-02 + + -8.1072497367858887e-01 -1.6596000641584396e-02 + <_> + + 0 -1 2611 -4.5830002054572105e-03 + + 2.7908998727798462e-01 -7.4519999325275421e-03 + <_> + + 0 -1 2612 1.2896400690078735e-01 + + -1.3508500158786774e-01 2.5411539077758789e+00 + <_> + + 0 -1 2613 3.0361000448465347e-02 + + -6.8419001996517181e-02 2.8734099864959717e-01 + <_> + + 0 -1 2614 4.4086001813411713e-02 + + -1.8135899305343628e-01 6.5413200855255127e-01 + <_> + + 0 -1 2615 3.0159999150782824e-03 + + -1.5690499544143677e-01 2.6963800191879272e-01 + <_> + + 0 -1 2616 -2.6336999610066414e-02 + + 2.9175600409507751e-01 -2.5274100899696350e-01 + <_> + + 0 -1 2617 -2.7866000309586525e-02 + + 4.4387501478195190e-01 5.5038001388311386e-02 + <_> + + 0 -1 2618 1.1725000105798244e-02 + + -1.9346499443054199e-01 4.6656700968742371e-01 + <_> + + 0 -1 2619 1.5689999563619494e-03 + + -8.2360003143548965e-03 2.5700899958610535e-01 + <_> + + 0 -1 2620 -3.5550000611692667e-03 + + -4.2430898547172546e-01 7.1174003183841705e-02 + <_> + + 0 -1 2621 -3.1695000827312469e-02 + + -8.5393500328063965e-01 1.6916200518608093e-01 + <_> + + 0 -1 2622 -3.2097000628709793e-02 + + 8.3784902095794678e-01 -1.7597299814224243e-01 + <_> + + 0 -1 2623 1.5544199943542480e-01 + + 9.9550001323223114e-02 2.3873300552368164e+00 + <_> + + 0 -1 2624 8.8045999407768250e-02 + + -1.8725299835205078e-01 6.2384301424026489e-01 + <_> + + 0 -1 2625 -1.6720000421628356e-03 + + 2.5008699297904968e-01 -6.5118998289108276e-02 + <_> + + 0 -1 2626 9.3409996479749680e-03 + + -3.5378900170326233e-01 1.0715000331401825e-01 + <_> + + 0 -1 2627 3.7138000130653381e-02 + + 1.6387000679969788e-01 -9.1718399524688721e-01 + <_> + + 0 -1 2628 8.0183997750282288e-02 + + -1.4812999963760376e-01 1.4895190000534058e+00 + <_> + + 0 -1 2629 -7.9100002767518163e-04 + + -2.1326899528503418e-01 1.9676400721073151e-01 + <_> + + 0 -1 2630 -5.0400001928210258e-03 + + -7.1318697929382324e-01 1.8240000354126096e-03 + <_> + + 0 -1 2631 1.1962399631738663e-01 + + 3.3098999410867691e-02 1.0441709756851196e+00 + <_> + + 0 -1 2632 -4.5280000194907188e-03 + + -2.7308499813079834e-01 2.7229800820350647e-01 + <_> + + 0 -1 2633 -2.9639000073075294e-02 + + 3.6225798726081848e-01 5.6795001029968262e-02 + <_> + + 0 -1 2634 2.6650000363588333e-02 + + -4.8041000962257385e-02 -9.6723502874374390e-01 + <_> + + 0 -1 2635 4.4422000646591187e-02 + + 1.3052900135517120e-01 -3.5077300667762756e-01 + <_> + + 0 -1 2636 -2.4359999224543571e-02 + + -1.0766899585723877e+00 -5.1222998648881912e-02 + <_> + + 0 -1 2637 1.9734999164938927e-02 + + 2.6238000020384789e-02 2.8070500493049622e-01 + <_> + + 0 -1 2638 5.4930001497268677e-03 + + -2.6111298799514771e-01 2.1011400222778320e-01 + <_> + + 0 -1 2639 -2.3200300335884094e-01 + + -1.7748440504074097e+00 1.1482600122690201e-01 + <_> + + 0 -1 2640 -2.5614000856876373e-02 + + 2.9900801181793213e-01 -2.2502499818801880e-01 + <_> + + 0 -1 2641 -6.4949998632073402e-03 + + 1.9563800096511841e-01 -9.9762998521327972e-02 + <_> + + 0 -1 2642 3.9840000681579113e-03 + + -4.3021500110626221e-01 8.1261001527309418e-02 + <_> + + 0 -1 2643 -3.5813000053167343e-02 + + -5.0987398624420166e-01 1.6345900297164917e-01 + <_> + + 0 -1 2644 -1.4169000089168549e-02 + + 7.7978098392486572e-01 -1.7476299405097961e-01 + <_> + + 0 -1 2645 -1.2642100453376770e-01 + + -6.3047897815704346e-01 1.2728300690650940e-01 + <_> + + 0 -1 2646 6.8677999079227448e-02 + + -4.6447999775409698e-02 -1.1128979921340942e+00 + <_> + + 0 -1 2647 8.5864998400211334e-02 + + 1.1835400015115738e-01 -4.8235158920288086e+00 + <_> + + 0 -1 2648 1.5511999838054180e-02 + + -1.7467999830842018e-02 -6.3693398237228394e-01 + <_> + + 0 -1 2649 8.1091001629829407e-02 + + 8.6133003234863281e-02 2.4559431076049805e+00 + <_> + + 0 -1 2650 1.8495000898838043e-02 + + 4.0229000151157379e-02 -5.0858199596405029e-01 + <_> + + 0 -1 2651 -8.6320996284484863e-02 + + -1.9006760120391846e+00 1.1019100248813629e-01 + <_> + + 0 -1 2652 7.2355002164840698e-02 + + -6.2111999839544296e-02 -1.4165179729461670e+00 + <_> + + 0 -1 2653 -7.8179001808166504e-02 + + 8.8849300146102905e-01 4.2369998991489410e-02 + <_> + + 0 -1 2654 9.6681997179985046e-02 + + -2.2094200551509857e-01 3.3575099706649780e-01 + <_> + + 0 -1 2655 -3.9875999093055725e-02 + + 5.7804799079895020e-01 4.5347999781370163e-02 + <_> + + 0 -1 2656 -9.5349997282028198e-03 + + -5.4175698757171631e-01 3.2399999909102917e-03 + <_> + + 0 -1 2657 4.0600000647827983e-04 + + -8.1549003720283508e-02 3.5837900638580322e-01 + <_> + + 0 -1 2658 1.2107999995350838e-02 + + -2.0280399918556213e-01 4.3768000602722168e-01 + <_> + + 0 -1 2659 -2.0873999223113060e-02 + + 4.1469898819923401e-01 -4.5568000525236130e-02 + <_> + + 0 -1 2660 5.7888001203536987e-02 + + -2.9009999707341194e-02 -9.1822302341461182e-01 + <_> + + 0 -1 2661 1.3200000103097409e-04 + + -1.1772400140762329e-01 2.0000000298023224e-01 + <_> + + 0 -1 2662 -1.7137000337243080e-02 + + 3.3004799485206604e-01 -2.3055200278759003e-01 + <_> + + 0 -1 2663 3.0655000358819962e-02 + + -2.1545000374317169e-02 2.6878198981285095e-01 + <_> + + 0 -1 2664 -7.8699999721720815e-04 + + -4.4100698828697205e-01 4.9157999455928802e-02 + <_> + + 0 -1 2665 8.8036999106407166e-02 + + 1.1782000213861465e-01 -2.8293309211730957e+00 + <_> + + 0 -1 2666 -3.9028998464345932e-02 + + 9.1777199506759644e-01 -1.5827399492263794e-01 + <_> + + 0 -1 2667 8.0105997622013092e-02 + + 1.1289200186729431e-01 -1.9937280416488647e+00 + <_> + + 0 -1 2668 3.9538998156785965e-02 + + -1.4357399940490723e-01 1.3085240125656128e+00 + <_> + + 0 -1 2669 2.0684000104665756e-02 + + 2.0048099756240845e-01 -4.4186998158693314e-02 + <_> + + 0 -1 2670 -6.7037999629974365e-02 + + 3.2618600130081177e-01 -2.0550400018692017e-01 + <_> + + 0 -1 2671 4.6815000474452972e-02 + + 1.5825299918651581e-01 -9.5535099506378174e-01 + <_> + + 0 -1 2672 7.8443996608257294e-02 + + -7.4651002883911133e-02 -2.1161499023437500e+00 + <_> + + 0 -1 2673 6.6380001604557037e-02 + + 1.1641900241374969e-01 -1.6113519668579102e+00 + <_> + + 0 -1 2674 3.0053999274969101e-02 + + -1.6562600433826447e-01 7.0025402307510376e-01 + <_> + + 0 -1 2675 1.7119999974966049e-02 + + 2.2627699375152588e-01 -4.0114998817443848e-01 + <_> + + 0 -1 2676 2.0073000341653824e-02 + + -1.9389699399471283e-01 4.4420298933982849e-01 + <_> + + 0 -1 2677 3.3101998269557953e-02 + + 1.1637499928474426e-01 -1.5771679878234863e+00 + <_> + + 0 -1 2678 -1.4882000163197517e-02 + + -8.9680302143096924e-01 -4.2010001838207245e-02 + <_> + + 0 -1 2679 -1.0281000286340714e-02 + + 3.5602998733520508e-01 -1.3124000281095505e-02 + <_> + + 0 -1 2680 -2.8695000335574150e-02 + + -4.6039599180221558e-01 2.6801999658346176e-02 + <_> + + 0 -1 2681 -4.7189998440444469e-03 + + 2.3788799345493317e-01 -6.5518997609615326e-02 + <_> + + 0 -1 2682 3.2201600074768066e-01 + + -2.8489999473094940e-02 -8.4234601259231567e-01 + <_> + + 0 -1 2683 -1.7045000568032265e-02 + + -5.0938802957534790e-01 1.6057600080966949e-01 + <_> + + 0 -1 2684 -7.3469998314976692e-03 + + -5.4154998064041138e-01 4.7320001758635044e-03 + <_> + + 0 -1 2685 -3.0001999810338020e-02 + + -8.8785797357559204e-01 1.3621799647808075e-01 + <_> + + 0 -1 2686 -1.1292999610304832e-02 + + 8.0615198612213135e-01 -1.6159500181674957e-01 + <_> + + 0 -1 2687 4.7749998047947884e-03 + + 1.2968000024557114e-02 5.5079901218414307e-01 + <_> + + 0 -1 2688 5.0710001960396767e-03 + + -4.5728001743555069e-02 -1.0766259431838989e+00 + <_> + + 0 -1 2689 1.9344100356101990e-01 + + 7.1262001991271973e-02 1.1694519519805908e+00 + <_> + + 0 -1 2690 5.3750001825392246e-03 + + -1.9736200571060181e-01 3.8206899166107178e-01 + <_> + + 0 -1 2691 -6.8276003003120422e-02 + + -5.4372339248657227e+00 1.1151900142431259e-01 + <_> + + 0 -1 2692 -3.4933000802993774e-02 + + 4.4793400168418884e-01 -1.8657900393009186e-01 + <_> + + 0 -1 2693 5.1219998858869076e-03 + + -1.4871999621391296e-02 1.8413899838924408e-01 + <_> + + 0 -1 2694 9.5311999320983887e-02 + + -1.5117099881172180e-01 9.4991499185562134e-01 + <_> + + 0 -1 2695 -6.2849000096321106e-02 + + 4.6473601460456848e-01 3.8405001163482666e-02 + <_> + + 0 -1 2696 -1.7040699720382690e-01 + + -1.6499999761581421e+00 -6.3236996531486511e-02 + <_> + + 0 -1 2697 1.0583999566733837e-02 + + -3.8348998874425888e-02 4.1913801431655884e-01 + <_> + + 0 -1 2698 -4.1579000651836395e-02 + + 3.4461900591850281e-01 -2.1187700331211090e-01 + <_> + + 0 -1 2699 1.2718600034713745e-01 + + 1.2398199737071991e-01 -2.1254889965057373e+00 + <_> + + 0 -1 2700 8.2557000219821930e-02 + + -6.2024001032114029e-02 -1.4875819683074951e+00 + <_> + + 0 -1 2701 8.5293002426624298e-02 + + 1.7087999731302261e-02 3.2076600193977356e-01 + <_> + + 0 -1 2702 5.5544000118970871e-02 + + -2.7414000034332275e-01 1.8976399302482605e-01 + <_> + + 0 -1 2703 4.5650000683963299e-03 + + -1.7920200526714325e-01 2.7967301011085510e-01 + <_> + + 0 -1 2704 1.2997999787330627e-02 + + -3.2297500967979431e-01 2.6941800117492676e-01 + <_> + + 0 -1 2705 5.7891998440027237e-02 + + 1.2644399702548981e-01 -6.0713499784469604e-01 + <_> + + 0 -1 2706 -2.2824000567197800e-02 + + -4.9682098627090454e-01 2.2376999258995056e-02 + <_> + + 0 -1 2707 4.8312000930309296e-02 + + 4.3607000261545181e-02 4.8537799715995789e-01 + <_> + + 0 -1 2708 2.5714000687003136e-02 + + -4.2950998991727829e-02 -9.3023502826690674e-01 + <_> + + 0 -1 2709 6.9269998930394650e-03 + + -2.9680000152438879e-03 3.4296301007270813e-01 + <_> + + 0 -1 2710 -3.4446999430656433e-02 + + -1.5299769639968872e+00 -6.1014998704195023e-02 + <_> + + 0 -1 2711 2.9387999325990677e-02 + + 3.7595998495817184e-02 6.4172399044036865e-01 + <_> + + 0 -1 2712 -2.4319998919963837e-03 + + 9.9088996648788452e-02 -3.9688101410865784e-01 + <_> + 200 + -2.9928278923034668e+00 + + <_> + + 0 -1 2713 -9.5944002270698547e-02 + + 6.2419098615646362e-01 -4.5875200629234314e-01 + <_> + + 0 -1 2714 1.6834000125527382e-02 + + -9.3072801828384399e-01 2.1563600003719330e-01 + <_> + + 0 -1 2715 2.6049999520182610e-02 + + -4.0532299876213074e-01 4.2256599664688110e-01 + <_> + + 0 -1 2716 3.6500001442618668e-04 + + 9.5288001000881195e-02 -6.3298100233078003e-01 + <_> + + 0 -1 2717 -6.6940002143383026e-03 + + 3.7243801355361938e-01 -3.0332401394844055e-01 + <_> + + 0 -1 2718 1.8874000757932663e-02 + + -2.3357200622558594e-01 4.0330699086189270e-01 + <_> + + 0 -1 2719 -1.6300000424962491e-04 + + 4.2886998504400253e-02 -7.7796798944473267e-01 + <_> + + 0 -1 2720 -7.6259002089500427e-02 + + -4.9628499150276184e-01 1.6335399448871613e-01 + <_> + + 0 -1 2721 5.0149001181125641e-02 + + 3.2747000455856323e-02 -8.0047899484634399e-01 + <_> + + 0 -1 2722 -2.9239999130368233e-03 + + -5.0002801418304443e-01 2.5480601191520691e-01 + <_> + + 0 -1 2723 1.6243999823927879e-02 + + 3.8913000375032425e-02 -7.0724898576736450e-01 + <_> + + 0 -1 2724 3.7811998277902603e-02 + + -6.6267997026443481e-02 7.3868799209594727e-01 + <_> + + 0 -1 2725 -1.2319999746978283e-02 + + 4.8696398735046387e-01 -2.4485599994659424e-01 + <_> + + 0 -1 2726 5.8003999292850494e-02 + + 1.3459099829196930e-01 -1.3232100009918213e-01 + <_> + + 0 -1 2727 4.8630000092089176e-03 + + -4.4172900915145874e-01 1.4005599915981293e-01 + <_> + + 0 -1 2728 4.5690998435020447e-02 + + 3.1217999756336212e-02 8.9818298816680908e-01 + <_> + + 0 -1 2729 2.1321000531315804e-02 + + 1.2008000165224075e-02 -8.6066198348999023e-01 + <_> + + 0 -1 2730 1.5679100155830383e-01 + + 1.4055999927222729e-02 8.5332900285720825e-01 + <_> + + 0 -1 2731 -1.0328999720513821e-02 + + 2.9022800922393799e-01 -2.9478800296783447e-01 + <_> + + 0 -1 2732 2.4290001019835472e-03 + + -4.0439900755882263e-01 1.9400200247764587e-01 + <_> + + 0 -1 2733 -2.3338999599218369e-02 + + 3.2945200800895691e-01 -2.5712698698043823e-01 + <_> + + 0 -1 2734 -6.8970001302659512e-03 + + -5.3352999687194824e-01 2.1635200083255768e-01 + <_> + + 0 -1 2735 -3.4403000026941299e-02 + + -1.4425489902496338e+00 -4.4682998210191727e-02 + <_> + + 0 -1 2736 -2.1235000342130661e-02 + + -7.9017502069473267e-01 1.9084100425243378e-01 + <_> + + 0 -1 2737 2.0620001014322042e-03 + + -2.6931199431419373e-01 3.1488001346588135e-01 + <_> + + 0 -1 2738 -4.2190002277493477e-03 + + -5.4464399814605713e-01 1.6574600338935852e-01 + <_> + + 0 -1 2739 -1.4334999956190586e-02 + + 2.2105000913143158e-02 -6.2342500686645508e-01 + <_> + + 0 -1 2740 -8.2120001316070557e-03 + + -4.9884998798370361e-01 1.9237099587917328e-01 + <_> + + 0 -1 2741 -9.3350000679492950e-03 + + -7.9131197929382324e-01 -1.4143999665975571e-02 + <_> + + 0 -1 2742 -3.7937998771667480e-02 + + 7.9841297864913940e-01 -3.3799000084400177e-02 + <_> + + 0 -1 2743 4.7059999778866768e-03 + + -3.3163401484489441e-01 2.0726299285888672e-01 + <_> + + 0 -1 2744 -4.4499998912215233e-03 + + -2.7256301045417786e-01 1.8402199447154999e-01 + <_> + + 0 -1 2745 5.2189999260008335e-03 + + -5.3096002340316772e-01 5.2607998251914978e-02 + <_> + + 0 -1 2746 -9.5399999991059303e-03 + + -5.6485402584075928e-01 1.9269399344921112e-01 + <_> + + 0 -1 2747 4.4969998300075531e-02 + + -1.7411500215530396e-01 9.5382601022720337e-01 + <_> + + 0 -1 2748 1.4209000393748283e-02 + + -9.1949000954627991e-02 2.4836100637912750e-01 + <_> + + 0 -1 2749 1.6380199790000916e-01 + + -5.8497000485658646e-02 -1.6404409408569336e+00 + <_> + + 0 -1 2750 2.5579999200999737e-03 + + 2.3447999358177185e-01 -9.2734001576900482e-02 + <_> + + 0 -1 2751 -3.8499999791383743e-03 + + 1.7880700528621674e-01 -3.5844099521636963e-01 + <_> + + 0 -1 2752 -2.5221999734640121e-02 + + -4.2903000116348267e-01 2.0244500041007996e-01 + <_> + + 0 -1 2753 -1.9415000453591347e-02 + + 5.8016300201416016e-01 -1.8806399405002594e-01 + <_> + + 0 -1 2754 1.4419999904930592e-02 + + 3.2846998423337936e-02 8.1980502605438232e-01 + <_> + + 0 -1 2755 5.1582999527454376e-02 + + 6.9176003336906433e-02 -4.5866298675537109e-01 + <_> + + 0 -1 2756 -3.7960000336170197e-02 + + -1.2553000450134277e+00 1.4332899451255798e-01 + <_> + + 0 -1 2757 -2.9560999944806099e-02 + + 5.3151798248291016e-01 -2.0596499741077423e-01 + <_> + + 0 -1 2758 -3.9110999554395676e-02 + + 1.1658719778060913e+00 5.3897000849246979e-02 + <_> + + 0 -1 2759 -2.9159000143408775e-02 + + 3.9307600259780884e-01 -2.2184500098228455e-01 + <_> + + 0 -1 2760 -8.3617001771926880e-02 + + -7.3744499683380127e-01 1.4268200099468231e-01 + <_> + + 0 -1 2761 4.2004001140594482e-01 + + -1.4277400076389313e-01 1.7894840240478516e+00 + <_> + + 0 -1 2762 6.0005001723766327e-02 + + 1.1976700276136398e-01 -1.8886189460754395e+00 + <_> + + 0 -1 2763 -1.8981000408530235e-02 + + -1.4148449897766113e+00 -5.6522998958826065e-02 + <_> + + 0 -1 2764 -6.0049998573958874e-03 + + 4.4170799851417542e-01 -1.0200800001621246e-01 + <_> + + 0 -1 2765 -5.8214001357555389e-02 + + -1.3918470144271851e+00 -4.8268999904394150e-02 + <_> + + 0 -1 2766 -1.2271000072360039e-02 + + 5.1317697763442993e-01 -9.3696996569633484e-02 + <_> + + 0 -1 2767 4.6585999429225922e-02 + + -5.7484000921249390e-02 -1.4283169507980347e+00 + <_> + + 0 -1 2768 1.2110000243410468e-03 + + -8.0891996622085571e-02 3.2333201169967651e-01 + <_> + + 0 -1 2769 -8.8642001152038574e-02 + + -8.6449098587036133e-01 -3.3146999776363373e-02 + <_> + + 0 -1 2770 -2.3184999823570251e-02 + + 5.2162200212478638e-01 -1.6168000176548958e-02 + <_> + + 0 -1 2771 4.3090000748634338e-02 + + -1.6153800487518311e-01 1.0915000438690186e+00 + <_> + + 0 -1 2772 2.0599999697878957e-04 + + -1.7091499269008636e-01 3.1236699223518372e-01 + <_> + + 0 -1 2773 8.9159999042749405e-03 + + -6.7039998248219490e-03 -6.8810397386550903e-01 + <_> + + 0 -1 2774 -1.7752999439835548e-02 + + 6.3292801380157471e-01 -4.2360001243650913e-03 + <_> + + 0 -1 2775 6.2299999408423901e-03 + + -3.3637198805809021e-01 1.2790599465370178e-01 + <_> + + 0 -1 2776 2.2770000621676445e-02 + + -3.4703999757766724e-02 3.9141800999641418e-01 + <_> + + 0 -1 2777 -2.1534999832510948e-02 + + 6.4765101671218872e-01 -2.0097799599170685e-01 + <_> + + 0 -1 2778 6.1758998781442642e-02 + + 5.4297000169754028e-02 9.0700101852416992e-01 + <_> + + 0 -1 2779 -7.8069999814033508e-02 + + 6.5523397922515869e-01 -1.9754399359226227e-01 + <_> + + 0 -1 2780 1.1315000243484974e-02 + + 1.9385300576686859e-01 -5.1707297563552856e-01 + <_> + + 0 -1 2781 -2.5590000674128532e-02 + + -9.3096500635147095e-01 -3.1546998769044876e-02 + <_> + + 0 -1 2782 -3.8058999925851822e-02 + + -6.8326902389526367e-01 1.2709100544452667e-01 + <_> + + 0 -1 2783 9.7970003262162209e-03 + + 1.5523999929428101e-02 -6.3347899913787842e-01 + <_> + + 0 -1 2784 -1.3841999694705009e-02 + + 1.0060529708862305e+00 6.2812998890876770e-02 + <_> + + 0 -1 2785 8.3459997549653053e-03 + + -2.3383200168609619e-01 3.0982699990272522e-01 + <_> + + 0 -1 2786 -7.1439996361732483e-02 + + -7.2505402565002441e-01 1.7148299515247345e-01 + <_> + + 0 -1 2787 1.0006000287830830e-02 + + -2.2071999311447144e-01 3.5266199707984924e-01 + <_> + + 0 -1 2788 1.1005300283432007e-01 + + 1.6662000119686127e-01 -7.4318999052047729e-01 + <_> + + 0 -1 2789 3.5310998558998108e-02 + + -2.3982700705528259e-01 4.1435998678207397e-01 + <_> + + 0 -1 2790 -1.1174699664115906e-01 + + 5.1045399904251099e-01 2.2319999989122152e-03 + <_> + + 0 -1 2791 -1.1367800086736679e-01 + + 9.0475201606750488e-01 -1.6615299880504608e-01 + <_> + + 0 -1 2792 1.6667999327182770e-02 + + 1.4024500548839569e-01 -5.2178502082824707e-01 + <_> + + 0 -1 2793 -8.0340001732110977e-03 + + -6.6178399324417114e-01 3.7640000227838755e-03 + <_> + + 0 -1 2794 -3.3096998929977417e-02 + + 8.0185902118682861e-01 5.9385001659393311e-02 + <_> + + 0 -1 2795 1.2547999620437622e-02 + + -3.3545500040054321e-01 1.4578600227832794e-01 + <_> + + 0 -1 2796 -4.2073998600244522e-02 + + -5.5509102344512939e-01 1.3266600668430328e-01 + <_> + + 0 -1 2797 2.5221999734640121e-02 + + -6.1631999909877777e-02 -1.3678770065307617e+00 + <_> + + 0 -1 2798 -2.4268999695777893e-02 + + 3.4185099601745605e-01 -7.4160001240670681e-03 + <_> + + 0 -1 2799 -1.2280000373721123e-02 + + 2.7745801210403442e-01 -3.1033900380134583e-01 + <_> + + 0 -1 2800 -1.1377099901437759e-01 + + 1.1719540357589722e+00 8.3681002259254456e-02 + <_> + + 0 -1 2801 -8.4771998226642609e-02 + + 8.1694799661636353e-01 -1.7837500572204590e-01 + <_> + + 0 -1 2802 -2.4552000686526299e-02 + + -1.8627299368381500e-01 1.4340099692344666e-01 + <_> + + 0 -1 2803 -9.0269995853304863e-03 + + 3.2659199833869934e-01 -2.3541299998760223e-01 + <_> + + 0 -1 2804 1.1177999898791313e-02 + + 1.9761200249195099e-01 -2.1701000630855560e-02 + <_> + + 0 -1 2805 -2.9366999864578247e-02 + + -9.3414801359176636e-01 -2.1704999729990959e-02 + <_> + + 0 -1 2806 6.3640000298619270e-03 + + 2.5573000311851501e-02 4.6412798762321472e-01 + <_> + + 0 -1 2807 1.4026000164449215e-02 + + -2.1228599548339844e-01 4.0078800916671753e-01 + <_> + + 0 -1 2808 -1.3341999612748623e-02 + + 7.4202698469161987e-01 2.9001999646425247e-02 + <_> + + 0 -1 2809 2.8422799706459045e-01 + + -1.9243599474430084e-01 4.3631199002265930e-01 + <_> + + 0 -1 2810 -2.3724000155925751e-01 + + 6.9736397266387939e-01 6.9307997822761536e-02 + <_> + + 0 -1 2811 -1.1169700324535370e-01 + + 3.9147201180458069e-01 -2.0922000706195831e-01 + <_> + + 0 -1 2812 1.2787500023841858e-01 + + -7.2555996477603912e-02 3.6088201403617859e-01 + <_> + + 0 -1 2813 -6.2900997698307037e-02 + + 9.5424997806549072e-01 -1.5402799844741821e-01 + <_> + + 0 -1 2814 1.7439000308513641e-02 + + -5.1134999841451645e-02 2.7750301361083984e-01 + <_> + + 0 -1 2815 1.2319999514147639e-03 + + 7.5627997517585754e-02 -3.6456099152565002e-01 + <_> + + 0 -1 2816 2.7495000511407852e-02 + + 5.1844000816345215e-02 4.1562598943710327e-01 + <_> + + 0 -1 2817 -4.3543998152017593e-02 + + 7.1969997882843018e-01 -1.7132200300693512e-01 + <_> + + 0 -1 2818 1.1025999672710896e-02 + + 1.4354600012302399e-01 -6.5403002500534058e-01 + <_> + + 0 -1 2819 2.0865999162197113e-02 + + 4.0089000016450882e-02 -4.5743298530578613e-01 + <_> + + 0 -1 2820 -2.2304000332951546e-02 + + 5.3855001926422119e-01 7.1662999689579010e-02 + <_> + + 0 -1 2821 3.2492000609636307e-02 + + -4.5991998165845871e-02 -1.0047069787979126e+00 + <_> + + 0 -1 2822 1.2269999831914902e-02 + + 3.4334998577833176e-02 4.2431798577308655e-01 + <_> + + 0 -1 2823 8.3820000290870667e-03 + + -2.5850600004196167e-01 2.6263499259948730e-01 + <_> + + 0 -1 2824 3.7353999912738800e-02 + + 1.5692499279975891e-01 -1.0429090261459351e+00 + <_> + + 0 -1 2825 -1.4111000113189220e-02 + + -7.3177701234817505e-01 -2.0276999101042747e-02 + <_> + + 0 -1 2826 5.7066999375820160e-02 + + 8.3360001444816589e-02 1.5661499500274658e+00 + <_> + + 0 -1 2827 4.9680001102387905e-03 + + -3.5318198800086975e-01 1.4698399603366852e-01 + <_> + + 0 -1 2828 -2.4492999538779259e-02 + + 2.8325900435447693e-01 -3.4640000667423010e-03 + <_> + + 0 -1 2829 -1.1254999786615372e-02 + + -8.4017497301101685e-01 -3.6251999437808990e-02 + <_> + + 0 -1 2830 3.4533001482486725e-02 + + 1.4998500049114227e-01 -8.7367099523544312e-01 + <_> + + 0 -1 2831 2.4303000420331955e-02 + + -1.8787500262260437e-01 5.9483999013900757e-01 + <_> + + 0 -1 2832 -7.8790001571178436e-03 + + 4.4315698742866516e-01 -5.6570999324321747e-02 + <_> + + 0 -1 2833 3.5142000764608383e-02 + + -5.6494999676942825e-02 -1.3617190122604370e+00 + <_> + + 0 -1 2834 4.6259998343884945e-03 + + -3.1161698698997498e-01 2.5447699427604675e-01 + <_> + + 0 -1 2835 -8.3131000399589539e-02 + + 1.6424349546432495e+00 -1.4429399371147156e-01 + <_> + + 0 -1 2836 -1.4015999622642994e-02 + + -7.7819502353668213e-01 1.7173300683498383e-01 + <_> + + 0 -1 2837 1.2450000504031777e-03 + + -2.3191399872303009e-01 2.8527900576591492e-01 + <_> + + 0 -1 2838 -1.6803000122308731e-02 + + -3.5965099930763245e-01 2.0412999391555786e-01 + <_> + + 0 -1 2839 -7.6747998595237732e-02 + + 7.8050500154495239e-01 -1.5612800419330597e-01 + <_> + + 0 -1 2840 -2.3671999573707581e-01 + + 1.1813700199127197e+00 7.8111998736858368e-02 + <_> + + 0 -1 2841 -1.0057400166988373e-01 + + -4.7104099392890930e-01 7.9172998666763306e-02 + <_> + + 0 -1 2842 1.3239999534562230e-03 + + 2.2262699902057648e-01 -3.7099799513816833e-01 + <_> + + 0 -1 2843 2.2152999415993690e-02 + + -3.8649000227451324e-02 -9.2274999618530273e-01 + <_> + + 0 -1 2844 -1.1246199905872345e-01 + + 4.1899600625038147e-01 8.0411002039909363e-02 + <_> + + 0 -1 2845 1.6481000930070877e-02 + + -1.6756699979305267e-01 7.1842402219772339e-01 + <_> + + 0 -1 2846 6.8113997578620911e-02 + + 1.5719899535179138e-01 -8.7681102752685547e-01 + <_> + + 0 -1 2847 1.6011999920010567e-02 + + -4.1600000113248825e-03 -5.9327799081802368e-01 + <_> + + 0 -1 2848 4.6640001237392426e-03 + + -3.0153999105095863e-02 4.8345300555229187e-01 + <_> + + 0 -1 2849 6.7579997703433037e-03 + + -2.2667400538921356e-01 3.3662301301956177e-01 + <_> + + 0 -1 2850 4.7289999201893806e-03 + + -6.0373999178409576e-02 3.1458100676536560e-01 + <_> + + 0 -1 2851 2.5869999080896378e-03 + + -2.9872599244117737e-01 1.7787499725818634e-01 + <_> + + 0 -1 2852 2.8989999555051327e-03 + + 2.1890200674533844e-01 -2.9567098617553711e-01 + <_> + + 0 -1 2853 -3.0053999274969101e-02 + + 1.2150429487228394e+00 -1.4354999363422394e-01 + <_> + + 0 -1 2854 1.4181000180542469e-02 + + 1.2451999820768833e-02 5.5490100383758545e-01 + <_> + + 0 -1 2855 -6.0527000576257706e-02 + + -1.4933999776840210e+00 -6.5227001905441284e-02 + <_> + + 0 -1 2856 -1.9882999360561371e-02 + + -3.8526400923728943e-01 1.9761200249195099e-01 + <_> + + 0 -1 2857 3.1218999996781349e-02 + + -2.1281200647354126e-01 2.9446500539779663e-01 + <_> + + 0 -1 2858 1.8271999433636665e-02 + + 9.7200000891461968e-04 6.6814202070236206e-01 + <_> + + 0 -1 2859 1.1089999461546540e-03 + + -6.2467902898788452e-01 -1.6599999507889152e-03 + <_> + + 0 -1 2860 -3.6713998764753342e-02 + + -4.2333900928497314e-01 1.2084700167179108e-01 + <_> + + 0 -1 2861 1.2044000439345837e-02 + + 2.5882000103592873e-02 -5.0732398033142090e-01 + <_> + + 0 -1 2862 7.4749000370502472e-02 + + 1.3184699416160583e-01 -2.1739600598812103e-01 + <_> + + 0 -1 2863 -2.3473200201988220e-01 + + 1.1775610446929932e+00 -1.5114699304103851e-01 + <_> + + 0 -1 2864 1.4096499979496002e-01 + + 3.3991001546382904e-02 3.9923098683357239e-01 + <_> + + 0 -1 2865 6.1789997853338718e-03 + + -3.1806701421737671e-01 1.1681699752807617e-01 + <_> + + 0 -1 2866 -5.7216998189687729e-02 + + 8.4399098157882690e-01 8.3889000117778778e-02 + <_> + + 0 -1 2867 -5.5227000266313553e-02 + + 3.6888301372528076e-01 -1.8913400173187256e-01 + <_> + + 0 -1 2868 -2.1583000198006630e-02 + + -5.2161800861358643e-01 1.5772600471973419e-01 + <_> + + 0 -1 2869 2.5747999548912048e-02 + + -5.9921998530626297e-02 -1.0674990415573120e+00 + <_> + + 0 -1 2870 -1.3098999857902527e-02 + + 7.8958398103713989e-01 5.2099999040365219e-02 + <_> + + 0 -1 2871 2.2799998987466097e-03 + + -1.1704430580139160e+00 -5.9356998652219772e-02 + <_> + + 0 -1 2872 8.8060004636645317e-03 + + 4.1717998683452606e-02 6.6352599859237671e-01 + <_> + + 0 -1 2873 -8.9699998497962952e-03 + + -3.5862699151039124e-01 6.0458000749349594e-02 + <_> + + 0 -1 2874 4.0230001322925091e-03 + + 2.0979399979114532e-01 -2.4806000292301178e-01 + <_> + + 0 -1 2875 2.5017000734806061e-02 + + -1.8795900046825409e-01 3.9547100663185120e-01 + <_> + + 0 -1 2876 -5.9009999968111515e-03 + + 2.5663900375366211e-01 -9.4919003546237946e-02 + <_> + + 0 -1 2877 4.3850000947713852e-03 + + 3.3139001578092575e-02 -4.6075400710105896e-01 + <_> + + 0 -1 2878 -3.3771999180316925e-02 + + -9.8881602287292480e-01 1.4636899530887604e-01 + <_> + + 0 -1 2879 4.4523000717163086e-02 + + -1.3286699354648590e-01 1.5796790122985840e+00 + <_> + + 0 -1 2880 -4.0929000824689865e-02 + + 3.3877098560333252e-01 7.4970997869968414e-02 + <_> + + 0 -1 2881 3.9351999759674072e-02 + + -1.8327899277210236e-01 4.6980699896812439e-01 + <_> + + 0 -1 2882 -7.0322997868061066e-02 + + -9.8322701454162598e-01 1.1808100342750549e-01 + <_> + + 0 -1 2883 3.5743001848459244e-02 + + -3.3050999045372009e-02 -8.3610898256301880e-01 + <_> + + 0 -1 2884 -4.2961999773979187e-02 + + 1.1670809984207153e+00 8.0692000687122345e-02 + <_> + + 0 -1 2885 -2.1007999777793884e-02 + + 6.3869798183441162e-01 -1.7626300454139709e-01 + <_> + + 0 -1 2886 -1.5742200613021851e-01 + + -2.3302499949932098e-01 1.2517499923706055e-01 + <_> + + 0 -1 2887 7.8659998252987862e-03 + + -2.2037999331951141e-01 2.7196800708770752e-01 + <_> + + 0 -1 2888 2.3622000589966774e-02 + + 1.6127300262451172e-01 -4.3329000473022461e-01 + <_> + + 0 -1 2889 7.4692003428936005e-02 + + -1.6991999745368958e-01 5.8884900808334351e-01 + <_> + + 0 -1 2890 -6.4799998654052615e-04 + + 2.5842899084091187e-01 -3.5911999642848969e-02 + <_> + + 0 -1 2891 -1.6290999948978424e-02 + + -7.6764398813247681e-01 -2.0472999662160873e-02 + <_> + + 0 -1 2892 -3.3133998513221741e-02 + + -2.7180099487304688e-01 1.4325700700283051e-01 + <_> + + 0 -1 2893 4.8797998577356339e-02 + + 7.6408997178077698e-02 -4.1445198655128479e-01 + <_> + + 0 -1 2894 2.2869999520480633e-03 + + -3.8628999143838882e-02 2.0753799378871918e-01 + <_> + + 0 -1 2895 4.5304000377655029e-02 + + -1.7777900397777557e-01 6.3461399078369141e-01 + <_> + + 0 -1 2896 1.0705800354480743e-01 + + 1.8972299993038177e-01 -5.1236200332641602e-01 + <_> + + 0 -1 2897 -4.0525000542402267e-02 + + 7.0614999532699585e-01 -1.7803299427032471e-01 + <_> + + 0 -1 2898 3.1968999654054642e-02 + + 6.8149998784065247e-02 6.8733102083206177e-01 + <_> + + 0 -1 2899 -5.7617001235485077e-02 + + 7.5170499086380005e-01 -1.5764999389648438e-01 + <_> + + 0 -1 2900 1.3593999668955803e-02 + + 1.9411900639533997e-01 -2.4561899900436401e-01 + <_> + + 0 -1 2901 7.1396000683307648e-02 + + -4.6881001442670822e-02 -8.8198298215866089e-01 + <_> + + 0 -1 2902 -1.4895999804139137e-02 + + -4.4532400369644165e-01 1.7679899930953979e-01 + <_> + + 0 -1 2903 -1.0026000440120697e-02 + + 6.5122699737548828e-01 -1.6709999740123749e-01 + <_> + + 0 -1 2904 3.7589999847114086e-03 + + -5.8301001787185669e-02 3.4483298659324646e-01 + <_> + + 0 -1 2905 1.6263000667095184e-02 + + -1.5581500530242920e-01 8.6432701349258423e-01 + <_> + + 0 -1 2906 -4.0176000446081161e-02 + + -6.1028599739074707e-01 1.1796399950981140e-01 + <_> + + 0 -1 2907 2.7080999687314034e-02 + + -4.9601998180150986e-02 -8.9990001916885376e-01 + <_> + + 0 -1 2908 5.2420001477003098e-02 + + 1.1297199875116348e-01 -1.0833640098571777e+00 + <_> + + 0 -1 2909 -1.9160000607371330e-02 + + -7.9880100488662720e-01 -3.4079000353813171e-02 + <_> + + 0 -1 2910 -3.7730000913143158e-03 + + -1.9124099612236023e-01 2.1535199880599976e-01 + <_> + + 0 -1 2911 7.5762003660202026e-02 + + -1.3421699404716492e-01 1.6807060241699219e+00 + <_> + + 0 -1 2912 -2.2173000499606133e-02 + + 4.8600998520851135e-01 3.6160000599920750e-03 + + <_> + + <_> + 6 4 12 9 -1. + <_> + 6 7 12 3 3. + <_> + + <_> + 6 4 12 7 -1. + <_> + 10 4 4 7 3. + <_> + + <_> + 3 9 18 9 -1. + <_> + 3 12 18 3 3. + <_> + + <_> + 8 18 9 6 -1. + <_> + 8 20 9 2 3. + <_> + + <_> + 3 5 4 19 -1. + <_> + 5 5 2 19 2. + <_> + + <_> + 6 5 12 16 -1. + <_> + 6 13 12 8 2. + <_> + + <_> + 5 8 12 6 -1. + <_> + 5 11 12 3 2. + <_> + + <_> + 11 14 4 10 -1. + <_> + 11 19 4 5 2. + <_> + + <_> + 4 0 7 6 -1. + <_> + 4 3 7 3 2. + <_> + + <_> + 6 6 12 6 -1. + <_> + 6 8 12 2 3. + <_> + + <_> + 6 4 12 7 -1. + <_> + 10 4 4 7 3. + <_> + + <_> + 1 8 19 12 -1. + <_> + 1 12 19 4 3. + <_> + + <_> + 0 2 24 3 -1. + <_> + 8 2 8 3 3. + <_> + + <_> + 9 9 6 15 -1. + <_> + 9 14 6 5 3. + <_> + + <_> + 5 6 14 10 -1. + <_> + 5 11 14 5 2. + <_> + + <_> + 5 0 14 9 -1. + <_> + 5 3 14 3 3. + <_> + + <_> + 13 11 9 6 -1. + <_> + 16 11 3 6 3. + <_> + + <_> + 7 5 6 10 -1. + <_> + 9 5 2 10 3. + <_> + + <_> + 10 8 6 10 -1. + <_> + 12 8 2 10 3. + <_> + + <_> + 2 5 4 9 -1. + <_> + 4 5 2 9 2. + <_> + + <_> + 18 0 6 11 -1. + <_> + 20 0 2 11 3. + <_> + + <_> + 0 6 24 13 -1. + <_> + 8 6 8 13 3. + <_> + + <_> + 9 6 6 9 -1. + <_> + 11 6 2 9 3. + <_> + + <_> + 7 18 10 6 -1. + <_> + 7 20 10 2 3. + <_> + + <_> + 5 7 14 12 -1. + <_> + 5 13 14 6 2. + <_> + + <_> + 0 3 24 3 -1. + <_> + 8 3 8 3 3. + <_> + + <_> + 5 8 15 6 -1. + <_> + 5 11 15 3 2. + <_> + + <_> + 9 6 5 14 -1. + <_> + 9 13 5 7 2. + <_> + + <_> + 9 5 6 10 -1. + <_> + 11 5 2 10 3. + <_> + + <_> + 6 6 3 12 -1. + <_> + 6 12 3 6 2. + <_> + + <_> + 3 21 18 3 -1. + <_> + 9 21 6 3 3. + <_> + + <_> + 5 6 13 6 -1. + <_> + 5 8 13 2 3. + <_> + + <_> + 18 1 6 15 -1. + <_> + 18 1 3 15 2. + <_> + + <_> + 1 1 6 15 -1. + <_> + 4 1 3 15 2. + <_> + + <_> + 0 8 24 15 -1. + <_> + 8 8 8 15 3. + <_> + + <_> + 5 6 14 12 -1. + <_> + 5 6 7 6 2. + <_> + 12 12 7 6 2. + <_> + + <_> + 2 12 21 12 -1. + <_> + 2 16 21 4 3. + <_> + + <_> + 8 1 4 10 -1. + <_> + 10 1 2 10 2. + <_> + + <_> + 2 13 20 10 -1. + <_> + 2 13 10 10 2. + <_> + + <_> + 0 1 6 13 -1. + <_> + 2 1 2 13 3. + <_> + + <_> + 20 2 4 13 -1. + <_> + 20 2 2 13 2. + <_> + + <_> + 0 5 22 19 -1. + <_> + 11 5 11 19 2. + <_> + + <_> + 18 4 6 9 -1. + <_> + 20 4 2 9 3. + <_> + + <_> + 0 3 6 11 -1. + <_> + 2 3 2 11 3. + <_> + + <_> + 12 1 4 9 -1. + <_> + 12 1 2 9 2. + <_> + + <_> + 0 6 19 3 -1. + <_> + 0 7 19 1 3. + <_> + + <_> + 12 1 4 9 -1. + <_> + 12 1 2 9 2. + <_> + + <_> + 8 1 4 9 -1. + <_> + 10 1 2 9 2. + <_> + + <_> + 5 5 14 14 -1. + <_> + 12 5 7 7 2. + <_> + 5 12 7 7 2. + <_> + + <_> + 1 10 18 2 -1. + <_> + 1 11 18 1 2. + <_> + + <_> + 17 13 4 11 -1. + <_> + 17 13 2 11 2. + <_> + + <_> + 0 4 6 9 -1. + <_> + 0 7 6 3 3. + <_> + + <_> + 6 4 12 9 -1. + <_> + 6 7 12 3 3. + <_> + + <_> + 6 5 12 6 -1. + <_> + 10 5 4 6 3. + <_> + + <_> + 0 1 24 5 -1. + <_> + 8 1 8 5 3. + <_> + + <_> + 4 10 18 6 -1. + <_> + 4 12 18 2 3. + <_> + + <_> + 2 17 12 6 -1. + <_> + 2 17 6 3 2. + <_> + 8 20 6 3 2. + <_> + + <_> + 19 3 4 13 -1. + <_> + 19 3 2 13 2. + <_> + + <_> + 1 3 4 13 -1. + <_> + 3 3 2 13 2. + <_> + + <_> + 0 1 24 23 -1. + <_> + 8 1 8 23 3. + <_> + + <_> + 1 7 8 12 -1. + <_> + 1 11 8 4 3. + <_> + + <_> + 14 7 3 14 -1. + <_> + 14 14 3 7 2. + <_> + + <_> + 3 12 16 6 -1. + <_> + 3 12 8 3 2. + <_> + 11 15 8 3 2. + <_> + + <_> + 6 6 12 6 -1. + <_> + 6 8 12 2 3. + <_> + + <_> + 8 7 6 12 -1. + <_> + 8 13 6 6 2. + <_> + + <_> + 15 15 9 6 -1. + <_> + 15 17 9 2 3. + <_> + + <_> + 1 17 18 3 -1. + <_> + 1 18 18 1 3. + <_> + + <_> + 4 4 16 12 -1. + <_> + 4 10 16 6 2. + <_> + + <_> + 0 1 4 20 -1. + <_> + 2 1 2 20 2. + <_> + + <_> + 3 0 18 2 -1. + <_> + 3 1 18 1 2. + <_> + + <_> + 1 5 20 14 -1. + <_> + 1 5 10 7 2. + <_> + 11 12 10 7 2. + <_> + + <_> + 5 8 14 12 -1. + <_> + 5 12 14 4 3. + <_> + + <_> + 3 14 7 9 -1. + <_> + 3 17 7 3 3. + <_> + + <_> + 14 15 9 6 -1. + <_> + 14 17 9 2 3. + <_> + + <_> + 1 15 9 6 -1. + <_> + 1 17 9 2 3. + <_> + + <_> + 11 6 8 10 -1. + <_> + 15 6 4 5 2. + <_> + 11 11 4 5 2. + <_> + + <_> + 5 5 14 14 -1. + <_> + 5 5 7 7 2. + <_> + 12 12 7 7 2. + <_> + + <_> + 6 0 12 5 -1. + <_> + 10 0 4 5 3. + <_> + + <_> + 9 0 6 9 -1. + <_> + 9 3 6 3 3. + <_> + + <_> + 9 6 6 9 -1. + <_> + 11 6 2 9 3. + <_> + + <_> + 7 0 6 9 -1. + <_> + 9 0 2 9 3. + <_> + + <_> + 10 6 6 9 -1. + <_> + 12 6 2 9 3. + <_> + + <_> + 8 6 6 9 -1. + <_> + 10 6 2 9 3. + <_> + + <_> + 3 8 18 4 -1. + <_> + 9 8 6 4 3. + <_> + + <_> + 6 0 12 9 -1. + <_> + 6 3 12 3 3. + <_> + + <_> + 0 0 24 6 -1. + <_> + 8 0 8 6 3. + <_> + + <_> + 4 7 16 12 -1. + <_> + 4 11 16 4 3. + <_> + + <_> + 11 6 6 6 -1. + <_> + 11 6 3 6 2. + <_> + + <_> + 0 20 24 3 -1. + <_> + 8 20 8 3 3. + <_> + + <_> + 11 6 4 9 -1. + <_> + 11 6 2 9 2. + <_> + + <_> + 4 13 15 4 -1. + <_> + 9 13 5 4 3. + <_> + + <_> + 11 6 4 9 -1. + <_> + 11 6 2 9 2. + <_> + + <_> + 9 6 4 9 -1. + <_> + 11 6 2 9 2. + <_> + + <_> + 9 12 6 12 -1. + <_> + 9 18 6 6 2. + <_> + + <_> + 1 22 18 2 -1. + <_> + 1 23 18 1 2. + <_> + + <_> + 10 7 4 10 -1. + <_> + 10 12 4 5 2. + <_> + + <_> + 6 7 8 10 -1. + <_> + 6 12 8 5 2. + <_> + + <_> + 7 6 10 6 -1. + <_> + 7 8 10 2 3. + <_> + + <_> + 0 14 10 4 -1. + <_> + 0 16 10 2 2. + <_> + + <_> + 6 18 18 2 -1. + <_> + 6 19 18 1 2. + <_> + + <_> + 1 1 22 3 -1. + <_> + 1 2 22 1 3. + <_> + + <_> + 6 16 18 3 -1. + <_> + 6 17 18 1 3. + <_> + + <_> + 2 4 6 15 -1. + <_> + 5 4 3 15 2. + <_> + + <_> + 20 4 4 10 -1. + <_> + 20 4 2 10 2. + <_> + + <_> + 0 4 4 10 -1. + <_> + 2 4 2 10 2. + <_> + + <_> + 2 16 20 6 -1. + <_> + 12 16 10 3 2. + <_> + 2 19 10 3 2. + <_> + + <_> + 0 12 8 9 -1. + <_> + 4 12 4 9 2. + <_> + + <_> + 12 0 6 9 -1. + <_> + 14 0 2 9 3. + <_> + + <_> + 5 10 6 6 -1. + <_> + 8 10 3 6 2. + <_> + + <_> + 11 8 12 6 -1. + <_> + 17 8 6 3 2. + <_> + 11 11 6 3 2. + <_> + + <_> + 0 8 12 6 -1. + <_> + 0 8 6 3 2. + <_> + 6 11 6 3 2. + <_> + + <_> + 12 0 6 9 -1. + <_> + 14 0 2 9 3. + <_> + + <_> + 6 0 6 9 -1. + <_> + 8 0 2 9 3. + <_> + + <_> + 8 14 9 6 -1. + <_> + 8 16 9 2 3. + <_> + + <_> + 0 16 9 6 -1. + <_> + 0 18 9 2 3. + <_> + + <_> + 10 8 6 10 -1. + <_> + 12 8 2 10 3. + <_> + + <_> + 3 19 12 3 -1. + <_> + 9 19 6 3 2. + <_> + + <_> + 2 10 20 2 -1. + <_> + 2 11 20 1 2. + <_> + + <_> + 2 9 18 12 -1. + <_> + 2 9 9 6 2. + <_> + 11 15 9 6 2. + <_> + + <_> + 3 0 18 24 -1. + <_> + 3 0 9 24 2. + <_> + + <_> + 5 6 14 10 -1. + <_> + 5 6 7 5 2. + <_> + 12 11 7 5 2. + <_> + + <_> + 9 5 10 12 -1. + <_> + 14 5 5 6 2. + <_> + 9 11 5 6 2. + <_> + + <_> + 4 5 12 12 -1. + <_> + 4 5 6 6 2. + <_> + 10 11 6 6 2. + <_> + + <_> + 4 14 18 3 -1. + <_> + 4 15 18 1 3. + <_> + + <_> + 6 13 8 8 -1. + <_> + 6 17 8 4 2. + <_> + + <_> + 3 16 18 6 -1. + <_> + 3 19 18 3 2. + <_> + + <_> + 0 0 6 6 -1. + <_> + 3 0 3 6 2. + <_> + + <_> + 6 6 12 18 -1. + <_> + 10 6 4 18 3. + <_> + + <_> + 6 1 4 14 -1. + <_> + 8 1 2 14 2. + <_> + + <_> + 3 2 19 2 -1. + <_> + 3 3 19 1 2. + <_> + + <_> + 1 8 22 13 -1. + <_> + 12 8 11 13 2. + <_> + + <_> + 8 9 11 4 -1. + <_> + 8 11 11 2 2. + <_> + + <_> + 0 12 15 10 -1. + <_> + 5 12 5 10 3. + <_> + + <_> + 12 16 12 6 -1. + <_> + 16 16 4 6 3. + <_> + + <_> + 0 16 12 6 -1. + <_> + 4 16 4 6 3. + <_> + + <_> + 19 1 5 12 -1. + <_> + 19 5 5 4 3. + <_> + + <_> + 0 2 24 4 -1. + <_> + 8 2 8 4 3. + <_> + + <_> + 6 8 12 4 -1. + <_> + 6 10 12 2 2. + <_> + + <_> + 7 5 9 6 -1. + <_> + 10 5 3 6 3. + <_> + + <_> + 9 17 6 6 -1. + <_> + 9 20 6 3 2. + <_> + + <_> + 0 7 22 15 -1. + <_> + 0 12 22 5 3. + <_> + + <_> + 4 1 17 9 -1. + <_> + 4 4 17 3 3. + <_> + + <_> + 7 5 6 10 -1. + <_> + 9 5 2 10 3. + <_> + + <_> + 18 1 6 8 -1. + <_> + 18 1 3 8 2. + <_> + + <_> + 0 1 6 7 -1. + <_> + 3 1 3 7 2. + <_> + + <_> + 18 0 6 22 -1. + <_> + 18 0 3 22 2. + <_> + + <_> + 0 0 6 22 -1. + <_> + 3 0 3 22 2. + <_> + + <_> + 16 7 8 16 -1. + <_> + 16 7 4 16 2. + <_> + + <_> + 2 10 19 6 -1. + <_> + 2 12 19 2 3. + <_> + + <_> + 9 9 6 12 -1. + <_> + 9 13 6 4 3. + <_> + + <_> + 2 15 17 6 -1. + <_> + 2 17 17 2 3. + <_> + + <_> + 14 7 3 14 -1. + <_> + 14 14 3 7 2. + <_> + + <_> + 5 6 8 10 -1. + <_> + 5 6 4 5 2. + <_> + 9 11 4 5 2. + <_> + + <_> + 15 8 9 11 -1. + <_> + 18 8 3 11 3. + <_> + + <_> + 0 8 9 11 -1. + <_> + 3 8 3 11 3. + <_> + + <_> + 8 6 10 18 -1. + <_> + 8 15 10 9 2. + <_> + + <_> + 7 7 3 14 -1. + <_> + 7 14 3 7 2. + <_> + + <_> + 0 14 24 8 -1. + <_> + 8 14 8 8 3. + <_> + + <_> + 1 10 18 14 -1. + <_> + 10 10 9 14 2. + <_> + + <_> + 14 12 6 6 -1. + <_> + 14 15 6 3 2. + <_> + + <_> + 7 0 10 16 -1. + <_> + 7 0 5 8 2. + <_> + 12 8 5 8 2. + <_> + + <_> + 10 0 9 6 -1. + <_> + 13 0 3 6 3. + <_> + + <_> + 4 3 16 4 -1. + <_> + 12 3 8 4 2. + <_> + + <_> + 10 0 9 6 -1. + <_> + 13 0 3 6 3. + <_> + + <_> + 1 1 20 4 -1. + <_> + 1 1 10 2 2. + <_> + 11 3 10 2 2. + <_> + + <_> + 10 0 9 6 -1. + <_> + 13 0 3 6 3. + <_> + + <_> + 5 0 9 6 -1. + <_> + 8 0 3 6 3. + <_> + + <_> + 8 18 10 6 -1. + <_> + 8 20 10 2 3. + <_> + + <_> + 6 3 6 9 -1. + <_> + 8 3 2 9 3. + <_> + + <_> + 7 3 12 6 -1. + <_> + 7 5 12 2 3. + <_> + + <_> + 0 10 18 3 -1. + <_> + 0 11 18 1 3. + <_> + + <_> + 1 10 22 3 -1. + <_> + 1 11 22 1 3. + <_> + + <_> + 5 11 8 8 -1. + <_> + 9 11 4 8 2. + <_> + + <_> + 12 11 6 6 -1. + <_> + 12 11 3 6 2. + <_> + + <_> + 6 11 6 6 -1. + <_> + 9 11 3 6 2. + <_> + + <_> + 7 10 11 6 -1. + <_> + 7 12 11 2 3. + <_> + + <_> + 0 13 24 4 -1. + <_> + 0 13 12 2 2. + <_> + 12 15 12 2 2. + <_> + + <_> + 2 4 22 12 -1. + <_> + 13 4 11 6 2. + <_> + 2 10 11 6 2. + <_> + + <_> + 2 0 20 17 -1. + <_> + 12 0 10 17 2. + <_> + + <_> + 14 0 2 24 -1. + <_> + 14 0 1 24 2. + <_> + + <_> + 8 0 2 24 -1. + <_> + 9 0 1 24 2. + <_> + + <_> + 14 1 2 22 -1. + <_> + 14 1 1 22 2. + <_> + + <_> + 8 1 2 22 -1. + <_> + 9 1 1 22 2. + <_> + + <_> + 17 6 3 18 -1. + <_> + 18 6 1 18 3. + <_> + + <_> + 6 14 9 6 -1. + <_> + 6 16 9 2 3. + <_> + + <_> + 13 14 9 4 -1. + <_> + 13 16 9 2 2. + <_> + + <_> + 3 18 18 3 -1. + <_> + 3 19 18 1 3. + <_> + + <_> + 9 4 8 18 -1. + <_> + 13 4 4 9 2. + <_> + 9 13 4 9 2. + <_> + + <_> + 0 17 18 3 -1. + <_> + 0 18 18 1 3. + <_> + + <_> + 0 2 12 4 -1. + <_> + 6 2 6 4 2. + <_> + + <_> + 6 8 14 6 -1. + <_> + 6 11 14 3 2. + <_> + + <_> + 7 5 6 6 -1. + <_> + 10 5 3 6 2. + <_> + + <_> + 10 5 6 16 -1. + <_> + 10 13 6 8 2. + <_> + + <_> + 1 4 9 16 -1. + <_> + 4 4 3 16 3. + <_> + + <_> + 5 0 18 9 -1. + <_> + 5 3 18 3 3. + <_> + + <_> + 9 15 5 8 -1. + <_> + 9 19 5 4 2. + <_> + + <_> + 20 0 4 9 -1. + <_> + 20 0 2 9 2. + <_> + + <_> + 2 0 18 3 -1. + <_> + 2 1 18 1 3. + <_> + + <_> + 5 22 19 2 -1. + <_> + 5 23 19 1 2. + <_> + + <_> + 0 0 4 9 -1. + <_> + 2 0 2 9 2. + <_> + + <_> + 5 6 19 18 -1. + <_> + 5 12 19 6 3. + <_> + + <_> + 0 1 6 9 -1. + <_> + 2 1 2 9 3. + <_> + + <_> + 6 5 14 12 -1. + <_> + 13 5 7 6 2. + <_> + 6 11 7 6 2. + <_> + + <_> + 0 1 20 2 -1. + <_> + 0 2 20 1 2. + <_> + + <_> + 1 2 22 3 -1. + <_> + 1 3 22 1 3. + <_> + + <_> + 2 8 7 9 -1. + <_> + 2 11 7 3 3. + <_> + + <_> + 2 12 22 4 -1. + <_> + 13 12 11 2 2. + <_> + 2 14 11 2 2. + <_> + + <_> + 0 12 22 4 -1. + <_> + 0 12 11 2 2. + <_> + 11 14 11 2 2. + <_> + + <_> + 9 7 6 11 -1. + <_> + 11 7 2 11 3. + <_> + + <_> + 7 1 9 6 -1. + <_> + 10 1 3 6 3. + <_> + + <_> + 11 2 4 10 -1. + <_> + 11 7 4 5 2. + <_> + + <_> + 6 4 12 12 -1. + <_> + 6 10 12 6 2. + <_> + + <_> + 18 1 6 15 -1. + <_> + 18 6 6 5 3. + <_> + + <_> + 3 15 18 3 -1. + <_> + 3 16 18 1 3. + <_> + + <_> + 18 5 6 9 -1. + <_> + 18 8 6 3 3. + <_> + + <_> + 1 5 16 6 -1. + <_> + 1 5 8 3 2. + <_> + 9 8 8 3 2. + <_> + + <_> + 11 0 6 9 -1. + <_> + 13 0 2 9 3. + <_> + + <_> + 0 4 24 14 -1. + <_> + 0 4 12 7 2. + <_> + 12 11 12 7 2. + <_> + + <_> + 13 0 4 13 -1. + <_> + 13 0 2 13 2. + <_> + + <_> + 7 0 4 13 -1. + <_> + 9 0 2 13 2. + <_> + + <_> + 11 6 6 9 -1. + <_> + 13 6 2 9 3. + <_> + + <_> + 8 7 6 9 -1. + <_> + 10 7 2 9 3. + <_> + + <_> + 13 17 9 6 -1. + <_> + 13 19 9 2 3. + <_> + + <_> + 2 18 14 6 -1. + <_> + 2 18 7 3 2. + <_> + 9 21 7 3 2. + <_> + + <_> + 3 18 18 4 -1. + <_> + 12 18 9 2 2. + <_> + 3 20 9 2 2. + <_> + + <_> + 0 20 15 4 -1. + <_> + 5 20 5 4 3. + <_> + + <_> + 9 15 15 9 -1. + <_> + 14 15 5 9 3. + <_> + + <_> + 4 4 16 4 -1. + <_> + 4 6 16 2 2. + <_> + + <_> + 7 6 10 6 -1. + <_> + 7 8 10 2 3. + <_> + + <_> + 0 14 15 10 -1. + <_> + 5 14 5 10 3. + <_> + + <_> + 7 9 10 14 -1. + <_> + 12 9 5 7 2. + <_> + 7 16 5 7 2. + <_> + + <_> + 7 6 6 9 -1. + <_> + 9 6 2 9 3. + <_> + + <_> + 3 6 18 3 -1. + <_> + 3 7 18 1 3. + <_> + + <_> + 0 10 18 3 -1. + <_> + 0 11 18 1 3. + <_> + + <_> + 3 16 18 4 -1. + <_> + 12 16 9 2 2. + <_> + 3 18 9 2 2. + <_> + + <_> + 4 6 14 6 -1. + <_> + 4 6 7 3 2. + <_> + 11 9 7 3 2. + <_> + + <_> + 13 0 2 18 -1. + <_> + 13 0 1 18 2. + <_> + + <_> + 9 0 2 18 -1. + <_> + 10 0 1 18 2. + <_> + + <_> + 5 7 15 10 -1. + <_> + 10 7 5 10 3. + <_> + + <_> + 1 20 21 4 -1. + <_> + 8 20 7 4 3. + <_> + + <_> + 10 5 5 18 -1. + <_> + 10 14 5 9 2. + <_> + + <_> + 0 2 24 6 -1. + <_> + 0 2 12 3 2. + <_> + 12 5 12 3 2. + <_> + + <_> + 1 1 22 8 -1. + <_> + 12 1 11 4 2. + <_> + 1 5 11 4 2. + <_> + + <_> + 4 0 15 9 -1. + <_> + 4 3 15 3 3. + <_> + + <_> + 0 0 24 19 -1. + <_> + 8 0 8 19 3. + <_> + + <_> + 2 21 18 3 -1. + <_> + 11 21 9 3 2. + <_> + + <_> + 9 7 10 4 -1. + <_> + 9 7 5 4 2. + <_> + + <_> + 5 7 10 4 -1. + <_> + 10 7 5 4 2. + <_> + + <_> + 17 8 6 16 -1. + <_> + 20 8 3 8 2. + <_> + 17 16 3 8 2. + <_> + + <_> + 1 15 20 4 -1. + <_> + 1 15 10 2 2. + <_> + 11 17 10 2 2. + <_> + + <_> + 14 15 10 6 -1. + <_> + 14 17 10 2 3. + <_> + + <_> + 3 0 16 9 -1. + <_> + 3 3 16 3 3. + <_> + + <_> + 15 6 7 15 -1. + <_> + 15 11 7 5 3. + <_> + + <_> + 9 1 6 13 -1. + <_> + 11 1 2 13 3. + <_> + + <_> + 17 2 6 14 -1. + <_> + 17 2 3 14 2. + <_> + + <_> + 3 14 12 10 -1. + <_> + 3 14 6 5 2. + <_> + 9 19 6 5 2. + <_> + + <_> + 7 6 10 6 -1. + <_> + 7 8 10 2 3. + <_> + + <_> + 1 2 6 14 -1. + <_> + 4 2 3 14 2. + <_> + + <_> + 10 4 5 12 -1. + <_> + 10 8 5 4 3. + <_> + + <_> + 0 17 24 5 -1. + <_> + 8 17 8 5 3. + <_> + + <_> + 15 7 5 12 -1. + <_> + 15 11 5 4 3. + <_> + + <_> + 3 1 6 12 -1. + <_> + 3 1 3 6 2. + <_> + 6 7 3 6 2. + <_> + + <_> + 12 13 6 6 -1. + <_> + 12 16 6 3 2. + <_> + + <_> + 6 13 6 6 -1. + <_> + 6 16 6 3 2. + <_> + + <_> + 14 6 3 16 -1. + <_> + 14 14 3 8 2. + <_> + + <_> + 1 12 13 6 -1. + <_> + 1 14 13 2 3. + <_> + + <_> + 13 1 4 9 -1. + <_> + 13 1 2 9 2. + <_> + + <_> + 7 0 9 6 -1. + <_> + 10 0 3 6 3. + <_> + + <_> + 12 2 6 9 -1. + <_> + 12 2 3 9 2. + <_> + + <_> + 6 2 6 9 -1. + <_> + 9 2 3 9 2. + <_> + + <_> + 6 18 12 6 -1. + <_> + 6 20 12 2 3. + <_> + + <_> + 7 6 6 9 -1. + <_> + 9 6 2 9 3. + <_> + + <_> + 7 7 12 3 -1. + <_> + 7 7 6 3 2. + <_> + + <_> + 8 3 8 21 -1. + <_> + 8 10 8 7 3. + <_> + + <_> + 7 4 10 12 -1. + <_> + 7 8 10 4 3. + <_> + + <_> + 0 1 6 9 -1. + <_> + 0 4 6 3 3. + <_> + + <_> + 15 2 2 20 -1. + <_> + 15 2 1 20 2. + <_> + + <_> + 0 3 6 9 -1. + <_> + 0 6 6 3 3. + <_> + + <_> + 15 3 2 21 -1. + <_> + 15 3 1 21 2. + <_> + + <_> + 7 0 2 23 -1. + <_> + 8 0 1 23 2. + <_> + + <_> + 15 8 9 4 -1. + <_> + 15 10 9 2 2. + <_> + + <_> + 0 8 9 4 -1. + <_> + 0 10 9 2 2. + <_> + + <_> + 8 14 9 6 -1. + <_> + 8 16 9 2 3. + <_> + + <_> + 0 14 9 6 -1. + <_> + 0 16 9 2 3. + <_> + + <_> + 3 10 18 4 -1. + <_> + 9 10 6 4 3. + <_> + + <_> + 0 0 24 19 -1. + <_> + 8 0 8 19 3. + <_> + + <_> + 9 1 8 12 -1. + <_> + 9 7 8 6 2. + <_> + + <_> + 10 6 4 10 -1. + <_> + 12 6 2 10 2. + <_> + + <_> + 7 9 10 12 -1. + <_> + 12 9 5 6 2. + <_> + 7 15 5 6 2. + <_> + + <_> + 5 0 3 19 -1. + <_> + 6 0 1 19 3. + <_> + + <_> + 14 0 6 10 -1. + <_> + 16 0 2 10 3. + <_> + + <_> + 2 0 6 12 -1. + <_> + 2 0 3 6 2. + <_> + 5 6 3 6 2. + <_> + + <_> + 0 11 24 2 -1. + <_> + 0 12 24 1 2. + <_> + + <_> + 4 9 13 4 -1. + <_> + 4 11 13 2 2. + <_> + + <_> + 9 8 6 9 -1. + <_> + 9 11 6 3 3. + <_> + + <_> + 0 12 16 4 -1. + <_> + 0 14 16 2 2. + <_> + + <_> + 18 12 6 9 -1. + <_> + 18 15 6 3 3. + <_> + + <_> + 0 12 6 9 -1. + <_> + 0 15 6 3 3. + <_> + + <_> + 8 7 10 4 -1. + <_> + 8 7 5 4 2. + <_> + + <_> + 8 7 6 9 -1. + <_> + 10 7 2 9 3. + <_> + + <_> + 11 0 6 9 -1. + <_> + 13 0 2 9 3. + <_> + + <_> + 7 0 6 9 -1. + <_> + 9 0 2 9 3. + <_> + + <_> + 12 3 6 15 -1. + <_> + 14 3 2 15 3. + <_> + + <_> + 6 3 6 15 -1. + <_> + 8 3 2 15 3. + <_> + + <_> + 15 2 9 4 -1. + <_> + 15 4 9 2 2. + <_> + + <_> + 5 10 6 7 -1. + <_> + 8 10 3 7 2. + <_> + + <_> + 9 14 6 10 -1. + <_> + 9 19 6 5 2. + <_> + + <_> + 7 13 5 8 -1. + <_> + 7 17 5 4 2. + <_> + + <_> + 14 5 3 16 -1. + <_> + 14 13 3 8 2. + <_> + + <_> + 2 17 18 3 -1. + <_> + 2 18 18 1 3. + <_> + + <_> + 5 18 19 3 -1. + <_> + 5 19 19 1 3. + <_> + + <_> + 9 0 6 9 -1. + <_> + 11 0 2 9 3. + <_> + + <_> + 12 4 3 18 -1. + <_> + 13 4 1 18 3. + <_> + + <_> + 9 4 3 18 -1. + <_> + 10 4 1 18 3. + <_> + + <_> + 3 3 18 9 -1. + <_> + 9 3 6 9 3. + <_> + + <_> + 6 1 6 14 -1. + <_> + 8 1 2 14 3. + <_> + + <_> + 12 16 9 6 -1. + <_> + 12 19 9 3 2. + <_> + + <_> + 1 3 20 16 -1. + <_> + 1 3 10 8 2. + <_> + 11 11 10 8 2. + <_> + + <_> + 12 5 6 12 -1. + <_> + 15 5 3 6 2. + <_> + 12 11 3 6 2. + <_> + + <_> + 1 2 22 16 -1. + <_> + 1 2 11 8 2. + <_> + 12 10 11 8 2. + <_> + + <_> + 10 14 5 10 -1. + <_> + 10 19 5 5 2. + <_> + + <_> + 3 21 18 3 -1. + <_> + 3 22 18 1 3. + <_> + + <_> + 10 14 6 10 -1. + <_> + 12 14 2 10 3. + <_> + + <_> + 0 2 24 4 -1. + <_> + 8 2 8 4 3. + <_> + + <_> + 6 4 12 9 -1. + <_> + 6 7 12 3 3. + <_> + + <_> + 6 6 12 5 -1. + <_> + 10 6 4 5 3. + <_> + + <_> + 5 8 14 12 -1. + <_> + 5 12 14 4 3. + <_> + + <_> + 4 14 8 10 -1. + <_> + 4 14 4 5 2. + <_> + 8 19 4 5 2. + <_> + + <_> + 11 6 5 14 -1. + <_> + 11 13 5 7 2. + <_> + + <_> + 7 6 3 16 -1. + <_> + 7 14 3 8 2. + <_> + + <_> + 3 7 18 8 -1. + <_> + 9 7 6 8 3. + <_> + + <_> + 2 3 20 2 -1. + <_> + 2 4 20 1 2. + <_> + + <_> + 3 12 19 6 -1. + <_> + 3 14 19 2 3. + <_> + + <_> + 8 6 6 9 -1. + <_> + 10 6 2 9 3. + <_> + + <_> + 16 6 6 14 -1. + <_> + 16 6 3 14 2. + <_> + + <_> + 7 9 6 12 -1. + <_> + 9 9 2 12 3. + <_> + + <_> + 18 6 6 18 -1. + <_> + 21 6 3 9 2. + <_> + 18 15 3 9 2. + <_> + + <_> + 0 6 6 18 -1. + <_> + 0 6 3 9 2. + <_> + 3 15 3 9 2. + <_> + + <_> + 18 2 6 9 -1. + <_> + 18 5 6 3 3. + <_> + + <_> + 3 18 15 6 -1. + <_> + 3 20 15 2 3. + <_> + + <_> + 18 2 6 9 -1. + <_> + 18 5 6 3 3. + <_> + + <_> + 0 2 6 9 -1. + <_> + 0 5 6 3 3. + <_> + + <_> + 5 10 18 2 -1. + <_> + 5 11 18 1 2. + <_> + + <_> + 6 0 12 6 -1. + <_> + 6 2 12 2 3. + <_> + + <_> + 10 0 6 9 -1. + <_> + 12 0 2 9 3. + <_> + + <_> + 8 0 6 9 -1. + <_> + 10 0 2 9 3. + <_> + + <_> + 15 12 9 6 -1. + <_> + 15 14 9 2 3. + <_> + + <_> + 3 6 13 6 -1. + <_> + 3 8 13 2 3. + <_> + + <_> + 15 12 9 6 -1. + <_> + 15 14 9 2 3. + <_> + + <_> + 2 5 6 15 -1. + <_> + 5 5 3 15 2. + <_> + + <_> + 8 8 9 6 -1. + <_> + 11 8 3 6 3. + <_> + + <_> + 8 6 3 14 -1. + <_> + 8 13 3 7 2. + <_> + + <_> + 15 12 9 6 -1. + <_> + 15 14 9 2 3. + <_> + + <_> + 4 12 10 4 -1. + <_> + 9 12 5 4 2. + <_> + + <_> + 13 1 4 19 -1. + <_> + 13 1 2 19 2. + <_> + + <_> + 7 1 4 19 -1. + <_> + 9 1 2 19 2. + <_> + + <_> + 18 9 6 9 -1. + <_> + 18 12 6 3 3. + <_> + + <_> + 1 21 18 3 -1. + <_> + 1 22 18 1 3. + <_> + + <_> + 14 13 10 9 -1. + <_> + 14 16 10 3 3. + <_> + + <_> + 1 13 22 4 -1. + <_> + 1 13 11 2 2. + <_> + 12 15 11 2 2. + <_> + + <_> + 4 6 16 6 -1. + <_> + 12 6 8 3 2. + <_> + 4 9 8 3 2. + <_> + + <_> + 1 0 18 22 -1. + <_> + 1 0 9 11 2. + <_> + 10 11 9 11 2. + <_> + + <_> + 10 7 8 14 -1. + <_> + 14 7 4 7 2. + <_> + 10 14 4 7 2. + <_> + + <_> + 0 4 6 20 -1. + <_> + 0 4 3 10 2. + <_> + 3 14 3 10 2. + <_> + + <_> + 15 0 6 9 -1. + <_> + 17 0 2 9 3. + <_> + + <_> + 3 0 6 9 -1. + <_> + 5 0 2 9 3. + <_> + + <_> + 15 12 6 12 -1. + <_> + 18 12 3 6 2. + <_> + 15 18 3 6 2. + <_> + + <_> + 3 12 6 12 -1. + <_> + 3 12 3 6 2. + <_> + 6 18 3 6 2. + <_> + + <_> + 15 12 9 6 -1. + <_> + 15 14 9 2 3. + <_> + + <_> + 0 12 9 6 -1. + <_> + 0 14 9 2 3. + <_> + + <_> + 4 14 19 3 -1. + <_> + 4 15 19 1 3. + <_> + + <_> + 2 13 19 3 -1. + <_> + 2 14 19 1 3. + <_> + + <_> + 14 15 10 6 -1. + <_> + 14 17 10 2 3. + <_> + + <_> + 6 0 10 12 -1. + <_> + 6 0 5 6 2. + <_> + 11 6 5 6 2. + <_> + + <_> + 17 1 6 12 -1. + <_> + 20 1 3 6 2. + <_> + 17 7 3 6 2. + <_> + + <_> + 1 1 6 12 -1. + <_> + 1 1 3 6 2. + <_> + 4 7 3 6 2. + <_> + + <_> + 16 14 6 9 -1. + <_> + 16 17 6 3 3. + <_> + + <_> + 7 3 9 12 -1. + <_> + 7 9 9 6 2. + <_> + + <_> + 12 1 4 12 -1. + <_> + 12 7 4 6 2. + <_> + + <_> + 4 0 14 8 -1. + <_> + 4 4 14 4 2. + <_> + + <_> + 10 6 6 9 -1. + <_> + 12 6 2 9 3. + <_> + + <_> + 2 10 18 3 -1. + <_> + 8 10 6 3 3. + <_> + + <_> + 15 15 9 6 -1. + <_> + 15 17 9 2 3. + <_> + + <_> + 0 1 21 23 -1. + <_> + 7 1 7 23 3. + <_> + + <_> + 6 9 17 4 -1. + <_> + 6 11 17 2 2. + <_> + + <_> + 1 0 11 18 -1. + <_> + 1 6 11 6 3. + <_> + + <_> + 6 15 13 6 -1. + <_> + 6 17 13 2 3. + <_> + + <_> + 0 15 9 6 -1. + <_> + 0 17 9 2 3. + <_> + + <_> + 8 7 15 4 -1. + <_> + 13 7 5 4 3. + <_> + + <_> + 9 12 6 9 -1. + <_> + 9 15 6 3 3. + <_> + + <_> + 6 8 18 3 -1. + <_> + 12 8 6 3 3. + <_> + + <_> + 0 14 24 4 -1. + <_> + 8 14 8 4 3. + <_> + + <_> + 16 10 3 12 -1. + <_> + 16 16 3 6 2. + <_> + + <_> + 0 3 24 3 -1. + <_> + 0 4 24 1 3. + <_> + + <_> + 14 17 10 6 -1. + <_> + 14 19 10 2 3. + <_> + + <_> + 1 13 18 3 -1. + <_> + 7 13 6 3 3. + <_> + + <_> + 5 0 18 9 -1. + <_> + 5 3 18 3 3. + <_> + + <_> + 4 3 16 9 -1. + <_> + 4 6 16 3 3. + <_> + + <_> + 16 5 3 12 -1. + <_> + 16 11 3 6 2. + <_> + + <_> + 0 7 18 4 -1. + <_> + 6 7 6 4 3. + <_> + + <_> + 10 6 6 9 -1. + <_> + 12 6 2 9 3. + <_> + + <_> + 9 8 6 10 -1. + <_> + 11 8 2 10 3. + <_> + + <_> + 9 15 6 9 -1. + <_> + 11 15 2 9 3. + <_> + + <_> + 3 1 18 21 -1. + <_> + 12 1 9 21 2. + <_> + + <_> + 6 8 12 7 -1. + <_> + 6 8 6 7 2. + <_> + + <_> + 8 5 6 9 -1. + <_> + 10 5 2 9 3. + <_> + + <_> + 0 2 24 4 -1. + <_> + 8 2 8 4 3. + <_> + + <_> + 14 7 5 12 -1. + <_> + 14 11 5 4 3. + <_> + + <_> + 5 7 5 12 -1. + <_> + 5 11 5 4 3. + <_> + + <_> + 9 6 6 9 -1. + <_> + 11 6 2 9 3. + <_> + + <_> + 0 1 6 17 -1. + <_> + 3 1 3 17 2. + <_> + + <_> + 3 1 19 9 -1. + <_> + 3 4 19 3 3. + <_> + + <_> + 3 18 12 6 -1. + <_> + 3 18 6 3 2. + <_> + 9 21 6 3 2. + <_> + + <_> + 20 4 4 19 -1. + <_> + 20 4 2 19 2. + <_> + + <_> + 0 16 10 7 -1. + <_> + 5 16 5 7 2. + <_> + + <_> + 8 7 10 12 -1. + <_> + 13 7 5 6 2. + <_> + 8 13 5 6 2. + <_> + + <_> + 6 7 10 12 -1. + <_> + 6 7 5 6 2. + <_> + 11 13 5 6 2. + <_> + + <_> + 9 2 9 6 -1. + <_> + 12 2 3 6 3. + <_> + + <_> + 1 20 21 4 -1. + <_> + 8 20 7 4 3. + <_> + + <_> + 9 12 9 6 -1. + <_> + 9 14 9 2 3. + <_> + + <_> + 7 2 9 6 -1. + <_> + 10 2 3 6 3. + <_> + + <_> + 13 0 4 14 -1. + <_> + 13 0 2 14 2. + <_> + + <_> + 7 0 4 14 -1. + <_> + 9 0 2 14 2. + <_> + + <_> + 14 15 9 6 -1. + <_> + 14 17 9 2 3. + <_> + + <_> + 2 8 18 5 -1. + <_> + 8 8 6 5 3. + <_> + + <_> + 18 3 6 11 -1. + <_> + 20 3 2 11 3. + <_> + + <_> + 6 5 11 14 -1. + <_> + 6 12 11 7 2. + <_> + + <_> + 18 4 6 9 -1. + <_> + 18 7 6 3 3. + <_> + + <_> + 7 6 9 6 -1. + <_> + 7 8 9 2 3. + <_> + + <_> + 18 4 6 9 -1. + <_> + 18 7 6 3 3. + <_> + + <_> + 0 4 6 9 -1. + <_> + 0 7 6 3 3. + <_> + + <_> + 9 4 9 4 -1. + <_> + 9 6 9 2 2. + <_> + + <_> + 0 22 19 2 -1. + <_> + 0 23 19 1 2. + <_> + + <_> + 17 14 6 9 -1. + <_> + 17 17 6 3 3. + <_> + + <_> + 1 14 6 9 -1. + <_> + 1 17 6 3 3. + <_> + + <_> + 14 11 4 9 -1. + <_> + 14 11 2 9 2. + <_> + + <_> + 6 11 4 9 -1. + <_> + 8 11 2 9 2. + <_> + + <_> + 3 9 18 7 -1. + <_> + 9 9 6 7 3. + <_> + + <_> + 9 12 6 10 -1. + <_> + 9 17 6 5 2. + <_> + + <_> + 12 0 6 9 -1. + <_> + 14 0 2 9 3. + <_> + + <_> + 6 0 6 9 -1. + <_> + 8 0 2 9 3. + <_> + + <_> + 6 17 18 3 -1. + <_> + 6 18 18 1 3. + <_> + + <_> + 1 17 18 3 -1. + <_> + 1 18 18 1 3. + <_> + + <_> + 10 6 11 12 -1. + <_> + 10 12 11 6 2. + <_> + + <_> + 5 6 14 6 -1. + <_> + 5 6 7 3 2. + <_> + 12 9 7 3 2. + <_> + + <_> + 5 4 15 4 -1. + <_> + 5 6 15 2 2. + <_> + + <_> + 0 0 22 2 -1. + <_> + 0 1 22 1 2. + <_> + + <_> + 0 0 24 24 -1. + <_> + 8 0 8 24 3. + <_> + + <_> + 1 15 18 4 -1. + <_> + 10 15 9 4 2. + <_> + + <_> + 6 8 12 9 -1. + <_> + 6 11 12 3 3. + <_> + + <_> + 4 12 7 12 -1. + <_> + 4 16 7 4 3. + <_> + + <_> + 1 2 22 6 -1. + <_> + 12 2 11 3 2. + <_> + 1 5 11 3 2. + <_> + + <_> + 5 20 14 3 -1. + <_> + 12 20 7 3 2. + <_> + + <_> + 0 0 24 16 -1. + <_> + 12 0 12 8 2. + <_> + 0 8 12 8 2. + <_> + + <_> + 3 13 18 4 -1. + <_> + 3 13 9 2 2. + <_> + 12 15 9 2 2. + <_> + + <_> + 2 10 22 2 -1. + <_> + 2 11 22 1 2. + <_> + + <_> + 6 3 11 8 -1. + <_> + 6 7 11 4 2. + <_> + + <_> + 14 5 6 6 -1. + <_> + 14 8 6 3 2. + <_> + + <_> + 0 7 24 6 -1. + <_> + 0 9 24 2 3. + <_> + + <_> + 14 0 10 10 -1. + <_> + 19 0 5 5 2. + <_> + 14 5 5 5 2. + <_> + + <_> + 0 0 10 10 -1. + <_> + 0 0 5 5 2. + <_> + 5 5 5 5 2. + <_> + + <_> + 0 1 24 4 -1. + <_> + 12 1 12 2 2. + <_> + 0 3 12 2 2. + <_> + + <_> + 0 17 18 3 -1. + <_> + 0 18 18 1 3. + <_> + + <_> + 5 15 16 6 -1. + <_> + 13 15 8 3 2. + <_> + 5 18 8 3 2. + <_> + + <_> + 3 15 16 6 -1. + <_> + 3 15 8 3 2. + <_> + 11 18 8 3 2. + <_> + + <_> + 6 16 18 3 -1. + <_> + 6 17 18 1 3. + <_> + + <_> + 0 13 21 10 -1. + <_> + 0 18 21 5 2. + <_> + + <_> + 13 0 6 24 -1. + <_> + 15 0 2 24 3. + <_> + + <_> + 7 4 6 11 -1. + <_> + 9 4 2 11 3. + <_> + + <_> + 9 5 9 6 -1. + <_> + 12 5 3 6 3. + <_> + + <_> + 1 4 2 20 -1. + <_> + 1 14 2 10 2. + <_> + + <_> + 13 0 6 24 -1. + <_> + 15 0 2 24 3. + <_> + + <_> + 5 0 6 24 -1. + <_> + 7 0 2 24 3. + <_> + + <_> + 16 7 6 14 -1. + <_> + 19 7 3 7 2. + <_> + 16 14 3 7 2. + <_> + + <_> + 4 7 4 12 -1. + <_> + 6 7 2 12 2. + <_> + + <_> + 0 5 24 14 -1. + <_> + 8 5 8 14 3. + <_> + + <_> + 5 13 10 6 -1. + <_> + 5 15 10 2 3. + <_> + + <_> + 12 0 6 9 -1. + <_> + 14 0 2 9 3. + <_> + + <_> + 2 7 6 14 -1. + <_> + 2 7 3 7 2. + <_> + 5 14 3 7 2. + <_> + + <_> + 15 2 9 15 -1. + <_> + 18 2 3 15 3. + <_> + + <_> + 0 2 6 9 -1. + <_> + 2 2 2 9 3. + <_> + + <_> + 12 2 10 14 -1. + <_> + 17 2 5 7 2. + <_> + 12 9 5 7 2. + <_> + + <_> + 11 6 2 18 -1. + <_> + 12 6 1 18 2. + <_> + + <_> + 9 5 15 6 -1. + <_> + 14 5 5 6 3. + <_> + + <_> + 8 6 6 10 -1. + <_> + 10 6 2 10 3. + <_> + + <_> + 12 0 6 9 -1. + <_> + 14 0 2 9 3. + <_> + + <_> + 3 3 9 7 -1. + <_> + 6 3 3 7 3. + <_> + + <_> + 6 7 14 3 -1. + <_> + 6 7 7 3 2. + <_> + + <_> + 7 7 8 6 -1. + <_> + 11 7 4 6 2. + <_> + + <_> + 12 7 7 12 -1. + <_> + 12 13 7 6 2. + <_> + + <_> + 10 6 4 18 -1. + <_> + 10 6 2 9 2. + <_> + 12 15 2 9 2. + <_> + + <_> + 16 14 6 9 -1. + <_> + 16 17 6 3 3. + <_> + + <_> + 4 0 6 13 -1. + <_> + 6 0 2 13 3. + <_> + + <_> + 2 2 21 3 -1. + <_> + 9 2 7 3 3. + <_> + + <_> + 5 4 5 12 -1. + <_> + 5 8 5 4 3. + <_> + + <_> + 10 3 4 10 -1. + <_> + 10 8 4 5 2. + <_> + + <_> + 8 4 5 8 -1. + <_> + 8 8 5 4 2. + <_> + + <_> + 6 0 11 9 -1. + <_> + 6 3 11 3 3. + <_> + + <_> + 6 6 12 5 -1. + <_> + 10 6 4 5 3. + <_> + + <_> + 0 0 24 5 -1. + <_> + 8 0 8 5 3. + <_> + + <_> + 1 10 23 6 -1. + <_> + 1 12 23 2 3. + <_> + + <_> + 3 21 18 3 -1. + <_> + 9 21 6 3 3. + <_> + + <_> + 3 6 21 6 -1. + <_> + 3 8 21 2 3. + <_> + + <_> + 0 5 6 12 -1. + <_> + 2 5 2 12 3. + <_> + + <_> + 10 2 4 15 -1. + <_> + 10 7 4 5 3. + <_> + + <_> + 8 7 8 10 -1. + <_> + 8 12 8 5 2. + <_> + + <_> + 5 7 15 12 -1. + <_> + 10 7 5 12 3. + <_> + + <_> + 0 17 10 6 -1. + <_> + 0 19 10 2 3. + <_> + + <_> + 14 18 9 6 -1. + <_> + 14 20 9 2 3. + <_> + + <_> + 9 6 6 16 -1. + <_> + 9 14 6 8 2. + <_> + + <_> + 14 18 9 6 -1. + <_> + 14 20 9 2 3. + <_> + + <_> + 1 18 9 6 -1. + <_> + 1 20 9 2 3. + <_> + + <_> + 15 9 9 6 -1. + <_> + 15 11 9 2 3. + <_> + + <_> + 0 9 9 6 -1. + <_> + 0 11 9 2 3. + <_> + + <_> + 17 3 6 9 -1. + <_> + 19 3 2 9 3. + <_> + + <_> + 2 17 18 3 -1. + <_> + 2 18 18 1 3. + <_> + + <_> + 3 15 21 6 -1. + <_> + 3 17 21 2 3. + <_> + + <_> + 9 17 6 6 -1. + <_> + 9 20 6 3 2. + <_> + + <_> + 18 3 6 9 -1. + <_> + 18 6 6 3 3. + <_> + + <_> + 0 3 6 9 -1. + <_> + 0 6 6 3 3. + <_> + + <_> + 4 0 16 10 -1. + <_> + 12 0 8 5 2. + <_> + 4 5 8 5 2. + <_> + + <_> + 2 0 10 16 -1. + <_> + 2 0 5 8 2. + <_> + 7 8 5 8 2. + <_> + + <_> + 14 0 10 5 -1. + <_> + 14 0 5 5 2. + <_> + + <_> + 0 0 10 5 -1. + <_> + 5 0 5 5 2. + <_> + + <_> + 18 3 6 10 -1. + <_> + 18 3 3 10 2. + <_> + + <_> + 5 11 12 6 -1. + <_> + 5 11 6 3 2. + <_> + 11 14 6 3 2. + <_> + + <_> + 21 0 3 18 -1. + <_> + 22 0 1 18 3. + <_> + + <_> + 6 0 6 9 -1. + <_> + 8 0 2 9 3. + <_> + + <_> + 8 8 9 7 -1. + <_> + 11 8 3 7 3. + <_> + + <_> + 7 12 8 10 -1. + <_> + 7 12 4 5 2. + <_> + 11 17 4 5 2. + <_> + + <_> + 21 0 3 18 -1. + <_> + 22 0 1 18 3. + <_> + + <_> + 10 6 4 9 -1. + <_> + 12 6 2 9 2. + <_> + + <_> + 15 0 9 6 -1. + <_> + 15 2 9 2 3. + <_> + + <_> + 0 2 24 3 -1. + <_> + 0 3 24 1 3. + <_> + + <_> + 11 7 6 9 -1. + <_> + 13 7 2 9 3. + <_> + + <_> + 7 6 6 10 -1. + <_> + 9 6 2 10 3. + <_> + + <_> + 12 1 6 12 -1. + <_> + 14 1 2 12 3. + <_> + + <_> + 6 4 12 12 -1. + <_> + 6 10 12 6 2. + <_> + + <_> + 14 3 2 21 -1. + <_> + 14 3 1 21 2. + <_> + + <_> + 6 1 12 8 -1. + <_> + 6 5 12 4 2. + <_> + + <_> + 3 0 18 8 -1. + <_> + 3 4 18 4 2. + <_> + + <_> + 3 0 18 3 -1. + <_> + 3 1 18 1 3. + <_> + + <_> + 0 13 24 4 -1. + <_> + 12 13 12 2 2. + <_> + 0 15 12 2 2. + <_> + + <_> + 10 5 4 9 -1. + <_> + 12 5 2 9 2. + <_> + + <_> + 11 1 6 9 -1. + <_> + 13 1 2 9 3. + <_> + + <_> + 6 2 6 22 -1. + <_> + 8 2 2 22 3. + <_> + + <_> + 16 10 8 14 -1. + <_> + 20 10 4 7 2. + <_> + 16 17 4 7 2. + <_> + + <_> + 3 4 16 15 -1. + <_> + 3 9 16 5 3. + <_> + + <_> + 16 10 8 14 -1. + <_> + 20 10 4 7 2. + <_> + 16 17 4 7 2. + <_> + + <_> + 0 10 8 14 -1. + <_> + 0 10 4 7 2. + <_> + 4 17 4 7 2. + <_> + + <_> + 10 14 11 6 -1. + <_> + 10 17 11 3 2. + <_> + + <_> + 0 7 24 9 -1. + <_> + 8 7 8 9 3. + <_> + + <_> + 13 1 4 16 -1. + <_> + 13 1 2 16 2. + <_> + + <_> + 7 1 4 16 -1. + <_> + 9 1 2 16 2. + <_> + + <_> + 5 5 16 8 -1. + <_> + 13 5 8 4 2. + <_> + 5 9 8 4 2. + <_> + + <_> + 0 9 6 9 -1. + <_> + 0 12 6 3 3. + <_> + + <_> + 6 16 18 3 -1. + <_> + 6 17 18 1 3. + <_> + + <_> + 3 12 6 9 -1. + <_> + 3 15 6 3 3. + <_> + + <_> + 8 14 9 6 -1. + <_> + 8 16 9 2 3. + <_> + + <_> + 2 13 8 10 -1. + <_> + 2 13 4 5 2. + <_> + 6 18 4 5 2. + <_> + + <_> + 15 5 3 18 -1. + <_> + 15 11 3 6 3. + <_> + + <_> + 3 5 18 3 -1. + <_> + 3 6 18 1 3. + <_> + + <_> + 17 5 6 11 -1. + <_> + 19 5 2 11 3. + <_> + + <_> + 1 5 6 11 -1. + <_> + 3 5 2 11 3. + <_> + + <_> + 19 1 4 9 -1. + <_> + 19 1 2 9 2. + <_> + + <_> + 1 1 4 9 -1. + <_> + 3 1 2 9 2. + <_> + + <_> + 4 15 18 9 -1. + <_> + 4 15 9 9 2. + <_> + + <_> + 6 9 12 4 -1. + <_> + 6 11 12 2 2. + <_> + + <_> + 15 2 9 6 -1. + <_> + 15 4 9 2 3. + <_> + + <_> + 0 2 9 6 -1. + <_> + 0 4 9 2 3. + <_> + + <_> + 15 0 6 17 -1. + <_> + 17 0 2 17 3. + <_> + + <_> + 3 0 6 17 -1. + <_> + 5 0 2 17 3. + <_> + + <_> + 8 17 9 4 -1. + <_> + 8 19 9 2 2. + <_> + + <_> + 6 5 3 18 -1. + <_> + 6 11 3 6 3. + <_> + + <_> + 5 2 14 12 -1. + <_> + 5 8 14 6 2. + <_> + + <_> + 10 2 3 12 -1. + <_> + 10 8 3 6 2. + <_> + + <_> + 10 7 14 15 -1. + <_> + 10 12 14 5 3. + <_> + + <_> + 0 7 14 15 -1. + <_> + 0 12 14 5 3. + <_> + + <_> + 15 0 9 6 -1. + <_> + 15 2 9 2 3. + <_> + + <_> + 0 0 9 6 -1. + <_> + 0 2 9 2 3. + <_> + + <_> + 12 6 6 14 -1. + <_> + 14 6 2 14 3. + <_> + + <_> + 9 7 6 9 -1. + <_> + 11 7 2 9 3. + <_> + + <_> + 12 6 6 15 -1. + <_> + 14 6 2 15 3. + <_> + + <_> + 6 6 6 15 -1. + <_> + 8 6 2 15 3. + <_> + + <_> + 15 3 8 9 -1. + <_> + 15 3 4 9 2. + <_> + + <_> + 0 0 9 21 -1. + <_> + 3 0 3 21 3. + <_> + + <_> + 11 9 8 12 -1. + <_> + 11 13 8 4 3. + <_> + + <_> + 6 7 10 12 -1. + <_> + 6 7 5 6 2. + <_> + 11 13 5 6 2. + <_> + + <_> + 10 6 4 18 -1. + <_> + 12 6 2 9 2. + <_> + 10 15 2 9 2. + <_> + + <_> + 0 0 6 9 -1. + <_> + 0 3 6 3 3. + <_> + + <_> + 3 14 18 3 -1. + <_> + 3 15 18 1 3. + <_> + + <_> + 3 14 8 10 -1. + <_> + 3 14 4 5 2. + <_> + 7 19 4 5 2. + <_> + + <_> + 0 12 24 4 -1. + <_> + 12 12 12 2 2. + <_> + 0 14 12 2 2. + <_> + + <_> + 0 2 3 20 -1. + <_> + 1 2 1 20 3. + <_> + + <_> + 12 16 10 8 -1. + <_> + 17 16 5 4 2. + <_> + 12 20 5 4 2. + <_> + + <_> + 2 16 10 8 -1. + <_> + 2 16 5 4 2. + <_> + 7 20 5 4 2. + <_> + + <_> + 7 0 10 9 -1. + <_> + 7 3 10 3 3. + <_> + + <_> + 0 0 24 3 -1. + <_> + 8 0 8 3 3. + <_> + + <_> + 3 8 15 4 -1. + <_> + 3 10 15 2 2. + <_> + + <_> + 6 5 12 6 -1. + <_> + 10 5 4 6 3. + <_> + + <_> + 5 13 14 6 -1. + <_> + 5 16 14 3 2. + <_> + + <_> + 11 14 4 10 -1. + <_> + 11 19 4 5 2. + <_> + + <_> + 0 6 6 7 -1. + <_> + 3 6 3 7 2. + <_> + + <_> + 18 0 6 6 -1. + <_> + 18 0 3 6 2. + <_> + + <_> + 3 1 18 3 -1. + <_> + 3 2 18 1 3. + <_> + + <_> + 9 6 14 18 -1. + <_> + 9 12 14 6 3. + <_> + + <_> + 0 0 6 6 -1. + <_> + 3 0 3 6 2. + <_> + + <_> + 13 11 6 6 -1. + <_> + 13 11 3 6 2. + <_> + + <_> + 0 20 24 3 -1. + <_> + 8 20 8 3 3. + <_> + + <_> + 13 11 6 7 -1. + <_> + 13 11 3 7 2. + <_> + + <_> + 4 12 10 6 -1. + <_> + 4 14 10 2 3. + <_> + + <_> + 13 11 6 6 -1. + <_> + 13 11 3 6 2. + <_> + + <_> + 5 11 6 7 -1. + <_> + 8 11 3 7 2. + <_> + + <_> + 7 4 11 12 -1. + <_> + 7 8 11 4 3. + <_> + + <_> + 6 15 10 4 -1. + <_> + 6 17 10 2 2. + <_> + + <_> + 14 0 6 9 -1. + <_> + 16 0 2 9 3. + <_> + + <_> + 4 0 6 9 -1. + <_> + 6 0 2 9 3. + <_> + + <_> + 11 2 4 15 -1. + <_> + 11 7 4 5 3. + <_> + + <_> + 0 0 20 3 -1. + <_> + 0 1 20 1 3. + <_> + + <_> + 13 18 10 6 -1. + <_> + 13 20 10 2 3. + <_> + + <_> + 2 7 6 11 -1. + <_> + 5 7 3 11 2. + <_> + + <_> + 10 14 10 9 -1. + <_> + 10 17 10 3 3. + <_> + + <_> + 8 2 4 9 -1. + <_> + 10 2 2 9 2. + <_> + + <_> + 14 3 10 4 -1. + <_> + 14 3 5 4 2. + <_> + + <_> + 6 6 12 6 -1. + <_> + 6 6 6 3 2. + <_> + 12 9 6 3 2. + <_> + + <_> + 8 8 8 10 -1. + <_> + 12 8 4 5 2. + <_> + 8 13 4 5 2. + <_> + + <_> + 7 4 4 16 -1. + <_> + 7 12 4 8 2. + <_> + + <_> + 8 8 9 4 -1. + <_> + 8 10 9 2 2. + <_> + + <_> + 5 2 14 9 -1. + <_> + 5 5 14 3 3. + <_> + + <_> + 3 16 19 8 -1. + <_> + 3 20 19 4 2. + <_> + + <_> + 0 0 10 8 -1. + <_> + 5 0 5 8 2. + <_> + + <_> + 5 2 16 18 -1. + <_> + 5 2 8 18 2. + <_> + + <_> + 0 11 24 11 -1. + <_> + 8 11 8 11 3. + <_> + + <_> + 3 3 18 5 -1. + <_> + 3 3 9 5 2. + <_> + + <_> + 1 16 18 3 -1. + <_> + 1 17 18 1 3. + <_> + + <_> + 5 17 18 3 -1. + <_> + 5 18 18 1 3. + <_> + + <_> + 1 13 9 6 -1. + <_> + 1 15 9 2 3. + <_> + + <_> + 1 9 23 10 -1. + <_> + 1 14 23 5 2. + <_> + + <_> + 3 7 18 3 -1. + <_> + 3 8 18 1 3. + <_> + + <_> + 6 8 12 3 -1. + <_> + 6 8 6 3 2. + <_> + + <_> + 6 2 3 22 -1. + <_> + 7 2 1 22 3. + <_> + + <_> + 14 17 10 6 -1. + <_> + 14 19 10 2 3. + <_> + + <_> + 1 18 10 6 -1. + <_> + 1 20 10 2 3. + <_> + + <_> + 11 3 6 12 -1. + <_> + 13 3 2 12 3. + <_> + + <_> + 10 6 4 9 -1. + <_> + 12 6 2 9 2. + <_> + + <_> + 11 0 6 9 -1. + <_> + 13 0 2 9 3. + <_> + + <_> + 7 0 6 9 -1. + <_> + 9 0 2 9 3. + <_> + + <_> + 12 10 9 6 -1. + <_> + 15 10 3 6 3. + <_> + + <_> + 2 11 6 9 -1. + <_> + 5 11 3 9 2. + <_> + + <_> + 14 5 3 19 -1. + <_> + 15 5 1 19 3. + <_> + + <_> + 6 6 9 6 -1. + <_> + 6 8 9 2 3. + <_> + + <_> + 14 5 3 19 -1. + <_> + 15 5 1 19 3. + <_> + + <_> + 0 3 6 9 -1. + <_> + 0 6 6 3 3. + <_> + + <_> + 5 21 18 3 -1. + <_> + 5 22 18 1 3. + <_> + + <_> + 1 10 18 4 -1. + <_> + 7 10 6 4 3. + <_> + + <_> + 13 4 8 10 -1. + <_> + 17 4 4 5 2. + <_> + 13 9 4 5 2. + <_> + + <_> + 7 8 9 6 -1. + <_> + 10 8 3 6 3. + <_> + + <_> + 12 9 9 8 -1. + <_> + 15 9 3 8 3. + <_> + + <_> + 0 6 5 12 -1. + <_> + 0 10 5 4 3. + <_> + + <_> + 7 6 14 6 -1. + <_> + 14 6 7 3 2. + <_> + 7 9 7 3 2. + <_> + + <_> + 7 5 3 19 -1. + <_> + 8 5 1 19 3. + <_> + + <_> + 8 4 15 20 -1. + <_> + 13 4 5 20 3. + <_> + + <_> + 1 4 15 20 -1. + <_> + 6 4 5 20 3. + <_> + + <_> + 13 10 6 6 -1. + <_> + 13 10 3 6 2. + <_> + + <_> + 5 10 6 6 -1. + <_> + 8 10 3 6 2. + <_> + + <_> + 14 2 6 14 -1. + <_> + 17 2 3 7 2. + <_> + 14 9 3 7 2. + <_> + + <_> + 4 2 6 14 -1. + <_> + 4 2 3 7 2. + <_> + 7 9 3 7 2. + <_> + + <_> + 12 4 6 7 -1. + <_> + 12 4 3 7 2. + <_> + + <_> + 9 4 6 9 -1. + <_> + 11 4 2 9 3. + <_> + + <_> + 11 4 8 10 -1. + <_> + 11 4 4 10 2. + <_> + + <_> + 5 4 8 10 -1. + <_> + 9 4 4 10 2. + <_> + + <_> + 8 18 10 6 -1. + <_> + 8 20 10 2 3. + <_> + + <_> + 1 18 21 6 -1. + <_> + 1 20 21 2 3. + <_> + + <_> + 9 2 12 6 -1. + <_> + 9 2 6 6 2. + <_> + + <_> + 3 2 12 6 -1. + <_> + 9 2 6 6 2. + <_> + + <_> + 12 5 12 6 -1. + <_> + 18 5 6 3 2. + <_> + 12 8 6 3 2. + <_> + + <_> + 8 8 6 9 -1. + <_> + 8 11 6 3 3. + <_> + + <_> + 2 7 20 6 -1. + <_> + 2 9 20 2 3. + <_> + + <_> + 0 5 12 6 -1. + <_> + 0 5 6 3 2. + <_> + 6 8 6 3 2. + <_> + + <_> + 14 14 8 10 -1. + <_> + 18 14 4 5 2. + <_> + 14 19 4 5 2. + <_> + + <_> + 2 14 8 10 -1. + <_> + 2 14 4 5 2. + <_> + 6 19 4 5 2. + <_> + + <_> + 2 11 20 13 -1. + <_> + 2 11 10 13 2. + <_> + + <_> + 6 9 12 5 -1. + <_> + 12 9 6 5 2. + <_> + + <_> + 5 6 16 6 -1. + <_> + 13 6 8 3 2. + <_> + 5 9 8 3 2. + <_> + + <_> + 1 19 9 4 -1. + <_> + 1 21 9 2 2. + <_> + + <_> + 7 5 12 5 -1. + <_> + 11 5 4 5 3. + <_> + + <_> + 3 5 14 12 -1. + <_> + 3 5 7 6 2. + <_> + 10 11 7 6 2. + <_> + + <_> + 9 4 9 6 -1. + <_> + 12 4 3 6 3. + <_> + + <_> + 2 6 19 3 -1. + <_> + 2 7 19 1 3. + <_> + + <_> + 18 10 6 9 -1. + <_> + 18 13 6 3 3. + <_> + + <_> + 3 7 18 2 -1. + <_> + 3 8 18 1 2. + <_> + + <_> + 20 2 4 18 -1. + <_> + 22 2 2 9 2. + <_> + 20 11 2 9 2. + <_> + + <_> + 2 18 20 3 -1. + <_> + 2 19 20 1 3. + <_> + + <_> + 1 9 22 3 -1. + <_> + 1 10 22 1 3. + <_> + + <_> + 0 2 4 18 -1. + <_> + 0 2 2 9 2. + <_> + 2 11 2 9 2. + <_> + + <_> + 19 0 4 23 -1. + <_> + 19 0 2 23 2. + <_> + + <_> + 0 3 6 19 -1. + <_> + 3 3 3 19 2. + <_> + + <_> + 18 2 6 9 -1. + <_> + 20 2 2 9 3. + <_> + + <_> + 0 5 10 6 -1. + <_> + 0 7 10 2 3. + <_> + + <_> + 7 0 12 12 -1. + <_> + 13 0 6 6 2. + <_> + 7 6 6 6 2. + <_> + + <_> + 0 3 24 6 -1. + <_> + 0 3 12 3 2. + <_> + 12 6 12 3 2. + <_> + + <_> + 10 14 4 10 -1. + <_> + 10 19 4 5 2. + <_> + + <_> + 8 9 4 15 -1. + <_> + 8 14 4 5 3. + <_> + + <_> + 4 11 17 6 -1. + <_> + 4 14 17 3 2. + <_> + + <_> + 2 5 18 8 -1. + <_> + 2 5 9 4 2. + <_> + 11 9 9 4 2. + <_> + + <_> + 7 6 14 6 -1. + <_> + 14 6 7 3 2. + <_> + 7 9 7 3 2. + <_> + + <_> + 3 6 14 6 -1. + <_> + 3 6 7 3 2. + <_> + 10 9 7 3 2. + <_> + + <_> + 16 5 3 18 -1. + <_> + 17 5 1 18 3. + <_> + + <_> + 5 5 3 18 -1. + <_> + 6 5 1 18 3. + <_> + + <_> + 10 10 14 4 -1. + <_> + 10 12 14 2 2. + <_> + + <_> + 4 10 9 4 -1. + <_> + 4 12 9 2 2. + <_> + + <_> + 2 0 18 9 -1. + <_> + 2 3 18 3 3. + <_> + + <_> + 6 3 12 8 -1. + <_> + 10 3 4 8 3. + <_> + + <_> + 1 1 8 5 -1. + <_> + 5 1 4 5 2. + <_> + + <_> + 12 7 7 8 -1. + <_> + 12 11 7 4 2. + <_> + + <_> + 0 12 22 4 -1. + <_> + 0 14 22 2 2. + <_> + + <_> + 15 6 4 15 -1. + <_> + 15 11 4 5 3. + <_> + + <_> + 5 7 7 8 -1. + <_> + 5 11 7 4 2. + <_> + + <_> + 8 18 9 4 -1. + <_> + 8 20 9 2 2. + <_> + + <_> + 1 2 22 4 -1. + <_> + 1 4 22 2 2. + <_> + + <_> + 17 3 6 17 -1. + <_> + 19 3 2 17 3. + <_> + + <_> + 8 2 8 18 -1. + <_> + 8 11 8 9 2. + <_> + + <_> + 17 0 6 12 -1. + <_> + 20 0 3 6 2. + <_> + 17 6 3 6 2. + <_> + + <_> + 7 0 6 9 -1. + <_> + 9 0 2 9 3. + <_> + + <_> + 15 5 9 12 -1. + <_> + 15 11 9 6 2. + <_> + + <_> + 2 22 18 2 -1. + <_> + 2 23 18 1 2. + <_> + + <_> + 10 10 12 6 -1. + <_> + 16 10 6 3 2. + <_> + 10 13 6 3 2. + <_> + + <_> + 0 1 4 11 -1. + <_> + 2 1 2 11 2. + <_> + + <_> + 20 0 4 10 -1. + <_> + 20 0 2 10 2. + <_> + + <_> + 1 3 6 17 -1. + <_> + 3 3 2 17 3. + <_> + + <_> + 15 15 9 6 -1. + <_> + 15 17 9 2 3. + <_> + + <_> + 0 13 8 9 -1. + <_> + 0 16 8 3 3. + <_> + + <_> + 16 8 6 12 -1. + <_> + 16 12 6 4 3. + <_> + + <_> + 2 8 6 12 -1. + <_> + 2 12 6 4 3. + <_> + + <_> + 10 2 4 15 -1. + <_> + 10 7 4 5 3. + <_> + + <_> + 1 5 19 3 -1. + <_> + 1 6 19 1 3. + <_> + + <_> + 11 8 9 7 -1. + <_> + 14 8 3 7 3. + <_> + + <_> + 3 8 12 9 -1. + <_> + 3 11 12 3 3. + <_> + + <_> + 3 6 18 3 -1. + <_> + 3 7 18 1 3. + <_> + + <_> + 10 0 4 12 -1. + <_> + 10 6 4 6 2. + <_> + + <_> + 3 9 18 14 -1. + <_> + 3 9 9 14 2. + <_> + + <_> + 0 0 4 9 -1. + <_> + 2 0 2 9 2. + <_> + + <_> + 12 5 4 18 -1. + <_> + 12 5 2 18 2. + <_> + + <_> + 8 5 4 18 -1. + <_> + 10 5 2 18 2. + <_> + + <_> + 10 5 6 10 -1. + <_> + 12 5 2 10 3. + <_> + + <_> + 9 4 4 11 -1. + <_> + 11 4 2 11 2. + <_> + + <_> + 4 16 18 3 -1. + <_> + 4 17 18 1 3. + <_> + + <_> + 0 16 20 3 -1. + <_> + 0 17 20 1 3. + <_> + + <_> + 9 9 6 12 -1. + <_> + 9 13 6 4 3. + <_> + + <_> + 8 13 8 8 -1. + <_> + 8 17 8 4 2. + <_> + + <_> + 13 10 3 12 -1. + <_> + 13 16 3 6 2. + <_> + + <_> + 5 9 14 14 -1. + <_> + 5 9 7 7 2. + <_> + 12 16 7 7 2. + <_> + + <_> + 0 0 24 10 -1. + <_> + 12 0 12 5 2. + <_> + 0 5 12 5 2. + <_> + + <_> + 1 11 18 2 -1. + <_> + 1 12 18 1 2. + <_> + + <_> + 19 5 5 12 -1. + <_> + 19 9 5 4 3. + <_> + + <_> + 0 5 5 12 -1. + <_> + 0 9 5 4 3. + <_> + + <_> + 16 6 8 18 -1. + <_> + 20 6 4 9 2. + <_> + 16 15 4 9 2. + <_> + + <_> + 0 6 8 18 -1. + <_> + 0 6 4 9 2. + <_> + 4 15 4 9 2. + <_> + + <_> + 12 5 12 12 -1. + <_> + 18 5 6 6 2. + <_> + 12 11 6 6 2. + <_> + + <_> + 7 6 6 9 -1. + <_> + 9 6 2 9 3. + <_> + + <_> + 9 13 6 11 -1. + <_> + 11 13 2 11 3. + <_> + + <_> + 0 5 12 12 -1. + <_> + 0 5 6 6 2. + <_> + 6 11 6 6 2. + <_> + + <_> + 1 2 23 3 -1. + <_> + 1 3 23 1 3. + <_> + + <_> + 1 15 19 3 -1. + <_> + 1 16 19 1 3. + <_> + + <_> + 13 17 11 4 -1. + <_> + 13 19 11 2 2. + <_> + + <_> + 0 13 8 5 -1. + <_> + 4 13 4 5 2. + <_> + + <_> + 12 10 10 4 -1. + <_> + 12 10 5 4 2. + <_> + + <_> + 4 6 9 9 -1. + <_> + 4 9 9 3 3. + <_> + + <_> + 15 14 9 6 -1. + <_> + 15 16 9 2 3. + <_> + + <_> + 1 12 9 6 -1. + <_> + 1 14 9 2 3. + <_> + + <_> + 3 10 20 8 -1. + <_> + 13 10 10 4 2. + <_> + 3 14 10 4 2. + <_> + + <_> + 2 0 9 18 -1. + <_> + 5 0 3 18 3. + <_> + + <_> + 13 11 9 10 -1. + <_> + 16 11 3 10 3. + <_> + + <_> + 1 2 8 5 -1. + <_> + 5 2 4 5 2. + <_> + + <_> + 3 4 21 6 -1. + <_> + 10 4 7 6 3. + <_> + + <_> + 7 0 10 14 -1. + <_> + 7 0 5 7 2. + <_> + 12 7 5 7 2. + <_> + + <_> + 12 17 12 4 -1. + <_> + 12 19 12 2 2. + <_> + + <_> + 0 6 23 4 -1. + <_> + 0 8 23 2 2. + <_> + + <_> + 13 10 8 10 -1. + <_> + 17 10 4 5 2. + <_> + 13 15 4 5 2. + <_> + + <_> + 0 16 18 3 -1. + <_> + 0 17 18 1 3. + <_> + + <_> + 15 16 9 4 -1. + <_> + 15 18 9 2 2. + <_> + + <_> + 0 16 9 4 -1. + <_> + 0 18 9 2 2. + <_> + + <_> + 13 11 6 6 -1. + <_> + 13 11 3 6 2. + <_> + + <_> + 5 11 6 6 -1. + <_> + 8 11 3 6 2. + <_> + + <_> + 0 3 24 6 -1. + <_> + 12 3 12 3 2. + <_> + 0 6 12 3 2. + <_> + + <_> + 2 4 18 3 -1. + <_> + 2 5 18 1 3. + <_> + + <_> + 0 0 24 4 -1. + <_> + 12 0 12 2 2. + <_> + 0 2 12 2 2. + <_> + + <_> + 1 16 18 3 -1. + <_> + 1 17 18 1 3. + <_> + + <_> + 15 15 9 6 -1. + <_> + 15 17 9 2 3. + <_> + + <_> + 0 15 9 6 -1. + <_> + 0 17 9 2 3. + <_> + + <_> + 6 17 18 3 -1. + <_> + 6 18 18 1 3. + <_> + + <_> + 8 8 6 10 -1. + <_> + 10 8 2 10 3. + <_> + + <_> + 10 6 6 9 -1. + <_> + 12 6 2 9 3. + <_> + + <_> + 8 8 5 8 -1. + <_> + 8 12 5 4 2. + <_> + + <_> + 12 8 6 8 -1. + <_> + 12 12 6 4 2. + <_> + + <_> + 6 5 6 11 -1. + <_> + 8 5 2 11 3. + <_> + + <_> + 13 6 8 9 -1. + <_> + 13 9 8 3 3. + <_> + + <_> + 1 7 21 6 -1. + <_> + 1 9 21 2 3. + <_> + + <_> + 15 5 3 12 -1. + <_> + 15 11 3 6 2. + <_> + + <_> + 6 9 11 12 -1. + <_> + 6 13 11 4 3. + <_> + + <_> + 13 8 10 8 -1. + <_> + 18 8 5 4 2. + <_> + 13 12 5 4 2. + <_> + + <_> + 5 8 12 3 -1. + <_> + 11 8 6 3 2. + <_> + + <_> + 6 11 18 4 -1. + <_> + 12 11 6 4 3. + <_> + + <_> + 0 0 22 22 -1. + <_> + 0 11 22 11 2. + <_> + + <_> + 11 2 6 8 -1. + <_> + 11 6 6 4 2. + <_> + + <_> + 9 0 6 9 -1. + <_> + 11 0 2 9 3. + <_> + + <_> + 10 0 6 9 -1. + <_> + 12 0 2 9 3. + <_> + + <_> + 8 3 6 14 -1. + <_> + 8 3 3 7 2. + <_> + 11 10 3 7 2. + <_> + + <_> + 3 10 18 8 -1. + <_> + 9 10 6 8 3. + <_> + + <_> + 10 0 3 14 -1. + <_> + 10 7 3 7 2. + <_> + + <_> + 4 3 16 20 -1. + <_> + 4 13 16 10 2. + <_> + + <_> + 9 4 6 10 -1. + <_> + 11 4 2 10 3. + <_> + + <_> + 5 0 16 4 -1. + <_> + 5 2 16 2 2. + <_> + + <_> + 2 5 18 4 -1. + <_> + 8 5 6 4 3. + <_> + + <_> + 13 0 6 9 -1. + <_> + 15 0 2 9 3. + <_> + + <_> + 8 4 8 5 -1. + <_> + 12 4 4 5 2. + <_> + + <_> + 12 10 10 4 -1. + <_> + 12 10 5 4 2. + <_> + + <_> + 2 10 10 4 -1. + <_> + 7 10 5 4 2. + <_> + + <_> + 7 11 12 5 -1. + <_> + 11 11 4 5 3. + <_> + + <_> + 3 10 8 10 -1. + <_> + 3 10 4 5 2. + <_> + 7 15 4 5 2. + <_> + + <_> + 11 12 9 8 -1. + <_> + 14 12 3 8 3. + <_> + + <_> + 0 21 24 3 -1. + <_> + 8 21 8 3 3. + <_> + + <_> + 3 20 18 4 -1. + <_> + 9 20 6 4 3. + <_> + + <_> + 1 15 9 6 -1. + <_> + 1 17 9 2 3. + <_> + + <_> + 11 17 10 4 -1. + <_> + 11 19 10 2 2. + <_> + + <_> + 9 12 4 12 -1. + <_> + 9 18 4 6 2. + <_> + + <_> + 9 6 9 6 -1. + <_> + 12 6 3 6 3. + <_> + + <_> + 1 13 6 9 -1. + <_> + 1 16 6 3 3. + <_> + + <_> + 6 16 12 4 -1. + <_> + 6 18 12 2 2. + <_> + + <_> + 1 5 20 3 -1. + <_> + 1 6 20 1 3. + <_> + + <_> + 8 1 9 9 -1. + <_> + 8 4 9 3 3. + <_> + + <_> + 2 19 9 4 -1. + <_> + 2 21 9 2 2. + <_> + + <_> + 11 1 4 18 -1. + <_> + 11 7 4 6 3. + <_> + + <_> + 7 2 8 12 -1. + <_> + 7 2 4 6 2. + <_> + 11 8 4 6 2. + <_> + + <_> + 11 10 9 8 -1. + <_> + 14 10 3 8 3. + <_> + + <_> + 5 11 12 5 -1. + <_> + 9 11 4 5 3. + <_> + + <_> + 11 9 9 6 -1. + <_> + 14 9 3 6 3. + <_> + + <_> + 5 10 6 9 -1. + <_> + 7 10 2 9 3. + <_> + + <_> + 4 7 5 12 -1. + <_> + 4 11 5 4 3. + <_> + + <_> + 2 0 21 6 -1. + <_> + 9 0 7 6 3. + <_> + + <_> + 7 6 10 6 -1. + <_> + 7 8 10 2 3. + <_> + + <_> + 9 0 6 15 -1. + <_> + 11 0 2 15 3. + <_> + + <_> + 2 2 18 2 -1. + <_> + 2 3 18 1 2. + <_> + + <_> + 8 17 8 6 -1. + <_> + 8 20 8 3 2. + <_> + + <_> + 3 0 18 2 -1. + <_> + 3 1 18 1 2. + <_> + + <_> + 8 0 9 6 -1. + <_> + 11 0 3 6 3. + <_> + + <_> + 0 17 18 3 -1. + <_> + 0 18 18 1 3. + <_> + + <_> + 6 7 12 5 -1. + <_> + 10 7 4 5 3. + <_> + + <_> + 0 3 6 9 -1. + <_> + 2 3 2 9 3. + <_> + + <_> + 20 2 4 9 -1. + <_> + 20 2 2 9 2. + <_> + + <_> + 0 2 4 9 -1. + <_> + 2 2 2 9 2. + <_> + + <_> + 0 1 24 4 -1. + <_> + 12 1 12 2 2. + <_> + 0 3 12 2 2. + <_> + + <_> + 0 16 9 6 -1. + <_> + 0 18 9 2 3. + <_> + + <_> + 14 13 9 6 -1. + <_> + 14 15 9 2 3. + <_> + + <_> + 0 15 19 3 -1. + <_> + 0 16 19 1 3. + <_> + + <_> + 1 5 22 12 -1. + <_> + 12 5 11 6 2. + <_> + 1 11 11 6 2. + <_> + + <_> + 5 13 6 6 -1. + <_> + 8 13 3 6 2. + <_> + + <_> + 4 2 20 3 -1. + <_> + 4 3 20 1 3. + <_> + + <_> + 8 14 6 10 -1. + <_> + 10 14 2 10 3. + <_> + + <_> + 6 12 16 6 -1. + <_> + 14 12 8 3 2. + <_> + 6 15 8 3 2. + <_> + + <_> + 2 13 8 9 -1. + <_> + 2 16 8 3 3. + <_> + + <_> + 11 8 6 14 -1. + <_> + 14 8 3 7 2. + <_> + 11 15 3 7 2. + <_> + + <_> + 2 12 16 6 -1. + <_> + 2 12 8 3 2. + <_> + 10 15 8 3 2. + <_> + + <_> + 5 16 16 8 -1. + <_> + 5 20 16 4 2. + <_> + + <_> + 9 1 4 12 -1. + <_> + 9 7 4 6 2. + <_> + + <_> + 8 2 8 10 -1. + <_> + 12 2 4 5 2. + <_> + 8 7 4 5 2. + <_> + + <_> + 6 6 12 6 -1. + <_> + 6 6 6 3 2. + <_> + 12 9 6 3 2. + <_> + + <_> + 10 7 6 9 -1. + <_> + 12 7 2 9 3. + <_> + + <_> + 0 0 8 12 -1. + <_> + 0 0 4 6 2. + <_> + 4 6 4 6 2. + <_> + + <_> + 18 8 6 9 -1. + <_> + 18 11 6 3 3. + <_> + + <_> + 2 12 6 6 -1. + <_> + 5 12 3 6 2. + <_> + + <_> + 3 21 21 3 -1. + <_> + 10 21 7 3 3. + <_> + + <_> + 2 0 16 6 -1. + <_> + 2 3 16 3 2. + <_> + + <_> + 13 6 7 6 -1. + <_> + 13 9 7 3 2. + <_> + + <_> + 6 4 4 14 -1. + <_> + 6 11 4 7 2. + <_> + + <_> + 9 7 6 9 -1. + <_> + 11 7 2 9 3. + <_> + + <_> + 7 8 6 14 -1. + <_> + 7 8 3 7 2. + <_> + 10 15 3 7 2. + <_> + + <_> + 18 8 4 16 -1. + <_> + 18 16 4 8 2. + <_> + + <_> + 9 14 6 10 -1. + <_> + 11 14 2 10 3. + <_> + + <_> + 6 11 12 5 -1. + <_> + 10 11 4 5 3. + <_> + + <_> + 0 12 23 3 -1. + <_> + 0 13 23 1 3. + <_> + + <_> + 13 0 6 12 -1. + <_> + 15 0 2 12 3. + <_> + + <_> + 0 10 12 5 -1. + <_> + 4 10 4 5 3. + <_> + + <_> + 13 2 10 4 -1. + <_> + 13 4 10 2 2. + <_> + + <_> + 5 0 6 12 -1. + <_> + 7 0 2 12 3. + <_> + + <_> + 11 6 9 6 -1. + <_> + 14 6 3 6 3. + <_> + + <_> + 4 6 9 6 -1. + <_> + 7 6 3 6 3. + <_> + + <_> + 6 11 18 13 -1. + <_> + 12 11 6 13 3. + <_> + + <_> + 0 11 18 13 -1. + <_> + 6 11 6 13 3. + <_> + + <_> + 12 16 12 6 -1. + <_> + 16 16 4 6 3. + <_> + + <_> + 0 6 21 3 -1. + <_> + 0 7 21 1 3. + <_> + + <_> + 12 16 12 6 -1. + <_> + 16 16 4 6 3. + <_> + + <_> + 5 7 6 14 -1. + <_> + 5 14 6 7 2. + <_> + + <_> + 5 10 19 2 -1. + <_> + 5 11 19 1 2. + <_> + + <_> + 5 4 14 4 -1. + <_> + 5 6 14 2 2. + <_> + + <_> + 3 18 18 4 -1. + <_> + 9 18 6 4 3. + <_> + + <_> + 7 0 4 9 -1. + <_> + 9 0 2 9 2. + <_> + + <_> + 13 3 11 4 -1. + <_> + 13 5 11 2 2. + <_> + + <_> + 2 0 9 6 -1. + <_> + 5 0 3 6 3. + <_> + + <_> + 19 1 4 23 -1. + <_> + 19 1 2 23 2. + <_> + + <_> + 1 1 4 23 -1. + <_> + 3 1 2 23 2. + <_> + + <_> + 5 16 18 3 -1. + <_> + 5 17 18 1 3. + <_> + + <_> + 0 3 11 4 -1. + <_> + 0 5 11 2 2. + <_> + + <_> + 2 16 20 3 -1. + <_> + 2 17 20 1 3. + <_> + + <_> + 5 3 13 4 -1. + <_> + 5 5 13 2 2. + <_> + + <_> + 1 9 22 15 -1. + <_> + 1 9 11 15 2. + <_> + + <_> + 3 4 14 3 -1. + <_> + 10 4 7 3 2. + <_> + + <_> + 8 7 10 4 -1. + <_> + 8 7 5 4 2. + <_> + + <_> + 6 7 10 4 -1. + <_> + 11 7 5 4 2. + <_> + + <_> + 10 4 6 9 -1. + <_> + 12 4 2 9 3. + <_> + + <_> + 1 12 9 6 -1. + <_> + 4 12 3 6 3. + <_> + + <_> + 8 3 8 10 -1. + <_> + 12 3 4 5 2. + <_> + 8 8 4 5 2. + <_> + + <_> + 3 6 16 6 -1. + <_> + 3 6 8 3 2. + <_> + 11 9 8 3 2. + <_> + + <_> + 5 6 14 6 -1. + <_> + 5 9 14 3 2. + <_> + + <_> + 4 3 9 6 -1. + <_> + 4 5 9 2 3. + <_> + + <_> + 6 3 18 2 -1. + <_> + 6 4 18 1 2. + <_> + + <_> + 7 6 9 6 -1. + <_> + 10 6 3 6 3. + <_> + + <_> + 0 1 24 3 -1. + <_> + 0 2 24 1 3. + <_> + + <_> + 0 17 10 6 -1. + <_> + 0 19 10 2 3. + <_> + + <_> + 3 18 18 3 -1. + <_> + 3 19 18 1 3. + <_> + + <_> + 2 5 6 16 -1. + <_> + 2 5 3 8 2. + <_> + 5 13 3 8 2. + <_> + + <_> + 7 6 11 6 -1. + <_> + 7 8 11 2 3. + <_> + + <_> + 5 2 12 22 -1. + <_> + 5 13 12 11 2. + <_> + + <_> + 10 7 4 10 -1. + <_> + 10 12 4 5 2. + <_> + + <_> + 9 0 4 18 -1. + <_> + 9 6 4 6 3. + <_> + + <_> + 18 8 6 9 -1. + <_> + 18 11 6 3 3. + <_> + + <_> + 4 7 15 10 -1. + <_> + 9 7 5 10 3. + <_> + + <_> + 10 5 6 9 -1. + <_> + 12 5 2 9 3. + <_> + + <_> + 9 9 6 10 -1. + <_> + 11 9 2 10 3. + <_> + + <_> + 11 14 6 10 -1. + <_> + 13 14 2 10 3. + <_> + + <_> + 7 14 6 10 -1. + <_> + 9 14 2 10 3. + <_> + + <_> + 4 8 16 9 -1. + <_> + 4 11 16 3 3. + <_> + + <_> + 2 11 20 3 -1. + <_> + 2 12 20 1 3. + <_> + + <_> + 13 0 4 13 -1. + <_> + 13 0 2 13 2. + <_> + + <_> + 7 0 4 13 -1. + <_> + 9 0 2 13 2. + <_> + + <_> + 3 1 18 7 -1. + <_> + 9 1 6 7 3. + <_> + + <_> + 1 11 6 9 -1. + <_> + 1 14 6 3 3. + <_> + + <_> + 8 18 9 6 -1. + <_> + 8 20 9 2 3. + <_> + + <_> + 3 9 15 6 -1. + <_> + 3 11 15 2 3. + <_> + + <_> + 5 10 19 2 -1. + <_> + 5 11 19 1 2. + <_> + + <_> + 8 6 7 16 -1. + <_> + 8 14 7 8 2. + <_> + + <_> + 9 14 9 6 -1. + <_> + 9 16 9 2 3. + <_> + + <_> + 0 7 8 12 -1. + <_> + 0 11 8 4 3. + <_> + + <_> + 6 4 18 3 -1. + <_> + 6 5 18 1 3. + <_> + + <_> + 0 16 12 6 -1. + <_> + 4 16 4 6 3. + <_> + + <_> + 13 13 9 4 -1. + <_> + 13 15 9 2 2. + <_> + + <_> + 5 8 14 14 -1. + <_> + 5 8 7 7 2. + <_> + 12 15 7 7 2. + <_> + + <_> + 1 16 22 6 -1. + <_> + 12 16 11 3 2. + <_> + 1 19 11 3 2. + <_> + + <_> + 9 0 6 9 -1. + <_> + 11 0 2 9 3. + <_> + + <_> + 9 5 10 10 -1. + <_> + 14 5 5 5 2. + <_> + 9 10 5 5 2. + <_> + + <_> + 5 5 10 10 -1. + <_> + 5 5 5 5 2. + <_> + 10 10 5 5 2. + <_> + + <_> + 4 6 16 6 -1. + <_> + 12 6 8 3 2. + <_> + 4 9 8 3 2. + <_> + + <_> + 0 7 6 9 -1. + <_> + 0 10 6 3 3. + <_> + + <_> + 16 10 8 14 -1. + <_> + 20 10 4 7 2. + <_> + 16 17 4 7 2. + <_> + + <_> + 9 12 6 12 -1. + <_> + 9 18 6 6 2. + <_> + + <_> + 8 10 8 12 -1. + <_> + 12 10 4 6 2. + <_> + 8 16 4 6 2. + <_> + + <_> + 8 0 4 9 -1. + <_> + 10 0 2 9 2. + <_> + + <_> + 10 4 8 16 -1. + <_> + 14 4 4 8 2. + <_> + 10 12 4 8 2. + <_> + + <_> + 7 10 10 6 -1. + <_> + 7 12 10 2 3. + <_> + + <_> + 5 6 14 14 -1. + <_> + 12 6 7 7 2. + <_> + 5 13 7 7 2. + <_> + + <_> + 2 11 20 2 -1. + <_> + 2 12 20 1 2. + <_> + + <_> + 18 8 4 16 -1. + <_> + 18 16 4 8 2. + <_> + + <_> + 1 11 12 10 -1. + <_> + 1 11 6 5 2. + <_> + 7 16 6 5 2. + <_> + + <_> + 6 9 12 4 -1. + <_> + 6 11 12 2 2. + <_> + + <_> + 9 12 6 7 -1. + <_> + 12 12 3 7 2. + <_> + + <_> + 10 4 8 16 -1. + <_> + 14 4 4 8 2. + <_> + 10 12 4 8 2. + <_> + + <_> + 6 4 8 16 -1. + <_> + 6 4 4 8 2. + <_> + 10 12 4 8 2. + <_> + + <_> + 8 9 9 6 -1. + <_> + 11 9 3 6 3. + <_> + + <_> + 1 5 16 12 -1. + <_> + 1 5 8 6 2. + <_> + 9 11 8 6 2. + <_> + + <_> + 9 9 6 8 -1. + <_> + 9 9 3 8 2. + <_> + + <_> + 6 0 3 18 -1. + <_> + 7 0 1 18 3. + <_> + + <_> + 17 9 5 14 -1. + <_> + 17 16 5 7 2. + <_> + + <_> + 2 9 5 14 -1. + <_> + 2 16 5 7 2. + <_> + + <_> + 7 4 10 6 -1. + <_> + 7 7 10 3 2. + <_> + + <_> + 1 3 23 18 -1. + <_> + 1 9 23 6 3. + <_> + + <_> + 1 1 21 3 -1. + <_> + 8 1 7 3 3. + <_> + + <_> + 9 6 6 9 -1. + <_> + 11 6 2 9 3. + <_> + + <_> + 3 18 12 6 -1. + <_> + 3 18 6 3 2. + <_> + 9 21 6 3 2. + <_> + + <_> + 16 8 8 16 -1. + <_> + 20 8 4 8 2. + <_> + 16 16 4 8 2. + <_> + + <_> + 0 19 24 4 -1. + <_> + 8 19 8 4 3. + <_> + + <_> + 16 8 8 16 -1. + <_> + 20 8 4 8 2. + <_> + 16 16 4 8 2. + <_> + + <_> + 0 8 8 16 -1. + <_> + 0 8 4 8 2. + <_> + 4 16 4 8 2. + <_> + + <_> + 8 12 8 10 -1. + <_> + 8 17 8 5 2. + <_> + + <_> + 5 7 5 8 -1. + <_> + 5 11 5 4 2. + <_> + + <_> + 4 1 19 2 -1. + <_> + 4 2 19 1 2. + <_> + + <_> + 0 12 24 9 -1. + <_> + 8 12 8 9 3. + <_> + + <_> + 6 0 13 8 -1. + <_> + 6 4 13 4 2. + <_> + + <_> + 0 0 24 3 -1. + <_> + 0 1 24 1 3. + <_> + + <_> + 20 3 4 11 -1. + <_> + 20 3 2 11 2. + <_> + + <_> + 8 6 6 9 -1. + <_> + 10 6 2 9 3. + <_> + + <_> + 6 11 12 8 -1. + <_> + 12 11 6 4 2. + <_> + 6 15 6 4 2. + <_> + + <_> + 0 8 12 6 -1. + <_> + 0 8 6 3 2. + <_> + 6 11 6 3 2. + <_> + + <_> + 6 17 18 3 -1. + <_> + 6 18 18 1 3. + <_> + + <_> + 0 14 9 6 -1. + <_> + 0 16 9 2 3. + <_> + + <_> + 20 3 4 9 -1. + <_> + 20 3 2 9 2. + <_> + + <_> + 0 3 4 9 -1. + <_> + 2 3 2 9 2. + <_> + + <_> + 15 0 9 19 -1. + <_> + 18 0 3 19 3. + <_> + + <_> + 0 0 9 19 -1. + <_> + 3 0 3 19 3. + <_> + + <_> + 13 11 6 8 -1. + <_> + 13 11 3 8 2. + <_> + + <_> + 5 11 6 8 -1. + <_> + 8 11 3 8 2. + <_> + + <_> + 5 11 19 3 -1. + <_> + 5 12 19 1 3. + <_> + + <_> + 3 20 18 4 -1. + <_> + 9 20 6 4 3. + <_> + + <_> + 6 6 16 6 -1. + <_> + 6 8 16 2 3. + <_> + + <_> + 6 0 9 6 -1. + <_> + 9 0 3 6 3. + <_> + + <_> + 10 3 4 14 -1. + <_> + 10 10 4 7 2. + <_> + + <_> + 1 5 15 12 -1. + <_> + 1 11 15 6 2. + <_> + + <_> + 11 12 8 5 -1. + <_> + 11 12 4 5 2. + <_> + + <_> + 5 0 6 9 -1. + <_> + 7 0 2 9 3. + <_> + + <_> + 12 0 6 9 -1. + <_> + 14 0 2 9 3. + <_> + + <_> + 5 5 12 8 -1. + <_> + 5 5 6 4 2. + <_> + 11 9 6 4 2. + <_> + + <_> + 13 12 11 6 -1. + <_> + 13 14 11 2 3. + <_> + + <_> + 0 13 21 3 -1. + <_> + 0 14 21 1 3. + <_> + + <_> + 8 1 8 12 -1. + <_> + 12 1 4 6 2. + <_> + 8 7 4 6 2. + <_> + + <_> + 1 0 6 12 -1. + <_> + 1 0 3 6 2. + <_> + 4 6 3 6 2. + <_> + + <_> + 2 2 21 2 -1. + <_> + 2 3 21 1 2. + <_> + + <_> + 2 2 19 3 -1. + <_> + 2 3 19 1 3. + <_> + + <_> + 17 10 6 14 -1. + <_> + 20 10 3 7 2. + <_> + 17 17 3 7 2. + <_> + + <_> + 1 10 6 14 -1. + <_> + 1 10 3 7 2. + <_> + 4 17 3 7 2. + <_> + + <_> + 7 6 14 14 -1. + <_> + 14 6 7 7 2. + <_> + 7 13 7 7 2. + <_> + + <_> + 0 12 9 6 -1. + <_> + 0 14 9 2 3. + <_> + + <_> + 15 14 8 9 -1. + <_> + 15 17 8 3 3. + <_> + + <_> + 1 1 22 4 -1. + <_> + 1 1 11 2 2. + <_> + 12 3 11 2 2. + <_> + + <_> + 9 11 9 6 -1. + <_> + 9 13 9 2 3. + <_> + + <_> + 0 15 18 3 -1. + <_> + 0 16 18 1 3. + <_> + + <_> + 16 14 7 9 -1. + <_> + 16 17 7 3 3. + <_> + + <_> + 4 3 16 4 -1. + <_> + 12 3 8 4 2. + <_> + + <_> + 7 6 12 5 -1. + <_> + 7 6 6 5 2. + <_> + + <_> + 9 6 4 9 -1. + <_> + 11 6 2 9 2. + <_> + + <_> + 12 1 4 10 -1. + <_> + 12 1 2 10 2. + <_> + + <_> + 8 1 4 10 -1. + <_> + 10 1 2 10 2. + <_> + + <_> + 15 15 6 9 -1. + <_> + 15 18 6 3 3. + <_> + + <_> + 3 15 6 9 -1. + <_> + 3 18 6 3 3. + <_> + + <_> + 15 1 3 19 -1. + <_> + 16 1 1 19 3. + <_> + + <_> + 1 3 6 9 -1. + <_> + 3 3 2 9 3. + <_> + + <_> + 15 0 3 19 -1. + <_> + 16 0 1 19 3. + <_> + + <_> + 6 3 12 4 -1. + <_> + 12 3 6 4 2. + <_> + + <_> + 10 5 4 9 -1. + <_> + 10 5 2 9 2. + <_> + + <_> + 6 0 3 19 -1. + <_> + 7 0 1 19 3. + <_> + + <_> + 11 1 3 12 -1. + <_> + 11 7 3 6 2. + <_> + + <_> + 6 7 10 5 -1. + <_> + 11 7 5 5 2. + <_> + + <_> + 11 3 3 18 -1. + <_> + 12 3 1 18 3. + <_> + + <_> + 9 3 6 12 -1. + <_> + 11 3 2 12 3. + <_> + + <_> + 3 7 19 3 -1. + <_> + 3 8 19 1 3. + <_> + + <_> + 2 7 18 3 -1. + <_> + 2 8 18 1 3. + <_> + + <_> + 3 13 18 4 -1. + <_> + 12 13 9 2 2. + <_> + 3 15 9 2 2. + <_> + + <_> + 3 5 6 9 -1. + <_> + 5 5 2 9 3. + <_> + + <_> + 4 1 20 4 -1. + <_> + 14 1 10 2 2. + <_> + 4 3 10 2 2. + <_> + + <_> + 0 1 20 4 -1. + <_> + 0 1 10 2 2. + <_> + 10 3 10 2 2. + <_> + + <_> + 10 15 6 6 -1. + <_> + 10 15 3 6 2. + <_> + + <_> + 0 2 24 8 -1. + <_> + 8 2 8 8 3. + <_> + + <_> + 5 5 18 3 -1. + <_> + 5 6 18 1 3. + <_> + + <_> + 8 15 6 6 -1. + <_> + 11 15 3 6 2. + <_> + + <_> + 11 12 8 5 -1. + <_> + 11 12 4 5 2. + <_> + + <_> + 5 12 8 5 -1. + <_> + 9 12 4 5 2. + <_> + + <_> + 5 0 14 6 -1. + <_> + 5 2 14 2 3. + <_> + + <_> + 10 2 4 15 -1. + <_> + 10 7 4 5 3. + <_> + + <_> + 10 7 5 12 -1. + <_> + 10 11 5 4 3. + <_> + + <_> + 7 9 8 14 -1. + <_> + 7 9 4 7 2. + <_> + 11 16 4 7 2. + <_> + + <_> + 1 5 22 6 -1. + <_> + 12 5 11 3 2. + <_> + 1 8 11 3 2. + <_> + + <_> + 0 5 6 6 -1. + <_> + 0 8 6 3 2. + <_> + + <_> + 12 17 9 4 -1. + <_> + 12 19 9 2 2. + <_> + + <_> + 2 18 19 3 -1. + <_> + 2 19 19 1 3. + <_> + + <_> + 12 17 9 4 -1. + <_> + 12 19 9 2 2. + <_> + + <_> + 1 17 18 3 -1. + <_> + 1 18 18 1 3. + <_> + + <_> + 12 17 9 4 -1. + <_> + 12 19 9 2 2. + <_> + + <_> + 0 0 24 3 -1. + <_> + 0 1 24 1 3. + <_> + + <_> + 5 0 14 4 -1. + <_> + 5 2 14 2 2. + <_> + + <_> + 6 14 9 6 -1. + <_> + 6 16 9 2 3. + <_> + + <_> + 14 13 6 9 -1. + <_> + 14 16 6 3 3. + <_> + + <_> + 5 20 13 4 -1. + <_> + 5 22 13 2 2. + <_> + + <_> + 9 9 6 12 -1. + <_> + 9 13 6 4 3. + <_> + + <_> + 1 10 21 3 -1. + <_> + 8 10 7 3 3. + <_> + + <_> + 8 8 9 6 -1. + <_> + 11 8 3 6 3. + <_> + + <_> + 3 10 9 7 -1. + <_> + 6 10 3 7 3. + <_> + + <_> + 12 10 10 8 -1. + <_> + 17 10 5 4 2. + <_> + 12 14 5 4 2. + <_> + + <_> + 0 15 24 3 -1. + <_> + 8 15 8 3 3. + <_> + + <_> + 8 5 9 6 -1. + <_> + 8 7 9 2 3. + <_> + + <_> + 4 13 6 9 -1. + <_> + 4 16 6 3 3. + <_> + + <_> + 12 17 9 4 -1. + <_> + 12 19 9 2 2. + <_> + + <_> + 9 12 6 6 -1. + <_> + 9 15 6 3 2. + <_> + + <_> + 9 9 14 10 -1. + <_> + 16 9 7 5 2. + <_> + 9 14 7 5 2. + <_> + + <_> + 1 9 14 10 -1. + <_> + 1 9 7 5 2. + <_> + 8 14 7 5 2. + <_> + + <_> + 8 7 9 17 -1. + <_> + 11 7 3 17 3. + <_> + + <_> + 3 4 6 20 -1. + <_> + 3 4 3 10 2. + <_> + 6 14 3 10 2. + <_> + + <_> + 7 8 10 4 -1. + <_> + 7 8 5 4 2. + <_> + + <_> + 10 7 4 9 -1. + <_> + 12 7 2 9 2. + <_> + + <_> + 10 15 6 9 -1. + <_> + 12 15 2 9 3. + <_> + + <_> + 3 8 6 16 -1. + <_> + 3 8 3 8 2. + <_> + 6 16 3 8 2. + <_> + + <_> + 12 17 9 4 -1. + <_> + 12 19 9 2 2. + <_> + + <_> + 3 17 9 4 -1. + <_> + 3 19 9 2 2. + <_> + + <_> + 10 1 9 6 -1. + <_> + 13 1 3 6 3. + <_> + + <_> + 5 7 4 10 -1. + <_> + 5 12 4 5 2. + <_> + + <_> + 7 5 12 6 -1. + <_> + 11 5 4 6 3. + <_> + + <_> + 6 4 9 8 -1. + <_> + 9 4 3 8 3. + <_> + + <_> + 12 16 10 8 -1. + <_> + 17 16 5 4 2. + <_> + 12 20 5 4 2. + <_> + + <_> + 2 16 10 8 -1. + <_> + 2 16 5 4 2. + <_> + 7 20 5 4 2. + <_> + + <_> + 0 0 24 4 -1. + <_> + 12 0 12 2 2. + <_> + 0 2 12 2 2. + <_> + + <_> + 0 6 9 6 -1. + <_> + 0 8 9 2 3. + <_> + + <_> + 0 4 24 6 -1. + <_> + 12 4 12 3 2. + <_> + 0 7 12 3 2. + <_> + + <_> + 5 0 11 4 -1. + <_> + 5 2 11 2 2. + <_> + + <_> + 1 1 22 4 -1. + <_> + 12 1 11 2 2. + <_> + 1 3 11 2 2. + <_> + + <_> + 9 6 6 18 -1. + <_> + 9 15 6 9 2. + <_> + + <_> + 2 9 20 4 -1. + <_> + 2 11 20 2 2. + <_> + + <_> + 5 2 14 14 -1. + <_> + 5 9 14 7 2. + <_> + + <_> + 4 2 16 6 -1. + <_> + 4 5 16 3 2. + <_> + + <_> + 2 3 19 3 -1. + <_> + 2 4 19 1 3. + <_> + + <_> + 7 1 10 4 -1. + <_> + 7 3 10 2 2. + <_> + + <_> + 0 9 4 15 -1. + <_> + 0 14 4 5 3. + <_> + + <_> + 2 10 21 3 -1. + <_> + 2 11 21 1 3. + <_> + + <_> + 3 0 6 6 -1. + <_> + 6 0 3 6 2. + <_> + + <_> + 6 4 14 9 -1. + <_> + 6 7 14 3 3. + <_> + + <_> + 9 1 6 9 -1. + <_> + 11 1 2 9 3. + <_> + + <_> + 15 8 9 9 -1. + <_> + 15 11 9 3 3. + <_> + + <_> + 8 0 4 21 -1. + <_> + 8 7 4 7 3. + <_> + + <_> + 3 22 19 2 -1. + <_> + 3 23 19 1 2. + <_> + + <_> + 2 15 20 3 -1. + <_> + 2 16 20 1 3. + <_> + + <_> + 19 0 4 13 -1. + <_> + 19 0 2 13 2. + <_> + + <_> + 1 7 8 8 -1. + <_> + 1 11 8 4 2. + <_> + + <_> + 14 14 6 9 -1. + <_> + 14 17 6 3 3. + <_> + + <_> + 4 14 6 9 -1. + <_> + 4 17 6 3 3. + <_> + + <_> + 14 5 4 10 -1. + <_> + 14 5 2 10 2. + <_> + + <_> + 6 5 4 10 -1. + <_> + 8 5 2 10 2. + <_> + + <_> + 14 5 6 6 -1. + <_> + 14 8 6 3 2. + <_> + + <_> + 4 5 6 6 -1. + <_> + 4 8 6 3 2. + <_> + + <_> + 0 2 24 21 -1. + <_> + 8 2 8 21 3. + <_> + + <_> + 1 2 6 13 -1. + <_> + 3 2 2 13 3. + <_> + + <_> + 20 0 4 21 -1. + <_> + 20 0 2 21 2. + <_> + + <_> + 0 4 4 20 -1. + <_> + 2 4 2 20 2. + <_> + + <_> + 8 16 9 6 -1. + <_> + 8 18 9 2 3. + <_> + + <_> + 7 0 6 9 -1. + <_> + 9 0 2 9 3. + <_> + + <_> + 16 12 7 9 -1. + <_> + 16 15 7 3 3. + <_> + + <_> + 5 21 14 3 -1. + <_> + 12 21 7 3 2. + <_> + + <_> + 11 5 6 9 -1. + <_> + 11 5 3 9 2. + <_> + + <_> + 10 5 4 10 -1. + <_> + 12 5 2 10 2. + <_> + + <_> + 10 6 6 9 -1. + <_> + 12 6 2 9 3. + <_> + + <_> + 7 5 6 9 -1. + <_> + 10 5 3 9 2. + <_> + + <_> + 14 14 10 4 -1. + <_> + 14 16 10 2 2. + <_> + + <_> + 5 5 14 14 -1. + <_> + 5 5 7 7 2. + <_> + 12 12 7 7 2. + <_> + + <_> + 12 8 12 6 -1. + <_> + 18 8 6 3 2. + <_> + 12 11 6 3 2. + <_> + + <_> + 6 6 12 12 -1. + <_> + 6 6 6 6 2. + <_> + 12 12 6 6 2. + <_> + + <_> + 11 13 6 10 -1. + <_> + 13 13 2 10 3. + <_> + + <_> + 1 10 20 8 -1. + <_> + 1 10 10 4 2. + <_> + 11 14 10 4 2. + <_> + + <_> + 15 13 9 6 -1. + <_> + 15 15 9 2 3. + <_> + + <_> + 9 0 6 9 -1. + <_> + 9 3 6 3 3. + <_> + + <_> + 10 1 5 14 -1. + <_> + 10 8 5 7 2. + <_> + + <_> + 3 4 16 6 -1. + <_> + 3 6 16 2 3. + <_> + + <_> + 16 3 8 9 -1. + <_> + 16 6 8 3 3. + <_> + + <_> + 7 13 6 10 -1. + <_> + 9 13 2 10 3. + <_> + + <_> + 15 13 9 6 -1. + <_> + 15 15 9 2 3. + <_> + + <_> + 0 13 9 6 -1. + <_> + 0 15 9 2 3. + <_> + + <_> + 13 16 9 6 -1. + <_> + 13 18 9 2 3. + <_> + + <_> + 2 16 9 6 -1. + <_> + 2 18 9 2 3. + <_> + + <_> + 5 16 18 3 -1. + <_> + 5 17 18 1 3. + <_> + + <_> + 1 16 18 3 -1. + <_> + 1 17 18 1 3. + <_> + + <_> + 5 0 18 3 -1. + <_> + 5 1 18 1 3. + <_> + + <_> + 1 1 19 2 -1. + <_> + 1 2 19 1 2. + <_> + + <_> + 14 2 6 11 -1. + <_> + 16 2 2 11 3. + <_> + + <_> + 4 15 15 6 -1. + <_> + 9 15 5 6 3. + <_> + + <_> + 14 2 6 11 -1. + <_> + 16 2 2 11 3. + <_> + + <_> + 4 2 6 11 -1. + <_> + 6 2 2 11 3. + <_> + + <_> + 18 2 6 9 -1. + <_> + 18 5 6 3 3. + <_> + + <_> + 1 2 22 4 -1. + <_> + 1 2 11 2 2. + <_> + 12 4 11 2 2. + <_> + + <_> + 2 0 21 12 -1. + <_> + 9 0 7 12 3. + <_> + + <_> + 0 12 18 3 -1. + <_> + 0 13 18 1 3. + <_> + + <_> + 12 2 6 9 -1. + <_> + 14 2 2 9 3. + <_> + + <_> + 3 10 18 3 -1. + <_> + 3 11 18 1 3. + <_> + + <_> + 16 3 8 9 -1. + <_> + 16 6 8 3 3. + <_> + + <_> + 3 7 18 3 -1. + <_> + 3 8 18 1 3. + <_> + + <_> + 9 11 6 9 -1. + <_> + 11 11 2 9 3. + <_> + + <_> + 9 8 6 9 -1. + <_> + 11 8 2 9 3. + <_> + + <_> + 15 0 2 18 -1. + <_> + 15 0 1 18 2. + <_> + + <_> + 7 0 2 18 -1. + <_> + 8 0 1 18 2. + <_> + + <_> + 17 3 7 9 -1. + <_> + 17 6 7 3 3. + <_> + + <_> + 3 18 9 6 -1. + <_> + 3 20 9 2 3. + <_> + + <_> + 3 18 21 3 -1. + <_> + 3 19 21 1 3. + <_> + + <_> + 0 3 7 9 -1. + <_> + 0 6 7 3 3. + <_> + + <_> + 2 7 22 3 -1. + <_> + 2 8 22 1 3. + <_> + + <_> + 0 3 24 16 -1. + <_> + 0 3 12 8 2. + <_> + 12 11 12 8 2. + <_> + + <_> + 13 17 9 4 -1. + <_> + 13 19 9 2 2. + <_> + + <_> + 5 5 12 8 -1. + <_> + 5 5 6 4 2. + <_> + 11 9 6 4 2. + <_> + + <_> + 5 6 14 6 -1. + <_> + 12 6 7 3 2. + <_> + 5 9 7 3 2. + <_> + + <_> + 5 16 14 6 -1. + <_> + 5 16 7 3 2. + <_> + 12 19 7 3 2. + <_> + + <_> + 18 2 6 9 -1. + <_> + 18 5 6 3 3. + <_> + + <_> + 0 2 6 9 -1. + <_> + 0 5 6 3 3. + <_> + + <_> + 3 4 20 10 -1. + <_> + 13 4 10 5 2. + <_> + 3 9 10 5 2. + <_> + + <_> + 2 13 9 8 -1. + <_> + 5 13 3 8 3. + <_> + + <_> + 2 1 21 15 -1. + <_> + 9 1 7 15 3. + <_> + + <_> + 5 12 14 8 -1. + <_> + 12 12 7 8 2. + <_> + + <_> + 6 7 12 4 -1. + <_> + 6 7 6 4 2. + <_> + + <_> + 6 5 9 6 -1. + <_> + 9 5 3 6 3. + <_> + + <_> + 13 11 6 6 -1. + <_> + 13 11 3 6 2. + <_> + + <_> + 5 11 6 6 -1. + <_> + 8 11 3 6 2. + <_> + + <_> + 6 4 18 2 -1. + <_> + 6 5 18 1 2. + <_> + + <_> + 0 2 6 11 -1. + <_> + 2 2 2 11 3. + <_> + + <_> + 18 0 6 15 -1. + <_> + 20 0 2 15 3. + <_> + + <_> + 0 0 6 13 -1. + <_> + 2 0 2 13 3. + <_> + + <_> + 12 0 6 9 -1. + <_> + 14 0 2 9 3. + <_> + + <_> + 6 0 6 9 -1. + <_> + 8 0 2 9 3. + <_> + + <_> + 0 2 24 4 -1. + <_> + 8 2 8 4 3. + <_> + + <_> + 3 13 18 4 -1. + <_> + 12 13 9 4 2. + <_> + + <_> + 9 7 10 4 -1. + <_> + 9 7 5 4 2. + <_> + + <_> + 5 8 12 3 -1. + <_> + 11 8 6 3 2. + <_> + + <_> + 4 14 19 3 -1. + <_> + 4 15 19 1 3. + <_> + + <_> + 10 0 4 20 -1. + <_> + 10 10 4 10 2. + <_> + + <_> + 8 15 9 6 -1. + <_> + 8 17 9 2 3. + <_> + + <_> + 2 9 15 4 -1. + <_> + 7 9 5 4 3. + <_> + + <_> + 8 4 12 7 -1. + <_> + 12 4 4 7 3. + <_> + + <_> + 0 10 6 9 -1. + <_> + 0 13 6 3 3. + <_> + + <_> + 18 5 6 9 -1. + <_> + 18 8 6 3 3. + <_> + + <_> + 0 18 16 6 -1. + <_> + 0 18 8 3 2. + <_> + 8 21 8 3 2. + <_> + + <_> + 9 18 14 6 -1. + <_> + 16 18 7 3 2. + <_> + 9 21 7 3 2. + <_> + + <_> + 1 20 20 4 -1. + <_> + 1 20 10 2 2. + <_> + 11 22 10 2 2. + <_> + + <_> + 2 8 20 6 -1. + <_> + 12 8 10 3 2. + <_> + 2 11 10 3 2. + <_> + + <_> + 7 8 6 9 -1. + <_> + 9 8 2 9 3. + <_> + + <_> + 8 5 12 8 -1. + <_> + 12 5 4 8 3. + <_> + + <_> + 4 5 12 8 -1. + <_> + 8 5 4 8 3. + <_> + + <_> + 10 6 6 9 -1. + <_> + 12 6 2 9 3. + <_> + + <_> + 2 0 6 16 -1. + <_> + 4 0 2 16 3. + <_> + + <_> + 15 4 6 12 -1. + <_> + 15 8 6 4 3. + <_> + + <_> + 3 4 6 12 -1. + <_> + 3 8 6 4 3. + <_> + + <_> + 15 12 9 6 -1. + <_> + 15 14 9 2 3. + <_> + + <_> + 4 0 15 22 -1. + <_> + 4 11 15 11 2. + <_> + + <_> + 15 12 9 6 -1. + <_> + 15 14 9 2 3. + <_> + + <_> + 0 12 9 6 -1. + <_> + 0 14 9 2 3. + <_> + + <_> + 15 15 9 6 -1. + <_> + 15 17 9 2 3. + <_> + + <_> + 0 15 9 6 -1. + <_> + 0 17 9 2 3. + <_> + + <_> + 10 0 8 10 -1. + <_> + 14 0 4 5 2. + <_> + 10 5 4 5 2. + <_> + + <_> + 1 0 4 16 -1. + <_> + 3 0 2 16 2. + <_> + + <_> + 7 6 10 6 -1. + <_> + 7 8 10 2 3. + <_> + + <_> + 10 12 4 10 -1. + <_> + 10 17 4 5 2. + <_> + + <_> + 8 4 10 6 -1. + <_> + 8 6 10 2 3. + <_> + + <_> + 3 22 18 2 -1. + <_> + 12 22 9 2 2. + <_> + + <_> + 7 7 11 6 -1. + <_> + 7 9 11 2 3. + <_> + + <_> + 0 0 12 10 -1. + <_> + 0 0 6 5 2. + <_> + 6 5 6 5 2. + <_> + + <_> + 10 1 12 6 -1. + <_> + 16 1 6 3 2. + <_> + 10 4 6 3 2. + <_> + + <_> + 7 16 9 4 -1. + <_> + 7 18 9 2 2. + <_> + + <_> + 5 7 15 16 -1. + <_> + 10 7 5 16 3. + <_> + + <_> + 5 10 12 13 -1. + <_> + 11 10 6 13 2. + <_> + + <_> + 6 2 12 6 -1. + <_> + 12 2 6 3 2. + <_> + 6 5 6 3 2. + <_> + + <_> + 3 9 12 9 -1. + <_> + 3 12 12 3 3. + <_> + + <_> + 16 2 8 6 -1. + <_> + 16 5 8 3 2. + <_> + + <_> + 0 2 8 6 -1. + <_> + 0 5 8 3 2. + <_> + + <_> + 0 3 24 11 -1. + <_> + 0 3 12 11 2. + <_> + + <_> + 0 13 8 10 -1. + <_> + 0 13 4 5 2. + <_> + 4 18 4 5 2. + <_> + + <_> + 10 14 4 10 -1. + <_> + 10 19 4 5 2. + <_> + + <_> + 10 2 4 21 -1. + <_> + 10 9 4 7 3. + <_> + + <_> + 4 4 15 9 -1. + <_> + 4 7 15 3 3. + <_> + + <_> + 0 1 24 6 -1. + <_> + 8 1 8 6 3. + <_> + + <_> + 9 6 5 16 -1. + <_> + 9 14 5 8 2. + <_> + + <_> + 3 21 18 3 -1. + <_> + 9 21 6 3 3. + <_> + + <_> + 6 5 3 12 -1. + <_> + 6 11 3 6 2. + <_> + + <_> + 11 6 4 9 -1. + <_> + 11 6 2 9 2. + <_> + + <_> + 5 6 9 8 -1. + <_> + 8 6 3 8 3. + <_> + + <_> + 4 3 20 2 -1. + <_> + 4 4 20 1 2. + <_> + + <_> + 2 10 18 3 -1. + <_> + 8 10 6 3 3. + <_> + + <_> + 7 15 10 6 -1. + <_> + 7 17 10 2 3. + <_> + + <_> + 1 4 4 18 -1. + <_> + 1 4 2 9 2. + <_> + 3 13 2 9 2. + <_> + + <_> + 13 0 6 9 -1. + <_> + 15 0 2 9 3. + <_> + + <_> + 5 0 6 9 -1. + <_> + 7 0 2 9 3. + <_> + + <_> + 11 0 6 9 -1. + <_> + 13 0 2 9 3. + <_> + + <_> + 6 7 9 6 -1. + <_> + 9 7 3 6 3. + <_> + + <_> + 3 0 18 2 -1. + <_> + 3 1 18 1 2. + <_> + + <_> + 0 10 20 4 -1. + <_> + 0 10 10 2 2. + <_> + 10 12 10 2 2. + <_> + + <_> + 10 2 4 12 -1. + <_> + 10 8 4 6 2. + <_> + + <_> + 6 5 6 12 -1. + <_> + 6 5 3 6 2. + <_> + 9 11 3 6 2. + <_> + + <_> + 6 0 18 22 -1. + <_> + 15 0 9 11 2. + <_> + 6 11 9 11 2. + <_> + + <_> + 0 0 18 22 -1. + <_> + 0 0 9 11 2. + <_> + 9 11 9 11 2. + <_> + + <_> + 18 2 6 11 -1. + <_> + 20 2 2 11 3. + <_> + + <_> + 0 2 6 11 -1. + <_> + 2 2 2 11 3. + <_> + + <_> + 11 0 6 9 -1. + <_> + 13 0 2 9 3. + <_> + + <_> + 0 0 20 3 -1. + <_> + 0 1 20 1 3. + <_> + + <_> + 2 2 20 2 -1. + <_> + 2 3 20 1 2. + <_> + + <_> + 1 10 18 2 -1. + <_> + 1 11 18 1 2. + <_> + + <_> + 18 7 6 9 -1. + <_> + 18 10 6 3 3. + <_> + + <_> + 0 0 22 9 -1. + <_> + 0 3 22 3 3. + <_> + + <_> + 17 3 6 9 -1. + <_> + 17 6 6 3 3. + <_> + + <_> + 0 7 6 9 -1. + <_> + 0 10 6 3 3. + <_> + + <_> + 0 6 24 6 -1. + <_> + 0 8 24 2 3. + <_> + + <_> + 0 2 6 10 -1. + <_> + 2 2 2 10 3. + <_> + + <_> + 10 6 6 9 -1. + <_> + 12 6 2 9 3. + <_> + + <_> + 7 0 6 9 -1. + <_> + 9 0 2 9 3. + <_> + + <_> + 15 0 6 9 -1. + <_> + 17 0 2 9 3. + <_> + + <_> + 3 0 6 9 -1. + <_> + 5 0 2 9 3. + <_> + + <_> + 15 17 9 6 -1. + <_> + 15 19 9 2 3. + <_> + + <_> + 0 17 18 3 -1. + <_> + 0 18 18 1 3. + <_> + + <_> + 15 14 9 6 -1. + <_> + 15 16 9 2 3. + <_> + + <_> + 0 15 23 6 -1. + <_> + 0 17 23 2 3. + <_> + + <_> + 5 15 18 3 -1. + <_> + 5 16 18 1 3. + <_> + + <_> + 0 14 9 6 -1. + <_> + 0 16 9 2 3. + <_> + + <_> + 9 8 8 10 -1. + <_> + 13 8 4 5 2. + <_> + 9 13 4 5 2. + <_> + + <_> + 3 7 15 6 -1. + <_> + 8 7 5 6 3. + <_> + + <_> + 9 8 8 10 -1. + <_> + 13 8 4 5 2. + <_> + 9 13 4 5 2. + <_> + + <_> + 5 0 6 12 -1. + <_> + 8 0 3 12 2. + <_> + + <_> + 9 8 8 10 -1. + <_> + 13 8 4 5 2. + <_> + 9 13 4 5 2. + <_> + + <_> + 8 5 6 9 -1. + <_> + 10 5 2 9 3. + <_> + + <_> + 10 6 4 18 -1. + <_> + 12 6 2 9 2. + <_> + 10 15 2 9 2. + <_> + + <_> + 5 7 12 4 -1. + <_> + 11 7 6 4 2. + <_> + + <_> + 9 8 8 10 -1. + <_> + 13 8 4 5 2. + <_> + 9 13 4 5 2. + <_> + + <_> + 7 8 8 10 -1. + <_> + 7 8 4 5 2. + <_> + 11 13 4 5 2. + <_> + + <_> + 11 10 6 14 -1. + <_> + 14 10 3 7 2. + <_> + 11 17 3 7 2. + <_> + + <_> + 9 5 6 19 -1. + <_> + 12 5 3 19 2. + <_> + + <_> + 6 12 12 6 -1. + <_> + 12 12 6 3 2. + <_> + 6 15 6 3 2. + <_> + + <_> + 1 9 18 6 -1. + <_> + 1 9 9 3 2. + <_> + 10 12 9 3 2. + <_> + + <_> + 16 14 8 10 -1. + <_> + 20 14 4 5 2. + <_> + 16 19 4 5 2. + <_> + + <_> + 0 9 22 8 -1. + <_> + 0 9 11 4 2. + <_> + 11 13 11 4 2. + <_> + + <_> + 8 18 12 6 -1. + <_> + 14 18 6 3 2. + <_> + 8 21 6 3 2. + <_> + + <_> + 0 6 20 18 -1. + <_> + 0 6 10 9 2. + <_> + 10 15 10 9 2. + <_> + + <_> + 3 6 20 12 -1. + <_> + 13 6 10 6 2. + <_> + 3 12 10 6 2. + <_> + + <_> + 0 16 10 8 -1. + <_> + 0 16 5 4 2. + <_> + 5 20 5 4 2. + <_> + + <_> + 6 16 18 3 -1. + <_> + 6 17 18 1 3. + <_> + + <_> + 0 11 19 3 -1. + <_> + 0 12 19 1 3. + <_> + + <_> + 14 6 6 9 -1. + <_> + 14 9 6 3 3. + <_> + + <_> + 1 7 22 4 -1. + <_> + 1 7 11 2 2. + <_> + 12 9 11 2 2. + <_> + + <_> + 13 6 7 12 -1. + <_> + 13 10 7 4 3. + <_> + + <_> + 4 7 11 9 -1. + <_> + 4 10 11 3 3. + <_> + + <_> + 12 10 10 8 -1. + <_> + 17 10 5 4 2. + <_> + 12 14 5 4 2. + <_> + + <_> + 2 12 9 7 -1. + <_> + 5 12 3 7 3. + <_> + + <_> + 16 14 6 9 -1. + <_> + 16 17 6 3 3. + <_> + + <_> + 3 12 6 12 -1. + <_> + 3 16 6 4 3. + <_> + + <_> + 14 13 6 6 -1. + <_> + 14 16 6 3 2. + <_> + + <_> + 8 0 6 9 -1. + <_> + 10 0 2 9 3. + <_> + + <_> + 9 1 6 23 -1. + <_> + 11 1 2 23 3. + <_> + + <_> + 0 16 9 6 -1. + <_> + 0 18 9 2 3. + <_> + + <_> + 4 17 18 3 -1. + <_> + 4 18 18 1 3. + <_> + + <_> + 5 2 13 14 -1. + <_> + 5 9 13 7 2. + <_> + + <_> + 15 0 8 12 -1. + <_> + 19 0 4 6 2. + <_> + 15 6 4 6 2. + <_> + + <_> + 0 0 8 12 -1. + <_> + 0 0 4 6 2. + <_> + 4 6 4 6 2. + <_> + + <_> + 8 2 8 7 -1. + <_> + 8 2 4 7 2. + <_> + + <_> + 1 1 6 9 -1. + <_> + 3 1 2 9 3. + <_> + + <_> + 14 8 6 12 -1. + <_> + 17 8 3 6 2. + <_> + 14 14 3 6 2. + <_> + + <_> + 4 8 6 12 -1. + <_> + 4 8 3 6 2. + <_> + 7 14 3 6 2. + <_> + + <_> + 16 5 5 15 -1. + <_> + 16 10 5 5 3. + <_> + + <_> + 3 5 5 15 -1. + <_> + 3 10 5 5 3. + <_> + + <_> + 18 4 6 9 -1. + <_> + 18 7 6 3 3. + <_> + + <_> + 1 7 6 15 -1. + <_> + 1 12 6 5 3. + <_> + + <_> + 11 15 12 8 -1. + <_> + 17 15 6 4 2. + <_> + 11 19 6 4 2. + <_> + + <_> + 0 2 24 4 -1. + <_> + 0 2 12 2 2. + <_> + 12 4 12 2 2. + <_> + + <_> + 15 1 2 19 -1. + <_> + 15 1 1 19 2. + <_> + + <_> + 7 1 2 19 -1. + <_> + 8 1 1 19 2. + <_> + + <_> + 22 1 2 20 -1. + <_> + 22 1 1 20 2. + <_> + + <_> + 0 1 2 20 -1. + <_> + 1 1 1 20 2. + <_> + + <_> + 18 11 6 12 -1. + <_> + 20 11 2 12 3. + <_> + + <_> + 0 11 6 12 -1. + <_> + 2 11 2 12 3. + <_> + + <_> + 3 6 18 14 -1. + <_> + 3 13 18 7 2. + <_> + + <_> + 6 10 7 8 -1. + <_> + 6 14 7 4 2. + <_> + + <_> + 7 9 12 12 -1. + <_> + 7 13 12 4 3. + <_> + + <_> + 2 18 18 5 -1. + <_> + 11 18 9 5 2. + <_> + + <_> + 4 21 20 3 -1. + <_> + 4 22 20 1 3. + <_> + + <_> + 9 12 6 12 -1. + <_> + 9 12 3 6 2. + <_> + 12 18 3 6 2. + <_> + + <_> + 4 6 18 3 -1. + <_> + 4 7 18 1 3. + <_> + + <_> + 3 6 18 3 -1. + <_> + 3 7 18 1 3. + <_> + + <_> + 18 4 6 9 -1. + <_> + 18 7 6 3 3. + <_> + + <_> + 2 12 9 6 -1. + <_> + 2 14 9 2 3. + <_> + + <_> + 4 14 18 4 -1. + <_> + 13 14 9 2 2. + <_> + 4 16 9 2 2. + <_> + + <_> + 7 7 6 14 -1. + <_> + 7 7 3 7 2. + <_> + 10 14 3 7 2. + <_> + + <_> + 7 13 12 6 -1. + <_> + 13 13 6 3 2. + <_> + 7 16 6 3 2. + <_> + + <_> + 6 7 12 9 -1. + <_> + 10 7 4 9 3. + <_> + + <_> + 12 12 6 6 -1. + <_> + 12 12 3 6 2. + <_> + + <_> + 0 2 4 10 -1. + <_> + 0 7 4 5 2. + <_> + + <_> + 8 0 9 6 -1. + <_> + 11 0 3 6 3. + <_> + + <_> + 2 9 12 6 -1. + <_> + 2 12 12 3 2. + <_> + + <_> + 13 10 6 9 -1. + <_> + 13 13 6 3 3. + <_> + + <_> + 5 10 6 9 -1. + <_> + 5 13 6 3 3. + <_> + + <_> + 9 15 9 6 -1. + <_> + 9 17 9 2 3. + <_> + + <_> + 5 16 12 6 -1. + <_> + 5 19 12 3 2. + <_> + + <_> + 3 2 20 3 -1. + <_> + 3 3 20 1 3. + <_> + + <_> + 2 5 12 6 -1. + <_> + 6 5 4 6 3. + <_> + + <_> + 11 0 3 24 -1. + <_> + 12 0 1 24 3. + <_> + + <_> + 3 16 15 4 -1. + <_> + 8 16 5 4 3. + <_> + + <_> + 9 12 6 12 -1. + <_> + 9 18 6 6 2. + <_> + + <_> + 1 15 12 8 -1. + <_> + 1 15 6 4 2. + <_> + 7 19 6 4 2. + <_> + + <_> + 15 10 8 14 -1. + <_> + 19 10 4 7 2. + <_> + 15 17 4 7 2. + <_> + + <_> + 1 9 8 14 -1. + <_> + 1 9 4 7 2. + <_> + 5 16 4 7 2. + <_> + + <_> + 9 11 9 10 -1. + <_> + 9 16 9 5 2. + <_> + + <_> + 6 7 12 6 -1. + <_> + 6 9 12 2 3. + <_> + + <_> + 10 15 6 9 -1. + <_> + 12 15 2 9 3. + <_> + + <_> + 7 8 9 7 -1. + <_> + 10 8 3 7 3. + <_> + + <_> + 10 4 8 10 -1. + <_> + 14 4 4 5 2. + <_> + 10 9 4 5 2. + <_> + + <_> + 4 6 6 9 -1. + <_> + 4 9 6 3 3. + <_> + + <_> + 0 6 24 12 -1. + <_> + 8 6 8 12 3. + <_> + + <_> + 3 7 6 14 -1. + <_> + 6 7 3 14 2. + <_> + + <_> + 19 8 5 8 -1. + <_> + 19 12 5 4 2. + <_> + + <_> + 0 8 5 8 -1. + <_> + 0 12 5 4 2. + <_> + + <_> + 17 3 6 6 -1. + <_> + 17 6 6 3 2. + <_> + + <_> + 1 3 6 6 -1. + <_> + 1 6 6 3 2. + <_> + + <_> + 18 2 6 9 -1. + <_> + 18 5 6 3 3. + <_> + + <_> + 0 2 6 9 -1. + <_> + 0 5 6 3 3. + <_> + + <_> + 3 3 18 6 -1. + <_> + 3 5 18 2 3. + <_> + + <_> + 2 3 9 6 -1. + <_> + 2 5 9 2 3. + <_> + + <_> + 9 3 10 8 -1. + <_> + 14 3 5 4 2. + <_> + 9 7 5 4 2. + <_> + + <_> + 5 3 10 8 -1. + <_> + 5 3 5 4 2. + <_> + 10 7 5 4 2. + <_> + + <_> + 10 11 6 12 -1. + <_> + 10 11 3 12 2. + <_> + + <_> + 8 11 6 11 -1. + <_> + 11 11 3 11 2. + <_> + + <_> + 7 8 10 4 -1. + <_> + 7 8 5 4 2. + <_> + + <_> + 9 6 6 7 -1. + <_> + 12 6 3 7 2. + <_> + + <_> + 5 18 18 3 -1. + <_> + 5 19 18 1 3. + <_> + + <_> + 8 4 6 9 -1. + <_> + 10 4 2 9 3. + <_> + + <_> + 8 1 9 7 -1. + <_> + 11 1 3 7 3. + <_> + + <_> + 6 11 6 6 -1. + <_> + 9 11 3 6 2. + <_> + + <_> + 14 12 4 11 -1. + <_> + 14 12 2 11 2. + <_> + + <_> + 6 12 4 11 -1. + <_> + 8 12 2 11 2. + <_> + + <_> + 8 0 12 18 -1. + <_> + 12 0 4 18 3. + <_> + + <_> + 2 12 10 5 -1. + <_> + 7 12 5 5 2. + <_> + + <_> + 2 20 22 3 -1. + <_> + 2 21 22 1 3. + <_> + + <_> + 0 4 2 20 -1. + <_> + 1 4 1 20 2. + <_> + + <_> + 0 2 24 4 -1. + <_> + 8 2 8 4 3. + <_> + + <_> + 7 8 10 4 -1. + <_> + 7 10 10 2 2. + <_> + + <_> + 6 7 8 10 -1. + <_> + 6 7 4 5 2. + <_> + 10 12 4 5 2. + <_> + + <_> + 14 0 6 14 -1. + <_> + 17 0 3 7 2. + <_> + 14 7 3 7 2. + <_> + + <_> + 4 11 5 8 -1. + <_> + 4 15 5 4 2. + <_> + + <_> + 2 0 20 9 -1. + <_> + 2 3 20 3 3. + <_> + + <_> + 6 7 12 8 -1. + <_> + 6 7 6 4 2. + <_> + 12 11 6 4 2. + <_> + + <_> + 9 17 6 6 -1. + <_> + 9 20 6 3 2. + <_> + + <_> + 7 10 10 4 -1. + <_> + 7 12 10 2 2. + <_> + + <_> + 6 5 12 9 -1. + <_> + 10 5 4 9 3. + <_> + + <_> + 5 11 6 8 -1. + <_> + 8 11 3 8 2. + <_> + + <_> + 18 4 4 17 -1. + <_> + 18 4 2 17 2. + <_> + + <_> + 0 0 6 6 -1. + <_> + 3 0 3 6 2. + <_> + + <_> + 18 4 4 17 -1. + <_> + 18 4 2 17 2. + <_> + + <_> + 2 4 4 17 -1. + <_> + 4 4 2 17 2. + <_> + + <_> + 5 18 19 3 -1. + <_> + 5 19 19 1 3. + <_> + + <_> + 11 0 2 18 -1. + <_> + 11 9 2 9 2. + <_> + + <_> + 15 4 2 18 -1. + <_> + 15 13 2 9 2. + <_> + + <_> + 7 4 2 18 -1. + <_> + 7 13 2 9 2. + <_> + + <_> + 7 11 10 8 -1. + <_> + 12 11 5 4 2. + <_> + 7 15 5 4 2. + <_> + + <_> + 10 6 4 9 -1. + <_> + 12 6 2 9 2. + <_> + + <_> + 10 0 6 9 -1. + <_> + 12 0 2 9 3. + <_> + + <_> + 2 9 16 8 -1. + <_> + 2 9 8 4 2. + <_> + 10 13 8 4 2. + <_> + + <_> + 14 15 6 9 -1. + <_> + 14 18 6 3 3. + <_> + + <_> + 8 7 6 9 -1. + <_> + 10 7 2 9 3. + <_> + + <_> + 14 15 6 9 -1. + <_> + 14 18 6 3 3. + <_> + + <_> + 3 12 12 6 -1. + <_> + 3 14 12 2 3. + <_> + + <_> + 14 12 9 6 -1. + <_> + 14 14 9 2 3. + <_> + + <_> + 1 12 9 6 -1. + <_> + 1 14 9 2 3. + <_> + + <_> + 3 7 18 3 -1. + <_> + 3 8 18 1 3. + <_> + + <_> + 1 7 22 6 -1. + <_> + 1 9 22 2 3. + <_> + + <_> + 18 4 6 6 -1. + <_> + 18 7 6 3 2. + <_> + + <_> + 0 4 6 6 -1. + <_> + 0 7 6 3 2. + <_> + + <_> + 5 11 16 6 -1. + <_> + 5 14 16 3 2. + <_> + + <_> + 6 16 9 4 -1. + <_> + 6 18 9 2 2. + <_> + + <_> + 14 15 6 9 -1. + <_> + 14 18 6 3 3. + <_> + + <_> + 4 15 6 9 -1. + <_> + 4 18 6 3 3. + <_> + + <_> + 15 1 6 23 -1. + <_> + 17 1 2 23 3. + <_> + + <_> + 0 21 24 3 -1. + <_> + 8 21 8 3 3. + <_> + + <_> + 0 20 24 4 -1. + <_> + 8 20 8 4 3. + <_> + + <_> + 3 1 6 23 -1. + <_> + 5 1 2 23 3. + <_> + + <_> + 3 17 18 3 -1. + <_> + 3 18 18 1 3. + <_> + + <_> + 0 16 18 3 -1. + <_> + 0 17 18 1 3. + <_> + + <_> + 1 16 22 4 -1. + <_> + 12 16 11 2 2. + <_> + 1 18 11 2 2. + <_> + + <_> + 0 16 9 6 -1. + <_> + 0 18 9 2 3. + <_> + + <_> + 2 10 21 3 -1. + <_> + 9 10 7 3 3. + <_> + + <_> + 2 18 12 6 -1. + <_> + 2 18 6 3 2. + <_> + 8 21 6 3 2. + <_> + + <_> + 0 5 24 4 -1. + <_> + 0 7 24 2 2. + <_> + + <_> + 10 2 4 15 -1. + <_> + 10 7 4 5 3. + <_> + + <_> + 10 7 6 12 -1. + <_> + 10 13 6 6 2. + <_> + + <_> + 6 6 6 9 -1. + <_> + 8 6 2 9 3. + <_> + + <_> + 11 0 6 9 -1. + <_> + 13 0 2 9 3. + <_> + + <_> + 9 7 6 9 -1. + <_> + 11 7 2 9 3. + <_> + + <_> + 2 1 20 3 -1. + <_> + 2 2 20 1 3. + <_> + + <_> + 1 18 12 6 -1. + <_> + 1 18 6 3 2. + <_> + 7 21 6 3 2. + <_> + + <_> + 13 2 4 13 -1. + <_> + 13 2 2 13 2. + <_> + + <_> + 6 7 12 4 -1. + <_> + 12 7 6 4 2. + <_> + + <_> + 10 1 4 13 -1. + <_> + 10 1 2 13 2. + <_> + + <_> + 6 0 3 18 -1. + <_> + 7 0 1 18 3. + <_> + + <_> + 14 3 10 5 -1. + <_> + 14 3 5 5 2. + <_> + + <_> + 6 15 12 8 -1. + <_> + 10 15 4 8 3. + <_> + + <_> + 9 10 6 9 -1. + <_> + 11 10 2 9 3. + <_> + + <_> + 8 3 4 9 -1. + <_> + 10 3 2 9 2. + <_> + + <_> + 17 0 6 14 -1. + <_> + 20 0 3 7 2. + <_> + 17 7 3 7 2. + <_> + + <_> + 1 0 6 14 -1. + <_> + 1 0 3 7 2. + <_> + 4 7 3 7 2. + <_> + + <_> + 14 0 6 16 -1. + <_> + 17 0 3 8 2. + <_> + 14 8 3 8 2. + <_> + + <_> + 7 4 4 10 -1. + <_> + 9 4 2 10 2. + <_> + + <_> + 3 17 18 6 -1. + <_> + 12 17 9 3 2. + <_> + 3 20 9 3 2. + <_> + + <_> + 1 20 22 4 -1. + <_> + 12 20 11 4 2. + <_> + + <_> + 14 3 10 5 -1. + <_> + 14 3 5 5 2. + <_> + + <_> + 0 3 10 5 -1. + <_> + 5 3 5 5 2. + <_> + + <_> + 12 6 12 16 -1. + <_> + 16 6 4 16 3. + <_> + + <_> + 0 6 12 16 -1. + <_> + 4 6 4 16 3. + <_> + + <_> + 10 9 5 15 -1. + <_> + 10 14 5 5 3. + <_> + + <_> + 1 18 21 2 -1. + <_> + 1 19 21 1 2. + <_> + + <_> + 15 0 9 6 -1. + <_> + 15 2 9 2 3. + <_> + + <_> + 6 1 12 4 -1. + <_> + 12 1 6 4 2. + <_> + + <_> + 6 0 12 12 -1. + <_> + 12 0 6 6 2. + <_> + 6 6 6 6 2. + <_> + + <_> + 8 10 8 12 -1. + <_> + 8 10 4 6 2. + <_> + 12 16 4 6 2. + <_> + + <_> + 14 16 10 8 -1. + <_> + 19 16 5 4 2. + <_> + 14 20 5 4 2. + <_> + + <_> + 0 16 10 8 -1. + <_> + 0 16 5 4 2. + <_> + 5 20 5 4 2. + <_> + + <_> + 10 12 12 5 -1. + <_> + 14 12 4 5 3. + <_> + + <_> + 6 16 10 8 -1. + <_> + 6 16 5 4 2. + <_> + 11 20 5 4 2. + <_> + + <_> + 7 6 12 6 -1. + <_> + 13 6 6 3 2. + <_> + 7 9 6 3 2. + <_> + + <_> + 9 6 4 18 -1. + <_> + 9 6 2 9 2. + <_> + 11 15 2 9 2. + <_> + + <_> + 10 9 6 14 -1. + <_> + 13 9 3 7 2. + <_> + 10 16 3 7 2. + <_> + + <_> + 8 9 6 14 -1. + <_> + 8 9 3 7 2. + <_> + 11 16 3 7 2. + <_> + + <_> + 7 4 11 12 -1. + <_> + 7 10 11 6 2. + <_> + + <_> + 4 8 6 16 -1. + <_> + 4 8 3 8 2. + <_> + 7 16 3 8 2. + <_> + + <_> + 17 3 4 21 -1. + <_> + 17 10 4 7 3. + <_> + + <_> + 3 3 4 21 -1. + <_> + 3 10 4 7 3. + <_> + + <_> + 10 1 8 18 -1. + <_> + 14 1 4 9 2. + <_> + 10 10 4 9 2. + <_> + + <_> + 2 5 16 8 -1. + <_> + 2 5 8 4 2. + <_> + 10 9 8 4 2. + <_> + + <_> + 3 6 18 12 -1. + <_> + 3 10 18 4 3. + <_> + + <_> + 4 10 16 12 -1. + <_> + 4 14 16 4 3. + <_> + + <_> + 15 4 8 20 -1. + <_> + 19 4 4 10 2. + <_> + 15 14 4 10 2. + <_> + + <_> + 7 2 9 6 -1. + <_> + 10 2 3 6 3. + <_> + + <_> + 15 4 8 20 -1. + <_> + 19 4 4 10 2. + <_> + 15 14 4 10 2. + <_> + + <_> + 1 4 8 20 -1. + <_> + 1 4 4 10 2. + <_> + 5 14 4 10 2. + <_> + + <_> + 11 8 8 14 -1. + <_> + 15 8 4 7 2. + <_> + 11 15 4 7 2. + <_> + + <_> + 5 8 8 14 -1. + <_> + 5 8 4 7 2. + <_> + 9 15 4 7 2. + <_> + + <_> + 10 13 5 8 -1. + <_> + 10 17 5 4 2. + <_> + + <_> + 4 13 7 9 -1. + <_> + 4 16 7 3 3. + <_> + + <_> + 0 13 24 10 -1. + <_> + 0 18 24 5 2. + <_> + + <_> + 4 2 8 11 -1. + <_> + 8 2 4 11 2. + <_> + + <_> + 10 2 8 16 -1. + <_> + 14 2 4 8 2. + <_> + 10 10 4 8 2. + <_> + + <_> + 0 2 24 6 -1. + <_> + 0 2 12 3 2. + <_> + 12 5 12 3 2. + <_> + + <_> + 6 0 12 9 -1. + <_> + 6 3 12 3 3. + <_> + + <_> + 1 2 12 12 -1. + <_> + 1 2 6 6 2. + <_> + 7 8 6 6 2. + <_> + + <_> + 18 5 6 9 -1. + <_> + 18 8 6 3 3. + <_> + + <_> + 4 3 8 10 -1. + <_> + 4 3 4 5 2. + <_> + 8 8 4 5 2. + <_> + + <_> + 6 21 18 3 -1. + <_> + 6 22 18 1 3. + <_> + + <_> + 1 10 18 2 -1. + <_> + 1 11 18 1 2. + <_> + + <_> + 1 10 22 3 -1. + <_> + 1 11 22 1 3. + <_> + + <_> + 2 8 12 9 -1. + <_> + 2 11 12 3 3. + <_> + + <_> + 12 8 12 6 -1. + <_> + 18 8 6 3 2. + <_> + 12 11 6 3 2. + <_> + + <_> + 0 8 12 6 -1. + <_> + 0 8 6 3 2. + <_> + 6 11 6 3 2. + <_> + + <_> + 10 15 6 9 -1. + <_> + 12 15 2 9 3. + <_> + + <_> + 7 13 9 6 -1. + <_> + 7 15 9 2 3. + <_> + + <_> + 9 8 7 12 -1. + <_> + 9 14 7 6 2. + <_> + + <_> + 4 13 9 6 -1. + <_> + 7 13 3 6 3. + <_> + + <_> + 6 15 18 4 -1. + <_> + 12 15 6 4 3. + <_> + + <_> + 5 4 4 16 -1. + <_> + 7 4 2 16 2. + <_> + + <_> + 10 15 6 9 -1. + <_> + 12 15 2 9 3. + <_> + + <_> + 8 15 6 9 -1. + <_> + 10 15 2 9 3. + <_> + + <_> + 9 11 12 10 -1. + <_> + 15 11 6 5 2. + <_> + 9 16 6 5 2. + <_> + + <_> + 3 6 14 6 -1. + <_> + 3 8 14 2 3. + <_> + + <_> + 4 2 17 8 -1. + <_> + 4 6 17 4 2. + <_> + + <_> + 6 2 12 21 -1. + <_> + 6 9 12 7 3. + <_> + + <_> + 8 1 9 9 -1. + <_> + 8 4 9 3 3. + <_> + + <_> + 0 7 24 3 -1. + <_> + 12 7 12 3 2. + <_> + + <_> + 11 6 9 10 -1. + <_> + 11 11 9 5 2. + <_> + + <_> + 2 11 18 3 -1. + <_> + 2 12 18 1 3. + <_> + + <_> + 8 16 9 4 -1. + <_> + 8 18 9 2 2. + <_> + + <_> + 0 0 9 6 -1. + <_> + 0 2 9 2 3. + <_> + + <_> + 0 11 24 6 -1. + <_> + 0 13 24 2 3. + <_> + + <_> + 2 9 20 6 -1. + <_> + 2 12 20 3 2. + <_> + + <_> + 4 5 16 12 -1. + <_> + 12 5 8 6 2. + <_> + 4 11 8 6 2. + <_> + + <_> + 10 2 4 15 -1. + <_> + 10 7 4 5 3. + <_> + + <_> + 7 3 10 4 -1. + <_> + 7 5 10 2 2. + <_> + + <_> + 9 15 6 8 -1. + <_> + 9 19 6 4 2. + <_> + + <_> + 17 0 7 10 -1. + <_> + 17 5 7 5 2. + <_> + + <_> + 0 0 7 10 -1. + <_> + 0 5 7 5 2. + <_> + + <_> + 16 1 6 12 -1. + <_> + 19 1 3 6 2. + <_> + 16 7 3 6 2. + <_> + + <_> + 1 0 19 8 -1. + <_> + 1 4 19 4 2. + <_> + + <_> + 12 2 9 4 -1. + <_> + 12 4 9 2 2. + <_> + + <_> + 3 2 9 4 -1. + <_> + 3 4 9 2 2. + <_> + + <_> + 12 2 10 6 -1. + <_> + 12 4 10 2 3. + <_> + + <_> + 3 4 18 2 -1. + <_> + 12 4 9 2 2. + <_> + + <_> + 12 1 4 9 -1. + <_> + 12 1 2 9 2. + <_> + + <_> + 8 1 4 9 -1. + <_> + 10 1 2 9 2. + <_> + + <_> + 10 5 8 10 -1. + <_> + 14 5 4 5 2. + <_> + 10 10 4 5 2. + <_> + + <_> + 6 4 12 13 -1. + <_> + 10 4 4 13 3. + <_> + + <_> + 13 5 6 6 -1. + <_> + 13 5 3 6 2. + <_> + + <_> + 1 5 12 3 -1. + <_> + 7 5 6 3 2. + <_> + + <_> + 7 5 10 6 -1. + <_> + 7 7 10 2 3. + <_> + + <_> + 2 0 21 5 -1. + <_> + 9 0 7 5 3. + <_> + + <_> + 0 8 9 9 -1. + <_> + 0 11 9 3 3. + <_> + + <_> + 9 6 6 9 -1. + <_> + 11 6 2 9 3. + <_> + + <_> + 0 3 6 7 -1. + <_> + 3 3 3 7 2. + <_> + + <_> + 9 18 12 6 -1. + <_> + 15 18 6 3 2. + <_> + 9 21 6 3 2. + <_> + + <_> + 2 8 20 6 -1. + <_> + 2 8 10 3 2. + <_> + 12 11 10 3 2. + <_> + + <_> + 13 2 10 4 -1. + <_> + 13 4 10 2 2. + <_> + + <_> + 4 5 5 18 -1. + <_> + 4 11 5 6 3. + <_> + + <_> + 20 4 4 9 -1. + <_> + 20 4 2 9 2. + <_> + + <_> + 8 6 8 14 -1. + <_> + 8 13 8 7 2. + <_> + + <_> + 0 1 24 6 -1. + <_> + 12 1 12 3 2. + <_> + 0 4 12 3 2. + <_> + + <_> + 0 4 4 9 -1. + <_> + 2 4 2 9 2. + <_> + + <_> + 3 6 18 3 -1. + <_> + 3 7 18 1 3. + <_> + + <_> + 3 17 16 6 -1. + <_> + 3 19 16 2 3. + <_> + + <_> + 13 6 6 9 -1. + <_> + 13 9 6 3 3. + <_> + + <_> + 5 6 14 6 -1. + <_> + 5 6 7 3 2. + <_> + 12 9 7 3 2. + <_> + + <_> + 13 5 8 10 -1. + <_> + 17 5 4 5 2. + <_> + 13 10 4 5 2. + <_> + + <_> + 2 2 20 3 -1. + <_> + 2 3 20 1 3. + <_> + + <_> + 9 2 9 6 -1. + <_> + 12 2 3 6 3. + <_> + + <_> + 8 6 6 9 -1. + <_> + 10 6 2 9 3. + <_> + + <_> + 12 3 4 11 -1. + <_> + 12 3 2 11 2. + <_> + + <_> + 8 3 4 11 -1. + <_> + 10 3 2 11 2. + <_> + + <_> + 8 3 8 10 -1. + <_> + 12 3 4 5 2. + <_> + 8 8 4 5 2. + <_> + + <_> + 11 1 2 18 -1. + <_> + 12 1 1 18 2. + <_> + + <_> + 9 2 9 6 -1. + <_> + 12 2 3 6 3. + <_> + + <_> + 0 2 19 3 -1. + <_> + 0 3 19 1 3. + <_> + + <_> + 9 14 9 6 -1. + <_> + 9 16 9 2 3. + <_> + + <_> + 1 8 18 5 -1. + <_> + 7 8 6 5 3. + <_> + + <_> + 12 0 6 9 -1. + <_> + 14 0 2 9 3. + <_> + + <_> + 6 0 6 9 -1. + <_> + 8 0 2 9 3. + <_> + + <_> + 13 6 4 15 -1. + <_> + 13 11 4 5 3. + <_> + + <_> + 1 5 18 3 -1. + <_> + 1 6 18 1 3. + <_> + + <_> + 9 7 14 6 -1. + <_> + 9 9 14 2 3. + <_> + + <_> + 2 16 18 3 -1. + <_> + 2 17 18 1 3. + <_> + + <_> + 15 17 9 6 -1. + <_> + 15 19 9 2 3. + <_> + + <_> + 0 8 12 6 -1. + <_> + 0 8 6 3 2. + <_> + 6 11 6 3 2. + <_> + + <_> + 9 13 7 8 -1. + <_> + 9 17 7 4 2. + <_> + + <_> + 2 17 20 3 -1. + <_> + 2 18 20 1 3. + <_> + + <_> + 15 17 9 6 -1. + <_> + 15 19 9 2 3. + <_> + + <_> + 4 0 15 4 -1. + <_> + 4 2 15 2 2. + <_> + + <_> + 17 2 6 6 -1. + <_> + 17 5 6 3 2. + <_> + + <_> + 0 3 6 9 -1. + <_> + 0 6 6 3 3. + <_> + + <_> + 15 17 9 6 -1. + <_> + 15 19 9 2 3. + <_> + + <_> + 0 17 9 6 -1. + <_> + 0 19 9 2 3. + <_> + + <_> + 9 18 12 6 -1. + <_> + 15 18 6 3 2. + <_> + 9 21 6 3 2. + <_> + + <_> + 3 15 6 9 -1. + <_> + 3 18 6 3 3. + <_> + + <_> + 16 13 8 10 -1. + <_> + 20 13 4 5 2. + <_> + 16 18 4 5 2. + <_> + + <_> + 0 14 24 4 -1. + <_> + 8 14 8 4 3. + <_> + + <_> + 13 18 6 6 -1. + <_> + 13 18 3 6 2. + <_> + + <_> + 0 13 8 10 -1. + <_> + 0 13 4 5 2. + <_> + 4 18 4 5 2. + <_> + + <_> + 0 14 24 6 -1. + <_> + 0 17 24 3 2. + <_> + + <_> + 5 2 12 8 -1. + <_> + 5 2 6 4 2. + <_> + 11 6 6 4 2. + <_> + + <_> + 8 9 9 6 -1. + <_> + 11 9 3 6 3. + <_> + + <_> + 4 3 16 4 -1. + <_> + 4 5 16 2 2. + <_> + + <_> + 10 2 4 10 -1. + <_> + 10 7 4 5 2. + <_> + + <_> + 8 4 5 8 -1. + <_> + 8 8 5 4 2. + <_> + + <_> + 11 5 9 12 -1. + <_> + 11 9 9 4 3. + <_> + + <_> + 4 5 9 12 -1. + <_> + 4 9 9 4 3. + <_> + + <_> + 14 6 6 9 -1. + <_> + 14 9 6 3 3. + <_> + + <_> + 2 4 20 12 -1. + <_> + 2 8 20 4 3. + <_> + + <_> + 4 4 17 16 -1. + <_> + 4 12 17 8 2. + <_> + + <_> + 8 7 7 6 -1. + <_> + 8 10 7 3 2. + <_> + + <_> + 1 9 23 2 -1. + <_> + 1 10 23 1 2. + <_> + + <_> + 7 0 6 9 -1. + <_> + 9 0 2 9 3. + <_> + + <_> + 13 3 4 9 -1. + <_> + 13 3 2 9 2. + <_> + + <_> + 8 1 6 13 -1. + <_> + 10 1 2 13 3. + <_> + + <_> + 4 22 18 2 -1. + <_> + 4 23 18 1 2. + <_> + + <_> + 3 10 9 6 -1. + <_> + 6 10 3 6 3. + <_> + + <_> + 14 0 2 24 -1. + <_> + 14 0 1 24 2. + <_> + + <_> + 8 0 2 24 -1. + <_> + 9 0 1 24 2. + <_> + + <_> + 3 2 18 10 -1. + <_> + 9 2 6 10 3. + <_> + + <_> + 4 13 15 6 -1. + <_> + 9 13 5 6 3. + <_> + + <_> + 3 21 18 3 -1. + <_> + 9 21 6 3 3. + <_> + + <_> + 9 1 4 11 -1. + <_> + 11 1 2 11 2. + <_> + + <_> + 9 7 10 4 -1. + <_> + 9 7 5 4 2. + <_> + + <_> + 7 0 10 18 -1. + <_> + 12 0 5 18 2. + <_> + + <_> + 12 1 6 16 -1. + <_> + 14 1 2 16 3. + <_> + + <_> + 6 1 6 16 -1. + <_> + 8 1 2 16 3. + <_> + + <_> + 18 2 6 6 -1. + <_> + 18 5 6 3 2. + <_> + + <_> + 3 5 18 2 -1. + <_> + 3 6 18 1 2. + <_> + + <_> + 18 2 6 6 -1. + <_> + 18 5 6 3 2. + <_> + + <_> + 0 2 6 6 -1. + <_> + 0 5 6 3 2. + <_> + + <_> + 13 11 11 6 -1. + <_> + 13 13 11 2 3. + <_> + + <_> + 5 7 10 4 -1. + <_> + 10 7 5 4 2. + <_> + + <_> + 11 9 10 7 -1. + <_> + 11 9 5 7 2. + <_> + + <_> + 3 9 10 7 -1. + <_> + 8 9 5 7 2. + <_> + + <_> + 16 4 6 6 -1. + <_> + 16 4 3 6 2. + <_> + + <_> + 5 6 10 8 -1. + <_> + 5 6 5 4 2. + <_> + 10 10 5 4 2. + <_> + + <_> + 7 21 16 3 -1. + <_> + 7 21 8 3 2. + <_> + + <_> + 1 21 16 3 -1. + <_> + 9 21 8 3 2. + <_> + + <_> + 2 5 22 14 -1. + <_> + 13 5 11 7 2. + <_> + 2 12 11 7 2. + <_> + + <_> + 3 10 8 10 -1. + <_> + 3 10 4 5 2. + <_> + 7 15 4 5 2. + <_> + + <_> + 17 0 6 12 -1. + <_> + 20 0 3 6 2. + <_> + 17 6 3 6 2. + <_> + + <_> + 5 2 6 18 -1. + <_> + 7 2 2 18 3. + <_> + + <_> + 13 0 6 9 -1. + <_> + 15 0 2 9 3. + <_> + + <_> + 0 12 7 9 -1. + <_> + 0 15 7 3 3. + <_> + + <_> + 15 13 8 10 -1. + <_> + 19 13 4 5 2. + <_> + 15 18 4 5 2. + <_> + + <_> + 1 0 6 12 -1. + <_> + 1 0 3 6 2. + <_> + 4 6 3 6 2. + <_> + + <_> + 12 1 3 12 -1. + <_> + 12 7 3 6 2. + <_> + + <_> + 1 13 8 10 -1. + <_> + 1 13 4 5 2. + <_> + 5 18 4 5 2. + <_> + + <_> + 3 21 19 2 -1. + <_> + 3 22 19 1 2. + <_> + + <_> + 6 3 4 13 -1. + <_> + 8 3 2 13 2. + <_> + + <_> + 5 10 18 3 -1. + <_> + 5 11 18 1 3. + <_> + + <_> + 9 3 5 12 -1. + <_> + 9 7 5 4 3. + <_> + + <_> + 11 2 4 15 -1. + <_> + 11 7 4 5 3. + <_> + + <_> + 4 1 16 4 -1. + <_> + 4 3 16 2 2. + <_> + + <_> + 6 0 18 3 -1. + <_> + 6 1 18 1 3. + <_> + + <_> + 5 1 10 8 -1. + <_> + 5 1 5 4 2. + <_> + 10 5 5 4 2. + <_> + + <_> + 11 18 12 6 -1. + <_> + 17 18 6 3 2. + <_> + 11 21 6 3 2. + <_> + + <_> + 5 15 12 3 -1. + <_> + 11 15 6 3 2. + <_> + + <_> + 1 10 22 4 -1. + <_> + 1 10 11 4 2. + <_> + + <_> + 7 9 9 6 -1. + <_> + 10 9 3 6 3. + <_> + + <_> + 6 11 12 5 -1. + <_> + 10 11 4 5 3. + <_> + + <_> + 6 7 10 7 -1. + <_> + 11 7 5 7 2. + <_> + + <_> + 11 2 8 10 -1. + <_> + 11 2 4 10 2. + <_> + + <_> + 5 2 8 10 -1. + <_> + 9 2 4 10 2. + <_> + + <_> + 6 4 18 6 -1. + <_> + 15 4 9 3 2. + <_> + 6 7 9 3 2. + <_> + + <_> + 0 5 10 9 -1. + <_> + 0 8 10 3 3. + <_> + + <_> + 2 7 21 6 -1. + <_> + 2 9 21 2 3. + <_> + + <_> + 0 4 22 16 -1. + <_> + 0 4 11 8 2. + <_> + 11 12 11 8 2. + <_> + + <_> + 9 0 6 22 -1. + <_> + 9 11 6 11 2. + <_> + + <_> + 9 1 3 12 -1. + <_> + 9 7 3 6 2. + <_> + + <_> + 12 0 12 18 -1. + <_> + 18 0 6 9 2. + <_> + 12 9 6 9 2. + <_> + + <_> + 0 0 12 18 -1. + <_> + 0 0 6 9 2. + <_> + 6 9 6 9 2. + <_> + + <_> + 1 1 22 4 -1. + <_> + 12 1 11 2 2. + <_> + 1 3 11 2 2. + <_> + + <_> + 3 0 18 4 -1. + <_> + 3 2 18 2 2. + <_> + + <_> + 2 5 22 6 -1. + <_> + 2 7 22 2 3. + <_> + + <_> + 5 0 6 9 -1. + <_> + 5 3 6 3 3. + <_> + + <_> + 10 14 6 9 -1. + <_> + 12 14 2 9 3. + <_> + + <_> + 8 14 6 9 -1. + <_> + 10 14 2 9 3. + <_> + + <_> + 5 18 18 3 -1. + <_> + 5 19 18 1 3. + <_> + + <_> + 6 0 6 13 -1. + <_> + 9 0 3 13 2. + <_> + + <_> + 7 4 12 4 -1. + <_> + 7 4 6 4 2. + <_> + + <_> + 5 2 12 6 -1. + <_> + 9 2 4 6 3. + <_> + + <_> + 4 1 18 3 -1. + <_> + 4 2 18 1 3. + <_> + + <_> + 0 8 6 12 -1. + <_> + 0 12 6 4 3. + <_> + + <_> + 9 15 6 9 -1. + <_> + 11 15 2 9 3. + <_> + + <_> + 9 10 6 13 -1. + <_> + 11 10 2 13 3. + <_> + + <_> + 6 17 18 2 -1. + <_> + 6 18 18 1 2. + <_> + + <_> + 9 4 6 9 -1. + <_> + 11 4 2 9 3. + <_> + + <_> + 10 0 6 9 -1. + <_> + 12 0 2 9 3. + <_> + + <_> + 5 6 10 8 -1. + <_> + 5 6 5 4 2. + <_> + 10 10 5 4 2. + <_> + + <_> + 14 9 5 8 -1. + <_> + 14 13 5 4 2. + <_> + + <_> + 5 9 5 8 -1. + <_> + 5 13 5 4 2. + <_> + + <_> + 14 11 9 6 -1. + <_> + 14 13 9 2 3. + <_> + + <_> + 0 2 23 15 -1. + <_> + 0 7 23 5 3. + <_> + + <_> + 16 0 8 12 -1. + <_> + 16 6 8 6 2. + <_> + + <_> + 4 15 6 9 -1. + <_> + 4 18 6 3 3. + <_> + + <_> + 8 18 9 4 -1. + <_> + 8 20 9 2 2. + <_> + + <_> + 0 17 18 3 -1. + <_> + 0 18 18 1 3. + <_> + + <_> + 13 11 11 6 -1. + <_> + 13 13 11 2 3. + <_> + + <_> + 0 11 11 6 -1. + <_> + 0 13 11 2 3. + <_> + + <_> + 0 9 24 6 -1. + <_> + 12 9 12 3 2. + <_> + 0 12 12 3 2. + <_> + + <_> + 6 16 8 8 -1. + <_> + 6 20 8 4 2. + <_> + + <_> + 10 16 14 6 -1. + <_> + 10 18 14 2 3. + <_> + + <_> + 1 1 21 3 -1. + <_> + 1 2 21 1 3. + <_> + + <_> + 0 2 24 3 -1. + <_> + 0 2 12 3 2. + <_> + + <_> + 2 15 8 5 -1. + <_> + 6 15 4 5 2. + <_> + + <_> + 2 11 21 3 -1. + <_> + 9 11 7 3 3. + <_> + + <_> + 1 18 12 6 -1. + <_> + 1 18 6 3 2. + <_> + 7 21 6 3 2. + <_> + + <_> + 10 14 4 10 -1. + <_> + 10 19 4 5 2. + <_> + + <_> + 7 7 4 10 -1. + <_> + 7 12 4 5 2. + <_> + + <_> + 9 8 6 12 -1. + <_> + 9 12 6 4 3. + <_> + + <_> + 7 1 9 6 -1. + <_> + 10 1 3 6 3. + <_> + + <_> + 3 14 19 2 -1. + <_> + 3 15 19 1 2. + <_> + + <_> + 7 7 10 10 -1. + <_> + 7 7 5 5 2. + <_> + 12 12 5 5 2. + <_> + + <_> + 3 12 18 12 -1. + <_> + 3 12 9 12 2. + <_> + + <_> + 8 0 6 12 -1. + <_> + 10 0 2 12 3. + <_> + + <_> + 3 0 17 9 -1. + <_> + 3 3 17 3 3. + <_> + + <_> + 6 0 12 11 -1. + <_> + 10 0 4 11 3. + <_> + + <_> + 1 0 6 13 -1. + <_> + 4 0 3 13 2. + <_> + + <_> + 5 8 16 6 -1. + <_> + 5 11 16 3 2. + <_> + + <_> + 8 8 5 12 -1. + <_> + 8 14 5 6 2. + <_> + + <_> + 3 21 18 3 -1. + <_> + 9 21 6 3 3. + <_> + + <_> + 0 0 6 6 -1. + <_> + 3 0 3 6 2. + <_> + + <_> + 2 0 20 3 -1. + <_> + 2 1 20 1 3. + <_> + + <_> + 4 6 15 10 -1. + <_> + 9 6 5 10 3. + <_> + + <_> + 9 6 6 9 -1. + <_> + 11 6 2 9 3. + <_> + + <_> + 9 0 6 9 -1. + <_> + 11 0 2 9 3. + <_> + + <_> + 14 0 6 9 -1. + <_> + 16 0 2 9 3. + <_> + + <_> + 7 16 9 6 -1. + <_> + 7 18 9 2 3. + <_> + + <_> + 14 0 6 9 -1. + <_> + 16 0 2 9 3. + <_> + + <_> + 4 0 6 9 -1. + <_> + 6 0 2 9 3. + <_> + + <_> + 17 1 6 16 -1. + <_> + 19 1 2 16 3. + <_> + + <_> + 1 1 6 16 -1. + <_> + 3 1 2 16 3. + <_> + + <_> + 14 13 6 9 -1. + <_> + 14 16 6 3 3. + <_> + + <_> + 0 0 6 9 -1. + <_> + 0 3 6 3 3. + <_> + + <_> + 9 5 6 6 -1. + <_> + 9 5 3 6 2. + <_> + + <_> + 3 10 9 6 -1. + <_> + 6 10 3 6 3. + <_> + + <_> + 14 7 3 16 -1. + <_> + 14 15 3 8 2. + <_> + + <_> + 4 10 14 12 -1. + <_> + 4 10 7 6 2. + <_> + 11 16 7 6 2. + <_> + + <_> + 7 6 12 6 -1. + <_> + 7 8 12 2 3. + <_> + + <_> + 7 2 4 20 -1. + <_> + 9 2 2 20 2. + <_> + + <_> + 14 13 6 9 -1. + <_> + 14 16 6 3 3. + <_> + + <_> + 10 6 4 9 -1. + <_> + 12 6 2 9 2. + <_> + + <_> + 14 13 6 9 -1. + <_> + 14 16 6 3 3. + <_> + + <_> + 5 20 14 4 -1. + <_> + 5 22 14 2 2. + <_> + + <_> + 4 4 16 12 -1. + <_> + 4 10 16 6 2. + <_> + + <_> + 9 6 6 9 -1. + <_> + 11 6 2 9 3. + <_> + + <_> + 3 0 21 4 -1. + <_> + 3 2 21 2 2. + <_> + + <_> + 4 13 6 9 -1. + <_> + 4 16 6 3 3. + <_> + + <_> + 16 16 5 8 -1. + <_> + 16 20 5 4 2. + <_> + + <_> + 4 0 16 16 -1. + <_> + 4 0 8 8 2. + <_> + 12 8 8 8 2. + <_> + + <_> + 6 6 14 6 -1. + <_> + 13 6 7 3 2. + <_> + 6 9 7 3 2. + <_> + + <_> + 10 5 4 15 -1. + <_> + 10 10 4 5 3. + <_> + + <_> + 9 15 12 8 -1. + <_> + 15 15 6 4 2. + <_> + 9 19 6 4 2. + <_> + + <_> + 6 7 12 4 -1. + <_> + 12 7 6 4 2. + <_> + + <_> + 5 6 14 6 -1. + <_> + 12 6 7 3 2. + <_> + 5 9 7 3 2. + <_> + + <_> + 3 6 18 10 -1. + <_> + 3 6 9 5 2. + <_> + 12 11 9 5 2. + <_> + + <_> + 6 0 18 21 -1. + <_> + 12 0 6 21 3. + <_> + + <_> + 0 0 24 21 -1. + <_> + 8 0 8 21 3. + <_> + + <_> + 6 18 18 3 -1. + <_> + 6 19 18 1 3. + <_> + + <_> + 0 15 9 6 -1. + <_> + 0 17 9 2 3. + <_> + + <_> + 4 3 19 2 -1. + <_> + 4 4 19 1 2. + <_> + + <_> + 0 3 24 2 -1. + <_> + 0 4 24 1 2. + <_> + + <_> + 15 14 9 4 -1. + <_> + 15 16 9 2 2. + <_> + + <_> + 0 14 9 4 -1. + <_> + 0 16 9 2 2. + <_> + + <_> + 6 15 18 2 -1. + <_> + 6 16 18 1 2. + <_> + + <_> + 3 17 18 3 -1. + <_> + 3 18 18 1 3. + <_> + + <_> + 12 0 3 23 -1. + <_> + 13 0 1 23 3. + <_> + + <_> + 6 0 8 6 -1. + <_> + 6 3 8 3 2. + <_> + + <_> + 6 16 18 3 -1. + <_> + 6 17 18 1 3. + <_> + + <_> + 9 0 3 23 -1. + <_> + 10 0 1 23 3. + <_> + + <_> + 10 7 4 10 -1. + <_> + 10 12 4 5 2. + <_> + + <_> + 7 8 10 12 -1. + <_> + 7 12 10 4 3. + <_> + + <_> + 14 9 6 14 -1. + <_> + 17 9 3 7 2. + <_> + 14 16 3 7 2. + <_> + + <_> + 2 0 10 9 -1. + <_> + 2 3 10 3 3. + <_> + + <_> + 11 1 5 12 -1. + <_> + 11 7 5 6 2. + <_> + + <_> + 1 4 12 10 -1. + <_> + 1 4 6 5 2. + <_> + 7 9 6 5 2. + <_> + + <_> + 15 1 9 4 -1. + <_> + 15 3 9 2 2. + <_> + + <_> + 1 2 8 10 -1. + <_> + 1 2 4 5 2. + <_> + 5 7 4 5 2. + <_> + + <_> + 10 1 5 12 -1. + <_> + 10 5 5 4 3. + <_> + + <_> + 4 0 14 24 -1. + <_> + 11 0 7 24 2. + <_> + + <_> + 7 17 10 4 -1. + <_> + 7 19 10 2 2. + <_> + + <_> + 10 14 4 10 -1. + <_> + 10 19 4 5 2. + <_> + + <_> + 13 15 6 9 -1. + <_> + 15 15 2 9 3. + <_> + + <_> + 3 21 18 3 -1. + <_> + 3 22 18 1 3. + <_> + + <_> + 13 15 6 9 -1. + <_> + 15 15 2 9 3. + <_> + + <_> + 5 15 6 9 -1. + <_> + 7 15 2 9 3. + <_> + + <_> + 10 6 4 18 -1. + <_> + 12 6 2 9 2. + <_> + 10 15 2 9 2. + <_> + + <_> + 7 3 6 11 -1. + <_> + 9 3 2 11 3. + <_> + + <_> + 15 1 9 4 -1. + <_> + 15 3 9 2 2. + <_> + + <_> + 5 4 14 8 -1. + <_> + 5 8 14 4 2. + <_> + + <_> + 8 1 15 9 -1. + <_> + 8 4 15 3 3. + <_> + + <_> + 7 2 8 10 -1. + <_> + 7 2 4 5 2. + <_> + 11 7 4 5 2. + <_> + + <_> + 12 2 6 12 -1. + <_> + 12 2 3 12 2. + <_> + + <_> + 6 2 6 12 -1. + <_> + 9 2 3 12 2. + <_> + + <_> + 7 7 12 4 -1. + <_> + 7 7 6 4 2. + <_> + + <_> + 6 3 12 10 -1. + <_> + 10 3 4 10 3. + <_> + + <_> + 5 6 16 6 -1. + <_> + 13 6 8 3 2. + <_> + 5 9 8 3 2. + <_> + + <_> + 3 1 18 9 -1. + <_> + 9 1 6 9 3. + <_> + + <_> + 3 8 18 5 -1. + <_> + 9 8 6 5 3. + <_> + + <_> + 0 0 24 22 -1. + <_> + 0 0 12 11 2. + <_> + 12 11 12 11 2. + <_> + + <_> + 14 16 9 6 -1. + <_> + 14 18 9 2 3. + <_> + + <_> + 0 16 24 8 -1. + <_> + 0 20 24 4 2. + <_> + + <_> + 1 19 22 4 -1. + <_> + 12 19 11 2 2. + <_> + 1 21 11 2 2. + <_> + + <_> + 1 16 9 6 -1. + <_> + 1 18 9 2 3. + <_> + + <_> + 7 8 10 4 -1. + <_> + 7 8 5 4 2. + <_> + + <_> + 9 15 6 9 -1. + <_> + 11 15 2 9 3. + <_> + + <_> + 10 18 12 6 -1. + <_> + 16 18 6 3 2. + <_> + 10 21 6 3 2. + <_> + + <_> + 2 18 12 6 -1. + <_> + 2 18 6 3 2. + <_> + 8 21 6 3 2. + <_> + + <_> + 8 3 16 9 -1. + <_> + 8 6 16 3 3. + <_> + + <_> + 0 5 10 6 -1. + <_> + 0 7 10 2 3. + <_> + + <_> + 5 5 18 3 -1. + <_> + 5 6 18 1 3. + <_> + + <_> + 2 6 9 6 -1. + <_> + 2 9 9 3 2. + <_> + + <_> + 14 2 10 9 -1. + <_> + 14 5 10 3 3. + <_> + + <_> + 3 6 18 3 -1. + <_> + 3 7 18 1 3. + <_> + + <_> + 9 2 15 6 -1. + <_> + 9 4 15 2 3. + <_> + + <_> + 4 8 15 6 -1. + <_> + 4 10 15 2 3. + <_> + + <_> + 0 5 24 4 -1. + <_> + 12 5 12 2 2. + <_> + 0 7 12 2 2. + <_> + + <_> + 7 8 6 12 -1. + <_> + 9 8 2 12 3. + <_> + + <_> + 11 0 6 9 -1. + <_> + 13 0 2 9 3. + <_> + + <_> + 0 12 6 12 -1. + <_> + 0 12 3 6 2. + <_> + 3 18 3 6 2. + <_> + + <_> + 14 12 10 6 -1. + <_> + 14 14 10 2 3. + <_> + + <_> + 2 7 18 9 -1. + <_> + 2 10 18 3 3. + <_> + + <_> + 11 14 10 9 -1. + <_> + 11 17 10 3 3. + <_> + + <_> + 7 6 10 8 -1. + <_> + 7 6 5 4 2. + <_> + 12 10 5 4 2. + <_> + + <_> + 6 6 14 6 -1. + <_> + 13 6 7 3 2. + <_> + 6 9 7 3 2. + <_> + + <_> + 4 13 9 7 -1. + <_> + 7 13 3 7 3. + <_> + + <_> + 14 10 6 12 -1. + <_> + 17 10 3 6 2. + <_> + 14 16 3 6 2. + <_> + + <_> + 4 10 6 12 -1. + <_> + 4 10 3 6 2. + <_> + 7 16 3 6 2. + <_> + + <_> + 13 9 8 6 -1. + <_> + 13 9 4 6 2. + <_> + + <_> + 8 3 4 14 -1. + <_> + 10 3 2 14 2. + <_> + + <_> + 17 0 3 18 -1. + <_> + 18 0 1 18 3. + <_> + + <_> + 4 12 16 12 -1. + <_> + 12 12 8 12 2. + <_> + + <_> + 15 0 6 14 -1. + <_> + 17 0 2 14 3. + <_> + + <_> + 3 0 6 14 -1. + <_> + 5 0 2 14 3. + <_> + + <_> + 12 2 12 20 -1. + <_> + 16 2 4 20 3. + <_> + + <_> + 0 2 12 20 -1. + <_> + 4 2 4 20 3. + <_> + + <_> + 16 0 6 17 -1. + <_> + 18 0 2 17 3. + <_> + + <_> + 2 0 6 17 -1. + <_> + 4 0 2 17 3. + <_> + + <_> + 15 6 9 6 -1. + <_> + 15 8 9 2 3. + <_> + + <_> + 0 6 9 6 -1. + <_> + 0 8 9 2 3. + <_> + + <_> + 18 1 6 13 -1. + <_> + 20 1 2 13 3. + <_> + + <_> + 0 1 6 13 -1. + <_> + 2 1 2 13 3. + <_> + + <_> + 16 0 4 9 -1. + <_> + 16 0 2 9 2. + <_> + + <_> + 5 10 12 7 -1. + <_> + 9 10 4 7 3. + <_> + + <_> + 12 9 12 6 -1. + <_> + 12 11 12 2 3. + <_> + + <_> + 0 9 12 6 -1. + <_> + 0 11 12 2 3. + <_> + + <_> + 5 7 14 9 -1. + <_> + 5 10 14 3 3. + <_> + + <_> + 0 15 20 3 -1. + <_> + 0 16 20 1 3. + <_> + + <_> + 8 10 8 10 -1. + <_> + 12 10 4 5 2. + <_> + 8 15 4 5 2. + <_> + + <_> + 5 4 13 9 -1. + <_> + 5 7 13 3 3. + <_> + + <_> + 10 2 6 18 -1. + <_> + 10 8 6 6 3. + <_> + + <_> + 6 0 6 9 -1. + <_> + 8 0 2 9 3. + <_> + + <_> + 6 9 12 4 -1. + <_> + 6 11 12 2 2. + <_> + + <_> + 3 2 15 12 -1. + <_> + 3 6 15 4 3. + <_> + + <_> + 12 0 12 5 -1. + <_> + 16 0 4 5 3. + <_> + + <_> + 0 15 18 3 -1. + <_> + 6 15 6 3 3. + <_> + + <_> + 0 14 24 5 -1. + <_> + 8 14 8 5 3. + <_> + + <_> + 5 1 3 18 -1. + <_> + 6 1 1 18 3. + <_> + + <_> + 10 0 4 14 -1. + <_> + 10 0 2 14 2. + <_> + + <_> + 9 3 4 9 -1. + <_> + 11 3 2 9 2. + <_> + + <_> + 8 2 12 6 -1. + <_> + 14 2 6 3 2. + <_> + 8 5 6 3 2. + <_> + + <_> + 0 4 17 4 -1. + <_> + 0 6 17 2 2. + <_> + + <_> + 16 16 5 8 -1. + <_> + 16 20 5 4 2. + <_> + + <_> + 3 16 5 8 -1. + <_> + 3 20 5 4 2. + <_> + + <_> + 6 18 18 2 -1. + <_> + 6 19 18 1 2. + <_> + + <_> + 0 0 12 5 -1. + <_> + 4 0 4 5 3. + <_> + + <_> + 14 3 6 12 -1. + <_> + 17 3 3 6 2. + <_> + 14 9 3 6 2. + <_> + + <_> + 0 12 6 12 -1. + <_> + 2 12 2 12 3. + <_> + + <_> + 2 3 21 3 -1. + <_> + 2 4 21 1 3. + <_> + + <_> + 4 3 6 12 -1. + <_> + 4 3 3 6 2. + <_> + 7 9 3 6 2. + <_> + + <_> + 12 8 12 6 -1. + <_> + 18 8 6 3 2. + <_> + 12 11 6 3 2. + <_> + + <_> + 0 15 16 9 -1. + <_> + 8 15 8 9 2. + <_> + + <_> + 6 13 18 5 -1. + <_> + 6 13 9 5 2. + <_> + + <_> + 1 6 15 6 -1. + <_> + 6 6 5 6 3. + <_> + + <_> + 11 9 9 6 -1. + <_> + 14 9 3 6 3. + <_> + + <_> + 3 0 15 11 -1. + <_> + 8 0 5 11 3. + <_> + + <_> + 15 3 3 18 -1. + <_> + 15 9 3 6 3. + <_> + + <_> + 6 3 3 18 -1. + <_> + 6 9 3 6 3. + <_> + + <_> + 9 5 10 8 -1. + <_> + 14 5 5 4 2. + <_> + 9 9 5 4 2. + <_> + + <_> + 4 4 16 8 -1. + <_> + 4 4 8 4 2. + <_> + 12 8 8 4 2. + <_> + + <_> + 7 7 12 3 -1. + <_> + 7 7 6 3 2. + <_> + + <_> + 5 0 9 13 -1. + <_> + 8 0 3 13 3. + <_> + + <_> + 11 0 6 9 -1. + <_> + 13 0 2 9 3. + <_> + + <_> + 7 0 6 9 -1. + <_> + 9 0 2 9 3. + <_> + + <_> + 8 1 10 9 -1. + <_> + 8 4 10 3 3. + <_> + + <_> + 0 2 18 2 -1. + <_> + 0 3 18 1 2. + <_> + + <_> + 10 13 14 6 -1. + <_> + 17 13 7 3 2. + <_> + 10 16 7 3 2. + <_> + + <_> + 0 13 14 6 -1. + <_> + 0 13 7 3 2. + <_> + 7 16 7 3 2. + <_> + + <_> + 20 2 3 21 -1. + <_> + 21 2 1 21 3. + <_> + + <_> + 0 9 5 12 -1. + <_> + 0 13 5 4 3. + <_> + + <_> + 12 6 12 6 -1. + <_> + 12 8 12 2 3. + <_> + + <_> + 1 8 20 3 -1. + <_> + 1 9 20 1 3. + <_> + + <_> + 5 7 19 3 -1. + <_> + 5 8 19 1 3. + <_> + + <_> + 1 12 9 6 -1. + <_> + 1 14 9 2 3. + <_> + + <_> + 6 10 14 12 -1. + <_> + 6 14 14 4 3. + <_> + + <_> + 5 6 14 18 -1. + <_> + 5 12 14 6 3. + <_> + + <_> + 11 12 9 7 -1. + <_> + 14 12 3 7 3. + <_> + + <_> + 1 15 18 4 -1. + <_> + 1 17 18 2 2. + <_> + + <_> + 11 14 6 9 -1. + <_> + 11 17 6 3 3. + <_> + + <_> + 0 8 18 4 -1. + <_> + 0 8 9 2 2. + <_> + 9 10 9 2 2. + <_> + + <_> + 3 10 20 6 -1. + <_> + 13 10 10 3 2. + <_> + 3 13 10 3 2. + <_> + + <_> + 1 10 20 6 -1. + <_> + 1 10 10 3 2. + <_> + 11 13 10 3 2. + <_> + + <_> + 0 9 24 2 -1. + <_> + 0 9 12 2 2. + <_> + + <_> + 1 12 20 8 -1. + <_> + 1 12 10 4 2. + <_> + 11 16 10 4 2. + <_> + + <_> + 11 12 9 7 -1. + <_> + 14 12 3 7 3. + <_> + + <_> + 4 12 9 7 -1. + <_> + 7 12 3 7 3. + <_> + + <_> + 12 12 8 5 -1. + <_> + 12 12 4 5 2. + <_> + + <_> + 4 12 8 5 -1. + <_> + 8 12 4 5 2. + <_> + + <_> + 13 10 4 10 -1. + <_> + 13 10 2 10 2. + <_> + + <_> + 1 15 20 2 -1. + <_> + 11 15 10 2 2. + <_> + + <_> + 9 10 6 6 -1. + <_> + 9 10 3 6 2. + <_> + + <_> + 0 1 21 3 -1. + <_> + 7 1 7 3 3. + <_> + + <_> + 6 4 13 9 -1. + <_> + 6 7 13 3 3. + <_> + + <_> + 6 5 12 5 -1. + <_> + 10 5 4 5 3. + <_> + + <_> + 10 10 10 6 -1. + <_> + 10 12 10 2 3. + <_> + + <_> + 6 12 5 8 -1. + <_> + 6 16 5 4 2. + <_> + + <_> + 13 0 6 9 -1. + <_> + 15 0 2 9 3. + <_> + + <_> + 2 10 18 6 -1. + <_> + 8 10 6 6 3. + <_> + + <_> + 11 2 9 4 -1. + <_> + 11 4 9 2 2. + <_> + + <_> + 1 20 21 3 -1. + <_> + 8 20 7 3 3. + <_> + + <_> + 1 10 22 2 -1. + <_> + 1 11 22 1 2. + <_> + + <_> + 0 17 18 3 -1. + <_> + 0 18 18 1 3. + <_> + + <_> + 13 0 6 9 -1. + <_> + 15 0 2 9 3. + <_> + + <_> + 5 0 6 9 -1. + <_> + 7 0 2 9 3. + <_> + + <_> + 18 2 6 20 -1. + <_> + 20 2 2 20 3. + <_> + + <_> + 0 2 6 20 -1. + <_> + 2 2 2 20 3. + <_> + + <_> + 11 7 6 14 -1. + <_> + 14 7 3 7 2. + <_> + 11 14 3 7 2. + <_> + + <_> + 0 1 4 9 -1. + <_> + 2 1 2 9 2. + <_> + + <_> + 12 14 9 4 -1. + <_> + 12 16 9 2 2. + <_> + + <_> + 1 13 9 4 -1. + <_> + 1 15 9 2 2. + <_> + + <_> + 7 6 15 6 -1. + <_> + 7 8 15 2 3. + <_> + + <_> + 8 2 3 18 -1. + <_> + 8 8 3 6 3. + <_> + + <_> + 6 6 12 6 -1. + <_> + 12 6 6 3 2. + <_> + 6 9 6 3 2. + <_> + + <_> + 2 19 20 4 -1. + <_> + 2 19 10 2 2. + <_> + 12 21 10 2 2. + <_> + + <_> + 14 15 6 9 -1. + <_> + 14 18 6 3 3. + <_> + + <_> + 3 5 18 14 -1. + <_> + 3 5 9 7 2. + <_> + 12 12 9 7 2. + <_> + + <_> + 15 6 4 18 -1. + <_> + 17 6 2 9 2. + <_> + 15 15 2 9 2. + <_> + + <_> + 5 6 4 18 -1. + <_> + 5 6 2 9 2. + <_> + 7 15 2 9 2. + <_> + + <_> + 11 0 6 9 -1. + <_> + 13 0 2 9 3. + <_> + + <_> + 7 0 6 9 -1. + <_> + 9 0 2 9 3. + <_> + + <_> + 11 5 6 9 -1. + <_> + 13 5 2 9 3. + <_> + + <_> + 9 5 6 6 -1. + <_> + 12 5 3 6 2. + <_> + + <_> + 4 1 16 6 -1. + <_> + 12 1 8 3 2. + <_> + 4 4 8 3 2. + <_> + + <_> + 9 13 6 11 -1. + <_> + 11 13 2 11 3. + <_> + + <_> + 17 1 6 12 -1. + <_> + 20 1 3 6 2. + <_> + 17 7 3 6 2. + <_> + + <_> + 1 17 18 3 -1. + <_> + 1 18 18 1 3. + <_> + + <_> + 7 13 10 8 -1. + <_> + 7 17 10 4 2. + <_> + + <_> + 6 18 10 6 -1. + <_> + 6 20 10 2 3. + <_> + + <_> + 9 14 9 4 -1. + <_> + 9 16 9 2 2. + <_> + + <_> + 1 1 6 12 -1. + <_> + 1 1 3 6 2. + <_> + 4 7 3 6 2. + <_> + + <_> + 19 4 5 12 -1. + <_> + 19 8 5 4 3. + <_> + + <_> + 0 0 8 8 -1. + <_> + 4 0 4 8 2. + <_> + + <_> + 3 5 19 3 -1. + <_> + 3 6 19 1 3. + <_> + + <_> + 1 5 12 6 -1. + <_> + 1 5 6 3 2. + <_> + 7 8 6 3 2. + <_> + + <_> + 2 1 21 8 -1. + <_> + 9 1 7 8 3. + <_> + + <_> + 4 1 16 8 -1. + <_> + 4 5 16 4 2. + <_> + + <_> + 6 0 18 3 -1. + <_> + 6 1 18 1 3. + <_> + + <_> + 4 4 10 14 -1. + <_> + 4 11 10 7 2. + <_> + + <_> + 15 6 4 10 -1. + <_> + 15 11 4 5 2. + <_> + + <_> + 3 18 18 3 -1. + <_> + 9 18 6 3 3. + <_> + + <_> + 8 18 12 6 -1. + <_> + 12 18 4 6 3. + <_> + + <_> + 3 15 6 9 -1. + <_> + 6 15 3 9 2. + <_> + + <_> + 15 7 6 8 -1. + <_> + 15 11 6 4 2. + <_> + + <_> + 3 7 6 8 -1. + <_> + 3 11 6 4 2. + <_> + + <_> + 5 9 18 6 -1. + <_> + 14 9 9 3 2. + <_> + 5 12 9 3 2. + <_> + + <_> + 1 13 12 6 -1. + <_> + 1 15 12 2 3. + <_> + + <_> + 14 15 10 6 -1. + <_> + 14 17 10 2 3. + <_> + + <_> + 0 15 10 6 -1. + <_> + 0 17 10 2 3. + <_> + + <_> + 15 13 6 9 -1. + <_> + 15 16 6 3 3. + <_> + + <_> + 3 13 6 9 -1. + <_> + 3 16 6 3 3. + <_> + + <_> + 9 5 8 8 -1. + <_> + 9 5 4 8 2. + <_> + + <_> + 1 18 12 6 -1. + <_> + 1 18 6 3 2. + <_> + 7 21 6 3 2. + <_> + + <_> + 13 19 10 4 -1. + <_> + 13 21 10 2 2. + <_> + + <_> + 1 19 10 4 -1. + <_> + 1 21 10 2 2. + <_> + + <_> + 6 19 18 3 -1. + <_> + 6 20 18 1 3. + <_> + + <_> + 8 14 4 10 -1. + <_> + 8 19 4 5 2. + <_> + + <_> + 0 0 24 6 -1. + <_> + 0 2 24 2 3. + <_> + + <_> + 0 1 6 9 -1. + <_> + 0 4 6 3 3. + <_> + + <_> + 4 9 20 6 -1. + <_> + 14 9 10 3 2. + <_> + 4 12 10 3 2. + <_> + + <_> + 1 15 19 8 -1. + <_> + 1 19 19 4 2. + <_> + + <_> + 14 0 10 6 -1. + <_> + 14 2 10 2 3. + <_> + + <_> + 1 10 21 14 -1. + <_> + 8 10 7 14 3. + <_> + + <_> + 10 10 8 8 -1. + <_> + 10 10 4 8 2. + <_> + + <_> + 6 8 10 4 -1. + <_> + 11 8 5 4 2. + <_> + + <_> + 10 5 4 9 -1. + <_> + 10 5 2 9 2. + <_> + + <_> + 7 5 6 10 -1. + <_> + 9 5 2 10 3. + <_> + + <_> + 14 4 4 13 -1. + <_> + 14 4 2 13 2. + <_> + + <_> + 6 4 4 13 -1. + <_> + 8 4 2 13 2. + <_> + + <_> + 8 7 9 6 -1. + <_> + 11 7 3 6 3. + <_> + + <_> + 3 6 16 6 -1. + <_> + 3 6 8 3 2. + <_> + 11 9 8 3 2. + <_> + + <_> + 5 4 16 14 -1. + <_> + 13 4 8 7 2. + <_> + 5 11 8 7 2. + <_> + + <_> + 0 0 24 4 -1. + <_> + 0 0 12 2 2. + <_> + 12 2 12 2 2. + <_> + + <_> + 9 1 9 6 -1. + <_> + 12 1 3 6 3. + <_> + + <_> + 4 1 14 4 -1. + <_> + 11 1 7 4 2. + <_> + + <_> + 10 14 7 9 -1. + <_> + 10 17 7 3 3. + <_> + + <_> + 8 3 8 10 -1. + <_> + 8 3 4 5 2. + <_> + 12 8 4 5 2. + <_> + + <_> + 7 3 12 5 -1. + <_> + 11 3 4 5 3. + <_> + + <_> + 8 2 4 13 -1. + <_> + 10 2 2 13 2. + <_> + + <_> + 11 2 3 19 -1. + <_> + 12 2 1 19 3. + <_> + + <_> + 7 7 9 6 -1. + <_> + 10 7 3 6 3. + <_> + + <_> + 4 22 20 2 -1. + <_> + 4 22 10 2 2. + <_> + + <_> + 0 16 24 4 -1. + <_> + 0 16 12 2 2. + <_> + 12 18 12 2 2. + <_> + + <_> + 7 3 12 5 -1. + <_> + 11 3 4 5 3. + <_> + + <_> + 1 10 8 14 -1. + <_> + 1 10 4 7 2. + <_> + 5 17 4 7 2. + <_> + + <_> + 11 16 6 6 -1. + <_> + 11 19 6 3 2. + <_> + + <_> + 6 0 10 24 -1. + <_> + 6 0 5 12 2. + <_> + 11 12 5 12 2. + <_> + + <_> + 7 5 14 14 -1. + <_> + 14 5 7 7 2. + <_> + 7 12 7 7 2. + <_> + + <_> + 7 8 10 8 -1. + <_> + 7 8 5 4 2. + <_> + 12 12 5 4 2. + <_> + + <_> + 9 1 9 6 -1. + <_> + 12 1 3 6 3. + <_> + + <_> + 0 6 24 3 -1. + <_> + 12 6 12 3 2. + <_> + + <_> + 7 3 12 5 -1. + <_> + 11 3 4 5 3. + <_> + + <_> + 1 13 22 4 -1. + <_> + 1 13 11 2 2. + <_> + 12 15 11 2 2. + <_> + + <_> + 9 12 12 6 -1. + <_> + 9 14 12 2 3. + <_> + + <_> + 0 5 9 6 -1. + <_> + 0 7 9 2 3. + <_> + + <_> + 1 5 23 6 -1. + <_> + 1 7 23 2 3. + <_> + + <_> + 1 6 19 12 -1. + <_> + 1 10 19 4 3. + <_> + + <_> + 9 1 6 21 -1. + <_> + 9 8 6 7 3. + <_> + + <_> + 3 19 18 3 -1. + <_> + 9 19 6 3 3. + <_> + + <_> + 9 14 6 9 -1. + <_> + 11 14 2 9 3. + <_> + + <_> + 9 6 4 12 -1. + <_> + 11 6 2 12 2. + <_> + + <_> + 16 0 6 9 -1. + <_> + 18 0 2 9 3. + <_> + + <_> + 2 0 6 9 -1. + <_> + 4 0 2 9 3. + <_> + + <_> + 13 1 4 22 -1. + <_> + 15 1 2 11 2. + <_> + 13 12 2 11 2. + <_> + + <_> + 1 8 8 12 -1. + <_> + 1 14 8 6 2. + <_> + + <_> + 14 7 7 9 -1. + <_> + 14 10 7 3 3. + <_> + + <_> + 3 12 18 4 -1. + <_> + 3 12 9 2 2. + <_> + 12 14 9 2 2. + <_> + + <_> + 13 1 4 22 -1. + <_> + 15 1 2 11 2. + <_> + 13 12 2 11 2. + <_> + + <_> + 7 1 4 22 -1. + <_> + 7 1 2 11 2. + <_> + 9 12 2 11 2. + <_> + + <_> + 4 7 20 4 -1. + <_> + 14 7 10 2 2. + <_> + 4 9 10 2 2. + <_> + + <_> + 9 10 6 7 -1. + <_> + 12 10 3 7 2. + <_> + + <_> + 7 7 10 4 -1. + <_> + 7 7 5 4 2. + <_> + + <_> + 0 3 4 15 -1. + <_> + 0 8 4 5 3. + <_> + + <_> + 15 0 8 12 -1. + <_> + 19 0 4 6 2. + <_> + 15 6 4 6 2. + <_> + + <_> + 1 0 8 12 -1. + <_> + 1 0 4 6 2. + <_> + 5 6 4 6 2. + <_> + + <_> + 14 5 6 16 -1. + <_> + 16 5 2 16 3. + <_> + + <_> + 4 5 6 16 -1. + <_> + 6 5 2 16 3. + <_> + + <_> + 15 0 6 16 -1. + <_> + 17 0 2 16 3. + <_> + + <_> + 3 0 6 16 -1. + <_> + 5 0 2 16 3. + <_> + + <_> + 0 2 24 3 -1. + <_> + 0 3 24 1 3. + <_> + + <_> + 7 1 10 4 -1. + <_> + 7 3 10 2 2. + <_> + + <_> + 1 0 23 8 -1. + <_> + 1 4 23 4 2. + <_> + + <_> + 1 17 19 3 -1. + <_> + 1 18 19 1 3. + <_> + + <_> + 6 18 18 2 -1. + <_> + 6 19 18 1 2. + <_> + + <_> + 1 17 9 6 -1. + <_> + 1 19 9 2 3. + <_> + + <_> + 15 15 6 9 -1. + <_> + 15 18 6 3 3. + <_> + + <_> + 3 15 6 9 -1. + <_> + 3 18 6 3 3. + <_> + + <_> + 4 14 20 6 -1. + <_> + 4 17 20 3 2. + <_> + + <_> + 0 10 6 14 -1. + <_> + 0 10 3 7 2. + <_> + 3 17 3 7 2. + <_> + + <_> + 6 18 18 3 -1. + <_> + 6 19 18 1 3. + <_> + + <_> + 4 12 9 7 -1. + <_> + 7 12 3 7 3. + <_> + + <_> + 6 10 18 5 -1. + <_> + 12 10 6 5 3. + <_> + + <_> + 0 10 18 5 -1. + <_> + 6 10 6 5 3. + <_> + + <_> + 3 2 18 9 -1. + <_> + 9 2 6 9 3. + <_> + + <_> + 4 6 10 10 -1. + <_> + 4 6 5 5 2. + <_> + 9 11 5 5 2. + <_> + + <_> + 20 14 4 9 -1. + <_> + 20 14 2 9 2. + <_> + + <_> + 0 14 4 9 -1. + <_> + 2 14 2 9 2. + <_> + + <_> + 11 1 4 20 -1. + <_> + 13 1 2 10 2. + <_> + 11 11 2 10 2. + <_> + + <_> + 6 21 12 3 -1. + <_> + 12 21 6 3 2. + <_> + + <_> + 11 1 4 20 -1. + <_> + 13 1 2 10 2. + <_> + 11 11 2 10 2. + <_> + + <_> + 1 16 10 8 -1. + <_> + 1 16 5 4 2. + <_> + 6 20 5 4 2. + <_> + + <_> + 11 1 4 20 -1. + <_> + 13 1 2 10 2. + <_> + 11 11 2 10 2. + <_> + + <_> + 1 0 3 19 -1. + <_> + 2 0 1 19 3. + <_> + + <_> + 11 1 4 20 -1. + <_> + 13 1 2 10 2. + <_> + 11 11 2 10 2. + <_> + + <_> + 0 1 6 9 -1. + <_> + 2 1 2 9 3. + <_> + + <_> + 3 7 19 4 -1. + <_> + 3 9 19 2 2. + <_> + + <_> + 7 14 9 6 -1. + <_> + 7 16 9 2 3. + <_> + + <_> + 17 1 7 6 -1. + <_> + 17 4 7 3 2. + <_> + + <_> + 5 0 14 8 -1. + <_> + 5 4 14 4 2. + <_> + + <_> + 16 1 8 6 -1. + <_> + 16 4 8 3 2. + <_> + + <_> + 0 1 8 6 -1. + <_> + 0 4 8 3 2. + <_> + + <_> + 6 0 18 4 -1. + <_> + 15 0 9 2 2. + <_> + 6 2 9 2 2. + <_> + + <_> + 0 14 9 6 -1. + <_> + 0 16 9 2 3. + <_> + + <_> + 3 7 18 8 -1. + <_> + 9 7 6 8 3. + <_> + + <_> + 2 11 6 9 -1. + <_> + 4 11 2 9 3. + <_> + + <_> + 10 5 6 9 -1. + <_> + 12 5 2 9 3. + <_> + + <_> + 10 6 4 18 -1. + <_> + 10 6 2 9 2. + <_> + 12 15 2 9 2. + <_> + + <_> + 11 1 4 20 -1. + <_> + 13 1 2 10 2. + <_> + 11 11 2 10 2. + <_> + + <_> + 9 1 4 20 -1. + <_> + 9 1 2 10 2. + <_> + 11 11 2 10 2. + <_> + + <_> + 5 9 18 6 -1. + <_> + 14 9 9 3 2. + <_> + 5 12 9 3 2. + <_> + + <_> + 6 4 6 9 -1. + <_> + 8 4 2 9 3. + <_> + + <_> + 10 16 8 6 -1. + <_> + 10 16 4 6 2. + <_> + + <_> + 0 0 18 8 -1. + <_> + 0 0 9 4 2. + <_> + 9 4 9 4 2. + <_> + + <_> + 6 5 14 12 -1. + <_> + 13 5 7 6 2. + <_> + 6 11 7 6 2. + <_> + + <_> + 4 3 15 7 -1. + <_> + 9 3 5 7 3. + <_> + + <_> + 14 12 10 6 -1. + <_> + 14 14 10 2 3. + <_> + + <_> + 0 11 4 10 -1. + <_> + 0 16 4 5 2. + <_> + + <_> + 1 10 22 3 -1. + <_> + 1 11 22 1 3. + <_> + + <_> + 8 9 6 10 -1. + <_> + 10 9 2 10 3. + <_> + + <_> + 13 2 6 12 -1. + <_> + 16 2 3 6 2. + <_> + 13 8 3 6 2. + <_> + + <_> + 10 6 4 18 -1. + <_> + 10 6 2 9 2. + <_> + 12 15 2 9 2. + <_> + + <_> + 7 8 10 16 -1. + <_> + 12 8 5 8 2. + <_> + 7 16 5 8 2. + <_> + + <_> + 8 1 8 12 -1. + <_> + 8 1 4 6 2. + <_> + 12 7 4 6 2. + <_> + + <_> + 7 1 12 14 -1. + <_> + 13 1 6 7 2. + <_> + 7 8 6 7 2. + <_> + + <_> + 2 14 12 6 -1. + <_> + 2 16 12 2 3. + <_> + + <_> + 11 16 6 6 -1. + <_> + 11 19 6 3 2. + <_> + + <_> + 7 16 6 6 -1. + <_> + 7 19 6 3 2. + <_> + + <_> + 13 4 4 10 -1. + <_> + 13 4 2 10 2. + <_> + + <_> + 0 19 19 3 -1. + <_> + 0 20 19 1 3. + <_> + + <_> + 12 8 6 8 -1. + <_> + 12 12 6 4 2. + <_> + + <_> + 8 1 8 22 -1. + <_> + 8 12 8 11 2. + <_> + + <_> + 12 8 6 8 -1. + <_> + 12 12 6 4 2. + <_> + + <_> + 6 8 6 8 -1. + <_> + 6 12 6 4 2. + <_> + + <_> + 14 5 6 9 -1. + <_> + 14 8 6 3 3. + <_> + + <_> + 0 6 24 4 -1. + <_> + 0 8 24 2 2. + <_> + + <_> + 14 12 10 6 -1. + <_> + 14 14 10 2 3. + <_> + + <_> + 0 12 10 6 -1. + <_> + 0 14 10 2 3. + <_> + + <_> + 4 6 19 3 -1. + <_> + 4 7 19 1 3. + <_> + + <_> + 1 6 19 3 -1. + <_> + 1 7 19 1 3. + <_> + + <_> + 4 0 16 9 -1. + <_> + 4 3 16 3 3. + <_> + + <_> + 0 1 24 5 -1. + <_> + 8 1 8 5 3. + <_> + + <_> + 3 6 6 15 -1. + <_> + 3 11 6 5 3. + <_> + + <_> + 9 6 6 9 -1. + <_> + 11 6 2 9 3. + <_> + + <_> + 0 17 18 3 -1. + <_> + 0 18 18 1 3. + <_> + + <_> + 6 22 18 2 -1. + <_> + 6 23 18 1 2. + <_> + + <_> + 2 12 6 9 -1. + <_> + 2 15 6 3 3. + <_> + + <_> + 18 12 6 9 -1. + <_> + 18 15 6 3 3. + <_> + + <_> + 0 12 6 9 -1. + <_> + 0 15 6 3 3. + <_> + + <_> + 11 14 4 10 -1. + <_> + 11 19 4 5 2. + <_> + + <_> + 9 6 6 16 -1. + <_> + 9 14 6 8 2. + <_> + + <_> + 7 7 10 10 -1. + <_> + 7 12 10 5 2. + <_> + + <_> + 1 3 6 13 -1. + <_> + 3 3 2 13 3. + <_> + + <_> + 18 1 6 13 -1. + <_> + 18 1 3 13 2. + <_> + + <_> + 5 1 6 9 -1. + <_> + 7 1 2 9 3. + <_> + + <_> + 18 2 6 11 -1. + <_> + 18 2 3 11 2. + <_> + + <_> + 0 2 6 11 -1. + <_> + 3 2 3 11 2. + <_> + + <_> + 9 12 15 6 -1. + <_> + 9 14 15 2 3. + <_> + + <_> + 2 2 20 3 -1. + <_> + 2 3 20 1 3. + <_> + + <_> + 10 6 4 9 -1. + <_> + 10 6 2 9 2. + <_> + + <_> + 5 6 12 14 -1. + <_> + 5 6 6 7 2. + <_> + 11 13 6 7 2. + <_> + + <_> + 9 0 6 9 -1. + <_> + 11 0 2 9 3. + <_> + + <_> + 7 0 9 6 -1. + <_> + 10 0 3 6 3. + <_> + + <_> + 10 6 6 9 -1. + <_> + 12 6 2 9 3. + <_> + + <_> + 4 1 12 20 -1. + <_> + 4 1 6 10 2. + <_> + 10 11 6 10 2. + <_> + + <_> + 6 7 18 3 -1. + <_> + 6 7 9 3 2. + <_> + + <_> + 0 7 18 3 -1. + <_> + 9 7 9 3 2. + <_> + + <_> + 3 20 18 3 -1. + <_> + 9 20 6 3 3. + <_> + + <_> + 9 6 6 9 -1. + <_> + 11 6 2 9 3. + <_> + + <_> + 6 2 12 15 -1. + <_> + 10 2 4 15 3. + <_> + + <_> + 2 3 18 3 -1. + <_> + 2 4 18 1 3. + <_> + + <_> + 19 4 4 18 -1. + <_> + 21 4 2 9 2. + <_> + 19 13 2 9 2. + <_> + + <_> + 0 1 19 3 -1. + <_> + 0 2 19 1 3. + <_> + + <_> + 5 0 15 4 -1. + <_> + 5 2 15 2 2. + <_> + + <_> + 5 2 14 5 -1. + <_> + 12 2 7 5 2. + <_> + + <_> + 1 2 22 14 -1. + <_> + 1 2 11 14 2. + <_> + + <_> + 8 15 6 9 -1. + <_> + 10 15 2 9 3. + <_> + + <_> + 6 17 18 3 -1. + <_> + 6 18 18 1 3. + <_> + + <_> + 9 6 3 18 -1. + <_> + 9 12 3 6 3. + <_> + + <_> + 2 0 20 3 -1. + <_> + 2 1 20 1 3. + <_> + + <_> + 5 4 5 12 -1. + <_> + 5 8 5 4 3. + <_> + + <_> + 8 6 12 5 -1. + <_> + 12 6 4 5 3. + <_> + + <_> + 9 12 6 12 -1. + <_> + 9 12 3 6 2. + <_> + 12 18 3 6 2. + <_> + + <_> + 14 14 8 10 -1. + <_> + 18 14 4 5 2. + <_> + 14 19 4 5 2. + <_> + + <_> + 2 14 8 10 -1. + <_> + 2 14 4 5 2. + <_> + 6 19 4 5 2. + <_> + + <_> + 10 18 12 6 -1. + <_> + 16 18 6 3 2. + <_> + 10 21 6 3 2. + <_> + + <_> + 1 3 6 9 -1. + <_> + 1 6 6 3 3. + <_> + + <_> + 11 3 3 20 -1. + <_> + 12 3 1 20 3. + <_> + + <_> + 4 6 14 6 -1. + <_> + 4 6 7 3 2. + <_> + 11 9 7 3 2. + <_> + + <_> + 6 5 12 13 -1. + <_> + 10 5 4 13 3. + <_> + + <_> + 5 4 4 15 -1. + <_> + 5 9 4 5 3. + <_> + + <_> + 9 16 15 4 -1. + <_> + 14 16 5 4 3. + <_> + + <_> + 7 8 6 14 -1. + <_> + 7 8 3 7 2. + <_> + 10 15 3 7 2. + <_> + + <_> + 7 6 10 6 -1. + <_> + 7 8 10 2 3. + <_> + + <_> + 2 5 18 3 -1. + <_> + 2 6 18 1 3. + <_> + + <_> + 5 1 15 8 -1. + <_> + 5 5 15 4 2. + <_> + + <_> + 7 1 8 18 -1. + <_> + 7 10 8 9 2. + <_> + + <_> + 0 10 24 3 -1. + <_> + 0 11 24 1 3. + <_> + + <_> + 0 2 6 13 -1. + <_> + 2 2 2 13 3. + <_> + + <_> + 16 0 8 10 -1. + <_> + 20 0 4 5 2. + <_> + 16 5 4 5 2. + <_> + + <_> + 5 1 10 9 -1. + <_> + 5 4 10 3 3. + <_> + + <_> + 5 6 18 3 -1. + <_> + 5 7 18 1 3. + <_> + + <_> + 0 1 24 3 -1. + <_> + 0 2 24 1 3. + <_> + + <_> + 11 4 6 11 -1. + <_> + 13 4 2 11 3. + <_> + + <_> + 0 0 8 10 -1. + <_> + 0 0 4 5 2. + <_> + 4 5 4 5 2. + <_> + + <_> + 4 16 18 3 -1. + <_> + 4 17 18 1 3. + <_> + + <_> + 2 16 18 3 -1. + <_> + 2 17 18 1 3. + <_> + + <_> + 3 0 18 10 -1. + <_> + 12 0 9 5 2. + <_> + 3 5 9 5 2. + <_> + + <_> + 2 3 20 21 -1. + <_> + 12 3 10 21 2. + <_> + + <_> + 6 7 14 3 -1. + <_> + 6 7 7 3 2. + <_> + + <_> + 0 9 12 6 -1. + <_> + 0 9 6 3 2. + <_> + 6 12 6 3 2. + <_> + + <_> + 3 14 21 4 -1. + <_> + 10 14 7 4 3. + <_> + + <_> + 0 14 21 4 -1. + <_> + 7 14 7 4 3. + <_> + + <_> + 5 21 18 3 -1. + <_> + 11 21 6 3 3. + <_> + + <_> + 1 21 18 3 -1. + <_> + 7 21 6 3 3. + <_> + + <_> + 19 4 4 18 -1. + <_> + 21 4 2 9 2. + <_> + 19 13 2 9 2. + <_> + + <_> + 3 7 18 3 -1. + <_> + 3 8 18 1 3. + <_> + + <_> + 19 4 4 18 -1. + <_> + 21 4 2 9 2. + <_> + 19 13 2 9 2. + <_> + + <_> + 7 15 10 6 -1. + <_> + 7 17 10 2 3. + <_> + + <_> + 9 13 11 9 -1. + <_> + 9 16 11 3 3. + <_> + + <_> + 0 6 4 10 -1. + <_> + 0 11 4 5 2. + <_> + + <_> + 15 16 9 6 -1. + <_> + 15 18 9 2 3. + <_> + + <_> + 1 5 4 18 -1. + <_> + 1 5 2 9 2. + <_> + 3 14 2 9 2. + <_> + + <_> + 9 8 8 10 -1. + <_> + 13 8 4 5 2. + <_> + 9 13 4 5 2. + <_> + + <_> + 7 8 8 10 -1. + <_> + 7 8 4 5 2. + <_> + 11 13 4 5 2. + <_> + + <_> + 9 8 12 5 -1. + <_> + 13 8 4 5 3. + <_> + + <_> + 7 8 9 7 -1. + <_> + 10 8 3 7 3. + <_> + + <_> + 9 8 12 5 -1. + <_> + 13 8 4 5 3. + <_> + + <_> + 7 6 9 7 -1. + <_> + 10 6 3 7 3. + <_> + + <_> + 9 8 12 5 -1. + <_> + 13 8 4 5 3. + <_> + + <_> + 10 5 4 18 -1. + <_> + 10 11 4 6 3. + <_> + + <_> + 5 5 14 12 -1. + <_> + 5 11 14 6 2. + <_> + + <_> + 0 1 11 4 -1. + <_> + 0 3 11 2 2. + <_> + + <_> + 9 10 6 10 -1. + <_> + 11 10 2 10 3. + <_> + + <_> + 2 17 11 6 -1. + <_> + 2 19 11 2 3. + <_> + + <_> + 15 16 9 6 -1. + <_> + 15 18 9 2 3. + <_> + + <_> + 1 10 18 2 -1. + <_> + 1 11 18 1 2. + <_> + + <_> + 6 4 12 13 -1. + <_> + 10 4 4 13 3. + <_> + + <_> + 0 18 18 3 -1. + <_> + 0 19 18 1 3. + <_> + + <_> + 6 18 18 3 -1. + <_> + 6 19 18 1 3. + <_> + + <_> + 0 16 9 6 -1. + <_> + 0 18 9 2 3. + <_> + + <_> + 13 15 9 6 -1. + <_> + 13 17 9 2 3. + <_> + + <_> + 2 15 9 6 -1. + <_> + 2 17 9 2 3. + <_> + + <_> + 13 1 6 16 -1. + <_> + 13 1 3 16 2. + <_> + + <_> + 5 1 6 16 -1. + <_> + 8 1 3 16 2. + <_> + + <_> + 11 5 6 10 -1. + <_> + 13 5 2 10 3. + <_> + + <_> + 7 5 6 10 -1. + <_> + 9 5 2 10 3. + <_> + + <_> + 10 0 6 24 -1. + <_> + 12 0 2 24 3. + <_> + + <_> + 3 4 4 20 -1. + <_> + 3 4 2 10 2. + <_> + 5 14 2 10 2. + <_> + + <_> + 14 0 6 9 -1. + <_> + 16 0 2 9 3. + <_> + + <_> + 4 0 6 9 -1. + <_> + 6 0 2 9 3. + <_> + + <_> + 4 5 18 5 -1. + <_> + 10 5 6 5 3. + <_> + + <_> + 5 6 6 9 -1. + <_> + 7 6 2 9 3. + <_> + + <_> + 7 2 15 8 -1. + <_> + 12 2 5 8 3. + <_> + + <_> + 2 2 15 8 -1. + <_> + 7 2 5 8 3. + <_> + + <_> + 10 0 4 9 -1. + <_> + 10 0 2 9 2. + <_> + + <_> + 3 4 6 12 -1. + <_> + 3 4 3 6 2. + <_> + 6 10 3 6 2. + <_> + + <_> + 16 0 8 18 -1. + <_> + 16 0 4 18 2. + <_> + + <_> + 0 0 8 18 -1. + <_> + 4 0 4 18 2. + <_> + + <_> + 0 7 24 6 -1. + <_> + 0 9 24 2 3. + <_> + + <_> + 4 7 14 3 -1. + <_> + 11 7 7 3 2. + <_> + + <_> + 10 8 8 15 -1. + <_> + 10 8 4 15 2. + <_> + + <_> + 7 0 10 14 -1. + <_> + 12 0 5 14 2. + <_> + + <_> + 13 10 8 10 -1. + <_> + 17 10 4 5 2. + <_> + 13 15 4 5 2. + <_> + + <_> + 3 0 4 9 -1. + <_> + 5 0 2 9 2. + <_> + + <_> + 16 1 6 8 -1. + <_> + 16 1 3 8 2. + <_> + + <_> + 2 1 6 8 -1. + <_> + 5 1 3 8 2. + <_> + + <_> + 3 6 18 12 -1. + <_> + 3 10 18 4 3. + <_> + + <_> + 4 12 16 4 -1. + <_> + 4 14 16 2 2. + <_> + + <_> + 4 9 16 15 -1. + <_> + 4 14 16 5 3. + <_> + + <_> + 3 10 8 10 -1. + <_> + 3 10 4 5 2. + <_> + 7 15 4 5 2. + <_> + + <_> + 8 18 16 6 -1. + <_> + 16 18 8 3 2. + <_> + 8 21 8 3 2. + <_> + + <_> + 2 16 12 5 -1. + <_> + 6 16 4 5 3. + <_> + + <_> + 14 14 9 4 -1. + <_> + 14 16 9 2 2. + <_> + + <_> + 7 14 9 6 -1. + <_> + 7 16 9 2 3. + <_> + + <_> + 4 10 16 12 -1. + <_> + 4 14 16 4 3. + <_> + + <_> + 0 13 19 6 -1. + <_> + 0 15 19 2 3. + <_> + + <_> + 10 13 9 6 -1. + <_> + 10 15 9 2 3. + <_> + + <_> + 5 0 3 23 -1. + <_> + 6 0 1 23 3. + <_> + + <_> + 0 8 24 6 -1. + <_> + 0 10 24 2 3. + <_> + + <_> + 0 5 5 12 -1. + <_> + 0 9 5 4 3. + <_> + + <_> + 3 0 19 18 -1. + <_> + 3 9 19 9 2. + <_> + + <_> + 9 11 6 12 -1. + <_> + 9 11 3 6 2. + <_> + 12 17 3 6 2. + <_> + + <_> + 0 5 24 8 -1. + <_> + 12 5 12 4 2. + <_> + 0 9 12 4 2. + <_> + + <_> + 6 18 9 4 -1. + <_> + 6 20 9 2 2. + <_> + + <_> + 8 8 10 6 -1. + <_> + 8 10 10 2 3. + <_> + + <_> + 2 7 20 3 -1. + <_> + 2 8 20 1 3. + <_> + + <_> + 12 0 7 20 -1. + <_> + 12 10 7 10 2. + <_> + + <_> + 5 0 7 20 -1. + <_> + 5 10 7 10 2. + <_> + + <_> + 14 2 2 18 -1. + <_> + 14 11 2 9 2. + <_> + + <_> + 5 8 10 12 -1. + <_> + 10 8 5 12 2. + <_> + + <_> + 6 9 12 8 -1. + <_> + 12 9 6 4 2. + <_> + 6 13 6 4 2. + <_> + + <_> + 7 7 3 14 -1. + <_> + 7 14 3 7 2. + <_> + + <_> + 11 2 12 16 -1. + <_> + 17 2 6 8 2. + <_> + 11 10 6 8 2. + <_> + + <_> + 7 0 6 9 -1. + <_> + 9 0 2 9 3. + <_> + + <_> + 13 14 9 4 -1. + <_> + 13 16 9 2 2. + <_> + + <_> + 0 12 22 4 -1. + <_> + 0 12 11 2 2. + <_> + 11 14 11 2 2. + <_> + + <_> + 1 12 22 6 -1. + <_> + 12 12 11 3 2. + <_> + 1 15 11 3 2. + <_> + + <_> + 6 6 9 6 -1. + <_> + 9 6 3 6 3. + <_> + + <_> + 10 0 4 9 -1. + <_> + 10 0 2 9 2. + <_> + + <_> + 3 8 18 7 -1. + <_> + 9 8 6 7 3. + <_> + + <_> + 0 6 24 6 -1. + <_> + 0 8 24 2 3. + <_> + + <_> + 0 11 24 10 -1. + <_> + 8 11 8 10 3. + <_> + + <_> + 3 3 18 21 -1. + <_> + 9 3 6 21 3. + <_> + + <_> + 7 12 4 10 -1. + <_> + 9 12 2 10 2. + <_> + + <_> + 10 16 10 8 -1. + <_> + 15 16 5 4 2. + <_> + 10 20 5 4 2. + <_> + + <_> + 8 6 6 9 -1. + <_> + 10 6 2 9 3. + <_> + + <_> + 12 10 6 12 -1. + <_> + 15 10 3 6 2. + <_> + 12 16 3 6 2. + <_> + + <_> + 6 10 6 12 -1. + <_> + 6 10 3 6 2. + <_> + 9 16 3 6 2. + <_> + + <_> + 16 12 6 12 -1. + <_> + 19 12 3 6 2. + <_> + 16 18 3 6 2. + <_> + + <_> + 2 12 6 12 -1. + <_> + 2 12 3 6 2. + <_> + 5 18 3 6 2. + <_> + + <_> + 10 15 6 9 -1. + <_> + 12 15 2 9 3. + <_> + + <_> + 8 15 6 9 -1. + <_> + 10 15 2 9 3. + <_> + + <_> + 14 20 10 4 -1. + <_> + 14 20 5 4 2. + <_> + + <_> + 0 20 10 4 -1. + <_> + 5 20 5 4 2. + <_> + + <_> + 11 17 9 6 -1. + <_> + 11 19 9 2 3. + <_> + + <_> + 3 2 14 4 -1. + <_> + 3 4 14 2 2. + <_> + + <_> + 10 1 10 4 -1. + <_> + 10 3 10 2 2. + <_> + + <_> + 0 15 10 4 -1. + <_> + 5 15 5 4 2. + <_> + + <_> + 19 2 3 19 -1. + <_> + 20 2 1 19 3. + <_> + + <_> + 4 12 9 8 -1. + <_> + 7 12 3 8 3. + <_> + + <_> + 4 7 5 12 -1. + <_> + 4 11 5 4 3. + <_> + + <_> + 0 1 24 3 -1. + <_> + 8 1 8 3 3. + <_> + + <_> + 6 8 12 4 -1. + <_> + 6 10 12 2 2. + <_> + + <_> + 19 3 4 10 -1. + <_> + 19 3 2 10 2. + <_> + + <_> + 0 6 9 6 -1. + <_> + 3 6 3 6 3. + <_> + + <_> + 18 0 6 22 -1. + <_> + 20 0 2 22 3. + <_> + + <_> + 0 0 6 22 -1. + <_> + 2 0 2 22 3. + <_> + + <_> + 5 15 19 3 -1. + <_> + 5 16 19 1 3. + <_> + + <_> + 10 7 4 15 -1. + <_> + 10 12 4 5 3. + <_> + + <_> + 9 6 6 9 -1. + <_> + 11 6 2 9 3. + <_> + + <_> + 0 21 18 3 -1. + <_> + 0 22 18 1 3. + <_> + + <_> + 7 3 10 15 -1. + <_> + 7 8 10 5 3. + <_> + + <_> + 1 7 18 3 -1. + <_> + 1 8 18 1 3. + <_> + + <_> + 8 2 9 6 -1. + <_> + 11 2 3 6 3. + <_> + + <_> + 0 10 24 14 -1. + <_> + 0 17 24 7 2. + <_> + + <_> + 13 9 8 10 -1. + <_> + 17 9 4 5 2. + <_> + 13 14 4 5 2. + <_> + + <_> + 10 5 4 9 -1. + <_> + 12 5 2 9 2. + <_> + + <_> + 13 9 8 10 -1. + <_> + 17 9 4 5 2. + <_> + 13 14 4 5 2. + <_> + + <_> + 7 11 10 10 -1. + <_> + 7 11 5 5 2. + <_> + 12 16 5 5 2. + <_> + + <_> + 4 13 18 4 -1. + <_> + 13 13 9 2 2. + <_> + 4 15 9 2 2. + <_> + + <_> + 0 0 19 2 -1. + <_> + 0 1 19 1 2. + <_> + + <_> + 0 18 24 6 -1. + <_> + 8 18 8 6 3. + <_> + + <_> + 6 4 8 16 -1. + <_> + 6 12 8 8 2. + <_> + + <_> + 7 8 10 4 -1. + <_> + 7 10 10 2 2. + <_> + + <_> + 0 3 6 9 -1. + <_> + 0 6 6 3 3. + <_> + + <_> + 13 15 7 9 -1. + <_> + 13 18 7 3 3. + <_> + + <_> + 3 18 12 6 -1. + <_> + 3 18 6 3 2. + <_> + 9 21 6 3 2. + <_> + + <_> + 12 14 6 9 -1. + <_> + 12 17 6 3 3. + <_> + + <_> + 2 15 15 8 -1. + <_> + 2 19 15 4 2. + <_> + + <_> + 9 6 6 16 -1. + <_> + 9 14 6 8 2. + <_> + + <_> + 6 6 7 12 -1. + <_> + 6 10 7 4 3. + <_> + + <_> + 14 6 6 9 -1. + <_> + 14 9 6 3 3. + <_> + + <_> + 5 14 6 9 -1. + <_> + 5 17 6 3 3. + <_> + + <_> + 10 8 6 9 -1. + <_> + 12 8 2 9 3. + <_> + + <_> + 6 6 4 18 -1. + <_> + 6 6 2 9 2. + <_> + 8 15 2 9 2. + <_> + + <_> + 14 9 6 12 -1. + <_> + 17 9 3 6 2. + <_> + 14 15 3 6 2. + <_> + + <_> + 4 9 6 12 -1. + <_> + 4 9 3 6 2. + <_> + 7 15 3 6 2. + <_> + + <_> + 14 15 9 6 -1. + <_> + 14 17 9 2 3. + <_> + + <_> + 0 20 18 4 -1. + <_> + 0 20 9 2 2. + <_> + 9 22 9 2 2. + <_> + + <_> + 13 18 9 6 -1. + <_> + 13 20 9 2 3. + <_> + + <_> + 2 18 9 6 -1. + <_> + 2 20 9 2 3. + <_> + + <_> + 6 16 18 3 -1. + <_> + 6 17 18 1 3. + <_> + + <_> + 0 16 18 3 -1. + <_> + 0 17 18 1 3. + <_> + + <_> + 19 2 4 22 -1. + <_> + 21 2 2 11 2. + <_> + 19 13 2 11 2. + <_> + + <_> + 1 2 4 22 -1. + <_> + 1 2 2 11 2. + <_> + 3 13 2 11 2. + <_> + + <_> + 15 0 2 24 -1. + <_> + 15 0 1 24 2. + <_> + + <_> + 3 20 16 4 -1. + <_> + 11 20 8 4 2. + <_> + + <_> + 11 6 4 18 -1. + <_> + 13 6 2 9 2. + <_> + 11 15 2 9 2. + <_> + + <_> + 7 9 10 14 -1. + <_> + 7 9 5 7 2. + <_> + 12 16 5 7 2. + <_> + + <_> + 14 6 6 9 -1. + <_> + 14 9 6 3 3. + <_> + + <_> + 3 6 7 9 -1. + <_> + 3 9 7 3 3. + <_> + + <_> + 20 4 4 20 -1. + <_> + 22 4 2 10 2. + <_> + 20 14 2 10 2. + <_> + + <_> + 7 6 6 9 -1. + <_> + 7 9 6 3 3. + <_> + + <_> + 7 0 10 14 -1. + <_> + 12 0 5 7 2. + <_> + 7 7 5 7 2. + <_> + + <_> + 2 1 18 6 -1. + <_> + 11 1 9 6 2. + <_> + + <_> + 15 0 2 24 -1. + <_> + 15 0 1 24 2. + <_> + + <_> + 7 0 2 24 -1. + <_> + 8 0 1 24 2. + <_> + + <_> + 13 12 6 7 -1. + <_> + 13 12 3 7 2. + <_> + + <_> + 5 12 6 7 -1. + <_> + 8 12 3 7 2. + <_> + + <_> + 3 5 18 19 -1. + <_> + 9 5 6 19 3. + <_> + + <_> + 5 6 9 6 -1. + <_> + 8 6 3 6 3. + <_> + + <_> + 9 5 9 6 -1. + <_> + 12 5 3 6 3. + <_> + + <_> + 3 16 10 8 -1. + <_> + 3 16 5 4 2. + <_> + 8 20 5 4 2. + <_> + + <_> + 19 8 5 15 -1. + <_> + 19 13 5 5 3. + <_> + + <_> + 0 8 5 15 -1. + <_> + 0 13 5 5 3. + <_> + + <_> + 20 4 4 20 -1. + <_> + 22 4 2 10 2. + <_> + 20 14 2 10 2. + <_> + + <_> + 0 4 4 20 -1. + <_> + 0 4 2 10 2. + <_> + 2 14 2 10 2. + <_> + + <_> + 7 7 10 4 -1. + <_> + 7 7 5 4 2. + <_> + + <_> + 4 19 14 4 -1. + <_> + 11 19 7 4 2. + <_> + + <_> + 10 11 12 3 -1. + <_> + 10 11 6 3 2. + <_> + + <_> + 0 1 24 3 -1. + <_> + 0 2 24 1 3. + <_> + + <_> + 7 2 14 20 -1. + <_> + 14 2 7 10 2. + <_> + 7 12 7 10 2. + <_> + + <_> + 0 13 6 9 -1. + <_> + 2 13 2 9 3. + <_> + + <_> + 13 0 4 19 -1. + <_> + 13 0 2 19 2. + <_> + + <_> + 1 11 14 3 -1. + <_> + 8 11 7 3 2. + <_> + + <_> + 7 1 16 20 -1. + <_> + 15 1 8 10 2. + <_> + 7 11 8 10 2. + <_> + + <_> + 0 10 21 9 -1. + <_> + 7 10 7 9 3. + <_> + + <_> + 6 19 15 5 -1. + <_> + 11 19 5 5 3. + <_> + + <_> + 8 10 6 6 -1. + <_> + 11 10 3 6 2. + <_> + + <_> + 7 1 16 20 -1. + <_> + 15 1 8 10 2. + <_> + 7 11 8 10 2. + <_> + + <_> + 1 1 16 20 -1. + <_> + 1 1 8 10 2. + <_> + 9 11 8 10 2. + <_> + + <_> + 16 4 3 12 -1. + <_> + 16 10 3 6 2. + <_> + + <_> + 5 4 3 12 -1. + <_> + 5 10 3 6 2. + <_> + + <_> + 7 6 10 8 -1. + <_> + 12 6 5 4 2. + <_> + 7 10 5 4 2. + <_> + + <_> + 4 9 6 6 -1. + <_> + 4 12 6 3 2. + <_> + + <_> + 6 5 12 4 -1. + <_> + 6 7 12 2 2. + <_> + + <_> + 9 2 5 15 -1. + <_> + 9 7 5 5 3. + <_> + + <_> + 15 0 9 6 -1. + <_> + 15 2 9 2 3. + <_> + + <_> + 6 0 11 10 -1. + <_> + 6 5 11 5 2. + <_> + + <_> + 12 7 4 12 -1. + <_> + 12 13 4 6 2. + <_> + + <_> + 7 2 9 4 -1. + <_> + 7 4 9 2 2. + <_> + + <_> + 6 0 13 6 -1. + <_> + 6 2 13 2 3. + <_> + + <_> + 10 6 4 18 -1. + <_> + 10 6 2 9 2. + <_> + 12 15 2 9 2. + <_> + + <_> + 10 8 6 9 -1. + <_> + 12 8 2 9 3. + <_> + + <_> + 3 18 10 6 -1. + <_> + 3 20 10 2 3. + <_> + + <_> + 4 14 20 3 -1. + <_> + 4 15 20 1 3. + <_> + + <_> + 2 15 9 6 -1. + <_> + 2 17 9 2 3. + <_> + + <_> + 13 0 4 19 -1. + <_> + 13 0 2 19 2. + <_> + + <_> + 7 0 4 19 -1. + <_> + 9 0 2 19 2. + <_> + + <_> + 1 4 22 2 -1. + <_> + 1 5 22 1 2. + <_> + + <_> + 0 0 9 6 -1. + <_> + 0 2 9 2 3. + <_> + + <_> + 0 0 24 18 -1. + <_> + 0 9 24 9 2. + <_> + + <_> + 3 2 16 8 -1. + <_> + 3 6 16 4 2. + <_> + + <_> + 3 6 18 6 -1. + <_> + 3 8 18 2 3. + <_> + + <_> + 3 1 6 10 -1. + <_> + 5 1 2 10 3. + <_> + + <_> + 13 0 9 6 -1. + <_> + 16 0 3 6 3. + <_> + + <_> + 2 0 9 6 -1. + <_> + 5 0 3 6 3. + <_> + + <_> + 10 2 4 15 -1. + <_> + 10 7 4 5 3. + <_> + + <_> + 6 0 7 10 -1. + <_> + 6 5 7 5 2. + <_> + + <_> + 2 2 20 4 -1. + <_> + 12 2 10 2 2. + <_> + 2 4 10 2 2. + <_> + + <_> + 2 11 19 3 -1. + <_> + 2 12 19 1 3. + <_> + + <_> + 10 8 6 9 -1. + <_> + 12 8 2 9 3. + <_> + + <_> + 8 8 6 9 -1. + <_> + 10 8 2 9 3. + <_> + + <_> + 13 8 4 9 -1. + <_> + 13 8 2 9 2. + <_> + + <_> + 3 11 9 9 -1. + <_> + 6 11 3 9 3. + <_> + + <_> + 3 9 18 5 -1. + <_> + 9 9 6 5 3. + <_> + + <_> + 2 4 2 20 -1. + <_> + 2 14 2 10 2. + <_> + + <_> + 14 17 8 6 -1. + <_> + 14 20 8 3 2. + <_> + + <_> + 3 21 18 2 -1. + <_> + 3 22 18 1 2. + <_> + + <_> + 5 4 15 6 -1. + <_> + 10 4 5 6 3. + <_> + + <_> + 2 15 12 6 -1. + <_> + 2 17 12 2 3. + <_> + + <_> + 17 8 6 9 -1. + <_> + 17 11 6 3 3. + <_> + + <_> + 2 12 20 4 -1. + <_> + 2 12 10 2 2. + <_> + 12 14 10 2 2. + <_> + + <_> + 0 17 24 6 -1. + <_> + 0 19 24 2 3. + <_> + + <_> + 7 16 9 4 -1. + <_> + 7 18 9 2 2. + <_> + + <_> + 15 1 4 22 -1. + <_> + 17 1 2 11 2. + <_> + 15 12 2 11 2. + <_> + + <_> + 5 1 4 22 -1. + <_> + 5 1 2 11 2. + <_> + 7 12 2 11 2. + <_> + + <_> + 11 13 8 9 -1. + <_> + 11 16 8 3 3. + <_> + + <_> + 6 1 6 9 -1. + <_> + 8 1 2 9 3. + <_> + + <_> + 11 4 3 18 -1. + <_> + 11 10 3 6 3. + <_> + + <_> + 5 8 12 6 -1. + <_> + 5 8 6 3 2. + <_> + 11 11 6 3 2. + <_> + + <_> + 15 7 5 8 -1. + <_> + 15 11 5 4 2. + <_> + + <_> + 4 7 5 8 -1. + <_> + 4 11 5 4 2. + <_> + + <_> + 12 6 6 12 -1. + <_> + 15 6 3 6 2. + <_> + 12 12 3 6 2. + <_> + + <_> + 6 6 6 12 -1. + <_> + 6 6 3 6 2. + <_> + 9 12 3 6 2. + <_> + + <_> + 5 9 14 8 -1. + <_> + 12 9 7 4 2. + <_> + 5 13 7 4 2. + <_> + + <_> + 9 1 3 14 -1. + <_> + 9 8 3 7 2. + <_> + + <_> + 12 6 6 12 -1. + <_> + 12 10 6 4 3. + <_> + + <_> + 4 5 4 18 -1. + <_> + 4 5 2 9 2. + <_> + 6 14 2 9 2. + <_> + + <_> + 4 6 16 18 -1. + <_> + 4 12 16 6 3. + <_> + + <_> + 5 4 7 20 -1. + <_> + 5 14 7 10 2. + <_> + + <_> + 14 8 8 12 -1. + <_> + 14 14 8 6 2. + <_> + + <_> + 9 10 6 14 -1. + <_> + 9 10 3 7 2. + <_> + 12 17 3 7 2. + <_> + + <_> + 9 5 9 6 -1. + <_> + 12 5 3 6 3. + <_> + + <_> + 9 4 3 18 -1. + <_> + 10 4 1 18 3. + <_> + + <_> + 1 4 22 14 -1. + <_> + 12 4 11 7 2. + <_> + 1 11 11 7 2. + <_> + + <_> + 2 7 18 2 -1. + <_> + 2 8 18 1 2. + <_> + + <_> + 12 6 6 12 -1. + <_> + 12 10 6 4 3. + <_> + + <_> + 6 5 9 7 -1. + <_> + 9 5 3 7 3. + <_> + + <_> + 12 7 4 12 -1. + <_> + 12 13 4 6 2. + <_> + + <_> + 8 7 4 12 -1. + <_> + 8 13 4 6 2. + <_> + + <_> + 7 2 10 22 -1. + <_> + 7 13 10 11 2. + <_> + + <_> + 0 1 3 20 -1. + <_> + 1 1 1 20 3. + <_> + + <_> + 4 13 18 4 -1. + <_> + 13 13 9 2 2. + <_> + 4 15 9 2 2. + <_> + + <_> + 2 13 18 4 -1. + <_> + 2 13 9 2 2. + <_> + 11 15 9 2 2. + <_> + + <_> + 15 15 9 6 -1. + <_> + 15 17 9 2 3. + <_> + + <_> + 0 15 9 6 -1. + <_> + 0 17 9 2 3. + <_> + + <_> + 6 0 18 24 -1. + <_> + 15 0 9 12 2. + <_> + 6 12 9 12 2. + <_> + + <_> + 6 6 6 12 -1. + <_> + 6 10 6 4 3. + <_> + + <_> + 8 7 10 4 -1. + <_> + 8 9 10 2 2. + <_> + + <_> + 1 9 18 6 -1. + <_> + 1 9 9 3 2. + <_> + 10 12 9 3 2. + <_> + + <_> + 6 6 18 3 -1. + <_> + 6 7 18 1 3. + <_> + + <_> + 7 7 9 8 -1. + <_> + 10 7 3 8 3. + <_> + + <_> + 10 12 6 12 -1. + <_> + 12 12 2 12 3. + <_> + + <_> + 3 14 18 3 -1. + <_> + 3 15 18 1 3. + <_> + + <_> + 15 17 9 7 -1. + <_> + 18 17 3 7 3. + <_> + + <_> + 1 12 10 6 -1. + <_> + 1 14 10 2 3. + <_> + + <_> + 15 17 9 7 -1. + <_> + 18 17 3 7 3. + <_> + + <_> + 10 3 3 19 -1. + <_> + 11 3 1 19 3. + <_> + + <_> + 15 17 9 7 -1. + <_> + 18 17 3 7 3. + <_> + + <_> + 6 1 11 9 -1. + <_> + 6 4 11 3 3. + <_> + + <_> + 15 17 9 7 -1. + <_> + 18 17 3 7 3. + <_> + + <_> + 6 5 11 6 -1. + <_> + 6 8 11 3 2. + <_> + + <_> + 16 7 8 5 -1. + <_> + 16 7 4 5 2. + <_> + + <_> + 2 4 20 19 -1. + <_> + 12 4 10 19 2. + <_> + + <_> + 2 1 21 6 -1. + <_> + 9 1 7 6 3. + <_> + + <_> + 6 5 12 14 -1. + <_> + 6 5 6 7 2. + <_> + 12 12 6 7 2. + <_> + + <_> + 9 0 6 9 -1. + <_> + 11 0 2 9 3. + <_> + + <_> + 2 11 8 5 -1. + <_> + 6 11 4 5 2. + <_> + + <_> + 16 7 8 5 -1. + <_> + 16 7 4 5 2. + <_> + + <_> + 0 7 8 5 -1. + <_> + 4 7 4 5 2. + <_> + + <_> + 15 17 9 7 -1. + <_> + 18 17 3 7 3. + <_> + + <_> + 8 6 8 10 -1. + <_> + 8 6 4 5 2. + <_> + 12 11 4 5 2. + <_> + + <_> + 15 15 9 9 -1. + <_> + 18 15 3 9 3. + <_> + + <_> + 0 15 9 9 -1. + <_> + 3 15 3 9 3. + <_> + + <_> + 12 10 9 7 -1. + <_> + 15 10 3 7 3. + <_> + + <_> + 3 10 9 7 -1. + <_> + 6 10 3 7 3. + <_> + + <_> + 13 15 10 8 -1. + <_> + 18 15 5 4 2. + <_> + 13 19 5 4 2. + <_> + + <_> + 0 1 6 12 -1. + <_> + 0 1 3 6 2. + <_> + 3 7 3 6 2. + <_> + + <_> + 10 0 6 12 -1. + <_> + 13 0 3 6 2. + <_> + 10 6 3 6 2. + <_> + + <_> + 7 0 10 12 -1. + <_> + 7 0 5 6 2. + <_> + 12 6 5 6 2. + <_> + + <_> + 4 1 16 8 -1. + <_> + 4 1 8 8 2. + <_> + + <_> + 0 21 19 3 -1. + <_> + 0 22 19 1 3. + <_> + + <_> + 6 9 18 4 -1. + <_> + 15 9 9 2 2. + <_> + 6 11 9 2 2. + <_> + + <_> + 3 4 9 6 -1. + <_> + 3 6 9 2 3. + <_> + + <_> + 9 1 6 15 -1. + <_> + 9 6 6 5 3. + <_> + + <_> + 5 9 6 6 -1. + <_> + 8 9 3 6 2. + <_> + + <_> + 5 1 14 9 -1. + <_> + 5 4 14 3 3. + <_> + + <_> + 3 0 8 20 -1. + <_> + 3 0 4 10 2. + <_> + 7 10 4 10 2. + <_> + + <_> + 5 0 7 9 -1. + <_> + 5 3 7 3 3. + <_> + + <_> + 6 6 12 5 -1. + <_> + 10 6 4 5 3. + <_> + + <_> + 0 1 8 14 -1. + <_> + 4 1 4 14 2. + <_> + + <_> + 2 12 22 4 -1. + <_> + 2 14 22 2 2. + <_> + + <_> + 8 17 6 6 -1. + <_> + 8 20 6 3 2. + <_> + + <_> + 18 1 6 7 -1. + <_> + 18 1 3 7 2. + <_> + + <_> + 0 0 6 6 -1. + <_> + 3 0 3 6 2. + <_> + + <_> + 4 6 17 18 -1. + <_> + 4 12 17 6 3. + <_> + + <_> + 6 0 12 6 -1. + <_> + 6 0 6 3 2. + <_> + 12 3 6 3 2. + <_> + + <_> + 4 7 18 4 -1. + <_> + 13 7 9 2 2. + <_> + 4 9 9 2 2. + <_> + + <_> + 4 12 10 6 -1. + <_> + 4 14 10 2 3. + <_> + + <_> + 7 9 10 12 -1. + <_> + 12 9 5 6 2. + <_> + 7 15 5 6 2. + <_> + + <_> + 0 1 24 3 -1. + <_> + 8 1 8 3 3. + <_> + + <_> + 13 11 6 6 -1. + <_> + 13 11 3 6 2. + <_> + + <_> + 5 11 6 6 -1. + <_> + 8 11 3 6 2. + <_> + + <_> + 3 10 19 3 -1. + <_> + 3 11 19 1 3. + <_> + + <_> + 0 2 6 9 -1. + <_> + 0 5 6 3 3. + <_> + + <_> + 14 16 10 6 -1. + <_> + 14 18 10 2 3. + <_> + + <_> + 0 16 10 6 -1. + <_> + 0 18 10 2 3. + <_> + + <_> + 14 13 9 6 -1. + <_> + 14 15 9 2 3. + <_> + + <_> + 0 16 18 3 -1. + <_> + 0 17 18 1 3. + <_> + + <_> + 6 16 18 3 -1. + <_> + 6 17 18 1 3. + <_> + + <_> + 0 18 9 6 -1. + <_> + 0 20 9 2 3. + <_> + + <_> + 14 13 9 6 -1. + <_> + 14 15 9 2 3. + <_> + + <_> + 6 2 6 9 -1. + <_> + 8 2 2 9 3. + <_> + + <_> + 15 8 4 12 -1. + <_> + 15 8 2 12 2. + <_> + + <_> + 8 13 8 8 -1. + <_> + 8 17 8 4 2. + <_> + + <_> + 4 20 18 3 -1. + <_> + 10 20 6 3 3. + <_> + + <_> + 5 8 4 12 -1. + <_> + 7 8 2 12 2. + <_> + + <_> + 7 7 12 3 -1. + <_> + 7 7 6 3 2. + <_> + + <_> + 10 6 4 9 -1. + <_> + 12 6 2 9 2. + <_> + + <_> + 5 20 18 3 -1. + <_> + 11 20 6 3 3. + <_> + + <_> + 1 20 18 3 -1. + <_> + 7 20 6 3 3. + <_> + + <_> + 18 1 6 20 -1. + <_> + 21 1 3 10 2. + <_> + 18 11 3 10 2. + <_> + + <_> + 0 1 6 20 -1. + <_> + 0 1 3 10 2. + <_> + 3 11 3 10 2. + <_> + + <_> + 13 3 4 18 -1. + <_> + 15 3 2 9 2. + <_> + 13 12 2 9 2. + <_> + + <_> + 0 2 6 12 -1. + <_> + 0 6 6 4 3. + <_> + + <_> + 12 9 12 6 -1. + <_> + 18 9 6 3 2. + <_> + 12 12 6 3 2. + <_> + + <_> + 7 3 4 18 -1. + <_> + 7 3 2 9 2. + <_> + 9 12 2 9 2. + <_> + + <_> + 14 0 6 9 -1. + <_> + 16 0 2 9 3. + <_> + + <_> + 0 9 12 6 -1. + <_> + 0 9 6 3 2. + <_> + 6 12 6 3 2. + <_> + + <_> + 14 4 8 20 -1. + <_> + 18 4 4 10 2. + <_> + 14 14 4 10 2. + <_> + + <_> + 2 4 8 20 -1. + <_> + 2 4 4 10 2. + <_> + 6 14 4 10 2. + <_> + + <_> + 14 13 9 6 -1. + <_> + 14 15 9 2 3. + <_> + + <_> + 1 13 9 6 -1. + <_> + 1 15 9 2 3. + <_> + + <_> + 3 15 18 3 -1. + <_> + 9 15 6 3 3. + <_> + + <_> + 5 13 9 6 -1. + <_> + 5 15 9 2 3. + <_> + + <_> + 5 0 18 3 -1. + <_> + 5 1 18 1 3. + <_> + + <_> + 8 2 6 7 -1. + <_> + 11 2 3 7 2. + <_> + + <_> + 9 1 9 6 -1. + <_> + 12 1 3 6 3. + <_> + + <_> + 6 1 9 6 -1. + <_> + 9 1 3 6 3. + <_> + + <_> + 5 6 14 6 -1. + <_> + 12 6 7 3 2. + <_> + 5 9 7 3 2. + <_> + + <_> + 8 2 6 13 -1. + <_> + 10 2 2 13 3. + <_> + + <_> + 6 11 12 6 -1. + <_> + 12 11 6 3 2. + <_> + 6 14 6 3 2. + <_> + + <_> + 3 1 18 15 -1. + <_> + 9 1 6 15 3. + <_> + + <_> + 13 0 6 7 -1. + <_> + 13 0 3 7 2. + <_> + + <_> + 3 3 16 6 -1. + <_> + 3 6 16 3 2. + <_> + + <_> + 12 1 3 12 -1. + <_> + 12 7 3 6 2. + <_> + + <_> + 7 7 6 9 -1. + <_> + 9 7 2 9 3. + <_> + + <_> + 13 0 4 24 -1. + <_> + 13 0 2 24 2. + <_> + + <_> + 7 0 4 24 -1. + <_> + 9 0 2 24 2. + <_> + + <_> + 11 9 5 12 -1. + <_> + 11 13 5 4 3. + <_> + + <_> + 7 15 9 6 -1. + <_> + 7 17 9 2 3. + <_> + + <_> + 5 7 18 6 -1. + <_> + 5 9 18 2 3. + <_> + + <_> + 8 9 5 12 -1. + <_> + 8 13 5 4 3. + <_> + + <_> + 4 17 17 6 -1. + <_> + 4 19 17 2 3. + <_> + + <_> + 0 3 18 14 -1. + <_> + 0 3 9 7 2. + <_> + 9 10 9 7 2. + <_> + + <_> + 0 1 24 2 -1. + <_> + 0 2 24 1 2. + <_> + + <_> + 0 15 18 3 -1. + <_> + 0 16 18 1 3. + <_> + + <_> + 9 0 6 9 -1. + <_> + 11 0 2 9 3. + <_> + + <_> + 3 3 14 12 -1. + <_> + 3 9 14 6 2. + <_> + + <_> + 12 1 3 12 -1. + <_> + 12 7 3 6 2. + <_> + + <_> + 8 0 6 9 -1. + <_> + 10 0 2 9 3. + <_> + + <_> + 10 6 6 10 -1. + <_> + 12 6 2 10 3. + <_> + + <_> + 5 0 6 9 -1. + <_> + 7 0 2 9 3. + <_> + + <_> + 2 0 21 7 -1. + <_> + 9 0 7 7 3. + <_> + + <_> + 6 11 12 5 -1. + <_> + 10 11 4 5 3. + <_> + + <_> + 8 7 9 8 -1. + <_> + 11 7 3 8 3. + <_> + + <_> + 9 6 6 18 -1. + <_> + 9 6 3 9 2. + <_> + 12 15 3 9 2. + <_> + + <_> + 15 14 8 10 -1. + <_> + 19 14 4 5 2. + <_> + 15 19 4 5 2. + <_> + + <_> + 1 14 8 10 -1. + <_> + 1 14 4 5 2. + <_> + 5 19 4 5 2. + <_> + + <_> + 11 0 8 10 -1. + <_> + 15 0 4 5 2. + <_> + 11 5 4 5 2. + <_> + + <_> + 5 0 8 10 -1. + <_> + 5 0 4 5 2. + <_> + 9 5 4 5 2. + <_> + + <_> + 6 1 12 5 -1. + <_> + 6 1 6 5 2. + <_> + + <_> + 1 12 18 2 -1. + <_> + 10 12 9 2 2. + <_> + + <_> + 2 8 20 6 -1. + <_> + 12 8 10 3 2. + <_> + 2 11 10 3 2. + <_> + + <_> + 7 6 9 7 -1. + <_> + 10 6 3 7 3. + <_> + + <_> + 10 5 8 16 -1. + <_> + 14 5 4 8 2. + <_> + 10 13 4 8 2. + <_> + + <_> + 3 9 16 8 -1. + <_> + 3 9 8 4 2. + <_> + 11 13 8 4 2. + <_> + + <_> + 7 8 10 4 -1. + <_> + 7 8 5 4 2. + <_> + + <_> + 7 12 10 8 -1. + <_> + 7 12 5 4 2. + <_> + 12 16 5 4 2. + <_> + + <_> + 9 19 15 4 -1. + <_> + 14 19 5 4 3. + <_> + + <_> + 1 0 18 9 -1. + <_> + 7 0 6 9 3. + <_> + + <_> + 13 4 10 8 -1. + <_> + 18 4 5 4 2. + <_> + 13 8 5 4 2. + <_> + + <_> + 3 16 18 4 -1. + <_> + 9 16 6 4 3. + <_> + + <_> + 8 7 10 12 -1. + <_> + 13 7 5 6 2. + <_> + 8 13 5 6 2. + <_> + + <_> + 6 7 10 12 -1. + <_> + 6 7 5 6 2. + <_> + 11 13 5 6 2. + <_> + + <_> + 4 6 18 7 -1. + <_> + 10 6 6 7 3. + <_> + + <_> + 0 17 18 3 -1. + <_> + 0 18 18 1 3. + <_> + + <_> + 3 17 18 3 -1. + <_> + 3 18 18 1 3. + <_> + + <_> + 2 4 6 10 -1. + <_> + 4 4 2 10 3. + <_> + + <_> + 16 0 8 24 -1. + <_> + 16 0 4 24 2. + <_> + + <_> + 4 0 8 15 -1. + <_> + 8 0 4 15 2. + <_> + + <_> + 16 0 8 24 -1. + <_> + 16 0 4 24 2. + <_> + + <_> + 1 4 18 9 -1. + <_> + 7 4 6 9 3. + <_> + + <_> + 15 12 9 6 -1. + <_> + 15 14 9 2 3. + <_> + + <_> + 3 9 18 6 -1. + <_> + 3 9 9 3 2. + <_> + 12 12 9 3 2. + <_> + + <_> + 18 5 6 9 -1. + <_> + 18 8 6 3 3. + <_> + + <_> + 0 5 6 9 -1. + <_> + 0 8 6 3 3. + <_> + + <_> + 4 7 18 4 -1. + <_> + 13 7 9 2 2. + <_> + 4 9 9 2 2. + <_> + + <_> + 2 1 12 20 -1. + <_> + 2 1 6 10 2. + <_> + 8 11 6 10 2. + <_> + + <_> + 17 0 6 23 -1. + <_> + 17 0 3 23 2. + <_> + + <_> + 1 6 2 18 -1. + <_> + 1 15 2 9 2. + <_> + + <_> + 8 8 10 6 -1. + <_> + 8 10 10 2 3. + <_> + + <_> + 0 6 20 6 -1. + <_> + 0 6 10 3 2. + <_> + 10 9 10 3 2. + <_> + + <_> + 11 12 12 5 -1. + <_> + 15 12 4 5 3. + <_> + + <_> + 0 4 3 19 -1. + <_> + 1 4 1 19 3. + <_> + + <_> + 19 1 3 18 -1. + <_> + 20 1 1 18 3. + <_> + + <_> + 2 1 3 18 -1. + <_> + 3 1 1 18 3. + <_> + + <_> + 3 10 18 3 -1. + <_> + 9 10 6 3 3. + <_> + + <_> + 4 4 10 9 -1. + <_> + 9 4 5 9 2. + <_> + + <_> + 7 13 14 7 -1. + <_> + 7 13 7 7 2. + <_> + + <_> + 3 13 14 7 -1. + <_> + 10 13 7 7 2. + <_> + + <_> + 8 15 9 6 -1. + <_> + 11 15 3 6 3. + <_> + + <_> + 4 14 8 10 -1. + <_> + 4 14 4 5 2. + <_> + 8 19 4 5 2. + <_> + + <_> + 10 14 4 10 -1. + <_> + 10 19 4 5 2. + <_> + + <_> + 3 8 5 16 -1. + <_> + 3 16 5 8 2. + <_> + + <_> + 15 10 9 6 -1. + <_> + 15 12 9 2 3. + <_> + + <_> + 0 10 9 6 -1. + <_> + 0 12 9 2 3. + <_> + + <_> + 6 7 12 9 -1. + <_> + 6 10 12 3 3. + <_> + + <_> + 9 10 5 8 -1. + <_> + 9 14 5 4 2. + <_> + + <_> + 12 1 3 12 -1. + <_> + 12 7 3 6 2. + <_> + + <_> + 8 15 6 9 -1. + <_> + 10 15 2 9 3. + <_> + + <_> + 16 6 7 6 -1. + <_> + 16 9 7 3 2. + <_> + + <_> + 8 1 4 22 -1. + <_> + 10 1 2 22 2. + <_> + + <_> + 6 6 14 3 -1. + <_> + 6 6 7 3 2. + <_> + + <_> + 0 18 19 3 -1. + <_> + 0 19 19 1 3. + <_> + + <_> + 17 0 6 24 -1. + <_> + 17 0 3 24 2. + <_> + + <_> + 0 13 15 6 -1. + <_> + 5 13 5 6 3. + <_> + + <_> + 9 6 10 14 -1. + <_> + 14 6 5 7 2. + <_> + 9 13 5 7 2. + <_> + + <_> + 1 6 8 10 -1. + <_> + 1 6 4 5 2. + <_> + 5 11 4 5 2. + <_> + + <_> + 7 6 12 5 -1. + <_> + 7 6 6 5 2. + <_> + + <_> + 7 7 9 6 -1. + <_> + 10 7 3 6 3. + <_> + + <_> + 7 8 14 14 -1. + <_> + 14 8 7 7 2. + <_> + 7 15 7 7 2. + <_> + + <_> + 3 8 14 14 -1. + <_> + 3 8 7 7 2. + <_> + 10 15 7 7 2. + <_> + + <_> + 9 8 13 4 -1. + <_> + 9 10 13 2 2. + <_> + + <_> + 3 2 6 12 -1. + <_> + 3 2 3 6 2. + <_> + 6 8 3 6 2. + <_> + + <_> + 6 10 17 6 -1. + <_> + 6 13 17 3 2. + <_> + + <_> + 1 10 17 6 -1. + <_> + 1 13 17 3 2. + <_> + + <_> + 16 7 8 9 -1. + <_> + 16 10 8 3 3. + <_> + + <_> + 0 7 8 9 -1. + <_> + 0 10 8 3 3. + <_> + + <_> + 0 9 24 10 -1. + <_> + 12 9 12 5 2. + <_> + 0 14 12 5 2. + <_> + + <_> + 3 2 15 8 -1. + <_> + 8 2 5 8 3. + <_> + + <_> + 4 2 18 8 -1. + <_> + 10 2 6 8 3. + <_> + + <_> + 0 1 18 4 -1. + <_> + 0 1 9 2 2. + <_> + 9 3 9 2 2. + <_> + + <_> + 20 2 3 18 -1. + <_> + 21 2 1 18 3. + <_> + + <_> + 1 3 3 19 -1. + <_> + 2 3 1 19 3. + <_> + + <_> + 18 8 6 16 -1. + <_> + 20 8 2 16 3. + <_> + + <_> + 0 8 6 16 -1. + <_> + 2 8 2 16 3. + <_> + + <_> + 8 18 11 6 -1. + <_> + 8 20 11 2 3. + <_> + + <_> + 4 6 12 5 -1. + <_> + 8 6 4 5 3. + <_> + + <_> + 7 6 12 5 -1. + <_> + 11 6 4 5 3. + <_> + + <_> + 6 3 9 6 -1. + <_> + 9 3 3 6 3. + <_> + + <_> + 7 6 12 5 -1. + <_> + 7 6 6 5 2. + <_> + + <_> + 9 8 6 7 -1. + <_> + 12 8 3 7 2. + <_> + + <_> + 8 2 9 6 -1. + <_> + 11 2 3 6 3. + <_> + + <_> + 8 14 6 9 -1. + <_> + 8 17 6 3 3. + <_> + + <_> + 8 2 9 6 -1. + <_> + 11 2 3 6 3. + <_> + + <_> + 4 3 16 20 -1. + <_> + 4 3 8 10 2. + <_> + 12 13 8 10 2. + <_> + + <_> + 7 6 10 12 -1. + <_> + 12 6 5 6 2. + <_> + 7 12 5 6 2. + <_> + + <_> + 0 2 7 12 -1. + <_> + 0 6 7 4 3. + <_> + + <_> + 12 17 11 6 -1. + <_> + 12 19 11 2 3. + <_> + + <_> + 4 7 12 8 -1. + <_> + 4 7 6 4 2. + <_> + 10 11 6 4 2. + <_> + + <_> + 8 11 8 10 -1. + <_> + 12 11 4 5 2. + <_> + 8 16 4 5 2. + <_> + + <_> + 9 1 4 9 -1. + <_> + 11 1 2 9 2. + <_> + + <_> + 14 0 3 22 -1. + <_> + 15 0 1 22 3. + <_> + + <_> + 7 0 3 22 -1. + <_> + 8 0 1 22 3. + <_> + + <_> + 4 7 18 4 -1. + <_> + 13 7 9 2 2. + <_> + 4 9 9 2 2. + <_> + + <_> + 10 2 4 15 -1. + <_> + 10 7 4 5 3. + <_> + + <_> + 12 1 3 12 -1. + <_> + 12 7 3 6 2. + <_> + + <_> + 0 0 18 13 -1. + <_> + 9 0 9 13 2. + <_> + + <_> + 16 0 3 24 -1. + <_> + 17 0 1 24 3. + <_> + + <_> + 5 0 3 24 -1. + <_> + 6 0 1 24 3. + <_> + + <_> + 10 15 5 8 -1. + <_> + 10 19 5 4 2. + <_> + + <_> + 2 18 18 2 -1. + <_> + 2 19 18 1 2. + <_> + + <_> + 2 8 20 3 -1. + <_> + 2 9 20 1 3. + <_> + + <_> + 7 6 9 6 -1. + <_> + 7 8 9 2 3. + <_> + + <_> + 3 2 19 10 -1. + <_> + 3 7 19 5 2. + <_> + + <_> + 2 7 19 3 -1. + <_> + 2 8 19 1 3. + <_> + + <_> + 15 6 9 4 -1. + <_> + 15 8 9 2 2. + <_> + + <_> + 2 2 18 8 -1. + <_> + 8 2 6 8 3. + <_> + + <_> + 10 9 14 4 -1. + <_> + 10 9 7 4 2. + <_> + + <_> + 4 4 6 16 -1. + <_> + 7 4 3 16 2. + <_> + + <_> + 15 8 9 16 -1. + <_> + 18 8 3 16 3. + <_> + + <_> + 0 8 9 16 -1. + <_> + 3 8 3 16 3. + <_> + + <_> + 18 0 6 14 -1. + <_> + 20 0 2 14 3. + <_> + + <_> + 0 0 6 14 -1. + <_> + 2 0 2 14 3. + <_> + + <_> + 15 0 6 22 -1. + <_> + 17 0 2 22 3. + <_> + + <_> + 3 0 6 22 -1. + <_> + 5 0 2 22 3. + <_> + + <_> + 12 2 12 20 -1. + <_> + 16 2 4 20 3. + <_> + + <_> + 0 2 12 20 -1. + <_> + 4 2 4 20 3. + <_> + + <_> + 11 6 4 9 -1. + <_> + 11 6 2 9 2. + <_> + + <_> + 9 0 6 16 -1. + <_> + 12 0 3 16 2. + <_> + + <_> + 12 1 3 12 -1. + <_> + 12 7 3 6 2. + <_> + + <_> + 3 4 18 6 -1. + <_> + 3 4 9 3 2. + <_> + 12 7 9 3 2. + <_> + + <_> + 5 5 16 8 -1. + <_> + 13 5 8 4 2. + <_> + 5 9 8 4 2. + <_> + + <_> + 0 13 10 6 -1. + <_> + 0 15 10 2 3. + <_> + + <_> + 8 14 9 6 -1. + <_> + 8 16 9 2 3. + <_> + + <_> + 6 2 9 6 -1. + <_> + 9 2 3 6 3. + <_> + + <_> + 14 1 10 8 -1. + <_> + 19 1 5 4 2. + <_> + 14 5 5 4 2. + <_> + + <_> + 9 1 3 12 -1. + <_> + 9 7 3 6 2. + <_> + + <_> + 6 4 12 9 -1. + <_> + 6 7 12 3 3. + <_> + + <_> + 6 5 12 6 -1. + <_> + 10 5 4 6 3. + <_> + + <_> + 1 1 8 5 -1. + <_> + 5 1 4 5 2. + <_> + + <_> + 12 12 6 8 -1. + <_> + 12 16 6 4 2. + <_> + + <_> + 3 12 12 6 -1. + <_> + 3 14 12 2 3. + <_> + + <_> + 9 18 12 6 -1. + <_> + 15 18 6 3 2. + <_> + 9 21 6 3 2. + <_> + + <_> + 4 13 6 6 -1. + <_> + 4 16 6 3 2. + <_> + + <_> + 11 3 7 18 -1. + <_> + 11 12 7 9 2. + <_> + + <_> + 3 9 18 3 -1. + <_> + 9 9 6 3 3. + <_> + + <_> + 5 3 19 2 -1. + <_> + 5 4 19 1 2. + <_> + + <_> + 4 2 12 6 -1. + <_> + 4 2 6 3 2. + <_> + 10 5 6 3 2. + <_> + + <_> + 9 6 6 9 -1. + <_> + 11 6 2 9 3. + <_> + + <_> + 8 6 6 9 -1. + <_> + 10 6 2 9 3. + <_> + + <_> + 16 9 5 15 -1. + <_> + 16 14 5 5 3. + <_> + + <_> + 3 9 5 15 -1. + <_> + 3 14 5 5 3. + <_> + + <_> + 6 6 14 6 -1. + <_> + 13 6 7 3 2. + <_> + 6 9 7 3 2. + <_> + + <_> + 8 6 3 14 -1. + <_> + 8 13 3 7 2. + <_> + + <_> + 0 16 24 5 -1. + <_> + 8 16 8 5 3. + <_> + + <_> + 0 20 20 3 -1. + <_> + 10 20 10 3 2. + <_> + + <_> + 5 10 18 2 -1. + <_> + 5 11 18 1 2. + <_> + + <_> + 0 6 6 10 -1. + <_> + 2 6 2 10 3. + <_> + + <_> + 2 1 20 3 -1. + <_> + 2 2 20 1 3. + <_> + + <_> + 9 13 6 11 -1. + <_> + 11 13 2 11 3. + <_> + + <_> + 9 15 6 8 -1. + <_> + 9 19 6 4 2. + <_> + + <_> + 9 12 6 9 -1. + <_> + 9 15 6 3 3. + <_> + + <_> + 5 11 18 2 -1. + <_> + 5 12 18 1 2. + <_> + + <_> + 2 6 15 6 -1. + <_> + 2 8 15 2 3. + <_> + + <_> + 6 0 18 3 -1. + <_> + 6 1 18 1 3. + <_> + + <_> + 5 0 3 18 -1. + <_> + 6 0 1 18 3. + <_> + + <_> + 18 3 6 10 -1. + <_> + 20 3 2 10 3. + <_> + + <_> + 0 3 6 10 -1. + <_> + 2 3 2 10 3. + <_> + + <_> + 10 5 8 9 -1. + <_> + 10 5 4 9 2. + <_> + + <_> + 6 5 8 9 -1. + <_> + 10 5 4 9 2. + <_> + + <_> + 3 2 20 3 -1. + <_> + 3 3 20 1 3. + <_> + + <_> + 5 2 13 4 -1. + <_> + 5 4 13 2 2. + <_> + + <_> + 17 0 7 14 -1. + <_> + 17 7 7 7 2. + <_> + + <_> + 0 0 7 14 -1. + <_> + 0 7 7 7 2. + <_> + + <_> + 9 11 10 6 -1. + <_> + 9 11 5 6 2. + <_> + + <_> + 5 11 10 6 -1. + <_> + 10 11 5 6 2. + <_> + + <_> + 11 6 3 18 -1. + <_> + 11 12 3 6 3. + <_> + + <_> + 0 16 18 3 -1. + <_> + 0 17 18 1 3. + <_> + + <_> + 6 16 18 3 -1. + <_> + 6 17 18 1 3. + <_> + + <_> + 4 6 9 10 -1. + <_> + 4 11 9 5 2. + <_> + + <_> + 9 7 15 4 -1. + <_> + 9 9 15 2 2. + <_> + + <_> + 5 6 12 6 -1. + <_> + 5 6 6 3 2. + <_> + 11 9 6 3 2. + <_> + + <_> + 6 1 12 9 -1. + <_> + 6 4 12 3 3. + <_> + + <_> + 7 9 6 12 -1. + <_> + 7 9 3 6 2. + <_> + 10 15 3 6 2. + <_> + + <_> + 11 5 13 6 -1. + <_> + 11 7 13 2 3. + <_> + + <_> + 1 11 22 13 -1. + <_> + 12 11 11 13 2. + <_> + + <_> + 18 8 6 6 -1. + <_> + 18 11 6 3 2. + <_> + + <_> + 0 8 6 6 -1. + <_> + 0 11 6 3 2. + <_> + + <_> + 0 6 24 3 -1. + <_> + 0 7 24 1 3. + <_> + + <_> + 0 5 10 6 -1. + <_> + 0 7 10 2 3. + <_> + + <_> + 6 7 18 3 -1. + <_> + 6 8 18 1 3. + <_> + + <_> + 0 0 10 6 -1. + <_> + 0 2 10 2 3. + <_> + + <_> + 19 0 3 19 -1. + <_> + 20 0 1 19 3. + <_> + + <_> + 4 6 12 16 -1. + <_> + 4 6 6 8 2. + <_> + 10 14 6 8 2. + <_> + + <_> + 19 6 4 18 -1. + <_> + 21 6 2 9 2. + <_> + 19 15 2 9 2. + <_> + + <_> + 1 6 4 18 -1. + <_> + 1 6 2 9 2. + <_> + 3 15 2 9 2. + <_> + + <_> + 3 21 18 3 -1. + <_> + 3 22 18 1 3. + <_> + + <_> + 0 19 9 4 -1. + <_> + 0 21 9 2 2. + <_> + + <_> + 12 18 12 6 -1. + <_> + 18 18 6 3 2. + <_> + 12 21 6 3 2. + <_> + + <_> + 7 18 9 4 -1. + <_> + 7 20 9 2 2. + <_> + + <_> + 12 16 10 8 -1. + <_> + 17 16 5 4 2. + <_> + 12 20 5 4 2. + <_> + + <_> + 2 16 10 8 -1. + <_> + 2 16 5 4 2. + <_> + 7 20 5 4 2. + <_> + + <_> + 14 0 10 12 -1. + <_> + 19 0 5 6 2. + <_> + 14 6 5 6 2. + <_> + + <_> + 0 0 10 12 -1. + <_> + 0 0 5 6 2. + <_> + 5 6 5 6 2. + <_> + + <_> + 15 14 9 6 -1. + <_> + 15 16 9 2 3. + <_> + + <_> + 0 14 9 6 -1. + <_> + 0 16 9 2 3. + <_> + + <_> + 14 14 10 6 -1. + <_> + 14 16 10 2 3. + <_> + + <_> + 0 14 10 6 -1. + <_> + 0 16 10 2 3. + <_> + + <_> + 5 18 18 2 -1. + <_> + 5 19 18 1 2. + <_> + + <_> + 0 18 18 3 -1. + <_> + 0 19 18 1 3. + <_> + + <_> + 3 5 18 12 -1. + <_> + 12 5 9 6 2. + <_> + 3 11 9 6 2. + <_> + + <_> + 5 3 7 9 -1. + <_> + 5 6 7 3 3. + <_> + + <_> + 4 0 19 15 -1. + <_> + 4 5 19 5 3. + <_> + + <_> + 3 0 16 4 -1. + <_> + 3 2 16 2 2. + <_> + + <_> + 4 12 16 12 -1. + <_> + 4 12 8 12 2. + <_> + + <_> + 4 3 12 15 -1. + <_> + 10 3 6 15 2. + <_> + + <_> + 16 4 2 19 -1. + <_> + 16 4 1 19 2. + <_> + + <_> + 6 4 2 19 -1. + <_> + 7 4 1 19 2. + <_> + + <_> + 13 14 8 10 -1. + <_> + 17 14 4 5 2. + <_> + 13 19 4 5 2. + <_> + + <_> + 3 14 8 10 -1. + <_> + 3 14 4 5 2. + <_> + 7 19 4 5 2. + <_> + + <_> + 12 6 3 18 -1. + <_> + 12 12 3 6 3. + <_> + + <_> + 5 11 12 6 -1. + <_> + 5 11 6 3 2. + <_> + 11 14 6 3 2. + <_> + + <_> + 10 5 8 10 -1. + <_> + 14 5 4 5 2. + <_> + 10 10 4 5 2. + <_> + + <_> + 6 4 12 10 -1. + <_> + 6 4 6 5 2. + <_> + 12 9 6 5 2. + <_> + + <_> + 6 8 18 10 -1. + <_> + 15 8 9 5 2. + <_> + 6 13 9 5 2. + <_> + + <_> + 0 8 18 10 -1. + <_> + 0 8 9 5 2. + <_> + 9 13 9 5 2. + <_> + + <_> + 12 6 3 18 -1. + <_> + 12 12 3 6 3. + <_> + + <_> + 0 14 18 3 -1. + <_> + 0 15 18 1 3. + <_> + + <_> + 12 6 3 18 -1. + <_> + 12 12 3 6 3. + <_> + + <_> + 9 6 3 18 -1. + <_> + 9 12 3 6 3. + <_> + + <_> + 6 14 18 3 -1. + <_> + 6 15 18 1 3. + <_> + + <_> + 0 5 18 3 -1. + <_> + 0 6 18 1 3. + <_> + + <_> + 2 5 22 3 -1. + <_> + 2 6 22 1 3. + <_> + + <_> + 0 0 21 10 -1. + <_> + 7 0 7 10 3. + <_> + + <_> + 6 3 18 17 -1. + <_> + 12 3 6 17 3. + <_> + + <_> + 0 3 18 17 -1. + <_> + 6 3 6 17 3. + <_> + + <_> + 0 12 24 11 -1. + <_> + 8 12 8 11 3. + <_> + + <_> + 4 10 16 6 -1. + <_> + 4 13 16 3 2. + <_> + + <_> + 12 8 6 8 -1. + <_> + 12 12 6 4 2. + <_> + + <_> + 6 14 8 7 -1. + <_> + 10 14 4 7 2. + <_> + + <_> + 15 10 6 14 -1. + <_> + 18 10 3 7 2. + <_> + 15 17 3 7 2. + <_> + + <_> + 3 10 6 14 -1. + <_> + 3 10 3 7 2. + <_> + 6 17 3 7 2. + <_> + + <_> + 6 12 18 2 -1. + <_> + 6 13 18 1 2. + <_> + + <_> + 5 8 10 6 -1. + <_> + 5 10 10 2 3. + <_> + + <_> + 12 11 9 4 -1. + <_> + 12 13 9 2 2. + <_> + + <_> + 0 11 9 6 -1. + <_> + 0 13 9 2 3. + <_> + + <_> + 11 2 3 18 -1. + <_> + 12 2 1 18 3. + <_> + + <_> + 10 2 3 18 -1. + <_> + 11 2 1 18 3. + <_> + + <_> + 9 12 6 10 -1. + <_> + 11 12 2 10 3. + <_> + + <_> + 1 10 6 9 -1. + <_> + 1 13 6 3 3. + <_> + + <_> + 6 9 16 6 -1. + <_> + 14 9 8 3 2. + <_> + 6 12 8 3 2. + <_> + + <_> + 1 8 9 6 -1. + <_> + 1 10 9 2 3. + <_> + + <_> + 7 7 16 6 -1. + <_> + 7 9 16 2 3. + <_> + + <_> + 0 0 18 3 -1. + <_> + 0 1 18 1 3. + <_> + + <_> + 10 0 6 9 -1. + <_> + 12 0 2 9 3. + <_> + + <_> + 9 5 6 6 -1. + <_> + 12 5 3 6 2. + <_> + + <_> + 10 6 4 18 -1. + <_> + 12 6 2 9 2. + <_> + 10 15 2 9 2. + <_> + + <_> + 8 0 6 9 -1. + <_> + 10 0 2 9 3. + <_> + + <_> + 9 1 6 9 -1. + <_> + 9 4 6 3 3. + <_> + + <_> + 1 0 18 9 -1. + <_> + 1 3 18 3 3. + <_> + + <_> + 0 3 24 3 -1. + <_> + 0 4 24 1 3. + <_> + + <_> + 6 14 9 4 -1. + <_> + 6 16 9 2 2. + <_> + + <_> + 8 9 8 10 -1. + <_> + 12 9 4 5 2. + <_> + 8 14 4 5 2. + <_> + + <_> + 5 2 13 9 -1. + <_> + 5 5 13 3 3. + <_> + + <_> + 4 4 16 9 -1. + <_> + 4 7 16 3 3. + <_> + + <_> + 4 4 14 9 -1. + <_> + 4 7 14 3 3. + <_> + + <_> + 8 5 9 6 -1. + <_> + 8 7 9 2 3. + <_> + + <_> + 1 7 16 6 -1. + <_> + 1 9 16 2 3. + <_> + + <_> + 10 5 13 9 -1. + <_> + 10 8 13 3 3. + <_> + + <_> + 1 5 13 9 -1. + <_> + 1 8 13 3 3. + <_> + + <_> + 0 4 24 6 -1. + <_> + 12 4 12 3 2. + <_> + 0 7 12 3 2. + <_> + + <_> + 1 14 10 9 -1. + <_> + 1 17 10 3 3. + <_> + + <_> + 5 17 18 3 -1. + <_> + 5 18 18 1 3. + <_> + + <_> + 0 16 18 3 -1. + <_> + 0 17 18 1 3. + <_> + + <_> + 9 17 9 6 -1. + <_> + 9 19 9 2 3. + <_> + + <_> + 1 20 22 4 -1. + <_> + 1 20 11 2 2. + <_> + 12 22 11 2 2. + <_> + + <_> + 8 14 8 6 -1. + <_> + 8 17 8 3 2. + <_> + + <_> + 8 6 8 15 -1. + <_> + 8 11 8 5 3. + <_> + + <_> + 5 4 18 3 -1. + <_> + 5 5 18 1 3. + <_> + + <_> + 9 3 5 10 -1. + <_> + 9 8 5 5 2. + <_> + + <_> + 6 8 12 3 -1. + <_> + 6 8 6 3 2. + <_> + + <_> + 2 6 18 6 -1. + <_> + 2 6 9 3 2. + <_> + 11 9 9 3 2. + <_> + + <_> + 10 6 4 18 -1. + <_> + 12 6 2 9 2. + <_> + 10 15 2 9 2. + <_> + + <_> + 7 5 6 6 -1. + <_> + 10 5 3 6 2. + <_> + + <_> + 14 5 2 18 -1. + <_> + 14 14 2 9 2. + <_> + + <_> + 8 5 2 18 -1. + <_> + 8 14 2 9 2. + <_> + + <_> + 9 2 10 6 -1. + <_> + 9 2 5 6 2. + <_> + + <_> + 3 1 18 12 -1. + <_> + 12 1 9 12 2. + <_> + + <_> + 5 2 17 22 -1. + <_> + 5 13 17 11 2. + <_> + + <_> + 4 0 12 6 -1. + <_> + 4 2 12 2 3. + <_> + + <_> + 6 9 16 6 -1. + <_> + 14 9 8 3 2. + <_> + 6 12 8 3 2. + <_> + + <_> + 9 0 5 18 -1. + <_> + 9 9 5 9 2. + <_> + + <_> + 12 0 6 9 -1. + <_> + 14 0 2 9 3. + <_> + + <_> + 6 0 6 9 -1. + <_> + 8 0 2 9 3. + <_> + + <_> + 9 1 6 12 -1. + <_> + 11 1 2 12 3. + <_> + + <_> + 5 9 13 4 -1. + <_> + 5 11 13 2 2. + <_> + + <_> + 5 8 19 3 -1. + <_> + 5 9 19 1 3. + <_> + + <_> + 9 9 6 8 -1. + <_> + 9 13 6 4 2. + <_> + + <_> + 11 9 4 15 -1. + <_> + 11 14 4 5 3. + <_> + + <_> + 2 0 6 14 -1. + <_> + 2 0 3 7 2. + <_> + 5 7 3 7 2. + <_> + + <_> + 15 1 6 14 -1. + <_> + 18 1 3 7 2. + <_> + 15 8 3 7 2. + <_> + + <_> + 3 1 6 14 -1. + <_> + 3 1 3 7 2. + <_> + 6 8 3 7 2. + <_> + + <_> + 3 20 18 4 -1. + <_> + 12 20 9 2 2. + <_> + 3 22 9 2 2. + <_> + + <_> + 5 0 4 20 -1. + <_> + 5 0 2 10 2. + <_> + 7 10 2 10 2. + <_> + + <_> + 16 8 8 12 -1. + <_> + 20 8 4 6 2. + <_> + 16 14 4 6 2. + <_> + + <_> + 0 8 8 12 -1. + <_> + 0 8 4 6 2. + <_> + 4 14 4 6 2. + <_> + + <_> + 13 13 10 8 -1. + <_> + 18 13 5 4 2. + <_> + 13 17 5 4 2. + <_> + + <_> + 1 13 10 8 -1. + <_> + 1 13 5 4 2. + <_> + 6 17 5 4 2. + <_> + + <_> + 15 8 4 15 -1. + <_> + 15 13 4 5 3. + <_> + + <_> + 5 8 4 15 -1. + <_> + 5 13 4 5 3. + <_> + + <_> + 6 11 16 12 -1. + <_> + 6 15 16 4 3. + <_> + + <_> + 2 11 16 12 -1. + <_> + 2 15 16 4 3. + <_> + + <_> + 14 12 7 9 -1. + <_> + 14 15 7 3 3. + <_> + + <_> + 10 1 3 21 -1. + <_> + 10 8 3 7 3. + <_> + + <_> + 13 11 9 4 -1. + <_> + 13 13 9 2 2. + <_> + + <_> + 3 10 17 9 -1. + <_> + 3 13 17 3 3. + <_> + + <_> + 13 8 8 15 -1. + <_> + 13 13 8 5 3. + <_> + + <_> + 3 8 8 15 -1. + <_> + 3 13 8 5 3. + <_> + + <_> + 11 14 10 8 -1. + <_> + 16 14 5 4 2. + <_> + 11 18 5 4 2. + <_> + + <_> + 0 18 22 6 -1. + <_> + 0 18 11 3 2. + <_> + 11 21 11 3 2. + <_> + + <_> + 0 16 24 4 -1. + <_> + 0 16 12 4 2. + <_> + + <_> + 6 20 12 3 -1. + <_> + 12 20 6 3 2. + <_> + + <_> + 18 12 6 12 -1. + <_> + 21 12 3 6 2. + <_> + 18 18 3 6 2. + <_> + + <_> + 0 12 6 12 -1. + <_> + 0 12 3 6 2. + <_> + 3 18 3 6 2. + <_> + + <_> + 15 17 9 6 -1. + <_> + 15 19 9 2 3. + <_> + + <_> + 1 6 22 10 -1. + <_> + 1 6 11 5 2. + <_> + 12 11 11 5 2. + <_> + + <_> + 15 17 9 6 -1. + <_> + 15 19 9 2 3. + <_> + + <_> + 0 18 18 2 -1. + <_> + 0 19 18 1 2. + <_> + + <_> + 3 15 19 3 -1. + <_> + 3 16 19 1 3. + <_> + + <_> + 0 13 18 3 -1. + <_> + 0 14 18 1 3. + <_> + + <_> + 15 17 9 6 -1. + <_> + 15 19 9 2 3. + <_> + + <_> + 0 17 9 6 -1. + <_> + 0 19 9 2 3. + <_> + + <_> + 12 17 9 6 -1. + <_> + 12 19 9 2 3. + <_> + + <_> + 3 17 9 6 -1. + <_> + 3 19 9 2 3. + <_> + + <_> + 16 2 3 20 -1. + <_> + 17 2 1 20 3. + <_> + + <_> + 0 13 24 8 -1. + <_> + 0 17 24 4 2. + <_> + + <_> + 9 1 6 22 -1. + <_> + 12 1 3 11 2. + <_> + 9 12 3 11 2. + diff --git a/follow_up_questions/.ipynb_checkpoints/Week 5-checkpoint.ipynb b/follow_up_questions/.ipynb_checkpoints/Week 5-checkpoint.ipynb deleted file mode 100644 index 1cff6ec..0000000 --- a/follow_up_questions/.ipynb_checkpoints/Week 5-checkpoint.ipynb +++ /dev/null @@ -1,2160 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Broadcasting\n", - "* duplicate a smaller array so we can add and subtract arrays that aren't the same size\n", - "* \" The term broadcasting describes how numpy treats arrays with different shapes during arithmetic operations. Subject to certain constraints, the smaller array is “broadcast” across the larger array so that they have compatible shapes.\" - scipy\n", - "* NumPy does not actually duplicate the smaller array; instead, it makes memory and computationally efficient use of existing structures in memory that in effect achieve the same result." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([3, 3, 3, 3])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# one dimensional\n", - "array = np.array([2,2,2,2])\n", - "array + 1" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 2],\n", - " [2, 2]])" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([[1,1],[1,1]])\n", - "array + 1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* The dimensions are considered in reverse order, starting with the trailing dimension; for example, looking at columns before rows in a two-dimensional case." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(2, 3)\n" - ] - } - ], - "source": [ - "array = np.array([\n", - " [1,1,3],\n", - " [2,2,3]\n", - "])\n", - "\n", - "# we have 2 rows and 3 columns\n", - "print(array.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* consider a case where we have a 2 by 2" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(2, 2)\n", - "(1, 2)\n" - ] - } - ], - "source": [ - "array = np.array([\n", - " [1,1],\n", - " [2,2]\n", - "])\n", - "\n", - "array1 = np.array([1,5])\n", - "array1 = np.reshape(array1, (1,2))\n", - "print(array.shape)\n", - "print(array1.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 6],\n", - " [3, 7]])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# each vector is added to each row\n", - "# since our second dimension aligns, it adds\n", - "# along the columns, because that is our second dimension\n", - "# think of it as \"hoping\" down the, like long, like a column\n", - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 1],\n", - " [2, 2]])" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([2, 4])" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# remember when we sum using axis = 1, we sum columns\n", - "# so when our axis 1 aligns above, we are hoping down the columns\n", - "# and broadcasting that vecotr\n", - "# in the below case, we are hoping down each column and adding them together\n", - "np.sum(array, axis = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(2, 2)\n", - "(2, 1)\n" - ] - } - ], - "source": [ - "array = np.array([\n", - " [1,1],\n", - " [2,2]\n", - "])\n", - "\n", - "array1 = np.array([1,5])\n", - "array1 = np.reshape(array1, (2,1))\n", - "print(array.shape)\n", - "print(array1.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 2],\n", - " [7, 7]])" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# if we flip the dimensions of array 1, the behavior changes\n", - "# now the first dimension (Rows aligns)\n", - "# we \"hop\" across and broadcast\n", - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 1],\n", - " [2, 2]])" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([3, 3])" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# when we make use of our first axis here, to sum\n", - "# we sort of hop along each column and add them together\n", - "# similir to how we are broadings, we are hoping along\n", - "# each column and adding that vector\n", - "np.sum(array, axis = 0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* can only be performed when the shape of each dimension in the arrays are equal or one has the dimension size of 1" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "operands could not be broadcast together with shapes (2,) (3,) ", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0marray\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0marray1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0marray\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0marray1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (2,) (3,) " - ] - } - ], - "source": [ - "array = np.array([1,2])\n", - "array1 = np.array([1,2,3])\n", - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "operands could not be broadcast together with shapes (2,4) (2,2) ", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 9\u001b[0m ])\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0marray\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0marray1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (2,4) (2,2) " - ] - } - ], - "source": [ - "array = np.array([\n", - " [1,1,1,1],\n", - " [1,1,1,1]\n", - "])\n", - "\n", - "# can't just expand this out or double it\n", - "array1 = np.array([\n", - " [1,1],\n", - " [1,1]\n", - "])\n", - "\n", - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 2, 2, 2],\n", - " [2, 2, 2, 2]])" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([\n", - " [1,1,1,1],\n", - " [1,1,1,1]\n", - "])\n", - "\n", - "# can't just expand this out or double it\n", - "array1 = np.array([\n", - " [1,1],\n", - " [1,1]\n", - "])\n", - "\n", - "# could reshape it though\n", - "array1 = np.reshape(array1, (1,4))\n", - "\n", - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 2, 2, 2],\n", - " [2, 2, 2, 2]])" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([\n", - " [1,1,1,1],\n", - " [1,1,1,1]\n", - "])\n", - "\n", - "# can't just expand this out or double it\n", - "array1 = np.array([\n", - " [1],\n", - " [1]\n", - "])\n", - "\n", - "array + array1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* play around with it" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Apply Pandas" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abc
0123
1456
\n", - "
" - ], - "text/plain": [ - " a b c\n", - "0 1 2 3\n", - "1 4 5 6" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data = [\n", - " [1,2,3],\n", - " [4,5,6]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"a\", \"b\", \"c\"]\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a \n", - "b \n", - "c \n", - "dtype: object" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# when we do apply returns a series\n", - "l = lambda x: type(x)\n", - "df.apply(l, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a 1\n", - "b 2\n", - "c 3\n", - "dtype: int64" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# remember this is a series where each series is a column of data\n", - "# so we can access elements of that series using bracket notation\n", - "# here we access the first element of each column\n", - "# think of this as slice 1\n", - "l = lambda x: x[0]\n", - "df.apply(l, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a 4\n", - "b 5\n", - "c 6\n", - "dtype: int64" - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# and slice two\n", - "l = lambda x: x[1]\n", - "df.apply(l, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 \n", - "1 \n", - "dtype: object" - ] - }, - "execution_count": 66, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# now with rows\n", - "l = lambda x: type(x)\n", - "df.apply(l, axis = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 1\n", - "1 4\n", - "dtype: int64" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "l = lambda x: x[\"a\"]\n", - "df.apply(l, axis = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 2\n", - "1 5\n", - "dtype: int64" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "l = lambda x: x[\"b\"]\n", - "df.apply(l, axis = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abc
012A
145B
212C
\n", - "
" - ], - "text/plain": [ - " a b c\n", - "0 1 2 A\n", - "1 4 5 B\n", - "2 1 2 C" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# let's see it in action\n", - "data = [\n", - " [1,2,\"A\"],\n", - " [4,5,\"B\"],\n", - " [1,2,\"C\"]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"a\", \"b\", \"c\"]\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [], - "source": [ - "def f(x):\n", - " if x == \"A\":\n", - " return \"this is a\"\n", - " elif x == \"B\":\n", - " return \"this is b\"\n", - " else:\n", - " return \"this is c\"" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcnew_col
012Athis is a
145Bthis is b
212Cthis is c
\n", - "
" - ], - "text/plain": [ - " a b c new_col\n", - "0 1 2 A this is a\n", - "1 4 5 B this is b\n", - "2 1 2 C this is c" - ] - }, - "execution_count": 84, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# being applied to specific column\n", - "df[\"new_col\"] = df[\"c\"].apply(f)\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 A x\n", - "1 B x\n", - "2 C x\n", - "Name: c, dtype: object" - ] - }, - "execution_count": 90, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "l = lambda x: x + \" x\"\n", - "df[\"c\"].apply(l)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Piping" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
012
145
212
\n", - "
" - ], - "text/plain": [ - " a b\n", - "0 1 2\n", - "1 4 5\n", - "2 1 2" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data = [\n", - " [1,2],\n", - " [4,5],\n", - " [1,2]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"a\", \"b\"]\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
012
145
212
\n", - "
" - ], - "text/plain": [ - " a b\n", - "0 1 2\n", - "1 4 5\n", - "2 1 2" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.pipe(lambda x: x + 2).pipe(lambda x: x - 5)\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
0510
1510
2510
\n", - "
" - ], - "text/plain": [ - " a b\n", - "0 5 10\n", - "1 5 10\n", - "2 5 10" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# the first argument of pipe takes the \"data\" argument, which is just passing in the dataframe\n", - "# then we can think of the function as generally manipulating the dataframe\n", - "data = [\n", - " [1,2],\n", - " [4,5],\n", - " [1,2]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"a\", \"b\"]\n", - "\n", - "def fa(x):\n", - " x[\"a\"] = 5\n", - " return x\n", - "\n", - "def fb(x):\n", - " x[\"b\"] = 10\n", - " return x\n", - " \n", - " \n", - "df.pipe(fa).pipe(fb)\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
0510
1510
2510
\n", - "
" - ], - "text/plain": [ - " a b\n", - "0 5 10\n", - "1 5 10\n", - "2 5 10" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data = [\n", - " [1,2],\n", - " [4,5],\n", - " [1,2]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"a\", \"b\"]\n", - "\n", - "df = fa(df)\n", - "df = fb(df)\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# pipe on single columns" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [], - "source": [ - "def f(x,i):\n", - " return x-i" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
0-9-8
1-6-5
2-9-8
\n", - "
" - ], - "text/plain": [ - " a b\n", - "0 -9 -8\n", - "1 -6 -5\n", - "2 -9 -8" - ] - }, - "execution_count": 108, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.pipe(f,i = 10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Rolling Functions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
validperiod
01A1
14A2
21A3
31A4
44A5
51A6
\n", - "
" - ], - "text/plain": [ - " val id period\n", - "0 1 A 1\n", - "1 4 A 2\n", - "2 1 A 3\n", - "3 1 A 4\n", - "4 4 A 5\n", - "5 1 A 6" - ] - }, - "execution_count": 114, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# let's see it in action\n", - "data = [\n", - " [1,\"A\",\"1\"],\n", - " [4,\"A\",\"2\"],\n", - " [1,\"A\",\"3\"],\n", - " [1,\"A\",\"4\"],\n", - " [4,\"A\",\"5\"],\n", - " [1,\"A\",\"6\"]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"val\", \"id\", \"period\"]\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 NaN\n", - "1 5.0\n", - "2 5.0\n", - "3 2.0\n", - "4 5.0\n", - "5 5.0\n", - "Name: val, dtype: float64" - ] - }, - "execution_count": 116, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"val\"].rolling(2).sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 117, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 NaN\n", - "1 NaN\n", - "2 6.0\n", - "3 6.0\n", - "4 6.0\n", - "5 6.0\n", - "Name: val, dtype: float64" - ] - }, - "execution_count": 117, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"val\"].rolling(3).sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 118, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 NaN\n", - "1 2.5\n", - "2 2.5\n", - "3 1.0\n", - "4 2.5\n", - "5 2.5\n", - "Name: val, dtype: float64" - ] - }, - "execution_count": 118, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"val\"].rolling(2).mean()" - ] - }, - { - "cell_type": "code", - "execution_count": 119, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 NaN\n", - "1 NaN\n", - "2 NaN\n", - "3 1.75\n", - "4 2.50\n", - "5 1.75\n", - "Name: val, dtype: float64" - ] - }, - "execution_count": 119, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"val\"].rolling(4).mean()" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 NaN\n", - "1 2.5\n", - "2 2.5\n", - "3 1.0\n", - "4 2.5\n", - "5 2.5\n", - "Name: val, dtype: float64" - ] - }, - "execution_count": 120, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"val\"].rolling(2).median()" - ] - }, - { - "cell_type": "code", - "execution_count": 121, - "metadata": {}, - "outputs": [], - "source": [ - "df[\"rolling_mean\"] = df[\"val\"].rolling(2).mean()" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
validperiodrolling_mean
01A1NaN
14A22.5
21A32.5
31A41.0
44A52.5
51A62.5
\n", - "
" - ], - "text/plain": [ - " val id period rolling_mean\n", - "0 1 A 1 NaN\n", - "1 4 A 2 2.5\n", - "2 1 A 3 2.5\n", - "3 1 A 4 1.0\n", - "4 4 A 5 2.5\n", - "5 1 A 6 2.5" - ] - }, - "execution_count": 122, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [], - "source": [ - "periods = [1,2,3,4]\n", - "for p in periods:\n", - " name = \"rolling_mean_p_{}\".format(str(p))\n", - " df[name] = df[\"val\"].rolling(p).mean()" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
validperiodrolling_meanrolling_mean_p_1rolling_mean_p_2rolling_mean_p_3rolling_mean_p_4
01A1NaN1.0NaNNaNNaN
14A22.54.02.5NaNNaN
21A32.51.02.52.0NaN
31A41.01.01.02.01.75
44A52.54.02.52.02.50
51A62.51.02.52.01.75
\n", - "
" - ], - "text/plain": [ - " val id period rolling_mean rolling_mean_p_1 rolling_mean_p_2 \\\n", - "0 1 A 1 NaN 1.0 NaN \n", - "1 4 A 2 2.5 4.0 2.5 \n", - "2 1 A 3 2.5 1.0 2.5 \n", - "3 1 A 4 1.0 1.0 1.0 \n", - "4 4 A 5 2.5 4.0 2.5 \n", - "5 1 A 6 2.5 1.0 2.5 \n", - "\n", - " rolling_mean_p_3 rolling_mean_p_4 \n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 2.0 NaN \n", - "3 2.0 1.75 \n", - "4 2.0 2.50 \n", - "5 2.0 1.75 " - ] - }, - "execution_count": 126, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Window Functions" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
validperiod
01A1
14A2
21A3
31A4
44A5
51A6
611B1
74B2
815B3
98B4
107B5
114B6
\n", - "
" - ], - "text/plain": [ - " val id period\n", - "0 1 A 1\n", - "1 4 A 2\n", - "2 1 A 3\n", - "3 1 A 4\n", - "4 4 A 5\n", - "5 1 A 6\n", - "6 11 B 1\n", - "7 4 B 2\n", - "8 15 B 3\n", - "9 8 B 4\n", - "10 7 B 5\n", - "11 4 B 6" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# let's see it in action\n", - "data = [\n", - " [1,\"A\",\"1\"],\n", - " [4,\"A\",\"2\"],\n", - " [1,\"A\",\"3\"],\n", - " [1,\"A\",\"4\"],\n", - " [4,\"A\",\"5\"],\n", - " [1,\"A\",\"6\"],\n", - " [11,\"B\",\"1\"],\n", - " [4,\"B\",\"2\"],\n", - " [15,\"B\",\"3\"],\n", - " [8,\"B\",\"4\"],\n", - " [7,\"B\",\"5\"],\n", - " [4,\"B\",\"6\"]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"val\", \"id\", \"period\"]\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idlevel_1val
0A0NaN
1A15.0
2A25.0
3A32.0
4A45.0
5A55.0
6B6NaN
7B715.0
8B819.0
9B923.0
10B1015.0
11B1111.0
\n", - "
" - ], - "text/plain": [ - " id level_1 val\n", - "0 A 0 NaN\n", - "1 A 1 5.0\n", - "2 A 2 5.0\n", - "3 A 3 2.0\n", - "4 A 4 5.0\n", - "5 A 5 5.0\n", - "6 B 6 NaN\n", - "7 B 7 15.0\n", - "8 B 8 19.0\n", - "9 B 9 23.0\n", - "10 B 10 15.0\n", - "11 B 11 11.0" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.groupby('id')['val'].rolling(2).sum().reset_index()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Time Series in Pandas" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# to add" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Raw Strings" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hello there \n", - "this will do a return\n" - ] - } - ], - "source": [ - "print(\"hello there \\nthis will do a return\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hello there \\nthis will not do a return\n" - ] - } - ], - "source": [ - "print(r\"hello there \\nthis will not do a return\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\t this will tab\n" - ] - } - ], - "source": [ - "print(\"\\t this will tab\")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\\t this will not tab\n" - ] - } - ], - "source": [ - "print(r\"\\t this will not tab\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/follow_up_questions/.ipynb_checkpoints/week 1-checkpoint.ipynb b/follow_up_questions/.ipynb_checkpoints/week 1-checkpoint.ipynb deleted file mode 100644 index c239cdb..0000000 --- a/follow_up_questions/.ipynb_checkpoints/week 1-checkpoint.ipynb +++ /dev/null @@ -1,1040 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Underscores" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In truth we won't worry much about underscores, though I wanted to provide a bit of info on their use Python, specifically in relation to the double underscored attribuets and methods we saw running the dir() function." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Double Underscore\n", - "* these refer to \"magic methods\", meaning python uses them behind the scenes and in most cases we don't generally want to alter or change how they function it. think of them as python setting up some nuts and bolts to make your programs run\n", - "* for instance lists and integers (among other datatypes) can be added together using the + symbol or \\_\\_add\\_\\_. Though using the symbol is far easier. In this case, when we do list + list, the + sign tells python to call the \\_\\_add\\_\\_ method.\n", - "* \\_\\_init\\_\\_ is the initialization method for an object, which will will use, but not alter the functionality of\n", - "* \\_\\_iter\\_\\_ is used to return an iteration, so this is a method that iterators make use of\n", - "* \\_\\_new\\_\\_ is called to make a new object and used by the \\_\\_init\\_\\_ method\n", - "* for brevity I will leave it there, but these aren't something we'll need to be altering the functionality" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3, 4]" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [1,2]\n", - "b = [3,4]\n", - "a + b" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3, 4]" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a.__add__(b)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "to the second point, there isn't a great way to tell the difference between methods and attributes in dir(), though we can make use of the getmembers function from inspect. we can see that methods like extend, append etc. are listed as functions" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "from inspect import getmembers" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[('__add__', ),\n", - " ('__class__', list),\n", - " ('__contains__',\n", - " ),\n", - " ('__delattr__',\n", - " ),\n", - " ('__delitem__',\n", - " ),\n", - " ('__dir__', ),\n", - " ('__doc__',\n", - " 'Built-in mutable sequence.\\n\\nIf no argument is given, the constructor creates a new empty list.\\nThe argument must be an iterable if specified.'),\n", - " ('__eq__', ),\n", - " ('__format__', ),\n", - " ('__ge__', ),\n", - " ('__getattribute__',\n", - " ),\n", - " ('__getitem__', ),\n", - " ('__gt__', ),\n", - " ('__hash__', None),\n", - " ('__iadd__', ),\n", - " ('__imul__', ),\n", - " ('__init__', ),\n", - " ('__init_subclass__', ),\n", - " ('__iter__', ),\n", - " ('__le__', ),\n", - " ('__len__', ),\n", - " ('__lt__', ),\n", - " ('__mul__', ),\n", - " ('__ne__', ),\n", - " ('__new__', ),\n", - " ('__reduce__', ),\n", - " ('__reduce_ex__', ),\n", - " ('__repr__', ),\n", - " ('__reversed__', ),\n", - " ('__rmul__', ),\n", - " ('__setattr__',\n", - " ),\n", - " ('__setitem__',\n", - " ),\n", - " ('__sizeof__', ),\n", - " ('__str__', ),\n", - " ('__subclasshook__', ),\n", - " ('append', ),\n", - " ('clear', ),\n", - " ('copy', ),\n", - " ('count', ),\n", - " ('extend', ),\n", - " ('index', ),\n", - " ('insert', ),\n", - " ('pop', ),\n", - " ('remove', ),\n", - " ('reverse', ),\n", - " ('sort', )]" - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "getmembers(lst)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "if we make a quick dummy class (we'll cover this in lecture 3), and give it an attribuet of name, we can see the tuple of attribuet name and value using the getmembers function." - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[('__class__', __main__.Dog),\n", - " ('__delattr__',\n", - " ),\n", - " ('__dict__', {'name': 'Brian'}),\n", - " ('__dir__', ),\n", - " ('__doc__', None),\n", - " ('__eq__', ),\n", - " ('__format__', ),\n", - " ('__ge__', ),\n", - " ('__getattribute__',\n", - " ),\n", - " ('__gt__', ),\n", - " ('__hash__', ),\n", - " ('__init__',\n", - " >),\n", - " ('__init_subclass__', ),\n", - " ('__le__', ),\n", - " ('__lt__', ),\n", - " ('__module__', '__main__'),\n", - " ('__ne__', ),\n", - " ('__new__', ),\n", - " ('__reduce__', ),\n", - " ('__reduce_ex__', ),\n", - " ('__repr__', ),\n", - " ('__setattr__',\n", - " ),\n", - " ('__sizeof__', ),\n", - " ('__str__', ),\n", - " ('__subclasshook__', ),\n", - " ('__weakref__', None),\n", - " ('name', 'Brian')]" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "class Dog:\n", - " def __init__(self, name):\n", - " self.name = name\n", - " \n", - "d = Dog(name = \"Brian\")\n", - "getmembers(d)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The underscore is also used in python from a formatting perspective, in some cases to mean \"throwaway.\" Below we are saying we don't care about 2, or the middle value. the variable is technically declared but it's pythonic to see this as, it's not going to be relevant info to our program" - ] - }, - { - "cell_type": "code", - "execution_count": 152, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "2\n", - "3\n" - ] - } - ], - "source": [ - "x, _, y = (1, 2, 3)\n", - "print(x)\n", - "print(_)\n", - "print(y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "while the _ is being used as the iteration variable, it's pythonic to mean we don't actually care about the values in the range(10)" - ] - }, - { - "cell_type": "code", - "execution_count": 146, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n", - "1\n", - "2\n", - "3\n", - "4\n", - "5\n", - "6\n", - "7\n", - "8\n", - "9\n" - ] - } - ], - "source": [ - "for _ in range(10):\n", - " print(_)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# for _ in range(10):\n", - " # do something 10 times, but we don't need the 1,2,3,4, etc." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "the same holds here, we as we are saying, we don't really care about what the function is returning" - ] - }, - { - "cell_type": "code", - "execution_count": 148, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func():\n", - " return 2" - ] - }, - { - "cell_type": "code", - "execution_count": 151, - "metadata": {}, - "outputs": [], - "source": [ - "_ = my_func()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "if you want to get rather in depth, you can look up name mangling in python, which is another use of underscores when making classes, but something outside the scope of this class" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## pass vs. continue" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "remember continue will throw us to the next iteration task of the current interation" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "---------------------------------------------------------------------------\n", - "First Loop:1\n", - "Outer loop iteration count:1\n", - "---------------------------------------------------------------------------\n", - "First Loop:[3, 4]\n", - "Second Loop:4\n", - "Outer loop iteration count:2\n" - ] - } - ], - "source": [ - "a = [1,[3,4]]\n", - "c_outer = 0\n", - "\n", - "for i in a:\n", - " \n", - " # this just prints the first element of our list\n", - " # initially the value is 1\n", - " print(\"-\"*75) # divide up our outer loop printing\n", - " print(\"First Loop:{}\".format(i))\n", - " \n", - " # since the first value of the list a is a number\n", - " # this will be false and we will go to the else which is a pass\n", - " # so we increment the counter and print the last statement \n", - " # but when i = [3,4] we drop into the second loop\n", - " if isinstance(i, list):\n", - " \n", - " # consider we are on element 2 where\n", - " # i = [3,4]\n", - " for i2 in i:\n", - " # initially i2 is 3\n", - " # so we continue\n", - " # this will go back up to the line\n", - " # for i2 in i (the current loop we are in)\n", - " # and finish the iteration of [3,4]\n", - " # notice that the continue here\n", - " # doesen't put us back to for i in a\n", - " # it puts us back to the current iteration loop\n", - " # we can see this because c_outer is incremented and printed\n", - " if i2 == 3:\n", - " continue\n", - " else:\n", - " print(\"Second Loop:{}\".format(i2))\n", - " \n", - " # in this case it's a continue\n", - " # so notice the next piece of the code is not executed\n", - " else:\n", - " pass\n", - " \n", - " c_outer+=1\n", - " print(\"Outer loop iteration count:{}\".format(c_outer))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "if we change the bottom else to continue, we see for the first iteration loop, we skip the c_outer incrementing and skip the printing of that value" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "---------------------------------------------------------------------------\n", - "First Loop:1\n", - "---------------------------------------------------------------------------\n", - "First Loop:[3, 4]\n", - "Second Loop:4\n", - "Outer loop iteration count:1\n" - ] - } - ], - "source": [ - "a = [1,[3,4]]\n", - "c_outer = 0\n", - "\n", - "for i in a:\n", - " \n", - " # this just prints the first element of our list\n", - " # initially the value is 1\n", - " print(\"-\"*75)\n", - " print(\"First Loop:{}\".format(i))\n", - " \n", - " # since the first value of the list a is a number\n", - " # this will be false and we will go to the else which is a pass\n", - " # so we increment the counter and print the last statement \n", - " # but when i = [3,4] we drop into the second loop\n", - " if isinstance(i, list):\n", - " \n", - " # consider we are on element 2 where\n", - " # i = [3,4]\n", - " for i2 in i:\n", - " # initially i2 is 3\n", - " # so we continue\n", - " # this will go back up to the line\n", - " # for i2 in i\n", - " # and finish the iteration of [3,4]\n", - " # notice that the continue here\n", - " # doesen't put us back to for i in a\n", - " # it puts us back to the current iteration loop\n", - " # most nested or lowest level\n", - " if i2 == 3:\n", - " continue\n", - " else:\n", - " print(\"Second Loop:{}\".format(i2))\n", - " \n", - " # in this case it's a continue\n", - " # so notice the next piece of the code is not executed\n", - " \n", - " # if we change this to continue, when i initially is 1\n", - " # the loop will shoot back up to for i in a and continue\n", - " # missine the bottom print and counter increment\n", - " # so in this sence, we only partially complete the outer loop\n", - " else:\n", - " continue\n", - " \n", - " c_outer+=1\n", - " print(\"Outer loop iteration count:{}\".format(c_outer))\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "control flow of a loop can be tricky. the best way to learn it will be to write some loops and print output so you can visually trace what is happening" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## quick overview of comprehension\n", - "these are just concise and speed efficient ways to right for loops" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lst = []\n", - "for i in range(10):\n", - " lst.append(i)\n", - "lst" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "notice to wording is basically the same, just ordered a bit differently and put on one line" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# as a comprehension\n", - "lst = [i for i in range(10)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "we are compacking the for loop syntax into brackets (meaning we are using comprehension to make a list). we could also use comprehensions to make a tuple or dictionary. simply put, comprehensions let us compact our loop code and run more efficiently. these will show up often as you continue to write and read python code" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)\n", - "{0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10}\n", - "{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}\n" - ] - } - ], - "source": [ - "# we can use other comprehensions with othere iterablees\n", - "# like tuples or lists\n", - "tup = tuple(i for i in range(10))\n", - "print(tup)\n", - "\n", - "dct = dict((idx,i+1) for idx,i in enumerate(range(10)))\n", - "print(dct)\n", - "\n", - "s = set(i for i in range(10))\n", - "print(s)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "we can also apply functions with comprehensions" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3, 4]" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lst = [-1,-2,-3,-4]\n", - "a = [abs(x) for x in lst]\n", - "a" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "these techniques above, will make up the majority of coding within assignment 1. we will cover them far more in our second lecture, but for those that want to get started ahead of time, the above should help" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## map, comprehensions, for loops and time\n", - "* as we discussed runtime and concise code matters\n", - "* most likely, there is going to be runtime gains when using comprehensions and map vs. loops\n", - "* not to mention you get the concise code with comprehension\n", - "* Once you learn comprehensions, you will not bother thinking about using map much, as comprehensions are rather simple and efficient to run\n", - "* plus, they are more pythonic\n", - "* but the concept of mapping will come up later on using the multiprocessing library so it is important to understand the idea of \"mapping\" a function to a collection of data\n", - "* the below prints out the seconds needed to run each chunk of code" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "import time" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.24928903579711914\n" - ] - } - ], - "source": [ - "lst = list(range(10000000))\n", - "start = time.time()\n", - "a = list(map(abs,lst))\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.2070269584655762\n" - ] - } - ], - "source": [ - "lst = list(range(10000000))\n", - "b = []\n", - "start = time.time()\n", - "for i in lst:\n", - " b.append(abs(i))\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.4653120040893555\n" - ] - } - ], - "source": [ - "lst = list(range(10000000))\n", - "start = time.time()\n", - "for idx,i in enumerate(lst):\n", - " lst[idx]= abs(i)\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.7413120269775391\n" - ] - } - ], - "source": [ - "# comprehension\n", - "start = time.time()\n", - "b = [abs(x) for x in list(range(10000000))]\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "with a udf" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x):\n", - " return abs(x)" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.8321022987365723\n" - ] - } - ], - "source": [ - "lst = list(range(10000000))\n", - "start = time.time()\n", - "a = list(map(my_func,lst))\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.619018793106079\n" - ] - } - ], - "source": [ - "lst = list(range(10000000))\n", - "b = []\n", - "start = time.time()\n", - "for i in lst:\n", - " b.append(my_func(i))\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.9668538570404053\n" - ] - } - ], - "source": [ - "lst = list(range(10000000))\n", - "start = time.time()\n", - "for idx,i in enumerate(lst):\n", - " lst[idx]= my_func(i)\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.2628250122070312\n" - ] - } - ], - "source": [ - "start = time.time()\n", - "b = [my_func(x) for x in list(range(10000000))]\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "once you start working with larger datasets and writing more in depth programs, timing steps and keeping track of runtimes will be common. as will be trying to find the most efficient way to write your code from a runtime and concise standpoint. the above is a pretty simple example, but with a more complicated function or more complicated dataset, these functions may scale differently" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## dictionary searches\n", - "* dictionaries aren't generally used to do nested searching\n", - "* there is some nice functionality in pandas to do json_normalization, which will blow out the json into a dataframe, but we will ignore that for illustrative purposes" - ] - }, - { - "cell_type": "code", - "execution_count": 105, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "doritos\n", - "lays\n", - "lays\n" - ] - } - ], - "source": [ - "# if we know our keys, we might be making use of a dictionary like this, in a lookup fashion\n", - "lookup = {\n", - " \"item_a\":\"doritos\",\n", - " \"item_b\":\"lays\"\n", - "}\n", - "\n", - "for i in [\"item_a\", \"item_b\", \"item_b\"]:\n", - " print(lookup[i])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "to do some custom searching we can use a for loop or we can use list comprehension" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [], - "source": [ - "my_dict = {\n", - " \n", - " 1:{\"first_name\":\"Brian\"},\n", - " 2:{\"first_name\":\"Jane\", \"last_name\":\"Doe\"},\n", - " 3:{\"first_name\":\"John\", \"last_name\":\"Doe2\"}\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2 {'first_name': 'Jane', 'last_name': 'Doe'}\n" - ] - } - ], - "source": [ - "# this does let us search that nested dictionary\n", - "\n", - "for k,v in my_dict.items():\n", - " # this is saying if \"last_name\" is a key in our dictionary\n", - " # which in this case, v is one of those nested dictionaries\n", - " # and the last_name value is Doe, then print the k,v\n", - " if \"last_name\" in v and v[\"last_name\"] == \"Doe\": \n", - " print(k,v)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "in this case comprehensions aren't as concise, but we can solve this writting a custom UDF and then throwing it in a comprehension" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3]" - ] - }, - "execution_count": 97, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[k for k,v in my_dict.items()]" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'first_name': 'Brian'},\n", - " {'first_name': 'Jane', 'last_name': 'Doe'},\n", - " {'first_name': 'John', 'last_name': 'Doe2'}]" - ] - }, - "execution_count": 98, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[v for k,v in my_dict.items()]" - ] - }, - { - "cell_type": "code", - "execution_count": 160, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(k,v,search_term):\n", - " if \"last_name\" in v and v[\"last_name\"] == search_term:\n", - " return (k,v)\n", - " else:\n", - " return False" - ] - }, - { - "cell_type": "code", - "execution_count": 161, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[False, (2, {'first_name': 'Jane', 'last_name': 'Doe'}), False]" - ] - }, - "execution_count": 161, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "search = \"Doe\"\n", - "[my_func(k,v,search) for k,v in my_dict.items()]" - ] - }, - { - "cell_type": "code", - "execution_count": 162, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(2, {'first_name': 'Jane', 'last_name': 'Doe'})]" - ] - }, - "execution_count": 162, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# the filter(None, iterable) filters False, None, empty items\n", - "search = \"Doe\"\n", - "list(filter(None, [my_func(k,v,search) for k,v in my_dict.items()]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/follow_up_questions/.ipynb_checkpoints/week 2-checkpoint.ipynb b/follow_up_questions/.ipynb_checkpoints/week 2-checkpoint.ipynb deleted file mode 100644 index 2fd6442..0000000 --- a/follow_up_questions/.ipynb_checkpoints/week 2-checkpoint.ipynb +++ /dev/null @@ -1,6 +0,0 @@ -{ - "cells": [], - "metadata": {}, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/follow_up_questions/Week 5.ipynb b/follow_up_questions/Week 5.ipynb deleted file mode 100644 index 1cff6ec..0000000 --- a/follow_up_questions/Week 5.ipynb +++ /dev/null @@ -1,2160 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Broadcasting\n", - "* duplicate a smaller array so we can add and subtract arrays that aren't the same size\n", - "* \" The term broadcasting describes how numpy treats arrays with different shapes during arithmetic operations. Subject to certain constraints, the smaller array is “broadcast” across the larger array so that they have compatible shapes.\" - scipy\n", - "* NumPy does not actually duplicate the smaller array; instead, it makes memory and computationally efficient use of existing structures in memory that in effect achieve the same result." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([3, 3, 3, 3])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# one dimensional\n", - "array = np.array([2,2,2,2])\n", - "array + 1" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 2],\n", - " [2, 2]])" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([[1,1],[1,1]])\n", - "array + 1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* The dimensions are considered in reverse order, starting with the trailing dimension; for example, looking at columns before rows in a two-dimensional case." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(2, 3)\n" - ] - } - ], - "source": [ - "array = np.array([\n", - " [1,1,3],\n", - " [2,2,3]\n", - "])\n", - "\n", - "# we have 2 rows and 3 columns\n", - "print(array.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* consider a case where we have a 2 by 2" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(2, 2)\n", - "(1, 2)\n" - ] - } - ], - "source": [ - "array = np.array([\n", - " [1,1],\n", - " [2,2]\n", - "])\n", - "\n", - "array1 = np.array([1,5])\n", - "array1 = np.reshape(array1, (1,2))\n", - "print(array.shape)\n", - "print(array1.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 6],\n", - " [3, 7]])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# each vector is added to each row\n", - "# since our second dimension aligns, it adds\n", - "# along the columns, because that is our second dimension\n", - "# think of it as \"hoping\" down the, like long, like a column\n", - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 1],\n", - " [2, 2]])" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([2, 4])" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# remember when we sum using axis = 1, we sum columns\n", - "# so when our axis 1 aligns above, we are hoping down the columns\n", - "# and broadcasting that vecotr\n", - "# in the below case, we are hoping down each column and adding them together\n", - "np.sum(array, axis = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(2, 2)\n", - "(2, 1)\n" - ] - } - ], - "source": [ - "array = np.array([\n", - " [1,1],\n", - " [2,2]\n", - "])\n", - "\n", - "array1 = np.array([1,5])\n", - "array1 = np.reshape(array1, (2,1))\n", - "print(array.shape)\n", - "print(array1.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 2],\n", - " [7, 7]])" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# if we flip the dimensions of array 1, the behavior changes\n", - "# now the first dimension (Rows aligns)\n", - "# we \"hop\" across and broadcast\n", - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 1],\n", - " [2, 2]])" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([3, 3])" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# when we make use of our first axis here, to sum\n", - "# we sort of hop along each column and add them together\n", - "# similir to how we are broadings, we are hoping along\n", - "# each column and adding that vector\n", - "np.sum(array, axis = 0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* can only be performed when the shape of each dimension in the arrays are equal or one has the dimension size of 1" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "operands could not be broadcast together with shapes (2,) (3,) ", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0marray\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0marray1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0marray\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0marray1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (2,) (3,) " - ] - } - ], - "source": [ - "array = np.array([1,2])\n", - "array1 = np.array([1,2,3])\n", - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "operands could not be broadcast together with shapes (2,4) (2,2) ", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 9\u001b[0m ])\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0marray\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0marray1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (2,4) (2,2) " - ] - } - ], - "source": [ - "array = np.array([\n", - " [1,1,1,1],\n", - " [1,1,1,1]\n", - "])\n", - "\n", - "# can't just expand this out or double it\n", - "array1 = np.array([\n", - " [1,1],\n", - " [1,1]\n", - "])\n", - "\n", - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 2, 2, 2],\n", - " [2, 2, 2, 2]])" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([\n", - " [1,1,1,1],\n", - " [1,1,1,1]\n", - "])\n", - "\n", - "# can't just expand this out or double it\n", - "array1 = np.array([\n", - " [1,1],\n", - " [1,1]\n", - "])\n", - "\n", - "# could reshape it though\n", - "array1 = np.reshape(array1, (1,4))\n", - "\n", - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 2, 2, 2],\n", - " [2, 2, 2, 2]])" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([\n", - " [1,1,1,1],\n", - " [1,1,1,1]\n", - "])\n", - "\n", - "# can't just expand this out or double it\n", - "array1 = np.array([\n", - " [1],\n", - " [1]\n", - "])\n", - "\n", - "array + array1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* play around with it" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Apply Pandas" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abc
0123
1456
\n", - "
" - ], - "text/plain": [ - " a b c\n", - "0 1 2 3\n", - "1 4 5 6" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data = [\n", - " [1,2,3],\n", - " [4,5,6]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"a\", \"b\", \"c\"]\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a \n", - "b \n", - "c \n", - "dtype: object" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# when we do apply returns a series\n", - "l = lambda x: type(x)\n", - "df.apply(l, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a 1\n", - "b 2\n", - "c 3\n", - "dtype: int64" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# remember this is a series where each series is a column of data\n", - "# so we can access elements of that series using bracket notation\n", - "# here we access the first element of each column\n", - "# think of this as slice 1\n", - "l = lambda x: x[0]\n", - "df.apply(l, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a 4\n", - "b 5\n", - "c 6\n", - "dtype: int64" - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# and slice two\n", - "l = lambda x: x[1]\n", - "df.apply(l, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 \n", - "1 \n", - "dtype: object" - ] - }, - "execution_count": 66, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# now with rows\n", - "l = lambda x: type(x)\n", - "df.apply(l, axis = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 1\n", - "1 4\n", - "dtype: int64" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "l = lambda x: x[\"a\"]\n", - "df.apply(l, axis = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 2\n", - "1 5\n", - "dtype: int64" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "l = lambda x: x[\"b\"]\n", - "df.apply(l, axis = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abc
012A
145B
212C
\n", - "
" - ], - "text/plain": [ - " a b c\n", - "0 1 2 A\n", - "1 4 5 B\n", - "2 1 2 C" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# let's see it in action\n", - "data = [\n", - " [1,2,\"A\"],\n", - " [4,5,\"B\"],\n", - " [1,2,\"C\"]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"a\", \"b\", \"c\"]\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [], - "source": [ - "def f(x):\n", - " if x == \"A\":\n", - " return \"this is a\"\n", - " elif x == \"B\":\n", - " return \"this is b\"\n", - " else:\n", - " return \"this is c\"" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcnew_col
012Athis is a
145Bthis is b
212Cthis is c
\n", - "
" - ], - "text/plain": [ - " a b c new_col\n", - "0 1 2 A this is a\n", - "1 4 5 B this is b\n", - "2 1 2 C this is c" - ] - }, - "execution_count": 84, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# being applied to specific column\n", - "df[\"new_col\"] = df[\"c\"].apply(f)\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 A x\n", - "1 B x\n", - "2 C x\n", - "Name: c, dtype: object" - ] - }, - "execution_count": 90, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "l = lambda x: x + \" x\"\n", - "df[\"c\"].apply(l)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Piping" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
012
145
212
\n", - "
" - ], - "text/plain": [ - " a b\n", - "0 1 2\n", - "1 4 5\n", - "2 1 2" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data = [\n", - " [1,2],\n", - " [4,5],\n", - " [1,2]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"a\", \"b\"]\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
012
145
212
\n", - "
" - ], - "text/plain": [ - " a b\n", - "0 1 2\n", - "1 4 5\n", - "2 1 2" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.pipe(lambda x: x + 2).pipe(lambda x: x - 5)\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
0510
1510
2510
\n", - "
" - ], - "text/plain": [ - " a b\n", - "0 5 10\n", - "1 5 10\n", - "2 5 10" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# the first argument of pipe takes the \"data\" argument, which is just passing in the dataframe\n", - "# then we can think of the function as generally manipulating the dataframe\n", - "data = [\n", - " [1,2],\n", - " [4,5],\n", - " [1,2]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"a\", \"b\"]\n", - "\n", - "def fa(x):\n", - " x[\"a\"] = 5\n", - " return x\n", - "\n", - "def fb(x):\n", - " x[\"b\"] = 10\n", - " return x\n", - " \n", - " \n", - "df.pipe(fa).pipe(fb)\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
0510
1510
2510
\n", - "
" - ], - "text/plain": [ - " a b\n", - "0 5 10\n", - "1 5 10\n", - "2 5 10" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data = [\n", - " [1,2],\n", - " [4,5],\n", - " [1,2]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"a\", \"b\"]\n", - "\n", - "df = fa(df)\n", - "df = fb(df)\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# pipe on single columns" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [], - "source": [ - "def f(x,i):\n", - " return x-i" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
0-9-8
1-6-5
2-9-8
\n", - "
" - ], - "text/plain": [ - " a b\n", - "0 -9 -8\n", - "1 -6 -5\n", - "2 -9 -8" - ] - }, - "execution_count": 108, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.pipe(f,i = 10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Rolling Functions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
validperiod
01A1
14A2
21A3
31A4
44A5
51A6
\n", - "
" - ], - "text/plain": [ - " val id period\n", - "0 1 A 1\n", - "1 4 A 2\n", - "2 1 A 3\n", - "3 1 A 4\n", - "4 4 A 5\n", - "5 1 A 6" - ] - }, - "execution_count": 114, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# let's see it in action\n", - "data = [\n", - " [1,\"A\",\"1\"],\n", - " [4,\"A\",\"2\"],\n", - " [1,\"A\",\"3\"],\n", - " [1,\"A\",\"4\"],\n", - " [4,\"A\",\"5\"],\n", - " [1,\"A\",\"6\"]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"val\", \"id\", \"period\"]\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 NaN\n", - "1 5.0\n", - "2 5.0\n", - "3 2.0\n", - "4 5.0\n", - "5 5.0\n", - "Name: val, dtype: float64" - ] - }, - "execution_count": 116, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"val\"].rolling(2).sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 117, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 NaN\n", - "1 NaN\n", - "2 6.0\n", - "3 6.0\n", - "4 6.0\n", - "5 6.0\n", - "Name: val, dtype: float64" - ] - }, - "execution_count": 117, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"val\"].rolling(3).sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 118, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 NaN\n", - "1 2.5\n", - "2 2.5\n", - "3 1.0\n", - "4 2.5\n", - "5 2.5\n", - "Name: val, dtype: float64" - ] - }, - "execution_count": 118, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"val\"].rolling(2).mean()" - ] - }, - { - "cell_type": "code", - "execution_count": 119, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 NaN\n", - "1 NaN\n", - "2 NaN\n", - "3 1.75\n", - "4 2.50\n", - "5 1.75\n", - "Name: val, dtype: float64" - ] - }, - "execution_count": 119, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"val\"].rolling(4).mean()" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 NaN\n", - "1 2.5\n", - "2 2.5\n", - "3 1.0\n", - "4 2.5\n", - "5 2.5\n", - "Name: val, dtype: float64" - ] - }, - "execution_count": 120, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"val\"].rolling(2).median()" - ] - }, - { - "cell_type": "code", - "execution_count": 121, - "metadata": {}, - "outputs": [], - "source": [ - "df[\"rolling_mean\"] = df[\"val\"].rolling(2).mean()" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
validperiodrolling_mean
01A1NaN
14A22.5
21A32.5
31A41.0
44A52.5
51A62.5
\n", - "
" - ], - "text/plain": [ - " val id period rolling_mean\n", - "0 1 A 1 NaN\n", - "1 4 A 2 2.5\n", - "2 1 A 3 2.5\n", - "3 1 A 4 1.0\n", - "4 4 A 5 2.5\n", - "5 1 A 6 2.5" - ] - }, - "execution_count": 122, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [], - "source": [ - "periods = [1,2,3,4]\n", - "for p in periods:\n", - " name = \"rolling_mean_p_{}\".format(str(p))\n", - " df[name] = df[\"val\"].rolling(p).mean()" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
validperiodrolling_meanrolling_mean_p_1rolling_mean_p_2rolling_mean_p_3rolling_mean_p_4
01A1NaN1.0NaNNaNNaN
14A22.54.02.5NaNNaN
21A32.51.02.52.0NaN
31A41.01.01.02.01.75
44A52.54.02.52.02.50
51A62.51.02.52.01.75
\n", - "
" - ], - "text/plain": [ - " val id period rolling_mean rolling_mean_p_1 rolling_mean_p_2 \\\n", - "0 1 A 1 NaN 1.0 NaN \n", - "1 4 A 2 2.5 4.0 2.5 \n", - "2 1 A 3 2.5 1.0 2.5 \n", - "3 1 A 4 1.0 1.0 1.0 \n", - "4 4 A 5 2.5 4.0 2.5 \n", - "5 1 A 6 2.5 1.0 2.5 \n", - "\n", - " rolling_mean_p_3 rolling_mean_p_4 \n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 2.0 NaN \n", - "3 2.0 1.75 \n", - "4 2.0 2.50 \n", - "5 2.0 1.75 " - ] - }, - "execution_count": 126, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Window Functions" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
validperiod
01A1
14A2
21A3
31A4
44A5
51A6
611B1
74B2
815B3
98B4
107B5
114B6
\n", - "
" - ], - "text/plain": [ - " val id period\n", - "0 1 A 1\n", - "1 4 A 2\n", - "2 1 A 3\n", - "3 1 A 4\n", - "4 4 A 5\n", - "5 1 A 6\n", - "6 11 B 1\n", - "7 4 B 2\n", - "8 15 B 3\n", - "9 8 B 4\n", - "10 7 B 5\n", - "11 4 B 6" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# let's see it in action\n", - "data = [\n", - " [1,\"A\",\"1\"],\n", - " [4,\"A\",\"2\"],\n", - " [1,\"A\",\"3\"],\n", - " [1,\"A\",\"4\"],\n", - " [4,\"A\",\"5\"],\n", - " [1,\"A\",\"6\"],\n", - " [11,\"B\",\"1\"],\n", - " [4,\"B\",\"2\"],\n", - " [15,\"B\",\"3\"],\n", - " [8,\"B\",\"4\"],\n", - " [7,\"B\",\"5\"],\n", - " [4,\"B\",\"6\"]\n", - "]\n", - "\n", - "df = pd.DataFrame(data)\n", - "df.columns = [\"val\", \"id\", \"period\"]\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idlevel_1val
0A0NaN
1A15.0
2A25.0
3A32.0
4A45.0
5A55.0
6B6NaN
7B715.0
8B819.0
9B923.0
10B1015.0
11B1111.0
\n", - "
" - ], - "text/plain": [ - " id level_1 val\n", - "0 A 0 NaN\n", - "1 A 1 5.0\n", - "2 A 2 5.0\n", - "3 A 3 2.0\n", - "4 A 4 5.0\n", - "5 A 5 5.0\n", - "6 B 6 NaN\n", - "7 B 7 15.0\n", - "8 B 8 19.0\n", - "9 B 9 23.0\n", - "10 B 10 15.0\n", - "11 B 11 11.0" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.groupby('id')['val'].rolling(2).sum().reset_index()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Time Series in Pandas" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# to add" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Raw Strings" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hello there \n", - "this will do a return\n" - ] - } - ], - "source": [ - "print(\"hello there \\nthis will do a return\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hello there \\nthis will not do a return\n" - ] - } - ], - "source": [ - "print(r\"hello there \\nthis will not do a return\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\t this will tab\n" - ] - } - ], - "source": [ - "print(\"\\t this will tab\")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\\t this will not tab\n" - ] - } - ], - "source": [ - "print(r\"\\t this will not tab\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/follow_up_questions/week 1.ipynb b/follow_up_questions/week 1.ipynb deleted file mode 100644 index c239cdb..0000000 --- a/follow_up_questions/week 1.ipynb +++ /dev/null @@ -1,1040 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Underscores" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In truth we won't worry much about underscores, though I wanted to provide a bit of info on their use Python, specifically in relation to the double underscored attribuets and methods we saw running the dir() function." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Double Underscore\n", - "* these refer to \"magic methods\", meaning python uses them behind the scenes and in most cases we don't generally want to alter or change how they function it. think of them as python setting up some nuts and bolts to make your programs run\n", - "* for instance lists and integers (among other datatypes) can be added together using the + symbol or \\_\\_add\\_\\_. Though using the symbol is far easier. In this case, when we do list + list, the + sign tells python to call the \\_\\_add\\_\\_ method.\n", - "* \\_\\_init\\_\\_ is the initialization method for an object, which will will use, but not alter the functionality of\n", - "* \\_\\_iter\\_\\_ is used to return an iteration, so this is a method that iterators make use of\n", - "* \\_\\_new\\_\\_ is called to make a new object and used by the \\_\\_init\\_\\_ method\n", - "* for brevity I will leave it there, but these aren't something we'll need to be altering the functionality" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3, 4]" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [1,2]\n", - "b = [3,4]\n", - "a + b" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3, 4]" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a.__add__(b)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "to the second point, there isn't a great way to tell the difference between methods and attributes in dir(), though we can make use of the getmembers function from inspect. we can see that methods like extend, append etc. are listed as functions" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "from inspect import getmembers" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[('__add__', ),\n", - " ('__class__', list),\n", - " ('__contains__',\n", - " ),\n", - " ('__delattr__',\n", - " ),\n", - " ('__delitem__',\n", - " ),\n", - " ('__dir__', ),\n", - " ('__doc__',\n", - " 'Built-in mutable sequence.\\n\\nIf no argument is given, the constructor creates a new empty list.\\nThe argument must be an iterable if specified.'),\n", - " ('__eq__', ),\n", - " ('__format__', ),\n", - " ('__ge__', ),\n", - " ('__getattribute__',\n", - " ),\n", - " ('__getitem__', ),\n", - " ('__gt__', ),\n", - " ('__hash__', None),\n", - " ('__iadd__', ),\n", - " ('__imul__', ),\n", - " ('__init__', ),\n", - " ('__init_subclass__', ),\n", - " ('__iter__', ),\n", - " ('__le__', ),\n", - " ('__len__', ),\n", - " ('__lt__', ),\n", - " ('__mul__', ),\n", - " ('__ne__', ),\n", - " ('__new__', ),\n", - " ('__reduce__', ),\n", - " ('__reduce_ex__', ),\n", - " ('__repr__', ),\n", - " ('__reversed__', ),\n", - " ('__rmul__', ),\n", - " ('__setattr__',\n", - " ),\n", - " ('__setitem__',\n", - " ),\n", - " ('__sizeof__', ),\n", - " ('__str__', ),\n", - " ('__subclasshook__', ),\n", - " ('append', ),\n", - " ('clear', ),\n", - " ('copy', ),\n", - " ('count', ),\n", - " ('extend', ),\n", - " ('index', ),\n", - " ('insert', ),\n", - " ('pop', ),\n", - " ('remove', ),\n", - " ('reverse', ),\n", - " ('sort', )]" - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "getmembers(lst)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "if we make a quick dummy class (we'll cover this in lecture 3), and give it an attribuet of name, we can see the tuple of attribuet name and value using the getmembers function." - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[('__class__', __main__.Dog),\n", - " ('__delattr__',\n", - " ),\n", - " ('__dict__', {'name': 'Brian'}),\n", - " ('__dir__', ),\n", - " ('__doc__', None),\n", - " ('__eq__', ),\n", - " ('__format__', ),\n", - " ('__ge__', ),\n", - " ('__getattribute__',\n", - " ),\n", - " ('__gt__', ),\n", - " ('__hash__', ),\n", - " ('__init__',\n", - " >),\n", - " ('__init_subclass__', ),\n", - " ('__le__', ),\n", - " ('__lt__', ),\n", - " ('__module__', '__main__'),\n", - " ('__ne__', ),\n", - " ('__new__', ),\n", - " ('__reduce__', ),\n", - " ('__reduce_ex__', ),\n", - " ('__repr__', ),\n", - " ('__setattr__',\n", - " ),\n", - " ('__sizeof__', ),\n", - " ('__str__', ),\n", - " ('__subclasshook__', ),\n", - " ('__weakref__', None),\n", - " ('name', 'Brian')]" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "class Dog:\n", - " def __init__(self, name):\n", - " self.name = name\n", - " \n", - "d = Dog(name = \"Brian\")\n", - "getmembers(d)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The underscore is also used in python from a formatting perspective, in some cases to mean \"throwaway.\" Below we are saying we don't care about 2, or the middle value. the variable is technically declared but it's pythonic to see this as, it's not going to be relevant info to our program" - ] - }, - { - "cell_type": "code", - "execution_count": 152, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "2\n", - "3\n" - ] - } - ], - "source": [ - "x, _, y = (1, 2, 3)\n", - "print(x)\n", - "print(_)\n", - "print(y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "while the _ is being used as the iteration variable, it's pythonic to mean we don't actually care about the values in the range(10)" - ] - }, - { - "cell_type": "code", - "execution_count": 146, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n", - "1\n", - "2\n", - "3\n", - "4\n", - "5\n", - "6\n", - "7\n", - "8\n", - "9\n" - ] - } - ], - "source": [ - "for _ in range(10):\n", - " print(_)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# for _ in range(10):\n", - " # do something 10 times, but we don't need the 1,2,3,4, etc." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "the same holds here, we as we are saying, we don't really care about what the function is returning" - ] - }, - { - "cell_type": "code", - "execution_count": 148, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func():\n", - " return 2" - ] - }, - { - "cell_type": "code", - "execution_count": 151, - "metadata": {}, - "outputs": [], - "source": [ - "_ = my_func()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "if you want to get rather in depth, you can look up name mangling in python, which is another use of underscores when making classes, but something outside the scope of this class" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## pass vs. continue" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "remember continue will throw us to the next iteration task of the current interation" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "---------------------------------------------------------------------------\n", - "First Loop:1\n", - "Outer loop iteration count:1\n", - "---------------------------------------------------------------------------\n", - "First Loop:[3, 4]\n", - "Second Loop:4\n", - "Outer loop iteration count:2\n" - ] - } - ], - "source": [ - "a = [1,[3,4]]\n", - "c_outer = 0\n", - "\n", - "for i in a:\n", - " \n", - " # this just prints the first element of our list\n", - " # initially the value is 1\n", - " print(\"-\"*75) # divide up our outer loop printing\n", - " print(\"First Loop:{}\".format(i))\n", - " \n", - " # since the first value of the list a is a number\n", - " # this will be false and we will go to the else which is a pass\n", - " # so we increment the counter and print the last statement \n", - " # but when i = [3,4] we drop into the second loop\n", - " if isinstance(i, list):\n", - " \n", - " # consider we are on element 2 where\n", - " # i = [3,4]\n", - " for i2 in i:\n", - " # initially i2 is 3\n", - " # so we continue\n", - " # this will go back up to the line\n", - " # for i2 in i (the current loop we are in)\n", - " # and finish the iteration of [3,4]\n", - " # notice that the continue here\n", - " # doesen't put us back to for i in a\n", - " # it puts us back to the current iteration loop\n", - " # we can see this because c_outer is incremented and printed\n", - " if i2 == 3:\n", - " continue\n", - " else:\n", - " print(\"Second Loop:{}\".format(i2))\n", - " \n", - " # in this case it's a continue\n", - " # so notice the next piece of the code is not executed\n", - " else:\n", - " pass\n", - " \n", - " c_outer+=1\n", - " print(\"Outer loop iteration count:{}\".format(c_outer))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "if we change the bottom else to continue, we see for the first iteration loop, we skip the c_outer incrementing and skip the printing of that value" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "---------------------------------------------------------------------------\n", - "First Loop:1\n", - "---------------------------------------------------------------------------\n", - "First Loop:[3, 4]\n", - "Second Loop:4\n", - "Outer loop iteration count:1\n" - ] - } - ], - "source": [ - "a = [1,[3,4]]\n", - "c_outer = 0\n", - "\n", - "for i in a:\n", - " \n", - " # this just prints the first element of our list\n", - " # initially the value is 1\n", - " print(\"-\"*75)\n", - " print(\"First Loop:{}\".format(i))\n", - " \n", - " # since the first value of the list a is a number\n", - " # this will be false and we will go to the else which is a pass\n", - " # so we increment the counter and print the last statement \n", - " # but when i = [3,4] we drop into the second loop\n", - " if isinstance(i, list):\n", - " \n", - " # consider we are on element 2 where\n", - " # i = [3,4]\n", - " for i2 in i:\n", - " # initially i2 is 3\n", - " # so we continue\n", - " # this will go back up to the line\n", - " # for i2 in i\n", - " # and finish the iteration of [3,4]\n", - " # notice that the continue here\n", - " # doesen't put us back to for i in a\n", - " # it puts us back to the current iteration loop\n", - " # most nested or lowest level\n", - " if i2 == 3:\n", - " continue\n", - " else:\n", - " print(\"Second Loop:{}\".format(i2))\n", - " \n", - " # in this case it's a continue\n", - " # so notice the next piece of the code is not executed\n", - " \n", - " # if we change this to continue, when i initially is 1\n", - " # the loop will shoot back up to for i in a and continue\n", - " # missine the bottom print and counter increment\n", - " # so in this sence, we only partially complete the outer loop\n", - " else:\n", - " continue\n", - " \n", - " c_outer+=1\n", - " print(\"Outer loop iteration count:{}\".format(c_outer))\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "control flow of a loop can be tricky. the best way to learn it will be to write some loops and print output so you can visually trace what is happening" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## quick overview of comprehension\n", - "these are just concise and speed efficient ways to right for loops" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lst = []\n", - "for i in range(10):\n", - " lst.append(i)\n", - "lst" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "notice to wording is basically the same, just ordered a bit differently and put on one line" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# as a comprehension\n", - "lst = [i for i in range(10)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "we are compacking the for loop syntax into brackets (meaning we are using comprehension to make a list). we could also use comprehensions to make a tuple or dictionary. simply put, comprehensions let us compact our loop code and run more efficiently. these will show up often as you continue to write and read python code" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)\n", - "{0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10}\n", - "{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}\n" - ] - } - ], - "source": [ - "# we can use other comprehensions with othere iterablees\n", - "# like tuples or lists\n", - "tup = tuple(i for i in range(10))\n", - "print(tup)\n", - "\n", - "dct = dict((idx,i+1) for idx,i in enumerate(range(10)))\n", - "print(dct)\n", - "\n", - "s = set(i for i in range(10))\n", - "print(s)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "we can also apply functions with comprehensions" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3, 4]" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lst = [-1,-2,-3,-4]\n", - "a = [abs(x) for x in lst]\n", - "a" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "these techniques above, will make up the majority of coding within assignment 1. we will cover them far more in our second lecture, but for those that want to get started ahead of time, the above should help" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## map, comprehensions, for loops and time\n", - "* as we discussed runtime and concise code matters\n", - "* most likely, there is going to be runtime gains when using comprehensions and map vs. loops\n", - "* not to mention you get the concise code with comprehension\n", - "* Once you learn comprehensions, you will not bother thinking about using map much, as comprehensions are rather simple and efficient to run\n", - "* plus, they are more pythonic\n", - "* but the concept of mapping will come up later on using the multiprocessing library so it is important to understand the idea of \"mapping\" a function to a collection of data\n", - "* the below prints out the seconds needed to run each chunk of code" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "import time" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.24928903579711914\n" - ] - } - ], - "source": [ - "lst = list(range(10000000))\n", - "start = time.time()\n", - "a = list(map(abs,lst))\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.2070269584655762\n" - ] - } - ], - "source": [ - "lst = list(range(10000000))\n", - "b = []\n", - "start = time.time()\n", - "for i in lst:\n", - " b.append(abs(i))\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.4653120040893555\n" - ] - } - ], - "source": [ - "lst = list(range(10000000))\n", - "start = time.time()\n", - "for idx,i in enumerate(lst):\n", - " lst[idx]= abs(i)\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.7413120269775391\n" - ] - } - ], - "source": [ - "# comprehension\n", - "start = time.time()\n", - "b = [abs(x) for x in list(range(10000000))]\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "with a udf" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x):\n", - " return abs(x)" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.8321022987365723\n" - ] - } - ], - "source": [ - "lst = list(range(10000000))\n", - "start = time.time()\n", - "a = list(map(my_func,lst))\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.619018793106079\n" - ] - } - ], - "source": [ - "lst = list(range(10000000))\n", - "b = []\n", - "start = time.time()\n", - "for i in lst:\n", - " b.append(my_func(i))\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.9668538570404053\n" - ] - } - ], - "source": [ - "lst = list(range(10000000))\n", - "start = time.time()\n", - "for idx,i in enumerate(lst):\n", - " lst[idx]= my_func(i)\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.2628250122070312\n" - ] - } - ], - "source": [ - "start = time.time()\n", - "b = [my_func(x) for x in list(range(10000000))]\n", - "end = time.time()\n", - "print(end - start)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "once you start working with larger datasets and writing more in depth programs, timing steps and keeping track of runtimes will be common. as will be trying to find the most efficient way to write your code from a runtime and concise standpoint. the above is a pretty simple example, but with a more complicated function or more complicated dataset, these functions may scale differently" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## dictionary searches\n", - "* dictionaries aren't generally used to do nested searching\n", - "* there is some nice functionality in pandas to do json_normalization, which will blow out the json into a dataframe, but we will ignore that for illustrative purposes" - ] - }, - { - "cell_type": "code", - "execution_count": 105, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "doritos\n", - "lays\n", - "lays\n" - ] - } - ], - "source": [ - "# if we know our keys, we might be making use of a dictionary like this, in a lookup fashion\n", - "lookup = {\n", - " \"item_a\":\"doritos\",\n", - " \"item_b\":\"lays\"\n", - "}\n", - "\n", - "for i in [\"item_a\", \"item_b\", \"item_b\"]:\n", - " print(lookup[i])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "to do some custom searching we can use a for loop or we can use list comprehension" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [], - "source": [ - "my_dict = {\n", - " \n", - " 1:{\"first_name\":\"Brian\"},\n", - " 2:{\"first_name\":\"Jane\", \"last_name\":\"Doe\"},\n", - " 3:{\"first_name\":\"John\", \"last_name\":\"Doe2\"}\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2 {'first_name': 'Jane', 'last_name': 'Doe'}\n" - ] - } - ], - "source": [ - "# this does let us search that nested dictionary\n", - "\n", - "for k,v in my_dict.items():\n", - " # this is saying if \"last_name\" is a key in our dictionary\n", - " # which in this case, v is one of those nested dictionaries\n", - " # and the last_name value is Doe, then print the k,v\n", - " if \"last_name\" in v and v[\"last_name\"] == \"Doe\": \n", - " print(k,v)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "in this case comprehensions aren't as concise, but we can solve this writting a custom UDF and then throwing it in a comprehension" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3]" - ] - }, - "execution_count": 97, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[k for k,v in my_dict.items()]" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'first_name': 'Brian'},\n", - " {'first_name': 'Jane', 'last_name': 'Doe'},\n", - " {'first_name': 'John', 'last_name': 'Doe2'}]" - ] - }, - "execution_count": 98, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[v for k,v in my_dict.items()]" - ] - }, - { - "cell_type": "code", - "execution_count": 160, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(k,v,search_term):\n", - " if \"last_name\" in v and v[\"last_name\"] == search_term:\n", - " return (k,v)\n", - " else:\n", - " return False" - ] - }, - { - "cell_type": "code", - "execution_count": 161, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[False, (2, {'first_name': 'Jane', 'last_name': 'Doe'}), False]" - ] - }, - "execution_count": 161, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "search = \"Doe\"\n", - "[my_func(k,v,search) for k,v in my_dict.items()]" - ] - }, - { - "cell_type": "code", - "execution_count": 162, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(2, {'first_name': 'Jane', 'last_name': 'Doe'})]" - ] - }, - "execution_count": 162, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# the filter(None, iterable) filters False, None, empty items\n", - "search = \"Doe\"\n", - "list(filter(None, [my_func(k,v,search) for k,v in my_dict.items()]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/future/NAME_SURNAME_ASSIGN_3_1.ipynb b/future/NAME_SURNAME_ASSIGN_3_1.ipynb new file mode 100644 index 0000000..1429933 --- /dev/null +++ b/future/NAME_SURNAME_ASSIGN_3_1.ipynb @@ -0,0 +1,55 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ASSIGMENT 3\n", + "\n", + "1. Create a github repo\n", + "2. Create a python package\n", + "3. Create a module inside the package called msca\n", + "4. Create a processing \"class\"\n", + "5. Create some UDF's\n", + "6. Install / Reinstall your module on your python env.\n", + "7. Write a script that uses your module and save some files\n", + "8. Write a second script that reads this files using RegExp\n", + "9. Generate some visualization of your thingy.\n", + "10. Benchmark and make it multprocess (even if is just sequential chunking).\n", + "\n", + "## Things to consider\n", + "\n", + "1. What is the file structure?\n", + "2. Find examples of where your module could be useful." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/homework/.ipynb_checkpoints/Assignment 1-checkpoint.ipynb b/homework/.ipynb_checkpoints/Assignment 1-checkpoint.ipynb deleted file mode 100644 index 86f6c2f..0000000 --- a/homework/.ipynb_checkpoints/Assignment 1-checkpoint.ipynb +++ /dev/null @@ -1,491 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Assignment 1\n", - "* Due 1/28 by 5pm\n", - "* Topics: containers, udfs, comprehensions, error handling" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Instructions\n", - "* Download your notebook as a PDF\n", - "* Turn in both the notebook and PDF\n", - "* Show the output of your code working on the sample data, like below. \n", - "* If techniques are specified, use them. Otherwise, feel free to solve the problem how you want. \n", - "* Try to keep your code clean, concise and avoid loops if necessary. \n", - "* You have to show your work (code).\n", - "* You will be graded:\n", - " * The functionality of your code (Does it do what it was meant to)\n", - " * Showing the output on the sample data provided\n", - " * How concise it is (did you use a for loop when you could have used a comprehension for instance). Simply put, try and write clean, concise and readable code (don't use 10 lines for what could have been done in 4).\n", - " * Even if the answer isn't perfect, make an honest attempt as partial credit will be given.\n", - "* you should not have to explicitly use a for loop except for question 12, meaning it is possible to complete the entire assignment without using the keyword \"for\".\n", - "* the only third party functions/modules you are allowed to use are permutations and combinations from itertools. yes, there is a built in median function in numpy, but the idea is to program yourself and solve the problems on your own using basic python techniques" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sample Question\n", - "* Create a UDF that adds 2 to a number" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "a = 5" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "7\n" - ] - } - ], - "source": [ - "def add_func(x):\n", - " return(x+2)\n", - "\n", - "number = add_func(a)\n", - "print(number)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 1\n", - "* Create a function that takes 2 lists as params, of equal length and does the following:\n", - " * returns a dictionary where the keys are the first list and the values are the second list\n", - " * make use of zip and comprehension to make the dictionary\n", - " * if the lists are not of equal length, use error handling to indicate the mismatch" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# a = [5,7]\n", - "# b = [\"x\", \"z\"]\n", - "# return {5:\"x\", 7:\"z\"}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5,6,7,8]\n", - "b = [\"a\",\"b\",\"c\",\"d\",\"e\",\"f\",\"g\",\"h\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 2\n", - "* Create a UDF that takes a list and returns the permutations and combinations (length 2) as nested lists, along with the number of permutations and combinations. \n", - "* The function should return 4 things" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 3\n", - "* Map a function to the below list that\n", - " * returns the remainder of each number divided by 2 (51/2 = 25 with a remainder of 1, we want the 1 to be returned)\n", - " * use lambdas for the mapping\n", - " * hint, look at modulus (%) in python" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "lst = list(range(25))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 4\n", - "* Using comprehension, replace the keys in the list with their value in the dictionary\n", - "* example below" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# lst = [1,2]\n", - "# dict = {1:\"a\", 2:\"b\"}\n", - "# new_lst = [\"a\",\"b\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "a = list(range(5))\n", - "dct = {\n", - " 0:\"a\",\n", - " 1:\"b\",\n", - " 2:\"c\",\n", - " 3:\"d\",\n", - " 4:\"e\"\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 5\n", - "* Make a UDF that takes a variable amount of numbers and returns a list with the numbers having been squared\n", - "* use comprehension to perform the squaring of each item\n", - "* hint, this should be doable in one line using args" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# my_func(1,2,3)\n", - " # do some stuff\n", - " \n", - "# return_lst = [1,4,9]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# for this pass in the numberse 1,2,3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 6\n", - "* Make a UDF that takes two lists as params and returns a list of the intersecting items (items that appear in both lists)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# a = [1,2]\n", - "# b = [2,3]\n", - "# return_lst = [2]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5,6,7]\n", - "b = [2,3,4,6,8,10,11,21]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 7\n", - "* write a function that takes a list of numbers and filters for odds only\n", - "* use the filter method and a lambda as the function" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# my_lst = [1,2]\n", - "# new_lst = [1]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 8\n", - "* Write a function (lambda or not) that returns the absolute value of a number and adds 2\n", - "* Use the function to map it to a list comprehension" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# my_lst = [1,-2,1]\n", - "# using a comprehension return [3,4,3]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,-2,1,8,-10,15,-12]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 9\n", - "* write a function that takes 2 lists and finds the euclidean distance between then\n", - "* note you may not use any third party modules. use comprehensions" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# a = [1,2]\n", - "# b = [3,1]\n", - "# distance = ~2.23" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,1]\n", - "b = [3,1,2,4,3]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 10\n", - "* write a function that takes a list, sorts it and finds the middle value. \n", - "* use error handling to check the list is odd in length\n", - "* if it's even, return an error message\n", - "* feel free to use a try/except or assert\n", - "* show the output run on both lists" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# a = [4,6,1]\n", - "# sort = [1,4,6]\n", - "# middle val = 4\n", - "# if even number in size, return error" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "a = [4,6,1,3,12,41,4,1,24,12,17]\n", - "b = [4,6,1,3,12,41,4,1,24,12]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 11\n", - "* Make a generator that parses the list of transaction data\n", - "* Put the contents in a dictionary where the key is the user id and the value is the list of items the user has purchased\n", - "* note the transactions are pipe ( | ) delimtied, meaning you'll have to use some string manipulations to get the values from each transaction\n", - "* make sure to skip the header somehow" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# transactions = [A, item_a], [A, item_b]\n", - "# dict = {A:[item_a, item_b]}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "transactions = [\n", - " [\"user_id|item_id\"],\n", - " [\"A|item_a\"],\n", - " [\"B|item_a\"],\n", - " [\"C|item_a\"],\n", - " [\"C|item_b\"],\n", - " [\"C|item_c\"],\n", - " [\"B|item_c\"],\n", - " [\"D|item_b\"],\n", - " [\"D|item_b\"]\n", - "]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 12\n", - "* Make a function that takes 2 lists of equal length and returns a True when the values in a given index are the same in both lists and a false if they are not.\n", - "* Use error handling of some kind if the lists are not of equal length." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# should return [True, True, True, False, False]\n", - "a = [1,2,3,4,5]\n", - "b = [1,2,3,5,6]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 13\n", - "Briefly explain the use of the following words in python:\n", - "* assert\n", - "* raise\n", - "* yield\n", - "* def\n", - "* lambda\n", - "* return\n", - "* map\n", - "* filter\n", - "* try\n", - "* except\n", - "* continue\n", - "* pass\n", - "* break\n", - "* while\n", - "* do (in the context of a while loop)\n", - "* for" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 14\n", - "Briefly describe the functionality of each:\n", - "* list\n", - "* tuple\n", - "* dictionary\n", - "* set" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 15\n", - "* What two datatypes can be declared with { }?\n", - "* What two datatypes can be declared with ( )?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 16\n", - "Describe what a generator is and how it differs from a list or tuple." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/homework/.ipynb_checkpoints/Assignment 2-checkpoint.ipynb b/homework/.ipynb_checkpoints/Assignment 2-checkpoint.ipynb deleted file mode 100644 index 46da27c..0000000 --- a/homework/.ipynb_checkpoints/Assignment 2-checkpoint.ipynb +++ /dev/null @@ -1,257 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Assignment 2\n", - "* Due: Tuesday 2/18/2020 by 5 PM \n", - "* Topics: pandas and numpy" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Instructions\n", - "* Download your notebook as a PDF\n", - "* Turn in both the notebook and PDF\n", - "* Show the output of your code working on the sample data, like below. \n", - "* If techniques are specified, use them. Otherwise, feel free to solve the problem how you want. \n", - "* Try to keep your code clean, concise and avoid loops if necessary. \n", - "* You have to show your work (code).\n", - "* You will be graded:\n", - " * The functionality of your code (Does it do what it was meant to)\n", - " * Showing the output on the sample data provided\n", - " * How concise it is (did you use a for loop when you could have used a comprehension for instance). Simply put, try and write clean, concise and readable code (don't use 10 lines for what could have been done in 4).\n", - " * Even if the answer isn't perfect, make an honest attempt as partial credit will be given." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 1\n", - "* sklearn has the iris dataset built in\n", - "* this is what we will be working with\n", - "* put the iris data into a dataframe where we have 5 columns (the 4 features and the target)\n", - "* but the target shouldn't be numerical, it should be the actual label (so put setosa not 0 in the target column) " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.datasets import load_iris\n", - "import pandas as pd\n", - "import numpy as np\n", - "\n", - "iris = load_iris()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 2\n", - "* using the data array from the iris variable (should be a numpy array of size 150x4), for each row and column, find the sum, min and max\n", - "* print out the results, but for the rows, show only the first 5 elements of the array and display the length (otherwise it will be large arrays since each row has a value)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 3\n", - "* write a function to return the multiplication of two matrices\n", - "* use some sort of error handling to make sure the dimensions are compatible\n", - "* use teh function to multiply the iris data (don't use the label column) by it's transpose\n", - "* what are the dimensions of the result\n", - "* put the sum of each row of the resulting matrix into a vector, printing out the length and first 5 elements.\n", - "* put the sum of each column of the resulting matrix in a vector and print it out." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 4\n", - "* create a subset of the iris dataframe that doesn't have the label column\n", - "* for each row, find the index of the min and max feature value\n", - " * if we have a row with values [10,2,3,4] we want to return 1 for min and 0 for max, as these are the indicies that align to the min and max values\n", - "* the result should be two arrays of length 150 (one for each row) with the indices of the min and max value" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 5\n", - "* Use the above two arrays to make a dataframe with 2 columns, the first being the feature of minimum value and the second the feature name of the maximum value\n", - "* note, don't have the cell values be the index value of the min/max value, have it be the feature name\n", - " * a row should be [min_val = sepal width (cm), max_val = petal length (cm)]\n", - "* show the distributions for max and min features (how many times is each feature the max and min value for a row)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 6\n", - "* Describe a situation the functionality from question 4 and 5 could be of use?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 7\n", - "* sort the feature values for each row and replace the indices with the feature names\n", - " * so each row will have 4 columns, the first column being the feature name that is the highest value, the second column being the feature name that is the second highest value, etc.\n", - "* note, watch out how argsort in numpy works. you will need to reverse the order somehow. the sorted(reverse = True) functionality might be of help.\n", - "* make sure to replace the index values with the feature name, as we did above\n", - "* put the resulting 2-d array into a pandas dataframe and print the first 5 rows.\n", - "* hint, look at the apply_along_axis() method for numpy arrays" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 8\n", - "* apply z-score normalization to each column in the iris data (note you do not need the target/label column)\n", - "* column wise meaning, treat each column as an array, and find the standard deviations and means of that column\n", - "* note, you can use zscore from scipy.stats\n", - "* results should be a pandas dataframe, printing out 5 rows and running the describe() method on the dataframe" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 9\n", - "* make a function that takes in a 2d numpy array X, a 1d numpy array Y and the size the training data, test data and valiation datasets. \n", - "* return 6 items\n", - " * train_x, train_y, test_x, test_y, val_x, val_y\n", - "* do not use any modules. this can be solved using bracket notation to subset. Note // will take care of decimals in doing division. you could also use int() to convert the float to a whole number\n", - "* make the params for the training, test and val size be decimals, that repsent percentages of the data. For instance .8, .1, .1 means an 80% training, 10% test and 10% validation split\n", - "* use an assert to make sure the numbers add to 1\n", - "* print out the dimensions of all 6 elements, using iris as a test case with an 80-10-10 split" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 10\n", - "* using pandas, find the sum of each feature by species type (label)\n", - "* do the same, but find the min, max and median as well" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 11\n", - "* mean center each column of the iris dataframe (excluding the label column of course)\n", - "* this means, for each column, the mean should be zero. to accomplish this we can subtract the column mean from each element of the column\n", - "* note, broadcasting, which if we have say a 150 row and 4 column dataframe, can take a row vector of size 4 and apply it to each element\n", - "* thus, we can answer this questions doing something like df - df_col_means\n", - "* run the describe() method at the end to show the data has been mean center" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Quesiton 12\n", - "* Explain what the axis mean in regards to a pandas dataframe and numpy array\n", - "* How would you groupby two columns in pandas?\n", - "* What functions are used to read in csvs and excel files in pandas" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 13\n", - "* using Pandas, subset the dataset for only species setosa and petal length > 1.3\n", - "* sum the feature columns and display the results for each (excluding the label column)\n", - "* do the same, but change the and to an or, and repeat the same calculation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 14\n", - "* write a lambda that subtracts 2 from all elements of a pandas dataframe\n", - "* display the top 5 rows\n", - "* use the same lambda, but applying it to the sepal length column only\n", - "* so the output should be the top 5 rows of a dataframe where all cells have had 2 subtracted and then another dataframe where only sepal length has 2 subtracted from it" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 15\n", - "* normalize each column of pandas dataframe to 0-1 scale.\n", - "* hint\n", - " * 0-1 is done by using (X - xmin)/(xmax - xmin)\n", - " * hint, the approach should be similar to when we mean centered the dataframe" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 16\n", - "* assume the below 2 matrices, the first is observations and the second is cluster centers\n", - "* using cdist from scipy, create a matrix where the rows represent our 3 observations and the columns represent our 2 clusters and the cells values are the euclidean distances between a given observation and cluster\n", - "* when would this be of use? " - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "observations = np.array([\n", - " [1,2,3],\n", - " [4,3,1],\n", - " [2,3,4]\n", - "])\n", - "\n", - "cluster_centers = np.array([\n", - " [2,3,1],\n", - " [2,1,3]\n", - "])" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/homework/Assignment 1 Answers.ipynb b/homework/Assignment 1 Answers.ipynb deleted file mode 100644 index f1ebaaf..0000000 --- a/homework/Assignment 1 Answers.ipynb +++ /dev/null @@ -1,1312 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* Question 1-12: 7 points each (84 points)\n", - "* Question 13-16: 4 points each (16 points)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# pointer\n", - "# use copy module" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* https://docs.python.org/2/library/copy.html" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "import copy" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2\n", - "2\n" - ] - } - ], - "source": [ - "x = 2\n", - "y = x\n", - "print(x)\n", - "print(y)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3\n", - "2\n" - ] - } - ], - "source": [ - "x = 3\n", - "print(x)\n", - "print(y)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3\n", - "3\n" - ] - } - ], - "source": [ - "y = 3\n", - "print(x)\n", - "print(y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "don't use if else for error handling, use try except with raise or assert" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "error\n" - ] - } - ], - "source": [ - "x = 15\n", - "if x > 10:\n", - " print(\"error\")\n", - "else:\n", - " print(x)" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "ename": "RuntimeError", - "evalue": "No active exception to reraise", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m15\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mRuntimeError\u001b[0m: No active exception to reraise" - ] - } - ], - "source": [ - "x = 15\n", - "if x > 10:\n", - " raise\n", - "else:\n", - " print(x)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "try:\n", - " print(x)\n", - "except:\n", - " raise" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.4142135623730951\n", - "1.4142135623730951\n" - ] - } - ], - "source": [ - "import math\n", - "\n", - "def f(x):\n", - " print(math.sqrt(x))\n", - "\n", - "f(2)\n", - "print(math.sqrt(2))" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "del math" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.4142135623730951\n" - ] - }, - { - "ename": "NameError", - "evalue": "name 'math' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msqrt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mNameError\u001b[0m: name 'math' is not defined" - ] - } - ], - "source": [ - "def f(x):\n", - " import math\n", - " print(math.sqrt(x))\n", - "\n", - "f(2)\n", - "print(math.sqrt(2))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 1\n", - "* Create a function that takes 2 lists as params, of equal length and does the following:\n", - " * returns a dictionary where the keys are the first list and the values are the second list\n", - " * make use of zip and comprehension to make the dictionary\n", - " * if the lists are not of equal length, use error handling to indicate the mismatch" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5,6,7,8]\n", - "b = [\"a\",\"b\",\"c\",\"d\",\"e\",\"f\",\"g\",\"h\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "set" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def my_func(lst_a, lst_b):\n", - " assert len(lst_a) == len(lst_b), \"lists are not equal length\"\n", - " # this works also\n", - " return dict(zip(lst_a,lst_b))\n", - " return dict(a for a in zip(lst_a, lst_b))\n", - " return {k:v for k,v in zip(a,b)}\n", - " return dict((x[0],x[1]) for x in zip(lst_a, lst_b))\n", - " # this is wrong why?\n", - " return {(x[0],x[1]) for x in zip(lst_a, lst_b)}\n", - "\n", - "test = my_func(a,b)\n", - "test" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 2\n", - "* Create a UDF that takes a list and returns the permutations and combinations (length 2) as nested lists, along with the number of permutations and combinations. \n", - "* The function should return 4 things" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5]" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from itertools import permutations, combinations" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(lst):\n", - " perms = list(permutations(lst, 2))\n", - " combos = list(combinations(lst, 2))\n", - " return len(perms), len(combos), perms, combos" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# in the future we want our functions returning something for homework\n", - "def my_func(lst):\n", - " perms = list(permutations(lst, 2))\n", - " combos = list(combinations(lst, 2))\n", - " print len(perms), len(combos), perms, combos" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Permutation Count:20\n", - "Combination Count:10\n", - "Permutations:[(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4)]\n", - "Combinations:[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)]\n" - ] - } - ], - "source": [ - "len_perms, len_combos, perms, combos = my_func(a)\n", - "\n", - "print(\"Permutation Count:{}\".format(len_perms))\n", - "print(\"Combination Count:{}\".format(len_combos))\n", - "print(\"Permutations:{}\".format(perms))\n", - "print(\"Combinations:{}\".format(combos))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 3\n", - "* Map a function to the below list that\n", - " * returns the remainder of each number divided by 2 (51/2 = 25 with a remainder of 1, we want the 1 to be returned)\n", - " * use lambdas for the mapping\n", - " * hint, look at modulus (%) in python" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "lst = list(range(25))" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "a = list(map(lambda x: x%2, lst))" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Value:0 Remainder:0\n", - "Value:1 Remainder:1\n", - "Value:2 Remainder:0\n", - "Value:3 Remainder:1\n", - "Value:4 Remainder:0\n", - "Value:5 Remainder:1\n", - "Value:6 Remainder:0\n", - "Value:7 Remainder:1\n", - "Value:8 Remainder:0\n", - "Value:9 Remainder:1\n", - "Value:10 Remainder:0\n", - "Value:11 Remainder:1\n", - "Value:12 Remainder:0\n", - "Value:13 Remainder:1\n", - "Value:14 Remainder:0\n", - "Value:15 Remainder:1\n", - "Value:16 Remainder:0\n", - "Value:17 Remainder:1\n", - "Value:18 Remainder:0\n", - "Value:19 Remainder:1\n", - "Value:20 Remainder:0\n", - "Value:21 Remainder:1\n", - "Value:22 Remainder:0\n", - "Value:23 Remainder:1\n", - "Value:24 Remainder:0\n" - ] - } - ], - "source": [ - "for i in zip(lst, a):\n", - " print(\"Value:{} Remainder:{}\".format(i[0], i[1]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 4\n", - "* Using comprehension, replace the keys in the list with their value in the dictionary\n", - "* example below" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "a = list(range(5))\n", - "dct = {\n", - " 0:\"a\",\n", - " 1:\"b\",\n", - " 2:\"e\",\n", - " 3:\"e\",\n", - " 4:\"e\"\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['a', 'b', 'e', 'e', 'e']" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b = [dct[x] for x in a]\n", - "b = [x for x in dct.values()]\n", - "b = [dct.get(x) for x in dct.keys()]\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Old Val:0 New Val:a\n", - "Old Val:1 New Val:b\n", - "Old Val:2 New Val:c\n", - "Old Val:3 New Val:d\n", - "Old Val:4 New Val:e\n" - ] - } - ], - "source": [ - "for i in zip(a,b):\n", - " print(\"Old Val:{} New Val:{}\".format(i[0], i[1]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 5\n", - "* Make a UDF that takes a variable amount of numbers and returns a list with the numbers having been squared\n", - "* use comprehension to perform the squaring of each item\n", - "* hint, this should be doable in one line using args" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(*args):\n", - " return [x**2 for x in args]" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Num:1 Num Squared:1\n", - "Num:2 Num Squared:4\n", - "Num:3 Num Squared:9\n", - "Num:4 Num Squared:16\n", - "Num:5 Num Squared:25\n" - ] - } - ], - "source": [ - "b = my_func(1,2,3,4,5)\n", - "for i in zip([1,2,3,4,5],b):\n", - " print(\"Num:{} Num Squared:{}\".format(i[0], i[1]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 6\n", - "* Make a UDF that takes two lists as params and returns a list of the intersecting items (items that appear in both lists)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5,6,7]\n", - "b = [2,3,4,6,8,10,11,21]" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(a,b):\n", - " v1 = set(a) & set(b)\n", - " v2 = [i for i in a if i in b]\n", - " v3 = set(a).intersection(b)\n", - " return v1,v2,v3" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{2, 3, 4, 6}\n", - "[2, 3, 4, 6]\n", - "{2, 3, 4, 6}\n" - ] - } - ], - "source": [ - "v1,v2,v3 = my_func(a,b)\n", - "print(v1)\n", - "print(v2)\n", - "print(v3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 7\n", - "* write a function that takes a list of numbers and filters for odds only\n", - "* use the filter method and a lambda as the function" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 3, 5, 7, 9, 11, 13, 15]" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b = list(filter(lambda x: x if x % 2 == 1 else False, a))\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 3, 5, 7, 9, 11, 13, 15]" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(filter(lambda x: x % 2, a))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 8\n", - "* Write a function (lambda or not) that returns the absolute value of a number and adds 2\n", - "* Use the function to map it to a list comprehension" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,-2,1,8,-10,15,-12]" - ] - }, - { - "cell_type": "code", - "execution_count": 112, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1, -2, 1, 8, -10, 15, -12]\n", - "[3, 4, 3, 10, 12, 17, 14]\n" - ] - } - ], - "source": [ - "b = list(map(lambda x: abs(x) + 2, a))\n", - "print(a)\n", - "print(b)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 9\n", - "* write a function that takes 2 lists and finds the euclidean distance between then\n", - "* note you may not use any third party modules. use comprehensions" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# a = [1,2]\n", - "# b = [3,1]\n", - "# distance = ~2.23\n", - "\n", - "a = [1,2,3,4,1]\n", - "b = [3,1,2,4,3]" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "def my_euclidean(a,b):\n", - " return sum([(x[0]-x[1])**2 for x in zip(a,b)])**(1/2)" - ] - }, - { - "cell_type": "code", - "execution_count": 118, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2.23606797749979\n" - ] - } - ], - "source": [ - "dist = my_euclidean([1,2], [3,1])\n", - "print(dist)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2.23606797749979\n" - ] - } - ], - "source": [ - "dist = my_euclidean([1,4,1], [2,4,3])\n", - "print(dist)" - ] - }, - { - "cell_type": "code", - "execution_count": 121, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3.1622776601683795\n" - ] - } - ], - "source": [ - "dist = my_euclidean(a,b)\n", - "print(dist)" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [], - "source": [ - "diff = lambda zipped: sum([(x[0]-x[1])**2 for x in zipped])**(1/2)" - ] - }, - { - "cell_type": "code", - "execution_count": 123, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3.1622776601683795" - ] - }, - "execution_count": 123, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diff(zip(a,b))" - ] - }, - { - "cell_type": "code", - "execution_count": 133, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3.1622776601683795" - ] - }, - "execution_count": 133, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum(map(lambda x: (x[0]-x[1])**2, zip(a,b)))**(1/2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 10\n", - "* write a function that takes a list, sorts it and finds the middle value. \n", - "* use error handling to check the list is odd in length\n", - "* if it's even, return an error message\n", - "* feel free to use a try/except or assert\n", - "* show the output run on both lists" - ] - }, - { - "cell_type": "code", - "execution_count": 134, - "metadata": {}, - "outputs": [], - "source": [ - "a = [4,6,1,3,12,41,4,1,24,12,17]\n", - "b = [4,6,1,3,12,41,4,1,24,12]" - ] - }, - { - "cell_type": "code", - "execution_count": 156, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(lst):\n", - " assert len(lst)%2 == 1, \"list is even in length\"\n", - " return sorted(lst)[int(len(lst)/2)]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# why wouldn't we want to use this one\n", - "def my_func(lst):\n", - " sort_x = sorted(lst)\n", - " assert len(lst)%2 == 1, \"list is even in length\"\n", - " return sort_x[int(len(lst)/2)]" - ] - }, - { - "cell_type": "code", - "execution_count": 157, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6" - ] - }, - "execution_count": 157, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tst_a = my_func(a)\n", - "tst_a" - ] - }, - { - "cell_type": "code", - "execution_count": 159, - "metadata": {}, - "outputs": [ - { - "ename": "AssertionError", - "evalue": "list is even in length", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtst_b\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mtst_b\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mmy_func\u001b[0;34m(lst)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlst\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlst\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m%\u001b[0m\u001b[0;36m2\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"list is even in length\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0msorted\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlst\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlst\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAssertionError\u001b[0m: list is even in length" - ] - } - ], - "source": [ - "tst_b = my_func(b)\n", - "tst_b" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Quesiton 11\n", - "* Make a generator that parses the list of transaction data\n", - "* Put the contents in a dictionary where the key is the user id and the value is the list of items the user has purchased\n", - "* note the transactions are pipe ( | ) delimtied, meaning you'll have to use some string manipulations to get the values from each transaction\n", - "* make sure to skip the header somehow" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "transactions = [\n", - " [\"user_id|item_id\"],\n", - " [\"A|item_a\"],\n", - " [\"B|item_a\"],\n", - " [\"C|item_a\"],\n", - " [\"C|item_b\"],\n", - " [\"C|item_c\"],\n", - " [\"B|item_c\"],\n", - " [\"D|item_b\"],\n", - " [\"D|item_b\"]\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "user_id\n", - "A\n", - "B\n", - "C\n", - "C\n", - "C\n", - "B\n", - "D\n", - "D\n" - ] - } - ], - "source": [ - "for i in transactions:\n", - " print(i[0].split(\"|\")[0])" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [ - "dct = {}\n", - "gen = (x[0].split(\"|\") for idx,x in enumerate(transactions) if idx != 0)\n", - "\n", - "del transactions # this would allow me to be memory efficient\n", - "\n", - "for item in gen:\n", - " if item[0] in dct:\n", - " dct[item[0]].append(item[1])\n", - " else:\n", - " dct[item[0]] = [item[1]]" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'A': ['item_a'],\n", - " 'B': ['item_a', 'item_c'],\n", - " 'C': ['item_a', 'item_b', 'item_c'],\n", - " 'D': ['item_b', 'item_b']}" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dct" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'A': ['item_a'],\n", - " 'B': ['item_a', 'item_c'],\n", - " 'C': ['item_a', 'item_b', 'item_c'],\n", - " 'D': ['item_b', 'item_b']}" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# why is this no good?\n", - "dct = {}\n", - "gen = (x[0] for idx,x in enumerate(transactions) if idx != 0)\n", - "gen = [x.split(\"|\") for x in gen]\n", - "\n", - "\n", - "for item in gen:\n", - " if item[0] in dct:\n", - " dct[item[0]].append(item[1])\n", - " else:\n", - " dct[item[0]] = [item[1]]\n", - " \n", - "dct" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " at 0x7fdab819a0d0>" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "t = (i[0].rstrip().split(\"|\") for i in transactions[1:])\n", - "dct = {}\n", - "t" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[None, None, None, None, None, None, None, None]" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[dct.setdefault(i[0], []).append(i[1]) for i in t]" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'A': ['item_a'],\n", - " 'B': ['item_a', 'item_c'],\n", - " 'C': ['item_a', 'item_b', 'item_c'],\n", - " 'D': ['item_b', 'item_b']}" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dct" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 12\n", - "* Make a function that takes 2 lists of equal length and returns a True when the values in a given index are the same in both lists and a false if they are not.\n", - "* Use error handling of some kind if the lists are not of equal length." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# should return [True, True, True, False, False]\n", - "a = [1,2,3,4,5]\n", - "b = [1,2,3,5,6]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(a,b):\n", - " assert len(a) == len(b), \"lists are not of the same length\"\n", - " return [True if x[0] == x[1] else False for x in zip(a,b)]" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "c = my_func(a,b)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[True, True, True, False, False]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "c" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 13\n", - "Briefly explain the use of the following words in python:\n", - "* assert\n", - "* raise\n", - "* yield\n", - "* def\n", - "* lambda\n", - "* return\n", - "* map\n", - "* filter\n", - "* try\n", - "* except\n", - "* continue\n", - "* pass\n", - "* break\n", - "* while\n", - "* do (in the context of a while loop)\n", - "* for" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* assert: used to check for a condition, if the condition isn't met, return an error message\n", - "* raise: allows for an exception to be thrown\n", - "* yield: used to return an item from a generator\n", - "* def: declare a function\n", - "* lambda: declare an annonymous function\n", - "* return: send a value back from a function\n", - "* map: apply a function to elements of an iterable\n", - "* filter: apply a function that can filter an itereablee\n", - "* try: indicatese a try/except block, the try portion is executed, if an error is caught, it goes to the except block\n", - "* except: if the try block of code can't be executed, the except block is executed instead.\n", - "* continue: goes to the next iteration of the loop\n", - "* pass: do nothing when condition is met\n", - "* break: end the loop if a condition is net\n", - "* while: iteration technique, continues until a condition is met\n", - "* used in a do-while loop, the code block is executed before the while condition is evaluated. do x whil" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 14\n", - "Briefly describe the below:\n", - "* list\n", - "* tuple\n", - "* dictionary\n", - "* set" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* list: a mutable collection of items\n", - "* tuple: an immutable collection of items\n", - "* dictionary: key,value pairs\n", - "* set: unique collection of items" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 15\n", - "* What two datatypes can be declared with { }?\n", - "* What two datatypes can be declared with ( )?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* set and dictionary\n", - "* generator and tuple" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 16\n", - "Describe what a generator is and how it differs from a list or tuple." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* generators store information on the state of an iterable and return a portion at a time. not everything is stored in memory, like a list of tuple, which can be useful if you're dealing with a large group of data." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/homework/Assignment 1.ipynb b/homework/Assignment 1.ipynb deleted file mode 100644 index 4e9a4c7..0000000 --- a/homework/Assignment 1.ipynb +++ /dev/null @@ -1,633 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Assignment 1\n", - "* Due 1/28 by 5pm\n", - "* Topics: containers, udfs, comprehensions, error handling" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Instructions\n", - "* Download your notebook as a PDF\n", - "* Turn in both the notebook and PDF\n", - "* Show the output of your code working on the sample data, like below. \n", - "* If techniques are specified, use them. Otherwise, feel free to solve the problem how you want. \n", - "* Try to keep your code clean, concise and avoid loops if necessary. \n", - "* You have to show your work (code).\n", - "* You will be graded:\n", - " * The functionality of your code (Does it do what it was meant to)\n", - " * Showing the output on the sample data provided\n", - " * How concise it is (did you use a for loop when you could have used a comprehension for instance). Simply put, try and write clean, concise and readable code (don't use 10 lines for what could have been done in 4).\n", - " * Even if the answer isn't perfect, make an honest attempt as partial credit will be given.\n", - "* you should not have to explicitly use a for loop except for question 12, meaning it is possible to complete the entire assignment without using the keyword \"for\".\n", - "* the only third party functions/modules you are allowed to use are permutations and combinations from itertools. yes, there is a built in median function in numpy, but the idea is to program yourself and solve the problems on your own using basic python techniques" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sample Question\n", - "* Create a UDF that adds 2 to a number" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "a = 5" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "7\n" - ] - } - ], - "source": [ - "def add_func(x):\n", - " return(x+2)\n", - "\n", - "number = add_func(a)\n", - "print(number)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 1\n", - "* Create a function that takes 2 lists as params, of equal length and does the following:\n", - " * returns a dictionary where the keys are the first list and the values are the second list\n", - " * make use of zip and comprehension to make the dictionary\n", - " * if the lists are not of equal length, use error handling to indicate the mismatch" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# a = [5,7]\n", - "# b = [\"x\", \"z\"]\n", - "# return {5:\"x\", 7:\"z\"}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5,6,7,8]\n", - "b = [\"a\",\"b\",\"c\",\"d\",\"e\",\"f\",\"g\",\"h\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 2\n", - "* Create a UDF that takes a list and returns the permutations and combinations (length 2) as nested lists, along with the number of permutations and combinations. \n", - "* The function should return 4 things" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 3\n", - "* Map a function to the below list that\n", - " * returns the remainder of each number divided by 2 (51/2 = 25 with a remainder of 1, we want the 1 to be returned)\n", - " * use lambdas for the mapping\n", - " * hint, look at modulus (%) in python" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "lst = list(range(25))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 4\n", - "* Using comprehension, replace the keys in the list with their value in the dictionary\n", - "* example below" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# lst = [1,2]\n", - "# dict = {1:\"a\", 2:\"b\"}\n", - "# new_lst = [\"a\",\"b\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "a = list(range(5))\n", - "dct = {\n", - " 0:\"a\",\n", - " 1:\"b\",\n", - " 2:\"c\",\n", - " 3:\"d\",\n", - " 4:\"e\"\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 5\n", - "* Make a UDF that takes a variable amount of numbers and returns a list with the numbers having been squared\n", - "* use comprehension to perform the squaring of each item\n", - "* hint, this should be doable in one line using args" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# my_func(1,2,3)\n", - " # do some stuff\n", - " \n", - "# return_lst = [1,4,9]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# for this pass in the numberse 1,2,3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 6\n", - "* Make a UDF that takes two lists as params and returns a list of the intersecting items (items that appear in both lists)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# a = [1,2]\n", - "# b = [2,3]\n", - "# return_lst = [2]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5,6,7]\n", - "b = [2,3,4,6,8,10,11,21]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 7\n", - "* write a function that takes a list of numbers and filters for odds only\n", - "* use the filter method and a lambda as the function" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# my_lst = [1,2]\n", - "# new_lst = [1]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 8\n", - "* Write a function (lambda or not) that returns the absolute value of a number and adds 2\n", - "* Use the function to map it to a list comprehension" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# my_lst = [1,-2,1]\n", - "# using a comprehension return [3,4,3]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,-2,1,8,-10,15,-12]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 9\n", - "* write a function that takes 2 lists and finds the euclidean distance between then\n", - "* note you may not use any third party modules. use comprehensions" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# a = [1,2]\n", - "# b = [3,1]\n", - "# distance = ~2.23" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,1]\n", - "b = [3,1,2,4,3]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 10\n", - "* write a function that takes a list, sorts it and finds the middle value. \n", - "* use error handling to check the list is odd in length\n", - "* if it's even, return an error message\n", - "* feel free to use a try/except or assert\n", - "* show the output run on both lists" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# a = [4,6,1]\n", - "# sort = [1,4,6]\n", - "# middle val = 4\n", - "# if even number in size, return error" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "a = [4,6,1,3,12,41,4,1,24,12,17]\n", - "b = [4,6,1,3,12,41,4,1,24,12]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 11\n", - "* Make a generator that parses the list of transaction data\n", - "* Put the contents in a dictionary where the key is the user id and the value is the list of items the user has purchased\n", - "* note the transactions are pipe ( | ) delimtied, meaning you'll have to use some string manipulations to get the values from each transaction\n", - "* make sure to skip the header somehow" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# transactions = [A, item_a], [A, item_b]\n", - "# dict = {A:[item_a, item_b]}" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "transactions = [\n", - " [\"user_id|item_id\"],\n", - " [\"A|item_a\"],\n", - " [\"B|item_a\"],\n", - " [\"C|item_a\"],\n", - " [\"C|item_b\"],\n", - " [\"C|item_c\"],\n", - " [\"B|item_c\"],\n", - " [\"D|item_b\"],\n", - " [\"D|item_b\"]\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['D', 'item_b']" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"D|item_b\".split(\"|\")" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['A', 'item_a']\n", - "['B', 'item_a']\n", - "['C', 'item_a']\n", - "['C', 'item_b']\n", - "['C', 'item_c']\n", - "['B', 'item_c']\n", - "['D', 'item_b']\n", - "['D', 'item_b']\n" - ] - } - ], - "source": [ - "dct = {}\n", - "for idx,i in enumerate(transactions):\n", - " \n", - " if idx != 0:\n", - " tmp_lst = i[0].split(\"|\")\n", - " # tmp_lst = [a,item_b] it's list\n", - " \n", - " \n", - " \n", - " #if tmp_lst[0] not in dct:\n", - " # dct[tmp_lst[0]] = [tmp_lst[1]]\n", - " #else:\n", - " # dct[tmp_lst[0]].append(tmp_lst[1])\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " at 0x7fe338260650>" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dct = {}\n", - "gen = (x[0].split(\"|\") for idx,x in enumerate(transactions) if idx != 0)\n", - "gen" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['A', 'item_a']" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "next(gen)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['user_id', 'item_id']\n", - "['A', 'item_a']\n", - "['B', 'item_a']\n", - "['C', 'item_a']\n", - "['C', 'item_b']\n", - "['C', 'item_c']\n", - "['B', 'item_c']\n", - "['D', 'item_b']\n", - "['D', 'item_b']\n" - ] - } - ], - "source": [ - "for item in gen:\n", - " if item[0] in dct:\n", - " dct[item[0]].append(item[1])\n", - " else:\n", - " dct[item[0]] = [item[1]]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 12\n", - "* Make a function that takes 2 lists of equal length and returns a True when the values in a given index are the same in both lists and a false if they are not.\n", - "* Use error handling of some kind if the lists are not of equal length." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# should return [True, True, True, False, False]\n", - "a = [1,2,3,4,5]\n", - "b = [1,2,3,5,6]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 13\n", - "Briefly explain the use of the following words in python:\n", - "* assert\n", - "* raise\n", - "* yield\n", - "* def\n", - "* lambda\n", - "* return\n", - "* map\n", - "* filter\n", - "* try\n", - "* except\n", - "* continue\n", - "* pass\n", - "* break\n", - "* while\n", - "* do (in the context of a while loop)\n", - "* for" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 14\n", - "Briefly describe the functionality of each:\n", - "* list\n", - "* tuple\n", - "* dictionary\n", - "* set" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 15\n", - "* What two datatypes can be declared with { }?\n", - "* What two datatypes can be declared with ( )?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Question 16\n", - "Describe what a generator is and how it differs from a list or tuple." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/homework/Assignment 2.ipynb b/homework/Assignment 2.ipynb deleted file mode 100644 index 02e5f80..0000000 --- a/homework/Assignment 2.ipynb +++ /dev/null @@ -1,257 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Assignment 2\n", - "* Due: Tuesday 2/18/2020 by 5 PM \n", - "* Topics: pandas and numpy" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Instructions\n", - "* Download your notebook as a PDF\n", - "* Turn in both the notebook and PDF\n", - "* Show the output of your code working on the sample data, like below. \n", - "* If techniques are specified, use them. Otherwise, feel free to solve the problem how you want. \n", - "* Try to keep your code clean, concise and avoid loops if necessary. \n", - "* You have to show your work (code).\n", - "* You will be graded:\n", - " * The functionality of your code (Does it do what it was meant to)\n", - " * Showing the output on the sample data provided\n", - " * How concise it is (did you use a for loop when you could have used a comprehension for instance). Simply put, try and write clean, concise and readable code (don't use 10 lines for what could have been done in 4).\n", - " * Even if the answer isn't perfect, make an honest attempt as partial credit will be given." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 1\n", - "* sklearn has the iris dataset built in\n", - "* this is what we will be working with\n", - "* put the iris data into a dataframe where we have 5 columns (the 4 features and the target)\n", - "* but the target shouldn't be numerical, it should be the actual label (so put setosa not 0 in the target column) " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.datasets import load_iris\n", - "import pandas as pd\n", - "import numpy as np\n", - "\n", - "iris = load_iris()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 2\n", - "* using the data array from the iris variable (should be a numpy array of size 150x4), for each row and column, find the sum, min and max\n", - "* print out the results, but for the rows, show only the first 5 elements of the array and display the length (otherwise it will be large arrays since each row has a value)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 3\n", - "* write a function to return the multiplication of two matrices\n", - "* use some sort of error handling to make sure the dimensions are compatible\n", - "* use teh function to multiply the iris data (don't use the label column) by it's transpose\n", - "* what are the dimensions of the result\n", - "* put the sum of each row of the resulting matrix into a vector, printing out the length and first 5 elements.\n", - "* put the sum of each column of the resulting matrix in a vector and print it out." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 4\n", - "* create a subset of the iris dataframe that doesn't have the label column\n", - "* for each row, find the index of the min and max feature value\n", - " * if we have a row with values [10,2,3,4] we want to return 1 for min and 0 for max, as these are the indicies that align to the min and max values\n", - "* the result should be two arrays of length 150 (one for each row) with the indices of the min and max value" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 5\n", - "* Use the above two arrays to make a dataframe with 2 columns, the first being the feature of minimum value and the second the feature name of the maximum value\n", - "* note, don't have the cell values be the index value of the min/max value, have it be the feature name\n", - " * a row should be [min_val = sepal width (cm), max_val = petal length (cm)]\n", - "* show the distributions for max and min features (how many times is each feature the max and min value for a row)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 6\n", - "* Describe a situation the functionality from question 4 and 5 could be of use?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 7\n", - "* sort the feature values for each row and replace the indices with the feature names\n", - " * so each row will have 4 columns, the first column being the feature name that is the highest value, the second column being the feature name that is the second highest value, etc.\n", - "* note, watch out how argsort in numpy works. you will need to reverse the order somehow. the sorted(reverse = True) functionality might be of help.\n", - "* make sure to replace the index values with the feature name, as we did above\n", - "* put the resulting 2-d array into a pandas dataframe and print the first 5 rows.\n", - "* hint, look at the apply_along_axis() method for numpy arrays" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 8\n", - "* apply z-score normalization to each column in the iris data (note you do not need the target/label column)\n", - "* column wise meaning, treat each column as an array, and find the standard deviations and means of that column\n", - "* note, you can use zscore from scipy.stats\n", - "* results should be a pandas dataframe, printing out 5 rows and running the describe() method on the dataframe" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 9\n", - "* make a function that takes in a 2d numpy array X, a 1d numpy array Y and the size the training data, test data and valiation datasets. \n", - "* return 6 items\n", - " * train_x, train_y, test_x, test_y, val_x, val_y\n", - "* do not use any modules. this can be solved using bracket notation to subset. Note // will take care of decimals in doing division. you could also use int() to convert the float to a whole number\n", - "* make the params for the training, test and val size be decimals, that repsent percentages of the data. For instance .8, .1, .1 means an 80% training, 10% test and 10% validation split\n", - "* use an assert to make sure the numbers add to 1\n", - "* print out the dimensions of all 6 elements, using iris as a test case with an 80-10-10 split" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 10\n", - "* using pandas, find the sum of each feature by species type (label)\n", - "* do the same, but find the min, max and median as well" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 11\n", - "* mean center each column of the iris dataframe (excluding the label column of course)\n", - "* this means, for each column, the mean should be zero. to accomplish this we can subtract the column mean from each element of the column\n", - "* note, broadcasting, which if we have say a 150 row and 4 column dataframe, can take a row vector of size 4 and apply it to each element\n", - "* thus, we can answer this questions doing something like df - df_col_means\n", - "* run the describe() method at the end to show the data has been mean center" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Quesiton 12\n", - "* Explain what the axis mean in regards to a pandas dataframe and numpy array\n", - "* How would you groupby two columns in pandas?\n", - "* What functions are used to read in csvs and excel files in pandas" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 13\n", - "* using Pandas, subset the dataset for only species setosa and petal length > 1.3\n", - "* sum the feature columns and display the results for each (excluding the label column)\n", - "* do the same, but change the and to an or, and repeat the same calculation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 14\n", - "* write a lambda that subtracts 2 from all elements of a pandas dataframe\n", - "* display the top 5 rows\n", - "* use the same lambda, but applying it to the sepal length column only\n", - "* so the output should be the top 5 rows of a dataframe where all cells have had 2 subtracted and then another dataframe where only sepal length has 2 subtracted from it" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 15\n", - "* normalize each column of pandas dataframe to 0-1 scale.\n", - "* hint\n", - " * 0-1 is done by using (X - xmin)/(xmax - xmin)\n", - " * hint, the approach should be similar to when we mean centered the dataframe" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 16\n", - "* assume the below 2 matrices, the first is observations and the second is cluster centers\n", - "* using cdist from scipy, create a matrix where the rows represent our 3 observations and the columns represent our 2 clusters and the cells values are the euclidean distances between a given observation and cluster\n", - "* when would this be of use? " - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "observations = np.array([\n", - " [1,2,3],\n", - " [4,3,1],\n", - " [2,3,4]\n", - "])\n", - "\n", - "cluster_centers = np.array([\n", - " [2,3,1],\n", - " [2,1,3]\n", - "])" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/.DS_Store b/lectures/.DS_Store deleted file mode 100644 index 5008ddf..0000000 Binary files a/lectures/.DS_Store and /dev/null differ diff --git a/lectures/.ipynb_checkpoints/Lecture 1 - Container, Iteration Tools-checkpoint.ipynb b/lectures/.ipynb_checkpoints/Lecture 1 - Container, Iteration Tools-checkpoint.ipynb deleted file mode 100644 index 5b04089..0000000 --- a/lectures/.ipynb_checkpoints/Lecture 1 - Container, Iteration Tools-checkpoint.ipynb +++ /dev/null @@ -1,2182 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note\n", - "* throughout the notebooks you will see blue font. that is your chance to pause and play around with some of the concepts we've just learned\n", - "* some will be easier, some harder and the appropriate amount of time will be given\n", - "* use this as an example to test concepts\n", - "* don't worry about you're code being perfect or getting errors, that's how you'll learn the mechanics of it\n", - "* be adventorous so you can learn how powerful the concepts can be" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Assumptions\n", - "* I will asssume you know some basic python\n", - " * syntax\n", - " * conditionals\n", - " * iteration\n", - " * user defined functions\n", - "* though in the first few lectures as they come up I will quickly review them" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lecture 1\n", - "* review the basics of python\n", - "* python containers" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### IDEs\n", - "* Anaconda (https://www.anaconda.com/distribution/)\n", - "* Jupyter Notebooks\n", - "* Spyder\n", - "* Sublime (https://www.sublimetext.com/)\n", - "* PyCharm (https://www.jetbrains.com/pycharm/download/#section=mac)\n", - "* Atom (https://atom.io/)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lists\n", - "* array, collection, of unordered items of any data type\n", - "* can be changed (mutable)\n", - "* can have duplicates\n", - "* can put anything in them\n", - "* created using brackets [ ]\n", - "* concat a list of dataframes in pandas\n", - "* https://docs.python.org/3/tutorial/datastructures.html" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5]" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "b = [\"A\", 1, 2, 2.4, \"B\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "isinstance(a, list)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "list" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(a)" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['__add__',\n", - " '__class__',\n", - " '__contains__',\n", - " '__delattr__',\n", - " '__delitem__',\n", - " '__dir__',\n", - " '__doc__',\n", - " '__eq__',\n", - " '__format__',\n", - " '__ge__',\n", - " '__getattribute__',\n", - " '__getitem__',\n", - " '__gt__',\n", - " '__hash__',\n", - " '__iadd__',\n", - " '__imul__',\n", - " '__init__',\n", - " '__init_subclass__',\n", - " '__iter__',\n", - " '__le__',\n", - " '__len__',\n", - " '__lt__',\n", - " '__mul__',\n", - " '__ne__',\n", - " '__new__',\n", - " '__reduce__',\n", - " '__reduce_ex__',\n", - " '__repr__',\n", - " '__reversed__',\n", - " '__rmul__',\n", - " '__setattr__',\n", - " '__setitem__',\n", - " '__sizeof__',\n", - " '__str__',\n", - " '__subclasshook__',\n", - " 'append',\n", - " 'clear',\n", - " 'copy',\n", - " 'count',\n", - " 'extend',\n", - " 'index',\n", - " 'insert',\n", - " 'pop',\n", - " 'remove',\n", - " 'reverse',\n", - " 'sort']" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dir(a)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### adding items to a list" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1, 2, 3, 4, 5, 5]\n" - ] - } - ], - "source": [ - "a.append(5)\n", - "print(a)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### adding item to specific position" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['new_item', 'new_item', 'new_item', 'new_item', 1, 2, 3, 4, 5, 5]\n" - ] - } - ], - "source": [ - "# list.insert(index, element)\n", - "a.insert(0, \"new_item\")\n", - "print(a)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### size of list" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10\n" - ] - } - ], - "source": [ - "print(len(a))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### accessing specific elements using bracket notation" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "new_item\n" - ] - } - ], - "source": [ - "print(a[0])" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5\n" - ] - } - ], - "source": [ - "# last item of list\n", - "print(a[-1])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### slicing" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['new_item', 'new_item', 'new_item', 'new_item', 1, 2, 3, 4, 5, 5]" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['new_item', 'new_item']" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[0:2]" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2]" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# return 4th and 5th indexed item, not inclusive of the 6th\n", - "a[4:6]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a list and

\n", - "

- find the len

\n", - "

- append an item

\n", - "

- select an item using the index value

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a nested list

\n", - "

- access the first item of the first neseted list element" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### map\n", - "* map lets you apply a function to each element of a python list\n", - "* map(func, list)\n", - "* returns map object which we can instantly convert to a list\n", - "* https://docs.python.org/3/library/functions.html#map" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[3, 3, 3]" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [-3,-3,-3]\n", - "list(map(abs, a))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### filter\n", - "* applies a function to each element of a list and returns a True or False, then subsets the list\n", - "* filter(function, list)\n", - "* https://docs.python.org/3/library/functions.html#filter" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3]" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def my_func(x):\n", - " return x > 0\n", - "\n", - "a = [1,2,3,-4]\n", - "\n", - "list(filter(my_func, a))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a list of random numbers

\n", - "

- filter for items above 2

\n", - "

- map the sqrt function from math to it to each element

\n", - "

- use \"from math import sqrt\"

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### find the index of a given item" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [\"a\", \"b\"]\n", - "a.index(\"a\")" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [\"a\", \"b\", \"a\"]\n", - "a.index(\"a\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Tuple\n", - "* ordered and unchangable array\n", - "* ( ) parenths signal tuple\n", - "* https://docs.python.org/2/tutorial/datastructures.html#tuples-and-sequences" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "a = (1,2,3,\"a\")" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "isinstance(a, tuple)" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "tuple" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(a)" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['__add__',\n", - " '__class__',\n", - " '__contains__',\n", - " '__delattr__',\n", - " '__dir__',\n", - " '__doc__',\n", - " '__eq__',\n", - " '__format__',\n", - " '__ge__',\n", - " '__getattribute__',\n", - " '__getitem__',\n", - " '__getnewargs__',\n", - " '__gt__',\n", - " '__hash__',\n", - " '__init__',\n", - " '__init_subclass__',\n", - " '__iter__',\n", - " '__le__',\n", - " '__len__',\n", - " '__lt__',\n", - " '__mul__',\n", - " '__ne__',\n", - " '__new__',\n", - " '__reduce__',\n", - " '__reduce_ex__',\n", - " '__repr__',\n", - " '__rmul__',\n", - " '__setattr__',\n", - " '__sizeof__',\n", - " '__str__',\n", - " '__subclasshook__',\n", - " 'count',\n", - " 'index']" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dir(a)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### access elements using bracket notation" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2, 3)" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[1:3]" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = (1,2,2,3,4,5,5)\n", - "a.count(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a.index(1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Set\n", - "* unique elements\n", - "* unordered\n", - "* mixed types\n", - "* { } curly brackets indicate set\n", - "* could also use set()\n", - "* if we say x = { } this makes an empty dictionary not an empty set\n", - "* in such case we'd use set()\n", - "* https://docs.python.org/2/tutorial/datastructures.html#sets" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{1, 2, 3, 4, 5}" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = {1,2,3,4,5,5,5,5,5}\n", - "a" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 63, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "isinstance(a, set)" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "set" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(a)" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['__and__',\n", - " '__class__',\n", - " '__contains__',\n", - " '__delattr__',\n", - " '__dir__',\n", - " '__doc__',\n", - " '__eq__',\n", - " '__format__',\n", - " '__ge__',\n", - " '__getattribute__',\n", - " '__gt__',\n", - " '__hash__',\n", - " '__iand__',\n", - " '__init__',\n", - " '__init_subclass__',\n", - " '__ior__',\n", - " '__isub__',\n", - " '__iter__',\n", - " '__ixor__',\n", - " '__le__',\n", - " '__len__',\n", - " '__lt__',\n", - " '__ne__',\n", - " '__new__',\n", - " '__or__',\n", - " '__rand__',\n", - " '__reduce__',\n", - " '__reduce_ex__',\n", - " '__repr__',\n", - " '__ror__',\n", - " '__rsub__',\n", - " '__rxor__',\n", - " '__setattr__',\n", - " '__sizeof__',\n", - " '__str__',\n", - " '__sub__',\n", - " '__subclasshook__',\n", - " '__xor__',\n", - " 'add',\n", - " 'clear',\n", - " 'copy',\n", - " 'difference',\n", - " 'difference_update',\n", - " 'discard',\n", - " 'intersection',\n", - " 'intersection_update',\n", - " 'isdisjoint',\n", - " 'issubset',\n", - " 'issuperset',\n", - " 'pop',\n", - " 'remove',\n", - " 'symmetric_difference',\n", - " 'symmetric_difference_update',\n", - " 'union',\n", - " 'update']" - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dir(a)" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{1, 4}" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = {1,2,3,4}\n", - "b = (1,4,5,6)\n", - "a.intersection(b)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### lists can be converted to sets" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'a', 'b'}" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [\"a\", \"b\", \"a\"]\n", - "set(a)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{1, 2, 3}" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_set = set([1,1,1,2,2,2,3,3,3])\n", - "my_set" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "dict" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = {}\n", - "type(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a list with some repeating elements

\n", - "

- find the length of the list

\n", - "

- convert it to a set

\n", - "

- find the size of the set

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Dict\n", - "* key value pairs\n", - "* unordered\n", - "* no repeating keys\n", - "* curly brakets, though you add key value pairs, seperated by a colon\n", - "* https://docs.python.org/2/tutorial/datastructures.html#dictionaries" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "my_dict = {\n", - " \"a\": 1,\n", - " \"b\": 2,\n", - " \"c\": 3\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "isinstance(my_dict, dict)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "dict" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(my_dict)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['__class__',\n", - " '__contains__',\n", - " '__delattr__',\n", - " '__delitem__',\n", - " '__dir__',\n", - " '__doc__',\n", - " '__eq__',\n", - " '__format__',\n", - " '__ge__',\n", - " '__getattribute__',\n", - " '__getitem__',\n", - " '__gt__',\n", - " '__hash__',\n", - " '__init__',\n", - " '__init_subclass__',\n", - " '__iter__',\n", - " '__le__',\n", - " '__len__',\n", - " '__lt__',\n", - " '__ne__',\n", - " '__new__',\n", - " '__reduce__',\n", - " '__reduce_ex__',\n", - " '__repr__',\n", - " '__setattr__',\n", - " '__setitem__',\n", - " '__sizeof__',\n", - " '__str__',\n", - " '__subclasshook__',\n", - " 'clear',\n", - " 'copy',\n", - " 'fromkeys',\n", - " 'get',\n", - " 'items',\n", - " 'keys',\n", - " 'pop',\n", - " 'popitem',\n", - " 'setdefault',\n", - " 'update',\n", - " 'values']" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dir(my_dict)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### grab the keys" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_keys(['a', 'b', 'c'])" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_dict.keys()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### grab the values" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_values([1, 2, 3])" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_dict.values()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### iterate a dictionary" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "a\n", - "b\n", - "c\n" - ] - } - ], - "source": [ - "for i in my_dict:\n", - " print(i)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_items([('a', 1), ('b', 2), ('c', 3)])" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# list of tuples representing \n", - "my_dict.items()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "a --> 1\n", - "b --> 2\n", - "c --> 3\n" - ] - } - ], - "source": [ - "for k,v in my_dict.items():\n", - " print(k, \"-->\", v)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### accessing values" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_dict[\"a\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### don't repeat keys" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "my_dict = {\n", - " 1:\"Brian\",\n", - " 2:\"Jane\",\n", - " 2:\"John\"\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{1: 'Brian', 2: 'John'}" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_dict" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### nested dict" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "# this is basically json\n", - "my_dict = {\n", - " \n", - " 1:{\"first_name\":\"Brian\", \"last_name\":\"Craft\"},\n", - " 2:{\"first_name\":\"Jane\", \"last_name\":\"Doe\"},\n", - " 3:{\"first_name\":\"John\", \"last_name\":\"Doe\"}\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'first_name': 'Brian', 'last_name': 'Craft'}" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_dict[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "isinstance(my_dict[1], dict)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "dict" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(my_dict[1])" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Brian'" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_dict[1][\"first_name\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a dictionary

\n", - "

- access elements with the bracket notation

\n", - "

- iterate over the dictionary using .items()

\n", - "

- get the keys from the dictionary using .keys()

\n", - "

- get the values from the dictionary using .values?()

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Eunumerate\n", - "* add an index value to your loops, or counter\n", - "* you can use the idx%1000 == 0 which returns the remainder of idx/1000 (modulus or clock math) which can be used as a way to monitor a time intensive loop\n", - "* https://docs.python.org/2/tutorial/datastructures.html#looping-techniques" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [\"a\", \"b\", \"c\"]\n", - "enumerate(a)" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 --> a\n", - "1 --> b\n", - "2 --> c\n" - ] - } - ], - "source": [ - "for idx, i in enumerate(a):\n", - " print(idx,\"-->\", i)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Zip\n", - "* Mash iterables together to make nested tuples\n", - "* you can use zip to mash together keys and values and put them into a dictionary\n", - "* https://docs.python.org/2/library/functions.html#zip" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3]\n", - "b = [\"a\", \"b\", \"c\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "zip(a,b)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(1, 'a'), (2, 'b'), (3, 'c')]" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[x for x in zip(a,b)]" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(1, 'a')\n", - "(2, 'b')\n", - "(3, 'c')\n" - ] - } - ], - "source": [ - "for i in zip(a,b):\n", - " print(i)" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "\n" - ] - } - ], - "source": [ - "for i in zip(a,b):\n", - " print(type(i))" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(1, 'a')\n", - "(2, 'b')\n", - "(3, 'c')\n" - ] - } - ], - "source": [ - "for i in zip(a,b):\n", - " print(i)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "2\n", - "3\n" - ] - } - ], - "source": [ - "for i in zip(a,b):\n", - " print(i[0])" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "a\n", - "b\n", - "c\n" - ] - } - ], - "source": [ - "for i in zip(a,b):\n", - " print(i[1])" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(1, 'a', 'A'), (2, 'b', 'B'), (3, 'c', 'C')]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [1,2,3]\n", - "b = [\"a\", \"b\", \"c\"]\n", - "c = [\"A\", \"B\", \"C\"]\n", - "\n", - "list(zip(a,b,c))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Continue, Break and Pass\n", - "* break: chance to exit a loop when a condition is met\n", - "* continue: continue to the next iteration of the loop\n", - "* pass: do nothing" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 is not greater then 4\n", - "1 is not greater then 4\n", - "2 is not greater then 4\n", - "3 is not greater then 4\n", - "4 is not greater then 4\n", - "5 is greater then 4 so we will break out loop\n" - ] - } - ], - "source": [ - "lst = list(range(10))\n", - "for x in lst:\n", - " if x > 4:\n", - " print(\"{} is greater then 4 so we will break out loop\".format(x))\n", - " break\n", - " else:\n", - " print(\"{} is not greater then 4\".format(x))" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5 is greater then 4\n", - "6 is greater then 4\n", - "7 is greater then 4\n", - "8 is greater then 4\n", - "9 is greater then 4\n" - ] - } - ], - "source": [ - "lst = list(range(10))\n", - "for x in lst:\n", - " if x > 4:\n", - " print(\"{} is greater then 4\".format(x))\n", - " else:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 is not greater then 4\n", - "1 is not greater then 4\n", - "2 is not greater then 4\n", - "3 is not greater then 4\n", - "4 is not greater then 4\n" - ] - } - ], - "source": [ - "lst = list(range(10))\n", - "for x in lst:\n", - " if x > 4:\n", - " continue\n", - " else:\n", - " print(\"{} is not greater then 4\".format(x))" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 is not greater then 4\n", - "print statement below\n", - "1 is not greater then 4\n", - "print statement below\n", - "2 is not greater then 4\n", - "print statement below\n", - "3 is not greater then 4\n", - "print statement below\n", - "4 is not greater then 4\n", - "print statement below\n" - ] - } - ], - "source": [ - "lst = list(range(10))\n", - "\n", - "for x in lst:\n", - " if x > 4:\n", - " continue\n", - " else:\n", - " print(\"{} is not greater then 4\".format(x))\n", - " \n", - " print(\"print statement below\")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 is not greater then 4\n", - "print statement below\n", - "1 is not greater then 4\n", - "print statement below\n", - "2 is not greater then 4\n", - "print statement below\n", - "3 is not greater then 4\n", - "print statement below\n", - "4 is not greater then 4\n", - "print statement below\n", - "print statement below\n", - "print statement below\n", - "print statement below\n", - "print statement below\n", - "print statement below\n" - ] - } - ], - "source": [ - "lst = list(range(10))\n", - "\n", - "for x in lst:\n", - " if x > 4:\n", - " pass\n", - " else:\n", - " print(\"{} is not greater then 4\".format(x))\n", - " \n", - " print(\"print statement below\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Itertools\n", - "* tools for working with iterables\n", - "* additional building blocks\n", - "* chain pushes lists together\n", - "* https://docs.python.org/2/library/itertools.html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### chain mashes nested lists into one" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from itertools import chain" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "a = [\n", - " [\"a\", \"b\", \"c\"],\n", - " [\"d\", \"e\", \"f\", \"b\"]\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "b = list(chain.from_iterable(a))" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['a', 'b', 'c', 'd', 'e', 'f', 'b']" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### permutation\n", - "* https://www.mathsisfun.com/combinatorics/combinations-permutations.html" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "from itertools import permutations" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[('a', 'b'), ('a', 'c'), ('b', 'a'), ('b', 'c'), ('c', 'a'), ('c', 'b')]" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(permutations([\"a\",\"b\",\"c\"], 2))" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[('a', 'b', 'c'),\n", - " ('a', 'c', 'b'),\n", - " ('b', 'a', 'c'),\n", - " ('b', 'c', 'a'),\n", - " ('c', 'a', 'b'),\n", - " ('c', 'b', 'a')]" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(permutations([\"a\",\"b\",\"c\"], 3))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### combinations\n", - "* https://www.mathsisfun.com/combinatorics/combinations-permutations.html" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "from itertools import combinations" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[('a', 'b'), ('a', 'c'), ('b', 'c')]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(combinations([\"a\",\"b\",\"c\"], 2))" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[('a', 'b', 'c')]" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(combinations([\"a\",\"b\",\"c\"], 3))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### product" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "from itertools import product" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "a = [[\"a\", \"b\"], [\"c\", \"d\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd')]" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(product(*a))" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd')]" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(product([\"a\", \"b\"],[\"c\", \"d\"]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Collections\n", - "* use counter to get frequencies of items in a list\n", - "* https://docs.python.org/2/library/collections.html" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "from collections import Counter" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "counter = Counter(b)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Counter({'a': 1, 'b': 2, 'c': 1, 'd': 1, 'e': 1, 'f': 1})" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "counter" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "collections.Counter" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(counter)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "a 1\n", - "b 2\n", - "c 1\n", - "d 1\n", - "e 1\n", - "f 1\n" - ] - } - ], - "source": [ - "for k,v in counter.items():\n", - " print(k,v)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a list

\n", - "

- find all the combinations

\n", - "

- find all the permutations

\n", - "

- create a counter for the list to get item frequencies

" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/.ipynb_checkpoints/Lecture 2 - UDFs, Comprehensions, Lambdas, Generators, and Error Handling-checkpoint.ipynb b/lectures/.ipynb_checkpoints/Lecture 2 - UDFs, Comprehensions, Lambdas, Generators, and Error Handling-checkpoint.ipynb deleted file mode 100644 index 65ce8e7..0000000 --- a/lectures/.ipynb_checkpoints/Lecture 2 - UDFs, Comprehensions, Lambdas, Generators, and Error Handling-checkpoint.ipynb +++ /dev/null @@ -1,2341 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lecture 2\n", - "* user defined functions\n", - "* comprehensions\n", - "* lambda functions\n", - "* generators\n", - "* exception handling" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### User Defined Functions\n", - "* def means we are defining a function\n", - "* def function_name(param1, param2)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#def my_function(param1, param2):\n", - "# do some stuff" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x):\n", - " print(x)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "function" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(my_func)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5\n" - ] - } - ], - "source": [ - "my_func(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10\n" - ] - } - ], - "source": [ - "my_func(10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### return will let you store output from a function" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x):\n", - " return x+2 # note you can just add on the fly here" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4\n" - ] - } - ], - "source": [ - "y = my_func(2)\n", - "print(y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### multiple params" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x,y):\n", - " return x+y" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "7\n" - ] - } - ], - "source": [ - "y = my_func(5,2)\n", - "print(y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### a bit more complicated" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x,y):\n", - " \n", - " output = None\n", - " z = x+y\n", - " \n", - " if z < 5:\n", - " output = True\n", - " else:\n", - " output = False\n", - " \n", - " return output" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "output = my_func(2,1)\n", - "output" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "False" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "output = my_func(2,5)\n", - "output" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a function that

\n", - "

- takes as an input a list of integers

\n", - "

- adds them all together

\n", - "

- returns the final sum

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### note python will assume the positioning of params\n", - "* consider the below\n", - "* the first param is a string\n", - "* the second is a number" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x,y):\n", - " x = x.lower()\n", - " y = y + 2\n", - " print(x)\n", - " print(y)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "#my_func(5,\"str\") # won't work" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "str\n", - "7\n" - ] - } - ], - "source": [ - "my_func(\"STR\", 5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### we could explicitly use the keyword, even if things are out of order" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "str\n", - "7\n" - ] - } - ], - "source": [ - "my_func(y = 5, x = \"str\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### but we can't do a keyword followed by a positional argument" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "positional argument follows keyword argument (, line 1)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m my_func(y = 5, \"str\") # won't work\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m positional argument follows keyword argument\n" - ] - } - ], - "source": [ - "my_func(y = 5, \"str\") # won't work" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### we can use args to have a variable amount of arguments" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(*args):\n", - " for arg in args:\n", - " print(arg)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "2\n" - ] - } - ], - "source": [ - "my_func(1,2)" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "2\n", - "5\n", - "6\n", - "2\n", - "3\n", - "4\n", - "5\n" - ] - } - ], - "source": [ - "my_func(1,2,5,6,2,3,4,5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a function that

\n", - "

- takes an inifinte amount of params

\n", - "

- puts them all in a list

\n", - "

- returns the list

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### we can use kwargs to have keyword arguments that are optional\n", - "* arguments are put into a dictionary" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(**kwargs):\n", - " print(type(kwargs))" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "my_func(x = 2, y = 2)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(**kwargs):\n", - " print(kwargs)" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'x': 2, 'y': 3}\n" - ] - } - ], - "source": [ - "my_func(x = 2, y = 3)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x,y, **kwargs):\n", - " val = x + y\n", - " if \"z\" in kwargs:\n", - " # remember, we can't access the value simply using\n", - " # z, we have to grab it form the kwargs dictionary\n", - " val+=kwargs[\"z\"]\n", - " print(val)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "12\n" - ] - } - ], - "source": [ - "my_func(5,7)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "my_func() takes 2 positional arguments but 3 were given", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m: my_func() takes 2 positional arguments but 3 were given" - ] - } - ], - "source": [ - "my_func(5,2,4)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "11\n" - ] - } - ], - "source": [ - "my_func(5,2,z=4)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a function that takes two params

\n", - "

- divide the first param by the second

\n", - "

- searches for a third named \"third\"

\n", - "

- if it exists add that to the division of the first two params

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### we can also set defaults for params\n", - "take a look at the link below in sklearn decision tree classifier\n", - "* the default can be overriden by passing in a value\n", - "* https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x, y = 2):\n", - " print(x + y)" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4\n" - ] - } - ], - "source": [ - "my_func(2)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "7\n" - ] - } - ], - "source": [ - "my_func(2,5)" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "7\n" - ] - } - ], - "source": [ - "my_func(x = 2, y = 5)" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "7\n" - ] - } - ], - "source": [ - "my_func(x = 5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### use of stars\n", - "* the star unpacks the tuple, saying this is a list of arguments, vs treat this list as one argument" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(*args):\n", - " for i in args:\n", - " print(i)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1, 2]\n" - ] - } - ], - "source": [ - "my_func([1,2])" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "2\n" - ] - } - ], - "source": [ - "my_func(*[1,2])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Generally this syntax isn't seen but it's worth being aware, as it does show up from time to time. See keras example below.\n", - "* https://keras.io/getting-started/functional-api-guide/" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def my_func(x):\n", - " def my_func2(y):\n", - " return x+y\n", - " return my_func2\n", - " \n", - "tst = my_func(5)\n", - "tst(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "15" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tst(10)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_func(2)(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lambda Functions\n", - "* annonymous, function without a name\n", - "* defined on the fly with one line\n", - "* multiple params but one expression\n", - "* commonly used in mapping, applying and filtering\n", - "* lambda params: expression\n", - "* https://docs.python.org/3/reference/expressions.html#lambda" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_lambda = lambda x: x + 2\n", - "my_lambda(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[3, 4, 5]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_lambda = lambda x: x + 2\n", - "\n", - "a = [1,2,3]\n", - "\n", - "list(map(my_lambda, a))" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(lambda x: x + 2)(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### but we don't even need to store the function in my_lambda" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[3, 4, 5]" - ] - }, - "execution_count": 63, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(map(lambda x: x+2, a))" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[4, 5]" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [2,3,4,5]\n", - "\n", - "list(filter(lambda x: x > 3, a))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

write a lambda that

\n", - "

- maps to a list of strings and

\n", - "

- replaces all the letter o with e

\n", - "

- converts to upper case

\n", - "

- .replace(item_replace, replace_with)

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## comprehension\n", - "* memory efficient way to run a for loop and put the results in a list or iterable\n", - "* on the fly apply functions to the elements of a list\n", - "* https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3, 4, 5]" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [1,2,3,4,5]\n", - "b = []\n", - "for i in a:\n", - " b.append(i)\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3, 4, 5]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b = [i for i in a]\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "('a', 'b', 'c')" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [\"A\", \"B\", \"C\"]\n", - "b = tuple(x.lower() for x in a)\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{(1, 'a'), (2, 'b'), (3, 'c')}" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [1,2,3]\n", - "b = [\"a\",\"b\",\"c\"]\n", - "\n", - "my_dict = {(x[0],x[1]) for x in zip(a,b)}\n", - "my_dict" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[4, 5]" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b = [i for i in a if i > 3]\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[-1, -2, -3, -4, -5]" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b = [i*-1 for i in a]\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['a', 'b', 'c']" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [\"A\", \"B\", \"C\"]\n", - "b = [x.lower() for x in a]\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['a', 'b', 'c']" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_func = lambda x: x.lower()\n", - "a = [\"A\", \"B\", \"C\"]\n", - "b = [my_func(x) for x in a]\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0, -1, -2, -3, -4)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# we have to use tuple() becasue just using () will declare a generator\n", - "tup = tuple(-x for x in range(5))\n", - "tup" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0, 1, 2, 3, 4)" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = tuple(abs(x) for x in tup)\n", - "a" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{0: 1, 1: 2, 2: 3, 3: 4, 4: 5}" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dct = dict((idx,i+1) for idx,i in enumerate(range(5)))\n", - "dct" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{1: 'A', 2: 'B', 3: 'C'}" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [1,2,3]\n", - "b = [\"A\", \"B\", \"C\"]\n", - "dct = dict((x[0], x[1]) for x in zip(a,b))\n", - "dct" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

write a lambda that

\n", - "

- use comprehension to apply to a list of numbers

\n", - "

- the lambda should return the remainder of the number divided by 2

" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "51%2" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "50%2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generators\n", - "* special function that returns a lazy iterator.\n", - "* do not store contents in memory.\n", - "* Instead, the state of the function is remembered.\n", - "* Keep track of where we are in the iterator" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "lst = [num for num in range(5)]\n", - "gen = (num for num in range(5))" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[0, 1, 2, 3, 4]" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lst" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " at 0x7fcd988c25d0>" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gen" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n", - "1\n", - "2\n", - "3\n", - "4\n" - ] - } - ], - "source": [ - "for i in gen:\n", - " print(i)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## use next() to grab the next item in the generator" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "gen = (num for num in range(2))" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "next(gen)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "next(gen)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "ename": "StopIteration", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mStopIteration\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgen\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mStopIteration\u001b[0m: " - ] - } - ], - "source": [ - "next(gen)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### can use yield instead of return, to return the next item of the generator. yield automatically tells python this is a generator" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "def infinite_sequence():\n", - " for i in [num for num in range(5)]:\n", - " yield i" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "gen = infinite_sequence()" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gen" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n", - "1\n", - "2\n", - "3\n", - "4\n" - ] - } - ], - "source": [ - "for i in gen:\n", - " print(i)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gen = infinite_sequence()\n", - "next(gen)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### very memory efficient" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "import sys" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "859724480\n", - "0.85972448\n" - ] - } - ], - "source": [ - "nums_squared_lc = [i * 2 for i in range(100000000)]\n", - "my_bytes = sys.getsizeof(nums_squared_lc)\n", - "gb = my_bytes / 1e+9\n", - "\n", - "print(my_bytes)\n", - "print(gb)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "128\n", - "1.28e-07\n" - ] - } - ], - "source": [ - "# returns bytes\n", - "nums_squared_lc = (i * 2 for i in range(100000000))\n", - "my_bytes = sys.getsizeof(nums_squared_lc)\n", - "gb = my_bytes / 1e+9\n", - "\n", - "print(my_bytes)\n", - "print(gb)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### could use generator for dealing with text files" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "csv = [\n", - " \"permalink,company,numEmps,category,city,state,fundedDate,raisedAmt,raisedCurrency,round\",\n", - " \"digg,Digg,60,web,San Francisco,CA,1-Dec-06,8500000,USD,b\",\n", - " \"digg,Digg,60,web,San Francisco,CA,1-Oct-05,2800000,USD,a\",\n", - " \"facebook,Facebook,450,web,Palo Alto,CA,1-Sep-04,500000,USD,angel\",\n", - " \"facebook,Facebook,450,web,Palo Alto,CA,1-May-05,12700000,USD,a\",\n", - " \"photobucket,Photobucket,60,web,Palo Alto,CA,1-Mar-05,3000000,USD,a\"\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "#file_name = \"techcrunch.csv\"\n", - "\n", - "# declares a generator\n", - "#lines = (line for line in open(file_name))\n", - "\n", - "# split the lines on the comma\n", - "#list_line = (s.rstrip().split(\",\") for s in lines)\n", - "\n", - "# gives us the next line\n", - "#cols = next(list_line)\n", - "\n", - "# this will be helpful for filtering, keys are column names\n", - "# \n", - "#company_dicts = (dict(zip(cols, data)) for data in list_line)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " at 0x7fcd68774450>" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lines = (line for line in csv)\n", - "lines" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " at 0x7fcd687745d0>" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list_line = (s.rstrip().split(\",\") for s in lines)\n", - "list_line" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['permalink',\n", - " 'company',\n", - " 'numEmps',\n", - " 'category',\n", - " 'city',\n", - " 'state',\n", - " 'fundedDate',\n", - " 'raisedAmt',\n", - " 'raisedCurrency',\n", - " 'round']" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "next(list_line)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['digg',\n", - " 'Digg',\n", - " '60',\n", - " 'web',\n", - " 'San Francisco',\n", - " 'CA',\n", - " '1-Dec-06',\n", - " '8500000',\n", - " 'USD',\n", - " 'b']" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "next(list_line)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exception Handling and Errors\n", - "* https://docs.python.org/3/tutorial/errors.html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### syntax errors\n", - "* missing parenth or bracket maybe, some formatting issue" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (, line 1)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m print((2)))\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "source": [ - "print((2)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### exception errors:\n", - "* you've tried to do something that can't be done" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [ - { - "ename": "ZeroDivisionError", - "evalue": "division by zero", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" - ] - } - ], - "source": [ - "print(5/0)" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "can only concatenate str (not \"int\") to str", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"string\"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m: can only concatenate str (not \"int\") to str" - ] - } - ], - "source": [ - "print(\"string\" + 2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### assert\n", - "* logical test\n", - "* if the test isn't met we raise an assertion error\n", - "* assert logical, error" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "ename": "AssertionError", - "evalue": "The length of x is not greater than 3", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"The length of x is not greater than 3\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m: The length of x is not greater than 3" - ] - } - ], - "source": [ - "x = [2,3]\n", - "\n", - "assert len(x) > 3, \"The length of x is not greater than 3\"" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "ename": "AssertionError", - "evalue": "x is empty", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"x is empty\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m: x is empty" - ] - } - ], - "source": [ - "x = []\n", - "\n", - "assert len(x) != 0, \"x is empty\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### raise\n", - "* we could also raise an exception" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "ename": "Exception", - "evalue": "x should not exceed 5.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mException\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'x should not exceed 5.'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mException\u001b[0m: x should not exceed 5." - ] - } - ], - "source": [ - "x = 10\n", - "if x > 5:\n", - " raise Exception('x should not exceed 5.')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### try and except\n", - "* tell python to try a block of code, if there is an error, revert to except" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found an error. Item String isn't a number or float\n" - ] - } - ], - "source": [ - "a = [1,2,3,4,\"String\"]\n", - "\n", - "for i in a:\n", - " \n", - " try:\n", - " i = i+2\n", - " except:\n", - " print(\"Found an error. Item {} isn't a number or float\".format(i))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### plenty of built in exception/errors classese in python\n", - "* for instance, IndexError\n", - "* NameError\n", - "* https://docs.python.org/3/library/exceptions.html" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [ - { - "ename": "IndexError", - "evalue": "list index out of range", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m: list index out of range" - ] - } - ], - "source": [ - "a = [2]\n", - "a[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'z' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mNameError\u001b[0m: name 'z' is not defined" - ] - } - ], - "source": [ - "print(z)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### excepting the error" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2\n", - "this is a type error a + 5\n" - ] - } - ], - "source": [ - "a = [1, 2, 3] \n", - "try: \n", - " print(a[1]) \n", - " \n", - " # Throws error since there are only 3 elements in array \n", - " #print(a[3])\n", - " \n", - " # throw another error\n", - " #print(a + )\n", - " \n", - " print(\"A\" + 5)\n", - " \n", - "except TypeError:\n", - " print(\"this is a type error {}\".format(\"a + 5\"))\n", - " #raise\n", - " \n", - "except IndexError: \n", - " print(\"This is an index error\")\n", - " \n", - "except SyntaxError:\n", - " print(\"This is a syntax error\")" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2\n" - ] - }, - { - "ename": "IndexError", - "evalue": "list index out of range", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# Throws error since there are only 3 elements in array\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mIndexError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mIndexError\u001b[0m: list index out of range" - ] - } - ], - "source": [ - "a = [1, 2, 3] \n", - "try: \n", - " print(a[1]) \n", - " \n", - " # Throws error since there are only 3 elements in array \n", - " print(a[3])\n", - " \n", - "except IndexError: \n", - " raise" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### raise" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "unsupported operand type(s) for +: 'int' and 'str'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m\"string\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0;31m# raises the error that was caught\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'int' and 'str'" - ] - } - ], - "source": [ - "a = 5\n", - "\n", - "try:\n", - " print(a + \"string\")\n", - "except TypeError:\n", - " raise # raises the error that was caught" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "can only concatenate str (not \"int\") to str", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"str\"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: can only concatenate str (not \"int\") to str" - ] - } - ], - "source": [ - "try:\n", - " print(\"str\" + 2)\n", - "except Exception:\n", - " raise" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "unexpected EOF while parsing (, line 4)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m4\u001b[0m\n\u001b[0;31m \u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m unexpected EOF while parsing\n" - ] - } - ], - "source": [ - "try:\n", - " print(\"str\" + 2)\n", - "except ValueError:\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### finally is always executed" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10\n", - "the finally block is executed\n" - ] - } - ], - "source": [ - "x = 5\n", - "\n", - "try:\n", - " print(x + 5)\n", - "except:\n", - " raise\n", - "finally:\n", - " print(\"the finally block is executed\")" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the finally block is executed\n" - ] - }, - { - "ename": "TypeError", - "evalue": "can only concatenate str (not \"int\") to str", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: can only concatenate str (not \"int\") to str" - ] - } - ], - "source": [ - "x = \"str\"\n", - "\n", - "try:\n", - " print(x + 5)\n", - "except:\n", - " raise\n", - "finally:\n", - " print(\"the finally block is executed\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### optional else clause" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10\n", - "the else get's executed if hte try doesn't cause an error\n" - ] - } - ], - "source": [ - "x = 5\n", - "\n", - "try:\n", - " print(x + 5)\n", - "except:\n", - " raise\n", - "else:\n", - " print(\"the else get's executed if hte try doesn't cause an error\")" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "can only concatenate str (not \"int\") to str", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: can only concatenate str (not \"int\") to str" - ] - } - ], - "source": [ - "x = \"str\"\n", - "\n", - "try:\n", - " print(x + 5)\n", - "except:\n", - " raise\n", - "else:\n", - " print(\"the else get's executed if hte try doesn't cause an error\")" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10\n", - "the else get's executed if hte try doesn't cause an error\n", - "here comes the finally clause just because\n" - ] - } - ], - "source": [ - "x = 5\n", - "\n", - "try:\n", - " print(x + 5)\n", - "except:\n", - " raise\n", - "else:\n", - " print(\"the else get's executed if hte try doesn't cause an error\")\n", - "finally:\n", - " print(\"here comes the finally clause just because\")" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "here comes the finally clause just because\n" - ] - }, - { - "ename": "TypeError", - "evalue": "can only concatenate str (not \"int\") to str", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: can only concatenate str (not \"int\") to str" - ] - } - ], - "source": [ - "x = \"str\"\n", - "\n", - "try:\n", - " print(x + 5)\n", - "except:\n", - " raise\n", - "else:\n", - " print(\"the else get's executed if hte try doesn't cause an error\")\n", - "finally:\n", - " print(\"here comes the finally clause just because\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### just focus on:\n", - "* try and except and catching/raising your error somehow\n", - "* assert" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/.ipynb_checkpoints/Lecture 3 - OOO, Datetime and Saving Objects-checkpoint.ipynb b/lectures/.ipynb_checkpoints/Lecture 3 - OOO, Datetime and Saving Objects-checkpoint.ipynb deleted file mode 100644 index ec37b19..0000000 --- a/lectures/.ipynb_checkpoints/Lecture 3 - OOO, Datetime and Saving Objects-checkpoint.ipynb +++ /dev/null @@ -1,1883 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### OOO\n", - "* simple OOO example\n", - "* classes - template of objects\n", - "* objects - member or instance of class\n", - "* classes can have\n", - " * characteristics/attribuets\n", - " * methods" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# simple framework for a dog\n", - "class dog:\n", - " \n", - " # these are params here, things we set when\n", - " # we initialize our instance of our class\n", - " def __init__(self, color, breed, name):\n", - " self.color = color\n", - " self.breed = breed\n", - " self.name = name" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog = dog(color = \"blue\", breed = \"sheperd\", name = \"spot\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog.color" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog.breed" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dir(my_dog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "type(my_dog)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# simple framework for a dog\n", - "class dog:\n", - " \n", - " def __init__(self, color, breed, name):\n", - " self.color = color\n", - " self.breed = breed\n", - " self.name = name\n", - " \n", - " def speak(self):\n", - " print(\"this is speaking\")\n", - " \n", - " def change_color(self, color):\n", - " self.color = color" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog = dog(color = \"blue\", breed = \"sheperd\", name = \"spot\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog.speak" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog.speak()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog.color" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog.change_color(\"red\")\n", - "my_dog.color" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# simple framework for a dog\n", - "class dog:\n", - " \n", - " def __init__(self, color, breed, name):\n", - " self.color = color\n", - " self.breed = breed\n", - " self.name = name\n", - " self.distance = 0\n", - " \n", - " def walk(self, distance):\n", - " self.distance += distance" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog = dog(color = \"blue\", breed = \"sheperd\", name = \"spot\")\n", - "my_dog.distance" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog.walk(5)\n", - "my_dog.distance" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog.walk(12)\n", - "my_dog.distance" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog.walk(18)\n", - "my_dog.distance" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Inheritence\n", - "* Inherit properties and functions from other objects" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "class Dog:\n", - " \n", - " def __init__(self, color, breed, name):\n", - " self.color = color\n", - " self.breed = breed\n", - " self.name = name\n", - " self.distance = 0\n", - " \n", - " def walk(self, distance):\n", - " self.distance += distance\n", - " \n", - "class Retreiver(Dog):\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "r = retreiver(color = \"blue\", breed = \"retreiver\", name = \"Rex\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'blue'" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "r.color" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['__class__',\n", - " '__delattr__',\n", - " '__dict__',\n", - " '__dir__',\n", - " '__doc__',\n", - " '__eq__',\n", - " '__format__',\n", - " '__ge__',\n", - " '__getattribute__',\n", - " '__gt__',\n", - " '__hash__',\n", - " '__init__',\n", - " '__init_subclass__',\n", - " '__le__',\n", - " '__lt__',\n", - " '__module__',\n", - " '__ne__',\n", - " '__new__',\n", - " '__reduce__',\n", - " '__reduce_ex__',\n", - " '__repr__',\n", - " '__setattr__',\n", - " '__sizeof__',\n", - " '__str__',\n", - " '__subclasshook__',\n", - " '__weakref__',\n", - " 'breed',\n", - " 'color',\n", - " 'distance',\n", - " 'name',\n", - " 'walk']" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dir(r)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "class Dog:\n", - " \n", - " def __init__(self, color, breed, name):\n", - " self.color = color\n", - " self.breed = breed\n", - " self.name = name\n", - " self.distance = 0\n", - " \n", - " def walk(self, distance):\n", - " self.distance += distance\n", - " \n", - "class Retreiver(Dog):\n", - " \n", - " def speak(self):\n", - " print(\"My name is {}\".format(self.name))" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "My name is Rex\n" - ] - } - ], - "source": [ - "r = Retreiver(color = \"blue\", breed = \"retreiver\", name = \"Rex\")\n", - "r.speak()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "'Dog' object has no attribute 'speak'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDog\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcolor\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"blue\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbreed\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"retreiver\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"Rex\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mspeak\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m: 'Dog' object has no attribute 'speak'" - ] - } - ], - "source": [ - "r = Dog(color = \"blue\", breed = \"retreiver\", name = \"Rex\")\n", - "r.speak()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Super" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "class Dog:\n", - " \n", - " def __init__(self, color, breed, name):\n", - " self.color = color\n", - " self.breed = breed\n", - " self.name = name\n", - " self.distance = 0\n", - " \n", - " def walk(self, distance):\n", - " self.distance += distance\n", - " \n", - "class Retreiver(Dog):\n", - " \n", - " def __init__(self, color, breed, name, last_name):\n", - " super().__init__(color, breed, name) \n", - " self.last_name = last_name\n", - " \n", - " def speak(self):\n", - " print(\"My name is {}\".format(self.name))" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "r = Retreiver(color = \"blue\", breed = \"retreiver\", name = \"Rex\", last_name = \"Rex 2\")" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "blue\n", - "retreiver\n", - "Rex\n", - "Rex 2\n", - "0\n" - ] - } - ], - "source": [ - "print(r.color)\n", - "print(r.breed)\n", - "print(r.name)\n", - "print(r.last_name)\n", - "print(r.distance)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Overload\n", - "* have a function behave in different ways depending on how it is called or a param is passed to it\n", - "* can overload a UDF or a build in function" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Overload a UDF" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Someone is barking\n", - "Rex is barking\n" - ] - } - ], - "source": [ - "class Dog:\n", - " def speak(self, name=None):\n", - " if name is not None:\n", - " print(name + \" is barking\")\n", - " else:\n", - " print('Someone is barking')\n", - "\n", - "# Creating a class instance\n", - "d = Dog()\n", - "\n", - "# Call the method\n", - "d.speak()\n", - "\n", - "# Call the method and pass a parameter\n", - "d.speak('Rex')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Overload Built In Function" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3\n" - ] - } - ], - "source": [ - "class Basket:\n", - " def __init__(self, basket):\n", - " self.basket = basket\n", - "\n", - " def __len__(self):\n", - " return len(self.basket)\n", - "\n", - "b = Basket(['a', 'b', 'c'])\n", - "print(len(b))" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "50\n" - ] - } - ], - "source": [ - "class Basket:\n", - " def __init__(self, basket):\n", - " self.basket = basket\n", - "\n", - " def __len__(self):\n", - " return 50\n", - "\n", - "b = Basket(['a', 'b', 'c'])\n", - "print(len(b))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Class Methods\n", - "* takes cls as the first input\n", - "* bound to the class, not the instance of the object\n", - "* can access class variables though not instance variables" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "class Dog:\n", - " \n", - " class_atr = 10\n", - " \n", - " @classmethod\n", - " def speak(cls, speak):\n", - " print(speak)\n", - " \n", - " @classmethod\n", - " def add(cls,x,y):\n", - " return x+y\n", - " \n", - " @classmethod\n", - " def printer(cls):\n", - " print(cls.class_atr)\n", - " \n", - " @classmethod\n", - " def class_add(cls):\n", - " cls.class_atr = cls.class_atr + 10\n", - " \n", - " def __init__(self, color, breed, name):\n", - " self.color = color\n", - " self.breed = breed\n", - " self.name = name\n", - " self.distance = 0\n", - " \n", - " def walk(self, distance):\n", - " self.distance = Dog.add(self.distance, distance)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "r = Dog(color = \"blue\", breed = \"retreiver\", name = \"Rex\")" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10\n" - ] - } - ], - "source": [ - "r.printer()" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "20\n" - ] - } - ], - "source": [ - "r.class_add()\n", - "r.printer()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "say something\n" - ] - } - ], - "source": [ - "r.speak(\"say something\")" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "say something\n" - ] - } - ], - "source": [ - "Dog.speak(\"say something\")" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "20" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "r.walk(5)\n", - "r.walk(10)\n", - "r.distance" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Static Method\n", - "* neither bound to the instance or class\n", - "* no access to the instance or class attribuets\n", - "* could be a standalone function but we want to keep it in the class\n", - "* for instance, distance measures inside a KNN class. then we can reference the functions when we have a fit method\n", - "* aren't super useful due to limited access of information\n", - "* utility type funciton" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "class Distance:\n", - " \n", - " @staticmethod\n", - " def add(a,b):\n", - " print(a+b)\n", - " \n", - " @staticmethod\n", - " def sub(a,b):\n", - " print(a-b)\n", - " \n", - " def __init__(self,x,y):\n", - " self.x = x\n", - " self.y = y\n", - " \n", - " def operate(self, how):\n", - " if how == \"add\":\n", - " Distance.add(self.x, self.y)\n", - " else:\n", - " Distance.sub(self.x, self.y)\n", - " \n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "d = Distance(10,5)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "15\n" - ] - } - ], - "source": [ - "d.operate(\"add\")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5\n" - ] - } - ], - "source": [ - "d.operate(\"sub\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Characteristics/Properties/Attributes\n", - "* accessed using dot notation\n", - "* methods are used using dot notation and parentheses ()\n", - "* we can now read the sklearn documentation that much better\n", - "* https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html\n", - "* since sklearn documentation is consistent, we can easily look at any if the page and disect how the data structure works\n", - " * what methods we can use\n", - " * what characteristics we can access\n", - " * what params we can pass\n", - "* https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### DateTimes in Python\n", - "* https://docs.python.org/3/library/datetime.html" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "from datetime import datetime\n", - "from datetime import date" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Get Todays Date" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2019-11-24\n" - ] - } - ], - "source": [ - "today = date.today()\n", - "print(today)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "24" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "today.day" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "11" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "today.month" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2019" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "today.year" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Weekdays start at monday and index at 0\n", - "* 0:Monday\n", - "* 1:Tuesday\n", - "* 2:Wednesday\n", - "* 3:Thursday\n", - "* 4:Friday\n", - "* 5:Saturday\n", - "* 6:Sunday" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "today.weekday()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['__add__',\n", - " '__class__',\n", - " '__delattr__',\n", - " '__dir__',\n", - " '__doc__',\n", - " '__eq__',\n", - " '__format__',\n", - " '__ge__',\n", - " '__getattribute__',\n", - " '__gt__',\n", - " '__hash__',\n", - " '__init__',\n", - " '__init_subclass__',\n", - " '__le__',\n", - " '__lt__',\n", - " '__ne__',\n", - " '__new__',\n", - " '__radd__',\n", - " '__reduce__',\n", - " '__reduce_ex__',\n", - " '__repr__',\n", - " '__rsub__',\n", - " '__setattr__',\n", - " '__sizeof__',\n", - " '__str__',\n", - " '__sub__',\n", - " '__subclasshook__',\n", - " 'ctime',\n", - " 'day',\n", - " 'fromisoformat',\n", - " 'fromordinal',\n", - " 'fromtimestamp',\n", - " 'isocalendar',\n", - " 'isoformat',\n", - " 'isoweekday',\n", - " 'max',\n", - " 'min',\n", - " 'month',\n", - " 'replace',\n", - " 'resolution',\n", - " 'strftime',\n", - " 'timetuple',\n", - " 'today',\n", - " 'toordinal',\n", - " 'weekday',\n", - " 'year']" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dir(today)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Get Time and Date Now" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2019-11-24 12:06:33.330468\n" - ] - } - ], - "source": [ - "now = datetime.now()\n", - "print(now)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['__add__',\n", - " '__class__',\n", - " '__delattr__',\n", - " '__dir__',\n", - " '__doc__',\n", - " '__eq__',\n", - " '__format__',\n", - " '__ge__',\n", - " '__getattribute__',\n", - " '__gt__',\n", - " '__hash__',\n", - " '__init__',\n", - " '__init_subclass__',\n", - " '__le__',\n", - " '__lt__',\n", - " '__ne__',\n", - " '__new__',\n", - " '__radd__',\n", - " '__reduce__',\n", - " '__reduce_ex__',\n", - " '__repr__',\n", - " '__rsub__',\n", - " '__setattr__',\n", - " '__sizeof__',\n", - " '__str__',\n", - " '__sub__',\n", - " '__subclasshook__',\n", - " 'astimezone',\n", - " 'combine',\n", - " 'ctime',\n", - " 'date',\n", - " 'day',\n", - " 'dst',\n", - " 'fold',\n", - " 'fromisoformat',\n", - " 'fromordinal',\n", - " 'fromtimestamp',\n", - " 'hour',\n", - " 'isocalendar',\n", - " 'isoformat',\n", - " 'isoweekday',\n", - " 'max',\n", - " 'microsecond',\n", - " 'min',\n", - " 'minute',\n", - " 'month',\n", - " 'now',\n", - " 'replace',\n", - " 'resolution',\n", - " 'second',\n", - " 'strftime',\n", - " 'strptime',\n", - " 'time',\n", - " 'timestamp',\n", - " 'timetuple',\n", - " 'timetz',\n", - " 'today',\n", - " 'toordinal',\n", - " 'tzinfo',\n", - " 'tzname',\n", - " 'utcfromtimestamp',\n", - " 'utcnow',\n", - " 'utcoffset',\n", - " 'utctimetuple',\n", - " 'weekday',\n", - " 'year']" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dir(now)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "33" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "now.second" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "now.minute" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "12" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "now.hour" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "24" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "now.day" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "11" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "now.month" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2019" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "now.year" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "now.weekday()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a variable of the current date

\n", - "

- make a list with the weekdays

\n", - "

- convert the weekday() integer to the actual date name

\n", - "

- print the below, without hard coding it

" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Today is a Friday\n" - ] - } - ], - "source": [ - "print(\"Today is a Friday\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Format Datetime output using strftime\n", - "* (%y/%Y – Year)\n", - "* (%a/%A- weekday)\n", - "* (%b/%B- month)\n", - "* (%d - day of month)\n", - "* %c- indicates the local date and time\n", - "* 12 hours time is declared [print now.strftime(\"%I:%M:%S %P) ]\n", - "* 24 hours time is declared [print now.strftime(\"%H:%M\")] " - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "now = datetime.now()" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2019\n", - "19\n" - ] - } - ], - "source": [ - "print(now.strftime(\"%Y\"))\n", - "print(now.strftime(\"%y\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Sunday\n", - "Sun\n" - ] - } - ], - "source": [ - "print(now.strftime(\"%A\"))\n", - "print(now.strftime(\"%a\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "November\n", - "Nov\n" - ] - } - ], - "source": [ - "print(now.strftime(\"%B\"))\n", - "print(now.strftime(\"%b\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "11/24/19\n", - "24\n" - ] - } - ], - "source": [ - "print(now.strftime(\"%D\"))\n", - "print(now.strftime(\"%d\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Sun Nov 24 12:10:24 2019\n" - ] - } - ], - "source": [ - "print(now.strftime(\"%c\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### we can string these together" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2019-November-24\n" - ] - } - ], - "source": [ - "print(now.strftime(\"%Y-%B-%d\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2019,November,24\n" - ] - } - ], - "source": [ - "print(now.strftime(\"%Y,%B,%d\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "19-Nov-24\n" - ] - } - ], - "source": [ - "print(now.strftime(\"%y-%b-%d\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "12:10:24\n" - ] - } - ], - "source": [ - "# I is the hour, # M is minutes, #S is seconds\n", - "# army time\n", - "print(now.strftime(\"%I:%M:%S\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "12:10\n" - ] - } - ], - "source": [ - "# 24 hour clock\n", - "print(now.strftime(\"%H:%M\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Use timedelta to add and subtract dates\n", - "* does not support years, because the duration of a year depends on which year (for example, leap years have Feb 29)" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "from datetime import timedelta" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2019-11-24 12:19:01.737490\n", - "2019-12-04 17:34:01.737781\n" - ] - } - ], - "source": [ - "print(datetime.now())\n", - "print(datetime.now() + timedelta(days=10, hours = 5, minutes = 15))" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2019-11-24 12:19:09.017928\n", - "2019-11-14 07:04:09.018214\n" - ] - } - ], - "source": [ - "print(datetime.now())\n", - "print(datetime.now() - timedelta(days=10, hours = 5, minutes = 15))" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2019-11-24 12:19:44.676823\n", - "2019-12-08 12:19:44.677028\n" - ] - } - ], - "source": [ - "print(datetime.now())\n", - "print(datetime.now() + timedelta(weeks=2))" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2019-11-24 12:19:54.454511\n", - "2019-11-10 12:19:54.454799\n" - ] - } - ], - "source": [ - "print(datetime.now())\n", - "print(datetime.now() - timedelta(weeks=2))" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "datetime.datetime" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# returns a datetime so we can extract info\n", - "x = datetime.now() - timedelta(weeks=2)\n", - "type(x)" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2019" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x.year" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "11" - ] - }, - "execution_count": 72, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x.month" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10" - ] - }, - "execution_count": 73, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x.day" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6" - ] - }, - "execution_count": 75, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x.weekday()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a variable with the current date

\n", - "

- add/subtract a year

\n", - "

- add subtract a year and 2 weeks

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Saving Objects in Python\n", - "* serialization, marshaling, and flattening. \n", - "* same—to save an object to a file for later retrieval\n", - "* accomplishes this by writing the object as one long stream of bytes. \n", - "* pickling also used to save models in sklearn\n", - "* https://docs.python.org/3/library/pickle.html\n", - "* https://scikit-learn.org/stable/modules/model_persistence.html" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [], - "source": [ - "import pickle" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": {}, - "outputs": [], - "source": [ - "test = [\"a\", \"b\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 101, - "metadata": {}, - "outputs": [], - "source": [ - "file = open('test_pickle.pkl', 'wb') \n", - "pickle.dump(test, file)\n", - "file.close()" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": {}, - "outputs": [], - "source": [ - "# delete from memory\n", - "del test" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [], - "source": [ - "file = open('test_pickle.pkl', 'rb') \n", - "test = pickle.load(file)\n", - "file.close()" - ] - }, - { - "cell_type": "code", - "execution_count": 107, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['a', 'b']" - ] - }, - "execution_count": 107, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "test" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### using with" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [], - "source": [ - "item = \"some string I made\"" - ] - }, - { - "cell_type": "code", - "execution_count": 112, - "metadata": {}, - "outputs": [], - "source": [ - "with open(\"test_pickle.pkl\", \"wb\") as file:\n", - " pickle.dump(item, file)" - ] - }, - { - "cell_type": "code", - "execution_count": 115, - "metadata": {}, - "outputs": [], - "source": [ - "#del item\n", - "#item" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": {}, - "outputs": [], - "source": [ - "with open(\"test_pickle.pkl\", \"rb\") as file:\n", - " item = pickle.load(file)" - ] - }, - { - "cell_type": "code", - "execution_count": 117, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'some string I made'" - ] - }, - "execution_count": 117, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "item" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a python object

\n", - "

- save the object

\n", - "

- delete the object from memory

\n", - "

- reload it

" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/Lecture 1 - Container, Iteration Tools.ipynb b/lectures/Lecture 1 - Container, Iteration Tools.ipynb index 5fccf55..6873c3f 100644 --- a/lectures/Lecture 1 - Container, Iteration Tools.ipynb +++ b/lectures/Lecture 1 - Container, Iteration Tools.ipynb @@ -16,14 +16,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Syllabus" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Quick Intros" + "# I Don't like Rafi Class\n", + "## I wont share my screen\n", + "###### Just Kidding" ] }, { @@ -63,160 +58,145 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "8\n" + ] + } + ], "source": [ - "a = 2\n", - "a = \"string\"" + "a = 8\n", + "\n", + "print(a)" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" + "ename": "NameError", + "evalue": "name 'b' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mb\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mNameError\u001b[0m: name 'b' is not defined" + ] } ], "source": [ - "a = 2.25" + "print(b)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lists\n", + "* array, collection, of unordered items of any data type\n", + "* can be changed (mutable)\n", + "* can have duplicates\n", + "* can put anything in them\n", + "* created using brackets [ ]\n", + "* concat a list of dataframes in pandas\n", + "* https://docs.python.org/3/tutorial/datastructures.html" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "a = 2\n", - "b = 1\n", - "\n", - "a != b" + "a = [1,2,3,4,5]" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "equals 2\n" + "[1, 2, 3, 4, 5]\n" ] } ], "source": [ - "if a != 2:\n", - " print(\"doesn't equal 2\")\n", - "elif a == 3:\n", - " print(\"a equals 3\")\n", - "elif:\n", - "elif:\n", - "else:\n", - " print(\"equals 2\")" + "print(a)" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1\n", - "4\n", - "9\n", - "16\n" + "['A', 1, 2, 2.4, 'B']\n", + "A\n", + "A is a letter\n" ] } ], "source": [ - "lst = [1,2,3,4]\n", - "\n", - "for i in lst:\n", - " a = i**2\n", - " print(a)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lists\n", - "* array, collection, of unordered items of any data type\n", - "* can be changed (mutable)\n", - "* can have duplicates\n", - "* can put anything in them\n", - "* created using brackets [ ]\n", - "* concat a list of dataframes in pandas\n", - "* https://docs.python.org/3/tutorial/datastructures.html" + "b = [\"A\", 1, 2, 2.4, \"B\"]\n", + "print (b)\n", + "print (b[0])\n", + "print (b[0] + \" is a letter\")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5]" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 is a integer\n" + ] + } + ], "source": [ - "b = [\"A\", 1, 2, 2.4, \"B\"]" + "print(str(b[1]) + \" is a integer\")" ] }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 94, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n", + "False\n" + ] } ], "source": [ - "isinstance(a, list)" + "print(isinstance(a, list))\n", + "print(isinstance(a, int))" ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -225,7 +205,7 @@ "list" ] }, - "execution_count": 49, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -236,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 96, "metadata": { "scrolled": true }, @@ -292,7 +272,7 @@ " 'sort']" ] }, - "execution_count": 50, + "execution_count": 96, "metadata": {}, "output_type": "execute_result" } @@ -301,6 +281,44 @@ "dir(a)" ] }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 2, 3, 4, 5, '4', '4']\n" + ] + } + ], + "source": [ + "a.append('4')\n", + "print(a)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 2, 3, 4, 4, 4, 5]\n" + ] + } + ], + "source": [ + "a[6] = int(a[6])\n", + "a[5] = int(a[5])\n", + "a.sort()\n", + "print(a)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -310,14 +328,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 105, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1, 2, 3, 4, 5, 5]\n" + "[-3, -3, -3, 5]\n" ] } ], @@ -335,14 +353,14 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 106, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['new_item', 1, 2, 3, 4, 5]\n" + "['new_item', -3, -3, -3, 5]\n" ] } ], @@ -361,14 +379,14 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "6\n" + "7\n" ] } ], @@ -385,7 +403,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 100, "metadata": {}, "outputs": [ { @@ -402,7 +420,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 101, "metadata": {}, "outputs": [ { @@ -419,133 +437,71 @@ ] }, { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "a = [\n", - " [1,2],\n", - " [2,3],\n", - " [3,3]\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b = a[0]\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 22, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "b[0]" + "##### slicing" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1" + "[1, 2, 3, 4, 4, 4, 5]" ] }, - "execution_count": 19, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a[0][0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### slicing" + "a" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['new_item', 'new_item', 'new_item', 'new_item', 1, 2, 3, 4, 5, 5]" + "[1, 3, 4]" ] }, - "execution_count": 20, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a" + "a[0:5:2]" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['new_item', 'new_item']" + "[4, 5]" ] }, - "execution_count": 18, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a[0:2]" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "a = [1,2,3,4,5]" + "# return 4th and 5th indexed item, not inclusive of the 6th\n", + "a[4:6]" ] }, { @@ -556,7 +512,7 @@ { "data": { "text/plain": [ - "[4, 5]" + "[2, 3, 4, 4, 4, 5]" ] }, "execution_count": 27, @@ -565,8 +521,7 @@ } ], "source": [ - "# return 4th and 5th indexed item, not inclusive of the 6th\n", - "a[3:]" + "a[1:]" ] }, { @@ -587,6 +542,36 @@ "

- access the first item of the first neseted list element" ] }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 3, 5, [2, 4, 'raf', 8]]\n" + ] + }, + { + "ename": "TypeError", + "evalue": "list indices must be integers or slices, not tuple", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0ma\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m4\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;34m'raf'\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m8\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mprint\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m: list indices must be integers or slices, not tuple" + ] + } + ], + "source": [ + "a = [1,3,5,[2,4,'raf',8]]\n", + "print(a)\n", + "print (a[3][2])" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -600,54 +585,52 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "3\n", - "3\n", - "3\n" + "\n", + "[3, 3, 3]\n" ] } ], "source": [ "a = [-3,-3,-3]\n", - "for i in a:\n", - " print(abs(i))" + "b = map(abs, a)\n", + "print(b)\n", + "print(list(b))" ] }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 36, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "[1, 1, 2, 2]\n" + ] } ], "source": [ - "a = [-3,-3,-3]\n", - "map(abs, a)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x):\n", - " return x+1" + "b = [1,-1,2,-2]\n", + "c = map(abs,b)\n", + "print(c)\n", + "d = list(c)\n", + "print(d)" ] }, { @@ -662,42 +645,62 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 134, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "[1, 2, 3]" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 2, 3, -4]\n", + "\n", + "[1, 2, 3, -4]\n" + ] } ], "source": [ "def my_func(x):\n", - " return x > 0\n", + " return abs(x)\n", "\n", "a = [1,2,3,-4]\n", "\n", - "list(filter(my_func, a))" + "b = filter(my_func, a)\n", + "print(a)\n", + "print(b)\n", + "print(list(b))" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "

make a list of random numbers

\n", + "

- filter for items above 2

\n", + "

- map the sqrt function from math to it to each element

\n", + "

- use \"from math import sqrt\"

" + ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 44, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF', 'Random', 'SG_MAGICCONST', 'SystemRandom', 'TWOPI', '_BuiltinMethodType', '_MethodType', '_Sequence', '_Set', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '_acos', '_bisect', '_ceil', '_cos', '_e', '_exp', '_inst', '_itertools', '_log', '_os', '_pi', '_random', '_sha512', '_sin', '_sqrt', '_test', '_test_generator', '_urandom', '_warn', 'betavariate', 'choice', 'choices', 'expovariate', 'gammavariate', 'gauss', 'getrandbits', 'getstate', 'lognormvariate', 'normalvariate', 'paretovariate', 'randint', 'random', 'randrange', 'sample', 'seed', 'setstate', 'shuffle', 'triangular', 'uniform', 'vonmisesvariate', 'weibullvariate']\n", + "[45, 49, 21, 20, 5, 45, 7]\n" + ] + } + ], "source": [ - "

make a list of random numbers

\n", - "

- filter for items above 2

" + "import random \n", + "a = dir(random)\n", + "print(a)\n", + "\n", + "res = [random.randrange(1, 50, 1) for i in range(7)] \n", + "print (res)" ] }, { @@ -709,28 +712,39 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 45, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 2, 3, 4]\n", + "[1.0, 1.4142135623730951, 1.7320508075688772, 2.0]\n" + ] } ], "source": [ - "a = [\"a\", \"b\"]\n", - "a.index(\"a\")" + "from math import sqrt\n", + "\n", + "a = [1,2,3,-4]\n", + "\n", + "a = list(map(abs,a))\n", + "print(a)\n", + "b = list(map(sqrt,a))\n", + "print(b)" ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -739,7 +753,7 @@ "0" ] }, - "execution_count": 34, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -761,7 +775,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 46, "metadata": {}, "outputs": [], "source": [ @@ -770,7 +784,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -779,7 +793,7 @@ "True" ] }, - "execution_count": 39, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -790,7 +804,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 48, "metadata": {}, "outputs": [ { @@ -799,7 +813,7 @@ "tuple" ] }, - "execution_count": 40, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -810,7 +824,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 23, "metadata": { "scrolled": true }, @@ -853,7 +867,7 @@ " 'index']" ] }, - "execution_count": 41, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -871,7 +885,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 49, "metadata": {}, "outputs": [ { @@ -880,7 +894,7 @@ "1" ] }, - "execution_count": 53, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -891,7 +905,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -900,7 +914,7 @@ "(2, 3)" ] }, - "execution_count": 55, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -911,7 +925,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -920,7 +934,7 @@ "2" ] }, - "execution_count": 48, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -932,62 +946,22 @@ }, { "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a.index(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1, 2, 2, 3, 4, 5, 5)" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a" - ] - }, - { - "cell_type": "code", - "execution_count": 51, + "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(1, 2, 2, 3, 4, 5, 5)" + "0" ] }, - "execution_count": 51, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "tuple(list(a))" + "a.index(1)" ] }, { @@ -1007,7 +981,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -1016,40 +990,19 @@ "{1, 2, 3, 4, 5}" ] }, - "execution_count": 53, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a = {1,2,3,4,5,5,5,5,5}\n", + "a = {1,2,3,4,4,5,5,5,5,5}\n", "a" ] }, { "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [1,2,3,4,5,5,5,5,5]\n", - "len(set(a))" - ] - }, - { - "cell_type": "code", - "execution_count": 63, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -1058,7 +1011,7 @@ "True" ] }, - "execution_count": 63, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -1069,7 +1022,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -1078,7 +1031,7 @@ "set" ] }, - "execution_count": 64, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -1089,7 +1042,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 58, "metadata": { "scrolled": true }, @@ -1154,7 +1107,7 @@ " 'update']" ] }, - "execution_count": 65, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -1165,7 +1118,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -1174,7 +1127,7 @@ "{1, 4}" ] }, - "execution_count": 58, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -1182,8 +1135,7 @@ "source": [ "a = {1,2,3,4}\n", "b = (1,4,5,6)\n", - "x = a.intersection(b)\n", - "x" + "a.intersection(b)" ] }, { @@ -1195,7 +1147,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 143, "metadata": {}, "outputs": [ { @@ -1204,7 +1156,7 @@ "{'a', 'b'}" ] }, - "execution_count": 1, + "execution_count": 143, "metadata": {}, "output_type": "execute_result" } @@ -1216,7 +1168,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 144, "metadata": {}, "outputs": [ { @@ -1225,7 +1177,7 @@ "{1, 2, 3}" ] }, - "execution_count": 1, + "execution_count": 144, "metadata": {}, "output_type": "execute_result" } @@ -1237,28 +1189,7 @@ }, { "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3]" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "s = {1,2,3}\n", - "list(s)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -1267,97 +1198,15 @@ "dict" ] }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = {}\n", - "type(x)" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['__and__',\n", - " '__class__',\n", - " '__contains__',\n", - " '__delattr__',\n", - " '__dir__',\n", - " '__doc__',\n", - " '__eq__',\n", - " '__format__',\n", - " '__ge__',\n", - " '__getattribute__',\n", - " '__gt__',\n", - " '__hash__',\n", - " '__iand__',\n", - " '__init__',\n", - " '__init_subclass__',\n", - " '__ior__',\n", - " '__isub__',\n", - " '__iter__',\n", - " '__ixor__',\n", - " '__le__',\n", - " '__len__',\n", - " '__lt__',\n", - " '__ne__',\n", - " '__new__',\n", - " '__or__',\n", - " '__rand__',\n", - " '__reduce__',\n", - " '__reduce_ex__',\n", - " '__repr__',\n", - " '__ror__',\n", - " '__rsub__',\n", - " '__rxor__',\n", - " '__setattr__',\n", - " '__sizeof__',\n", - " '__str__',\n", - " '__sub__',\n", - " '__subclasshook__',\n", - " '__xor__',\n", - " 'add',\n", - " 'clear',\n", - " 'copy',\n", - " 'difference',\n", - " 'difference_update',\n", - " 'discard',\n", - " 'intersection',\n", - " 'intersection_update',\n", - " 'isdisjoint',\n", - " 'issubset',\n", - " 'issuperset',\n", - " 'pop',\n", - " 'remove',\n", - " 'symmetric_difference',\n", - " 'symmetric_difference_update',\n", - " 'union',\n", - " 'update']" - ] - }, - "execution_count": 61, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a = {1}\n", - "dir(a)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "x = {}\n", + "type(x)" + ] }, { "cell_type": "markdown", @@ -1383,20 +1232,20 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [ "my_dict = {\n", - " \"a\": 1,\n", - " \"b\": 2,\n", - " \"c\": 3\n", + " \"F_name\": 'Rafael',\n", + " \"L_name\": 'Vescovi',\n", + " \"Like_potatos\": 'fried'\n", "}" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -1405,7 +1254,7 @@ "True" ] }, - "execution_count": 4, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -1416,7 +1265,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 62, "metadata": {}, "outputs": [ { @@ -1425,7 +1274,7 @@ "dict" ] }, - "execution_count": 5, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -1436,7 +1285,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 63, "metadata": { "scrolled": true }, @@ -1486,7 +1335,7 @@ " 'values']" ] }, - "execution_count": 6, + "execution_count": 63, "metadata": {}, "output_type": "execute_result" } @@ -1504,36 +1353,16 @@ }, { "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'a': 1, 'b': 2, 'c': 3}" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_dict" - ] - }, - { - "cell_type": "code", - "execution_count": 72, + "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "dict_keys(['a', 'b', 'c'])" + "dict_keys(['F_name', 'L_name', 'Like_potatos'])" ] }, - "execution_count": 72, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" } @@ -1551,16 +1380,16 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 150, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "dict_values([1, 2, 3])" + "dict_values(['Rafael', 'Vescovi', 'fried'])" ] }, - "execution_count": 8, + "execution_count": 150, "metadata": {}, "output_type": "execute_result" } @@ -1578,16 +1407,16 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 151, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "a\n", - "b\n", - "c\n" + "F_name\n", + "L_name\n", + "Like_potatos\n" ] } ], @@ -1598,16 +1427,16 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 152, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "dict_items([('a', 1), ('b', 2), ('c', 3)])" + "dict_items([('F_name', 'Rafael'), ('L_name', 'Vescovi'), ('Like_potatos', 'fried')])" ] }, - "execution_count": 10, + "execution_count": 152, "metadata": {}, "output_type": "execute_result" } @@ -1619,16 +1448,16 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 153, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "a --> 1\n", - "b --> 2\n", - "c --> 3\n" + "F_name --> Rafael\n", + "L_name --> Vescovi\n", + "Like_potatos --> fried\n" ] } ], @@ -1646,22 +1475,22 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1" + "'Rafael'" ] }, - "execution_count": 16, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "my_dict[\"a\"]" + "my_dict[\"F_name\"]" ] }, { @@ -1673,7 +1502,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 69, "metadata": {}, "outputs": [], "source": [ @@ -1686,7 +1515,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -1695,7 +1524,7 @@ "{1: 'Brian', 2: 'John'}" ] }, - "execution_count": 74, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -1713,42 +1542,42 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 70, "metadata": {}, "outputs": [], "source": [ "# this is basically json\n", "my_dict = {\n", " \n", - " 1:{\"first_name\":\"Brian\"},\n", - " 2:{\"first_name\":\"Jane\", \"last_name\":\"Doe\"},\n", - " 3:{\"first_name\":\"John\", \"last_name\":\"Doe\"}\n", + " 0:{\"first_name\":\"Brian\", \"last_name\":\"Craft\"},\n", + " 1:{\"first_name\":\"Jane\", \"last_name\":\"Doe\"},\n", + " 2:{\"first_name\":\"John\", \"last_name\":\"Doe\"}\n", "}" ] }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 71, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'Doe'" + "{'first_name': 'Jane', 'last_name': 'Doe'}" ] }, - "execution_count": 78, + "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "my_dict[2][\"last_name\"]" + "my_dict[1]" ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 73, "metadata": {}, "outputs": [ { @@ -1757,7 +1586,7 @@ "True" ] }, - "execution_count": 28, + "execution_count": 73, "metadata": {}, "output_type": "execute_result" } @@ -1768,7 +1597,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 75, "metadata": {}, "outputs": [ { @@ -1777,27 +1606,27 @@ "dict" ] }, - "execution_count": 30, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "type(my_dict[1])" + "type(my_dict[0])" ] }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 164, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'Brian'" + "'Jane'" ] }, - "execution_count": 31, + "execution_count": 164, "metadata": {}, "output_type": "execute_result" } @@ -1829,43 +1658,44 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 76, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "a\n", - "b\n", - "c\n" - ] + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ "a = [\"a\", \"b\", \"c\"]\n", - "for i in a:\n", - " print(i)" + "enumerate(a)" ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 91, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0 --> a\n", - "1 --> b\n", - "2 --> c\n" + "(0, 1) --> 3\n", + "(1, 2) --> 3\n", + "(2, 3) --> 3\n" ] } ], "source": [ - "for idx, i in enumerate(a):\n", - " print(idx,\"-->\", i)" + "for idx in enumerate(a):\n", + " print(idx,\"-->\", item)\n", + " \n" ] }, { @@ -1880,7 +1710,7 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 78, "metadata": {}, "outputs": [], "source": [ @@ -1890,27 +1720,27 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 79, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[(1, 'a'), (2, 'b'), (3, 'c')]" + "" ] }, - "execution_count": 83, + "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "list(zip(a,b))" + "zip(a,b)" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 80, "metadata": {}, "outputs": [ { @@ -1919,7 +1749,7 @@ "[(1, 'a'), (2, 'b'), (3, 'c')]" ] }, - "execution_count": 37, + "execution_count": 80, "metadata": {}, "output_type": "execute_result" } @@ -1930,7 +1760,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -1950,7 +1780,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -1970,7 +1800,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 83, "metadata": {}, "outputs": [ { @@ -1990,7 +1820,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -2010,7 +1840,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 62, "metadata": {}, "outputs": [ { @@ -2030,7 +1860,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -2039,29 +1869,19 @@ "[(1, 'a', 'A'), (2, 'b', 'B'), (3, 'c', 'C')]" ] }, - "execution_count": 85, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a = [1,2,3]\n", - "b = {\"a\", \"b\", \"c\"}\n", + "b = [\"a\", \"b\", \"c\"]\n", "c = [\"A\", \"B\", \"C\"]\n", "\n", "list(zip(a,b,c))" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Continue, Break and Pass\n", - "* break: chance to exit a loop when a condition is met\n", - "* continue: continue to the next iteration of the loop\n", - "* pass: do nothing" - ] - }, { "cell_type": "code", "execution_count": 88, @@ -2071,30 +1891,37 @@ "name": "stdout", "output_type": "stream", "text": [ - "3\n", - "this item doesn't work a\n", - "4\n" + "a\n", + "b\n", + "c\n" ] } ], "source": [ - "a = [1,\"a\",2]\n", - "for i in a:\n", - " try:\n", - " print(i+2)\n", - " except:\n", - " print(\"this item doesn't work\", i)" + "for item in b:\n", + " print(item)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Continue, Break and Pass\n", + "* break: chance to exit a loop when a condition is met\n", + "* continue: continue to the next iteration of the loop\n", + "* pass: do nothing" ] }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 92, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", "0 is not greater then 4\n", "1 is not greater then 4\n", "2 is not greater then 4\n", @@ -2106,6 +1933,7 @@ ], "source": [ "lst = list(range(10))\n", + "print(lst)\n", "for x in lst:\n", " if x > 4:\n", " print(\"{} is greater then 4 so we will break out loop\".format(x))\n", @@ -2116,44 +1944,7 @@ }, { "cell_type": "code", - "execution_count": 93, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'this is a string 1 2 3'" - ] - }, - "execution_count": 93, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"this is a string {} {} {}\".format(1,2,3)" - ] - }, - { - "cell_type": "code", - "execution_count": 94, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "a 2\n" - ] - } - ], - "source": [ - "print(\"a\", 2)" - ] - }, - { - "cell_type": "code", - "execution_count": 96, + "execution_count": 100, "metadata": {}, "outputs": [ { @@ -2161,10 +1952,15 @@ "output_type": "stream", "text": [ "5 is greater then 4\n", + "5\n", "6 is greater then 4\n", + "6\n", "7 is greater then 4\n", + "7\n", "8 is greater then 4\n", - "9 is greater then 4\n" + "8\n", + "9 is greater then 4\n", + "9\n" ] } ], @@ -2172,14 +1968,13 @@ "lst = list(range(10))\n", "for x in lst:\n", " if x > 4:\n", - " print(x,\"is greater then 4\")\n", - " else:\n", - " pass" + " print(\"{} is greater then 4\".format(x))\n", + " print(x)" ] }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 101, "metadata": {}, "outputs": [ { @@ -2190,12 +1985,7 @@ "1 is not greater then 4\n", "2 is not greater then 4\n", "3 is not greater then 4\n", - "4 is not greater then 4\n", - "5\n", - "6\n", - "7\n", - "8\n", - "9\n" + "4 is not greater then 4\n" ] } ], @@ -2203,7 +1993,6 @@ "lst = list(range(10))\n", "for x in lst:\n", " if x > 4:\n", - " print(x)\n", " continue\n", " else:\n", " print(\"{} is not greater then 4\".format(x))" @@ -2219,15 +2008,15 @@ "output_type": "stream", "text": [ "0 is not greater then 4\n", - "0 print statement below\n", + "print statement below\n", "1 is not greater then 4\n", - "1 print statement below\n", + "print statement below\n", "2 is not greater then 4\n", - "2 print statement below\n", + "print statement below\n", "3 is not greater then 4\n", - "3 print statement below\n", + "print statement below\n", "4 is not greater then 4\n", - "4 print statement below\n" + "print statement below\n" ] } ], @@ -2236,16 +2025,16 @@ "\n", "for x in lst:\n", " if x > 4:\n", - " pass\n", + " continue\n", " else:\n", " print(\"{} is not greater then 4\".format(x))\n", " \n", - " print(\"{} print statement below\".format(x))" + " print(\"print statement below\")" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 68, "metadata": {}, "outputs": [ { @@ -2302,7 +2091,7 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 106, "metadata": {}, "outputs": [], "source": [ @@ -2311,19 +2100,28 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 107, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[['a', 'b', 'c'], ['d', 'e', 'f', 'b']]\n" + ] + } + ], "source": [ "a = [\n", - " [\"this\", \"a\", \"sentence\"],\n", - " [\"this\", \"is\", \"my\", \"sentence\"]\n", - "]" + " [\"a\", \"b\", \"c\"],\n", + " [\"d\", \"e\", \"f\", \"b\"]\n", + "]\n", + "print(a)" ] }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 108, "metadata": {}, "outputs": [], "source": [ @@ -2332,16 +2130,16 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 109, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['this', 'a', 'sentence', 'this', 'is', 'my', 'sentence']" + "['a', 'b', 'c', 'd', 'e', 'f', 'b']" ] }, - "execution_count": 136, + "execution_count": 109, "metadata": {}, "output_type": "execute_result" } @@ -2360,7 +2158,7 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 110, "metadata": {}, "outputs": [], "source": [ @@ -2369,7 +2167,7 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 111, "metadata": { "scrolled": true }, @@ -2377,32 +2175,21 @@ { "data": { "text/plain": [ - "[('a', 'b'),\n", - " ('a', 'c'),\n", - " ('a', 'c'),\n", - " ('b', 'a'),\n", - " ('b', 'c'),\n", - " ('b', 'c'),\n", - " ('c', 'a'),\n", - " ('c', 'b'),\n", - " ('c', 'c'),\n", - " ('c', 'a'),\n", - " ('c', 'b'),\n", - " ('c', 'c')]" + "[('a', 'b'), ('a', 'c'), ('b', 'a'), ('b', 'c'), ('c', 'a'), ('c', 'b')]" ] }, - "execution_count": 122, + "execution_count": 111, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "list(permutations([\"a\",\"b\",\"c\",\"c\"], 2))" + "list(permutations([\"a\",\"b\",\"c\"], 2))" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 112, "metadata": {}, "outputs": [ { @@ -2416,7 +2203,7 @@ " ('c', 'b', 'a')]" ] }, - "execution_count": 17, + "execution_count": 112, "metadata": {}, "output_type": "execute_result" } @@ -2435,7 +2222,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 113, "metadata": {}, "outputs": [], "source": [ @@ -2444,7 +2231,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 114, "metadata": {}, "outputs": [ { @@ -2453,7 +2240,7 @@ "[('a', 'b'), ('a', 'c'), ('b', 'c')]" ] }, - "execution_count": 21, + "execution_count": 114, "metadata": {}, "output_type": "execute_result" } @@ -2464,7 +2251,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 115, "metadata": {}, "outputs": [ { @@ -2473,7 +2260,7 @@ "[('a', 'b', 'c')]" ] }, - "execution_count": 22, + "execution_count": 115, "metadata": {}, "output_type": "execute_result" } @@ -2491,7 +2278,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 79, "metadata": {}, "outputs": [], "source": [ @@ -2500,16 +2287,16 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 80, "metadata": {}, "outputs": [], "source": [ - "# a = [[\"a\", \"b\"], [\"c\", \"d\"]]" + "a = [[\"a\", \"b\"], [\"c\", \"d\"]]" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -2518,18 +2305,18 @@ "[('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd')]" ] }, - "execution_count": 40, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# list(product(*a))" + "list(product(*a))" ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -2538,7 +2325,7 @@ "[('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd')]" ] }, - "execution_count": 38, + "execution_count": 82, "metadata": {}, "output_type": "execute_result" } @@ -2558,7 +2345,7 @@ }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 118, "metadata": {}, "outputs": [], "source": [ @@ -2567,48 +2354,7 @@ }, { "cell_type": "code", - "execution_count": 137, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]" - ] - }, - "execution_count": 137, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b = [1,1,1,1,2,2,2,3,3,3,4,4,4]\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 140, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['this', 'a', 'sentence', 'this', 'is', 'my', 'sentence']" - ] - }, - "execution_count": 140, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 141, + "execution_count": 119, "metadata": {}, "outputs": [], "source": [ @@ -2617,16 +2363,16 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 120, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Counter({'this': 2, 'a': 1, 'sentence': 2, 'is': 1, 'my': 1})" + "Counter({'a': 1, 'b': 2, 'c': 1, 'd': 1, 'e': 1, 'f': 1})" ] }, - "execution_count": 142, + "execution_count": 120, "metadata": {}, "output_type": "execute_result" } @@ -2637,28 +2383,7 @@ }, { "cell_type": "code", - "execution_count": 144, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "yes\n" - ] - } - ], - "source": [ - "x = 2\n", - "if x > 1: \n", - " print(\"yes\")\n", - "else: \n", - " print(\"no\")" - ] - }, - { - "cell_type": "code", - "execution_count": 24, + "execution_count": 121, "metadata": {}, "outputs": [ { @@ -2667,7 +2392,7 @@ "collections.Counter" ] }, - "execution_count": 24, + "execution_count": 121, "metadata": {}, "output_type": "execute_result" } @@ -2678,7 +2403,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 122, "metadata": {}, "outputs": [ { @@ -2709,6 +2434,48 @@ "

- create a counter for the list to get item frequencies

" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, diff --git a/lectures/Lecture 10 - Recursion.ipynb b/lectures/Lecture 10 - Recursion.ipynb new file mode 100644 index 0000000..3b2555c --- /dev/null +++ b/lectures/Lecture 10 - Recursion.ipynb @@ -0,0 +1,639 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Recursion\n", + "\n", + "Recursion is a mind-bending but fun a powerful concept. What happens if a function calls...itself?" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "my_list = [1,2,3,4,5,6,7,8,9,10]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def add_list_normally(lst):\n", + " return sum(lst)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "55" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "add_list_normally(my_list)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "def add_list_loop(lst):\n", + " sum_ = 0\n", + " for e in lst:\n", + " sum_ += e\n", + " return sum_" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "55" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "add_list_loop(my_list)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "def add_list_recursively(lst):\n", + " print(lst, len(lst))\n", + " if len(lst) == 0: return 0\n", + " return lst[0] + add_list_recursively(lst[1:])" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 10\n", + "[2, 3, 4, 5, 6, 7, 8, 9, 10] 9\n", + "[3, 4, 5, 6, 7, 8, 9, 10] 8\n", + "[4, 5, 6, 7, 8, 9, 10] 7\n", + "[5, 6, 7, 8, 9, 10] 6\n", + "[6, 7, 8, 9, 10] 5\n", + "[7, 8, 9, 10] 4\n", + "[8, 9, 10] 3\n", + "[9, 10] 2\n", + "[10] 1\n", + "[] 0\n" + ] + }, + { + "data": { + "text/plain": [ + "55" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "add_list_recursively(my_list)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### ... WHAT??\n", + "\n", + "### Real-world recursion\n", + "\n", + "#### Opposing mirrors\n", + "![](images/infinitemirror.jpg)\n", + "\n", + "#### Feedback loops\n", + "![](images/how-to-control-feedback-in-a-sound-system_header.jpg)\n", + "\n", + "#### Movies\n", + "![](images/inception.jpg)\n", + "\n", + "#### Nerd joke: Google \"recursion\"\n", + "\n", + "#### Not a nerd joke:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "def blowup(): \n", + " blowup()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "ename": "RecursionError", + "evalue": "maximum recursion depth exceeded", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mRecursionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mblowup\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32m\u001b[0m in \u001b[0;36mblowup\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mblowup\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mblowup\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "... last 1 frames repeated, from the frame below ...\n", + "\u001b[1;32m\u001b[0m in \u001b[0;36mblowup\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mblowup\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mblowup\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mRecursionError\u001b[0m: maximum recursion depth exceeded" + ] + } + ], + "source": [ + "blowup()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Why did this function blow up?\n", + "\n", + "Recall the following example from an earlier lecture:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "def error_func(filename):\n", + " for line in open(filename, 'r').readlines():\n", + " wont_even_get_here = line.split(\",\")\n", + "\n", + "def error_func2(filename):\n", + " error_func(filename)\n", + "\n", + "def error_func3(filename):\n", + " error_func2(filename)\n", + "\n", + "def error_func4(filename):\n", + " error_func3(filename)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: 'this_file_doesnt_exist.csv'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0merror_func4\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"this_file_doesnt_exist.csv\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36merror_func4\u001b[0;34m(filename)\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0merror_func4\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0merror_func3\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36merror_func3\u001b[0;34m(filename)\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0merror_func3\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0merror_func2\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0merror_func4\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36merror_func2\u001b[0;34m(filename)\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0merror_func2\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0merror_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0merror_func3\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36merror_func\u001b[0;34m(filename)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0merror_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mline\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'r'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreadlines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mwont_even_get_here\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mline\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\",\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0merror_func2\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'this_file_doesnt_exist.csv'" + ] + } + ], + "source": [ + "error_func4(\"this_file_doesnt_exist.csv\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Python not only told us that the file wasn't found, but it remembered the full history of how we arrived at the line which caused the error. This _history_ is called the _call stack_. Most languages have similar call stacks and they serve serveral purposes, one of them being to keep track of which function calls led us to our current location in the executing program.\n", + "\n", + "In the exaple above, we are four functions deep when the error occurs. What if we were 100 or 10k or a million functions deep? The call stack would have to remember all of thos functions.\n", + "\n", + "What happens when the function `blowup` keeps calling itself? The stack keeps growing, until it runs out of space!\n", + "\n", + "As you saw, Python terminates the function after a number of recursions, some languages keep going until they _blow their stack_." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Ask** What is this error called in Java?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Rules of recursion\n", + "\n", + "There are two rules of safe recursion:\n", + "1. Always handle the base case\n", + "2. Each recursion must move computation towards the base case\n", + "\n", + "Notice in the example above:\n", + "\n", + "```python\n", + "def add_list_recursively(lst):\n", + " if len(lst) == 0: return 0\n", + " return lst[0] + add_list_recursively(lst[1:])\n", + "```\n", + "\n", + "When the function is called recursively, it isn't called on the whole list, it is called on _the whole list, minus one item_: `add_list_recursively(lst[1:])`. This means that each recursion call reduces the size of the list it is processing. Logically, the first line in the funciton handle the case when there are no more items to process." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Processing recursive data structures\n", + "\n", + "Since this is an intro class, we haven't covered many advanced data structures. However, lets take a brief look at a binary tree:\n", + "![](images/binary_tree.svg)\n", + "\n", + "Such trees are extremely popular and useful in Computer Science and AI. Many games use similar trees to find best paths for their agents, optimization algorithms use similar trees to reduce the amount of computation which needs to be done, programmers use such trees to build data structures such as dictionaries!\n", + "\n", + "Here is an example of how such a tree might be represented in Python:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "tree = [2,\n", + " [7,\n", + " [2, [], []],\n", + " [6,\n", + " [5, [], []],\n", + " [11, [], []]\n", + " ]\n", + " ],\n", + " [5,\n", + " [],\n", + " [9,\n", + " [4, [], []],\n", + " []\n", + " ]\n", + " ]\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[2,\n", + " [7, [2, [], []], [6, [5, [], []], [11, [], []]]],\n", + " [5, [], [9, [4, [], []], []]]]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tree" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "51" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum([2, 7, 2, 6, 5, 11, 5, 9, 4])" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "unsupported operand type(s) for +: 'int' and 'list'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0msum\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtree\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'int' and 'list'" + ] + } + ], + "source": [ + "sum(tree)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Some algorithms are _much_ easier to implement via recursion" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "def tree_sum(t):\n", + " # add the root, left tree and right tree\n", + " print(t)\n", + " if len(t) == 0: return 0\n", + " return t[0] + tree_sum(t[1]) + tree_sum(t[2])" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[2, [7, [2, [], []], [6, [5, [], []], [11, [], []]]], [5, [], [9, [4, [], []], []]]]\n", + "[7, [2, [], []], [6, [5, [], []], [11, [], []]]]\n", + "[2, [], []]\n", + "[]\n", + "[]\n", + "[6, [5, [], []], [11, [], []]]\n", + "[5, [], []]\n", + "[]\n", + "[]\n", + "[11, [], []]\n", + "[]\n", + "[]\n", + "[5, [], [9, [4, [], []], []]]\n", + "[]\n", + "[9, [4, [], []], []]\n", + "[4, [], []]\n", + "[]\n", + "[]\n", + "[]\n" + ] + }, + { + "data": { + "text/plain": [ + "51" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tree_sum(tree)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Count children" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "def count_children(t):\n", + " if len(t) == 0: return ([], 0)\n", + " else:\n", + " left_val, left_children = count_children(t[1])\n", + " right_val, right_children = count_children(t[2])\n", + " children = 1 + left_children + right_children\n", + " print(t[0], children-1)\n", + " return (t[0], children)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2 0\n", + "5 0\n", + "11 0\n", + "6 2\n", + "7 4\n", + "4 0\n", + "9 1\n", + "5 2\n", + "2 8\n" + ] + }, + { + "data": { + "text/plain": [ + "(2, 9)" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "count_children(tree)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Print a tree, recursively" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "def print_tree(t, indent=0):\n", + " if len(t) > 0:\n", + " print(\"-\" * indent, t[0])\n", + " print_tree(t[1], indent+1)\n", + " print_tree(t[2], indent+1)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 2\n", + "- 7\n", + "-- 2\n", + "-- 6\n", + "--- 5\n", + "--- 11\n", + "- 5\n", + "-- 9\n", + "--- 4\n" + ] + } + ], + "source": [ + "print_tree(tree)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### More on recursion\n", + "\n", + "![](images/david_chang.jpg)\n", + "\n", + "> And recently I started seeing patterns in our most successful dishes that suggested our hits weren’t entirely random; there’s a set of underlying laws that links them together. I’ve struggled to put this into words, and I haven’t talked to my fellow chefs about it, because I worry they’ll think I’m crazy. But I think there’s something to it, and so I’m sharing it now for the first time. I call it the Unified Theory of Deliciousness.\n", + "\n", + "> This probably sounds absolutely ridiculous, but the theory is rooted in a class I took in college called Advanced Logic. A philosopher named Howard DeLong taught it; he wrote one of the books that directly inspired Douglas Hofstadter to write [Gödel, Escher, Bach](https://www.amazon.com/G%C3%B6del-Escher-Bach-Eternal-Golden/dp/0465026567). The first day, he said, “This class will change your life,” and I was like, “What kind of asshole is this?” But he was right. I would never pretend to be an expert in logic, and I never made it all the way through Gödel, Escher, Bach. But the ideas and concepts I took away from that class have haunted me ever since.\n", + "\n", + "Gödel, Escher, Bach\n", + "\n", + "Wikipedia article: https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach\n", + "\n", + "Book: https://www.amazon.com/G%C3%B6del-Escher-Bach-Eternal-Golden/dp/0465026567\n", + "\n", + "MIT lectures: https://ocw.mit.edu/high-school/humanities-and-social-sciences/godel-escher-bach/video-lectures/\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Exercise** Write a recursive function which multiplies numbers in a list (similar to the summing function above)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Exercise** Write a recursive function which multplies all values in a tree by 2, then print those values (just print them as a list of numbers)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Reference\n", + "\n", + "Elevator picture: http://steve-patterson.com/logic-and-infinity/\n", + "\n", + "Feedback Loop: https://www.shure.com/en-US/performance-production/louder/how-to-control-feedback-in-a-sound-system\n", + "\n", + "Inception poster: https://www.amazon.com/Posters-USA-Inception-Poster-GLOSSY/dp/B01MRP0KEW/\n", + "\n", + "Binary tree: https://en.wikipedia.org/wiki/File:Binary_tree.svg" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lectures/Lecture 10 - RegExp.ipynb b/lectures/Lecture 10 - RegExp.ipynb new file mode 100644 index 0000000..8cc926d --- /dev/null +++ b/lectures/Lecture 10 - RegExp.ipynb @@ -0,0 +1,360 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Regular Expressions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Regular expressions are a mini-language, used to parse and extract information from strings.\n", + "\n", + "### Motivation: slicing vs split vs regex\n", + "\n", + "Given a strings, such as:\n", + "\n", + "\"01/09/2008\", \"05/12/2012\"\n", + "\n", + "we know we can get extract the year this way:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2008\n", + "2012\n" + ] + } + ], + "source": [ + "dates = [\"01/09/2008\", \"05/12/2012\"]\n", + "\n", + "for d in dates:\n", + " print(d[-4:]) # use normal indexing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we had a strings, such as:\n", + "\n", + "\"In the year 2008 we did such as such\"\n", + "\"After the year 2009 we continued something else\"\n", + "\n", + "We can no longer use slicing, but we can just split the string and get the 4th value to get the year:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2008\n", + "2009\n" + ] + } + ], + "source": [ + "sentences = [\"In the year 2008 we did such as such\"\n", + " , \"After the year 2009 we continued something else\"]\n", + "\n", + "for s in sentences:\n", + " print(s.split(\" \")[3])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "How do we extract dates in the following sentences?\n", + "\n", + "\"2019: After the Fall of New York\"\n", + "\n", + "\"The exterminators of the year 3000\"\n", + "\n", + "\"1990: The Bronx Warriors\"\n", + "\n", + "The first inclination of novice programmers would be to split the movie title above, go through each title and check to see if it is just numbers. If it is, extract that token as the year.\n", + "\n", + "This pattern of coding comes up so often that there is a special way of extracting such information: regular expressions!" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "01 01 None\n", + "\n", + "02 02 None\n", + "\n", + "03 03 None\n" + ] + } + ], + "source": [ + "import re # <= regular expression library\n", + "\n", + "\n", + "movies = [\"01 - 2019: After the Fall of New York\"\n", + " , \"02 - The exterminators of the year 3000\"\n", + " , \"03 - 1990: The Bronx Warriors\"]\n", + "\n", + "\n", + "for m in movies:\n", + " a = re.match(r\"(\\d+)*(\\d+)*\",m)\n", + " print(a)\n", + " print(a.group(0),a.group(1),a.group(2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**...what??**\n", + "\n", + "Some people don't like regular expressions:\n", + "\n", + "> Some people, when confronted with a problem, think\n", + "“I know, I'll use regular expressions.” Now they have two problems.\n", + "\n", + "\n", + "- Jamie Zawinski" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Regular expressions in context\n", + "\n", + "Regular expressions were invented, in their modern form, in 1951 by Stephen Kleene. They have their roots in theoretical computer science, although they have extremely useful as a text parsing tool.\n", + "\n", + "Practically every language has regular expressions built-in. They are often super optimized and always expressed in an archaic syntax.\n", + "\n", + "Regular expressiosn allow you to use basic components to parse a language. Here are some pseudo-code examples of regex expressions:\n", + "\n", + "Find all characters which are digits\n", + "\n", + "Find all characters which are digits, followed by another digit\n", + "\n", + "Find all characters which are at the beginning of a line, are of one of the following characters: [,.!;:], followed by 3 digits, followed by a comma, followed by three characters which are NOT digits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sample regular expressions" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Match starts at 8 ends at 11 and contains 102\n", + "Match starts at 22 ends at 24 and contains 38\n", + "Match starts at 45 ends at 47 and contains 36\n", + "Match starts at 67 ends at 69 and contains 10\n", + "Match starts at 89 ends at 90 and contains 8\n", + "Match starts at 115 ends at 116 and contains 3\n" + ] + } + ], + "source": [ + "ages = \"Papa is 102, Homer is 38 years old, Marge is 36 years old, Bart is 10 years old, Lisa is 8 years old and Maggie is 3.\"\n", + "\n", + "# Task: Extract all ages\n", + "# Thinking: Find all numbers\n", + "# Regex pseudo code: find digits\n", + "\n", + "regex_attempt1 = \"(\\d+)\" # <= Find digits\n", + "\n", + "for m in re.finditer(regex_attempt1, ages): \n", + " print(\"Match starts at\",m.start(), \"ends at\", m.end(), \"and contains\", m.group())" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Match starts at 8 ends at 9 and contains 1\n", + "Match starts at 9 ends at 10 and contains 0\n", + "Match starts at 10 ends at 11 and contains 2\n", + "Match starts at 22 ends at 23 and contains 3\n", + "Match starts at 23 ends at 24 and contains 8\n", + "Match starts at 45 ends at 46 and contains 3\n", + "Match starts at 46 ends at 47 and contains 6\n", + "Match starts at 67 ends at 68 and contains 1\n", + "Match starts at 68 ends at 69 and contains 0\n", + "Match starts at 89 ends at 90 and contains 8\n", + "Match starts at 115 ends at 116 and contains 3\n" + ] + } + ], + "source": [ + "# Task: Extract all ages\n", + "# Thinking: Find all numbers\n", + "# Regex pseudo code: find digits, clump consecutive digits together\n", + "\n", + "regex_attempt1 = \"(\\d|\\d\\d)\" # <= Find digits and 1 or more repititions\n", + "\n", + "for m in re.finditer(regex_attempt1, ages): \n", + " print(\"Match starts at\",m.start(), \"ends at\", m.end(), \"and contains\", m.group())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Just use http://www.pyregex.com/ or https://www.debuggex.com/" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Exercise** Extract area codes from the following phone numbers. _Must_ write a single regex which is able to extract regular expressions from the following numbers (in a loop):\n", + "\n", + "1-201-123-1234\n", + "\n", + "98-708-567-7890\n", + "\n", + "0-708-333-4444\n", + "\n", + "In the above numbers, the area codes are 201, 708 and 708, respectively." + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['201']\n", + "['708']\n", + "['708']\n" + ] + } + ], + "source": [ + "area_code_regex = r\"\\d+-(\\d+)-\\d+-\\d+\"\n", + "\n", + "for ac in [\"1-201-123-1234\", \"98-708-567-7890\", \"0-708-333-4444\"]:\n", + " print(re.findall(area_code_regex, ac))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Hint: Look for the start of string, then one or more digits, then a dash, THEN the digits which contain our area code. Ignore the rest.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What regular expressions can't do\n", + "\n", + "Regular expressions are part of a theoretical framework which define languages. There are languages which are less or more powerful than regular expressions.\n", + "\n", + "For example, regular expressions are not able to correctly parse this expressions:\n", + "\n", + "`1 + (2 * (3 + 8))`\n", + "\n", + "In order to parse the expression above, after each left parenthesis, we would have to use recursion. Regular expressions are not designed to parse such recursive expressions.\n", + "\n", + "Practically speaking, although _many_ poeple attempt it, regular expressions are not the correct choise to parse html (web) pages or xml documents.\n", + "\n", + "\n", + "Computer science students often learn about context free grammars. CFGs _can_ parse recursive strings and are often used to parse programming languages. Unfortunately, CFGs are out of scope for this course." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vescovi , Rafael\n", + "Newton , Isaac\n" + ] + } + ], + "source": [ + "bestphysicist = ['Rafael Vescovi, PhD',\n", + " 'Isaac Newton, physicist']\n", + "\n", + " \n", + "for k in bestphysicist:\n", + " m = re.match(r\"(?P\\w+) (?P\\w+), \\w+\", k)\n", + " print(m.group('surname'), ', ',m.group('Name'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lectures/Lecture 2 - UDFs, Comprehensions, Lambdas, Generators, and Error Handling.ipynb b/lectures/Lecture 2 - UDFs, Comprehensions, Lambdas, Generators, and Error Handling.ipynb index 01b5558..bed5bf2 100644 --- a/lectures/Lecture 2 - UDFs, Comprehensions, Lambdas, Generators, and Error Handling.ipynb +++ b/lectures/Lecture 2 - UDFs, Comprehensions, Lambdas, Generators, and Error Handling.ipynb @@ -22,18 +22,16 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "raw", "metadata": {}, - "outputs": [], "source": [ - "#def my_function(param1, param2):\n", - "# do some stuff" + "def my_function(param1, param2):\n", + " do some stuff" ] }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -43,7 +41,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -52,7 +50,7 @@ "function" ] }, - "execution_count": 66, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -63,24 +61,27 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "5\n" + "\n", + "\n" ] } ], "source": [ - "my_func(5)" + "my_func(print)\n", + "\n", + "print(print)" ] }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -104,17 +105,20 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ - "def my_func(x):\n", - " return x+2 # note you can just add on the fly here" + "def my_func1(x):\n", + " print(x+2) # note you can just add on the fly here\n", + " \n", + "def my_func2(x):\n", + " return(x+2) # note you can just add on the fly here" ] }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -126,62 +130,50 @@ } ], "source": [ - "y = my_func(2)\n", - "print(y)" + "my_func1(2)" ] }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 20, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "4" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "4\n" + ] } ], "source": [ - "y" + "\n", + "print(my_func2(2))" ] }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 17, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "4\n", + "None\n", + "4\n" + ] } ], "source": [ - "def my_func():\n", - " return (1,2)\n", + "a = my_func1(2)\n", + "b = my_func2(2)\n", "\n", - "a,b,c = my_func()\n", - "\n", - "a" + "print(a)\n", + "print(b)" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, @@ -191,7 +183,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -201,7 +193,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -226,108 +218,26 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "def my_func(x,y):\n", - " \n", - " output = None\n", - " z = x+y\n", - " \n", - " if z < 5:\n", - " output = True\n", - " else:\n", - " output = False\n", - " \n", - " return output" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x):\n", - " return(x)\n", - " \n", - "x = my_func(2)" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2" - ] - }, - "execution_count": 87, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "test\n" - ] - } - ], - "source": [ - "a = 5\n", - "\n", - "if a:\n", - " print(\"test\")\n", - "else:\n", - " print(\"no\")" + " \n", + " output = None\n", + " threshold = 5 \n", + " \n", + " if x+y < threshold:\n", + " output = True\n", + " else:\n", + " output = False\n", + " \n", + " return output" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -336,7 +246,7 @@ "True" ] }, - "execution_count": 21, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -348,7 +258,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -357,7 +267,7 @@ "False" ] }, - "execution_count": 22, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -373,50 +283,82 @@ "source": [ "

make a function that

\n", "

- takes as an input a list of integers

\n", - "

- adds them all together

\n", + "

- adds together all the tiems less than 10

\n", "

- returns the final sum

" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### note python will assume the positioning of params\n", + "* consider the below\n", + "* the first param is a string\n", + "* the second is a number" + ] + }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 37, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "15" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "35\n" + ] + }, + { + "ename": "TypeError", + "evalue": "'int' object is not iterable", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 25\u001b[0m \u001b[0mtest\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m7\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m9\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m11\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m13\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m15\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 26\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 27\u001b[1;33m \u001b[0mtest_result\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mraf_func_x\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtest\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 28\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 29\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'The sum of test is '\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mstr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtest_result\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m\u001b[0m in \u001b[0;36mraf_func_x\u001b[1;34m(par1)\u001b[0m\n\u001b[0;32m 12\u001b[0m \u001b[1;31m#test for the ones bellow value\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[1;31m#k is a value on raf_list\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 14\u001b[1;33m \u001b[1;32mfor\u001b[0m \u001b[0mk\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mraf_list\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 15\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 16\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mk\u001b[0m \u001b[1;33m<\u001b[0m \u001b[1;36m10\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mTypeError\u001b[0m: 'int' object is not iterable" + ] } ], "source": [ - "def my_func(lst):\n", - " c = 0\n", - " for i in lst:\n", - " c+=i\n", - " return c\n", + "raf_list = 35\n", "\n", - "tst = my_func([1,2,3,4,5])\n", - "tst" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### note python will assume the positioning of params\n", - "* consider the below\n", - "* the first param is a string\n", - "* the second is a number" + "def raf_func_x(par1):\n", + " global raf_list\n", + " #Lets test the types \n", + " print(type(raf_list))\n", + " print(raf_list)\n", + "\n", + " #define the inner variables\n", + " full_sum = 0\n", + " \n", + " #test for the ones bellow value\n", + " #k is a value on raf_list\n", + " for k in raf_list:\n", + " print(k)\n", + " if k < 10:\n", + " print('CoolBeans!')\n", + " full_sum= full_sum + k #add to the return variable\n", + " else:\n", + " print(\"NotMySauce!\")\n", + " \n", + " #finito!\n", + " return full_sum \n", + "\n", + "test = [0,1,3,5,7,9,11,13,15]\n", + "\n", + "test_result = raf_func_x(test)\n", + "\n", + "print('The sum of test is ' + str(test_result))\n", + "print('raf_list is still ' + str(raf_list))" ] }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ @@ -429,16 +371,25 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 42, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "potatto\n", + "4\n" + ] + } + ], "source": [ - "#my_func(5,\"str\") # won't work" + "my_func() # won't work" ] }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -451,7 +402,7 @@ } ], "source": [ - "my_func(\"STR\", 5)" + "my_func(\"str\", 5)" ] }, { @@ -463,7 +414,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -488,20 +439,42 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 45, "metadata": {}, "outputs": [ { - "ename": "SyntaxError", - "evalue": "positional argument follows keyword argument (, line 1)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m my_func(y = 5, \"str\") # won't work\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m positional argument follows keyword argument\n" + "name": "stdout", + "output_type": "stream", + "text": [ + "str\n", + "7\n" + ] + } + ], + "source": [ + "my_func(y = 5, x \"str\") # won't work" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3\n" ] } ], "source": [ - "my_func(y = 5, \"str\") # won't work" + "def test(x,y,z, method = \"c\", execute=False):\n", + " print(x+y+z)\n", + " if execute:\n", + " print(method) \n", + "\n", + "test(0,1,2, execute=False,method='coolmethod')" ] }, { @@ -513,7 +486,7 @@ }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 48, "metadata": {}, "outputs": [], "source": [ @@ -524,7 +497,7 @@ }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 49, "metadata": {}, "outputs": [ { @@ -542,7 +515,7 @@ }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -556,135 +529,70 @@ "2\n", "3\n", "4\n", - "5\n" + "5\n", + "str\n" ] } ], "source": [ - "my_func(1,2,5,6,2,3,4,5)" + "my_func(1,2,5,6,2,3,4,5,'str')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

make a function that

\n", + "

- takes an inifinte amount of params

\n", + "

- puts them all in a list

\n", + "

- returns the list

" ] }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 61, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1\n", - "2\n", - "3\n" + "I am inside the uncle_sam \n", + "I am inside the uncle_sam \n", + "\n", + "\n", + "[('raf', 0, 'mR Pots', 3, 17, 'hitman'), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]]\n" ] } ], "source": [ - "a = [1,2,3]\n", + "def uncle_sam(*enlisted):\n", + " print('I am inside the uncle_sam',type(enlisted))\n", + " army = []\n", + " for soldier in enlisted:\n", + " army.append(soldier)\n", + " \n", + " return army\n", "\n", - "for item in iterable:\n", - " print(brian_craft)" + "micro_army = ('raf',0,\"mR Pots\",3, 17, 'hitman')\n", + "micro_army2 = list(range(0,1000,1))\n", + "\n", + "#micro_army3 = micro_army + micro_army2\n", + "usaf = uncle_sam(micro_army) + uncle_sam(micro_army2)\n", + "\n", + "print(type(uncle_sam))\n", + "print(type(usaf))\n", + "print(usaf)\n", + "\n" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 76, "metadata": {}, "outputs": [], "source": [ - "def my_func(*args):\n", - " lst = []\n", - " \n", - " for i in args:\n", - " lst.append(i)\n", - " \n", - " return lst" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a function that

\n", - "

- takes an inifinte amount of params

\n", - "

- puts them all in a list

\n", - "

- returns the list

" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3, 4]" - ] - }, - "execution_count": 106, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = (1,2,3,4)\n", - "list(a)" - ] - }, - { - "cell_type": "code", - "execution_count": 107, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1, 2, 3)" - ] - }, - "execution_count": 107, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def my_func(*args):\n", - " return args\n", - "\n", - "tst = my_func(1,2,3)\n", - "tst" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 2, 3]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def my_func(*args):\n", - " return list(args)\n", - "\n", - "tst = my_func(1,2,3)\n", - "tst" + "import os, sys, shutil" ] }, { @@ -697,34 +605,17 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "def my_func(**kwargs):\n", - " print(kwargs)" - ] - }, - { - "cell_type": "code", - "execution_count": 132, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{}\n" - ] - } - ], - "source": [ - "my_func()" + " print(type(kwargs))" ] }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -741,51 +632,7 @@ }, { "cell_type": "code", - "execution_count": 116, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "no\n" - ] - } - ], - "source": [ - "dct = {\"a\":1, \"b\":2}\n", - "\n", - "if \"c\" in dct:\n", - " print(\"yes\")\n", - "else:\n", - " print(\"no\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def make_regression(df, **kwargs):\n", - " # kwargs = dict()\n", - " \n", - " if \"normalize_ind\" in kwargs:\n", - " # normalize df\n", - " \n", - " # make regression with df" - ] - }, - { - "cell_type": "code", - "execution_count": 4, + "execution_count": 64, "metadata": {}, "outputs": [], "source": [ @@ -795,24 +642,24 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 65, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{'path': 'some values', 'x': 2}\n" + "{'x': 2, 'y': 3}\n" ] } ], "source": [ - "my_func(path = \"some values\", x = 2)" + "my_func(x = 2, y = 3)" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 67, "metadata": {}, "outputs": [], "source": [ @@ -827,24 +674,24 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 68, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "22\n" + "12\n" ] } ], "source": [ - "my_func(5,7, z = 10)" + "my_func(5,7)" ] }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 69, "metadata": {}, "outputs": [ { @@ -852,10 +699,10 @@ "evalue": "my_func() takes 2 positional arguments but 3 were given", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m: my_func() takes 2 positional arguments but 3 were given" + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mmy_func\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m4\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m: my_func() takes 2 positional arguments but 3 were given" ] } ], @@ -865,7 +712,7 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 70, "metadata": {}, "outputs": [ { @@ -877,7 +724,7 @@ } ], "source": [ - "my_func(5,2,z=4,zz=5,bc = 5)\n" + "my_func(5,2,z=4)" ] }, { @@ -885,68 +732,49 @@ "metadata": {}, "source": [ "

make a function that takes two params

\n", - "

- divide the first param by the second

\n", + "

- divids the first param by the second

\n", "

- searches for a third named \"third\"

\n", "

- if it exists add that to the division of the first two params

" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 71, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7.0" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "def my_func(a,b,**kwargs):\n", - " tst = float(a)/float(b)\n", - " \n", - " if \"c\" in kwargs:\n", - " tst += kwargs[\"c\"]\n", - " \n", - " return tst\n", - "\n", - "a = my_func(10,5,c=5)\n", - "a" + "def my_func(x,y, **kwargs):\n", + " val = x / y\n", + " if \"third\" in kwargs:\n", + " val+=kwargs[\"third\"]\n", + " return val" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 95, "metadata": {}, "outputs": [ { - "ename": "TypeError", - "evalue": "my_func() takes 2 positional arguments but 3 were given", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mtst\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: my_func() takes 2 positional arguments but 3 were given" + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "3\n", + "()\n", + "{'newkey': 'b'}\n" ] } ], "source": [ - "def my_func(a,b,**kwargs):\n", - " tst = float(a)/float(b)\n", - " \n", - " if \"c\" in kwargs:\n", - " tst += kwargs[\"c\"]\n", - " \n", - " return tst\n", + "def my_std_func(pos,keyd=\"a\", *args, **kwargs):\n", + " print(pos)\n", + " print(keyd)\n", + " print(args)\n", + " print(kwargs)\n", + " return\n", "\n", - "a = my_func(10,5,5)\n", - "a" + "my_std_func(0,keyd=3,newkey=\"b\")" ] }, { @@ -954,58 +782,51 @@ "metadata": {}, "source": [ "#### we can also set defaults for params\n", - "take a look at the link below in sklearn decision tree classifier\n", - "* the default can be overriden by passing in a value\n", - "* https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier" + "* the default can be overriden by passing in a value" ] }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 52, "metadata": {}, "outputs": [], "source": [ - "def my_func(x, y = \"string\"):\n", + "def my_func(x, y = 2):\n", " print(x + y)" ] }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 53, "metadata": {}, "outputs": [ { - "ename": "TypeError", - "evalue": "unsupported operand type(s) for +: 'int' and 'str'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mmy_func\u001b[0;34m(x, y)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmy_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"string\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'int' and 'str'" + "name": "stdout", + "output_type": "stream", + "text": [ + "4\n" ] } ], "source": [ - "my_func(10)" + "my_func(2)" ] }, { "cell_type": "code", - "execution_count": 140, + "execution_count": 54, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "15\n" + "7\n" ] } ], "source": [ - "my_func(10,5)" + "my_func(2,5)" ] }, { @@ -1052,2071 +873,1237 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def my_func(*args):\n", - " print(args)" + " for i in args:\n", + " print(i)" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "(1, 2, 3, 4, 5)\n" + "[1, 2]\n" ] } ], "source": [ - "my_func(1,2,3,4,5)" + "my_func([1,2])" ] }, { "cell_type": "code", - "execution_count": 147, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "([1, 2],)\n" + "1\n", + "2\n" ] } ], "source": [ - "my_func([1,2])" + "my_func(*[1,2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lambda Functions\n", + "* annonymous\n", + "* defined on the fly with one line\n", + "* multiple params but one expression\n", + "* commonly used in mapping, applying and filtering\n", + "* lambda params: expression\n", + "* https://docs.python.org/3/reference/expressions.html#lambda" ] }, { "cell_type": "code", - "execution_count": 148, + "execution_count": 104, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "(1, 2)\n" + "She loves me\n", + "yeah\n", + "yeah\n", + "yeah\n" ] + }, + { + "data": { + "text/plain": [ + "[1, 2, 0]" + ] + }, + "execution_count": 104, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "my_func(*[1,2])" + "def rest3(x):\n", + " print('yeah')\n", + " return x%3\n", + "\n", + "a = map(rest3, [1,2,3])\n", + "print('She loves me')\n", + "list(a)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Generally this syntax isn't seen but it's worth being aware, as it does show up from time to time. See keras example below.\n", - "* https://keras.io/getting-started/functional-api-guide/" - ] - }, - { - "cell_type": "code", - "execution_count": 149, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x):\n", - " def my_func2(y):\n", - " return x+y\n", - " return my_func2\n", - " \n", - "tst = my_func(5)" + "#### but we don't even need to store the function in my_lambda" ] }, { "cell_type": "code", - "execution_count": 150, + "execution_count": 107, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - ".my_func2(y)>" + "[3, 4, 5]" ] }, - "execution_count": 150, + "execution_count": 107, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "tst" + "a = [1,2,3]\n", + "list(map(lambda x: x+2, a))" ] }, { "cell_type": "code", - "execution_count": 151, + "execution_count": 108, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "15" - ] - }, - "execution_count": 151, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "[False, False, True, True]\n", + "[4, 5]\n" + ] } ], "source": [ - "tst(10)" + "a = [2,3,4,5]\n", + "\n", + "print(list(map(lambda x: x > 3, a)))\n", + "print(list(filter(lambda x: x > 3, a)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

write a lambda that

\n", + "

- maps to a list of strings and

\n", + "

- replaces all the letter o with e

\n", + "

- converts to upper case

\n", + "

- .replace(item_replace, replace_with)

" ] }, { "cell_type": "code", - "execution_count": 152, + "execution_count": 115, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "15" + "['AEA', 'EEE']" ] }, - "execution_count": 152, + "execution_count": 115, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "my_func(5)(10)" + "test = ['aea', 'oeo']\n", + "list(map(lambda x: x.replace('o','e').upper(),test))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Lambda Functions\n", - "* annonymous, function without a name\n", - "* defined on the fly with one line\n", - "* multiple params but one expression\n", - "* commonly used in mapping, applying and filtering\n", - "* lambda params: expression\n", - "* https://docs.python.org/3/reference/expressions.html#lambda" - ] - }, + "## list comprehension\n", + "* memory efficient way to run a for loop and put the results in a list or iterable\n", + "* on the fly apply functions to the elements of a list\n", + "* similar to filtering and mapping\n", + "* https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions" + ] + }, { "cell_type": "code", - "execution_count": 154, + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 2, 3, 4, 5]\n" + ] + } + ], + "source": [ + "a = [1,2,3,4,5]\n", + "b = []\n", + "for i in a:\n", + " b.append(i)\n", + "print(b)" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1, 2, 3, 4, 5]\n" + ] + } + ], + "source": [ + "b = [value for value in a]\n", + "print(b)" + ] + }, + { + "cell_type": "code", + "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "7" + "('a', 'b', 'c')" ] }, - "execution_count": 154, + "execution_count": 94, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "my_lambda = lambda x: x + 2\n", - "my_lambda(5)" + "a = [\"A\", \"B\", \"C\"]\n", + "b = tuple(x.lower() for x in a)\n", + "b" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{1: 'a', 2: 'b', 3: 'c'}\n" + ] + } + ], + "source": [ + "a = [1,2,3]\n", + "b = [\"a\",\"b\",\"c\"]\n", + "\n", + "my_dict = dict((x[0],x[1]) for x in zip(a,b))\n", + "print(my_dict)" ] }, { "cell_type": "code", - "execution_count": 157, + "execution_count": 123, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'string'" + "[16, 25]" ] }, - "execution_count": 157, + "execution_count": 123, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "\"string.\".replace(\".\",\"\")" + "a = [1,2,3,4,5]\n", + "b = [i*i for i in a if i > 3]\n", + "b" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 124, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['STRING', 'STRIN']" + "[-1, -2, -3, -4, -5]" ] }, - "execution_count": 19, + "execution_count": 124, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "lst = [\"string...\", \"strin..\"]\n", - "\n", - "list(map(lambda x: x.replace(\".\",\"\").upper(), lst))" + "b = [i*-1 for i in a]\n", + "b" ] }, { "cell_type": "code", - "execution_count": 156, + "execution_count": 125, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[3, 4, 5]" + "['a', 'b', 'c']" ] }, - "execution_count": 156, + "execution_count": 125, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "my_lambda = lambda x: x + 2\n", - "\n", - "a = [1,2,3]\n", - "\n", - "list(map(lambda x: x + 2, a))" + "a = [\"A\", \"B\", \"C\"]\n", + "b = [x.lower() for x in a]\n", + "b" ] }, { "cell_type": "code", - "execution_count": 158, + "execution_count": 126, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "7" + "['a', 'b', 'c']" ] }, - "execution_count": 158, + "execution_count": 126, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "(lambda x: x + 2)(5)" + "my_func = lambda x: x.lower()\n", + "a = [\"A\", \"B\", \"C\"]\n", + "b = [my_func(x) for x in a]\n", + "b" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### but we don't even need to store the function in my_lambda" + "

write a lambda that

\n", + "

- use comprehension to apply to a list of string integers

\n", + "

- the lambda should return the remainder of the number divided by 2

" ] }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 129, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[3, 4, 5]" + "[0, 1, 1]" ] }, - "execution_count": 63, + "execution_count": 129, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "list(map(lambda x: x+2, a))" + "test = [\"2\",\"3\",\"5\"]\n", + "\n", + "list(map(lambda x:int(x)%2,test))" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[4, 5]" + "0" ] }, - "execution_count": 21, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a = [2,3,4,5]\n", - "\n", - "list(filter(lambda x: x > 3, a))" + "50%2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "

write a lambda that

\n", - "

- maps to a list of strings and

\n", - "

- replaces all the letter o with e

\n", - "

- converts to upper case

\n", - "

- .replace(item_replace, replace_with)

" + "## Generators\n", + "* special function that returns a lazy iterator.\n", + "* do not store contents in memory.\n", + "* Instead, the state of the function is remembered.\n", + "* Keep track of where we are in the iterator" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 130, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['helle', 'be', 'tess', 'ee']" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "l = lambda x: x.replace(\"o\", \"e\")\n", - "tst = [\"hello\", \"bo\", \"toss\", \"oo\"]\n", - "\n", - "a = list(map(l,tst))\n", - "a" + "lst = [num for num in range(5)]\n", + "gen = (num for num in range(5))" ] }, { "cell_type": "code", - "execution_count": 164, + "execution_count": 131, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3" + "[0, 1, 2, 3, 4]" ] }, - "execution_count": 164, + "execution_count": 131, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "sum([1,2])" + "lst" ] }, { "cell_type": "code", - "execution_count": 159, + "execution_count": 134, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['__add__',\n", - " '__class__',\n", - " '__contains__',\n", + "['__class__',\n", + " '__del__',\n", " '__delattr__',\n", - " '__delitem__',\n", " '__dir__',\n", " '__doc__',\n", " '__eq__',\n", " '__format__',\n", " '__ge__',\n", " '__getattribute__',\n", - " '__getitem__',\n", " '__gt__',\n", " '__hash__',\n", - " '__iadd__',\n", - " '__imul__',\n", " '__init__',\n", " '__init_subclass__',\n", " '__iter__',\n", " '__le__',\n", - " '__len__',\n", " '__lt__',\n", - " '__mul__',\n", + " '__name__',\n", " '__ne__',\n", " '__new__',\n", + " '__next__',\n", + " '__qualname__',\n", " '__reduce__',\n", " '__reduce_ex__',\n", " '__repr__',\n", - " '__reversed__',\n", - " '__rmul__',\n", " '__setattr__',\n", - " '__setitem__',\n", " '__sizeof__',\n", " '__str__',\n", " '__subclasshook__',\n", - " 'append',\n", - " 'clear',\n", - " 'copy',\n", - " 'count',\n", - " 'extend',\n", - " 'index',\n", - " 'insert',\n", - " 'pop',\n", - " 'remove',\n", - " 'reverse',\n", - " 'sort']" + " 'close',\n", + " 'gi_code',\n", + " 'gi_frame',\n", + " 'gi_running',\n", + " 'gi_yieldfrom',\n", + " 'send',\n", + " 'throw']" ] }, - "execution_count": 159, + "execution_count": 134, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a = [1,2,3]\n", - "dir(a)" + "dir(gen)" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "1\n", + "2\n", + "3\n", + "4\n" + ] + } + ], + "source": [ + "for value in gen:\n", + " print(value)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## comprehension\n", - "* memory efficient way to run a for loop and put the results in a list or iterable\n", - "* on the fly apply functions to the elements of a list\n", - "* https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions" + "## use next() to grab the next item in the generator" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 135, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[3, 4, 5, 6, 7]" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "a = [1,2,3,4,5]\n", - "b = []\n", - "for i in a:\n", - " b.append(i+2)\n", - "b" + "gen = (num for num in range(2))" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 136, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[3, 4, 5, 6, 7]" + "0" ] }, - "execution_count": 23, + "execution_count": 136, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "b = [i+2 for i in a]\n", - "b" + "next(gen)" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 137, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "('a', 'b', 'c')" + "1" ] }, - "execution_count": 26, + "execution_count": 137, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a = [\"A\", \"B\", \"C\"]\n", - "b = tuple(x.lower() for x in a)\n", - "b" + "next(gen)" ] }, { "cell_type": "code", - "execution_count": 171, + "execution_count": 138, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "[1, 2, 3]" - ] - }, - "execution_count": 171, - "metadata": {}, - "output_type": "execute_result" + "ename": "StopIteration", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mStopIteration\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mnext\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mgen\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mStopIteration\u001b[0m: " + ] } ], "source": [ - "a = [1,2,3]\n", - "b = [\"a\",\"b\",\"c\"]\n", - "[x[0] for x in zip(a,b)]" + "next(gen)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### can use yield instead of return, to return the next item of the generator. yield automatically tells python this is a generator" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 145, "metadata": {}, "outputs": [], "source": [ - "x = [\"a\", \"b\", \"c\"]\n", - "c = [1,2,2]" + "def infinite_sequence():\n", + " for i in [num for num in range(5)]:\n", + " yield i" ] }, { "cell_type": "code", - "execution_count": 172, + "execution_count": 146, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{1: 'a', 2: 'b', 3: 'c'}" - ] - }, - "execution_count": 172, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "a = [1,2,3]\n", - "b = [\"a\",\"b\",\"c\"]\n", - "\n", - "my_dict = dict((x[0],x[1]) for x in zip(a,b))\n", - "my_dict" + "gen = infinite_sequence()" ] }, { "cell_type": "code", - "execution_count": 175, + "execution_count": 147, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[4, 5, 6, 7, 8]" + "" ] }, - "execution_count": 175, + "execution_count": 147, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a = [1,2,3,4,5,6,7,8]\n", - "b = [i for i in a if i > 3]\n", - "b" + "gen" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 148, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "[3, 4, 5, 6, 7]" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "1\n", + "2\n", + "3\n", + "4\n" + ] } ], "source": [ - "def my_func(n):\n", - " # 1. remove punctuation\n", - " # 2. remove case sensativity\n", - " # 3. remove plurality\n", - " return n+2\n", - "\n", - "a = [1,2,3,4,5]\n", - "a = [my_func(i) for i in a]\n", - "a" + "for i in gen:\n", + " print(i)" ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['a', 'b', 'c']" + "0" ] }, - "execution_count": 24, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a = [\"A\", \"B\", \"C\"]\n", - "b = [x.lower() for x in a]\n", - "b" + "gen = infinite_sequence()\n", + "next(gen)" ] }, { - "cell_type": "code", - "execution_count": 30, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['a', 'b', 'c']" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_func = lambda x: x.lower()\n", - "a = [\"A\", \"B\", \"C\"]\n", - "b = [my_func(x) for x in a]\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0, -1, -2, -3, -4)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# we have to use tuple() becasue just using () will declare a generator\n", - "tup = tuple(-x for x in range(5))\n", - "tup" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0, 1, 2, 3, 4)" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = tuple(abs(x) for x in tup)\n", - "a" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{0: 1, 1: 2, 2: 3, 3: 4, 4: 5}" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dct = dict((idx,i+1) for idx,i in enumerate(range(5)))\n", - "dct" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{1: 'A', 2: 'B', 3: 'C'}" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [1,2,3]\n", - "b = [\"A\", \"B\", \"C\"]\n", - "dct = dict((x[0], x[1]) for x in zip(a,b))\n", - "dct" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

write a lambda that

\n", - "

- use comprehension to apply to a list of numbers

\n", - "

- the lambda should return the remainder of the number divided by 2

" - ] - }, - { - "cell_type": "code", - "execution_count": 179, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 179, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "for idx,i in enumerate(100000000):\n", - " if idx%10000 == 0:\n", - " print(idx)" - ] - }, - { - "cell_type": "code", - "execution_count": 181, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]" - ] - }, - "execution_count": 181, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a = [0,1,2,3,4,5,6,7,8,9]\n", - "l = lambda x: x%2\n", - "b = list(map(lambda x: x%2), a)\n", - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "51%2" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "50%2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generators\n", - "* special function that returns a lazy iterator.\n", - "* do not store contents in memory.\n", - "* Instead, the state of the function is remembered.\n", - "* Keep track of where we are in the iterator" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "lst = [num for num in range(5)]\n", - "gen = (num for num in range(5))" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[0, 1, 2, 3, 4]" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lst" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " at 0x7fecf83e11d0>" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gen" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n", - "1\n", - "2\n", - "3\n", - "4\n" - ] - } - ], - "source": [ - "for i in gen:\n", - " print(i)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## use next() to grab the next item in the generator" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "gen = (num for num in range(2))" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "next(gen)" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "next(gen)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "ename": "StopIteration", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mStopIteration\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgen\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mStopIteration\u001b[0m: " - ] - } - ], - "source": [ - "next(gen)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### can use yield instead of return, to return the next item of the generator. yield automatically tells python this is a generator" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "def seq():\n", - " for i in [num for num in range(5)]:\n", - " yield i" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "gen = seq()" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gen" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n", - "1\n", - "2\n", - "3\n", - "4\n" - ] - } - ], - "source": [ - "for i in seq():\n", - " print(i)" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#gen = infinite_sequence()\n", - "next(gen)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### very memory efficient" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "import sys" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "859724480\n", - "0.85972448\n" - ] - } - ], - "source": [ - "nums_squared_lc = [i * 2 for i in range(100000000)]\n", - "my_bytes = sys.getsizeof(nums_squared_lc)\n", - "gb = my_bytes / 1e+9\n", - "\n", - "print(my_bytes)\n", - "print(gb)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "128\n", - "1.28e-07\n" - ] - } - ], - "source": [ - "# returns bytes\n", - "nums_squared_lc = (i * 2 for i in range(100000000))\n", - "my_bytes = sys.getsizeof(nums_squared_lc)\n", - "gb = my_bytes / 1e+9\n", - "\n", - "print(my_bytes)\n", - "print(gb)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### could use generator for dealing with text files" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [], "source": [ - "csv = [\n", - " \"permalink,company,numEmps,category,city,state,fundedDate,raisedAmt,raisedCurrency,round\",\n", - " \"digg,Digg,60,web,San Francisco,CA,1-Dec-06,8500000,USD,b\",\n", - " \"digg,Digg,60,web,San Francisco,CA,1-Oct-05,2800000,USD,a\",\n", - " \"facebook,Facebook,450,web,Palo Alto,CA,1-Sep-04,500000,USD,angel\",\n", - " \"facebook,Facebook,450,web,Palo Alto,CA,1-May-05,12700000,USD,a\",\n", - " \"photobucket,Photobucket,60,web,Palo Alto,CA,1-Mar-05,3000000,USD,a\"\n", - "]" + "#### very memory efficient" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 149, "metadata": {}, "outputs": [], "source": [ - "#file_name = \"techcrunch.csv\"\n", - "\n", - "# declares a generator\n", - "#lines = (line for line in open(file_name))\n", - "\n", - "# split the lines on the comma\n", - "#list_line = (s.rstrip().split(\",\") for s in lines)\n", - "\n", - "# gives us the next line\n", - "#cols = next(list_line)\n", - "\n", - "# this will be helpful for filtering, keys are column names\n", - "# \n", - "#company_dicts = (dict(zip(cols, data)) for data in list_line)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " at 0x7fecf83e1750>" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lines = (line for line in csv)\n", - "lines" - ] - }, - { - "cell_type": "code", - "execution_count": 211, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['this', 'is', 'a', 'sentence', 'i', 'made']" - ] - }, - "execution_count": 211, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"this is a sentence i made\".split(\" \")" - ] - }, - { - "cell_type": "code", - "execution_count": 210, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['itema', 'itemb', 'itemb']" - ] - }, - "execution_count": 210, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"itema,itemb,itemb\".split(\",\")" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " at 0x7fecf83e1a50>" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list_line = (s.rstrip().replace(\".\",\",\") for s in lines)\n", - "list_line" + "import sys" ] }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 153, "metadata": {}, - "outputs": [], - "source": [ - "tst = [\n", - " [1,2,3],\n", - " [2,3,4]\n", - "]\n", - "\n", - "y = [\"A\", \"b\", \"A\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": { - "scrolled": true - }, "outputs": [ { "data": { "text/plain": [ - "'digg,Digg,60,web,San Francisco,CA,1-Oct-05,2800000,USD,a'" + "81528056" ] }, - "execution_count": 55, + "execution_count": 153, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "lst = {}\n", - "\n", - "for i in list_line:\n", - " l = i.split(\",\")\n", - " for word in l:\n", - " if word in lst:\n", - " lst[word] +=1\n", - " else:\n", - " lst[word] = 1" + "nums_squared_lc = [i * 2 for i in range(10000000)]\n", + "sys.getsizeof(nums_squared_lc)" ] }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 154, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'facebook,Facebook,450,web,Palo Alto,CA,1-Sep-04,500000,USD,angel'" + "120" ] }, - "execution_count": 56, + "execution_count": 154, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "next(list_line)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exception Handling and Errors\n", - "* https://docs.python.org/3/tutorial/errors.html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### syntax errors\n", - "* missing parenth or bracket maybe, some formatting issue" - ] - }, - { - "cell_type": "code", - "execution_count": 218, - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (, line 1)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m print((2)))\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "source": [ - "print((2)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### exception errors:\n", - "* you've tried to do something that can't be done" - ] - }, - { - "cell_type": "code", - "execution_count": 219, - "metadata": {}, - "outputs": [ - { - "ename": "ZeroDivisionError", - "evalue": "division by zero", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" - ] - } - ], - "source": [ - "print(5/0)" - ] - }, - { - "cell_type": "code", - "execution_count": 223, - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "can only concatenate str (not \"int\") to str", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"string\"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m: can only concatenate str (not \"int\") to str" - ] - } - ], - "source": [ - "print(\"string\" + 2)" + "# returns bytes\n", + "nums_squared_lc = (i * 2 for i in range(10000000))\n", + "sys.getsizeof(nums_squared_lc)#/ 1e+9" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### assert\n", - "* logical test\n", - "* if the test isn't met we raise an assertion error\n", - "* assert logical, error" - ] - }, - { - "cell_type": "code", - "execution_count": 225, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "False" - ] - }, - "execution_count": 225, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = [2,3]\n", - "\n", - "len(x) > 3" + "#### could use generator for dealing with text files" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 158, "metadata": {}, "outputs": [], "source": [ - "assert dataframe is no empty, \"dataframe is empty\"" + "csv = [\n", + " \"permalink,company,numEmps,category,city,state,fundedDate,raisedAmt,raisedCurrency,round\",\n", + " \"digg,Digg,60,web,San Francisco,CA,1-Dec-06,8500000,USD,b\",\n", + " \"digg,Digg,60,web,San Francisco,CA,1-Oct-05,2800000,USD,a\",\n", + " \"facebook,Facebook,450,web,Palo Alto,CA,1-Sep-04,500000,USD,angel\",\n", + " \"facebook,Facebook,450,web,Palo Alto,CA,1-May-05,12700000,USD,a\",\n", + " \"photobucket,Photobucket,60,web,Palo Alto,CA,1-Mar-05,3000000,USD,a\"\n", + "]" ] }, { - "cell_type": "code", - "execution_count": 57, + "cell_type": "raw", "metadata": {}, - "outputs": [ - { - "ename": "AssertionError", - "evalue": "The length of x is not greater than 3", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"The length of x is not greater than 3\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m: The length of x is not greater than 3" - ] - } - ], "source": [ - "x = [2,3]\n", + "file_name = \"techcrunch.csv\"\n", "\n", - "assert len(x) > 3, \"The length of x is not greater than 3\"" - ] - }, - { - "cell_type": "code", - "execution_count": 227, - "metadata": {}, - "outputs": [ - { - "ename": "AssertionError", - "evalue": "x is empty", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"x is empty\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m: x is empty" - ] - } - ], - "source": [ - "x = []\n", + "# declares a generator\n", + "lines = (line for line in open(file_name))\n", "\n", - "assert len(x) != 0, \"x is empty\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### raise\n", - "* we could also raise an exception" + "# split the lines on the comma\n", + "list_line = (s.rstrip().split(\",\") for s in lines)\n", + "\n", + "# gives us the next line\n", + "cols = next(list_line)\n", + "\n", + "# this will be helpful for filtering, keys are column names\n", + "# \n", + "company_dicts = (dict(zip(cols, data)) for data in list_line)" ] }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 159, "metadata": {}, "outputs": [ { - "ename": "RuntimeError", - "evalue": "No active exception to reraise", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mRuntimeError\u001b[0m: No active exception to reraise" - ] + "data": { + "text/plain": [ + " at 0x0000026942DB6948>" + ] + }, + "execution_count": 159, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "x = 10\n", - "if x > 5:\n", - " raise " + "lines = (line for line in csv)\n", + "lines" ] }, { "cell_type": "code", - "execution_count": 252, + "execution_count": 160, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[1, 1, 1, 4, 5, 32]" + " at 0x0000026942DB69C8>" ] }, - "execution_count": 252, + "execution_count": 160, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "a = [1,4,1,5,32,1]\n", - "sorted(a)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### try and except\n", - "* tell python to try a block of code, if there is an error, revert to except" + "list_line = (s.rstrip().split(\",\") for s in lines)\n", + "list_line" ] }, { "cell_type": "code", - "execution_count": 230, - "metadata": {}, + "execution_count": 161, + "metadata": { + "scrolled": true + }, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "['a', 'b', 'c']\n", - "['a', 'b', 'c']\n", - "['a', 'c']\n" - ] + "data": { + "text/plain": [ + "['permalink',\n", + " 'company',\n", + " 'numEmps',\n", + " 'category',\n", + " 'city',\n", + " 'state',\n", + " 'fundedDate',\n", + " 'raisedAmt',\n", + " 'raisedCurrency',\n", + " 'round']" + ] + }, + "execution_count": 161, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "tst = [\n", - " \"a,b,c\",\n", - " \"a,b,c\",\n", - " \"a,c\",\n", - " \"a,b,c\",\n", - " \"a,b,c\"\n", - "]\n", - "\n", - "for i in tst:\n", - " print(i.split(\",\"))" + "next(list_line)" ] }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 168, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "3\n", - "4\n", - "5\n", - "6\n", - "Found an error. Item isn't a number or float\n", - "String\n", - "----\n" + "ename": "StopIteration", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mStopIteration\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mnext\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlist_line\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mStopIteration\u001b[0m: " ] } ], "source": [ - "a = [1,2,3,4,\"String\"]\n", - "\n", - "for i in a:\n", - " \n", - " try:\n", - " i = i+2\n", - " print(i)\n", - " except:\n", - " print(\"Found an error. Item isn't a number or float\")\n", - " print(i)\n", - " print(\"----\")" + "next(list_line)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### plenty of built in exception/errors classes in python\n", - "* for instance, IndexError\n", - "* NameError\n", - "* https://docs.python.org/3/library/exceptions.html" + "### Exception Handling and Errors\n", + "* https://docs.python.org/3/tutorial/errors.html" ] }, { - "cell_type": "code", - "execution_count": 236, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "ename": "IndexError", - "evalue": "list index out of range", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m: list index out of range" - ] - } - ], "source": [ - "a = [2]\n", - "a[1]" + "#### syntax errors\n", + "* missing parenth or bracket maybe, some formatting issue" ] }, { "cell_type": "code", - "execution_count": 237, + "execution_count": 169, "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'z' is not defined", + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 1)", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mNameError\u001b[0m: name 'z' is not defined" + "\u001b[1;36m File \u001b[1;32m\"\"\u001b[1;36m, line \u001b[1;32m1\u001b[0m\n\u001b[1;33m print((2)))\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ - "print(z)" + "print((2)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### excepting the error" + "#### exception errors:\n", + "* you've tried to do something that can't be done" ] }, { "cell_type": "code", - "execution_count": 244, + "execution_count": 170, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "This is an index error\n" + "ename": "ZeroDivisionError", + "evalue": "division by zero", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mZeroDivisionError\u001b[0m: division by zero" ] } ], "source": [ - "a = [1]\n", - "\n", - "try: \n", - " print(a[1]) \n", - " \n", - " # Throws error since there are only 3 elements in array \n", - " #print(a[3])\n", - " \n", - " # throw another error\n", - " #print(a + )\n", - " \n", - " print(\"A\" + 5)\n", - " \n", - "except TypeError:\n", - " print(\"this is a type error {}\".format(\"a + 5\"))\n", - " #raise\n", - " \n", - "except IndexError: \n", - " print(\"This is an index error\")\n", - " \n", - "except SyntaxError:\n", - " print(\"This is a syntax error\")" + "print(5/0)" ] }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 171, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "2\n" - ] - }, - { - "ename": "IndexError", - "evalue": "list index out of range", + "ename": "TypeError", + "evalue": "can only concatenate str (not \"int\") to str", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# Throws error since there are only 3 elements in array\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mIndexError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mIndexError\u001b[0m: list index out of range" + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"string\"\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m: can only concatenate str (not \"int\") to str" ] } ], "source": [ - "a = [1, 2, 3] \n", - "try: \n", - " print(a[1]) \n", - " \n", - " # Throws error since there are only 3 elements in array \n", - " print(a[3])\n", - " \n", - "except IndexError: \n", - " raise" + "print(\"string\" + 2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### raise" + "#### assert\n", + "* logical test\n", + "* if the test isn't met we raise an assertion error\n", + "* assert logical, error" ] }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 174, "metadata": {}, "outputs": [ { - "ename": "TypeError", - "evalue": "unsupported operand type(s) for +: 'int' and 'str'", + "ename": "AssertionError", + "evalue": "The length of x is not greater than 3", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m\"string\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0;31m# raises the error that was caught\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'int' and 'str'" + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"The length of x is not greater than 3\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m: The length of x is not greater than 3" ] } ], "source": [ - "a = 5\n", + "x = [2,3]\n", "\n", - "try:\n", - " print(a + \"string\")\n", - "except TypeError:\n", - " raise # raises the error that was caught" + "assert len(x) > 3, \"The length of x is not greater than 3\"" ] }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 175, "metadata": {}, "outputs": [ { - "ename": "Exception", - "evalue": "This is some exception", + "ename": "AssertionError", + "evalue": "x is empty", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mException\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"This is some exception\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mException\u001b[0m: This is some exception" + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m!=\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"x is empty\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m: x is empty" ] } ], "source": [ - "x = 2\n", - "if x < 3:\n", - " raise Exception(\"This is some exception\")" + "x = []\n", + "\n", + "assert len(x) != 0, \"x is empty\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### raise\n", + "* we could also raise an exception" ] }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 177, "metadata": {}, "outputs": [ { "ename": "Exception", - "evalue": "This is an exception", + "evalue": "not cool", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mException\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"This is an exception\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mException\u001b[0m: This is an exception" + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mException\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m5\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 6\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mmessage\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mException\u001b[0m: not cool" ] } ], "source": [ - "x = 2\n", + "x = 10\n", "\n", - "try:\n", - " print(x/0)\n", - "except:\n", - " raise Exception(\"This is an exception\")" + "message = Exception(\"not cool\")\n", + "\n", + "if x > 5:\n", + " raise message" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### finally is always executed" + "#### try and except\n", + "* tell python to try a block of code, if there is an error, revert to except" ] }, { "cell_type": "code", - "execution_count": 246, + "execution_count": 180, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "the finally block is executed\n" - ] - }, - { - "ename": "TypeError", - "evalue": "can only concatenate str (not \"int\") to str", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: can only concatenate str (not \"int\") to str" + "Found an error. Item test isn't a number or float\n", + "test\n", + "Found an error. Item String isn't a number or float\n", + "String\n" ] } ], "source": [ - "x = \"string\"\n", + "a = [1,'test',3,4,\"String\"]\n", "\n", - "try:\n", - " print(x + 5)\n", - "except:\n", - " raise\n", - "finally:\n", - " print(\"the finally block is executed\")" + "for i in a:\n", + " try:\n", + " i = i+2\n", + " except:\n", + " print(\"Found an error. Item {} isn't a number or float\".format(i))\n", + " print(i)" ] }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "the finally block is executed\n" - ] - }, - { - "ename": "TypeError", - "evalue": "can only concatenate str (not \"int\") to str", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: can only concatenate str (not \"int\") to str" + "Found an error. Item String isn't a number or float\n" ] } ], - "source": [ - "x = \"str\"\n", - "\n", - "try:\n", - " print(x + 5)\n", - "except:\n", - " raise\n", - "finally:\n", - " print(\"the finally block is executed\")" - ] + "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### optional else clause" + "#### plenty of built in exception/errors classese in python\n", + "* for instance, IndexError\n", + "* NameError\n", + "* https://docs.python.org/3/library/exceptions.html" ] }, { "cell_type": "code", - "execution_count": 249, + "execution_count": 181, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "10\n", - "the else get's executed if hte try doesn't cause an error\n" + "ename": "IndexError", + "evalue": "list index out of range", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mIndexError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0ma\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0ma\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mIndexError\u001b[0m: list index out of range" ] } ], "source": [ - "x = 5\n", - "\n", - "try:\n", - " print(x + 5)\n", - "except:\n", - " raise\n", - "else:\n", - " print(\"the else get's executed if hte try doesn't cause an error\")" + "a = [2]\n", + "a[1]" ] }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 182, "metadata": {}, "outputs": [ { - "ename": "TypeError", - "evalue": "can only concatenate str (not \"int\") to str", + "ename": "NameError", + "evalue": "name 'z' is not defined", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: can only concatenate str (not \"int\") to str" + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mz\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mNameError\u001b[0m: name 'z' is not defined" ] } ], "source": [ - "x = \"str\"\n", - "\n", - "try:\n", - " print(x + 5)\n", - "except:\n", - " raise\n", - "else:\n", - " print(\"the else get's executed if hte try doesn't cause an error\")" + "print(z)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### excepting the error" ] }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 184, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "10\n", - "else run\n", - "finally run\n" + "An error occurred\n" ] } ], "source": [ - "x = \"string\"\n", - "\n", - "try:\n", - " print(x + 5)\n", - "except:\n", - " raise\n", - "else:\n", - " print(\"the else get's executed if hte try doesn't cause an error\")\n", - "finally:\n", - " print(\"here comes the finally clause just because\")" + "a = [1, 2, 3] \n", + "try: \n", + " print(a[3]) \n", + " # Throws error since there are only 3 elements in array \n", + " print(a[3]) \n", + "except IndexError: \n", + " print(\"An error occurred\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### raise" ] }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 185, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "here comes the finally clause just because\n" - ] - }, { "ename": "TypeError", - "evalue": "can only concatenate str (not \"int\") to str", + "evalue": "unsupported operand type(s) for +: 'int' and 'str'", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: can only concatenate str (not \"int\") to str" + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;34m\"string\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 5\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[1;31m# raises the error that was caught\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'int' and 'str'" ] } ], "source": [ - "x = \"str\"\n", + "a = 5\n", "\n", "try:\n", - " print(x + 5)\n", - "except:\n", - " raise\n", - "else:\n", - " print(\"the else get's executed if hte try doesn't cause an error\")\n", - "finally:\n", - " print(\"here comes the finally clause just because\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### just focus on:\n", - "* try and except and catching/raising your error somehow\n", - "* assert" + " print(a + \"string\")\n", + "except TypeError:\n", + " raise # raises the error that was caught" ] }, { diff --git a/lectures/Lecture 3 - OOO, Datetime and Saving Objects.ipynb b/lectures/Lecture 3 - OOO and Datetime.ipynb similarity index 63% rename from lectures/Lecture 3 - OOO, Datetime and Saving Objects.ipynb rename to lectures/Lecture 3 - OOO and Datetime.ipynb index f5b15b8..40c5aa7 100644 --- a/lectures/Lecture 3 - OOO, Datetime and Saving Objects.ipynb +++ b/lectures/Lecture 3 - OOO and Datetime.ipynb @@ -1,73 +1,5 @@ { "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "l = lambda x,y:x+y\n", - "l(2,5)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "l = lambda x: x[0] + x[1]\n", - "l([2,5])" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: numpy in /Users/conagrabrands/opt/anaconda3/lib/python3.7/site-packages (1.17.2)\r\n" - ] - } - ], - "source": [ - "! pip install numpy" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "% matplotlib inline" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -83,178 +15,217 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "# simple framework for a dog\n", - "class Dog:\n", - " \n", - " # these are params here, things we set when\n", - " # we initialize our instance of our class\n", - " def __init__(self, color, breed, name):\n", - " self.color_one = color\n", - " self.breed_one = breed\n", - " self.name_one = name\n", - " \n", - " def speak(self, x):\n", - " print(self.color_one, x)" + "\n", + "class dog:\n", + " def __init__(self,dog_color,dog_breed,dog_name):\n", + " self.color = dog_color\n", + " self.breed = dog_breed\n", + " self.name = dog_name" ] }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__']" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# my_dog = dog(\"blue\", \"sheperd\", \"spot\")\n", - "my_dog = Dog(color = \"blue\", breed = \"sheperd\", name = \"brian\")\n", - "my_dog_1 = Dog(\"blue\", \"collie\", \"brian2\")" + "dir(dog)" ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 23, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "blue yes\n" - ] - } - ], + "outputs": [], "source": [ - "my_dog.speak(\"yes\")" + "my_dog = dog(dog_color = \"blue\", dog_breed = \"sheperd\", dog_name = \"spot\")" ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'sheperd'" + "__main__.dog" ] }, - "execution_count": 36, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "my_dog.breed_one" + "type(my_dog)" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'brian'" + "'blue'" ] }, - "execution_count": 16, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "my_dog.name" + "my_dog.color" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'sheperd'" + "['__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__',\n", + " 'breed',\n", + " 'color',\n", + " 'name']" ] }, - "execution_count": 6, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "my_dog.breed" + "dir(my_dog)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ - "dir(my_dog)" + "type(my_dog)\n", + "\n", + "\n", + "my_lazy_dog = [(10,'blue',10),('red','blue',10)]" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'red'" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "type(my_dog)" + "my_lazy_dog[0][0]" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "# simple framework for a dog\n", "class dog:\n", " \n", - " def __init__(self, color, breed, name):\n", - " self.color = color\n", + " def __init__(self, breed, name,color=None):\n", + " self.__color = color\n", " self.breed = breed\n", " self.name = name\n", " \n", - " def speak(self, x):\n", - " self.x = x\n", - " print(\"this is speaking\")\n", + " def speak(self):\n", + " print(\"My color is \" + self.__color)\n", " \n", - " def change_color(self, color):\n", - " self.color = color\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class DataWrangler:\n", - " \n", - " def __init__(self,dataframe):\n", - " self.dataframe = dataframe\n", - " \n", - " \n", - " " + " def change_color(self, carrot):\n", + " self.color = carrot" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 38, + "execution_count": 44, "metadata": {}, "outputs": [], "source": [ @@ -263,30 +234,70 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'blue'" + "['__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__',\n", + " '_dog__color',\n", + " 'breed',\n", + " 'change_color',\n", + " 'name',\n", + " 'speak']" ] }, - "execution_count": 39, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "my_dog.color" + "dir(my_dog)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 48, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "My color is blue\n" + ] + } + ], + "source": [ + "my_dog.speak()" + ] }, { "cell_type": "code", @@ -296,7 +307,7 @@ { "data": { "text/plain": [ - "'green'" + "'red'" ] }, "execution_count": 40, @@ -304,56 +315,36 @@ "output_type": "execute_result" } ], - "source": [ - "my_dog.change_color(\"green\")\n", - "my_dog.color" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog.speak" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_dog.speak()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], "source": [ "my_dog.color" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "My color is red\n" + ] + } + ], "source": [ "my_dog.change_color(\"red\")\n", - "my_dog.color" + "my_dog.speak()" ] }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [ "# simple framework for a dog\n", - "class Dog:\n", + "class dog:\n", " \n", " def __init__(self, color, breed, name):\n", " self.color = color\n", @@ -362,12 +353,16 @@ " self.distance = 0\n", " \n", " def walk(self, distance):\n", - " self.distance += distance" + " self.distance += distance\n", + " \n", + " def peemeter(self):\n", + " pee = 1 - self.distance/50\n", + " print(\"Pee Probability is \", pee)" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -376,61 +371,57 @@ "0" ] }, - "execution_count": 45, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "my_dog = Dog(color = \"blue\", breed = \"sheperd\", name = \"spot\")\n", + "my_dog = dog(color = \"blue\", breed = \"sheperd\", name = \"spot\")\n", "my_dog.distance" ] }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 62, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "5" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Pee Probability is 0.56\n" + ] } ], "source": [ - "my_dog.walk(5)\n", - "my_dog.distance" + "my_dog.walk(22)\n", + "my_dog.distance\n", + "my_dog.peemeter()" ] }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 63, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "17" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Pee Probability is 0.31999999999999995\n" + ] } ], "source": [ "my_dog.walk(12)\n", - "my_dog.distance" + "my_dog.distance\n", + "my_dog.peemeter()" ] }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -439,7 +430,7 @@ "35" ] }, - "execution_count": 48, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -453,479 +444,339 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Inheritence\n", - "* Inherit properties and functions from other objects" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "class Dog:\n", - " \n", - " def __init__(self, color, breed, name):\n", - " self.color = color\n", - " self.breed = breed\n", - " self.name = name\n", - " self.distance = 0\n", - " \n", - " def walk(self, distance):\n", - " self.distance += distance\n", - " \n", - "class Retreiver(Dog):\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [], - "source": [ - "class Animal:\n", - " \n", - " def __init__(self, height, weight):\n", - " self.height = height\n", - " self.weight = weight\n", - " \n", - "class Species:\n", - " \n", - " def __init__(self, height1, weight1):\n", - " self.height1 = height1\n", - " self.weight1 = weight1\n", - " \n", - "class Dog(Species, Animal):\n", - " pass\n", + "Write a class dog with a variable distance that is private.\n", "\n", - " # this would override the init of Animal\n", - " #def __init__(self):\n", - " # pass" + "with a function that walks the dog and returns an error if the value is negative\n" ] }, { "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['__class__',\n", - " '__delattr__',\n", - " '__dict__',\n", - " '__dir__',\n", - " '__doc__',\n", - " '__eq__',\n", - " '__format__',\n", - " '__ge__',\n", - " '__getattribute__',\n", - " '__gt__',\n", - " '__hash__',\n", - " '__init__',\n", - " '__init_subclass__',\n", - " '__le__',\n", - " '__lt__',\n", - " '__module__',\n", - " '__ne__',\n", - " '__new__',\n", - " '__reduce__',\n", - " '__reduce_ex__',\n", - " '__repr__',\n", - " '__setattr__',\n", - " '__sizeof__',\n", - " '__str__',\n", - " '__subclasshook__',\n", - " '__weakref__',\n", - " 'height1',\n", - " 'weight1']" - ] - }, - "execution_count": 84, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_dog = Dog(6,180)\n", - "\n", - "dir(my_dog)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "r = retreiver(color = \"blue\", breed = \"retreiver\", name = \"Rex\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'blue'" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "r.color" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['__class__',\n", - " '__delattr__',\n", - " '__dict__',\n", - " '__dir__',\n", - " '__doc__',\n", - " '__eq__',\n", - " '__format__',\n", - " '__ge__',\n", - " '__getattribute__',\n", - " '__gt__',\n", - " '__hash__',\n", - " '__init__',\n", - " '__init_subclass__',\n", - " '__le__',\n", - " '__lt__',\n", - " '__module__',\n", - " '__ne__',\n", - " '__new__',\n", - " '__reduce__',\n", - " '__reduce_ex__',\n", - " '__repr__',\n", - " '__setattr__',\n", - " '__sizeof__',\n", - " '__str__',\n", - " '__subclasshook__',\n", - " '__weakref__',\n", - " 'breed',\n", - " 'color',\n", - " 'distance',\n", - " 'name',\n", - " 'walk']" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dir(r)" - ] - }, - { - "cell_type": "code", - "execution_count": 85, + "execution_count": 111, "metadata": {}, "outputs": [], "source": [ - "class Dog:\n", + "# simple framework for a dog\n", + "class dog:\n", " \n", " def __init__(self, color, breed, name):\n", " self.color = color\n", " self.breed = breed\n", " self.name = name\n", - " self.distance = 0\n", + " self.__distance = 0\n", " \n", " def walk(self, distance):\n", - " self.distance += distance\n", - " \n", - "class Retreiver(Dog):\n", + " assert distance > 0, \"Dude.. don't be lazy!!\"\n", + " self.__distance += distance\n", " \n", - " def speak(self):\n", - " print(\"My name is {}\".format(self.name))" + " def get_distance(self):\n", + " print(self.__distance)\n", + " \n", + " def peemeter(self):\n", + " pee = 1 - self.__distance/50\n", + " print(\"Pee Probability is \", pee)" ] }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 112, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "My name is Rex\n" - ] - } - ], + "outputs": [], "source": [ - "r = Retreiver(color = \"blue\", breed = \"retreiver\", name = \"Rex\")\n", - "r.speak()" + "my_dog = dog(color = \"blue\", breed = \"sheperd\", name = \"spot\")\n" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 113, "metadata": {}, "outputs": [ { "ename": "AttributeError", - "evalue": "'Dog' object has no attribute 'speak'", + "evalue": "'dog' object has no attribute 'distance'", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDog\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcolor\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"blue\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbreed\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"retreiver\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"Rex\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mspeak\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m: 'Dog' object has no attribute 'speak'" + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mmy_dog\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdistance\u001b[0m \u001b[1;31m#distance is a private variable\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m: 'dog' object has no attribute 'distance'" ] } ], "source": [ - "r = Dog(color = \"blue\", breed = \"retreiver\", name = \"Rex\")\n", - "r.speak()" + "my_dog.distance #distance is a private variable" ] }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 114, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "200\n" + "10\n", + "10\n" + ] + }, + { + "ename": "AssertionError", + "evalue": "Dude.. don't be lazy!!", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0mmy_dog\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwalk\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m10\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mmy_dog\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_distance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 5\u001b[1;33m \u001b[0mmy_dog\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwalk\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m10\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 6\u001b[0m \u001b[0mmy_dog\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_distance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m\u001b[0m in \u001b[0;36mwalk\u001b[1;34m(self, distance)\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mwalk\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdistance\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 10\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__distance\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 11\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0mdistance\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"Dude.. don't be lazy!!\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 12\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__distance\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[0mdistance\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mAssertionError\u001b[0m: Dude.. don't be lazy!!" ] } ], "source": [ - "class Dog:\n", - " \n", - " def __init__(self, height = 150):\n", - " self.height = height\n", - " \n", - "d = Dog(200)\n", - "print(d.height)" + "my_dog.walk(10)\n", + "my_dog.get_distance()\n", + "my_dog.walk(10)\n", + "my_dog.get_distance()\n", + "my_dog.walk(-10)\n", + "my_dog.get_distance()" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Super" + "## Inheritence\n", + "* Inherit properties and functions from other objects" ] }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 124, "metadata": {}, "outputs": [], "source": [ - "class Dog:\n", + "# simple framework for a dog\n", + "class dog:\n", " \n", " def __init__(self, color, breed, name):\n", " self.color = color\n", " self.breed = breed\n", " self.name = name\n", - " self.distance = 0\n", + " self.__distance = 0\n", " \n", " def walk(self, distance):\n", - " self.distance += distance\n", - " \n", - "class Retreiver(Dog):\n", - " '''\n", - " attr color: string, color or dog\n", - " attr breed: stirng, breed of dog\n", - " this is making a dog class\n", + " assert distance > 0, \"Dude.. don't be lazy!!\"\n", + " self.__distance += distance\n", " \n", - " '''\n", - " def __init__(self, color, breed, name, last_name):\n", - " super().__init__(color, breed, name) \n", - " self.last_name = last_name\n", - " \n", - " def speak(self):\n", - " print(\"My name is {}\".format(self.name))\n", - " \n", - "class Beagle(Dog):\n", + " def get_distance(self):\n", + " print(self.__distance)\n", " \n", - " def __init__(self, color, breed, name, last_name, size):\n", - " super().__init__(color, breed, name) \n", - " self.size = size\n", + " def peemeter(self):\n", + " pee = 1 - self.__distance/50\n", + " print(\"Pee Probability is \", pee)\n", " \n", - " def speak(self):\n", - " print(\"My name is {}\".format(self.name))" + "class Retreiver(dog):\n", + " pass" ] }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 125, "metadata": {}, "outputs": [], "source": [ - "r = Retreiver(color = \"blue\", breed = \"retreiver\", name = \"Rex\", last_name = \"Rex 2\")" + "r = Retreiver(color = \"blue\", breed = \"retreiver\", name = \"Rex\")" ] }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 127, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "blue\n", - "retreiver\n", - "Rex\n", - "Rex 2\n", - "0\n" - ] - } - ], + "outputs": [], "source": [ - "print(r.color)\n", - "print(r.breed)\n", - "print(r.name)\n", - "print(r.last_name)\n", - "print(r.distance)" + "r.walk(10)" ] }, { "cell_type": "code", - "execution_count": 74, - "metadata": {}, + "execution_count": 128, + "metadata": { + "scrolled": true + }, "outputs": [ { - "data": { - "text/plain": [ - "5" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "10\n" + ] } ], "source": [ - "r.walk(5)\n", - "r.distance" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Overload\n", - "* have a function behave in different ways depending on how it is called or a param is passed to it\n", - "* can overload a UDF or a build in function" + "r.get_distance()" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 312, "metadata": {}, + "outputs": [], "source": [ - "### Overload a UDF" + "# simple framework for a dog\n", + "class dog:\n", + " \n", + " def __init__(self, color, breed, name):\n", + " self.color = color\n", + " self.breed = breed\n", + " self.name = name\n", + " self.__distance = 0\n", + " self.age = 2\n", + " \n", + " def walk(self, distance):\n", + " assert distance > 0, \"Dude.. don't be lazy!!\"\n", + " self.__distance += distance\n", + " \n", + " def get_distance(self):\n", + " print(self.__distance)\n", + " \n", + " def peemeter(self):\n", + " pee = 1 - self.__distance/50\n", + " print(\"Pee Probability is \", pee)\n", + "\n", + "class vac():\n", + " \n", + " @classmethod\n", + " def printme(self):\n", + " print(self.vaccins_list)\n", + " \n", + " def __init__(self):\n", + " self.vaccins_list=[]\n", + " \n", + " def add_vaccin(self,name):\n", + " self.vaccins_list.append(name)\n", + " \n", + " def get_vaccin(self):\n", + " print(self.vaccins_list)\n", + "\n", + "\n", + "class retreiver(dog,vac):\n", + " def __init__(self, color, name):\n", + " dog.__init__(self,color=color, breed='Retriever',name=name)\n", + " vac.__init__(self)\n", + " \n", + " def __repr__(self):\n", + " return \"My name is {}\".format(self.name)\n", + " \n", + " def speak(self):\n", + " print(\"My name is {}\".format(self.name))\n", + " \n", + " def blink182(self):\n", + " print(\"My age is {}\".format(self.age))" ] }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 313, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Someone is barking\n", - "Rex is barking\n" + "['BCG']\n" ] } ], "source": [ - "class Dog:\n", - " def speak(self, name=None):\n", - " if name is not None:\n", - " print(name + \" is barking\")\n", - " else:\n", - " print('Someone is barking')\n", - "\n", - "# Creating a class instance\n", - "d = Dog()\n", - "\n", - "# Call the method\n", - "d.speak()\n", - "\n", - "# Call the method and pass a parameter\n", - "d.speak('Rex')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Overload Built In Function" + "seb = retreiver('black','seb')\n", + "seb.add_vaccin('BCG')\n", + "seb.get_vaccin()" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 304, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "3\n" - ] + "data": { + "text/plain": [ + "['__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__',\n", + " '_dog__distance',\n", + " 'add_vaccin',\n", + " 'age',\n", + " 'blink182',\n", + " 'breed',\n", + " 'color',\n", + " 'get_distance',\n", + " 'get_vaccin',\n", + " 'name',\n", + " 'peemeter',\n", + " 'speak',\n", + " 'walk']" + ] + }, + "execution_count": 304, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "class Basket:\n", - " def __init__(self, basket):\n", - " self.basket = basket\n", - "\n", - " def __len__(self):\n", - " return len(self.basket)\n", - "\n", - "b = Basket(['a', 'b', 'c'])\n", - "print(len(b))" + "dir(seb)" ] }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 56, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "50\n" + "ename": "AttributeError", + "evalue": "'Dog' object has no attribute 'speak'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mr\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mDog\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcolor\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"blue\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbreed\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"retreiver\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"Rex\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mspeak\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m: 'Dog' object has no attribute 'speak'" ] } ], "source": [ - "class Basket:\n", - " def __init__(self, basket):\n", - " self.basket = basket\n", - "\n", - " def __len__(self):\n", - " return 50\n", - "\n", - "b = Basket(['a', 'b', 'c'])\n", - "print(len(b))" + "r = Dog(color = \"blue\", breed = \"retreiver\", name = \"Rex\")\n", + "r.speak()" ] }, { @@ -940,13 +791,13 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 167, "metadata": {}, "outputs": [], "source": [ "class Dog:\n", " \n", - " year_created = 1910\n", + " class_atr = 10\n", " \n", " @classmethod\n", " def speak(cls, speak):\n", @@ -976,16 +827,17 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 169, "metadata": {}, "outputs": [], "source": [ - "r = Dog(color = \"blue\", breed = \"retreiver\", name = \"Rex\")" + "rex = Dog(color = \"blue\", breed = \"retreiver\", name = \"Rex\")\n", + "thor = Dog(color = \"blue\", breed = \"retreiver\", name = \"thor\")" ] }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 170, "metadata": {}, "outputs": [ { @@ -997,12 +849,13 @@ } ], "source": [ - "r.printer()" + "rex.printer()\n", + "thor.class_add()" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 171, "metadata": {}, "outputs": [ { @@ -1014,13 +867,13 @@ } ], "source": [ - "r.class_add()\n", - "r.printer()" + "rex.printer()\n", + "\n" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 83, "metadata": {}, "outputs": [ { @@ -1032,12 +885,12 @@ } ], "source": [ - "r.speak(\"say something\")" + "rex.speak(\"say something\")" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -1049,21 +902,21 @@ } ], "source": [ - "Dog.speak(\"say something\")" + "thor.speak(\"say something\")" ] }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 86, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "20" + "30" ] }, - "execution_count": 47, + "execution_count": 86, "metadata": {}, "output_type": "execute_result" } @@ -1089,7 +942,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 89, "metadata": {}, "outputs": [], "source": [ @@ -1118,7 +971,7 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 90, "metadata": {}, "outputs": [], "source": [ @@ -1127,7 +980,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 91, "metadata": {}, "outputs": [ { @@ -1144,7 +997,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 92, "metadata": {}, "outputs": [ { @@ -1185,14 +1038,54 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 182, "metadata": {}, "outputs": [], "source": [ + "import datetime\n", + "\n", + "\n", "from datetime import datetime\n", "from datetime import date" ] }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['MAXYEAR',\n", + " 'MINYEAR',\n", + " '__builtins__',\n", + " '__cached__',\n", + " '__doc__',\n", + " '__file__',\n", + " '__loader__',\n", + " '__name__',\n", + " '__package__',\n", + " '__spec__',\n", + " 'date',\n", + " 'datetime',\n", + " 'datetime_CAPI',\n", + " 'sys',\n", + " 'time',\n", + " 'timedelta',\n", + " 'timezone',\n", + " 'tzinfo']" + ] + }, + "execution_count": 181, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dir(datetime)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1202,101 +1095,125 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 185, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2020-01-28\n" + "2020-04-22 20:08:46.587338\n" ] } ], "source": [ - "today = date.today()\n", + "today = datetime.today()\n", "print(today)" ] }, { "cell_type": "code", - "execution_count": 100, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "28" - ] - }, - "execution_count": 100, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "today.day" - ] - }, - { - "cell_type": "code", - "execution_count": 101, + "execution_count": 97, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1" + "['__add__',\n", + " '__class__',\n", + " '__delattr__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__radd__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__rsub__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__sub__',\n", + " '__subclasshook__',\n", + " 'ctime',\n", + " 'day',\n", + " 'fromisoformat',\n", + " 'fromordinal',\n", + " 'fromtimestamp',\n", + " 'isocalendar',\n", + " 'isoformat',\n", + " 'isoweekday',\n", + " 'max',\n", + " 'min',\n", + " 'month',\n", + " 'replace',\n", + " 'resolution',\n", + " 'strftime',\n", + " 'timetuple',\n", + " 'today',\n", + " 'toordinal',\n", + " 'weekday',\n", + " 'year']" ] }, - "execution_count": 101, + "execution_count": 97, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "today.month" + "dir(today)" ] }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 186, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2020" + "4" ] }, - "execution_count": 102, + "execution_count": 186, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "today.year" + "today.month" ] }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 187, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'save_file_28_1_2020.csv'" + "2020" ] }, - "execution_count": 103, + "execution_count": 187, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "save_name = \"save_file_{}_{}_{}.csv\".format(today.day, today.month, today.year)\n", - "save_name" + "today.year" ] }, { @@ -1315,16 +1232,16 @@ }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 188, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1" + "2" ] }, - "execution_count": 104, + "execution_count": 188, "metadata": {}, "output_type": "execute_result" } @@ -1335,7 +1252,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 101, "metadata": { "scrolled": true }, @@ -1391,7 +1308,7 @@ " 'year']" ] }, - "execution_count": 14, + "execution_count": 101, "metadata": {}, "output_type": "execute_result" } @@ -1409,14 +1326,14 @@ }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 200, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2020-01-28 10:52:20.994581\n" + "2020-04-22 20:10:36.964919\n" ] } ], @@ -1427,7 +1344,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 107, "metadata": { "scrolled": true }, @@ -1503,7 +1420,7 @@ " 'year']" ] }, - "execution_count": 29, + "execution_count": 107, "metadata": {}, "output_type": "execute_result" } @@ -1514,16 +1431,16 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 201, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "20" + "36" ] }, - "execution_count": 108, + "execution_count": 201, "metadata": {}, "output_type": "execute_result" } @@ -1534,16 +1451,16 @@ }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 202, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "52" + "10" ] }, - "execution_count": 109, + "execution_count": 202, "metadata": {}, "output_type": "execute_result" } @@ -1554,16 +1471,16 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 203, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "10" + "20" ] }, - "execution_count": 110, + "execution_count": 203, "metadata": {}, "output_type": "execute_result" } @@ -1574,16 +1491,16 @@ }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 204, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "28" + "22" ] }, - "execution_count": 111, + "execution_count": 204, "metadata": {}, "output_type": "execute_result" } @@ -1594,16 +1511,16 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 205, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1" + "4" ] }, - "execution_count": 112, + "execution_count": 205, "metadata": {}, "output_type": "execute_result" } @@ -1614,7 +1531,7 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 206, "metadata": {}, "outputs": [ { @@ -1623,7 +1540,7 @@ "2020" ] }, - "execution_count": 113, + "execution_count": 206, "metadata": {}, "output_type": "execute_result" } @@ -1634,16 +1551,16 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 207, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "6" + "2" ] }, - "execution_count": 38, + "execution_count": 207, "metadata": {}, "output_type": "execute_result" } @@ -1659,50 +1576,67 @@ "

make a variable of the current date

\n", "

- make a list with the weekdays

\n", "

- convert the weekday() integer to the actual date name

\n", - "

- print the below, without hard coding it

" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'t'" - ] - }, - "execution_count": 114, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[\"m\",\"t\",\"w\",\"th\",\"f\",\"s\",\"su\"][today.weekday()]" + "

- print the below, without hard coding it

\n", + "\n", + "create a class called converter that receives a date and language and overhauls the print (__repr__) to show the actual date name." ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 256, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Today is a Friday\n" + "Today is Wednesday\n", + "Hoje é Quarta\n", + "What?2\n" ] } ], "source": [ - "print(\"Today is a Friday\")" + "\n", + "class converter():\n", + " def __init__(self,language):\n", + " self.lan = language\n", + "\n", + " def day_printer(self,language):\n", + " if language=='EN':\n", + " weekdays = {0:\"Monday\",\n", + " 1:\"Tuesday\",\n", + " 2:\"Wednesday\",\n", + " 3:\"Thursday\"}\n", + " pretext=\"Today is \"\n", + "\n", + " elif language=='PT':\n", + " weekdays= {0:\"Segunda\",\n", + " 1:\"Terça\",\n", + " 2:\"Quarta\",\n", + " 3:\"Quinta\"}\n", + " pretext=\"Hoje é \"\n", + " else:\n", + " pretext=\"What?\"\n", + " weekdays=[\"0\",\"1\",\"2\",\"3\"]\n", + " \n", + " return pretext + weekdays[today.weekday()]\n", + " \n", + " def __repr__(self):\n", + " x = self.day_printer(self.lan)\n", + " return x\n", + " \n", + "\n", + "print(converter('EN'))\n", + "print(converter('PT'))\n", + "print(converter('ES'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "\n", "#### Format Datetime output using strftime\n", "* (%y/%Y – Year)\n", "* (%a/%A- weekday)\n", @@ -1715,7 +1649,7 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 257, "metadata": {}, "outputs": [], "source": [ @@ -1724,7 +1658,7 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 258, "metadata": {}, "outputs": [ { @@ -1743,15 +1677,15 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 259, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Tuesday\n", - "Tue\n" + "Wednesday\n", + "Wed\n" ] } ], @@ -1762,15 +1696,15 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 260, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "January\n", - "Jan\n" + "April\n", + "Apr\n" ] } ], @@ -1781,15 +1715,15 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 261, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "11/24/19\n", - "24\n" + "04/22/20\n", + "22\n" ] } ], @@ -1800,14 +1734,14 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 262, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Sun Nov 24 12:10:24 2019\n" + "Wed Apr 22 20:45:33 2020\n" ] } ], @@ -1824,14 +1758,14 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 137, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2020-January-28\n" + "2020-January-21\n" ] } ], @@ -1841,14 +1775,14 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 138, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2019,November,24\n" + "2020,January,21\n" ] } ], @@ -1858,14 +1792,14 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 139, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "19-Nov-24\n" + "20-Jan-21\n" ] } ], @@ -1875,33 +1809,33 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 264, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "10:57:45\n" + "0845\n" ] } ], "source": [ "# I is the hour, # M is minutes, #S is seconds\n", "# army time\n", - "print(now.strftime(\"%I:%M:%S\"))" + "print(now.strftime(\"%I%M\"))" ] }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 263, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "10:57\n" + "20:45\n" ] } ], @@ -1920,7 +1854,7 @@ }, { "cell_type": "code", - "execution_count": 123, + "execution_count": 270, "metadata": {}, "outputs": [], "source": [ @@ -1929,34 +1863,38 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 275, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2020-01-28 10:59:46.554941\n", - "2020-02-07 16:14:46.555326\n" + "2020-04-22 20:52:51.292117\n", + "2020-05-03 02:07:51.292117\n", + "2020-01-31 00:00:00\n" ] } ], "source": [ "print(datetime.now())\n", - "print(datetime.now() + timedelta(days=10, hours = 5, minutes = 15))" + "b = datetime(year=2020,month=1,day=31)\n", + "\n", + "print(datetime.now() + timedelta(days=10, hours = 5, minutes = 15))\n", + "print(b)" ] }, { "cell_type": "code", - "execution_count": 125, + "execution_count": 148, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2020-01-28 11:00:14.379555\n", - "2020-01-18 05:45:14.379820\n" + "2020-01-21 20:00:46.658815\n", + "2020-01-11 14:45:46.658815\n" ] } ], @@ -1967,15 +1905,15 @@ }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 149, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2020-01-28 11:00:18.115586\n", - "2020-02-11 11:00:18.115858\n" + "2020-01-21 20:01:03.819276\n", + "2020-02-04 20:01:03.819276\n" ] } ], @@ -2005,366 +1943,152 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 265, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "datetime.datetime" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "# returns a datetime so we can extract info\n", - "x = datetime.now() - timedelta(weeks=2)\n", - "type(x)" + "a = datetime.now()" ] }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 266, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2019" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "x.year" + "b = datetime.now()" ] }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 267, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "11" + "datetime.timedelta(seconds=8, microseconds=624430)" ] }, - "execution_count": 72, + "execution_count": 267, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "x.month" + "b-a" ] }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 271, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "10" + "datetime.datetime" ] }, - "execution_count": 73, + "execution_count": 271, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "x.day" + "# returns a datetime so we can extract info\n", + "x = datetime.now() - timedelta(weeks=2)\n", + "type(x)" ] }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 152, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "6" + "2020" ] }, - "execution_count": 75, + "execution_count": 152, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "x.weekday()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

make a variable with the current date

\n", - "

- add/subtract a year

\n", - "

- add subtract a year and 2 weeks

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Saving Objects in Python\n", - "* serialization, marshaling, and flattening. \n", - "* same—to save an object to a file for later retrieval\n", - "* accomplishes this by writing the object as one long stream of bytes. \n", - "* pickling also used to save models in sklearn\n", - "* https://docs.python.org/3/library/pickle.html\n", - "* https://scikit-learn.org/stable/modules/model_persistence.html" - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "True\n" - ] - } - ], - "source": [ - "class Dog:\n", - " \n", - " def __init__(self, name):\n", - " self.name = name\n", - " \n", - "d = Dog(\"Brian\")\n", - "\n", - "assert hasattr(d, \"name\"), \"this object doesn't have attribuet namee\"" - ] - }, - { - "cell_type": "code", - "execution_count": 138, - "metadata": {}, - "outputs": [], - "source": [ - "import pickle" - ] - }, - { - "cell_type": "code", - "execution_count": 139, - "metadata": {}, - "outputs": [], - "source": [ - "test = [\"a\", \"b\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 140, - "metadata": {}, - "outputs": [], - "source": [ - "file = open('test_pickle', 'wb') \n", - "pickle.dump(test, file)\n", - "file.close()" + "x.year" ] }, { "cell_type": "code", - "execution_count": 141, + "execution_count": 153, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['a', 'b']" + "1" ] }, - "execution_count": 141, + "execution_count": 153, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "test" - ] - }, - { - "cell_type": "code", - "execution_count": 142, - "metadata": {}, - "outputs": [], - "source": [ - "# delete from memory\n", - "del test" - ] - }, - { - "cell_type": "code", - "execution_count": 143, - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'test' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtest\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mNameError\u001b[0m: name 'test' is not defined" - ] - } - ], - "source": [ - "test" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\"/Users/conagrabrands/Desktop\"" - ] - }, - { - "cell_type": "code", - "execution_count": 144, - "metadata": {}, - "outputs": [], - "source": [ - "file = open('test_pickle', 'rb') \n", - "test = pickle.load(file)\n", - "file.close()" + "x.month" ] }, { "cell_type": "code", - "execution_count": 145, + "execution_count": 154, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['a', 'b']" + "7" ] }, - "execution_count": 145, + "execution_count": 154, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "test" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### using with" - ] - }, - { - "cell_type": "code", - "execution_count": 152, - "metadata": {}, - "outputs": [], - "source": [ - "item = \"some string I made\"" - ] - }, - { - "cell_type": "code", - "execution_count": 153, - "metadata": {}, - "outputs": [], - "source": [ - "with open(\"test_pickle.pkl\", \"wb\") as file:\n", - " pickle.dump(item, file)" - ] - }, - { - "cell_type": "code", - "execution_count": 154, - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'item' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0mitem\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mitem\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mNameError\u001b[0m: name 'item' is not defined" - ] - } - ], - "source": [ - "del item\n", - "item" + "x.day" ] }, { "cell_type": "code", "execution_count": 155, "metadata": {}, - "outputs": [], - "source": [ - "with open(\"test_pickle.pkl\", \"rb\") as file:\n", - " item = pickle.load(file)" - ] - }, - { - "cell_type": "code", - "execution_count": 156, - "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'some string I made'" + "1" ] }, - "execution_count": 156, + "execution_count": 155, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "item" + "x.weekday()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "

make a python object

\n", - "

- save the object

\n", - "

- delete the object from memory

\n", - "

- reload it

" + "

make a variable with the current date

\n", + "

- add/subtract a year

\n", + "

- add subtract a year and 2 weeks

" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/lectures/Lecture 4 - Numpy.ipynb b/lectures/Lecture 4 - Numpy.ipynb new file mode 100644 index 0000000..a92ca4b --- /dev/null +++ b/lectures/Lecture 4 - Numpy.ipynb @@ -0,0 +1,97672 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Numpy Arrays\n", + "* multi dimensional arrays or data\n", + "* can be 1d, 2d, 3d\n", + "* very computationally efficient to perform linear algebra operations over\n", + "* elementwise operations\n", + "* row and column wise calculations\n", + "* https://docs.scipy.org/doc/numpy-1.11.0/numpy-user-1.11.0.pdf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Arrays vs. Matrix Class\n", + "* \"Short Answer: Use Arrays.\"\n", + "* They are the standard vector/matrix/tensor type of numpy. Many numpy functions return arrays, not matrices.\n", + "* The array class is intended to be a general-purposen-dimensional array for many kinds of numerical computing, whilematrixis intended to facilitate linear algebracomputations specifically." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1-D arrays\n", + "* note his only has one demension\n", + "* we could use a method called reshape to change this (we will get into this more later on)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "a = np.array([1,2,3,4,5])" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5,)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5, 1)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b = np.reshape(a, (5,1))\n", + "b.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[2]\n" + ] + } + ], + "source": [ + "c = b[1]\n", + "print(c)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a[1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### indexing and slicing" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a[2]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a[0:2]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 3])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a[1:3]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a[-1]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "numpy.ndarray" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(a)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n", + "2\n", + "3\n", + "4\n", + "5\n" + ] + } + ], + "source": [ + "for k_element in a:\n", + " print(k_element)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### looping\n", + "* numpy loops through the left most axis" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 3)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array = np.array([\n", + " [1,2,3],\n", + " [2,3,4]\n", + "])\n", + "\n", + "array.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3]\n", + "[2 3 4]\n" + ] + } + ], + "source": [ + "# since we have 2 items in the first axis we will end up with 2 items in our iteration\n", + "for i in array:\n", + " print(i)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "array = np.array([\n", + " [1,2,3,4],\n", + " [2,3,4,4],\n", + " [2,3,4,4]\n", + "])\n", + "\n", + "array1 = np.array([\n", + " [5,6,7,4],\n", + " [4,6,9,4],\n", + " [2,3,4,4]\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1 2 3 4]\n", + " [2 3 4 4]\n", + " [2 3 4 4]] (3, 4) \n" + ] + } + ], + "source": [ + "# depth 2\n", + "# rows 3\n", + "# columns 4\n", + "tensor = np.array([array, array1])\n", + "tensor.shape\n", + "image1 = tensor[0]\n", + "print(image1,image1.shape,type(image1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* remember numpy will iterate left most index\n", + "* in this 3-d cube, it's iterating the dpeth\n", + "* so we end up printing our 2 initial matrices" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1 2 3 4]\n", + " [2 3 4 4]\n", + " [2 3 4 4]]\n", + "[[5 6 7 4]\n", + " [4 6 9 4]\n", + " [2 3 4 4]]\n" + ] + } + ], + "source": [ + "for i in tensor:\n", + " print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### performing matrix operations\n", + "* axis 0 is the y axis\n", + "* the up and down axis\n", + "* the number of rows\n", + "* so any operation done on axis 0 is going to be columns\n", + "* done up and down\n", + "* axis 1 is the length of our array\n", + "* any summing or anything is done across our dataframe\n", + "* doing some operation to our rows" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "array = np.array([\n", + " [1,2,3,4],\n", + " [2,3,4,4],\n", + " [2,3,4,4]\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(3, 4)" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['T',\n", + " '__abs__',\n", + " '__add__',\n", + " '__and__',\n", + " '__array__',\n", + " '__array_finalize__',\n", + " '__array_function__',\n", + " '__array_interface__',\n", + " '__array_prepare__',\n", + " '__array_priority__',\n", + " '__array_struct__',\n", + " '__array_ufunc__',\n", + " '__array_wrap__',\n", + " '__bool__',\n", + " '__class__',\n", + " '__complex__',\n", + " '__contains__',\n", + " '__copy__',\n", + " '__deepcopy__',\n", + " '__delattr__',\n", + " '__delitem__',\n", + " '__dir__',\n", + " '__divmod__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__float__',\n", + " '__floordiv__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__getitem__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__iadd__',\n", + " '__iand__',\n", + " '__ifloordiv__',\n", + " '__ilshift__',\n", + " '__imatmul__',\n", + " '__imod__',\n", + " '__imul__',\n", + " '__index__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__int__',\n", + " '__invert__',\n", + " '__ior__',\n", + " '__ipow__',\n", + " '__irshift__',\n", + " '__isub__',\n", + " '__iter__',\n", + " '__itruediv__',\n", + " '__ixor__',\n", + " '__le__',\n", + " '__len__',\n", + " '__lshift__',\n", + " '__lt__',\n", + " '__matmul__',\n", + " '__mod__',\n", + " '__mul__',\n", + " '__ne__',\n", + " '__neg__',\n", + " '__new__',\n", + " '__or__',\n", + " '__pos__',\n", + " '__pow__',\n", + " '__radd__',\n", + " '__rand__',\n", + " '__rdivmod__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__rfloordiv__',\n", + " '__rlshift__',\n", + " '__rmatmul__',\n", + " '__rmod__',\n", + " '__rmul__',\n", + " '__ror__',\n", + " '__rpow__',\n", + " '__rrshift__',\n", + " '__rshift__',\n", + " '__rsub__',\n", + " '__rtruediv__',\n", + " '__rxor__',\n", + " '__setattr__',\n", + " '__setitem__',\n", + " '__setstate__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__sub__',\n", + " '__subclasshook__',\n", + " '__truediv__',\n", + " '__xor__',\n", + " 'all',\n", + " 'any',\n", + " 'argmax',\n", + " 'argmin',\n", + " 'argpartition',\n", + " 'argsort',\n", + " 'astype',\n", + " 'base',\n", + " 'byteswap',\n", + " 'choose',\n", + " 'clip',\n", + " 'compress',\n", + " 'conj',\n", + " 'conjugate',\n", + " 'copy',\n", + " 'ctypes',\n", + " 'cumprod',\n", + " 'cumsum',\n", + " 'data',\n", + " 'diagonal',\n", + " 'dot',\n", + " 'dtype',\n", + " 'dump',\n", + " 'dumps',\n", + " 'fill',\n", + " 'flags',\n", + " 'flat',\n", + " 'flatten',\n", + " 'getfield',\n", + " 'imag',\n", + " 'item',\n", + " 'itemset',\n", + " 'itemsize',\n", + " 'max',\n", + " 'mean',\n", + " 'min',\n", + " 'nbytes',\n", + " 'ndim',\n", + " 'newbyteorder',\n", + " 'nonzero',\n", + " 'partition',\n", + " 'prod',\n", + " 'ptp',\n", + " 'put',\n", + " 'ravel',\n", + " 'real',\n", + " 'repeat',\n", + " 'reshape',\n", + " 'resize',\n", + " 'round',\n", + " 'searchsorted',\n", + " 'setfield',\n", + " 'setflags',\n", + " 'shape',\n", + " 'size',\n", + " 'sort',\n", + " 'squeeze',\n", + " 'std',\n", + " 'strides',\n", + " 'sum',\n", + " 'swapaxes',\n", + " 'take',\n", + " 'tobytes',\n", + " 'tofile',\n", + " 'tolist',\n", + " 'tostring',\n", + " 'trace',\n", + " 'transpose',\n", + " 'var',\n", + " 'view']" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dir(array)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[-2. -1. 0. 1.]\n", + " [-1. 0. 1. 1.]\n", + " [-1. 0. 1. 1.]]\n", + "float64\n" + ] + } + ], + "source": [ + "c = (array-array.mean())/array.std()\n", + "print(c)\n", + "print(c.dtype)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(array, axis = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('int32')" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array.dtype" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2., 3., 4., 4.])" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.median(array, axis = 0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* the other option would be to loop which is far more costly of an operation" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10\n", + "13\n", + "13\n" + ] + } + ], + "source": [ + "for i in array:\n", + " print(sum(i))" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5\n", + "8\n", + "11\n", + "12\n" + ] + } + ], + "source": [ + "for i in array.T:\n", + " print(sum(i))" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3, 4],\n", + " [2, 3, 4, 4],\n", + " [2, 3, 4, 4]])" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### tranpose, turn rows into columns" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 2],\n", + " [2, 3, 3],\n", + " [3, 4, 4],\n", + " [4, 4, 4]])" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array.T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Make a 2-d array in numpy:

\n", + "

- find the row wise mean

\n", + "

- find the column wise mean

\n", + "

- do the same for the transpose of the array you've made

\n", + "

- check if matrix square

\n", + "

- multiple the matrix by transpose

\n", + "

- find the z score for each value

" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(3, 2) float64\n", + "[1.80651136 1.7476596 ]\n", + "[0.19506737 1.55174101 1.80736258]\n", + "[0.19506737 1.55174101 1.80736258]\n", + "[1.80651136 1.7476596 ]\n", + "Not a square!\n", + "[0.34453012 2.75760428 3.21566298]\n", + "[0.34453012 2.75760428 3.21566298]\n", + "Square as me!\n", + "[[-1.05426807 -0.8533037 -0.82187756]\n", + " [-0.8533037 0.77785179 1.08527525]\n", + " [-0.82187756 1.08527525 1.45622829]]\n" + ] + } + ], + "source": [ + "a = np.random.random_sample((3,2))\n", + "print(a.shape,a.dtype)\n", + "print(a.sum(0))\n", + "print(a.sum(1))\n", + "\n", + "b = a.T\n", + "\n", + "print(b.sum(0))\n", + "print(b.sum(1))\n", + "\n", + "\n", + "if(a.shape[0]!=a.shape[1]):\n", + " print(\"Not a square!\")\n", + "\n", + "\n", + "c = np.dot(a,b)\n", + "\n", + "print(c.sum(0))\n", + "print(c.sum(1))\n", + "\n", + "\n", + "if(c.shape[0]!=c.shape[1]):\n", + " print(\"Not a square!\")\n", + "else:\n", + " print(\"Square as me!\")\n", + "\n", + "def zmatrix(matrix):\n", + " return (matrix-matrix.mean())/matrix.std()\n", + "print(zmatrix(c))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### other useful metrics\n", + "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.quantile.html\n", + "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1101, 2020, 3212],\n", + " [2212, 3112, 4121]])" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([555.5, 546. , 454.5])" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.std(array, axis = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1656.5, 2566. , 3666.5])" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.mean(array, axis = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1101, 2020, 3212])" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.min(array, axis = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2212, 3112, 4121])" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.max(array, axis = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1656.5, 2566. , 3666.5])" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.quantile(array,.5, axis = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1106.555, 2025.46 , 3216.545])" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.percentile(array,.5, axis = 0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### reshape\n", + "* change the shape of your data\n", + "* adding indices\n", + "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3, 4])" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# this is indexed by one element\n", + "array = np.array([1,2,3,4])\n", + "array" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(4,)" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(4, 1)" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array = np.reshape(array, (4,1))\n", + "array.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array[0][0]" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [], + "source": [ + "# we've now added two dimension using reshape\n", + "array1 = np.reshape(array,(2,2))" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4]])" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array1" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "array = np.array([1,2,3,4,5,6,7,8])" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3, 4, 5, 6, 7, 8])" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# the next 8 numbers have 2x2x2 dimmensions\n", + "\n", + "array" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "array1 = np.reshape(array, (2,2,2))" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[1, 2],\n", + " [3, 4]],\n", + "\n", + " [[5, 6],\n", + " [7, 8]]])" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array1" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 2, 2)" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array1.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1 2]\n", + " [3 4]] \n", + "\n", + "[[5 6]\n", + " [7 8]] \n", + "\n" + ] + } + ], + "source": [ + "for i in array1:\n", + " print(i, \"\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### norm of a vector\n", + "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.norm.html\n", + "* defaults to the l2 norm" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.7416573867739413" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array = np.array([1,2,3])\n", + "np.linalg.norm(array,None)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.7416573867739413" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sqrt(14)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### matrix multiplication/dot product" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "array = np.array([\n", + " [1,2],\n", + " [2,3]\n", + "])\n", + "\n", + "array1 = np.array([\n", + " [5,6],\n", + " [4,6]\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[13, 18],\n", + " [22, 30]])" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# shortcut\n", + "array@array1" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[13, 18],\n", + " [22, 30]])" + ] + }, + "execution_count": 143, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.matmul(array, array1)" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[13, 18],\n", + " [22, 30]])" + ] + }, + "execution_count": 144, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.dot(array, array1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### remember the dimension constraints" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "array = np.array([\n", + " [1,2,3],\n", + " [2,3,3]\n", + "])\n", + "\n", + "array1 = np.array([\n", + " [5,6,2],\n", + " [4,6,1]\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(2, 3) (2, 3)\n" + ] + } + ], + "source": [ + "print(array.shape, array1.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "ename": "AssertionError", + "evalue": "The dimensions aren't aligned", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0marray\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0marray1\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"The dimensions aren't aligned\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0marray\u001b[0m\u001b[1;33m@\u001b[0m\u001b[0marray1\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mAssertionError\u001b[0m: The dimensions aren't aligned" + ] + } + ], + "source": [ + "assert array.shape[1] == array1.shape[0], \"The dimensions aren't aligned\"\n", + "\n", + "array@array1" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(2, 3) (3, 6)\n" + ] + }, + { + "data": { + "text/plain": [ + "array([[19, 27, 10, 17, 14, 21],\n", + " [28, 39, 13, 25, 21, 28]])" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array = np.array([\n", + " [1,2,3],\n", + " [2,3,3]\n", + "])\n", + "\n", + "array1 = np.array([\n", + " [5,6,2,5,3,2],\n", + " [4,6,1,3,4,5],\n", + " [2,3,2,2,1,3]\n", + "])\n", + "\n", + "print(array.shape, array1.shape)\n", + "assert array.shape[1] == array1.shape[0], \"The dimensions aren't aligned\"\n", + "\n", + "array@array1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Make udf that:

\n", + "

- takes 2 2-d arrays as params

\n", + "

- tests to make sure they can be multipled using assert

\n", + "

- return the dot product of the two matrices

" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[19 27 10 17 14 21]\n", + " [28 39 13 25 21 28]]\n" + ] + }, + { + "ename": "AssertionError", + "evalue": "The dimensions aren't aligned", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mc\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 23\u001b[1;33m \u001b[0mc\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mrafdot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marray\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0marray2\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 24\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mc\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m\u001b[0m in \u001b[0;36mrafdot\u001b[1;34m(m1, m2)\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mrafdot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mm1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mm2\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0mm1\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mm2\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"The dimensions aren't aligned\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mm1\u001b[0m\u001b[1;33m@\u001b[0m\u001b[0mm2\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m array = np.array([\n", + "\u001b[1;31mAssertionError\u001b[0m: The dimensions aren't aligned" + ] + } + ], + "source": [ + "def rafdot(m1, m2):\n", + " assert m1.shape[1] == m2.shape[0], \"The dimensions aren't aligned\"\n", + " return m1@m2\n", + "\n", + "array = np.array([\n", + " [1,2,3],\n", + " [2,3,3]\n", + "])\n", + "\n", + "array1 = np.array([\n", + " [5,6,2,5,3,2],\n", + " [4,6,1,3,4,5],\n", + " [2,3,2,2,1,3]\n", + "])\n", + "\n", + "array2 = np.array([\n", + " [5,6,2,5,3,2],\n", + " [4,6,1,3,4,5]])\n", + "\n", + "c = rafdot(array,array1)\n", + "print(c)\n", + "\n", + "c = rafdot(array,array2)\n", + "print(c)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### broadcasting\n", + "* expand the dimension to add to a matrix\n", + "* https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "array = np.array([\n", + " [1,2,3],\n", + " [2,3,3]\n", + "])\n", + "\n", + "array1 = np.array([1,1])\n", + "array1 = np.reshape(array1, (2,1))" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3],\n", + " [2, 3, 3]])" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1],\n", + " [1]])" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array1" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2, 3, 4],\n", + " [3, 4, 4]])" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.add(array, array1)" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0, 1, 2],\n", + " [1, 2, 2]])" + ] + }, + "execution_count": 120, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.subtract(array, array1)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2, 3, 4],\n", + " [3, 4, 4]])" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array + array1" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0, 1, 2],\n", + " [1, 2, 2]])" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array - array1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### elementwise squaring\n", + "* this is the elementwise operations arrays that make arrays so powerful" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 4, 9],\n", + " [4, 9, 9]], dtype=int32)" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array**2" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1, 32, 243],\n", + " [ 32, 243, 243]])" + ] + }, + "execution_count": 128, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.power(array, 5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Make udf that:

\n", + "

- takes 2 2-d arrays as params

\n", + "

- iterates the rows and columns and squares each element

\n", + "

- puts the squared items in a list

\n", + "

- returns the list

" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[array([[1, 4, 9],\n", + " [4, 9, 9]], dtype=int32), array([[1],\n", + " [1]], dtype=int32)]\n", + "\n", + "[array([[1, 4, 9],\n", + " [4, 9, 9]], dtype=int32), array([[1],\n", + " [1]], dtype=int32)]\n", + "\n" + ] + } + ], + "source": [ + "def raf_square(m1,m2):\n", + " flist = []\n", + " for k in m1, m2:\n", + " c = k**2\n", + " flist.append(c)\n", + " return flist\n", + "\n", + "def andy_func(a,b):\n", + " new_list = []\n", + " d, c = a**2, b**2\n", + " new_list.append(d)\n", + " new_list.append(c)\n", + " return new_list\n", + "\n", + "\n", + "\n", + "a = raf_square(array,array1)\n", + "print(a)\n", + "print(type(a))\n", + "b = andy_func(array,array1)\n", + "print(b)\n", + "print(type(b))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### argmax and min\n", + "* returns the index of the max/min value\n", + "* In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are returned.\n", + "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 105, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array = np.array([[1,2,3,4,5],[10,2,3,4,5]])\n", + "np.argmax(array)" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 106, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.argmin(array)" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [], + "source": [ + "array = np.array([\n", + " [1,6,3],\n", + " [3,10,5],\n", + " [15,8,9]\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 1, 2], dtype=int64)" + ] + }, + "execution_count": 108, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.argmax(array, axis = 0) # column level" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 1, 0])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.argmax(array, axis = 1) # row level" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### let's say these are distances\n", + "* each row is an item\n", + "* and each column is the distance to a cluster\n", + "array = np.array([" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "array = np.array([\n", + " [1,6,3],\n", + " [3,10,5],\n", + " [15,8,9]\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 0, 1], dtype=int64)" + ] + }, + "execution_count": 109, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# this could then give us the index of the min distance\n", + "np.argmin(array, axis = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "items = [\"item_A\", \"item_B\", \"item_C\"]\n", + "clusters = [\"A\", \"B\", \"C\"]\n", + "closest_cluster = np.argmin(array, axis = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['A', 'A', 'B']" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "closest_cluster_labels = [clusters[idx] for idx in closest_cluster]\n", + "closest_cluster_labels" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[('item_A', 'A'), ('item_B', 'A'), ('item_C', 'B')]" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "list(zip(items, closest_cluster_labels))" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([['item_A', 'A'],\n", + " ['item_B', 'A'],\n", + " ['item_C', 'B']], dtype='\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mvectorized_func\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marray\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32m\u001b[0m in \u001b[0;36mmyfunc\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0mpos\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0margsort\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0mitems\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;34m\"item_A\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"item_B\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"item_C\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mitems\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mpos\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 5\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[0mvectorized_func\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmyfunc\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mTypeError\u001b[0m: only integer scalar arrays can be converted to a scalar index" + ] + } + ], + "source": [ + "vectorized_func(array)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Distance Measures\n", + "* used in many ML algorithms\n", + "* rec systems, kmeans, knn, decision trees\n", + "* https://docs.scipy.org/doc/scipy/reference/spatial.distance.html" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### euclidean distance\n", + "* magnitude makes a difference" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "metadata": {}, + "outputs": [], + "source": [ + "a = np.array([1,2,3])\n", + "b = np.array([4,2,1])" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.605551275463989" + ] + }, + "execution_count": 134, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sqrt(sum((a-b)**2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### cosine similarity" + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6415330278717848" + ] + }, + "execution_count": 136, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.dot(a, b)/(np.linalg.norm(a)*np.linalg.norm(b))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### jaccard coefficient" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "metadata": {}, + "outputs": [], + "source": [ + "a = [\"the\", \"old\", \"man\", \"by\", \"the\", \"sea\"]\n", + "b = [\"the\", \"old\", \"man\", \"by\", \"the\", \"chair\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": {}, + "outputs": [], + "source": [ + "def jaccard_similarity(a, b):\n", + " return len(set(a).intersection(set(b))) / len(set(a).union(set(b)))" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.42857142857142855" + ] + }, + "execution_count": 141, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jaccard_similarity(a,b)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### distance matrix\n", + "* pdist returns a reduced distance matrix, since they are symetrical\n", + "* squareform makes this a dense form" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.spatial.distance import pdist, squareform" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "metadata": {}, + "outputs": [], + "source": [ + "array = np.array([\n", + " [1,2,3,4],\n", + " [2,4,2,1],\n", + " [2,3,4,5]\n", + " \n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0. , 3.87298335, 2. ],\n", + " [3.87298335, 0. , 4.58257569],\n", + " [2. , 4.58257569, 0. ]])" + ] + }, + "execution_count": 147, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "squareform(pdist(array, \"euclidean\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(2,)\n", + "(2,)\n", + "[0. 1.]\n", + "[[0. 1.]\n", + " [1. 1.]]\n", + "(array([0.8, 0.1]), array([], dtype=float64), 2, array([1.61803399, 0.61803399]))\n", + "y = 0.09999999999999992x + 0.8\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:22: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.\n", + "To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.\n", + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:25: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.\n", + "To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.\n" + ] + } + ], + "source": [ + "\n", + "xdata = np.array([0.0,1.0])\n", + "ydata = np.array([0.1,0.9])\n", + "\n", + "\n", + "print(ydata.shape)\n", + "print(xdata.shape)\n", + "\n", + "\n", + "\n", + "\n", + "data_pred = xdata.T * xdata.T\n", + "print(data_pred)\n", + "\n", + "# the model has the following face y = bx + a*1 \n", + "\n", + "A = np.vstack([xdata,np.ones(len(xdata))]).T\n", + "\n", + "\n", + "print(A)\n", + "\n", + "\n", + "print (np.linalg.lstsq(A, ydata))\n", + "\n", + "\n", + "b, a = np.linalg.lstsq(A, ydata)[0]\n", + "print(\"y = \"+str(a)+'x + '+str(b))" + ] + }, + { + "cell_type": "code", + "execution_count": 194, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 0\n", + "1 1\n", + "2 1\n", + "3 1\n", + "4 0\n", + "5 1\n", + "6 0\n", + "7 1\n", + "8 0\n", + "9 0\n", + "10 0\n", + "11 1\n", + "12 0\n", + "13 1\n", + "14 0\n", + "15 0\n", + "16 0\n", + "17 1\n", + "18 0\n", + "19 1\n", + "20 0\n", + "21 0\n", + "22 0\n", + "23 1\n", + "24 0\n", + "25 0\n", + "26 0\n", + "27 0\n", + "28 0\n", + "29 1\n", + "30 0\n", + "31 1\n", + "32 0\n", + "33 0\n", + "34 0\n", + "35 0\n", + "36 0\n", + "37 1\n", + "38 0\n", + "39 0\n", + "40 0\n", + "41 1\n", + "42 0\n", + "43 1\n", + "44 0\n", + "45 0\n", + "46 0\n", + "47 1\n", + "48 0\n", + "49 0\n", + "50 0\n", + "51 0\n", + "52 0\n", + "53 1\n", + "54 0\n", + "55 0\n", + "56 0\n", + "57 0\n", + "58 0\n", + "59 1\n", + "60 0\n", + "61 1\n", + "62 0\n", + "63 0\n", + "64 0\n", + "65 0\n", + "66 0\n", + "67 1\n", + "68 0\n", + "69 0\n", + "70 0\n", + "71 1\n", + "72 0\n", + "73 1\n", + "74 0\n", + "75 0\n", + "76 0\n", + "77 0\n", + "78 0\n", + "79 1\n", + "80 0\n", + "81 0\n", + "82 0\n", + "83 1\n", + "84 0\n", + "85 0\n", + "86 0\n", + "87 0\n", + "88 0\n", + "89 1\n", + "90 0\n", + "91 0\n", + "92 0\n", + "93 0\n", + "94 0\n", + "95 0\n", + "96 0\n", + "97 1\n", + "98 0\n", + "99 0\n", + "100 0\n", + "101 1\n", + "102 0\n", + "103 1\n", + "104 0\n", + "105 0\n", + "106 0\n", + "107 1\n", + "108 0\n", + "109 1\n", + "110 0\n", + "111 0\n", + "112 0\n", + "113 1\n", + "114 0\n", + "115 0\n", + "116 0\n", + "117 0\n", + "118 0\n", + "119 0\n", + "120 0\n", + "121 0\n", + "122 0\n", + "123 0\n", + "124 0\n", + "125 0\n", + "126 0\n", + "127 1\n", + "128 0\n", + "129 0\n", + "130 0\n", + "131 1\n", + "132 0\n", + "133 0\n", + "134 0\n", + "135 0\n", + "136 0\n", + "137 1\n", + "138 0\n", + "139 1\n", + "140 0\n", + "141 0\n", + "142 0\n", + "143 0\n", + "144 0\n", + "145 0\n", + "146 0\n", + "147 0\n", + "148 0\n", + "149 1\n", + "150 0\n", + "151 1\n", + "152 0\n", + "153 0\n", + "154 0\n", + "155 0\n", + "156 0\n", + "157 1\n", + "158 0\n", + "159 0\n", + "160 0\n", + "161 0\n", + "162 0\n", + "163 1\n", + "164 0\n", + "165 0\n", + "166 0\n", + "167 1\n", + "168 0\n", + "169 0\n", + "170 0\n", + "171 0\n", + "172 0\n", + "173 1\n", + "174 0\n", + "175 0\n", + "176 0\n", + "177 0\n", + "178 0\n", + "179 1\n", + "180 0\n", + "181 1\n", + "182 0\n", + "183 0\n", + "184 0\n", + "185 0\n", + "186 0\n", + "187 0\n", + "188 0\n", + "189 0\n", + "190 0\n", + "191 1\n", + "192 0\n", + "193 1\n", + "194 0\n", + "195 0\n", + "196 0\n", + "197 1\n", + "198 0\n", + "199 1\n", + "200 0\n", + "201 0\n", + "202 0\n", + "203 0\n", + "204 0\n", + "205 0\n", + "206 0\n", + "207 0\n", + "208 0\n", + "209 0\n", + "210 0\n", + "211 1\n", + "212 0\n", + "213 0\n", + "214 0\n", + "215 0\n", + "216 0\n", + "217 0\n", + "218 0\n", + "219 0\n", + "220 0\n", + "221 0\n", + "222 0\n", + "223 1\n", + "224 0\n", + "225 0\n", + "226 0\n", + "227 1\n", + "228 0\n", + "229 1\n", + "230 0\n", + "231 0\n", + "232 0\n", + "233 1\n", + "234 0\n", + "235 0\n", + "236 0\n", + "237 0\n", + "238 0\n", + "239 1\n", + "240 0\n", + "241 1\n", + "242 0\n", + "243 0\n", + "244 0\n", + "245 0\n", + "246 0\n", + "247 0\n", + "248 0\n", + "249 0\n", + "250 0\n", + "251 1\n", + "252 0\n", + "253 0\n", + "254 0\n", + "255 0\n", + "256 0\n", + "257 1\n", + "258 0\n", + "259 0\n", + "260 0\n", + "261 0\n", + "262 0\n", + "263 1\n", + "264 0\n", + "265 0\n", + "266 0\n", + "267 0\n", + "268 0\n", + "269 1\n", + "270 0\n", + "271 1\n", + "272 0\n", + "273 0\n", + "274 0\n", + "275 0\n", + "276 0\n", + "277 1\n", + "278 0\n", + "279 0\n", + "280 0\n", + "281 1\n", + "282 0\n", + "283 1\n", + "284 0\n", + "285 0\n", + "286 0\n", + "287 0\n", + "288 0\n", + "289 0\n", + "290 0\n", + "291 0\n", + "292 0\n", + "293 1\n", + "294 0\n", + "295 0\n", + "296 0\n", + "297 0\n", + "298 0\n", + "299 0\n", + "300 0\n", + "301 0\n", + "302 0\n", + "303 0\n", + "304 0\n", + "305 0\n", + "306 0\n", + "307 1\n", + "308 0\n", + "309 0\n", + "310 0\n", + "311 1\n", + "312 0\n", + "313 1\n", + "314 0\n", + "315 0\n", + "316 0\n", + "317 1\n", + "318 0\n", + "319 0\n", + "320 0\n", + "321 0\n", + "322 0\n", + "323 0\n", + "324 0\n", + "325 0\n", + "326 0\n", + "327 0\n", + "328 0\n", + "329 0\n", + "330 0\n", + "331 1\n", + "332 0\n", + "333 0\n", + "334 0\n", + "335 0\n", + "336 0\n", + "337 1\n", + "338 0\n", + "339 0\n", + "340 0\n", + "341 0\n", + "342 0\n", + "343 0\n", + "344 0\n", + "345 0\n", + "346 0\n", + "347 1\n", + "348 0\n", + "349 1\n", + "350 0\n", + "351 0\n", + "352 0\n", + "353 1\n", + "354 0\n", + "355 0\n", + "356 0\n", + "357 0\n", + "358 0\n", + "359 1\n", + "360 0\n", + "361 0\n", + "362 0\n", + "363 0\n", + "364 0\n", + "365 0\n", + "366 0\n", + "367 1\n", + "368 0\n", + "369 0\n", + "370 0\n", + "371 0\n", + "372 0\n", + "373 1\n", + "374 0\n", + "375 0\n", + "376 0\n", + "377 0\n", + "378 0\n", + "379 1\n", + "380 0\n", + "381 0\n", + "382 0\n", + "383 1\n", + "384 0\n", + "385 0\n", + "386 0\n", + "387 0\n", + "388 0\n", + "389 1\n", + "390 0\n", + "391 0\n", + "392 0\n", + "393 0\n", + "394 0\n", + "395 0\n", + "396 0\n", + "397 1\n", + "398 0\n", + "399 0\n", + "400 0\n", + "401 1\n", + "402 0\n", + "403 0\n", + "404 0\n", + "405 0\n", + "406 0\n", + "407 0\n", + "408 0\n", + "409 1\n", + "410 0\n", + "411 0\n", + "412 0\n", + "413 0\n", + "414 0\n", + "415 0\n", + "416 0\n", + "417 0\n", + "418 0\n", + "419 1\n", + "420 0\n", + "421 1\n", + "422 0\n", + "423 0\n", + "424 0\n", + "425 0\n", + "426 0\n", + "427 0\n", + "428 0\n", + "429 0\n", + "430 0\n", + "431 1\n", + "432 0\n", + "433 1\n", + "434 0\n", + "435 0\n", + "436 0\n", + "437 0\n", + "438 0\n", + "439 1\n", + "440 0\n", + "441 0\n", + "442 0\n", + "443 1\n", + "444 0\n", + "445 0\n", + "446 0\n", + "447 0\n", + "448 0\n", + "449 1\n", + "450 0\n", + "451 0\n", + "452 0\n", + "453 0\n", + "454 0\n", + "455 0\n", + "456 0\n", + "457 1\n", + "458 0\n", + "459 0\n", + "460 0\n", + "461 1\n", + "462 0\n", + "463 1\n", + "464 0\n", + "465 0\n", + "466 0\n", + "467 1\n", + "468 0\n", + "469 0\n", + "470 0\n", + "471 0\n", + "472 0\n", + "473 0\n", + "474 0\n", + "475 0\n", + "476 0\n", + "477 0\n", + "478 0\n", + "479 1\n", + "480 0\n", + "481 0\n", + "482 0\n", + "483 0\n", + "484 0\n", + "485 0\n", + "486 0\n", + "487 1\n", + "488 0\n", + "489 0\n", + "490 0\n", + "491 1\n", + "492 0\n", + "493 0\n", + "494 0\n", + "495 0\n", + "496 0\n", + "497 0\n", + "498 0\n", + "499 1\n", + "500 0\n", + "501 0\n", + "502 0\n", + "503 1\n", + "504 0\n", + "505 0\n", + "506 0\n", + "507 0\n", + "508 0\n", + "509 1\n", + "510 0\n", + "511 0\n", + "512 0\n", + "513 0\n", + "514 0\n", + "515 0\n", + "516 0\n", + "517 0\n", + "518 0\n", + "519 0\n", + "520 0\n", + "521 1\n", + "522 0\n", + "523 1\n", + "524 0\n", + "525 0\n", + "526 0\n", + "527 0\n", + "528 0\n", + "529 0\n", + "530 0\n", + "531 0\n", + "532 0\n", + "533 0\n", + "534 0\n", + "535 0\n", + "536 0\n", + "537 0\n", + "538 0\n", + "539 0\n", + "540 0\n", + "541 1\n", + "542 0\n", + "543 0\n", + "544 0\n", + "545 0\n", + "546 0\n", + "547 1\n", + "548 0\n", + "549 0\n", + "550 0\n", + "551 0\n", + "552 0\n", + "553 0\n", + "554 0\n", + "555 0\n", + "556 0\n", + "557 1\n", + "558 0\n", + "559 0\n", + "560 0\n", + "561 0\n", + "562 0\n", + "563 1\n", + "564 0\n", + "565 0\n", + "566 0\n", + "567 0\n", + "568 0\n", + "569 1\n", + "570 0\n", + "571 1\n", + "572 0\n", + "573 0\n", + "574 0\n", + "575 0\n", + "576 0\n", + "577 1\n", + "578 0\n", + "579 0\n", + "580 0\n", + "581 0\n", + "582 0\n", + "583 0\n", + "584 0\n", + "585 0\n", + "586 0\n", + "587 1\n", + "588 0\n", + "589 0\n", + "590 0\n", + "591 0\n", + "592 0\n", + "593 1\n", + "594 0\n", + "595 0\n", + "596 0\n", + "597 0\n", + "598 0\n", + "599 1\n", + "600 0\n", + "601 1\n", + "602 0\n", + "603 0\n", + "604 0\n", + "605 0\n", + "606 0\n", + "607 1\n", + "608 0\n", + "609 0\n", + "610 0\n", + "611 0\n", + "612 0\n", + "613 1\n", + "614 0\n", + "615 0\n", + "616 0\n", + "617 1\n", + "618 0\n", + "619 1\n", + "620 0\n", + "621 0\n", + "622 0\n", + "623 0\n", + "624 0\n", + "625 0\n", + "626 0\n", + "627 0\n", + "628 0\n", + "629 0\n", + "630 0\n", + "631 1\n", + "632 0\n", + "633 0\n", + "634 0\n", + "635 0\n", + "636 0\n", + "637 0\n", + "638 0\n", + "639 0\n", + "640 0\n", + "641 1\n", + "642 0\n", + "643 1\n", + "644 0\n", + "645 0\n", + "646 0\n", + "647 1\n", + "648 0\n", + "649 0\n", + "650 0\n", + "651 0\n", + "652 0\n", + "653 1\n", + "654 0\n", + "655 0\n", + "656 0\n", + "657 0\n", + "658 0\n", + "659 1\n", + "660 0\n", + "661 1\n", + "662 0\n", + "663 0\n", + "664 0\n", + "665 0\n", + "666 0\n", + "667 0\n", + "668 0\n", + "669 0\n", + "670 0\n", + "671 0\n", + "672 0\n", + "673 1\n", + "674 0\n", + "675 0\n", + "676 0\n", + "677 1\n", + "678 0\n", + "679 0\n", + "680 0\n", + "681 0\n", + "682 0\n", + "683 1\n", + "684 0\n", + "685 0\n", + "686 0\n", + "687 0\n", + "688 0\n", + "689 0\n", + "690 0\n", + "691 1\n", + "692 0\n", + "693 0\n", + "694 0\n", + "695 0\n", + "696 0\n", + "697 0\n", + "698 0\n", + "699 0\n", + "700 0\n", + "701 1\n", + "702 0\n", + "703 0\n", + "704 0\n", + "705 0\n", + "706 0\n", + "707 0\n", + "708 0\n", + "709 1\n", + "710 0\n", + "711 0\n", + "712 0\n", + "713 0\n", + "714 0\n", + "715 0\n", + "716 0\n", + "717 0\n", + "718 0\n", + "719 1\n", + "720 0\n", + "721 0\n", + "722 0\n", + "723 0\n", + "724 0\n", + "725 0\n", + "726 0\n", + "727 1\n", + "728 0\n", + "729 0\n", + "730 0\n", + "731 0\n", + "732 0\n", + "733 1\n", + "734 0\n", + "735 0\n", + "736 0\n", + "737 0\n", + "738 0\n", + "739 1\n", + "740 0\n", + "741 0\n", + "742 0\n", + "743 1\n", + "744 0\n", + "745 0\n", + "746 0\n", + "747 0\n", + "748 0\n", + "749 0\n", + "750 0\n", + "751 1\n", + "752 0\n", + "753 0\n", + "754 0\n", + "755 0\n", + "756 0\n", + "757 1\n", + "758 0\n", + "759 0\n", + "760 0\n", + "761 1\n", + "762 0\n", + "763 0\n", + "764 0\n", + "765 0\n", + "766 0\n", + "767 0\n", + "768 0\n", + "769 1\n", + "770 0\n", + "771 0\n", + "772 0\n", + "773 1\n", + "774 0\n", + "775 0\n", + "776 0\n", + "777 0\n", + "778 0\n", + "779 0\n", + "780 0\n", + "781 0\n", + "782 0\n", + "783 0\n", + "784 0\n", + "785 0\n", + "786 0\n", + "787 1\n", + "788 0\n", + "789 0\n", + "790 0\n", + "791 0\n", + "792 0\n", + "793 0\n", + "794 0\n", + "795 0\n", + "796 0\n", + "797 1\n", + "798 0\n", + "799 0\n", + "800 0\n", + "801 0\n", + "802 0\n", + "803 0\n", + "804 0\n", + "805 0\n", + "806 0\n", + "807 0\n", + "808 0\n", + "809 1\n", + "810 0\n", + "811 1\n", + "812 0\n", + "813 0\n", + "814 0\n", + "815 0\n", + "816 0\n", + "817 0\n", + "818 0\n", + "819 0\n", + "820 0\n", + "821 1\n", + "822 0\n", + "823 1\n", + "824 0\n", + "825 0\n", + "826 0\n", + "827 1\n", + "828 0\n", + "829 1\n", + "830 0\n", + "831 0\n", + "832 0\n", + "833 0\n", + "834 0\n", + "835 0\n", + "836 0\n", + "837 0\n", + "838 0\n", + "839 1\n", + "840 0\n", + "841 0\n", + "842 0\n", + "843 0\n", + "844 0\n", + "845 0\n", + "846 0\n", + "847 0\n", + "848 0\n", + "849 0\n", + "850 0\n", + "851 0\n", + "852 0\n", + "853 1\n", + "854 0\n", + "855 0\n", + "856 0\n", + "857 1\n", + "858 0\n", + "859 1\n", + "860 0\n", + "861 0\n", + "862 0\n", + "863 1\n", + "864 0\n", + "865 0\n", + "866 0\n", + "867 0\n", + "868 0\n", + "869 0\n", + "870 0\n", + "871 0\n", + "872 0\n", + "873 0\n", + "874 0\n", + "875 0\n", + "876 0\n", + "877 1\n", + "878 0\n", + "879 0\n", + "880 0\n", + "881 1\n", + "882 0\n", + "883 1\n", + "884 0\n", + "885 0\n", + "886 0\n", + "887 1\n", + "888 0\n", + "889 0\n", + "890 0\n", + "891 0\n", + "892 0\n", + "893 0\n", + "894 0\n", + "895 0\n", + "896 0\n", + "897 0\n", + "898 0\n", + "899 0\n", + "900 0\n", + "901 0\n", + "902 0\n", + "903 0\n", + "904 0\n", + "905 0\n", + "906 0\n", + "907 1\n", + "908 0\n", + "909 0\n", + "910 0\n", + "911 1\n", + "912 0\n", + "913 0\n", + "914 0\n", + "915 0\n", + "916 0\n", + "917 0\n", + "918 0\n", + "919 1\n", + "920 0\n", + "921 0\n", + "922 0\n", + "923 0\n", + "924 0\n", + "925 0\n", + "926 0\n", + "927 0\n", + "928 0\n", + "929 1\n", + "930 0\n", + "931 0\n", + "932 0\n", + "933 0\n", + "934 0\n", + "935 0\n", + "936 0\n", + "937 1\n", + "938 0\n", + "939 0\n", + "940 0\n", + "941 1\n", + "942 0\n", + "943 0\n", + "944 0\n", + "945 0\n", + "946 0\n", + "947 1\n", + "948 0\n", + "949 0\n", + "950 0\n", + "951 0\n", + "952 0\n", + "953 1\n", + "954 0\n", + "955 0\n", + "956 0\n", + "957 0\n", + "958 0\n", + "959 0\n", + "960 0\n", + "961 0\n", + "962 0\n", + "963 0\n", + "964 0\n", + "965 0\n", + "966 0\n", + "967 1\n", + "968 0\n", + "969 0\n", + "970 0\n", + "971 1\n", + "972 0\n", + "973 0\n", + "974 0\n", + "975 0\n", + "976 0\n", + "977 1\n", + "978 0\n", + "979 0\n", + "980 0\n", + "981 0\n", + "982 0\n", + "983 1\n", + "984 0\n", + "985 0\n", + "986 0\n", + "987 0\n", + "988 0\n", + "989 0\n", + "990 0\n", + "991 1\n", + "992 0\n", + "993 0\n", + "994 0\n", + "995 0\n", + "996 0\n", + "997 1\n", + "998 0\n", + "999 0\n", + "1000 0\n", + "1001 0\n", + "1002 0\n", + "1003 0\n", + "1004 0\n", + "1005 0\n", + "1006 0\n", + "1007 0\n", + "1008 0\n", + "1009 1\n", + "1010 0\n", + "1011 0\n", + "1012 0\n", + "1013 1\n", + "1014 0\n", + "1015 0\n", + "1016 0\n", + "1017 0\n", + "1018 0\n", + "1019 1\n", + "1020 0\n", + "1021 1\n", + "1022 0\n", + "1023 0\n", + "1024 0\n", + "1025 0\n", + "1026 0\n", + "1027 0\n", + "1028 0\n", + "1029 0\n", + "1030 0\n", + "1031 1\n", + "1032 0\n", + "1033 1\n", + "1034 0\n", + "1035 0\n", + "1036 0\n", + "1037 0\n", + "1038 0\n", + "1039 1\n", + "1040 0\n", + "1041 0\n", + "1042 0\n", + "1043 0\n", + "1044 0\n", + "1045 0\n", + "1046 0\n", + "1047 0\n", + "1048 0\n", + "1049 1\n", + "1050 0\n", + "1051 1\n", + "1052 0\n", + "1053 0\n", + "1054 0\n", + "1055 0\n", + "1056 0\n", + "1057 0\n", + "1058 0\n", + "1059 0\n", + "1060 0\n", + "1061 1\n", + "1062 0\n", + "1063 1\n", + "1064 0\n", + "1065 0\n", + "1066 0\n", + "1067 0\n", + "1068 0\n", + "1069 1\n", + "1070 0\n", + "1071 0\n", + "1072 0\n", + "1073 0\n", + "1074 0\n", + "1075 0\n", + "1076 0\n", + "1077 0\n", + "1078 0\n", + "1079 0\n", + "1080 0\n", + "1081 0\n", + "1082 0\n", + "1083 0\n", + "1084 0\n", + "1085 0\n", + "1086 0\n", + "1087 1\n", + "1088 0\n", + "1089 0\n", + "1090 0\n", + "1091 1\n", + "1092 0\n", + "1093 1\n", + "1094 0\n", + "1095 0\n", + "1096 0\n", + "1097 1\n", + "1098 0\n", + "1099 0\n", + "1100 0\n", + "1101 0\n", + "1102 0\n", + "1103 1\n", + "1104 0\n", + "1105 0\n", + "1106 0\n", + "1107 0\n", + "1108 0\n", + "1109 1\n", + "1110 0\n", + "1111 0\n", + "1112 0\n", + "1113 0\n", + "1114 0\n", + "1115 0\n", + "1116 0\n", + "1117 1\n", + "1118 0\n", + "1119 0\n", + "1120 0\n", + "1121 0\n", + "1122 0\n", + "1123 1\n", + "1124 0\n", + "1125 0\n", + "1126 0\n", + "1127 0\n", + "1128 0\n", + "1129 1\n", + "1130 0\n", + "1131 0\n", + "1132 0\n", + "1133 0\n", + "1134 0\n", + "1135 0\n", + "1136 0\n", + "1137 0\n", + "1138 0\n", + "1139 0\n", + "1140 0\n", + "1141 0\n", + "1142 0\n", + "1143 0\n", + "1144 0\n", + "1145 0\n", + "1146 0\n", + "1147 0\n", + "1148 0\n", + "1149 0\n", + "1150 0\n", + "1151 1\n", + "1152 0\n", + "1153 1\n", + "1154 0\n", + "1155 0\n", + "1156 0\n", + "1157 0\n", + "1158 0\n", + "1159 0\n", + "1160 0\n", + "1161 0\n", + "1162 0\n", + "1163 1\n", + "1164 0\n", + "1165 0\n", + "1166 0\n", + "1167 0\n", + "1168 0\n", + "1169 0\n", + "1170 0\n", + "1171 1\n", + "1172 0\n", + "1173 0\n", + "1174 0\n", + "1175 0\n", + "1176 0\n", + "1177 0\n", + "1178 0\n", + "1179 0\n", + "1180 0\n", + "1181 1\n", + "1182 0\n", + "1183 0\n", + "1184 0\n", + "1185 0\n", + "1186 0\n", + "1187 1\n", + "1188 0\n", + "1189 0\n", + "1190 0\n", + "1191 0\n", + "1192 0\n", + "1193 1\n", + "1194 0\n", + "1195 0\n", + "1196 0\n", + "1197 0\n", + "1198 0\n", + "1199 0\n", + "1200 0\n", + "1201 1\n", + "1202 0\n", + "1203 0\n", + "1204 0\n", + "1205 0\n", + "1206 0\n", + "1207 0\n", + "1208 0\n", + "1209 0\n", + "1210 0\n", + "1211 0\n", + "1212 0\n", + "1213 1\n", + "1214 0\n", + "1215 0\n", + "1216 0\n", + "1217 1\n", + "1218 0\n", + "1219 0\n", + "1220 0\n", + "1221 0\n", + "1222 0\n", + "1223 1\n", + "1224 0\n", + "1225 0\n", + "1226 0\n", + "1227 0\n", + "1228 0\n", + "1229 1\n", + "1230 0\n", + "1231 1\n", + "1232 0\n", + "1233 0\n", + "1234 0\n", + "1235 0\n", + "1236 0\n", + "1237 1\n", + "1238 0\n", + "1239 0\n", + "1240 0\n", + "1241 0\n", + "1242 0\n", + "1243 0\n", + "1244 0\n", + "1245 0\n", + "1246 0\n", + "1247 0\n", + "1248 0\n", + "1249 1\n", + "1250 0\n", + "1251 0\n", + "1252 0\n", + "1253 0\n", + "1254 0\n", + "1255 0\n", + "1256 0\n", + "1257 0\n", + "1258 0\n", + "1259 1\n", + "1260 0\n", + "1261 0\n", + "1262 0\n", + "1263 0\n", + "1264 0\n", + "1265 0\n", + "1266 0\n", + "1267 0\n", + "1268 0\n", + "1269 0\n", + "1270 0\n", + "1271 0\n", + "1272 0\n", + "1273 0\n", + "1274 0\n", + "1275 0\n", + "1276 0\n", + "1277 1\n", + "1278 0\n", + "1279 1\n", + "1280 0\n", + "1281 0\n", + "1282 0\n", + "1283 1\n", + "1284 0\n", + "1285 0\n", + "1286 0\n", + "1287 0\n", + "1288 0\n", + "1289 1\n", + "1290 0\n", + "1291 1\n", + "1292 0\n", + "1293 0\n", + "1294 0\n", + "1295 0\n", + "1296 0\n", + "1297 1\n", + "1298 0\n", + "1299 0\n", + "1300 0\n", + "1301 1\n", + "1302 0\n", + "1303 1\n", + "1304 0\n", + "1305 0\n", + "1306 0\n", + "1307 1\n", + "1308 0\n", + "1309 0\n", + "1310 0\n", + "1311 0\n", + "1312 0\n", + "1313 0\n", + "1314 0\n", + "1315 0\n", + "1316 0\n", + "1317 0\n", + "1318 0\n", + "1319 1\n", + "1320 0\n", + "1321 1\n", + "1322 0\n", + "1323 0\n", + "1324 0\n", + "1325 0\n", + "1326 0\n", + "1327 1\n", + "1328 0\n", + "1329 0\n", + "1330 0\n", + "1331 0\n", + "1332 0\n", + "1333 0\n", + "1334 0\n", + "1335 0\n", + "1336 0\n", + "1337 0\n", + "1338 0\n", + "1339 0\n", + "1340 0\n", + "1341 0\n", + "1342 0\n", + "1343 0\n", + "1344 0\n", + "1345 0\n", + "1346 0\n", + "1347 0\n", + "1348 0\n", + "1349 0\n", + "1350 0\n", + "1351 0\n", + "1352 0\n", + "1353 0\n", + "1354 0\n", + "1355 0\n", + "1356 0\n", + "1357 0\n", + "1358 0\n", + "1359 0\n", + "1360 0\n", + "1361 1\n", + "1362 0\n", + "1363 0\n", + "1364 0\n", + "1365 0\n", + "1366 0\n", + "1367 1\n", + "1368 0\n", + "1369 0\n", + "1370 0\n", + "1371 0\n", + "1372 0\n", + "1373 1\n", + "1374 0\n", + "1375 0\n", + "1376 0\n", + "1377 0\n", + "1378 0\n", + "1379 0\n", + "1380 0\n", + "1381 1\n", + "1382 0\n", + "1383 0\n", + "1384 0\n", + "1385 0\n", + "1386 0\n", + "1387 0\n", + "1388 0\n", + "1389 0\n", + "1390 0\n", + "1391 0\n", + "1392 0\n", + "1393 0\n", + "1394 0\n", + "1395 0\n", + "1396 0\n", + "1397 0\n", + "1398 0\n", + "1399 1\n", + "1400 0\n", + "1401 0\n", + "1402 0\n", + "1403 0\n", + "1404 0\n", + "1405 0\n", + "1406 0\n", + "1407 0\n", + "1408 0\n", + "1409 1\n", + "1410 0\n", + "1411 0\n", + "1412 0\n", + "1413 0\n", + "1414 0\n", + "1415 0\n", + "1416 0\n", + "1417 0\n", + "1418 0\n", + "1419 0\n", + "1420 0\n", + "1421 0\n", + "1422 0\n", + "1423 1\n", + "1424 0\n", + "1425 0\n", + "1426 0\n", + "1427 1\n", + "1428 0\n", + "1429 1\n", + "1430 0\n", + "1431 0\n", + "1432 0\n", + "1433 1\n", + "1434 0\n", + "1435 0\n", + "1436 0\n", + "1437 0\n", + "1438 0\n", + "1439 1\n", + "1440 0\n", + "1441 0\n", + "1442 0\n", + "1443 0\n", + "1444 0\n", + "1445 0\n", + "1446 0\n", + "1447 1\n", + "1448 0\n", + "1449 0\n", + "1450 0\n", + "1451 1\n", + "1452 0\n", + "1453 1\n", + "1454 0\n", + "1455 0\n", + "1456 0\n", + "1457 0\n", + "1458 0\n", + "1459 1\n", + "1460 0\n", + "1461 0\n", + "1462 0\n", + "1463 0\n", + "1464 0\n", + "1465 0\n", + "1466 0\n", + "1467 0\n", + "1468 0\n", + "1469 0\n", + "1470 0\n", + "1471 1\n", + "1472 0\n", + "1473 0\n", + "1474 0\n", + "1475 0\n", + "1476 0\n", + "1477 0\n", + "1478 0\n", + "1479 0\n", + "1480 0\n", + "1481 1\n", + "1482 0\n", + "1483 1\n", + "1484 0\n", + "1485 0\n", + "1486 0\n", + "1487 1\n", + "1488 0\n", + "1489 1\n", + "1490 0\n", + "1491 0\n", + "1492 0\n", + "1493 1\n", + "1494 0\n", + "1495 0\n", + "1496 0\n", + "1497 0\n", + "1498 0\n", + "1499 1\n", + "1500 0\n", + "1501 0\n", + "1502 0\n", + "1503 0\n", + "1504 0\n", + "1505 0\n", + "1506 0\n", + "1507 0\n", + "1508 0\n", + "1509 0\n", + "1510 0\n", + "1511 1\n", + "1512 0\n", + "1513 0\n", + "1514 0\n", + "1515 0\n", + "1516 0\n", + "1517 0\n", + "1518 0\n", + "1519 0\n", + "1520 0\n", + "1521 0\n", + "1522 0\n", + "1523 1\n", + "1524 0\n", + "1525 0\n", + "1526 0\n", + "1527 0\n", + "1528 0\n", + "1529 0\n", + "1530 0\n", + "1531 1\n", + "1532 0\n", + "1533 0\n", + "1534 0\n", + "1535 0\n", + "1536 0\n", + "1537 0\n", + "1538 0\n", + "1539 0\n", + "1540 0\n", + "1541 0\n", + "1542 0\n", + "1543 1\n", + "1544 0\n", + "1545 0\n", + "1546 0\n", + "1547 0\n", + "1548 0\n", + "1549 1\n", + "1550 0\n", + "1551 0\n", + "1552 0\n", + "1553 1\n", + "1554 0\n", + "1555 0\n", + "1556 0\n", + "1557 0\n", + "1558 0\n", + "1559 1\n", + "1560 0\n", + "1561 0\n", + "1562 0\n", + "1563 0\n", + "1564 0\n", + "1565 0\n", + "1566 0\n", + "1567 1\n", + "1568 0\n", + "1569 0\n", + "1570 0\n", + "1571 1\n", + "1572 0\n", + "1573 0\n", + "1574 0\n", + "1575 0\n", + "1576 0\n", + "1577 0\n", + "1578 0\n", + "1579 1\n", + "1580 0\n", + "1581 0\n", + "1582 0\n", + "1583 1\n", + "1584 0\n", + "1585 0\n", + "1586 0\n", + "1587 0\n", + "1588 0\n", + "1589 0\n", + "1590 0\n", + "1591 0\n", + "1592 0\n", + "1593 0\n", + "1594 0\n", + "1595 0\n", + "1596 0\n", + "1597 1\n", + "1598 0\n", + "1599 0\n", + "1600 0\n", + "1601 1\n", + "1602 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1603 0\n", + "1604 0\n", + "1605 0\n", + "1606 0\n", + "1607 1\n", + "1608 0\n", + "1609 1\n", + "1610 0\n", + "1611 0\n", + "1612 0\n", + "1613 1\n", + "1614 0\n", + "1615 0\n", + "1616 0\n", + "1617 0\n", + "1618 0\n", + "1619 1\n", + "1620 0\n", + "1621 1\n", + "1622 0\n", + "1623 0\n", + "1624 0\n", + "1625 0\n", + "1626 0\n", + "1627 1\n", + "1628 0\n", + "1629 0\n", + "1630 0\n", + "1631 0\n", + "1632 0\n", + "1633 0\n", + "1634 0\n", + "1635 0\n", + "1636 0\n", + "1637 1\n", + "1638 0\n", + "1639 0\n", + "1640 0\n", + "1641 0\n", + "1642 0\n", + "1643 0\n", + "1644 0\n", + "1645 0\n", + "1646 0\n", + "1647 0\n", + "1648 0\n", + "1649 0\n", + "1650 0\n", + "1651 0\n", + "1652 0\n", + "1653 0\n", + "1654 0\n", + "1655 0\n", + "1656 0\n", + "1657 1\n", + "1658 0\n", + "1659 0\n", + "1660 0\n", + "1661 0\n", + "1662 0\n", + "1663 1\n", + "1664 0\n", + "1665 0\n", + "1666 0\n", + "1667 1\n", + "1668 0\n", + "1669 1\n", + "1670 0\n", + "1671 0\n", + "1672 0\n", + "1673 0\n", + "1674 0\n", + "1675 0\n", + "1676 0\n", + "1677 0\n", + "1678 0\n", + "1679 0\n", + "1680 0\n", + "1681 0\n", + "1682 0\n", + "1683 0\n", + "1684 0\n", + "1685 0\n", + "1686 0\n", + "1687 0\n", + "1688 0\n", + "1689 0\n", + "1690 0\n", + "1691 0\n", + "1692 0\n", + "1693 1\n", + "1694 0\n", + "1695 0\n", + "1696 0\n", + "1697 1\n", + "1698 0\n", + "1699 1\n", + "1700 0\n", + "1701 0\n", + "1702 0\n", + "1703 0\n", + "1704 0\n", + "1705 0\n", + "1706 0\n", + "1707 0\n", + "1708 0\n", + "1709 1\n", + "1710 0\n", + "1711 0\n", + "1712 0\n", + "1713 0\n", + "1714 0\n", + "1715 0\n", + "1716 0\n", + "1717 0\n", + "1718 0\n", + "1719 0\n", + "1720 0\n", + "1721 1\n", + "1722 0\n", + "1723 1\n", + "1724 0\n", + "1725 0\n", + "1726 0\n", + "1727 0\n", + "1728 0\n", + "1729 0\n", + "1730 0\n", + "1731 0\n", + "1732 0\n", + "1733 1\n", + "1734 0\n", + "1735 0\n", + "1736 0\n", + "1737 0\n", + "1738 0\n", + "1739 0\n", + "1740 0\n", + "1741 1\n", + "1742 0\n", + "1743 0\n", + "1744 0\n", + "1745 0\n", + "1746 0\n", + "1747 1\n", + "1748 0\n", + "1749 0\n", + "1750 0\n", + "1751 0\n", + "1752 0\n", + "1753 1\n", + "1754 0\n", + "1755 0\n", + "1756 0\n", + "1757 0\n", + "1758 0\n", + "1759 1\n", + "1760 0\n", + "1761 0\n", + "1762 0\n", + "1763 0\n", + "1764 0\n", + "1765 0\n", + "1766 0\n", + "1767 0\n", + "1768 0\n", + "1769 0\n", + "1770 0\n", + "1771 0\n", + "1772 0\n", + "1773 0\n", + "1774 0\n", + "1775 0\n", + "1776 0\n", + "1777 1\n", + "1778 0\n", + "1779 0\n", + "1780 0\n", + "1781 0\n", + "1782 0\n", + "1783 1\n", + "1784 0\n", + "1785 0\n", + "1786 0\n", + "1787 1\n", + "1788 0\n", + "1789 1\n", + "1790 0\n", + "1791 0\n", + "1792 0\n", + "1793 0\n", + "1794 0\n", + "1795 0\n", + "1796 0\n", + "1797 0\n", + "1798 0\n", + "1799 0\n", + "1800 0\n", + "1801 1\n", + "1802 0\n", + "1803 0\n", + "1804 0\n", + "1805 0\n", + "1806 0\n", + "1807 0\n", + "1808 0\n", + "1809 0\n", + "1810 0\n", + "1811 1\n", + "1812 0\n", + "1813 0\n", + "1814 0\n", + "1815 0\n", + "1816 0\n", + "1817 0\n", + "1818 0\n", + "1819 0\n", + "1820 0\n", + "1821 0\n", + "1822 0\n", + "1823 1\n", + "1824 0\n", + "1825 0\n", + "1826 0\n", + "1827 0\n", + "1828 0\n", + "1829 0\n", + "1830 0\n", + "1831 1\n", + "1832 0\n", + "1833 0\n", + "1834 0\n", + "1835 0\n", + "1836 0\n", + "1837 0\n", + "1838 0\n", + "1839 0\n", + "1840 0\n", + "1841 0\n", + "1842 0\n", + "1843 0\n", + "1844 0\n", + "1845 0\n", + "1846 0\n", + "1847 1\n", + "1848 0\n", + "1849 0\n", + "1850 0\n", + "1851 0\n", + "1852 0\n", + "1853 0\n", + "1854 0\n", + "1855 0\n", + "1856 0\n", + "1857 0\n", + "1858 0\n", + "1859 0\n", + "1860 0\n", + "1861 1\n", + "1862 0\n", + "1863 0\n", + "1864 0\n", + "1865 0\n", + "1866 0\n", + "1867 1\n", + "1868 0\n", + "1869 0\n", + "1870 0\n", + "1871 1\n", + "1872 0\n", + "1873 1\n", + "1874 0\n", + "1875 0\n", + "1876 0\n", + "1877 1\n", + "1878 0\n", + "1879 1\n", + "1880 0\n", + "1881 0\n", + "1882 0\n", + "1883 0\n", + "1884 0\n", + "1885 0\n", + "1886 0\n", + "1887 0\n", + "1888 0\n", + "1889 1\n", + "1890 0\n", + "1891 0\n", + "1892 0\n", + "1893 0\n", + "1894 0\n", + "1895 0\n", + "1896 0\n", + "1897 0\n", + "1898 0\n", + "1899 0\n", + "1900 0\n", + "1901 1\n", + "1902 0\n", + "1903 0\n", + "1904 0\n", + "1905 0\n", + "1906 0\n", + "1907 1\n", + "1908 0\n", + "1909 0\n", + "1910 0\n", + "1911 0\n", + "1912 0\n", + "1913 1\n", + "1914 0\n", + "1915 0\n", + "1916 0\n", + "1917 0\n", + "1918 0\n", + "1919 0\n", + "1920 0\n", + "1921 0\n", + "1922 0\n", + "1923 0\n", + "1924 0\n", + "1925 0\n", + "1926 0\n", + "1927 0\n", + "1928 0\n", + "1929 0\n", + "1930 0\n", + "1931 1\n", + "1932 0\n", + "1933 1\n", + "1934 0\n", + "1935 0\n", + "1936 0\n", + "1937 0\n", + "1938 0\n", + "1939 0\n", + "1940 0\n", + "1941 0\n", + "1942 0\n", + "1943 0\n", + "1944 0\n", + "1945 0\n", + "1946 0\n", + "1947 0\n", + "1948 0\n", + "1949 1\n", + "1950 0\n", + "1951 1\n", + "1952 0\n", + "1953 0\n", + "1954 0\n", + "1955 0\n", + "1956 0\n", + "1957 0\n", + "1958 0\n", + "1959 0\n", + "1960 0\n", + "1961 0\n", + "1962 0\n", + "1963 0\n", + "1964 0\n", + "1965 0\n", + "1966 0\n", + "1967 0\n", + "1968 0\n", + "1969 0\n", + "1970 0\n", + "1971 0\n", + "1972 0\n", + "1973 1\n", + "1974 0\n", + "1975 0\n", + "1976 0\n", + "1977 0\n", + "1978 0\n", + "1979 1\n", + "1980 0\n", + "1981 0\n", + "1982 0\n", + "1983 0\n", + "1984 0\n", + "1985 0\n", + "1986 0\n", + "1987 1\n", + "1988 0\n", + "1989 0\n", + "1990 0\n", + "1991 0\n", + "1992 0\n", + "1993 1\n", + "1994 0\n", + "1995 0\n", + "1996 0\n", + "1997 1\n", + "1998 0\n", + "1999 1\n", + "2000 0\n", + "2001 0\n", + "2002 0\n", + "2003 1\n", + "2004 0\n", + "2005 0\n", + "2006 0\n", + "2007 0\n", + "2008 0\n", + "2009 0\n", + "2010 0\n", + "2011 1\n", + "2012 0\n", + "2013 0\n", + "2014 0\n", + "2015 0\n", + "2016 0\n", + "2017 1\n", + "2018 0\n", + "2019 0\n", + "2020 0\n", + "2021 0\n", + "2022 0\n", + "2023 0\n", + "2024 0\n", + "2025 0\n", + "2026 0\n", + "2027 1\n", + "2028 0\n", + "2029 1\n", + "2030 0\n", + "2031 0\n", + "2032 0\n", + "2033 0\n", + "2034 0\n", + "2035 0\n", + "2036 0\n", + "2037 0\n", + "2038 0\n", + "2039 1\n", + "2040 0\n", + "2041 0\n", + "2042 0\n", + "2043 0\n", + "2044 0\n", + "2045 0\n", + "2046 0\n", + "2047 0\n", + "2048 0\n", + "2049 0\n", + "2050 0\n", + "2051 0\n", + "2052 0\n", + "2053 1\n", + "2054 0\n", + "2055 0\n", + "2056 0\n", + "2057 0\n", + "2058 0\n", + "2059 0\n", + "2060 0\n", + "2061 0\n", + "2062 0\n", + "2063 1\n", + "2064 0\n", + "2065 0\n", + "2066 0\n", + "2067 0\n", + "2068 0\n", + "2069 1\n", + "2070 0\n", + "2071 0\n", + "2072 0\n", + "2073 0\n", + "2074 0\n", + "2075 0\n", + "2076 0\n", + "2077 0\n", + "2078 0\n", + "2079 0\n", + "2080 0\n", + "2081 1\n", + "2082 0\n", + "2083 1\n", + "2084 0\n", + "2085 0\n", + "2086 0\n", + "2087 1\n", + "2088 0\n", + "2089 1\n", + "2090 0\n", + "2091 0\n", + "2092 0\n", + "2093 0\n", + "2094 0\n", + "2095 0\n", + "2096 0\n", + "2097 0\n", + "2098 0\n", + "2099 1\n", + "2100 0\n", + "2101 0\n", + "2102 0\n", + "2103 0\n", + "2104 0\n", + "2105 0\n", + "2106 0\n", + "2107 0\n", + "2108 0\n", + "2109 0\n", + "2110 0\n", + "2111 1\n", + "2112 0\n", + "2113 1\n", + "2114 0\n", + "2115 0\n", + "2116 0\n", + "2117 0\n", + "2118 0\n", + "2119 0\n", + "2120 0\n", + "2121 0\n", + "2122 0\n", + "2123 0\n", + "2124 0\n", + "2125 0\n", + "2126 0\n", + "2127 0\n", + "2128 0\n", + "2129 1\n", + "2130 0\n", + "2131 1\n", + "2132 0\n", + "2133 0\n", + "2134 0\n", + "2135 0\n", + "2136 0\n", + "2137 1\n", + "2138 0\n", + "2139 0\n", + "2140 0\n", + "2141 1\n", + "2142 0\n", + "2143 1\n", + "2144 0\n", + "2145 0\n", + "2146 0\n", + "2147 0\n", + "2148 0\n", + "2149 0\n", + "2150 0\n", + "2151 0\n", + "2152 0\n", + "2153 1\n", + "2154 0\n", + "2155 0\n", + "2156 0\n", + "2157 0\n", + "2158 0\n", + "2159 0\n", + "2160 0\n", + "2161 1\n", + "2162 0\n", + "2163 0\n", + "2164 0\n", + "2165 0\n", + "2166 0\n", + "2167 0\n", + "2168 0\n", + "2169 0\n", + "2170 0\n", + "2171 0\n", + "2172 0\n", + "2173 0\n", + "2174 0\n", + "2175 0\n", + "2176 0\n", + "2177 0\n", + "2178 0\n", + "2179 1\n", + "2180 0\n", + "2181 0\n", + "2182 0\n", + "2183 0\n", + "2184 0\n", + "2185 0\n", + "2186 0\n", + "2187 0\n", + "2188 0\n", + "2189 0\n", + "2190 0\n", + "2191 0\n", + "2192 0\n", + "2193 0\n", + "2194 0\n", + "2195 0\n", + "2196 0\n", + "2197 0\n", + "2198 0\n", + "2199 0\n", + "2200 0\n", + "2201 0\n", + "2202 0\n", + "2203 1\n", + "2204 0\n", + "2205 0\n", + "2206 0\n", + "2207 1\n", + "2208 0\n", + "2209 0\n", + "2210 0\n", + "2211 0\n", + "2212 0\n", + "2213 1\n", + "2214 0\n", + "2215 0\n", + "2216 0\n", + "2217 0\n", + "2218 0\n", + "2219 0\n", + "2220 0\n", + "2221 1\n", + "2222 0\n", + "2223 0\n", + "2224 0\n", + "2225 0\n", + "2226 0\n", + "2227 0\n", + "2228 0\n", + "2229 0\n", + "2230 0\n", + "2231 0\n", + "2232 0\n", + "2233 0\n", + "2234 0\n", + "2235 0\n", + "2236 0\n", + "2237 1\n", + "2238 0\n", + "2239 1\n", + "2240 0\n", + "2241 0\n", + "2242 0\n", + "2243 1\n", + "2244 0\n", + "2245 0\n", + "2246 0\n", + "2247 0\n", + "2248 0\n", + "2249 0\n", + "2250 0\n", + "2251 1\n", + "2252 0\n", + "2253 0\n", + "2254 0\n", + "2255 0\n", + "2256 0\n", + "2257 0\n", + "2258 0\n", + "2259 0\n", + "2260 0\n", + "2261 0\n", + "2262 0\n", + "2263 0\n", + "2264 0\n", + "2265 0\n", + "2266 0\n", + "2267 1\n", + "2268 0\n", + "2269 1\n", + "2270 0\n", + "2271 0\n", + "2272 0\n", + "2273 1\n", + "2274 0\n", + "2275 0\n", + "2276 0\n", + "2277 0\n", + "2278 0\n", + "2279 0\n", + "2280 0\n", + "2281 1\n", + "2282 0\n", + "2283 0\n", + "2284 0\n", + "2285 0\n", + "2286 0\n", + "2287 1\n", + "2288 0\n", + "2289 0\n", + "2290 0\n", + "2291 0\n", + "2292 0\n", + "2293 1\n", + "2294 0\n", + "2295 0\n", + "2296 0\n", + "2297 1\n", + "2298 0\n", + "2299 0\n", + "2300 0\n", + "2301 0\n", + "2302 0\n", + "2303 0\n", + "2304 0\n", + "2305 0\n", + "2306 0\n", + "2307 0\n", + "2308 0\n", + "2309 1\n", + "2310 0\n", + "2311 1\n", + "2312 0\n", + "2313 0\n", + "2314 0\n", + "2315 0\n", + "2316 0\n", + "2317 0\n", + "2318 0\n", + "2319 0\n", + "2320 0\n", + "2321 0\n", + "2322 0\n", + "2323 0\n", + "2324 0\n", + "2325 0\n", + "2326 0\n", + "2327 0\n", + "2328 0\n", + "2329 0\n", + "2330 0\n", + "2331 0\n", + "2332 0\n", + "2333 1\n", + "2334 0\n", + "2335 0\n", + "2336 0\n", + "2337 0\n", + "2338 0\n", + "2339 1\n", + "2340 0\n", + "2341 1\n", + "2342 0\n", + "2343 0\n", + "2344 0\n", + "2345 0\n", + "2346 0\n", + "2347 1\n", + "2348 0\n", + "2349 0\n", + "2350 0\n", + "2351 1\n", + "2352 0\n", + "2353 0\n", + "2354 0\n", + "2355 0\n", + "2356 0\n", + "2357 1\n", + "2358 0\n", + "2359 0\n", + "2360 0\n", + "2361 0\n", + "2362 0\n", + "2363 0\n", + "2364 0\n", + "2365 0\n", + "2366 0\n", + "2367 0\n", + "2368 0\n", + "2369 0\n", + "2370 0\n", + "2371 1\n", + "2372 0\n", + "2373 0\n", + "2374 0\n", + "2375 0\n", + "2376 0\n", + "2377 1\n", + "2378 0\n", + "2379 0\n", + "2380 0\n", + "2381 1\n", + "2382 0\n", + "2383 1\n", + "2384 0\n", + "2385 0\n", + "2386 0\n", + "2387 0\n", + "2388 0\n", + "2389 1\n", + "2390 0\n", + "2391 0\n", + "2392 0\n", + "2393 1\n", + "2394 0\n", + "2395 0\n", + "2396 0\n", + "2397 0\n", + "2398 0\n", + "2399 1\n", + "2400 0\n", + "2401 0\n", + "2402 0\n", + "2403 0\n", + "2404 0\n", + "2405 0\n", + "2406 0\n", + "2407 0\n", + "2408 0\n", + "2409 0\n", + "2410 0\n", + "2411 1\n", + "2412 0\n", + "2413 0\n", + "2414 0\n", + "2415 0\n", + "2416 0\n", + "2417 1\n", + "2418 0\n", + "2419 0\n", + "2420 0\n", + "2421 0\n", + "2422 0\n", + "2423 1\n", + "2424 0\n", + "2425 0\n", + "2426 0\n", + "2427 0\n", + "2428 0\n", + "2429 0\n", + "2430 0\n", + "2431 0\n", + "2432 0\n", + "2433 0\n", + "2434 0\n", + "2435 0\n", + "2436 0\n", + "2437 1\n", + "2438 0\n", + "2439 0\n", + "2440 0\n", + "2441 1\n", + "2442 0\n", + "2443 0\n", + "2444 0\n", + "2445 0\n", + "2446 0\n", + "2447 1\n", + "2448 0\n", + "2449 0\n", + "2450 0\n", + "2451 0\n", + "2452 0\n", + "2453 0\n", + "2454 0\n", + "2455 0\n", + "2456 0\n", + "2457 0\n", + "2458 0\n", + "2459 1\n", + "2460 0\n", + "2461 0\n", + "2462 0\n", + "2463 0\n", + "2464 0\n", + "2465 0\n", + "2466 0\n", + "2467 1\n", + "2468 0\n", + "2469 0\n", + "2470 0\n", + "2471 0\n", + "2472 0\n", + "2473 1\n", + "2474 0\n", + "2475 0\n", + "2476 0\n", + "2477 1\n", + "2478 0\n", + "2479 0\n", + "2480 0\n", + "2481 0\n", + "2482 0\n", + "2483 0\n", + "2484 0\n", + "2485 0\n", + "2486 0\n", + "2487 0\n", + "2488 0\n", + "2489 0\n", + "2490 0\n", + "2491 0\n", + "2492 0\n", + "2493 0\n", + "2494 0\n", + "2495 0\n", + "2496 0\n", + "2497 0\n", + "2498 0\n", + "2499 0\n", + "2500 0\n", + "2501 0\n", + "2502 0\n", + "2503 1\n", + "2504 0\n", + "2505 0\n", + "2506 0\n", + "2507 0\n", + "2508 0\n", + "2509 0\n", + "2510 0\n", + "2511 0\n", + "2512 0\n", + "2513 0\n", + "2514 0\n", + "2515 0\n", + "2516 0\n", + "2517 0\n", + "2518 0\n", + "2519 0\n", + "2520 0\n", + "2521 1\n", + "2522 0\n", + "2523 0\n", + "2524 0\n", + "2525 0\n", + "2526 0\n", + "2527 0\n", + "2528 0\n", + "2529 0\n", + "2530 0\n", + "2531 1\n", + "2532 0\n", + "2533 0\n", + "2534 0\n", + "2535 0\n", + "2536 0\n", + "2537 0\n", + "2538 0\n", + "2539 1\n", + "2540 0\n", + "2541 0\n", + "2542 0\n", + "2543 1\n", + "2544 0\n", + "2545 0\n", + "2546 0\n", + "2547 0\n", + "2548 0\n", + "2549 1\n", + "2550 0\n", + "2551 1\n", + "2552 0\n", + "2553 0\n", + "2554 0\n", + "2555 0\n", + "2556 0\n", + "2557 1\n", + "2558 0\n", + "2559 0\n", + "2560 0\n", + "2561 0\n", + "2562 0\n", + "2563 0\n", + "2564 0\n", + "2565 0\n", + "2566 0\n", + "2567 0\n", + "2568 0\n", + "2569 0\n", + "2570 0\n", + "2571 0\n", + "2572 0\n", + "2573 0\n", + "2574 0\n", + "2575 0\n", + "2576 0\n", + "2577 0\n", + "2578 0\n", + "2579 1\n", + "2580 0\n", + "2581 0\n", + "2582 0\n", + "2583 0\n", + "2584 0\n", + "2585 0\n", + "2586 0\n", + "2587 0\n", + "2588 0\n", + "2589 0\n", + "2590 0\n", + "2591 1\n", + "2592 0\n", + "2593 1\n", + "2594 0\n", + "2595 0\n", + "2596 0\n", + "2597 0\n", + "2598 0\n", + "2599 0\n", + "2600 0\n", + "2601 0\n", + "2602 0\n", + "2603 0\n", + "2604 0\n", + "2605 0\n", + "2606 0\n", + "2607 0\n", + "2608 0\n", + "2609 1\n", + "2610 0\n", + "2611 0\n", + "2612 0\n", + "2613 0\n", + "2614 0\n", + "2615 0\n", + "2616 0\n", + "2617 1\n", + "2618 0\n", + "2619 0\n", + "2620 0\n", + "2621 1\n", + "2622 0\n", + "2623 0\n", + "2624 0\n", + "2625 0\n", + "2626 0\n", + "2627 0\n", + "2628 0\n", + "2629 0\n", + "2630 0\n", + "2631 0\n", + "2632 0\n", + "2633 1\n", + "2634 0\n", + "2635 0\n", + "2636 0\n", + "2637 0\n", + "2638 0\n", + "2639 0\n", + "2640 0\n", + "2641 0\n", + "2642 0\n", + "2643 0\n", + "2644 0\n", + "2645 0\n", + "2646 0\n", + "2647 1\n", + "2648 0\n", + "2649 0\n", + "2650 0\n", + "2651 0\n", + "2652 0\n", + "2653 0\n", + "2654 0\n", + "2655 0\n", + "2656 0\n", + "2657 1\n", + "2658 0\n", + "2659 1\n", + "2660 0\n", + "2661 0\n", + "2662 0\n", + "2663 1\n", + "2664 0\n", + "2665 0\n", + "2666 0\n", + "2667 0\n", + "2668 0\n", + "2669 0\n", + "2670 0\n", + "2671 1\n", + "2672 0\n", + "2673 0\n", + "2674 0\n", + "2675 0\n", + "2676 0\n", + "2677 1\n", + "2678 0\n", + "2679 0\n", + "2680 0\n", + "2681 0\n", + "2682 0\n", + "2683 1\n", + "2684 0\n", + "2685 0\n", + "2686 0\n", + "2687 1\n", + "2688 0\n", + "2689 1\n", + "2690 0\n", + "2691 0\n", + "2692 0\n", + "2693 1\n", + "2694 0\n", + "2695 0\n", + "2696 0\n", + "2697 0\n", + "2698 0\n", + "2699 1\n", + "2700 0\n", + "2701 0\n", + "2702 0\n", + "2703 0\n", + "2704 0\n", + "2705 0\n", + "2706 0\n", + "2707 1\n", + "2708 0\n", + "2709 0\n", + "2710 0\n", + "2711 1\n", + "2712 0\n", + "2713 1\n", + "2714 0\n", + "2715 0\n", + "2716 0\n", + "2717 0\n", + "2718 0\n", + "2719 1\n", + "2720 0\n", + "2721 0\n", + "2722 0\n", + "2723 0\n", + "2724 0\n", + "2725 0\n", + "2726 0\n", + "2727 0\n", + "2728 0\n", + "2729 1\n", + "2730 0\n", + "2731 1\n", + "2732 0\n", + "2733 0\n", + "2734 0\n", + "2735 0\n", + "2736 0\n", + "2737 0\n", + "2738 0\n", + "2739 0\n", + "2740 0\n", + "2741 1\n", + "2742 0\n", + "2743 0\n", + "2744 0\n", + "2745 0\n", + "2746 0\n", + "2747 0\n", + "2748 0\n", + "2749 1\n", + "2750 0\n", + "2751 0\n", + "2752 0\n", + "2753 1\n", + "2754 0\n", + "2755 0\n", + "2756 0\n", + "2757 0\n", + "2758 0\n", + "2759 0\n", + "2760 0\n", + "2761 0\n", + "2762 0\n", + "2763 0\n", + "2764 0\n", + "2765 0\n", + "2766 0\n", + "2767 1\n", + "2768 0\n", + "2769 0\n", + "2770 0\n", + "2771 0\n", + "2772 0\n", + "2773 0\n", + "2774 0\n", + "2775 0\n", + "2776 0\n", + "2777 1\n", + "2778 0\n", + "2779 0\n", + "2780 0\n", + "2781 0\n", + "2782 0\n", + "2783 0\n", + "2784 0\n", + "2785 0\n", + "2786 0\n", + "2787 0\n", + "2788 0\n", + "2789 1\n", + "2790 0\n", + "2791 1\n", + "2792 0\n", + "2793 0\n", + "2794 0\n", + "2795 0\n", + "2796 0\n", + "2797 1\n", + "2798 0\n", + "2799 0\n", + "2800 0\n", + "2801 1\n", + "2802 0\n", + "2803 1\n", + "2804 0\n", + "2805 0\n", + "2806 0\n", + "2807 0\n", + "2808 0\n", + "2809 0\n", + "2810 0\n", + "2811 0\n", + "2812 0\n", + "2813 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2814 0\n", + "2815 0\n", + "2816 0\n", + "2817 0\n", + "2818 0\n", + "2819 1\n", + "2820 0\n", + "2821 0\n", + "2822 0\n", + "2823 0\n", + "2824 0\n", + "2825 0\n", + "2826 0\n", + "2827 0\n", + "2828 0\n", + "2829 0\n", + "2830 0\n", + "2831 0\n", + "2832 0\n", + "2833 1\n", + "2834 0\n", + "2835 0\n", + "2836 0\n", + "2837 1\n", + "2838 0\n", + "2839 0\n", + "2840 0\n", + "2841 0\n", + "2842 0\n", + "2843 1\n", + "2844 0\n", + "2845 0\n", + "2846 0\n", + "2847 0\n", + "2848 0\n", + "2849 0\n", + "2850 0\n", + "2851 1\n", + "2852 0\n", + "2853 0\n", + "2854 0\n", + "2855 0\n", + "2856 0\n", + "2857 1\n", + "2858 0\n", + "2859 0\n", + "2860 0\n", + "2861 1\n", + "2862 0\n", + "2863 0\n", + "2864 0\n", + "2865 0\n", + "2866 0\n", + "2867 0\n", + "2868 0\n", + "2869 0\n", + "2870 0\n", + "2871 0\n", + "2872 0\n", + "2873 0\n", + "2874 0\n", + "2875 0\n", + "2876 0\n", + "2877 0\n", + "2878 0\n", + "2879 1\n", + "2880 0\n", + "2881 0\n", + "2882 0\n", + "2883 0\n", + "2884 0\n", + "2885 0\n", + "2886 0\n", + "2887 1\n", + "2888 0\n", + "2889 0\n", + "2890 0\n", + "2891 0\n", + "2892 0\n", + "2893 0\n", + "2894 0\n", + "2895 0\n", + "2896 0\n", + "2897 1\n", + "2898 0\n", + "2899 0\n", + "2900 0\n", + "2901 0\n", + "2902 0\n", + "2903 1\n", + "2904 0\n", + "2905 0\n", + "2906 0\n", + "2907 0\n", + "2908 0\n", + "2909 1\n", + "2910 0\n", + "2911 0\n", + "2912 0\n", + "2913 0\n", + "2914 0\n", + "2915 0\n", + "2916 0\n", + "2917 1\n", + "2918 0\n", + "2919 0\n", + "2920 0\n", + "2921 0\n", + "2922 0\n", + "2923 0\n", + "2924 0\n", + "2925 0\n", + "2926 0\n", + "2927 1\n", + "2928 0\n", + "2929 0\n", + "2930 0\n", + "2931 0\n", + "2932 0\n", + "2933 0\n", + "2934 0\n", + "2935 0\n", + "2936 0\n", + "2937 0\n", + "2938 0\n", + "2939 1\n", + "2940 0\n", + "2941 0\n", + "2942 0\n", + "2943 0\n", + "2944 0\n", + "2945 0\n", + "2946 0\n", + "2947 0\n", + "2948 0\n", + "2949 0\n", + "2950 0\n", + "2951 0\n", + "2952 0\n", + "2953 1\n", + "2954 0\n", + "2955 0\n", + "2956 0\n", + "2957 1\n", + "2958 0\n", + "2959 0\n", + "2960 0\n", + "2961 0\n", + "2962 0\n", + "2963 1\n", + "2964 0\n", + "2965 0\n", + "2966 0\n", + "2967 0\n", + "2968 0\n", + "2969 1\n", + "2970 0\n", + "2971 1\n", + "2972 0\n", + "2973 0\n", + "2974 0\n", + "2975 0\n", + "2976 0\n", + "2977 0\n", + "2978 0\n", + "2979 0\n", + "2980 0\n", + "2981 0\n", + "2982 0\n", + "2983 0\n", + "2984 0\n", + "2985 0\n", + "2986 0\n", + "2987 0\n", + "2988 0\n", + "2989 0\n", + "2990 0\n", + "2991 0\n", + "2992 0\n", + "2993 0\n", + "2994 0\n", + "2995 0\n", + "2996 0\n", + "2997 0\n", + "2998 0\n", + "2999 1\n", + "3000 0\n", + "3001 1\n", + "3002 0\n", + "3003 0\n", + "3004 0\n", + "3005 0\n", + "3006 0\n", + "3007 0\n", + "3008 0\n", + "3009 0\n", + "3010 0\n", + "3011 1\n", + "3012 0\n", + "3013 0\n", + "3014 0\n", + "3015 0\n", + "3016 0\n", + "3017 0\n", + "3018 0\n", + "3019 1\n", + "3020 0\n", + "3021 0\n", + "3022 0\n", + "3023 1\n", + "3024 0\n", + "3025 0\n", + "3026 0\n", + "3027 0\n", + "3028 0\n", + "3029 0\n", + "3030 0\n", + "3031 0\n", + "3032 0\n", + "3033 0\n", + "3034 0\n", + "3035 0\n", + "3036 0\n", + "3037 1\n", + "3038 0\n", + "3039 0\n", + "3040 0\n", + "3041 1\n", + "3042 0\n", + "3043 0\n", + "3044 0\n", + "3045 0\n", + "3046 0\n", + "3047 0\n", + "3048 0\n", + "3049 1\n", + "3050 0\n", + "3051 0\n", + "3052 0\n", + "3053 0\n", + "3054 0\n", + "3055 0\n", + "3056 0\n", + "3057 0\n", + "3058 0\n", + "3059 0\n", + "3060 0\n", + "3061 1\n", + "3062 0\n", + "3063 0\n", + "3064 0\n", + "3065 0\n", + "3066 0\n", + "3067 1\n", + "3068 0\n", + "3069 0\n", + "3070 0\n", + "3071 0\n", + "3072 0\n", + "3073 0\n", + "3074 0\n", + "3075 0\n", + "3076 0\n", + "3077 0\n", + "3078 0\n", + "3079 1\n", + "3080 0\n", + "3081 0\n", + "3082 0\n", + "3083 1\n", + "3084 0\n", + "3085 0\n", + "3086 0\n", + "3087 0\n", + "3088 0\n", + "3089 1\n", + "3090 0\n", + "3091 0\n", + "3092 0\n", + "3093 0\n", + "3094 0\n", + "3095 0\n", + "3096 0\n", + "3097 0\n", + "3098 0\n", + "3099 0\n", + "3100 0\n", + "3101 0\n", + "3102 0\n", + "3103 0\n", + "3104 0\n", + "3105 0\n", + "3106 0\n", + "3107 0\n", + "3108 0\n", + "3109 1\n", + "3110 0\n", + "3111 0\n", + "3112 0\n", + "3113 0\n", + "3114 0\n", + "3115 0\n", + "3116 0\n", + "3117 0\n", + "3118 0\n", + "3119 1\n", + "3120 0\n", + "3121 1\n", + "3122 0\n", + "3123 0\n", + "3124 0\n", + "3125 0\n", + "3126 0\n", + "3127 0\n", + "3128 0\n", + "3129 0\n", + "3130 0\n", + "3131 0\n", + "3132 0\n", + "3133 0\n", + "3134 0\n", + "3135 0\n", + "3136 0\n", + "3137 1\n", + "3138 0\n", + "3139 0\n", + "3140 0\n", + "3141 0\n", + "3142 0\n", + "3143 0\n", + "3144 0\n", + "3145 0\n", + "3146 0\n", + "3147 0\n", + "3148 0\n", + "3149 0\n", + "3150 0\n", + "3151 0\n", + "3152 0\n", + "3153 0\n", + "3154 0\n", + "3155 0\n", + "3156 0\n", + "3157 0\n", + "3158 0\n", + "3159 0\n", + "3160 0\n", + "3161 0\n", + "3162 0\n", + "3163 1\n", + "3164 0\n", + "3165 0\n", + "3166 0\n", + "3167 1\n", + "3168 0\n", + "3169 1\n", + "3170 0\n", + "3171 0\n", + "3172 0\n", + "3173 0\n", + "3174 0\n", + "3175 0\n", + "3176 0\n", + "3177 0\n", + "3178 0\n", + "3179 0\n", + "3180 0\n", + "3181 1\n", + "3182 0\n", + "3183 0\n", + "3184 0\n", + "3185 0\n", + "3186 0\n", + "3187 1\n", + "3188 0\n", + "3189 0\n", + "3190 0\n", + "3191 1\n", + "3192 0\n", + "3193 0\n", + "3194 0\n", + "3195 0\n", + "3196 0\n", + "3197 0\n", + "3198 0\n", + "3199 0\n", + "3200 0\n", + "3201 0\n", + "3202 0\n", + "3203 1\n", + "3204 0\n", + "3205 0\n", + "3206 0\n", + "3207 0\n", + "3208 0\n", + "3209 1\n", + "3210 0\n", + "3211 0\n", + "3212 0\n", + "3213 0\n", + "3214 0\n", + "3215 0\n", + "3216 0\n", + "3217 1\n", + "3218 0\n", + "3219 0\n", + "3220 0\n", + "3221 1\n", + "3222 0\n", + "3223 0\n", + "3224 0\n", + "3225 0\n", + "3226 0\n", + "3227 0\n", + "3228 0\n", + "3229 1\n", + "3230 0\n", + "3231 0\n", + "3232 0\n", + "3233 0\n", + "3234 0\n", + "3235 0\n", + "3236 0\n", + "3237 0\n", + "3238 0\n", + "3239 0\n", + "3240 0\n", + "3241 0\n", + "3242 0\n", + "3243 0\n", + "3244 0\n", + "3245 0\n", + "3246 0\n", + "3247 0\n", + "3248 0\n", + "3249 0\n", + "3250 0\n", + "3251 1\n", + "3252 0\n", + "3253 1\n", + "3254 0\n", + "3255 0\n", + "3256 0\n", + "3257 1\n", + "3258 0\n", + "3259 1\n", + "3260 0\n", + "3261 0\n", + "3262 0\n", + "3263 0\n", + "3264 0\n", + "3265 0\n", + "3266 0\n", + "3267 0\n", + "3268 0\n", + "3269 0\n", + "3270 0\n", + "3271 1\n", + "3272 0\n", + "3273 0\n", + "3274 0\n", + "3275 0\n", + "3276 0\n", + "3277 0\n", + "3278 0\n", + "3279 0\n", + "3280 0\n", + "3281 0\n", + "3282 0\n", + "3283 0\n", + "3284 0\n", + "3285 0\n", + "3286 0\n", + "3287 0\n", + "3288 0\n", + "3289 0\n", + "3290 0\n", + "3291 0\n", + "3292 0\n", + "3293 0\n", + "3294 0\n", + "3295 0\n", + "3296 0\n", + "3297 0\n", + "3298 0\n", + "3299 1\n", + "3300 0\n", + "3301 1\n", + "3302 0\n", + "3303 0\n", + "3304 0\n", + "3305 0\n", + "3306 0\n", + "3307 1\n", + "3308 0\n", + "3309 0\n", + "3310 0\n", + "3311 0\n", + "3312 0\n", + "3313 1\n", + "3314 0\n", + "3315 0\n", + "3316 0\n", + "3317 0\n", + "3318 0\n", + "3319 1\n", + "3320 0\n", + "3321 0\n", + "3322 0\n", + "3323 1\n", + "3324 0\n", + "3325 0\n", + "3326 0\n", + "3327 0\n", + "3328 0\n", + "3329 1\n", + "3330 0\n", + "3331 1\n", + "3332 0\n", + "3333 0\n", + "3334 0\n", + "3335 0\n", + "3336 0\n", + "3337 0\n", + "3338 0\n", + "3339 0\n", + "3340 0\n", + "3341 0\n", + "3342 0\n", + "3343 1\n", + "3344 0\n", + "3345 0\n", + "3346 0\n", + "3347 1\n", + "3348 0\n", + "3349 0\n", + "3350 0\n", + "3351 0\n", + "3352 0\n", + "3353 0\n", + "3354 0\n", + "3355 0\n", + "3356 0\n", + "3357 0\n", + "3358 0\n", + "3359 1\n", + "3360 0\n", + "3361 1\n", + "3362 0\n", + "3363 0\n", + "3364 0\n", + "3365 0\n", + "3366 0\n", + "3367 0\n", + "3368 0\n", + "3369 0\n", + "3370 0\n", + "3371 1\n", + "3372 0\n", + "3373 1\n", + "3374 0\n", + "3375 0\n", + "3376 0\n", + "3377 0\n", + "3378 0\n", + "3379 0\n", + "3380 0\n", + "3381 0\n", + "3382 0\n", + "3383 0\n", + "3384 0\n", + "3385 0\n", + "3386 0\n", + "3387 0\n", + "3388 0\n", + "3389 1\n", + "3390 0\n", + "3391 1\n", + "3392 0\n", + "3393 0\n", + "3394 0\n", + "3395 0\n", + "3396 0\n", + "3397 0\n", + "3398 0\n", + "3399 0\n", + "3400 0\n", + "3401 0\n", + "3402 0\n", + "3403 0\n", + "3404 0\n", + "3405 0\n", + "3406 0\n", + "3407 1\n", + "3408 0\n", + "3409 0\n", + "3410 0\n", + "3411 0\n", + "3412 0\n", + "3413 1\n", + "3414 0\n", + "3415 0\n", + "3416 0\n", + "3417 0\n", + "3418 0\n", + "3419 0\n", + "3420 0\n", + "3421 0\n", + "3422 0\n", + "3423 0\n", + "3424 0\n", + "3425 0\n", + "3426 0\n", + "3427 0\n", + "3428 0\n", + "3429 0\n", + "3430 0\n", + "3431 0\n", + "3432 0\n", + "3433 1\n", + "3434 0\n", + "3435 0\n", + "3436 0\n", + "3437 0\n", + "3438 0\n", + "3439 0\n", + "3440 0\n", + "3441 0\n", + "3442 0\n", + "3443 0\n", + "3444 0\n", + "3445 0\n", + "3446 0\n", + "3447 0\n", + "3448 0\n", + "3449 1\n", + "3450 0\n", + "3451 0\n", + "3452 0\n", + "3453 0\n", + "3454 0\n", + "3455 0\n", + "3456 0\n", + "3457 1\n", + "3458 0\n", + "3459 0\n", + "3460 0\n", + "3461 1\n", + "3462 0\n", + "3463 1\n", + "3464 0\n", + "3465 0\n", + "3466 0\n", + "3467 1\n", + "3468 0\n", + "3469 1\n", + "3470 0\n", + "3471 0\n", + "3472 0\n", + "3473 0\n", + "3474 0\n", + "3475 0\n", + "3476 0\n", + "3477 0\n", + "3478 0\n", + "3479 0\n", + "3480 0\n", + "3481 0\n", + "3482 0\n", + "3483 0\n", + "3484 0\n", + "3485 0\n", + "3486 0\n", + "3487 0\n", + "3488 0\n", + "3489 0\n", + "3490 0\n", + "3491 1\n", + "3492 0\n", + "3493 0\n", + "3494 0\n", + "3495 0\n", + "3496 0\n", + "3497 0\n", + "3498 0\n", + "3499 1\n", + "3500 0\n", + "3501 0\n", + "3502 0\n", + "3503 0\n", + "3504 0\n", + "3505 0\n", + "3506 0\n", + "3507 0\n", + "3508 0\n", + "3509 0\n", + "3510 0\n", + "3511 1\n", + "3512 0\n", + "3513 0\n", + "3514 0\n", + "3515 0\n", + "3516 0\n", + "3517 1\n", + "3518 0\n", + "3519 0\n", + "3520 0\n", + "3521 0\n", + "3522 0\n", + "3523 0\n", + "3524 0\n", + "3525 0\n", + "3526 0\n", + "3527 1\n", + "3528 0\n", + "3529 1\n", + "3530 0\n", + "3531 0\n", + "3532 0\n", + "3533 1\n", + "3534 0\n", + "3535 0\n", + "3536 0\n", + "3537 0\n", + "3538 0\n", + "3539 1\n", + "3540 0\n", + "3541 1\n", + "3542 0\n", + "3543 0\n", + "3544 0\n", + "3545 0\n", + "3546 0\n", + "3547 1\n", + "3548 0\n", + "3549 0\n", + "3550 0\n", + "3551 0\n", + "3552 0\n", + "3553 0\n", + "3554 0\n", + "3555 0\n", + "3556 0\n", + "3557 1\n", + "3558 0\n", + "3559 1\n", + "3560 0\n", + "3561 0\n", + "3562 0\n", + "3563 0\n", + "3564 0\n", + "3565 0\n", + "3566 0\n", + "3567 0\n", + "3568 0\n", + "3569 0\n", + "3570 0\n", + "3571 1\n", + "3572 0\n", + "3573 0\n", + "3574 0\n", + "3575 0\n", + "3576 0\n", + "3577 0\n", + "3578 0\n", + "3579 0\n", + "3580 0\n", + "3581 1\n", + "3582 0\n", + "3583 1\n", + "3584 0\n", + "3585 0\n", + "3586 0\n", + "3587 0\n", + "3588 0\n", + "3589 0\n", + "3590 0\n", + "3591 0\n", + "3592 0\n", + "3593 1\n", + "3594 0\n", + "3595 0\n", + "3596 0\n", + "3597 0\n", + "3598 0\n", + "3599 0\n", + "3600 0\n", + "3601 0\n", + "3602 0\n", + "3603 0\n", + "3604 0\n", + "3605 0\n", + "3606 0\n", + "3607 1\n", + "3608 0\n", + "3609 0\n", + "3610 0\n", + "3611 0\n", + "3612 0\n", + "3613 1\n", + "3614 0\n", + "3615 0\n", + "3616 0\n", + "3617 1\n", + "3618 0\n", + "3619 0\n", + "3620 0\n", + "3621 0\n", + "3622 0\n", + "3623 1\n", + "3624 0\n", + "3625 0\n", + "3626 0\n", + "3627 0\n", + "3628 0\n", + "3629 0\n", + "3630 0\n", + "3631 1\n", + "3632 0\n", + "3633 0\n", + "3634 0\n", + "3635 0\n", + "3636 0\n", + "3637 1\n", + "3638 0\n", + "3639 0\n", + "3640 0\n", + "3641 0\n", + "3642 0\n", + "3643 1\n", + "3644 0\n", + "3645 0\n", + "3646 0\n", + "3647 0\n", + "3648 0\n", + "3649 0\n", + "3650 0\n", + "3651 0\n", + "3652 0\n", + "3653 0\n", + "3654 0\n", + "3655 0\n", + "3656 0\n", + "3657 0\n", + "3658 0\n", + "3659 1\n", + "3660 0\n", + "3661 0\n", + "3662 0\n", + "3663 0\n", + "3664 0\n", + "3665 0\n", + "3666 0\n", + "3667 0\n", + "3668 0\n", + "3669 0\n", + "3670 0\n", + "3671 1\n", + "3672 0\n", + "3673 1\n", + "3674 0\n", + "3675 0\n", + "3676 0\n", + "3677 1\n", + "3678 0\n", + "3679 0\n", + "3680 0\n", + "3681 0\n", + "3682 0\n", + "3683 0\n", + "3684 0\n", + "3685 0\n", + "3686 0\n", + "3687 0\n", + "3688 0\n", + "3689 0\n", + "3690 0\n", + "3691 1\n", + "3692 0\n", + "3693 0\n", + "3694 0\n", + "3695 0\n", + "3696 0\n", + "3697 1\n", + "3698 0\n", + "3699 0\n", + "3700 0\n", + "3701 1\n", + "3702 0\n", + "3703 0\n", + "3704 0\n", + "3705 0\n", + "3706 0\n", + "3707 0\n", + "3708 0\n", + "3709 1\n", + "3710 0\n", + "3711 0\n", + "3712 0\n", + "3713 0\n", + "3714 0\n", + "3715 0\n", + "3716 0\n", + "3717 0\n", + "3718 0\n", + "3719 1\n", + "3720 0\n", + "3721 0\n", + "3722 0\n", + "3723 0\n", + "3724 0\n", + "3725 0\n", + "3726 0\n", + "3727 1\n", + "3728 0\n", + "3729 0\n", + "3730 0\n", + "3731 0\n", + "3732 0\n", + "3733 1\n", + "3734 0\n", + "3735 0\n", + "3736 0\n", + "3737 0\n", + "3738 0\n", + "3739 1\n", + "3740 0\n", + "3741 0\n", + "3742 0\n", + "3743 0\n", + "3744 0\n", + "3745 0\n", + "3746 0\n", + "3747 0\n", + "3748 0\n", + "3749 0\n", + "3750 0\n", + "3751 0\n", + "3752 0\n", + "3753 0\n", + "3754 0\n", + "3755 0\n", + "3756 0\n", + "3757 0\n", + "3758 0\n", + "3759 0\n", + "3760 0\n", + "3761 1\n", + "3762 0\n", + "3763 0\n", + "3764 0\n", + "3765 0\n", + "3766 0\n", + "3767 1\n", + "3768 0\n", + "3769 1\n", + "3770 0\n", + "3771 0\n", + "3772 0\n", + "3773 0\n", + "3774 0\n", + "3775 0\n", + "3776 0\n", + "3777 0\n", + "3778 0\n", + "3779 1\n", + "3780 0\n", + "3781 0\n", + "3782 0\n", + "3783 0\n", + "3784 0\n", + "3785 0\n", + "3786 0\n", + "3787 0\n", + "3788 0\n", + "3789 0\n", + "3790 0\n", + "3791 0\n", + "3792 0\n", + "3793 1\n", + "3794 0\n", + "3795 0\n", + "3796 0\n", + "3797 1\n", + "3798 0\n", + "3799 0\n", + "3800 0\n", + "3801 0\n", + "3802 0\n", + "3803 1\n", + "3804 0\n", + "3805 0\n", + "3806 0\n", + "3807 0\n", + "3808 0\n", + "3809 0\n", + "3810 0\n", + "3811 0\n", + "3812 0\n", + "3813 0\n", + "3814 0\n", + "3815 0\n", + "3816 0\n", + "3817 0\n", + "3818 0\n", + "3819 0\n", + "3820 0\n", + "3821 1\n", + "3822 0\n", + "3823 1\n", + "3824 0\n", + "3825 0\n", + "3826 0\n", + "3827 0\n", + "3828 0\n", + "3829 0\n", + "3830 0\n", + "3831 0\n", + "3832 0\n", + "3833 1\n", + "3834 0\n", + "3835 0\n", + "3836 0\n", + "3837 0\n", + "3838 0\n", + "3839 0\n", + "3840 0\n", + "3841 0\n", + "3842 0\n", + "3843 0\n", + "3844 0\n", + "3845 0\n", + "3846 0\n", + "3847 1\n", + "3848 0\n", + "3849 0\n", + "3850 0\n", + "3851 1\n", + "3852 0\n", + "3853 1\n", + "3854 0\n", + "3855 0\n", + "3856 0\n", + "3857 0\n", + "3858 0\n", + "3859 0\n", + "3860 0\n", + "3861 0\n", + "3862 0\n", + "3863 1\n", + "3864 0\n", + "3865 0\n", + "3866 0\n", + "3867 0\n", + "3868 0\n", + "3869 0\n", + "3870 0\n", + "3871 0\n", + "3872 0\n", + "3873 0\n", + "3874 0\n", + "3875 0\n", + "3876 0\n", + "3877 1\n", + "3878 0\n", + "3879 0\n", + "3880 0\n", + "3881 1\n", + "3882 0\n", + "3883 0\n", + "3884 0\n", + "3885 0\n", + "3886 0\n", + "3887 0\n", + "3888 0\n", + "3889 1\n", + "3890 0\n", + "3891 0\n", + "3892 0\n", + "3893 0\n", + "3894 0\n", + "3895 0\n", + "3896 0\n", + "3897 0\n", + "3898 0\n", + "3899 0\n", + "3900 0\n", + "3901 0\n", + "3902 0\n", + "3903 0\n", + "3904 0\n", + "3905 0\n", + "3906 0\n", + "3907 1\n", + "3908 0\n", + "3909 0\n", + "3910 0\n", + "3911 1\n", + "3912 0\n", + "3913 0\n", + "3914 0\n", + "3915 0\n", + "3916 0\n", + "3917 1\n", + "3918 0\n", + "3919 1\n", + "3920 0\n", + "3921 0\n", + "3922 0\n", + "3923 1\n", + "3924 0\n", + "3925 0\n", + "3926 0\n", + "3927 0\n", + "3928 0\n", + "3929 1\n", + "3930 0\n", + "3931 1\n", + "3932 0\n", + "3933 0\n", + "3934 0\n", + "3935 0\n", + "3936 0\n", + "3937 0\n", + "3938 0\n", + "3939 0\n", + "3940 0\n", + "3941 0\n", + "3942 0\n", + "3943 1\n", + "3944 0\n", + "3945 0\n", + "3946 0\n", + "3947 1\n", + "3948 0\n", + "3949 0\n", + "3950 0\n", + "3951 0\n", + "3952 0\n", + "3953 0\n", + "3954 0\n", + "3955 0\n", + "3956 0\n", + "3957 0\n", + "3958 0\n", + "3959 0\n", + "3960 0\n", + "3961 0\n", + "3962 0\n", + "3963 0\n", + "3964 0\n", + "3965 0\n", + "3966 0\n", + "3967 1\n", + "3968 0\n", + "3969 0\n", + "3970 0\n", + "3971 0\n", + "3972 0\n", + "3973 0\n", + "3974 0\n", + "3975 0\n", + "3976 0\n", + "3977 0\n", + "3978 0\n", + "3979 0\n", + "3980 0\n", + "3981 0\n", + "3982 0\n", + "3983 0\n", + "3984 0\n", + "3985 0\n", + "3986 0\n", + "3987 0\n", + "3988 0\n", + "3989 1\n", + "3990 0\n", + "3991 0\n", + "3992 0\n", + "3993 0\n", + "3994 0\n", + "3995 0\n", + "3996 0\n", + "3997 0\n", + "3998 0\n", + "3999 0\n", + "4000 0\n", + "4001 1\n", + "4002 0\n", + "4003 1\n", + "4004 0\n", + "4005 0\n", + "4006 0\n", + "4007 1\n", + "4008 0\n", + "4009 0\n", + "4010 0\n", + "4011 0\n", + "4012 0\n", + "4013 1\n", + "4014 0\n", + "4015 0\n", + "4016 0\n", + "4017 0\n", + "4018 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4019 1\n", + "4020 0\n", + "4021 1\n", + "4022 0\n", + "4023 0\n", + "4024 0\n", + "4025 0\n", + "4026 0\n", + "4027 1\n", + "4028 0\n", + "4029 0\n", + "4030 0\n", + "4031 0\n", + "4032 0\n", + "4033 0\n", + "4034 0\n", + "4035 0\n", + "4036 0\n", + "4037 0\n", + "4038 0\n", + "4039 0\n", + "4040 0\n", + "4041 0\n", + "4042 0\n", + "4043 0\n", + "4044 0\n", + "4045 0\n", + "4046 0\n", + "4047 0\n", + "4048 0\n", + "4049 1\n", + "4050 0\n", + "4051 1\n", + "4052 0\n", + "4053 0\n", + "4054 0\n", + "4055 0\n", + "4056 0\n", + "4057 1\n", + "4058 0\n", + "4059 0\n", + "4060 0\n", + "4061 0\n", + "4062 0\n", + "4063 0\n", + "4064 0\n", + "4065 0\n", + "4066 0\n", + "4067 0\n", + "4068 0\n", + "4069 0\n", + "4070 0\n", + "4071 0\n", + "4072 0\n", + "4073 1\n", + "4074 0\n", + "4075 0\n", + "4076 0\n", + "4077 0\n", + "4078 0\n", + "4079 1\n", + "4080 0\n", + "4081 0\n", + "4082 0\n", + "4083 0\n", + "4084 0\n", + "4085 0\n", + "4086 0\n", + "4087 0\n", + "4088 0\n", + "4089 0\n", + "4090 0\n", + "4091 1\n", + "4092 0\n", + "4093 1\n", + "4094 0\n", + "4095 0\n", + "4096 0\n", + "4097 0\n", + "4098 0\n", + "4099 1\n", + "4100 0\n", + "4101 0\n", + "4102 0\n", + "4103 0\n", + "4104 0\n", + "4105 0\n", + "4106 0\n", + "4107 0\n", + "4108 0\n", + "4109 0\n", + "4110 0\n", + "4111 1\n", + "4112 0\n", + "4113 0\n", + "4114 0\n", + "4115 0\n", + "4116 0\n", + "4117 0\n", + "4118 0\n", + "4119 0\n", + "4120 0\n", + "4121 0\n", + "4122 0\n", + "4123 0\n", + "4124 0\n", + "4125 0\n", + "4126 0\n", + "4127 1\n", + "4128 0\n", + "4129 1\n", + "4130 0\n", + "4131 0\n", + "4132 0\n", + "4133 1\n", + "4134 0\n", + "4135 0\n", + "4136 0\n", + "4137 0\n", + "4138 0\n", + "4139 1\n", + "4140 0\n", + "4141 0\n", + "4142 0\n", + "4143 0\n", + "4144 0\n", + "4145 0\n", + "4146 0\n", + "4147 0\n", + "4148 0\n", + "4149 0\n", + "4150 0\n", + "4151 0\n", + "4152 0\n", + "4153 1\n", + "4154 0\n", + "4155 0\n", + "4156 0\n", + "4157 1\n", + "4158 0\n", + "4159 1\n", + "4160 0\n", + "4161 0\n", + "4162 0\n", + "4163 0\n", + "4164 0\n", + "4165 0\n", + "4166 0\n", + "4167 0\n", + "4168 0\n", + "4169 0\n", + "4170 0\n", + "4171 0\n", + "4172 0\n", + "4173 0\n", + "4174 0\n", + "4175 0\n", + "4176 0\n", + "4177 1\n", + "4178 0\n", + "4179 0\n", + "4180 0\n", + "4181 0\n", + "4182 0\n", + "4183 0\n", + "4184 0\n", + "4185 0\n", + "4186 0\n", + "4187 0\n", + "4188 0\n", + "4189 0\n", + "4190 0\n", + "4191 0\n", + "4192 0\n", + "4193 0\n", + "4194 0\n", + "4195 0\n", + "4196 0\n", + "4197 0\n", + "4198 0\n", + "4199 0\n", + "4200 0\n", + "4201 1\n", + "4202 0\n", + "4203 0\n", + "4204 0\n", + "4205 0\n", + "4206 0\n", + "4207 0\n", + "4208 0\n", + "4209 0\n", + "4210 0\n", + "4211 1\n", + "4212 0\n", + "4213 0\n", + "4214 0\n", + "4215 0\n", + "4216 0\n", + "4217 1\n", + "4218 0\n", + "4219 1\n", + "4220 0\n", + "4221 0\n", + "4222 0\n", + "4223 0\n", + "4224 0\n", + "4225 0\n", + "4226 0\n", + "4227 0\n", + "4228 0\n", + "4229 1\n", + "4230 0\n", + "4231 1\n", + "4232 0\n", + "4233 0\n", + "4234 0\n", + "4235 0\n", + "4236 0\n", + "4237 0\n", + "4238 0\n", + "4239 0\n", + "4240 0\n", + "4241 1\n", + "4242 0\n", + "4243 1\n", + "4244 0\n", + "4245 0\n", + "4246 0\n", + "4247 0\n", + "4248 0\n", + "4249 0\n", + "4250 0\n", + "4251 0\n", + "4252 0\n", + "4253 1\n", + "4254 0\n", + "4255 0\n", + "4256 0\n", + "4257 0\n", + "4258 0\n", + "4259 1\n", + "4260 0\n", + "4261 1\n", + "4262 0\n", + "4263 0\n", + "4264 0\n", + "4265 0\n", + "4266 0\n", + "4267 0\n", + "4268 0\n", + "4269 0\n", + "4270 0\n", + "4271 1\n", + "4272 0\n", + "4273 1\n", + "4274 0\n", + "4275 0\n", + "4276 0\n", + "4277 0\n", + "4278 0\n", + "4279 0\n", + "4280 0\n", + "4281 0\n", + "4282 0\n", + "4283 1\n", + "4284 0\n", + "4285 0\n", + "4286 0\n", + "4287 0\n", + "4288 0\n", + "4289 1\n", + "4290 0\n", + "4291 0\n", + "4292 0\n", + "4293 0\n", + "4294 0\n", + "4295 0\n", + "4296 0\n", + "4297 1\n", + "4298 0\n", + "4299 0\n", + "4300 0\n", + "4301 0\n", + "4302 0\n", + "4303 0\n", + "4304 0\n", + "4305 0\n", + "4306 0\n", + "4307 0\n", + "4308 0\n", + "4309 0\n", + "4310 0\n", + "4311 0\n", + "4312 0\n", + "4313 0\n", + "4314 0\n", + "4315 0\n", + "4316 0\n", + "4317 0\n", + "4318 0\n", + "4319 0\n", + "4320 0\n", + "4321 0\n", + "4322 0\n", + "4323 0\n", + "4324 0\n", + "4325 0\n", + "4326 0\n", + "4327 1\n", + "4328 0\n", + "4329 0\n", + "4330 0\n", + "4331 0\n", + "4332 0\n", + "4333 0\n", + "4334 0\n", + "4335 0\n", + "4336 0\n", + "4337 1\n", + "4338 0\n", + "4339 1\n", + "4340 0\n", + "4341 0\n", + "4342 0\n", + "4343 0\n", + "4344 0\n", + "4345 0\n", + "4346 0\n", + "4347 0\n", + "4348 0\n", + "4349 1\n", + "4350 0\n", + "4351 0\n", + "4352 0\n", + "4353 0\n", + "4354 0\n", + "4355 0\n", + "4356 0\n", + "4357 1\n", + "4358 0\n", + "4359 0\n", + "4360 0\n", + "4361 0\n", + "4362 0\n", + "4363 1\n", + "4364 0\n", + "4365 0\n", + "4366 0\n", + "4367 0\n", + "4368 0\n", + "4369 0\n", + "4370 0\n", + "4371 0\n", + "4372 0\n", + "4373 1\n", + "4374 0\n", + "4375 0\n", + "4376 0\n", + "4377 0\n", + "4378 0\n", + "4379 0\n", + "4380 0\n", + "4381 0\n", + "4382 0\n", + "4383 0\n", + "4384 0\n", + "4385 0\n", + "4386 0\n", + "4387 0\n", + "4388 0\n", + "4389 0\n", + "4390 0\n", + "4391 1\n", + "4392 0\n", + "4393 0\n", + "4394 0\n", + "4395 0\n", + "4396 0\n", + "4397 1\n", + "4398 0\n", + "4399 0\n", + "4400 0\n", + "4401 0\n", + "4402 0\n", + "4403 0\n", + "4404 0\n", + "4405 0\n", + "4406 0\n", + "4407 0\n", + "4408 0\n", + "4409 1\n", + "4410 0\n", + "4411 0\n", + "4412 0\n", + "4413 0\n", + "4414 0\n", + "4415 0\n", + "4416 0\n", + "4417 0\n", + "4418 0\n", + "4419 0\n", + "4420 0\n", + "4421 1\n", + "4422 0\n", + "4423 1\n", + "4424 0\n", + "4425 0\n", + "4426 0\n", + "4427 0\n", + "4428 0\n", + "4429 0\n", + "4430 0\n", + "4431 0\n", + "4432 0\n", + "4433 0\n", + "4434 0\n", + "4435 0\n", + "4436 0\n", + "4437 0\n", + "4438 0\n", + "4439 0\n", + "4440 0\n", + "4441 1\n", + "4442 0\n", + "4443 0\n", + "4444 0\n", + "4445 0\n", + "4446 0\n", + "4447 1\n", + "4448 0\n", + "4449 0\n", + "4450 0\n", + "4451 1\n", + "4452 0\n", + "4453 0\n", + "4454 0\n", + "4455 0\n", + "4456 0\n", + "4457 1\n", + "4458 0\n", + "4459 0\n", + "4460 0\n", + "4461 0\n", + "4462 0\n", + "4463 1\n", + "4464 0\n", + "4465 0\n", + "4466 0\n", + "4467 0\n", + "4468 0\n", + "4469 0\n", + "4470 0\n", + "4471 0\n", + "4472 0\n", + "4473 0\n", + "4474 0\n", + "4475 0\n", + "4476 0\n", + "4477 0\n", + "4478 0\n", + "4479 0\n", + "4480 0\n", + "4481 1\n", + "4482 0\n", + "4483 1\n", + "4484 0\n", + "4485 0\n", + "4486 0\n", + "4487 0\n", + "4488 0\n", + "4489 0\n", + "4490 0\n", + "4491 0\n", + "4492 0\n", + "4493 1\n", + "4494 0\n", + "4495 0\n", + "4496 0\n", + "4497 0\n", + "4498 0\n", + "4499 0\n", + "4500 0\n", + "4501 0\n", + "4502 0\n", + "4503 0\n", + "4504 0\n", + "4505 0\n", + "4506 0\n", + "4507 1\n", + "4508 0\n", + "4509 0\n", + "4510 0\n", + "4511 0\n", + "4512 0\n", + "4513 1\n", + "4514 0\n", + "4515 0\n", + "4516 0\n", + "4517 1\n", + "4518 0\n", + "4519 1\n", + "4520 0\n", + "4521 0\n", + "4522 0\n", + "4523 1\n", + "4524 0\n", + "4525 0\n", + "4526 0\n", + "4527 0\n", + "4528 0\n", + "4529 0\n", + "4530 0\n", + "4531 0\n", + "4532 0\n", + "4533 0\n", + "4534 0\n", + "4535 0\n", + "4536 0\n", + "4537 0\n", + "4538 0\n", + "4539 0\n", + "4540 0\n", + "4541 0\n", + "4542 0\n", + "4543 0\n", + "4544 0\n", + "4545 0\n", + "4546 0\n", + "4547 1\n", + "4548 0\n", + "4549 1\n", + "4550 0\n", + "4551 0\n", + "4552 0\n", + "4553 0\n", + "4554 0\n", + "4555 0\n", + "4556 0\n", + "4557 0\n", + "4558 0\n", + "4559 0\n", + "4560 0\n", + "4561 1\n", + "4562 0\n", + "4563 0\n", + "4564 0\n", + "4565 0\n", + "4566 0\n", + "4567 1\n", + "4568 0\n", + "4569 0\n", + "4570 0\n", + "4571 0\n", + "4572 0\n", + "4573 0\n", + "4574 0\n", + "4575 0\n", + "4576 0\n", + "4577 0\n", + "4578 0\n", + "4579 0\n", + "4580 0\n", + "4581 0\n", + "4582 0\n", + "4583 1\n", + "4584 0\n", + "4585 0\n", + "4586 0\n", + "4587 0\n", + "4588 0\n", + "4589 0\n", + "4590 0\n", + "4591 1\n", + "4592 0\n", + "4593 0\n", + "4594 0\n", + "4595 0\n", + "4596 0\n", + "4597 1\n", + "4598 0\n", + "4599 0\n", + "4600 0\n", + "4601 0\n", + "4602 0\n", + "4603 1\n", + "4604 0\n", + "4605 0\n", + "4606 0\n", + "4607 0\n", + "4608 0\n", + "4609 0\n", + "4610 0\n", + "4611 0\n", + "4612 0\n", + "4613 0\n", + "4614 0\n", + "4615 0\n", + "4616 0\n", + "4617 0\n", + "4618 0\n", + "4619 0\n", + "4620 0\n", + "4621 1\n", + "4622 0\n", + "4623 0\n", + "4624 0\n", + "4625 0\n", + "4626 0\n", + "4627 0\n", + "4628 0\n", + "4629 0\n", + "4630 0\n", + "4631 0\n", + "4632 0\n", + "4633 0\n", + "4634 0\n", + "4635 0\n", + "4636 0\n", + "4637 1\n", + "4638 0\n", + "4639 1\n", + "4640 0\n", + "4641 0\n", + "4642 0\n", + "4643 1\n", + "4644 0\n", + "4645 0\n", + "4646 0\n", + "4647 0\n", + "4648 0\n", + "4649 1\n", + "4650 0\n", + "4651 1\n", + "4652 0\n", + "4653 0\n", + "4654 0\n", + "4655 0\n", + "4656 0\n", + "4657 1\n", + "4658 0\n", + "4659 0\n", + "4660 0\n", + "4661 0\n", + "4662 0\n", + "4663 1\n", + "4664 0\n", + "4665 0\n", + "4666 0\n", + "4667 0\n", + "4668 0\n", + "4669 0\n", + "4670 0\n", + "4671 0\n", + "4672 0\n", + "4673 1\n", + "4674 0\n", + "4675 0\n", + "4676 0\n", + "4677 0\n", + "4678 0\n", + "4679 1\n", + "4680 0\n", + "4681 0\n", + "4682 0\n", + "4683 0\n", + "4684 0\n", + "4685 0\n", + "4686 0\n", + "4687 0\n", + "4688 0\n", + "4689 0\n", + "4690 0\n", + "4691 1\n", + "4692 0\n", + "4693 0\n", + "4694 0\n", + "4695 0\n", + "4696 0\n", + "4697 0\n", + "4698 0\n", + "4699 0\n", + "4700 0\n", + "4701 0\n", + "4702 0\n", + "4703 1\n", + "4704 0\n", + "4705 0\n", + "4706 0\n", + "4707 0\n", + "4708 0\n", + "4709 0\n", + "4710 0\n", + "4711 0\n", + "4712 0\n", + "4713 0\n", + "4714 0\n", + "4715 0\n", + "4716 0\n", + "4717 0\n", + "4718 0\n", + "4719 0\n", + "4720 0\n", + "4721 1\n", + "4722 0\n", + "4723 1\n", + "4724 0\n", + "4725 0\n", + "4726 0\n", + "4727 0\n", + "4728 0\n", + "4729 1\n", + "4730 0\n", + "4731 0\n", + "4732 0\n", + "4733 1\n", + "4734 0\n", + "4735 0\n", + "4736 0\n", + "4737 0\n", + "4738 0\n", + "4739 0\n", + "4740 0\n", + "4741 0\n", + "4742 0\n", + "4743 0\n", + "4744 0\n", + "4745 0\n", + "4746 0\n", + "4747 0\n", + "4748 0\n", + "4749 0\n", + "4750 0\n", + "4751 1\n", + "4752 0\n", + "4753 0\n", + "4754 0\n", + "4755 0\n", + "4756 0\n", + "4757 0\n", + "4758 0\n", + "4759 1\n", + "4760 0\n", + "4761 0\n", + "4762 0\n", + "4763 0\n", + "4764 0\n", + "4765 0\n", + "4766 0\n", + "4767 0\n", + "4768 0\n", + "4769 0\n", + "4770 0\n", + "4771 0\n", + "4772 0\n", + "4773 0\n", + "4774 0\n", + "4775 0\n", + "4776 0\n", + "4777 0\n", + "4778 0\n", + "4779 0\n", + "4780 0\n", + "4781 0\n", + "4782 0\n", + "4783 1\n", + "4784 0\n", + "4785 0\n", + "4786 0\n", + "4787 1\n", + "4788 0\n", + "4789 1\n", + "4790 0\n", + "4791 0\n", + "4792 0\n", + "4793 1\n", + "4794 0\n", + "4795 0\n", + "4796 0\n", + "4797 0\n", + "4798 0\n", + "4799 1\n", + "4800 0\n", + "4801 1\n", + "4802 0\n", + "4803 0\n", + "4804 0\n", + "4805 0\n", + "4806 0\n", + "4807 0\n", + "4808 0\n", + "4809 0\n", + "4810 0\n", + "4811 0\n", + "4812 0\n", + "4813 1\n", + "4814 0\n", + "4815 0\n", + "4816 0\n", + "4817 1\n", + "4818 0\n", + "4819 0\n", + "4820 0\n", + "4821 0\n", + "4822 0\n", + "4823 0\n", + "4824 0\n", + "4825 0\n", + "4826 0\n", + "4827 0\n", + "4828 0\n", + "4829 0\n", + "4830 0\n", + "4831 1\n", + "4832 0\n", + "4833 0\n", + "4834 0\n", + "4835 0\n", + "4836 0\n", + "4837 0\n", + "4838 0\n", + "4839 0\n", + "4840 0\n", + "4841 0\n", + "4842 0\n", + "4843 0\n", + "4844 0\n", + "4845 0\n", + "4846 0\n", + "4847 0\n", + "4848 0\n", + "4849 0\n", + "4850 0\n", + "4851 0\n", + "4852 0\n", + "4853 0\n", + "4854 0\n", + "4855 0\n", + "4856 0\n", + "4857 0\n", + "4858 0\n", + "4859 0\n", + "4860 0\n", + "4861 1\n", + "4862 0\n", + "4863 0\n", + "4864 0\n", + "4865 0\n", + "4866 0\n", + "4867 0\n", + "4868 0\n", + "4869 0\n", + "4870 0\n", + "4871 1\n", + "4872 0\n", + "4873 0\n", + "4874 0\n", + "4875 0\n", + "4876 0\n", + "4877 1\n", + "4878 0\n", + "4879 0\n", + "4880 0\n", + "4881 0\n", + "4882 0\n", + "4883 0\n", + "4884 0\n", + "4885 0\n", + "4886 0\n", + "4887 0\n", + "4888 0\n", + "4889 1\n", + "4890 0\n", + "4891 0\n", + "4892 0\n", + "4893 0\n", + "4894 0\n", + "4895 0\n", + "4896 0\n", + "4897 0\n", + "4898 0\n", + "4899 0\n", + "4900 0\n", + "4901 0\n", + "4902 0\n", + "4903 1\n", + "4904 0\n", + "4905 0\n", + "4906 0\n", + "4907 0\n", + "4908 0\n", + "4909 1\n", + "4910 0\n", + "4911 0\n", + "4912 0\n", + "4913 0\n", + "4914 0\n", + "4915 0\n", + "4916 0\n", + "4917 0\n", + "4918 0\n", + "4919 1\n", + "4920 0\n", + "4921 0\n", + "4922 0\n", + "4923 0\n", + "4924 0\n", + "4925 0\n", + "4926 0\n", + "4927 0\n", + "4928 0\n", + "4929 0\n", + "4930 0\n", + "4931 1\n", + "4932 0\n", + "4933 1\n", + "4934 0\n", + "4935 0\n", + "4936 0\n", + "4937 1\n", + "4938 0\n", + "4939 0\n", + "4940 0\n", + "4941 0\n", + "4942 0\n", + "4943 1\n", + "4944 0\n", + "4945 0\n", + "4946 0\n", + "4947 0\n", + "4948 0\n", + "4949 0\n", + "4950 0\n", + "4951 1\n", + "4952 0\n", + "4953 0\n", + "4954 0\n", + "4955 0\n", + "4956 0\n", + "4957 1\n", + "4958 0\n", + "4959 0\n", + "4960 0\n", + "4961 0\n", + "4962 0\n", + "4963 0\n", + "4964 0\n", + "4965 0\n", + "4966 0\n", + "4967 1\n", + "4968 0\n", + "4969 1\n", + "4970 0\n", + "4971 0\n", + "4972 0\n", + "4973 1\n", + "4974 0\n", + "4975 0\n", + "4976 0\n", + "4977 0\n", + "4978 0\n", + "4979 0\n", + "4980 0\n", + "4981 0\n", + "4982 0\n", + "4983 0\n", + "4984 0\n", + "4985 0\n", + "4986 0\n", + "4987 1\n", + "4988 0\n", + "4989 0\n", + "4990 0\n", + "4991 0\n", + "4992 0\n", + "4993 1\n", + "4994 0\n", + "4995 0\n", + "4996 0\n", + "4997 0\n", + "4998 0\n", + "4999 1\n", + "5000 0\n", + "5001 0\n", + "5002 0\n", + "5003 1\n", + "5004 0\n", + "5005 0\n", + "5006 0\n", + "5007 0\n", + "5008 0\n", + "5009 1\n", + "5010 0\n", + "5011 1\n", + "5012 0\n", + "5013 0\n", + "5014 0\n", + "5015 0\n", + "5016 0\n", + "5017 0\n", + "5018 0\n", + "5019 0\n", + "5020 0\n", + "5021 1\n", + "5022 0\n", + "5023 1\n", + "5024 0\n", + "5025 0\n", + "5026 0\n", + "5027 0\n", + "5028 0\n", + "5029 0\n", + "5030 0\n", + "5031 0\n", + "5032 0\n", + "5033 0\n", + "5034 0\n", + "5035 0\n", + "5036 0\n", + "5037 0\n", + "5038 0\n", + "5039 1\n", + "5040 0\n", + "5041 0\n", + "5042 0\n", + "5043 0\n", + "5044 0\n", + "5045 0\n", + "5046 0\n", + "5047 0\n", + "5048 0\n", + "5049 0\n", + "5050 0\n", + "5051 1\n", + "5052 0\n", + "5053 0\n", + "5054 0\n", + "5055 0\n", + "5056 0\n", + "5057 0\n", + "5058 0\n", + "5059 1\n", + "5060 0\n", + "5061 0\n", + "5062 0\n", + "5063 0\n", + "5064 0\n", + "5065 0\n", + "5066 0\n", + "5067 0\n", + "5068 0\n", + "5069 0\n", + "5070 0\n", + "5071 0\n", + "5072 0\n", + "5073 0\n", + "5074 0\n", + "5075 0\n", + "5076 0\n", + "5077 1\n", + "5078 0\n", + "5079 0\n", + "5080 0\n", + "5081 1\n", + "5082 0\n", + "5083 0\n", + "5084 0\n", + "5085 0\n", + "5086 0\n", + "5087 1\n", + "5088 0\n", + "5089 0\n", + "5090 0\n", + "5091 0\n", + "5092 0\n", + "5093 0\n", + "5094 0\n", + "5095 0\n", + "5096 0\n", + "5097 0\n", + "5098 0\n", + "5099 1\n", + "5100 0\n", + "5101 1\n", + "5102 0\n", + "5103 0\n", + "5104 0\n", + "5105 0\n", + "5106 0\n", + "5107 1\n", + "5108 0\n", + "5109 0\n", + "5110 0\n", + "5111 0\n", + "5112 0\n", + "5113 1\n", + "5114 0\n", + "5115 0\n", + "5116 0\n", + "5117 0\n", + "5118 0\n", + "5119 1\n", + "5120 0\n", + "5121 0\n", + "5122 0\n", + "5123 0\n", + "5124 0\n", + "5125 0\n", + "5126 0\n", + "5127 0\n", + "5128 0\n", + "5129 0\n", + "5130 0\n", + "5131 0\n", + "5132 0\n", + "5133 0\n", + "5134 0\n", + "5135 0\n", + "5136 0\n", + "5137 0\n", + "5138 0\n", + "5139 0\n", + "5140 0\n", + "5141 0\n", + "5142 0\n", + "5143 0\n", + "5144 0\n", + "5145 0\n", + "5146 0\n", + "5147 1\n", + "5148 0\n", + "5149 0\n", + "5150 0\n", + "5151 0\n", + "5152 0\n", + "5153 1\n", + "5154 0\n", + "5155 0\n", + "5156 0\n", + "5157 0\n", + "5158 0\n", + "5159 0\n", + "5160 0\n", + "5161 0\n", + "5162 0\n", + "5163 0\n", + "5164 0\n", + "5165 0\n", + "5166 0\n", + "5167 1\n", + "5168 0\n", + "5169 0\n", + "5170 0\n", + "5171 1\n", + "5172 0\n", + "5173 0\n", + "5174 0\n", + "5175 0\n", + "5176 0\n", + "5177 0\n", + "5178 0\n", + "5179 1\n", + "5180 0\n", + "5181 0\n", + "5182 0\n", + "5183 0\n", + "5184 0\n", + "5185 0\n", + "5186 0\n", + "5187 0\n", + "5188 0\n", + "5189 1\n", + "5190 0\n", + "5191 0\n", + "5192 0\n", + "5193 0\n", + "5194 0\n", + "5195 0\n", + "5196 0\n", + "5197 1\n", + "5198 0\n", + "5199 0\n", + "5200 0\n", + "5201 0\n", + "5202 0\n", + "5203 0\n", + "5204 0\n", + "5205 0\n", + "5206 0\n", + "5207 0\n", + "5208 0\n", + "5209 1\n", + "5210 0\n", + "5211 0\n", + "5212 0\n", + "5213 0\n", + "5214 0\n", + "5215 0\n", + "5216 0\n", + "5217 0\n", + "5218 0\n", + "5219 0\n", + "5220 0\n", + "5221 0\n", + "5222 0\n", + "5223 0\n", + "5224 0\n", + "5225 0\n", + "5226 0\n", + "5227 1\n", + "5228 0\n", + "5229 0\n", + "5230 0\n", + "5231 1\n", + "5232 0\n", + "5233 1\n", + "5234 0\n", + "5235 0\n", + "5236 0\n", + "5237 1\n", + "5238 0\n", + "5239 0\n", + "5240 0\n", + "5241 0\n", + "5242 0\n", + "5243 0\n", + "5244 0\n", + "5245 0\n", + "5246 0\n", + "5247 0\n", + "5248 0\n", + "5249 0\n", + "5250 0\n", + "5251 0\n", + "5252 0\n", + "5253 0\n", + "5254 0\n", + "5255 0\n", + "5256 0\n", + "5257 0\n", + "5258 0\n", + "5259 0\n", + "5260 0\n", + "5261 1\n", + "5262 0\n", + "5263 0\n", + "5264 0\n", + "5265 0\n", + "5266 0\n", + "5267 0\n", + "5268 0\n", + "5269 0\n", + "5270 0\n", + "5271 0\n", + "5272 0\n", + "5273 1\n", + "5274 0\n", + "5275 0\n", + "5276 0\n", + "5277 0\n", + "5278 0\n", + "5279 1\n", + "5280 0\n", + "5281 1\n", + "5282 0\n", + "5283 0\n", + "5284 0\n", + "5285 0\n", + "5286 0\n", + "5287 0\n", + "5288 0\n", + "5289 0\n", + "5290 0\n", + "5291 0\n", + "5292 0\n", + "5293 0\n", + "5294 0\n", + "5295 0\n", + "5296 0\n", + "5297 1\n", + "5298 0\n", + "5299 0\n", + "5300 0\n", + "5301 0\n", + "5302 0\n", + "5303 1\n", + "5304 0\n", + "5305 0\n", + "5306 0\n", + "5307 0\n", + "5308 0\n", + "5309 1\n", + "5310 0\n", + "5311 0\n", + "5312 0\n", + "5313 0\n", + "5314 0\n", + "5315 0\n", + "5316 0\n", + "5317 0\n", + "5318 0\n", + "5319 0\n", + "5320 0\n", + "5321 0\n", + "5322 0\n", + "5323 1\n", + "5324 0\n", + "5325 0\n", + "5326 0\n", + "5327 0\n", + "5328 0\n", + "5329 0\n", + "5330 0\n", + "5331 0\n", + "5332 0\n", + "5333 1\n", + "5334 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5335 0\n", + "5336 0\n", + "5337 0\n", + "5338 0\n", + "5339 0\n", + "5340 0\n", + "5341 0\n", + "5342 0\n", + "5343 0\n", + "5344 0\n", + "5345 0\n", + "5346 0\n", + "5347 1\n", + "5348 0\n", + "5349 0\n", + "5350 0\n", + "5351 1\n", + "5352 0\n", + "5353 0\n", + "5354 0\n", + "5355 0\n", + "5356 0\n", + "5357 0\n", + "5358 0\n", + "5359 0\n", + "5360 0\n", + "5361 0\n", + "5362 0\n", + "5363 0\n", + "5364 0\n", + "5365 0\n", + "5366 0\n", + "5367 0\n", + "5368 0\n", + "5369 0\n", + "5370 0\n", + "5371 0\n", + "5372 0\n", + "5373 0\n", + "5374 0\n", + "5375 0\n", + "5376 0\n", + "5377 0\n", + "5378 0\n", + "5379 0\n", + "5380 0\n", + "5381 1\n", + "5382 0\n", + "5383 0\n", + "5384 0\n", + "5385 0\n", + "5386 0\n", + "5387 1\n", + "5388 0\n", + "5389 0\n", + "5390 0\n", + "5391 0\n", + "5392 0\n", + "5393 1\n", + "5394 0\n", + "5395 0\n", + "5396 0\n", + "5397 0\n", + "5398 0\n", + "5399 1\n", + "5400 0\n", + "5401 0\n", + "5402 0\n", + "5403 0\n", + "5404 0\n", + "5405 0\n", + "5406 0\n", + "5407 1\n", + "5408 0\n", + "5409 0\n", + "5410 0\n", + "5411 0\n", + "5412 0\n", + "5413 1\n", + "5414 0\n", + "5415 0\n", + "5416 0\n", + "5417 1\n", + "5418 0\n", + "5419 1\n", + "5420 0\n", + "5421 0\n", + "5422 0\n", + "5423 0\n", + "5424 0\n", + "5425 0\n", + "5426 0\n", + "5427 0\n", + "5428 0\n", + "5429 0\n", + "5430 0\n", + "5431 1\n", + "5432 0\n", + "5433 0\n", + "5434 0\n", + "5435 0\n", + "5436 0\n", + "5437 1\n", + "5438 0\n", + "5439 0\n", + "5440 0\n", + "5441 1\n", + "5442 0\n", + "5443 1\n", + "5444 0\n", + "5445 0\n", + "5446 0\n", + "5447 0\n", + "5448 0\n", + "5449 1\n", + "5450 0\n", + "5451 0\n", + "5452 0\n", + "5453 0\n", + "5454 0\n", + "5455 0\n", + "5456 0\n", + "5457 0\n", + "5458 0\n", + "5459 0\n", + "5460 0\n", + "5461 0\n", + "5462 0\n", + "5463 0\n", + "5464 0\n", + "5465 0\n", + "5466 0\n", + "5467 0\n", + "5468 0\n", + "5469 0\n", + "5470 0\n", + "5471 1\n", + "5472 0\n", + "5473 0\n", + "5474 0\n", + "5475 0\n", + "5476 0\n", + "5477 1\n", + "5478 0\n", + "5479 1\n", + "5480 0\n", + "5481 0\n", + "5482 0\n", + "5483 1\n", + "5484 0\n", + "5485 0\n", + "5486 0\n", + "5487 0\n", + "5488 0\n", + "5489 0\n", + "5490 0\n", + "5491 0\n", + "5492 0\n", + "5493 0\n", + "5494 0\n", + "5495 0\n", + "5496 0\n", + "5497 0\n", + "5498 0\n", + "5499 0\n", + "5500 0\n", + "5501 1\n", + "5502 0\n", + "5503 1\n", + "5504 0\n", + "5505 0\n", + "5506 0\n", + "5507 1\n", + "5508 0\n", + "5509 0\n", + "5510 0\n", + "5511 0\n", + "5512 0\n", + "5513 0\n", + "5514 0\n", + "5515 0\n", + "5516 0\n", + "5517 0\n", + "5518 0\n", + "5519 1\n", + "5520 0\n", + "5521 1\n", + "5522 0\n", + "5523 0\n", + "5524 0\n", + "5525 0\n", + "5526 0\n", + "5527 1\n", + "5528 0\n", + "5529 0\n", + "5530 0\n", + "5531 1\n", + "5532 0\n", + "5533 0\n", + "5534 0\n", + "5535 0\n", + "5536 0\n", + "5537 0\n", + "5538 0\n", + "5539 0\n", + "5540 0\n", + "5541 0\n", + "5542 0\n", + "5543 0\n", + "5544 0\n", + "5545 0\n", + "5546 0\n", + "5547 0\n", + "5548 0\n", + "5549 0\n", + "5550 0\n", + "5551 0\n", + "5552 0\n", + "5553 0\n", + "5554 0\n", + "5555 0\n", + "5556 0\n", + "5557 1\n", + "5558 0\n", + "5559 0\n", + "5560 0\n", + "5561 0\n", + "5562 0\n", + "5563 1\n", + "5564 0\n", + "5565 0\n", + "5566 0\n", + "5567 0\n", + "5568 0\n", + "5569 1\n", + "5570 0\n", + "5571 0\n", + "5572 0\n", + "5573 1\n", + "5574 0\n", + "5575 0\n", + "5576 0\n", + "5577 0\n", + "5578 0\n", + "5579 0\n", + "5580 0\n", + "5581 1\n", + "5582 0\n", + "5583 0\n", + "5584 0\n", + "5585 0\n", + "5586 0\n", + "5587 0\n", + "5588 0\n", + "5589 0\n", + "5590 0\n", + "5591 1\n", + "5592 0\n", + "5593 0\n", + "5594 0\n", + "5595 0\n", + "5596 0\n", + "5597 0\n", + "5598 0\n", + "5599 0\n", + "5600 0\n", + "5601 0\n", + "5602 0\n", + "5603 0\n", + "5604 0\n", + "5605 0\n", + "5606 0\n", + "5607 0\n", + "5608 0\n", + "5609 0\n", + "5610 0\n", + "5611 0\n", + "5612 0\n", + "5613 0\n", + "5614 0\n", + "5615 0\n", + "5616 0\n", + "5617 0\n", + "5618 0\n", + "5619 0\n", + "5620 0\n", + "5621 0\n", + "5622 0\n", + "5623 1\n", + "5624 0\n", + "5625 0\n", + "5626 0\n", + "5627 0\n", + "5628 0\n", + "5629 0\n", + "5630 0\n", + "5631 0\n", + "5632 0\n", + "5633 0\n", + "5634 0\n", + "5635 0\n", + "5636 0\n", + "5637 0\n", + "5638 0\n", + "5639 1\n", + "5640 0\n", + "5641 1\n", + "5642 0\n", + "5643 0\n", + "5644 0\n", + "5645 0\n", + "5646 0\n", + "5647 1\n", + "5648 0\n", + "5649 0\n", + "5650 0\n", + "5651 1\n", + "5652 0\n", + "5653 1\n", + "5654 0\n", + "5655 0\n", + "5656 0\n", + "5657 1\n", + "5658 0\n", + "5659 1\n", + "5660 0\n", + "5661 0\n", + "5662 0\n", + "5663 0\n", + "5664 0\n", + "5665 0\n", + "5666 0\n", + "5667 0\n", + "5668 0\n", + "5669 1\n", + "5670 0\n", + "5671 0\n", + "5672 0\n", + "5673 0\n", + "5674 0\n", + "5675 0\n", + "5676 0\n", + "5677 0\n", + "5678 0\n", + "5679 0\n", + "5680 0\n", + "5681 0\n", + "5682 0\n", + "5683 1\n", + "5684 0\n", + "5685 0\n", + "5686 0\n", + "5687 0\n", + "5688 0\n", + "5689 1\n", + "5690 0\n", + "5691 0\n", + "5692 0\n", + "5693 1\n", + "5694 0\n", + "5695 0\n", + "5696 0\n", + "5697 0\n", + "5698 0\n", + "5699 0\n", + "5700 0\n", + "5701 1\n", + "5702 0\n", + "5703 0\n", + "5704 0\n", + "5705 0\n", + "5706 0\n", + "5707 0\n", + "5708 0\n", + "5709 0\n", + "5710 0\n", + "5711 1\n", + "5712 0\n", + "5713 0\n", + "5714 0\n", + "5715 0\n", + "5716 0\n", + "5717 1\n", + "5718 0\n", + "5719 0\n", + "5720 0\n", + "5721 0\n", + "5722 0\n", + "5723 0\n", + "5724 0\n", + "5725 0\n", + "5726 0\n", + "5727 0\n", + "5728 0\n", + "5729 0\n", + "5730 0\n", + "5731 0\n", + "5732 0\n", + "5733 0\n", + "5734 0\n", + "5735 0\n", + "5736 0\n", + "5737 1\n", + "5738 0\n", + "5739 0\n", + "5740 0\n", + "5741 1\n", + "5742 0\n", + "5743 1\n", + "5744 0\n", + "5745 0\n", + "5746 0\n", + "5747 0\n", + "5748 0\n", + "5749 1\n", + "5750 0\n", + "5751 0\n", + "5752 0\n", + "5753 0\n", + "5754 0\n", + "5755 0\n", + "5756 0\n", + "5757 0\n", + "5758 0\n", + "5759 0\n", + "5760 0\n", + "5761 0\n", + "5762 0\n", + "5763 0\n", + "5764 0\n", + "5765 0\n", + "5766 0\n", + "5767 0\n", + "5768 0\n", + "5769 0\n", + "5770 0\n", + "5771 0\n", + "5772 0\n", + "5773 0\n", + "5774 0\n", + "5775 0\n", + "5776 0\n", + "5777 0\n", + "5778 0\n", + "5779 1\n", + "5780 0\n", + "5781 0\n", + "5782 0\n", + "5783 1\n", + "5784 0\n", + "5785 0\n", + "5786 0\n", + "5787 0\n", + "5788 0\n", + "5789 0\n", + "5790 0\n", + "5791 1\n", + "5792 0\n", + "5793 0\n", + "5794 0\n", + "5795 0\n", + "5796 0\n", + "5797 0\n", + "5798 0\n", + "5799 0\n", + "5800 0\n", + "5801 1\n", + "5802 0\n", + "5803 0\n", + "5804 0\n", + "5805 0\n", + "5806 0\n", + "5807 1\n", + "5808 0\n", + "5809 0\n", + "5810 0\n", + "5811 0\n", + "5812 0\n", + "5813 1\n", + "5814 0\n", + "5815 0\n", + "5816 0\n", + "5817 0\n", + "5818 0\n", + "5819 0\n", + "5820 0\n", + "5821 1\n", + "5822 0\n", + "5823 0\n", + "5824 0\n", + "5825 0\n", + "5826 0\n", + "5827 1\n", + "5828 0\n", + "5829 0\n", + "5830 0\n", + "5831 0\n", + "5832 0\n", + "5833 0\n", + "5834 0\n", + "5835 0\n", + "5836 0\n", + "5837 0\n", + "5838 0\n", + "5839 1\n", + "5840 0\n", + "5841 0\n", + "5842 0\n", + "5843 1\n", + "5844 0\n", + "5845 0\n", + "5846 0\n", + "5847 0\n", + "5848 0\n", + "5849 1\n", + "5850 0\n", + "5851 1\n", + "5852 0\n", + "5853 0\n", + "5854 0\n", + "5855 0\n", + "5856 0\n", + "5857 1\n", + "5858 0\n", + "5859 0\n", + "5860 0\n", + "5861 1\n", + "5862 0\n", + "5863 0\n", + "5864 0\n", + "5865 0\n", + "5866 0\n", + "5867 1\n", + "5868 0\n", + "5869 1\n", + "5870 0\n", + "5871 0\n", + "5872 0\n", + "5873 0\n", + "5874 0\n", + "5875 0\n", + "5876 0\n", + "5877 0\n", + "5878 0\n", + "5879 1\n", + "5880 0\n", + "5881 1\n", + "5882 0\n", + "5883 0\n", + "5884 0\n", + "5885 0\n", + "5886 0\n", + "5887 0\n", + "5888 0\n", + "5889 0\n", + "5890 0\n", + "5891 0\n", + "5892 0\n", + "5893 0\n", + "5894 0\n", + "5895 0\n", + "5896 0\n", + "5897 1\n", + "5898 0\n", + "5899 0\n", + "5900 0\n", + "5901 0\n", + "5902 0\n", + "5903 1\n", + "5904 0\n", + "5905 0\n", + "5906 0\n", + "5907 0\n", + "5908 0\n", + "5909 0\n", + "5910 0\n", + "5911 0\n", + "5912 0\n", + "5913 0\n", + "5914 0\n", + "5915 0\n", + "5916 0\n", + "5917 0\n", + "5918 0\n", + "5919 0\n", + "5920 0\n", + "5921 0\n", + "5922 0\n", + "5923 1\n", + "5924 0\n", + "5925 0\n", + "5926 0\n", + "5927 1\n", + "5928 0\n", + "5929 0\n", + "5930 0\n", + "5931 0\n", + "5932 0\n", + "5933 0\n", + "5934 0\n", + "5935 0\n", + "5936 0\n", + "5937 0\n", + "5938 0\n", + "5939 1\n", + "5940 0\n", + "5941 0\n", + "5942 0\n", + "5943 0\n", + "5944 0\n", + "5945 0\n", + "5946 0\n", + "5947 0\n", + "5948 0\n", + "5949 0\n", + "5950 0\n", + "5951 0\n", + "5952 0\n", + "5953 1\n", + "5954 0\n", + "5955 0\n", + "5956 0\n", + "5957 0\n", + "5958 0\n", + "5959 0\n", + "5960 0\n", + "5961 0\n", + "5962 0\n", + "5963 0\n", + "5964 0\n", + "5965 0\n", + "5966 0\n", + "5967 0\n", + "5968 0\n", + "5969 0\n", + "5970 0\n", + "5971 0\n", + "5972 0\n", + "5973 0\n", + "5974 0\n", + "5975 0\n", + "5976 0\n", + "5977 0\n", + "5978 0\n", + "5979 0\n", + "5980 0\n", + "5981 1\n", + "5982 0\n", + "5983 0\n", + "5984 0\n", + "5985 0\n", + "5986 0\n", + "5987 1\n", + "5988 0\n", + "5989 0\n", + "5990 0\n", + "5991 0\n", + "5992 0\n", + "5993 0\n", + "5994 0\n", + "5995 0\n", + "5996 0\n", + "5997 0\n", + "5998 0\n", + "5999 0\n", + "6000 0\n", + "6001 0\n", + "6002 0\n", + "6003 0\n", + "6004 0\n", + "6005 0\n", + "6006 0\n", + "6007 1\n", + "6008 0\n", + "6009 0\n", + "6010 0\n", + "6011 1\n", + "6012 0\n", + "6013 0\n", + "6014 0\n", + "6015 0\n", + "6016 0\n", + "6017 0\n", + "6018 0\n", + "6019 0\n", + "6020 0\n", + "6021 0\n", + "6022 0\n", + "6023 0\n", + "6024 0\n", + "6025 0\n", + "6026 0\n", + "6027 0\n", + "6028 0\n", + "6029 1\n", + "6030 0\n", + "6031 0\n", + "6032 0\n", + "6033 0\n", + "6034 0\n", + "6035 0\n", + "6036 0\n", + "6037 1\n", + "6038 0\n", + "6039 0\n", + "6040 0\n", + "6041 0\n", + "6042 0\n", + "6043 1\n", + "6044 0\n", + "6045 0\n", + "6046 0\n", + "6047 1\n", + "6048 0\n", + "6049 0\n", + "6050 0\n", + "6051 0\n", + "6052 0\n", + "6053 1\n", + "6054 0\n", + "6055 0\n", + "6056 0\n", + "6057 0\n", + "6058 0\n", + "6059 0\n", + "6060 0\n", + "6061 0\n", + "6062 0\n", + "6063 0\n", + "6064 0\n", + "6065 0\n", + "6066 0\n", + "6067 1\n", + "6068 0\n", + "6069 0\n", + "6070 0\n", + "6071 0\n", + "6072 0\n", + "6073 1\n", + "6074 0\n", + "6075 0\n", + "6076 0\n", + "6077 0\n", + "6078 0\n", + "6079 1\n", + "6080 0\n", + "6081 0\n", + "6082 0\n", + "6083 0\n", + "6084 0\n", + "6085 0\n", + "6086 0\n", + "6087 0\n", + "6088 0\n", + "6089 1\n", + "6090 0\n", + "6091 1\n", + "6092 0\n", + "6093 0\n", + "6094 0\n", + "6095 0\n", + "6096 0\n", + "6097 0\n", + "6098 0\n", + "6099 0\n", + "6100 0\n", + "6101 1\n", + "6102 0\n", + "6103 0\n", + "6104 0\n", + "6105 0\n", + "6106 0\n", + "6107 0\n", + "6108 0\n", + "6109 0\n", + "6110 0\n", + "6111 0\n", + "6112 0\n", + "6113 1\n", + "6114 0\n", + "6115 0\n", + "6116 0\n", + "6117 0\n", + "6118 0\n", + "6119 0\n", + "6120 0\n", + "6121 1\n", + "6122 0\n", + "6123 0\n", + "6124 0\n", + "6125 0\n", + "6126 0\n", + "6127 0\n", + "6128 0\n", + "6129 0\n", + "6130 0\n", + "6131 1\n", + "6132 0\n", + "6133 1\n", + "6134 0\n", + "6135 0\n", + "6136 0\n", + "6137 0\n", + "6138 0\n", + "6139 0\n", + "6140 0\n", + "6141 0\n", + "6142 0\n", + "6143 1\n", + "6144 0\n", + "6145 0\n", + "6146 0\n", + "6147 0\n", + "6148 0\n", + "6149 0\n", + "6150 0\n", + "6151 1\n", + "6152 0\n", + "6153 0\n", + "6154 0\n", + "6155 0\n", + "6156 0\n", + "6157 0\n", + "6158 0\n", + "6159 0\n", + "6160 0\n", + "6161 0\n", + "6162 0\n", + "6163 1\n", + "6164 0\n", + "6165 0\n", + "6166 0\n", + "6167 0\n", + "6168 0\n", + "6169 0\n", + "6170 0\n", + "6171 0\n", + "6172 0\n", + "6173 1\n", + "6174 0\n", + "6175 0\n", + "6176 0\n", + "6177 0\n", + "6178 0\n", + "6179 0\n", + "6180 0\n", + "6181 0\n", + "6182 0\n", + "6183 0\n", + "6184 0\n", + "6185 0\n", + "6186 0\n", + "6187 0\n", + "6188 0\n", + "6189 0\n", + "6190 0\n", + "6191 0\n", + "6192 0\n", + "6193 0\n", + "6194 0\n", + "6195 0\n", + "6196 0\n", + "6197 1\n", + "6198 0\n", + "6199 1\n", + "6200 0\n", + "6201 0\n", + "6202 0\n", + "6203 1\n", + "6204 0\n", + "6205 0\n", + "6206 0\n", + "6207 0\n", + "6208 0\n", + "6209 0\n", + "6210 0\n", + "6211 1\n", + "6212 0\n", + "6213 0\n", + "6214 0\n", + "6215 0\n", + "6216 0\n", + "6217 1\n", + "6218 0\n", + "6219 0\n", + "6220 0\n", + "6221 1\n", + "6222 0\n", + "6223 0\n", + "6224 0\n", + "6225 0\n", + "6226 0\n", + "6227 0\n", + "6228 0\n", + "6229 1\n", + "6230 0\n", + "6231 0\n", + "6232 0\n", + "6233 0\n", + "6234 0\n", + "6235 0\n", + "6236 0\n", + "6237 0\n", + "6238 0\n", + "6239 0\n", + "6240 0\n", + "6241 0\n", + "6242 0\n", + "6243 0\n", + "6244 0\n", + "6245 0\n", + "6246 0\n", + "6247 1\n", + "6248 0\n", + "6249 0\n", + "6250 0\n", + "6251 0\n", + "6252 0\n", + "6253 0\n", + "6254 0\n", + "6255 0\n", + "6256 0\n", + "6257 1\n", + "6258 0\n", + "6259 0\n", + "6260 0\n", + "6261 0\n", + "6262 0\n", + "6263 1\n", + "6264 0\n", + "6265 0\n", + "6266 0\n", + "6267 0\n", + "6268 0\n", + "6269 1\n", + "6270 0\n", + "6271 1\n", + "6272 0\n", + "6273 0\n", + "6274 0\n", + "6275 0\n", + "6276 0\n", + "6277 1\n", + "6278 0\n", + "6279 0\n", + "6280 0\n", + "6281 0\n", + "6282 0\n", + "6283 0\n", + "6284 0\n", + "6285 0\n", + "6286 0\n", + "6287 1\n", + "6288 0\n", + "6289 0\n", + "6290 0\n", + "6291 0\n", + "6292 0\n", + "6293 0\n", + "6294 0\n", + "6295 0\n", + "6296 0\n", + "6297 0\n", + "6298 0\n", + "6299 1\n", + "6300 0\n", + "6301 1\n", + "6302 0\n", + "6303 0\n", + "6304 0\n", + "6305 0\n", + "6306 0\n", + "6307 0\n", + "6308 0\n", + "6309 0\n", + "6310 0\n", + "6311 1\n", + "6312 0\n", + "6313 0\n", + "6314 0\n", + "6315 0\n", + "6316 0\n", + "6317 1\n", + "6318 0\n", + "6319 0\n", + "6320 0\n", + "6321 0\n", + "6322 0\n", + "6323 1\n", + "6324 0\n", + "6325 0\n", + "6326 0\n", + "6327 0\n", + "6328 0\n", + "6329 1\n", + "6330 0\n", + "6331 0\n", + "6332 0\n", + "6333 0\n", + "6334 0\n", + "6335 0\n", + "6336 0\n", + "6337 1\n", + "6338 0\n", + "6339 0\n", + "6340 0\n", + "6341 0\n", + "6342 0\n", + "6343 1\n", + "6344 0\n", + "6345 0\n", + "6346 0\n", + "6347 0\n", + "6348 0\n", + "6349 0\n", + "6350 0\n", + "6351 0\n", + "6352 0\n", + "6353 1\n", + "6354 0\n", + "6355 0\n", + "6356 0\n", + "6357 0\n", + "6358 0\n", + "6359 1\n", + "6360 0\n", + "6361 1\n", + "6362 0\n", + "6363 0\n", + "6364 0\n", + "6365 0\n", + "6366 0\n", + "6367 1\n", + "6368 0\n", + "6369 0\n", + "6370 0\n", + "6371 0\n", + "6372 0\n", + "6373 1\n", + "6374 0\n", + "6375 0\n", + "6376 0\n", + "6377 0\n", + "6378 0\n", + "6379 1\n", + "6380 0\n", + "6381 0\n", + "6382 0\n", + "6383 0\n", + "6384 0\n", + "6385 0\n", + "6386 0\n", + "6387 0\n", + "6388 0\n", + "6389 1\n", + "6390 0\n", + "6391 0\n", + "6392 0\n", + "6393 0\n", + "6394 0\n", + "6395 0\n", + "6396 0\n", + "6397 1\n", + "6398 0\n", + "6399 0\n", + "6400 0\n", + "6401 0\n", + "6402 0\n", + "6403 0\n", + "6404 0\n", + "6405 0\n", + "6406 0\n", + "6407 0\n", + "6408 0\n", + "6409 0\n", + "6410 0\n", + "6411 0\n", + "6412 0\n", + "6413 0\n", + "6414 0\n", + "6415 0\n", + "6416 0\n", + "6417 0\n", + "6418 0\n", + "6419 0\n", + "6420 0\n", + "6421 1\n", + "6422 0\n", + "6423 0\n", + "6424 0\n", + "6425 0\n", + "6426 0\n", + "6427 1\n", + "6428 0\n", + "6429 0\n", + "6430 0\n", + "6431 0\n", + "6432 0\n", + "6433 0\n", + "6434 0\n", + "6435 0\n", + "6436 0\n", + "6437 0\n", + "6438 0\n", + "6439 0\n", + "6440 0\n", + "6441 0\n", + "6442 0\n", + "6443 0\n", + "6444 0\n", + "6445 0\n", + "6446 0\n", + "6447 0\n", + "6448 0\n", + "6449 1\n", + "6450 0\n", + "6451 1\n", + "6452 0\n", + "6453 0\n", + "6454 0\n", + "6455 0\n", + "6456 0\n", + "6457 0\n", + "6458 0\n", + "6459 0\n", + "6460 0\n", + "6461 0\n", + "6462 0\n", + "6463 0\n", + "6464 0\n", + "6465 0\n", + "6466 0\n", + "6467 0\n", + "6468 0\n", + "6469 1\n", + "6470 0\n", + "6471 0\n", + "6472 0\n", + "6473 1\n", + "6474 0\n", + "6475 0\n", + "6476 0\n", + "6477 0\n", + "6478 0\n", + "6479 0\n", + "6480 0\n", + "6481 1\n", + "6482 0\n", + "6483 0\n", + "6484 0\n", + "6485 0\n", + "6486 0\n", + "6487 0\n", + "6488 0\n", + "6489 0\n", + "6490 0\n", + "6491 1\n", + "6492 0\n", + "6493 0\n", + "6494 0\n", + "6495 0\n", + "6496 0\n", + "6497 0\n", + "6498 0\n", + "6499 0\n", + "6500 0\n", + "6501 0\n", + "6502 0\n", + "6503 0\n", + "6504 0\n", + "6505 0\n", + "6506 0\n", + "6507 0\n", + "6508 0\n", + "6509 0\n", + "6510 0\n", + "6511 0\n", + "6512 0\n", + "6513 0\n", + "6514 0\n", + "6515 0\n", + "6516 0\n", + "6517 0\n", + "6518 0\n", + "6519 0\n", + "6520 0\n", + "6521 1\n", + "6522 0\n", + "6523 0\n", + "6524 0\n", + "6525 0\n", + "6526 0\n", + "6527 0\n", + "6528 0\n", + "6529 1\n", + "6530 0\n", + "6531 0\n", + "6532 0\n", + "6533 0\n", + "6534 0\n", + "6535 0\n", + "6536 0\n", + "6537 0\n", + "6538 0\n", + "6539 0\n", + "6540 0\n", + "6541 0\n", + "6542 0\n", + "6543 0\n", + "6544 0\n", + "6545 0\n", + "6546 0\n", + "6547 1\n", + "6548 0\n", + "6549 0\n", + "6550 0\n", + "6551 1\n", + "6552 0\n", + "6553 1\n", + "6554 0\n", + "6555 0\n", + "6556 0\n", + "6557 0\n", + "6558 0\n", + "6559 0\n", + "6560 0\n", + "6561 0\n", + "6562 0\n", + "6563 1\n", + "6564 0\n", + "6565 0\n", + "6566 0\n", + "6567 0\n", + "6568 0\n", + "6569 1\n", + "6570 0\n", + "6571 1\n", + "6572 0\n", + "6573 0\n", + "6574 0\n", + "6575 0\n", + "6576 0\n", + "6577 1\n", + "6578 0\n", + "6579 0\n", + "6580 0\n", + "6581 1\n", + "6582 0\n", + "6583 0\n", + "6584 0\n", + "6585 0\n", + "6586 0\n", + "6587 0\n", + "6588 0\n", + "6589 0\n", + "6590 0\n", + "6591 0\n", + "6592 0\n", + "6593 0\n", + "6594 0\n", + "6595 0\n", + "6596 0\n", + "6597 0\n", + "6598 0\n", + "6599 1\n", + "6600 0\n", + "6601 0\n", + "6602 0\n", + "6603 0\n", + "6604 0\n", + "6605 0\n", + "6606 0\n", + "6607 1\n", + "6608 0\n", + "6609 0\n", + "6610 0\n", + "6611 0\n", + "6612 0\n", + "6613 0\n", + "6614 0\n", + "6615 0\n", + "6616 0\n", + "6617 0\n", + "6618 0\n", + "6619 1\n", + "6620 0\n", + "6621 0\n", + "6622 0\n", + "6623 0\n", + "6624 0\n", + "6625 0\n", + "6626 0\n", + "6627 0\n", + "6628 0\n", + "6629 0\n", + "6630 0\n", + "6631 0\n", + "6632 0\n", + "6633 0\n", + "6634 0\n", + "6635 0\n", + "6636 0\n", + "6637 1\n", + "6638 0\n", + "6639 0\n", + "6640 0\n", + "6641 0\n", + "6642 0\n", + "6643 0\n", + "6644 0\n", + "6645 0\n", + "6646 0\n", + "6647 0\n", + "6648 0\n", + "6649 0\n", + "6650 0\n", + "6651 0\n", + "6652 0\n", + "6653 1\n", + "6654 0\n", + "6655 0\n", + "6656 0\n", + "6657 0\n", + "6658 0\n", + "6659 1\n", + "6660 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "6661 1\n", + "6662 0\n", + "6663 0\n", + "6664 0\n", + "6665 0\n", + "6666 0\n", + "6667 0\n", + "6668 0\n", + "6669 0\n", + "6670 0\n", + "6671 0\n", + "6672 0\n", + "6673 1\n", + "6674 0\n", + "6675 0\n", + "6676 0\n", + "6677 0\n", + "6678 0\n", + "6679 1\n", + "6680 0\n", + "6681 0\n", + "6682 0\n", + "6683 0\n", + "6684 0\n", + "6685 0\n", + "6686 0\n", + "6687 0\n", + "6688 0\n", + "6689 1\n", + "6690 0\n", + "6691 1\n", + "6692 0\n", + "6693 0\n", + "6694 0\n", + "6695 0\n", + "6696 0\n", + "6697 0\n", + "6698 0\n", + "6699 0\n", + "6700 0\n", + "6701 1\n", + "6702 0\n", + "6703 1\n", + "6704 0\n", + "6705 0\n", + "6706 0\n", + "6707 0\n", + "6708 0\n", + "6709 1\n", + "6710 0\n", + "6711 0\n", + "6712 0\n", + "6713 0\n", + "6714 0\n", + "6715 0\n", + "6716 0\n", + "6717 0\n", + "6718 0\n", + "6719 1\n", + "6720 0\n", + "6721 0\n", + "6722 0\n", + "6723 0\n", + "6724 0\n", + "6725 0\n", + "6726 0\n", + "6727 0\n", + "6728 0\n", + "6729 0\n", + "6730 0\n", + "6731 0\n", + "6732 0\n", + "6733 1\n", + "6734 0\n", + "6735 0\n", + "6736 0\n", + "6737 1\n", + "6738 0\n", + "6739 0\n", + "6740 0\n", + "6741 0\n", + "6742 0\n", + "6743 0\n", + "6744 0\n", + "6745 0\n", + "6746 0\n", + "6747 0\n", + "6748 0\n", + "6749 0\n", + "6750 0\n", + "6751 0\n", + "6752 0\n", + "6753 0\n", + "6754 0\n", + "6755 0\n", + "6756 0\n", + "6757 0\n", + "6758 0\n", + "6759 0\n", + "6760 0\n", + "6761 1\n", + "6762 0\n", + "6763 1\n", + "6764 0\n", + "6765 0\n", + "6766 0\n", + "6767 0\n", + "6768 0\n", + "6769 0\n", + "6770 0\n", + "6771 0\n", + "6772 0\n", + "6773 0\n", + "6774 0\n", + "6775 0\n", + "6776 0\n", + "6777 0\n", + "6778 0\n", + "6779 1\n", + "6780 0\n", + "6781 1\n", + "6782 0\n", + "6783 0\n", + "6784 0\n", + "6785 0\n", + "6786 0\n", + "6787 0\n", + "6788 0\n", + "6789 0\n", + "6790 0\n", + "6791 1\n", + "6792 0\n", + "6793 1\n", + "6794 0\n", + "6795 0\n", + "6796 0\n", + "6797 0\n", + "6798 0\n", + "6799 0\n", + "6800 0\n", + "6801 0\n", + "6802 0\n", + "6803 1\n", + "6804 0\n", + "6805 0\n", + "6806 0\n", + "6807 0\n", + "6808 0\n", + "6809 0\n", + "6810 0\n", + "6811 0\n", + "6812 0\n", + "6813 0\n", + "6814 0\n", + "6815 0\n", + "6816 0\n", + "6817 0\n", + "6818 0\n", + "6819 0\n", + "6820 0\n", + "6821 0\n", + "6822 0\n", + "6823 1\n", + "6824 0\n", + "6825 0\n", + "6826 0\n", + "6827 1\n", + "6828 0\n", + "6829 1\n", + "6830 0\n", + "6831 0\n", + "6832 0\n", + "6833 1\n", + "6834 0\n", + "6835 0\n", + "6836 0\n", + "6837 0\n", + "6838 0\n", + "6839 0\n", + "6840 0\n", + "6841 1\n", + "6842 0\n", + "6843 0\n", + "6844 0\n", + "6845 0\n", + "6846 0\n", + "6847 0\n", + "6848 0\n", + "6849 0\n", + "6850 0\n", + "6851 0\n", + "6852 0\n", + "6853 0\n", + "6854 0\n", + "6855 0\n", + "6856 0\n", + "6857 1\n", + "6858 0\n", + "6859 0\n", + "6860 0\n", + "6861 0\n", + "6862 0\n", + "6863 1\n", + "6864 0\n", + "6865 0\n", + "6866 0\n", + "6867 0\n", + "6868 0\n", + "6869 1\n", + "6870 0\n", + "6871 1\n", + "6872 0\n", + "6873 0\n", + "6874 0\n", + "6875 0\n", + "6876 0\n", + "6877 0\n", + "6878 0\n", + "6879 0\n", + "6880 0\n", + "6881 0\n", + "6882 0\n", + "6883 1\n", + "6884 0\n", + "6885 0\n", + "6886 0\n", + "6887 0\n", + "6888 0\n", + "6889 0\n", + "6890 0\n", + "6891 0\n", + "6892 0\n", + "6893 0\n", + "6894 0\n", + "6895 0\n", + "6896 0\n", + "6897 0\n", + "6898 0\n", + "6899 1\n", + "6900 0\n", + "6901 0\n", + "6902 0\n", + "6903 0\n", + "6904 0\n", + "6905 0\n", + "6906 0\n", + "6907 1\n", + "6908 0\n", + "6909 0\n", + "6910 0\n", + "6911 1\n", + "6912 0\n", + "6913 0\n", + "6914 0\n", + "6915 0\n", + "6916 0\n", + "6917 1\n", + "6918 0\n", + "6919 0\n", + "6920 0\n", + "6921 0\n", + "6922 0\n", + "6923 0\n", + "6924 0\n", + "6925 0\n", + "6926 0\n", + "6927 0\n", + "6928 0\n", + "6929 0\n", + "6930 0\n", + "6931 0\n", + "6932 0\n", + "6933 0\n", + "6934 0\n", + "6935 0\n", + "6936 0\n", + "6937 0\n", + "6938 0\n", + "6939 0\n", + "6940 0\n", + "6941 0\n", + "6942 0\n", + "6943 0\n", + "6944 0\n", + "6945 0\n", + "6946 0\n", + "6947 1\n", + "6948 0\n", + "6949 1\n", + "6950 0\n", + "6951 0\n", + "6952 0\n", + "6953 0\n", + "6954 0\n", + "6955 0\n", + "6956 0\n", + "6957 0\n", + "6958 0\n", + "6959 1\n", + "6960 0\n", + "6961 1\n", + "6962 0\n", + "6963 0\n", + "6964 0\n", + "6965 0\n", + "6966 0\n", + "6967 1\n", + "6968 0\n", + "6969 0\n", + "6970 0\n", + "6971 1\n", + "6972 0\n", + "6973 0\n", + "6974 0\n", + "6975 0\n", + "6976 0\n", + "6977 1\n", + "6978 0\n", + "6979 0\n", + "6980 0\n", + "6981 0\n", + "6982 0\n", + "6983 1\n", + "6984 0\n", + "6985 0\n", + "6986 0\n", + "6987 0\n", + "6988 0\n", + "6989 0\n", + "6990 0\n", + "6991 1\n", + "6992 0\n", + "6993 0\n", + "6994 0\n", + "6995 0\n", + "6996 0\n", + "6997 1\n", + "6998 0\n", + "6999 0\n", + "7000 0\n", + "7001 1\n", + "7002 0\n", + "7003 0\n", + "7004 0\n", + "7005 0\n", + "7006 0\n", + "7007 0\n", + "7008 0\n", + "7009 0\n", + "7010 0\n", + "7011 0\n", + "7012 0\n", + "7013 1\n", + "7014 0\n", + "7015 0\n", + "7016 0\n", + "7017 0\n", + "7018 0\n", + "7019 1\n", + "7020 0\n", + "7021 0\n", + "7022 0\n", + "7023 0\n", + "7024 0\n", + "7025 0\n", + "7026 0\n", + "7027 1\n", + "7028 0\n", + "7029 0\n", + "7030 0\n", + "7031 0\n", + "7032 0\n", + "7033 0\n", + "7034 0\n", + "7035 0\n", + "7036 0\n", + "7037 0\n", + "7038 0\n", + "7039 1\n", + "7040 0\n", + "7041 0\n", + "7042 0\n", + "7043 1\n", + "7044 0\n", + "7045 0\n", + "7046 0\n", + "7047 0\n", + "7048 0\n", + "7049 0\n", + "7050 0\n", + "7051 0\n", + "7052 0\n", + "7053 0\n", + "7054 0\n", + "7055 0\n", + "7056 0\n", + "7057 1\n", + "7058 0\n", + "7059 0\n", + "7060 0\n", + "7061 0\n", + "7062 0\n", + "7063 0\n", + "7064 0\n", + "7065 0\n", + "7066 0\n", + "7067 0\n", + "7068 0\n", + "7069 1\n", + "7070 0\n", + "7071 0\n", + "7072 0\n", + "7073 0\n", + "7074 0\n", + "7075 0\n", + "7076 0\n", + "7077 0\n", + "7078 0\n", + "7079 1\n", + "7080 0\n", + "7081 0\n", + "7082 0\n", + "7083 0\n", + "7084 0\n", + "7085 0\n", + "7086 0\n", + "7087 0\n", + "7088 0\n", + "7089 0\n", + "7090 0\n", + "7091 0\n", + "7092 0\n", + "7093 0\n", + "7094 0\n", + "7095 0\n", + "7096 0\n", + "7097 0\n", + "7098 0\n", + "7099 0\n", + "7100 0\n", + "7101 0\n", + "7102 0\n", + "7103 1\n", + "7104 0\n", + "7105 0\n", + "7106 0\n", + "7107 0\n", + "7108 0\n", + "7109 1\n", + "7110 0\n", + "7111 0\n", + "7112 0\n", + "7113 0\n", + "7114 0\n", + "7115 0\n", + "7116 0\n", + "7117 0\n", + "7118 0\n", + "7119 0\n", + "7120 0\n", + "7121 1\n", + "7122 0\n", + "7123 0\n", + "7124 0\n", + "7125 0\n", + "7126 0\n", + "7127 1\n", + "7128 0\n", + "7129 1\n", + "7130 0\n", + "7131 0\n", + "7132 0\n", + "7133 0\n", + "7134 0\n", + "7135 0\n", + "7136 0\n", + "7137 0\n", + "7138 0\n", + "7139 0\n", + "7140 0\n", + "7141 0\n", + "7142 0\n", + "7143 0\n", + "7144 0\n", + "7145 0\n", + "7146 0\n", + "7147 0\n", + "7148 0\n", + "7149 0\n", + "7150 0\n", + "7151 1\n", + "7152 0\n", + "7153 0\n", + "7154 0\n", + "7155 0\n", + "7156 0\n", + "7157 0\n", + "7158 0\n", + "7159 1\n", + "7160 0\n", + "7161 0\n", + "7162 0\n", + "7163 0\n", + "7164 0\n", + "7165 0\n", + "7166 0\n", + "7167 0\n", + "7168 0\n", + "7169 0\n", + "7170 0\n", + "7171 0\n", + "7172 0\n", + "7173 0\n", + "7174 0\n", + "7175 0\n", + "7176 0\n", + "7177 1\n", + "7178 0\n", + "7179 0\n", + "7180 0\n", + "7181 0\n", + "7182 0\n", + "7183 0\n", + "7184 0\n", + "7185 0\n", + "7186 0\n", + "7187 1\n", + "7188 0\n", + "7189 0\n", + "7190 0\n", + "7191 0\n", + "7192 0\n", + "7193 1\n", + "7194 0\n", + "7195 0\n", + "7196 0\n", + "7197 0\n", + "7198 0\n", + "7199 0\n", + "7200 0\n", + "7201 0\n", + "7202 0\n", + "7203 0\n", + "7204 0\n", + "7205 0\n", + "7206 0\n", + "7207 1\n", + "7208 0\n", + "7209 0\n", + "7210 0\n", + "7211 1\n", + "7212 0\n", + "7213 1\n", + "7214 0\n", + "7215 0\n", + "7216 0\n", + "7217 0\n", + "7218 0\n", + "7219 1\n", + "7220 0\n", + "7221 0\n", + "7222 0\n", + "7223 0\n", + "7224 0\n", + "7225 0\n", + "7226 0\n", + "7227 0\n", + "7228 0\n", + "7229 1\n", + "7230 0\n", + "7231 0\n", + "7232 0\n", + "7233 0\n", + "7234 0\n", + "7235 0\n", + "7236 0\n", + "7237 1\n", + "7238 0\n", + "7239 0\n", + "7240 0\n", + "7241 0\n", + "7242 0\n", + "7243 1\n", + "7244 0\n", + "7245 0\n", + "7246 0\n", + "7247 1\n", + "7248 0\n", + "7249 0\n", + "7250 0\n", + "7251 0\n", + "7252 0\n", + "7253 1\n", + "7254 0\n", + "7255 0\n", + "7256 0\n", + "7257 0\n", + "7258 0\n", + "7259 0\n", + "7260 0\n", + "7261 0\n", + "7262 0\n", + "7263 0\n", + "7264 0\n", + "7265 0\n", + "7266 0\n", + "7267 0\n", + "7268 0\n", + "7269 0\n", + "7270 0\n", + "7271 0\n", + "7272 0\n", + "7273 0\n", + "7274 0\n", + "7275 0\n", + "7276 0\n", + "7277 0\n", + "7278 0\n", + "7279 0\n", + "7280 0\n", + "7281 0\n", + "7282 0\n", + "7283 1\n", + "7284 0\n", + "7285 0\n", + "7286 0\n", + "7287 0\n", + "7288 0\n", + "7289 0\n", + "7290 0\n", + "7291 0\n", + "7292 0\n", + "7293 0\n", + "7294 0\n", + "7295 0\n", + "7296 0\n", + "7297 1\n", + "7298 0\n", + "7299 0\n", + "7300 0\n", + "7301 0\n", + "7302 0\n", + "7303 0\n", + "7304 0\n", + "7305 0\n", + "7306 0\n", + "7307 1\n", + "7308 0\n", + "7309 1\n", + "7310 0\n", + "7311 0\n", + "7312 0\n", + "7313 0\n", + "7314 0\n", + "7315 0\n", + "7316 0\n", + "7317 0\n", + "7318 0\n", + "7319 0\n", + "7320 0\n", + "7321 1\n", + "7322 0\n", + "7323 0\n", + "7324 0\n", + "7325 0\n", + "7326 0\n", + "7327 0\n", + "7328 0\n", + "7329 0\n", + "7330 0\n", + "7331 1\n", + "7332 0\n", + "7333 1\n", + "7334 0\n", + "7335 0\n", + "7336 0\n", + "7337 0\n", + "7338 0\n", + "7339 0\n", + "7340 0\n", + "7341 0\n", + "7342 0\n", + "7343 0\n", + "7344 0\n", + "7345 0\n", + "7346 0\n", + "7347 0\n", + "7348 0\n", + "7349 1\n", + "7350 0\n", + "7351 1\n", + "7352 0\n", + "7353 0\n", + "7354 0\n", + "7355 0\n", + "7356 0\n", + "7357 0\n", + "7358 0\n", + "7359 0\n", + "7360 0\n", + "7361 0\n", + "7362 0\n", + "7363 0\n", + "7364 0\n", + "7365 0\n", + "7366 0\n", + "7367 0\n", + "7368 0\n", + "7369 1\n", + "7370 0\n", + "7371 0\n", + "7372 0\n", + "7373 0\n", + "7374 0\n", + "7375 0\n", + "7376 0\n", + "7377 0\n", + "7378 0\n", + "7379 0\n", + "7380 0\n", + "7381 0\n", + "7382 0\n", + "7383 0\n", + "7384 0\n", + "7385 0\n", + "7386 0\n", + "7387 0\n", + "7388 0\n", + "7389 0\n", + "7390 0\n", + "7391 0\n", + "7392 0\n", + "7393 1\n", + "7394 0\n", + "7395 0\n", + "7396 0\n", + "7397 0\n", + "7398 0\n", + "7399 0\n", + "7400 0\n", + "7401 0\n", + "7402 0\n", + "7403 0\n", + "7404 0\n", + "7405 0\n", + "7406 0\n", + "7407 0\n", + "7408 0\n", + "7409 0\n", + "7410 0\n", + "7411 1\n", + "7412 0\n", + "7413 0\n", + "7414 0\n", + "7415 0\n", + "7416 0\n", + "7417 1\n", + "7418 0\n", + "7419 0\n", + "7420 0\n", + "7421 0\n", + "7422 0\n", + "7423 0\n", + "7424 0\n", + "7425 0\n", + "7426 0\n", + "7427 0\n", + "7428 0\n", + "7429 0\n", + "7430 0\n", + "7431 0\n", + "7432 0\n", + "7433 1\n", + "7434 0\n", + "7435 0\n", + "7436 0\n", + "7437 0\n", + "7438 0\n", + "7439 0\n", + "7440 0\n", + "7441 0\n", + "7442 0\n", + "7443 0\n", + "7444 0\n", + "7445 0\n", + "7446 0\n", + "7447 0\n", + "7448 0\n", + "7449 0\n", + "7450 0\n", + "7451 1\n", + "7452 0\n", + "7453 0\n", + "7454 0\n", + "7455 0\n", + "7456 0\n", + "7457 1\n", + "7458 0\n", + "7459 1\n", + "7460 0\n", + "7461 0\n", + "7462 0\n", + "7463 0\n", + "7464 0\n", + "7465 0\n", + "7466 0\n", + "7467 0\n", + "7468 0\n", + "7469 0\n", + "7470 0\n", + "7471 0\n", + "7472 0\n", + "7473 0\n", + "7474 0\n", + "7475 0\n", + "7476 0\n", + "7477 1\n", + "7478 0\n", + "7479 0\n", + "7480 0\n", + "7481 1\n", + "7482 0\n", + "7483 0\n", + "7484 0\n", + "7485 0\n", + "7486 0\n", + "7487 1\n", + "7488 0\n", + "7489 1\n", + "7490 0\n", + "7491 0\n", + "7492 0\n", + "7493 0\n", + "7494 0\n", + "7495 0\n", + "7496 0\n", + "7497 0\n", + "7498 0\n", + "7499 1\n", + "7500 0\n", + "7501 0\n", + "7502 0\n", + "7503 0\n", + "7504 0\n", + "7505 0\n", + "7506 0\n", + "7507 1\n", + "7508 0\n", + "7509 0\n", + "7510 0\n", + "7511 0\n", + "7512 0\n", + "7513 0\n", + "7514 0\n", + "7515 0\n", + "7516 0\n", + "7517 1\n", + "7518 0\n", + "7519 0\n", + "7520 0\n", + "7521 0\n", + "7522 0\n", + "7523 1\n", + "7524 0\n", + "7525 0\n", + "7526 0\n", + "7527 0\n", + "7528 0\n", + "7529 1\n", + "7530 0\n", + "7531 0\n", + "7532 0\n", + "7533 0\n", + "7534 0\n", + "7535 0\n", + "7536 0\n", + "7537 1\n", + "7538 0\n", + "7539 0\n", + "7540 0\n", + "7541 1\n", + "7542 0\n", + "7543 0\n", + "7544 0\n", + "7545 0\n", + "7546 0\n", + "7547 1\n", + "7548 0\n", + "7549 1\n", + "7550 0\n", + "7551 0\n", + "7552 0\n", + "7553 0\n", + "7554 0\n", + "7555 0\n", + "7556 0\n", + "7557 0\n", + "7558 0\n", + "7559 1\n", + "7560 0\n", + "7561 1\n", + "7562 0\n", + "7563 0\n", + "7564 0\n", + "7565 0\n", + "7566 0\n", + "7567 0\n", + "7568 0\n", + "7569 0\n", + "7570 0\n", + "7571 0\n", + "7572 0\n", + "7573 1\n", + "7574 0\n", + "7575 0\n", + "7576 0\n", + "7577 1\n", + "7578 0\n", + "7579 0\n", + "7580 0\n", + "7581 0\n", + "7582 0\n", + "7583 1\n", + "7584 0\n", + "7585 0\n", + "7586 0\n", + "7587 0\n", + "7588 0\n", + "7589 1\n", + "7590 0\n", + "7591 1\n", + "7592 0\n", + "7593 0\n", + "7594 0\n", + "7595 0\n", + "7596 0\n", + "7597 0\n", + "7598 0\n", + "7599 0\n", + "7600 0\n", + "7601 0\n", + "7602 0\n", + "7603 1\n", + "7604 0\n", + "7605 0\n", + "7606 0\n", + "7607 1\n", + "7608 0\n", + "7609 0\n", + "7610 0\n", + "7611 0\n", + "7612 0\n", + "7613 0\n", + "7614 0\n", + "7615 0\n", + "7616 0\n", + "7617 0\n", + "7618 0\n", + "7619 0\n", + "7620 0\n", + "7621 1\n", + "7622 0\n", + "7623 0\n", + "7624 0\n", + "7625 0\n", + "7626 0\n", + "7627 0\n", + "7628 0\n", + "7629 0\n", + "7630 0\n", + "7631 0\n", + "7632 0\n", + "7633 0\n", + "7634 0\n", + "7635 0\n", + "7636 0\n", + "7637 0\n", + "7638 0\n", + "7639 1\n", + "7640 0\n", + "7641 0\n", + "7642 0\n", + "7643 1\n", + "7644 0\n", + "7645 0\n", + "7646 0\n", + "7647 0\n", + "7648 0\n", + "7649 1\n", + "7650 0\n", + "7651 0\n", + "7652 0\n", + "7653 0\n", + "7654 0\n", + "7655 0\n", + "7656 0\n", + "7657 0\n", + "7658 0\n", + "7659 0\n", + "7660 0\n", + "7661 0\n", + "7662 0\n", + "7663 0\n", + "7664 0\n", + "7665 0\n", + "7666 0\n", + "7667 0\n", + "7668 0\n", + "7669 1\n", + "7670 0\n", + "7671 0\n", + "7672 0\n", + "7673 1\n", + "7674 0\n", + "7675 0\n", + "7676 0\n", + "7677 0\n", + "7678 0\n", + "7679 0\n", + "7680 0\n", + "7681 1\n", + "7682 0\n", + "7683 0\n", + "7684 0\n", + "7685 0\n", + "7686 0\n", + "7687 1\n", + "7688 0\n", + "7689 0\n", + "7690 0\n", + "7691 1\n", + "7692 0\n", + "7693 0\n", + "7694 0\n", + "7695 0\n", + "7696 0\n", + "7697 0\n", + "7698 0\n", + "7699 1\n", + "7700 0\n", + "7701 0\n", + "7702 0\n", + "7703 1\n", + "7704 0\n", + "7705 0\n", + "7706 0\n", + "7707 0\n", + "7708 0\n", + "7709 0\n", + "7710 0\n", + "7711 0\n", + "7712 0\n", + "7713 0\n", + "7714 0\n", + "7715 0\n", + "7716 0\n", + "7717 1\n", + "7718 0\n", + "7719 0\n", + "7720 0\n", + "7721 0\n", + "7722 0\n", + "7723 1\n", + "7724 0\n", + "7725 0\n", + "7726 0\n", + "7727 1\n", + "7728 0\n", + "7729 0\n", + "7730 0\n", + "7731 0\n", + "7732 0\n", + "7733 0\n", + "7734 0\n", + "7735 0\n", + "7736 0\n", + "7737 0\n", + "7738 0\n", + "7739 0\n", + "7740 0\n", + "7741 1\n", + "7742 0\n", + "7743 0\n", + "7744 0\n", + "7745 0\n", + "7746 0\n", + "7747 0\n", + "7748 0\n", + "7749 0\n", + "7750 0\n", + "7751 0\n", + "7752 0\n", + "7753 1\n", + "7754 0\n", + "7755 0\n", + "7756 0\n", + "7757 1\n", + "7758 0\n", + "7759 1\n", + "7760 0\n", + "7761 0\n", + "7762 0\n", + "7763 0\n", + "7764 0\n", + "7765 0\n", + "7766 0\n", + "7767 0\n", + "7768 0\n", + "7769 0\n", + "7770 0\n", + "7771 0\n", + "7772 0\n", + "7773 0\n", + "7774 0\n", + "7775 0\n", + "7776 0\n", + "7777 0\n", + "7778 0\n", + "7779 0\n", + "7780 0\n", + "7781 0\n", + "7782 0\n", + "7783 0\n", + "7784 0\n", + "7785 0\n", + "7786 0\n", + "7787 0\n", + "7788 0\n", + "7789 1\n", + "7790 0\n", + "7791 0\n", + "7792 0\n", + "7793 1\n", + "7794 0\n", + "7795 0\n", + "7796 0\n", + "7797 0\n", + "7798 0\n", + "7799 0\n", + "7800 0\n", + "7801 0\n", + "7802 0\n", + "7803 0\n", + "7804 0\n", + "7805 0\n", + "7806 0\n", + "7807 0\n", + "7808 0\n", + "7809 0\n", + "7810 0\n", + "7811 0\n", + "7812 0\n", + "7813 0\n", + "7814 0\n", + "7815 0\n", + "7816 0\n", + "7817 1\n", + "7818 0\n", + "7819 0\n", + "7820 0\n", + "7821 0\n", + "7822 0\n", + "7823 1\n", + "7824 0\n", + "7825 0\n", + "7826 0\n", + "7827 0\n", + "7828 0\n", + "7829 1\n", + "7830 0\n", + "7831 0\n", + "7832 0\n", + "7833 0\n", + "7834 0\n", + "7835 0\n", + "7836 0\n", + "7837 0\n", + "7838 0\n", + "7839 0\n", + "7840 0\n", + "7841 1\n", + "7842 0\n", + "7843 0\n", + "7844 0\n", + "7845 0\n", + "7846 0\n", + "7847 0\n", + "7848 0\n", + "7849 0\n", + "7850 0\n", + "7851 0\n", + "7852 0\n", + "7853 1\n", + "7854 0\n", + "7855 0\n", + "7856 0\n", + "7857 0\n", + "7858 0\n", + "7859 0\n", + "7860 0\n", + "7861 0\n", + "7862 0\n", + "7863 0\n", + "7864 0\n", + "7865 0\n", + "7866 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "7867 1\n", + "7868 0\n", + "7869 0\n", + "7870 0\n", + "7871 0\n", + "7872 0\n", + "7873 1\n", + "7874 0\n", + "7875 0\n", + "7876 0\n", + "7877 1\n", + "7878 0\n", + "7879 1\n", + "7880 0\n", + "7881 0\n", + "7882 0\n", + "7883 1\n", + "7884 0\n", + "7885 0\n", + "7886 0\n", + "7887 0\n", + "7888 0\n", + "7889 0\n", + "7890 0\n", + "7891 0\n", + "7892 0\n", + "7893 0\n", + "7894 0\n", + "7895 0\n", + "7896 0\n", + "7897 0\n", + "7898 0\n", + "7899 0\n", + "7900 0\n", + "7901 1\n", + "7902 0\n", + "7903 0\n", + "7904 0\n", + "7905 0\n", + "7906 0\n", + "7907 1\n", + "7908 0\n", + "7909 0\n", + "7910 0\n", + "7911 0\n", + "7912 0\n", + "7913 0\n", + "7914 0\n", + "7915 0\n", + "7916 0\n", + "7917 0\n", + "7918 0\n", + "7919 1\n", + "7920 0\n", + "7921 0\n", + "7922 0\n", + "7923 0\n", + "7924 0\n", + "7925 0\n", + "7926 0\n", + "7927 1\n", + "7928 0\n", + "7929 0\n", + "7930 0\n", + "7931 0\n", + "7932 0\n", + "7933 1\n", + "7934 0\n", + "7935 0\n", + "7936 0\n", + "7937 1\n", + "7938 0\n", + "7939 0\n", + "7940 0\n", + "7941 0\n", + "7942 0\n", + "7943 0\n", + "7944 0\n", + "7945 0\n", + "7946 0\n", + "7947 0\n", + "7948 0\n", + "7949 1\n", + "7950 0\n", + "7951 1\n", + "7952 0\n", + "7953 0\n", + "7954 0\n", + "7955 0\n", + "7956 0\n", + "7957 0\n", + "7958 0\n", + "7959 0\n", + "7960 0\n", + "7961 0\n", + "7962 0\n", + "7963 1\n", + "7964 0\n", + "7965 0\n", + "7966 0\n", + "7967 0\n", + "7968 0\n", + "7969 0\n", + "7970 0\n", + "7971 0\n", + "7972 0\n", + "7973 0\n", + "7974 0\n", + "7975 0\n", + "7976 0\n", + "7977 0\n", + "7978 0\n", + "7979 0\n", + "7980 0\n", + "7981 0\n", + "7982 0\n", + "7983 0\n", + "7984 0\n", + "7985 0\n", + "7986 0\n", + "7987 0\n", + "7988 0\n", + "7989 0\n", + "7990 0\n", + "7991 0\n", + "7992 0\n", + "7993 1\n", + "7994 0\n", + "7995 0\n", + "7996 0\n", + "7997 0\n", + "7998 0\n", + "7999 0\n", + "8000 0\n", + "8001 0\n", + "8002 0\n", + "8003 0\n", + "8004 0\n", + "8005 0\n", + "8006 0\n", + "8007 0\n", + "8008 0\n", + "8009 1\n", + "8010 0\n", + "8011 1\n", + "8012 0\n", + "8013 0\n", + "8014 0\n", + "8015 0\n", + "8016 0\n", + "8017 1\n", + "8018 0\n", + "8019 0\n", + "8020 0\n", + "8021 0\n", + "8022 0\n", + "8023 0\n", + "8024 0\n", + "8025 0\n", + "8026 0\n", + "8027 0\n", + "8028 0\n", + "8029 0\n", + "8030 0\n", + "8031 0\n", + "8032 0\n", + "8033 0\n", + "8034 0\n", + "8035 0\n", + "8036 0\n", + "8037 0\n", + "8038 0\n", + "8039 1\n", + "8040 0\n", + "8041 0\n", + "8042 0\n", + "8043 0\n", + "8044 0\n", + "8045 0\n", + "8046 0\n", + "8047 0\n", + "8048 0\n", + "8049 0\n", + "8050 0\n", + "8051 0\n", + "8052 0\n", + "8053 1\n", + "8054 0\n", + "8055 0\n", + "8056 0\n", + "8057 0\n", + "8058 0\n", + "8059 1\n", + "8060 0\n", + "8061 0\n", + "8062 0\n", + "8063 0\n", + "8064 0\n", + "8065 0\n", + "8066 0\n", + "8067 0\n", + "8068 0\n", + "8069 1\n", + "8070 0\n", + "8071 0\n", + "8072 0\n", + "8073 0\n", + "8074 0\n", + "8075 0\n", + "8076 0\n", + "8077 0\n", + "8078 0\n", + "8079 0\n", + "8080 0\n", + "8081 1\n", + "8082 0\n", + "8083 0\n", + "8084 0\n", + "8085 0\n", + "8086 0\n", + "8087 1\n", + "8088 0\n", + "8089 1\n", + "8090 0\n", + "8091 0\n", + "8092 0\n", + "8093 1\n", + "8094 0\n", + "8095 0\n", + "8096 0\n", + "8097 0\n", + "8098 0\n", + "8099 0\n", + "8100 0\n", + "8101 1\n", + "8102 0\n", + "8103 0\n", + "8104 0\n", + "8105 0\n", + "8106 0\n", + "8107 0\n", + "8108 0\n", + "8109 0\n", + "8110 0\n", + "8111 1\n", + "8112 0\n", + "8113 0\n", + "8114 0\n", + "8115 0\n", + "8116 0\n", + "8117 1\n", + "8118 0\n", + "8119 0\n", + "8120 0\n", + "8121 0\n", + "8122 0\n", + "8123 1\n", + "8124 0\n", + "8125 0\n", + "8126 0\n", + "8127 0\n", + "8128 0\n", + "8129 0\n", + "8130 0\n", + "8131 0\n", + "8132 0\n", + "8133 0\n", + "8134 0\n", + "8135 0\n", + "8136 0\n", + "8137 0\n", + "8138 0\n", + "8139 0\n", + "8140 0\n", + "8141 0\n", + "8142 0\n", + "8143 0\n", + "8144 0\n", + "8145 0\n", + "8146 0\n", + "8147 1\n", + "8148 0\n", + "8149 0\n", + "8150 0\n", + "8151 0\n", + "8152 0\n", + "8153 0\n", + "8154 0\n", + "8155 0\n", + "8156 0\n", + "8157 0\n", + "8158 0\n", + "8159 0\n", + "8160 0\n", + "8161 1\n", + "8162 0\n", + "8163 0\n", + "8164 0\n", + "8165 0\n", + "8166 0\n", + "8167 1\n", + "8168 0\n", + "8169 0\n", + "8170 0\n", + "8171 1\n", + "8172 0\n", + "8173 0\n", + "8174 0\n", + "8175 0\n", + "8176 0\n", + "8177 0\n", + "8178 0\n", + "8179 1\n", + "8180 0\n", + "8181 0\n", + "8182 0\n", + "8183 0\n", + "8184 0\n", + "8185 0\n", + "8186 0\n", + "8187 0\n", + "8188 0\n", + "8189 0\n", + "8190 0\n", + "8191 1\n", + "8192 0\n", + "8193 0\n", + "8194 0\n", + "8195 0\n", + "8196 0\n", + "8197 0\n", + "8198 0\n", + "8199 0\n", + "8200 0\n", + "8201 0\n", + "8202 0\n", + "8203 0\n", + "8204 0\n", + "8205 0\n", + "8206 0\n", + "8207 0\n", + "8208 0\n", + "8209 1\n", + "8210 0\n", + "8211 0\n", + "8212 0\n", + "8213 0\n", + "8214 0\n", + "8215 0\n", + "8216 0\n", + "8217 0\n", + "8218 0\n", + "8219 1\n", + "8220 0\n", + "8221 1\n", + "8222 0\n", + "8223 0\n", + "8224 0\n", + "8225 0\n", + "8226 0\n", + "8227 0\n", + "8228 0\n", + "8229 0\n", + "8230 0\n", + "8231 1\n", + "8232 0\n", + "8233 1\n", + "8234 0\n", + "8235 0\n", + "8236 0\n", + "8237 1\n", + "8238 0\n", + "8239 0\n", + "8240 0\n", + "8241 0\n", + "8242 0\n", + "8243 1\n", + "8244 0\n", + "8245 0\n", + "8246 0\n", + "8247 0\n", + "8248 0\n", + "8249 0\n", + "8250 0\n", + "8251 0\n", + "8252 0\n", + "8253 0\n", + "8254 0\n", + "8255 0\n", + "8256 0\n", + "8257 0\n", + "8258 0\n", + "8259 0\n", + "8260 0\n", + "8261 0\n", + "8262 0\n", + "8263 1\n", + "8264 0\n", + "8265 0\n", + "8266 0\n", + "8267 0\n", + "8268 0\n", + "8269 1\n", + "8270 0\n", + "8271 0\n", + "8272 0\n", + "8273 1\n", + "8274 0\n", + "8275 0\n", + "8276 0\n", + "8277 0\n", + "8278 0\n", + "8279 0\n", + "8280 0\n", + "8281 0\n", + "8282 0\n", + "8283 0\n", + "8284 0\n", + "8285 0\n", + "8286 0\n", + "8287 1\n", + "8288 0\n", + "8289 0\n", + "8290 0\n", + "8291 1\n", + "8292 0\n", + "8293 1\n", + "8294 0\n", + "8295 0\n", + "8296 0\n", + "8297 1\n", + "8298 0\n", + "8299 0\n", + "8300 0\n", + "8301 0\n", + "8302 0\n", + "8303 0\n", + "8304 0\n", + "8305 0\n", + "8306 0\n", + "8307 0\n", + "8308 0\n", + "8309 0\n", + "8310 0\n", + "8311 1\n", + "8312 0\n", + "8313 0\n", + "8314 0\n", + "8315 0\n", + "8316 0\n", + "8317 1\n", + "8318 0\n", + "8319 0\n", + "8320 0\n", + "8321 0\n", + "8322 0\n", + "8323 0\n", + "8324 0\n", + "8325 0\n", + "8326 0\n", + "8327 0\n", + "8328 0\n", + "8329 1\n", + "8330 0\n", + "8331 0\n", + "8332 0\n", + "8333 0\n", + "8334 0\n", + "8335 0\n", + "8336 0\n", + "8337 0\n", + "8338 0\n", + "8339 0\n", + "8340 0\n", + "8341 0\n", + "8342 0\n", + "8343 0\n", + "8344 0\n", + "8345 0\n", + "8346 0\n", + "8347 0\n", + "8348 0\n", + "8349 0\n", + "8350 0\n", + "8351 0\n", + "8352 0\n", + "8353 1\n", + "8354 0\n", + "8355 0\n", + "8356 0\n", + "8357 0\n", + "8358 0\n", + "8359 0\n", + "8360 0\n", + "8361 0\n", + "8362 0\n", + "8363 1\n", + "8364 0\n", + "8365 0\n", + "8366 0\n", + "8367 0\n", + "8368 0\n", + "8369 1\n", + "8370 0\n", + "8371 0\n", + "8372 0\n", + "8373 0\n", + "8374 0\n", + "8375 0\n", + "8376 0\n", + "8377 1\n", + "8378 0\n", + "8379 0\n", + "8380 0\n", + "8381 0\n", + "8382 0\n", + "8383 0\n", + "8384 0\n", + "8385 0\n", + "8386 0\n", + "8387 1\n", + "8388 0\n", + "8389 1\n", + "8390 0\n", + "8391 0\n", + "8392 0\n", + "8393 0\n", + "8394 0\n", + "8395 0\n", + "8396 0\n", + "8397 0\n", + "8398 0\n", + "8399 0\n", + "8400 0\n", + "8401 0\n", + "8402 0\n", + "8403 0\n", + "8404 0\n", + "8405 0\n", + "8406 0\n", + "8407 0\n", + "8408 0\n", + "8409 0\n", + "8410 0\n", + "8411 0\n", + "8412 0\n", + "8413 0\n", + "8414 0\n", + "8415 0\n", + "8416 0\n", + "8417 0\n", + "8418 0\n", + "8419 1\n", + "8420 0\n", + "8421 0\n", + "8422 0\n", + "8423 1\n", + "8424 0\n", + "8425 0\n", + "8426 0\n", + "8427 0\n", + "8428 0\n", + "8429 1\n", + "8430 0\n", + "8431 1\n", + "8432 0\n", + "8433 0\n", + "8434 0\n", + "8435 0\n", + "8436 0\n", + "8437 0\n", + "8438 0\n", + "8439 0\n", + "8440 0\n", + "8441 0\n", + "8442 0\n", + "8443 1\n", + "8444 0\n", + "8445 0\n", + "8446 0\n", + "8447 1\n", + "8448 0\n", + "8449 0\n", + "8450 0\n", + "8451 0\n", + "8452 0\n", + "8453 0\n", + "8454 0\n", + "8455 0\n", + "8456 0\n", + "8457 0\n", + "8458 0\n", + "8459 0\n", + "8460 0\n", + "8461 1\n", + "8462 0\n", + "8463 0\n", + "8464 0\n", + "8465 0\n", + "8466 0\n", + "8467 1\n", + "8468 0\n", + "8469 0\n", + "8470 0\n", + "8471 0\n", + "8472 0\n", + "8473 0\n", + "8474 0\n", + "8475 0\n", + "8476 0\n", + "8477 0\n", + "8478 0\n", + "8479 0\n", + "8480 0\n", + "8481 0\n", + "8482 0\n", + "8483 0\n", + "8484 0\n", + "8485 0\n", + "8486 0\n", + "8487 0\n", + "8488 0\n", + "8489 0\n", + "8490 0\n", + "8491 0\n", + "8492 0\n", + "8493 0\n", + "8494 0\n", + "8495 0\n", + "8496 0\n", + "8497 0\n", + "8498 0\n", + "8499 0\n", + "8500 0\n", + "8501 1\n", + "8502 0\n", + "8503 0\n", + "8504 0\n", + "8505 0\n", + "8506 0\n", + "8507 0\n", + "8508 0\n", + "8509 0\n", + "8510 0\n", + "8511 0\n", + "8512 0\n", + "8513 1\n", + "8514 0\n", + "8515 0\n", + "8516 0\n", + "8517 0\n", + "8518 0\n", + "8519 0\n", + "8520 0\n", + "8521 1\n", + "8522 0\n", + "8523 0\n", + "8524 0\n", + "8525 0\n", + "8526 0\n", + "8527 1\n", + "8528 0\n", + "8529 0\n", + "8530 0\n", + "8531 0\n", + "8532 0\n", + "8533 0\n", + "8534 0\n", + "8535 0\n", + "8536 0\n", + "8537 1\n", + "8538 0\n", + "8539 1\n", + "8540 0\n", + "8541 0\n", + "8542 0\n", + "8543 1\n", + "8544 0\n", + "8545 0\n", + "8546 0\n", + "8547 0\n", + "8548 0\n", + "8549 0\n", + "8550 0\n", + "8551 0\n", + "8552 0\n", + "8553 0\n", + "8554 0\n", + "8555 0\n", + "8556 0\n", + "8557 0\n", + "8558 0\n", + "8559 0\n", + "8560 0\n", + "8561 0\n", + "8562 0\n", + "8563 1\n", + "8564 0\n", + "8565 0\n", + "8566 0\n", + "8567 0\n", + "8568 0\n", + "8569 0\n", + "8570 0\n", + "8571 0\n", + "8572 0\n", + "8573 1\n", + "8574 0\n", + "8575 0\n", + "8576 0\n", + "8577 0\n", + "8578 0\n", + "8579 0\n", + "8580 0\n", + "8581 1\n", + "8582 0\n", + "8583 0\n", + "8584 0\n", + "8585 0\n", + "8586 0\n", + "8587 0\n", + "8588 0\n", + "8589 0\n", + "8590 0\n", + "8591 0\n", + "8592 0\n", + "8593 0\n", + "8594 0\n", + "8595 0\n", + "8596 0\n", + "8597 1\n", + "8598 0\n", + "8599 1\n", + "8600 0\n", + "8601 0\n", + "8602 0\n", + "8603 0\n", + "8604 0\n", + "8605 0\n", + "8606 0\n", + "8607 0\n", + "8608 0\n", + "8609 1\n", + "8610 0\n", + "8611 0\n", + "8612 0\n", + "8613 0\n", + "8614 0\n", + "8615 0\n", + "8616 0\n", + "8617 0\n", + "8618 0\n", + "8619 0\n", + "8620 0\n", + "8621 0\n", + "8622 0\n", + "8623 1\n", + "8624 0\n", + "8625 0\n", + "8626 0\n", + "8627 1\n", + "8628 0\n", + "8629 1\n", + "8630 0\n", + "8631 0\n", + "8632 0\n", + "8633 0\n", + "8634 0\n", + "8635 0\n", + "8636 0\n", + "8637 0\n", + "8638 0\n", + "8639 0\n", + "8640 0\n", + "8641 1\n", + "8642 0\n", + "8643 0\n", + "8644 0\n", + "8645 0\n", + "8646 0\n", + "8647 1\n", + "8648 0\n", + "8649 0\n", + "8650 0\n", + "8651 0\n", + "8652 0\n", + "8653 0\n", + "8654 0\n", + "8655 0\n", + "8656 0\n", + "8657 0\n", + "8658 0\n", + "8659 0\n", + "8660 0\n", + "8661 0\n", + "8662 0\n", + "8663 1\n", + "8664 0\n", + "8665 0\n", + "8666 0\n", + "8667 0\n", + "8668 0\n", + "8669 1\n", + "8670 0\n", + "8671 0\n", + "8672 0\n", + "8673 0\n", + "8674 0\n", + "8675 0\n", + "8676 0\n", + "8677 1\n", + "8678 0\n", + "8679 0\n", + "8680 0\n", + "8681 1\n", + "8682 0\n", + "8683 0\n", + "8684 0\n", + "8685 0\n", + "8686 0\n", + "8687 0\n", + "8688 0\n", + "8689 1\n", + "8690 0\n", + "8691 0\n", + "8692 0\n", + "8693 1\n", + "8694 0\n", + "8695 0\n", + "8696 0\n", + "8697 0\n", + "8698 0\n", + "8699 1\n", + "8700 0\n", + "8701 0\n", + "8702 0\n", + "8703 0\n", + "8704 0\n", + "8705 0\n", + "8706 0\n", + "8707 1\n", + "8708 0\n", + "8709 0\n", + "8710 0\n", + "8711 0\n", + "8712 0\n", + "8713 1\n", + "8714 0\n", + "8715 0\n", + "8716 0\n", + "8717 0\n", + "8718 0\n", + "8719 1\n", + "8720 0\n", + "8721 0\n", + "8722 0\n", + "8723 0\n", + "8724 0\n", + "8725 0\n", + "8726 0\n", + "8727 0\n", + "8728 0\n", + "8729 0\n", + "8730 0\n", + "8731 1\n", + "8732 0\n", + "8733 0\n", + "8734 0\n", + "8735 0\n", + "8736 0\n", + "8737 1\n", + "8738 0\n", + "8739 0\n", + "8740 0\n", + "8741 1\n", + "8742 0\n", + "8743 0\n", + "8744 0\n", + "8745 0\n", + "8746 0\n", + "8747 1\n", + "8748 0\n", + "8749 0\n", + "8750 0\n", + "8751 0\n", + "8752 0\n", + "8753 1\n", + "8754 0\n", + "8755 0\n", + "8756 0\n", + "8757 0\n", + "8758 0\n", + "8759 0\n", + "8760 0\n", + "8761 1\n", + "8762 0\n", + "8763 0\n", + "8764 0\n", + "8765 0\n", + "8766 0\n", + "8767 0\n", + "8768 0\n", + "8769 0\n", + "8770 0\n", + "8771 0\n", + "8772 0\n", + "8773 0\n", + "8774 0\n", + "8775 0\n", + "8776 0\n", + "8777 0\n", + "8778 0\n", + "8779 1\n", + "8780 0\n", + "8781 0\n", + "8782 0\n", + "8783 1\n", + "8784 0\n", + "8785 0\n", + "8786 0\n", + "8787 0\n", + "8788 0\n", + "8789 0\n", + "8790 0\n", + "8791 0\n", + "8792 0\n", + "8793 0\n", + "8794 0\n", + "8795 0\n", + "8796 0\n", + "8797 0\n", + "8798 0\n", + "8799 0\n", + "8800 0\n", + "8801 0\n", + "8802 0\n", + "8803 1\n", + "8804 0\n", + "8805 0\n", + "8806 0\n", + "8807 1\n", + "8808 0\n", + "8809 0\n", + "8810 0\n", + "8811 0\n", + "8812 0\n", + "8813 0\n", + "8814 0\n", + "8815 0\n", + "8816 0\n", + "8817 0\n", + "8818 0\n", + "8819 1\n", + "8820 0\n", + "8821 1\n", + "8822 0\n", + "8823 0\n", + "8824 0\n", + "8825 0\n", + "8826 0\n", + "8827 0\n", + "8828 0\n", + "8829 0\n", + "8830 0\n", + "8831 1\n", + "8832 0\n", + "8833 0\n", + "8834 0\n", + "8835 0\n", + "8836 0\n", + "8837 1\n", + "8838 0\n", + "8839 1\n", + "8840 0\n", + "8841 0\n", + "8842 0\n", + "8843 0\n", + "8844 0\n", + "8845 0\n", + "8846 0\n", + "8847 0\n", + "8848 0\n", + "8849 1\n", + "8850 0\n", + "8851 0\n", + "8852 0\n", + "8853 0\n", + "8854 0\n", + "8855 0\n", + "8856 0\n", + "8857 0\n", + "8858 0\n", + "8859 0\n", + "8860 0\n", + "8861 1\n", + "8862 0\n", + "8863 1\n", + "8864 0\n", + "8865 0\n", + "8866 0\n", + "8867 1\n", + "8868 0\n", + "8869 0\n", + "8870 0\n", + "8871 0\n", + "8872 0\n", + "8873 0\n", + "8874 0\n", + "8875 0\n", + "8876 0\n", + "8877 0\n", + "8878 0\n", + "8879 0\n", + "8880 0\n", + "8881 0\n", + "8882 0\n", + "8883 0\n", + "8884 0\n", + "8885 0\n", + "8886 0\n", + "8887 1\n", + "8888 0\n", + "8889 0\n", + "8890 0\n", + "8891 0\n", + "8892 0\n", + "8893 1\n", + "8894 0\n", + "8895 0\n", + "8896 0\n", + "8897 0\n", + "8898 0\n", + "8899 0\n", + "8900 0\n", + "8901 0\n", + "8902 0\n", + "8903 0\n", + "8904 0\n", + "8905 0\n", + "8906 0\n", + "8907 0\n", + "8908 0\n", + "8909 0\n", + "8910 0\n", + "8911 0\n", + "8912 0\n", + "8913 0\n", + "8914 0\n", + "8915 0\n", + "8916 0\n", + "8917 0\n", + "8918 0\n", + "8919 0\n", + "8920 0\n", + "8921 0\n", + "8922 0\n", + "8923 1\n", + "8924 0\n", + "8925 0\n", + "8926 0\n", + "8927 0\n", + "8928 0\n", + "8929 1\n", + "8930 0\n", + "8931 0\n", + "8932 0\n", + "8933 1\n", + "8934 0\n", + "8935 0\n", + "8936 0\n", + "8937 0\n", + "8938 0\n", + "8939 0\n", + "8940 0\n", + "8941 1\n", + "8942 0\n", + "8943 0\n", + "8944 0\n", + "8945 0\n", + "8946 0\n", + "8947 0\n", + "8948 0\n", + "8949 0\n", + "8950 0\n", + "8951 1\n", + "8952 0\n", + "8953 0\n", + "8954 0\n", + "8955 0\n", + "8956 0\n", + "8957 0\n", + "8958 0\n", + "8959 0\n", + "8960 0\n", + "8961 0\n", + "8962 0\n", + "8963 1\n", + "8964 0\n", + "8965 0\n", + "8966 0\n", + "8967 0\n", + "8968 0\n", + "8969 1\n", + "8970 0\n", + "8971 1\n", + "8972 0\n", + "8973 0\n", + "8974 0\n", + "8975 0\n", + "8976 0\n", + "8977 0\n", + "8978 0\n", + "8979 0\n", + "8980 0\n", + "8981 0\n", + "8982 0\n", + "8983 0\n", + "8984 0\n", + "8985 0\n", + "8986 0\n", + "8987 0\n", + "8988 0\n", + "8989 0\n", + "8990 0\n", + "8991 0\n", + "8992 0\n", + "8993 0\n", + "8994 0\n", + "8995 0\n", + "8996 0\n", + "8997 0\n", + "8998 0\n", + "8999 1\n", + "9000 0\n", + "9001 1\n", + "9002 0\n", + "9003 0\n", + "9004 0\n", + "9005 0\n", + "9006 0\n", + "9007 1\n", + "9008 0\n", + "9009 0\n", + "9010 0\n", + "9011 1\n", + "9012 0\n", + "9013 1\n", + "9014 0\n", + "9015 0\n", + "9016 0\n", + "9017 0\n", + "9018 0\n", + "9019 0\n", + "9020 0\n", + "9021 0\n", + "9022 0\n", + "9023 0\n", + "9024 0\n", + "9025 0\n", + "9026 0\n", + "9027 0\n", + "9028 0\n", + "9029 1\n", + "9030 0\n", + "9031 0\n", + "9032 0\n", + "9033 0\n", + "9034 0\n", + "9035 0\n", + "9036 0\n", + "9037 0\n", + "9038 0\n", + "9039 0\n", + "9040 0\n", + "9041 1\n", + "9042 0\n", + "9043 1\n", + "9044 0\n", + "9045 0\n", + "9046 0\n", + "9047 0\n", + "9048 0\n", + "9049 1\n", + "9050 0\n", + "9051 0\n", + "9052 0\n", + "9053 0\n", + "9054 0\n", + "9055 0\n", + "9056 0\n", + "9057 0\n", + "9058 0\n", + "9059 1\n", + "9060 0\n", + "9061 0\n", + "9062 0\n", + "9063 0\n", + "9064 0\n", + "9065 0\n", + "9066 0\n", + "9067 1\n", + "9068 0\n", + "9069 0\n", + "9070 0\n", + "9071 0\n", + "9072 0\n", + "9073 0\n", + "9074 0\n", + "9075 0\n", + "9076 0\n", + "9077 0\n", + "9078 0\n", + "9079 0\n", + "9080 0\n", + "9081 0\n", + "9082 0\n", + "9083 0\n", + "9084 0\n", + "9085 0\n", + "9086 0\n", + "9087 0\n", + "9088 0\n", + "9089 0\n", + "9090 0\n", + "9091 1\n", + "9092 0\n", + "9093 0\n", + "9094 0\n", + "9095 0\n", + "9096 0\n", + "9097 0\n", + "9098 0\n", + "9099 0\n", + "9100 0\n", + "9101 0\n", + "9102 0\n", + "9103 1\n", + "9104 0\n", + "9105 0\n", + "9106 0\n", + "9107 0\n", + "9108 0\n", + "9109 1\n", + "9110 0\n", + "9111 0\n", + "9112 0\n", + "9113 0\n", + "9114 0\n", + "9115 0\n", + "9116 0\n", + "9117 0\n", + "9118 0\n", + "9119 0\n", + "9120 0\n", + "9121 0\n", + "9122 0\n", + "9123 0\n", + "9124 0\n", + "9125 0\n", + "9126 0\n", + "9127 1\n", + "9128 0\n", + "9129 0\n", + "9130 0\n", + "9131 0\n", + "9132 0\n", + "9133 1\n", + "9134 0\n", + "9135 0\n", + "9136 0\n", + "9137 1\n", + "9138 0\n", + "9139 0\n", + "9140 0\n", + "9141 0\n", + "9142 0\n", + "9143 0\n", + "9144 0\n", + "9145 0\n", + "9146 0\n", + "9147 0\n", + "9148 0\n", + "9149 0\n", + "9150 0\n", + "9151 1\n", + "9152 0\n", + "9153 0\n", + "9154 0\n", + "9155 0\n", + "9156 0\n", + "9157 1\n", + "9158 0\n", + "9159 0\n", + "9160 0\n", + "9161 1\n", + "9162 0\n", + "9163 0\n", + "9164 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "9165 0\n", + "9166 0\n", + "9167 0\n", + "9168 0\n", + "9169 0\n", + "9170 0\n", + "9171 0\n", + "9172 0\n", + "9173 1\n", + "9174 0\n", + "9175 0\n", + "9176 0\n", + "9177 0\n", + "9178 0\n", + "9179 0\n", + "9180 0\n", + "9181 1\n", + "9182 0\n", + "9183 0\n", + "9184 0\n", + "9185 0\n", + "9186 0\n", + "9187 1\n", + "9188 0\n", + "9189 0\n", + "9190 0\n", + "9191 0\n", + "9192 0\n", + "9193 0\n", + "9194 0\n", + "9195 0\n", + "9196 0\n", + "9197 0\n", + "9198 0\n", + "9199 1\n", + "9200 0\n", + "9201 0\n", + "9202 0\n", + "9203 1\n", + "9204 0\n", + "9205 0\n", + "9206 0\n", + "9207 0\n", + "9208 0\n", + "9209 1\n", + "9210 0\n", + "9211 0\n", + "9212 0\n", + "9213 0\n", + "9214 0\n", + "9215 0\n", + "9216 0\n", + "9217 0\n", + "9218 0\n", + "9219 0\n", + "9220 0\n", + "9221 1\n", + "9222 0\n", + "9223 0\n", + "9224 0\n", + "9225 0\n", + "9226 0\n", + "9227 1\n", + "9228 0\n", + "9229 0\n", + "9230 0\n", + "9231 0\n", + "9232 0\n", + "9233 0\n", + "9234 0\n", + "9235 0\n", + "9236 0\n", + "9237 0\n", + "9238 0\n", + "9239 1\n", + "9240 0\n", + "9241 1\n", + "9242 0\n", + "9243 0\n", + "9244 0\n", + "9245 0\n", + "9246 0\n", + "9247 0\n", + "9248 0\n", + "9249 0\n", + "9250 0\n", + "9251 0\n", + "9252 0\n", + "9253 0\n", + "9254 0\n", + "9255 0\n", + "9256 0\n", + "9257 1\n", + "9258 0\n", + "9259 0\n", + "9260 0\n", + "9261 0\n", + "9262 0\n", + "9263 0\n", + "9264 0\n", + "9265 0\n", + "9266 0\n", + "9267 0\n", + "9268 0\n", + "9269 0\n", + "9270 0\n", + "9271 0\n", + "9272 0\n", + "9273 0\n", + "9274 0\n", + "9275 0\n", + "9276 0\n", + "9277 1\n", + "9278 0\n", + "9279 0\n", + "9280 0\n", + "9281 1\n", + "9282 0\n", + "9283 1\n", + "9284 0\n", + "9285 0\n", + "9286 0\n", + "9287 0\n", + "9288 0\n", + "9289 0\n", + "9290 0\n", + "9291 0\n", + "9292 0\n", + "9293 1\n", + "9294 0\n", + "9295 0\n", + "9296 0\n", + "9297 0\n", + "9298 0\n", + "9299 0\n", + "9300 0\n", + "9301 0\n", + "9302 0\n", + "9303 0\n", + "9304 0\n", + "9305 0\n", + "9306 0\n", + "9307 0\n", + "9308 0\n", + "9309 0\n", + "9310 0\n", + "9311 1\n", + "9312 0\n", + "9313 0\n", + "9314 0\n", + "9315 0\n", + "9316 0\n", + "9317 0\n", + "9318 0\n", + "9319 1\n", + "9320 0\n", + "9321 0\n", + "9322 0\n", + "9323 1\n", + "9324 0\n", + "9325 0\n", + "9326 0\n", + "9327 0\n", + "9328 0\n", + "9329 0\n", + "9330 0\n", + "9331 0\n", + "9332 0\n", + "9333 0\n", + "9334 0\n", + "9335 0\n", + "9336 0\n", + "9337 1\n", + "9338 0\n", + "9339 0\n", + "9340 0\n", + "9341 1\n", + "9342 0\n", + "9343 1\n", + "9344 0\n", + "9345 0\n", + "9346 0\n", + "9347 0\n", + "9348 0\n", + "9349 1\n", + "9350 0\n", + "9351 0\n", + "9352 0\n", + "9353 0\n", + "9354 0\n", + "9355 0\n", + "9356 0\n", + "9357 0\n", + "9358 0\n", + "9359 0\n", + "9360 0\n", + "9361 0\n", + "9362 0\n", + "9363 0\n", + "9364 0\n", + "9365 0\n", + "9366 0\n", + "9367 0\n", + "9368 0\n", + "9369 0\n", + "9370 0\n", + "9371 1\n", + "9372 0\n", + "9373 0\n", + "9374 0\n", + "9375 0\n", + "9376 0\n", + "9377 1\n", + "9378 0\n", + "9379 0\n", + "9380 0\n", + "9381 0\n", + "9382 0\n", + "9383 0\n", + "9384 0\n", + "9385 0\n", + "9386 0\n", + "9387 0\n", + "9388 0\n", + "9389 0\n", + "9390 0\n", + "9391 1\n", + "9392 0\n", + "9393 0\n", + "9394 0\n", + "9395 0\n", + "9396 0\n", + "9397 1\n", + "9398 0\n", + "9399 0\n", + "9400 0\n", + "9401 0\n", + "9402 0\n", + "9403 1\n", + "9404 0\n", + "9405 0\n", + "9406 0\n", + "9407 0\n", + "9408 0\n", + "9409 0\n", + "9410 0\n", + "9411 0\n", + "9412 0\n", + "9413 1\n", + "9414 0\n", + "9415 0\n", + "9416 0\n", + "9417 0\n", + "9418 0\n", + "9419 1\n", + "9420 0\n", + "9421 1\n", + "9422 0\n", + "9423 0\n", + "9424 0\n", + "9425 0\n", + "9426 0\n", + "9427 0\n", + "9428 0\n", + "9429 0\n", + "9430 0\n", + "9431 1\n", + "9432 0\n", + "9433 1\n", + "9434 0\n", + "9435 0\n", + "9436 0\n", + "9437 1\n", + "9438 0\n", + "9439 1\n", + "9440 0\n", + "9441 0\n", + "9442 0\n", + "9443 0\n", + "9444 0\n", + "9445 0\n", + "9446 0\n", + "9447 0\n", + "9448 0\n", + "9449 0\n", + "9450 0\n", + "9451 0\n", + "9452 0\n", + "9453 0\n", + "9454 0\n", + "9455 0\n", + "9456 0\n", + "9457 0\n", + "9458 0\n", + "9459 0\n", + "9460 0\n", + "9461 1\n", + "9462 0\n", + "9463 1\n", + "9464 0\n", + "9465 0\n", + "9466 0\n", + "9467 1\n", + "9468 0\n", + "9469 0\n", + "9470 0\n", + "9471 0\n", + "9472 0\n", + "9473 1\n", + "9474 0\n", + "9475 0\n", + "9476 0\n", + "9477 0\n", + "9478 0\n", + "9479 1\n", + "9480 0\n", + "9481 0\n", + "9482 0\n", + "9483 0\n", + "9484 0\n", + "9485 0\n", + "9486 0\n", + "9487 0\n", + "9488 0\n", + "9489 0\n", + "9490 0\n", + "9491 1\n", + "9492 0\n", + "9493 0\n", + "9494 0\n", + "9495 0\n", + "9496 0\n", + "9497 1\n", + "9498 0\n", + "9499 0\n", + "9500 0\n", + "9501 0\n", + "9502 0\n", + "9503 0\n", + "9504 0\n", + "9505 0\n", + "9506 0\n", + "9507 0\n", + "9508 0\n", + "9509 0\n", + "9510 0\n", + "9511 1\n", + "9512 0\n", + "9513 0\n", + "9514 0\n", + "9515 0\n", + "9516 0\n", + "9517 0\n", + "9518 0\n", + "9519 0\n", + "9520 0\n", + "9521 1\n", + "9522 0\n", + "9523 0\n", + "9524 0\n", + "9525 0\n", + "9526 0\n", + "9527 0\n", + "9528 0\n", + "9529 0\n", + "9530 0\n", + "9531 0\n", + "9532 0\n", + "9533 1\n", + "9534 0\n", + "9535 0\n", + "9536 0\n", + "9537 0\n", + "9538 0\n", + "9539 1\n", + "9540 0\n", + "9541 0\n", + "9542 0\n", + "9543 0\n", + "9544 0\n", + "9545 0\n", + "9546 0\n", + "9547 1\n", + "9548 0\n", + "9549 0\n", + "9550 0\n", + "9551 1\n", + "9552 0\n", + "9553 0\n", + "9554 0\n", + "9555 0\n", + "9556 0\n", + "9557 0\n", + "9558 0\n", + "9559 0\n", + "9560 0\n", + "9561 0\n", + "9562 0\n", + "9563 0\n", + "9564 0\n", + "9565 0\n", + "9566 0\n", + "9567 0\n", + "9568 0\n", + "9569 0\n", + "9570 0\n", + "9571 0\n", + "9572 0\n", + "9573 0\n", + "9574 0\n", + "9575 0\n", + "9576 0\n", + "9577 0\n", + "9578 0\n", + "9579 0\n", + "9580 0\n", + "9581 0\n", + "9582 0\n", + "9583 0\n", + "9584 0\n", + "9585 0\n", + "9586 0\n", + "9587 1\n", + "9588 0\n", + "9589 0\n", + "9590 0\n", + "9591 0\n", + "9592 0\n", + "9593 0\n", + "9594 0\n", + "9595 0\n", + "9596 0\n", + "9597 0\n", + "9598 0\n", + "9599 0\n", + "9600 0\n", + "9601 1\n", + "9602 0\n", + "9603 0\n", + "9604 0\n", + "9605 0\n", + "9606 0\n", + "9607 0\n", + "9608 0\n", + "9609 0\n", + "9610 0\n", + "9611 0\n", + "9612 0\n", + "9613 1\n", + "9614 0\n", + "9615 0\n", + "9616 0\n", + "9617 0\n", + "9618 0\n", + "9619 1\n", + "9620 0\n", + "9621 0\n", + "9622 0\n", + "9623 1\n", + "9624 0\n", + "9625 0\n", + "9626 0\n", + "9627 0\n", + "9628 0\n", + "9629 1\n", + "9630 0\n", + "9631 1\n", + "9632 0\n", + "9633 0\n", + "9634 0\n", + "9635 0\n", + "9636 0\n", + "9637 0\n", + "9638 0\n", + "9639 0\n", + "9640 0\n", + "9641 0\n", + "9642 0\n", + "9643 1\n", + "9644 0\n", + "9645 0\n", + "9646 0\n", + "9647 0\n", + "9648 0\n", + "9649 1\n", + "9650 0\n", + "9651 0\n", + "9652 0\n", + "9653 0\n", + "9654 0\n", + "9655 0\n", + "9656 0\n", + "9657 0\n", + "9658 0\n", + "9659 0\n", + "9660 0\n", + "9661 1\n", + "9662 0\n", + "9663 0\n", + "9664 0\n", + "9665 0\n", + "9666 0\n", + "9667 0\n", + "9668 0\n", + "9669 0\n", + "9670 0\n", + "9671 0\n", + "9672 0\n", + "9673 0\n", + "9674 0\n", + "9675 0\n", + "9676 0\n", + "9677 1\n", + "9678 0\n", + "9679 1\n", + "9680 0\n", + "9681 0\n", + "9682 0\n", + "9683 0\n", + "9684 0\n", + "9685 0\n", + "9686 0\n", + "9687 0\n", + "9688 0\n", + "9689 1\n", + "9690 0\n", + "9691 0\n", + "9692 0\n", + "9693 0\n", + "9694 0\n", + "9695 0\n", + "9696 0\n", + "9697 1\n", + "9698 0\n", + "9699 0\n", + "9700 0\n", + "9701 0\n", + "9702 0\n", + "9703 0\n", + "9704 0\n", + "9705 0\n", + "9706 0\n", + "9707 0\n", + "9708 0\n", + "9709 0\n", + "9710 0\n", + "9711 0\n", + "9712 0\n", + "9713 0\n", + "9714 0\n", + "9715 0\n", + "9716 0\n", + "9717 0\n", + "9718 0\n", + "9719 1\n", + "9720 0\n", + "9721 1\n", + "9722 0\n", + "9723 0\n", + "9724 0\n", + "9725 0\n", + "9726 0\n", + "9727 0\n", + "9728 0\n", + "9729 0\n", + "9730 0\n", + "9731 0\n", + "9732 0\n", + "9733 1\n", + "9734 0\n", + "9735 0\n", + "9736 0\n", + "9737 0\n", + "9738 0\n", + "9739 1\n", + "9740 0\n", + "9741 0\n", + "9742 0\n", + "9743 1\n", + "9744 0\n", + "9745 0\n", + "9746 0\n", + "9747 0\n", + "9748 0\n", + "9749 1\n", + "9750 0\n", + "9751 0\n", + "9752 0\n", + "9753 0\n", + "9754 0\n", + "9755 0\n", + "9756 0\n", + "9757 0\n", + "9758 0\n", + "9759 0\n", + "9760 0\n", + "9761 0\n", + "9762 0\n", + "9763 0\n", + "9764 0\n", + "9765 0\n", + "9766 0\n", + "9767 1\n", + "9768 0\n", + "9769 1\n", + "9770 0\n", + "9771 0\n", + "9772 0\n", + "9773 0\n", + "9774 0\n", + "9775 0\n", + "9776 0\n", + "9777 0\n", + "9778 0\n", + "9779 0\n", + "9780 0\n", + "9781 1\n", + "9782 0\n", + "9783 0\n", + "9784 0\n", + "9785 0\n", + "9786 0\n", + "9787 1\n", + "9788 0\n", + "9789 0\n", + "9790 0\n", + "9791 1\n", + "9792 0\n", + "9793 0\n", + "9794 0\n", + "9795 0\n", + "9796 0\n", + "9797 0\n", + "9798 0\n", + "9799 0\n", + "9800 0\n", + "9801 0\n", + "9802 0\n", + "9803 1\n", + "9804 0\n", + "9805 0\n", + "9806 0\n", + "9807 0\n", + "9808 0\n", + "9809 0\n", + "9810 0\n", + "9811 1\n", + "9812 0\n", + "9813 0\n", + "9814 0\n", + "9815 0\n", + "9816 0\n", + "9817 1\n", + "9818 0\n", + "9819 0\n", + "9820 0\n", + "9821 0\n", + "9822 0\n", + "9823 0\n", + "9824 0\n", + "9825 0\n", + "9826 0\n", + "9827 0\n", + "9828 0\n", + "9829 1\n", + "9830 0\n", + "9831 0\n", + "9832 0\n", + "9833 1\n", + "9834 0\n", + "9835 0\n", + "9836 0\n", + "9837 0\n", + "9838 0\n", + "9839 1\n", + "9840 0\n", + "9841 0\n", + "9842 0\n", + "9843 0\n", + "9844 0\n", + "9845 0\n", + "9846 0\n", + "9847 0\n", + "9848 0\n", + "9849 0\n", + "9850 0\n", + "9851 1\n", + "9852 0\n", + "9853 0\n", + "9854 0\n", + "9855 0\n", + "9856 0\n", + "9857 1\n", + "9858 0\n", + "9859 1\n", + "9860 0\n", + "9861 0\n", + "9862 0\n", + "9863 0\n", + "9864 0\n", + "9865 0\n", + "9866 0\n", + "9867 0\n", + "9868 0\n", + "9869 0\n", + "9870 0\n", + "9871 1\n", + "9872 0\n", + "9873 0\n", + "9874 0\n", + "9875 0\n", + "9876 0\n", + "9877 0\n", + "9878 0\n", + "9879 0\n", + "9880 0\n", + "9881 0\n", + "9882 0\n", + "9883 1\n", + "9884 0\n", + "9885 0\n", + "9886 0\n", + "9887 1\n", + "9888 0\n", + "9889 0\n", + "9890 0\n", + "9891 0\n", + "9892 0\n", + "9893 0\n", + "9894 0\n", + "9895 0\n", + "9896 0\n", + "9897 0\n", + "9898 0\n", + "9899 0\n", + "9900 0\n", + "9901 1\n", + "9902 0\n", + "9903 0\n", + "9904 0\n", + "9905 0\n", + "9906 0\n", + "9907 1\n", + "9908 0\n", + "9909 0\n", + "9910 0\n", + "9911 0\n", + "9912 0\n", + "9913 0\n", + "9914 0\n", + "9915 0\n", + "9916 0\n", + "9917 0\n", + "9918 0\n", + "9919 0\n", + "9920 0\n", + "9921 0\n", + "9922 0\n", + "9923 1\n", + "9924 0\n", + "9925 0\n", + "9926 0\n", + "9927 0\n", + "9928 0\n", + "9929 1\n", + "9930 0\n", + "9931 1\n", + "9932 0\n", + "9933 0\n", + "9934 0\n", + "9935 0\n", + "9936 0\n", + "9937 0\n", + "9938 0\n", + "9939 0\n", + "9940 0\n", + "9941 1\n", + "9942 0\n", + "9943 0\n", + "9944 0\n", + "9945 0\n", + "9946 0\n", + "9947 0\n", + "9948 0\n", + "9949 1\n", + "9950 0\n", + "9951 0\n", + "9952 0\n", + "9953 0\n", + "9954 0\n", + "9955 0\n", + "9956 0\n", + "9957 0\n", + "9958 0\n", + "9959 0\n", + "9960 0\n", + "9961 0\n", + "9962 0\n", + "9963 0\n", + "9964 0\n", + "9965 0\n", + "9966 0\n", + "9967 1\n", + "9968 0\n", + "9969 0\n", + "9970 0\n", + "9971 0\n", + "9972 0\n", + "9973 1\n", + "9974 0\n", + "9975 0\n", + "9976 0\n", + "9977 0\n", + "9978 0\n", + "9979 0\n", + "9980 0\n", + "9981 0\n", + "9982 0\n", + "9983 0\n", + "9984 0\n", + "9985 0\n", + "9986 0\n", + "9987 0\n", + "9988 0\n", + "9989 0\n", + "9990 0\n", + "9991 0\n", + "9992 0\n", + "9993 0\n", + "9994 0\n", + "9995 0\n", + "9996 0\n", + "9997 0\n", + "9998 0\n", + "9999 0\n", + "10000 0\n", + "10001 0\n", + "10002 0\n", + "10003 0\n", + "10004 0\n", + "10005 0\n", + "10006 0\n", + "10007 1\n", + "10008 0\n", + "10009 1\n", + "10010 0\n", + "10011 0\n", + "10012 0\n", + "10013 0\n", + "10014 0\n", + "10015 0\n", + "10016 0\n", + "10017 0\n", + "10018 0\n", + "10019 0\n", + "10020 0\n", + "10021 0\n", + "10022 0\n", + "10023 0\n", + "10024 0\n", + "10025 0\n", + "10026 0\n", + "10027 0\n", + "10028 0\n", + "10029 0\n", + "10030 0\n", + "10031 0\n", + "10032 0\n", + "10033 0\n", + "10034 0\n", + "10035 0\n", + "10036 0\n", + "10037 1\n", + "10038 0\n", + "10039 1\n", + "10040 0\n", + "10041 0\n", + "10042 0\n", + "10043 0\n", + "10044 0\n", + "10045 0\n", + "10046 0\n", + "10047 0\n", + "10048 0\n", + "10049 0\n", + "10050 0\n", + "10051 0\n", + "10052 0\n", + "10053 0\n", + "10054 0\n", + "10055 0\n", + "10056 0\n", + "10057 0\n", + "10058 0\n", + "10059 0\n", + "10060 0\n", + "10061 1\n", + "10062 0\n", + "10063 0\n", + "10064 0\n", + "10065 0\n", + "10066 0\n", + "10067 1\n", + "10068 0\n", + "10069 1\n", + "10070 0\n", + "10071 0\n", + "10072 0\n", + "10073 0\n", + "10074 0\n", + "10075 0\n", + "10076 0\n", + "10077 0\n", + "10078 0\n", + "10079 1\n", + "10080 0\n", + "10081 0\n", + "10082 0\n", + "10083 0\n", + "10084 0\n", + "10085 0\n", + "10086 0\n", + "10087 0\n", + "10088 0\n", + "10089 0\n", + "10090 0\n", + "10091 1\n", + "10092 0\n", + "10093 1\n", + "10094 0\n", + "10095 0\n", + "10096 0\n", + "10097 0\n", + "10098 0\n", + "10099 1\n", + "10100 0\n", + "10101 0\n", + "10102 0\n", + "10103 1\n", + "10104 0\n", + "10105 0\n", + "10106 0\n", + "10107 0\n", + "10108 0\n", + "10109 0\n", + "10110 0\n", + "10111 1\n", + "10112 0\n", + "10113 0\n", + "10114 0\n", + "10115 0\n", + "10116 0\n", + "10117 0\n", + "10118 0\n", + "10119 0\n", + "10120 0\n", + "10121 0\n", + "10122 0\n", + "10123 0\n", + "10124 0\n", + "10125 0\n", + "10126 0\n", + "10127 0\n", + "10128 0\n", + "10129 0\n", + "10130 0\n", + "10131 0\n", + "10132 0\n", + "10133 1\n", + "10134 0\n", + "10135 0\n", + "10136 0\n", + "10137 0\n", + "10138 0\n", + "10139 1\n", + "10140 0\n", + "10141 1\n", + "10142 0\n", + "10143 0\n", + "10144 0\n", + "10145 0\n", + "10146 0\n", + "10147 0\n", + "10148 0\n", + "10149 0\n", + "10150 0\n", + "10151 1\n", + "10152 0\n", + "10153 0\n", + "10154 0\n", + "10155 0\n", + "10156 0\n", + "10157 0\n", + "10158 0\n", + "10159 1\n", + "10160 0\n", + "10161 0\n", + "10162 0\n", + "10163 1\n", + "10164 0\n", + "10165 0\n", + "10166 0\n", + "10167 0\n", + "10168 0\n", + "10169 1\n", + "10170 0\n", + "10171 0\n", + "10172 0\n", + "10173 0\n", + "10174 0\n", + "10175 0\n", + "10176 0\n", + "10177 1\n", + "10178 0\n", + "10179 0\n", + "10180 0\n", + "10181 1\n", + "10182 0\n", + "10183 0\n", + "10184 0\n", + "10185 0\n", + "10186 0\n", + "10187 0\n", + "10188 0\n", + "10189 0\n", + "10190 0\n", + "10191 0\n", + "10192 0\n", + "10193 1\n", + "10194 0\n", + "10195 0\n", + "10196 0\n", + "10197 0\n", + "10198 0\n", + "10199 0\n", + "10200 0\n", + "10201 0\n", + "10202 0\n", + "10203 0\n", + "10204 0\n", + "10205 0\n", + "10206 0\n", + "10207 0\n", + "10208 0\n", + "10209 0\n", + "10210 0\n", + "10211 1\n", + "10212 0\n", + "10213 0\n", + "10214 0\n", + "10215 0\n", + "10216 0\n", + "10217 0\n", + "10218 0\n", + "10219 0\n", + "10220 0\n", + "10221 0\n", + "10222 0\n", + "10223 1\n", + "10224 0\n", + "10225 0\n", + "10226 0\n", + "10227 0\n", + "10228 0\n", + "10229 0\n", + "10230 0\n", + "10231 0\n", + "10232 0\n", + "10233 0\n", + "10234 0\n", + "10235 0\n", + "10236 0\n", + "10237 0\n", + "10238 0\n", + "10239 0\n", + "10240 0\n", + "10241 0\n", + "10242 0\n", + "10243 1\n", + "10244 0\n", + "10245 0\n", + "10246 0\n", + "10247 1\n", + "10248 0\n", + "10249 0\n", + "10250 0\n", + "10251 0\n", + "10252 0\n", + "10253 1\n", + "10254 0\n", + "10255 0\n", + "10256 0\n", + "10257 0\n", + "10258 0\n", + "10259 1\n", + "10260 0\n", + "10261 0\n", + "10262 0\n", + "10263 0\n", + "10264 0\n", + "10265 0\n", + "10266 0\n", + "10267 1\n", + "10268 0\n", + "10269 0\n", + "10270 0\n", + "10271 1\n", + "10272 0\n", + "10273 1\n", + "10274 0\n", + "10275 0\n", + "10276 0\n", + "10277 0\n", + "10278 0\n", + "10279 0\n", + "10280 0\n", + "10281 0\n", + "10282 0\n", + "10283 0\n", + "10284 0\n", + "10285 0\n", + "10286 0\n", + "10287 0\n", + "10288 0\n", + "10289 1\n", + "10290 0\n", + "10291 0\n", + "10292 0\n", + "10293 0\n", + "10294 0\n", + "10295 0\n", + "10296 0\n", + "10297 0\n", + "10298 0\n", + "10299 0\n", + "10300 0\n", + "10301 1\n", + "10302 0\n", + "10303 1\n", + "10304 0\n", + "10305 0\n", + "10306 0\n", + "10307 0\n", + "10308 0\n", + "10309 0\n", + "10310 0\n", + "10311 0\n", + "10312 0\n", + "10313 1\n", + "10314 0\n", + "10315 0\n", + "10316 0\n", + "10317 0\n", + "10318 0\n", + "10319 0\n", + "10320 0\n", + "10321 1\n", + "10322 0\n", + "10323 0\n", + "10324 0\n", + "10325 0\n", + "10326 0\n", + "10327 0\n", + "10328 0\n", + "10329 0\n", + "10330 0\n", + "10331 1\n", + "10332 0\n", + "10333 1\n", + "10334 0\n", + "10335 0\n", + "10336 0\n", + "10337 1\n", + "10338 0\n", + "10339 0\n", + "10340 0\n", + "10341 0\n", + "10342 0\n", + "10343 1\n", + "10344 0\n", + "10345 0\n", + "10346 0\n", + "10347 0\n", + "10348 0\n", + "10349 0\n", + "10350 0\n", + "10351 0\n", + "10352 0\n", + "10353 0\n", + "10354 0\n", + "10355 0\n", + "10356 0\n", + "10357 1\n", + "10358 0\n", + "10359 0\n", + "10360 0\n", + "10361 0\n", + "10362 0\n", + "10363 0\n", + "10364 0\n", + "10365 0\n", + "10366 0\n", + "10367 0\n", + "10368 0\n", + "10369 1\n", + "10370 0\n", + "10371 0\n", + "10372 0\n", + "10373 0\n", + "10374 0\n", + "10375 0\n", + "10376 0\n", + "10377 0\n", + "10378 0\n", + "10379 0\n", + "10380 0\n", + "10381 0\n", + "10382 0\n", + "10383 0\n", + "10384 0\n", + "10385 0\n", + "10386 0\n", + "10387 0\n", + "10388 0\n", + "10389 0\n", + "10390 0\n", + "10391 1\n", + "10392 0\n", + "10393 0\n", + "10394 0\n", + "10395 0\n", + "10396 0\n", + "10397 0\n", + "10398 0\n", + "10399 1\n", + "10400 0\n", + "10401 0\n", + "10402 0\n", + "10403 0\n", + "10404 0\n", + "10405 0\n", + "10406 0\n", + "10407 0\n", + "10408 0\n", + "10409 0\n", + "10410 0\n", + "10411 0\n", + "10412 0\n", + "10413 0\n", + "10414 0\n", + "10415 0\n", + "10416 0\n", + "10417 0\n", + "10418 0\n", + "10419 0\n", + "10420 0\n", + "10421 0\n", + "10422 0\n", + "10423 0\n", + "10424 0\n", + "10425 0\n", + "10426 0\n", + "10427 1\n", + "10428 0\n", + "10429 1\n", + "10430 0\n", + "10431 0\n", + "10432 0\n", + "10433 1\n", + "10434 0\n", + "10435 0\n", + "10436 0\n", + "10437 0\n", + "10438 0\n", + "10439 0\n", + "10440 0\n", + "10441 0\n", + "10442 0\n", + "10443 0\n", + "10444 0\n", + "10445 0\n", + "10446 0\n", + "10447 0\n", + "10448 0\n", + "10449 0\n", + "10450 0\n", + "10451 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10452 0\n", + "10453 1\n", + "10454 0\n", + "10455 0\n", + "10456 0\n", + "10457 1\n", + "10458 0\n", + "10459 1\n", + "10460 0\n", + "10461 0\n", + "10462 0\n", + "10463 1\n", + "10464 0\n", + "10465 0\n", + "10466 0\n", + "10467 0\n", + "10468 0\n", + "10469 0\n", + "10470 0\n", + "10471 0\n", + "10472 0\n", + "10473 0\n", + "10474 0\n", + "10475 0\n", + "10476 0\n", + "10477 1\n", + "10478 0\n", + "10479 0\n", + "10480 0\n", + "10481 0\n", + "10482 0\n", + "10483 0\n", + "10484 0\n", + "10485 0\n", + "10486 0\n", + "10487 1\n", + "10488 0\n", + "10489 0\n", + "10490 0\n", + "10491 0\n", + "10492 0\n", + "10493 0\n", + "10494 0\n", + "10495 0\n", + "10496 0\n", + "10497 0\n", + "10498 0\n", + "10499 1\n", + "10500 0\n", + "10501 1\n", + "10502 0\n", + "10503 0\n", + "10504 0\n", + "10505 0\n", + "10506 0\n", + "10507 0\n", + "10508 0\n", + "10509 0\n", + "10510 0\n", + "10511 0\n", + "10512 0\n", + "10513 1\n", + "10514 0\n", + "10515 0\n", + "10516 0\n", + "10517 0\n", + "10518 0\n", + "10519 0\n", + "10520 0\n", + "10521 0\n", + "10522 0\n", + "10523 0\n", + "10524 0\n", + "10525 0\n", + "10526 0\n", + "10527 0\n", + "10528 0\n", + "10529 1\n", + "10530 0\n", + "10531 1\n", + "10532 0\n", + "10533 0\n", + "10534 0\n", + "10535 0\n", + "10536 0\n", + "10537 0\n", + "10538 0\n", + "10539 0\n", + "10540 0\n", + "10541 0\n", + "10542 0\n", + "10543 0\n", + "10544 0\n", + "10545 0\n", + "10546 0\n", + "10547 0\n", + "10548 0\n", + "10549 0\n", + "10550 0\n", + "10551 0\n", + "10552 0\n", + "10553 0\n", + "10554 0\n", + "10555 0\n", + "10556 0\n", + "10557 0\n", + "10558 0\n", + "10559 1\n", + "10560 0\n", + "10561 0\n", + "10562 0\n", + "10563 0\n", + "10564 0\n", + "10565 0\n", + "10566 0\n", + "10567 1\n", + "10568 0\n", + "10569 0\n", + "10570 0\n", + "10571 0\n", + "10572 0\n", + "10573 0\n", + "10574 0\n", + "10575 0\n", + "10576 0\n", + "10577 0\n", + "10578 0\n", + "10579 0\n", + "10580 0\n", + "10581 0\n", + "10582 0\n", + "10583 0\n", + "10584 0\n", + "10585 0\n", + "10586 0\n", + "10587 0\n", + "10588 0\n", + "10589 1\n", + "10590 0\n", + "10591 0\n", + "10592 0\n", + "10593 0\n", + "10594 0\n", + "10595 0\n", + "10596 0\n", + "10597 1\n", + "10598 0\n", + "10599 0\n", + "10600 0\n", + "10601 1\n", + "10602 0\n", + "10603 0\n", + "10604 0\n", + "10605 0\n", + "10606 0\n", + "10607 1\n", + "10608 0\n", + "10609 0\n", + "10610 0\n", + "10611 0\n", + "10612 0\n", + "10613 1\n", + "10614 0\n", + "10615 0\n", + "10616 0\n", + "10617 0\n", + "10618 0\n", + "10619 0\n", + "10620 0\n", + "10621 0\n", + "10622 0\n", + "10623 0\n", + "10624 0\n", + "10625 0\n", + "10626 0\n", + "10627 1\n", + "10628 0\n", + "10629 0\n", + "10630 0\n", + "10631 1\n", + "10632 0\n", + "10633 0\n", + "10634 0\n", + "10635 0\n", + "10636 0\n", + "10637 0\n", + "10638 0\n", + "10639 1\n", + "10640 0\n", + "10641 0\n", + "10642 0\n", + "10643 0\n", + "10644 0\n", + "10645 0\n", + "10646 0\n", + "10647 0\n", + "10648 0\n", + "10649 0\n", + "10650 0\n", + "10651 1\n", + "10652 0\n", + "10653 0\n", + "10654 0\n", + "10655 0\n", + "10656 0\n", + "10657 1\n", + "10658 0\n", + "10659 0\n", + "10660 0\n", + "10661 0\n", + "10662 0\n", + "10663 1\n", + "10664 0\n", + "10665 0\n", + "10666 0\n", + "10667 1\n", + "10668 0\n", + "10669 0\n", + "10670 0\n", + "10671 0\n", + "10672 0\n", + "10673 0\n", + "10674 0\n", + "10675 0\n", + "10676 0\n", + "10677 0\n", + "10678 0\n", + "10679 0\n", + "10680 0\n", + "10681 0\n", + "10682 0\n", + "10683 0\n", + "10684 0\n", + "10685 0\n", + "10686 0\n", + "10687 1\n", + "10688 0\n", + "10689 0\n", + "10690 0\n", + "10691 1\n", + "10692 0\n", + "10693 0\n", + "10694 0\n", + "10695 0\n", + "10696 0\n", + "10697 0\n", + "10698 0\n", + "10699 0\n", + "10700 0\n", + "10701 0\n", + "10702 0\n", + "10703 0\n", + "10704 0\n", + "10705 0\n", + "10706 0\n", + "10707 0\n", + "10708 0\n", + "10709 1\n", + "10710 0\n", + "10711 1\n", + "10712 0\n", + "10713 0\n", + "10714 0\n", + "10715 0\n", + "10716 0\n", + "10717 0\n", + "10718 0\n", + "10719 0\n", + "10720 0\n", + "10721 0\n", + "10722 0\n", + "10723 1\n", + "10724 0\n", + "10725 0\n", + "10726 0\n", + "10727 0\n", + "10728 0\n", + "10729 1\n", + "10730 0\n", + "10731 0\n", + "10732 0\n", + "10733 1\n", + "10734 0\n", + "10735 0\n", + "10736 0\n", + "10737 0\n", + "10738 0\n", + "10739 1\n", + "10740 0\n", + "10741 0\n", + "10742 0\n", + "10743 0\n", + "10744 0\n", + "10745 0\n", + "10746 0\n", + "10747 0\n", + "10748 0\n", + "10749 0\n", + "10750 0\n", + "10751 0\n", + "10752 0\n", + "10753 1\n", + "10754 0\n", + "10755 0\n", + "10756 0\n", + "10757 0\n", + "10758 0\n", + "10759 0\n", + "10760 0\n", + "10761 0\n", + "10762 0\n", + "10763 0\n", + "10764 0\n", + "10765 0\n", + "10766 0\n", + "10767 0\n", + "10768 0\n", + "10769 0\n", + "10770 0\n", + "10771 1\n", + "10772 0\n", + "10773 0\n", + "10774 0\n", + "10775 0\n", + "10776 0\n", + "10777 0\n", + "10778 0\n", + "10779 0\n", + "10780 0\n", + "10781 1\n", + "10782 0\n", + "10783 0\n", + "10784 0\n", + "10785 0\n", + "10786 0\n", + "10787 0\n", + "10788 0\n", + "10789 1\n", + "10790 0\n", + "10791 0\n", + "10792 0\n", + "10793 0\n", + "10794 0\n", + "10795 0\n", + "10796 0\n", + "10797 0\n", + "10798 0\n", + "10799 1\n", + "10800 0\n", + "10801 0\n", + "10802 0\n", + "10803 0\n", + "10804 0\n", + "10805 0\n", + "10806 0\n", + "10807 0\n", + "10808 0\n", + "10809 0\n", + "10810 0\n", + "10811 0\n", + "10812 0\n", + "10813 0\n", + "10814 0\n", + "10815 0\n", + "10816 0\n", + "10817 0\n", + "10818 0\n", + "10819 0\n", + "10820 0\n", + "10821 0\n", + "10822 0\n", + "10823 0\n", + "10824 0\n", + "10825 0\n", + "10826 0\n", + "10827 0\n", + "10828 0\n", + "10829 0\n", + "10830 0\n", + "10831 1\n", + "10832 0\n", + "10833 0\n", + "10834 0\n", + "10835 0\n", + "10836 0\n", + "10837 1\n", + "10838 0\n", + "10839 0\n", + "10840 0\n", + "10841 0\n", + "10842 0\n", + "10843 0\n", + "10844 0\n", + "10845 0\n", + "10846 0\n", + "10847 1\n", + "10848 0\n", + "10849 0\n", + "10850 0\n", + "10851 0\n", + "10852 0\n", + "10853 1\n", + "10854 0\n", + "10855 0\n", + "10856 0\n", + "10857 0\n", + "10858 0\n", + "10859 1\n", + "10860 0\n", + "10861 1\n", + "10862 0\n", + "10863 0\n", + "10864 0\n", + "10865 0\n", + "10866 0\n", + "10867 1\n", + "10868 0\n", + "10869 0\n", + "10870 0\n", + "10871 0\n", + "10872 0\n", + "10873 0\n", + "10874 0\n", + "10875 0\n", + "10876 0\n", + "10877 0\n", + "10878 0\n", + "10879 0\n", + "10880 0\n", + "10881 0\n", + "10882 0\n", + "10883 1\n", + "10884 0\n", + "10885 0\n", + "10886 0\n", + "10887 0\n", + "10888 0\n", + "10889 1\n", + "10890 0\n", + "10891 1\n", + "10892 0\n", + "10893 0\n", + "10894 0\n", + "10895 0\n", + "10896 0\n", + "10897 0\n", + "10898 0\n", + "10899 0\n", + "10900 0\n", + "10901 0\n", + "10902 0\n", + "10903 1\n", + "10904 0\n", + "10905 0\n", + "10906 0\n", + "10907 0\n", + "10908 0\n", + "10909 1\n", + "10910 0\n", + "10911 0\n", + "10912 0\n", + "10913 0\n", + "10914 0\n", + "10915 0\n", + "10916 0\n", + "10917 0\n", + "10918 0\n", + "10919 0\n", + "10920 0\n", + "10921 0\n", + "10922 0\n", + "10923 0\n", + "10924 0\n", + "10925 0\n", + "10926 0\n", + "10927 0\n", + "10928 0\n", + "10929 0\n", + "10930 0\n", + "10931 0\n", + "10932 0\n", + "10933 0\n", + "10934 0\n", + "10935 0\n", + "10936 0\n", + "10937 1\n", + "10938 0\n", + "10939 1\n", + "10940 0\n", + "10941 0\n", + "10942 0\n", + "10943 0\n", + "10944 0\n", + "10945 0\n", + "10946 0\n", + "10947 0\n", + "10948 0\n", + "10949 1\n", + "10950 0\n", + "10951 0\n", + "10952 0\n", + "10953 0\n", + "10954 0\n", + "10955 0\n", + "10956 0\n", + "10957 1\n", + "10958 0\n", + "10959 0\n", + "10960 0\n", + "10961 0\n", + "10962 0\n", + "10963 0\n", + "10964 0\n", + "10965 0\n", + "10966 0\n", + "10967 0\n", + "10968 0\n", + "10969 0\n", + "10970 0\n", + "10971 0\n", + "10972 0\n", + "10973 1\n", + "10974 0\n", + "10975 0\n", + "10976 0\n", + "10977 0\n", + "10978 0\n", + "10979 1\n", + "10980 0\n", + "10981 0\n", + "10982 0\n", + "10983 0\n", + "10984 0\n", + "10985 0\n", + "10986 0\n", + "10987 1\n", + "10988 0\n", + "10989 0\n", + "10990 0\n", + "10991 0\n", + "10992 0\n", + "10993 1\n", + "10994 0\n", + "10995 0\n", + "10996 0\n", + "10997 0\n", + "10998 0\n", + "10999 0\n", + "11000 0\n", + "11001 0\n", + "11002 0\n", + "11003 1\n", + "11004 0\n", + "11005 0\n", + "11006 0\n", + "11007 0\n", + "11008 0\n", + "11009 0\n", + "11010 0\n", + "11011 0\n", + "11012 0\n", + "11013 0\n", + "11014 0\n", + "11015 0\n", + "11016 0\n", + "11017 0\n", + "11018 0\n", + "11019 0\n", + "11020 0\n", + "11021 0\n", + "11022 0\n", + "11023 0\n", + "11024 0\n", + "11025 0\n", + "11026 0\n", + "11027 1\n", + "11028 0\n", + "11029 0\n", + "11030 0\n", + "11031 0\n", + "11032 0\n", + "11033 0\n", + "11034 0\n", + "11035 0\n", + "11036 0\n", + "11037 0\n", + "11038 0\n", + "11039 0\n", + "11040 0\n", + "11041 0\n", + "11042 0\n", + "11043 0\n", + "11044 0\n", + "11045 0\n", + "11046 0\n", + "11047 1\n", + "11048 0\n", + "11049 0\n", + "11050 0\n", + "11051 0\n", + "11052 0\n", + "11053 0\n", + "11054 0\n", + "11055 0\n", + "11056 0\n", + "11057 1\n", + "11058 0\n", + "11059 1\n", + "11060 0\n", + "11061 0\n", + "11062 0\n", + "11063 0\n", + "11064 0\n", + "11065 0\n", + "11066 0\n", + "11067 0\n", + "11068 0\n", + "11069 1\n", + "11070 0\n", + "11071 1\n", + "11072 0\n", + "11073 0\n", + "11074 0\n", + "11075 0\n", + "11076 0\n", + "11077 0\n", + "11078 0\n", + "11079 0\n", + "11080 0\n", + "11081 0\n", + "11082 0\n", + "11083 1\n", + "11084 0\n", + "11085 0\n", + "11086 0\n", + "11087 1\n", + "11088 0\n", + "11089 0\n", + "11090 0\n", + "11091 0\n", + "11092 0\n", + "11093 1\n", + "11094 0\n", + "11095 0\n", + "11096 0\n", + "11097 0\n", + "11098 0\n", + "11099 0\n", + "11100 0\n", + "11101 0\n", + "11102 0\n", + "11103 0\n", + "11104 0\n", + "11105 0\n", + "11106 0\n", + "11107 0\n", + "11108 0\n", + "11109 0\n", + "11110 0\n", + "11111 0\n", + "11112 0\n", + "11113 1\n", + "11114 0\n", + "11115 0\n", + "11116 0\n", + "11117 1\n", + "11118 0\n", + "11119 1\n", + "11120 0\n", + "11121 0\n", + "11122 0\n", + "11123 0\n", + "11124 0\n", + "11125 0\n", + "11126 0\n", + "11127 0\n", + "11128 0\n", + "11129 0\n", + "11130 0\n", + "11131 1\n", + "11132 0\n", + "11133 0\n", + "11134 0\n", + "11135 0\n", + "11136 0\n", + "11137 0\n", + "11138 0\n", + "11139 0\n", + "11140 0\n", + "11141 0\n", + "11142 0\n", + "11143 0\n", + "11144 0\n", + "11145 0\n", + "11146 0\n", + "11147 0\n", + "11148 0\n", + "11149 1\n", + "11150 0\n", + "11151 0\n", + "11152 0\n", + "11153 0\n", + "11154 0\n", + "11155 0\n", + "11156 0\n", + "11157 0\n", + "11158 0\n", + "11159 1\n", + "11160 0\n", + "11161 1\n", + "11162 0\n", + "11163 0\n", + "11164 0\n", + "11165 0\n", + "11166 0\n", + "11167 0\n", + "11168 0\n", + "11169 0\n", + "11170 0\n", + "11171 1\n", + "11172 0\n", + "11173 1\n", + "11174 0\n", + "11175 0\n", + "11176 0\n", + "11177 1\n", + "11178 0\n", + "11179 0\n", + "11180 0\n", + "11181 0\n", + "11182 0\n", + "11183 0\n", + "11184 0\n", + "11185 0\n", + "11186 0\n", + "11187 0\n", + "11188 0\n", + "11189 0\n", + "11190 0\n", + "11191 0\n", + "11192 0\n", + "11193 0\n", + "11194 0\n", + "11195 0\n", + "11196 0\n", + "11197 1\n", + "11198 0\n", + "11199 0\n", + "11200 0\n", + "11201 0\n", + "11202 0\n", + "11203 0\n", + "11204 0\n", + "11205 0\n", + "11206 0\n", + "11207 0\n", + "11208 0\n", + "11209 0\n", + "11210 0\n", + "11211 0\n", + "11212 0\n", + "11213 1\n", + "11214 0\n", + "11215 0\n", + "11216 0\n", + "11217 0\n", + "11218 0\n", + "11219 0\n", + "11220 0\n", + "11221 0\n", + "11222 0\n", + "11223 0\n", + "11224 0\n", + "11225 0\n", + "11226 0\n", + "11227 0\n", + "11228 0\n", + "11229 0\n", + "11230 0\n", + "11231 0\n", + "11232 0\n", + "11233 0\n", + "11234 0\n", + "11235 0\n", + "11236 0\n", + "11237 0\n", + "11238 0\n", + "11239 1\n", + "11240 0\n", + "11241 0\n", + "11242 0\n", + "11243 1\n", + "11244 0\n", + "11245 0\n", + "11246 0\n", + "11247 0\n", + "11248 0\n", + "11249 0\n", + "11250 0\n", + "11251 1\n", + "11252 0\n", + "11253 0\n", + "11254 0\n", + "11255 0\n", + "11256 0\n", + "11257 1\n", + "11258 0\n", + "11259 0\n", + "11260 0\n", + "11261 1\n", + "11262 0\n", + "11263 0\n", + "11264 0\n", + "11265 0\n", + "11266 0\n", + "11267 0\n", + "11268 0\n", + "11269 0\n", + "11270 0\n", + "11271 0\n", + "11272 0\n", + "11273 1\n", + "11274 0\n", + "11275 0\n", + "11276 0\n", + "11277 0\n", + "11278 0\n", + "11279 1\n", + "11280 0\n", + "11281 0\n", + "11282 0\n", + "11283 0\n", + "11284 0\n", + "11285 0\n", + "11286 0\n", + "11287 1\n", + "11288 0\n", + "11289 0\n", + "11290 0\n", + "11291 0\n", + "11292 0\n", + "11293 0\n", + "11294 0\n", + "11295 0\n", + "11296 0\n", + "11297 0\n", + "11298 0\n", + "11299 1\n", + "11300 0\n", + "11301 0\n", + "11302 0\n", + "11303 0\n", + "11304 0\n", + "11305 0\n", + "11306 0\n", + "11307 0\n", + "11308 0\n", + "11309 0\n", + "11310 0\n", + "11311 1\n", + "11312 0\n", + "11313 0\n", + "11314 0\n", + "11315 0\n", + "11316 0\n", + "11317 1\n", + "11318 0\n", + "11319 0\n", + "11320 0\n", + "11321 1\n", + "11322 0\n", + "11323 0\n", + "11324 0\n", + "11325 0\n", + "11326 0\n", + "11327 0\n", + "11328 0\n", + "11329 1\n", + "11330 0\n", + "11331 0\n", + "11332 0\n", + "11333 0\n", + "11334 0\n", + "11335 0\n", + "11336 0\n", + "11337 0\n", + "11338 0\n", + "11339 0\n", + "11340 0\n", + "11341 0\n", + "11342 0\n", + "11343 0\n", + "11344 0\n", + "11345 0\n", + "11346 0\n", + "11347 0\n", + "11348 0\n", + "11349 0\n", + "11350 0\n", + "11351 1\n", + "11352 0\n", + "11353 1\n", + "11354 0\n", + "11355 0\n", + "11356 0\n", + "11357 0\n", + "11358 0\n", + "11359 0\n", + "11360 0\n", + "11361 0\n", + "11362 0\n", + "11363 0\n", + "11364 0\n", + "11365 0\n", + "11366 0\n", + "11367 0\n", + "11368 0\n", + "11369 1\n", + "11370 0\n", + "11371 0\n", + "11372 0\n", + "11373 0\n", + "11374 0\n", + "11375 0\n", + "11376 0\n", + "11377 0\n", + "11378 0\n", + "11379 0\n", + "11380 0\n", + "11381 0\n", + "11382 0\n", + "11383 1\n", + "11384 0\n", + "11385 0\n", + "11386 0\n", + "11387 0\n", + "11388 0\n", + "11389 0\n", + "11390 0\n", + "11391 0\n", + "11392 0\n", + "11393 1\n", + "11394 0\n", + "11395 0\n", + "11396 0\n", + "11397 0\n", + "11398 0\n", + "11399 1\n", + "11400 0\n", + "11401 0\n", + "11402 0\n", + "11403 0\n", + "11404 0\n", + "11405 0\n", + "11406 0\n", + "11407 0\n", + "11408 0\n", + "11409 0\n", + "11410 0\n", + "11411 1\n", + "11412 0\n", + "11413 0\n", + "11414 0\n", + "11415 0\n", + "11416 0\n", + "11417 0\n", + "11418 0\n", + "11419 0\n", + "11420 0\n", + "11421 0\n", + "11422 0\n", + "11423 1\n", + "11424 0\n", + "11425 0\n", + "11426 0\n", + "11427 0\n", + "11428 0\n", + "11429 0\n", + "11430 0\n", + "11431 0\n", + "11432 0\n", + "11433 0\n", + "11434 0\n", + "11435 0\n", + "11436 0\n", + "11437 1\n", + "11438 0\n", + "11439 0\n", + "11440 0\n", + "11441 0\n", + "11442 0\n", + "11443 1\n", + "11444 0\n", + "11445 0\n", + "11446 0\n", + "11447 1\n", + "11448 0\n", + "11449 0\n", + "11450 0\n", + "11451 0\n", + "11452 0\n", + "11453 0\n", + "11454 0\n", + "11455 0\n", + "11456 0\n", + "11457 0\n", + "11458 0\n", + "11459 0\n", + "11460 0\n", + "11461 0\n", + "11462 0\n", + "11463 0\n", + "11464 0\n", + "11465 0\n", + "11466 0\n", + "11467 1\n", + "11468 0\n", + "11469 0\n", + "11470 0\n", + "11471 1\n", + "11472 0\n", + "11473 0\n", + "11474 0\n", + "11475 0\n", + "11476 0\n", + "11477 0\n", + "11478 0\n", + "11479 0\n", + "11480 0\n", + "11481 0\n", + "11482 0\n", + "11483 1\n", + "11484 0\n", + "11485 0\n", + "11486 0\n", + "11487 0\n", + "11488 0\n", + "11489 1\n", + "11490 0\n", + "11491 1\n", + "11492 0\n", + "11493 0\n", + "11494 0\n", + "11495 0\n", + "11496 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "11497 1\n", + "11498 0\n", + "11499 0\n", + "11500 0\n", + "11501 0\n", + "11502 0\n", + "11503 1\n", + "11504 0\n", + "11505 0\n", + "11506 0\n", + "11507 0\n", + "11508 0\n", + "11509 0\n", + "11510 0\n", + "11511 0\n", + "11512 0\n", + "11513 0\n", + "11514 0\n", + "11515 0\n", + "11516 0\n", + "11517 0\n", + "11518 0\n", + "11519 1\n", + "11520 0\n", + "11521 0\n", + "11522 0\n", + "11523 0\n", + "11524 0\n", + "11525 0\n", + "11526 0\n", + "11527 1\n", + "11528 0\n", + "11529 0\n", + "11530 0\n", + "11531 0\n", + "11532 0\n", + "11533 0\n", + "11534 0\n", + "11535 0\n", + "11536 0\n", + "11537 0\n", + "11538 0\n", + "11539 0\n", + "11540 0\n", + "11541 0\n", + "11542 0\n", + "11543 0\n", + "11544 0\n", + "11545 0\n", + "11546 0\n", + "11547 0\n", + "11548 0\n", + "11549 1\n", + "11550 0\n", + "11551 1\n", + "11552 0\n", + "11553 0\n", + "11554 0\n", + "11555 0\n", + "11556 0\n", + "11557 0\n", + "11558 0\n", + "11559 0\n", + "11560 0\n", + "11561 0\n", + "11562 0\n", + "11563 0\n", + "11564 0\n", + "11565 0\n", + "11566 0\n", + "11567 0\n", + "11568 0\n", + "11569 0\n", + "11570 0\n", + "11571 0\n", + "11572 0\n", + "11573 0\n", + "11574 0\n", + "11575 0\n", + "11576 0\n", + "11577 0\n", + "11578 0\n", + "11579 1\n", + "11580 0\n", + "11581 0\n", + "11582 0\n", + "11583 0\n", + "11584 0\n", + "11585 0\n", + "11586 0\n", + "11587 1\n", + "11588 0\n", + "11589 0\n", + "11590 0\n", + "11591 0\n", + "11592 0\n", + "11593 1\n", + "11594 0\n", + "11595 0\n", + "11596 0\n", + "11597 1\n", + "11598 0\n", + "11599 0\n", + "11600 0\n", + "11601 0\n", + "11602 0\n", + "11603 0\n", + "11604 0\n", + "11605 0\n", + "11606 0\n", + "11607 0\n", + "11608 0\n", + "11609 0\n", + "11610 0\n", + "11611 0\n", + "11612 0\n", + "11613 0\n", + "11614 0\n", + "11615 0\n", + "11616 0\n", + "11617 1\n", + "11618 0\n", + "11619 0\n", + "11620 0\n", + "11621 1\n", + "11622 0\n", + "11623 0\n", + "11624 0\n", + "11625 0\n", + "11626 0\n", + "11627 0\n", + "11628 0\n", + "11629 0\n", + "11630 0\n", + "11631 0\n", + "11632 0\n", + "11633 1\n", + "11634 0\n", + "11635 0\n", + "11636 0\n", + "11637 0\n", + "11638 0\n", + "11639 0\n", + "11640 0\n", + "11641 0\n", + "11642 0\n", + "11643 0\n", + "11644 0\n", + "11645 0\n", + "11646 0\n", + "11647 0\n", + "11648 0\n", + "11649 0\n", + "11650 0\n", + "11651 0\n", + "11652 0\n", + "11653 0\n", + "11654 0\n", + "11655 0\n", + "11656 0\n", + "11657 1\n", + "11658 0\n", + "11659 0\n", + "11660 0\n", + "11661 0\n", + "11662 0\n", + "11663 0\n", + "11664 0\n", + "11665 0\n", + "11666 0\n", + "11667 0\n", + "11668 0\n", + "11669 0\n", + "11670 0\n", + "11671 0\n", + "11672 0\n", + "11673 0\n", + "11674 0\n", + "11675 0\n", + "11676 0\n", + "11677 1\n", + "11678 0\n", + "11679 0\n", + "11680 0\n", + "11681 1\n", + "11682 0\n", + "11683 0\n", + "11684 0\n", + "11685 0\n", + "11686 0\n", + "11687 0\n", + "11688 0\n", + "11689 1\n", + "11690 0\n", + "11691 0\n", + "11692 0\n", + "11693 0\n", + "11694 0\n", + "11695 0\n", + "11696 0\n", + "11697 0\n", + "11698 0\n", + "11699 1\n", + "11700 0\n", + "11701 1\n", + "11702 0\n", + "11703 0\n", + "11704 0\n", + "11705 0\n", + "11706 0\n", + "11707 0\n", + "11708 0\n", + "11709 0\n", + "11710 0\n", + "11711 0\n", + "11712 0\n", + "11713 0\n", + "11714 0\n", + "11715 0\n", + "11716 0\n", + "11717 1\n", + "11718 0\n", + "11719 1\n", + "11720 0\n", + "11721 0\n", + "11722 0\n", + "11723 0\n", + "11724 0\n", + "11725 0\n", + "11726 0\n", + "11727 0\n", + "11728 0\n", + "11729 0\n", + "11730 0\n", + "11731 1\n", + "11732 0\n", + "11733 0\n", + "11734 0\n", + "11735 0\n", + "11736 0\n", + "11737 0\n", + "11738 0\n", + "11739 0\n", + "11740 0\n", + "11741 0\n", + "11742 0\n", + "11743 1\n", + "11744 0\n", + "11745 0\n", + "11746 0\n", + "11747 0\n", + "11748 0\n", + "11749 0\n", + "11750 0\n", + "11751 0\n", + "11752 0\n", + "11753 0\n", + "11754 0\n", + "11755 0\n", + "11756 0\n", + "11757 0\n", + "11758 0\n", + "11759 0\n", + "11760 0\n", + "11761 0\n", + "11762 0\n", + "11763 0\n", + "11764 0\n", + "11765 0\n", + "11766 0\n", + "11767 0\n", + "11768 0\n", + "11769 0\n", + "11770 0\n", + "11771 0\n", + "11772 0\n", + "11773 0\n", + "11774 0\n", + "11775 0\n", + "11776 0\n", + "11777 1\n", + "11778 0\n", + "11779 1\n", + "11780 0\n", + "11781 0\n", + "11782 0\n", + "11783 1\n", + "11784 0\n", + "11785 0\n", + "11786 0\n", + "11787 0\n", + "11788 0\n", + "11789 1\n", + "11790 0\n", + "11791 0\n", + "11792 0\n", + "11793 0\n", + "11794 0\n", + "11795 0\n", + "11796 0\n", + "11797 0\n", + "11798 0\n", + "11799 0\n", + "11800 0\n", + "11801 1\n", + "11802 0\n", + "11803 0\n", + "11804 0\n", + "11805 0\n", + "11806 0\n", + "11807 1\n", + "11808 0\n", + "11809 0\n", + "11810 0\n", + "11811 0\n", + "11812 0\n", + "11813 1\n", + "11814 0\n", + "11815 0\n", + "11816 0\n", + "11817 0\n", + "11818 0\n", + "11819 0\n", + "11820 0\n", + "11821 1\n", + "11822 0\n", + "11823 0\n", + "11824 0\n", + "11825 0\n", + "11826 0\n", + "11827 1\n", + "11828 0\n", + "11829 0\n", + "11830 0\n", + "11831 1\n", + "11832 0\n", + "11833 1\n", + "11834 0\n", + "11835 0\n", + "11836 0\n", + "11837 0\n", + "11838 0\n", + "11839 1\n", + "11840 0\n", + "11841 0\n", + "11842 0\n", + "11843 0\n", + "11844 0\n", + "11845 0\n", + "11846 0\n", + "11847 0\n", + "11848 0\n", + "11849 0\n", + "11850 0\n", + "11851 0\n", + "11852 0\n", + "11853 0\n", + "11854 0\n", + "11855 0\n", + "11856 0\n", + "11857 0\n", + "11858 0\n", + "11859 0\n", + "11860 0\n", + "11861 0\n", + "11862 0\n", + "11863 1\n", + "11864 0\n", + "11865 0\n", + "11866 0\n", + "11867 1\n", + "11868 0\n", + "11869 0\n", + "11870 0\n", + "11871 0\n", + "11872 0\n", + "11873 0\n", + "11874 0\n", + "11875 0\n", + "11876 0\n", + "11877 0\n", + "11878 0\n", + "11879 0\n", + "11880 0\n", + "11881 0\n", + "11882 0\n", + "11883 0\n", + "11884 0\n", + "11885 0\n", + "11886 0\n", + "11887 1\n", + "11888 0\n", + "11889 0\n", + "11890 0\n", + "11891 0\n", + "11892 0\n", + "11893 0\n", + "11894 0\n", + "11895 0\n", + "11896 0\n", + "11897 1\n", + "11898 0\n", + "11899 0\n", + "11900 0\n", + "11901 0\n", + "11902 0\n", + "11903 1\n", + "11904 0\n", + "11905 0\n", + "11906 0\n", + "11907 0\n", + "11908 0\n", + "11909 1\n", + "11910 0\n", + "11911 0\n", + "11912 0\n", + "11913 0\n", + "11914 0\n", + "11915 0\n", + "11916 0\n", + "11917 0\n", + "11918 0\n", + "11919 0\n", + "11920 0\n", + "11921 0\n", + "11922 0\n", + "11923 1\n", + "11924 0\n", + "11925 0\n", + "11926 0\n", + "11927 1\n", + "11928 0\n", + "11929 0\n", + "11930 0\n", + "11931 0\n", + "11932 0\n", + "11933 1\n", + "11934 0\n", + "11935 0\n", + "11936 0\n", + "11937 0\n", + "11938 0\n", + "11939 1\n", + "11940 0\n", + "11941 1\n", + "11942 0\n", + "11943 0\n", + "11944 0\n", + "11945 0\n", + "11946 0\n", + "11947 0\n", + "11948 0\n", + "11949 0\n", + "11950 0\n", + "11951 0\n", + "11952 0\n", + "11953 1\n", + "11954 0\n", + "11955 0\n", + "11956 0\n", + "11957 0\n", + "11958 0\n", + "11959 1\n", + "11960 0\n", + "11961 0\n", + "11962 0\n", + "11963 0\n", + "11964 0\n", + "11965 0\n", + "11966 0\n", + "11967 0\n", + "11968 0\n", + "11969 1\n", + "11970 0\n", + "11971 1\n", + "11972 0\n", + "11973 0\n", + "11974 0\n", + "11975 0\n", + "11976 0\n", + "11977 0\n", + "11978 0\n", + "11979 0\n", + "11980 0\n", + "11981 1\n", + "11982 0\n", + "11983 0\n", + "11984 0\n", + "11985 0\n", + "11986 0\n", + "11987 1\n", + "11988 0\n", + "11989 0\n", + "11990 0\n", + "11991 0\n", + "11992 0\n", + "11993 0\n", + "11994 0\n", + "11995 0\n", + "11996 0\n", + "11997 0\n", + "11998 0\n", + "11999 0\n", + "12000 0\n", + "12001 0\n", + "12002 0\n", + "12003 0\n", + "12004 0\n", + "12005 0\n", + "12006 0\n", + "12007 1\n", + "12008 0\n", + "12009 0\n", + "12010 0\n", + "12011 1\n", + "12012 0\n", + "12013 0\n", + "12014 0\n", + "12015 0\n", + "12016 0\n", + "12017 0\n", + "12018 0\n", + "12019 0\n", + "12020 0\n", + "12021 0\n", + "12022 0\n", + "12023 0\n", + "12024 0\n", + "12025 0\n", + "12026 0\n", + "12027 0\n", + "12028 0\n", + "12029 0\n", + "12030 0\n", + "12031 0\n", + "12032 0\n", + "12033 0\n", + "12034 0\n", + "12035 0\n", + "12036 0\n", + "12037 1\n", + "12038 0\n", + "12039 0\n", + "12040 0\n", + "12041 1\n", + "12042 0\n", + "12043 1\n", + "12044 0\n", + "12045 0\n", + "12046 0\n", + "12047 0\n", + "12048 0\n", + "12049 1\n", + "12050 0\n", + "12051 0\n", + "12052 0\n", + "12053 0\n", + "12054 0\n", + "12055 0\n", + "12056 0\n", + "12057 0\n", + "12058 0\n", + "12059 0\n", + "12060 0\n", + "12061 0\n", + "12062 0\n", + "12063 0\n", + "12064 0\n", + "12065 0\n", + "12066 0\n", + "12067 0\n", + "12068 0\n", + "12069 0\n", + "12070 0\n", + "12071 1\n", + "12072 0\n", + "12073 1\n", + "12074 0\n", + "12075 0\n", + "12076 0\n", + "12077 0\n", + "12078 0\n", + "12079 0\n", + "12080 0\n", + "12081 0\n", + "12082 0\n", + "12083 0\n", + "12084 0\n", + "12085 0\n", + "12086 0\n", + "12087 0\n", + "12088 0\n", + "12089 0\n", + "12090 0\n", + "12091 0\n", + "12092 0\n", + "12093 0\n", + "12094 0\n", + "12095 0\n", + "12096 0\n", + "12097 1\n", + "12098 0\n", + "12099 0\n", + "12100 0\n", + "12101 1\n", + "12102 0\n", + "12103 0\n", + "12104 0\n", + "12105 0\n", + "12106 0\n", + "12107 1\n", + "12108 0\n", + "12109 1\n", + "12110 0\n", + "12111 0\n", + "12112 0\n", + "12113 1\n", + "12114 0\n", + "12115 0\n", + "12116 0\n", + "12117 0\n", + "12118 0\n", + "12119 1\n", + "12120 0\n", + "12121 0\n", + "12122 0\n", + "12123 0\n", + "12124 0\n", + "12125 0\n", + "12126 0\n", + "12127 0\n", + "12128 0\n", + "12129 0\n", + "12130 0\n", + "12131 0\n", + "12132 0\n", + "12133 0\n", + "12134 0\n", + "12135 0\n", + "12136 0\n", + "12137 0\n", + "12138 0\n", + "12139 0\n", + "12140 0\n", + "12141 0\n", + "12142 0\n", + "12143 1\n", + "12144 0\n", + "12145 0\n", + "12146 0\n", + "12147 0\n", + "12148 0\n", + "12149 1\n", + "12150 0\n", + "12151 0\n", + "12152 0\n", + "12153 0\n", + "12154 0\n", + "12155 0\n", + "12156 0\n", + "12157 1\n", + "12158 0\n", + "12159 0\n", + "12160 0\n", + "12161 1\n", + "12162 0\n", + "12163 1\n", + "12164 0\n", + "12165 0\n", + "12166 0\n", + "12167 0\n", + "12168 0\n", + "12169 0\n", + "12170 0\n", + "12171 0\n", + "12172 0\n", + "12173 0\n", + "12174 0\n", + "12175 0\n", + "12176 0\n", + "12177 0\n", + "12178 0\n", + "12179 0\n", + "12180 0\n", + "12181 0\n", + "12182 0\n", + "12183 0\n", + "12184 0\n", + "12185 0\n", + "12186 0\n", + "12187 0\n", + "12188 0\n", + "12189 0\n", + "12190 0\n", + "12191 0\n", + "12192 0\n", + "12193 0\n", + "12194 0\n", + "12195 0\n", + "12196 0\n", + "12197 1\n", + "12198 0\n", + "12199 0\n", + "12200 0\n", + "12201 0\n", + "12202 0\n", + "12203 1\n", + "12204 0\n", + "12205 0\n", + "12206 0\n", + "12207 0\n", + "12208 0\n", + "12209 0\n", + "12210 0\n", + "12211 1\n", + "12212 0\n", + "12213 0\n", + "12214 0\n", + "12215 0\n", + "12216 0\n", + "12217 0\n", + "12218 0\n", + "12219 0\n", + "12220 0\n", + "12221 0\n", + "12222 0\n", + "12223 0\n", + "12224 0\n", + "12225 0\n", + "12226 0\n", + "12227 1\n", + "12228 0\n", + "12229 0\n", + "12230 0\n", + "12231 0\n", + "12232 0\n", + "12233 0\n", + "12234 0\n", + "12235 0\n", + "12236 0\n", + "12237 0\n", + "12238 0\n", + "12239 1\n", + "12240 0\n", + "12241 1\n", + "12242 0\n", + "12243 0\n", + "12244 0\n", + "12245 0\n", + "12246 0\n", + "12247 0\n", + "12248 0\n", + "12249 0\n", + "12250 0\n", + "12251 1\n", + "12252 0\n", + "12253 1\n", + "12254 0\n", + "12255 0\n", + "12256 0\n", + "12257 0\n", + "12258 0\n", + "12259 0\n", + "12260 0\n", + "12261 0\n", + "12262 0\n", + "12263 1\n", + "12264 0\n", + "12265 0\n", + "12266 0\n", + "12267 0\n", + "12268 0\n", + "12269 1\n", + "12270 0\n", + "12271 0\n", + "12272 0\n", + "12273 0\n", + "12274 0\n", + "12275 0\n", + "12276 0\n", + "12277 1\n", + "12278 0\n", + "12279 0\n", + "12280 0\n", + "12281 1\n", + "12282 0\n", + "12283 0\n", + "12284 0\n", + "12285 0\n", + "12286 0\n", + "12287 0\n", + "12288 0\n", + "12289 1\n", + "12290 0\n", + "12291 0\n", + "12292 0\n", + "12293 0\n", + "12294 0\n", + "12295 0\n", + "12296 0\n", + "12297 0\n", + "12298 0\n", + "12299 0\n", + "12300 0\n", + "12301 1\n", + "12302 0\n", + "12303 0\n", + "12304 0\n", + "12305 0\n", + "12306 0\n", + "12307 0\n", + "12308 0\n", + "12309 0\n", + "12310 0\n", + "12311 0\n", + "12312 0\n", + "12313 0\n", + "12314 0\n", + "12315 0\n", + "12316 0\n", + "12317 0\n", + "12318 0\n", + "12319 0\n", + "12320 0\n", + "12321 0\n", + "12322 0\n", + "12323 1\n", + "12324 0\n", + "12325 0\n", + "12326 0\n", + "12327 0\n", + "12328 0\n", + "12329 1\n", + "12330 0\n", + "12331 0\n", + "12332 0\n", + "12333 0\n", + "12334 0\n", + "12335 0\n", + "12336 0\n", + "12337 0\n", + "12338 0\n", + "12339 0\n", + "12340 0\n", + "12341 0\n", + "12342 0\n", + "12343 1\n", + "12344 0\n", + "12345 0\n", + "12346 0\n", + "12347 1\n", + "12348 0\n", + "12349 0\n", + "12350 0\n", + "12351 0\n", + "12352 0\n", + "12353 0\n", + "12354 0\n", + "12355 0\n", + "12356 0\n", + "12357 0\n", + "12358 0\n", + "12359 0\n", + "12360 0\n", + "12361 0\n", + "12362 0\n", + "12363 0\n", + "12364 0\n", + "12365 0\n", + "12366 0\n", + "12367 0\n", + "12368 0\n", + "12369 0\n", + "12370 0\n", + "12371 0\n", + "12372 0\n", + "12373 1\n", + "12374 0\n", + "12375 0\n", + "12376 0\n", + "12377 1\n", + "12378 0\n", + "12379 1\n", + "12380 0\n", + "12381 0\n", + "12382 0\n", + "12383 0\n", + "12384 0\n", + "12385 0\n", + "12386 0\n", + "12387 0\n", + "12388 0\n", + "12389 0\n", + "12390 0\n", + "12391 1\n", + "12392 0\n", + "12393 0\n", + "12394 0\n", + "12395 0\n", + "12396 0\n", + "12397 0\n", + "12398 0\n", + "12399 0\n", + "12400 0\n", + "12401 1\n", + "12402 0\n", + "12403 0\n", + "12404 0\n", + "12405 0\n", + "12406 0\n", + "12407 0\n", + "12408 0\n", + "12409 1\n", + "12410 0\n", + "12411 0\n", + "12412 0\n", + "12413 1\n", + "12414 0\n", + "12415 0\n", + "12416 0\n", + "12417 0\n", + "12418 0\n", + "12419 0\n", + "12420 0\n", + "12421 1\n", + "12422 0\n", + "12423 0\n", + "12424 0\n", + "12425 0\n", + "12426 0\n", + "12427 0\n", + "12428 0\n", + "12429 0\n", + "12430 0\n", + "12431 0\n", + "12432 0\n", + "12433 1\n", + "12434 0\n", + "12435 0\n", + "12436 0\n", + "12437 1\n", + "12438 0\n", + "12439 0\n", + "12440 0\n", + "12441 0\n", + "12442 0\n", + "12443 0\n", + "12444 0\n", + "12445 0\n", + "12446 0\n", + "12447 0\n", + "12448 0\n", + "12449 0\n", + "12450 0\n", + "12451 1\n", + "12452 0\n", + "12453 0\n", + "12454 0\n", + "12455 0\n", + "12456 0\n", + "12457 1\n", + "12458 0\n", + "12459 0\n", + "12460 0\n", + "12461 0\n", + "12462 0\n", + "12463 0\n", + "12464 0\n", + "12465 0\n", + "12466 0\n", + "12467 0\n", + "12468 0\n", + "12469 0\n", + "12470 0\n", + "12471 0\n", + "12472 0\n", + "12473 1\n", + "12474 0\n", + "12475 0\n", + "12476 0\n", + "12477 0\n", + "12478 0\n", + "12479 1\n", + "12480 0\n", + "12481 0\n", + "12482 0\n", + "12483 0\n", + "12484 0\n", + "12485 0\n", + "12486 0\n", + "12487 1\n", + "12488 0\n", + "12489 0\n", + "12490 0\n", + "12491 1\n", + "12492 0\n", + "12493 0\n", + "12494 0\n", + "12495 0\n", + "12496 0\n", + "12497 1\n", + "12498 0\n", + "12499 0\n", + "12500 0\n", + "12501 0\n", + "12502 0\n", + "12503 1\n", + "12504 0\n", + "12505 0\n", + "12506 0\n", + "12507 0\n", + "12508 0\n", + "12509 0\n", + "12510 0\n", + "12511 1\n", + "12512 0\n", + "12513 0\n", + "12514 0\n", + "12515 0\n", + "12516 0\n", + "12517 1\n", + "12518 0\n", + "12519 0\n", + "12520 0\n", + "12521 0\n", + "12522 0\n", + "12523 0\n", + "12524 0\n", + "12525 0\n", + "12526 0\n", + "12527 1\n", + "12528 0\n", + "12529 0\n", + "12530 0\n", + "12531 0\n", + "12532 0\n", + "12533 0\n", + "12534 0\n", + "12535 0\n", + "12536 0\n", + "12537 0\n", + "12538 0\n", + "12539 1\n", + "12540 0\n", + "12541 1\n", + "12542 0\n", + "12543 0\n", + "12544 0\n", + "12545 0\n", + "12546 0\n", + "12547 1\n", + "12548 0\n", + "12549 0\n", + "12550 0\n", + "12551 0\n", + "12552 0\n", + "12553 1\n", + "12554 0\n", + "12555 0\n", + "12556 0\n", + "12557 0\n", + "12558 0\n", + "12559 0\n", + "12560 0\n", + "12561 0\n", + "12562 0\n", + "12563 0\n", + "12564 0\n", + "12565 0\n", + "12566 0\n", + "12567 0\n", + "12568 0\n", + "12569 1\n", + "12570 0\n", + "12571 0\n", + "12572 0\n", + "12573 0\n", + "12574 0\n", + "12575 0\n", + "12576 0\n", + "12577 1\n", + "12578 0\n", + "12579 0\n", + "12580 0\n", + "12581 0\n", + "12582 0\n", + "12583 1\n", + "12584 0\n", + "12585 0\n", + "12586 0\n", + "12587 0\n", + "12588 0\n", + "12589 1\n", + "12590 0\n", + "12591 0\n", + "12592 0\n", + "12593 0\n", + "12594 0\n", + "12595 0\n", + "12596 0\n", + "12597 0\n", + "12598 0\n", + "12599 0\n", + "12600 0\n", + "12601 1\n", + "12602 0\n", + "12603 0\n", + "12604 0\n", + "12605 0\n", + "12606 0\n", + "12607 0\n", + "12608 0\n", + "12609 0\n", + "12610 0\n", + "12611 1\n", + "12612 0\n", + "12613 1\n", + "12614 0\n", + "12615 0\n", + "12616 0\n", + "12617 0\n", + "12618 0\n", + "12619 1\n", + "12620 0\n", + "12621 0\n", + "12622 0\n", + "12623 0\n", + "12624 0\n", + "12625 0\n", + "12626 0\n", + "12627 0\n", + "12628 0\n", + "12629 0\n", + "12630 0\n", + "12631 0\n", + "12632 0\n", + "12633 0\n", + "12634 0\n", + "12635 0\n", + "12636 0\n", + "12637 1\n", + "12638 0\n", + "12639 0\n", + "12640 0\n", + "12641 1\n", + "12642 0\n", + "12643 0\n", + "12644 0\n", + "12645 0\n", + "12646 0\n", + "12647 1\n", + "12648 0\n", + "12649 0\n", + "12650 0\n", + "12651 0\n", + "12652 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "12653 1\n", + "12654 0\n", + "12655 0\n", + "12656 0\n", + "12657 0\n", + "12658 0\n", + "12659 1\n", + "12660 0\n", + "12661 0\n", + "12662 0\n", + "12663 0\n", + "12664 0\n", + "12665 0\n", + "12666 0\n", + "12667 0\n", + "12668 0\n", + "12669 0\n", + "12670 0\n", + "12671 1\n", + "12672 0\n", + "12673 0\n", + "12674 0\n", + "12675 0\n", + "12676 0\n", + "12677 0\n", + "12678 0\n", + "12679 0\n", + "12680 0\n", + "12681 0\n", + "12682 0\n", + "12683 0\n", + "12684 0\n", + "12685 0\n", + "12686 0\n", + "12687 0\n", + "12688 0\n", + "12689 1\n", + "12690 0\n", + "12691 0\n", + "12692 0\n", + "12693 0\n", + "12694 0\n", + "12695 0\n", + "12696 0\n", + "12697 1\n", + "12698 0\n", + "12699 0\n", + "12700 0\n", + "12701 0\n", + "12702 0\n", + "12703 1\n", + "12704 0\n", + "12705 0\n", + "12706 0\n", + "12707 0\n", + "12708 0\n", + "12709 0\n", + "12710 0\n", + "12711 0\n", + "12712 0\n", + "12713 1\n", + "12714 0\n", + "12715 0\n", + "12716 0\n", + "12717 0\n", + "12718 0\n", + "12719 0\n", + "12720 0\n", + "12721 1\n", + "12722 0\n", + "12723 0\n", + "12724 0\n", + "12725 0\n", + "12726 0\n", + "12727 0\n", + "12728 0\n", + "12729 0\n", + "12730 0\n", + "12731 0\n", + "12732 0\n", + "12733 0\n", + "12734 0\n", + "12735 0\n", + "12736 0\n", + "12737 0\n", + "12738 0\n", + "12739 1\n", + "12740 0\n", + "12741 0\n", + "12742 0\n", + "12743 1\n", + "12744 0\n", + "12745 0\n", + "12746 0\n", + "12747 0\n", + "12748 0\n", + "12749 0\n", + "12750 0\n", + "12751 0\n", + "12752 0\n", + "12753 0\n", + "12754 0\n", + "12755 0\n", + "12756 0\n", + "12757 1\n", + "12758 0\n", + "12759 0\n", + "12760 0\n", + "12761 0\n", + "12762 0\n", + "12763 1\n", + "12764 0\n", + "12765 0\n", + "12766 0\n", + "12767 0\n", + "12768 0\n", + "12769 0\n", + "12770 0\n", + "12771 0\n", + "12772 0\n", + "12773 0\n", + "12774 0\n", + "12775 0\n", + "12776 0\n", + "12777 0\n", + "12778 0\n", + "12779 0\n", + "12780 0\n", + "12781 1\n", + "12782 0\n", + "12783 0\n", + "12784 0\n", + "12785 0\n", + "12786 0\n", + "12787 0\n", + "12788 0\n", + "12789 0\n", + "12790 0\n", + "12791 1\n", + "12792 0\n", + "12793 0\n", + "12794 0\n", + "12795 0\n", + "12796 0\n", + "12797 0\n", + "12798 0\n", + "12799 1\n", + "12800 0\n", + "12801 0\n", + "12802 0\n", + "12803 0\n", + "12804 0\n", + "12805 0\n", + "12806 0\n", + "12807 0\n", + "12808 0\n", + "12809 1\n", + "12810 0\n", + "12811 0\n", + "12812 0\n", + "12813 0\n", + "12814 0\n", + "12815 0\n", + "12816 0\n", + "12817 0\n", + "12818 0\n", + "12819 0\n", + "12820 0\n", + "12821 1\n", + "12822 0\n", + "12823 1\n", + "12824 0\n", + "12825 0\n", + "12826 0\n", + "12827 0\n", + "12828 0\n", + "12829 1\n", + "12830 0\n", + "12831 0\n", + "12832 0\n", + "12833 0\n", + "12834 0\n", + "12835 0\n", + "12836 0\n", + "12837 0\n", + "12838 0\n", + "12839 0\n", + "12840 0\n", + "12841 1\n", + "12842 0\n", + "12843 0\n", + "12844 0\n", + "12845 0\n", + "12846 0\n", + "12847 0\n", + "12848 0\n", + "12849 0\n", + "12850 0\n", + "12851 0\n", + "12852 0\n", + "12853 1\n", + "12854 0\n", + "12855 0\n", + "12856 0\n", + "12857 0\n", + "12858 0\n", + "12859 0\n", + "12860 0\n", + "12861 0\n", + "12862 0\n", + "12863 0\n", + "12864 0\n", + "12865 0\n", + "12866 0\n", + "12867 0\n", + "12868 0\n", + "12869 0\n", + "12870 0\n", + "12871 0\n", + "12872 0\n", + "12873 0\n", + "12874 0\n", + "12875 0\n", + "12876 0\n", + "12877 0\n", + "12878 0\n", + "12879 0\n", + "12880 0\n", + "12881 0\n", + "12882 0\n", + "12883 0\n", + "12884 0\n", + "12885 0\n", + "12886 0\n", + "12887 0\n", + "12888 0\n", + "12889 1\n", + "12890 0\n", + "12891 0\n", + "12892 0\n", + "12893 1\n", + "12894 0\n", + "12895 0\n", + "12896 0\n", + "12897 0\n", + "12898 0\n", + "12899 1\n", + "12900 0\n", + "12901 0\n", + "12902 0\n", + "12903 0\n", + "12904 0\n", + "12905 0\n", + "12906 0\n", + "12907 1\n", + "12908 0\n", + "12909 0\n", + "12910 0\n", + "12911 1\n", + "12912 0\n", + "12913 0\n", + "12914 0\n", + "12915 0\n", + "12916 0\n", + "12917 1\n", + "12918 0\n", + "12919 1\n", + "12920 0\n", + "12921 0\n", + "12922 0\n", + "12923 1\n", + "12924 0\n", + "12925 0\n", + "12926 0\n", + "12927 0\n", + "12928 0\n", + "12929 0\n", + "12930 0\n", + "12931 0\n", + "12932 0\n", + "12933 0\n", + "12934 0\n", + "12935 0\n", + "12936 0\n", + "12937 0\n", + "12938 0\n", + "12939 0\n", + "12940 0\n", + "12941 1\n", + "12942 0\n", + "12943 0\n", + "12944 0\n", + "12945 0\n", + "12946 0\n", + "12947 0\n", + "12948 0\n", + "12949 0\n", + "12950 0\n", + "12951 0\n", + "12952 0\n", + "12953 1\n", + "12954 0\n", + "12955 0\n", + "12956 0\n", + "12957 0\n", + "12958 0\n", + "12959 1\n", + "12960 0\n", + "12961 0\n", + "12962 0\n", + "12963 0\n", + "12964 0\n", + "12965 0\n", + "12966 0\n", + "12967 1\n", + "12968 0\n", + "12969 0\n", + "12970 0\n", + "12971 0\n", + "12972 0\n", + "12973 1\n", + "12974 0\n", + "12975 0\n", + "12976 0\n", + "12977 0\n", + "12978 0\n", + "12979 1\n", + "12980 0\n", + "12981 0\n", + "12982 0\n", + "12983 1\n", + "12984 0\n", + "12985 0\n", + "12986 0\n", + "12987 0\n", + "12988 0\n", + "12989 0\n", + "12990 0\n", + "12991 0\n", + "12992 0\n", + "12993 0\n", + "12994 0\n", + "12995 0\n", + "12996 0\n", + "12997 0\n", + "12998 0\n", + "12999 0\n", + "13000 0\n", + "13001 1\n", + "13002 0\n", + "13003 1\n", + "13004 0\n", + "13005 0\n", + "13006 0\n", + "13007 1\n", + "13008 0\n", + "13009 1\n", + "13010 0\n", + "13011 0\n", + "13012 0\n", + "13013 0\n", + "13014 0\n", + "13015 0\n", + "13016 0\n", + "13017 0\n", + "13018 0\n", + "13019 0\n", + "13020 0\n", + "13021 0\n", + "13022 0\n", + "13023 0\n", + "13024 0\n", + "13025 0\n", + "13026 0\n", + "13027 0\n", + "13028 0\n", + "13029 0\n", + "13030 0\n", + "13031 0\n", + "13032 0\n", + "13033 1\n", + "13034 0\n", + "13035 0\n", + "13036 0\n", + "13037 1\n", + "13038 0\n", + "13039 0\n", + "13040 0\n", + "13041 0\n", + "13042 0\n", + "13043 1\n", + "13044 0\n", + "13045 0\n", + "13046 0\n", + "13047 0\n", + "13048 0\n", + "13049 1\n", + "13050 0\n", + "13051 0\n", + "13052 0\n", + "13053 0\n", + "13054 0\n", + "13055 0\n", + "13056 0\n", + "13057 0\n", + "13058 0\n", + "13059 0\n", + "13060 0\n", + "13061 0\n", + "13062 0\n", + "13063 1\n", + "13064 0\n", + "13065 0\n", + "13066 0\n", + "13067 0\n", + "13068 0\n", + "13069 0\n", + "13070 0\n", + "13071 0\n", + "13072 0\n", + "13073 0\n", + "13074 0\n", + "13075 0\n", + "13076 0\n", + "13077 0\n", + "13078 0\n", + "13079 0\n", + "13080 0\n", + "13081 0\n", + "13082 0\n", + "13083 0\n", + "13084 0\n", + "13085 0\n", + "13086 0\n", + "13087 0\n", + "13088 0\n", + "13089 0\n", + "13090 0\n", + "13091 0\n", + "13092 0\n", + "13093 1\n", + "13094 0\n", + "13095 0\n", + "13096 0\n", + "13097 0\n", + "13098 0\n", + "13099 1\n", + "13100 0\n", + "13101 0\n", + "13102 0\n", + "13103 1\n", + "13104 0\n", + "13105 0\n", + "13106 0\n", + "13107 0\n", + "13108 0\n", + "13109 1\n", + "13110 0\n", + "13111 0\n", + "13112 0\n", + "13113 0\n", + "13114 0\n", + "13115 0\n", + "13116 0\n", + "13117 0\n", + "13118 0\n", + "13119 0\n", + "13120 0\n", + "13121 1\n", + "13122 0\n", + "13123 0\n", + "13124 0\n", + "13125 0\n", + "13126 0\n", + "13127 1\n", + "13128 0\n", + "13129 0\n", + "13130 0\n", + "13131 0\n", + "13132 0\n", + "13133 0\n", + "13134 0\n", + "13135 0\n", + "13136 0\n", + "13137 0\n", + "13138 0\n", + "13139 0\n", + "13140 0\n", + "13141 0\n", + "13142 0\n", + "13143 0\n", + "13144 0\n", + "13145 0\n", + "13146 0\n", + "13147 1\n", + "13148 0\n", + "13149 0\n", + "13150 0\n", + "13151 1\n", + "13152 0\n", + "13153 0\n", + "13154 0\n", + "13155 0\n", + "13156 0\n", + "13157 0\n", + "13158 0\n", + "13159 1\n", + "13160 0\n", + "13161 0\n", + "13162 0\n", + "13163 1\n", + "13164 0\n", + "13165 0\n", + "13166 0\n", + "13167 0\n", + "13168 0\n", + "13169 0\n", + "13170 0\n", + "13171 1\n", + "13172 0\n", + "13173 0\n", + "13174 0\n", + "13175 0\n", + "13176 0\n", + "13177 1\n", + "13178 0\n", + "13179 0\n", + "13180 0\n", + "13181 0\n", + "13182 0\n", + "13183 1\n", + "13184 0\n", + "13185 0\n", + "13186 0\n", + "13187 1\n", + "13188 0\n", + "13189 0\n", + "13190 0\n", + "13191 0\n", + "13192 0\n", + "13193 0\n", + "13194 0\n", + "13195 0\n", + "13196 0\n", + "13197 0\n", + "13198 0\n", + "13199 0\n", + "13200 0\n", + "13201 0\n", + "13202 0\n", + "13203 0\n", + "13204 0\n", + "13205 0\n", + "13206 0\n", + "13207 0\n", + "13208 0\n", + "13209 0\n", + "13210 0\n", + "13211 0\n", + "13212 0\n", + "13213 0\n", + "13214 0\n", + "13215 0\n", + "13216 0\n", + "13217 1\n", + "13218 0\n", + "13219 1\n", + "13220 0\n", + "13221 0\n", + "13222 0\n", + "13223 0\n", + "13224 0\n", + "13225 0\n", + "13226 0\n", + "13227 0\n", + "13228 0\n", + "13229 1\n", + "13230 0\n", + "13231 0\n", + "13232 0\n", + "13233 0\n", + "13234 0\n", + "13235 0\n", + "13236 0\n", + "13237 0\n", + "13238 0\n", + "13239 0\n", + "13240 0\n", + "13241 1\n", + "13242 0\n", + "13243 0\n", + "13244 0\n", + "13245 0\n", + "13246 0\n", + "13247 0\n", + "13248 0\n", + "13249 1\n", + "13250 0\n", + "13251 0\n", + "13252 0\n", + "13253 0\n", + "13254 0\n", + "13255 0\n", + "13256 0\n", + "13257 0\n", + "13258 0\n", + "13259 1\n", + "13260 0\n", + "13261 0\n", + "13262 0\n", + "13263 0\n", + "13264 0\n", + "13265 0\n", + "13266 0\n", + "13267 1\n", + "13268 0\n", + "13269 0\n", + "13270 0\n", + "13271 0\n", + "13272 0\n", + "13273 0\n", + "13274 0\n", + "13275 0\n", + "13276 0\n", + "13277 0\n", + "13278 0\n", + "13279 0\n", + "13280 0\n", + "13281 0\n", + "13282 0\n", + "13283 0\n", + "13284 0\n", + "13285 0\n", + "13286 0\n", + "13287 0\n", + "13288 0\n", + "13289 0\n", + "13290 0\n", + "13291 1\n", + "13292 0\n", + "13293 0\n", + "13294 0\n", + "13295 0\n", + "13296 0\n", + "13297 1\n", + "13298 0\n", + "13299 0\n", + "13300 0\n", + "13301 0\n", + "13302 0\n", + "13303 0\n", + "13304 0\n", + "13305 0\n", + "13306 0\n", + "13307 0\n", + "13308 0\n", + "13309 1\n", + "13310 0\n", + "13311 0\n", + "13312 0\n", + "13313 1\n", + "13314 0\n", + "13315 0\n", + "13316 0\n", + "13317 0\n", + "13318 0\n", + "13319 0\n", + "13320 0\n", + "13321 0\n", + "13322 0\n", + "13323 0\n", + "13324 0\n", + "13325 0\n", + "13326 0\n", + "13327 1\n", + "13328 0\n", + "13329 0\n", + "13330 0\n", + "13331 1\n", + "13332 0\n", + "13333 0\n", + "13334 0\n", + "13335 0\n", + "13336 0\n", + "13337 1\n", + "13338 0\n", + "13339 1\n", + "13340 0\n", + "13341 0\n", + "13342 0\n", + "13343 0\n", + "13344 0\n", + "13345 0\n", + "13346 0\n", + "13347 0\n", + "13348 0\n", + "13349 0\n", + "13350 0\n", + "13351 0\n", + "13352 0\n", + "13353 0\n", + "13354 0\n", + "13355 0\n", + "13356 0\n", + "13357 0\n", + "13358 0\n", + "13359 0\n", + "13360 0\n", + "13361 0\n", + "13362 0\n", + "13363 0\n", + "13364 0\n", + "13365 0\n", + "13366 0\n", + "13367 1\n", + "13368 0\n", + "13369 0\n", + "13370 0\n", + "13371 0\n", + "13372 0\n", + "13373 0\n", + "13374 0\n", + "13375 0\n", + "13376 0\n", + "13377 0\n", + "13378 0\n", + "13379 0\n", + "13380 0\n", + "13381 1\n", + "13382 0\n", + "13383 0\n", + "13384 0\n", + "13385 0\n", + "13386 0\n", + "13387 0\n", + "13388 0\n", + "13389 0\n", + "13390 0\n", + "13391 0\n", + "13392 0\n", + "13393 0\n", + "13394 0\n", + "13395 0\n", + "13396 0\n", + "13397 1\n", + "13398 0\n", + "13399 1\n", + "13400 0\n", + "13401 0\n", + "13402 0\n", + "13403 0\n", + "13404 0\n", + "13405 0\n", + "13406 0\n", + "13407 0\n", + "13408 0\n", + "13409 0\n", + "13410 0\n", + "13411 1\n", + "13412 0\n", + "13413 0\n", + "13414 0\n", + "13415 0\n", + "13416 0\n", + "13417 1\n", + "13418 0\n", + "13419 0\n", + "13420 0\n", + "13421 1\n", + "13422 0\n", + "13423 0\n", + "13424 0\n", + "13425 0\n", + "13426 0\n", + "13427 0\n", + "13428 0\n", + "13429 0\n", + "13430 0\n", + "13431 0\n", + "13432 0\n", + "13433 0\n", + "13434 0\n", + "13435 0\n", + "13436 0\n", + "13437 0\n", + "13438 0\n", + "13439 0\n", + "13440 0\n", + "13441 1\n", + "13442 0\n", + "13443 0\n", + "13444 0\n", + "13445 0\n", + "13446 0\n", + "13447 0\n", + "13448 0\n", + "13449 0\n", + "13450 0\n", + "13451 1\n", + "13452 0\n", + "13453 0\n", + "13454 0\n", + "13455 0\n", + "13456 0\n", + "13457 1\n", + "13458 0\n", + "13459 0\n", + "13460 0\n", + "13461 0\n", + "13462 0\n", + "13463 1\n", + "13464 0\n", + "13465 0\n", + "13466 0\n", + "13467 0\n", + "13468 0\n", + "13469 1\n", + "13470 0\n", + "13471 0\n", + "13472 0\n", + "13473 0\n", + "13474 0\n", + "13475 0\n", + "13476 0\n", + "13477 1\n", + "13478 0\n", + "13479 0\n", + "13480 0\n", + "13481 0\n", + "13482 0\n", + "13483 0\n", + "13484 0\n", + "13485 0\n", + "13486 0\n", + "13487 1\n", + "13488 0\n", + "13489 0\n", + "13490 0\n", + "13491 0\n", + "13492 0\n", + "13493 0\n", + "13494 0\n", + "13495 0\n", + "13496 0\n", + "13497 0\n", + "13498 0\n", + "13499 1\n", + "13500 0\n", + "13501 0\n", + "13502 0\n", + "13503 0\n", + "13504 0\n", + "13505 0\n", + "13506 0\n", + "13507 0\n", + "13508 0\n", + "13509 0\n", + "13510 0\n", + "13511 0\n", + "13512 0\n", + "13513 1\n", + "13514 0\n", + "13515 0\n", + "13516 0\n", + "13517 0\n", + "13518 0\n", + "13519 0\n", + "13520 0\n", + "13521 0\n", + "13522 0\n", + "13523 1\n", + "13524 0\n", + "13525 0\n", + "13526 0\n", + "13527 0\n", + "13528 0\n", + "13529 0\n", + "13530 0\n", + "13531 0\n", + "13532 0\n", + "13533 0\n", + "13534 0\n", + "13535 0\n", + "13536 0\n", + "13537 1\n", + "13538 0\n", + "13539 0\n", + "13540 0\n", + "13541 0\n", + "13542 0\n", + "13543 0\n", + "13544 0\n", + "13545 0\n", + "13546 0\n", + "13547 0\n", + "13548 0\n", + "13549 0\n", + "13550 0\n", + "13551 0\n", + "13552 0\n", + "13553 1\n", + "13554 0\n", + "13555 0\n", + "13556 0\n", + "13557 0\n", + "13558 0\n", + "13559 0\n", + "13560 0\n", + "13561 0\n", + "13562 0\n", + "13563 0\n", + "13564 0\n", + "13565 0\n", + "13566 0\n", + "13567 1\n", + "13568 0\n", + "13569 0\n", + "13570 0\n", + "13571 0\n", + "13572 0\n", + "13573 0\n", + "13574 0\n", + "13575 0\n", + "13576 0\n", + "13577 1\n", + "13578 0\n", + "13579 0\n", + "13580 0\n", + "13581 0\n", + "13582 0\n", + "13583 0\n", + "13584 0\n", + "13585 0\n", + "13586 0\n", + "13587 0\n", + "13588 0\n", + "13589 0\n", + "13590 0\n", + "13591 1\n", + "13592 0\n", + "13593 0\n", + "13594 0\n", + "13595 0\n", + "13596 0\n", + "13597 1\n", + "13598 0\n", + "13599 0\n", + "13600 0\n", + "13601 0\n", + "13602 0\n", + "13603 0\n", + "13604 0\n", + "13605 0\n", + "13606 0\n", + "13607 0\n", + "13608 0\n", + "13609 0\n", + "13610 0\n", + "13611 0\n", + "13612 0\n", + "13613 1\n", + "13614 0\n", + "13615 0\n", + "13616 0\n", + "13617 0\n", + "13618 0\n", + "13619 1\n", + "13620 0\n", + "13621 0\n", + "13622 0\n", + "13623 0\n", + "13624 0\n", + "13625 0\n", + "13626 0\n", + "13627 1\n", + "13628 0\n", + "13629 0\n", + "13630 0\n", + "13631 0\n", + "13632 0\n", + "13633 1\n", + "13634 0\n", + "13635 0\n", + "13636 0\n", + "13637 0\n", + "13638 0\n", + "13639 0\n", + "13640 0\n", + "13641 0\n", + "13642 0\n", + "13643 0\n", + "13644 0\n", + "13645 0\n", + "13646 0\n", + "13647 0\n", + "13648 0\n", + "13649 1\n", + "13650 0\n", + "13651 0\n", + "13652 0\n", + "13653 0\n", + "13654 0\n", + "13655 0\n", + "13656 0\n", + "13657 0\n", + "13658 0\n", + "13659 0\n", + "13660 0\n", + "13661 0\n", + "13662 0\n", + "13663 0\n", + "13664 0\n", + "13665 0\n", + "13666 0\n", + "13667 0\n", + "13668 0\n", + "13669 1\n", + "13670 0\n", + "13671 0\n", + "13672 0\n", + "13673 0\n", + "13674 0\n", + "13675 0\n", + "13676 0\n", + "13677 0\n", + "13678 0\n", + "13679 1\n", + "13680 0\n", + "13681 1\n", + "13682 0\n", + "13683 0\n", + "13684 0\n", + "13685 0\n", + "13686 0\n", + "13687 1\n", + "13688 0\n", + "13689 0\n", + "13690 0\n", + "13691 1\n", + "13692 0\n", + "13693 1\n", + "13694 0\n", + "13695 0\n", + "13696 0\n", + "13697 1\n", + "13698 0\n", + "13699 0\n", + "13700 0\n", + "13701 0\n", + "13702 0\n", + "13703 0\n", + "13704 0\n", + "13705 0\n", + "13706 0\n", + "13707 0\n", + "13708 0\n", + "13709 1\n", + "13710 0\n", + "13711 1\n", + "13712 0\n", + "13713 0\n", + "13714 0\n", + "13715 0\n", + "13716 0\n", + "13717 0\n", + "13718 0\n", + "13719 0\n", + "13720 0\n", + "13721 1\n", + "13722 0\n", + "13723 1\n", + "13724 0\n", + "13725 0\n", + "13726 0\n", + "13727 0\n", + "13728 0\n", + "13729 1\n", + "13730 0\n", + "13731 0\n", + "13732 0\n", + "13733 0\n", + "13734 0\n", + "13735 0\n", + "13736 0\n", + "13737 0\n", + "13738 0\n", + "13739 0\n", + "13740 0\n", + "13741 0\n", + "13742 0\n", + "13743 0\n", + "13744 0\n", + "13745 0\n", + "13746 0\n", + "13747 0\n", + "13748 0\n", + "13749 0\n", + "13750 0\n", + "13751 1\n", + "13752 0\n", + "13753 0\n", + "13754 0\n", + "13755 0\n", + "13756 0\n", + "13757 1\n", + "13758 0\n", + "13759 1\n", + "13760 0\n", + "13761 0\n", + "13762 0\n", + "13763 1\n", + "13764 0\n", + "13765 0\n", + "13766 0\n", + "13767 0\n", + "13768 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13769 0\n", + "13770 0\n", + "13771 0\n", + "13772 0\n", + "13773 0\n", + "13774 0\n", + "13775 0\n", + "13776 0\n", + "13777 0\n", + "13778 0\n", + "13779 0\n", + "13780 0\n", + "13781 1\n", + "13782 0\n", + "13783 0\n", + "13784 0\n", + "13785 0\n", + "13786 0\n", + "13787 0\n", + "13788 0\n", + "13789 1\n", + "13790 0\n", + "13791 0\n", + "13792 0\n", + "13793 0\n", + "13794 0\n", + "13795 0\n", + "13796 0\n", + "13797 0\n", + "13798 0\n", + "13799 1\n", + "13800 0\n", + "13801 0\n", + "13802 0\n", + "13803 0\n", + "13804 0\n", + "13805 0\n", + "13806 0\n", + "13807 1\n", + "13808 0\n", + "13809 0\n", + "13810 0\n", + "13811 0\n", + "13812 0\n", + "13813 0\n", + "13814 0\n", + "13815 0\n", + "13816 0\n", + "13817 0\n", + "13818 0\n", + "13819 0\n", + "13820 0\n", + "13821 0\n", + "13822 0\n", + "13823 0\n", + "13824 0\n", + "13825 0\n", + "13826 0\n", + "13827 0\n", + "13828 0\n", + "13829 1\n", + "13830 0\n", + "13831 1\n", + "13832 0\n", + "13833 0\n", + "13834 0\n", + "13835 0\n", + "13836 0\n", + "13837 0\n", + "13838 0\n", + "13839 0\n", + "13840 0\n", + "13841 1\n", + "13842 0\n", + "13843 0\n", + "13844 0\n", + "13845 0\n", + "13846 0\n", + "13847 0\n", + "13848 0\n", + "13849 0\n", + "13850 0\n", + "13851 0\n", + "13852 0\n", + "13853 0\n", + "13854 0\n", + "13855 0\n", + "13856 0\n", + "13857 0\n", + "13858 0\n", + "13859 1\n", + "13860 0\n", + "13861 0\n", + "13862 0\n", + "13863 0\n", + "13864 0\n", + "13865 0\n", + "13866 0\n", + "13867 0\n", + "13868 0\n", + "13869 0\n", + "13870 0\n", + "13871 0\n", + "13872 0\n", + "13873 1\n", + "13874 0\n", + "13875 0\n", + "13876 0\n", + "13877 1\n", + "13878 0\n", + "13879 1\n", + "13880 0\n", + "13881 0\n", + "13882 0\n", + "13883 1\n", + "13884 0\n", + "13885 0\n", + "13886 0\n", + "13887 0\n", + "13888 0\n", + "13889 0\n", + "13890 0\n", + "13891 0\n", + "13892 0\n", + "13893 0\n", + "13894 0\n", + "13895 0\n", + "13896 0\n", + "13897 0\n", + "13898 0\n", + "13899 0\n", + "13900 0\n", + "13901 1\n", + "13902 0\n", + "13903 1\n", + "13904 0\n", + "13905 0\n", + "13906 0\n", + "13907 1\n", + "13908 0\n", + "13909 0\n", + "13910 0\n", + "13911 0\n", + "13912 0\n", + "13913 1\n", + "13914 0\n", + "13915 0\n", + "13916 0\n", + "13917 0\n", + "13918 0\n", + "13919 0\n", + "13920 0\n", + "13921 1\n", + "13922 0\n", + "13923 0\n", + "13924 0\n", + "13925 0\n", + "13926 0\n", + "13927 0\n", + "13928 0\n", + "13929 0\n", + "13930 0\n", + "13931 1\n", + "13932 0\n", + "13933 1\n", + "13934 0\n", + "13935 0\n", + "13936 0\n", + "13937 0\n", + "13938 0\n", + "13939 0\n", + "13940 0\n", + "13941 0\n", + "13942 0\n", + "13943 0\n", + "13944 0\n", + "13945 0\n", + "13946 0\n", + "13947 0\n", + "13948 0\n", + "13949 0\n", + "13950 0\n", + "13951 0\n", + "13952 0\n", + "13953 0\n", + "13954 0\n", + "13955 0\n", + "13956 0\n", + "13957 0\n", + "13958 0\n", + "13959 0\n", + "13960 0\n", + "13961 0\n", + "13962 0\n", + "13963 1\n", + "13964 0\n", + "13965 0\n", + "13966 0\n", + "13967 1\n", + "13968 0\n", + "13969 0\n", + "13970 0\n", + "13971 0\n", + "13972 0\n", + "13973 0\n", + "13974 0\n", + "13975 0\n", + "13976 0\n", + "13977 0\n", + "13978 0\n", + "13979 0\n", + "13980 0\n", + "13981 0\n", + "13982 0\n", + "13983 0\n", + "13984 0\n", + "13985 0\n", + "13986 0\n", + "13987 0\n", + "13988 0\n", + "13989 0\n", + "13990 0\n", + "13991 0\n", + "13992 0\n", + "13993 0\n", + "13994 0\n", + "13995 0\n", + "13996 0\n", + "13997 1\n", + "13998 0\n", + "13999 1\n", + "14000 0\n", + "14001 0\n", + "14002 0\n", + "14003 0\n", + "14004 0\n", + "14005 0\n", + "14006 0\n", + "14007 0\n", + "14008 0\n", + "14009 1\n", + "14010 0\n", + "14011 1\n", + "14012 0\n", + "14013 0\n", + "14014 0\n", + "14015 0\n", + "14016 0\n", + "14017 0\n", + "14018 0\n", + "14019 0\n", + "14020 0\n", + "14021 0\n", + "14022 0\n", + "14023 0\n", + "14024 0\n", + "14025 0\n", + "14026 0\n", + "14027 0\n", + "14028 0\n", + "14029 1\n", + "14030 0\n", + "14031 0\n", + "14032 0\n", + "14033 1\n", + "14034 0\n", + "14035 0\n", + "14036 0\n", + "14037 0\n", + "14038 0\n", + "14039 0\n", + "14040 0\n", + "14041 0\n", + "14042 0\n", + "14043 0\n", + "14044 0\n", + "14045 0\n", + "14046 0\n", + "14047 0\n", + "14048 0\n", + "14049 0\n", + "14050 0\n", + "14051 1\n", + "14052 0\n", + "14053 0\n", + "14054 0\n", + "14055 0\n", + "14056 0\n", + "14057 1\n", + "14058 0\n", + "14059 0\n", + "14060 0\n", + "14061 0\n", + "14062 0\n", + "14063 0\n", + "14064 0\n", + "14065 0\n", + "14066 0\n", + "14067 0\n", + "14068 0\n", + "14069 0\n", + "14070 0\n", + "14071 1\n", + "14072 0\n", + "14073 0\n", + "14074 0\n", + "14075 0\n", + "14076 0\n", + "14077 0\n", + "14078 0\n", + "14079 0\n", + "14080 0\n", + "14081 1\n", + "14082 0\n", + "14083 1\n", + "14084 0\n", + "14085 0\n", + "14086 0\n", + "14087 1\n", + "14088 0\n", + "14089 0\n", + "14090 0\n", + "14091 0\n", + "14092 0\n", + "14093 0\n", + "14094 0\n", + "14095 0\n", + "14096 0\n", + "14097 0\n", + "14098 0\n", + "14099 0\n", + "14100 0\n", + "14101 0\n", + "14102 0\n", + "14103 0\n", + "14104 0\n", + "14105 0\n", + "14106 0\n", + "14107 1\n", + "14108 0\n", + "14109 0\n", + "14110 0\n", + "14111 0\n", + "14112 0\n", + "14113 0\n", + "14114 0\n", + "14115 0\n", + "14116 0\n", + "14117 0\n", + "14118 0\n", + "14119 0\n", + "14120 0\n", + "14121 0\n", + "14122 0\n", + "14123 0\n", + "14124 0\n", + "14125 0\n", + "14126 0\n", + "14127 0\n", + "14128 0\n", + "14129 0\n", + "14130 0\n", + "14131 0\n", + "14132 0\n", + "14133 0\n", + "14134 0\n", + "14135 0\n", + "14136 0\n", + "14137 0\n", + "14138 0\n", + "14139 0\n", + "14140 0\n", + "14141 0\n", + "14142 0\n", + "14143 1\n", + "14144 0\n", + "14145 0\n", + "14146 0\n", + "14147 0\n", + "14148 0\n", + "14149 1\n", + "14150 0\n", + "14151 0\n", + "14152 0\n", + "14153 1\n", + "14154 0\n", + "14155 0\n", + "14156 0\n", + "14157 0\n", + "14158 0\n", + "14159 1\n", + "14160 0\n", + "14161 0\n", + "14162 0\n", + "14163 0\n", + "14164 0\n", + "14165 0\n", + "14166 0\n", + "14167 0\n", + "14168 0\n", + "14169 0\n", + "14170 0\n", + "14171 0\n", + "14172 0\n", + "14173 1\n", + "14174 0\n", + "14175 0\n", + "14176 0\n", + "14177 1\n", + "14178 0\n", + "14179 0\n", + "14180 0\n", + "14181 0\n", + "14182 0\n", + "14183 0\n", + "14184 0\n", + "14185 0\n", + "14186 0\n", + "14187 0\n", + "14188 0\n", + "14189 0\n", + "14190 0\n", + "14191 0\n", + "14192 0\n", + "14193 0\n", + "14194 0\n", + "14195 0\n", + "14196 0\n", + "14197 1\n", + "14198 0\n", + "14199 0\n", + "14200 0\n", + "14201 0\n", + "14202 0\n", + "14203 0\n", + "14204 0\n", + "14205 0\n", + "14206 0\n", + "14207 1\n", + "14208 0\n", + "14209 0\n", + "14210 0\n", + "14211 0\n", + "14212 0\n", + "14213 0\n", + "14214 0\n", + "14215 0\n", + "14216 0\n", + "14217 0\n", + "14218 0\n", + "14219 0\n", + "14220 0\n", + "14221 1\n", + "14222 0\n", + "14223 0\n", + "14224 0\n", + "14225 0\n", + "14226 0\n", + "14227 0\n", + "14228 0\n", + "14229 0\n", + "14230 0\n", + "14231 0\n", + "14232 0\n", + "14233 0\n", + "14234 0\n", + "14235 0\n", + "14236 0\n", + "14237 0\n", + "14238 0\n", + "14239 0\n", + "14240 0\n", + "14241 0\n", + "14242 0\n", + "14243 1\n", + "14244 0\n", + "14245 0\n", + "14246 0\n", + "14247 0\n", + "14248 0\n", + "14249 1\n", + "14250 0\n", + "14251 1\n", + "14252 0\n", + "14253 0\n", + "14254 0\n", + "14255 0\n", + "14256 0\n", + "14257 0\n", + "14258 0\n", + "14259 0\n", + "14260 0\n", + "14261 0\n", + "14262 0\n", + "14263 0\n", + "14264 0\n", + "14265 0\n", + "14266 0\n", + "14267 0\n", + "14268 0\n", + "14269 0\n", + "14270 0\n", + "14271 0\n", + "14272 0\n", + "14273 0\n", + "14274 0\n", + "14275 0\n", + "14276 0\n", + "14277 0\n", + "14278 0\n", + "14279 0\n", + "14280 0\n", + "14281 1\n", + "14282 0\n", + "14283 0\n", + "14284 0\n", + "14285 0\n", + "14286 0\n", + "14287 0\n", + "14288 0\n", + "14289 0\n", + "14290 0\n", + "14291 0\n", + "14292 0\n", + "14293 1\n", + "14294 0\n", + "14295 0\n", + "14296 0\n", + "14297 0\n", + "14298 0\n", + "14299 0\n", + "14300 0\n", + "14301 0\n", + "14302 0\n", + "14303 1\n", + "14304 0\n", + "14305 0\n", + "14306 0\n", + "14307 0\n", + "14308 0\n", + "14309 0\n", + "14310 0\n", + "14311 0\n", + "14312 0\n", + "14313 0\n", + "14314 0\n", + "14315 0\n", + "14316 0\n", + "14317 0\n", + "14318 0\n", + "14319 0\n", + "14320 0\n", + "14321 1\n", + "14322 0\n", + "14323 1\n", + "14324 0\n", + "14325 0\n", + "14326 0\n", + "14327 1\n", + "14328 0\n", + "14329 0\n", + "14330 0\n", + "14331 0\n", + "14332 0\n", + "14333 0\n", + "14334 0\n", + "14335 0\n", + "14336 0\n", + "14337 0\n", + "14338 0\n", + "14339 0\n", + "14340 0\n", + "14341 1\n", + "14342 0\n", + "14343 0\n", + "14344 0\n", + "14345 0\n", + "14346 0\n", + "14347 1\n", + "14348 0\n", + "14349 0\n", + "14350 0\n", + "14351 0\n", + "14352 0\n", + "14353 0\n", + "14354 0\n", + "14355 0\n", + "14356 0\n", + "14357 0\n", + "14358 0\n", + "14359 0\n", + "14360 0\n", + "14361 0\n", + "14362 0\n", + "14363 0\n", + "14364 0\n", + "14365 0\n", + "14366 0\n", + "14367 0\n", + "14368 0\n", + "14369 1\n", + "14370 0\n", + "14371 0\n", + "14372 0\n", + "14373 0\n", + "14374 0\n", + "14375 0\n", + "14376 0\n", + "14377 0\n", + "14378 0\n", + "14379 0\n", + "14380 0\n", + "14381 0\n", + "14382 0\n", + "14383 0\n", + "14384 0\n", + "14385 0\n", + "14386 0\n", + "14387 1\n", + "14388 0\n", + "14389 1\n", + "14390 0\n", + "14391 0\n", + "14392 0\n", + "14393 0\n", + "14394 0\n", + "14395 0\n", + "14396 0\n", + "14397 0\n", + "14398 0\n", + "14399 0\n", + "14400 0\n", + "14401 1\n", + "14402 0\n", + "14403 0\n", + "14404 0\n", + "14405 0\n", + "14406 0\n", + "14407 1\n", + "14408 0\n", + "14409 0\n", + "14410 0\n", + "14411 1\n", + "14412 0\n", + "14413 0\n", + "14414 0\n", + "14415 0\n", + "14416 0\n", + "14417 0\n", + "14418 0\n", + "14419 1\n", + "14420 0\n", + "14421 0\n", + "14422 0\n", + "14423 1\n", + "14424 0\n", + "14425 0\n", + "14426 0\n", + "14427 0\n", + "14428 0\n", + "14429 0\n", + "14430 0\n", + "14431 1\n", + "14432 0\n", + "14433 0\n", + "14434 0\n", + "14435 0\n", + "14436 0\n", + "14437 1\n", + "14438 0\n", + "14439 0\n", + "14440 0\n", + "14441 0\n", + "14442 0\n", + "14443 0\n", + "14444 0\n", + "14445 0\n", + "14446 0\n", + "14447 1\n", + "14448 0\n", + "14449 1\n", + "14450 0\n", + "14451 0\n", + "14452 0\n", + "14453 0\n", + "14454 0\n", + "14455 0\n", + "14456 0\n", + "14457 0\n", + "14458 0\n", + "14459 0\n", + "14460 0\n", + "14461 1\n", + "14462 0\n", + "14463 0\n", + "14464 0\n", + "14465 0\n", + "14466 0\n", + "14467 0\n", + "14468 0\n", + "14469 0\n", + "14470 0\n", + "14471 0\n", + "14472 0\n", + "14473 0\n", + "14474 0\n", + "14475 0\n", + "14476 0\n", + "14477 0\n", + "14478 0\n", + "14479 1\n", + "14480 0\n", + "14481 0\n", + "14482 0\n", + "14483 0\n", + "14484 0\n", + "14485 0\n", + "14486 0\n", + "14487 0\n", + "14488 0\n", + "14489 1\n", + "14490 0\n", + "14491 0\n", + "14492 0\n", + "14493 0\n", + "14494 0\n", + "14495 0\n", + "14496 0\n", + "14497 0\n", + "14498 0\n", + "14499 0\n", + "14500 0\n", + "14501 0\n", + "14502 0\n", + "14503 1\n", + "14504 0\n", + "14505 0\n", + "14506 0\n", + "14507 0\n", + "14508 0\n", + "14509 0\n", + "14510 0\n", + "14511 0\n", + "14512 0\n", + "14513 0\n", + "14514 0\n", + "14515 0\n", + "14516 0\n", + "14517 0\n", + "14518 0\n", + "14519 1\n", + "14520 0\n", + "14521 0\n", + "14522 0\n", + "14523 0\n", + "14524 0\n", + "14525 0\n", + "14526 0\n", + "14527 0\n", + "14528 0\n", + "14529 0\n", + "14530 0\n", + "14531 0\n", + "14532 0\n", + "14533 1\n", + "14534 0\n", + "14535 0\n", + "14536 0\n", + "14537 1\n", + "14538 0\n", + "14539 0\n", + "14540 0\n", + "14541 0\n", + "14542 0\n", + "14543 1\n", + "14544 0\n", + "14545 0\n", + "14546 0\n", + "14547 0\n", + "14548 0\n", + "14549 1\n", + "14550 0\n", + "14551 1\n", + "14552 0\n", + "14553 0\n", + "14554 0\n", + "14555 0\n", + "14556 0\n", + "14557 1\n", + "14558 0\n", + "14559 0\n", + "14560 0\n", + "14561 1\n", + "14562 0\n", + "14563 1\n", + "14564 0\n", + "14565 0\n", + "14566 0\n", + "14567 0\n", + "14568 0\n", + "14569 0\n", + "14570 0\n", + "14571 0\n", + "14572 0\n", + "14573 0\n", + "14574 0\n", + "14575 0\n", + "14576 0\n", + "14577 0\n", + "14578 0\n", + "14579 0\n", + "14580 0\n", + "14581 0\n", + "14582 0\n", + "14583 0\n", + "14584 0\n", + "14585 0\n", + "14586 0\n", + "14587 0\n", + "14588 0\n", + "14589 0\n", + "14590 0\n", + "14591 1\n", + "14592 0\n", + "14593 1\n", + "14594 0\n", + "14595 0\n", + "14596 0\n", + "14597 0\n", + "14598 0\n", + "14599 0\n", + "14600 0\n", + "14601 0\n", + "14602 0\n", + "14603 0\n", + "14604 0\n", + "14605 0\n", + "14606 0\n", + "14607 0\n", + "14608 0\n", + "14609 0\n", + "14610 0\n", + "14611 0\n", + "14612 0\n", + "14613 0\n", + "14614 0\n", + "14615 0\n", + "14616 0\n", + "14617 0\n", + "14618 0\n", + "14619 0\n", + "14620 0\n", + "14621 1\n", + "14622 0\n", + "14623 0\n", + "14624 0\n", + "14625 0\n", + "14626 0\n", + "14627 1\n", + "14628 0\n", + "14629 1\n", + "14630 0\n", + "14631 0\n", + "14632 0\n", + "14633 1\n", + "14634 0\n", + "14635 0\n", + "14636 0\n", + "14637 0\n", + "14638 0\n", + "14639 1\n", + "14640 0\n", + "14641 0\n", + "14642 0\n", + "14643 0\n", + "14644 0\n", + "14645 0\n", + "14646 0\n", + "14647 0\n", + "14648 0\n", + "14649 0\n", + "14650 0\n", + "14651 0\n", + "14652 0\n", + "14653 1\n", + "14654 0\n", + "14655 0\n", + "14656 0\n", + "14657 1\n", + "14658 0\n", + "14659 0\n", + "14660 0\n", + "14661 0\n", + "14662 0\n", + "14663 0\n", + "14664 0\n", + "14665 0\n", + "14666 0\n", + "14667 0\n", + "14668 0\n", + "14669 1\n", + "14670 0\n", + "14671 0\n", + "14672 0\n", + "14673 0\n", + "14674 0\n", + "14675 0\n", + "14676 0\n", + "14677 0\n", + "14678 0\n", + "14679 0\n", + "14680 0\n", + "14681 0\n", + "14682 0\n", + "14683 1\n", + "14684 0\n", + "14685 0\n", + "14686 0\n", + "14687 0\n", + "14688 0\n", + "14689 0\n", + "14690 0\n", + "14691 0\n", + "14692 0\n", + "14693 0\n", + "14694 0\n", + "14695 0\n", + "14696 0\n", + "14697 0\n", + "14698 0\n", + "14699 1\n", + "14700 0\n", + "14701 0\n", + "14702 0\n", + "14703 0\n", + "14704 0\n", + "14705 0\n", + "14706 0\n", + "14707 0\n", + "14708 0\n", + "14709 0\n", + "14710 0\n", + "14711 0\n", + "14712 0\n", + "14713 1\n", + "14714 0\n", + "14715 0\n", + "14716 0\n", + "14717 1\n", + "14718 0\n", + "14719 0\n", + "14720 0\n", + "14721 0\n", + "14722 0\n", + "14723 1\n", + "14724 0\n", + "14725 0\n", + "14726 0\n", + "14727 0\n", + "14728 0\n", + "14729 0\n", + "14730 0\n", + "14731 1\n", + "14732 0\n", + "14733 0\n", + "14734 0\n", + "14735 0\n", + "14736 0\n", + "14737 1\n", + "14738 0\n", + "14739 0\n", + "14740 0\n", + "14741 1\n", + "14742 0\n", + "14743 0\n", + "14744 0\n", + "14745 0\n", + "14746 0\n", + "14747 1\n", + "14748 0\n", + "14749 0\n", + "14750 0\n", + "14751 0\n", + "14752 0\n", + "14753 1\n", + "14754 0\n", + "14755 0\n", + "14756 0\n", + "14757 0\n", + "14758 0\n", + "14759 1\n", + "14760 0\n", + "14761 0\n", + "14762 0\n", + "14763 0\n", + "14764 0\n", + "14765 0\n", + "14766 0\n", + "14767 1\n", + "14768 0\n", + "14769 0\n", + "14770 0\n", + "14771 1\n", + "14772 0\n", + "14773 0\n", + "14774 0\n", + "14775 0\n", + "14776 0\n", + "14777 0\n", + "14778 0\n", + "14779 1\n", + "14780 0\n", + "14781 0\n", + "14782 0\n", + "14783 1\n", + "14784 0\n", + "14785 0\n", + "14786 0\n", + "14787 0\n", + "14788 0\n", + "14789 0\n", + "14790 0\n", + "14791 0\n", + "14792 0\n", + "14793 0\n", + "14794 0\n", + "14795 0\n", + "14796 0\n", + "14797 1\n", + "14798 0\n", + "14799 0\n", + "14800 0\n", + "14801 0\n", + "14802 0\n", + "14803 0\n", + "14804 0\n", + "14805 0\n", + "14806 0\n", + "14807 0\n", + "14808 0\n", + "14809 0\n", + "14810 0\n", + "14811 0\n", + "14812 0\n", + "14813 1\n", + "14814 0\n", + "14815 0\n", + "14816 0\n", + "14817 0\n", + "14818 0\n", + "14819 0\n", + "14820 0\n", + "14821 1\n", + "14822 0\n", + "14823 0\n", + "14824 0\n", + "14825 0\n", + "14826 0\n", + "14827 1\n", + "14828 0\n", + "14829 0\n", + "14830 0\n", + "14831 1\n", + "14832 0\n", + "14833 0\n", + "14834 0\n", + "14835 0\n", + "14836 0\n", + "14837 0\n", + "14838 0\n", + "14839 0\n", + "14840 0\n", + "14841 0\n", + "14842 0\n", + "14843 1\n", + "14844 0\n", + "14845 0\n", + "14846 0\n", + "14847 0\n", + "14848 0\n", + "14849 0\n", + "14850 0\n", + "14851 1\n", + "14852 0\n", + "14853 0\n", + "14854 0\n", + "14855 0\n", + "14856 0\n", + "14857 0\n", + "14858 0\n", + "14859 0\n", + "14860 0\n", + "14861 0\n", + "14862 0\n", + "14863 0\n", + "14864 0\n", + "14865 0\n", + "14866 0\n", + "14867 1\n", + "14868 0\n", + "14869 1\n", + "14870 0\n", + "14871 0\n", + "14872 0\n", + "14873 0\n", + "14874 0\n", + "14875 0\n", + "14876 0\n", + "14877 0\n", + "14878 0\n", + "14879 1\n", + "14880 0\n", + "14881 0\n", + "14882 0\n", + "14883 0\n", + "14884 0\n", + "14885 0\n", + "14886 0\n", + "14887 1\n", + "14888 0\n", + "14889 0\n", + "14890 0\n", + "14891 1\n", + "14892 0\n", + "14893 0\n", + "14894 0\n", + "14895 0\n", + "14896 0\n", + "14897 1\n", + "14898 0\n", + "14899 0\n", + "14900 0\n", + "14901 0\n", + "14902 0\n", + "14903 0\n", + "14904 0\n", + "14905 0\n", + "14906 0\n", + "14907 0\n", + "14908 0\n", + "14909 0\n", + "14910 0\n", + "14911 0\n", + "14912 0\n", + "14913 0\n", + "14914 0\n", + "14915 0\n", + "14916 0\n", + "14917 0\n", + "14918 0\n", + "14919 0\n", + "14920 0\n", + "14921 0\n", + "14922 0\n", + "14923 1\n", + "14924 0\n", + "14925 0\n", + "14926 0\n", + "14927 0\n", + "14928 0\n", + "14929 1\n", + "14930 0\n", + "14931 0\n", + "14932 0\n", + "14933 0\n", + "14934 0\n", + "14935 0\n", + "14936 0\n", + "14937 0\n", + "14938 0\n", + "14939 1\n", + "14940 0\n", + "14941 0\n", + "14942 0\n", + "14943 0\n", + "14944 0\n", + "14945 0\n", + "14946 0\n", + "14947 1\n", + "14948 0\n", + "14949 0\n", + "14950 0\n", + "14951 1\n", + "14952 0\n", + "14953 0\n", + "14954 0\n", + "14955 0\n", + "14956 0\n", + "14957 1\n", + "14958 0\n", + "14959 0\n", + "14960 0\n", + "14961 0\n", + "14962 0\n", + "14963 0\n", + "14964 0\n", + "14965 0\n", + "14966 0\n", + "14967 0\n", + "14968 0\n", + "14969 1\n", + "14970 0\n", + "14971 0\n", + "14972 0\n", + "14973 0\n", + "14974 0\n", + "14975 0\n", + "14976 0\n", + "14977 0\n", + "14978 0\n", + "14979 0\n", + "14980 0\n", + "14981 0\n", + "14982 0\n", + "14983 1\n", + "14984 0\n", + "14985 0\n", + "14986 0\n", + "14987 0\n", + "14988 0\n", + "14989 0\n", + "14990 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "14991 0\n", + "14992 0\n", + "14993 0\n", + "14994 0\n", + "14995 0\n", + "14996 0\n", + "14997 0\n", + "14998 0\n", + "14999 0\n", + "15000 0\n", + "15001 0\n", + "15002 0\n", + "15003 0\n", + "15004 0\n", + "15005 0\n", + "15006 0\n", + "15007 0\n", + "15008 0\n", + "15009 0\n", + "15010 0\n", + "15011 0\n", + "15012 0\n", + "15013 1\n", + "15014 0\n", + "15015 0\n", + "15016 0\n", + "15017 1\n", + "15018 0\n", + "15019 0\n", + "15020 0\n", + "15021 0\n", + "15022 0\n", + "15023 0\n", + "15024 0\n", + "15025 0\n", + "15026 0\n", + "15027 0\n", + "15028 0\n", + "15029 0\n", + "15030 0\n", + "15031 1\n", + "15032 0\n", + "15033 0\n", + "15034 0\n", + "15035 0\n", + "15036 0\n", + "15037 0\n", + "15038 0\n", + "15039 0\n", + "15040 0\n", + "15041 0\n", + "15042 0\n", + "15043 0\n", + "15044 0\n", + "15045 0\n", + "15046 0\n", + "15047 0\n", + "15048 0\n", + "15049 0\n", + "15050 0\n", + "15051 0\n", + "15052 0\n", + "15053 1\n", + "15054 0\n", + "15055 0\n", + "15056 0\n", + "15057 0\n", + "15058 0\n", + "15059 0\n", + "15060 0\n", + "15061 1\n", + "15062 0\n", + "15063 0\n", + "15064 0\n", + "15065 0\n", + "15066 0\n", + "15067 0\n", + "15068 0\n", + "15069 0\n", + "15070 0\n", + "15071 0\n", + "15072 0\n", + "15073 1\n", + "15074 0\n", + "15075 0\n", + "15076 0\n", + "15077 1\n", + "15078 0\n", + "15079 0\n", + "15080 0\n", + "15081 0\n", + "15082 0\n", + "15083 1\n", + "15084 0\n", + "15085 0\n", + "15086 0\n", + "15087 0\n", + "15088 0\n", + "15089 0\n", + "15090 0\n", + "15091 1\n", + "15092 0\n", + "15093 0\n", + "15094 0\n", + "15095 0\n", + "15096 0\n", + "15097 0\n", + "15098 0\n", + "15099 0\n", + "15100 0\n", + "15101 1\n", + "15102 0\n", + "15103 0\n", + "15104 0\n", + "15105 0\n", + "15106 0\n", + "15107 1\n", + "15108 0\n", + "15109 0\n", + "15110 0\n", + "15111 0\n", + "15112 0\n", + "15113 0\n", + "15114 0\n", + "15115 0\n", + "15116 0\n", + "15117 0\n", + "15118 0\n", + "15119 0\n", + "15120 0\n", + "15121 1\n", + "15122 0\n", + "15123 0\n", + "15124 0\n", + "15125 0\n", + "15126 0\n", + "15127 0\n", + "15128 0\n", + "15129 0\n", + "15130 0\n", + "15131 1\n", + "15132 0\n", + "15133 0\n", + "15134 0\n", + "15135 0\n", + "15136 0\n", + "15137 1\n", + "15138 0\n", + "15139 1\n", + "15140 0\n", + "15141 0\n", + "15142 0\n", + "15143 0\n", + "15144 0\n", + "15145 0\n", + "15146 0\n", + "15147 0\n", + "15148 0\n", + "15149 1\n", + "15150 0\n", + "15151 0\n", + "15152 0\n", + "15153 0\n", + "15154 0\n", + "15155 0\n", + "15156 0\n", + "15157 0\n", + "15158 0\n", + "15159 0\n", + "15160 0\n", + "15161 1\n", + "15162 0\n", + "15163 0\n", + "15164 0\n", + "15165 0\n", + "15166 0\n", + "15167 0\n", + "15168 0\n", + "15169 0\n", + "15170 0\n", + "15171 0\n", + "15172 0\n", + "15173 1\n", + "15174 0\n", + "15175 0\n", + "15176 0\n", + "15177 0\n", + "15178 0\n", + "15179 0\n", + "15180 0\n", + "15181 0\n", + "15182 0\n", + "15183 0\n", + "15184 0\n", + "15185 0\n", + "15186 0\n", + "15187 1\n", + "15188 0\n", + "15189 0\n", + "15190 0\n", + "15191 0\n", + "15192 0\n", + "15193 1\n", + "15194 0\n", + "15195 0\n", + "15196 0\n", + "15197 0\n", + "15198 0\n", + "15199 1\n", + "15200 0\n", + "15201 0\n", + "15202 0\n", + "15203 0\n", + "15204 0\n", + "15205 0\n", + "15206 0\n", + "15207 0\n", + "15208 0\n", + "15209 0\n", + "15210 0\n", + "15211 0\n", + "15212 0\n", + "15213 0\n", + "15214 0\n", + "15215 0\n", + "15216 0\n", + "15217 1\n", + "15218 0\n", + "15219 0\n", + "15220 0\n", + "15221 0\n", + "15222 0\n", + "15223 0\n", + "15224 0\n", + "15225 0\n", + "15226 0\n", + "15227 1\n", + "15228 0\n", + "15229 0\n", + "15230 0\n", + "15231 0\n", + "15232 0\n", + "15233 1\n", + "15234 0\n", + "15235 0\n", + "15236 0\n", + "15237 0\n", + "15238 0\n", + "15239 0\n", + "15240 0\n", + "15241 1\n", + "15242 0\n", + "15243 0\n", + "15244 0\n", + "15245 0\n", + "15246 0\n", + "15247 0\n", + "15248 0\n", + "15249 0\n", + "15250 0\n", + "15251 0\n", + "15252 0\n", + "15253 0\n", + "15254 0\n", + "15255 0\n", + "15256 0\n", + "15257 0\n", + "15258 0\n", + "15259 1\n", + "15260 0\n", + "15261 0\n", + "15262 0\n", + "15263 1\n", + "15264 0\n", + "15265 0\n", + "15266 0\n", + "15267 0\n", + "15268 0\n", + "15269 1\n", + "15270 0\n", + "15271 1\n", + "15272 0\n", + "15273 0\n", + "15274 0\n", + "15275 0\n", + "15276 0\n", + "15277 1\n", + "15278 0\n", + "15279 0\n", + "15280 0\n", + "15281 0\n", + "15282 0\n", + "15283 0\n", + "15284 0\n", + "15285 0\n", + "15286 0\n", + "15287 1\n", + "15288 0\n", + "15289 1\n", + "15290 0\n", + "15291 0\n", + "15292 0\n", + "15293 0\n", + "15294 0\n", + "15295 0\n", + "15296 0\n", + "15297 0\n", + "15298 0\n", + "15299 1\n", + "15300 0\n", + "15301 0\n", + "15302 0\n", + "15303 0\n", + "15304 0\n", + "15305 0\n", + "15306 0\n", + "15307 1\n", + "15308 0\n", + "15309 0\n", + "15310 0\n", + "15311 0\n", + "15312 0\n", + "15313 1\n", + "15314 0\n", + "15315 0\n", + "15316 0\n", + "15317 0\n", + "15318 0\n", + "15319 1\n", + "15320 0\n", + "15321 0\n", + "15322 0\n", + "15323 0\n", + "15324 0\n", + "15325 0\n", + "15326 0\n", + "15327 0\n", + "15328 0\n", + "15329 1\n", + "15330 0\n", + "15331 1\n", + "15332 0\n", + "15333 0\n", + "15334 0\n", + "15335 0\n", + "15336 0\n", + "15337 0\n", + "15338 0\n", + "15339 0\n", + "15340 0\n", + "15341 0\n", + "15342 0\n", + "15343 0\n", + "15344 0\n", + "15345 0\n", + "15346 0\n", + "15347 0\n", + "15348 0\n", + "15349 1\n", + "15350 0\n", + "15351 0\n", + "15352 0\n", + "15353 0\n", + "15354 0\n", + "15355 0\n", + "15356 0\n", + "15357 0\n", + "15358 0\n", + "15359 1\n", + "15360 0\n", + "15361 1\n", + "15362 0\n", + "15363 0\n", + "15364 0\n", + "15365 0\n", + "15366 0\n", + "15367 0\n", + "15368 0\n", + "15369 0\n", + "15370 0\n", + "15371 0\n", + "15372 0\n", + "15373 1\n", + "15374 0\n", + "15375 0\n", + "15376 0\n", + "15377 1\n", + "15378 0\n", + "15379 0\n", + "15380 0\n", + "15381 0\n", + "15382 0\n", + "15383 1\n", + "15384 0\n", + "15385 0\n", + "15386 0\n", + "15387 0\n", + "15388 0\n", + "15389 0\n", + "15390 0\n", + "15391 1\n", + "15392 0\n", + "15393 0\n", + "15394 0\n", + "15395 0\n", + "15396 0\n", + "15397 0\n", + "15398 0\n", + "15399 0\n", + "15400 0\n", + "15401 1\n", + "15402 0\n", + "15403 0\n", + "15404 0\n", + "15405 0\n", + "15406 0\n", + "15407 0\n", + "15408 0\n", + "15409 0\n", + "15410 0\n", + "15411 0\n", + "15412 0\n", + "15413 1\n", + "15414 0\n", + "15415 0\n", + "15416 0\n", + "15417 0\n", + "15418 0\n", + "15419 0\n", + "15420 0\n", + "15421 0\n", + "15422 0\n", + "15423 0\n", + "15424 0\n", + "15425 0\n", + "15426 0\n", + "15427 1\n", + "15428 0\n", + "15429 0\n", + "15430 0\n", + "15431 0\n", + "15432 0\n", + "15433 0\n", + "15434 0\n", + "15435 0\n", + "15436 0\n", + "15437 0\n", + "15438 0\n", + "15439 1\n", + "15440 0\n", + "15441 0\n", + "15442 0\n", + "15443 1\n", + "15444 0\n", + "15445 0\n", + "15446 0\n", + "15447 0\n", + "15448 0\n", + "15449 0\n", + "15450 0\n", + "15451 1\n", + "15452 0\n", + "15453 0\n", + "15454 0\n", + "15455 0\n", + "15456 0\n", + "15457 0\n", + "15458 0\n", + "15459 0\n", + "15460 0\n", + "15461 1\n", + "15462 0\n", + "15463 0\n", + "15464 0\n", + "15465 0\n", + "15466 0\n", + "15467 1\n", + "15468 0\n", + "15469 0\n", + "15470 0\n", + "15471 0\n", + "15472 0\n", + "15473 1\n", + "15474 0\n", + "15475 0\n", + "15476 0\n", + "15477 0\n", + "15478 0\n", + "15479 0\n", + "15480 0\n", + "15481 0\n", + "15482 0\n", + "15483 0\n", + "15484 0\n", + "15485 0\n", + "15486 0\n", + "15487 0\n", + "15488 0\n", + "15489 0\n", + "15490 0\n", + "15491 0\n", + "15492 0\n", + "15493 1\n", + "15494 0\n", + "15495 0\n", + "15496 0\n", + "15497 1\n", + "15498 0\n", + "15499 0\n", + "15500 0\n", + "15501 0\n", + "15502 0\n", + "15503 0\n", + "15504 0\n", + "15505 0\n", + "15506 0\n", + "15507 0\n", + "15508 0\n", + "15509 0\n", + "15510 0\n", + "15511 1\n", + "15512 0\n", + "15513 0\n", + "15514 0\n", + "15515 0\n", + "15516 0\n", + "15517 0\n", + "15518 0\n", + "15519 0\n", + "15520 0\n", + "15521 0\n", + "15522 0\n", + "15523 0\n", + "15524 0\n", + "15525 0\n", + "15526 0\n", + "15527 1\n", + "15528 0\n", + "15529 0\n", + "15530 0\n", + "15531 0\n", + "15532 0\n", + "15533 0\n", + "15534 0\n", + "15535 0\n", + "15536 0\n", + "15537 0\n", + "15538 0\n", + "15539 0\n", + "15540 0\n", + "15541 1\n", + "15542 0\n", + "15543 0\n", + "15544 0\n", + "15545 0\n", + "15546 0\n", + "15547 0\n", + "15548 0\n", + "15549 0\n", + "15550 0\n", + "15551 1\n", + "15552 0\n", + "15553 0\n", + "15554 0\n", + "15555 0\n", + "15556 0\n", + "15557 0\n", + "15558 0\n", + "15559 1\n", + "15560 0\n", + "15561 0\n", + "15562 0\n", + "15563 0\n", + "15564 0\n", + "15565 0\n", + "15566 0\n", + "15567 0\n", + "15568 0\n", + "15569 1\n", + "15570 0\n", + "15571 0\n", + "15572 0\n", + "15573 0\n", + "15574 0\n", + "15575 0\n", + "15576 0\n", + "15577 0\n", + "15578 0\n", + "15579 0\n", + "15580 0\n", + "15581 1\n", + "15582 0\n", + "15583 1\n", + "15584 0\n", + "15585 0\n", + "15586 0\n", + "15587 0\n", + "15588 0\n", + "15589 0\n", + "15590 0\n", + "15591 0\n", + "15592 0\n", + "15593 0\n", + "15594 0\n", + "15595 0\n", + "15596 0\n", + "15597 0\n", + "15598 0\n", + "15599 0\n", + "15600 0\n", + "15601 1\n", + "15602 0\n", + "15603 0\n", + "15604 0\n", + "15605 0\n", + "15606 0\n", + "15607 1\n", + "15608 0\n", + "15609 0\n", + "15610 0\n", + "15611 0\n", + "15612 0\n", + "15613 0\n", + "15614 0\n", + "15615 0\n", + "15616 0\n", + "15617 0\n", + "15618 0\n", + "15619 1\n", + "15620 0\n", + "15621 0\n", + "15622 0\n", + "15623 0\n", + "15624 0\n", + "15625 0\n", + "15626 0\n", + "15627 0\n", + "15628 0\n", + "15629 1\n", + "15630 0\n", + "15631 0\n", + "15632 0\n", + "15633 0\n", + "15634 0\n", + "15635 0\n", + "15636 0\n", + "15637 0\n", + "15638 0\n", + "15639 0\n", + "15640 0\n", + "15641 1\n", + "15642 0\n", + "15643 1\n", + "15644 0\n", + "15645 0\n", + "15646 0\n", + "15647 1\n", + "15648 0\n", + "15649 1\n", + "15650 0\n", + "15651 0\n", + "15652 0\n", + "15653 0\n", + "15654 0\n", + "15655 0\n", + "15656 0\n", + "15657 0\n", + "15658 0\n", + "15659 0\n", + "15660 0\n", + "15661 1\n", + "15662 0\n", + "15663 0\n", + "15664 0\n", + "15665 0\n", + "15666 0\n", + "15667 1\n", + "15668 0\n", + "15669 0\n", + "15670 0\n", + "15671 1\n", + "15672 0\n", + "15673 0\n", + "15674 0\n", + "15675 0\n", + "15676 0\n", + "15677 0\n", + "15678 0\n", + "15679 1\n", + "15680 0\n", + "15681 0\n", + "15682 0\n", + "15683 1\n", + "15684 0\n", + "15685 0\n", + "15686 0\n", + "15687 0\n", + "15688 0\n", + "15689 0\n", + "15690 0\n", + "15691 0\n", + "15692 0\n", + "15693 0\n", + "15694 0\n", + "15695 0\n", + "15696 0\n", + "15697 0\n", + "15698 0\n", + "15699 0\n", + "15700 0\n", + "15701 0\n", + "15702 0\n", + "15703 0\n", + "15704 0\n", + "15705 0\n", + "15706 0\n", + "15707 0\n", + "15708 0\n", + "15709 0\n", + "15710 0\n", + "15711 0\n", + "15712 0\n", + "15713 0\n", + "15714 0\n", + "15715 0\n", + "15716 0\n", + "15717 0\n", + "15718 0\n", + "15719 0\n", + "15720 0\n", + "15721 0\n", + "15722 0\n", + "15723 0\n", + "15724 0\n", + "15725 0\n", + "15726 0\n", + "15727 1\n", + "15728 0\n", + "15729 0\n", + "15730 0\n", + "15731 1\n", + "15732 0\n", + "15733 1\n", + "15734 0\n", + "15735 0\n", + "15736 0\n", + "15737 1\n", + "15738 0\n", + "15739 1\n", + "15740 0\n", + "15741 0\n", + "15742 0\n", + "15743 0\n", + "15744 0\n", + "15745 0\n", + "15746 0\n", + "15747 0\n", + "15748 0\n", + "15749 1\n", + "15750 0\n", + "15751 0\n", + "15752 0\n", + "15753 0\n", + "15754 0\n", + "15755 0\n", + "15756 0\n", + "15757 0\n", + "15758 0\n", + "15759 0\n", + "15760 0\n", + "15761 1\n", + "15762 0\n", + "15763 0\n", + "15764 0\n", + "15765 0\n", + "15766 0\n", + "15767 1\n", + "15768 0\n", + "15769 0\n", + "15770 0\n", + "15771 0\n", + "15772 0\n", + "15773 1\n", + "15774 0\n", + "15775 0\n", + "15776 0\n", + "15777 0\n", + "15778 0\n", + "15779 0\n", + "15780 0\n", + "15781 0\n", + "15782 0\n", + "15783 0\n", + "15784 0\n", + "15785 0\n", + "15786 0\n", + "15787 1\n", + "15788 0\n", + "15789 0\n", + "15790 0\n", + "15791 1\n", + "15792 0\n", + "15793 0\n", + "15794 0\n", + "15795 0\n", + "15796 0\n", + "15797 1\n", + "15798 0\n", + "15799 0\n", + "15800 0\n", + "15801 0\n", + "15802 0\n", + "15803 1\n", + "15804 0\n", + "15805 0\n", + "15806 0\n", + "15807 0\n", + "15808 0\n", + "15809 1\n", + "15810 0\n", + "15811 0\n", + "15812 0\n", + "15813 0\n", + "15814 0\n", + "15815 0\n", + "15816 0\n", + "15817 1\n", + "15818 0\n", + "15819 0\n", + "15820 0\n", + "15821 0\n", + "15822 0\n", + "15823 1\n", + "15824 0\n", + "15825 0\n", + "15826 0\n", + "15827 0\n", + "15828 0\n", + "15829 0\n", + "15830 0\n", + "15831 0\n", + "15832 0\n", + "15833 0\n", + "15834 0\n", + "15835 0\n", + "15836 0\n", + "15837 0\n", + "15838 0\n", + "15839 0\n", + "15840 0\n", + "15841 0\n", + "15842 0\n", + "15843 0\n", + "15844 0\n", + "15845 0\n", + "15846 0\n", + "15847 0\n", + "15848 0\n", + "15849 0\n", + "15850 0\n", + "15851 0\n", + "15852 0\n", + "15853 0\n", + "15854 0\n", + "15855 0\n", + "15856 0\n", + "15857 0\n", + "15858 0\n", + "15859 1\n", + "15860 0\n", + "15861 0\n", + "15862 0\n", + "15863 0\n", + "15864 0\n", + "15865 0\n", + "15866 0\n", + "15867 0\n", + "15868 0\n", + "15869 0\n", + "15870 0\n", + "15871 0\n", + "15872 0\n", + "15873 0\n", + "15874 0\n", + "15875 0\n", + "15876 0\n", + "15877 1\n", + "15878 0\n", + "15879 0\n", + "15880 0\n", + "15881 1\n", + "15882 0\n", + "15883 0\n", + "15884 0\n", + "15885 0\n", + "15886 0\n", + "15887 1\n", + "15888 0\n", + "15889 1\n", + "15890 0\n", + "15891 0\n", + "15892 0\n", + "15893 0\n", + "15894 0\n", + "15895 0\n", + "15896 0\n", + "15897 0\n", + "15898 0\n", + "15899 0\n", + "15900 0\n", + "15901 1\n", + "15902 0\n", + "15903 0\n", + "15904 0\n", + "15905 0\n", + "15906 0\n", + "15907 1\n", + "15908 0\n", + "15909 0\n", + "15910 0\n", + "15911 0\n", + "15912 0\n", + "15913 1\n", + "15914 0\n", + "15915 0\n", + "15916 0\n", + "15917 0\n", + "15918 0\n", + "15919 1\n", + "15920 0\n", + "15921 0\n", + "15922 0\n", + "15923 1\n", + "15924 0\n", + "15925 0\n", + "15926 0\n", + "15927 0\n", + "15928 0\n", + "15929 0\n", + "15930 0\n", + "15931 0\n", + "15932 0\n", + "15933 0\n", + "15934 0\n", + "15935 0\n", + "15936 0\n", + "15937 1\n", + "15938 0\n", + "15939 0\n", + "15940 0\n", + "15941 0\n", + "15942 0\n", + "15943 0\n", + "15944 0\n", + "15945 0\n", + "15946 0\n", + "15947 0\n", + "15948 0\n", + "15949 0\n", + "15950 0\n", + "15951 0\n", + "15952 0\n", + "15953 0\n", + "15954 0\n", + "15955 0\n", + "15956 0\n", + "15957 0\n", + "15958 0\n", + "15959 1\n", + "15960 0\n", + "15961 0\n", + "15962 0\n", + "15963 0\n", + "15964 0\n", + "15965 0\n", + "15966 0\n", + "15967 0\n", + "15968 0\n", + "15969 0\n", + "15970 0\n", + "15971 1\n", + "15972 0\n", + "15973 1\n", + "15974 0\n", + "15975 0\n", + "15976 0\n", + "15977 0\n", + "15978 0\n", + "15979 0\n", + "15980 0\n", + "15981 0\n", + "15982 0\n", + "15983 0\n", + "15984 0\n", + "15985 0\n", + "15986 0\n", + "15987 0\n", + "15988 0\n", + "15989 0\n", + "15990 0\n", + "15991 1\n", + "15992 0\n", + "15993 0\n", + "15994 0\n", + "15995 0\n", + "15996 0\n", + "15997 0\n", + "15998 0\n", + "15999 0\n", + "16000 0\n", + "16001 1\n", + "16002 0\n", + "16003 0\n", + "16004 0\n", + "16005 0\n", + "16006 0\n", + "16007 1\n", + "16008 0\n", + "16009 0\n", + "16010 0\n", + "16011 0\n", + "16012 0\n", + "16013 0\n", + "16014 0\n", + "16015 0\n", + "16016 0\n", + "16017 0\n", + "16018 0\n", + "16019 0\n", + "16020 0\n", + "16021 0\n", + "16022 0\n", + "16023 0\n", + "16024 0\n", + "16025 0\n", + "16026 0\n", + "16027 0\n", + "16028 0\n", + "16029 0\n", + "16030 0\n", + "16031 0\n", + "16032 0\n", + "16033 1\n", + "16034 0\n", + "16035 0\n", + "16036 0\n", + "16037 0\n", + "16038 0\n", + "16039 0\n", + "16040 0\n", + "16041 0\n", + "16042 0\n", + "16043 0\n", + "16044 0\n", + "16045 0\n", + "16046 0\n", + "16047 0\n", + "16048 0\n", + "16049 0\n", + "16050 0\n", + "16051 0\n", + "16052 0\n", + "16053 0\n", + "16054 0\n", + "16055 0\n", + "16056 0\n", + "16057 1\n", + "16058 0\n", + "16059 0\n", + "16060 0\n", + "16061 1\n", + "16062 0\n", + "16063 1\n", + "16064 0\n", + "16065 0\n", + "16066 0\n", + "16067 1\n", + "16068 0\n", + "16069 1\n", + "16070 0\n", + "16071 0\n", + "16072 0\n", + "16073 1\n", + "16074 0\n", + "16075 0\n", + "16076 0\n", + "16077 0\n", + "16078 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "16079 0\n", + "16080 0\n", + "16081 0\n", + "16082 0\n", + "16083 0\n", + "16084 0\n", + "16085 0\n", + "16086 0\n", + "16087 1\n", + "16088 0\n", + "16089 0\n", + "16090 0\n", + "16091 1\n", + "16092 0\n", + "16093 0\n", + "16094 0\n", + "16095 0\n", + "16096 0\n", + "16097 1\n", + "16098 0\n", + "16099 0\n", + "16100 0\n", + "16101 0\n", + "16102 0\n", + "16103 1\n", + "16104 0\n", + "16105 0\n", + "16106 0\n", + "16107 0\n", + "16108 0\n", + "16109 0\n", + "16110 0\n", + "16111 1\n", + "16112 0\n", + "16113 0\n", + "16114 0\n", + "16115 0\n", + "16116 0\n", + "16117 0\n", + "16118 0\n", + "16119 0\n", + "16120 0\n", + "16121 0\n", + "16122 0\n", + "16123 0\n", + "16124 0\n", + "16125 0\n", + "16126 0\n", + "16127 1\n", + "16128 0\n", + "16129 0\n", + "16130 0\n", + "16131 0\n", + "16132 0\n", + "16133 0\n", + "16134 0\n", + "16135 0\n", + "16136 0\n", + "16137 0\n", + "16138 0\n", + "16139 1\n", + "16140 0\n", + "16141 1\n", + "16142 0\n", + "16143 0\n", + "16144 0\n", + "16145 0\n", + "16146 0\n", + "16147 0\n", + "16148 0\n", + "16149 0\n", + "16150 0\n", + "16151 0\n", + "16152 0\n", + "16153 0\n", + "16154 0\n", + "16155 0\n", + "16156 0\n", + "16157 0\n", + "16158 0\n", + "16159 0\n", + "16160 0\n", + "16161 0\n", + "16162 0\n", + "16163 0\n", + "16164 0\n", + "16165 0\n", + "16166 0\n", + "16167 0\n", + "16168 0\n", + "16169 0\n", + "16170 0\n", + "16171 0\n", + "16172 0\n", + "16173 0\n", + "16174 0\n", + "16175 0\n", + "16176 0\n", + "16177 0\n", + "16178 0\n", + "16179 0\n", + "16180 0\n", + "16181 0\n", + "16182 0\n", + "16183 1\n", + "16184 0\n", + "16185 0\n", + "16186 0\n", + "16187 1\n", + "16188 0\n", + "16189 1\n", + "16190 0\n", + "16191 0\n", + "16192 0\n", + "16193 1\n", + "16194 0\n", + "16195 0\n", + "16196 0\n", + "16197 0\n", + "16198 0\n", + "16199 0\n", + "16200 0\n", + "16201 0\n", + "16202 0\n", + "16203 0\n", + "16204 0\n", + "16205 0\n", + "16206 0\n", + "16207 0\n", + "16208 0\n", + "16209 0\n", + "16210 0\n", + "16211 0\n", + "16212 0\n", + "16213 0\n", + "16214 0\n", + "16215 0\n", + "16216 0\n", + "16217 1\n", + "16218 0\n", + "16219 0\n", + "16220 0\n", + "16221 0\n", + "16222 0\n", + "16223 1\n", + "16224 0\n", + "16225 0\n", + "16226 0\n", + "16227 0\n", + "16228 0\n", + "16229 1\n", + "16230 0\n", + "16231 1\n", + "16232 0\n", + "16233 0\n", + "16234 0\n", + "16235 0\n", + "16236 0\n", + "16237 0\n", + "16238 0\n", + "16239 0\n", + "16240 0\n", + "16241 0\n", + "16242 0\n", + "16243 0\n", + "16244 0\n", + "16245 0\n", + "16246 0\n", + "16247 0\n", + "16248 0\n", + "16249 1\n", + "16250 0\n", + "16251 0\n", + "16252 0\n", + "16253 1\n", + "16254 0\n", + "16255 0\n", + "16256 0\n", + "16257 0\n", + "16258 0\n", + "16259 0\n", + "16260 0\n", + "16261 0\n", + "16262 0\n", + "16263 0\n", + "16264 0\n", + "16265 0\n", + "16266 0\n", + "16267 1\n", + "16268 0\n", + "16269 0\n", + "16270 0\n", + "16271 0\n", + "16272 0\n", + "16273 1\n", + "16274 0\n", + "16275 0\n", + "16276 0\n", + "16277 0\n", + "16278 0\n", + "16279 0\n", + "16280 0\n", + "16281 0\n", + "16282 0\n", + "16283 0\n", + "16284 0\n", + "16285 0\n", + "16286 0\n", + "16287 0\n", + "16288 0\n", + "16289 0\n", + "16290 0\n", + "16291 0\n", + "16292 0\n", + "16293 0\n", + "16294 0\n", + "16295 0\n", + "16296 0\n", + "16297 0\n", + "16298 0\n", + "16299 0\n", + "16300 0\n", + "16301 1\n", + "16302 0\n", + "16303 0\n", + "16304 0\n", + "16305 0\n", + "16306 0\n", + "16307 0\n", + "16308 0\n", + "16309 0\n", + "16310 0\n", + "16311 0\n", + "16312 0\n", + "16313 0\n", + "16314 0\n", + "16315 0\n", + "16316 0\n", + "16317 0\n", + "16318 0\n", + "16319 1\n", + "16320 0\n", + "16321 0\n", + "16322 0\n", + "16323 0\n", + "16324 0\n", + "16325 0\n", + "16326 0\n", + "16327 0\n", + "16328 0\n", + "16329 0\n", + "16330 0\n", + "16331 0\n", + "16332 0\n", + "16333 1\n", + "16334 0\n", + "16335 0\n", + "16336 0\n", + "16337 0\n", + "16338 0\n", + "16339 1\n", + "16340 0\n", + "16341 0\n", + "16342 0\n", + "16343 0\n", + "16344 0\n", + "16345 0\n", + "16346 0\n", + "16347 0\n", + "16348 0\n", + "16349 1\n", + "16350 0\n", + "16351 0\n", + "16352 0\n", + "16353 0\n", + "16354 0\n", + "16355 0\n", + "16356 0\n", + "16357 0\n", + "16358 0\n", + "16359 0\n", + "16360 0\n", + "16361 1\n", + "16362 0\n", + "16363 1\n", + "16364 0\n", + "16365 0\n", + "16366 0\n", + "16367 0\n", + "16368 0\n", + "16369 1\n", + "16370 0\n", + "16371 0\n", + "16372 0\n", + "16373 0\n", + "16374 0\n", + "16375 0\n", + "16376 0\n", + "16377 0\n", + "16378 0\n", + "16379 0\n", + "16380 0\n", + "16381 1\n", + "16382 0\n", + "16383 0\n", + "16384 0\n", + "16385 0\n", + "16386 0\n", + "16387 0\n", + "16388 0\n", + "16389 0\n", + "16390 0\n", + "16391 0\n", + "16392 0\n", + "16393 0\n", + "16394 0\n", + "16395 0\n", + "16396 0\n", + "16397 0\n", + "16398 0\n", + "16399 0\n", + "16400 0\n", + "16401 0\n", + "16402 0\n", + "16403 0\n", + "16404 0\n", + "16405 0\n", + "16406 0\n", + "16407 0\n", + "16408 0\n", + "16409 0\n", + "16410 0\n", + "16411 1\n", + "16412 0\n", + "16413 0\n", + "16414 0\n", + "16415 0\n", + "16416 0\n", + "16417 1\n", + "16418 0\n", + "16419 0\n", + "16420 0\n", + "16421 1\n", + "16422 0\n", + "16423 0\n", + "16424 0\n", + "16425 0\n", + "16426 0\n", + "16427 1\n", + "16428 0\n", + "16429 0\n", + "16430 0\n", + "16431 0\n", + "16432 0\n", + "16433 1\n", + "16434 0\n", + "16435 0\n", + "16436 0\n", + "16437 0\n", + "16438 0\n", + "16439 0\n", + "16440 0\n", + "16441 0\n", + "16442 0\n", + "16443 0\n", + "16444 0\n", + "16445 0\n", + "16446 0\n", + "16447 1\n", + "16448 0\n", + "16449 0\n", + "16450 0\n", + "16451 1\n", + "16452 0\n", + "16453 1\n", + "16454 0\n", + "16455 0\n", + "16456 0\n", + "16457 0\n", + "16458 0\n", + "16459 0\n", + "16460 0\n", + "16461 0\n", + "16462 0\n", + "16463 0\n", + "16464 0\n", + "16465 0\n", + "16466 0\n", + "16467 0\n", + "16468 0\n", + "16469 0\n", + "16470 0\n", + "16471 0\n", + "16472 0\n", + "16473 0\n", + "16474 0\n", + "16475 0\n", + "16476 0\n", + "16477 1\n", + "16478 0\n", + "16479 0\n", + "16480 0\n", + "16481 1\n", + "16482 0\n", + "16483 0\n", + "16484 0\n", + "16485 0\n", + "16486 0\n", + "16487 1\n", + "16488 0\n", + "16489 0\n", + "16490 0\n", + "16491 0\n", + "16492 0\n", + "16493 1\n", + "16494 0\n", + "16495 0\n", + "16496 0\n", + "16497 0\n", + "16498 0\n", + "16499 0\n", + "16500 0\n", + "16501 0\n", + "16502 0\n", + "16503 0\n", + "16504 0\n", + "16505 0\n", + "16506 0\n", + "16507 0\n", + "16508 0\n", + "16509 0\n", + "16510 0\n", + "16511 0\n", + "16512 0\n", + "16513 0\n", + "16514 0\n", + "16515 0\n", + "16516 0\n", + "16517 0\n", + "16518 0\n", + "16519 1\n", + "16520 0\n", + "16521 0\n", + "16522 0\n", + "16523 0\n", + "16524 0\n", + "16525 0\n", + "16526 0\n", + "16527 0\n", + "16528 0\n", + "16529 1\n", + "16530 0\n", + "16531 0\n", + "16532 0\n", + "16533 0\n", + "16534 0\n", + "16535 0\n", + "16536 0\n", + "16537 0\n", + "16538 0\n", + "16539 0\n", + "16540 0\n", + "16541 0\n", + "16542 0\n", + "16543 0\n", + "16544 0\n", + "16545 0\n", + "16546 0\n", + "16547 1\n", + "16548 0\n", + "16549 0\n", + "16550 0\n", + "16551 0\n", + "16552 0\n", + "16553 1\n", + "16554 0\n", + "16555 0\n", + "16556 0\n", + "16557 0\n", + "16558 0\n", + "16559 0\n", + "16560 0\n", + "16561 1\n", + "16562 0\n", + "16563 0\n", + "16564 0\n", + "16565 0\n", + "16566 0\n", + "16567 1\n", + "16568 0\n", + "16569 0\n", + "16570 0\n", + "16571 0\n", + "16572 0\n", + "16573 1\n", + "16574 0\n", + "16575 0\n", + "16576 0\n", + "16577 0\n", + "16578 0\n", + "16579 0\n", + "16580 0\n", + "16581 0\n", + "16582 0\n", + "16583 0\n", + "16584 0\n", + "16585 0\n", + "16586 0\n", + "16587 0\n", + "16588 0\n", + "16589 0\n", + "16590 0\n", + "16591 0\n", + "16592 0\n", + "16593 0\n", + "16594 0\n", + "16595 0\n", + "16596 0\n", + "16597 0\n", + "16598 0\n", + "16599 0\n", + "16600 0\n", + "16601 0\n", + "16602 0\n", + "16603 1\n", + "16604 0\n", + "16605 0\n", + "16606 0\n", + "16607 1\n", + "16608 0\n", + "16609 0\n", + "16610 0\n", + "16611 0\n", + "16612 0\n", + "16613 0\n", + "16614 0\n", + "16615 0\n", + "16616 0\n", + "16617 0\n", + "16618 0\n", + "16619 1\n", + "16620 0\n", + "16621 0\n", + "16622 0\n", + "16623 0\n", + "16624 0\n", + "16625 0\n", + "16626 0\n", + "16627 0\n", + "16628 0\n", + "16629 0\n", + "16630 0\n", + "16631 1\n", + "16632 0\n", + "16633 1\n", + "16634 0\n", + "16635 0\n", + "16636 0\n", + "16637 0\n", + "16638 0\n", + "16639 0\n", + "16640 0\n", + "16641 0\n", + "16642 0\n", + "16643 0\n", + "16644 0\n", + "16645 0\n", + "16646 0\n", + "16647 0\n", + "16648 0\n", + "16649 1\n", + "16650 0\n", + "16651 1\n", + "16652 0\n", + "16653 0\n", + "16654 0\n", + "16655 0\n", + "16656 0\n", + "16657 1\n", + "16658 0\n", + "16659 0\n", + "16660 0\n", + "16661 1\n", + "16662 0\n", + "16663 0\n", + "16664 0\n", + "16665 0\n", + "16666 0\n", + "16667 0\n", + "16668 0\n", + "16669 0\n", + "16670 0\n", + "16671 0\n", + "16672 0\n", + "16673 1\n", + "16674 0\n", + "16675 0\n", + "16676 0\n", + "16677 0\n", + "16678 0\n", + "16679 0\n", + "16680 0\n", + "16681 0\n", + "16682 0\n", + "16683 0\n", + "16684 0\n", + "16685 0\n", + "16686 0\n", + "16687 0\n", + "16688 0\n", + "16689 0\n", + "16690 0\n", + "16691 1\n", + "16692 0\n", + "16693 1\n", + "16694 0\n", + "16695 0\n", + "16696 0\n", + "16697 0\n", + "16698 0\n", + "16699 1\n", + "16700 0\n", + "16701 0\n", + "16702 0\n", + "16703 1\n", + "16704 0\n", + "16705 0\n", + "16706 0\n", + "16707 0\n", + "16708 0\n", + "16709 0\n", + "16710 0\n", + "16711 0\n", + "16712 0\n", + "16713 0\n", + "16714 0\n", + "16715 0\n", + "16716 0\n", + "16717 0\n", + "16718 0\n", + "16719 0\n", + "16720 0\n", + "16721 0\n", + "16722 0\n", + "16723 0\n", + "16724 0\n", + "16725 0\n", + "16726 0\n", + "16727 0\n", + "16728 0\n", + "16729 1\n", + "16730 0\n", + "16731 0\n", + "16732 0\n", + "16733 0\n", + "16734 0\n", + "16735 0\n", + "16736 0\n", + "16737 0\n", + "16738 0\n", + "16739 0\n", + "16740 0\n", + "16741 1\n", + "16742 0\n", + "16743 0\n", + "16744 0\n", + "16745 0\n", + "16746 0\n", + "16747 1\n", + "16748 0\n", + "16749 0\n", + "16750 0\n", + "16751 0\n", + "16752 0\n", + "16753 0\n", + "16754 0\n", + "16755 0\n", + "16756 0\n", + "16757 0\n", + "16758 0\n", + "16759 1\n", + "16760 0\n", + "16761 0\n", + "16762 0\n", + "16763 1\n", + "16764 0\n", + "16765 0\n", + "16766 0\n", + "16767 0\n", + "16768 0\n", + "16769 0\n", + "16770 0\n", + "16771 0\n", + "16772 0\n", + "16773 0\n", + "16774 0\n", + "16775 0\n", + "16776 0\n", + "16777 0\n", + "16778 0\n", + "16779 0\n", + "16780 0\n", + "16781 0\n", + "16782 0\n", + "16783 0\n", + "16784 0\n", + "16785 0\n", + "16786 0\n", + "16787 1\n", + "16788 0\n", + "16789 0\n", + "16790 0\n", + "16791 0\n", + "16792 0\n", + "16793 0\n", + "16794 0\n", + "16795 0\n", + "16796 0\n", + "16797 0\n", + "16798 0\n", + "16799 0\n", + "16800 0\n", + "16801 0\n", + "16802 0\n", + "16803 0\n", + "16804 0\n", + "16805 0\n", + "16806 0\n", + "16807 0\n", + "16808 0\n", + "16809 0\n", + "16810 0\n", + "16811 1\n", + "16812 0\n", + "16813 0\n", + "16814 0\n", + "16815 0\n", + "16816 0\n", + "16817 0\n", + "16818 0\n", + "16819 0\n", + "16820 0\n", + "16821 0\n", + "16822 0\n", + "16823 1\n", + "16824 0\n", + "16825 0\n", + "16826 0\n", + "16827 0\n", + "16828 0\n", + "16829 1\n", + "16830 0\n", + "16831 1\n", + "16832 0\n", + "16833 0\n", + "16834 0\n", + "16835 0\n", + "16836 0\n", + "16837 0\n", + "16838 0\n", + "16839 0\n", + "16840 0\n", + "16841 0\n", + "16842 0\n", + "16843 1\n", + "16844 0\n", + "16845 0\n", + "16846 0\n", + "16847 0\n", + "16848 0\n", + "16849 0\n", + "16850 0\n", + "16851 0\n", + "16852 0\n", + "16853 0\n", + "16854 0\n", + "16855 0\n", + "16856 0\n", + "16857 0\n", + "16858 0\n", + "16859 0\n", + "16860 0\n", + "16861 0\n", + "16862 0\n", + "16863 0\n", + "16864 0\n", + "16865 0\n", + "16866 0\n", + "16867 0\n", + "16868 0\n", + "16869 0\n", + "16870 0\n", + "16871 1\n", + "16872 0\n", + "16873 0\n", + "16874 0\n", + "16875 0\n", + "16876 0\n", + "16877 0\n", + "16878 0\n", + "16879 1\n", + "16880 0\n", + "16881 0\n", + "16882 0\n", + "16883 1\n", + "16884 0\n", + "16885 0\n", + "16886 0\n", + "16887 0\n", + "16888 0\n", + "16889 1\n", + "16890 0\n", + "16891 0\n", + "16892 0\n", + "16893 0\n", + "16894 0\n", + "16895 0\n", + "16896 0\n", + "16897 0\n", + "16898 0\n", + "16899 0\n", + "16900 0\n", + "16901 1\n", + "16902 0\n", + "16903 1\n", + "16904 0\n", + "16905 0\n", + "16906 0\n", + "16907 0\n", + "16908 0\n", + "16909 0\n", + "16910 0\n", + "16911 0\n", + "16912 0\n", + "16913 0\n", + "16914 0\n", + "16915 0\n", + "16916 0\n", + "16917 0\n", + "16918 0\n", + "16919 0\n", + "16920 0\n", + "16921 1\n", + "16922 0\n", + "16923 0\n", + "16924 0\n", + "16925 0\n", + "16926 0\n", + "16927 1\n", + "16928 0\n", + "16929 0\n", + "16930 0\n", + "16931 1\n", + "16932 0\n", + "16933 0\n", + "16934 0\n", + "16935 0\n", + "16936 0\n", + "16937 1\n", + "16938 0\n", + "16939 0\n", + "16940 0\n", + "16941 0\n", + "16942 0\n", + "16943 1\n", + "16944 0\n", + "16945 0\n", + "16946 0\n", + "16947 0\n", + "16948 0\n", + "16949 0\n", + "16950 0\n", + "16951 0\n", + "16952 0\n", + "16953 0\n", + "16954 0\n", + "16955 0\n", + "16956 0\n", + "16957 0\n", + "16958 0\n", + "16959 0\n", + "16960 0\n", + "16961 0\n", + "16962 0\n", + "16963 1\n", + "16964 0\n", + "16965 0\n", + "16966 0\n", + "16967 0\n", + "16968 0\n", + "16969 0\n", + "16970 0\n", + "16971 0\n", + "16972 0\n", + "16973 0\n", + "16974 0\n", + "16975 0\n", + "16976 0\n", + "16977 0\n", + "16978 0\n", + "16979 1\n", + "16980 0\n", + "16981 1\n", + "16982 0\n", + "16983 0\n", + "16984 0\n", + "16985 0\n", + "16986 0\n", + "16987 1\n", + "16988 0\n", + "16989 0\n", + "16990 0\n", + "16991 0\n", + "16992 0\n", + "16993 1\n", + "16994 0\n", + "16995 0\n", + "16996 0\n", + "16997 0\n", + "16998 0\n", + "16999 0\n", + "17000 0\n", + "17001 0\n", + "17002 0\n", + "17003 0\n", + "17004 0\n", + "17005 0\n", + "17006 0\n", + "17007 0\n", + "17008 0\n", + "17009 0\n", + "17010 0\n", + "17011 1\n", + "17012 0\n", + "17013 0\n", + "17014 0\n", + "17015 0\n", + "17016 0\n", + "17017 0\n", + "17018 0\n", + "17019 0\n", + "17020 0\n", + "17021 1\n", + "17022 0\n", + "17023 0\n", + "17024 0\n", + "17025 0\n", + "17026 0\n", + "17027 1\n", + "17028 0\n", + "17029 1\n", + "17030 0\n", + "17031 0\n", + "17032 0\n", + "17033 1\n", + "17034 0\n", + "17035 0\n", + "17036 0\n", + "17037 0\n", + "17038 0\n", + "17039 0\n", + "17040 0\n", + "17041 1\n", + "17042 0\n", + "17043 0\n", + "17044 0\n", + "17045 0\n", + "17046 0\n", + "17047 1\n", + "17048 0\n", + "17049 0\n", + "17050 0\n", + "17051 0\n", + "17052 0\n", + "17053 1\n", + "17054 0\n", + "17055 0\n", + "17056 0\n", + "17057 0\n", + "17058 0\n", + "17059 0\n", + "17060 0\n", + "17061 0\n", + "17062 0\n", + "17063 0\n", + "17064 0\n", + "17065 0\n", + "17066 0\n", + "17067 0\n", + "17068 0\n", + "17069 0\n", + "17070 0\n", + "17071 0\n", + "17072 0\n", + "17073 0\n", + "17074 0\n", + "17075 0\n", + "17076 0\n", + "17077 1\n", + "17078 0\n", + "17079 0\n", + "17080 0\n", + "17081 0\n", + "17082 0\n", + "17083 0\n", + "17084 0\n", + "17085 0\n", + "17086 0\n", + "17087 0\n", + "17088 0\n", + "17089 0\n", + "17090 0\n", + "17091 0\n", + "17092 0\n", + "17093 1\n", + "17094 0\n", + "17095 0\n", + "17096 0\n", + "17097 0\n", + "17098 0\n", + "17099 1\n", + "17100 0\n", + "17101 0\n", + "17102 0\n", + "17103 0\n", + "17104 0\n", + "17105 0\n", + "17106 0\n", + "17107 1\n", + "17108 0\n", + "17109 0\n", + "17110 0\n", + "17111 0\n", + "17112 0\n", + "17113 0\n", + "17114 0\n", + "17115 0\n", + "17116 0\n", + "17117 1\n", + "17118 0\n", + "17119 0\n", + "17120 0\n", + "17121 0\n", + "17122 0\n", + "17123 1\n", + "17124 0\n", + "17125 0\n", + "17126 0\n", + "17127 0\n", + "17128 0\n", + "17129 0\n", + "17130 0\n", + "17131 0\n", + "17132 0\n", + "17133 0\n", + "17134 0\n", + "17135 0\n", + "17136 0\n", + "17137 1\n", + "17138 0\n", + "17139 0\n", + "17140 0\n", + "17141 0\n", + "17142 0\n", + "17143 0\n", + "17144 0\n", + "17145 0\n", + "17146 0\n", + "17147 0\n", + "17148 0\n", + "17149 0\n", + "17150 0\n", + "17151 0\n", + "17152 0\n", + "17153 0\n", + "17154 0\n", + "17155 0\n", + "17156 0\n", + "17157 0\n", + "17158 0\n", + "17159 1\n", + "17160 0\n", + "17161 0\n", + "17162 0\n", + "17163 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "17164 0\n", + "17165 0\n", + "17166 0\n", + "17167 1\n", + "17168 0\n", + "17169 0\n", + "17170 0\n", + "17171 0\n", + "17172 0\n", + "17173 0\n", + "17174 0\n", + "17175 0\n", + "17176 0\n", + "17177 0\n", + "17178 0\n", + "17179 0\n", + "17180 0\n", + "17181 0\n", + "17182 0\n", + "17183 1\n", + "17184 0\n", + "17185 0\n", + "17186 0\n", + "17187 0\n", + "17188 0\n", + "17189 1\n", + "17190 0\n", + "17191 1\n", + "17192 0\n", + "17193 0\n", + "17194 0\n", + "17195 0\n", + "17196 0\n", + "17197 0\n", + "17198 0\n", + "17199 0\n", + "17200 0\n", + "17201 0\n", + "17202 0\n", + "17203 1\n", + "17204 0\n", + "17205 0\n", + "17206 0\n", + "17207 1\n", + "17208 0\n", + "17209 1\n", + "17210 0\n", + "17211 0\n", + "17212 0\n", + "17213 0\n", + "17214 0\n", + "17215 0\n", + "17216 0\n", + "17217 0\n", + "17218 0\n", + "17219 0\n", + "17220 0\n", + "17221 0\n", + "17222 0\n", + "17223 0\n", + "17224 0\n", + "17225 0\n", + "17226 0\n", + "17227 0\n", + "17228 0\n", + "17229 0\n", + "17230 0\n", + "17231 1\n", + "17232 0\n", + "17233 0\n", + "17234 0\n", + "17235 0\n", + "17236 0\n", + "17237 0\n", + "17238 0\n", + "17239 1\n", + "17240 0\n", + "17241 0\n", + "17242 0\n", + "17243 0\n", + "17244 0\n", + "17245 0\n", + "17246 0\n", + "17247 0\n", + "17248 0\n", + "17249 0\n", + "17250 0\n", + "17251 0\n", + "17252 0\n", + "17253 0\n", + "17254 0\n", + "17255 0\n", + "17256 0\n", + "17257 1\n", + "17258 0\n", + "17259 0\n", + "17260 0\n", + "17261 0\n", + "17262 0\n", + "17263 0\n", + "17264 0\n", + "17265 0\n", + "17266 0\n", + "17267 0\n", + "17268 0\n", + "17269 0\n", + "17270 0\n", + "17271 0\n", + "17272 0\n", + "17273 0\n", + "17274 0\n", + "17275 0\n", + "17276 0\n", + "17277 0\n", + "17278 0\n", + "17279 0\n", + "17280 0\n", + "17281 0\n", + "17282 0\n", + "17283 0\n", + "17284 0\n", + "17285 0\n", + "17286 0\n", + "17287 0\n", + "17288 0\n", + "17289 0\n", + "17290 0\n", + "17291 1\n", + "17292 0\n", + "17293 1\n", + "17294 0\n", + "17295 0\n", + "17296 0\n", + "17297 0\n", + "17298 0\n", + "17299 1\n", + "17300 0\n", + "17301 0\n", + "17302 0\n", + "17303 0\n", + "17304 0\n", + "17305 0\n", + "17306 0\n", + "17307 0\n", + "17308 0\n", + "17309 0\n", + "17310 0\n", + "17311 0\n", + "17312 0\n", + "17313 0\n", + "17314 0\n", + "17315 0\n", + "17316 0\n", + "17317 1\n", + "17318 0\n", + "17319 0\n", + "17320 0\n", + "17321 1\n", + "17322 0\n", + "17323 0\n", + "17324 0\n", + "17325 0\n", + "17326 0\n", + "17327 1\n", + "17328 0\n", + "17329 0\n", + "17330 0\n", + "17331 0\n", + "17332 0\n", + "17333 1\n", + "17334 0\n", + "17335 0\n", + "17336 0\n", + "17337 0\n", + "17338 0\n", + "17339 0\n", + "17340 0\n", + "17341 1\n", + "17342 0\n", + "17343 0\n", + "17344 0\n", + "17345 0\n", + "17346 0\n", + "17347 0\n", + "17348 0\n", + "17349 0\n", + "17350 0\n", + "17351 1\n", + "17352 0\n", + "17353 0\n", + "17354 0\n", + "17355 0\n", + "17356 0\n", + "17357 0\n", + "17358 0\n", + "17359 1\n", + "17360 0\n", + "17361 0\n", + "17362 0\n", + "17363 0\n", + "17364 0\n", + "17365 0\n", + "17366 0\n", + "17367 0\n", + "17368 0\n", + "17369 0\n", + "17370 0\n", + "17371 0\n", + "17372 0\n", + "17373 0\n", + "17374 0\n", + "17375 0\n", + "17376 0\n", + "17377 1\n", + "17378 0\n", + "17379 0\n", + "17380 0\n", + "17381 0\n", + "17382 0\n", + "17383 1\n", + "17384 0\n", + "17385 0\n", + "17386 0\n", + "17387 1\n", + "17388 0\n", + "17389 1\n", + "17390 0\n", + "17391 0\n", + "17392 0\n", + "17393 1\n", + "17394 0\n", + "17395 0\n", + "17396 0\n", + "17397 0\n", + "17398 0\n", + "17399 0\n", + "17400 0\n", + "17401 1\n", + "17402 0\n", + "17403 0\n", + "17404 0\n", + "17405 0\n", + "17406 0\n", + "17407 0\n", + "17408 0\n", + "17409 0\n", + "17410 0\n", + "17411 0\n", + "17412 0\n", + "17413 0\n", + "17414 0\n", + "17415 0\n", + "17416 0\n", + "17417 1\n", + "17418 0\n", + "17419 1\n", + "17420 0\n", + "17421 0\n", + "17422 0\n", + "17423 0\n", + "17424 0\n", + "17425 0\n", + "17426 0\n", + "17427 0\n", + "17428 0\n", + "17429 0\n", + "17430 0\n", + "17431 1\n", + "17432 0\n", + "17433 0\n", + "17434 0\n", + "17435 0\n", + "17436 0\n", + "17437 0\n", + "17438 0\n", + "17439 0\n", + "17440 0\n", + "17441 0\n", + "17442 0\n", + "17443 1\n", + "17444 0\n", + "17445 0\n", + "17446 0\n", + "17447 0\n", + "17448 0\n", + "17449 1\n", + "17450 0\n", + "17451 0\n", + "17452 0\n", + "17453 0\n", + "17454 0\n", + "17455 0\n", + "17456 0\n", + "17457 0\n", + "17458 0\n", + "17459 0\n", + "17460 0\n", + "17461 0\n", + "17462 0\n", + "17463 0\n", + "17464 0\n", + "17465 0\n", + "17466 0\n", + "17467 1\n", + "17468 0\n", + "17469 0\n", + "17470 0\n", + "17471 1\n", + "17472 0\n", + "17473 0\n", + "17474 0\n", + "17475 0\n", + "17476 0\n", + "17477 1\n", + "17478 0\n", + "17479 0\n", + "17480 0\n", + "17481 0\n", + "17482 0\n", + "17483 1\n", + "17484 0\n", + "17485 0\n", + "17486 0\n", + "17487 0\n", + "17488 0\n", + "17489 1\n", + "17490 0\n", + "17491 1\n", + "17492 0\n", + "17493 0\n", + "17494 0\n", + "17495 0\n", + "17496 0\n", + "17497 1\n", + "17498 0\n", + "17499 0\n", + "17500 0\n", + "17501 0\n", + "17502 0\n", + "17503 0\n", + "17504 0\n", + "17505 0\n", + "17506 0\n", + "17507 0\n", + "17508 0\n", + "17509 1\n", + "17510 0\n", + "17511 0\n", + "17512 0\n", + "17513 0\n", + "17514 0\n", + "17515 0\n", + "17516 0\n", + "17517 0\n", + "17518 0\n", + "17519 1\n", + "17520 0\n", + "17521 0\n", + "17522 0\n", + "17523 0\n", + "17524 0\n", + "17525 0\n", + "17526 0\n", + "17527 0\n", + "17528 0\n", + "17529 0\n", + "17530 0\n", + "17531 0\n", + "17532 0\n", + "17533 0\n", + "17534 0\n", + "17535 0\n", + "17536 0\n", + "17537 0\n", + "17538 0\n", + "17539 1\n", + "17540 0\n", + "17541 0\n", + "17542 0\n", + "17543 0\n", + "17544 0\n", + "17545 0\n", + "17546 0\n", + "17547 0\n", + "17548 0\n", + "17549 0\n", + "17550 0\n", + "17551 1\n", + "17552 0\n", + "17553 0\n", + "17554 0\n", + "17555 0\n", + "17556 0\n", + "17557 0\n", + "17558 0\n", + "17559 0\n", + "17560 0\n", + "17561 0\n", + "17562 0\n", + "17563 0\n", + "17564 0\n", + "17565 0\n", + "17566 0\n", + "17567 0\n", + "17568 0\n", + "17569 1\n", + "17570 0\n", + "17571 0\n", + "17572 0\n", + "17573 1\n", + "17574 0\n", + "17575 0\n", + "17576 0\n", + "17577 0\n", + "17578 0\n", + "17579 1\n", + "17580 0\n", + "17581 1\n", + "17582 0\n", + "17583 0\n", + "17584 0\n", + "17585 0\n", + "17586 0\n", + "17587 0\n", + "17588 0\n", + "17589 0\n", + "17590 0\n", + "17591 0\n", + "17592 0\n", + "17593 0\n", + "17594 0\n", + "17595 0\n", + "17596 0\n", + "17597 1\n", + "17598 0\n", + "17599 1\n", + "17600 0\n", + "17601 0\n", + "17602 0\n", + "17603 0\n", + "17604 0\n", + "17605 0\n", + "17606 0\n", + "17607 0\n", + "17608 0\n", + "17609 1\n", + "17610 0\n", + "17611 0\n", + "17612 0\n", + "17613 0\n", + "17614 0\n", + "17615 0\n", + "17616 0\n", + "17617 0\n", + "17618 0\n", + "17619 0\n", + "17620 0\n", + "17621 0\n", + "17622 0\n", + "17623 1\n", + "17624 0\n", + "17625 0\n", + "17626 0\n", + "17627 1\n", + "17628 0\n", + "17629 0\n", + "17630 0\n", + "17631 0\n", + "17632 0\n", + "17633 0\n", + "17634 0\n", + "17635 0\n", + "17636 0\n", + "17637 0\n", + "17638 0\n", + "17639 0\n", + "17640 0\n", + "17641 0\n", + "17642 0\n", + "17643 0\n", + "17644 0\n", + "17645 0\n", + "17646 0\n", + "17647 0\n", + "17648 0\n", + "17649 0\n", + "17650 0\n", + "17651 0\n", + "17652 0\n", + "17653 0\n", + "17654 0\n", + "17655 0\n", + "17656 0\n", + "17657 1\n", + "17658 0\n", + "17659 1\n", + "17660 0\n", + "17661 0\n", + "17662 0\n", + "17663 0\n", + "17664 0\n", + "17665 0\n", + "17666 0\n", + "17667 0\n", + "17668 0\n", + "17669 1\n", + "17670 0\n", + "17671 0\n", + "17672 0\n", + "17673 0\n", + "17674 0\n", + "17675 0\n", + "17676 0\n", + "17677 0\n", + "17678 0\n", + "17679 0\n", + "17680 0\n", + "17681 1\n", + "17682 0\n", + "17683 1\n", + "17684 0\n", + "17685 0\n", + "17686 0\n", + "17687 0\n", + "17688 0\n", + "17689 0\n", + "17690 0\n", + "17691 0\n", + "17692 0\n", + "17693 0\n", + "17694 0\n", + "17695 0\n", + "17696 0\n", + "17697 0\n", + "17698 0\n", + "17699 0\n", + "17700 0\n", + "17701 0\n", + "17702 0\n", + "17703 0\n", + "17704 0\n", + "17705 0\n", + "17706 0\n", + "17707 1\n", + "17708 0\n", + "17709 0\n", + "17710 0\n", + "17711 0\n", + "17712 0\n", + "17713 1\n", + "17714 0\n", + "17715 0\n", + "17716 0\n", + "17717 0\n", + "17718 0\n", + "17719 0\n", + "17720 0\n", + "17721 0\n", + "17722 0\n", + "17723 0\n", + "17724 0\n", + "17725 0\n", + "17726 0\n", + "17727 0\n", + "17728 0\n", + "17729 1\n", + "17730 0\n", + "17731 0\n", + "17732 0\n", + "17733 0\n", + "17734 0\n", + "17735 0\n", + "17736 0\n", + "17737 1\n", + "17738 0\n", + "17739 0\n", + "17740 0\n", + "17741 0\n", + "17742 0\n", + "17743 0\n", + "17744 0\n", + "17745 0\n", + "17746 0\n", + "17747 1\n", + "17748 0\n", + "17749 1\n", + "17750 0\n", + "17751 0\n", + "17752 0\n", + "17753 0\n", + "17754 0\n", + "17755 0\n", + "17756 0\n", + "17757 0\n", + "17758 0\n", + "17759 0\n", + "17760 0\n", + "17761 1\n", + "17762 0\n", + "17763 0\n", + "17764 0\n", + "17765 0\n", + "17766 0\n", + "17767 0\n", + "17768 0\n", + "17769 0\n", + "17770 0\n", + "17771 0\n", + "17772 0\n", + "17773 0\n", + "17774 0\n", + "17775 0\n", + "17776 0\n", + "17777 0\n", + "17778 0\n", + "17779 0\n", + "17780 0\n", + "17781 0\n", + "17782 0\n", + "17783 1\n", + "17784 0\n", + "17785 0\n", + "17786 0\n", + "17787 0\n", + "17788 0\n", + "17789 1\n", + "17790 0\n", + "17791 1\n", + "17792 0\n", + "17793 0\n", + "17794 0\n", + "17795 0\n", + "17796 0\n", + "17797 0\n", + "17798 0\n", + "17799 0\n", + "17800 0\n", + "17801 0\n", + "17802 0\n", + "17803 0\n", + "17804 0\n", + "17805 0\n", + "17806 0\n", + "17807 1\n", + "17808 0\n", + "17809 0\n", + "17810 0\n", + "17811 0\n", + "17812 0\n", + "17813 0\n", + "17814 0\n", + "17815 0\n", + "17816 0\n", + "17817 0\n", + "17818 0\n", + "17819 0\n", + "17820 0\n", + "17821 0\n", + "17822 0\n", + "17823 0\n", + "17824 0\n", + "17825 0\n", + "17826 0\n", + "17827 1\n", + "17828 0\n", + "17829 0\n", + "17830 0\n", + "17831 0\n", + "17832 0\n", + "17833 0\n", + "17834 0\n", + "17835 0\n", + "17836 0\n", + "17837 1\n", + "17838 0\n", + "17839 1\n", + "17840 0\n", + "17841 0\n", + "17842 0\n", + "17843 0\n", + "17844 0\n", + "17845 0\n", + "17846 0\n", + "17847 0\n", + "17848 0\n", + "17849 0\n", + "17850 0\n", + "17851 1\n", + "17852 0\n", + "17853 0\n", + "17854 0\n", + "17855 0\n", + "17856 0\n", + "17857 0\n", + "17858 0\n", + "17859 0\n", + "17860 0\n", + "17861 0\n", + "17862 0\n", + "17863 1\n", + "17864 0\n", + "17865 0\n", + "17866 0\n", + "17867 0\n", + "17868 0\n", + "17869 0\n", + "17870 0\n", + "17871 0\n", + "17872 0\n", + "17873 0\n", + "17874 0\n", + "17875 0\n", + "17876 0\n", + "17877 0\n", + "17878 0\n", + "17879 0\n", + "17880 0\n", + "17881 1\n", + "17882 0\n", + "17883 0\n", + "17884 0\n", + "17885 0\n", + "17886 0\n", + "17887 0\n", + "17888 0\n", + "17889 0\n", + "17890 0\n", + "17891 1\n", + "17892 0\n", + "17893 0\n", + "17894 0\n", + "17895 0\n", + "17896 0\n", + "17897 0\n", + "17898 0\n", + "17899 0\n", + "17900 0\n", + "17901 0\n", + "17902 0\n", + "17903 1\n", + "17904 0\n", + "17905 0\n", + "17906 0\n", + "17907 0\n", + "17908 0\n", + "17909 1\n", + "17910 0\n", + "17911 1\n", + "17912 0\n", + "17913 0\n", + "17914 0\n", + "17915 0\n", + "17916 0\n", + "17917 0\n", + "17918 0\n", + "17919 0\n", + "17920 0\n", + "17921 1\n", + "17922 0\n", + "17923 1\n", + "17924 0\n", + "17925 0\n", + "17926 0\n", + "17927 0\n", + "17928 0\n", + "17929 1\n", + "17930 0\n", + "17931 0\n", + "17932 0\n", + "17933 0\n", + "17934 0\n", + "17935 0\n", + "17936 0\n", + "17937 0\n", + "17938 0\n", + "17939 1\n", + "17940 0\n", + "17941 0\n", + "17942 0\n", + "17943 0\n", + "17944 0\n", + "17945 0\n", + "17946 0\n", + "17947 0\n", + "17948 0\n", + "17949 0\n", + "17950 0\n", + "17951 0\n", + "17952 0\n", + "17953 0\n", + "17954 0\n", + "17955 0\n", + "17956 0\n", + "17957 1\n", + "17958 0\n", + "17959 1\n", + "17960 0\n", + "17961 0\n", + "17962 0\n", + "17963 0\n", + "17964 0\n", + "17965 0\n", + "17966 0\n", + "17967 0\n", + "17968 0\n", + "17969 0\n", + "17970 0\n", + "17971 1\n", + "17972 0\n", + "17973 0\n", + "17974 0\n", + "17975 0\n", + "17976 0\n", + "17977 1\n", + "17978 0\n", + "17979 0\n", + "17980 0\n", + "17981 1\n", + "17982 0\n", + "17983 0\n", + "17984 0\n", + "17985 0\n", + "17986 0\n", + "17987 1\n", + "17988 0\n", + "17989 1\n", + "17990 0\n", + "17991 0\n", + "17992 0\n", + "17993 0\n", + "17994 0\n", + "17995 0\n", + "17996 0\n", + "17997 0\n", + "17998 0\n", + "17999 0\n", + "18000 0\n", + "18001 0\n", + "18002 0\n", + "18003 0\n", + "18004 0\n", + "18005 0\n", + "18006 0\n", + "18007 0\n", + "18008 0\n", + "18009 0\n", + "18010 0\n", + "18011 0\n", + "18012 0\n", + "18013 1\n", + "18014 0\n", + "18015 0\n", + "18016 0\n", + "18017 0\n", + "18018 0\n", + "18019 0\n", + "18020 0\n", + "18021 0\n", + "18022 0\n", + "18023 0\n", + "18024 0\n", + "18025 0\n", + "18026 0\n", + "18027 0\n", + "18028 0\n", + "18029 0\n", + "18030 0\n", + "18031 0\n", + "18032 0\n", + "18033 0\n", + "18034 0\n", + "18035 0\n", + "18036 0\n", + "18037 0\n", + "18038 0\n", + "18039 0\n", + "18040 0\n", + "18041 1\n", + "18042 0\n", + "18043 1\n", + "18044 0\n", + "18045 0\n", + "18046 0\n", + "18047 1\n", + "18048 0\n", + "18049 1\n", + "18050 0\n", + "18051 0\n", + "18052 0\n", + "18053 0\n", + "18054 0\n", + "18055 0\n", + "18056 0\n", + "18057 0\n", + "18058 0\n", + "18059 1\n", + "18060 0\n", + "18061 1\n", + "18062 0\n", + "18063 0\n", + "18064 0\n", + "18065 0\n", + "18066 0\n", + "18067 0\n", + "18068 0\n", + "18069 0\n", + "18070 0\n", + "18071 0\n", + "18072 0\n", + "18073 0\n", + "18074 0\n", + "18075 0\n", + "18076 0\n", + "18077 1\n", + "18078 0\n", + "18079 0\n", + "18080 0\n", + "18081 0\n", + "18082 0\n", + "18083 0\n", + "18084 0\n", + "18085 0\n", + "18086 0\n", + "18087 0\n", + "18088 0\n", + "18089 1\n", + "18090 0\n", + "18091 0\n", + "18092 0\n", + "18093 0\n", + "18094 0\n", + "18095 0\n", + "18096 0\n", + "18097 1\n", + "18098 0\n", + "18099 0\n", + "18100 0\n", + "18101 0\n", + "18102 0\n", + "18103 0\n", + "18104 0\n", + "18105 0\n", + "18106 0\n", + "18107 0\n", + "18108 0\n", + "18109 0\n", + "18110 0\n", + "18111 0\n", + "18112 0\n", + "18113 0\n", + "18114 0\n", + "18115 0\n", + "18116 0\n", + "18117 0\n", + "18118 0\n", + "18119 1\n", + "18120 0\n", + "18121 1\n", + "18122 0\n", + "18123 0\n", + "18124 0\n", + "18125 0\n", + "18126 0\n", + "18127 1\n", + "18128 0\n", + "18129 0\n", + "18130 0\n", + "18131 1\n", + "18132 0\n", + "18133 1\n", + "18134 0\n", + "18135 0\n", + "18136 0\n", + "18137 0\n", + "18138 0\n", + "18139 0\n", + "18140 0\n", + "18141 0\n", + "18142 0\n", + "18143 1\n", + "18144 0\n", + "18145 0\n", + "18146 0\n", + "18147 0\n", + "18148 0\n", + "18149 1\n", + "18150 0\n", + "18151 0\n", + "18152 0\n", + "18153 0\n", + "18154 0\n", + "18155 0\n", + "18156 0\n", + "18157 0\n", + "18158 0\n", + "18159 0\n", + "18160 0\n", + "18161 0\n", + "18162 0\n", + "18163 0\n", + "18164 0\n", + "18165 0\n", + "18166 0\n", + "18167 0\n", + "18168 0\n", + "18169 1\n", + "18170 0\n", + "18171 0\n", + "18172 0\n", + "18173 0\n", + "18174 0\n", + "18175 0\n", + "18176 0\n", + "18177 0\n", + "18178 0\n", + "18179 0\n", + "18180 0\n", + "18181 1\n", + "18182 0\n", + "18183 0\n", + "18184 0\n", + "18185 0\n", + "18186 0\n", + "18187 0\n", + "18188 0\n", + "18189 0\n", + "18190 0\n", + "18191 1\n", + "18192 0\n", + "18193 0\n", + "18194 0\n", + "18195 0\n", + "18196 0\n", + "18197 0\n", + "18198 0\n", + "18199 1\n", + "18200 0\n", + "18201 0\n", + "18202 0\n", + "18203 0\n", + "18204 0\n", + "18205 0\n", + "18206 0\n", + "18207 0\n", + "18208 0\n", + "18209 0\n", + "18210 0\n", + "18211 1\n", + "18212 0\n", + "18213 0\n", + "18214 0\n", + "18215 0\n", + "18216 0\n", + "18217 1\n", + "18218 0\n", + "18219 0\n", + "18220 0\n", + "18221 0\n", + "18222 0\n", + "18223 1\n", + "18224 0\n", + "18225 0\n", + "18226 0\n", + "18227 0\n", + "18228 0\n", + "18229 1\n", + "18230 0\n", + "18231 0\n", + "18232 0\n", + "18233 1\n", + "18234 0\n", + "18235 0\n", + "18236 0\n", + "18237 0\n", + "18238 0\n", + "18239 0\n", + "18240 0\n", + "18241 0\n", + "18242 0\n", + "18243 0\n", + "18244 0\n", + "18245 0\n", + "18246 0\n", + "18247 0\n", + "18248 0\n", + "18249 0\n", + "18250 0\n", + "18251 1\n", + "18252 0\n", + "18253 1\n", + "18254 0\n", + "18255 0\n", + "18256 0\n", + "18257 1\n", + "18258 0\n", + "18259 0\n", + "18260 0\n", + "18261 0\n", + "18262 0\n", + "18263 0\n", + "18264 0\n", + "18265 0\n", + "18266 0\n", + "18267 0\n", + "18268 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18269 1\n", + "18270 0\n", + "18271 0\n", + "18272 0\n", + "18273 0\n", + "18274 0\n", + "18275 0\n", + "18276 0\n", + "18277 0\n", + "18278 0\n", + "18279 0\n", + "18280 0\n", + "18281 0\n", + "18282 0\n", + "18283 0\n", + "18284 0\n", + "18285 0\n", + "18286 0\n", + "18287 1\n", + "18288 0\n", + "18289 1\n", + "18290 0\n", + "18291 0\n", + "18292 0\n", + "18293 0\n", + "18294 0\n", + "18295 0\n", + "18296 0\n", + "18297 0\n", + "18298 0\n", + "18299 0\n", + "18300 0\n", + "18301 1\n", + "18302 0\n", + "18303 0\n", + "18304 0\n", + "18305 0\n", + "18306 0\n", + "18307 1\n", + "18308 0\n", + "18309 0\n", + "18310 0\n", + "18311 1\n", + "18312 0\n", + "18313 1\n", + "18314 0\n", + "18315 0\n", + "18316 0\n", + "18317 0\n", + "18318 0\n", + "18319 0\n", + "18320 0\n", + "18321 0\n", + "18322 0\n", + "18323 0\n", + "18324 0\n", + "18325 0\n", + "18326 0\n", + "18327 0\n", + "18328 0\n", + "18329 1\n", + "18330 0\n", + "18331 0\n", + "18332 0\n", + "18333 0\n", + "18334 0\n", + "18335 0\n", + "18336 0\n", + "18337 0\n", + "18338 0\n", + "18339 0\n", + "18340 0\n", + "18341 1\n", + "18342 0\n", + "18343 0\n", + "18344 0\n", + "18345 0\n", + "18346 0\n", + "18347 0\n", + "18348 0\n", + "18349 0\n", + "18350 0\n", + "18351 0\n", + "18352 0\n", + "18353 1\n", + "18354 0\n", + "18355 0\n", + "18356 0\n", + "18357 0\n", + "18358 0\n", + "18359 0\n", + "18360 0\n", + "18361 0\n", + "18362 0\n", + "18363 0\n", + "18364 0\n", + "18365 0\n", + "18366 0\n", + "18367 1\n", + "18368 0\n", + "18369 0\n", + "18370 0\n", + "18371 1\n", + "18372 0\n", + "18373 0\n", + "18374 0\n", + "18375 0\n", + "18376 0\n", + "18377 0\n", + "18378 0\n", + "18379 1\n", + "18380 0\n", + "18381 0\n", + "18382 0\n", + "18383 0\n", + "18384 0\n", + "18385 0\n", + "18386 0\n", + "18387 0\n", + "18388 0\n", + "18389 0\n", + "18390 0\n", + "18391 0\n", + "18392 0\n", + "18393 0\n", + "18394 0\n", + "18395 0\n", + "18396 0\n", + "18397 1\n", + "18398 0\n", + "18399 0\n", + "18400 0\n", + "18401 1\n", + "18402 0\n", + "18403 0\n", + "18404 0\n", + "18405 0\n", + "18406 0\n", + "18407 0\n", + "18408 0\n", + "18409 0\n", + "18410 0\n", + "18411 0\n", + "18412 0\n", + "18413 1\n", + "18414 0\n", + "18415 0\n", + "18416 0\n", + "18417 0\n", + "18418 0\n", + "18419 0\n", + "18420 0\n", + "18421 0\n", + "18422 0\n", + "18423 0\n", + "18424 0\n", + "18425 0\n", + "18426 0\n", + "18427 1\n", + "18428 0\n", + "18429 0\n", + "18430 0\n", + "18431 0\n", + "18432 0\n", + "18433 1\n", + "18434 0\n", + "18435 0\n", + "18436 0\n", + "18437 0\n", + "18438 0\n", + "18439 1\n", + "18440 0\n", + "18441 0\n", + "18442 0\n", + "18443 1\n", + "18444 0\n", + "18445 0\n", + "18446 0\n", + "18447 0\n", + "18448 0\n", + "18449 0\n", + "18450 0\n", + "18451 1\n", + "18452 0\n", + "18453 0\n", + "18454 0\n", + "18455 0\n", + "18456 0\n", + "18457 1\n", + "18458 0\n", + "18459 0\n", + "18460 0\n", + "18461 1\n", + "18462 0\n", + "18463 0\n", + "18464 0\n", + "18465 0\n", + "18466 0\n", + "18467 0\n", + "18468 0\n", + "18469 0\n", + "18470 0\n", + "18471 0\n", + "18472 0\n", + "18473 0\n", + "18474 0\n", + "18475 0\n", + "18476 0\n", + "18477 0\n", + "18478 0\n", + "18479 0\n", + "18480 0\n", + "18481 1\n", + "18482 0\n", + "18483 0\n", + "18484 0\n", + "18485 0\n", + "18486 0\n", + "18487 0\n", + "18488 0\n", + "18489 0\n", + "18490 0\n", + "18491 0\n", + "18492 0\n", + "18493 1\n", + "18494 0\n", + "18495 0\n", + "18496 0\n", + "18497 0\n", + "18498 0\n", + "18499 0\n", + "18500 0\n", + "18501 0\n", + "18502 0\n", + "18503 1\n", + "18504 0\n", + "18505 0\n", + "18506 0\n", + "18507 0\n", + "18508 0\n", + "18509 0\n", + "18510 0\n", + "18511 0\n", + "18512 0\n", + "18513 0\n", + "18514 0\n", + "18515 0\n", + "18516 0\n", + "18517 1\n", + "18518 0\n", + "18519 0\n", + "18520 0\n", + "18521 1\n", + "18522 0\n", + "18523 1\n", + "18524 0\n", + "18525 0\n", + "18526 0\n", + "18527 0\n", + "18528 0\n", + "18529 0\n", + "18530 0\n", + "18531 0\n", + "18532 0\n", + "18533 0\n", + "18534 0\n", + "18535 0\n", + "18536 0\n", + "18537 0\n", + "18538 0\n", + "18539 1\n", + "18540 0\n", + "18541 1\n", + "18542 0\n", + "18543 0\n", + "18544 0\n", + "18545 0\n", + "18546 0\n", + "18547 0\n", + "18548 0\n", + "18549 0\n", + "18550 0\n", + "18551 0\n", + "18552 0\n", + "18553 1\n", + "18554 0\n", + "18555 0\n", + "18556 0\n", + "18557 0\n", + "18558 0\n", + "18559 0\n", + "18560 0\n", + "18561 0\n", + "18562 0\n", + "18563 0\n", + "18564 0\n", + "18565 0\n", + "18566 0\n", + "18567 0\n", + "18568 0\n", + "18569 0\n", + "18570 0\n", + "18571 0\n", + "18572 0\n", + "18573 0\n", + "18574 0\n", + "18575 0\n", + "18576 0\n", + "18577 0\n", + "18578 0\n", + "18579 0\n", + "18580 0\n", + "18581 0\n", + "18582 0\n", + "18583 1\n", + "18584 0\n", + "18585 0\n", + "18586 0\n", + "18587 1\n", + "18588 0\n", + "18589 0\n", + "18590 0\n", + "18591 0\n", + "18592 0\n", + "18593 1\n", + "18594 0\n", + "18595 0\n", + "18596 0\n", + "18597 0\n", + "18598 0\n", + "18599 0\n", + "18600 0\n", + "18601 0\n", + "18602 0\n", + "18603 0\n", + "18604 0\n", + "18605 0\n", + "18606 0\n", + "18607 0\n", + "18608 0\n", + "18609 0\n", + "18610 0\n", + "18611 0\n", + "18612 0\n", + "18613 0\n", + "18614 0\n", + "18615 0\n", + "18616 0\n", + "18617 1\n", + "18618 0\n", + "18619 0\n", + "18620 0\n", + "18621 0\n", + "18622 0\n", + "18623 0\n", + "18624 0\n", + "18625 0\n", + "18626 0\n", + "18627 0\n", + "18628 0\n", + "18629 0\n", + "18630 0\n", + "18631 0\n", + "18632 0\n", + "18633 0\n", + "18634 0\n", + "18635 0\n", + "18636 0\n", + "18637 1\n", + "18638 0\n", + "18639 0\n", + "18640 0\n", + "18641 0\n", + "18642 0\n", + "18643 0\n", + "18644 0\n", + "18645 0\n", + "18646 0\n", + "18647 0\n", + "18648 0\n", + "18649 0\n", + "18650 0\n", + "18651 0\n", + "18652 0\n", + "18653 0\n", + "18654 0\n", + "18655 0\n", + "18656 0\n", + "18657 0\n", + "18658 0\n", + "18659 0\n", + "18660 0\n", + "18661 1\n", + "18662 0\n", + "18663 0\n", + "18664 0\n", + "18665 0\n", + "18666 0\n", + "18667 0\n", + "18668 0\n", + "18669 0\n", + "18670 0\n", + "18671 1\n", + "18672 0\n", + "18673 0\n", + "18674 0\n", + "18675 0\n", + "18676 0\n", + "18677 0\n", + "18678 0\n", + "18679 1\n", + "18680 0\n", + "18681 0\n", + "18682 0\n", + "18683 0\n", + "18684 0\n", + "18685 0\n", + "18686 0\n", + "18687 0\n", + "18688 0\n", + "18689 0\n", + "18690 0\n", + "18691 1\n", + "18692 0\n", + "18693 0\n", + "18694 0\n", + "18695 0\n", + "18696 0\n", + "18697 0\n", + "18698 0\n", + "18699 0\n", + "18700 0\n", + "18701 1\n", + "18702 0\n", + "18703 0\n", + "18704 0\n", + "18705 0\n", + "18706 0\n", + "18707 0\n", + "18708 0\n", + "18709 0\n", + "18710 0\n", + "18711 0\n", + "18712 0\n", + "18713 1\n", + "18714 0\n", + "18715 0\n", + "18716 0\n", + "18717 0\n", + "18718 0\n", + "18719 1\n", + "18720 0\n", + "18721 0\n", + "18722 0\n", + "18723 0\n", + "18724 0\n", + "18725 0\n", + "18726 0\n", + "18727 0\n", + "18728 0\n", + "18729 0\n", + "18730 0\n", + "18731 1\n", + "18732 0\n", + "18733 0\n", + "18734 0\n", + "18735 0\n", + "18736 0\n", + "18737 0\n", + "18738 0\n", + "18739 0\n", + "18740 0\n", + "18741 0\n", + "18742 0\n", + "18743 1\n", + "18744 0\n", + "18745 0\n", + "18746 0\n", + "18747 0\n", + "18748 0\n", + "18749 1\n", + "18750 0\n", + "18751 0\n", + "18752 0\n", + "18753 0\n", + "18754 0\n", + "18755 0\n", + "18756 0\n", + "18757 1\n", + "18758 0\n", + "18759 0\n", + "18760 0\n", + "18761 0\n", + "18762 0\n", + "18763 0\n", + "18764 0\n", + "18765 0\n", + "18766 0\n", + "18767 0\n", + "18768 0\n", + "18769 0\n", + "18770 0\n", + "18771 0\n", + "18772 0\n", + "18773 1\n", + "18774 0\n", + "18775 0\n", + "18776 0\n", + "18777 0\n", + "18778 0\n", + "18779 0\n", + "18780 0\n", + "18781 0\n", + "18782 0\n", + "18783 0\n", + "18784 0\n", + "18785 0\n", + "18786 0\n", + "18787 1\n", + "18788 0\n", + "18789 0\n", + "18790 0\n", + "18791 0\n", + "18792 0\n", + "18793 1\n", + "18794 0\n", + "18795 0\n", + "18796 0\n", + "18797 1\n", + "18798 0\n", + "18799 0\n", + "18800 0\n", + "18801 0\n", + "18802 0\n", + "18803 1\n", + "18804 0\n", + "18805 0\n", + "18806 0\n", + "18807 0\n", + "18808 0\n", + "18809 0\n", + "18810 0\n", + "18811 0\n", + "18812 0\n", + "18813 0\n", + "18814 0\n", + "18815 0\n", + "18816 0\n", + "18817 0\n", + "18818 0\n", + "18819 0\n", + "18820 0\n", + "18821 0\n", + "18822 0\n", + "18823 0\n", + "18824 0\n", + "18825 0\n", + "18826 0\n", + "18827 0\n", + "18828 0\n", + "18829 0\n", + "18830 0\n", + "18831 0\n", + "18832 0\n", + "18833 0\n", + "18834 0\n", + "18835 0\n", + "18836 0\n", + "18837 0\n", + "18838 0\n", + "18839 1\n", + "18840 0\n", + "18841 0\n", + "18842 0\n", + "18843 0\n", + "18844 0\n", + "18845 0\n", + "18846 0\n", + "18847 0\n", + "18848 0\n", + "18849 0\n", + "18850 0\n", + "18851 0\n", + "18852 0\n", + "18853 0\n", + "18854 0\n", + "18855 0\n", + "18856 0\n", + "18857 0\n", + "18858 0\n", + "18859 1\n", + "18860 0\n", + "18861 0\n", + "18862 0\n", + "18863 0\n", + "18864 0\n", + "18865 0\n", + "18866 0\n", + "18867 0\n", + "18868 0\n", + "18869 1\n", + "18870 0\n", + "18871 0\n", + "18872 0\n", + "18873 0\n", + "18874 0\n", + "18875 0\n", + "18876 0\n", + "18877 0\n", + "18878 0\n", + "18879 0\n", + "18880 0\n", + "18881 0\n", + "18882 0\n", + "18883 0\n", + "18884 0\n", + "18885 0\n", + "18886 0\n", + "18887 0\n", + "18888 0\n", + "18889 0\n", + "18890 0\n", + "18891 0\n", + "18892 0\n", + "18893 0\n", + "18894 0\n", + "18895 0\n", + "18896 0\n", + "18897 0\n", + "18898 0\n", + "18899 1\n", + "18900 0\n", + "18901 0\n", + "18902 0\n", + "18903 0\n", + "18904 0\n", + "18905 0\n", + "18906 0\n", + "18907 0\n", + "18908 0\n", + "18909 0\n", + "18910 0\n", + "18911 1\n", + "18912 0\n", + "18913 1\n", + "18914 0\n", + "18915 0\n", + "18916 0\n", + "18917 1\n", + "18918 0\n", + "18919 1\n", + "18920 0\n", + "18921 0\n", + "18922 0\n", + "18923 0\n", + "18924 0\n", + "18925 0\n", + "18926 0\n", + "18927 0\n", + "18928 0\n", + "18929 0\n", + "18930 0\n", + "18931 0\n", + "18932 0\n", + "18933 0\n", + "18934 0\n", + "18935 0\n", + "18936 0\n", + "18937 0\n", + "18938 0\n", + "18939 0\n", + "18940 0\n", + "18941 0\n", + "18942 0\n", + "18943 0\n", + "18944 0\n", + "18945 0\n", + "18946 0\n", + "18947 1\n", + "18948 0\n", + "18949 0\n", + "18950 0\n", + "18951 0\n", + "18952 0\n", + "18953 0\n", + "18954 0\n", + "18955 0\n", + "18956 0\n", + "18957 0\n", + "18958 0\n", + "18959 1\n", + "18960 0\n", + "18961 0\n", + "18962 0\n", + "18963 0\n", + "18964 0\n", + "18965 0\n", + "18966 0\n", + "18967 0\n", + "18968 0\n", + "18969 0\n", + "18970 0\n", + "18971 0\n", + "18972 0\n", + "18973 1\n", + "18974 0\n", + "18975 0\n", + "18976 0\n", + "18977 0\n", + "18978 0\n", + "18979 1\n", + "18980 0\n", + "18981 0\n", + "18982 0\n", + "18983 0\n", + "18984 0\n", + "18985 0\n", + "18986 0\n", + "18987 0\n", + "18988 0\n", + "18989 0\n", + "18990 0\n", + "18991 0\n", + "18992 0\n", + "18993 0\n", + "18994 0\n", + "18995 0\n", + "18996 0\n", + "18997 0\n", + "18998 0\n", + "18999 0\n", + "19000 0\n", + "19001 1\n", + "19002 0\n", + "19003 0\n", + "19004 0\n", + "19005 0\n", + "19006 0\n", + "19007 0\n", + "19008 0\n", + "19009 1\n", + "19010 0\n", + "19011 0\n", + "19012 0\n", + "19013 1\n", + "19014 0\n", + "19015 0\n", + "19016 0\n", + "19017 0\n", + "19018 0\n", + "19019 0\n", + "19020 0\n", + "19021 0\n", + "19022 0\n", + "19023 0\n", + "19024 0\n", + "19025 0\n", + "19026 0\n", + "19027 0\n", + "19028 0\n", + "19029 0\n", + "19030 0\n", + "19031 1\n", + "19032 0\n", + "19033 0\n", + "19034 0\n", + "19035 0\n", + "19036 0\n", + "19037 1\n", + "19038 0\n", + "19039 0\n", + "19040 0\n", + "19041 0\n", + "19042 0\n", + "19043 0\n", + "19044 0\n", + "19045 0\n", + "19046 0\n", + "19047 0\n", + "19048 0\n", + "19049 0\n", + "19050 0\n", + "19051 1\n", + "19052 0\n", + "19053 0\n", + "19054 0\n", + "19055 0\n", + "19056 0\n", + "19057 0\n", + "19058 0\n", + "19059 0\n", + "19060 0\n", + "19061 0\n", + "19062 0\n", + "19063 0\n", + "19064 0\n", + "19065 0\n", + "19066 0\n", + "19067 0\n", + "19068 0\n", + "19069 1\n", + "19070 0\n", + "19071 0\n", + "19072 0\n", + "19073 1\n", + "19074 0\n", + "19075 0\n", + "19076 0\n", + "19077 0\n", + "19078 0\n", + "19079 1\n", + "19080 0\n", + "19081 1\n", + "19082 0\n", + "19083 0\n", + "19084 0\n", + "19085 0\n", + "19086 0\n", + "19087 1\n", + "19088 0\n", + "19089 0\n", + "19090 0\n", + "19091 0\n", + "19092 0\n", + "19093 0\n", + "19094 0\n", + "19095 0\n", + "19096 0\n", + "19097 0\n", + "19098 0\n", + "19099 0\n", + "19100 0\n", + "19101 0\n", + "19102 0\n", + "19103 0\n", + "19104 0\n", + "19105 0\n", + "19106 0\n", + "19107 0\n", + "19108 0\n", + "19109 0\n", + "19110 0\n", + "19111 0\n", + "19112 0\n", + "19113 0\n", + "19114 0\n", + "19115 0\n", + "19116 0\n", + "19117 0\n", + "19118 0\n", + "19119 0\n", + "19120 0\n", + "19121 1\n", + "19122 0\n", + "19123 0\n", + "19124 0\n", + "19125 0\n", + "19126 0\n", + "19127 0\n", + "19128 0\n", + "19129 0\n", + "19130 0\n", + "19131 0\n", + "19132 0\n", + "19133 0\n", + "19134 0\n", + "19135 0\n", + "19136 0\n", + "19137 0\n", + "19138 0\n", + "19139 1\n", + "19140 0\n", + "19141 1\n", + "19142 0\n", + "19143 0\n", + "19144 0\n", + "19145 0\n", + "19146 0\n", + "19147 0\n", + "19148 0\n", + "19149 0\n", + "19150 0\n", + "19151 0\n", + "19152 0\n", + "19153 0\n", + "19154 0\n", + "19155 0\n", + "19156 0\n", + "19157 1\n", + "19158 0\n", + "19159 0\n", + "19160 0\n", + "19161 0\n", + "19162 0\n", + "19163 1\n", + "19164 0\n", + "19165 0\n", + "19166 0\n", + "19167 0\n", + "19168 0\n", + "19169 0\n", + "19170 0\n", + "19171 0\n", + "19172 0\n", + "19173 0\n", + "19174 0\n", + "19175 0\n", + "19176 0\n", + "19177 0\n", + "19178 0\n", + "19179 0\n", + "19180 0\n", + "19181 1\n", + "19182 0\n", + "19183 1\n", + "19184 0\n", + "19185 0\n", + "19186 0\n", + "19187 0\n", + "19188 0\n", + "19189 0\n", + "19190 0\n", + "19191 0\n", + "19192 0\n", + "19193 0\n", + "19194 0\n", + "19195 0\n", + "19196 0\n", + "19197 0\n", + "19198 0\n", + "19199 0\n", + "19200 0\n", + "19201 0\n", + "19202 0\n", + "19203 0\n", + "19204 0\n", + "19205 0\n", + "19206 0\n", + "19207 1\n", + "19208 0\n", + "19209 0\n", + "19210 0\n", + "19211 1\n", + "19212 0\n", + "19213 1\n", + "19214 0\n", + "19215 0\n", + "19216 0\n", + "19217 0\n", + "19218 0\n", + "19219 1\n", + "19220 0\n", + "19221 0\n", + "19222 0\n", + "19223 0\n", + "19224 0\n", + "19225 0\n", + "19226 0\n", + "19227 0\n", + "19228 0\n", + "19229 0\n", + "19230 0\n", + "19231 1\n", + "19232 0\n", + "19233 0\n", + "19234 0\n", + "19235 0\n", + "19236 0\n", + "19237 1\n", + "19238 0\n", + "19239 0\n", + "19240 0\n", + "19241 0\n", + "19242 0\n", + "19243 0\n", + "19244 0\n", + "19245 0\n", + "19246 0\n", + "19247 0\n", + "19248 0\n", + "19249 1\n", + "19250 0\n", + "19251 0\n", + "19252 0\n", + "19253 0\n", + "19254 0\n", + "19255 0\n", + "19256 0\n", + "19257 0\n", + "19258 0\n", + "19259 1\n", + "19260 0\n", + "19261 0\n", + "19262 0\n", + "19263 0\n", + "19264 0\n", + "19265 0\n", + "19266 0\n", + "19267 1\n", + "19268 0\n", + "19269 0\n", + "19270 0\n", + "19271 0\n", + "19272 0\n", + "19273 1\n", + "19274 0\n", + "19275 0\n", + "19276 0\n", + "19277 0\n", + "19278 0\n", + "19279 0\n", + "19280 0\n", + "19281 0\n", + "19282 0\n", + "19283 0\n", + "19284 0\n", + "19285 0\n", + "19286 0\n", + "19287 0\n", + "19288 0\n", + "19289 1\n", + "19290 0\n", + "19291 0\n", + "19292 0\n", + "19293 0\n", + "19294 0\n", + "19295 0\n", + "19296 0\n", + "19297 0\n", + "19298 0\n", + "19299 0\n", + "19300 0\n", + "19301 1\n", + "19302 0\n", + "19303 0\n", + "19304 0\n", + "19305 0\n", + "19306 0\n", + "19307 0\n", + "19308 0\n", + "19309 1\n", + "19310 0\n", + "19311 0\n", + "19312 0\n", + "19313 0\n", + "19314 0\n", + "19315 0\n", + "19316 0\n", + "19317 0\n", + "19318 0\n", + "19319 1\n", + "19320 0\n", + "19321 0\n", + "19322 0\n", + "19323 0\n", + "19324 0\n", + "19325 0\n", + "19326 0\n", + "19327 0\n", + "19328 0\n", + "19329 0\n", + "19330 0\n", + "19331 0\n", + "19332 0\n", + "19333 1\n", + "19334 0\n", + "19335 0\n", + "19336 0\n", + "19337 0\n", + "19338 0\n", + "19339 0\n", + "19340 0\n", + "19341 0\n", + "19342 0\n", + "19343 0\n", + "19344 0\n", + "19345 0\n", + "19346 0\n", + "19347 0\n", + "19348 0\n", + "19349 0\n", + "19350 0\n", + "19351 0\n", + "19352 0\n", + "19353 0\n", + "19354 0\n", + "19355 0\n", + "19356 0\n", + "19357 0\n", + "19358 0\n", + "19359 0\n", + "19360 0\n", + "19361 0\n", + "19362 0\n", + "19363 0\n", + "19364 0\n", + "19365 0\n", + "19366 0\n", + "19367 0\n", + "19368 0\n", + "19369 0\n", + "19370 0\n", + "19371 0\n", + "19372 0\n", + "19373 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "19374 0\n", + "19375 0\n", + "19376 0\n", + "19377 0\n", + "19378 0\n", + "19379 1\n", + "19380 0\n", + "19381 1\n", + "19382 0\n", + "19383 0\n", + "19384 0\n", + "19385 0\n", + "19386 0\n", + "19387 1\n", + "19388 0\n", + "19389 0\n", + "19390 0\n", + "19391 1\n", + "19392 0\n", + "19393 0\n", + "19394 0\n", + "19395 0\n", + "19396 0\n", + "19397 0\n", + "19398 0\n", + "19399 0\n", + "19400 0\n", + "19401 0\n", + "19402 0\n", + "19403 1\n", + "19404 0\n", + "19405 0\n", + "19406 0\n", + "19407 0\n", + "19408 0\n", + "19409 0\n", + "19410 0\n", + "19411 0\n", + "19412 0\n", + "19413 0\n", + "19414 0\n", + "19415 0\n", + "19416 0\n", + "19417 1\n", + "19418 0\n", + "19419 0\n", + "19420 0\n", + "19421 1\n", + "19422 0\n", + "19423 1\n", + "19424 0\n", + "19425 0\n", + "19426 0\n", + "19427 1\n", + "19428 0\n", + "19429 1\n", + "19430 0\n", + "19431 0\n", + "19432 0\n", + "19433 1\n", + "19434 0\n", + "19435 0\n", + "19436 0\n", + "19437 0\n", + "19438 0\n", + "19439 0\n", + "19440 0\n", + "19441 1\n", + "19442 0\n", + "19443 0\n", + "19444 0\n", + "19445 0\n", + "19446 0\n", + "19447 1\n", + "19448 0\n", + "19449 0\n", + "19450 0\n", + "19451 0\n", + "19452 0\n", + "19453 0\n", + "19454 0\n", + "19455 0\n", + "19456 0\n", + "19457 1\n", + "19458 0\n", + "19459 0\n", + "19460 0\n", + "19461 0\n", + "19462 0\n", + "19463 1\n", + "19464 0\n", + "19465 0\n", + "19466 0\n", + "19467 0\n", + "19468 0\n", + "19469 1\n", + "19470 0\n", + "19471 1\n", + "19472 0\n", + "19473 0\n", + "19474 0\n", + "19475 0\n", + "19476 0\n", + "19477 1\n", + "19478 0\n", + "19479 0\n", + "19480 0\n", + "19481 0\n", + "19482 0\n", + "19483 1\n", + "19484 0\n", + "19485 0\n", + "19486 0\n", + "19487 0\n", + "19488 0\n", + "19489 1\n", + "19490 0\n", + "19491 0\n", + "19492 0\n", + "19493 0\n", + "19494 0\n", + "19495 0\n", + "19496 0\n", + "19497 0\n", + "19498 0\n", + "19499 0\n", + "19500 0\n", + "19501 1\n", + "19502 0\n", + "19503 0\n", + "19504 0\n", + "19505 0\n", + "19506 0\n", + "19507 1\n", + "19508 0\n", + "19509 0\n", + "19510 0\n", + "19511 0\n", + "19512 0\n", + "19513 0\n", + "19514 0\n", + "19515 0\n", + "19516 0\n", + "19517 0\n", + "19518 0\n", + "19519 0\n", + "19520 0\n", + "19521 0\n", + "19522 0\n", + "19523 0\n", + "19524 0\n", + "19525 0\n", + "19526 0\n", + "19527 0\n", + "19528 0\n", + "19529 0\n", + "19530 0\n", + "19531 1\n", + "19532 0\n", + "19533 0\n", + "19534 0\n", + "19535 0\n", + "19536 0\n", + "19537 0\n", + "19538 0\n", + "19539 0\n", + "19540 0\n", + "19541 1\n", + "19542 0\n", + "19543 1\n", + "19544 0\n", + "19545 0\n", + "19546 0\n", + "19547 0\n", + "19548 0\n", + "19549 0\n", + "19550 0\n", + "19551 0\n", + "19552 0\n", + "19553 1\n", + "19554 0\n", + "19555 0\n", + "19556 0\n", + "19557 0\n", + "19558 0\n", + "19559 1\n", + "19560 0\n", + "19561 0\n", + "19562 0\n", + "19563 0\n", + "19564 0\n", + "19565 0\n", + "19566 0\n", + "19567 0\n", + "19568 0\n", + "19569 0\n", + "19570 0\n", + "19571 1\n", + "19572 0\n", + "19573 0\n", + "19574 0\n", + "19575 0\n", + "19576 0\n", + "19577 1\n", + "19578 0\n", + "19579 0\n", + "19580 0\n", + "19581 0\n", + "19582 0\n", + "19583 1\n", + "19584 0\n", + "19585 0\n", + "19586 0\n", + "19587 0\n", + "19588 0\n", + "19589 0\n", + "19590 0\n", + "19591 0\n", + "19592 0\n", + "19593 0\n", + "19594 0\n", + "19595 0\n", + "19596 0\n", + "19597 1\n", + "19598 0\n", + "19599 0\n", + "19600 0\n", + "19601 0\n", + "19602 0\n", + "19603 1\n", + "19604 0\n", + "19605 0\n", + "19606 0\n", + "19607 0\n", + "19608 0\n", + "19609 1\n", + "19610 0\n", + "19611 0\n", + "19612 0\n", + "19613 0\n", + "19614 0\n", + "19615 0\n", + "19616 0\n", + "19617 0\n", + "19618 0\n", + "19619 0\n", + "19620 0\n", + "19621 0\n", + "19622 0\n", + "19623 0\n", + "19624 0\n", + "19625 0\n", + "19626 0\n", + "19627 0\n", + "19628 0\n", + "19629 0\n", + "19630 0\n", + "19631 0\n", + "19632 0\n", + "19633 0\n", + "19634 0\n", + "19635 0\n", + "19636 0\n", + "19637 0\n", + "19638 0\n", + "19639 0\n", + "19640 0\n", + "19641 0\n", + "19642 0\n", + "19643 0\n", + "19644 0\n", + "19645 0\n", + "19646 0\n", + "19647 0\n", + "19648 0\n", + "19649 0\n", + "19650 0\n", + "19651 0\n", + "19652 0\n", + "19653 0\n", + "19654 0\n", + "19655 0\n", + "19656 0\n", + "19657 0\n", + "19658 0\n", + "19659 0\n", + "19660 0\n", + "19661 1\n", + "19662 0\n", + "19663 0\n", + "19664 0\n", + "19665 0\n", + "19666 0\n", + "19667 0\n", + "19668 0\n", + "19669 0\n", + "19670 0\n", + "19671 0\n", + "19672 0\n", + "19673 0\n", + "19674 0\n", + "19675 0\n", + "19676 0\n", + "19677 0\n", + "19678 0\n", + "19679 0\n", + "19680 0\n", + "19681 1\n", + "19682 0\n", + "19683 0\n", + "19684 0\n", + "19685 0\n", + "19686 0\n", + "19687 1\n", + "19688 0\n", + "19689 0\n", + "19690 0\n", + "19691 0\n", + "19692 0\n", + "19693 0\n", + "19694 0\n", + "19695 0\n", + "19696 0\n", + "19697 1\n", + "19698 0\n", + "19699 1\n", + "19700 0\n", + "19701 0\n", + "19702 0\n", + "19703 0\n", + "19704 0\n", + "19705 0\n", + "19706 0\n", + "19707 0\n", + "19708 0\n", + "19709 1\n", + "19710 0\n", + "19711 0\n", + "19712 0\n", + "19713 0\n", + "19714 0\n", + "19715 0\n", + "19716 0\n", + "19717 1\n", + "19718 0\n", + "19719 0\n", + "19720 0\n", + "19721 0\n", + "19722 0\n", + "19723 0\n", + "19724 0\n", + "19725 0\n", + "19726 0\n", + "19727 1\n", + "19728 0\n", + "19729 0\n", + "19730 0\n", + "19731 0\n", + "19732 0\n", + "19733 0\n", + "19734 0\n", + "19735 0\n", + "19736 0\n", + "19737 0\n", + "19738 0\n", + "19739 1\n", + "19740 0\n", + "19741 0\n", + "19742 0\n", + "19743 0\n", + "19744 0\n", + "19745 0\n", + "19746 0\n", + "19747 0\n", + "19748 0\n", + "19749 0\n", + "19750 0\n", + "19751 1\n", + "19752 0\n", + "19753 1\n", + "19754 0\n", + "19755 0\n", + "19756 0\n", + "19757 0\n", + "19758 0\n", + "19759 1\n", + "19760 0\n", + "19761 0\n", + "19762 0\n", + "19763 1\n", + "19764 0\n", + "19765 0\n", + "19766 0\n", + "19767 0\n", + "19768 0\n", + "19769 0\n", + "19770 0\n", + "19771 0\n", + "19772 0\n", + "19773 0\n", + "19774 0\n", + "19775 0\n", + "19776 0\n", + "19777 1\n", + "19778 0\n", + "19779 0\n", + "19780 0\n", + "19781 0\n", + "19782 0\n", + "19783 0\n", + "19784 0\n", + "19785 0\n", + "19786 0\n", + "19787 0\n", + "19788 0\n", + "19789 0\n", + "19790 0\n", + "19791 0\n", + "19792 0\n", + "19793 1\n", + "19794 0\n", + "19795 0\n", + "19796 0\n", + "19797 0\n", + "19798 0\n", + "19799 0\n", + "19800 0\n", + "19801 1\n", + "19802 0\n", + "19803 0\n", + "19804 0\n", + "19805 0\n", + "19806 0\n", + "19807 0\n", + "19808 0\n", + "19809 0\n", + "19810 0\n", + "19811 0\n", + "19812 0\n", + "19813 1\n", + "19814 0\n", + "19815 0\n", + "19816 0\n", + "19817 0\n", + "19818 0\n", + "19819 1\n", + "19820 0\n", + "19821 0\n", + "19822 0\n", + "19823 0\n", + "19824 0\n", + "19825 0\n", + "19826 0\n", + "19827 0\n", + "19828 0\n", + "19829 0\n", + "19830 0\n", + "19831 0\n", + "19832 0\n", + "19833 0\n", + "19834 0\n", + "19835 0\n", + "19836 0\n", + "19837 0\n", + "19838 0\n", + "19839 0\n", + "19840 0\n", + "19841 1\n", + "19842 0\n", + "19843 1\n", + "19844 0\n", + "19845 0\n", + "19846 0\n", + "19847 0\n", + "19848 0\n", + "19849 0\n", + "19850 0\n", + "19851 0\n", + "19852 0\n", + "19853 1\n", + "19854 0\n", + "19855 0\n", + "19856 0\n", + "19857 0\n", + "19858 0\n", + "19859 0\n", + "19860 0\n", + "19861 1\n", + "19862 0\n", + "19863 0\n", + "19864 0\n", + "19865 0\n", + "19866 0\n", + "19867 1\n", + "19868 0\n", + "19869 0\n", + "19870 0\n", + "19871 0\n", + "19872 0\n", + "19873 0\n", + "19874 0\n", + "19875 0\n", + "19876 0\n", + "19877 0\n", + "19878 0\n", + "19879 0\n", + "19880 0\n", + "19881 0\n", + "19882 0\n", + "19883 0\n", + "19884 0\n", + "19885 0\n", + "19886 0\n", + "19887 0\n", + "19888 0\n", + "19889 1\n", + "19890 0\n", + "19891 1\n", + "19892 0\n", + "19893 0\n", + "19894 0\n", + "19895 0\n", + "19896 0\n", + "19897 0\n", + "19898 0\n", + "19899 0\n", + "19900 0\n", + "19901 0\n", + "19902 0\n", + "19903 0\n", + "19904 0\n", + "19905 0\n", + "19906 0\n", + "19907 0\n", + "19908 0\n", + "19909 0\n", + "19910 0\n", + "19911 0\n", + "19912 0\n", + "19913 1\n", + "19914 0\n", + "19915 0\n", + "19916 0\n", + "19917 0\n", + "19918 0\n", + "19919 1\n", + "19920 0\n", + "19921 0\n", + "19922 0\n", + "19923 0\n", + "19924 0\n", + "19925 0\n", + "19926 0\n", + "19927 1\n", + "19928 0\n", + "19929 0\n", + "19930 0\n", + "19931 0\n", + "19932 0\n", + "19933 0\n", + "19934 0\n", + "19935 0\n", + "19936 0\n", + "19937 1\n", + "19938 0\n", + "19939 0\n", + "19940 0\n", + "19941 0\n", + "19942 0\n", + "19943 0\n", + "19944 0\n", + "19945 0\n", + "19946 0\n", + "19947 0\n", + "19948 0\n", + "19949 1\n", + "19950 0\n", + "19951 0\n", + "19952 0\n", + "19953 0\n", + "19954 0\n", + "19955 0\n", + "19956 0\n", + "19957 0\n", + "19958 0\n", + "19959 0\n", + "19960 0\n", + "19961 1\n", + "19962 0\n", + "19963 1\n", + "19964 0\n", + "19965 0\n", + "19966 0\n", + "19967 0\n", + "19968 0\n", + "19969 0\n", + "19970 0\n", + "19971 0\n", + "19972 0\n", + "19973 1\n", + "19974 0\n", + "19975 0\n", + "19976 0\n", + "19977 0\n", + "19978 0\n", + "19979 1\n", + "19980 0\n", + "19981 0\n", + "19982 0\n", + "19983 0\n", + "19984 0\n", + "19985 0\n", + "19986 0\n", + "19987 0\n", + "19988 0\n", + "19989 0\n", + "19990 0\n", + "19991 1\n", + "19992 0\n", + "19993 1\n", + "19994 0\n", + "19995 0\n", + "19996 0\n", + "19997 1\n", + "19998 0\n", + "19999 0\n", + "20000 0\n", + "20001 0\n", + "20002 0\n", + "20003 0\n", + "20004 0\n", + "20005 0\n", + "20006 0\n", + "20007 0\n", + "20008 0\n", + "20009 0\n", + "20010 0\n", + "20011 1\n", + "20012 0\n", + "20013 0\n", + "20014 0\n", + "20015 0\n", + "20016 0\n", + "20017 0\n", + "20018 0\n", + "20019 0\n", + "20020 0\n", + "20021 1\n", + "20022 0\n", + "20023 1\n", + "20024 0\n", + "20025 0\n", + "20026 0\n", + "20027 0\n", + "20028 0\n", + "20029 1\n", + "20030 0\n", + "20031 0\n", + "20032 0\n", + "20033 0\n", + "20034 0\n", + "20035 0\n", + "20036 0\n", + "20037 0\n", + "20038 0\n", + "20039 0\n", + "20040 0\n", + "20041 0\n", + "20042 0\n", + "20043 0\n", + "20044 0\n", + "20045 0\n", + "20046 0\n", + "20047 1\n", + "20048 0\n", + "20049 0\n", + "20050 0\n", + "20051 1\n", + "20052 0\n", + "20053 0\n", + "20054 0\n", + "20055 0\n", + "20056 0\n", + "20057 0\n", + "20058 0\n", + "20059 0\n", + "20060 0\n", + "20061 0\n", + "20062 0\n", + "20063 1\n", + "20064 0\n", + "20065 0\n", + "20066 0\n", + "20067 0\n", + "20068 0\n", + "20069 0\n", + "20070 0\n", + "20071 1\n", + "20072 0\n", + "20073 0\n", + "20074 0\n", + "20075 0\n", + "20076 0\n", + "20077 0\n", + "20078 0\n", + "20079 0\n", + "20080 0\n", + "20081 0\n", + "20082 0\n", + "20083 0\n", + "20084 0\n", + "20085 0\n", + "20086 0\n", + "20087 0\n", + "20088 0\n", + "20089 1\n", + "20090 0\n", + "20091 0\n", + "20092 0\n", + "20093 0\n", + "20094 0\n", + "20095 0\n", + "20096 0\n", + "20097 0\n", + "20098 0\n", + "20099 0\n", + "20100 0\n", + "20101 1\n", + "20102 0\n", + "20103 0\n", + "20104 0\n", + "20105 0\n", + "20106 0\n", + "20107 1\n", + "20108 0\n", + "20109 0\n", + "20110 0\n", + "20111 0\n", + "20112 0\n", + "20113 1\n", + "20114 0\n", + "20115 0\n", + "20116 0\n", + "20117 1\n", + "20118 0\n", + "20119 0\n", + "20120 0\n", + "20121 0\n", + "20122 0\n", + "20123 1\n", + "20124 0\n", + "20125 0\n", + "20126 0\n", + "20127 0\n", + "20128 0\n", + "20129 1\n", + "20130 0\n", + "20131 0\n", + "20132 0\n", + "20133 0\n", + "20134 0\n", + "20135 0\n", + "20136 0\n", + "20137 0\n", + "20138 0\n", + "20139 0\n", + "20140 0\n", + "20141 0\n", + "20142 0\n", + "20143 1\n", + "20144 0\n", + "20145 0\n", + "20146 0\n", + "20147 1\n", + "20148 0\n", + "20149 1\n", + "20150 0\n", + "20151 0\n", + "20152 0\n", + "20153 0\n", + "20154 0\n", + "20155 0\n", + "20156 0\n", + "20157 0\n", + "20158 0\n", + "20159 0\n", + "20160 0\n", + "20161 1\n", + "20162 0\n", + "20163 0\n", + "20164 0\n", + "20165 0\n", + "20166 0\n", + "20167 0\n", + "20168 0\n", + "20169 0\n", + "20170 0\n", + "20171 0\n", + "20172 0\n", + "20173 1\n", + "20174 0\n", + "20175 0\n", + "20176 0\n", + "20177 1\n", + "20178 0\n", + "20179 0\n", + "20180 0\n", + "20181 0\n", + "20182 0\n", + "20183 1\n", + "20184 0\n", + "20185 0\n", + "20186 0\n", + "20187 0\n", + "20188 0\n", + "20189 0\n", + "20190 0\n", + "20191 0\n", + "20192 0\n", + "20193 0\n", + "20194 0\n", + "20195 0\n", + "20196 0\n", + "20197 0\n", + "20198 0\n", + "20199 0\n", + "20200 0\n", + "20201 1\n", + "20202 0\n", + "20203 0\n", + "20204 0\n", + "20205 0\n", + "20206 0\n", + "20207 0\n", + "20208 0\n", + "20209 0\n", + "20210 0\n", + "20211 0\n", + "20212 0\n", + "20213 0\n", + "20214 0\n", + "20215 0\n", + "20216 0\n", + "20217 0\n", + "20218 0\n", + "20219 1\n", + "20220 0\n", + "20221 0\n", + "20222 0\n", + "20223 0\n", + "20224 0\n", + "20225 0\n", + "20226 0\n", + "20227 0\n", + "20228 0\n", + "20229 0\n", + "20230 0\n", + "20231 1\n", + "20232 0\n", + "20233 1\n", + "20234 0\n", + "20235 0\n", + "20236 0\n", + "20237 0\n", + "20238 0\n", + "20239 0\n", + "20240 0\n", + "20241 0\n", + "20242 0\n", + "20243 0\n", + "20244 0\n", + "20245 0\n", + "20246 0\n", + "20247 0\n", + "20248 0\n", + "20249 1\n", + "20250 0\n", + "20251 0\n", + "20252 0\n", + "20253 0\n", + "20254 0\n", + "20255 0\n", + "20256 0\n", + "20257 0\n", + "20258 0\n", + "20259 0\n", + "20260 0\n", + "20261 1\n", + "20262 0\n", + "20263 0\n", + "20264 0\n", + "20265 0\n", + "20266 0\n", + "20267 0\n", + "20268 0\n", + "20269 1\n", + "20270 0\n", + "20271 0\n", + "20272 0\n", + "20273 0\n", + "20274 0\n", + "20275 0\n", + "20276 0\n", + "20277 0\n", + "20278 0\n", + "20279 0\n", + "20280 0\n", + "20281 0\n", + "20282 0\n", + "20283 0\n", + "20284 0\n", + "20285 0\n", + "20286 0\n", + "20287 1\n", + "20288 0\n", + "20289 0\n", + "20290 0\n", + "20291 0\n", + "20292 0\n", + "20293 0\n", + "20294 0\n", + "20295 0\n", + "20296 0\n", + "20297 1\n", + "20298 0\n", + "20299 0\n", + "20300 0\n", + "20301 0\n", + "20302 0\n", + "20303 0\n", + "20304 0\n", + "20305 0\n", + "20306 0\n", + "20307 0\n", + "20308 0\n", + "20309 0\n", + "20310 0\n", + "20311 0\n", + "20312 0\n", + "20313 0\n", + "20314 0\n", + "20315 0\n", + "20316 0\n", + "20317 0\n", + "20318 0\n", + "20319 0\n", + "20320 0\n", + "20321 0\n", + "20322 0\n", + "20323 1\n", + "20324 0\n", + "20325 0\n", + "20326 0\n", + "20327 1\n", + "20328 0\n", + "20329 0\n", + "20330 0\n", + "20331 0\n", + "20332 0\n", + "20333 1\n", + "20334 0\n", + "20335 0\n", + "20336 0\n", + "20337 0\n", + "20338 0\n", + "20339 0\n", + "20340 0\n", + "20341 1\n", + "20342 0\n", + "20343 0\n", + "20344 0\n", + "20345 0\n", + "20346 0\n", + "20347 1\n", + "20348 0\n", + "20349 0\n", + "20350 0\n", + "20351 0\n", + "20352 0\n", + "20353 1\n", + "20354 0\n", + "20355 0\n", + "20356 0\n", + "20357 1\n", + "20358 0\n", + "20359 1\n", + "20360 0\n", + "20361 0\n", + "20362 0\n", + "20363 0\n", + "20364 0\n", + "20365 0\n", + "20366 0\n", + "20367 0\n", + "20368 0\n", + "20369 1\n", + "20370 0\n", + "20371 0\n", + "20372 0\n", + "20373 0\n", + "20374 0\n", + "20375 0\n", + "20376 0\n", + "20377 0\n", + "20378 0\n", + "20379 0\n", + "20380 0\n", + "20381 0\n", + "20382 0\n", + "20383 0\n", + "20384 0\n", + "20385 0\n", + "20386 0\n", + "20387 0\n", + "20388 0\n", + "20389 1\n", + "20390 0\n", + "20391 0\n", + "20392 0\n", + "20393 1\n", + "20394 0\n", + "20395 0\n", + "20396 0\n", + "20397 0\n", + "20398 0\n", + "20399 1\n", + "20400 0\n", + "20401 0\n", + "20402 0\n", + "20403 0\n", + "20404 0\n", + "20405 0\n", + "20406 0\n", + "20407 1\n", + "20408 0\n", + "20409 0\n", + "20410 0\n", + "20411 1\n", + "20412 0\n", + "20413 0\n", + "20414 0\n", + "20415 0\n", + "20416 0\n", + "20417 0\n", + "20418 0\n", + "20419 0\n", + "20420 0\n", + "20421 0\n", + "20422 0\n", + "20423 0\n", + "20424 0\n", + "20425 0\n", + "20426 0\n", + "20427 0\n", + "20428 0\n", + "20429 0\n", + "20430 0\n", + "20431 1\n", + "20432 0\n", + "20433 0\n", + "20434 0\n", + "20435 0\n", + "20436 0\n", + "20437 0\n", + "20438 0\n", + "20439 0\n", + "20440 0\n", + "20441 1\n", + "20442 0\n", + "20443 1\n", + "20444 0\n", + "20445 0\n", + "20446 0\n", + "20447 0\n", + "20448 0\n", + "20449 0\n", + "20450 0\n", + "20451 0\n", + "20452 0\n", + "20453 0\n", + "20454 0\n", + "20455 0\n", + "20456 0\n", + "20457 0\n", + "20458 0\n", + "20459 0\n", + "20460 0\n", + "20461 0\n", + "20462 0\n", + "20463 0\n", + "20464 0\n", + "20465 0\n", + "20466 0\n", + "20467 0\n", + "20468 0\n", + "20469 0\n", + "20470 0\n", + "20471 0\n", + "20472 0\n", + "20473 0\n", + "20474 0\n", + "20475 0\n", + "20476 0\n", + "20477 1\n", + "20478 0\n", + "20479 1\n", + "20480 0\n", + "20481 0\n", + "20482 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20483 1\n", + "20484 0\n", + "20485 0\n", + "20486 0\n", + "20487 0\n", + "20488 0\n", + "20489 0\n", + "20490 0\n", + "20491 0\n", + "20492 0\n", + "20493 0\n", + "20494 0\n", + "20495 0\n", + "20496 0\n", + "20497 0\n", + "20498 0\n", + "20499 0\n", + "20500 0\n", + "20501 0\n", + "20502 0\n", + "20503 0\n", + "20504 0\n", + "20505 0\n", + "20506 0\n", + "20507 1\n", + "20508 0\n", + "20509 1\n", + "20510 0\n", + "20511 0\n", + "20512 0\n", + "20513 0\n", + "20514 0\n", + "20515 0\n", + "20516 0\n", + "20517 0\n", + "20518 0\n", + "20519 0\n", + "20520 0\n", + "20521 1\n", + "20522 0\n", + "20523 0\n", + "20524 0\n", + "20525 0\n", + "20526 0\n", + "20527 0\n", + "20528 0\n", + "20529 0\n", + "20530 0\n", + "20531 0\n", + "20532 0\n", + "20533 1\n", + "20534 0\n", + "20535 0\n", + "20536 0\n", + "20537 0\n", + "20538 0\n", + "20539 0\n", + "20540 0\n", + "20541 0\n", + "20542 0\n", + "20543 1\n", + "20544 0\n", + "20545 0\n", + "20546 0\n", + "20547 0\n", + "20548 0\n", + "20549 1\n", + "20550 0\n", + "20551 1\n", + "20552 0\n", + "20553 0\n", + "20554 0\n", + "20555 0\n", + "20556 0\n", + "20557 0\n", + "20558 0\n", + "20559 0\n", + "20560 0\n", + "20561 0\n", + "20562 0\n", + "20563 1\n", + "20564 0\n", + "20565 0\n", + "20566 0\n", + "20567 0\n", + "20568 0\n", + "20569 0\n", + "20570 0\n", + "20571 0\n", + "20572 0\n", + "20573 0\n", + "20574 0\n", + "20575 0\n", + "20576 0\n", + "20577 0\n", + "20578 0\n", + "20579 0\n", + "20580 0\n", + "20581 0\n", + "20582 0\n", + "20583 0\n", + "20584 0\n", + "20585 0\n", + "20586 0\n", + "20587 0\n", + "20588 0\n", + "20589 0\n", + "20590 0\n", + "20591 0\n", + "20592 0\n", + "20593 1\n", + "20594 0\n", + "20595 0\n", + "20596 0\n", + "20597 0\n", + "20598 0\n", + "20599 1\n", + "20600 0\n", + "20601 0\n", + "20602 0\n", + "20603 0\n", + "20604 0\n", + "20605 0\n", + "20606 0\n", + "20607 0\n", + "20608 0\n", + "20609 0\n", + "20610 0\n", + "20611 1\n", + "20612 0\n", + "20613 0\n", + "20614 0\n", + "20615 0\n", + "20616 0\n", + "20617 0\n", + "20618 0\n", + "20619 0\n", + "20620 0\n", + "20621 0\n", + "20622 0\n", + "20623 0\n", + "20624 0\n", + "20625 0\n", + "20626 0\n", + "20627 1\n", + "20628 0\n", + "20629 0\n", + "20630 0\n", + "20631 0\n", + "20632 0\n", + "20633 0\n", + "20634 0\n", + "20635 0\n", + "20636 0\n", + "20637 0\n", + "20638 0\n", + "20639 1\n", + "20640 0\n", + "20641 1\n", + "20642 0\n", + "20643 0\n", + "20644 0\n", + "20645 0\n", + "20646 0\n", + "20647 0\n", + "20648 0\n", + "20649 0\n", + "20650 0\n", + "20651 0\n", + "20652 0\n", + "20653 0\n", + "20654 0\n", + "20655 0\n", + "20656 0\n", + "20657 0\n", + "20658 0\n", + "20659 0\n", + "20660 0\n", + "20661 0\n", + "20662 0\n", + "20663 1\n", + "20664 0\n", + "20665 0\n", + "20666 0\n", + "20667 0\n", + "20668 0\n", + "20669 0\n", + "20670 0\n", + "20671 0\n", + "20672 0\n", + "20673 0\n", + "20674 0\n", + "20675 0\n", + "20676 0\n", + "20677 0\n", + "20678 0\n", + "20679 0\n", + "20680 0\n", + "20681 1\n", + "20682 0\n", + "20683 0\n", + "20684 0\n", + "20685 0\n", + "20686 0\n", + "20687 0\n", + "20688 0\n", + "20689 0\n", + "20690 0\n", + "20691 0\n", + "20692 0\n", + "20693 1\n", + "20694 0\n", + "20695 0\n", + "20696 0\n", + "20697 0\n", + "20698 0\n", + "20699 0\n", + "20700 0\n", + "20701 0\n", + "20702 0\n", + "20703 0\n", + "20704 0\n", + "20705 0\n", + "20706 0\n", + "20707 1\n", + "20708 0\n", + "20709 0\n", + "20710 0\n", + "20711 0\n", + "20712 0\n", + "20713 0\n", + "20714 0\n", + "20715 0\n", + "20716 0\n", + "20717 1\n", + "20718 0\n", + "20719 1\n", + "20720 0\n", + "20721 0\n", + "20722 0\n", + "20723 0\n", + "20724 0\n", + "20725 0\n", + "20726 0\n", + "20727 0\n", + "20728 0\n", + "20729 0\n", + "20730 0\n", + "20731 1\n", + "20732 0\n", + "20733 0\n", + "20734 0\n", + "20735 0\n", + "20736 0\n", + "20737 0\n", + "20738 0\n", + "20739 0\n", + "20740 0\n", + "20741 0\n", + "20742 0\n", + "20743 1\n", + "20744 0\n", + "20745 0\n", + "20746 0\n", + "20747 1\n", + "20748 0\n", + "20749 1\n", + "20750 0\n", + "20751 0\n", + "20752 0\n", + "20753 1\n", + "20754 0\n", + "20755 0\n", + "20756 0\n", + "20757 0\n", + "20758 0\n", + "20759 1\n", + "20760 0\n", + "20761 0\n", + "20762 0\n", + "20763 0\n", + "20764 0\n", + "20765 0\n", + "20766 0\n", + "20767 0\n", + "20768 0\n", + "20769 0\n", + "20770 0\n", + "20771 1\n", + "20772 0\n", + "20773 1\n", + "20774 0\n", + "20775 0\n", + "20776 0\n", + "20777 0\n", + "20778 0\n", + "20779 0\n", + "20780 0\n", + "20781 0\n", + "20782 0\n", + "20783 0\n", + "20784 0\n", + "20785 0\n", + "20786 0\n", + "20787 0\n", + "20788 0\n", + "20789 1\n", + "20790 0\n", + "20791 0\n", + "20792 0\n", + "20793 0\n", + "20794 0\n", + "20795 0\n", + "20796 0\n", + "20797 0\n", + "20798 0\n", + "20799 0\n", + "20800 0\n", + "20801 0\n", + "20802 0\n", + "20803 0\n", + "20804 0\n", + "20805 0\n", + "20806 0\n", + "20807 1\n", + "20808 0\n", + "20809 1\n", + "20810 0\n", + "20811 0\n", + "20812 0\n", + "20813 0\n", + "20814 0\n", + "20815 0\n", + "20816 0\n", + "20817 0\n", + "20818 0\n", + "20819 0\n", + "20820 0\n", + "20821 0\n", + "20822 0\n", + "20823 0\n", + "20824 0\n", + "20825 0\n", + "20826 0\n", + "20827 0\n", + "20828 0\n", + "20829 0\n", + "20830 0\n", + "20831 0\n", + "20832 0\n", + "20833 0\n", + "20834 0\n", + "20835 0\n", + "20836 0\n", + "20837 0\n", + "20838 0\n", + "20839 0\n", + "20840 0\n", + "20841 0\n", + "20842 0\n", + "20843 0\n", + "20844 0\n", + "20845 0\n", + "20846 0\n", + "20847 0\n", + "20848 0\n", + "20849 1\n", + "20850 0\n", + "20851 0\n", + "20852 0\n", + "20853 0\n", + "20854 0\n", + "20855 0\n", + "20856 0\n", + "20857 1\n", + "20858 0\n", + "20859 0\n", + "20860 0\n", + "20861 0\n", + "20862 0\n", + "20863 0\n", + "20864 0\n", + "20865 0\n", + "20866 0\n", + "20867 0\n", + "20868 0\n", + "20869 0\n", + "20870 0\n", + "20871 0\n", + "20872 0\n", + "20873 1\n", + "20874 0\n", + "20875 0\n", + "20876 0\n", + "20877 0\n", + "20878 0\n", + "20879 1\n", + "20880 0\n", + "20881 0\n", + "20882 0\n", + "20883 0\n", + "20884 0\n", + "20885 0\n", + "20886 0\n", + "20887 1\n", + "20888 0\n", + "20889 0\n", + "20890 0\n", + "20891 0\n", + "20892 0\n", + "20893 0\n", + "20894 0\n", + "20895 0\n", + "20896 0\n", + "20897 1\n", + "20898 0\n", + "20899 1\n", + "20900 0\n", + "20901 0\n", + "20902 0\n", + "20903 1\n", + "20904 0\n", + "20905 0\n", + "20906 0\n", + "20907 0\n", + "20908 0\n", + "20909 0\n", + "20910 0\n", + "20911 0\n", + "20912 0\n", + "20913 0\n", + "20914 0\n", + "20915 0\n", + "20916 0\n", + "20917 0\n", + "20918 0\n", + "20919 0\n", + "20920 0\n", + "20921 1\n", + "20922 0\n", + "20923 0\n", + "20924 0\n", + "20925 0\n", + "20926 0\n", + "20927 0\n", + "20928 0\n", + "20929 1\n", + "20930 0\n", + "20931 0\n", + "20932 0\n", + "20933 0\n", + "20934 0\n", + "20935 0\n", + "20936 0\n", + "20937 0\n", + "20938 0\n", + "20939 1\n", + "20940 0\n", + "20941 0\n", + "20942 0\n", + "20943 0\n", + "20944 0\n", + "20945 0\n", + "20946 0\n", + "20947 1\n", + "20948 0\n", + "20949 0\n", + "20950 0\n", + "20951 0\n", + "20952 0\n", + "20953 0\n", + "20954 0\n", + "20955 0\n", + "20956 0\n", + "20957 0\n", + "20958 0\n", + "20959 1\n", + "20960 0\n", + "20961 0\n", + "20962 0\n", + "20963 1\n", + "20964 0\n", + "20965 0\n", + "20966 0\n", + "20967 0\n", + "20968 0\n", + "20969 0\n", + "20970 0\n", + "20971 0\n", + "20972 0\n", + "20973 0\n", + "20974 0\n", + "20975 0\n", + "20976 0\n", + "20977 0\n", + "20978 0\n", + "20979 0\n", + "20980 0\n", + "20981 1\n", + "20982 0\n", + "20983 1\n", + "20984 0\n", + "20985 0\n", + "20986 0\n", + "20987 0\n", + "20988 0\n", + "20989 0\n", + "20990 0\n", + "20991 0\n", + "20992 0\n", + "20993 0\n", + "20994 0\n", + "20995 0\n", + "20996 0\n", + "20997 0\n", + "20998 0\n", + "20999 0\n", + "21000 0\n", + "21001 1\n", + "21002 0\n", + "21003 0\n", + "21004 0\n", + "21005 0\n", + "21006 0\n", + "21007 0\n", + "21008 0\n", + "21009 0\n", + "21010 0\n", + "21011 1\n", + "21012 0\n", + "21013 1\n", + "21014 0\n", + "21015 0\n", + "21016 0\n", + "21017 1\n", + "21018 0\n", + "21019 1\n", + "21020 0\n", + "21021 0\n", + "21022 0\n", + "21023 1\n", + "21024 0\n", + "21025 0\n", + "21026 0\n", + "21027 0\n", + "21028 0\n", + "21029 0\n", + "21030 0\n", + "21031 1\n", + "21032 0\n", + "21033 0\n", + "21034 0\n", + "21035 0\n", + "21036 0\n", + "21037 0\n", + "21038 0\n", + "21039 0\n", + "21040 0\n", + "21041 0\n", + "21042 0\n", + "21043 0\n", + "21044 0\n", + "21045 0\n", + "21046 0\n", + "21047 0\n", + "21048 0\n", + "21049 0\n", + "21050 0\n", + "21051 0\n", + "21052 0\n", + "21053 0\n", + "21054 0\n", + "21055 0\n", + "21056 0\n", + "21057 0\n", + "21058 0\n", + "21059 1\n", + "21060 0\n", + "21061 1\n", + "21062 0\n", + "21063 0\n", + "21064 0\n", + "21065 0\n", + "21066 0\n", + "21067 1\n", + "21068 0\n", + "21069 0\n", + "21070 0\n", + "21071 0\n", + "21072 0\n", + "21073 0\n", + "21074 0\n", + "21075 0\n", + "21076 0\n", + "21077 0\n", + "21078 0\n", + "21079 0\n", + "21080 0\n", + "21081 0\n", + "21082 0\n", + "21083 0\n", + "21084 0\n", + "21085 0\n", + "21086 0\n", + "21087 0\n", + "21088 0\n", + "21089 1\n", + "21090 0\n", + "21091 0\n", + "21092 0\n", + "21093 0\n", + "21094 0\n", + "21095 0\n", + "21096 0\n", + "21097 0\n", + "21098 0\n", + "21099 0\n", + "21100 0\n", + "21101 1\n", + "21102 0\n", + "21103 0\n", + "21104 0\n", + "21105 0\n", + "21106 0\n", + "21107 1\n", + "21108 0\n", + "21109 0\n", + "21110 0\n", + "21111 0\n", + "21112 0\n", + "21113 0\n", + "21114 0\n", + "21115 0\n", + "21116 0\n", + "21117 0\n", + "21118 0\n", + "21119 0\n", + "21120 0\n", + "21121 1\n", + "21122 0\n", + "21123 0\n", + "21124 0\n", + "21125 0\n", + "21126 0\n", + "21127 0\n", + "21128 0\n", + "21129 0\n", + "21130 0\n", + "21131 0\n", + "21132 0\n", + "21133 0\n", + "21134 0\n", + "21135 0\n", + "21136 0\n", + "21137 0\n", + "21138 0\n", + "21139 1\n", + "21140 0\n", + "21141 0\n", + "21142 0\n", + "21143 1\n", + "21144 0\n", + "21145 0\n", + "21146 0\n", + "21147 0\n", + "21148 0\n", + "21149 1\n", + "21150 0\n", + "21151 0\n", + "21152 0\n", + "21153 0\n", + "21154 0\n", + "21155 0\n", + "21156 0\n", + "21157 1\n", + "21158 0\n", + "21159 0\n", + "21160 0\n", + "21161 0\n", + "21162 0\n", + "21163 1\n", + "21164 0\n", + "21165 0\n", + "21166 0\n", + "21167 0\n", + "21168 0\n", + "21169 1\n", + "21170 0\n", + "21171 0\n", + "21172 0\n", + "21173 0\n", + "21174 0\n", + "21175 0\n", + "21176 0\n", + "21177 0\n", + "21178 0\n", + "21179 1\n", + "21180 0\n", + "21181 0\n", + "21182 0\n", + "21183 0\n", + "21184 0\n", + "21185 0\n", + "21186 0\n", + "21187 1\n", + "21188 0\n", + "21189 0\n", + "21190 0\n", + "21191 1\n", + "21192 0\n", + "21193 1\n", + "21194 0\n", + "21195 0\n", + "21196 0\n", + "21197 0\n", + "21198 0\n", + "21199 0\n", + "21200 0\n", + "21201 0\n", + "21202 0\n", + "21203 0\n", + "21204 0\n", + "21205 0\n", + "21206 0\n", + "21207 0\n", + "21208 0\n", + "21209 0\n", + "21210 0\n", + "21211 1\n", + "21212 0\n", + "21213 0\n", + "21214 0\n", + "21215 0\n", + "21216 0\n", + "21217 0\n", + "21218 0\n", + "21219 0\n", + "21220 0\n", + "21221 1\n", + "21222 0\n", + "21223 0\n", + "21224 0\n", + "21225 0\n", + "21226 0\n", + "21227 1\n", + "21228 0\n", + "21229 0\n", + "21230 0\n", + "21231 0\n", + "21232 0\n", + "21233 0\n", + "21234 0\n", + "21235 0\n", + "21236 0\n", + "21237 0\n", + "21238 0\n", + "21239 0\n", + "21240 0\n", + "21241 0\n", + "21242 0\n", + "21243 0\n", + "21244 0\n", + "21245 0\n", + "21246 0\n", + "21247 1\n", + "21248 0\n", + "21249 0\n", + "21250 0\n", + "21251 0\n", + "21252 0\n", + "21253 0\n", + "21254 0\n", + "21255 0\n", + "21256 0\n", + "21257 0\n", + "21258 0\n", + "21259 0\n", + "21260 0\n", + "21261 0\n", + "21262 0\n", + "21263 0\n", + "21264 0\n", + "21265 0\n", + "21266 0\n", + "21267 0\n", + "21268 0\n", + "21269 1\n", + "21270 0\n", + "21271 0\n", + "21272 0\n", + "21273 0\n", + "21274 0\n", + "21275 0\n", + "21276 0\n", + "21277 1\n", + "21278 0\n", + "21279 0\n", + "21280 0\n", + "21281 0\n", + "21282 0\n", + "21283 1\n", + "21284 0\n", + "21285 0\n", + "21286 0\n", + "21287 0\n", + "21288 0\n", + "21289 0\n", + "21290 0\n", + "21291 0\n", + "21292 0\n", + "21293 0\n", + "21294 0\n", + "21295 0\n", + "21296 0\n", + "21297 0\n", + "21298 0\n", + "21299 0\n", + "21300 0\n", + "21301 0\n", + "21302 0\n", + "21303 0\n", + "21304 0\n", + "21305 0\n", + "21306 0\n", + "21307 0\n", + "21308 0\n", + "21309 0\n", + "21310 0\n", + "21311 0\n", + "21312 0\n", + "21313 1\n", + "21314 0\n", + "21315 0\n", + "21316 0\n", + "21317 1\n", + "21318 0\n", + "21319 1\n", + "21320 0\n", + "21321 0\n", + "21322 0\n", + "21323 1\n", + "21324 0\n", + "21325 0\n", + "21326 0\n", + "21327 0\n", + "21328 0\n", + "21329 0\n", + "21330 0\n", + "21331 0\n", + "21332 0\n", + "21333 0\n", + "21334 0\n", + "21335 0\n", + "21336 0\n", + "21337 0\n", + "21338 0\n", + "21339 0\n", + "21340 0\n", + "21341 1\n", + "21342 0\n", + "21343 0\n", + "21344 0\n", + "21345 0\n", + "21346 0\n", + "21347 1\n", + "21348 0\n", + "21349 0\n", + "21350 0\n", + "21351 0\n", + "21352 0\n", + "21353 0\n", + "21354 0\n", + "21355 0\n", + "21356 0\n", + "21357 0\n", + "21358 0\n", + "21359 0\n", + "21360 0\n", + "21361 0\n", + "21362 0\n", + "21363 0\n", + "21364 0\n", + "21365 0\n", + "21366 0\n", + "21367 0\n", + "21368 0\n", + "21369 0\n", + "21370 0\n", + "21371 0\n", + "21372 0\n", + "21373 0\n", + "21374 0\n", + "21375 0\n", + "21376 0\n", + "21377 1\n", + "21378 0\n", + "21379 1\n", + "21380 0\n", + "21381 0\n", + "21382 0\n", + "21383 1\n", + "21384 0\n", + "21385 0\n", + "21386 0\n", + "21387 0\n", + "21388 0\n", + "21389 0\n", + "21390 0\n", + "21391 1\n", + "21392 0\n", + "21393 0\n", + "21394 0\n", + "21395 0\n", + "21396 0\n", + "21397 1\n", + "21398 0\n", + "21399 0\n", + "21400 0\n", + "21401 1\n", + "21402 0\n", + "21403 0\n", + "21404 0\n", + "21405 0\n", + "21406 0\n", + "21407 1\n", + "21408 0\n", + "21409 0\n", + "21410 0\n", + "21411 0\n", + "21412 0\n", + "21413 0\n", + "21414 0\n", + "21415 0\n", + "21416 0\n", + "21417 0\n", + "21418 0\n", + "21419 1\n", + "21420 0\n", + "21421 0\n", + "21422 0\n", + "21423 0\n", + "21424 0\n", + "21425 0\n", + "21426 0\n", + "21427 0\n", + "21428 0\n", + "21429 0\n", + "21430 0\n", + "21431 0\n", + "21432 0\n", + "21433 1\n", + "21434 0\n", + "21435 0\n", + "21436 0\n", + "21437 0\n", + "21438 0\n", + "21439 0\n", + "21440 0\n", + "21441 0\n", + "21442 0\n", + "21443 0\n", + "21444 0\n", + "21445 0\n", + "21446 0\n", + "21447 0\n", + "21448 0\n", + "21449 0\n", + "21450 0\n", + "21451 0\n", + "21452 0\n", + "21453 0\n", + "21454 0\n", + "21455 0\n", + "21456 0\n", + "21457 0\n", + "21458 0\n", + "21459 0\n", + "21460 0\n", + "21461 0\n", + "21462 0\n", + "21463 0\n", + "21464 0\n", + "21465 0\n", + "21466 0\n", + "21467 1\n", + "21468 0\n", + "21469 0\n", + "21470 0\n", + "21471 0\n", + "21472 0\n", + "21473 0\n", + "21474 0\n", + "21475 0\n", + "21476 0\n", + "21477 0\n", + "21478 0\n", + "21479 0\n", + "21480 0\n", + "21481 1\n", + "21482 0\n", + "21483 0\n", + "21484 0\n", + "21485 0\n", + "21486 0\n", + "21487 1\n", + "21488 0\n", + "21489 0\n", + "21490 0\n", + "21491 1\n", + "21492 0\n", + "21493 1\n", + "21494 0\n", + "21495 0\n", + "21496 0\n", + "21497 0\n", + "21498 0\n", + "21499 1\n", + "21500 0\n", + "21501 0\n", + "21502 0\n", + "21503 1\n", + "21504 0\n", + "21505 0\n", + "21506 0\n", + "21507 0\n", + "21508 0\n", + "21509 0\n", + "21510 0\n", + "21511 0\n", + "21512 0\n", + "21513 0\n", + "21514 0\n", + "21515 0\n", + "21516 0\n", + "21517 1\n", + "21518 0\n", + "21519 0\n", + "21520 0\n", + "21521 1\n", + "21522 0\n", + "21523 1\n", + "21524 0\n", + "21525 0\n", + "21526 0\n", + "21527 0\n", + "21528 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "21529 1\n", + "21530 0\n", + "21531 0\n", + "21532 0\n", + "21533 0\n", + "21534 0\n", + "21535 0\n", + "21536 0\n", + "21537 0\n", + "21538 0\n", + "21539 0\n", + "21540 0\n", + "21541 0\n", + "21542 0\n", + "21543 0\n", + "21544 0\n", + "21545 0\n", + "21546 0\n", + "21547 0\n", + "21548 0\n", + "21549 0\n", + "21550 0\n", + "21551 0\n", + "21552 0\n", + "21553 0\n", + "21554 0\n", + "21555 0\n", + "21556 0\n", + "21557 1\n", + "21558 0\n", + "21559 1\n", + "21560 0\n", + "21561 0\n", + "21562 0\n", + "21563 1\n", + "21564 0\n", + "21565 0\n", + "21566 0\n", + "21567 0\n", + "21568 0\n", + "21569 1\n", + "21570 0\n", + "21571 0\n", + "21572 0\n", + "21573 0\n", + "21574 0\n", + "21575 0\n", + "21576 0\n", + "21577 1\n", + "21578 0\n", + "21579 0\n", + "21580 0\n", + "21581 0\n", + "21582 0\n", + "21583 0\n", + "21584 0\n", + "21585 0\n", + "21586 0\n", + "21587 1\n", + "21588 0\n", + "21589 1\n", + "21590 0\n", + "21591 0\n", + "21592 0\n", + "21593 0\n", + "21594 0\n", + "21595 0\n", + "21596 0\n", + "21597 0\n", + "21598 0\n", + "21599 1\n", + "21600 0\n", + "21601 1\n", + "21602 0\n", + "21603 0\n", + "21604 0\n", + "21605 0\n", + "21606 0\n", + "21607 0\n", + "21608 0\n", + "21609 0\n", + "21610 0\n", + "21611 1\n", + "21612 0\n", + "21613 1\n", + "21614 0\n", + "21615 0\n", + "21616 0\n", + "21617 1\n", + "21618 0\n", + "21619 0\n", + "21620 0\n", + "21621 0\n", + "21622 0\n", + "21623 0\n", + "21624 0\n", + "21625 0\n", + "21626 0\n", + "21627 0\n", + "21628 0\n", + "21629 0\n", + "21630 0\n", + "21631 0\n", + "21632 0\n", + "21633 0\n", + "21634 0\n", + "21635 0\n", + "21636 0\n", + "21637 0\n", + "21638 0\n", + "21639 0\n", + "21640 0\n", + "21641 0\n", + "21642 0\n", + "21643 0\n", + "21644 0\n", + "21645 0\n", + "21646 0\n", + "21647 1\n", + "21648 0\n", + "21649 1\n", + "21650 0\n", + "21651 0\n", + "21652 0\n", + "21653 0\n", + "21654 0\n", + "21655 0\n", + "21656 0\n", + "21657 0\n", + "21658 0\n", + "21659 0\n", + "21660 0\n", + "21661 1\n", + "21662 0\n", + "21663 0\n", + "21664 0\n", + "21665 0\n", + "21666 0\n", + "21667 0\n", + "21668 0\n", + "21669 0\n", + "21670 0\n", + "21671 0\n", + "21672 0\n", + "21673 1\n", + "21674 0\n", + "21675 0\n", + "21676 0\n", + "21677 0\n", + "21678 0\n", + "21679 0\n", + "21680 0\n", + "21681 0\n", + "21682 0\n", + "21683 1\n", + "21684 0\n", + "21685 0\n", + "21686 0\n", + "21687 0\n", + "21688 0\n", + "21689 0\n", + "21690 0\n", + "21691 0\n", + "21692 0\n", + "21693 0\n", + "21694 0\n", + "21695 0\n", + "21696 0\n", + "21697 0\n", + "21698 0\n", + "21699 0\n", + "21700 0\n", + "21701 1\n", + "21702 0\n", + "21703 0\n", + "21704 0\n", + "21705 0\n", + "21706 0\n", + "21707 0\n", + "21708 0\n", + "21709 0\n", + "21710 0\n", + "21711 0\n", + "21712 0\n", + "21713 1\n", + "21714 0\n", + "21715 0\n", + "21716 0\n", + "21717 0\n", + "21718 0\n", + "21719 0\n", + "21720 0\n", + "21721 0\n", + "21722 0\n", + "21723 0\n", + "21724 0\n", + "21725 0\n", + "21726 0\n", + "21727 1\n", + "21728 0\n", + "21729 0\n", + "21730 0\n", + "21731 0\n", + "21732 0\n", + "21733 0\n", + "21734 0\n", + "21735 0\n", + "21736 0\n", + "21737 1\n", + "21738 0\n", + "21739 1\n", + "21740 0\n", + "21741 0\n", + "21742 0\n", + "21743 0\n", + "21744 0\n", + "21745 0\n", + "21746 0\n", + "21747 0\n", + "21748 0\n", + "21749 0\n", + "21750 0\n", + "21751 1\n", + "21752 0\n", + "21753 0\n", + "21754 0\n", + "21755 0\n", + "21756 0\n", + "21757 1\n", + "21758 0\n", + "21759 0\n", + "21760 0\n", + "21761 0\n", + "21762 0\n", + "21763 0\n", + "21764 0\n", + "21765 0\n", + "21766 0\n", + "21767 1\n", + "21768 0\n", + "21769 0\n", + "21770 0\n", + "21771 0\n", + "21772 0\n", + "21773 1\n", + "21774 0\n", + "21775 0\n", + "21776 0\n", + "21777 0\n", + "21778 0\n", + "21779 0\n", + "21780 0\n", + "21781 0\n", + "21782 0\n", + "21783 0\n", + "21784 0\n", + "21785 0\n", + "21786 0\n", + "21787 1\n", + "21788 0\n", + "21789 0\n", + "21790 0\n", + "21791 0\n", + "21792 0\n", + "21793 0\n", + "21794 0\n", + "21795 0\n", + "21796 0\n", + "21797 0\n", + "21798 0\n", + "21799 1\n", + "21800 0\n", + "21801 0\n", + "21802 0\n", + "21803 1\n", + "21804 0\n", + "21805 0\n", + "21806 0\n", + "21807 0\n", + "21808 0\n", + "21809 0\n", + "21810 0\n", + "21811 0\n", + "21812 0\n", + "21813 0\n", + "21814 0\n", + "21815 0\n", + "21816 0\n", + "21817 1\n", + "21818 0\n", + "21819 0\n", + "21820 0\n", + "21821 1\n", + "21822 0\n", + "21823 0\n", + "21824 0\n", + "21825 0\n", + "21826 0\n", + "21827 0\n", + "21828 0\n", + "21829 0\n", + "21830 0\n", + "21831 0\n", + "21832 0\n", + "21833 0\n", + "21834 0\n", + "21835 0\n", + "21836 0\n", + "21837 0\n", + "21838 0\n", + "21839 1\n", + "21840 0\n", + "21841 1\n", + "21842 0\n", + "21843 0\n", + "21844 0\n", + "21845 0\n", + "21846 0\n", + "21847 0\n", + "21848 0\n", + "21849 0\n", + "21850 0\n", + "21851 1\n", + "21852 0\n", + "21853 0\n", + "21854 0\n", + "21855 0\n", + "21856 0\n", + "21857 0\n", + "21858 0\n", + "21859 1\n", + "21860 0\n", + "21861 0\n", + "21862 0\n", + "21863 1\n", + "21864 0\n", + "21865 0\n", + "21866 0\n", + "21867 0\n", + "21868 0\n", + "21869 0\n", + "21870 0\n", + "21871 1\n", + "21872 0\n", + "21873 0\n", + "21874 0\n", + "21875 0\n", + "21876 0\n", + "21877 0\n", + "21878 0\n", + "21879 0\n", + "21880 0\n", + "21881 1\n", + "21882 0\n", + "21883 0\n", + "21884 0\n", + "21885 0\n", + "21886 0\n", + "21887 0\n", + "21888 0\n", + "21889 0\n", + "21890 0\n", + "21891 0\n", + "21892 0\n", + "21893 1\n", + "21894 0\n", + "21895 0\n", + "21896 0\n", + "21897 0\n", + "21898 0\n", + "21899 0\n", + "21900 0\n", + "21901 0\n", + "21902 0\n", + "21903 0\n", + "21904 0\n", + "21905 0\n", + "21906 0\n", + "21907 0\n", + "21908 0\n", + "21909 0\n", + "21910 0\n", + "21911 1\n", + "21912 0\n", + "21913 0\n", + "21914 0\n", + "21915 0\n", + "21916 0\n", + "21917 0\n", + "21918 0\n", + "21919 0\n", + "21920 0\n", + "21921 0\n", + "21922 0\n", + "21923 0\n", + "21924 0\n", + "21925 0\n", + "21926 0\n", + "21927 0\n", + "21928 0\n", + "21929 1\n", + "21930 0\n", + "21931 0\n", + "21932 0\n", + "21933 0\n", + "21934 0\n", + "21935 0\n", + "21936 0\n", + "21937 1\n", + "21938 0\n", + "21939 0\n", + "21940 0\n", + "21941 0\n", + "21942 0\n", + "21943 1\n", + "21944 0\n", + "21945 0\n", + "21946 0\n", + "21947 0\n", + "21948 0\n", + "21949 0\n", + "21950 0\n", + "21951 0\n", + "21952 0\n", + "21953 0\n", + "21954 0\n", + "21955 0\n", + "21956 0\n", + "21957 0\n", + "21958 0\n", + "21959 0\n", + "21960 0\n", + "21961 1\n", + "21962 0\n", + "21963 0\n", + "21964 0\n", + "21965 0\n", + "21966 0\n", + "21967 0\n", + "21968 0\n", + "21969 0\n", + "21970 0\n", + "21971 0\n", + "21972 0\n", + "21973 0\n", + "21974 0\n", + "21975 0\n", + "21976 0\n", + "21977 1\n", + "21978 0\n", + "21979 0\n", + "21980 0\n", + "21981 0\n", + "21982 0\n", + "21983 0\n", + "21984 0\n", + "21985 0\n", + "21986 0\n", + "21987 0\n", + "21988 0\n", + "21989 0\n", + "21990 0\n", + "21991 1\n", + "21992 0\n", + "21993 0\n", + "21994 0\n", + "21995 0\n", + "21996 0\n", + "21997 1\n", + "21998 0\n", + "21999 0\n", + "22000 0\n", + "22001 0\n", + "22002 0\n", + "22003 1\n", + "22004 0\n", + "22005 0\n", + "22006 0\n", + "22007 0\n", + "22008 0\n", + "22009 0\n", + "22010 0\n", + "22011 0\n", + "22012 0\n", + "22013 1\n", + "22014 0\n", + "22015 0\n", + "22016 0\n", + "22017 0\n", + "22018 0\n", + "22019 0\n", + "22020 0\n", + "22021 0\n", + "22022 0\n", + "22023 0\n", + "22024 0\n", + "22025 0\n", + "22026 0\n", + "22027 1\n", + "22028 0\n", + "22029 0\n", + "22030 0\n", + "22031 1\n", + "22032 0\n", + "22033 0\n", + "22034 0\n", + "22035 0\n", + "22036 0\n", + "22037 1\n", + "22038 0\n", + "22039 1\n", + "22040 0\n", + "22041 0\n", + "22042 0\n", + "22043 0\n", + "22044 0\n", + "22045 0\n", + "22046 0\n", + "22047 0\n", + "22048 0\n", + "22049 0\n", + "22050 0\n", + "22051 1\n", + "22052 0\n", + "22053 0\n", + "22054 0\n", + "22055 0\n", + "22056 0\n", + "22057 0\n", + "22058 0\n", + "22059 0\n", + "22060 0\n", + "22061 0\n", + "22062 0\n", + "22063 1\n", + "22064 0\n", + "22065 0\n", + "22066 0\n", + "22067 1\n", + "22068 0\n", + "22069 0\n", + "22070 0\n", + "22071 0\n", + "22072 0\n", + "22073 1\n", + "22074 0\n", + "22075 0\n", + "22076 0\n", + "22077 0\n", + "22078 0\n", + "22079 1\n", + "22080 0\n", + "22081 0\n", + "22082 0\n", + "22083 0\n", + "22084 0\n", + "22085 0\n", + "22086 0\n", + "22087 0\n", + "22088 0\n", + "22089 0\n", + "22090 0\n", + "22091 1\n", + "22092 0\n", + "22093 1\n", + "22094 0\n", + "22095 0\n", + "22096 0\n", + "22097 0\n", + "22098 0\n", + "22099 0\n", + "22100 0\n", + "22101 0\n", + "22102 0\n", + "22103 0\n", + "22104 0\n", + "22105 0\n", + "22106 0\n", + "22107 0\n", + "22108 0\n", + "22109 1\n", + "22110 0\n", + "22111 1\n", + "22112 0\n", + "22113 0\n", + "22114 0\n", + "22115 0\n", + "22116 0\n", + "22117 0\n", + "22118 0\n", + "22119 0\n", + "22120 0\n", + "22121 0\n", + "22122 0\n", + "22123 1\n", + "22124 0\n", + "22125 0\n", + "22126 0\n", + "22127 0\n", + "22128 0\n", + "22129 1\n", + "22130 0\n", + "22131 0\n", + "22132 0\n", + "22133 1\n", + "22134 0\n", + "22135 0\n", + "22136 0\n", + "22137 0\n", + "22138 0\n", + "22139 0\n", + "22140 0\n", + "22141 0\n", + "22142 0\n", + "22143 0\n", + "22144 0\n", + "22145 0\n", + "22146 0\n", + "22147 1\n", + "22148 0\n", + "22149 0\n", + "22150 0\n", + "22151 0\n", + "22152 0\n", + "22153 1\n", + "22154 0\n", + "22155 0\n", + "22156 0\n", + "22157 1\n", + "22158 0\n", + "22159 1\n", + "22160 0\n", + "22161 0\n", + "22162 0\n", + "22163 0\n", + "22164 0\n", + "22165 0\n", + "22166 0\n", + "22167 0\n", + "22168 0\n", + "22169 0\n", + "22170 0\n", + "22171 1\n", + "22172 0\n", + "22173 0\n", + "22174 0\n", + "22175 0\n", + "22176 0\n", + "22177 0\n", + "22178 0\n", + "22179 0\n", + "22180 0\n", + "22181 0\n", + "22182 0\n", + "22183 0\n", + "22184 0\n", + "22185 0\n", + "22186 0\n", + "22187 0\n", + "22188 0\n", + "22189 1\n", + "22190 0\n", + "22191 0\n", + "22192 0\n", + "22193 1\n", + "22194 0\n", + "22195 0\n", + "22196 0\n", + "22197 0\n", + "22198 0\n", + "22199 0\n", + "22200 0\n", + "22201 0\n", + "22202 0\n", + "22203 0\n", + "22204 0\n", + "22205 0\n", + "22206 0\n", + "22207 0\n", + "22208 0\n", + "22209 0\n", + "22210 0\n", + "22211 0\n", + "22212 0\n", + "22213 0\n", + "22214 0\n", + "22215 0\n", + "22216 0\n", + "22217 0\n", + "22218 0\n", + "22219 0\n", + "22220 0\n", + "22221 0\n", + "22222 0\n", + "22223 0\n", + "22224 0\n", + "22225 0\n", + "22226 0\n", + "22227 0\n", + "22228 0\n", + "22229 1\n", + "22230 0\n", + "22231 0\n", + "22232 0\n", + "22233 0\n", + "22234 0\n", + "22235 0\n", + "22236 0\n", + "22237 0\n", + "22238 0\n", + "22239 0\n", + "22240 0\n", + "22241 0\n", + "22242 0\n", + "22243 0\n", + "22244 0\n", + "22245 0\n", + "22246 0\n", + "22247 1\n", + "22248 0\n", + "22249 0\n", + "22250 0\n", + "22251 0\n", + "22252 0\n", + "22253 0\n", + "22254 0\n", + "22255 0\n", + "22256 0\n", + "22257 0\n", + "22258 0\n", + "22259 1\n", + "22260 0\n", + "22261 0\n", + "22262 0\n", + "22263 0\n", + "22264 0\n", + "22265 0\n", + "22266 0\n", + "22267 0\n", + "22268 0\n", + "22269 0\n", + "22270 0\n", + "22271 1\n", + "22272 0\n", + "22273 1\n", + "22274 0\n", + "22275 0\n", + "22276 0\n", + "22277 1\n", + "22278 0\n", + "22279 1\n", + "22280 0\n", + "22281 0\n", + "22282 0\n", + "22283 1\n", + "22284 0\n", + "22285 0\n", + "22286 0\n", + "22287 0\n", + "22288 0\n", + "22289 0\n", + "22290 0\n", + "22291 1\n", + "22292 0\n", + "22293 0\n", + "22294 0\n", + "22295 0\n", + "22296 0\n", + "22297 0\n", + "22298 0\n", + "22299 0\n", + "22300 0\n", + "22301 0\n", + "22302 0\n", + "22303 1\n", + "22304 0\n", + "22305 0\n", + "22306 0\n", + "22307 1\n", + "22308 0\n", + "22309 0\n", + "22310 0\n", + "22311 0\n", + "22312 0\n", + "22313 0\n", + "22314 0\n", + "22315 0\n", + "22316 0\n", + "22317 0\n", + "22318 0\n", + "22319 0\n", + "22320 0\n", + "22321 0\n", + "22322 0\n", + "22323 0\n", + "22324 0\n", + "22325 0\n", + "22326 0\n", + "22327 0\n", + "22328 0\n", + "22329 0\n", + "22330 0\n", + "22331 0\n", + "22332 0\n", + "22333 0\n", + "22334 0\n", + "22335 0\n", + "22336 0\n", + "22337 0\n", + "22338 0\n", + "22339 0\n", + "22340 0\n", + "22341 0\n", + "22342 0\n", + "22343 1\n", + "22344 0\n", + "22345 0\n", + "22346 0\n", + "22347 0\n", + "22348 0\n", + "22349 1\n", + "22350 0\n", + "22351 0\n", + "22352 0\n", + "22353 0\n", + "22354 0\n", + "22355 0\n", + "22356 0\n", + "22357 0\n", + "22358 0\n", + "22359 0\n", + "22360 0\n", + "22361 0\n", + "22362 0\n", + "22363 0\n", + "22364 0\n", + "22365 0\n", + "22366 0\n", + "22367 1\n", + "22368 0\n", + "22369 1\n", + "22370 0\n", + "22371 0\n", + "22372 0\n", + "22373 0\n", + "22374 0\n", + "22375 0\n", + "22376 0\n", + "22377 0\n", + "22378 0\n", + "22379 0\n", + "22380 0\n", + "22381 1\n", + "22382 0\n", + "22383 0\n", + "22384 0\n", + "22385 0\n", + "22386 0\n", + "22387 0\n", + "22388 0\n", + "22389 0\n", + "22390 0\n", + "22391 1\n", + "22392 0\n", + "22393 0\n", + "22394 0\n", + "22395 0\n", + "22396 0\n", + "22397 1\n", + "22398 0\n", + "22399 0\n", + "22400 0\n", + "22401 0\n", + "22402 0\n", + "22403 0\n", + "22404 0\n", + "22405 0\n", + "22406 0\n", + "22407 0\n", + "22408 0\n", + "22409 1\n", + "22410 0\n", + "22411 0\n", + "22412 0\n", + "22413 0\n", + "22414 0\n", + "22415 0\n", + "22416 0\n", + "22417 0\n", + "22418 0\n", + "22419 0\n", + "22420 0\n", + "22421 0\n", + "22422 0\n", + "22423 0\n", + "22424 0\n", + "22425 0\n", + "22426 0\n", + "22427 0\n", + "22428 0\n", + "22429 0\n", + "22430 0\n", + "22431 0\n", + "22432 0\n", + "22433 1\n", + "22434 0\n", + "22435 0\n", + "22436 0\n", + "22437 0\n", + "22438 0\n", + "22439 0\n", + "22440 0\n", + "22441 1\n", + "22442 0\n", + "22443 0\n", + "22444 0\n", + "22445 0\n", + "22446 0\n", + "22447 1\n", + "22448 0\n", + "22449 0\n", + "22450 0\n", + "22451 0\n", + "22452 0\n", + "22453 1\n", + "22454 0\n", + "22455 0\n", + "22456 0\n", + "22457 0\n", + "22458 0\n", + "22459 0\n", + "22460 0\n", + "22461 0\n", + "22462 0\n", + "22463 0\n", + "22464 0\n", + "22465 0\n", + "22466 0\n", + "22467 0\n", + "22468 0\n", + "22469 1\n", + "22470 0\n", + "22471 0\n", + "22472 0\n", + "22473 0\n", + "22474 0\n", + "22475 0\n", + "22476 0\n", + "22477 0\n", + "22478 0\n", + "22479 0\n", + "22480 0\n", + "22481 1\n", + "22482 0\n", + "22483 1\n", + "22484 0\n", + "22485 0\n", + "22486 0\n", + "22487 0\n", + "22488 0\n", + "22489 0\n", + "22490 0\n", + "22491 0\n", + "22492 0\n", + "22493 0\n", + "22494 0\n", + "22495 0\n", + "22496 0\n", + "22497 0\n", + "22498 0\n", + "22499 0\n", + "22500 0\n", + "22501 1\n", + "22502 0\n", + "22503 0\n", + "22504 0\n", + "22505 0\n", + "22506 0\n", + "22507 0\n", + "22508 0\n", + "22509 0\n", + "22510 0\n", + "22511 1\n", + "22512 0\n", + "22513 0\n", + "22514 0\n", + "22515 0\n", + "22516 0\n", + "22517 0\n", + "22518 0\n", + "22519 0\n", + "22520 0\n", + "22521 0\n", + "22522 0\n", + "22523 0\n", + "22524 0\n", + "22525 0\n", + "22526 0\n", + "22527 0\n", + "22528 0\n", + "22529 0\n", + "22530 0\n", + "22531 1\n", + "22532 0\n", + "22533 0\n", + "22534 0\n", + "22535 0\n", + "22536 0\n", + "22537 0\n", + "22538 0\n", + "22539 0\n", + "22540 0\n", + "22541 1\n", + "22542 0\n", + "22543 1\n", + "22544 0\n", + "22545 0\n", + "22546 0\n", + "22547 0\n", + "22548 0\n", + "22549 1\n", + "22550 0\n", + "22551 0\n", + "22552 0\n", + "22553 0\n", + "22554 0\n", + "22555 0\n", + "22556 0\n", + "22557 0\n", + "22558 0\n", + "22559 0\n", + "22560 0\n", + "22561 0\n", + "22562 0\n", + "22563 0\n", + "22564 0\n", + "22565 0\n", + "22566 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "22567 1\n", + "22568 0\n", + "22569 0\n", + "22570 0\n", + "22571 1\n", + "22572 0\n", + "22573 1\n", + "22574 0\n", + "22575 0\n", + "22576 0\n", + "22577 0\n", + "22578 0\n", + "22579 0\n", + "22580 0\n", + "22581 0\n", + "22582 0\n", + "22583 0\n", + "22584 0\n", + "22585 0\n", + "22586 0\n", + "22587 0\n", + "22588 0\n", + "22589 0\n", + "22590 0\n", + "22591 0\n", + "22592 0\n", + "22593 0\n", + "22594 0\n", + "22595 0\n", + "22596 0\n", + "22597 0\n", + "22598 0\n", + "22599 0\n", + "22600 0\n", + "22601 0\n", + "22602 0\n", + "22603 0\n", + "22604 0\n", + "22605 0\n", + "22606 0\n", + "22607 0\n", + "22608 0\n", + "22609 0\n", + "22610 0\n", + "22611 0\n", + "22612 0\n", + "22613 1\n", + "22614 0\n", + "22615 0\n", + "22616 0\n", + "22617 0\n", + "22618 0\n", + "22619 1\n", + "22620 0\n", + "22621 1\n", + "22622 0\n", + "22623 0\n", + "22624 0\n", + "22625 0\n", + "22626 0\n", + "22627 0\n", + "22628 0\n", + "22629 0\n", + "22630 0\n", + "22631 0\n", + "22632 0\n", + "22633 0\n", + "22634 0\n", + "22635 0\n", + "22636 0\n", + "22637 1\n", + "22638 0\n", + "22639 1\n", + "22640 0\n", + "22641 0\n", + "22642 0\n", + "22643 1\n", + "22644 0\n", + "22645 0\n", + "22646 0\n", + "22647 0\n", + "22648 0\n", + "22649 0\n", + "22650 0\n", + "22651 1\n", + "22652 0\n", + "22653 0\n", + "22654 0\n", + "22655 0\n", + "22656 0\n", + "22657 0\n", + "22658 0\n", + "22659 0\n", + "22660 0\n", + "22661 0\n", + "22662 0\n", + "22663 0\n", + "22664 0\n", + "22665 0\n", + "22666 0\n", + "22667 0\n", + "22668 0\n", + "22669 1\n", + "22670 0\n", + "22671 0\n", + "22672 0\n", + "22673 0\n", + "22674 0\n", + "22675 0\n", + "22676 0\n", + "22677 0\n", + "22678 0\n", + "22679 1\n", + "22680 0\n", + "22681 0\n", + "22682 0\n", + "22683 0\n", + "22684 0\n", + "22685 0\n", + "22686 0\n", + "22687 0\n", + "22688 0\n", + "22689 0\n", + "22690 0\n", + "22691 1\n", + "22692 0\n", + "22693 0\n", + "22694 0\n", + "22695 0\n", + "22696 0\n", + "22697 1\n", + "22698 0\n", + "22699 1\n", + "22700 0\n", + "22701 0\n", + "22702 0\n", + "22703 0\n", + "22704 0\n", + "22705 0\n", + "22706 0\n", + "22707 0\n", + "22708 0\n", + "22709 1\n", + "22710 0\n", + "22711 0\n", + "22712 0\n", + "22713 0\n", + "22714 0\n", + "22715 0\n", + "22716 0\n", + "22717 1\n", + "22718 0\n", + "22719 0\n", + "22720 0\n", + "22721 1\n", + "22722 0\n", + "22723 0\n", + "22724 0\n", + "22725 0\n", + "22726 0\n", + "22727 1\n", + "22728 0\n", + "22729 0\n", + "22730 0\n", + "22731 0\n", + "22732 0\n", + "22733 0\n", + "22734 0\n", + "22735 0\n", + "22736 0\n", + "22737 0\n", + "22738 0\n", + "22739 1\n", + "22740 0\n", + "22741 1\n", + "22742 0\n", + "22743 0\n", + "22744 0\n", + "22745 0\n", + "22746 0\n", + "22747 0\n", + "22748 0\n", + "22749 0\n", + "22750 0\n", + "22751 1\n", + "22752 0\n", + "22753 0\n", + "22754 0\n", + "22755 0\n", + "22756 0\n", + "22757 0\n", + "22758 0\n", + "22759 0\n", + "22760 0\n", + "22761 0\n", + "22762 0\n", + "22763 0\n", + "22764 0\n", + "22765 0\n", + "22766 0\n", + "22767 0\n", + "22768 0\n", + "22769 1\n", + "22770 0\n", + "22771 0\n", + "22772 0\n", + "22773 0\n", + "22774 0\n", + "22775 0\n", + "22776 0\n", + "22777 1\n", + "22778 0\n", + "22779 0\n", + "22780 0\n", + "22781 0\n", + "22782 0\n", + "22783 1\n", + "22784 0\n", + "22785 0\n", + "22786 0\n", + "22787 1\n", + "22788 0\n", + "22789 0\n", + "22790 0\n", + "22791 0\n", + "22792 0\n", + "22793 0\n", + "22794 0\n", + "22795 0\n", + "22796 0\n", + "22797 0\n", + "22798 0\n", + "22799 0\n", + "22800 0\n", + "22801 0\n", + "22802 0\n", + "22803 0\n", + "22804 0\n", + "22805 0\n", + "22806 0\n", + "22807 1\n", + "22808 0\n", + "22809 0\n", + "22810 0\n", + "22811 1\n", + "22812 0\n", + "22813 0\n", + "22814 0\n", + "22815 0\n", + "22816 0\n", + "22817 1\n", + "22818 0\n", + "22819 0\n", + "22820 0\n", + "22821 0\n", + "22822 0\n", + "22823 0\n", + "22824 0\n", + "22825 0\n", + "22826 0\n", + "22827 0\n", + "22828 0\n", + "22829 0\n", + "22830 0\n", + "22831 0\n", + "22832 0\n", + "22833 0\n", + "22834 0\n", + "22835 0\n", + "22836 0\n", + "22837 0\n", + "22838 0\n", + "22839 0\n", + "22840 0\n", + "22841 0\n", + "22842 0\n", + "22843 0\n", + "22844 0\n", + "22845 0\n", + "22846 0\n", + "22847 0\n", + "22848 0\n", + "22849 0\n", + "22850 0\n", + "22851 0\n", + "22852 0\n", + "22853 1\n", + "22854 0\n", + "22855 0\n", + "22856 0\n", + "22857 0\n", + "22858 0\n", + "22859 1\n", + "22860 0\n", + "22861 1\n", + "22862 0\n", + "22863 0\n", + "22864 0\n", + "22865 0\n", + "22866 0\n", + "22867 0\n", + "22868 0\n", + "22869 0\n", + "22870 0\n", + "22871 1\n", + "22872 0\n", + "22873 0\n", + "22874 0\n", + "22875 0\n", + "22876 0\n", + "22877 1\n", + "22878 0\n", + "22879 0\n", + "22880 0\n", + "22881 0\n", + "22882 0\n", + "22883 0\n", + "22884 0\n", + "22885 0\n", + "22886 0\n", + "22887 0\n", + "22888 0\n", + "22889 0\n", + "22890 0\n", + "22891 0\n", + "22892 0\n", + "22893 0\n", + "22894 0\n", + "22895 0\n", + "22896 0\n", + "22897 0\n", + "22898 0\n", + "22899 0\n", + "22900 0\n", + "22901 1\n", + "22902 0\n", + "22903 0\n", + "22904 0\n", + "22905 0\n", + "22906 0\n", + "22907 1\n", + "22908 0\n", + "22909 0\n", + "22910 0\n", + "22911 0\n", + "22912 0\n", + "22913 0\n", + "22914 0\n", + "22915 0\n", + "22916 0\n", + "22917 0\n", + "22918 0\n", + "22919 0\n", + "22920 0\n", + "22921 1\n", + "22922 0\n", + "22923 0\n", + "22924 0\n", + "22925 0\n", + "22926 0\n", + "22927 0\n", + "22928 0\n", + "22929 0\n", + "22930 0\n", + "22931 0\n", + "22932 0\n", + "22933 0\n", + "22934 0\n", + "22935 0\n", + "22936 0\n", + "22937 1\n", + "22938 0\n", + "22939 0\n", + "22940 0\n", + "22941 0\n", + "22942 0\n", + "22943 1\n", + "22944 0\n", + "22945 0\n", + "22946 0\n", + "22947 0\n", + "22948 0\n", + "22949 0\n", + "22950 0\n", + "22951 0\n", + "22952 0\n", + "22953 0\n", + "22954 0\n", + "22955 0\n", + "22956 0\n", + "22957 0\n", + "22958 0\n", + "22959 0\n", + "22960 0\n", + "22961 1\n", + "22962 0\n", + "22963 1\n", + "22964 0\n", + "22965 0\n", + "22966 0\n", + "22967 0\n", + "22968 0\n", + "22969 0\n", + "22970 0\n", + "22971 0\n", + "22972 0\n", + "22973 1\n", + "22974 0\n", + "22975 0\n", + "22976 0\n", + "22977 0\n", + "22978 0\n", + "22979 0\n", + "22980 0\n", + "22981 0\n", + "22982 0\n", + "22983 0\n", + "22984 0\n", + "22985 0\n", + "22986 0\n", + "22987 0\n", + "22988 0\n", + "22989 0\n", + "22990 0\n", + "22991 0\n", + "22992 0\n", + "22993 1\n", + "22994 0\n", + "22995 0\n", + "22996 0\n", + "22997 0\n", + "22998 0\n", + "22999 0\n", + "23000 0\n", + "23001 0\n", + "23002 0\n", + "23003 1\n", + "23004 0\n", + "23005 0\n", + "23006 0\n", + "23007 0\n", + "23008 0\n", + "23009 0\n", + "23010 0\n", + "23011 1\n", + "23012 0\n", + "23013 0\n", + "23014 0\n", + "23015 0\n", + "23016 0\n", + "23017 1\n", + "23018 0\n", + "23019 0\n", + "23020 0\n", + "23021 1\n", + "23022 0\n", + "23023 0\n", + "23024 0\n", + "23025 0\n", + "23026 0\n", + "23027 1\n", + "23028 0\n", + "23029 1\n", + "23030 0\n", + "23031 0\n", + "23032 0\n", + "23033 0\n", + "23034 0\n", + "23035 0\n", + "23036 0\n", + "23037 0\n", + "23038 0\n", + "23039 1\n", + "23040 0\n", + "23041 1\n", + "23042 0\n", + "23043 0\n", + "23044 0\n", + "23045 0\n", + "23046 0\n", + "23047 0\n", + "23048 0\n", + "23049 0\n", + "23050 0\n", + "23051 0\n", + "23052 0\n", + "23053 1\n", + "23054 0\n", + "23055 0\n", + "23056 0\n", + "23057 1\n", + "23058 0\n", + "23059 1\n", + "23060 0\n", + "23061 0\n", + "23062 0\n", + "23063 1\n", + "23064 0\n", + "23065 0\n", + "23066 0\n", + "23067 0\n", + "23068 0\n", + "23069 0\n", + "23070 0\n", + "23071 1\n", + "23072 0\n", + "23073 0\n", + "23074 0\n", + "23075 0\n", + "23076 0\n", + "23077 0\n", + "23078 0\n", + "23079 0\n", + "23080 0\n", + "23081 1\n", + "23082 0\n", + "23083 0\n", + "23084 0\n", + "23085 0\n", + "23086 0\n", + "23087 1\n", + "23088 0\n", + "23089 0\n", + "23090 0\n", + "23091 0\n", + "23092 0\n", + "23093 0\n", + "23094 0\n", + "23095 0\n", + "23096 0\n", + "23097 0\n", + "23098 0\n", + "23099 1\n", + "23100 0\n", + "23101 0\n", + "23102 0\n", + "23103 0\n", + "23104 0\n", + "23105 0\n", + "23106 0\n", + "23107 0\n", + "23108 0\n", + "23109 0\n", + "23110 0\n", + "23111 0\n", + "23112 0\n", + "23113 0\n", + "23114 0\n", + "23115 0\n", + "23116 0\n", + "23117 1\n", + "23118 0\n", + "23119 0\n", + "23120 0\n", + "23121 0\n", + "23122 0\n", + "23123 0\n", + "23124 0\n", + "23125 0\n", + "23126 0\n", + "23127 0\n", + "23128 0\n", + "23129 0\n", + "23130 0\n", + "23131 1\n", + "23132 0\n", + "23133 0\n", + "23134 0\n", + "23135 0\n", + "23136 0\n", + "23137 0\n", + "23138 0\n", + "23139 0\n", + "23140 0\n", + "23141 0\n", + "23142 0\n", + "23143 1\n", + "23144 0\n", + "23145 0\n", + "23146 0\n", + "23147 0\n", + "23148 0\n", + "23149 0\n", + "23150 0\n", + "23151 0\n", + "23152 0\n", + "23153 0\n", + "23154 0\n", + "23155 0\n", + "23156 0\n", + "23157 0\n", + "23158 0\n", + "23159 1\n", + "23160 0\n", + "23161 0\n", + "23162 0\n", + "23163 0\n", + "23164 0\n", + "23165 0\n", + "23166 0\n", + "23167 1\n", + "23168 0\n", + "23169 0\n", + "23170 0\n", + "23171 0\n", + "23172 0\n", + "23173 1\n", + "23174 0\n", + "23175 0\n", + "23176 0\n", + "23177 0\n", + "23178 0\n", + "23179 0\n", + "23180 0\n", + "23181 0\n", + "23182 0\n", + "23183 0\n", + "23184 0\n", + "23185 0\n", + "23186 0\n", + "23187 0\n", + "23188 0\n", + "23189 1\n", + "23190 0\n", + "23191 0\n", + "23192 0\n", + "23193 0\n", + "23194 0\n", + "23195 0\n", + "23196 0\n", + "23197 1\n", + "23198 0\n", + "23199 0\n", + "23200 0\n", + "23201 1\n", + "23202 0\n", + "23203 1\n", + "23204 0\n", + "23205 0\n", + "23206 0\n", + "23207 0\n", + "23208 0\n", + "23209 1\n", + "23210 0\n", + "23211 0\n", + "23212 0\n", + "23213 0\n", + "23214 0\n", + "23215 0\n", + "23216 0\n", + "23217 0\n", + "23218 0\n", + "23219 0\n", + "23220 0\n", + "23221 0\n", + "23222 0\n", + "23223 0\n", + "23224 0\n", + "23225 0\n", + "23226 0\n", + "23227 1\n", + "23228 0\n", + "23229 0\n", + "23230 0\n", + "23231 0\n", + "23232 0\n", + "23233 0\n", + "23234 0\n", + "23235 0\n", + "23236 0\n", + "23237 0\n", + "23238 0\n", + "23239 0\n", + "23240 0\n", + "23241 0\n", + "23242 0\n", + "23243 0\n", + "23244 0\n", + "23245 0\n", + "23246 0\n", + "23247 0\n", + "23248 0\n", + "23249 0\n", + "23250 0\n", + "23251 1\n", + "23252 0\n", + "23253 0\n", + "23254 0\n", + "23255 0\n", + "23256 0\n", + "23257 0\n", + "23258 0\n", + "23259 0\n", + "23260 0\n", + "23261 0\n", + "23262 0\n", + "23263 0\n", + "23264 0\n", + "23265 0\n", + "23266 0\n", + "23267 0\n", + "23268 0\n", + "23269 1\n", + "23270 0\n", + "23271 0\n", + "23272 0\n", + "23273 0\n", + "23274 0\n", + "23275 0\n", + "23276 0\n", + "23277 0\n", + "23278 0\n", + "23279 1\n", + "23280 0\n", + "23281 0\n", + "23282 0\n", + "23283 0\n", + "23284 0\n", + "23285 0\n", + "23286 0\n", + "23287 0\n", + "23288 0\n", + "23289 0\n", + "23290 0\n", + "23291 1\n", + "23292 0\n", + "23293 1\n", + "23294 0\n", + "23295 0\n", + "23296 0\n", + "23297 1\n", + "23298 0\n", + "23299 0\n", + "23300 0\n", + "23301 0\n", + "23302 0\n", + "23303 0\n", + "23304 0\n", + "23305 0\n", + "23306 0\n", + "23307 0\n", + "23308 0\n", + "23309 0\n", + "23310 0\n", + "23311 1\n", + "23312 0\n", + "23313 0\n", + "23314 0\n", + "23315 0\n", + "23316 0\n", + "23317 0\n", + "23318 0\n", + "23319 0\n", + "23320 0\n", + "23321 1\n", + "23322 0\n", + "23323 0\n", + "23324 0\n", + "23325 0\n", + "23326 0\n", + "23327 1\n", + "23328 0\n", + "23329 0\n", + "23330 0\n", + "23331 0\n", + "23332 0\n", + "23333 1\n", + "23334 0\n", + "23335 0\n", + "23336 0\n", + "23337 0\n", + "23338 0\n", + "23339 1\n", + "23340 0\n", + "23341 0\n", + "23342 0\n", + "23343 0\n", + "23344 0\n", + "23345 0\n", + "23346 0\n", + "23347 0\n", + "23348 0\n", + "23349 0\n", + "23350 0\n", + "23351 0\n", + "23352 0\n", + "23353 0\n", + "23354 0\n", + "23355 0\n", + "23356 0\n", + "23357 1\n", + "23358 0\n", + "23359 0\n", + "23360 0\n", + "23361 0\n", + "23362 0\n", + "23363 0\n", + "23364 0\n", + "23365 0\n", + "23366 0\n", + "23367 0\n", + "23368 0\n", + "23369 1\n", + "23370 0\n", + "23371 1\n", + "23372 0\n", + "23373 0\n", + "23374 0\n", + "23375 0\n", + "23376 0\n", + "23377 0\n", + "23378 0\n", + "23379 0\n", + "23380 0\n", + "23381 0\n", + "23382 0\n", + "23383 0\n", + "23384 0\n", + "23385 0\n", + "23386 0\n", + "23387 0\n", + "23388 0\n", + "23389 0\n", + "23390 0\n", + "23391 0\n", + "23392 0\n", + "23393 0\n", + "23394 0\n", + "23395 0\n", + "23396 0\n", + "23397 0\n", + "23398 0\n", + "23399 1\n", + "23400 0\n", + "23401 0\n", + "23402 0\n", + "23403 0\n", + "23404 0\n", + "23405 0\n", + "23406 0\n", + "23407 0\n", + "23408 0\n", + "23409 0\n", + "23410 0\n", + "23411 0\n", + "23412 0\n", + "23413 0\n", + "23414 0\n", + "23415 0\n", + "23416 0\n", + "23417 1\n", + "23418 0\n", + "23419 0\n", + "23420 0\n", + "23421 0\n", + "23422 0\n", + "23423 0\n", + "23424 0\n", + "23425 0\n", + "23426 0\n", + "23427 0\n", + "23428 0\n", + "23429 0\n", + "23430 0\n", + "23431 1\n", + "23432 0\n", + "23433 0\n", + "23434 0\n", + "23435 0\n", + "23436 0\n", + "23437 0\n", + "23438 0\n", + "23439 0\n", + "23440 0\n", + "23441 0\n", + "23442 0\n", + "23443 0\n", + "23444 0\n", + "23445 0\n", + "23446 0\n", + "23447 1\n", + "23448 0\n", + "23449 0\n", + "23450 0\n", + "23451 0\n", + "23452 0\n", + "23453 0\n", + "23454 0\n", + "23455 0\n", + "23456 0\n", + "23457 0\n", + "23458 0\n", + "23459 1\n", + "23460 0\n", + "23461 0\n", + "23462 0\n", + "23463 0\n", + "23464 0\n", + "23465 0\n", + "23466 0\n", + "23467 0\n", + "23468 0\n", + "23469 0\n", + "23470 0\n", + "23471 0\n", + "23472 0\n", + "23473 1\n", + "23474 0\n", + "23475 0\n", + "23476 0\n", + "23477 0\n", + "23478 0\n", + "23479 0\n", + "23480 0\n", + "23481 0\n", + "23482 0\n", + "23483 0\n", + "23484 0\n", + "23485 0\n", + "23486 0\n", + "23487 0\n", + "23488 0\n", + "23489 0\n", + "23490 0\n", + "23491 0\n", + "23492 0\n", + "23493 0\n", + "23494 0\n", + "23495 0\n", + "23496 0\n", + "23497 1\n", + "23498 0\n", + "23499 0\n", + "23500 0\n", + "23501 0\n", + "23502 0\n", + "23503 0\n", + "23504 0\n", + "23505 0\n", + "23506 0\n", + "23507 0\n", + "23508 0\n", + "23509 1\n", + "23510 0\n", + "23511 0\n", + "23512 0\n", + "23513 0\n", + "23514 0\n", + "23515 0\n", + "23516 0\n", + "23517 0\n", + "23518 0\n", + "23519 0\n", + "23520 0\n", + "23521 0\n", + "23522 0\n", + "23523 0\n", + "23524 0\n", + "23525 0\n", + "23526 0\n", + "23527 0\n", + "23528 0\n", + "23529 0\n", + "23530 0\n", + "23531 1\n", + "23532 0\n", + "23533 0\n", + "23534 0\n", + "23535 0\n", + "23536 0\n", + "23537 1\n", + "23538 0\n", + "23539 1\n", + "23540 0\n", + "23541 0\n", + "23542 0\n", + "23543 0\n", + "23544 0\n", + "23545 0\n", + "23546 0\n", + "23547 0\n", + "23548 0\n", + "23549 1\n", + "23550 0\n", + "23551 0\n", + "23552 0\n", + "23553 0\n", + "23554 0\n", + "23555 0\n", + "23556 0\n", + "23557 1\n", + "23558 0\n", + "23559 0\n", + "23560 0\n", + "23561 1\n", + "23562 0\n", + "23563 1\n", + "23564 0\n", + "23565 0\n", + "23566 0\n", + "23567 1\n", + "23568 0\n", + "23569 0\n", + "23570 0\n", + "23571 0\n", + "23572 0\n", + "23573 0\n", + "23574 0\n", + "23575 0\n", + "23576 0\n", + "23577 0\n", + "23578 0\n", + "23579 0\n", + "23580 0\n", + "23581 1\n", + "23582 0\n", + "23583 0\n", + "23584 0\n", + "23585 0\n", + "23586 0\n", + "23587 0\n", + "23588 0\n", + "23589 0\n", + "23590 0\n", + "23591 0\n", + "23592 0\n", + "23593 1\n", + "23594 0\n", + "23595 0\n", + "23596 0\n", + "23597 0\n", + "23598 0\n", + "23599 1\n", + "23600 0\n", + "23601 0\n", + "23602 0\n", + "23603 1\n", + "23604 0\n", + "23605 0\n", + "23606 0\n", + "23607 0\n", + "23608 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23609 1\n", + "23610 0\n", + "23611 0\n", + "23612 0\n", + "23613 0\n", + "23614 0\n", + "23615 0\n", + "23616 0\n", + "23617 0\n", + "23618 0\n", + "23619 0\n", + "23620 0\n", + "23621 0\n", + "23622 0\n", + "23623 1\n", + "23624 0\n", + "23625 0\n", + "23626 0\n", + "23627 1\n", + "23628 0\n", + "23629 1\n", + "23630 0\n", + "23631 0\n", + "23632 0\n", + "23633 1\n", + "23634 0\n", + "23635 0\n", + "23636 0\n", + "23637 0\n", + "23638 0\n", + "23639 0\n", + "23640 0\n", + "23641 0\n", + "23642 0\n", + "23643 0\n", + "23644 0\n", + "23645 0\n", + "23646 0\n", + "23647 0\n", + "23648 0\n", + "23649 0\n", + "23650 0\n", + "23651 0\n", + "23652 0\n", + "23653 0\n", + "23654 0\n", + "23655 0\n", + "23656 0\n", + "23657 0\n", + "23658 0\n", + "23659 0\n", + "23660 0\n", + "23661 0\n", + "23662 0\n", + "23663 1\n", + "23664 0\n", + "23665 0\n", + "23666 0\n", + "23667 0\n", + "23668 0\n", + "23669 1\n", + "23670 0\n", + "23671 1\n", + "23672 0\n", + "23673 0\n", + "23674 0\n", + "23675 0\n", + "23676 0\n", + "23677 1\n", + "23678 0\n", + "23679 0\n", + "23680 0\n", + "23681 0\n", + "23682 0\n", + "23683 0\n", + "23684 0\n", + "23685 0\n", + "23686 0\n", + "23687 1\n", + "23688 0\n", + "23689 1\n", + "23690 0\n", + "23691 0\n", + "23692 0\n", + "23693 0\n", + "23694 0\n", + "23695 0\n", + "23696 0\n", + "23697 0\n", + "23698 0\n", + "23699 0\n", + "23700 0\n", + "23701 0\n", + "23702 0\n", + "23703 0\n", + "23704 0\n", + "23705 0\n", + "23706 0\n", + "23707 0\n", + "23708 0\n", + "23709 0\n", + "23710 0\n", + "23711 0\n", + "23712 0\n", + "23713 0\n", + "23714 0\n", + "23715 0\n", + "23716 0\n", + "23717 0\n", + "23718 0\n", + "23719 1\n", + "23720 0\n", + "23721 0\n", + "23722 0\n", + "23723 0\n", + "23724 0\n", + "23725 0\n", + "23726 0\n", + "23727 0\n", + "23728 0\n", + "23729 0\n", + "23730 0\n", + "23731 0\n", + "23732 0\n", + "23733 0\n", + "23734 0\n", + "23735 0\n", + "23736 0\n", + "23737 0\n", + "23738 0\n", + "23739 0\n", + "23740 0\n", + "23741 1\n", + "23742 0\n", + "23743 1\n", + "23744 0\n", + "23745 0\n", + "23746 0\n", + "23747 1\n", + "23748 0\n", + "23749 0\n", + "23750 0\n", + "23751 0\n", + "23752 0\n", + "23753 1\n", + "23754 0\n", + "23755 0\n", + "23756 0\n", + "23757 0\n", + "23758 0\n", + "23759 0\n", + "23760 0\n", + "23761 1\n", + "23762 0\n", + "23763 0\n", + "23764 0\n", + "23765 0\n", + "23766 0\n", + "23767 1\n", + "23768 0\n", + "23769 0\n", + "23770 0\n", + "23771 0\n", + "23772 0\n", + "23773 1\n", + "23774 0\n", + "23775 0\n", + "23776 0\n", + "23777 0\n", + "23778 0\n", + "23779 0\n", + "23780 0\n", + "23781 0\n", + "23782 0\n", + "23783 0\n", + "23784 0\n", + "23785 0\n", + "23786 0\n", + "23787 0\n", + "23788 0\n", + "23789 1\n", + "23790 0\n", + "23791 0\n", + "23792 0\n", + "23793 0\n", + "23794 0\n", + "23795 0\n", + "23796 0\n", + "23797 0\n", + "23798 0\n", + "23799 0\n", + "23800 0\n", + "23801 1\n", + "23802 0\n", + "23803 0\n", + "23804 0\n", + "23805 0\n", + "23806 0\n", + "23807 0\n", + "23808 0\n", + "23809 0\n", + "23810 0\n", + "23811 0\n", + "23812 0\n", + "23813 1\n", + "23814 0\n", + "23815 0\n", + "23816 0\n", + "23817 0\n", + "23818 0\n", + "23819 1\n", + "23820 0\n", + "23821 0\n", + "23822 0\n", + "23823 0\n", + "23824 0\n", + "23825 0\n", + "23826 0\n", + "23827 1\n", + "23828 0\n", + "23829 0\n", + "23830 0\n", + "23831 1\n", + "23832 0\n", + "23833 1\n", + "23834 0\n", + "23835 0\n", + "23836 0\n", + "23837 0\n", + "23838 0\n", + "23839 0\n", + "23840 0\n", + "23841 0\n", + "23842 0\n", + "23843 0\n", + "23844 0\n", + "23845 0\n", + "23846 0\n", + "23847 0\n", + "23848 0\n", + "23849 0\n", + "23850 0\n", + "23851 0\n", + "23852 0\n", + "23853 0\n", + "23854 0\n", + "23855 0\n", + "23856 0\n", + "23857 1\n", + "23858 0\n", + "23859 0\n", + "23860 0\n", + "23861 0\n", + "23862 0\n", + "23863 0\n", + "23864 0\n", + "23865 0\n", + "23866 0\n", + "23867 0\n", + "23868 0\n", + "23869 1\n", + "23870 0\n", + "23871 0\n", + "23872 0\n", + "23873 1\n", + "23874 0\n", + "23875 0\n", + "23876 0\n", + "23877 0\n", + "23878 0\n", + "23879 1\n", + "23880 0\n", + "23881 0\n", + "23882 0\n", + "23883 0\n", + "23884 0\n", + "23885 0\n", + "23886 0\n", + "23887 1\n", + "23888 0\n", + "23889 0\n", + "23890 0\n", + "23891 0\n", + "23892 0\n", + "23893 1\n", + "23894 0\n", + "23895 0\n", + "23896 0\n", + "23897 0\n", + "23898 0\n", + "23899 1\n", + "23900 0\n", + "23901 0\n", + "23902 0\n", + "23903 0\n", + "23904 0\n", + "23905 0\n", + "23906 0\n", + "23907 0\n", + "23908 0\n", + "23909 1\n", + "23910 0\n", + "23911 1\n", + "23912 0\n", + "23913 0\n", + "23914 0\n", + "23915 0\n", + "23916 0\n", + "23917 1\n", + "23918 0\n", + "23919 0\n", + "23920 0\n", + "23921 0\n", + "23922 0\n", + "23923 0\n", + "23924 0\n", + "23925 0\n", + "23926 0\n", + "23927 0\n", + "23928 0\n", + "23929 1\n", + "23930 0\n", + "23931 0\n", + "23932 0\n", + "23933 0\n", + "23934 0\n", + "23935 0\n", + "23936 0\n", + "23937 0\n", + "23938 0\n", + "23939 0\n", + "23940 0\n", + "23941 0\n", + "23942 0\n", + "23943 0\n", + "23944 0\n", + "23945 0\n", + "23946 0\n", + "23947 0\n", + "23948 0\n", + "23949 0\n", + "23950 0\n", + "23951 0\n", + "23952 0\n", + "23953 0\n", + "23954 0\n", + "23955 0\n", + "23956 0\n", + "23957 1\n", + "23958 0\n", + "23959 0\n", + "23960 0\n", + "23961 0\n", + "23962 0\n", + "23963 0\n", + "23964 0\n", + "23965 0\n", + "23966 0\n", + "23967 0\n", + "23968 0\n", + "23969 0\n", + "23970 0\n", + "23971 1\n", + "23972 0\n", + "23973 0\n", + "23974 0\n", + "23975 0\n", + "23976 0\n", + "23977 1\n", + "23978 0\n", + "23979 0\n", + "23980 0\n", + "23981 1\n", + "23982 0\n", + "23983 0\n", + "23984 0\n", + "23985 0\n", + "23986 0\n", + "23987 0\n", + "23988 0\n", + "23989 0\n", + "23990 0\n", + "23991 0\n", + "23992 0\n", + "23993 1\n", + "23994 0\n", + "23995 0\n", + "23996 0\n", + "23997 0\n", + "23998 0\n", + "23999 0\n", + "24000 0\n", + "24001 1\n", + "24002 0\n", + "24003 0\n", + "24004 0\n", + "24005 0\n", + "24006 0\n", + "24007 1\n", + "24008 0\n", + "24009 0\n", + "24010 0\n", + "24011 0\n", + "24012 0\n", + "24013 0\n", + "24014 0\n", + "24015 0\n", + "24016 0\n", + "24017 0\n", + "24018 0\n", + "24019 1\n", + "24020 0\n", + "24021 0\n", + "24022 0\n", + "24023 1\n", + "24024 0\n", + "24025 0\n", + "24026 0\n", + "24027 0\n", + "24028 0\n", + "24029 1\n", + "24030 0\n", + "24031 0\n", + "24032 0\n", + "24033 0\n", + "24034 0\n", + "24035 0\n", + "24036 0\n", + "24037 0\n", + "24038 0\n", + "24039 0\n", + "24040 0\n", + "24041 0\n", + "24042 0\n", + "24043 1\n", + "24044 0\n", + "24045 0\n", + "24046 0\n", + "24047 0\n", + "24048 0\n", + "24049 1\n", + "24050 0\n", + "24051 0\n", + "24052 0\n", + "24053 0\n", + "24054 0\n", + "24055 0\n", + "24056 0\n", + "24057 0\n", + "24058 0\n", + "24059 0\n", + "24060 0\n", + "24061 1\n", + "24062 0\n", + "24063 0\n", + "24064 0\n", + "24065 0\n", + "24066 0\n", + "24067 0\n", + "24068 0\n", + "24069 0\n", + "24070 0\n", + "24071 1\n", + "24072 0\n", + "24073 0\n", + "24074 0\n", + "24075 0\n", + "24076 0\n", + "24077 1\n", + "24078 0\n", + "24079 0\n", + "24080 0\n", + "24081 0\n", + "24082 0\n", + "24083 1\n", + "24084 0\n", + "24085 0\n", + "24086 0\n", + "24087 0\n", + "24088 0\n", + "24089 0\n", + "24090 0\n", + "24091 1\n", + "24092 0\n", + "24093 0\n", + "24094 0\n", + "24095 0\n", + "24096 0\n", + "24097 1\n", + "24098 0\n", + "24099 0\n", + "24100 0\n", + "24101 0\n", + "24102 0\n", + "24103 1\n", + "24104 0\n", + "24105 0\n", + "24106 0\n", + "24107 1\n", + "24108 0\n", + "24109 1\n", + "24110 0\n", + "24111 0\n", + "24112 0\n", + "24113 1\n", + "24114 0\n", + "24115 0\n", + "24116 0\n", + "24117 0\n", + "24118 0\n", + "24119 0\n", + "24120 0\n", + "24121 1\n", + "24122 0\n", + "24123 0\n", + "24124 0\n", + "24125 0\n", + "24126 0\n", + "24127 0\n", + "24128 0\n", + "24129 0\n", + "24130 0\n", + "24131 0\n", + "24132 0\n", + "24133 1\n", + "24134 0\n", + "24135 0\n", + "24136 0\n", + "24137 1\n", + "24138 0\n", + "24139 0\n", + "24140 0\n", + "24141 0\n", + "24142 0\n", + "24143 0\n", + "24144 0\n", + "24145 0\n", + "24146 0\n", + "24147 0\n", + "24148 0\n", + "24149 0\n", + "24150 0\n", + "24151 1\n", + "24152 0\n", + "24153 0\n", + "24154 0\n", + "24155 0\n", + "24156 0\n", + "24157 0\n", + "24158 0\n", + "24159 0\n", + "24160 0\n", + "24161 0\n", + "24162 0\n", + "24163 0\n", + "24164 0\n", + "24165 0\n", + "24166 0\n", + "24167 0\n", + "24168 0\n", + "24169 1\n", + "24170 0\n", + "24171 0\n", + "24172 0\n", + "24173 0\n", + "24174 0\n", + "24175 0\n", + "24176 0\n", + "24177 0\n", + "24178 0\n", + "24179 1\n", + "24180 0\n", + "24181 1\n", + "24182 0\n", + "24183 0\n", + "24184 0\n", + "24185 0\n", + "24186 0\n", + "24187 0\n", + "24188 0\n", + "24189 0\n", + "24190 0\n", + "24191 0\n", + "24192 0\n", + "24193 0\n", + "24194 0\n", + "24195 0\n", + "24196 0\n", + "24197 1\n", + "24198 0\n", + "24199 0\n", + "24200 0\n", + "24201 0\n", + "24202 0\n", + "24203 1\n", + "24204 0\n", + "24205 0\n", + "24206 0\n", + "24207 0\n", + "24208 0\n", + "24209 0\n", + "24210 0\n", + "24211 0\n", + "24212 0\n", + "24213 0\n", + "24214 0\n", + "24215 0\n", + "24216 0\n", + "24217 0\n", + "24218 0\n", + "24219 0\n", + "24220 0\n", + "24221 0\n", + "24222 0\n", + "24223 1\n", + "24224 0\n", + "24225 0\n", + "24226 0\n", + "24227 0\n", + "24228 0\n", + "24229 1\n", + "24230 0\n", + "24231 0\n", + "24232 0\n", + "24233 0\n", + "24234 0\n", + "24235 0\n", + "24236 0\n", + "24237 0\n", + "24238 0\n", + "24239 1\n", + "24240 0\n", + "24241 0\n", + "24242 0\n", + "24243 0\n", + "24244 0\n", + "24245 0\n", + "24246 0\n", + "24247 1\n", + "24248 0\n", + "24249 0\n", + "24250 0\n", + "24251 1\n", + "24252 0\n", + "24253 0\n", + "24254 0\n", + "24255 0\n", + "24256 0\n", + "24257 0\n", + "24258 0\n", + "24259 0\n", + "24260 0\n", + "24261 0\n", + "24262 0\n", + "24263 0\n", + "24264 0\n", + "24265 0\n", + "24266 0\n", + "24267 0\n", + "24268 0\n", + "24269 0\n", + "24270 0\n", + "24271 0\n", + "24272 0\n", + "24273 0\n", + "24274 0\n", + "24275 0\n", + "24276 0\n", + "24277 0\n", + "24278 0\n", + "24279 0\n", + "24280 0\n", + "24281 1\n", + "24282 0\n", + "24283 0\n", + "24284 0\n", + "24285 0\n", + "24286 0\n", + "24287 0\n", + "24288 0\n", + "24289 0\n", + "24290 0\n", + "24291 0\n", + "24292 0\n", + "24293 0\n", + "24294 0\n", + "24295 0\n", + "24296 0\n", + "24297 0\n", + "24298 0\n", + "24299 0\n", + "24300 0\n", + "24301 0\n", + "24302 0\n", + "24303 0\n", + "24304 0\n", + "24305 0\n", + "24306 0\n", + "24307 0\n", + "24308 0\n", + "24309 0\n", + "24310 0\n", + "24311 0\n", + "24312 0\n", + "24313 0\n", + "24314 0\n", + "24315 0\n", + "24316 0\n", + "24317 1\n", + "24318 0\n", + "24319 0\n", + "24320 0\n", + "24321 0\n", + "24322 0\n", + "24323 0\n", + "24324 0\n", + "24325 0\n", + "24326 0\n", + "24327 0\n", + "24328 0\n", + "24329 1\n", + "24330 0\n", + "24331 0\n", + "24332 0\n", + "24333 0\n", + "24334 0\n", + "24335 0\n", + "24336 0\n", + "24337 1\n", + "24338 0\n", + "24339 0\n", + "24340 0\n", + "24341 0\n", + "24342 0\n", + "24343 0\n", + "24344 0\n", + "24345 0\n", + "24346 0\n", + "24347 0\n", + "24348 0\n", + "24349 0\n", + "24350 0\n", + "24351 0\n", + "24352 0\n", + "24353 0\n", + "24354 0\n", + "24355 0\n", + "24356 0\n", + "24357 0\n", + "24358 0\n", + "24359 1\n", + "24360 0\n", + "24361 0\n", + "24362 0\n", + "24363 0\n", + "24364 0\n", + "24365 0\n", + "24366 0\n", + "24367 0\n", + "24368 0\n", + "24369 0\n", + "24370 0\n", + "24371 1\n", + "24372 0\n", + "24373 1\n", + "24374 0\n", + "24375 0\n", + "24376 0\n", + "24377 0\n", + "24378 0\n", + "24379 1\n", + "24380 0\n", + "24381 0\n", + "24382 0\n", + "24383 0\n", + "24384 0\n", + "24385 0\n", + "24386 0\n", + "24387 0\n", + "24388 0\n", + "24389 0\n", + "24390 0\n", + "24391 1\n", + "24392 0\n", + "24393 0\n", + "24394 0\n", + "24395 0\n", + "24396 0\n", + "24397 0\n", + "24398 0\n", + "24399 0\n", + "24400 0\n", + "24401 0\n", + "24402 0\n", + "24403 0\n", + "24404 0\n", + "24405 0\n", + "24406 0\n", + "24407 1\n", + "24408 0\n", + "24409 0\n", + "24410 0\n", + "24411 0\n", + "24412 0\n", + "24413 1\n", + "24414 0\n", + "24415 0\n", + "24416 0\n", + "24417 0\n", + "24418 0\n", + "24419 1\n", + "24420 0\n", + "24421 1\n", + "24422 0\n", + "24423 0\n", + "24424 0\n", + "24425 0\n", + "24426 0\n", + "24427 0\n", + "24428 0\n", + "24429 0\n", + "24430 0\n", + "24431 0\n", + "24432 0\n", + "24433 0\n", + "24434 0\n", + "24435 0\n", + "24436 0\n", + "24437 0\n", + "24438 0\n", + "24439 1\n", + "24440 0\n", + "24441 0\n", + "24442 0\n", + "24443 1\n", + "24444 0\n", + "24445 0\n", + "24446 0\n", + "24447 0\n", + "24448 0\n", + "24449 0\n", + "24450 0\n", + "24451 0\n", + "24452 0\n", + "24453 0\n", + "24454 0\n", + "24455 0\n", + "24456 0\n", + "24457 0\n", + "24458 0\n", + "24459 0\n", + "24460 0\n", + "24461 0\n", + "24462 0\n", + "24463 0\n", + "24464 0\n", + "24465 0\n", + "24466 0\n", + "24467 0\n", + "24468 0\n", + "24469 1\n", + "24470 0\n", + "24471 0\n", + "24472 0\n", + "24473 1\n", + "24474 0\n", + "24475 0\n", + "24476 0\n", + "24477 0\n", + "24478 0\n", + "24479 0\n", + "24480 0\n", + "24481 1\n", + "24482 0\n", + "24483 0\n", + "24484 0\n", + "24485 0\n", + "24486 0\n", + "24487 0\n", + "24488 0\n", + "24489 0\n", + "24490 0\n", + "24491 0\n", + "24492 0\n", + "24493 0\n", + "24494 0\n", + "24495 0\n", + "24496 0\n", + "24497 0\n", + "24498 0\n", + "24499 1\n", + "24500 0\n", + "24501 0\n", + "24502 0\n", + "24503 0\n", + "24504 0\n", + "24505 0\n", + "24506 0\n", + "24507 0\n", + "24508 0\n", + "24509 1\n", + "24510 0\n", + "24511 0\n", + "24512 0\n", + "24513 0\n", + "24514 0\n", + "24515 0\n", + "24516 0\n", + "24517 1\n", + "24518 0\n", + "24519 0\n", + "24520 0\n", + "24521 0\n", + "24522 0\n", + "24523 0\n", + "24524 0\n", + "24525 0\n", + "24526 0\n", + "24527 1\n", + "24528 0\n", + "24529 0\n", + "24530 0\n", + "24531 0\n", + "24532 0\n", + "24533 1\n", + "24534 0\n", + "24535 0\n", + "24536 0\n", + "24537 0\n", + "24538 0\n", + "24539 0\n", + "24540 0\n", + "24541 0\n", + "24542 0\n", + "24543 0\n", + "24544 0\n", + "24545 0\n", + "24546 0\n", + "24547 1\n", + "24548 0\n", + "24549 0\n", + "24550 0\n", + "24551 1\n", + "24552 0\n", + "24553 0\n", + "24554 0\n", + "24555 0\n", + "24556 0\n", + "24557 0\n", + "24558 0\n", + "24559 0\n", + "24560 0\n", + "24561 0\n", + "24562 0\n", + "24563 0\n", + "24564 0\n", + "24565 0\n", + "24566 0\n", + "24567 0\n", + "24568 0\n", + "24569 0\n", + "24570 0\n", + "24571 1\n", + "24572 0\n", + "24573 0\n", + "24574 0\n", + "24575 0\n", + "24576 0\n", + "24577 0\n", + "24578 0\n", + "24579 0\n", + "24580 0\n", + "24581 0\n", + "24582 0\n", + "24583 0\n", + "24584 0\n", + "24585 0\n", + "24586 0\n", + "24587 0\n", + "24588 0\n", + "24589 0\n", + "24590 0\n", + "24591 0\n", + "24592 0\n", + "24593 1\n", + "24594 0\n", + "24595 0\n", + "24596 0\n", + "24597 0\n", + "24598 0\n", + "24599 0\n", + "24600 0\n", + "24601 0\n", + "24602 0\n", + "24603 0\n", + "24604 0\n", + "24605 0\n", + "24606 0\n", + "24607 0\n", + "24608 0\n", + "24609 0\n", + "24610 0\n", + "24611 1\n", + "24612 0\n", + "24613 0\n", + "24614 0\n", + "24615 0\n", + "24616 0\n", + "24617 0\n", + "24618 0\n", + "24619 0\n", + "24620 0\n", + "24621 0\n", + "24622 0\n", + "24623 1\n", + "24624 0\n", + "24625 0\n", + "24626 0\n", + "24627 0\n", + "24628 0\n", + "24629 0\n", + "24630 0\n", + "24631 1\n", + "24632 0\n", + "24633 0\n", + "24634 0\n", + "24635 0\n", + "24636 0\n", + "24637 0\n", + "24638 0\n", + "24639 0\n", + "24640 0\n", + "24641 0\n", + "24642 0\n", + "24643 0\n", + "24644 0\n", + "24645 0\n", + "24646 0\n", + "24647 0\n", + "24648 0\n", + "24649 0\n", + "24650 0\n", + "24651 0\n", + "24652 0\n", + "24653 0\n", + "24654 0\n", + "24655 0\n", + "24656 0\n", + "24657 0\n", + "24658 0\n", + "24659 1\n", + "24660 0\n", + "24661 0\n", + "24662 0\n", + "24663 0\n", + "24664 0\n", + "24665 0\n", + "24666 0\n", + "24667 0\n", + "24668 0\n", + "24669 0\n", + "24670 0\n", + "24671 1\n", + "24672 0\n", + "24673 0\n", + "24674 0\n", + "24675 0\n", + "24676 0\n", + "24677 1\n", + "24678 0\n", + "24679 0\n", + "24680 0\n", + "24681 0\n", + "24682 0\n", + "24683 1\n", + "24684 0\n", + "24685 0\n", + "24686 0\n", + "24687 0\n", + "24688 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "24689 0\n", + "24690 0\n", + "24691 1\n", + "24692 0\n", + "24693 0\n", + "24694 0\n", + "24695 0\n", + "24696 0\n", + "24697 1\n", + "24698 0\n", + "24699 0\n", + "24700 0\n", + "24701 0\n", + "24702 0\n", + "24703 0\n", + "24704 0\n", + "24705 0\n", + "24706 0\n", + "24707 0\n", + "24708 0\n", + "24709 1\n", + "24710 0\n", + "24711 0\n", + "24712 0\n", + "24713 0\n", + "24714 0\n", + "24715 0\n", + "24716 0\n", + "24717 0\n", + "24718 0\n", + "24719 0\n", + "24720 0\n", + "24721 0\n", + "24722 0\n", + "24723 0\n", + "24724 0\n", + "24725 0\n", + "24726 0\n", + "24727 0\n", + "24728 0\n", + "24729 0\n", + "24730 0\n", + "24731 0\n", + "24732 0\n", + "24733 1\n", + "24734 0\n", + "24735 0\n", + "24736 0\n", + "24737 0\n", + "24738 0\n", + "24739 0\n", + "24740 0\n", + "24741 0\n", + "24742 0\n", + "24743 0\n", + "24744 0\n", + "24745 0\n", + "24746 0\n", + "24747 0\n", + "24748 0\n", + "24749 1\n", + "24750 0\n", + "24751 0\n", + "24752 0\n", + "24753 0\n", + "24754 0\n", + "24755 0\n", + "24756 0\n", + "24757 0\n", + "24758 0\n", + "24759 0\n", + "24760 0\n", + "24761 0\n", + "24762 0\n", + "24763 1\n", + "24764 0\n", + "24765 0\n", + "24766 0\n", + "24767 1\n", + "24768 0\n", + "24769 0\n", + "24770 0\n", + "24771 0\n", + "24772 0\n", + "24773 0\n", + "24774 0\n", + "24775 0\n", + "24776 0\n", + "24777 0\n", + "24778 0\n", + "24779 0\n", + "24780 0\n", + "24781 1\n", + "24782 0\n", + "24783 0\n", + "24784 0\n", + "24785 0\n", + "24786 0\n", + "24787 0\n", + "24788 0\n", + "24789 0\n", + "24790 0\n", + "24791 0\n", + "24792 0\n", + "24793 1\n", + "24794 0\n", + "24795 0\n", + "24796 0\n", + "24797 0\n", + "24798 0\n", + "24799 1\n", + "24800 0\n", + "24801 0\n", + "24802 0\n", + "24803 0\n", + "24804 0\n", + "24805 0\n", + "24806 0\n", + "24807 0\n", + "24808 0\n", + "24809 1\n", + "24810 0\n", + "24811 0\n", + "24812 0\n", + "24813 0\n", + "24814 0\n", + "24815 0\n", + "24816 0\n", + "24817 0\n", + "24818 0\n", + "24819 0\n", + "24820 0\n", + "24821 1\n", + "24822 0\n", + "24823 0\n", + "24824 0\n", + "24825 0\n", + "24826 0\n", + "24827 0\n", + "24828 0\n", + "24829 0\n", + "24830 0\n", + "24831 0\n", + "24832 0\n", + "24833 0\n", + "24834 0\n", + "24835 0\n", + "24836 0\n", + "24837 0\n", + "24838 0\n", + "24839 0\n", + "24840 0\n", + "24841 1\n", + "24842 0\n", + "24843 0\n", + "24844 0\n", + "24845 0\n", + "24846 0\n", + "24847 1\n", + "24848 0\n", + "24849 0\n", + "24850 0\n", + "24851 1\n", + "24852 0\n", + "24853 0\n", + "24854 0\n", + "24855 0\n", + "24856 0\n", + "24857 0\n", + "24858 0\n", + "24859 1\n", + "24860 0\n", + "24861 0\n", + "24862 0\n", + "24863 0\n", + "24864 0\n", + "24865 0\n", + "24866 0\n", + "24867 0\n", + "24868 0\n", + "24869 0\n", + "24870 0\n", + "24871 0\n", + "24872 0\n", + "24873 0\n", + "24874 0\n", + "24875 0\n", + "24876 0\n", + "24877 1\n", + "24878 0\n", + "24879 0\n", + "24880 0\n", + "24881 0\n", + "24882 0\n", + "24883 0\n", + "24884 0\n", + "24885 0\n", + "24886 0\n", + "24887 0\n", + "24888 0\n", + "24889 1\n", + "24890 0\n", + "24891 0\n", + "24892 0\n", + "24893 0\n", + "24894 0\n", + "24895 0\n", + "24896 0\n", + "24897 0\n", + "24898 0\n", + "24899 0\n", + "24900 0\n", + "24901 0\n", + "24902 0\n", + "24903 0\n", + "24904 0\n", + "24905 0\n", + "24906 0\n", + "24907 1\n", + "24908 0\n", + "24909 0\n", + "24910 0\n", + "24911 0\n", + "24912 0\n", + "24913 0\n", + "24914 0\n", + "24915 0\n", + "24916 0\n", + "24917 1\n", + "24918 0\n", + "24919 1\n", + "24920 0\n", + "24921 0\n", + "24922 0\n", + "24923 1\n", + "24924 0\n", + "24925 0\n", + "24926 0\n", + "24927 0\n", + "24928 0\n", + "24929 0\n", + "24930 0\n", + "24931 0\n", + "24932 0\n", + "24933 0\n", + "24934 0\n", + "24935 0\n", + "24936 0\n", + "24937 0\n", + "24938 0\n", + "24939 0\n", + "24940 0\n", + "24941 0\n", + "24942 0\n", + "24943 1\n", + "24944 0\n", + "24945 0\n", + "24946 0\n", + "24947 0\n", + "24948 0\n", + "24949 0\n", + "24950 0\n", + "24951 0\n", + "24952 0\n", + "24953 1\n", + "24954 0\n", + "24955 0\n", + "24956 0\n", + "24957 0\n", + "24958 0\n", + "24959 0\n", + "24960 0\n", + "24961 0\n", + "24962 0\n", + "24963 0\n", + "24964 0\n", + "24965 0\n", + "24966 0\n", + "24967 1\n", + "24968 0\n", + "24969 0\n", + "24970 0\n", + "24971 1\n", + "24972 0\n", + "24973 0\n", + "24974 0\n", + "24975 0\n", + "24976 0\n", + "24977 1\n", + "24978 0\n", + "24979 1\n", + "24980 0\n", + "24981 0\n", + "24982 0\n", + "24983 0\n", + "24984 0\n", + "24985 0\n", + "24986 0\n", + "24987 0\n", + "24988 0\n", + "24989 1\n", + "24990 0\n", + "24991 0\n", + "24992 0\n", + "24993 0\n", + "24994 0\n", + "24995 0\n", + "24996 0\n", + "24997 0\n", + "24998 0\n", + "24999 0\n", + "25000 0\n", + "25001 0\n", + "25002 0\n", + "25003 0\n", + "25004 0\n", + "25005 0\n", + "25006 0\n", + "25007 0\n", + "25008 0\n", + "25009 0\n", + "25010 0\n", + "25011 0\n", + "25012 0\n", + "25013 1\n", + "25014 0\n", + "25015 0\n", + "25016 0\n", + "25017 0\n", + "25018 0\n", + "25019 0\n", + "25020 0\n", + "25021 0\n", + "25022 0\n", + "25023 0\n", + "25024 0\n", + "25025 0\n", + "25026 0\n", + "25027 0\n", + "25028 0\n", + "25029 0\n", + "25030 0\n", + "25031 1\n", + "25032 0\n", + "25033 1\n", + "25034 0\n", + "25035 0\n", + "25036 0\n", + "25037 1\n", + "25038 0\n", + "25039 0\n", + "25040 0\n", + "25041 0\n", + "25042 0\n", + "25043 0\n", + "25044 0\n", + "25045 0\n", + "25046 0\n", + "25047 0\n", + "25048 0\n", + "25049 0\n", + "25050 0\n", + "25051 0\n", + "25052 0\n", + "25053 0\n", + "25054 0\n", + "25055 0\n", + "25056 0\n", + "25057 1\n", + "25058 0\n", + "25059 0\n", + "25060 0\n", + "25061 0\n", + "25062 0\n", + "25063 0\n", + "25064 0\n", + "25065 0\n", + "25066 0\n", + "25067 0\n", + "25068 0\n", + "25069 0\n", + "25070 0\n", + "25071 0\n", + "25072 0\n", + "25073 1\n", + "25074 0\n", + "25075 0\n", + "25076 0\n", + "25077 0\n", + "25078 0\n", + "25079 0\n", + "25080 0\n", + "25081 0\n", + "25082 0\n", + "25083 0\n", + "25084 0\n", + "25085 0\n", + "25086 0\n", + "25087 1\n", + "25088 0\n", + "25089 0\n", + "25090 0\n", + "25091 0\n", + "25092 0\n", + "25093 0\n", + "25094 0\n", + "25095 0\n", + "25096 0\n", + "25097 1\n", + "25098 0\n", + "25099 0\n", + "25100 0\n", + "25101 0\n", + "25102 0\n", + "25103 0\n", + "25104 0\n", + "25105 0\n", + "25106 0\n", + "25107 0\n", + "25108 0\n", + "25109 0\n", + "25110 0\n", + "25111 1\n", + "25112 0\n", + "25113 0\n", + "25114 0\n", + "25115 0\n", + "25116 0\n", + "25117 1\n", + "25118 0\n", + "25119 0\n", + "25120 0\n", + "25121 1\n", + "25122 0\n", + "25123 0\n", + "25124 0\n", + "25125 0\n", + "25126 0\n", + "25127 1\n", + "25128 0\n", + "25129 0\n", + "25130 0\n", + "25131 0\n", + "25132 0\n", + "25133 0\n", + "25134 0\n", + "25135 0\n", + "25136 0\n", + "25137 0\n", + "25138 0\n", + "25139 0\n", + "25140 0\n", + "25141 0\n", + "25142 0\n", + "25143 0\n", + "25144 0\n", + "25145 0\n", + "25146 0\n", + "25147 1\n", + "25148 0\n", + "25149 0\n", + "25150 0\n", + "25151 0\n", + "25152 0\n", + "25153 1\n", + "25154 0\n", + "25155 0\n", + "25156 0\n", + "25157 0\n", + "25158 0\n", + "25159 0\n", + "25160 0\n", + "25161 0\n", + "25162 0\n", + "25163 1\n", + "25164 0\n", + "25165 0\n", + "25166 0\n", + "25167 0\n", + "25168 0\n", + "25169 1\n", + "25170 0\n", + "25171 1\n", + "25172 0\n", + "25173 0\n", + "25174 0\n", + "25175 0\n", + "25176 0\n", + "25177 0\n", + "25178 0\n", + "25179 0\n", + "25180 0\n", + "25181 0\n", + "25182 0\n", + "25183 1\n", + "25184 0\n", + "25185 0\n", + "25186 0\n", + "25187 0\n", + "25188 0\n", + "25189 1\n", + "25190 0\n", + "25191 0\n", + "25192 0\n", + "25193 0\n", + "25194 0\n", + "25195 0\n", + "25196 0\n", + "25197 0\n", + "25198 0\n", + "25199 0\n", + "25200 0\n", + "25201 0\n", + "25202 0\n", + "25203 0\n", + "25204 0\n", + "25205 0\n", + "25206 0\n", + "25207 0\n", + "25208 0\n", + "25209 0\n", + "25210 0\n", + "25211 0\n", + "25212 0\n", + "25213 0\n", + "25214 0\n", + "25215 0\n", + "25216 0\n", + "25217 0\n", + "25218 0\n", + "25219 1\n", + "25220 0\n", + "25221 0\n", + "25222 0\n", + "25223 0\n", + "25224 0\n", + "25225 0\n", + "25226 0\n", + "25227 0\n", + "25228 0\n", + "25229 1\n", + "25230 0\n", + "25231 0\n", + "25232 0\n", + "25233 0\n", + "25234 0\n", + "25235 0\n", + "25236 0\n", + "25237 1\n", + "25238 0\n", + "25239 0\n", + "25240 0\n", + "25241 0\n", + "25242 0\n", + "25243 1\n", + "25244 0\n", + "25245 0\n", + "25246 0\n", + "25247 1\n", + "25248 0\n", + "25249 0\n", + "25250 0\n", + "25251 0\n", + "25252 0\n", + "25253 1\n", + "25254 0\n", + "25255 0\n", + "25256 0\n", + "25257 0\n", + "25258 0\n", + "25259 0\n", + "25260 0\n", + "25261 1\n", + "25262 0\n", + "25263 0\n", + "25264 0\n", + "25265 0\n", + "25266 0\n", + "25267 0\n", + "25268 0\n", + "25269 0\n", + "25270 0\n", + "25271 0\n", + "25272 0\n", + "25273 0\n", + "25274 0\n", + "25275 0\n", + "25276 0\n", + "25277 0\n", + "25278 0\n", + "25279 0\n", + "25280 0\n", + "25281 0\n", + "25282 0\n", + "25283 0\n", + "25284 0\n", + "25285 0\n", + "25286 0\n", + "25287 0\n", + "25288 0\n", + "25289 0\n", + "25290 0\n", + "25291 0\n", + "25292 0\n", + "25293 0\n", + "25294 0\n", + "25295 0\n", + "25296 0\n", + "25297 0\n", + "25298 0\n", + "25299 0\n", + "25300 0\n", + "25301 1\n", + "25302 0\n", + "25303 1\n", + "25304 0\n", + "25305 0\n", + "25306 0\n", + "25307 1\n", + "25308 0\n", + "25309 1\n", + "25310 0\n", + "25311 0\n", + "25312 0\n", + "25313 0\n", + "25314 0\n", + "25315 0\n", + "25316 0\n", + "25317 0\n", + "25318 0\n", + "25319 0\n", + "25320 0\n", + "25321 1\n", + "25322 0\n", + "25323 0\n", + "25324 0\n", + "25325 0\n", + "25326 0\n", + "25327 0\n", + "25328 0\n", + "25329 0\n", + "25330 0\n", + "25331 0\n", + "25332 0\n", + "25333 0\n", + "25334 0\n", + "25335 0\n", + "25336 0\n", + "25337 0\n", + "25338 0\n", + "25339 1\n", + "25340 0\n", + "25341 0\n", + "25342 0\n", + "25343 1\n", + "25344 0\n", + "25345 0\n", + "25346 0\n", + "25347 0\n", + "25348 0\n", + "25349 1\n", + "25350 0\n", + "25351 0\n", + "25352 0\n", + "25353 0\n", + "25354 0\n", + "25355 0\n", + "25356 0\n", + "25357 1\n", + "25358 0\n", + "25359 0\n", + "25360 0\n", + "25361 0\n", + "25362 0\n", + "25363 0\n", + "25364 0\n", + "25365 0\n", + "25366 0\n", + "25367 1\n", + "25368 0\n", + "25369 0\n", + "25370 0\n", + "25371 0\n", + "25372 0\n", + "25373 1\n", + "25374 0\n", + "25375 0\n", + "25376 0\n", + "25377 0\n", + "25378 0\n", + "25379 0\n", + "25380 0\n", + "25381 0\n", + "25382 0\n", + "25383 0\n", + "25384 0\n", + "25385 0\n", + "25386 0\n", + "25387 0\n", + "25388 0\n", + "25389 0\n", + "25390 0\n", + "25391 1\n", + "25392 0\n", + "25393 0\n", + "25394 0\n", + "25395 0\n", + "25396 0\n", + "25397 0\n", + "25398 0\n", + "25399 0\n", + "25400 0\n", + "25401 0\n", + "25402 0\n", + "25403 0\n", + "25404 0\n", + "25405 0\n", + "25406 0\n", + "25407 0\n", + "25408 0\n", + "25409 1\n", + "25410 0\n", + "25411 1\n", + "25412 0\n", + "25413 0\n", + "25414 0\n", + "25415 0\n", + "25416 0\n", + "25417 0\n", + "25418 0\n", + "25419 0\n", + "25420 0\n", + "25421 0\n", + "25422 0\n", + "25423 1\n", + "25424 0\n", + "25425 0\n", + "25426 0\n", + "25427 0\n", + "25428 0\n", + "25429 0\n", + "25430 0\n", + "25431 0\n", + "25432 0\n", + "25433 0\n", + "25434 0\n", + "25435 0\n", + "25436 0\n", + "25437 0\n", + "25438 0\n", + "25439 1\n", + "25440 0\n", + "25441 0\n", + "25442 0\n", + "25443 0\n", + "25444 0\n", + "25445 0\n", + "25446 0\n", + "25447 1\n", + "25448 0\n", + "25449 0\n", + "25450 0\n", + "25451 0\n", + "25452 0\n", + "25453 1\n", + "25454 0\n", + "25455 0\n", + "25456 0\n", + "25457 1\n", + "25458 0\n", + "25459 0\n", + "25460 0\n", + "25461 0\n", + "25462 0\n", + "25463 1\n", + "25464 0\n", + "25465 0\n", + "25466 0\n", + "25467 0\n", + "25468 0\n", + "25469 1\n", + "25470 0\n", + "25471 1\n", + "25472 0\n", + "25473 0\n", + "25474 0\n", + "25475 0\n", + "25476 0\n", + "25477 0\n", + "25478 0\n", + "25479 0\n", + "25480 0\n", + "25481 0\n", + "25482 0\n", + "25483 0\n", + "25484 0\n", + "25485 0\n", + "25486 0\n", + "25487 0\n", + "25488 0\n", + "25489 0\n", + "25490 0\n", + "25491 0\n", + "25492 0\n", + "25493 0\n", + "25494 0\n", + "25495 0\n", + "25496 0\n", + "25497 0\n", + "25498 0\n", + "25499 0\n", + "25500 0\n", + "25501 0\n", + "25502 0\n", + "25503 0\n", + "25504 0\n", + "25505 0\n", + "25506 0\n", + "25507 0\n", + "25508 0\n", + "25509 0\n", + "25510 0\n", + "25511 0\n", + "25512 0\n", + "25513 0\n", + "25514 0\n", + "25515 0\n", + "25516 0\n", + "25517 0\n", + "25518 0\n", + "25519 0\n", + "25520 0\n", + "25521 0\n", + "25522 0\n", + "25523 1\n", + "25524 0\n", + "25525 0\n", + "25526 0\n", + "25527 0\n", + "25528 0\n", + "25529 0\n", + "25530 0\n", + "25531 0\n", + "25532 0\n", + "25533 0\n", + "25534 0\n", + "25535 0\n", + "25536 0\n", + "25537 1\n", + "25538 0\n", + "25539 0\n", + "25540 0\n", + "25541 1\n", + "25542 0\n", + "25543 0\n", + "25544 0\n", + "25545 0\n", + "25546 0\n", + "25547 0\n", + "25548 0\n", + "25549 0\n", + "25550 0\n", + "25551 0\n", + "25552 0\n", + "25553 0\n", + "25554 0\n", + "25555 0\n", + "25556 0\n", + "25557 0\n", + "25558 0\n", + "25559 0\n", + "25560 0\n", + "25561 1\n", + "25562 0\n", + "25563 0\n", + "25564 0\n", + "25565 0\n", + "25566 0\n", + "25567 0\n", + "25568 0\n", + "25569 0\n", + "25570 0\n", + "25571 0\n", + "25572 0\n", + "25573 0\n", + "25574 0\n", + "25575 0\n", + "25576 0\n", + "25577 1\n", + "25578 0\n", + "25579 1\n", + "25580 0\n", + "25581 0\n", + "25582 0\n", + "25583 1\n", + "25584 0\n", + "25585 0\n", + "25586 0\n", + "25587 0\n", + "25588 0\n", + "25589 1\n", + "25590 0\n", + "25591 0\n", + "25592 0\n", + "25593 0\n", + "25594 0\n", + "25595 0\n", + "25596 0\n", + "25597 0\n", + "25598 0\n", + "25599 0\n", + "25600 0\n", + "25601 1\n", + "25602 0\n", + "25603 1\n", + "25604 0\n", + "25605 0\n", + "25606 0\n", + "25607 0\n", + "25608 0\n", + "25609 1\n", + "25610 0\n", + "25611 0\n", + "25612 0\n", + "25613 0\n", + "25614 0\n", + "25615 0\n", + "25616 0\n", + "25617 0\n", + "25618 0\n", + "25619 0\n", + "25620 0\n", + "25621 1\n", + "25622 0\n", + "25623 0\n", + "25624 0\n", + "25625 0\n", + "25626 0\n", + "25627 0\n", + "25628 0\n", + "25629 0\n", + "25630 0\n", + "25631 0\n", + "25632 0\n", + "25633 1\n", + "25634 0\n", + "25635 0\n", + "25636 0\n", + "25637 0\n", + "25638 0\n", + "25639 1\n", + "25640 0\n", + "25641 0\n", + "25642 0\n", + "25643 1\n", + "25644 0\n", + "25645 0\n", + "25646 0\n", + "25647 0\n", + "25648 0\n", + "25649 0\n", + "25650 0\n", + "25651 0\n", + "25652 0\n", + "25653 0\n", + "25654 0\n", + "25655 0\n", + "25656 0\n", + "25657 1\n", + "25658 0\n", + "25659 0\n", + "25660 0\n", + "25661 0\n", + "25662 0\n", + "25663 0\n", + "25664 0\n", + "25665 0\n", + "25666 0\n", + "25667 1\n", + "25668 0\n", + "25669 0\n", + "25670 0\n", + "25671 0\n", + "25672 0\n", + "25673 1\n", + "25674 0\n", + "25675 0\n", + "25676 0\n", + "25677 0\n", + "25678 0\n", + "25679 1\n", + "25680 0\n", + "25681 0\n", + "25682 0\n", + "25683 0\n", + "25684 0\n", + "25685 0\n", + "25686 0\n", + "25687 0\n", + "25688 0\n", + "25689 0\n", + "25690 0\n", + "25691 0\n", + "25692 0\n", + "25693 1\n", + "25694 0\n", + "25695 0\n", + "25696 0\n", + "25697 0\n", + "25698 0\n", + "25699 0\n", + "25700 0\n", + "25701 0\n", + "25702 0\n", + "25703 1\n", + "25704 0\n", + "25705 0\n", + "25706 0\n", + "25707 0\n", + "25708 0\n", + "25709 0\n", + "25710 0\n", + "25711 0\n", + "25712 0\n", + "25713 0\n", + "25714 0\n", + "25715 0\n", + "25716 0\n", + "25717 1\n", + "25718 0\n", + "25719 0\n", + "25720 0\n", + "25721 0\n", + "25722 0\n", + "25723 0\n", + "25724 0\n", + "25725 0\n", + "25726 0\n", + "25727 0\n", + "25728 0\n", + "25729 0\n", + "25730 0\n", + "25731 0\n", + "25732 0\n", + "25733 1\n", + "25734 0\n", + "25735 0\n", + "25736 0\n", + "25737 0\n", + "25738 0\n", + "25739 0\n", + "25740 0\n", + "25741 1\n", + "25742 0\n", + "25743 0\n", + "25744 0\n", + "25745 0\n", + "25746 0\n", + "25747 1\n", + "25748 0\n", + "25749 0\n", + "25750 0\n", + "25751 0\n", + "25752 0\n", + "25753 0\n", + "25754 0\n", + "25755 0\n", + "25756 0\n", + "25757 0\n", + "25758 0\n", + "25759 1\n", + "25760 0\n", + "25761 0\n", + "25762 0\n", + "25763 1\n", + "25764 0\n", + "25765 0\n", + "25766 0\n", + "25767 0\n", + "25768 0\n", + "25769 0\n", + "25770 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "25771 1\n", + "25772 0\n", + "25773 0\n", + "25774 0\n", + "25775 0\n", + "25776 0\n", + "25777 0\n", + "25778 0\n", + "25779 0\n", + "25780 0\n", + "25781 0\n", + "25782 0\n", + "25783 0\n", + "25784 0\n", + "25785 0\n", + "25786 0\n", + "25787 0\n", + "25788 0\n", + "25789 0\n", + "25790 0\n", + "25791 0\n", + "25792 0\n", + "25793 1\n", + "25794 0\n", + "25795 0\n", + "25796 0\n", + "25797 0\n", + "25798 0\n", + "25799 1\n", + "25800 0\n", + "25801 1\n", + "25802 0\n", + "25803 0\n", + "25804 0\n", + "25805 0\n", + "25806 0\n", + "25807 0\n", + "25808 0\n", + "25809 0\n", + "25810 0\n", + "25811 0\n", + "25812 0\n", + "25813 0\n", + "25814 0\n", + "25815 0\n", + "25816 0\n", + "25817 0\n", + "25818 0\n", + "25819 1\n", + "25820 0\n", + "25821 0\n", + "25822 0\n", + "25823 0\n", + "25824 0\n", + "25825 0\n", + "25826 0\n", + "25827 0\n", + "25828 0\n", + "25829 0\n", + "25830 0\n", + "25831 0\n", + "25832 0\n", + "25833 0\n", + "25834 0\n", + "25835 0\n", + "25836 0\n", + "25837 0\n", + "25838 0\n", + "25839 0\n", + "25840 0\n", + "25841 1\n", + "25842 0\n", + "25843 0\n", + "25844 0\n", + "25845 0\n", + "25846 0\n", + "25847 1\n", + "25848 0\n", + "25849 1\n", + "25850 0\n", + "25851 0\n", + "25852 0\n", + "25853 0\n", + "25854 0\n", + "25855 0\n", + "25856 0\n", + "25857 0\n", + "25858 0\n", + "25859 0\n", + "25860 0\n", + "25861 0\n", + "25862 0\n", + "25863 0\n", + "25864 0\n", + "25865 0\n", + "25866 0\n", + "25867 1\n", + "25868 0\n", + "25869 0\n", + "25870 0\n", + "25871 0\n", + "25872 0\n", + "25873 1\n", + "25874 0\n", + "25875 0\n", + "25876 0\n", + "25877 0\n", + "25878 0\n", + "25879 0\n", + "25880 0\n", + "25881 0\n", + "25882 0\n", + "25883 0\n", + "25884 0\n", + "25885 0\n", + "25886 0\n", + "25887 0\n", + "25888 0\n", + "25889 1\n", + "25890 0\n", + "25891 0\n", + "25892 0\n", + "25893 0\n", + "25894 0\n", + "25895 0\n", + "25896 0\n", + "25897 0\n", + "25898 0\n", + "25899 0\n", + "25900 0\n", + "25901 0\n", + "25902 0\n", + "25903 1\n", + "25904 0\n", + "25905 0\n", + "25906 0\n", + "25907 0\n", + "25908 0\n", + "25909 0\n", + "25910 0\n", + "25911 0\n", + "25912 0\n", + "25913 1\n", + "25914 0\n", + "25915 0\n", + "25916 0\n", + "25917 0\n", + "25918 0\n", + "25919 1\n", + "25920 0\n", + "25921 0\n", + "25922 0\n", + "25923 0\n", + "25924 0\n", + "25925 0\n", + "25926 0\n", + "25927 0\n", + "25928 0\n", + "25929 0\n", + "25930 0\n", + "25931 1\n", + "25932 0\n", + "25933 1\n", + "25934 0\n", + "25935 0\n", + "25936 0\n", + "25937 0\n", + "25938 0\n", + "25939 1\n", + "25940 0\n", + "25941 0\n", + "25942 0\n", + "25943 1\n", + "25944 0\n", + "25945 0\n", + "25946 0\n", + "25947 0\n", + "25948 0\n", + "25949 0\n", + "25950 0\n", + "25951 1\n", + "25952 0\n", + "25953 0\n", + "25954 0\n", + "25955 0\n", + "25956 0\n", + "25957 0\n", + "25958 0\n", + "25959 0\n", + "25960 0\n", + "25961 0\n", + "25962 0\n", + "25963 0\n", + "25964 0\n", + "25965 0\n", + "25966 0\n", + "25967 0\n", + "25968 0\n", + "25969 1\n", + "25970 0\n", + "25971 0\n", + "25972 0\n", + "25973 0\n", + "25974 0\n", + "25975 0\n", + "25976 0\n", + "25977 0\n", + "25978 0\n", + "25979 0\n", + "25980 0\n", + "25981 1\n", + "25982 0\n", + "25983 0\n", + "25984 0\n", + "25985 0\n", + "25986 0\n", + "25987 0\n", + "25988 0\n", + "25989 0\n", + "25990 0\n", + "25991 0\n", + "25992 0\n", + "25993 0\n", + "25994 0\n", + "25995 0\n", + "25996 0\n", + "25997 1\n", + "25998 0\n", + "25999 1\n", + "26000 0\n", + "26001 0\n", + "26002 0\n", + "26003 1\n", + "26004 0\n", + "26005 0\n", + "26006 0\n", + "26007 0\n", + "26008 0\n", + "26009 0\n", + "26010 0\n", + "26011 0\n", + "26012 0\n", + "26013 0\n", + "26014 0\n", + "26015 0\n", + "26016 0\n", + "26017 1\n", + "26018 0\n", + "26019 0\n", + "26020 0\n", + "26021 1\n", + "26022 0\n", + "26023 0\n", + "26024 0\n", + "26025 0\n", + "26026 0\n", + "26027 0\n", + "26028 0\n", + "26029 1\n", + "26030 0\n", + "26031 0\n", + "26032 0\n", + "26033 0\n", + "26034 0\n", + "26035 0\n", + "26036 0\n", + "26037 0\n", + "26038 0\n", + "26039 0\n", + "26040 0\n", + "26041 1\n", + "26042 0\n", + "26043 0\n", + "26044 0\n", + "26045 0\n", + "26046 0\n", + "26047 0\n", + "26048 0\n", + "26049 0\n", + "26050 0\n", + "26051 0\n", + "26052 0\n", + "26053 1\n", + "26054 0\n", + "26055 0\n", + "26056 0\n", + "26057 0\n", + "26058 0\n", + "26059 0\n", + "26060 0\n", + "26061 0\n", + "26062 0\n", + "26063 0\n", + "26064 0\n", + "26065 0\n", + "26066 0\n", + "26067 0\n", + "26068 0\n", + "26069 0\n", + "26070 0\n", + "26071 0\n", + "26072 0\n", + "26073 0\n", + "26074 0\n", + "26075 0\n", + "26076 0\n", + "26077 0\n", + "26078 0\n", + "26079 0\n", + "26080 0\n", + "26081 0\n", + "26082 0\n", + "26083 1\n", + "26084 0\n", + "26085 0\n", + "26086 0\n", + "26087 0\n", + "26088 0\n", + "26089 0\n", + "26090 0\n", + "26091 0\n", + "26092 0\n", + "26093 0\n", + "26094 0\n", + "26095 0\n", + "26096 0\n", + "26097 0\n", + "26098 0\n", + "26099 1\n", + "26100 0\n", + "26101 0\n", + "26102 0\n", + "26103 0\n", + "26104 0\n", + "26105 0\n", + "26106 0\n", + "26107 1\n", + "26108 0\n", + "26109 0\n", + "26110 0\n", + "26111 1\n", + "26112 0\n", + "26113 1\n", + "26114 0\n", + "26115 0\n", + "26116 0\n", + "26117 0\n", + "26118 0\n", + "26119 1\n", + "26120 0\n", + "26121 0\n", + "26122 0\n", + "26123 0\n", + "26124 0\n", + "26125 0\n", + "26126 0\n", + "26127 0\n", + "26128 0\n", + "26129 0\n", + "26130 0\n", + "26131 0\n", + "26132 0\n", + "26133 0\n", + "26134 0\n", + "26135 0\n", + "26136 0\n", + "26137 0\n", + "26138 0\n", + "26139 0\n", + "26140 0\n", + "26141 1\n", + "26142 0\n", + "26143 0\n", + "26144 0\n", + "26145 0\n", + "26146 0\n", + "26147 0\n", + "26148 0\n", + "26149 0\n", + "26150 0\n", + "26151 0\n", + "26152 0\n", + "26153 1\n", + "26154 0\n", + "26155 0\n", + "26156 0\n", + "26157 0\n", + "26158 0\n", + "26159 0\n", + "26160 0\n", + "26161 1\n", + "26162 0\n", + "26163 0\n", + "26164 0\n", + "26165 0\n", + "26166 0\n", + "26167 0\n", + "26168 0\n", + "26169 0\n", + "26170 0\n", + "26171 1\n", + "26172 0\n", + "26173 0\n", + "26174 0\n", + "26175 0\n", + "26176 0\n", + "26177 1\n", + "26178 0\n", + "26179 0\n", + "26180 0\n", + "26181 0\n", + "26182 0\n", + "26183 1\n", + "26184 0\n", + "26185 0\n", + "26186 0\n", + "26187 0\n", + "26188 0\n", + "26189 1\n", + "26190 0\n", + "26191 0\n", + "26192 0\n", + "26193 0\n", + "26194 0\n", + "26195 0\n", + "26196 0\n", + "26197 0\n", + "26198 0\n", + "26199 0\n", + "26200 0\n", + "26201 0\n", + "26202 0\n", + "26203 1\n", + "26204 0\n", + "26205 0\n", + "26206 0\n", + "26207 0\n", + "26208 0\n", + "26209 1\n", + "26210 0\n", + "26211 0\n", + "26212 0\n", + "26213 0\n", + "26214 0\n", + "26215 0\n", + "26216 0\n", + "26217 0\n", + "26218 0\n", + "26219 0\n", + "26220 0\n", + "26221 0\n", + "26222 0\n", + "26223 0\n", + "26224 0\n", + "26225 0\n", + "26226 0\n", + "26227 1\n", + "26228 0\n", + "26229 0\n", + "26230 0\n", + "26231 0\n", + "26232 0\n", + "26233 0\n", + "26234 0\n", + "26235 0\n", + "26236 0\n", + "26237 1\n", + "26238 0\n", + "26239 0\n", + "26240 0\n", + "26241 0\n", + "26242 0\n", + "26243 0\n", + "26244 0\n", + "26245 0\n", + "26246 0\n", + "26247 0\n", + "26248 0\n", + "26249 1\n", + "26250 0\n", + "26251 1\n", + "26252 0\n", + "26253 0\n", + "26254 0\n", + "26255 0\n", + "26256 0\n", + "26257 0\n", + "26258 0\n", + "26259 0\n", + "26260 0\n", + "26261 1\n", + "26262 0\n", + "26263 1\n", + "26264 0\n", + "26265 0\n", + "26266 0\n", + "26267 1\n", + "26268 0\n", + "26269 0\n", + "26270 0\n", + "26271 0\n", + "26272 0\n", + "26273 0\n", + "26274 0\n", + "26275 0\n", + "26276 0\n", + "26277 0\n", + "26278 0\n", + "26279 0\n", + "26280 0\n", + "26281 0\n", + "26282 0\n", + "26283 0\n", + "26284 0\n", + "26285 0\n", + "26286 0\n", + "26287 0\n", + "26288 0\n", + "26289 0\n", + "26290 0\n", + "26291 0\n", + "26292 0\n", + "26293 1\n", + "26294 0\n", + "26295 0\n", + "26296 0\n", + "26297 1\n", + "26298 0\n", + "26299 0\n", + "26300 0\n", + "26301 0\n", + "26302 0\n", + "26303 0\n", + "26304 0\n", + "26305 0\n", + "26306 0\n", + "26307 0\n", + "26308 0\n", + "26309 1\n", + "26310 0\n", + "26311 0\n", + "26312 0\n", + "26313 0\n", + "26314 0\n", + "26315 0\n", + "26316 0\n", + "26317 1\n", + "26318 0\n", + "26319 0\n", + "26320 0\n", + "26321 1\n", + "26322 0\n", + "26323 0\n", + "26324 0\n", + "26325 0\n", + "26326 0\n", + "26327 0\n", + "26328 0\n", + "26329 0\n", + "26330 0\n", + "26331 0\n", + "26332 0\n", + "26333 0\n", + "26334 0\n", + "26335 0\n", + "26336 0\n", + "26337 0\n", + "26338 0\n", + "26339 1\n", + "26340 0\n", + "26341 0\n", + "26342 0\n", + "26343 0\n", + "26344 0\n", + "26345 0\n", + "26346 0\n", + "26347 1\n", + "26348 0\n", + "26349 0\n", + "26350 0\n", + "26351 0\n", + "26352 0\n", + "26353 0\n", + "26354 0\n", + "26355 0\n", + "26356 0\n", + "26357 1\n", + "26358 0\n", + "26359 0\n", + "26360 0\n", + "26361 0\n", + "26362 0\n", + "26363 0\n", + "26364 0\n", + "26365 0\n", + "26366 0\n", + "26367 0\n", + "26368 0\n", + "26369 0\n", + "26370 0\n", + "26371 1\n", + "26372 0\n", + "26373 0\n", + "26374 0\n", + "26375 0\n", + "26376 0\n", + "26377 0\n", + "26378 0\n", + "26379 0\n", + "26380 0\n", + "26381 0\n", + "26382 0\n", + "26383 0\n", + "26384 0\n", + "26385 0\n", + "26386 0\n", + "26387 1\n", + "26388 0\n", + "26389 0\n", + "26390 0\n", + "26391 0\n", + "26392 0\n", + "26393 1\n", + "26394 0\n", + "26395 0\n", + "26396 0\n", + "26397 0\n", + "26398 0\n", + "26399 1\n", + "26400 0\n", + "26401 0\n", + "26402 0\n", + "26403 0\n", + "26404 0\n", + "26405 0\n", + "26406 0\n", + "26407 1\n", + "26408 0\n", + "26409 0\n", + "26410 0\n", + "26411 0\n", + "26412 0\n", + "26413 0\n", + "26414 0\n", + "26415 0\n", + "26416 0\n", + "26417 1\n", + "26418 0\n", + "26419 0\n", + "26420 0\n", + "26421 0\n", + "26422 0\n", + "26423 1\n", + "26424 0\n", + "26425 0\n", + "26426 0\n", + "26427 0\n", + "26428 0\n", + "26429 0\n", + "26430 0\n", + "26431 1\n", + "26432 0\n", + "26433 0\n", + "26434 0\n", + "26435 0\n", + "26436 0\n", + "26437 1\n", + "26438 0\n", + "26439 0\n", + "26440 0\n", + "26441 0\n", + "26442 0\n", + "26443 0\n", + "26444 0\n", + "26445 0\n", + "26446 0\n", + "26447 0\n", + "26448 0\n", + "26449 1\n", + "26450 0\n", + "26451 0\n", + "26452 0\n", + "26453 0\n", + "26454 0\n", + "26455 0\n", + "26456 0\n", + "26457 0\n", + "26458 0\n", + "26459 1\n", + "26460 0\n", + "26461 0\n", + "26462 0\n", + "26463 0\n", + "26464 0\n", + "26465 0\n", + "26466 0\n", + "26467 0\n", + "26468 0\n", + "26469 0\n", + "26470 0\n", + "26471 0\n", + "26472 0\n", + "26473 0\n", + "26474 0\n", + "26475 0\n", + "26476 0\n", + "26477 0\n", + "26478 0\n", + "26479 1\n", + "26480 0\n", + "26481 0\n", + "26482 0\n", + "26483 0\n", + "26484 0\n", + "26485 0\n", + "26486 0\n", + "26487 0\n", + "26488 0\n", + "26489 1\n", + "26490 0\n", + "26491 0\n", + "26492 0\n", + "26493 0\n", + "26494 0\n", + "26495 0\n", + "26496 0\n", + "26497 1\n", + "26498 0\n", + "26499 0\n", + "26500 0\n", + "26501 1\n", + "26502 0\n", + "26503 0\n", + "26504 0\n", + "26505 0\n", + "26506 0\n", + "26507 0\n", + "26508 0\n", + "26509 0\n", + "26510 0\n", + "26511 0\n", + "26512 0\n", + "26513 1\n", + "26514 0\n", + "26515 0\n", + "26516 0\n", + "26517 0\n", + "26518 0\n", + "26519 0\n", + "26520 0\n", + "26521 0\n", + "26522 0\n", + "26523 0\n", + "26524 0\n", + "26525 0\n", + "26526 0\n", + "26527 0\n", + "26528 0\n", + "26529 0\n", + "26530 0\n", + "26531 0\n", + "26532 0\n", + "26533 0\n", + "26534 0\n", + "26535 0\n", + "26536 0\n", + "26537 0\n", + "26538 0\n", + "26539 1\n", + "26540 0\n", + "26541 0\n", + "26542 0\n", + "26543 0\n", + "26544 0\n", + "26545 0\n", + "26546 0\n", + "26547 0\n", + "26548 0\n", + "26549 0\n", + "26550 0\n", + "26551 0\n", + "26552 0\n", + "26553 0\n", + "26554 0\n", + "26555 0\n", + "26556 0\n", + "26557 1\n", + "26558 0\n", + "26559 0\n", + "26560 0\n", + "26561 1\n", + "26562 0\n", + "26563 0\n", + "26564 0\n", + "26565 0\n", + "26566 0\n", + "26567 0\n", + "26568 0\n", + "26569 0\n", + "26570 0\n", + "26571 0\n", + "26572 0\n", + "26573 1\n", + "26574 0\n", + "26575 0\n", + "26576 0\n", + "26577 0\n", + "26578 0\n", + "26579 0\n", + "26580 0\n", + "26581 0\n", + "26582 0\n", + "26583 0\n", + "26584 0\n", + "26585 0\n", + "26586 0\n", + "26587 0\n", + "26588 0\n", + "26589 0\n", + "26590 0\n", + "26591 1\n", + "26592 0\n", + "26593 0\n", + "26594 0\n", + "26595 0\n", + "26596 0\n", + "26597 1\n", + "26598 0\n", + "26599 0\n", + "26600 0\n", + "26601 0\n", + "26602 0\n", + "26603 0\n", + "26604 0\n", + "26605 0\n", + "26606 0\n", + "26607 0\n", + "26608 0\n", + "26609 0\n", + "26610 0\n", + "26611 0\n", + "26612 0\n", + "26613 0\n", + "26614 0\n", + "26615 0\n", + "26616 0\n", + "26617 0\n", + "26618 0\n", + "26619 0\n", + "26620 0\n", + "26621 0\n", + "26622 0\n", + "26623 0\n", + "26624 0\n", + "26625 0\n", + "26626 0\n", + "26627 1\n", + "26628 0\n", + "26629 0\n", + "26630 0\n", + "26631 0\n", + "26632 0\n", + "26633 1\n", + "26634 0\n", + "26635 0\n", + "26636 0\n", + "26637 0\n", + "26638 0\n", + "26639 0\n", + "26640 0\n", + "26641 1\n", + "26642 0\n", + "26643 0\n", + "26644 0\n", + "26645 0\n", + "26646 0\n", + "26647 1\n", + "26648 0\n", + "26649 0\n", + "26650 0\n", + "26651 0\n", + "26652 0\n", + "26653 0\n", + "26654 0\n", + "26655 0\n", + "26656 0\n", + "26657 0\n", + "26658 0\n", + "26659 0\n", + "26660 0\n", + "26661 0\n", + "26662 0\n", + "26663 0\n", + "26664 0\n", + "26665 0\n", + "26666 0\n", + "26667 0\n", + "26668 0\n", + "26669 1\n", + "26670 0\n", + "26671 0\n", + "26672 0\n", + "26673 0\n", + "26674 0\n", + "26675 0\n", + "26676 0\n", + "26677 0\n", + "26678 0\n", + "26679 0\n", + "26680 0\n", + "26681 1\n", + "26682 0\n", + "26683 1\n", + "26684 0\n", + "26685 0\n", + "26686 0\n", + "26687 1\n", + "26688 0\n", + "26689 0\n", + "26690 0\n", + "26691 0\n", + "26692 0\n", + "26693 1\n", + "26694 0\n", + "26695 0\n", + "26696 0\n", + "26697 0\n", + "26698 0\n", + "26699 1\n", + "26700 0\n", + "26701 1\n", + "26702 0\n", + "26703 0\n", + "26704 0\n", + "26705 0\n", + "26706 0\n", + "26707 0\n", + "26708 0\n", + "26709 0\n", + "26710 0\n", + "26711 1\n", + "26712 0\n", + "26713 1\n", + "26714 0\n", + "26715 0\n", + "26716 0\n", + "26717 1\n", + "26718 0\n", + "26719 0\n", + "26720 0\n", + "26721 0\n", + "26722 0\n", + "26723 1\n", + "26724 0\n", + "26725 0\n", + "26726 0\n", + "26727 0\n", + "26728 0\n", + "26729 1\n", + "26730 0\n", + "26731 1\n", + "26732 0\n", + "26733 0\n", + "26734 0\n", + "26735 0\n", + "26736 0\n", + "26737 1\n", + "26738 0\n", + "26739 0\n", + "26740 0\n", + "26741 0\n", + "26742 0\n", + "26743 0\n", + "26744 0\n", + "26745 0\n", + "26746 0\n", + "26747 0\n", + "26748 0\n", + "26749 0\n", + "26750 0\n", + "26751 0\n", + "26752 0\n", + "26753 0\n", + "26754 0\n", + "26755 0\n", + "26756 0\n", + "26757 0\n", + "26758 0\n", + "26759 1\n", + "26760 0\n", + "26761 0\n", + "26762 0\n", + "26763 0\n", + "26764 0\n", + "26765 0\n", + "26766 0\n", + "26767 0\n", + "26768 0\n", + "26769 0\n", + "26770 0\n", + "26771 0\n", + "26772 0\n", + "26773 0\n", + "26774 0\n", + "26775 0\n", + "26776 0\n", + "26777 1\n", + "26778 0\n", + "26779 0\n", + "26780 0\n", + "26781 0\n", + "26782 0\n", + "26783 1\n", + "26784 0\n", + "26785 0\n", + "26786 0\n", + "26787 0\n", + "26788 0\n", + "26789 0\n", + "26790 0\n", + "26791 0\n", + "26792 0\n", + "26793 0\n", + "26794 0\n", + "26795 0\n", + "26796 0\n", + "26797 0\n", + "26798 0\n", + "26799 0\n", + "26800 0\n", + "26801 1\n", + "26802 0\n", + "26803 0\n", + "26804 0\n", + "26805 0\n", + "26806 0\n", + "26807 0\n", + "26808 0\n", + "26809 0\n", + "26810 0\n", + "26811 0\n", + "26812 0\n", + "26813 1\n", + "26814 0\n", + "26815 0\n", + "26816 0\n", + "26817 0\n", + "26818 0\n", + "26819 0\n", + "26820 0\n", + "26821 1\n", + "26822 0\n", + "26823 0\n", + "26824 0\n", + "26825 0\n", + "26826 0\n", + "26827 0\n", + "26828 0\n", + "26829 0\n", + "26830 0\n", + "26831 0\n", + "26832 0\n", + "26833 1\n", + "26834 0\n", + "26835 0\n", + "26836 0\n", + "26837 0\n", + "26838 0\n", + "26839 1\n", + "26840 0\n", + "26841 0\n", + "26842 0\n", + "26843 0\n", + "26844 0\n", + "26845 0\n", + "26846 0\n", + "26847 0\n", + "26848 0\n", + "26849 1\n", + "26850 0\n", + "26851 0\n", + "26852 0\n", + "26853 0\n", + "26854 0\n", + "26855 0\n", + "26856 0\n", + "26857 0\n", + "26858 0\n", + "26859 0\n", + "26860 0\n", + "26861 1\n", + "26862 0\n", + "26863 1\n", + "26864 0\n", + "26865 0\n", + "26866 0\n", + "26867 0\n", + "26868 0\n", + "26869 0\n", + "26870 0\n", + "26871 0\n", + "26872 0\n", + "26873 0\n", + "26874 0\n", + "26875 0\n", + "26876 0\n", + "26877 0\n", + "26878 0\n", + "26879 1\n", + "26880 0\n", + "26881 1\n", + "26882 0\n", + "26883 0\n", + "26884 0\n", + "26885 0\n", + "26886 0\n", + "26887 0\n", + "26888 0\n", + "26889 0\n", + "26890 0\n", + "26891 1\n", + "26892 0\n", + "26893 1\n", + "26894 0\n", + "26895 0\n", + "26896 0\n", + "26897 0\n", + "26898 0\n", + "26899 0\n", + "26900 0\n", + "26901 0\n", + "26902 0\n", + "26903 1\n", + "26904 0\n", + "26905 0\n", + "26906 0\n", + "26907 0\n", + "26908 0\n", + "26909 0\n", + "26910 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "26911 0\n", + "26912 0\n", + "26913 0\n", + "26914 0\n", + "26915 0\n", + "26916 0\n", + "26917 0\n", + "26918 0\n", + "26919 0\n", + "26920 0\n", + "26921 1\n", + "26922 0\n", + "26923 0\n", + "26924 0\n", + "26925 0\n", + "26926 0\n", + "26927 1\n", + "26928 0\n", + "26929 0\n", + "26930 0\n", + "26931 0\n", + "26932 0\n", + "26933 0\n", + "26934 0\n", + "26935 0\n", + "26936 0\n", + "26937 0\n", + "26938 0\n", + "26939 0\n", + "26940 0\n", + "26941 0\n", + "26942 0\n", + "26943 0\n", + "26944 0\n", + "26945 0\n", + "26946 0\n", + "26947 1\n", + "26948 0\n", + "26949 0\n", + "26950 0\n", + "26951 1\n", + "26952 0\n", + "26953 1\n", + "26954 0\n", + "26955 0\n", + "26956 0\n", + "26957 0\n", + "26958 0\n", + "26959 1\n", + "26960 0\n", + "26961 0\n", + "26962 0\n", + "26963 0\n", + "26964 0\n", + "26965 0\n", + "26966 0\n", + "26967 0\n", + "26968 0\n", + "26969 0\n", + "26970 0\n", + "26971 0\n", + "26972 0\n", + "26973 0\n", + "26974 0\n", + "26975 0\n", + "26976 0\n", + "26977 0\n", + "26978 0\n", + "26979 0\n", + "26980 0\n", + "26981 1\n", + "26982 0\n", + "26983 0\n", + "26984 0\n", + "26985 0\n", + "26986 0\n", + "26987 1\n", + "26988 0\n", + "26989 0\n", + "26990 0\n", + "26991 0\n", + "26992 0\n", + "26993 1\n", + "26994 0\n", + "26995 0\n", + "26996 0\n", + "26997 0\n", + "26998 0\n", + "26999 0\n", + "27000 0\n", + "27001 0\n", + "27002 0\n", + "27003 0\n", + "27004 0\n", + "27005 0\n", + "27006 0\n", + "27007 0\n", + "27008 0\n", + "27009 0\n", + "27010 0\n", + "27011 1\n", + "27012 0\n", + "27013 0\n", + "27014 0\n", + "27015 0\n", + "27016 0\n", + "27017 1\n", + "27018 0\n", + "27019 0\n", + "27020 0\n", + "27021 0\n", + "27022 0\n", + "27023 0\n", + "27024 0\n", + "27025 0\n", + "27026 0\n", + "27027 0\n", + "27028 0\n", + "27029 0\n", + "27030 0\n", + "27031 1\n", + "27032 0\n", + "27033 0\n", + "27034 0\n", + "27035 0\n", + "27036 0\n", + "27037 0\n", + "27038 0\n", + "27039 0\n", + "27040 0\n", + "27041 0\n", + "27042 0\n", + "27043 1\n", + "27044 0\n", + "27045 0\n", + "27046 0\n", + "27047 0\n", + "27048 0\n", + "27049 0\n", + "27050 0\n", + "27051 0\n", + "27052 0\n", + "27053 0\n", + "27054 0\n", + "27055 0\n", + "27056 0\n", + "27057 0\n", + "27058 0\n", + "27059 1\n", + "27060 0\n", + "27061 1\n", + "27062 0\n", + "27063 0\n", + "27064 0\n", + "27065 0\n", + "27066 0\n", + "27067 1\n", + "27068 0\n", + "27069 0\n", + "27070 0\n", + "27071 0\n", + "27072 0\n", + "27073 1\n", + "27074 0\n", + "27075 0\n", + "27076 0\n", + "27077 1\n", + "27078 0\n", + "27079 0\n", + "27080 0\n", + "27081 0\n", + "27082 0\n", + "27083 0\n", + "27084 0\n", + "27085 0\n", + "27086 0\n", + "27087 0\n", + "27088 0\n", + "27089 0\n", + "27090 0\n", + "27091 1\n", + "27092 0\n", + "27093 0\n", + "27094 0\n", + "27095 0\n", + "27096 0\n", + "27097 0\n", + "27098 0\n", + "27099 0\n", + "27100 0\n", + "27101 0\n", + "27102 0\n", + "27103 1\n", + "27104 0\n", + "27105 0\n", + "27106 0\n", + "27107 1\n", + "27108 0\n", + "27109 1\n", + "27110 0\n", + "27111 0\n", + "27112 0\n", + "27113 0\n", + "27114 0\n", + "27115 0\n", + "27116 0\n", + "27117 0\n", + "27118 0\n", + "27119 0\n", + "27120 0\n", + "27121 0\n", + "27122 0\n", + "27123 0\n", + "27124 0\n", + "27125 0\n", + "27126 0\n", + "27127 1\n", + "27128 0\n", + "27129 0\n", + "27130 0\n", + "27131 0\n", + "27132 0\n", + "27133 0\n", + "27134 0\n", + "27135 0\n", + "27136 0\n", + "27137 0\n", + "27138 0\n", + "27139 0\n", + "27140 0\n", + "27141 0\n", + "27142 0\n", + "27143 1\n", + "27144 0\n", + "27145 0\n", + "27146 0\n", + "27147 0\n", + "27148 0\n", + "27149 0\n", + "27150 0\n", + "27151 0\n", + "27152 0\n", + "27153 0\n", + "27154 0\n", + "27155 0\n", + "27156 0\n", + "27157 0\n", + "27158 0\n", + "27159 0\n", + "27160 0\n", + "27161 0\n", + "27162 0\n", + "27163 0\n", + "27164 0\n", + "27165 0\n", + "27166 0\n", + "27167 0\n", + "27168 0\n", + "27169 0\n", + "27170 0\n", + "27171 0\n", + "27172 0\n", + "27173 0\n", + "27174 0\n", + "27175 0\n", + "27176 0\n", + "27177 0\n", + "27178 0\n", + "27179 1\n", + "27180 0\n", + "27181 0\n", + "27182 0\n", + "27183 0\n", + "27184 0\n", + "27185 0\n", + "27186 0\n", + "27187 0\n", + "27188 0\n", + "27189 0\n", + "27190 0\n", + "27191 1\n", + "27192 0\n", + "27193 0\n", + "27194 0\n", + "27195 0\n", + "27196 0\n", + "27197 1\n", + "27198 0\n", + "27199 0\n", + "27200 0\n", + "27201 0\n", + "27202 0\n", + "27203 0\n", + "27204 0\n", + "27205 0\n", + "27206 0\n", + "27207 0\n", + "27208 0\n", + "27209 0\n", + "27210 0\n", + "27211 1\n", + "27212 0\n", + "27213 0\n", + "27214 0\n", + "27215 0\n", + "27216 0\n", + "27217 0\n", + "27218 0\n", + "27219 0\n", + "27220 0\n", + "27221 0\n", + "27222 0\n", + "27223 0\n", + "27224 0\n", + "27225 0\n", + "27226 0\n", + "27227 0\n", + "27228 0\n", + "27229 0\n", + "27230 0\n", + "27231 0\n", + "27232 0\n", + "27233 0\n", + "27234 0\n", + "27235 0\n", + "27236 0\n", + "27237 0\n", + "27238 0\n", + "27239 1\n", + "27240 0\n", + "27241 1\n", + "27242 0\n", + "27243 0\n", + "27244 0\n", + "27245 0\n", + "27246 0\n", + "27247 0\n", + "27248 0\n", + "27249 0\n", + "27250 0\n", + "27251 0\n", + "27252 0\n", + "27253 1\n", + "27254 0\n", + "27255 0\n", + "27256 0\n", + "27257 0\n", + "27258 0\n", + "27259 1\n", + "27260 0\n", + "27261 0\n", + "27262 0\n", + "27263 0\n", + "27264 0\n", + "27265 0\n", + "27266 0\n", + "27267 0\n", + "27268 0\n", + "27269 0\n", + "27270 0\n", + "27271 1\n", + "27272 0\n", + "27273 0\n", + "27274 0\n", + "27275 0\n", + "27276 0\n", + "27277 1\n", + "27278 0\n", + "27279 0\n", + "27280 0\n", + "27281 1\n", + "27282 0\n", + "27283 1\n", + "27284 0\n", + "27285 0\n", + "27286 0\n", + "27287 0\n", + "27288 0\n", + "27289 0\n", + "27290 0\n", + "27291 0\n", + "27292 0\n", + "27293 0\n", + "27294 0\n", + "27295 0\n", + "27296 0\n", + "27297 0\n", + "27298 0\n", + "27299 1\n", + "27300 0\n", + "27301 0\n", + "27302 0\n", + "27303 0\n", + "27304 0\n", + "27305 0\n", + "27306 0\n", + "27307 0\n", + "27308 0\n", + "27309 0\n", + "27310 0\n", + "27311 0\n", + "27312 0\n", + "27313 0\n", + "27314 0\n", + "27315 0\n", + "27316 0\n", + "27317 0\n", + "27318 0\n", + "27319 0\n", + "27320 0\n", + "27321 0\n", + "27322 0\n", + "27323 0\n", + "27324 0\n", + "27325 0\n", + "27326 0\n", + "27327 0\n", + "27328 0\n", + "27329 1\n", + "27330 0\n", + "27331 0\n", + "27332 0\n", + "27333 0\n", + "27334 0\n", + "27335 0\n", + "27336 0\n", + "27337 1\n", + "27338 0\n", + "27339 0\n", + "27340 0\n", + "27341 0\n", + "27342 0\n", + "27343 0\n", + "27344 0\n", + "27345 0\n", + "27346 0\n", + "27347 0\n", + "27348 0\n", + "27349 0\n", + "27350 0\n", + "27351 0\n", + "27352 0\n", + "27353 0\n", + "27354 0\n", + "27355 0\n", + "27356 0\n", + "27357 0\n", + "27358 0\n", + "27359 0\n", + "27360 0\n", + "27361 1\n", + "27362 0\n", + "27363 0\n", + "27364 0\n", + "27365 0\n", + "27366 0\n", + "27367 1\n", + "27368 0\n", + "27369 0\n", + "27370 0\n", + "27371 0\n", + "27372 0\n", + "27373 0\n", + "27374 0\n", + "27375 0\n", + "27376 0\n", + "27377 0\n", + "27378 0\n", + "27379 0\n", + "27380 0\n", + "27381 0\n", + "27382 0\n", + "27383 0\n", + "27384 0\n", + "27385 0\n", + "27386 0\n", + "27387 0\n", + "27388 0\n", + "27389 0\n", + "27390 0\n", + "27391 0\n", + "27392 0\n", + "27393 0\n", + "27394 0\n", + "27395 0\n", + "27396 0\n", + "27397 1\n", + "27398 0\n", + "27399 0\n", + "27400 0\n", + "27401 0\n", + "27402 0\n", + "27403 0\n", + "27404 0\n", + "27405 0\n", + "27406 0\n", + "27407 1\n", + "27408 0\n", + "27409 1\n", + "27410 0\n", + "27411 0\n", + "27412 0\n", + "27413 0\n", + "27414 0\n", + "27415 0\n", + "27416 0\n", + "27417 0\n", + "27418 0\n", + "27419 0\n", + "27420 0\n", + "27421 0\n", + "27422 0\n", + "27423 0\n", + "27424 0\n", + "27425 0\n", + "27426 0\n", + "27427 1\n", + "27428 0\n", + "27429 0\n", + "27430 0\n", + "27431 1\n", + "27432 0\n", + "27433 0\n", + "27434 0\n", + "27435 0\n", + "27436 0\n", + "27437 1\n", + "27438 0\n", + "27439 0\n", + "27440 0\n", + "27441 0\n", + "27442 0\n", + "27443 0\n", + "27444 0\n", + "27445 0\n", + "27446 0\n", + "27447 0\n", + "27448 0\n", + "27449 1\n", + "27450 0\n", + "27451 0\n", + "27452 0\n", + "27453 0\n", + "27454 0\n", + "27455 0\n", + "27456 0\n", + "27457 1\n", + "27458 0\n", + "27459 0\n", + "27460 0\n", + "27461 0\n", + "27462 0\n", + "27463 0\n", + "27464 0\n", + "27465 0\n", + "27466 0\n", + "27467 0\n", + "27468 0\n", + "27469 0\n", + "27470 0\n", + "27471 0\n", + "27472 0\n", + "27473 0\n", + "27474 0\n", + "27475 0\n", + "27476 0\n", + "27477 0\n", + "27478 0\n", + "27479 1\n", + "27480 0\n", + "27481 1\n", + "27482 0\n", + "27483 0\n", + "27484 0\n", + "27485 0\n", + "27486 0\n", + "27487 1\n", + "27488 0\n", + "27489 0\n", + "27490 0\n", + "27491 0\n", + "27492 0\n", + "27493 0\n", + "27494 0\n", + "27495 0\n", + "27496 0\n", + "27497 0\n", + "27498 0\n", + "27499 0\n", + "27500 0\n", + "27501 0\n", + "27502 0\n", + "27503 0\n", + "27504 0\n", + "27505 0\n", + "27506 0\n", + "27507 0\n", + "27508 0\n", + "27509 1\n", + "27510 0\n", + "27511 0\n", + "27512 0\n", + "27513 0\n", + "27514 0\n", + "27515 0\n", + "27516 0\n", + "27517 0\n", + "27518 0\n", + "27519 0\n", + "27520 0\n", + "27521 0\n", + "27522 0\n", + "27523 0\n", + "27524 0\n", + "27525 0\n", + "27526 0\n", + "27527 1\n", + "27528 0\n", + "27529 1\n", + "27530 0\n", + "27531 0\n", + "27532 0\n", + "27533 0\n", + "27534 0\n", + "27535 0\n", + "27536 0\n", + "27537 0\n", + "27538 0\n", + "27539 1\n", + "27540 0\n", + "27541 1\n", + "27542 0\n", + "27543 0\n", + "27544 0\n", + "27545 0\n", + "27546 0\n", + "27547 0\n", + "27548 0\n", + "27549 0\n", + "27550 0\n", + "27551 1\n", + "27552 0\n", + "27553 0\n", + "27554 0\n", + "27555 0\n", + "27556 0\n", + "27557 0\n", + "27558 0\n", + "27559 0\n", + "27560 0\n", + "27561 0\n", + "27562 0\n", + "27563 0\n", + "27564 0\n", + "27565 0\n", + "27566 0\n", + "27567 0\n", + "27568 0\n", + "27569 0\n", + "27570 0\n", + "27571 0\n", + "27572 0\n", + "27573 0\n", + "27574 0\n", + "27575 0\n", + "27576 0\n", + "27577 0\n", + "27578 0\n", + "27579 0\n", + "27580 0\n", + "27581 1\n", + "27582 0\n", + "27583 1\n", + "27584 0\n", + "27585 0\n", + "27586 0\n", + "27587 0\n", + "27588 0\n", + "27589 0\n", + "27590 0\n", + "27591 0\n", + "27592 0\n", + "27593 0\n", + "27594 0\n", + "27595 0\n", + "27596 0\n", + "27597 0\n", + "27598 0\n", + "27599 0\n", + "27600 0\n", + "27601 0\n", + "27602 0\n", + "27603 0\n", + "27604 0\n", + "27605 0\n", + "27606 0\n", + "27607 0\n", + "27608 0\n", + "27609 0\n", + "27610 0\n", + "27611 1\n", + "27612 0\n", + "27613 0\n", + "27614 0\n", + "27615 0\n", + "27616 0\n", + "27617 1\n", + "27618 0\n", + "27619 0\n", + "27620 0\n", + "27621 0\n", + "27622 0\n", + "27623 0\n", + "27624 0\n", + "27625 0\n", + "27626 0\n", + "27627 0\n", + "27628 0\n", + "27629 0\n", + "27630 0\n", + "27631 1\n", + "27632 0\n", + "27633 0\n", + "27634 0\n", + "27635 0\n", + "27636 0\n", + "27637 0\n", + "27638 0\n", + "27639 0\n", + "27640 0\n", + "27641 0\n", + "27642 0\n", + "27643 0\n", + "27644 0\n", + "27645 0\n", + "27646 0\n", + "27647 1\n", + "27648 0\n", + "27649 0\n", + "27650 0\n", + "27651 0\n", + "27652 0\n", + "27653 1\n", + "27654 0\n", + "27655 0\n", + "27656 0\n", + "27657 0\n", + "27658 0\n", + "27659 0\n", + "27660 0\n", + "27661 0\n", + "27662 0\n", + "27663 0\n", + "27664 0\n", + "27665 0\n", + "27666 0\n", + "27667 0\n", + "27668 0\n", + "27669 0\n", + "27670 0\n", + "27671 0\n", + "27672 0\n", + "27673 1\n", + "27674 0\n", + "27675 0\n", + "27676 0\n", + "27677 0\n", + "27678 0\n", + "27679 0\n", + "27680 0\n", + "27681 0\n", + "27682 0\n", + "27683 0\n", + "27684 0\n", + "27685 0\n", + "27686 0\n", + "27687 0\n", + "27688 0\n", + "27689 1\n", + "27690 0\n", + "27691 1\n", + "27692 0\n", + "27693 0\n", + "27694 0\n", + "27695 0\n", + "27696 0\n", + "27697 1\n", + "27698 0\n", + "27699 0\n", + "27700 0\n", + "27701 1\n", + "27702 0\n", + "27703 0\n", + "27704 0\n", + "27705 0\n", + "27706 0\n", + "27707 0\n", + "27708 0\n", + "27709 0\n", + "27710 0\n", + "27711 0\n", + "27712 0\n", + "27713 0\n", + "27714 0\n", + "27715 0\n", + "27716 0\n", + "27717 0\n", + "27718 0\n", + "27719 0\n", + "27720 0\n", + "27721 0\n", + "27722 0\n", + "27723 0\n", + "27724 0\n", + "27725 0\n", + "27726 0\n", + "27727 0\n", + "27728 0\n", + "27729 0\n", + "27730 0\n", + "27731 0\n", + "27732 0\n", + "27733 1\n", + "27734 0\n", + "27735 0\n", + "27736 0\n", + "27737 1\n", + "27738 0\n", + "27739 1\n", + "27740 0\n", + "27741 0\n", + "27742 0\n", + "27743 1\n", + "27744 0\n", + "27745 0\n", + "27746 0\n", + "27747 0\n", + "27748 0\n", + "27749 1\n", + "27750 0\n", + "27751 1\n", + "27752 0\n", + "27753 0\n", + "27754 0\n", + "27755 0\n", + "27756 0\n", + "27757 0\n", + "27758 0\n", + "27759 0\n", + "27760 0\n", + "27761 0\n", + "27762 0\n", + "27763 1\n", + "27764 0\n", + "27765 0\n", + "27766 0\n", + "27767 1\n", + "27768 0\n", + "27769 0\n", + "27770 0\n", + "27771 0\n", + "27772 0\n", + "27773 1\n", + "27774 0\n", + "27775 0\n", + "27776 0\n", + "27777 0\n", + "27778 0\n", + "27779 1\n", + "27780 0\n", + "27781 0\n", + "27782 0\n", + "27783 0\n", + "27784 0\n", + "27785 0\n", + "27786 0\n", + "27787 0\n", + "27788 0\n", + "27789 0\n", + "27790 0\n", + "27791 1\n", + "27792 0\n", + "27793 1\n", + "27794 0\n", + "27795 0\n", + "27796 0\n", + "27797 0\n", + "27798 0\n", + "27799 1\n", + "27800 0\n", + "27801 0\n", + "27802 0\n", + "27803 1\n", + "27804 0\n", + "27805 0\n", + "27806 0\n", + "27807 0\n", + "27808 0\n", + "27809 1\n", + "27810 0\n", + "27811 0\n", + "27812 0\n", + "27813 0\n", + "27814 0\n", + "27815 0\n", + "27816 0\n", + "27817 1\n", + "27818 0\n", + "27819 0\n", + "27820 0\n", + "27821 0\n", + "27822 0\n", + "27823 1\n", + "27824 0\n", + "27825 0\n", + "27826 0\n", + "27827 1\n", + "27828 0\n", + "27829 0\n", + "27830 0\n", + "27831 0\n", + "27832 0\n", + "27833 0\n", + "27834 0\n", + "27835 0\n", + "27836 0\n", + "27837 0\n", + "27838 0\n", + "27839 0\n", + "27840 0\n", + "27841 0\n", + "27842 0\n", + "27843 0\n", + "27844 0\n", + "27845 0\n", + "27846 0\n", + "27847 1\n", + "27848 0\n", + "27849 0\n", + "27850 0\n", + "27851 1\n", + "27852 0\n", + "27853 0\n", + "27854 0\n", + "27855 0\n", + "27856 0\n", + "27857 0\n", + "27858 0\n", + "27859 0\n", + "27860 0\n", + "27861 0\n", + "27862 0\n", + "27863 0\n", + "27864 0\n", + "27865 0\n", + "27866 0\n", + "27867 0\n", + "27868 0\n", + "27869 0\n", + "27870 0\n", + "27871 0\n", + "27872 0\n", + "27873 0\n", + "27874 0\n", + "27875 0\n", + "27876 0\n", + "27877 0\n", + "27878 0\n", + "27879 0\n", + "27880 0\n", + "27881 0\n", + "27882 0\n", + "27883 1\n", + "27884 0\n", + "27885 0\n", + "27886 0\n", + "27887 0\n", + "27888 0\n", + "27889 0\n", + "27890 0\n", + "27891 0\n", + "27892 0\n", + "27893 1\n", + "27894 0\n", + "27895 0\n", + "27896 0\n", + "27897 0\n", + "27898 0\n", + "27899 0\n", + "27900 0\n", + "27901 1\n", + "27902 0\n", + "27903 0\n", + "27904 0\n", + "27905 0\n", + "27906 0\n", + "27907 0\n", + "27908 0\n", + "27909 0\n", + "27910 0\n", + "27911 0\n", + "27912 0\n", + "27913 0\n", + "27914 0\n", + "27915 0\n", + "27916 0\n", + "27917 1\n", + "27918 0\n", + "27919 1\n", + "27920 0\n", + "27921 0\n", + "27922 0\n", + "27923 0\n", + "27924 0\n", + "27925 0\n", + "27926 0\n", + "27927 0\n", + "27928 0\n", + "27929 0\n", + "27930 0\n", + "27931 0\n", + "27932 0\n", + "27933 0\n", + "27934 0\n", + "27935 0\n", + "27936 0\n", + "27937 0\n", + "27938 0\n", + "27939 0\n", + "27940 0\n", + "27941 1\n", + "27942 0\n", + "27943 1\n", + "27944 0\n", + "27945 0\n", + "27946 0\n", + "27947 1\n", + "27948 0\n", + "27949 0\n", + "27950 0\n", + "27951 0\n", + "27952 0\n", + "27953 1\n", + "27954 0\n", + "27955 0\n", + "27956 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "27957 0\n", + "27958 0\n", + "27959 0\n", + "27960 0\n", + "27961 1\n", + "27962 0\n", + "27963 0\n", + "27964 0\n", + "27965 0\n", + "27966 0\n", + "27967 1\n", + "27968 0\n", + "27969 0\n", + "27970 0\n", + "27971 0\n", + "27972 0\n", + "27973 0\n", + "27974 0\n", + "27975 0\n", + "27976 0\n", + "27977 0\n", + "27978 0\n", + "27979 0\n", + "27980 0\n", + "27981 0\n", + "27982 0\n", + "27983 1\n", + "27984 0\n", + "27985 0\n", + "27986 0\n", + "27987 0\n", + "27988 0\n", + "27989 0\n", + "27990 0\n", + "27991 0\n", + "27992 0\n", + "27993 0\n", + "27994 0\n", + "27995 0\n", + "27996 0\n", + "27997 1\n", + "27998 0\n", + "27999 0\n", + "28000 0\n", + "28001 1\n", + "28002 0\n", + "28003 0\n", + "28004 0\n", + "28005 0\n", + "28006 0\n", + "28007 0\n", + "28008 0\n", + "28009 0\n", + "28010 0\n", + "28011 0\n", + "28012 0\n", + "28013 0\n", + "28014 0\n", + "28015 0\n", + "28016 0\n", + "28017 0\n", + "28018 0\n", + "28019 1\n", + "28020 0\n", + "28021 0\n", + "28022 0\n", + "28023 0\n", + "28024 0\n", + "28025 0\n", + "28026 0\n", + "28027 1\n", + "28028 0\n", + "28029 0\n", + "28030 0\n", + "28031 1\n", + "28032 0\n", + "28033 0\n", + "28034 0\n", + "28035 0\n", + "28036 0\n", + "28037 0\n", + "28038 0\n", + "28039 0\n", + "28040 0\n", + "28041 0\n", + "28042 0\n", + "28043 0\n", + "28044 0\n", + "28045 0\n", + "28046 0\n", + "28047 0\n", + "28048 0\n", + "28049 0\n", + "28050 0\n", + "28051 1\n", + "28052 0\n", + "28053 0\n", + "28054 0\n", + "28055 0\n", + "28056 0\n", + "28057 1\n", + "28058 0\n", + "28059 0\n", + "28060 0\n", + "28061 0\n", + "28062 0\n", + "28063 0\n", + "28064 0\n", + "28065 0\n", + "28066 0\n", + "28067 0\n", + "28068 0\n", + "28069 1\n", + "28070 0\n", + "28071 0\n", + "28072 0\n", + "28073 0\n", + "28074 0\n", + "28075 0\n", + "28076 0\n", + "28077 0\n", + "28078 0\n", + "28079 0\n", + "28080 0\n", + "28081 1\n", + "28082 0\n", + "28083 0\n", + "28084 0\n", + "28085 0\n", + "28086 0\n", + "28087 1\n", + "28088 0\n", + "28089 0\n", + "28090 0\n", + "28091 0\n", + "28092 0\n", + "28093 0\n", + "28094 0\n", + "28095 0\n", + "28096 0\n", + "28097 1\n", + "28098 0\n", + "28099 1\n", + "28100 0\n", + "28101 0\n", + "28102 0\n", + "28103 0\n", + "28104 0\n", + "28105 0\n", + "28106 0\n", + "28107 0\n", + "28108 0\n", + "28109 1\n", + "28110 0\n", + "28111 1\n", + "28112 0\n", + "28113 0\n", + "28114 0\n", + "28115 0\n", + "28116 0\n", + "28117 0\n", + "28118 0\n", + "28119 0\n", + "28120 0\n", + "28121 0\n", + "28122 0\n", + "28123 1\n", + "28124 0\n", + "28125 0\n", + "28126 0\n", + "28127 0\n", + "28128 0\n", + "28129 0\n", + "28130 0\n", + "28131 0\n", + "28132 0\n", + "28133 0\n", + "28134 0\n", + "28135 0\n", + "28136 0\n", + "28137 0\n", + "28138 0\n", + "28139 0\n", + "28140 0\n", + "28141 0\n", + "28142 0\n", + "28143 0\n", + "28144 0\n", + "28145 0\n", + "28146 0\n", + "28147 0\n", + "28148 0\n", + "28149 0\n", + "28150 0\n", + "28151 1\n", + "28152 0\n", + "28153 0\n", + "28154 0\n", + "28155 0\n", + "28156 0\n", + "28157 0\n", + "28158 0\n", + "28159 0\n", + "28160 0\n", + "28161 0\n", + "28162 0\n", + "28163 1\n", + "28164 0\n", + "28165 0\n", + "28166 0\n", + "28167 0\n", + "28168 0\n", + "28169 0\n", + "28170 0\n", + "28171 0\n", + "28172 0\n", + "28173 0\n", + "28174 0\n", + "28175 0\n", + "28176 0\n", + "28177 0\n", + "28178 0\n", + "28179 0\n", + "28180 0\n", + "28181 1\n", + "28182 0\n", + "28183 1\n", + "28184 0\n", + "28185 0\n", + "28186 0\n", + "28187 0\n", + "28188 0\n", + "28189 0\n", + "28190 0\n", + "28191 0\n", + "28192 0\n", + "28193 0\n", + "28194 0\n", + "28195 0\n", + "28196 0\n", + "28197 0\n", + "28198 0\n", + "28199 0\n", + "28200 0\n", + "28201 1\n", + "28202 0\n", + "28203 0\n", + "28204 0\n", + "28205 0\n", + "28206 0\n", + "28207 0\n", + "28208 0\n", + "28209 0\n", + "28210 0\n", + "28211 1\n", + "28212 0\n", + "28213 0\n", + "28214 0\n", + "28215 0\n", + "28216 0\n", + "28217 0\n", + "28218 0\n", + "28219 1\n", + "28220 0\n", + "28221 0\n", + "28222 0\n", + "28223 0\n", + "28224 0\n", + "28225 0\n", + "28226 0\n", + "28227 0\n", + "28228 0\n", + "28229 1\n", + "28230 0\n", + "28231 0\n", + "28232 0\n", + "28233 0\n", + "28234 0\n", + "28235 0\n", + "28236 0\n", + "28237 0\n", + "28238 0\n", + "28239 0\n", + "28240 0\n", + "28241 0\n", + "28242 0\n", + "28243 0\n", + "28244 0\n", + "28245 0\n", + "28246 0\n", + "28247 0\n", + "28248 0\n", + "28249 0\n", + "28250 0\n", + "28251 0\n", + "28252 0\n", + "28253 0\n", + "28254 0\n", + "28255 0\n", + "28256 0\n", + "28257 0\n", + "28258 0\n", + "28259 0\n", + "28260 0\n", + "28261 0\n", + "28262 0\n", + "28263 0\n", + "28264 0\n", + "28265 0\n", + "28266 0\n", + "28267 0\n", + "28268 0\n", + "28269 0\n", + "28270 0\n", + "28271 0\n", + "28272 0\n", + "28273 0\n", + "28274 0\n", + "28275 0\n", + "28276 0\n", + "28277 1\n", + "28278 0\n", + "28279 1\n", + "28280 0\n", + "28281 0\n", + "28282 0\n", + "28283 1\n", + "28284 0\n", + "28285 0\n", + "28286 0\n", + "28287 0\n", + "28288 0\n", + "28289 1\n", + "28290 0\n", + "28291 0\n", + "28292 0\n", + "28293 0\n", + "28294 0\n", + "28295 0\n", + "28296 0\n", + "28297 1\n", + "28298 0\n", + "28299 0\n", + "28300 0\n", + "28301 0\n", + "28302 0\n", + "28303 0\n", + "28304 0\n", + "28305 0\n", + "28306 0\n", + "28307 1\n", + "28308 0\n", + "28309 1\n", + "28310 0\n", + "28311 0\n", + "28312 0\n", + "28313 0\n", + "28314 0\n", + "28315 0\n", + "28316 0\n", + "28317 0\n", + "28318 0\n", + "28319 1\n", + "28320 0\n", + "28321 0\n", + "28322 0\n", + "28323 0\n", + "28324 0\n", + "28325 0\n", + "28326 0\n", + "28327 0\n", + "28328 0\n", + "28329 0\n", + "28330 0\n", + "28331 0\n", + "28332 0\n", + "28333 0\n", + "28334 0\n", + "28335 0\n", + "28336 0\n", + "28337 0\n", + "28338 0\n", + "28339 0\n", + "28340 0\n", + "28341 0\n", + "28342 0\n", + "28343 0\n", + "28344 0\n", + "28345 0\n", + "28346 0\n", + "28347 0\n", + "28348 0\n", + "28349 1\n", + "28350 0\n", + "28351 1\n", + "28352 0\n", + "28353 0\n", + "28354 0\n", + "28355 0\n", + "28356 0\n", + "28357 0\n", + "28358 0\n", + "28359 0\n", + "28360 0\n", + "28361 0\n", + "28362 0\n", + "28363 0\n", + "28364 0\n", + "28365 0\n", + "28366 0\n", + "28367 0\n", + "28368 0\n", + "28369 0\n", + "28370 0\n", + "28371 0\n", + "28372 0\n", + "28373 0\n", + "28374 0\n", + "28375 0\n", + "28376 0\n", + "28377 0\n", + "28378 0\n", + "28379 0\n", + "28380 0\n", + "28381 0\n", + "28382 0\n", + "28383 0\n", + "28384 0\n", + "28385 0\n", + "28386 0\n", + "28387 1\n", + "28388 0\n", + "28389 0\n", + "28390 0\n", + "28391 0\n", + "28392 0\n", + "28393 1\n", + "28394 0\n", + "28395 0\n", + "28396 0\n", + "28397 0\n", + "28398 0\n", + "28399 0\n", + "28400 0\n", + "28401 0\n", + "28402 0\n", + "28403 1\n", + "28404 0\n", + "28405 0\n", + "28406 0\n", + "28407 0\n", + "28408 0\n", + "28409 1\n", + "28410 0\n", + "28411 1\n", + "28412 0\n", + "28413 0\n", + "28414 0\n", + "28415 0\n", + "28416 0\n", + "28417 0\n", + "28418 0\n", + "28419 0\n", + "28420 0\n", + "28421 0\n", + "28422 0\n", + "28423 0\n", + "28424 0\n", + "28425 0\n", + "28426 0\n", + "28427 0\n", + "28428 0\n", + "28429 1\n", + "28430 0\n", + "28431 0\n", + "28432 0\n", + "28433 1\n", + "28434 0\n", + "28435 0\n", + "28436 0\n", + "28437 0\n", + "28438 0\n", + "28439 1\n", + "28440 0\n", + "28441 0\n", + "28442 0\n", + "28443 0\n", + "28444 0\n", + "28445 0\n", + "28446 0\n", + "28447 1\n", + "28448 0\n", + "28449 0\n", + "28450 0\n", + "28451 0\n", + "28452 0\n", + "28453 0\n", + "28454 0\n", + "28455 0\n", + "28456 0\n", + "28457 0\n", + "28458 0\n", + "28459 0\n", + "28460 0\n", + "28461 0\n", + "28462 0\n", + "28463 1\n", + "28464 0\n", + "28465 0\n", + "28466 0\n", + "28467 0\n", + "28468 0\n", + "28469 0\n", + "28470 0\n", + "28471 0\n", + "28472 0\n", + "28473 0\n", + "28474 0\n", + "28475 0\n", + "28476 0\n", + "28477 1\n", + "28478 0\n", + "28479 0\n", + "28480 0\n", + "28481 0\n", + "28482 0\n", + "28483 0\n", + "28484 0\n", + "28485 0\n", + "28486 0\n", + "28487 0\n", + "28488 0\n", + "28489 0\n", + "28490 0\n", + "28491 0\n", + "28492 0\n", + "28493 1\n", + "28494 0\n", + "28495 0\n", + "28496 0\n", + "28497 0\n", + "28498 0\n", + "28499 1\n", + "28500 0\n", + "28501 0\n", + "28502 0\n", + "28503 0\n", + "28504 0\n", + "28505 0\n", + "28506 0\n", + "28507 0\n", + "28508 0\n", + "28509 0\n", + "28510 0\n", + "28511 0\n", + "28512 0\n", + "28513 1\n", + "28514 0\n", + "28515 0\n", + "28516 0\n", + "28517 1\n", + "28518 0\n", + "28519 0\n", + "28520 0\n", + "28521 0\n", + "28522 0\n", + "28523 0\n", + "28524 0\n", + "28525 0\n", + "28526 0\n", + "28527 0\n", + "28528 0\n", + "28529 0\n", + "28530 0\n", + "28531 0\n", + "28532 0\n", + "28533 0\n", + "28534 0\n", + "28535 0\n", + "28536 0\n", + "28537 1\n", + "28538 0\n", + "28539 0\n", + "28540 0\n", + "28541 1\n", + "28542 0\n", + "28543 0\n", + "28544 0\n", + "28545 0\n", + "28546 0\n", + "28547 1\n", + "28548 0\n", + "28549 1\n", + "28550 0\n", + "28551 0\n", + "28552 0\n", + "28553 0\n", + "28554 0\n", + "28555 0\n", + "28556 0\n", + "28557 0\n", + "28558 0\n", + "28559 1\n", + "28560 0\n", + "28561 0\n", + "28562 0\n", + "28563 0\n", + "28564 0\n", + "28565 0\n", + "28566 0\n", + "28567 0\n", + "28568 0\n", + "28569 0\n", + "28570 0\n", + "28571 1\n", + "28572 0\n", + "28573 1\n", + "28574 0\n", + "28575 0\n", + "28576 0\n", + "28577 0\n", + "28578 0\n", + "28579 1\n", + "28580 0\n", + "28581 0\n", + "28582 0\n", + "28583 0\n", + "28584 0\n", + "28585 0\n", + "28586 0\n", + "28587 0\n", + "28588 0\n", + "28589 0\n", + "28590 0\n", + "28591 1\n", + "28592 0\n", + "28593 0\n", + "28594 0\n", + "28595 0\n", + "28596 0\n", + "28597 1\n", + "28598 0\n", + "28599 0\n", + "28600 0\n", + "28601 0\n", + "28602 0\n", + "28603 1\n", + "28604 0\n", + "28605 0\n", + "28606 0\n", + "28607 1\n", + "28608 0\n", + "28609 0\n", + "28610 0\n", + "28611 0\n", + "28612 0\n", + "28613 0\n", + "28614 0\n", + "28615 0\n", + "28616 0\n", + "28617 0\n", + "28618 0\n", + "28619 1\n", + "28620 0\n", + "28621 1\n", + "28622 0\n", + "28623 0\n", + "28624 0\n", + "28625 0\n", + "28626 0\n", + "28627 1\n", + "28628 0\n", + "28629 0\n", + "28630 0\n", + "28631 1\n", + "28632 0\n", + "28633 0\n", + "28634 0\n", + "28635 0\n", + "28636 0\n", + "28637 0\n", + "28638 0\n", + "28639 0\n", + "28640 0\n", + "28641 0\n", + "28642 0\n", + "28643 1\n", + "28644 0\n", + "28645 0\n", + "28646 0\n", + "28647 0\n", + "28648 0\n", + "28649 1\n", + "28650 0\n", + "28651 0\n", + "28652 0\n", + "28653 0\n", + "28654 0\n", + "28655 0\n", + "28656 0\n", + "28657 1\n", + "28658 0\n", + "28659 0\n", + "28660 0\n", + "28661 1\n", + "28662 0\n", + "28663 1\n", + "28664 0\n", + "28665 0\n", + "28666 0\n", + "28667 0\n", + "28668 0\n", + "28669 1\n", + "28670 0\n", + "28671 0\n", + "28672 0\n", + "28673 0\n", + "28674 0\n", + "28675 0\n", + "28676 0\n", + "28677 0\n", + "28678 0\n", + "28679 0\n", + "28680 0\n", + "28681 0\n", + "28682 0\n", + "28683 0\n", + "28684 0\n", + "28685 0\n", + "28686 0\n", + "28687 1\n", + "28688 0\n", + "28689 0\n", + "28690 0\n", + "28691 0\n", + "28692 0\n", + "28693 0\n", + "28694 0\n", + "28695 0\n", + "28696 0\n", + "28697 1\n", + "28698 0\n", + "28699 0\n", + "28700 0\n", + "28701 0\n", + "28702 0\n", + "28703 1\n", + "28704 0\n", + "28705 0\n", + "28706 0\n", + "28707 0\n", + "28708 0\n", + "28709 0\n", + "28710 0\n", + "28711 1\n", + "28712 0\n", + "28713 0\n", + "28714 0\n", + "28715 0\n", + "28716 0\n", + "28717 0\n", + "28718 0\n", + "28719 0\n", + "28720 0\n", + "28721 0\n", + "28722 0\n", + "28723 1\n", + "28724 0\n", + "28725 0\n", + "28726 0\n", + "28727 0\n", + "28728 0\n", + "28729 1\n", + "28730 0\n", + "28731 0\n", + "28732 0\n", + "28733 0\n", + "28734 0\n", + "28735 0\n", + "28736 0\n", + "28737 0\n", + "28738 0\n", + "28739 0\n", + "28740 0\n", + "28741 0\n", + "28742 0\n", + "28743 0\n", + "28744 0\n", + "28745 0\n", + "28746 0\n", + "28747 0\n", + "28748 0\n", + "28749 0\n", + "28750 0\n", + "28751 1\n", + "28752 0\n", + "28753 1\n", + "28754 0\n", + "28755 0\n", + "28756 0\n", + "28757 0\n", + "28758 0\n", + "28759 1\n", + "28760 0\n", + "28761 0\n", + "28762 0\n", + "28763 0\n", + "28764 0\n", + "28765 0\n", + "28766 0\n", + "28767 0\n", + "28768 0\n", + "28769 0\n", + "28770 0\n", + "28771 1\n", + "28772 0\n", + "28773 0\n", + "28774 0\n", + "28775 0\n", + "28776 0\n", + "28777 0\n", + "28778 0\n", + "28779 0\n", + "28780 0\n", + "28781 0\n", + "28782 0\n", + "28783 0\n", + "28784 0\n", + "28785 0\n", + "28786 0\n", + "28787 0\n", + "28788 0\n", + "28789 1\n", + "28790 0\n", + "28791 0\n", + "28792 0\n", + "28793 1\n", + "28794 0\n", + "28795 0\n", + "28796 0\n", + "28797 0\n", + "28798 0\n", + "28799 0\n", + "28800 0\n", + "28801 0\n", + "28802 0\n", + "28803 0\n", + "28804 0\n", + "28805 0\n", + "28806 0\n", + "28807 1\n", + "28808 0\n", + "28809 0\n", + "28810 0\n", + "28811 0\n", + "28812 0\n", + "28813 1\n", + "28814 0\n", + "28815 0\n", + "28816 0\n", + "28817 1\n", + "28818 0\n", + "28819 0\n", + "28820 0\n", + "28821 0\n", + "28822 0\n", + "28823 0\n", + "28824 0\n", + "28825 0\n", + "28826 0\n", + "28827 0\n", + "28828 0\n", + "28829 0\n", + "28830 0\n", + "28831 0\n", + "28832 0\n", + "28833 0\n", + "28834 0\n", + "28835 0\n", + "28836 0\n", + "28837 1\n", + "28838 0\n", + "28839 0\n", + "28840 0\n", + "28841 0\n", + "28842 0\n", + "28843 1\n", + "28844 0\n", + "28845 0\n", + "28846 0\n", + "28847 0\n", + "28848 0\n", + "28849 0\n", + "28850 0\n", + "28851 0\n", + "28852 0\n", + "28853 0\n", + "28854 0\n", + "28855 0\n", + "28856 0\n", + "28857 0\n", + "28858 0\n", + "28859 1\n", + "28860 0\n", + "28861 0\n", + "28862 0\n", + "28863 0\n", + "28864 0\n", + "28865 0\n", + "28866 0\n", + "28867 1\n", + "28868 0\n", + "28869 0\n", + "28870 0\n", + "28871 1\n", + "28872 0\n", + "28873 0\n", + "28874 0\n", + "28875 0\n", + "28876 0\n", + "28877 0\n", + "28878 0\n", + "28879 1\n", + "28880 0\n", + "28881 0\n", + "28882 0\n", + "28883 0\n", + "28884 0\n", + "28885 0\n", + "28886 0\n", + "28887 0\n", + "28888 0\n", + "28889 0\n", + "28890 0\n", + "28891 0\n", + "28892 0\n", + "28893 0\n", + "28894 0\n", + "28895 0\n", + "28896 0\n", + "28897 0\n", + "28898 0\n", + "28899 0\n", + "28900 0\n", + "28901 1\n", + "28902 0\n", + "28903 0\n", + "28904 0\n", + "28905 0\n", + "28906 0\n", + "28907 0\n", + "28908 0\n", + "28909 1\n", + "28910 0\n", + "28911 0\n", + "28912 0\n", + "28913 0\n", + "28914 0\n", + "28915 0\n", + "28916 0\n", + "28917 0\n", + "28918 0\n", + "28919 0\n", + "28920 0\n", + "28921 1\n", + "28922 0\n", + "28923 0\n", + "28924 0\n", + "28925 0\n", + "28926 0\n", + "28927 1\n", + "28928 0\n", + "28929 0\n", + "28930 0\n", + "28931 0\n", + "28932 0\n", + "28933 1\n", + "28934 0\n", + "28935 0\n", + "28936 0\n", + "28937 0\n", + "28938 0\n", + "28939 0\n", + "28940 0\n", + "28941 0\n", + "28942 0\n", + "28943 0\n", + "28944 0\n", + "28945 0\n", + "28946 0\n", + "28947 0\n", + "28948 0\n", + "28949 1\n", + "28950 0\n", + "28951 0\n", + "28952 0\n", + "28953 0\n", + "28954 0\n", + "28955 0\n", + "28956 0\n", + "28957 0\n", + "28958 0\n", + "28959 0\n", + "28960 0\n", + "28961 1\n", + "28962 0\n", + "28963 0\n", + "28964 0\n", + "28965 0\n", + "28966 0\n", + "28967 0\n", + "28968 0\n", + "28969 0\n", + "28970 0\n", + "28971 0\n", + "28972 0\n", + "28973 0\n", + "28974 0\n", + "28975 0\n", + "28976 0\n", + "28977 0\n", + "28978 0\n", + "28979 1\n", + "28980 0\n", + "28981 0\n", + "28982 0\n", + "28983 0\n", + "28984 0\n", + "28985 0\n", + "28986 0\n", + "28987 0\n", + "28988 0\n", + "28989 0\n", + "28990 0\n", + "28991 0\n", + "28992 0\n", + "28993 0\n", + "28994 0\n", + "28995 0\n", + "28996 0\n", + "28997 0\n", + "28998 0\n", + "28999 0\n", + "29000 0\n", + "29001 0\n", + "29002 0\n", + "29003 0\n", + "29004 0\n", + "29005 0\n", + "29006 0\n", + "29007 0\n", + "29008 0\n", + "29009 1\n", + "29010 0\n", + "29011 0\n", + "29012 0\n", + "29013 0\n", + "29014 0\n", + "29015 0\n", + "29016 0\n", + "29017 1\n", + "29018 0\n", + "29019 0\n", + "29020 0\n", + "29021 1\n", + "29022 0\n", + "29023 1\n", + "29024 0\n", + "29025 0\n", + "29026 0\n", + "29027 1\n", + "29028 0\n", + "29029 0\n", + "29030 0\n", + "29031 0\n", + "29032 0\n", + "29033 1\n", + "29034 0\n", + "29035 0\n", + "29036 0\n", + "29037 0\n", + "29038 0\n", + "29039 0\n", + "29040 0\n", + "29041 0\n", + "29042 0\n", + "29043 0\n", + "29044 0\n", + "29045 0\n", + "29046 0\n", + "29047 0\n", + "29048 0\n", + "29049 0\n", + "29050 0\n", + "29051 0\n", + "29052 0\n", + "29053 0\n", + "29054 0\n", + "29055 0\n", + "29056 0\n", + "29057 0\n", + "29058 0\n", + "29059 1\n", + "29060 0\n", + "29061 0\n", + "29062 0\n", + "29063 1\n", + "29064 0\n", + "29065 0\n", + "29066 0\n", + "29067 0\n", + "29068 0\n", + "29069 0\n", + "29070 0\n", + "29071 0\n", + "29072 0\n", + "29073 0\n", + "29074 0\n", + "29075 0\n", + "29076 0\n", + "29077 1\n", + "29078 0\n", + "29079 0\n", + "29080 0\n", + "29081 0\n", + "29082 0\n", + "29083 0\n", + "29084 0\n", + "29085 0\n", + "29086 0\n", + "29087 0\n", + "29088 0\n", + "29089 0\n", + "29090 0\n", + "29091 0\n", + "29092 0\n", + "29093 0\n", + "29094 0\n", + "29095 0\n", + "29096 0\n", + "29097 0\n", + "29098 0\n", + "29099 0\n", + "29100 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29101 1\n", + "29102 0\n", + "29103 0\n", + "29104 0\n", + "29105 0\n", + "29106 0\n", + "29107 0\n", + "29108 0\n", + "29109 0\n", + "29110 0\n", + "29111 0\n", + "29112 0\n", + "29113 0\n", + "29114 0\n", + "29115 0\n", + "29116 0\n", + "29117 0\n", + "29118 0\n", + "29119 0\n", + "29120 0\n", + "29121 0\n", + "29122 0\n", + "29123 1\n", + "29124 0\n", + "29125 0\n", + "29126 0\n", + "29127 0\n", + "29128 0\n", + "29129 1\n", + "29130 0\n", + "29131 1\n", + "29132 0\n", + "29133 0\n", + "29134 0\n", + "29135 0\n", + "29136 0\n", + "29137 1\n", + "29138 0\n", + "29139 0\n", + "29140 0\n", + "29141 0\n", + "29142 0\n", + "29143 0\n", + "29144 0\n", + "29145 0\n", + "29146 0\n", + "29147 1\n", + "29148 0\n", + "29149 0\n", + "29150 0\n", + "29151 0\n", + "29152 0\n", + "29153 1\n", + "29154 0\n", + "29155 0\n", + "29156 0\n", + "29157 0\n", + "29158 0\n", + "29159 0\n", + "29160 0\n", + "29161 0\n", + "29162 0\n", + "29163 0\n", + "29164 0\n", + "29165 0\n", + "29166 0\n", + "29167 1\n", + "29168 0\n", + "29169 0\n", + "29170 0\n", + "29171 0\n", + "29172 0\n", + "29173 1\n", + "29174 0\n", + "29175 0\n", + "29176 0\n", + "29177 0\n", + "29178 0\n", + "29179 1\n", + "29180 0\n", + "29181 0\n", + "29182 0\n", + "29183 0\n", + "29184 0\n", + "29185 0\n", + "29186 0\n", + "29187 0\n", + "29188 0\n", + "29189 0\n", + "29190 0\n", + "29191 1\n", + "29192 0\n", + "29193 0\n", + "29194 0\n", + "29195 0\n", + "29196 0\n", + "29197 0\n", + "29198 0\n", + "29199 0\n", + "29200 0\n", + "29201 1\n", + "29202 0\n", + "29203 0\n", + "29204 0\n", + "29205 0\n", + "29206 0\n", + "29207 1\n", + "29208 0\n", + "29209 1\n", + "29210 0\n", + "29211 0\n", + "29212 0\n", + "29213 0\n", + "29214 0\n", + "29215 0\n", + "29216 0\n", + "29217 0\n", + "29218 0\n", + "29219 0\n", + "29220 0\n", + "29221 1\n", + "29222 0\n", + "29223 0\n", + "29224 0\n", + "29225 0\n", + "29226 0\n", + "29227 0\n", + "29228 0\n", + "29229 0\n", + "29230 0\n", + "29231 1\n", + "29232 0\n", + "29233 0\n", + "29234 0\n", + "29235 0\n", + "29236 0\n", + "29237 0\n", + "29238 0\n", + "29239 0\n", + "29240 0\n", + "29241 0\n", + "29242 0\n", + "29243 1\n", + "29244 0\n", + "29245 0\n", + "29246 0\n", + "29247 0\n", + "29248 0\n", + "29249 0\n", + "29250 0\n", + "29251 1\n", + "29252 0\n", + "29253 0\n", + "29254 0\n", + "29255 0\n", + "29256 0\n", + "29257 0\n", + "29258 0\n", + "29259 0\n", + "29260 0\n", + "29261 0\n", + "29262 0\n", + "29263 0\n", + "29264 0\n", + "29265 0\n", + "29266 0\n", + "29267 0\n", + "29268 0\n", + "29269 1\n", + "29270 0\n", + "29271 0\n", + "29272 0\n", + "29273 0\n", + "29274 0\n", + "29275 0\n", + "29276 0\n", + "29277 0\n", + "29278 0\n", + "29279 0\n", + "29280 0\n", + "29281 0\n", + "29282 0\n", + "29283 0\n", + "29284 0\n", + "29285 0\n", + "29286 0\n", + "29287 1\n", + "29288 0\n", + "29289 0\n", + "29290 0\n", + "29291 0\n", + "29292 0\n", + "29293 0\n", + "29294 0\n", + "29295 0\n", + "29296 0\n", + "29297 1\n", + "29298 0\n", + "29299 0\n", + "29300 0\n", + "29301 0\n", + "29302 0\n", + "29303 1\n", + "29304 0\n", + "29305 0\n", + "29306 0\n", + "29307 0\n", + "29308 0\n", + "29309 0\n", + "29310 0\n", + "29311 1\n", + "29312 0\n", + "29313 0\n", + "29314 0\n", + "29315 0\n", + "29316 0\n", + "29317 0\n", + "29318 0\n", + "29319 0\n", + "29320 0\n", + "29321 0\n", + "29322 0\n", + "29323 0\n", + "29324 0\n", + "29325 0\n", + "29326 0\n", + "29327 1\n", + "29328 0\n", + "29329 0\n", + "29330 0\n", + "29331 0\n", + "29332 0\n", + "29333 1\n", + "29334 0\n", + "29335 0\n", + "29336 0\n", + "29337 0\n", + "29338 0\n", + "29339 1\n", + "29340 0\n", + "29341 0\n", + "29342 0\n", + "29343 0\n", + "29344 0\n", + "29345 0\n", + "29346 0\n", + "29347 1\n", + "29348 0\n", + "29349 0\n", + "29350 0\n", + "29351 0\n", + "29352 0\n", + "29353 0\n", + "29354 0\n", + "29355 0\n", + "29356 0\n", + "29357 0\n", + "29358 0\n", + "29359 0\n", + "29360 0\n", + "29361 0\n", + "29362 0\n", + "29363 1\n", + "29364 0\n", + "29365 0\n", + "29366 0\n", + "29367 0\n", + "29368 0\n", + "29369 0\n", + "29370 0\n", + "29371 0\n", + "29372 0\n", + "29373 0\n", + "29374 0\n", + "29375 0\n", + "29376 0\n", + "29377 0\n", + "29378 0\n", + "29379 0\n", + "29380 0\n", + "29381 0\n", + "29382 0\n", + "29383 1\n", + "29384 0\n", + "29385 0\n", + "29386 0\n", + "29387 1\n", + "29388 0\n", + "29389 1\n", + "29390 0\n", + "29391 0\n", + "29392 0\n", + "29393 0\n", + "29394 0\n", + "29395 0\n", + "29396 0\n", + "29397 0\n", + "29398 0\n", + "29399 1\n", + "29400 0\n", + "29401 1\n", + "29402 0\n", + "29403 0\n", + "29404 0\n", + "29405 0\n", + "29406 0\n", + "29407 0\n", + "29408 0\n", + "29409 0\n", + "29410 0\n", + "29411 1\n", + "29412 0\n", + "29413 0\n", + "29414 0\n", + "29415 0\n", + "29416 0\n", + "29417 0\n", + "29418 0\n", + "29419 0\n", + "29420 0\n", + "29421 0\n", + "29422 0\n", + "29423 1\n", + "29424 0\n", + "29425 0\n", + "29426 0\n", + "29427 0\n", + "29428 0\n", + "29429 1\n", + "29430 0\n", + "29431 0\n", + "29432 0\n", + "29433 0\n", + "29434 0\n", + "29435 0\n", + "29436 0\n", + "29437 1\n", + "29438 0\n", + "29439 0\n", + "29440 0\n", + "29441 0\n", + "29442 0\n", + "29443 1\n", + "29444 0\n", + "29445 0\n", + "29446 0\n", + "29447 0\n", + "29448 0\n", + "29449 0\n", + "29450 0\n", + "29451 0\n", + "29452 0\n", + "29453 1\n", + "29454 0\n", + "29455 0\n", + "29456 0\n", + "29457 0\n", + "29458 0\n", + "29459 0\n", + "29460 0\n", + "29461 0\n", + "29462 0\n", + "29463 0\n", + "29464 0\n", + "29465 0\n", + "29466 0\n", + "29467 0\n", + "29468 0\n", + "29469 0\n", + "29470 0\n", + "29471 0\n", + "29472 0\n", + "29473 1\n", + "29474 0\n", + "29475 0\n", + "29476 0\n", + "29477 0\n", + "29478 0\n", + "29479 0\n", + "29480 0\n", + "29481 0\n", + "29482 0\n", + "29483 1\n", + "29484 0\n", + "29485 0\n", + "29486 0\n", + "29487 0\n", + "29488 0\n", + "29489 0\n", + "29490 0\n", + "29491 0\n", + "29492 0\n", + "29493 0\n", + "29494 0\n", + "29495 0\n", + "29496 0\n", + "29497 0\n", + "29498 0\n", + "29499 0\n", + "29500 0\n", + "29501 1\n", + "29502 0\n", + "29503 0\n", + "29504 0\n", + "29505 0\n", + "29506 0\n", + "29507 0\n", + "29508 0\n", + "29509 0\n", + "29510 0\n", + "29511 0\n", + "29512 0\n", + "29513 0\n", + "29514 0\n", + "29515 0\n", + "29516 0\n", + "29517 0\n", + "29518 0\n", + "29519 0\n", + "29520 0\n", + "29521 0\n", + "29522 0\n", + "29523 0\n", + "29524 0\n", + "29525 0\n", + "29526 0\n", + "29527 1\n", + "29528 0\n", + "29529 0\n", + "29530 0\n", + "29531 1\n", + "29532 0\n", + "29533 0\n", + "29534 0\n", + "29535 0\n", + "29536 0\n", + "29537 1\n", + "29538 0\n", + "29539 0\n", + "29540 0\n", + "29541 0\n", + "29542 0\n", + "29543 0\n", + "29544 0\n", + "29545 0\n", + "29546 0\n", + "29547 0\n", + "29548 0\n", + "29549 0\n", + "29550 0\n", + "29551 0\n", + "29552 0\n", + "29553 0\n", + "29554 0\n", + "29555 0\n", + "29556 0\n", + "29557 0\n", + "29558 0\n", + "29559 0\n", + "29560 0\n", + "29561 0\n", + "29562 0\n", + "29563 0\n", + "29564 0\n", + "29565 0\n", + "29566 0\n", + "29567 1\n", + "29568 0\n", + "29569 1\n", + "29570 0\n", + "29571 0\n", + "29572 0\n", + "29573 1\n", + "29574 0\n", + "29575 0\n", + "29576 0\n", + "29577 0\n", + "29578 0\n", + "29579 0\n", + "29580 0\n", + "29581 1\n", + "29582 0\n", + "29583 0\n", + "29584 0\n", + "29585 0\n", + "29586 0\n", + "29587 1\n", + "29588 0\n", + "29589 0\n", + "29590 0\n", + "29591 0\n", + "29592 0\n", + "29593 0\n", + "29594 0\n", + "29595 0\n", + "29596 0\n", + "29597 0\n", + "29598 0\n", + "29599 1\n", + "29600 0\n", + "29601 0\n", + "29602 0\n", + "29603 0\n", + "29604 0\n", + "29605 0\n", + "29606 0\n", + "29607 0\n", + "29608 0\n", + "29609 0\n", + "29610 0\n", + "29611 1\n", + "29612 0\n", + "29613 0\n", + "29614 0\n", + "29615 0\n", + "29616 0\n", + "29617 0\n", + "29618 0\n", + "29619 0\n", + "29620 0\n", + "29621 0\n", + "29622 0\n", + "29623 0\n", + "29624 0\n", + "29625 0\n", + "29626 0\n", + "29627 0\n", + "29628 0\n", + "29629 1\n", + "29630 0\n", + "29631 0\n", + "29632 0\n", + "29633 1\n", + "29634 0\n", + "29635 0\n", + "29636 0\n", + "29637 0\n", + "29638 0\n", + "29639 0\n", + "29640 0\n", + "29641 1\n", + "29642 0\n", + "29643 0\n", + "29644 0\n", + "29645 0\n", + "29646 0\n", + "29647 0\n", + "29648 0\n", + "29649 0\n", + "29650 0\n", + "29651 0\n", + "29652 0\n", + "29653 0\n", + "29654 0\n", + "29655 0\n", + "29656 0\n", + "29657 0\n", + "29658 0\n", + "29659 0\n", + "29660 0\n", + "29661 0\n", + "29662 0\n", + "29663 1\n", + "29664 0\n", + "29665 0\n", + "29666 0\n", + "29667 0\n", + "29668 0\n", + "29669 1\n", + "29670 0\n", + "29671 1\n", + "29672 0\n", + "29673 0\n", + "29674 0\n", + "29675 0\n", + "29676 0\n", + "29677 0\n", + "29678 0\n", + "29679 0\n", + "29680 0\n", + "29681 0\n", + "29682 0\n", + "29683 1\n", + "29684 0\n", + "29685 0\n", + "29686 0\n", + "29687 0\n", + "29688 0\n", + "29689 0\n", + "29690 0\n", + "29691 0\n", + "29692 0\n", + "29693 0\n", + "29694 0\n", + "29695 0\n", + "29696 0\n", + "29697 0\n", + "29698 0\n", + "29699 0\n", + "29700 0\n", + "29701 0\n", + "29702 0\n", + "29703 0\n", + "29704 0\n", + "29705 0\n", + "29706 0\n", + "29707 0\n", + "29708 0\n", + "29709 0\n", + "29710 0\n", + "29711 0\n", + "29712 0\n", + "29713 0\n", + "29714 0\n", + "29715 0\n", + "29716 0\n", + "29717 1\n", + "29718 0\n", + "29719 0\n", + "29720 0\n", + "29721 0\n", + "29722 0\n", + "29723 1\n", + "29724 0\n", + "29725 0\n", + "29726 0\n", + "29727 0\n", + "29728 0\n", + "29729 0\n", + "29730 0\n", + "29731 0\n", + "29732 0\n", + "29733 0\n", + "29734 0\n", + "29735 0\n", + "29736 0\n", + "29737 0\n", + "29738 0\n", + "29739 0\n", + "29740 0\n", + "29741 1\n", + "29742 0\n", + "29743 0\n", + "29744 0\n", + "29745 0\n", + "29746 0\n", + "29747 0\n", + "29748 0\n", + "29749 0\n", + "29750 0\n", + "29751 0\n", + "29752 0\n", + "29753 1\n", + "29754 0\n", + "29755 0\n", + "29756 0\n", + "29757 0\n", + "29758 0\n", + "29759 1\n", + "29760 0\n", + "29761 1\n", + "29762 0\n", + "29763 0\n", + "29764 0\n", + "29765 0\n", + "29766 0\n", + "29767 0\n", + "29768 0\n", + "29769 0\n", + "29770 0\n", + "29771 0\n", + "29772 0\n", + "29773 0\n", + "29774 0\n", + "29775 0\n", + "29776 0\n", + "29777 0\n", + "29778 0\n", + "29779 0\n", + "29780 0\n", + "29781 0\n", + "29782 0\n", + "29783 0\n", + "29784 0\n", + "29785 0\n", + "29786 0\n", + "29787 0\n", + "29788 0\n", + "29789 1\n", + "29790 0\n", + "29791 0\n", + "29792 0\n", + "29793 0\n", + "29794 0\n", + "29795 0\n", + "29796 0\n", + "29797 0\n", + "29798 0\n", + "29799 0\n", + "29800 0\n", + "29801 0\n", + "29802 0\n", + "29803 1\n", + "29804 0\n", + "29805 0\n", + "29806 0\n", + "29807 0\n", + "29808 0\n", + "29809 0\n", + "29810 0\n", + "29811 0\n", + "29812 0\n", + "29813 0\n", + "29814 0\n", + "29815 0\n", + "29816 0\n", + "29817 0\n", + "29818 0\n", + "29819 1\n", + "29820 0\n", + "29821 0\n", + "29822 0\n", + "29823 0\n", + "29824 0\n", + "29825 0\n", + "29826 0\n", + "29827 0\n", + "29828 0\n", + "29829 0\n", + "29830 0\n", + "29831 0\n", + "29832 0\n", + "29833 1\n", + "29834 0\n", + "29835 0\n", + "29836 0\n", + "29837 1\n", + "29838 0\n", + "29839 0\n", + "29840 0\n", + "29841 0\n", + "29842 0\n", + "29843 0\n", + "29844 0\n", + "29845 0\n", + "29846 0\n", + "29847 0\n", + "29848 0\n", + "29849 0\n", + "29850 0\n", + "29851 1\n", + "29852 0\n", + "29853 0\n", + "29854 0\n", + "29855 0\n", + "29856 0\n", + "29857 0\n", + "29858 0\n", + "29859 0\n", + "29860 0\n", + "29861 0\n", + "29862 0\n", + "29863 1\n", + "29864 0\n", + "29865 0\n", + "29866 0\n", + "29867 1\n", + "29868 0\n", + "29869 0\n", + "29870 0\n", + "29871 0\n", + "29872 0\n", + "29873 1\n", + "29874 0\n", + "29875 0\n", + "29876 0\n", + "29877 0\n", + "29878 0\n", + "29879 1\n", + "29880 0\n", + "29881 1\n", + "29882 0\n", + "29883 0\n", + "29884 0\n", + "29885 0\n", + "29886 0\n", + "29887 0\n", + "29888 0\n", + "29889 0\n", + "29890 0\n", + "29891 0\n", + "29892 0\n", + "29893 0\n", + "29894 0\n", + "29895 0\n", + "29896 0\n", + "29897 0\n", + "29898 0\n", + "29899 0\n", + "29900 0\n", + "29901 0\n", + "29902 0\n", + "29903 0\n", + "29904 0\n", + "29905 0\n", + "29906 0\n", + "29907 0\n", + "29908 0\n", + "29909 0\n", + "29910 0\n", + "29911 0\n", + "29912 0\n", + "29913 0\n", + "29914 0\n", + "29915 0\n", + "29916 0\n", + "29917 1\n", + "29918 0\n", + "29919 0\n", + "29920 0\n", + "29921 1\n", + "29922 0\n", + "29923 0\n", + "29924 0\n", + "29925 0\n", + "29926 0\n", + "29927 1\n", + "29928 0\n", + "29929 0\n", + "29930 0\n", + "29931 0\n", + "29932 0\n", + "29933 0\n", + "29934 0\n", + "29935 0\n", + "29936 0\n", + "29937 0\n", + "29938 0\n", + "29939 0\n", + "29940 0\n", + "29941 0\n", + "29942 0\n", + "29943 0\n", + "29944 0\n", + "29945 0\n", + "29946 0\n", + "29947 1\n", + "29948 0\n", + "29949 0\n", + "29950 0\n", + "29951 0\n", + "29952 0\n", + "29953 0\n", + "29954 0\n", + "29955 0\n", + "29956 0\n", + "29957 0\n", + "29958 0\n", + "29959 1\n", + "29960 0\n", + "29961 0\n", + "29962 0\n", + "29963 0\n", + "29964 0\n", + "29965 0\n", + "29966 0\n", + "29967 0\n", + "29968 0\n", + "29969 0\n", + "29970 0\n", + "29971 0\n", + "29972 0\n", + "29973 0\n", + "29974 0\n", + "29975 0\n", + "29976 0\n", + "29977 0\n", + "29978 0\n", + "29979 0\n", + "29980 0\n", + "29981 0\n", + "29982 0\n", + "29983 1\n", + "29984 0\n", + "29985 0\n", + "29986 0\n", + "29987 0\n", + "29988 0\n", + "29989 1\n", + "29990 0\n", + "29991 0\n", + "29992 0\n", + "29993 0\n", + "29994 0\n", + "29995 0\n", + "29996 0\n", + "29997 0\n", + "29998 0\n", + "29999 0\n", + "30000 0\n", + "30001 0\n", + "30002 0\n", + "30003 0\n", + "30004 0\n", + "30005 0\n", + "30006 0\n", + "30007 0\n", + "30008 0\n", + "30009 0\n", + "30010 0\n", + "30011 1\n", + "30012 0\n", + "30013 1\n", + "30014 0\n", + "30015 0\n", + "30016 0\n", + "30017 0\n", + "30018 0\n", + "30019 0\n", + "30020 0\n", + "30021 0\n", + "30022 0\n", + "30023 0\n", + "30024 0\n", + "30025 0\n", + "30026 0\n", + "30027 0\n", + "30028 0\n", + "30029 1\n", + "30030 0\n", + "30031 0\n", + "30032 0\n", + "30033 0\n", + "30034 0\n", + "30035 0\n", + "30036 0\n", + "30037 0\n", + "30038 0\n", + "30039 0\n", + "30040 0\n", + "30041 0\n", + "30042 0\n", + "30043 0\n", + "30044 0\n", + "30045 0\n", + "30046 0\n", + "30047 1\n", + "30048 0\n", + "30049 0\n", + "30050 0\n", + "30051 0\n", + "30052 0\n", + "30053 0\n", + "30054 0\n", + "30055 0\n", + "30056 0\n", + "30057 0\n", + "30058 0\n", + "30059 1\n", + "30060 0\n", + "30061 0\n", + "30062 0\n", + "30063 0\n", + "30064 0\n", + "30065 0\n", + "30066 0\n", + "30067 0\n", + "30068 0\n", + "30069 0\n", + "30070 0\n", + "30071 1\n", + "30072 0\n", + "30073 0\n", + "30074 0\n", + "30075 0\n", + "30076 0\n", + "30077 0\n", + "30078 0\n", + "30079 0\n", + "30080 0\n", + "30081 0\n", + "30082 0\n", + "30083 0\n", + "30084 0\n", + "30085 0\n", + "30086 0\n", + "30087 0\n", + "30088 0\n", + "30089 1\n", + "30090 0\n", + "30091 1\n", + "30092 0\n", + "30093 0\n", + "30094 0\n", + "30095 0\n", + "30096 0\n", + "30097 1\n", + "30098 0\n", + "30099 0\n", + "30100 0\n", + "30101 0\n", + "30102 0\n", + "30103 1\n", + "30104 0\n", + "30105 0\n", + "30106 0\n", + "30107 0\n", + "30108 0\n", + "30109 1\n", + "30110 0\n", + "30111 0\n", + "30112 0\n", + "30113 1\n", + "30114 0\n", + "30115 0\n", + "30116 0\n", + "30117 0\n", + "30118 0\n", + "30119 1\n", + "30120 0\n", + "30121 0\n", + "30122 0\n", + "30123 0\n", + "30124 0\n", + "30125 0\n", + "30126 0\n", + "30127 0\n", + "30128 0\n", + "30129 0\n", + "30130 0\n", + "30131 0\n", + "30132 0\n", + "30133 1\n", + "30134 0\n", + "30135 0\n", + "30136 0\n", + "30137 1\n", + "30138 0\n", + "30139 1\n", + "30140 0\n", + "30141 0\n", + "30142 0\n", + "30143 0\n", + "30144 0\n", + "30145 0\n", + "30146 0\n", + "30147 0\n", + "30148 0\n", + "30149 0\n", + "30150 0\n", + "30151 0\n", + "30152 0\n", + "30153 0\n", + "30154 0\n", + "30155 0\n", + "30156 0\n", + "30157 0\n", + "30158 0\n", + "30159 0\n", + "30160 0\n", + "30161 1\n", + "30162 0\n", + "30163 0\n", + "30164 0\n", + "30165 0\n", + "30166 0\n", + "30167 0\n", + "30168 0\n", + "30169 1\n", + "30170 0\n", + "30171 0\n", + "30172 0\n", + "30173 0\n", + "30174 0\n", + "30175 0\n", + "30176 0\n", + "30177 0\n", + "30178 0\n", + "30179 0\n", + "30180 0\n", + "30181 1\n", + "30182 0\n", + "30183 0\n", + "30184 0\n", + "30185 0\n", + "30186 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "30187 1\n", + "30188 0\n", + "30189 0\n", + "30190 0\n", + "30191 0\n", + "30192 0\n", + "30193 0\n", + "30194 0\n", + "30195 0\n", + "30196 0\n", + "30197 1\n", + "30198 0\n", + "30199 0\n", + "30200 0\n", + "30201 0\n", + "30202 0\n", + "30203 1\n", + "30204 0\n", + "30205 0\n", + "30206 0\n", + "30207 0\n", + "30208 0\n", + "30209 0\n", + "30210 0\n", + "30211 1\n", + "30212 0\n", + "30213 0\n", + "30214 0\n", + "30215 0\n", + "30216 0\n", + "30217 0\n", + "30218 0\n", + "30219 0\n", + "30220 0\n", + "30221 0\n", + "30222 0\n", + "30223 1\n", + "30224 0\n", + "30225 0\n", + "30226 0\n", + "30227 0\n", + "30228 0\n", + "30229 0\n", + "30230 0\n", + "30231 0\n", + "30232 0\n", + "30233 0\n", + "30234 0\n", + "30235 0\n", + "30236 0\n", + "30237 0\n", + "30238 0\n", + "30239 0\n", + "30240 0\n", + "30241 1\n", + "30242 0\n", + "30243 0\n", + "30244 0\n", + "30245 0\n", + "30246 0\n", + "30247 0\n", + "30248 0\n", + "30249 0\n", + "30250 0\n", + "30251 0\n", + "30252 0\n", + "30253 1\n", + "30254 0\n", + "30255 0\n", + "30256 0\n", + "30257 0\n", + "30258 0\n", + "30259 1\n", + "30260 0\n", + "30261 0\n", + "30262 0\n", + "30263 0\n", + "30264 0\n", + "30265 0\n", + "30266 0\n", + "30267 0\n", + "30268 0\n", + "30269 1\n", + "30270 0\n", + "30271 1\n", + "30272 0\n", + "30273 0\n", + "30274 0\n", + "30275 0\n", + "30276 0\n", + "30277 0\n", + "30278 0\n", + "30279 0\n", + "30280 0\n", + "30281 0\n", + "30282 0\n", + "30283 0\n", + "30284 0\n", + "30285 0\n", + "30286 0\n", + "30287 0\n", + "30288 0\n", + "30289 0\n", + "30290 0\n", + "30291 0\n", + "30292 0\n", + "30293 1\n", + "30294 0\n", + "30295 0\n", + "30296 0\n", + "30297 0\n", + "30298 0\n", + "30299 0\n", + "30300 0\n", + "30301 0\n", + "30302 0\n", + "30303 0\n", + "30304 0\n", + "30305 0\n", + "30306 0\n", + "30307 1\n", + "30308 0\n", + "30309 0\n", + "30310 0\n", + "30311 0\n", + "30312 0\n", + "30313 1\n", + "30314 0\n", + "30315 0\n", + "30316 0\n", + "30317 0\n", + "30318 0\n", + "30319 1\n", + "30320 0\n", + "30321 0\n", + "30322 0\n", + "30323 1\n", + "30324 0\n", + "30325 0\n", + "30326 0\n", + "30327 0\n", + "30328 0\n", + "30329 0\n", + "30330 0\n", + "30331 0\n", + "30332 0\n", + "30333 0\n", + "30334 0\n", + "30335 0\n", + "30336 0\n", + "30337 0\n", + "30338 0\n", + "30339 0\n", + "30340 0\n", + "30341 1\n", + "30342 0\n", + "30343 0\n", + "30344 0\n", + "30345 0\n", + "30346 0\n", + "30347 1\n", + "30348 0\n", + "30349 0\n", + "30350 0\n", + "30351 0\n", + "30352 0\n", + "30353 0\n", + "30354 0\n", + "30355 0\n", + "30356 0\n", + "30357 0\n", + "30358 0\n", + "30359 0\n", + "30360 0\n", + "30361 0\n", + "30362 0\n", + "30363 0\n", + "30364 0\n", + "30365 0\n", + "30366 0\n", + "30367 1\n", + "30368 0\n", + "30369 0\n", + "30370 0\n", + "30371 0\n", + "30372 0\n", + "30373 0\n", + "30374 0\n", + "30375 0\n", + "30376 0\n", + "30377 0\n", + "30378 0\n", + "30379 0\n", + "30380 0\n", + "30381 0\n", + "30382 0\n", + "30383 0\n", + "30384 0\n", + "30385 0\n", + "30386 0\n", + "30387 0\n", + "30388 0\n", + "30389 1\n", + "30390 0\n", + "30391 1\n", + "30392 0\n", + "30393 0\n", + "30394 0\n", + "30395 0\n", + "30396 0\n", + "30397 0\n", + "30398 0\n", + "30399 0\n", + "30400 0\n", + "30401 0\n", + "30402 0\n", + "30403 1\n", + "30404 0\n", + "30405 0\n", + "30406 0\n", + "30407 0\n", + "30408 0\n", + "30409 0\n", + "30410 0\n", + "30411 0\n", + "30412 0\n", + "30413 0\n", + "30414 0\n", + "30415 0\n", + "30416 0\n", + "30417 0\n", + "30418 0\n", + "30419 0\n", + "30420 0\n", + "30421 0\n", + "30422 0\n", + "30423 0\n", + "30424 0\n", + "30425 0\n", + "30426 0\n", + "30427 1\n", + "30428 0\n", + "30429 0\n", + "30430 0\n", + "30431 1\n", + "30432 0\n", + "30433 0\n", + "30434 0\n", + "30435 0\n", + "30436 0\n", + "30437 0\n", + "30438 0\n", + "30439 0\n", + "30440 0\n", + "30441 0\n", + "30442 0\n", + "30443 0\n", + "30444 0\n", + "30445 0\n", + "30446 0\n", + "30447 0\n", + "30448 0\n", + "30449 1\n", + "30450 0\n", + "30451 0\n", + "30452 0\n", + "30453 0\n", + "30454 0\n", + "30455 0\n", + "30456 0\n", + "30457 0\n", + "30458 0\n", + "30459 0\n", + "30460 0\n", + "30461 0\n", + "30462 0\n", + "30463 0\n", + "30464 0\n", + "30465 0\n", + "30466 0\n", + "30467 1\n", + "30468 0\n", + "30469 1\n", + "30470 0\n", + "30471 0\n", + "30472 0\n", + "30473 0\n", + "30474 0\n", + "30475 0\n", + "30476 0\n", + "30477 0\n", + "30478 0\n", + "30479 0\n", + "30480 0\n", + "30481 0\n", + "30482 0\n", + "30483 0\n", + "30484 0\n", + "30485 0\n", + "30486 0\n", + "30487 0\n", + "30488 0\n", + "30489 0\n", + "30490 0\n", + "30491 1\n", + "30492 0\n", + "30493 1\n", + "30494 0\n", + "30495 0\n", + "30496 0\n", + "30497 1\n", + "30498 0\n", + "30499 0\n", + "30500 0\n", + "30501 0\n", + "30502 0\n", + "30503 0\n", + "30504 0\n", + "30505 0\n", + "30506 0\n", + "30507 0\n", + "30508 0\n", + "30509 1\n", + "30510 0\n", + "30511 0\n", + "30512 0\n", + "30513 0\n", + "30514 0\n", + "30515 0\n", + "30516 0\n", + "30517 1\n", + "30518 0\n", + "30519 0\n", + "30520 0\n", + "30521 0\n", + "30522 0\n", + "30523 0\n", + "30524 0\n", + "30525 0\n", + "30526 0\n", + "30527 0\n", + "30528 0\n", + "30529 1\n", + "30530 0\n", + "30531 0\n", + "30532 0\n", + "30533 0\n", + "30534 0\n", + "30535 0\n", + "30536 0\n", + "30537 0\n", + "30538 0\n", + "30539 1\n", + "30540 0\n", + "30541 0\n", + "30542 0\n", + "30543 0\n", + "30544 0\n", + "30545 0\n", + "30546 0\n", + "30547 0\n", + "30548 0\n", + "30549 0\n", + "30550 0\n", + "30551 0\n", + "30552 0\n", + "30553 1\n", + "30554 0\n", + "30555 0\n", + "30556 0\n", + "30557 1\n", + "30558 0\n", + "30559 1\n", + "30560 0\n", + "30561 0\n", + "30562 0\n", + "30563 0\n", + "30564 0\n", + "30565 0\n", + "30566 0\n", + "30567 0\n", + "30568 0\n", + "30569 0\n", + "30570 0\n", + "30571 0\n", + "30572 0\n", + "30573 0\n", + "30574 0\n", + "30575 0\n", + "30576 0\n", + "30577 1\n", + "30578 0\n", + "30579 0\n", + "30580 0\n", + "30581 0\n", + "30582 0\n", + "30583 0\n", + "30584 0\n", + "30585 0\n", + "30586 0\n", + "30587 0\n", + "30588 0\n", + "30589 0\n", + "30590 0\n", + "30591 0\n", + "30592 0\n", + "30593 1\n", + "30594 0\n", + "30595 0\n", + "30596 0\n", + "30597 0\n", + "30598 0\n", + "30599 0\n", + "30600 0\n", + "30601 0\n", + "30602 0\n", + "30603 0\n", + "30604 0\n", + "30605 0\n", + "30606 0\n", + "30607 0\n", + "30608 0\n", + "30609 0\n", + "30610 0\n", + "30611 0\n", + "30612 0\n", + "30613 0\n", + "30614 0\n", + "30615 0\n", + "30616 0\n", + "30617 0\n", + "30618 0\n", + "30619 0\n", + "30620 0\n", + "30621 0\n", + "30622 0\n", + "30623 0\n", + "30624 0\n", + "30625 0\n", + "30626 0\n", + "30627 0\n", + "30628 0\n", + "30629 0\n", + "30630 0\n", + "30631 1\n", + "30632 0\n", + "30633 0\n", + "30634 0\n", + "30635 0\n", + "30636 0\n", + "30637 1\n", + "30638 0\n", + "30639 0\n", + "30640 0\n", + "30641 0\n", + "30642 0\n", + "30643 1\n", + "30644 0\n", + "30645 0\n", + "30646 0\n", + "30647 0\n", + "30648 0\n", + "30649 1\n", + "30650 0\n", + "30651 0\n", + "30652 0\n", + "30653 0\n", + "30654 0\n", + "30655 0\n", + "30656 0\n", + "30657 0\n", + "30658 0\n", + "30659 0\n", + "30660 0\n", + "30661 1\n", + "30662 0\n", + "30663 0\n", + "30664 0\n", + "30665 0\n", + "30666 0\n", + "30667 0\n", + "30668 0\n", + "30669 0\n", + "30670 0\n", + "30671 1\n", + "30672 0\n", + "30673 0\n", + "30674 0\n", + "30675 0\n", + "30676 0\n", + "30677 1\n", + "30678 0\n", + "30679 0\n", + "30680 0\n", + "30681 0\n", + "30682 0\n", + "30683 0\n", + "30684 0\n", + "30685 0\n", + "30686 0\n", + "30687 0\n", + "30688 0\n", + "30689 1\n", + "30690 0\n", + "30691 0\n", + "30692 0\n", + "30693 0\n", + "30694 0\n", + "30695 0\n", + "30696 0\n", + "30697 1\n", + "30698 0\n", + "30699 0\n", + "30700 0\n", + "30701 0\n", + "30702 0\n", + "30703 1\n", + "30704 0\n", + "30705 0\n", + "30706 0\n", + "30707 1\n", + "30708 0\n", + "30709 0\n", + "30710 0\n", + "30711 0\n", + "30712 0\n", + "30713 1\n", + "30714 0\n", + "30715 0\n", + "30716 0\n", + "30717 0\n", + "30718 0\n", + "30719 0\n", + "30720 0\n", + "30721 0\n", + "30722 0\n", + "30723 0\n", + "30724 0\n", + "30725 0\n", + "30726 0\n", + "30727 1\n", + "30728 0\n", + "30729 0\n", + "30730 0\n", + "30731 0\n", + "30732 0\n", + "30733 0\n", + "30734 0\n", + "30735 0\n", + "30736 0\n", + "30737 0\n", + "30738 0\n", + "30739 0\n", + "30740 0\n", + "30741 0\n", + "30742 0\n", + "30743 0\n", + "30744 0\n", + "30745 0\n", + "30746 0\n", + "30747 0\n", + "30748 0\n", + "30749 0\n", + "30750 0\n", + "30751 0\n", + "30752 0\n", + "30753 0\n", + "30754 0\n", + "30755 0\n", + "30756 0\n", + "30757 1\n", + "30758 0\n", + "30759 0\n", + "30760 0\n", + "30761 0\n", + "30762 0\n", + "30763 1\n", + "30764 0\n", + "30765 0\n", + "30766 0\n", + "30767 0\n", + "30768 0\n", + "30769 0\n", + "30770 0\n", + "30771 0\n", + "30772 0\n", + "30773 1\n", + "30774 0\n", + "30775 0\n", + "30776 0\n", + "30777 0\n", + "30778 0\n", + "30779 0\n", + "30780 0\n", + "30781 1\n", + "30782 0\n", + "30783 0\n", + "30784 0\n", + "30785 0\n", + "30786 0\n", + "30787 0\n", + "30788 0\n", + "30789 0\n", + "30790 0\n", + "30791 0\n", + "30792 0\n", + "30793 0\n", + "30794 0\n", + "30795 0\n", + "30796 0\n", + "30797 0\n", + "30798 0\n", + "30799 0\n", + "30800 0\n", + "30801 0\n", + "30802 0\n", + "30803 1\n", + "30804 0\n", + "30805 0\n", + "30806 0\n", + "30807 0\n", + "30808 0\n", + "30809 1\n", + "30810 0\n", + "30811 0\n", + "30812 0\n", + "30813 0\n", + "30814 0\n", + "30815 0\n", + "30816 0\n", + "30817 1\n", + "30818 0\n", + "30819 0\n", + "30820 0\n", + "30821 0\n", + "30822 0\n", + "30823 0\n", + "30824 0\n", + "30825 0\n", + "30826 0\n", + "30827 0\n", + "30828 0\n", + "30829 1\n", + "30830 0\n", + "30831 0\n", + "30832 0\n", + "30833 0\n", + "30834 0\n", + "30835 0\n", + "30836 0\n", + "30837 0\n", + "30838 0\n", + "30839 1\n", + "30840 0\n", + "30841 1\n", + "30842 0\n", + "30843 0\n", + "30844 0\n", + "30845 0\n", + "30846 0\n", + "30847 0\n", + "30848 0\n", + "30849 0\n", + "30850 0\n", + "30851 1\n", + "30852 0\n", + "30853 1\n", + "30854 0\n", + "30855 0\n", + "30856 0\n", + "30857 0\n", + "30858 0\n", + "30859 1\n", + "30860 0\n", + "30861 0\n", + "30862 0\n", + "30863 0\n", + "30864 0\n", + "30865 0\n", + "30866 0\n", + "30867 0\n", + "30868 0\n", + "30869 1\n", + "30870 0\n", + "30871 1\n", + "30872 0\n", + "30873 0\n", + "30874 0\n", + "30875 0\n", + "30876 0\n", + "30877 0\n", + "30878 0\n", + "30879 0\n", + "30880 0\n", + "30881 1\n", + "30882 0\n", + "30883 0\n", + "30884 0\n", + "30885 0\n", + "30886 0\n", + "30887 0\n", + "30888 0\n", + "30889 0\n", + "30890 0\n", + "30891 0\n", + "30892 0\n", + "30893 1\n", + "30894 0\n", + "30895 0\n", + "30896 0\n", + "30897 0\n", + "30898 0\n", + "30899 0\n", + "30900 0\n", + "30901 0\n", + "30902 0\n", + "30903 0\n", + "30904 0\n", + "30905 0\n", + "30906 0\n", + "30907 0\n", + "30908 0\n", + "30909 0\n", + "30910 0\n", + "30911 1\n", + "30912 0\n", + "30913 0\n", + "30914 0\n", + "30915 0\n", + "30916 0\n", + "30917 0\n", + "30918 0\n", + "30919 0\n", + "30920 0\n", + "30921 0\n", + "30922 0\n", + "30923 0\n", + "30924 0\n", + "30925 0\n", + "30926 0\n", + "30927 0\n", + "30928 0\n", + "30929 0\n", + "30930 0\n", + "30931 1\n", + "30932 0\n", + "30933 0\n", + "30934 0\n", + "30935 0\n", + "30936 0\n", + "30937 1\n", + "30938 0\n", + "30939 0\n", + "30940 0\n", + "30941 1\n", + "30942 0\n", + "30943 0\n", + "30944 0\n", + "30945 0\n", + "30946 0\n", + "30947 0\n", + "30948 0\n", + "30949 1\n", + "30950 0\n", + "30951 0\n", + "30952 0\n", + "30953 0\n", + "30954 0\n", + "30955 0\n", + "30956 0\n", + "30957 0\n", + "30958 0\n", + "30959 0\n", + "30960 0\n", + "30961 0\n", + "30962 0\n", + "30963 0\n", + "30964 0\n", + "30965 0\n", + "30966 0\n", + "30967 0\n", + "30968 0\n", + "30969 0\n", + "30970 0\n", + "30971 1\n", + "30972 0\n", + "30973 0\n", + "30974 0\n", + "30975 0\n", + "30976 0\n", + "30977 1\n", + "30978 0\n", + "30979 0\n", + "30980 0\n", + "30981 0\n", + "30982 0\n", + "30983 1\n", + "30984 0\n", + "30985 0\n", + "30986 0\n", + "30987 0\n", + "30988 0\n", + "30989 0\n", + "30990 0\n", + "30991 0\n", + "30992 0\n", + "30993 0\n", + "30994 0\n", + "30995 0\n", + "30996 0\n", + "30997 0\n", + "30998 0\n", + "30999 0\n", + "31000 0\n", + "31001 0\n", + "31002 0\n", + "31003 0\n", + "31004 0\n", + "31005 0\n", + "31006 0\n", + "31007 0\n", + "31008 0\n", + "31009 0\n", + "31010 0\n", + "31011 0\n", + "31012 0\n", + "31013 1\n", + "31014 0\n", + "31015 0\n", + "31016 0\n", + "31017 0\n", + "31018 0\n", + "31019 1\n", + "31020 0\n", + "31021 0\n", + "31022 0\n", + "31023 0\n", + "31024 0\n", + "31025 0\n", + "31026 0\n", + "31027 0\n", + "31028 0\n", + "31029 0\n", + "31030 0\n", + "31031 0\n", + "31032 0\n", + "31033 1\n", + "31034 0\n", + "31035 0\n", + "31036 0\n", + "31037 0\n", + "31038 0\n", + "31039 1\n", + "31040 0\n", + "31041 0\n", + "31042 0\n", + "31043 0\n", + "31044 0\n", + "31045 0\n", + "31046 0\n", + "31047 0\n", + "31048 0\n", + "31049 0\n", + "31050 0\n", + "31051 1\n", + "31052 0\n", + "31053 0\n", + "31054 0\n", + "31055 0\n", + "31056 0\n", + "31057 0\n", + "31058 0\n", + "31059 0\n", + "31060 0\n", + "31061 0\n", + "31062 0\n", + "31063 1\n", + "31064 0\n", + "31065 0\n", + "31066 0\n", + "31067 0\n", + "31068 0\n", + "31069 1\n", + "31070 0\n", + "31071 0\n", + "31072 0\n", + "31073 0\n", + "31074 0\n", + "31075 0\n", + "31076 0\n", + "31077 0\n", + "31078 0\n", + "31079 1\n", + "31080 0\n", + "31081 1\n", + "31082 0\n", + "31083 0\n", + "31084 0\n", + "31085 0\n", + "31086 0\n", + "31087 0\n", + "31088 0\n", + "31089 0\n", + "31090 0\n", + "31091 1\n", + "31092 0\n", + "31093 0\n", + "31094 0\n", + "31095 0\n", + "31096 0\n", + "31097 0\n", + "31098 0\n", + "31099 0\n", + "31100 0\n", + "31101 0\n", + "31102 0\n", + "31103 0\n", + "31104 0\n", + "31105 0\n", + "31106 0\n", + "31107 0\n", + "31108 0\n", + "31109 0\n", + "31110 0\n", + "31111 0\n", + "31112 0\n", + "31113 0\n", + "31114 0\n", + "31115 0\n", + "31116 0\n", + "31117 0\n", + "31118 0\n", + "31119 0\n", + "31120 0\n", + "31121 1\n", + "31122 0\n", + "31123 1\n", + "31124 0\n", + "31125 0\n", + "31126 0\n", + "31127 0\n", + "31128 0\n", + "31129 0\n", + "31130 0\n", + "31131 0\n", + "31132 0\n", + "31133 0\n", + "31134 0\n", + "31135 0\n", + "31136 0\n", + "31137 0\n", + "31138 0\n", + "31139 1\n", + "31140 0\n", + "31141 0\n", + "31142 0\n", + "31143 0\n", + "31144 0\n", + "31145 0\n", + "31146 0\n", + "31147 1\n", + "31148 0\n", + "31149 0\n", + "31150 0\n", + "31151 1\n", + "31152 0\n", + "31153 1\n", + "31154 0\n", + "31155 0\n", + "31156 0\n", + "31157 0\n", + "31158 0\n", + "31159 1\n", + "31160 0\n", + "31161 0\n", + "31162 0\n", + "31163 0\n", + "31164 0\n", + "31165 0\n", + "31166 0\n", + "31167 0\n", + "31168 0\n", + "31169 0\n", + "31170 0\n", + "31171 0\n", + "31172 0\n", + "31173 0\n", + "31174 0\n", + "31175 0\n", + "31176 0\n", + "31177 1\n", + "31178 0\n", + "31179 0\n", + "31180 0\n", + "31181 1\n", + "31182 0\n", + "31183 1\n", + "31184 0\n", + "31185 0\n", + "31186 0\n", + "31187 0\n", + "31188 0\n", + "31189 1\n", + "31190 0\n", + "31191 0\n", + "31192 0\n", + "31193 1\n", + "31194 0\n", + "31195 0\n", + "31196 0\n", + "31197 0\n", + "31198 0\n", + "31199 0\n", + "31200 0\n", + "31201 0\n", + "31202 0\n", + "31203 0\n", + "31204 0\n", + "31205 0\n", + "31206 0\n", + "31207 0\n", + "31208 0\n", + "31209 0\n", + "31210 0\n", + "31211 0\n", + "31212 0\n", + "31213 0\n", + "31214 0\n", + "31215 0\n", + "31216 0\n", + "31217 0\n", + "31218 0\n", + "31219 1\n", + "31220 0\n", + "31221 0\n", + "31222 0\n", + "31223 1\n", + "31224 0\n", + "31225 0\n", + "31226 0\n", + "31227 0\n", + "31228 0\n", + "31229 0\n", + "31230 0\n", + "31231 1\n", + "31232 0\n", + "31233 0\n", + "31234 0\n", + "31235 0\n", + "31236 0\n", + "31237 1\n", + "31238 0\n", + "31239 0\n", + "31240 0\n", + "31241 0\n", + "31242 0\n", + "31243 0\n", + "31244 0\n", + "31245 0\n", + "31246 0\n", + "31247 1\n", + "31248 0\n", + "31249 1\n", + "31250 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "31251 0\n", + "31252 0\n", + "31253 1\n", + "31254 0\n", + "31255 0\n", + "31256 0\n", + "31257 0\n", + "31258 0\n", + "31259 1\n", + "31260 0\n", + "31261 0\n", + "31262 0\n", + "31263 0\n", + "31264 0\n", + "31265 0\n", + "31266 0\n", + "31267 1\n", + "31268 0\n", + "31269 0\n", + "31270 0\n", + "31271 1\n", + "31272 0\n", + "31273 0\n", + "31274 0\n", + "31275 0\n", + "31276 0\n", + "31277 1\n", + "31278 0\n", + "31279 0\n", + "31280 0\n", + "31281 0\n", + "31282 0\n", + "31283 0\n", + "31284 0\n", + "31285 0\n", + "31286 0\n", + "31287 0\n", + "31288 0\n", + "31289 0\n", + "31290 0\n", + "31291 0\n", + "31292 0\n", + "31293 0\n", + "31294 0\n", + "31295 0\n", + "31296 0\n", + "31297 0\n", + "31298 0\n", + "31299 0\n", + "31300 0\n", + "31301 0\n", + "31302 0\n", + "31303 0\n", + "31304 0\n", + "31305 0\n", + "31306 0\n", + "31307 1\n", + "31308 0\n", + "31309 0\n", + "31310 0\n", + "31311 0\n", + "31312 0\n", + "31313 0\n", + "31314 0\n", + "31315 0\n", + "31316 0\n", + "31317 0\n", + "31318 0\n", + "31319 1\n", + "31320 0\n", + "31321 1\n", + "31322 0\n", + "31323 0\n", + "31324 0\n", + "31325 0\n", + "31326 0\n", + "31327 1\n", + "31328 0\n", + "31329 0\n", + "31330 0\n", + "31331 0\n", + "31332 0\n", + "31333 1\n", + "31334 0\n", + "31335 0\n", + "31336 0\n", + "31337 1\n", + "31338 0\n", + "31339 0\n", + "31340 0\n", + "31341 0\n", + "31342 0\n", + "31343 0\n", + "31344 0\n", + "31345 0\n", + "31346 0\n", + "31347 0\n", + "31348 0\n", + "31349 0\n", + "31350 0\n", + "31351 0\n", + "31352 0\n", + "31353 0\n", + "31354 0\n", + "31355 0\n", + "31356 0\n", + "31357 1\n", + "31358 0\n", + "31359 0\n", + "31360 0\n", + "31361 0\n", + "31362 0\n", + "31363 0\n", + "31364 0\n", + "31365 0\n", + "31366 0\n", + "31367 0\n", + "31368 0\n", + "31369 0\n", + "31370 0\n", + "31371 0\n", + "31372 0\n", + "31373 0\n", + "31374 0\n", + "31375 0\n", + "31376 0\n", + "31377 0\n", + "31378 0\n", + "31379 1\n", + "31380 0\n", + "31381 0\n", + "31382 0\n", + "31383 0\n", + "31384 0\n", + "31385 0\n", + "31386 0\n", + "31387 1\n", + "31388 0\n", + "31389 0\n", + "31390 0\n", + "31391 1\n", + "31392 0\n", + "31393 1\n", + "31394 0\n", + "31395 0\n", + "31396 0\n", + "31397 1\n", + "31398 0\n", + "31399 0\n", + "31400 0\n", + "31401 0\n", + "31402 0\n", + "31403 0\n", + "31404 0\n", + "31405 0\n", + "31406 0\n", + "31407 0\n", + "31408 0\n", + "31409 0\n", + "31410 0\n", + "31411 0\n", + "31412 0\n", + "31413 0\n", + "31414 0\n", + "31415 0\n", + "31416 0\n", + "31417 0\n", + "31418 0\n", + "31419 0\n", + "31420 0\n", + "31421 0\n", + "31422 0\n", + "31423 0\n", + "31424 0\n", + "31425 0\n", + "31426 0\n", + "31427 0\n", + "31428 0\n", + "31429 0\n", + "31430 0\n", + "31431 0\n", + "31432 0\n", + "31433 0\n", + "31434 0\n", + "31435 0\n", + "31436 0\n", + "31437 0\n", + "31438 0\n", + "31439 0\n", + "31440 0\n", + "31441 0\n", + "31442 0\n", + "31443 0\n", + "31444 0\n", + "31445 0\n", + "31446 0\n", + "31447 0\n", + "31448 0\n", + "31449 0\n", + "31450 0\n", + "31451 0\n", + "31452 0\n", + "31453 0\n", + "31454 0\n", + "31455 0\n", + "31456 0\n", + "31457 0\n", + "31458 0\n", + "31459 0\n", + "31460 0\n", + "31461 0\n", + "31462 0\n", + "31463 0\n", + "31464 0\n", + "31465 0\n", + "31466 0\n", + "31467 0\n", + "31468 0\n", + "31469 1\n", + "31470 0\n", + "31471 0\n", + "31472 0\n", + "31473 0\n", + "31474 0\n", + "31475 0\n", + "31476 0\n", + "31477 1\n", + "31478 0\n", + "31479 0\n", + "31480 0\n", + "31481 1\n", + "31482 0\n", + "31483 0\n", + "31484 0\n", + "31485 0\n", + "31486 0\n", + "31487 0\n", + "31488 0\n", + "31489 1\n", + "31490 0\n", + "31491 0\n", + "31492 0\n", + "31493 0\n", + "31494 0\n", + "31495 0\n", + "31496 0\n", + "31497 0\n", + "31498 0\n", + "31499 0\n", + "31500 0\n", + "31501 0\n", + "31502 0\n", + "31503 0\n", + "31504 0\n", + "31505 0\n", + "31506 0\n", + "31507 0\n", + "31508 0\n", + "31509 0\n", + "31510 0\n", + "31511 1\n", + "31512 0\n", + "31513 1\n", + "31514 0\n", + "31515 0\n", + "31516 0\n", + "31517 1\n", + "31518 0\n", + "31519 0\n", + "31520 0\n", + "31521 0\n", + "31522 0\n", + "31523 0\n", + "31524 0\n", + "31525 0\n", + "31526 0\n", + "31527 0\n", + "31528 0\n", + "31529 0\n", + "31530 0\n", + "31531 1\n", + "31532 0\n", + "31533 0\n", + "31534 0\n", + "31535 0\n", + "31536 0\n", + "31537 0\n", + "31538 0\n", + "31539 0\n", + "31540 0\n", + "31541 1\n", + "31542 0\n", + "31543 1\n", + "31544 0\n", + "31545 0\n", + "31546 0\n", + "31547 1\n", + "31548 0\n", + "31549 0\n", + "31550 0\n", + "31551 0\n", + "31552 0\n", + "31553 0\n", + "31554 0\n", + "31555 0\n", + "31556 0\n", + "31557 0\n", + "31558 0\n", + "31559 0\n", + "31560 0\n", + "31561 0\n", + "31562 0\n", + "31563 0\n", + "31564 0\n", + "31565 0\n", + "31566 0\n", + "31567 1\n", + "31568 0\n", + "31569 0\n", + "31570 0\n", + "31571 0\n", + "31572 0\n", + "31573 1\n", + "31574 0\n", + "31575 0\n", + "31576 0\n", + "31577 0\n", + "31578 0\n", + "31579 0\n", + "31580 0\n", + "31581 0\n", + "31582 0\n", + "31583 1\n", + "31584 0\n", + "31585 0\n", + "31586 0\n", + "31587 0\n", + "31588 0\n", + "31589 0\n", + "31590 0\n", + "31591 0\n", + "31592 0\n", + "31593 0\n", + "31594 0\n", + "31595 0\n", + "31596 0\n", + "31597 0\n", + "31598 0\n", + "31599 0\n", + "31600 0\n", + "31601 1\n", + "31602 0\n", + "31603 0\n", + "31604 0\n", + "31605 0\n", + "31606 0\n", + "31607 1\n", + "31608 0\n", + "31609 0\n", + "31610 0\n", + "31611 0\n", + "31612 0\n", + "31613 0\n", + "31614 0\n", + "31615 0\n", + "31616 0\n", + "31617 0\n", + "31618 0\n", + "31619 0\n", + "31620 0\n", + "31621 0\n", + "31622 0\n", + "31623 0\n", + "31624 0\n", + "31625 0\n", + "31626 0\n", + "31627 1\n", + "31628 0\n", + "31629 0\n", + "31630 0\n", + "31631 0\n", + "31632 0\n", + "31633 0\n", + "31634 0\n", + "31635 0\n", + "31636 0\n", + "31637 0\n", + "31638 0\n", + "31639 0\n", + "31640 0\n", + "31641 0\n", + "31642 0\n", + "31643 1\n", + "31644 0\n", + "31645 0\n", + "31646 0\n", + "31647 0\n", + "31648 0\n", + "31649 1\n", + "31650 0\n", + "31651 0\n", + "31652 0\n", + "31653 0\n", + "31654 0\n", + "31655 0\n", + "31656 0\n", + "31657 1\n", + "31658 0\n", + "31659 0\n", + "31660 0\n", + "31661 0\n", + "31662 0\n", + "31663 1\n", + "31664 0\n", + "31665 0\n", + "31666 0\n", + "31667 1\n", + "31668 0\n", + "31669 0\n", + "31670 0\n", + "31671 0\n", + "31672 0\n", + "31673 0\n", + "31674 0\n", + "31675 0\n", + "31676 0\n", + "31677 0\n", + "31678 0\n", + "31679 0\n", + "31680 0\n", + "31681 0\n", + "31682 0\n", + "31683 0\n", + "31684 0\n", + "31685 0\n", + "31686 0\n", + "31687 1\n", + "31688 0\n", + "31689 0\n", + "31690 0\n", + "31691 0\n", + "31692 0\n", + "31693 0\n", + "31694 0\n", + "31695 0\n", + "31696 0\n", + "31697 0\n", + "31698 0\n", + "31699 1\n", + "31700 0\n", + "31701 0\n", + "31702 0\n", + "31703 0\n", + "31704 0\n", + "31705 0\n", + "31706 0\n", + "31707 0\n", + "31708 0\n", + "31709 0\n", + "31710 0\n", + "31711 0\n", + "31712 0\n", + "31713 0\n", + "31714 0\n", + "31715 0\n", + "31716 0\n", + "31717 0\n", + "31718 0\n", + "31719 0\n", + "31720 0\n", + "31721 1\n", + "31722 0\n", + "31723 1\n", + "31724 0\n", + "31725 0\n", + "31726 0\n", + "31727 1\n", + "31728 0\n", + "31729 1\n", + "31730 0\n", + "31731 0\n", + "31732 0\n", + "31733 0\n", + "31734 0\n", + "31735 0\n", + "31736 0\n", + "31737 0\n", + "31738 0\n", + "31739 0\n", + "31740 0\n", + "31741 1\n", + "31742 0\n", + "31743 0\n", + "31744 0\n", + "31745 0\n", + "31746 0\n", + "31747 0\n", + "31748 0\n", + "31749 0\n", + "31750 0\n", + "31751 1\n", + "31752 0\n", + "31753 0\n", + "31754 0\n", + "31755 0\n", + "31756 0\n", + "31757 0\n", + "31758 0\n", + "31759 0\n", + "31760 0\n", + "31761 0\n", + "31762 0\n", + "31763 0\n", + "31764 0\n", + "31765 0\n", + "31766 0\n", + "31767 0\n", + "31768 0\n", + "31769 1\n", + "31770 0\n", + "31771 1\n", + "31772 0\n", + "31773 0\n", + "31774 0\n", + "31775 0\n", + "31776 0\n", + "31777 0\n", + "31778 0\n", + "31779 0\n", + "31780 0\n", + "31781 0\n", + "31782 0\n", + "31783 0\n", + "31784 0\n", + "31785 0\n", + "31786 0\n", + "31787 0\n", + "31788 0\n", + "31789 0\n", + "31790 0\n", + "31791 0\n", + "31792 0\n", + "31793 1\n", + "31794 0\n", + "31795 0\n", + "31796 0\n", + "31797 0\n", + "31798 0\n", + "31799 1\n", + "31800 0\n", + "31801 0\n", + "31802 0\n", + "31803 0\n", + "31804 0\n", + "31805 0\n", + "31806 0\n", + "31807 0\n", + "31808 0\n", + "31809 0\n", + "31810 0\n", + "31811 0\n", + "31812 0\n", + "31813 0\n", + "31814 0\n", + "31815 0\n", + "31816 0\n", + "31817 1\n", + "31818 0\n", + "31819 0\n", + "31820 0\n", + "31821 0\n", + "31822 0\n", + "31823 0\n", + "31824 0\n", + "31825 0\n", + "31826 0\n", + "31827 0\n", + "31828 0\n", + "31829 0\n", + "31830 0\n", + "31831 0\n", + "31832 0\n", + "31833 0\n", + "31834 0\n", + "31835 0\n", + "31836 0\n", + "31837 0\n", + "31838 0\n", + "31839 0\n", + "31840 0\n", + "31841 0\n", + "31842 0\n", + "31843 0\n", + "31844 0\n", + "31845 0\n", + "31846 0\n", + "31847 1\n", + "31848 0\n", + "31849 1\n", + "31850 0\n", + "31851 0\n", + "31852 0\n", + "31853 0\n", + "31854 0\n", + "31855 0\n", + "31856 0\n", + "31857 0\n", + "31858 0\n", + "31859 1\n", + "31860 0\n", + "31861 0\n", + "31862 0\n", + "31863 0\n", + "31864 0\n", + "31865 0\n", + "31866 0\n", + "31867 0\n", + "31868 0\n", + "31869 0\n", + "31870 0\n", + "31871 0\n", + "31872 0\n", + "31873 1\n", + "31874 0\n", + "31875 0\n", + "31876 0\n", + "31877 0\n", + "31878 0\n", + "31879 0\n", + "31880 0\n", + "31881 0\n", + "31882 0\n", + "31883 1\n", + "31884 0\n", + "31885 0\n", + "31886 0\n", + "31887 0\n", + "31888 0\n", + "31889 0\n", + "31890 0\n", + "31891 1\n", + "31892 0\n", + "31893 0\n", + "31894 0\n", + "31895 0\n", + "31896 0\n", + "31897 0\n", + "31898 0\n", + "31899 0\n", + "31900 0\n", + "31901 0\n", + "31902 0\n", + "31903 0\n", + "31904 0\n", + "31905 0\n", + "31906 0\n", + "31907 1\n", + "31908 0\n", + "31909 0\n", + "31910 0\n", + "31911 0\n", + "31912 0\n", + "31913 0\n", + "31914 0\n", + "31915 0\n", + "31916 0\n", + "31917 0\n", + "31918 0\n", + "31919 0\n", + "31920 0\n", + "31921 0\n", + "31922 0\n", + "31923 0\n", + "31924 0\n", + "31925 0\n", + "31926 0\n", + "31927 0\n", + "31928 0\n", + "31929 0\n", + "31930 0\n", + "31931 0\n", + "31932 0\n", + "31933 0\n", + "31934 0\n", + "31935 0\n", + "31936 0\n", + "31937 0\n", + "31938 0\n", + "31939 0\n", + "31940 0\n", + "31941 0\n", + "31942 0\n", + "31943 0\n", + "31944 0\n", + "31945 0\n", + "31946 0\n", + "31947 0\n", + "31948 0\n", + "31949 0\n", + "31950 0\n", + "31951 0\n", + "31952 0\n", + "31953 0\n", + "31954 0\n", + "31955 0\n", + "31956 0\n", + "31957 1\n", + "31958 0\n", + "31959 0\n", + "31960 0\n", + "31961 0\n", + "31962 0\n", + "31963 1\n", + "31964 0\n", + "31965 0\n", + "31966 0\n", + "31967 0\n", + "31968 0\n", + "31969 0\n", + "31970 0\n", + "31971 0\n", + "31972 0\n", + "31973 1\n", + "31974 0\n", + "31975 0\n", + "31976 0\n", + "31977 0\n", + "31978 0\n", + "31979 0\n", + "31980 0\n", + "31981 1\n", + "31982 0\n", + "31983 0\n", + "31984 0\n", + "31985 0\n", + "31986 0\n", + "31987 0\n", + "31988 0\n", + "31989 0\n", + "31990 0\n", + "31991 1\n", + "31992 0\n", + "31993 0\n", + "31994 0\n", + "31995 0\n", + "31996 0\n", + "31997 0\n", + "31998 0\n", + "31999 0\n", + "32000 0\n", + "32001 0\n", + "32002 0\n", + "32003 1\n", + "32004 0\n", + "32005 0\n", + "32006 0\n", + "32007 0\n", + "32008 0\n", + "32009 1\n", + "32010 0\n", + "32011 0\n", + "32012 0\n", + "32013 0\n", + "32014 0\n", + "32015 0\n", + "32016 0\n", + "32017 0\n", + "32018 0\n", + "32019 0\n", + "32020 0\n", + "32021 0\n", + "32022 0\n", + "32023 0\n", + "32024 0\n", + "32025 0\n", + "32026 0\n", + "32027 1\n", + "32028 0\n", + "32029 1\n", + "32030 0\n", + "32031 0\n", + "32032 0\n", + "32033 0\n", + "32034 0\n", + "32035 0\n", + "32036 0\n", + "32037 0\n", + "32038 0\n", + "32039 0\n", + "32040 0\n", + "32041 0\n", + "32042 0\n", + "32043 0\n", + "32044 0\n", + "32045 0\n", + "32046 0\n", + "32047 0\n", + "32048 0\n", + "32049 0\n", + "32050 0\n", + "32051 1\n", + "32052 0\n", + "32053 0\n", + "32054 0\n", + "32055 0\n", + "32056 0\n", + "32057 1\n", + "32058 0\n", + "32059 1\n", + "32060 0\n", + "32061 0\n", + "32062 0\n", + "32063 1\n", + "32064 0\n", + "32065 0\n", + "32066 0\n", + "32067 0\n", + "32068 0\n", + "32069 1\n", + "32070 0\n", + "32071 0\n", + "32072 0\n", + "32073 0\n", + "32074 0\n", + "32075 0\n", + "32076 0\n", + "32077 1\n", + "32078 0\n", + "32079 0\n", + "32080 0\n", + "32081 0\n", + "32082 0\n", + "32083 1\n", + "32084 0\n", + "32085 0\n", + "32086 0\n", + "32087 0\n", + "32088 0\n", + "32089 1\n", + "32090 0\n", + "32091 0\n", + "32092 0\n", + "32093 0\n", + "32094 0\n", + "32095 0\n", + "32096 0\n", + "32097 0\n", + "32098 0\n", + "32099 1\n", + "32100 0\n", + "32101 0\n", + "32102 0\n", + "32103 0\n", + "32104 0\n", + "32105 0\n", + "32106 0\n", + "32107 0\n", + "32108 0\n", + "32109 0\n", + "32110 0\n", + "32111 0\n", + "32112 0\n", + "32113 0\n", + "32114 0\n", + "32115 0\n", + "32116 0\n", + "32117 1\n", + "32118 0\n", + "32119 1\n", + "32120 0\n", + "32121 0\n", + "32122 0\n", + "32123 0\n", + "32124 0\n", + "32125 0\n", + "32126 0\n", + "32127 0\n", + "32128 0\n", + "32129 0\n", + "32130 0\n", + "32131 0\n", + "32132 0\n", + "32133 0\n", + "32134 0\n", + "32135 0\n", + "32136 0\n", + "32137 0\n", + "32138 0\n", + "32139 0\n", + "32140 0\n", + "32141 1\n", + "32142 0\n", + "32143 1\n", + "32144 0\n", + "32145 0\n", + "32146 0\n", + "32147 0\n", + "32148 0\n", + "32149 0\n", + "32150 0\n", + "32151 0\n", + "32152 0\n", + "32153 0\n", + "32154 0\n", + "32155 0\n", + "32156 0\n", + "32157 0\n", + "32158 0\n", + "32159 1\n", + "32160 0\n", + "32161 0\n", + "32162 0\n", + "32163 0\n", + "32164 0\n", + "32165 0\n", + "32166 0\n", + "32167 0\n", + "32168 0\n", + "32169 0\n", + "32170 0\n", + "32171 0\n", + "32172 0\n", + "32173 1\n", + "32174 0\n", + "32175 0\n", + "32176 0\n", + "32177 0\n", + "32178 0\n", + "32179 0\n", + "32180 0\n", + "32181 0\n", + "32182 0\n", + "32183 1\n", + "32184 0\n", + "32185 0\n", + "32186 0\n", + "32187 0\n", + "32188 0\n", + "32189 1\n", + "32190 0\n", + "32191 1\n", + "32192 0\n", + "32193 0\n", + "32194 0\n", + "32195 0\n", + "32196 0\n", + "32197 0\n", + "32198 0\n", + "32199 0\n", + "32200 0\n", + "32201 0\n", + "32202 0\n", + "32203 1\n", + "32204 0\n", + "32205 0\n", + "32206 0\n", + "32207 0\n", + "32208 0\n", + "32209 0\n", + "32210 0\n", + "32211 0\n", + "32212 0\n", + "32213 1\n", + "32214 0\n", + "32215 0\n", + "32216 0\n", + "32217 0\n", + "32218 0\n", + "32219 0\n", + "32220 0\n", + "32221 0\n", + "32222 0\n", + "32223 0\n", + "32224 0\n", + "32225 0\n", + "32226 0\n", + "32227 0\n", + "32228 0\n", + "32229 0\n", + "32230 0\n", + "32231 0\n", + "32232 0\n", + "32233 1\n", + "32234 0\n", + "32235 0\n", + "32236 0\n", + "32237 1\n", + "32238 0\n", + "32239 0\n", + "32240 0\n", + "32241 0\n", + "32242 0\n", + "32243 0\n", + "32244 0\n", + "32245 0\n", + "32246 0\n", + "32247 0\n", + "32248 0\n", + "32249 0\n", + "32250 0\n", + "32251 1\n", + "32252 0\n", + "32253 0\n", + "32254 0\n", + "32255 0\n", + "32256 0\n", + "32257 1\n", + "32258 0\n", + "32259 0\n", + "32260 0\n", + "32261 1\n", + "32262 0\n", + "32263 0\n", + "32264 0\n", + "32265 0\n", + "32266 0\n", + "32267 0\n", + "32268 0\n", + "32269 0\n", + "32270 0\n", + "32271 0\n", + "32272 0\n", + "32273 0\n", + "32274 0\n", + "32275 0\n", + "32276 0\n", + "32277 0\n", + "32278 0\n", + "32279 0\n", + "32280 0\n", + "32281 0\n", + "32282 0\n", + "32283 0\n", + "32284 0\n", + "32285 0\n", + "32286 0\n", + "32287 0\n", + "32288 0\n", + "32289 0\n", + "32290 0\n", + "32291 0\n", + "32292 0\n", + "32293 0\n", + "32294 0\n", + "32295 0\n", + "32296 0\n", + "32297 1\n", + "32298 0\n", + "32299 1\n", + "32300 0\n", + "32301 0\n", + "32302 0\n", + "32303 1\n", + "32304 0\n", + "32305 0\n", + "32306 0\n", + "32307 0\n", + "32308 0\n", + "32309 1\n", + "32310 0\n", + "32311 0\n", + "32312 0\n", + "32313 0\n", + "32314 0\n", + "32315 0\n", + "32316 0\n", + "32317 0\n", + "32318 0\n", + "32319 0\n", + "32320 0\n", + "32321 1\n", + "32322 0\n", + "32323 1\n", + "32324 0\n", + "32325 0\n", + "32326 0\n", + "32327 1\n", + "32328 0\n", + "32329 0\n", + "32330 0\n", + "32331 0\n", + "32332 0\n", + "32333 0\n", + "32334 0\n", + "32335 0\n", + "32336 0\n", + "32337 0\n", + "32338 0\n", + "32339 0\n", + "32340 0\n", + "32341 1\n", + "32342 0\n", + "32343 0\n", + "32344 0\n", + "32345 0\n", + "32346 0\n", + "32347 0\n", + "32348 0\n", + "32349 0\n", + "32350 0\n", + "32351 0\n", + "32352 0\n", + "32353 1\n", + "32354 0\n", + "32355 0\n", + "32356 0\n", + "32357 0\n", + "32358 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "32359 1\n", + "32360 0\n", + "32361 0\n", + "32362 0\n", + "32363 1\n", + "32364 0\n", + "32365 0\n", + "32366 0\n", + "32367 0\n", + "32368 0\n", + "32369 1\n", + "32370 0\n", + "32371 1\n", + "32372 0\n", + "32373 0\n", + "32374 0\n", + "32375 0\n", + "32376 0\n", + "32377 1\n", + "32378 0\n", + "32379 0\n", + "32380 0\n", + "32381 1\n", + "32382 0\n", + "32383 0\n", + "32384 0\n", + "32385 0\n", + "32386 0\n", + "32387 0\n", + "32388 0\n", + "32389 0\n", + "32390 0\n", + "32391 0\n", + "32392 0\n", + "32393 0\n", + "32394 0\n", + "32395 0\n", + "32396 0\n", + "32397 0\n", + "32398 0\n", + "32399 0\n", + "32400 0\n", + "32401 1\n", + "32402 0\n", + "32403 0\n", + "32404 0\n", + "32405 0\n", + "32406 0\n", + "32407 0\n", + "32408 0\n", + "32409 0\n", + "32410 0\n", + "32411 1\n", + "32412 0\n", + "32413 1\n", + "32414 0\n", + "32415 0\n", + "32416 0\n", + "32417 0\n", + "32418 0\n", + "32419 0\n", + "32420 0\n", + "32421 0\n", + "32422 0\n", + "32423 1\n", + "32424 0\n", + "32425 0\n", + "32426 0\n", + "32427 0\n", + "32428 0\n", + "32429 1\n", + "32430 0\n", + "32431 0\n", + "32432 0\n", + "32433 0\n", + "32434 0\n", + "32435 0\n", + "32436 0\n", + "32437 0\n", + "32438 0\n", + "32439 0\n", + "32440 0\n", + "32441 1\n", + "32442 0\n", + "32443 1\n", + "32444 0\n", + "32445 0\n", + "32446 0\n", + "32447 0\n", + "32448 0\n", + "32449 0\n", + "32450 0\n", + "32451 0\n", + "32452 0\n", + "32453 0\n", + "32454 0\n", + "32455 0\n", + "32456 0\n", + "32457 0\n", + "32458 0\n", + "32459 0\n", + "32460 0\n", + "32461 0\n", + "32462 0\n", + "32463 0\n", + "32464 0\n", + "32465 0\n", + "32466 0\n", + "32467 1\n", + "32468 0\n", + "32469 0\n", + "32470 0\n", + "32471 0\n", + "32472 0\n", + "32473 0\n", + "32474 0\n", + "32475 0\n", + "32476 0\n", + "32477 0\n", + "32478 0\n", + "32479 1\n", + "32480 0\n", + "32481 0\n", + "32482 0\n", + "32483 0\n", + "32484 0\n", + "32485 0\n", + "32486 0\n", + "32487 0\n", + "32488 0\n", + "32489 0\n", + "32490 0\n", + "32491 1\n", + "32492 0\n", + "32493 0\n", + "32494 0\n", + "32495 0\n", + "32496 0\n", + "32497 1\n", + "32498 0\n", + "32499 0\n", + "32500 0\n", + "32501 0\n", + "32502 0\n", + "32503 1\n", + "32504 0\n", + "32505 0\n", + "32506 0\n", + "32507 1\n", + "32508 0\n", + "32509 0\n", + "32510 0\n", + "32511 0\n", + "32512 0\n", + "32513 0\n", + "32514 0\n", + "32515 0\n", + "32516 0\n", + "32517 0\n", + "32518 0\n", + "32519 0\n", + "32520 0\n", + "32521 0\n", + "32522 0\n", + "32523 0\n", + "32524 0\n", + "32525 0\n", + "32526 0\n", + "32527 0\n", + "32528 0\n", + "32529 0\n", + "32530 0\n", + "32531 1\n", + "32532 0\n", + "32533 1\n", + "32534 0\n", + "32535 0\n", + "32536 0\n", + "32537 1\n", + "32538 0\n", + "32539 0\n", + "32540 0\n", + "32541 0\n", + "32542 0\n", + "32543 0\n", + "32544 0\n", + "32545 0\n", + "32546 0\n", + "32547 0\n", + "32548 0\n", + "32549 0\n", + "32550 0\n", + "32551 0\n", + "32552 0\n", + "32553 0\n", + "32554 0\n", + "32555 0\n", + "32556 0\n", + "32557 0\n", + "32558 0\n", + "32559 0\n", + "32560 0\n", + "32561 1\n", + "32562 0\n", + "32563 1\n", + "32564 0\n", + "32565 0\n", + "32566 0\n", + "32567 0\n", + "32568 0\n", + "32569 1\n", + "32570 0\n", + "32571 0\n", + "32572 0\n", + "32573 1\n", + "32574 0\n", + "32575 0\n", + "32576 0\n", + "32577 0\n", + "32578 0\n", + "32579 1\n", + "32580 0\n", + "32581 0\n", + "32582 0\n", + "32583 0\n", + "32584 0\n", + "32585 0\n", + "32586 0\n", + "32587 1\n", + "32588 0\n", + "32589 0\n", + "32590 0\n", + "32591 0\n", + "32592 0\n", + "32593 0\n", + "32594 0\n", + "32595 0\n", + "32596 0\n", + "32597 0\n", + "32598 0\n", + "32599 0\n", + "32600 0\n", + "32601 0\n", + "32602 0\n", + "32603 1\n", + "32604 0\n", + "32605 0\n", + "32606 0\n", + "32607 0\n", + "32608 0\n", + "32609 1\n", + "32610 0\n", + "32611 1\n", + "32612 0\n", + "32613 0\n", + "32614 0\n", + "32615 0\n", + "32616 0\n", + "32617 0\n", + "32618 0\n", + "32619 0\n", + "32620 0\n", + "32621 1\n", + "32622 0\n", + "32623 0\n", + "32624 0\n", + "32625 0\n", + "32626 0\n", + "32627 0\n", + "32628 0\n", + "32629 0\n", + "32630 0\n", + "32631 0\n", + "32632 0\n", + "32633 1\n", + "32634 0\n", + "32635 0\n", + "32636 0\n", + "32637 0\n", + "32638 0\n", + "32639 0\n", + "32640 0\n", + "32641 0\n", + "32642 0\n", + "32643 0\n", + "32644 0\n", + "32645 0\n", + "32646 0\n", + "32647 1\n", + "32648 0\n", + "32649 0\n", + "32650 0\n", + "32651 0\n", + "32652 0\n", + "32653 1\n", + "32654 0\n", + "32655 0\n", + "32656 0\n", + "32657 0\n", + "32658 0\n", + "32659 0\n", + "32660 0\n", + "32661 0\n", + "32662 0\n", + "32663 0\n", + "32664 0\n", + "32665 0\n", + "32666 0\n", + "32667 0\n", + "32668 0\n", + "32669 0\n", + "32670 0\n", + "32671 0\n", + "32672 0\n", + "32673 0\n", + "32674 0\n", + "32675 0\n", + "32676 0\n", + "32677 0\n", + "32678 0\n", + "32679 0\n", + "32680 0\n", + "32681 0\n", + "32682 0\n", + "32683 0\n", + "32684 0\n", + "32685 0\n", + "32686 0\n", + "32687 1\n", + "32688 0\n", + "32689 0\n", + "32690 0\n", + "32691 0\n", + "32692 0\n", + "32693 1\n", + "32694 0\n", + "32695 0\n", + "32696 0\n", + "32697 0\n", + "32698 0\n", + "32699 0\n", + "32700 0\n", + "32701 0\n", + "32702 0\n", + "32703 0\n", + "32704 0\n", + "32705 0\n", + "32706 0\n", + "32707 1\n", + "32708 0\n", + "32709 0\n", + "32710 0\n", + "32711 0\n", + "32712 0\n", + "32713 1\n", + "32714 0\n", + "32715 0\n", + "32716 0\n", + "32717 1\n", + "32718 0\n", + "32719 1\n", + "32720 0\n", + "32721 0\n", + "32722 0\n", + "32723 0\n", + "32724 0\n", + "32725 0\n", + "32726 0\n", + "32727 0\n", + "32728 0\n", + "32729 0\n", + "32730 0\n", + "32731 0\n", + "32732 0\n", + "32733 0\n", + "32734 0\n", + "32735 0\n", + "32736 0\n", + "32737 0\n", + "32738 0\n", + "32739 0\n", + "32740 0\n", + "32741 0\n", + "32742 0\n", + "32743 0\n", + "32744 0\n", + "32745 0\n", + "32746 0\n", + "32747 0\n", + "32748 0\n", + "32749 1\n", + "32750 0\n", + "32751 0\n", + "32752 0\n", + "32753 0\n", + "32754 0\n", + "32755 0\n", + "32756 0\n", + "32757 0\n", + "32758 0\n", + "32759 0\n", + "32760 0\n", + "32761 0\n", + "32762 0\n", + "32763 0\n", + "32764 0\n", + "32765 0\n", + "32766 0\n", + "32767 0\n", + "32768 0\n", + "32769 0\n", + "32770 0\n", + "32771 1\n", + "32772 0\n", + "32773 0\n", + "32774 0\n", + "32775 0\n", + "32776 0\n", + "32777 0\n", + "32778 0\n", + "32779 1\n", + "32780 0\n", + "32781 0\n", + "32782 0\n", + "32783 1\n", + "32784 0\n", + "32785 0\n", + "32786 0\n", + "32787 0\n", + "32788 0\n", + "32789 1\n", + "32790 0\n", + "32791 0\n", + "32792 0\n", + "32793 0\n", + "32794 0\n", + "32795 0\n", + "32796 0\n", + "32797 1\n", + "32798 0\n", + "32799 0\n", + "32800 0\n", + "32801 1\n", + "32802 0\n", + "32803 1\n", + "32804 0\n", + "32805 0\n", + "32806 0\n", + "32807 0\n", + "32808 0\n", + "32809 0\n", + "32810 0\n", + "32811 0\n", + "32812 0\n", + "32813 0\n", + "32814 0\n", + "32815 0\n", + "32816 0\n", + "32817 0\n", + "32818 0\n", + "32819 0\n", + "32820 0\n", + "32821 0\n", + "32822 0\n", + "32823 0\n", + "32824 0\n", + "32825 0\n", + "32826 0\n", + "32827 0\n", + "32828 0\n", + "32829 0\n", + "32830 0\n", + "32831 1\n", + "32832 0\n", + "32833 1\n", + "32834 0\n", + "32835 0\n", + "32836 0\n", + "32837 0\n", + "32838 0\n", + "32839 1\n", + "32840 0\n", + "32841 0\n", + "32842 0\n", + "32843 1\n", + "32844 0\n", + "32845 0\n", + "32846 0\n", + "32847 0\n", + "32848 0\n", + "32849 0\n", + "32850 0\n", + "32851 0\n", + "32852 0\n", + "32853 0\n", + "32854 0\n", + "32855 0\n", + "32856 0\n", + "32857 0\n", + "32858 0\n", + "32859 0\n", + "32860 0\n", + "32861 0\n", + "32862 0\n", + "32863 0\n", + "32864 0\n", + "32865 0\n", + "32866 0\n", + "32867 0\n", + "32868 0\n", + "32869 1\n", + "32870 0\n", + "32871 0\n", + "32872 0\n", + "32873 0\n", + "32874 0\n", + "32875 0\n", + "32876 0\n", + "32877 0\n", + "32878 0\n", + "32879 0\n", + "32880 0\n", + "32881 0\n", + "32882 0\n", + "32883 0\n", + "32884 0\n", + "32885 0\n", + "32886 0\n", + "32887 1\n", + "32888 0\n", + "32889 0\n", + "32890 0\n", + "32891 0\n", + "32892 0\n", + "32893 0\n", + "32894 0\n", + "32895 0\n", + "32896 0\n", + "32897 0\n", + "32898 0\n", + "32899 0\n", + "32900 0\n", + "32901 0\n", + "32902 0\n", + "32903 0\n", + "32904 0\n", + "32905 0\n", + "32906 0\n", + "32907 0\n", + "32908 0\n", + "32909 1\n", + "32910 0\n", + "32911 1\n", + "32912 0\n", + "32913 0\n", + "32914 0\n", + "32915 0\n", + "32916 0\n", + "32917 1\n", + "32918 0\n", + "32919 0\n", + "32920 0\n", + "32921 0\n", + "32922 0\n", + "32923 0\n", + "32924 0\n", + "32925 0\n", + "32926 0\n", + "32927 0\n", + "32928 0\n", + "32929 0\n", + "32930 0\n", + "32931 0\n", + "32932 0\n", + "32933 1\n", + "32934 0\n", + "32935 0\n", + "32936 0\n", + "32937 0\n", + "32938 0\n", + "32939 1\n", + "32940 0\n", + "32941 1\n", + "32942 0\n", + "32943 0\n", + "32944 0\n", + "32945 0\n", + "32946 0\n", + "32947 0\n", + "32948 0\n", + "32949 0\n", + "32950 0\n", + "32951 0\n", + "32952 0\n", + "32953 0\n", + "32954 0\n", + "32955 0\n", + "32956 0\n", + "32957 1\n", + "32958 0\n", + "32959 0\n", + "32960 0\n", + "32961 0\n", + "32962 0\n", + "32963 0\n", + "32964 0\n", + "32965 0\n", + "32966 0\n", + "32967 0\n", + "32968 0\n", + "32969 1\n", + "32970 0\n", + "32971 1\n", + "32972 0\n", + "32973 0\n", + "32974 0\n", + "32975 0\n", + "32976 0\n", + "32977 0\n", + "32978 0\n", + "32979 0\n", + "32980 0\n", + "32981 0\n", + "32982 0\n", + "32983 1\n", + "32984 0\n", + "32985 0\n", + "32986 0\n", + "32987 1\n", + "32988 0\n", + "32989 0\n", + "32990 0\n", + "32991 0\n", + "32992 0\n", + "32993 1\n", + "32994 0\n", + "32995 0\n", + "32996 0\n", + "32997 0\n", + "32998 0\n", + "32999 1\n", + "33000 0\n", + "33001 0\n", + "33002 0\n", + "33003 0\n", + "33004 0\n", + "33005 0\n", + "33006 0\n", + "33007 0\n", + "33008 0\n", + "33009 0\n", + "33010 0\n", + "33011 0\n", + "33012 0\n", + "33013 1\n", + "33014 0\n", + "33015 0\n", + "33016 0\n", + "33017 0\n", + "33018 0\n", + "33019 0\n", + "33020 0\n", + "33021 0\n", + "33022 0\n", + "33023 1\n", + "33024 0\n", + "33025 0\n", + "33026 0\n", + "33027 0\n", + "33028 0\n", + "33029 1\n", + "33030 0\n", + "33031 0\n", + "33032 0\n", + "33033 0\n", + "33034 0\n", + "33035 0\n", + "33036 0\n", + "33037 1\n", + "33038 0\n", + "33039 0\n", + "33040 0\n", + "33041 0\n", + "33042 0\n", + "33043 0\n", + "33044 0\n", + "33045 0\n", + "33046 0\n", + "33047 0\n", + "33048 0\n", + "33049 1\n", + "33050 0\n", + "33051 0\n", + "33052 0\n", + "33053 1\n", + "33054 0\n", + "33055 0\n", + "33056 0\n", + "33057 0\n", + "33058 0\n", + "33059 0\n", + "33060 0\n", + "33061 0\n", + "33062 0\n", + "33063 0\n", + "33064 0\n", + "33065 0\n", + "33066 0\n", + "33067 0\n", + "33068 0\n", + "33069 0\n", + "33070 0\n", + "33071 1\n", + "33072 0\n", + "33073 1\n", + "33074 0\n", + "33075 0\n", + "33076 0\n", + "33077 0\n", + "33078 0\n", + "33079 0\n", + "33080 0\n", + "33081 0\n", + "33082 0\n", + "33083 1\n", + "33084 0\n", + "33085 0\n", + "33086 0\n", + "33087 0\n", + "33088 0\n", + "33089 0\n", + "33090 0\n", + "33091 1\n", + "33092 0\n", + "33093 0\n", + "33094 0\n", + "33095 0\n", + "33096 0\n", + "33097 0\n", + "33098 0\n", + "33099 0\n", + "33100 0\n", + "33101 0\n", + "33102 0\n", + "33103 0\n", + "33104 0\n", + "33105 0\n", + "33106 0\n", + "33107 1\n", + "33108 0\n", + "33109 0\n", + "33110 0\n", + "33111 0\n", + "33112 0\n", + "33113 1\n", + "33114 0\n", + "33115 0\n", + "33116 0\n", + "33117 0\n", + "33118 0\n", + "33119 1\n", + "33120 0\n", + "33121 0\n", + "33122 0\n", + "33123 0\n", + "33124 0\n", + "33125 0\n", + "33126 0\n", + "33127 0\n", + "33128 0\n", + "33129 0\n", + "33130 0\n", + "33131 0\n", + "33132 0\n", + "33133 0\n", + "33134 0\n", + "33135 0\n", + "33136 0\n", + "33137 0\n", + "33138 0\n", + "33139 0\n", + "33140 0\n", + "33141 0\n", + "33142 0\n", + "33143 0\n", + "33144 0\n", + "33145 0\n", + "33146 0\n", + "33147 0\n", + "33148 0\n", + "33149 1\n", + "33150 0\n", + "33151 1\n", + "33152 0\n", + "33153 0\n", + "33154 0\n", + "33155 0\n", + "33156 0\n", + "33157 0\n", + "33158 0\n", + "33159 0\n", + "33160 0\n", + "33161 1\n", + "33162 0\n", + "33163 0\n", + "33164 0\n", + "33165 0\n", + "33166 0\n", + "33167 0\n", + "33168 0\n", + "33169 0\n", + "33170 0\n", + "33171 0\n", + "33172 0\n", + "33173 0\n", + "33174 0\n", + "33175 0\n", + "33176 0\n", + "33177 0\n", + "33178 0\n", + "33179 1\n", + "33180 0\n", + "33181 1\n", + "33182 0\n", + "33183 0\n", + "33184 0\n", + "33185 0\n", + "33186 0\n", + "33187 0\n", + "33188 0\n", + "33189 0\n", + "33190 0\n", + "33191 1\n", + "33192 0\n", + "33193 0\n", + "33194 0\n", + "33195 0\n", + "33196 0\n", + "33197 0\n", + "33198 0\n", + "33199 1\n", + "33200 0\n", + "33201 0\n", + "33202 0\n", + "33203 1\n", + "33204 0\n", + "33205 0\n", + "33206 0\n", + "33207 0\n", + "33208 0\n", + "33209 0\n", + "33210 0\n", + "33211 1\n", + "33212 0\n", + "33213 0\n", + "33214 0\n", + "33215 0\n", + "33216 0\n", + "33217 0\n", + "33218 0\n", + "33219 0\n", + "33220 0\n", + "33221 0\n", + "33222 0\n", + "33223 1\n", + "33224 0\n", + "33225 0\n", + "33226 0\n", + "33227 0\n", + "33228 0\n", + "33229 0\n", + "33230 0\n", + "33231 0\n", + "33232 0\n", + "33233 0\n", + "33234 0\n", + "33235 0\n", + "33236 0\n", + "33237 0\n", + "33238 0\n", + "33239 0\n", + "33240 0\n", + "33241 0\n", + "33242 0\n", + "33243 0\n", + "33244 0\n", + "33245 0\n", + "33246 0\n", + "33247 1\n", + "33248 0\n", + "33249 0\n", + "33250 0\n", + "33251 0\n", + "33252 0\n", + "33253 0\n", + "33254 0\n", + "33255 0\n", + "33256 0\n", + "33257 0\n", + "33258 0\n", + "33259 0\n", + "33260 0\n", + "33261 0\n", + "33262 0\n", + "33263 0\n", + "33264 0\n", + "33265 0\n", + "33266 0\n", + "33267 0\n", + "33268 0\n", + "33269 0\n", + "33270 0\n", + "33271 0\n", + "33272 0\n", + "33273 0\n", + "33274 0\n", + "33275 0\n", + "33276 0\n", + "33277 0\n", + "33278 0\n", + "33279 0\n", + "33280 0\n", + "33281 0\n", + "33282 0\n", + "33283 0\n", + "33284 0\n", + "33285 0\n", + "33286 0\n", + "33287 1\n", + "33288 0\n", + "33289 1\n", + "33290 0\n", + "33291 0\n", + "33292 0\n", + "33293 0\n", + "33294 0\n", + "33295 0\n", + "33296 0\n", + "33297 0\n", + "33298 0\n", + "33299 0\n", + "33300 0\n", + "33301 1\n", + "33302 0\n", + "33303 0\n", + "33304 0\n", + "33305 0\n", + "33306 0\n", + "33307 0\n", + "33308 0\n", + "33309 0\n", + "33310 0\n", + "33311 1\n", + "33312 0\n", + "33313 0\n", + "33314 0\n", + "33315 0\n", + "33316 0\n", + "33317 1\n", + "33318 0\n", + "33319 0\n", + "33320 0\n", + "33321 0\n", + "33322 0\n", + "33323 0\n", + "33324 0\n", + "33325 0\n", + "33326 0\n", + "33327 0\n", + "33328 0\n", + "33329 1\n", + "33330 0\n", + "33331 1\n", + "33332 0\n", + "33333 0\n", + "33334 0\n", + "33335 0\n", + "33336 0\n", + "33337 0\n", + "33338 0\n", + "33339 0\n", + "33340 0\n", + "33341 0\n", + "33342 0\n", + "33343 1\n", + "33344 0\n", + "33345 0\n", + "33346 0\n", + "33347 1\n", + "33348 0\n", + "33349 1\n", + "33350 0\n", + "33351 0\n", + "33352 0\n", + "33353 1\n", + "33354 0\n", + "33355 0\n", + "33356 0\n", + "33357 0\n", + "33358 0\n", + "33359 1\n", + "33360 0\n", + "33361 0\n", + "33362 0\n", + "33363 0\n", + "33364 0\n", + "33365 0\n", + "33366 0\n", + "33367 0\n", + "33368 0\n", + "33369 0\n", + "33370 0\n", + "33371 0\n", + "33372 0\n", + "33373 0\n", + "33374 0\n", + "33375 0\n", + "33376 0\n", + "33377 1\n", + "33378 0\n", + "33379 0\n", + "33380 0\n", + "33381 0\n", + "33382 0\n", + "33383 0\n", + "33384 0\n", + "33385 0\n", + "33386 0\n", + "33387 0\n", + "33388 0\n", + "33389 0\n", + "33390 0\n", + "33391 1\n", + "33392 0\n", + "33393 0\n", + "33394 0\n", + "33395 0\n", + "33396 0\n", + "33397 0\n", + "33398 0\n", + "33399 0\n", + "33400 0\n", + "33401 0\n", + "33402 0\n", + "33403 1\n", + "33404 0\n", + "33405 0\n", + "33406 0\n", + "33407 0\n", + "33408 0\n", + "33409 1\n", + "33410 0\n", + "33411 0\n", + "33412 0\n", + "33413 1\n", + "33414 0\n", + "33415 0\n", + "33416 0\n", + "33417 0\n", + "33418 0\n", + "33419 0\n", + "33420 0\n", + "33421 0\n", + "33422 0\n", + "33423 0\n", + "33424 0\n", + "33425 0\n", + "33426 0\n", + "33427 1\n", + "33428 0\n", + "33429 0\n", + "33430 0\n", + "33431 0\n", + "33432 0\n", + "33433 0\n", + "33434 0\n", + "33435 0\n", + "33436 0\n", + "33437 0\n", + "33438 0\n", + "33439 0\n", + "33440 0\n", + "33441 0\n", + "33442 0\n", + "33443 0\n", + "33444 0\n", + "33445 0\n", + "33446 0\n", + "33447 0\n", + "33448 0\n", + "33449 0\n", + "33450 0\n", + "33451 0\n", + "33452 0\n", + "33453 0\n", + "33454 0\n", + "33455 0\n", + "33456 0\n", + "33457 1\n", + "33458 0\n", + "33459 0\n", + "33460 0\n", + "33461 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "33462 0\n", + "33463 0\n", + "33464 0\n", + "33465 0\n", + "33466 0\n", + "33467 0\n", + "33468 0\n", + "33469 1\n", + "33470 0\n", + "33471 0\n", + "33472 0\n", + "33473 0\n", + "33474 0\n", + "33475 0\n", + "33476 0\n", + "33477 0\n", + "33478 0\n", + "33479 1\n", + "33480 0\n", + "33481 0\n", + "33482 0\n", + "33483 0\n", + "33484 0\n", + "33485 0\n", + "33486 0\n", + "33487 1\n", + "33488 0\n", + "33489 0\n", + "33490 0\n", + "33491 0\n", + "33492 0\n", + "33493 1\n", + "33494 0\n", + "33495 0\n", + "33496 0\n", + "33497 0\n", + "33498 0\n", + "33499 0\n", + "33500 0\n", + "33501 0\n", + "33502 0\n", + "33503 1\n", + "33504 0\n", + "33505 0\n", + "33506 0\n", + "33507 0\n", + "33508 0\n", + "33509 0\n", + "33510 0\n", + "33511 0\n", + "33512 0\n", + "33513 0\n", + "33514 0\n", + "33515 0\n", + "33516 0\n", + "33517 0\n", + "33518 0\n", + "33519 0\n", + "33520 0\n", + "33521 1\n", + "33522 0\n", + "33523 0\n", + "33524 0\n", + "33525 0\n", + "33526 0\n", + "33527 0\n", + "33528 0\n", + "33529 1\n", + "33530 0\n", + "33531 0\n", + "33532 0\n", + "33533 1\n", + "33534 0\n", + "33535 0\n", + "33536 0\n", + "33537 0\n", + "33538 0\n", + "33539 0\n", + "33540 0\n", + "33541 0\n", + "33542 0\n", + "33543 0\n", + "33544 0\n", + "33545 0\n", + "33546 0\n", + "33547 1\n", + "33548 0\n", + "33549 0\n", + "33550 0\n", + "33551 0\n", + "33552 0\n", + "33553 0\n", + "33554 0\n", + "33555 0\n", + "33556 0\n", + "33557 0\n", + "33558 0\n", + "33559 0\n", + "33560 0\n", + "33561 0\n", + "33562 0\n", + "33563 1\n", + "33564 0\n", + "33565 0\n", + "33566 0\n", + "33567 0\n", + "33568 0\n", + "33569 1\n", + "33570 0\n", + "33571 0\n", + "33572 0\n", + "33573 0\n", + "33574 0\n", + "33575 0\n", + "33576 0\n", + "33577 1\n", + "33578 0\n", + "33579 0\n", + "33580 0\n", + "33581 1\n", + "33582 0\n", + "33583 0\n", + "33584 0\n", + "33585 0\n", + "33586 0\n", + "33587 1\n", + "33588 0\n", + "33589 1\n", + "33590 0\n", + "33591 0\n", + "33592 0\n", + "33593 0\n", + "33594 0\n", + "33595 0\n", + "33596 0\n", + "33597 0\n", + "33598 0\n", + "33599 1\n", + "33600 0\n", + "33601 1\n", + "33602 0\n", + "33603 0\n", + "33604 0\n", + "33605 0\n", + "33606 0\n", + "33607 0\n", + "33608 0\n", + "33609 0\n", + "33610 0\n", + "33611 0\n", + "33612 0\n", + "33613 1\n", + "33614 0\n", + "33615 0\n", + "33616 0\n", + "33617 1\n", + "33618 0\n", + "33619 1\n", + "33620 0\n", + "33621 0\n", + "33622 0\n", + "33623 1\n", + "33624 0\n", + "33625 0\n", + "33626 0\n", + "33627 0\n", + "33628 0\n", + "33629 1\n", + "33630 0\n", + "33631 0\n", + "33632 0\n", + "33633 0\n", + "33634 0\n", + "33635 0\n", + "33636 0\n", + "33637 1\n", + "33638 0\n", + "33639 0\n", + "33640 0\n", + "33641 1\n", + "33642 0\n", + "33643 0\n", + "33644 0\n", + "33645 0\n", + "33646 0\n", + "33647 1\n", + "33648 0\n", + "33649 0\n", + "33650 0\n", + "33651 0\n", + "33652 0\n", + "33653 0\n", + "33654 0\n", + "33655 0\n", + "33656 0\n", + "33657 0\n", + "33658 0\n", + "33659 0\n", + "33660 0\n", + "33661 0\n", + "33662 0\n", + "33663 0\n", + "33664 0\n", + "33665 0\n", + "33666 0\n", + "33667 0\n", + "33668 0\n", + "33669 0\n", + "33670 0\n", + "33671 0\n", + "33672 0\n", + "33673 0\n", + "33674 0\n", + "33675 0\n", + "33676 0\n", + "33677 0\n", + "33678 0\n", + "33679 1\n", + "33680 0\n", + "33681 0\n", + "33682 0\n", + "33683 0\n", + "33684 0\n", + "33685 0\n", + "33686 0\n", + "33687 0\n", + "33688 0\n", + "33689 0\n", + "33690 0\n", + "33691 0\n", + "33692 0\n", + "33693 0\n", + "33694 0\n", + "33695 0\n", + "33696 0\n", + "33697 0\n", + "33698 0\n", + "33699 0\n", + "33700 0\n", + "33701 0\n", + "33702 0\n", + "33703 1\n", + "33704 0\n", + "33705 0\n", + "33706 0\n", + "33707 0\n", + "33708 0\n", + "33709 0\n", + "33710 0\n", + "33711 0\n", + "33712 0\n", + "33713 1\n", + "33714 0\n", + "33715 0\n", + "33716 0\n", + "33717 0\n", + "33718 0\n", + "33719 0\n", + "33720 0\n", + "33721 1\n", + "33722 0\n", + "33723 0\n", + "33724 0\n", + "33725 0\n", + "33726 0\n", + "33727 0\n", + "33728 0\n", + "33729 0\n", + "33730 0\n", + "33731 0\n", + "33732 0\n", + "33733 0\n", + "33734 0\n", + "33735 0\n", + "33736 0\n", + "33737 0\n", + "33738 0\n", + "33739 1\n", + "33740 0\n", + "33741 0\n", + "33742 0\n", + "33743 0\n", + "33744 0\n", + "33745 0\n", + "33746 0\n", + "33747 0\n", + "33748 0\n", + "33749 1\n", + "33750 0\n", + "33751 1\n", + "33752 0\n", + "33753 0\n", + "33754 0\n", + "33755 0\n", + "33756 0\n", + "33757 1\n", + "33758 0\n", + "33759 0\n", + "33760 0\n", + "33761 0\n", + "33762 0\n", + "33763 0\n", + "33764 0\n", + "33765 0\n", + "33766 0\n", + "33767 1\n", + "33768 0\n", + "33769 1\n", + "33770 0\n", + "33771 0\n", + "33772 0\n", + "33773 1\n", + "33774 0\n", + "33775 0\n", + "33776 0\n", + "33777 0\n", + "33778 0\n", + "33779 0\n", + "33780 0\n", + "33781 0\n", + "33782 0\n", + "33783 0\n", + "33784 0\n", + "33785 0\n", + "33786 0\n", + "33787 0\n", + "33788 0\n", + "33789 0\n", + "33790 0\n", + "33791 1\n", + "33792 0\n", + "33793 0\n", + "33794 0\n", + "33795 0\n", + "33796 0\n", + "33797 1\n", + "33798 0\n", + "33799 0\n", + "33800 0\n", + "33801 0\n", + "33802 0\n", + "33803 0\n", + "33804 0\n", + "33805 0\n", + "33806 0\n", + "33807 0\n", + "33808 0\n", + "33809 1\n", + "33810 0\n", + "33811 1\n", + "33812 0\n", + "33813 0\n", + "33814 0\n", + "33815 0\n", + "33816 0\n", + "33817 0\n", + "33818 0\n", + "33819 0\n", + "33820 0\n", + "33821 0\n", + "33822 0\n", + "33823 0\n", + "33824 0\n", + "33825 0\n", + "33826 0\n", + "33827 1\n", + "33828 0\n", + "33829 1\n", + "33830 0\n", + "33831 0\n", + "33832 0\n", + "33833 0\n", + "33834 0\n", + "33835 0\n", + "33836 0\n", + "33837 0\n", + "33838 0\n", + "33839 0\n", + "33840 0\n", + "33841 0\n", + "33842 0\n", + "33843 0\n", + "33844 0\n", + "33845 0\n", + "33846 0\n", + "33847 0\n", + "33848 0\n", + "33849 0\n", + "33850 0\n", + "33851 1\n", + "33852 0\n", + "33853 0\n", + "33854 0\n", + "33855 0\n", + "33856 0\n", + "33857 1\n", + "33858 0\n", + "33859 0\n", + "33860 0\n", + "33861 0\n", + "33862 0\n", + "33863 1\n", + "33864 0\n", + "33865 0\n", + "33866 0\n", + "33867 0\n", + "33868 0\n", + "33869 0\n", + "33870 0\n", + "33871 1\n", + "33872 0\n", + "33873 0\n", + "33874 0\n", + "33875 0\n", + "33876 0\n", + "33877 0\n", + "33878 0\n", + "33879 0\n", + "33880 0\n", + "33881 0\n", + "33882 0\n", + "33883 0\n", + "33884 0\n", + "33885 0\n", + "33886 0\n", + "33887 0\n", + "33888 0\n", + "33889 1\n", + "33890 0\n", + "33891 0\n", + "33892 0\n", + "33893 1\n", + "33894 0\n", + "33895 0\n", + "33896 0\n", + "33897 0\n", + "33898 0\n", + "33899 0\n", + "33900 0\n", + "33901 0\n", + "33902 0\n", + "33903 0\n", + "33904 0\n", + "33905 0\n", + "33906 0\n", + "33907 0\n", + "33908 0\n", + "33909 0\n", + "33910 0\n", + "33911 1\n", + "33912 0\n", + "33913 0\n", + "33914 0\n", + "33915 0\n", + "33916 0\n", + "33917 0\n", + "33918 0\n", + "33919 0\n", + "33920 0\n", + "33921 0\n", + "33922 0\n", + "33923 1\n", + "33924 0\n", + "33925 0\n", + "33926 0\n", + "33927 0\n", + "33928 0\n", + "33929 0\n", + "33930 0\n", + "33931 1\n", + "33932 0\n", + "33933 0\n", + "33934 0\n", + "33935 0\n", + "33936 0\n", + "33937 1\n", + "33938 0\n", + "33939 0\n", + "33940 0\n", + "33941 1\n", + "33942 0\n", + "33943 0\n", + "33944 0\n", + "33945 0\n", + "33946 0\n", + "33947 0\n", + "33948 0\n", + "33949 0\n", + "33950 0\n", + "33951 0\n", + "33952 0\n", + "33953 0\n", + "33954 0\n", + "33955 0\n", + "33956 0\n", + "33957 0\n", + "33958 0\n", + "33959 0\n", + "33960 0\n", + "33961 1\n", + "33962 0\n", + "33963 0\n", + "33964 0\n", + "33965 0\n", + "33966 0\n", + "33967 1\n", + "33968 0\n", + "33969 0\n", + "33970 0\n", + "33971 0\n", + "33972 0\n", + "33973 0\n", + "33974 0\n", + "33975 0\n", + "33976 0\n", + "33977 0\n", + "33978 0\n", + "33979 0\n", + "33980 0\n", + "33981 0\n", + "33982 0\n", + "33983 0\n", + "33984 0\n", + "33985 0\n", + "33986 0\n", + "33987 0\n", + "33988 0\n", + "33989 0\n", + "33990 0\n", + "33991 0\n", + "33992 0\n", + "33993 0\n", + "33994 0\n", + "33995 0\n", + "33996 0\n", + "33997 1\n", + "33998 0\n", + "33999 0\n", + "34000 0\n", + "34001 0\n", + "34002 0\n", + "34003 0\n", + "34004 0\n", + "34005 0\n", + "34006 0\n", + "34007 0\n", + "34008 0\n", + "34009 0\n", + "34010 0\n", + "34011 0\n", + "34012 0\n", + "34013 0\n", + "34014 0\n", + "34015 0\n", + "34016 0\n", + "34017 0\n", + "34018 0\n", + "34019 1\n", + "34020 0\n", + "34021 0\n", + "34022 0\n", + "34023 0\n", + "34024 0\n", + "34025 0\n", + "34026 0\n", + "34027 0\n", + "34028 0\n", + "34029 0\n", + "34030 0\n", + "34031 1\n", + "34032 0\n", + "34033 1\n", + "34034 0\n", + "34035 0\n", + "34036 0\n", + "34037 0\n", + "34038 0\n", + "34039 1\n", + "34040 0\n", + "34041 0\n", + "34042 0\n", + "34043 0\n", + "34044 0\n", + "34045 0\n", + "34046 0\n", + "34047 0\n", + "34048 0\n", + "34049 0\n", + "34050 0\n", + "34051 0\n", + "34052 0\n", + "34053 0\n", + "34054 0\n", + "34055 0\n", + "34056 0\n", + "34057 1\n", + "34058 0\n", + "34059 0\n", + "34060 0\n", + "34061 1\n", + "34062 0\n", + "34063 0\n", + "34064 0\n", + "34065 0\n", + "34066 0\n", + "34067 0\n", + "34068 0\n", + "34069 0\n", + "34070 0\n", + "34071 0\n", + "34072 0\n", + "34073 0\n", + "34074 0\n", + "34075 0\n", + "34076 0\n", + "34077 0\n", + "34078 0\n", + "34079 0\n", + "34080 0\n", + "34081 0\n", + "34082 0\n", + "34083 0\n", + "34084 0\n", + "34085 0\n", + "34086 0\n", + "34087 0\n", + "34088 0\n", + "34089 0\n", + "34090 0\n", + "34091 0\n", + "34092 0\n", + "34093 0\n", + "34094 0\n", + "34095 0\n", + "34096 0\n", + "34097 0\n", + "34098 0\n", + "34099 0\n", + "34100 0\n", + "34101 0\n", + "34102 0\n", + "34103 0\n", + "34104 0\n", + "34105 0\n", + "34106 0\n", + "34107 0\n", + "34108 0\n", + "34109 0\n", + "34110 0\n", + "34111 0\n", + "34112 0\n", + "34113 0\n", + "34114 0\n", + "34115 0\n", + "34116 0\n", + "34117 0\n", + "34118 0\n", + "34119 0\n", + "34120 0\n", + "34121 0\n", + "34122 0\n", + "34123 1\n", + "34124 0\n", + "34125 0\n", + "34126 0\n", + "34127 1\n", + "34128 0\n", + "34129 1\n", + "34130 0\n", + "34131 0\n", + "34132 0\n", + "34133 0\n", + "34134 0\n", + "34135 0\n", + "34136 0\n", + "34137 0\n", + "34138 0\n", + "34139 0\n", + "34140 0\n", + "34141 1\n", + "34142 0\n", + "34143 0\n", + "34144 0\n", + "34145 0\n", + "34146 0\n", + "34147 1\n", + "34148 0\n", + "34149 0\n", + "34150 0\n", + "34151 0\n", + "34152 0\n", + "34153 0\n", + "34154 0\n", + "34155 0\n", + "34156 0\n", + "34157 1\n", + "34158 0\n", + "34159 1\n", + "34160 0\n", + "34161 0\n", + "34162 0\n", + "34163 0\n", + "34164 0\n", + "34165 0\n", + "34166 0\n", + "34167 0\n", + "34168 0\n", + "34169 0\n", + "34170 0\n", + "34171 1\n", + "34172 0\n", + "34173 0\n", + "34174 0\n", + "34175 0\n", + "34176 0\n", + "34177 0\n", + "34178 0\n", + "34179 0\n", + "34180 0\n", + "34181 0\n", + "34182 0\n", + "34183 1\n", + "34184 0\n", + "34185 0\n", + "34186 0\n", + "34187 0\n", + "34188 0\n", + "34189 0\n", + "34190 0\n", + "34191 0\n", + "34192 0\n", + "34193 0\n", + "34194 0\n", + "34195 0\n", + "34196 0\n", + "34197 0\n", + "34198 0\n", + "34199 0\n", + "34200 0\n", + "34201 0\n", + "34202 0\n", + "34203 0\n", + "34204 0\n", + "34205 0\n", + "34206 0\n", + "34207 0\n", + "34208 0\n", + "34209 0\n", + "34210 0\n", + "34211 1\n", + "34212 0\n", + "34213 1\n", + "34214 0\n", + "34215 0\n", + "34216 0\n", + "34217 1\n", + "34218 0\n", + "34219 0\n", + "34220 0\n", + "34221 0\n", + "34222 0\n", + "34223 0\n", + "34224 0\n", + "34225 0\n", + "34226 0\n", + "34227 0\n", + "34228 0\n", + "34229 0\n", + "34230 0\n", + "34231 1\n", + "34232 0\n", + "34233 0\n", + "34234 0\n", + "34235 0\n", + "34236 0\n", + "34237 0\n", + "34238 0\n", + "34239 0\n", + "34240 0\n", + "34241 0\n", + "34242 0\n", + "34243 0\n", + "34244 0\n", + "34245 0\n", + "34246 0\n", + "34247 0\n", + "34248 0\n", + "34249 0\n", + "34250 0\n", + "34251 0\n", + "34252 0\n", + "34253 1\n", + "34254 0\n", + "34255 0\n", + "34256 0\n", + "34257 0\n", + "34258 0\n", + "34259 1\n", + "34260 0\n", + "34261 1\n", + "34262 0\n", + "34263 0\n", + "34264 0\n", + "34265 0\n", + "34266 0\n", + "34267 1\n", + "34268 0\n", + "34269 0\n", + "34270 0\n", + "34271 0\n", + "34272 0\n", + "34273 1\n", + "34274 0\n", + "34275 0\n", + "34276 0\n", + "34277 0\n", + "34278 0\n", + "34279 0\n", + "34280 0\n", + "34281 0\n", + "34282 0\n", + "34283 1\n", + "34284 0\n", + "34285 0\n", + "34286 0\n", + "34287 0\n", + "34288 0\n", + "34289 0\n", + "34290 0\n", + "34291 0\n", + "34292 0\n", + "34293 0\n", + "34294 0\n", + "34295 0\n", + "34296 0\n", + "34297 1\n", + "34298 0\n", + "34299 0\n", + "34300 0\n", + "34301 1\n", + "34302 0\n", + "34303 1\n", + "34304 0\n", + "34305 0\n", + "34306 0\n", + "34307 0\n", + "34308 0\n", + "34309 0\n", + "34310 0\n", + "34311 0\n", + "34312 0\n", + "34313 1\n", + "34314 0\n", + "34315 0\n", + "34316 0\n", + "34317 0\n", + "34318 0\n", + "34319 1\n", + "34320 0\n", + "34321 0\n", + "34322 0\n", + "34323 0\n", + "34324 0\n", + "34325 0\n", + "34326 0\n", + "34327 1\n", + "34328 0\n", + "34329 0\n", + "34330 0\n", + "34331 0\n", + "34332 0\n", + "34333 0\n", + "34334 0\n", + "34335 0\n", + "34336 0\n", + "34337 1\n", + "34338 0\n", + "34339 0\n", + "34340 0\n", + "34341 0\n", + "34342 0\n", + "34343 0\n", + "34344 0\n", + "34345 0\n", + "34346 0\n", + "34347 0\n", + "34348 0\n", + "34349 0\n", + "34350 0\n", + "34351 1\n", + "34352 0\n", + "34353 0\n", + "34354 0\n", + "34355 0\n", + "34356 0\n", + "34357 0\n", + "34358 0\n", + "34359 0\n", + "34360 0\n", + "34361 1\n", + "34362 0\n", + "34363 0\n", + "34364 0\n", + "34365 0\n", + "34366 0\n", + "34367 1\n", + "34368 0\n", + "34369 1\n", + "34370 0\n", + "34371 0\n", + "34372 0\n", + "34373 0\n", + "34374 0\n", + "34375 0\n", + "34376 0\n", + "34377 0\n", + "34378 0\n", + "34379 0\n", + "34380 0\n", + "34381 1\n", + "34382 0\n", + "34383 0\n", + "34384 0\n", + "34385 0\n", + "34386 0\n", + "34387 0\n", + "34388 0\n", + "34389 0\n", + "34390 0\n", + "34391 0\n", + "34392 0\n", + "34393 0\n", + "34394 0\n", + "34395 0\n", + "34396 0\n", + "34397 0\n", + "34398 0\n", + "34399 0\n", + "34400 0\n", + "34401 0\n", + "34402 0\n", + "34403 1\n", + "34404 0\n", + "34405 0\n", + "34406 0\n", + "34407 0\n", + "34408 0\n", + "34409 0\n", + "34410 0\n", + "34411 0\n", + "34412 0\n", + "34413 0\n", + "34414 0\n", + "34415 0\n", + "34416 0\n", + "34417 0\n", + "34418 0\n", + "34419 0\n", + "34420 0\n", + "34421 1\n", + "34422 0\n", + "34423 0\n", + "34424 0\n", + "34425 0\n", + "34426 0\n", + "34427 0\n", + "34428 0\n", + "34429 1\n", + "34430 0\n", + "34431 0\n", + "34432 0\n", + "34433 0\n", + "34434 0\n", + "34435 0\n", + "34436 0\n", + "34437 0\n", + "34438 0\n", + "34439 1\n", + "34440 0\n", + "34441 0\n", + "34442 0\n", + "34443 0\n", + "34444 0\n", + "34445 0\n", + "34446 0\n", + "34447 0\n", + "34448 0\n", + "34449 0\n", + "34450 0\n", + "34451 0\n", + "34452 0\n", + "34453 0\n", + "34454 0\n", + "34455 0\n", + "34456 0\n", + "34457 1\n", + "34458 0\n", + "34459 0\n", + "34460 0\n", + "34461 0\n", + "34462 0\n", + "34463 0\n", + "34464 0\n", + "34465 0\n", + "34466 0\n", + "34467 0\n", + "34468 0\n", + "34469 1\n", + "34470 0\n", + "34471 1\n", + "34472 0\n", + "34473 0\n", + "34474 0\n", + "34475 0\n", + "34476 0\n", + "34477 0\n", + "34478 0\n", + "34479 0\n", + "34480 0\n", + "34481 0\n", + "34482 0\n", + "34483 1\n", + "34484 0\n", + "34485 0\n", + "34486 0\n", + "34487 1\n", + "34488 0\n", + "34489 0\n", + "34490 0\n", + "34491 0\n", + "34492 0\n", + "34493 0\n", + "34494 0\n", + "34495 0\n", + "34496 0\n", + "34497 0\n", + "34498 0\n", + "34499 1\n", + "34500 0\n", + "34501 1\n", + "34502 0\n", + "34503 0\n", + "34504 0\n", + "34505 0\n", + "34506 0\n", + "34507 0\n", + "34508 0\n", + "34509 0\n", + "34510 0\n", + "34511 1\n", + "34512 0\n", + "34513 1\n", + "34514 0\n", + "34515 0\n", + "34516 0\n", + "34517 0\n", + "34518 0\n", + "34519 1\n", + "34520 0\n", + "34521 0\n", + "34522 0\n", + "34523 0\n", + "34524 0\n", + "34525 0\n", + "34526 0\n", + "34527 0\n", + "34528 0\n", + "34529 0\n", + "34530 0\n", + "34531 0\n", + "34532 0\n", + "34533 0\n", + "34534 0\n", + "34535 0\n", + "34536 0\n", + "34537 1\n", + "34538 0\n", + "34539 0\n", + "34540 0\n", + "34541 0\n", + "34542 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "34543 1\n", + "34544 0\n", + "34545 0\n", + "34546 0\n", + "34547 0\n", + "34548 0\n", + "34549 1\n", + "34550 0\n", + "34551 0\n", + "34552 0\n", + "34553 0\n", + "34554 0\n", + "34555 0\n", + "34556 0\n", + "34557 0\n", + "34558 0\n", + "34559 0\n", + "34560 0\n", + "34561 0\n", + "34562 0\n", + "34563 0\n", + "34564 0\n", + "34565 0\n", + "34566 0\n", + "34567 0\n", + "34568 0\n", + "34569 0\n", + "34570 0\n", + "34571 0\n", + "34572 0\n", + "34573 0\n", + "34574 0\n", + "34575 0\n", + "34576 0\n", + "34577 0\n", + "34578 0\n", + "34579 0\n", + "34580 0\n", + "34581 0\n", + "34582 0\n", + "34583 1\n", + "34584 0\n", + "34585 0\n", + "34586 0\n", + "34587 0\n", + "34588 0\n", + "34589 1\n", + "34590 0\n", + "34591 1\n", + "34592 0\n", + "34593 0\n", + "34594 0\n", + "34595 0\n", + "34596 0\n", + "34597 0\n", + "34598 0\n", + "34599 0\n", + "34600 0\n", + "34601 0\n", + "34602 0\n", + "34603 1\n", + "34604 0\n", + "34605 0\n", + "34606 0\n", + "34607 1\n", + "34608 0\n", + "34609 0\n", + "34610 0\n", + "34611 0\n", + "34612 0\n", + "34613 1\n", + "34614 0\n", + "34615 0\n", + "34616 0\n", + "34617 0\n", + "34618 0\n", + "34619 0\n", + "34620 0\n", + "34621 0\n", + "34622 0\n", + "34623 0\n", + "34624 0\n", + "34625 0\n", + "34626 0\n", + "34627 0\n", + "34628 0\n", + "34629 0\n", + "34630 0\n", + "34631 1\n", + "34632 0\n", + "34633 0\n", + "34634 0\n", + "34635 0\n", + "34636 0\n", + "34637 0\n", + "34638 0\n", + "34639 0\n", + "34640 0\n", + "34641 0\n", + "34642 0\n", + "34643 0\n", + "34644 0\n", + "34645 0\n", + "34646 0\n", + "34647 0\n", + "34648 0\n", + "34649 1\n", + "34650 0\n", + "34651 1\n", + "34652 0\n", + "34653 0\n", + "34654 0\n", + "34655 0\n", + "34656 0\n", + "34657 0\n", + "34658 0\n", + "34659 0\n", + "34660 0\n", + "34661 0\n", + "34662 0\n", + "34663 0\n", + "34664 0\n", + "34665 0\n", + "34666 0\n", + "34667 1\n", + "34668 0\n", + "34669 0\n", + "34670 0\n", + "34671 0\n", + "34672 0\n", + "34673 1\n", + "34674 0\n", + "34675 0\n", + "34676 0\n", + "34677 0\n", + "34678 0\n", + "34679 1\n", + "34680 0\n", + "34681 0\n", + "34682 0\n", + "34683 0\n", + "34684 0\n", + "34685 0\n", + "34686 0\n", + "34687 1\n", + "34688 0\n", + "34689 0\n", + "34690 0\n", + "34691 0\n", + "34692 0\n", + "34693 1\n", + "34694 0\n", + "34695 0\n", + "34696 0\n", + "34697 0\n", + "34698 0\n", + "34699 0\n", + "34700 0\n", + "34701 0\n", + "34702 0\n", + "34703 1\n", + "34704 0\n", + "34705 0\n", + "34706 0\n", + "34707 0\n", + "34708 0\n", + "34709 0\n", + "34710 0\n", + "34711 0\n", + "34712 0\n", + "34713 0\n", + "34714 0\n", + "34715 0\n", + "34716 0\n", + "34717 0\n", + "34718 0\n", + "34719 0\n", + "34720 0\n", + "34721 1\n", + "34722 0\n", + "34723 0\n", + "34724 0\n", + "34725 0\n", + "34726 0\n", + "34727 0\n", + "34728 0\n", + "34729 1\n", + "34730 0\n", + "34731 0\n", + "34732 0\n", + "34733 0\n", + "34734 0\n", + "34735 0\n", + "34736 0\n", + "34737 0\n", + "34738 0\n", + "34739 1\n", + "34740 0\n", + "34741 0\n", + "34742 0\n", + "34743 0\n", + "34744 0\n", + "34745 0\n", + "34746 0\n", + "34747 1\n", + "34748 0\n", + "34749 0\n", + "34750 0\n", + "34751 0\n", + "34752 0\n", + "34753 0\n", + "34754 0\n", + "34755 0\n", + "34756 0\n", + "34757 1\n", + "34758 0\n", + "34759 1\n", + "34760 0\n", + "34761 0\n", + "34762 0\n", + "34763 1\n", + "34764 0\n", + "34765 0\n", + "34766 0\n", + "34767 0\n", + "34768 0\n", + "34769 0\n", + "34770 0\n", + "34771 0\n", + "34772 0\n", + "34773 0\n", + "34774 0\n", + "34775 0\n", + "34776 0\n", + "34777 0\n", + "34778 0\n", + "34779 0\n", + "34780 0\n", + "34781 1\n", + "34782 0\n", + "34783 0\n", + "34784 0\n", + "34785 0\n", + "34786 0\n", + "34787 0\n", + "34788 0\n", + "34789 0\n", + "34790 0\n", + "34791 0\n", + "34792 0\n", + "34793 0\n", + "34794 0\n", + "34795 0\n", + "34796 0\n", + "34797 0\n", + "34798 0\n", + "34799 0\n", + "34800 0\n", + "34801 0\n", + "34802 0\n", + "34803 0\n", + "34804 0\n", + "34805 0\n", + "34806 0\n", + "34807 1\n", + "34808 0\n", + "34809 0\n", + "34810 0\n", + "34811 0\n", + "34812 0\n", + "34813 0\n", + "34814 0\n", + "34815 0\n", + "34816 0\n", + "34817 0\n", + "34818 0\n", + "34819 1\n", + "34820 0\n", + "34821 0\n", + "34822 0\n", + "34823 0\n", + "34824 0\n", + "34825 0\n", + "34826 0\n", + "34827 0\n", + "34828 0\n", + "34829 0\n", + "34830 0\n", + "34831 0\n", + "34832 0\n", + "34833 0\n", + "34834 0\n", + "34835 0\n", + "34836 0\n", + "34837 0\n", + "34838 0\n", + "34839 0\n", + "34840 0\n", + "34841 1\n", + "34842 0\n", + "34843 1\n", + "34844 0\n", + "34845 0\n", + "34846 0\n", + "34847 1\n", + "34848 0\n", + "34849 1\n", + "34850 0\n", + "34851 0\n", + "34852 0\n", + "34853 0\n", + "34854 0\n", + "34855 0\n", + "34856 0\n", + "34857 0\n", + "34858 0\n", + "34859 0\n", + "34860 0\n", + "34861 0\n", + "34862 0\n", + "34863 0\n", + "34864 0\n", + "34865 0\n", + "34866 0\n", + "34867 0\n", + "34868 0\n", + "34869 0\n", + "34870 0\n", + "34871 1\n", + "34872 0\n", + "34873 0\n", + "34874 0\n", + "34875 0\n", + "34876 0\n", + "34877 1\n", + "34878 0\n", + "34879 0\n", + "34880 0\n", + "34881 0\n", + "34882 0\n", + "34883 1\n", + "34884 0\n", + "34885 0\n", + "34886 0\n", + "34887 0\n", + "34888 0\n", + "34889 0\n", + "34890 0\n", + "34891 0\n", + "34892 0\n", + "34893 0\n", + "34894 0\n", + "34895 0\n", + "34896 0\n", + "34897 1\n", + "34898 0\n", + "34899 0\n", + "34900 0\n", + "34901 0\n", + "34902 0\n", + "34903 0\n", + "34904 0\n", + "34905 0\n", + "34906 0\n", + "34907 0\n", + "34908 0\n", + "34909 0\n", + "34910 0\n", + "34911 0\n", + "34912 0\n", + "34913 1\n", + "34914 0\n", + "34915 0\n", + "34916 0\n", + "34917 0\n", + "34918 0\n", + "34919 1\n", + "34920 0\n", + "34921 0\n", + "34922 0\n", + "34923 0\n", + "34924 0\n", + "34925 0\n", + "34926 0\n", + "34927 0\n", + "34928 0\n", + "34929 0\n", + "34930 0\n", + "34931 0\n", + "34932 0\n", + "34933 0\n", + "34934 0\n", + "34935 0\n", + "34936 0\n", + "34937 0\n", + "34938 0\n", + "34939 1\n", + "34940 0\n", + "34941 0\n", + "34942 0\n", + "34943 0\n", + "34944 0\n", + "34945 0\n", + "34946 0\n", + "34947 0\n", + "34948 0\n", + "34949 1\n", + "34950 0\n", + "34951 0\n", + "34952 0\n", + "34953 0\n", + "34954 0\n", + "34955 0\n", + "34956 0\n", + "34957 0\n", + "34958 0\n", + "34959 0\n", + "34960 0\n", + "34961 1\n", + "34962 0\n", + "34963 1\n", + "34964 0\n", + "34965 0\n", + "34966 0\n", + "34967 0\n", + "34968 0\n", + "34969 0\n", + "34970 0\n", + "34971 0\n", + "34972 0\n", + "34973 0\n", + "34974 0\n", + "34975 0\n", + "34976 0\n", + "34977 0\n", + "34978 0\n", + "34979 0\n", + "34980 0\n", + "34981 1\n", + "34982 0\n", + "34983 0\n", + "34984 0\n", + "34985 0\n", + "34986 0\n", + "34987 0\n", + "34988 0\n", + "34989 0\n", + "34990 0\n", + "34991 0\n", + "34992 0\n", + "34993 0\n", + "34994 0\n", + "34995 0\n", + "34996 0\n", + "34997 0\n", + "34998 0\n", + "34999 0\n", + "35000 0\n", + "35001 0\n", + "35002 0\n", + "35003 0\n", + "35004 0\n", + "35005 0\n", + "35006 0\n", + "35007 0\n", + "35008 0\n", + "35009 0\n", + "35010 0\n", + "35011 0\n", + "35012 0\n", + "35013 0\n", + "35014 0\n", + "35015 0\n", + "35016 0\n", + "35017 0\n", + "35018 0\n", + "35019 0\n", + "35020 0\n", + "35021 0\n", + "35022 0\n", + "35023 1\n", + "35024 0\n", + "35025 0\n", + "35026 0\n", + "35027 1\n", + "35028 0\n", + "35029 0\n", + "35030 0\n", + "35031 0\n", + "35032 0\n", + "35033 0\n", + "35034 0\n", + "35035 0\n", + "35036 0\n", + "35037 0\n", + "35038 0\n", + "35039 0\n", + "35040 0\n", + "35041 0\n", + "35042 0\n", + "35043 0\n", + "35044 0\n", + "35045 0\n", + "35046 0\n", + "35047 0\n", + "35048 0\n", + "35049 0\n", + "35050 0\n", + "35051 1\n", + "35052 0\n", + "35053 1\n", + "35054 0\n", + "35055 0\n", + "35056 0\n", + "35057 0\n", + "35058 0\n", + "35059 1\n", + "35060 0\n", + "35061 0\n", + "35062 0\n", + "35063 0\n", + "35064 0\n", + "35065 0\n", + "35066 0\n", + "35067 0\n", + "35068 0\n", + "35069 1\n", + "35070 0\n", + "35071 0\n", + "35072 0\n", + "35073 0\n", + "35074 0\n", + "35075 0\n", + "35076 0\n", + "35077 0\n", + "35078 0\n", + "35079 0\n", + "35080 0\n", + "35081 1\n", + "35082 0\n", + "35083 1\n", + "35084 0\n", + "35085 0\n", + "35086 0\n", + "35087 0\n", + "35088 0\n", + "35089 1\n", + "35090 0\n", + "35091 0\n", + "35092 0\n", + "35093 0\n", + "35094 0\n", + "35095 0\n", + "35096 0\n", + "35097 0\n", + "35098 0\n", + "35099 1\n", + "35100 0\n", + "35101 0\n", + "35102 0\n", + "35103 0\n", + "35104 0\n", + "35105 0\n", + "35106 0\n", + "35107 1\n", + "35108 0\n", + "35109 0\n", + "35110 0\n", + "35111 1\n", + "35112 0\n", + "35113 0\n", + "35114 0\n", + "35115 0\n", + "35116 0\n", + "35117 1\n", + "35118 0\n", + "35119 0\n", + "35120 0\n", + "35121 0\n", + "35122 0\n", + "35123 0\n", + "35124 0\n", + "35125 0\n", + "35126 0\n", + "35127 0\n", + "35128 0\n", + "35129 1\n", + "35130 0\n", + "35131 0\n", + "35132 0\n", + "35133 0\n", + "35134 0\n", + "35135 0\n", + "35136 0\n", + "35137 0\n", + "35138 0\n", + "35139 0\n", + "35140 0\n", + "35141 1\n", + "35142 0\n", + "35143 0\n", + "35144 0\n", + "35145 0\n", + "35146 0\n", + "35147 0\n", + "35148 0\n", + "35149 1\n", + "35150 0\n", + "35151 0\n", + "35152 0\n", + "35153 1\n", + "35154 0\n", + "35155 0\n", + "35156 0\n", + "35157 0\n", + "35158 0\n", + "35159 1\n", + "35160 0\n", + "35161 0\n", + "35162 0\n", + "35163 0\n", + "35164 0\n", + "35165 0\n", + "35166 0\n", + "35167 0\n", + "35168 0\n", + "35169 0\n", + "35170 0\n", + "35171 1\n", + "35172 0\n", + "35173 0\n", + "35174 0\n", + "35175 0\n", + "35176 0\n", + "35177 0\n", + "35178 0\n", + "35179 0\n", + "35180 0\n", + "35181 0\n", + "35182 0\n", + "35183 0\n", + "35184 0\n", + "35185 0\n", + "35186 0\n", + "35187 0\n", + "35188 0\n", + "35189 0\n", + "35190 0\n", + "35191 0\n", + "35192 0\n", + "35193 0\n", + "35194 0\n", + "35195 0\n", + "35196 0\n", + "35197 0\n", + "35198 0\n", + "35199 0\n", + "35200 0\n", + "35201 1\n", + "35202 0\n", + "35203 0\n", + "35204 0\n", + "35205 0\n", + "35206 0\n", + "35207 0\n", + "35208 0\n", + "35209 0\n", + "35210 0\n", + "35211 0\n", + "35212 0\n", + "35213 0\n", + "35214 0\n", + "35215 0\n", + "35216 0\n", + "35217 0\n", + "35218 0\n", + "35219 0\n", + "35220 0\n", + "35221 1\n", + "35222 0\n", + "35223 0\n", + "35224 0\n", + "35225 0\n", + "35226 0\n", + "35227 1\n", + "35228 0\n", + "35229 0\n", + "35230 0\n", + "35231 0\n", + "35232 0\n", + "35233 0\n", + "35234 0\n", + "35235 0\n", + "35236 0\n", + "35237 0\n", + "35238 0\n", + "35239 0\n", + "35240 0\n", + "35241 0\n", + "35242 0\n", + "35243 0\n", + "35244 0\n", + "35245 0\n", + "35246 0\n", + "35247 0\n", + "35248 0\n", + "35249 0\n", + "35250 0\n", + "35251 1\n", + "35252 0\n", + "35253 0\n", + "35254 0\n", + "35255 0\n", + "35256 0\n", + "35257 1\n", + "35258 0\n", + "35259 0\n", + "35260 0\n", + "35261 0\n", + "35262 0\n", + "35263 0\n", + "35264 0\n", + "35265 0\n", + "35266 0\n", + "35267 1\n", + "35268 0\n", + "35269 0\n", + "35270 0\n", + "35271 0\n", + "35272 0\n", + "35273 0\n", + "35274 0\n", + "35275 0\n", + "35276 0\n", + "35277 0\n", + "35278 0\n", + "35279 1\n", + "35280 0\n", + "35281 1\n", + "35282 0\n", + "35283 0\n", + "35284 0\n", + "35285 0\n", + "35286 0\n", + "35287 0\n", + "35288 0\n", + "35289 0\n", + "35290 0\n", + "35291 1\n", + "35292 0\n", + "35293 0\n", + "35294 0\n", + "35295 0\n", + "35296 0\n", + "35297 0\n", + "35298 0\n", + "35299 0\n", + "35300 0\n", + "35301 0\n", + "35302 0\n", + "35303 0\n", + "35304 0\n", + "35305 0\n", + "35306 0\n", + "35307 0\n", + "35308 0\n", + "35309 0\n", + "35310 0\n", + "35311 1\n", + "35312 0\n", + "35313 0\n", + "35314 0\n", + "35315 0\n", + "35316 0\n", + "35317 1\n", + "35318 0\n", + "35319 0\n", + "35320 0\n", + "35321 0\n", + "35322 0\n", + "35323 1\n", + "35324 0\n", + "35325 0\n", + "35326 0\n", + "35327 1\n", + "35328 0\n", + "35329 0\n", + "35330 0\n", + "35331 0\n", + "35332 0\n", + "35333 0\n", + "35334 0\n", + "35335 0\n", + "35336 0\n", + "35337 0\n", + "35338 0\n", + "35339 1\n", + "35340 0\n", + "35341 0\n", + "35342 0\n", + "35343 0\n", + "35344 0\n", + "35345 0\n", + "35346 0\n", + "35347 0\n", + "35348 0\n", + "35349 0\n", + "35350 0\n", + "35351 0\n", + "35352 0\n", + "35353 1\n", + "35354 0\n", + "35355 0\n", + "35356 0\n", + "35357 0\n", + "35358 0\n", + "35359 0\n", + "35360 0\n", + "35361 0\n", + "35362 0\n", + "35363 1\n", + "35364 0\n", + "35365 0\n", + "35366 0\n", + "35367 0\n", + "35368 0\n", + "35369 0\n", + "35370 0\n", + "35371 0\n", + "35372 0\n", + "35373 0\n", + "35374 0\n", + "35375 0\n", + "35376 0\n", + "35377 0\n", + "35378 0\n", + "35379 0\n", + "35380 0\n", + "35381 1\n", + "35382 0\n", + "35383 0\n", + "35384 0\n", + "35385 0\n", + "35386 0\n", + "35387 0\n", + "35388 0\n", + "35389 0\n", + "35390 0\n", + "35391 0\n", + "35392 0\n", + "35393 1\n", + "35394 0\n", + "35395 0\n", + "35396 0\n", + "35397 0\n", + "35398 0\n", + "35399 0\n", + "35400 0\n", + "35401 1\n", + "35402 0\n", + "35403 0\n", + "35404 0\n", + "35405 0\n", + "35406 0\n", + "35407 1\n", + "35408 0\n", + "35409 0\n", + "35410 0\n", + "35411 0\n", + "35412 0\n", + "35413 0\n", + "35414 0\n", + "35415 0\n", + "35416 0\n", + "35417 0\n", + "35418 0\n", + "35419 1\n", + "35420 0\n", + "35421 0\n", + "35422 0\n", + "35423 1\n", + "35424 0\n", + "35425 0\n", + "35426 0\n", + "35427 0\n", + "35428 0\n", + "35429 0\n", + "35430 0\n", + "35431 0\n", + "35432 0\n", + "35433 0\n", + "35434 0\n", + "35435 0\n", + "35436 0\n", + "35437 1\n", + "35438 0\n", + "35439 0\n", + "35440 0\n", + "35441 0\n", + "35442 0\n", + "35443 0\n", + "35444 0\n", + "35445 0\n", + "35446 0\n", + "35447 1\n", + "35448 0\n", + "35449 1\n", + "35450 0\n", + "35451 0\n", + "35452 0\n", + "35453 0\n", + "35454 0\n", + "35455 0\n", + "35456 0\n", + "35457 0\n", + "35458 0\n", + "35459 0\n", + "35460 0\n", + "35461 1\n", + "35462 0\n", + "35463 0\n", + "35464 0\n", + "35465 0\n", + "35466 0\n", + "35467 0\n", + "35468 0\n", + "35469 0\n", + "35470 0\n", + "35471 0\n", + "35472 0\n", + "35473 0\n", + "35474 0\n", + "35475 0\n", + "35476 0\n", + "35477 0\n", + "35478 0\n", + "35479 0\n", + "35480 0\n", + "35481 0\n", + "35482 0\n", + "35483 0\n", + "35484 0\n", + "35485 0\n", + "35486 0\n", + "35487 0\n", + "35488 0\n", + "35489 0\n", + "35490 0\n", + "35491 1\n", + "35492 0\n", + "35493 0\n", + "35494 0\n", + "35495 0\n", + "35496 0\n", + "35497 0\n", + "35498 0\n", + "35499 0\n", + "35500 0\n", + "35501 0\n", + "35502 0\n", + "35503 0\n", + "35504 0\n", + "35505 0\n", + "35506 0\n", + "35507 1\n", + "35508 0\n", + "35509 1\n", + "35510 0\n", + "35511 0\n", + "35512 0\n", + "35513 0\n", + "35514 0\n", + "35515 0\n", + "35516 0\n", + "35517 0\n", + "35518 0\n", + "35519 0\n", + "35520 0\n", + "35521 1\n", + "35522 0\n", + "35523 0\n", + "35524 0\n", + "35525 0\n", + "35526 0\n", + "35527 1\n", + "35528 0\n", + "35529 0\n", + "35530 0\n", + "35531 1\n", + "35532 0\n", + "35533 1\n", + "35534 0\n", + "35535 0\n", + "35536 0\n", + "35537 1\n", + "35538 0\n", + "35539 0\n", + "35540 0\n", + "35541 0\n", + "35542 0\n", + "35543 1\n", + "35544 0\n", + "35545 0\n", + "35546 0\n", + "35547 0\n", + "35548 0\n", + "35549 0\n", + "35550 0\n", + "35551 0\n", + "35552 0\n", + "35553 0\n", + "35554 0\n", + "35555 0\n", + "35556 0\n", + "35557 0\n", + "35558 0\n", + "35559 0\n", + "35560 0\n", + "35561 0\n", + "35562 0\n", + "35563 0\n", + "35564 0\n", + "35565 0\n", + "35566 0\n", + "35567 0\n", + "35568 0\n", + "35569 1\n", + "35570 0\n", + "35571 0\n", + "35572 0\n", + "35573 1\n", + "35574 0\n", + "35575 0\n", + "35576 0\n", + "35577 0\n", + "35578 0\n", + "35579 0\n", + "35580 0\n", + "35581 0\n", + "35582 0\n", + "35583 0\n", + "35584 0\n", + "35585 0\n", + "35586 0\n", + "35587 0\n", + "35588 0\n", + "35589 0\n", + "35590 0\n", + "35591 1\n", + "35592 0\n", + "35593 1\n", + "35594 0\n", + "35595 0\n", + "35596 0\n", + "35597 1\n", + "35598 0\n", + "35599 0\n", + "35600 0\n", + "35601 0\n", + "35602 0\n", + "35603 1\n", + "35604 0\n", + "35605 0\n", + "35606 0\n", + "35607 0\n", + "35608 0\n", + "35609 0\n", + "35610 0\n", + "35611 0\n", + "35612 0\n", + "35613 0\n", + "35614 0\n", + "35615 0\n", + "35616 0\n", + "35617 1\n", + "35618 0\n", + "35619 0\n", + "35620 0\n", + "35621 0\n", + "35622 0\n", + "35623 0\n", + "35624 0\n", + "35625 0\n", + "35626 0\n", + "35627 0\n", + "35628 0\n", + "35629 0\n", + "35630 0\n", + "35631 0\n", + "35632 0\n", + "35633 0\n", + "35634 0\n", + "35635 0\n", + "35636 0\n", + "35637 0\n", + "35638 0\n", + "35639 0\n", + "35640 0\n", + "35641 0\n", + "35642 0\n", + "35643 0\n", + "35644 0\n", + "35645 0\n", + "35646 0\n", + "35647 0\n", + "35648 0\n", + "35649 0\n", + "35650 0\n", + "35651 0\n", + "35652 0\n", + "35653 0\n", + "35654 0\n", + "35655 0\n", + "35656 0\n", + "35657 0\n", + "35658 0\n", + "35659 0\n", + "35660 0\n", + "35661 0\n", + "35662 0\n", + "35663 0\n", + "35664 0\n", + "35665 0\n", + "35666 0\n", + "35667 0\n", + "35668 0\n", + "35669 0\n", + "35670 0\n", + "35671 1\n", + "35672 0\n", + "35673 0\n", + "35674 0\n", + "35675 0\n", + "35676 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "35677 1\n", + "35678 0\n", + "35679 0\n", + "35680 0\n", + "35681 0\n", + "35682 0\n", + "35683 0\n", + "35684 0\n", + "35685 0\n", + "35686 0\n", + "35687 0\n", + "35688 0\n", + "35689 0\n", + "35690 0\n", + "35691 0\n", + "35692 0\n", + "35693 0\n", + "35694 0\n", + "35695 0\n", + "35696 0\n", + "35697 0\n", + "35698 0\n", + "35699 0\n", + "35700 0\n", + "35701 0\n", + "35702 0\n", + "35703 0\n", + "35704 0\n", + "35705 0\n", + "35706 0\n", + "35707 0\n", + "35708 0\n", + "35709 0\n", + "35710 0\n", + "35711 0\n", + "35712 0\n", + "35713 0\n", + "35714 0\n", + "35715 0\n", + "35716 0\n", + "35717 0\n", + "35718 0\n", + "35719 0\n", + "35720 0\n", + "35721 0\n", + "35722 0\n", + "35723 0\n", + "35724 0\n", + "35725 0\n", + "35726 0\n", + "35727 0\n", + "35728 0\n", + "35729 1\n", + "35730 0\n", + "35731 1\n", + "35732 0\n", + "35733 0\n", + "35734 0\n", + "35735 0\n", + "35736 0\n", + "35737 0\n", + "35738 0\n", + "35739 0\n", + "35740 0\n", + "35741 0\n", + "35742 0\n", + "35743 0\n", + "35744 0\n", + "35745 0\n", + "35746 0\n", + "35747 1\n", + "35748 0\n", + "35749 0\n", + "35750 0\n", + "35751 0\n", + "35752 0\n", + "35753 1\n", + "35754 0\n", + "35755 0\n", + "35756 0\n", + "35757 0\n", + "35758 0\n", + "35759 1\n", + "35760 0\n", + "35761 0\n", + "35762 0\n", + "35763 0\n", + "35764 0\n", + "35765 0\n", + "35766 0\n", + "35767 0\n", + "35768 0\n", + "35769 0\n", + "35770 0\n", + "35771 1\n", + "35772 0\n", + "35773 0\n", + "35774 0\n", + "35775 0\n", + "35776 0\n", + "35777 0\n", + "35778 0\n", + "35779 0\n", + "35780 0\n", + "35781 0\n", + "35782 0\n", + "35783 0\n", + "35784 0\n", + "35785 0\n", + "35786 0\n", + "35787 0\n", + "35788 0\n", + "35789 0\n", + "35790 0\n", + "35791 0\n", + "35792 0\n", + "35793 0\n", + "35794 0\n", + "35795 0\n", + "35796 0\n", + "35797 1\n", + "35798 0\n", + "35799 0\n", + "35800 0\n", + "35801 1\n", + "35802 0\n", + "35803 1\n", + "35804 0\n", + "35805 0\n", + "35806 0\n", + "35807 0\n", + "35808 0\n", + "35809 1\n", + "35810 0\n", + "35811 0\n", + "35812 0\n", + "35813 0\n", + "35814 0\n", + "35815 0\n", + "35816 0\n", + "35817 0\n", + "35818 0\n", + "35819 0\n", + "35820 0\n", + "35821 0\n", + "35822 0\n", + "35823 0\n", + "35824 0\n", + "35825 0\n", + "35826 0\n", + "35827 0\n", + "35828 0\n", + "35829 0\n", + "35830 0\n", + "35831 1\n", + "35832 0\n", + "35833 0\n", + "35834 0\n", + "35835 0\n", + "35836 0\n", + "35837 1\n", + "35838 0\n", + "35839 1\n", + "35840 0\n", + "35841 0\n", + "35842 0\n", + "35843 0\n", + "35844 0\n", + "35845 0\n", + "35846 0\n", + "35847 0\n", + "35848 0\n", + "35849 0\n", + "35850 0\n", + "35851 1\n", + "35852 0\n", + "35853 0\n", + "35854 0\n", + "35855 0\n", + "35856 0\n", + "35857 0\n", + "35858 0\n", + "35859 0\n", + "35860 0\n", + "35861 0\n", + "35862 0\n", + "35863 1\n", + "35864 0\n", + "35865 0\n", + "35866 0\n", + "35867 0\n", + "35868 0\n", + "35869 1\n", + "35870 0\n", + "35871 0\n", + "35872 0\n", + "35873 0\n", + "35874 0\n", + "35875 0\n", + "35876 0\n", + "35877 0\n", + "35878 0\n", + "35879 1\n", + "35880 0\n", + "35881 0\n", + "35882 0\n", + "35883 0\n", + "35884 0\n", + "35885 0\n", + "35886 0\n", + "35887 0\n", + "35888 0\n", + "35889 0\n", + "35890 0\n", + "35891 0\n", + "35892 0\n", + "35893 0\n", + "35894 0\n", + "35895 0\n", + "35896 0\n", + "35897 1\n", + "35898 0\n", + "35899 1\n", + "35900 0\n", + "35901 0\n", + "35902 0\n", + "35903 0\n", + "35904 0\n", + "35905 0\n", + "35906 0\n", + "35907 0\n", + "35908 0\n", + "35909 0\n", + "35910 0\n", + "35911 1\n", + "35912 0\n", + "35913 0\n", + "35914 0\n", + "35915 0\n", + "35916 0\n", + "35917 0\n", + "35918 0\n", + "35919 0\n", + "35920 0\n", + "35921 0\n", + "35922 0\n", + "35923 1\n", + "35924 0\n", + "35925 0\n", + "35926 0\n", + "35927 0\n", + "35928 0\n", + "35929 0\n", + "35930 0\n", + "35931 0\n", + "35932 0\n", + "35933 1\n", + "35934 0\n", + "35935 0\n", + "35936 0\n", + "35937 0\n", + "35938 0\n", + "35939 0\n", + "35940 0\n", + "35941 0\n", + "35942 0\n", + "35943 0\n", + "35944 0\n", + "35945 0\n", + "35946 0\n", + "35947 0\n", + "35948 0\n", + "35949 0\n", + "35950 0\n", + "35951 1\n", + "35952 0\n", + "35953 0\n", + "35954 0\n", + "35955 0\n", + "35956 0\n", + "35957 0\n", + "35958 0\n", + "35959 0\n", + "35960 0\n", + "35961 0\n", + "35962 0\n", + "35963 1\n", + "35964 0\n", + "35965 0\n", + "35966 0\n", + "35967 0\n", + "35968 0\n", + "35969 1\n", + "35970 0\n", + "35971 0\n", + "35972 0\n", + "35973 0\n", + "35974 0\n", + "35975 0\n", + "35976 0\n", + "35977 1\n", + "35978 0\n", + "35979 0\n", + "35980 0\n", + "35981 0\n", + "35982 0\n", + "35983 1\n", + "35984 0\n", + "35985 0\n", + "35986 0\n", + "35987 0\n", + "35988 0\n", + "35989 0\n", + "35990 0\n", + "35991 0\n", + "35992 0\n", + "35993 1\n", + "35994 0\n", + "35995 0\n", + "35996 0\n", + "35997 0\n", + "35998 0\n", + "35999 1\n", + "36000 0\n", + "36001 0\n", + "36002 0\n", + "36003 0\n", + "36004 0\n", + "36005 0\n", + "36006 0\n", + "36007 1\n", + "36008 0\n", + "36009 0\n", + "36010 0\n", + "36011 1\n", + "36012 0\n", + "36013 1\n", + "36014 0\n", + "36015 0\n", + "36016 0\n", + "36017 1\n", + "36018 0\n", + "36019 0\n", + "36020 0\n", + "36021 0\n", + "36022 0\n", + "36023 0\n", + "36024 0\n", + "36025 0\n", + "36026 0\n", + "36027 0\n", + "36028 0\n", + "36029 0\n", + "36030 0\n", + "36031 0\n", + "36032 0\n", + "36033 0\n", + "36034 0\n", + "36035 0\n", + "36036 0\n", + "36037 1\n", + "36038 0\n", + "36039 0\n", + "36040 0\n", + "36041 0\n", + "36042 0\n", + "36043 0\n", + "36044 0\n", + "36045 0\n", + "36046 0\n", + "36047 0\n", + "36048 0\n", + "36049 0\n", + "36050 0\n", + "36051 0\n", + "36052 0\n", + "36053 0\n", + "36054 0\n", + "36055 0\n", + "36056 0\n", + "36057 0\n", + "36058 0\n", + "36059 0\n", + "36060 0\n", + "36061 1\n", + "36062 0\n", + "36063 0\n", + "36064 0\n", + "36065 0\n", + "36066 0\n", + "36067 1\n", + "36068 0\n", + "36069 0\n", + "36070 0\n", + "36071 0\n", + "36072 0\n", + "36073 1\n", + "36074 0\n", + "36075 0\n", + "36076 0\n", + "36077 0\n", + "36078 0\n", + "36079 0\n", + "36080 0\n", + "36081 0\n", + "36082 0\n", + "36083 1\n", + "36084 0\n", + "36085 0\n", + "36086 0\n", + "36087 0\n", + "36088 0\n", + "36089 0\n", + "36090 0\n", + "36091 0\n", + "36092 0\n", + "36093 0\n", + "36094 0\n", + "36095 0\n", + "36096 0\n", + "36097 1\n", + "36098 0\n", + "36099 0\n", + "36100 0\n", + "36101 0\n", + "36102 0\n", + "36103 0\n", + "36104 0\n", + "36105 0\n", + "36106 0\n", + "36107 1\n", + "36108 0\n", + "36109 1\n", + "36110 0\n", + "36111 0\n", + "36112 0\n", + "36113 0\n", + "36114 0\n", + "36115 0\n", + "36116 0\n", + "36117 0\n", + "36118 0\n", + "36119 0\n", + "36120 0\n", + "36121 0\n", + "36122 0\n", + "36123 0\n", + "36124 0\n", + "36125 0\n", + "36126 0\n", + "36127 0\n", + "36128 0\n", + "36129 0\n", + "36130 0\n", + "36131 1\n", + "36132 0\n", + "36133 0\n", + "36134 0\n", + "36135 0\n", + "36136 0\n", + "36137 1\n", + "36138 0\n", + "36139 0\n", + "36140 0\n", + "36141 0\n", + "36142 0\n", + "36143 0\n", + "36144 0\n", + "36145 0\n", + "36146 0\n", + "36147 0\n", + "36148 0\n", + "36149 0\n", + "36150 0\n", + "36151 1\n", + "36152 0\n", + "36153 0\n", + "36154 0\n", + "36155 0\n", + "36156 0\n", + "36157 0\n", + "36158 0\n", + "36159 0\n", + "36160 0\n", + "36161 1\n", + "36162 0\n", + "36163 0\n", + "36164 0\n", + "36165 0\n", + "36166 0\n", + "36167 0\n", + "36168 0\n", + "36169 0\n", + "36170 0\n", + "36171 0\n", + "36172 0\n", + "36173 0\n", + "36174 0\n", + "36175 0\n", + "36176 0\n", + "36177 0\n", + "36178 0\n", + "36179 0\n", + "36180 0\n", + "36181 0\n", + "36182 0\n", + "36183 0\n", + "36184 0\n", + "36185 0\n", + "36186 0\n", + "36187 1\n", + "36188 0\n", + "36189 0\n", + "36190 0\n", + "36191 1\n", + "36192 0\n", + "36193 0\n", + "36194 0\n", + "36195 0\n", + "36196 0\n", + "36197 0\n", + "36198 0\n", + "36199 0\n", + "36200 0\n", + "36201 0\n", + "36202 0\n", + "36203 0\n", + "36204 0\n", + "36205 0\n", + "36206 0\n", + "36207 0\n", + "36208 0\n", + "36209 1\n", + "36210 0\n", + "36211 0\n", + "36212 0\n", + "36213 0\n", + "36214 0\n", + "36215 0\n", + "36216 0\n", + "36217 1\n", + "36218 0\n", + "36219 0\n", + "36220 0\n", + "36221 0\n", + "36222 0\n", + "36223 0\n", + "36224 0\n", + "36225 0\n", + "36226 0\n", + "36227 0\n", + "36228 0\n", + "36229 1\n", + "36230 0\n", + "36231 0\n", + "36232 0\n", + "36233 0\n", + "36234 0\n", + "36235 0\n", + "36236 0\n", + "36237 0\n", + "36238 0\n", + "36239 0\n", + "36240 0\n", + "36241 1\n", + "36242 0\n", + "36243 0\n", + "36244 0\n", + "36245 0\n", + "36246 0\n", + "36247 0\n", + "36248 0\n", + "36249 0\n", + "36250 0\n", + "36251 1\n", + "36252 0\n", + "36253 0\n", + "36254 0\n", + "36255 0\n", + "36256 0\n", + "36257 0\n", + "36258 0\n", + "36259 0\n", + "36260 0\n", + "36261 0\n", + "36262 0\n", + "36263 1\n", + "36264 0\n", + "36265 0\n", + "36266 0\n", + "36267 0\n", + "36268 0\n", + "36269 1\n", + "36270 0\n", + "36271 0\n", + "36272 0\n", + "36273 0\n", + "36274 0\n", + "36275 0\n", + "36276 0\n", + "36277 1\n", + "36278 0\n", + "36279 0\n", + "36280 0\n", + "36281 0\n", + "36282 0\n", + "36283 0\n", + "36284 0\n", + "36285 0\n", + "36286 0\n", + "36287 0\n", + "36288 0\n", + "36289 0\n", + "36290 0\n", + "36291 0\n", + "36292 0\n", + "36293 1\n", + "36294 0\n", + "36295 0\n", + "36296 0\n", + "36297 0\n", + "36298 0\n", + "36299 1\n", + "36300 0\n", + "36301 0\n", + "36302 0\n", + "36303 0\n", + "36304 0\n", + "36305 0\n", + "36306 0\n", + "36307 1\n", + "36308 0\n", + "36309 0\n", + "36310 0\n", + "36311 0\n", + "36312 0\n", + "36313 1\n", + "36314 0\n", + "36315 0\n", + "36316 0\n", + "36317 0\n", + "36318 0\n", + "36319 1\n", + "36320 0\n", + "36321 0\n", + "36322 0\n", + "36323 0\n", + "36324 0\n", + "36325 0\n", + "36326 0\n", + "36327 0\n", + "36328 0\n", + "36329 0\n", + "36330 0\n", + "36331 0\n", + "36332 0\n", + "36333 0\n", + "36334 0\n", + "36335 0\n", + "36336 0\n", + "36337 0\n", + "36338 0\n", + "36339 0\n", + "36340 0\n", + "36341 1\n", + "36342 0\n", + "36343 1\n", + "36344 0\n", + "36345 0\n", + "36346 0\n", + "36347 0\n", + "36348 0\n", + "36349 0\n", + "36350 0\n", + "36351 0\n", + "36352 0\n", + "36353 1\n", + "36354 0\n", + "36355 0\n", + "36356 0\n", + "36357 0\n", + "36358 0\n", + "36359 0\n", + "36360 0\n", + "36361 0\n", + "36362 0\n", + "36363 0\n", + "36364 0\n", + "36365 0\n", + "36366 0\n", + "36367 0\n", + "36368 0\n", + "36369 0\n", + "36370 0\n", + "36371 0\n", + "36372 0\n", + "36373 1\n", + "36374 0\n", + "36375 0\n", + "36376 0\n", + "36377 0\n", + "36378 0\n", + "36379 0\n", + "36380 0\n", + "36381 0\n", + "36382 0\n", + "36383 1\n", + "36384 0\n", + "36385 0\n", + "36386 0\n", + "36387 0\n", + "36388 0\n", + "36389 1\n", + "36390 0\n", + "36391 0\n", + "36392 0\n", + "36393 0\n", + "36394 0\n", + "36395 0\n", + "36396 0\n", + "36397 0\n", + "36398 0\n", + "36399 0\n", + "36400 0\n", + "36401 0\n", + "36402 0\n", + "36403 0\n", + "36404 0\n", + "36405 0\n", + "36406 0\n", + "36407 0\n", + "36408 0\n", + "36409 0\n", + "36410 0\n", + "36411 0\n", + "36412 0\n", + "36413 0\n", + "36414 0\n", + "36415 0\n", + "36416 0\n", + "36417 0\n", + "36418 0\n", + "36419 0\n", + "36420 0\n", + "36421 0\n", + "36422 0\n", + "36423 0\n", + "36424 0\n", + "36425 0\n", + "36426 0\n", + "36427 0\n", + "36428 0\n", + "36429 0\n", + "36430 0\n", + "36431 0\n", + "36432 0\n", + "36433 1\n", + "36434 0\n", + "36435 0\n", + "36436 0\n", + "36437 0\n", + "36438 0\n", + "36439 0\n", + "36440 0\n", + "36441 0\n", + "36442 0\n", + "36443 0\n", + "36444 0\n", + "36445 0\n", + "36446 0\n", + "36447 0\n", + "36448 0\n", + "36449 0\n", + "36450 0\n", + "36451 1\n", + "36452 0\n", + "36453 0\n", + "36454 0\n", + "36455 0\n", + "36456 0\n", + "36457 1\n", + "36458 0\n", + "36459 0\n", + "36460 0\n", + "36461 0\n", + "36462 0\n", + "36463 0\n", + "36464 0\n", + "36465 0\n", + "36466 0\n", + "36467 1\n", + "36468 0\n", + "36469 1\n", + "36470 0\n", + "36471 0\n", + "36472 0\n", + "36473 1\n", + "36474 0\n", + "36475 0\n", + "36476 0\n", + "36477 0\n", + "36478 0\n", + "36479 1\n", + "36480 0\n", + "36481 0\n", + "36482 0\n", + "36483 0\n", + "36484 0\n", + "36485 0\n", + "36486 0\n", + "36487 0\n", + "36488 0\n", + "36489 0\n", + "36490 0\n", + "36491 0\n", + "36492 0\n", + "36493 1\n", + "36494 0\n", + "36495 0\n", + "36496 0\n", + "36497 1\n", + "36498 0\n", + "36499 0\n", + "36500 0\n", + "36501 0\n", + "36502 0\n", + "36503 0\n", + "36504 0\n", + "36505 0\n", + "36506 0\n", + "36507 0\n", + "36508 0\n", + "36509 0\n", + "36510 0\n", + "36511 0\n", + "36512 0\n", + "36513 0\n", + "36514 0\n", + "36515 0\n", + "36516 0\n", + "36517 0\n", + "36518 0\n", + "36519 0\n", + "36520 0\n", + "36521 0\n", + "36522 0\n", + "36523 1\n", + "36524 0\n", + "36525 0\n", + "36526 0\n", + "36527 1\n", + "36528 0\n", + "36529 1\n", + "36530 0\n", + "36531 0\n", + "36532 0\n", + "36533 0\n", + "36534 0\n", + "36535 0\n", + "36536 0\n", + "36537 0\n", + "36538 0\n", + "36539 0\n", + "36540 0\n", + "36541 1\n", + "36542 0\n", + "36543 0\n", + "36544 0\n", + "36545 0\n", + "36546 0\n", + "36547 0\n", + "36548 0\n", + "36549 0\n", + "36550 0\n", + "36551 1\n", + "36552 0\n", + "36553 0\n", + "36554 0\n", + "36555 0\n", + "36556 0\n", + "36557 0\n", + "36558 0\n", + "36559 1\n", + "36560 0\n", + "36561 0\n", + "36562 0\n", + "36563 1\n", + "36564 0\n", + "36565 0\n", + "36566 0\n", + "36567 0\n", + "36568 0\n", + "36569 0\n", + "36570 0\n", + "36571 1\n", + "36572 0\n", + "36573 0\n", + "36574 0\n", + "36575 0\n", + "36576 0\n", + "36577 0\n", + "36578 0\n", + "36579 0\n", + "36580 0\n", + "36581 0\n", + "36582 0\n", + "36583 1\n", + "36584 0\n", + "36585 0\n", + "36586 0\n", + "36587 1\n", + "36588 0\n", + "36589 0\n", + "36590 0\n", + "36591 0\n", + "36592 0\n", + "36593 0\n", + "36594 0\n", + "36595 0\n", + "36596 0\n", + "36597 0\n", + "36598 0\n", + "36599 1\n", + "36600 0\n", + "36601 0\n", + "36602 0\n", + "36603 0\n", + "36604 0\n", + "36605 0\n", + "36606 0\n", + "36607 1\n", + "36608 0\n", + "36609 0\n", + "36610 0\n", + "36611 0\n", + "36612 0\n", + "36613 0\n", + "36614 0\n", + "36615 0\n", + "36616 0\n", + "36617 0\n", + "36618 0\n", + "36619 0\n", + "36620 0\n", + "36621 0\n", + "36622 0\n", + "36623 0\n", + "36624 0\n", + "36625 0\n", + "36626 0\n", + "36627 0\n", + "36628 0\n", + "36629 1\n", + "36630 0\n", + "36631 0\n", + "36632 0\n", + "36633 0\n", + "36634 0\n", + "36635 0\n", + "36636 0\n", + "36637 1\n", + "36638 0\n", + "36639 0\n", + "36640 0\n", + "36641 0\n", + "36642 0\n", + "36643 1\n", + "36644 0\n", + "36645 0\n", + "36646 0\n", + "36647 0\n", + "36648 0\n", + "36649 0\n", + "36650 0\n", + "36651 0\n", + "36652 0\n", + "36653 1\n", + "36654 0\n", + "36655 0\n", + "36656 0\n", + "36657 0\n", + "36658 0\n", + "36659 0\n", + "36660 0\n", + "36661 0\n", + "36662 0\n", + "36663 0\n", + "36664 0\n", + "36665 0\n", + "36666 0\n", + "36667 0\n", + "36668 0\n", + "36669 0\n", + "36670 0\n", + "36671 1\n", + "36672 0\n", + "36673 0\n", + "36674 0\n", + "36675 0\n", + "36676 0\n", + "36677 1\n", + "36678 0\n", + "36679 0\n", + "36680 0\n", + "36681 0\n", + "36682 0\n", + "36683 1\n", + "36684 0\n", + "36685 0\n", + "36686 0\n", + "36687 0\n", + "36688 0\n", + "36689 0\n", + "36690 0\n", + "36691 1\n", + "36692 0\n", + "36693 0\n", + "36694 0\n", + "36695 0\n", + "36696 0\n", + "36697 1\n", + "36698 0\n", + "36699 0\n", + "36700 0\n", + "36701 0\n", + "36702 0\n", + "36703 0\n", + "36704 0\n", + "36705 0\n", + "36706 0\n", + "36707 0\n", + "36708 0\n", + "36709 1\n", + "36710 0\n", + "36711 0\n", + "36712 0\n", + "36713 1\n", + "36714 0\n", + "36715 0\n", + "36716 0\n", + "36717 0\n", + "36718 0\n", + "36719 0\n", + "36720 0\n", + "36721 1\n", + "36722 0\n", + "36723 0\n", + "36724 0\n", + "36725 0\n", + "36726 0\n", + "36727 0\n", + "36728 0\n", + "36729 0\n", + "36730 0\n", + "36731 0\n", + "36732 0\n", + "36733 0\n", + "36734 0\n", + "36735 0\n", + "36736 0\n", + "36737 0\n", + "36738 0\n", + "36739 1\n", + "36740 0\n", + "36741 0\n", + "36742 0\n", + "36743 0\n", + "36744 0\n", + "36745 0\n", + "36746 0\n", + "36747 0\n", + "36748 0\n", + "36749 1\n", + "36750 0\n", + "36751 0\n", + "36752 0\n", + "36753 0\n", + "36754 0\n", + "36755 0\n", + "36756 0\n", + "36757 0\n", + "36758 0\n", + "36759 0\n", + "36760 0\n", + "36761 1\n", + "36762 0\n", + "36763 0\n", + "36764 0\n", + "36765 0\n", + "36766 0\n", + "36767 1\n", + "36768 0\n", + "36769 0\n", + "36770 0\n", + "36771 0\n", + "36772 0\n", + "36773 0\n", + "36774 0\n", + "36775 0\n", + "36776 0\n", + "36777 0\n", + "36778 0\n", + "36779 1\n", + "36780 0\n", + "36781 1\n", + "36782 0\n", + "36783 0\n", + "36784 0\n", + "36785 0\n", + "36786 0\n", + "36787 1\n", + "36788 0\n", + "36789 0\n", + "36790 0\n", + "36791 1\n", + "36792 0\n", + "36793 1\n", + "36794 0\n", + "36795 0\n", + "36796 0\n", + "36797 0\n", + "36798 0\n", + "36799 0\n", + "36800 0\n", + "36801 0\n", + "36802 0\n", + "36803 0\n", + "36804 0\n", + "36805 0\n", + "36806 0\n", + "36807 0\n", + "36808 0\n", + "36809 1\n", + "36810 0\n", + "36811 0\n", + "36812 0\n", + "36813 0\n", + "36814 0\n", + "36815 0\n", + "36816 0\n", + "36817 0\n", + "36818 0\n", + "36819 0\n", + "36820 0\n", + "36821 1\n", + "36822 0\n", + "36823 0\n", + "36824 0\n", + "36825 0\n", + "36826 0\n", + "36827 0\n", + "36828 0\n", + "36829 0\n", + "36830 0\n", + "36831 0\n", + "36832 0\n", + "36833 1\n", + "36834 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "36835 0\n", + "36836 0\n", + "36837 0\n", + "36838 0\n", + "36839 0\n", + "36840 0\n", + "36841 0\n", + "36842 0\n", + "36843 0\n", + "36844 0\n", + "36845 0\n", + "36846 0\n", + "36847 1\n", + "36848 0\n", + "36849 0\n", + "36850 0\n", + "36851 0\n", + "36852 0\n", + "36853 0\n", + "36854 0\n", + "36855 0\n", + "36856 0\n", + "36857 1\n", + "36858 0\n", + "36859 0\n", + "36860 0\n", + "36861 0\n", + "36862 0\n", + "36863 0\n", + "36864 0\n", + "36865 0\n", + "36866 0\n", + "36867 0\n", + "36868 0\n", + "36869 0\n", + "36870 0\n", + "36871 1\n", + "36872 0\n", + "36873 0\n", + "36874 0\n", + "36875 0\n", + "36876 0\n", + "36877 1\n", + "36878 0\n", + "36879 0\n", + "36880 0\n", + "36881 0\n", + "36882 0\n", + "36883 0\n", + "36884 0\n", + "36885 0\n", + "36886 0\n", + "36887 1\n", + "36888 0\n", + "36889 0\n", + "36890 0\n", + "36891 0\n", + "36892 0\n", + "36893 0\n", + "36894 0\n", + "36895 0\n", + "36896 0\n", + "36897 0\n", + "36898 0\n", + "36899 1\n", + "36900 0\n", + "36901 1\n", + "36902 0\n", + "36903 0\n", + "36904 0\n", + "36905 0\n", + "36906 0\n", + "36907 0\n", + "36908 0\n", + "36909 0\n", + "36910 0\n", + "36911 0\n", + "36912 0\n", + "36913 1\n", + "36914 0\n", + "36915 0\n", + "36916 0\n", + "36917 0\n", + "36918 0\n", + "36919 1\n", + "36920 0\n", + "36921 0\n", + "36922 0\n", + "36923 1\n", + "36924 0\n", + "36925 0\n", + "36926 0\n", + "36927 0\n", + "36928 0\n", + "36929 1\n", + "36930 0\n", + "36931 1\n", + "36932 0\n", + "36933 0\n", + "36934 0\n", + "36935 0\n", + "36936 0\n", + "36937 0\n", + "36938 0\n", + "36939 0\n", + "36940 0\n", + "36941 0\n", + "36942 0\n", + "36943 1\n", + "36944 0\n", + "36945 0\n", + "36946 0\n", + "36947 1\n", + "36948 0\n", + "36949 0\n", + "36950 0\n", + "36951 0\n", + "36952 0\n", + "36953 0\n", + "36954 0\n", + "36955 0\n", + "36956 0\n", + "36957 0\n", + "36958 0\n", + "36959 0\n", + "36960 0\n", + "36961 0\n", + "36962 0\n", + "36963 0\n", + "36964 0\n", + "36965 0\n", + "36966 0\n", + "36967 0\n", + "36968 0\n", + "36969 0\n", + "36970 0\n", + "36971 0\n", + "36972 0\n", + "36973 1\n", + "36974 0\n", + "36975 0\n", + "36976 0\n", + "36977 0\n", + "36978 0\n", + "36979 1\n", + "36980 0\n", + "36981 0\n", + "36982 0\n", + "36983 0\n", + "36984 0\n", + "36985 0\n", + "36986 0\n", + "36987 0\n", + "36988 0\n", + "36989 0\n", + "36990 0\n", + "36991 0\n", + "36992 0\n", + "36993 0\n", + "36994 0\n", + "36995 0\n", + "36996 0\n", + "36997 1\n", + "36998 0\n", + "36999 0\n", + "37000 0\n", + "37001 0\n", + "37002 0\n", + "37003 1\n", + "37004 0\n", + "37005 0\n", + "37006 0\n", + "37007 0\n", + "37008 0\n", + "37009 0\n", + "37010 0\n", + "37011 0\n", + "37012 0\n", + "37013 1\n", + "37014 0\n", + "37015 0\n", + "37016 0\n", + "37017 0\n", + "37018 0\n", + "37019 1\n", + "37020 0\n", + "37021 1\n", + "37022 0\n", + "37023 0\n", + "37024 0\n", + "37025 0\n", + "37026 0\n", + "37027 0\n", + "37028 0\n", + "37029 0\n", + "37030 0\n", + "37031 0\n", + "37032 0\n", + "37033 0\n", + "37034 0\n", + "37035 0\n", + "37036 0\n", + "37037 0\n", + "37038 0\n", + "37039 1\n", + "37040 0\n", + "37041 0\n", + "37042 0\n", + "37043 0\n", + "37044 0\n", + "37045 0\n", + "37046 0\n", + "37047 0\n", + "37048 0\n", + "37049 1\n", + "37050 0\n", + "37051 0\n", + "37052 0\n", + "37053 0\n", + "37054 0\n", + "37055 0\n", + "37056 0\n", + "37057 1\n", + "37058 0\n", + "37059 0\n", + "37060 0\n", + "37061 1\n", + "37062 0\n", + "37063 0\n", + "37064 0\n", + "37065 0\n", + "37066 0\n", + "37067 0\n", + "37068 0\n", + "37069 0\n", + "37070 0\n", + "37071 0\n", + "37072 0\n", + "37073 0\n", + "37074 0\n", + "37075 0\n", + "37076 0\n", + "37077 0\n", + "37078 0\n", + "37079 0\n", + "37080 0\n", + "37081 0\n", + "37082 0\n", + "37083 0\n", + "37084 0\n", + "37085 0\n", + "37086 0\n", + "37087 1\n", + "37088 0\n", + "37089 0\n", + "37090 0\n", + "37091 0\n", + "37092 0\n", + "37093 0\n", + "37094 0\n", + "37095 0\n", + "37096 0\n", + "37097 1\n", + "37098 0\n", + "37099 0\n", + "37100 0\n", + "37101 0\n", + "37102 0\n", + "37103 0\n", + "37104 0\n", + "37105 0\n", + "37106 0\n", + "37107 0\n", + "37108 0\n", + "37109 0\n", + "37110 0\n", + "37111 0\n", + "37112 0\n", + "37113 0\n", + "37114 0\n", + "37115 0\n", + "37116 0\n", + "37117 1\n", + "37118 0\n", + "37119 0\n", + "37120 0\n", + "37121 0\n", + "37122 0\n", + "37123 1\n", + "37124 0\n", + "37125 0\n", + "37126 0\n", + "37127 0\n", + "37128 0\n", + "37129 0\n", + "37130 0\n", + "37131 0\n", + "37132 0\n", + "37133 0\n", + "37134 0\n", + "37135 0\n", + "37136 0\n", + "37137 0\n", + "37138 0\n", + "37139 1\n", + "37140 0\n", + "37141 0\n", + "37142 0\n", + "37143 0\n", + "37144 0\n", + "37145 0\n", + "37146 0\n", + "37147 0\n", + "37148 0\n", + "37149 0\n", + "37150 0\n", + "37151 0\n", + "37152 0\n", + "37153 0\n", + "37154 0\n", + "37155 0\n", + "37156 0\n", + "37157 0\n", + "37158 0\n", + "37159 1\n", + "37160 0\n", + "37161 0\n", + "37162 0\n", + "37163 0\n", + "37164 0\n", + "37165 0\n", + "37166 0\n", + "37167 0\n", + "37168 0\n", + "37169 0\n", + "37170 0\n", + "37171 1\n", + "37172 0\n", + "37173 0\n", + "37174 0\n", + "37175 0\n", + "37176 0\n", + "37177 0\n", + "37178 0\n", + "37179 0\n", + "37180 0\n", + "37181 1\n", + "37182 0\n", + "37183 0\n", + "37184 0\n", + "37185 0\n", + "37186 0\n", + "37187 0\n", + "37188 0\n", + "37189 1\n", + "37190 0\n", + "37191 0\n", + "37192 0\n", + "37193 0\n", + "37194 0\n", + "37195 0\n", + "37196 0\n", + "37197 0\n", + "37198 0\n", + "37199 1\n", + "37200 0\n", + "37201 1\n", + "37202 0\n", + "37203 0\n", + "37204 0\n", + "37205 0\n", + "37206 0\n", + "37207 0\n", + "37208 0\n", + "37209 0\n", + "37210 0\n", + "37211 0\n", + "37212 0\n", + "37213 0\n", + "37214 0\n", + "37215 0\n", + "37216 0\n", + "37217 1\n", + "37218 0\n", + "37219 0\n", + "37220 0\n", + "37221 0\n", + "37222 0\n", + "37223 1\n", + "37224 0\n", + "37225 0\n", + "37226 0\n", + "37227 0\n", + "37228 0\n", + "37229 0\n", + "37230 0\n", + "37231 0\n", + "37232 0\n", + "37233 0\n", + "37234 0\n", + "37235 0\n", + "37236 0\n", + "37237 0\n", + "37238 0\n", + "37239 0\n", + "37240 0\n", + "37241 0\n", + "37242 0\n", + "37243 1\n", + "37244 0\n", + "37245 0\n", + "37246 0\n", + "37247 0\n", + "37248 0\n", + "37249 0\n", + "37250 0\n", + "37251 0\n", + "37252 0\n", + "37253 1\n", + "37254 0\n", + "37255 0\n", + "37256 0\n", + "37257 0\n", + "37258 0\n", + "37259 0\n", + "37260 0\n", + "37261 0\n", + "37262 0\n", + "37263 0\n", + "37264 0\n", + "37265 0\n", + "37266 0\n", + "37267 0\n", + "37268 0\n", + "37269 0\n", + "37270 0\n", + "37271 0\n", + "37272 0\n", + "37273 1\n", + "37274 0\n", + "37275 0\n", + "37276 0\n", + "37277 1\n", + "37278 0\n", + "37279 0\n", + "37280 0\n", + "37281 0\n", + "37282 0\n", + "37283 0\n", + "37284 0\n", + "37285 0\n", + "37286 0\n", + "37287 0\n", + "37288 0\n", + "37289 0\n", + "37290 0\n", + "37291 0\n", + "37292 0\n", + "37293 0\n", + "37294 0\n", + "37295 0\n", + "37296 0\n", + "37297 0\n", + "37298 0\n", + "37299 0\n", + "37300 0\n", + "37301 0\n", + "37302 0\n", + "37303 0\n", + "37304 0\n", + "37305 0\n", + "37306 0\n", + "37307 1\n", + "37308 0\n", + "37309 1\n", + "37310 0\n", + "37311 0\n", + "37312 0\n", + "37313 1\n", + "37314 0\n", + "37315 0\n", + "37316 0\n", + "37317 0\n", + "37318 0\n", + "37319 0\n", + "37320 0\n", + "37321 1\n", + "37322 0\n", + "37323 0\n", + "37324 0\n", + "37325 0\n", + "37326 0\n", + "37327 0\n", + "37328 0\n", + "37329 0\n", + "37330 0\n", + "37331 0\n", + "37332 0\n", + "37333 0\n", + "37334 0\n", + "37335 0\n", + "37336 0\n", + "37337 1\n", + "37338 0\n", + "37339 1\n", + "37340 0\n", + "37341 0\n", + "37342 0\n", + "37343 0\n", + "37344 0\n", + "37345 0\n", + "37346 0\n", + "37347 0\n", + "37348 0\n", + "37349 0\n", + "37350 0\n", + "37351 0\n", + "37352 0\n", + "37353 0\n", + "37354 0\n", + "37355 0\n", + "37356 0\n", + "37357 1\n", + "37358 0\n", + "37359 0\n", + "37360 0\n", + "37361 1\n", + "37362 0\n", + "37363 1\n", + "37364 0\n", + "37365 0\n", + "37366 0\n", + "37367 0\n", + "37368 0\n", + "37369 1\n", + "37370 0\n", + "37371 0\n", + "37372 0\n", + "37373 0\n", + "37374 0\n", + "37375 0\n", + "37376 0\n", + "37377 0\n", + "37378 0\n", + "37379 1\n", + "37380 0\n", + "37381 0\n", + "37382 0\n", + "37383 0\n", + "37384 0\n", + "37385 0\n", + "37386 0\n", + "37387 0\n", + "37388 0\n", + "37389 0\n", + "37390 0\n", + "37391 0\n", + "37392 0\n", + "37393 0\n", + "37394 0\n", + "37395 0\n", + "37396 0\n", + "37397 1\n", + "37398 0\n", + "37399 0\n", + "37400 0\n", + "37401 0\n", + "37402 0\n", + "37403 0\n", + "37404 0\n", + "37405 0\n", + "37406 0\n", + "37407 0\n", + "37408 0\n", + "37409 1\n", + "37410 0\n", + "37411 0\n", + "37412 0\n", + "37413 0\n", + "37414 0\n", + "37415 0\n", + "37416 0\n", + "37417 0\n", + "37418 0\n", + "37419 0\n", + "37420 0\n", + "37421 0\n", + "37422 0\n", + "37423 1\n", + "37424 0\n", + "37425 0\n", + "37426 0\n", + "37427 0\n", + "37428 0\n", + "37429 0\n", + "37430 0\n", + "37431 0\n", + "37432 0\n", + "37433 0\n", + "37434 0\n", + "37435 0\n", + "37436 0\n", + "37437 0\n", + "37438 0\n", + "37439 0\n", + "37440 0\n", + "37441 1\n", + "37442 0\n", + "37443 0\n", + "37444 0\n", + "37445 0\n", + "37446 0\n", + "37447 1\n", + "37448 0\n", + "37449 0\n", + "37450 0\n", + "37451 0\n", + "37452 0\n", + "37453 0\n", + "37454 0\n", + "37455 0\n", + "37456 0\n", + "37457 0\n", + "37458 0\n", + "37459 0\n", + "37460 0\n", + "37461 0\n", + "37462 0\n", + "37463 1\n", + "37464 0\n", + "37465 0\n", + "37466 0\n", + "37467 0\n", + "37468 0\n", + "37469 0\n", + "37470 0\n", + "37471 0\n", + "37472 0\n", + "37473 0\n", + "37474 0\n", + "37475 0\n", + "37476 0\n", + "37477 0\n", + "37478 0\n", + "37479 0\n", + "37480 0\n", + "37481 0\n", + "37482 0\n", + "37483 1\n", + "37484 0\n", + "37485 0\n", + "37486 0\n", + "37487 0\n", + "37488 0\n", + "37489 1\n", + "37490 0\n", + "37491 0\n", + "37492 0\n", + "37493 1\n", + "37494 0\n", + "37495 0\n", + "37496 0\n", + "37497 0\n", + "37498 0\n", + "37499 0\n", + "37500 0\n", + "37501 1\n", + "37502 0\n", + "37503 0\n", + "37504 0\n", + "37505 0\n", + "37506 0\n", + "37507 1\n", + "37508 0\n", + "37509 0\n", + "37510 0\n", + "37511 1\n", + "37512 0\n", + "37513 0\n", + "37514 0\n", + "37515 0\n", + "37516 0\n", + "37517 1\n", + "37518 0\n", + "37519 0\n", + "37520 0\n", + "37521 0\n", + "37522 0\n", + "37523 0\n", + "37524 0\n", + "37525 0\n", + "37526 0\n", + "37527 0\n", + "37528 0\n", + "37529 1\n", + "37530 0\n", + "37531 0\n", + "37532 0\n", + "37533 0\n", + "37534 0\n", + "37535 0\n", + "37536 0\n", + "37537 1\n", + "37538 0\n", + "37539 0\n", + "37540 0\n", + "37541 0\n", + "37542 0\n", + "37543 0\n", + "37544 0\n", + "37545 0\n", + "37546 0\n", + "37547 1\n", + "37548 0\n", + "37549 1\n", + "37550 0\n", + "37551 0\n", + "37552 0\n", + "37553 0\n", + "37554 0\n", + "37555 0\n", + "37556 0\n", + "37557 0\n", + "37558 0\n", + "37559 0\n", + "37560 0\n", + "37561 1\n", + "37562 0\n", + "37563 0\n", + "37564 0\n", + "37565 0\n", + "37566 0\n", + "37567 1\n", + "37568 0\n", + "37569 0\n", + "37570 0\n", + "37571 1\n", + "37572 0\n", + "37573 1\n", + "37574 0\n", + "37575 0\n", + "37576 0\n", + "37577 0\n", + "37578 0\n", + "37579 1\n", + "37580 0\n", + "37581 0\n", + "37582 0\n", + "37583 0\n", + "37584 0\n", + "37585 0\n", + "37586 0\n", + "37587 0\n", + "37588 0\n", + "37589 1\n", + "37590 0\n", + "37591 1\n", + "37592 0\n", + "37593 0\n", + "37594 0\n", + "37595 0\n", + "37596 0\n", + "37597 0\n", + "37598 0\n", + "37599 0\n", + "37600 0\n", + "37601 0\n", + "37602 0\n", + "37603 0\n", + "37604 0\n", + "37605 0\n", + "37606 0\n", + "37607 1\n", + "37608 0\n", + "37609 0\n", + "37610 0\n", + "37611 0\n", + "37612 0\n", + "37613 0\n", + "37614 0\n", + "37615 0\n", + "37616 0\n", + "37617 0\n", + "37618 0\n", + "37619 1\n", + "37620 0\n", + "37621 0\n", + "37622 0\n", + "37623 0\n", + "37624 0\n", + "37625 0\n", + "37626 0\n", + "37627 0\n", + "37628 0\n", + "37629 0\n", + "37630 0\n", + "37631 0\n", + "37632 0\n", + "37633 1\n", + "37634 0\n", + "37635 0\n", + "37636 0\n", + "37637 0\n", + "37638 0\n", + "37639 0\n", + "37640 0\n", + "37641 0\n", + "37642 0\n", + "37643 1\n", + "37644 0\n", + "37645 0\n", + "37646 0\n", + "37647 0\n", + "37648 0\n", + "37649 1\n", + "37650 0\n", + "37651 0\n", + "37652 0\n", + "37653 0\n", + "37654 0\n", + "37655 0\n", + "37656 0\n", + "37657 1\n", + "37658 0\n", + "37659 0\n", + "37660 0\n", + "37661 0\n", + "37662 0\n", + "37663 1\n", + "37664 0\n", + "37665 0\n", + "37666 0\n", + "37667 0\n", + "37668 0\n", + "37669 0\n", + "37670 0\n", + "37671 0\n", + "37672 0\n", + "37673 0\n", + "37674 0\n", + "37675 0\n", + "37676 0\n", + "37677 0\n", + "37678 0\n", + "37679 0\n", + "37680 0\n", + "37681 0\n", + "37682 0\n", + "37683 0\n", + "37684 0\n", + "37685 0\n", + "37686 0\n", + "37687 0\n", + "37688 0\n", + "37689 0\n", + "37690 0\n", + "37691 1\n", + "37692 0\n", + "37693 1\n", + "37694 0\n", + "37695 0\n", + "37696 0\n", + "37697 0\n", + "37698 0\n", + "37699 1\n", + "37700 0\n", + "37701 0\n", + "37702 0\n", + "37703 0\n", + "37704 0\n", + "37705 0\n", + "37706 0\n", + "37707 0\n", + "37708 0\n", + "37709 0\n", + "37710 0\n", + "37711 0\n", + "37712 0\n", + "37713 0\n", + "37714 0\n", + "37715 0\n", + "37716 0\n", + "37717 1\n", + "37718 0\n", + "37719 0\n", + "37720 0\n", + "37721 0\n", + "37722 0\n", + "37723 0\n", + "37724 0\n", + "37725 0\n", + "37726 0\n", + "37727 0\n", + "37728 0\n", + "37729 0\n", + "37730 0\n", + "37731 0\n", + "37732 0\n", + "37733 0\n", + "37734 0\n", + "37735 0\n", + "37736 0\n", + "37737 0\n", + "37738 0\n", + "37739 0\n", + "37740 0\n", + "37741 0\n", + "37742 0\n", + "37743 0\n", + "37744 0\n", + "37745 0\n", + "37746 0\n", + "37747 1\n", + "37748 0\n", + "37749 0\n", + "37750 0\n", + "37751 0\n", + "37752 0\n", + "37753 0\n", + "37754 0\n", + "37755 0\n", + "37756 0\n", + "37757 0\n", + "37758 0\n", + "37759 0\n", + "37760 0\n", + "37761 0\n", + "37762 0\n", + "37763 0\n", + "37764 0\n", + "37765 0\n", + "37766 0\n", + "37767 0\n", + "37768 0\n", + "37769 0\n", + "37770 0\n", + "37771 0\n", + "37772 0\n", + "37773 0\n", + "37774 0\n", + "37775 0\n", + "37776 0\n", + "37777 0\n", + "37778 0\n", + "37779 0\n", + "37780 0\n", + "37781 1\n", + "37782 0\n", + "37783 1\n", + "37784 0\n", + "37785 0\n", + "37786 0\n", + "37787 0\n", + "37788 0\n", + "37789 0\n", + "37790 0\n", + "37791 0\n", + "37792 0\n", + "37793 0\n", + "37794 0\n", + "37795 0\n", + "37796 0\n", + "37797 0\n", + "37798 0\n", + "37799 1\n", + "37800 0\n", + "37801 0\n", + "37802 0\n", + "37803 0\n", + "37804 0\n", + "37805 0\n", + "37806 0\n", + "37807 0\n", + "37808 0\n", + "37809 0\n", + "37810 0\n", + "37811 1\n", + "37812 0\n", + "37813 1\n", + "37814 0\n", + "37815 0\n", + "37816 0\n", + "37817 0\n", + "37818 0\n", + "37819 0\n", + "37820 0\n", + "37821 0\n", + "37822 0\n", + "37823 0\n", + "37824 0\n", + "37825 0\n", + "37826 0\n", + "37827 0\n", + "37828 0\n", + "37829 0\n", + "37830 0\n", + "37831 1\n", + "37832 0\n", + "37833 0\n", + "37834 0\n", + "37835 0\n", + "37836 0\n", + "37837 0\n", + "37838 0\n", + "37839 0\n", + "37840 0\n", + "37841 0\n", + "37842 0\n", + "37843 0\n", + "37844 0\n", + "37845 0\n", + "37846 0\n", + "37847 1\n", + "37848 0\n", + "37849 0\n", + "37850 0\n", + "37851 0\n", + "37852 0\n", + "37853 1\n", + "37854 0\n", + "37855 0\n", + "37856 0\n", + "37857 0\n", + "37858 0\n", + "37859 0\n", + "37860 0\n", + "37861 1\n", + "37862 0\n", + "37863 0\n", + "37864 0\n", + "37865 0\n", + "37866 0\n", + "37867 0\n", + "37868 0\n", + "37869 0\n", + "37870 0\n", + "37871 1\n", + "37872 0\n", + "37873 0\n", + "37874 0\n", + "37875 0\n", + "37876 0\n", + "37877 0\n", + "37878 0\n", + "37879 1\n", + "37880 0\n", + "37881 0\n", + "37882 0\n", + "37883 0\n", + "37884 0\n", + "37885 0\n", + "37886 0\n", + "37887 0\n", + "37888 0\n", + "37889 1\n", + "37890 0\n", + "37891 0\n", + "37892 0\n", + "37893 0\n", + "37894 0\n", + "37895 0\n", + "37896 0\n", + "37897 1\n", + "37898 0\n", + "37899 0\n", + "37900 0\n", + "37901 0\n", + "37902 0\n", + "37903 0\n", + "37904 0\n", + "37905 0\n", + "37906 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "37907 1\n", + "37908 0\n", + "37909 0\n", + "37910 0\n", + "37911 0\n", + "37912 0\n", + "37913 0\n", + "37914 0\n", + "37915 0\n", + "37916 0\n", + "37917 0\n", + "37918 0\n", + "37919 0\n", + "37920 0\n", + "37921 0\n", + "37922 0\n", + "37923 0\n", + "37924 0\n", + "37925 0\n", + "37926 0\n", + "37927 0\n", + "37928 0\n", + "37929 0\n", + "37930 0\n", + "37931 0\n", + "37932 0\n", + "37933 0\n", + "37934 0\n", + "37935 0\n", + "37936 0\n", + "37937 0\n", + "37938 0\n", + "37939 0\n", + "37940 0\n", + "37941 0\n", + "37942 0\n", + "37943 0\n", + "37944 0\n", + "37945 0\n", + "37946 0\n", + "37947 0\n", + "37948 0\n", + "37949 0\n", + "37950 0\n", + "37951 1\n", + "37952 0\n", + "37953 0\n", + "37954 0\n", + "37955 0\n", + "37956 0\n", + "37957 1\n", + "37958 0\n", + "37959 0\n", + "37960 0\n", + "37961 0\n", + "37962 0\n", + "37963 1\n", + "37964 0\n", + "37965 0\n", + "37966 0\n", + "37967 1\n", + "37968 0\n", + "37969 0\n", + "37970 0\n", + "37971 0\n", + "37972 0\n", + "37973 0\n", + "37974 0\n", + "37975 0\n", + "37976 0\n", + "37977 0\n", + "37978 0\n", + "37979 0\n", + "37980 0\n", + "37981 0\n", + "37982 0\n", + "37983 0\n", + "37984 0\n", + "37985 0\n", + "37986 0\n", + "37987 1\n", + "37988 0\n", + "37989 0\n", + "37990 0\n", + "37991 1\n", + "37992 0\n", + "37993 1\n", + "37994 0\n", + "37995 0\n", + "37996 0\n", + "37997 1\n", + "37998 0\n", + "37999 0\n", + "38000 0\n", + "38001 0\n", + "38002 0\n", + "38003 0\n", + "38004 0\n", + "38005 0\n", + "38006 0\n", + "38007 0\n", + "38008 0\n", + "38009 0\n", + "38010 0\n", + "38011 1\n", + "38012 0\n", + "38013 0\n", + "38014 0\n", + "38015 0\n", + "38016 0\n", + "38017 0\n", + "38018 0\n", + "38019 0\n", + "38020 0\n", + "38021 0\n", + "38022 0\n", + "38023 0\n", + "38024 0\n", + "38025 0\n", + "38026 0\n", + "38027 0\n", + "38028 0\n", + "38029 0\n", + "38030 0\n", + "38031 0\n", + "38032 0\n", + "38033 0\n", + "38034 0\n", + "38035 0\n", + "38036 0\n", + "38037 0\n", + "38038 0\n", + "38039 1\n", + "38040 0\n", + "38041 0\n", + "38042 0\n", + "38043 0\n", + "38044 0\n", + "38045 0\n", + "38046 0\n", + "38047 1\n", + "38048 0\n", + "38049 0\n", + "38050 0\n", + "38051 0\n", + "38052 0\n", + "38053 1\n", + "38054 0\n", + "38055 0\n", + "38056 0\n", + "38057 0\n", + "38058 0\n", + "38059 0\n", + "38060 0\n", + "38061 0\n", + "38062 0\n", + "38063 0\n", + "38064 0\n", + "38065 0\n", + "38066 0\n", + "38067 0\n", + "38068 0\n", + "38069 1\n", + "38070 0\n", + "38071 0\n", + "38072 0\n", + "38073 0\n", + "38074 0\n", + "38075 0\n", + "38076 0\n", + "38077 0\n", + "38078 0\n", + "38079 0\n", + "38080 0\n", + "38081 0\n", + "38082 0\n", + "38083 1\n", + "38084 0\n", + "38085 0\n", + "38086 0\n", + "38087 0\n", + "38088 0\n", + "38089 0\n", + "38090 0\n", + "38091 0\n", + "38092 0\n", + "38093 0\n", + "38094 0\n", + "38095 0\n", + "38096 0\n", + "38097 0\n", + "38098 0\n", + "38099 0\n", + "38100 0\n", + "38101 0\n", + "38102 0\n", + "38103 0\n", + "38104 0\n", + "38105 0\n", + "38106 0\n", + "38107 0\n", + "38108 0\n", + "38109 0\n", + "38110 0\n", + "38111 0\n", + "38112 0\n", + "38113 1\n", + "38114 0\n", + "38115 0\n", + "38116 0\n", + "38117 0\n", + "38118 0\n", + "38119 1\n", + "38120 0\n", + "38121 0\n", + "38122 0\n", + "38123 0\n", + "38124 0\n", + "38125 0\n", + "38126 0\n", + "38127 0\n", + "38128 0\n", + "38129 0\n", + "38130 0\n", + "38131 0\n", + "38132 0\n", + "38133 0\n", + "38134 0\n", + "38135 0\n", + "38136 0\n", + "38137 0\n", + "38138 0\n", + "38139 0\n", + "38140 0\n", + "38141 0\n", + "38142 0\n", + "38143 0\n", + "38144 0\n", + "38145 0\n", + "38146 0\n", + "38147 0\n", + "38148 0\n", + "38149 1\n", + "38150 0\n", + "38151 0\n", + "38152 0\n", + "38153 1\n", + "38154 0\n", + "38155 0\n", + "38156 0\n", + "38157 0\n", + "38158 0\n", + "38159 0\n", + "38160 0\n", + "38161 0\n", + "38162 0\n", + "38163 0\n", + "38164 0\n", + "38165 0\n", + "38166 0\n", + "38167 1\n", + "38168 0\n", + "38169 0\n", + "38170 0\n", + "38171 0\n", + "38172 0\n", + "38173 0\n", + "38174 0\n", + "38175 0\n", + "38176 0\n", + "38177 1\n", + "38178 0\n", + "38179 0\n", + "38180 0\n", + "38181 0\n", + "38182 0\n", + "38183 1\n", + "38184 0\n", + "38185 0\n", + "38186 0\n", + "38187 0\n", + "38188 0\n", + "38189 1\n", + "38190 0\n", + "38191 0\n", + "38192 0\n", + "38193 0\n", + "38194 0\n", + "38195 0\n", + "38196 0\n", + "38197 1\n", + "38198 0\n", + "38199 0\n", + "38200 0\n", + "38201 1\n", + "38202 0\n", + "38203 0\n", + "38204 0\n", + "38205 0\n", + "38206 0\n", + "38207 0\n", + "38208 0\n", + "38209 0\n", + "38210 0\n", + "38211 0\n", + "38212 0\n", + "38213 0\n", + "38214 0\n", + "38215 0\n", + "38216 0\n", + "38217 0\n", + "38218 0\n", + "38219 1\n", + "38220 0\n", + "38221 0\n", + "38222 0\n", + "38223 0\n", + "38224 0\n", + "38225 0\n", + "38226 0\n", + "38227 0\n", + "38228 0\n", + "38229 0\n", + "38230 0\n", + "38231 1\n", + "38232 0\n", + "38233 0\n", + "38234 0\n", + "38235 0\n", + "38236 0\n", + "38237 1\n", + "38238 0\n", + "38239 1\n", + "38240 0\n", + "38241 0\n", + "38242 0\n", + "38243 0\n", + "38244 0\n", + "38245 0\n", + "38246 0\n", + "38247 0\n", + "38248 0\n", + "38249 0\n", + "38250 0\n", + "38251 0\n", + "38252 0\n", + "38253 0\n", + "38254 0\n", + "38255 0\n", + "38256 0\n", + "38257 0\n", + "38258 0\n", + "38259 0\n", + "38260 0\n", + "38261 1\n", + "38262 0\n", + "38263 0\n", + "38264 0\n", + "38265 0\n", + "38266 0\n", + "38267 0\n", + "38268 0\n", + "38269 0\n", + "38270 0\n", + "38271 0\n", + "38272 0\n", + "38273 1\n", + "38274 0\n", + "38275 0\n", + "38276 0\n", + "38277 0\n", + "38278 0\n", + "38279 0\n", + "38280 0\n", + "38281 1\n", + "38282 0\n", + "38283 0\n", + "38284 0\n", + "38285 0\n", + "38286 0\n", + "38287 1\n", + "38288 0\n", + "38289 0\n", + "38290 0\n", + "38291 0\n", + "38292 0\n", + "38293 0\n", + "38294 0\n", + "38295 0\n", + "38296 0\n", + "38297 0\n", + "38298 0\n", + "38299 1\n", + "38300 0\n", + "38301 0\n", + "38302 0\n", + "38303 1\n", + "38304 0\n", + "38305 0\n", + "38306 0\n", + "38307 0\n", + "38308 0\n", + "38309 0\n", + "38310 0\n", + "38311 0\n", + "38312 0\n", + "38313 0\n", + "38314 0\n", + "38315 0\n", + "38316 0\n", + "38317 1\n", + "38318 0\n", + "38319 0\n", + "38320 0\n", + "38321 1\n", + "38322 0\n", + "38323 0\n", + "38324 0\n", + "38325 0\n", + "38326 0\n", + "38327 1\n", + "38328 0\n", + "38329 1\n", + "38330 0\n", + "38331 0\n", + "38332 0\n", + "38333 1\n", + "38334 0\n", + "38335 0\n", + "38336 0\n", + "38337 0\n", + "38338 0\n", + "38339 0\n", + "38340 0\n", + "38341 0\n", + "38342 0\n", + "38343 0\n", + "38344 0\n", + "38345 0\n", + "38346 0\n", + "38347 0\n", + "38348 0\n", + "38349 0\n", + "38350 0\n", + "38351 1\n", + "38352 0\n", + "38353 0\n", + "38354 0\n", + "38355 0\n", + "38356 0\n", + "38357 0\n", + "38358 0\n", + "38359 0\n", + "38360 0\n", + "38361 0\n", + "38362 0\n", + "38363 0\n", + "38364 0\n", + "38365 0\n", + "38366 0\n", + "38367 0\n", + "38368 0\n", + "38369 0\n", + "38370 0\n", + "38371 1\n", + "38372 0\n", + "38373 0\n", + "38374 0\n", + "38375 0\n", + "38376 0\n", + "38377 1\n", + "38378 0\n", + "38379 0\n", + "38380 0\n", + "38381 0\n", + "38382 0\n", + "38383 0\n", + "38384 0\n", + "38385 0\n", + "38386 0\n", + "38387 0\n", + "38388 0\n", + "38389 0\n", + "38390 0\n", + "38391 0\n", + "38392 0\n", + "38393 1\n", + "38394 0\n", + "38395 0\n", + "38396 0\n", + "38397 0\n", + "38398 0\n", + "38399 0\n", + "38400 0\n", + "38401 0\n", + "38402 0\n", + "38403 0\n", + "38404 0\n", + "38405 0\n", + "38406 0\n", + "38407 0\n", + "38408 0\n", + "38409 0\n", + "38410 0\n", + "38411 0\n", + "38412 0\n", + "38413 0\n", + "38414 0\n", + "38415 0\n", + "38416 0\n", + "38417 0\n", + "38418 0\n", + "38419 0\n", + "38420 0\n", + "38421 0\n", + "38422 0\n", + "38423 0\n", + "38424 0\n", + "38425 0\n", + "38426 0\n", + "38427 0\n", + "38428 0\n", + "38429 0\n", + "38430 0\n", + "38431 1\n", + "38432 0\n", + "38433 0\n", + "38434 0\n", + "38435 0\n", + "38436 0\n", + "38437 0\n", + "38438 0\n", + "38439 0\n", + "38440 0\n", + "38441 0\n", + "38442 0\n", + "38443 0\n", + "38444 0\n", + "38445 0\n", + "38446 0\n", + "38447 1\n", + "38448 0\n", + "38449 1\n", + "38450 0\n", + "38451 0\n", + "38452 0\n", + "38453 1\n", + "38454 0\n", + "38455 0\n", + "38456 0\n", + "38457 0\n", + "38458 0\n", + "38459 1\n", + "38460 0\n", + "38461 1\n", + "38462 0\n", + "38463 0\n", + "38464 0\n", + "38465 0\n", + "38466 0\n", + "38467 0\n", + "38468 0\n", + "38469 0\n", + "38470 0\n", + "38471 0\n", + "38472 0\n", + "38473 0\n", + "38474 0\n", + "38475 0\n", + "38476 0\n", + "38477 0\n", + "38478 0\n", + "38479 0\n", + "38480 0\n", + "38481 0\n", + "38482 0\n", + "38483 0\n", + "38484 0\n", + "38485 0\n", + "38486 0\n", + "38487 0\n", + "38488 0\n", + "38489 0\n", + "38490 0\n", + "38491 0\n", + "38492 0\n", + "38493 0\n", + "38494 0\n", + "38495 0\n", + "38496 0\n", + "38497 0\n", + "38498 0\n", + "38499 0\n", + "38500 0\n", + "38501 1\n", + "38502 0\n", + "38503 0\n", + "38504 0\n", + "38505 0\n", + "38506 0\n", + "38507 0\n", + "38508 0\n", + "38509 0\n", + "38510 0\n", + "38511 0\n", + "38512 0\n", + "38513 0\n", + "38514 0\n", + "38515 0\n", + "38516 0\n", + "38517 0\n", + "38518 0\n", + "38519 0\n", + "38520 0\n", + "38521 0\n", + "38522 0\n", + "38523 0\n", + "38524 0\n", + "38525 0\n", + "38526 0\n", + "38527 0\n", + "38528 0\n", + "38529 0\n", + "38530 0\n", + "38531 0\n", + "38532 0\n", + "38533 0\n", + "38534 0\n", + "38535 0\n", + "38536 0\n", + "38537 0\n", + "38538 0\n", + "38539 0\n", + "38540 0\n", + "38541 0\n", + "38542 0\n", + "38543 1\n", + "38544 0\n", + "38545 0\n", + "38546 0\n", + "38547 0\n", + "38548 0\n", + "38549 0\n", + "38550 0\n", + "38551 0\n", + "38552 0\n", + "38553 0\n", + "38554 0\n", + "38555 0\n", + "38556 0\n", + "38557 1\n", + "38558 0\n", + "38559 0\n", + "38560 0\n", + "38561 1\n", + "38562 0\n", + "38563 0\n", + "38564 0\n", + "38565 0\n", + "38566 0\n", + "38567 1\n", + "38568 0\n", + "38569 1\n", + "38570 0\n", + "38571 0\n", + "38572 0\n", + "38573 0\n", + "38574 0\n", + "38575 0\n", + "38576 0\n", + "38577 0\n", + "38578 0\n", + "38579 0\n", + "38580 0\n", + "38581 0\n", + "38582 0\n", + "38583 0\n", + "38584 0\n", + "38585 0\n", + "38586 0\n", + "38587 0\n", + "38588 0\n", + "38589 0\n", + "38590 0\n", + "38591 0\n", + "38592 0\n", + "38593 1\n", + "38594 0\n", + "38595 0\n", + "38596 0\n", + "38597 0\n", + "38598 0\n", + "38599 0\n", + "38600 0\n", + "38601 0\n", + "38602 0\n", + "38603 1\n", + "38604 0\n", + "38605 0\n", + "38606 0\n", + "38607 0\n", + "38608 0\n", + "38609 1\n", + "38610 0\n", + "38611 1\n", + "38612 0\n", + "38613 0\n", + "38614 0\n", + "38615 0\n", + "38616 0\n", + "38617 0\n", + "38618 0\n", + "38619 0\n", + "38620 0\n", + "38621 0\n", + "38622 0\n", + "38623 0\n", + "38624 0\n", + "38625 0\n", + "38626 0\n", + "38627 0\n", + "38628 0\n", + "38629 1\n", + "38630 0\n", + "38631 0\n", + "38632 0\n", + "38633 0\n", + "38634 0\n", + "38635 0\n", + "38636 0\n", + "38637 0\n", + "38638 0\n", + "38639 1\n", + "38640 0\n", + "38641 0\n", + "38642 0\n", + "38643 0\n", + "38644 0\n", + "38645 0\n", + "38646 0\n", + "38647 0\n", + "38648 0\n", + "38649 0\n", + "38650 0\n", + "38651 1\n", + "38652 0\n", + "38653 1\n", + "38654 0\n", + "38655 0\n", + "38656 0\n", + "38657 0\n", + "38658 0\n", + "38659 0\n", + "38660 0\n", + "38661 0\n", + "38662 0\n", + "38663 0\n", + "38664 0\n", + "38665 0\n", + "38666 0\n", + "38667 0\n", + "38668 0\n", + "38669 1\n", + "38670 0\n", + "38671 1\n", + "38672 0\n", + "38673 0\n", + "38674 0\n", + "38675 0\n", + "38676 0\n", + "38677 1\n", + "38678 0\n", + "38679 0\n", + "38680 0\n", + "38681 0\n", + "38682 0\n", + "38683 0\n", + "38684 0\n", + "38685 0\n", + "38686 0\n", + "38687 0\n", + "38688 0\n", + "38689 0\n", + "38690 0\n", + "38691 0\n", + "38692 0\n", + "38693 1\n", + "38694 0\n", + "38695 0\n", + "38696 0\n", + "38697 0\n", + "38698 0\n", + "38699 1\n", + "38700 0\n", + "38701 0\n", + "38702 0\n", + "38703 0\n", + "38704 0\n", + "38705 0\n", + "38706 0\n", + "38707 1\n", + "38708 0\n", + "38709 0\n", + "38710 0\n", + "38711 1\n", + "38712 0\n", + "38713 1\n", + "38714 0\n", + "38715 0\n", + "38716 0\n", + "38717 0\n", + "38718 0\n", + "38719 0\n", + "38720 0\n", + "38721 0\n", + "38722 0\n", + "38723 1\n", + "38724 0\n", + "38725 0\n", + "38726 0\n", + "38727 0\n", + "38728 0\n", + "38729 1\n", + "38730 0\n", + "38731 0\n", + "38732 0\n", + "38733 0\n", + "38734 0\n", + "38735 0\n", + "38736 0\n", + "38737 1\n", + "38738 0\n", + "38739 0\n", + "38740 0\n", + "38741 0\n", + "38742 0\n", + "38743 0\n", + "38744 0\n", + "38745 0\n", + "38746 0\n", + "38747 1\n", + "38748 0\n", + "38749 1\n", + "38750 0\n", + "38751 0\n", + "38752 0\n", + "38753 0\n", + "38754 0\n", + "38755 0\n", + "38756 0\n", + "38757 0\n", + "38758 0\n", + "38759 0\n", + "38760 0\n", + "38761 0\n", + "38762 0\n", + "38763 0\n", + "38764 0\n", + "38765 0\n", + "38766 0\n", + "38767 1\n", + "38768 0\n", + "38769 0\n", + "38770 0\n", + "38771 0\n", + "38772 0\n", + "38773 0\n", + "38774 0\n", + "38775 0\n", + "38776 0\n", + "38777 0\n", + "38778 0\n", + "38779 0\n", + "38780 0\n", + "38781 0\n", + "38782 0\n", + "38783 1\n", + "38784 0\n", + "38785 0\n", + "38786 0\n", + "38787 0\n", + "38788 0\n", + "38789 0\n", + "38790 0\n", + "38791 1\n", + "38792 0\n", + "38793 0\n", + "38794 0\n", + "38795 0\n", + "38796 0\n", + "38797 0\n", + "38798 0\n", + "38799 0\n", + "38800 0\n", + "38801 0\n", + "38802 0\n", + "38803 1\n", + "38804 0\n", + "38805 0\n", + "38806 0\n", + "38807 0\n", + "38808 0\n", + "38809 0\n", + "38810 0\n", + "38811 0\n", + "38812 0\n", + "38813 0\n", + "38814 0\n", + "38815 0\n", + "38816 0\n", + "38817 0\n", + "38818 0\n", + "38819 0\n", + "38820 0\n", + "38821 1\n", + "38822 0\n", + "38823 0\n", + "38824 0\n", + "38825 0\n", + "38826 0\n", + "38827 0\n", + "38828 0\n", + "38829 0\n", + "38830 0\n", + "38831 0\n", + "38832 0\n", + "38833 1\n", + "38834 0\n", + "38835 0\n", + "38836 0\n", + "38837 0\n", + "38838 0\n", + "38839 1\n", + "38840 0\n", + "38841 0\n", + "38842 0\n", + "38843 0\n", + "38844 0\n", + "38845 0\n", + "38846 0\n", + "38847 0\n", + "38848 0\n", + "38849 0\n", + "38850 0\n", + "38851 1\n", + "38852 0\n", + "38853 0\n", + "38854 0\n", + "38855 0\n", + "38856 0\n", + "38857 0\n", + "38858 0\n", + "38859 0\n", + "38860 0\n", + "38861 1\n", + "38862 0\n", + "38863 0\n", + "38864 0\n", + "38865 0\n", + "38866 0\n", + "38867 1\n", + "38868 0\n", + "38869 0\n", + "38870 0\n", + "38871 0\n", + "38872 0\n", + "38873 1\n", + "38874 0\n", + "38875 0\n", + "38876 0\n", + "38877 0\n", + "38878 0\n", + "38879 0\n", + "38880 0\n", + "38881 0\n", + "38882 0\n", + "38883 0\n", + "38884 0\n", + "38885 0\n", + "38886 0\n", + "38887 0\n", + "38888 0\n", + "38889 0\n", + "38890 0\n", + "38891 1\n", + "38892 0\n", + "38893 0\n", + "38894 0\n", + "38895 0\n", + "38896 0\n", + "38897 0\n", + "38898 0\n", + "38899 0\n", + "38900 0\n", + "38901 0\n", + "38902 0\n", + "38903 1\n", + "38904 0\n", + "38905 0\n", + "38906 0\n", + "38907 0\n", + "38908 0\n", + "38909 0\n", + "38910 0\n", + "38911 0\n", + "38912 0\n", + "38913 0\n", + "38914 0\n", + "38915 0\n", + "38916 0\n", + "38917 1\n", + "38918 0\n", + "38919 0\n", + "38920 0\n", + "38921 1\n", + "38922 0\n", + "38923 1\n", + "38924 0\n", + "38925 0\n", + "38926 0\n", + "38927 0\n", + "38928 0\n", + "38929 0\n", + "38930 0\n", + "38931 0\n", + "38932 0\n", + "38933 1\n", + "38934 0\n", + "38935 0\n", + "38936 0\n", + "38937 0\n", + "38938 0\n", + "38939 0\n", + "38940 0\n", + "38941 0\n", + "38942 0\n", + "38943 0\n", + "38944 0\n", + "38945 0\n", + "38946 0\n", + "38947 0\n", + "38948 0\n", + "38949 0\n", + "38950 0\n", + "38951 0\n", + "38952 0\n", + "38953 1\n", + "38954 0\n", + "38955 0\n", + "38956 0\n", + "38957 0\n", + "38958 0\n", + "38959 1\n", + "38960 0\n", + "38961 0\n", + "38962 0\n", + "38963 0\n", + "38964 0\n", + "38965 0\n", + "38966 0\n", + "38967 0\n", + "38968 0\n", + "38969 0\n", + "38970 0\n", + "38971 1\n", + "38972 0\n", + "38973 0\n", + "38974 0\n", + "38975 0\n", + "38976 0\n", + "38977 1\n", + "38978 0\n", + "38979 0\n", + "38980 0\n", + "38981 0\n", + "38982 0\n", + "38983 0\n", + "38984 0\n", + "38985 0\n", + "38986 0\n", + "38987 0\n", + "38988 0\n", + "38989 0\n", + "38990 0\n", + "38991 0\n", + "38992 0\n", + "38993 1\n", + "38994 0\n", + "38995 0\n", + "38996 0\n", + "38997 0\n", + "38998 0\n", + "38999 0\n", + "39000 0\n", + "39001 0\n", + "39002 0\n", + "39003 0\n", + "39004 0\n", + "39005 0\n", + "39006 0\n", + "39007 0\n", + "39008 0\n", + "39009 0\n", + "39010 0\n", + "39011 0\n", + "39012 0\n", + "39013 0\n", + "39014 0\n", + "39015 0\n", + "39016 0\n", + "39017 0\n", + "39018 0\n", + "39019 1\n", + "39020 0\n", + "39021 0\n", + "39022 0\n", + "39023 1\n", + "39024 0\n", + "39025 0\n", + "39026 0\n", + "39027 0\n", + "39028 0\n", + "39029 0\n", + "39030 0\n", + "39031 0\n", + "39032 0\n", + "39033 0\n", + "39034 0\n", + "39035 0\n", + "39036 0\n", + "39037 0\n", + "39038 0\n", + "39039 0\n", + "39040 0\n", + "39041 1\n", + "39042 0\n", + "39043 1\n", + "39044 0\n", + "39045 0\n", + "39046 0\n", + "39047 1\n", + "39048 0\n", + "39049 0\n", + "39050 0\n", + "39051 0\n", + "39052 0\n", + "39053 0\n", + "39054 0\n", + "39055 0\n", + "39056 0\n", + "39057 0\n", + "39058 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "39059 0\n", + "39060 0\n", + "39061 0\n", + "39062 0\n", + "39063 0\n", + "39064 0\n", + "39065 0\n", + "39066 0\n", + "39067 0\n", + "39068 0\n", + "39069 0\n", + "39070 0\n", + "39071 0\n", + "39072 0\n", + "39073 0\n", + "39074 0\n", + "39075 0\n", + "39076 0\n", + "39077 0\n", + "39078 0\n", + "39079 1\n", + "39080 0\n", + "39081 0\n", + "39082 0\n", + "39083 0\n", + "39084 0\n", + "39085 0\n", + "39086 0\n", + "39087 0\n", + "39088 0\n", + "39089 1\n", + "39090 0\n", + "39091 0\n", + "39092 0\n", + "39093 0\n", + "39094 0\n", + "39095 0\n", + "39096 0\n", + "39097 1\n", + "39098 0\n", + "39099 0\n", + "39100 0\n", + "39101 0\n", + "39102 0\n", + "39103 1\n", + "39104 0\n", + "39105 0\n", + "39106 0\n", + "39107 1\n", + "39108 0\n", + "39109 0\n", + "39110 0\n", + "39111 0\n", + "39112 0\n", + "39113 1\n", + "39114 0\n", + "39115 0\n", + "39116 0\n", + "39117 0\n", + "39118 0\n", + "39119 1\n", + "39120 0\n", + "39121 0\n", + "39122 0\n", + "39123 0\n", + "39124 0\n", + "39125 0\n", + "39126 0\n", + "39127 0\n", + "39128 0\n", + "39129 0\n", + "39130 0\n", + "39131 0\n", + "39132 0\n", + "39133 1\n", + "39134 0\n", + "39135 0\n", + "39136 0\n", + "39137 0\n", + "39138 0\n", + "39139 1\n", + "39140 0\n", + "39141 0\n", + "39142 0\n", + "39143 0\n", + "39144 0\n", + "39145 0\n", + "39146 0\n", + "39147 0\n", + "39148 0\n", + "39149 0\n", + "39150 0\n", + "39151 0\n", + "39152 0\n", + "39153 0\n", + "39154 0\n", + "39155 0\n", + "39156 0\n", + "39157 1\n", + "39158 0\n", + "39159 0\n", + "39160 0\n", + "39161 1\n", + "39162 0\n", + "39163 1\n", + "39164 0\n", + "39165 0\n", + "39166 0\n", + "39167 0\n", + "39168 0\n", + "39169 0\n", + "39170 0\n", + "39171 0\n", + "39172 0\n", + "39173 0\n", + "39174 0\n", + "39175 0\n", + "39176 0\n", + "39177 0\n", + "39178 0\n", + "39179 0\n", + "39180 0\n", + "39181 1\n", + "39182 0\n", + "39183 0\n", + "39184 0\n", + "39185 0\n", + "39186 0\n", + "39187 0\n", + "39188 0\n", + "39189 0\n", + "39190 0\n", + "39191 1\n", + "39192 0\n", + "39193 0\n", + "39194 0\n", + "39195 0\n", + "39196 0\n", + "39197 0\n", + "39198 0\n", + "39199 1\n", + "39200 0\n", + "39201 0\n", + "39202 0\n", + "39203 0\n", + "39204 0\n", + "39205 0\n", + "39206 0\n", + "39207 0\n", + "39208 0\n", + "39209 1\n", + "39210 0\n", + "39211 0\n", + "39212 0\n", + "39213 0\n", + "39214 0\n", + "39215 0\n", + "39216 0\n", + "39217 1\n", + "39218 0\n", + "39219 0\n", + "39220 0\n", + "39221 0\n", + "39222 0\n", + "39223 0\n", + "39224 0\n", + "39225 0\n", + "39226 0\n", + "39227 1\n", + "39228 0\n", + "39229 1\n", + "39230 0\n", + "39231 0\n", + "39232 0\n", + "39233 1\n", + "39234 0\n", + "39235 0\n", + "39236 0\n", + "39237 0\n", + "39238 0\n", + "39239 1\n", + "39240 0\n", + "39241 1\n", + "39242 0\n", + "39243 0\n", + "39244 0\n", + "39245 0\n", + "39246 0\n", + "39247 0\n", + "39248 0\n", + "39249 0\n", + "39250 0\n", + "39251 1\n", + "39252 0\n", + "39253 0\n", + "39254 0\n", + "39255 0\n", + "39256 0\n", + "39257 0\n", + "39258 0\n", + "39259 0\n", + "39260 0\n", + "39261 0\n", + "39262 0\n", + "39263 0\n", + "39264 0\n", + "39265 0\n", + "39266 0\n", + "39267 0\n", + "39268 0\n", + "39269 0\n", + "39270 0\n", + "39271 0\n", + "39272 0\n", + "39273 0\n", + "39274 0\n", + "39275 0\n", + "39276 0\n", + "39277 0\n", + "39278 0\n", + "39279 0\n", + "39280 0\n", + "39281 0\n", + "39282 0\n", + "39283 0\n", + "39284 0\n", + "39285 0\n", + "39286 0\n", + "39287 0\n", + "39288 0\n", + "39289 0\n", + "39290 0\n", + "39291 0\n", + "39292 0\n", + "39293 1\n", + "39294 0\n", + "39295 0\n", + "39296 0\n", + "39297 0\n", + "39298 0\n", + "39299 0\n", + "39300 0\n", + "39301 1\n", + "39302 0\n", + "39303 0\n", + "39304 0\n", + "39305 0\n", + "39306 0\n", + "39307 0\n", + "39308 0\n", + "39309 0\n", + "39310 0\n", + "39311 0\n", + "39312 0\n", + "39313 1\n", + "39314 0\n", + "39315 0\n", + "39316 0\n", + "39317 1\n", + "39318 0\n", + "39319 0\n", + "39320 0\n", + "39321 0\n", + "39322 0\n", + "39323 1\n", + "39324 0\n", + "39325 0\n", + "39326 0\n", + "39327 0\n", + "39328 0\n", + "39329 0\n", + "39330 0\n", + "39331 0\n", + "39332 0\n", + "39333 0\n", + "39334 0\n", + "39335 0\n", + "39336 0\n", + "39337 0\n", + "39338 0\n", + "39339 0\n", + "39340 0\n", + "39341 1\n", + "39342 0\n", + "39343 1\n", + "39344 0\n", + "39345 0\n", + "39346 0\n", + "39347 0\n", + "39348 0\n", + "39349 0\n", + "39350 0\n", + "39351 0\n", + "39352 0\n", + "39353 0\n", + "39354 0\n", + "39355 0\n", + "39356 0\n", + "39357 0\n", + "39358 0\n", + "39359 1\n", + "39360 0\n", + "39361 0\n", + "39362 0\n", + "39363 0\n", + "39364 0\n", + "39365 0\n", + "39366 0\n", + "39367 1\n", + "39368 0\n", + "39369 0\n", + "39370 0\n", + "39371 1\n", + "39372 0\n", + "39373 1\n", + "39374 0\n", + "39375 0\n", + "39376 0\n", + "39377 0\n", + "39378 0\n", + "39379 0\n", + "39380 0\n", + "39381 0\n", + "39382 0\n", + "39383 1\n", + "39384 0\n", + "39385 0\n", + "39386 0\n", + "39387 0\n", + "39388 0\n", + "39389 0\n", + "39390 0\n", + "39391 0\n", + "39392 0\n", + "39393 0\n", + "39394 0\n", + "39395 0\n", + "39396 0\n", + "39397 1\n", + "39398 0\n", + "39399 0\n", + "39400 0\n", + "39401 0\n", + "39402 0\n", + "39403 0\n", + "39404 0\n", + "39405 0\n", + "39406 0\n", + "39407 0\n", + "39408 0\n", + "39409 1\n", + "39410 0\n", + "39411 0\n", + "39412 0\n", + "39413 0\n", + "39414 0\n", + "39415 0\n", + "39416 0\n", + "39417 0\n", + "39418 0\n", + "39419 1\n", + "39420 0\n", + "39421 0\n", + "39422 0\n", + "39423 0\n", + "39424 0\n", + "39425 0\n", + "39426 0\n", + "39427 0\n", + "39428 0\n", + "39429 0\n", + "39430 0\n", + "39431 0\n", + "39432 0\n", + "39433 0\n", + "39434 0\n", + "39435 0\n", + "39436 0\n", + "39437 0\n", + "39438 0\n", + "39439 1\n", + "39440 0\n", + "39441 0\n", + "39442 0\n", + "39443 1\n", + "39444 0\n", + "39445 0\n", + "39446 0\n", + "39447 0\n", + "39448 0\n", + "39449 0\n", + "39450 0\n", + "39451 1\n", + "39452 0\n", + "39453 0\n", + "39454 0\n", + "39455 0\n", + "39456 0\n", + "39457 0\n", + "39458 0\n", + "39459 0\n", + "39460 0\n", + "39461 1\n", + "39462 0\n", + "39463 0\n", + "39464 0\n", + "39465 0\n", + "39466 0\n", + "39467 0\n", + "39468 0\n", + "39469 0\n", + "39470 0\n", + "39471 0\n", + "39472 0\n", + "39473 0\n", + "39474 0\n", + "39475 0\n", + "39476 0\n", + "39477 0\n", + "39478 0\n", + "39479 0\n", + "39480 0\n", + "39481 0\n", + "39482 0\n", + "39483 0\n", + "39484 0\n", + "39485 0\n", + "39486 0\n", + "39487 0\n", + "39488 0\n", + "39489 0\n", + "39490 0\n", + "39491 0\n", + "39492 0\n", + "39493 0\n", + "39494 0\n", + "39495 0\n", + "39496 0\n", + "39497 0\n", + "39498 0\n", + "39499 1\n", + "39500 0\n", + "39501 0\n", + "39502 0\n", + "39503 1\n", + "39504 0\n", + "39505 0\n", + "39506 0\n", + "39507 0\n", + "39508 0\n", + "39509 1\n", + "39510 0\n", + "39511 1\n", + "39512 0\n", + "39513 0\n", + "39514 0\n", + "39515 0\n", + "39516 0\n", + "39517 0\n", + "39518 0\n", + "39519 0\n", + "39520 0\n", + "39521 1\n", + "39522 0\n", + "39523 0\n", + "39524 0\n", + "39525 0\n", + "39526 0\n", + "39527 0\n", + "39528 0\n", + "39529 0\n", + "39530 0\n", + "39531 0\n", + "39532 0\n", + "39533 0\n", + "39534 0\n", + "39535 0\n", + "39536 0\n", + "39537 0\n", + "39538 0\n", + "39539 0\n", + "39540 0\n", + "39541 1\n", + "39542 0\n", + "39543 0\n", + "39544 0\n", + "39545 0\n", + "39546 0\n", + "39547 0\n", + "39548 0\n", + "39549 0\n", + "39550 0\n", + "39551 1\n", + "39552 0\n", + "39553 0\n", + "39554 0\n", + "39555 0\n", + "39556 0\n", + "39557 0\n", + "39558 0\n", + "39559 0\n", + "39560 0\n", + "39561 0\n", + "39562 0\n", + "39563 1\n", + "39564 0\n", + "39565 0\n", + "39566 0\n", + "39567 0\n", + "39568 0\n", + "39569 1\n", + "39570 0\n", + "39571 0\n", + "39572 0\n", + "39573 0\n", + "39574 0\n", + "39575 0\n", + "39576 0\n", + "39577 0\n", + "39578 0\n", + "39579 0\n", + "39580 0\n", + "39581 1\n", + "39582 0\n", + "39583 0\n", + "39584 0\n", + "39585 0\n", + "39586 0\n", + "39587 0\n", + "39588 0\n", + "39589 0\n", + "39590 0\n", + "39591 0\n", + "39592 0\n", + "39593 0\n", + "39594 0\n", + "39595 0\n", + "39596 0\n", + "39597 0\n", + "39598 0\n", + "39599 0\n", + "39600 0\n", + "39601 0\n", + "39602 0\n", + "39603 0\n", + "39604 0\n", + "39605 0\n", + "39606 0\n", + "39607 1\n", + "39608 0\n", + "39609 0\n", + "39610 0\n", + "39611 0\n", + "39612 0\n", + "39613 0\n", + "39614 0\n", + "39615 0\n", + "39616 0\n", + "39617 0\n", + "39618 0\n", + "39619 1\n", + "39620 0\n", + "39621 0\n", + "39622 0\n", + "39623 1\n", + "39624 0\n", + "39625 0\n", + "39626 0\n", + "39627 0\n", + "39628 0\n", + "39629 0\n", + "39630 0\n", + "39631 1\n", + "39632 0\n", + "39633 0\n", + "39634 0\n", + "39635 0\n", + "39636 0\n", + "39637 0\n", + "39638 0\n", + "39639 0\n", + "39640 0\n", + "39641 0\n", + "39642 0\n", + "39643 0\n", + "39644 0\n", + "39645 0\n", + "39646 0\n", + "39647 0\n", + "39648 0\n", + "39649 0\n", + "39650 0\n", + "39651 0\n", + "39652 0\n", + "39653 0\n", + "39654 0\n", + "39655 0\n", + "39656 0\n", + "39657 0\n", + "39658 0\n", + "39659 1\n", + "39660 0\n", + "39661 0\n", + "39662 0\n", + "39663 0\n", + "39664 0\n", + "39665 0\n", + "39666 0\n", + "39667 1\n", + "39668 0\n", + "39669 0\n", + "39670 0\n", + "39671 1\n", + "39672 0\n", + "39673 0\n", + "39674 0\n", + "39675 0\n", + "39676 0\n", + "39677 0\n", + "39678 0\n", + "39679 1\n", + "39680 0\n", + "39681 0\n", + "39682 0\n", + "39683 0\n", + "39684 0\n", + "39685 0\n", + "39686 0\n", + "39687 0\n", + "39688 0\n", + "39689 0\n", + "39690 0\n", + "39691 0\n", + "39692 0\n", + "39693 0\n", + "39694 0\n", + "39695 0\n", + "39696 0\n", + "39697 0\n", + "39698 0\n", + "39699 0\n", + "39700 0\n", + "39701 0\n", + "39702 0\n", + "39703 1\n", + "39704 0\n", + "39705 0\n", + "39706 0\n", + "39707 0\n", + "39708 0\n", + "39709 1\n", + "39710 0\n", + "39711 0\n", + "39712 0\n", + "39713 0\n", + "39714 0\n", + "39715 0\n", + "39716 0\n", + "39717 0\n", + "39718 0\n", + "39719 1\n", + "39720 0\n", + "39721 0\n", + "39722 0\n", + "39723 0\n", + "39724 0\n", + "39725 0\n", + "39726 0\n", + "39727 1\n", + "39728 0\n", + "39729 0\n", + "39730 0\n", + "39731 0\n", + "39732 0\n", + "39733 1\n", + "39734 0\n", + "39735 0\n", + "39736 0\n", + "39737 0\n", + "39738 0\n", + "39739 0\n", + "39740 0\n", + "39741 0\n", + "39742 0\n", + "39743 0\n", + "39744 0\n", + "39745 0\n", + "39746 0\n", + "39747 0\n", + "39748 0\n", + "39749 1\n", + "39750 0\n", + "39751 0\n", + "39752 0\n", + "39753 0\n", + "39754 0\n", + "39755 0\n", + "39756 0\n", + "39757 0\n", + "39758 0\n", + "39759 0\n", + "39760 0\n", + "39761 1\n", + "39762 0\n", + "39763 0\n", + "39764 0\n", + "39765 0\n", + "39766 0\n", + "39767 0\n", + "39768 0\n", + "39769 1\n", + "39770 0\n", + "39771 0\n", + "39772 0\n", + "39773 0\n", + "39774 0\n", + "39775 0\n", + "39776 0\n", + "39777 0\n", + "39778 0\n", + "39779 1\n", + "39780 0\n", + "39781 0\n", + "39782 0\n", + "39783 0\n", + "39784 0\n", + "39785 0\n", + "39786 0\n", + "39787 0\n", + "39788 0\n", + "39789 0\n", + "39790 0\n", + "39791 1\n", + "39792 0\n", + "39793 0\n", + "39794 0\n", + "39795 0\n", + "39796 0\n", + "39797 0\n", + "39798 0\n", + "39799 1\n", + "39800 0\n", + "39801 0\n", + "39802 0\n", + "39803 0\n", + "39804 0\n", + "39805 0\n", + "39806 0\n", + "39807 0\n", + "39808 0\n", + "39809 0\n", + "39810 0\n", + "39811 0\n", + "39812 0\n", + "39813 0\n", + "39814 0\n", + "39815 0\n", + "39816 0\n", + "39817 0\n", + "39818 0\n", + "39819 0\n", + "39820 0\n", + "39821 1\n", + "39822 0\n", + "39823 0\n", + "39824 0\n", + "39825 0\n", + "39826 0\n", + "39827 1\n", + "39828 0\n", + "39829 1\n", + "39830 0\n", + "39831 0\n", + "39832 0\n", + "39833 0\n", + "39834 0\n", + "39835 0\n", + "39836 0\n", + "39837 0\n", + "39838 0\n", + "39839 1\n", + "39840 0\n", + "39841 1\n", + "39842 0\n", + "39843 0\n", + "39844 0\n", + "39845 0\n", + "39846 0\n", + "39847 1\n", + "39848 0\n", + "39849 0\n", + "39850 0\n", + "39851 0\n", + "39852 0\n", + "39853 0\n", + "39854 0\n", + "39855 0\n", + "39856 0\n", + "39857 1\n", + "39858 0\n", + "39859 0\n", + "39860 0\n", + "39861 0\n", + "39862 0\n", + "39863 1\n", + "39864 0\n", + "39865 0\n", + "39866 0\n", + "39867 0\n", + "39868 0\n", + "39869 1\n", + "39870 0\n", + "39871 0\n", + "39872 0\n", + "39873 0\n", + "39874 0\n", + "39875 0\n", + "39876 0\n", + "39877 1\n", + "39878 0\n", + "39879 0\n", + "39880 0\n", + "39881 0\n", + "39882 0\n", + "39883 1\n", + "39884 0\n", + "39885 0\n", + "39886 0\n", + "39887 1\n", + "39888 0\n", + "39889 0\n", + "39890 0\n", + "39891 0\n", + "39892 0\n", + "39893 0\n", + "39894 0\n", + "39895 0\n", + "39896 0\n", + "39897 0\n", + "39898 0\n", + "39899 0\n", + "39900 0\n", + "39901 1\n", + "39902 0\n", + "39903 0\n", + "39904 0\n", + "39905 0\n", + "39906 0\n", + "39907 0\n", + "39908 0\n", + "39909 0\n", + "39910 0\n", + "39911 0\n", + "39912 0\n", + "39913 0\n", + "39914 0\n", + "39915 0\n", + "39916 0\n", + "39917 0\n", + "39918 0\n", + "39919 0\n", + "39920 0\n", + "39921 0\n", + "39922 0\n", + "39923 0\n", + "39924 0\n", + "39925 0\n", + "39926 0\n", + "39927 0\n", + "39928 0\n", + "39929 1\n", + "39930 0\n", + "39931 0\n", + "39932 0\n", + "39933 0\n", + "39934 0\n", + "39935 0\n", + "39936 0\n", + "39937 1\n", + "39938 0\n", + "39939 0\n", + "39940 0\n", + "39941 0\n", + "39942 0\n", + "39943 0\n", + "39944 0\n", + "39945 0\n", + "39946 0\n", + "39947 0\n", + "39948 0\n", + "39949 0\n", + "39950 0\n", + "39951 0\n", + "39952 0\n", + "39953 1\n", + "39954 0\n", + "39955 0\n", + "39956 0\n", + "39957 0\n", + "39958 0\n", + "39959 0\n", + "39960 0\n", + "39961 0\n", + "39962 0\n", + "39963 0\n", + "39964 0\n", + "39965 0\n", + "39966 0\n", + "39967 0\n", + "39968 0\n", + "39969 0\n", + "39970 0\n", + "39971 1\n", + "39972 0\n", + "39973 0\n", + "39974 0\n", + "39975 0\n", + "39976 0\n", + "39977 0\n", + "39978 0\n", + "39979 1\n", + "39980 0\n", + "39981 0\n", + "39982 0\n", + "39983 1\n", + "39984 0\n", + "39985 0\n", + "39986 0\n", + "39987 0\n", + "39988 0\n", + "39989 1\n", + "39990 0\n", + "39991 0\n", + "39992 0\n", + "39993 0\n", + "39994 0\n", + "39995 0\n", + "39996 0\n", + "39997 0\n", + "39998 0\n", + "39999 0\n", + "40000 0\n", + "40001 0\n", + "40002 0\n", + "40003 0\n", + "40004 0\n", + "40005 0\n", + "40006 0\n", + "40007 0\n", + "40008 0\n", + "40009 1\n", + "40010 0\n", + "40011 0\n", + "40012 0\n", + "40013 1\n", + "40014 0\n", + "40015 0\n", + "40016 0\n", + "40017 0\n", + "40018 0\n", + "40019 0\n", + "40020 0\n", + "40021 0\n", + "40022 0\n", + "40023 0\n", + "40024 0\n", + "40025 0\n", + "40026 0\n", + "40027 0\n", + "40028 0\n", + "40029 0\n", + "40030 0\n", + "40031 1\n", + "40032 0\n", + "40033 0\n", + "40034 0\n", + "40035 0\n", + "40036 0\n", + "40037 1\n", + "40038 0\n", + "40039 1\n", + "40040 0\n", + "40041 0\n", + "40042 0\n", + "40043 0\n", + "40044 0\n", + "40045 0\n", + "40046 0\n", + "40047 0\n", + "40048 0\n", + "40049 0\n", + "40050 0\n", + "40051 0\n", + "40052 0\n", + "40053 0\n", + "40054 0\n", + "40055 0\n", + "40056 0\n", + "40057 0\n", + "40058 0\n", + "40059 0\n", + "40060 0\n", + "40061 0\n", + "40062 0\n", + "40063 1\n", + "40064 0\n", + "40065 0\n", + "40066 0\n", + "40067 0\n", + "40068 0\n", + "40069 0\n", + "40070 0\n", + "40071 0\n", + "40072 0\n", + "40073 0\n", + "40074 0\n", + "40075 0\n", + "40076 0\n", + "40077 0\n", + "40078 0\n", + "40079 0\n", + "40080 0\n", + "40081 0\n", + "40082 0\n", + "40083 0\n", + "40084 0\n", + "40085 0\n", + "40086 0\n", + "40087 1\n", + "40088 0\n", + "40089 0\n", + "40090 0\n", + "40091 0\n", + "40092 0\n", + "40093 1\n", + "40094 0\n", + "40095 0\n", + "40096 0\n", + "40097 0\n", + "40098 0\n", + "40099 1\n", + "40100 0\n", + "40101 0\n", + "40102 0\n", + "40103 0\n", + "40104 0\n", + "40105 0\n", + "40106 0\n", + "40107 0\n", + "40108 0\n", + "40109 0\n", + "40110 0\n", + "40111 1\n", + "40112 0\n", + "40113 0\n", + "40114 0\n", + "40115 0\n", + "40116 0\n", + "40117 0\n", + "40118 0\n", + "40119 0\n", + "40120 0\n", + "40121 0\n", + "40122 0\n", + "40123 1\n", + "40124 0\n", + "40125 0\n", + "40126 0\n", + "40127 1\n", + "40128 0\n", + "40129 1\n", + "40130 0\n", + "40131 0\n", + "40132 0\n", + "40133 0\n", + "40134 0\n", + "40135 0\n", + "40136 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "40137 0\n", + "40138 0\n", + "40139 0\n", + "40140 0\n", + "40141 0\n", + "40142 0\n", + "40143 0\n", + "40144 0\n", + "40145 0\n", + "40146 0\n", + "40147 0\n", + "40148 0\n", + "40149 0\n", + "40150 0\n", + "40151 1\n", + "40152 0\n", + "40153 1\n", + "40154 0\n", + "40155 0\n", + "40156 0\n", + "40157 0\n", + "40158 0\n", + "40159 0\n", + "40160 0\n", + "40161 0\n", + "40162 0\n", + "40163 1\n", + "40164 0\n", + "40165 0\n", + "40166 0\n", + "40167 0\n", + "40168 0\n", + "40169 1\n", + "40170 0\n", + "40171 0\n", + "40172 0\n", + "40173 0\n", + "40174 0\n", + "40175 0\n", + "40176 0\n", + "40177 1\n", + "40178 0\n", + "40179 0\n", + "40180 0\n", + "40181 0\n", + "40182 0\n", + "40183 0\n", + "40184 0\n", + "40185 0\n", + "40186 0\n", + "40187 0\n", + "40188 0\n", + "40189 1\n", + "40190 0\n", + "40191 0\n", + "40192 0\n", + "40193 1\n", + "40194 0\n", + "40195 0\n", + "40196 0\n", + "40197 0\n", + "40198 0\n", + "40199 0\n", + "40200 0\n", + "40201 0\n", + "40202 0\n", + "40203 0\n", + "40204 0\n", + "40205 0\n", + "40206 0\n", + "40207 0\n", + "40208 0\n", + "40209 0\n", + "40210 0\n", + "40211 0\n", + "40212 0\n", + "40213 1\n", + "40214 0\n", + "40215 0\n", + "40216 0\n", + "40217 0\n", + "40218 0\n", + "40219 0\n", + "40220 0\n", + "40221 0\n", + "40222 0\n", + "40223 0\n", + "40224 0\n", + "40225 0\n", + "40226 0\n", + "40227 0\n", + "40228 0\n", + "40229 0\n", + "40230 0\n", + "40231 1\n", + "40232 0\n", + "40233 0\n", + "40234 0\n", + "40235 0\n", + "40236 0\n", + "40237 1\n", + "40238 0\n", + "40239 0\n", + "40240 0\n", + "40241 1\n", + "40242 0\n", + "40243 0\n", + "40244 0\n", + "40245 0\n", + "40246 0\n", + "40247 0\n", + "40248 0\n", + "40249 0\n", + "40250 0\n", + "40251 0\n", + "40252 0\n", + "40253 1\n", + "40254 0\n", + "40255 0\n", + "40256 0\n", + "40257 0\n", + "40258 0\n", + "40259 0\n", + "40260 0\n", + "40261 0\n", + "40262 0\n", + "40263 0\n", + "40264 0\n", + "40265 0\n", + "40266 0\n", + "40267 0\n", + "40268 0\n", + "40269 0\n", + "40270 0\n", + "40271 0\n", + "40272 0\n", + "40273 0\n", + "40274 0\n", + "40275 0\n", + "40276 0\n", + "40277 1\n", + "40278 0\n", + "40279 0\n", + "40280 0\n", + "40281 0\n", + "40282 0\n", + "40283 1\n", + "40284 0\n", + "40285 0\n", + "40286 0\n", + "40287 0\n", + "40288 0\n", + "40289 1\n", + "40290 0\n", + "40291 0\n", + "40292 0\n", + "40293 0\n", + "40294 0\n", + "40295 0\n", + "40296 0\n", + "40297 0\n", + "40298 0\n", + "40299 0\n", + "40300 0\n", + "40301 0\n", + "40302 0\n", + "40303 0\n", + "40304 0\n", + "40305 0\n", + "40306 0\n", + "40307 0\n", + "40308 0\n", + "40309 0\n", + "40310 0\n", + "40311 0\n", + "40312 0\n", + "40313 0\n", + "40314 0\n", + "40315 0\n", + "40316 0\n", + "40317 0\n", + "40318 0\n", + "40319 0\n", + "40320 0\n", + "40321 0\n", + "40322 0\n", + "40323 0\n", + "40324 0\n", + "40325 0\n", + "40326 0\n", + "40327 0\n", + "40328 0\n", + "40329 0\n", + "40330 0\n", + "40331 0\n", + "40332 0\n", + "40333 0\n", + "40334 0\n", + "40335 0\n", + "40336 0\n", + "40337 0\n", + "40338 0\n", + "40339 0\n", + "40340 0\n", + "40341 0\n", + "40342 0\n", + "40343 1\n", + "40344 0\n", + "40345 0\n", + "40346 0\n", + "40347 0\n", + "40348 0\n", + "40349 0\n", + "40350 0\n", + "40351 1\n", + "40352 0\n", + "40353 0\n", + "40354 0\n", + "40355 0\n", + "40356 0\n", + "40357 1\n", + "40358 0\n", + "40359 0\n", + "40360 0\n", + "40361 1\n", + "40362 0\n", + "40363 0\n", + "40364 0\n", + "40365 0\n", + "40366 0\n", + "40367 0\n", + "40368 0\n", + "40369 0\n", + "40370 0\n", + "40371 0\n", + "40372 0\n", + "40373 0\n", + "40374 0\n", + "40375 0\n", + "40376 0\n", + "40377 0\n", + "40378 0\n", + "40379 0\n", + "40380 0\n", + "40381 0\n", + "40382 0\n", + "40383 0\n", + "40384 0\n", + "40385 0\n", + "40386 0\n", + "40387 1\n", + "40388 0\n", + "40389 0\n", + "40390 0\n", + "40391 0\n", + "40392 0\n", + "40393 0\n", + "40394 0\n", + "40395 0\n", + "40396 0\n", + "40397 0\n", + "40398 0\n", + "40399 0\n", + "40400 0\n", + "40401 0\n", + "40402 0\n", + "40403 0\n", + "40404 0\n", + "40405 0\n", + "40406 0\n", + "40407 0\n", + "40408 0\n", + "40409 0\n", + "40410 0\n", + "40411 0\n", + "40412 0\n", + "40413 0\n", + "40414 0\n", + "40415 0\n", + "40416 0\n", + "40417 0\n", + "40418 0\n", + "40419 0\n", + "40420 0\n", + "40421 0\n", + "40422 0\n", + "40423 1\n", + "40424 0\n", + "40425 0\n", + "40426 0\n", + "40427 1\n", + "40428 0\n", + "40429 1\n", + "40430 0\n", + "40431 0\n", + "40432 0\n", + "40433 1\n", + "40434 0\n", + "40435 0\n", + "40436 0\n", + "40437 0\n", + "40438 0\n", + "40439 0\n", + "40440 0\n", + "40441 0\n", + "40442 0\n", + "40443 0\n", + "40444 0\n", + "40445 0\n", + "40446 0\n", + "40447 0\n", + "40448 0\n", + "40449 0\n", + "40450 0\n", + "40451 0\n", + "40452 0\n", + "40453 0\n", + "40454 0\n", + "40455 0\n", + "40456 0\n", + "40457 0\n", + "40458 0\n", + "40459 1\n", + "40460 0\n", + "40461 0\n", + "40462 0\n", + "40463 0\n", + "40464 0\n", + "40465 0\n", + "40466 0\n", + "40467 0\n", + "40468 0\n", + "40469 0\n", + "40470 0\n", + "40471 1\n", + "40472 0\n", + "40473 0\n", + "40474 0\n", + "40475 0\n", + "40476 0\n", + "40477 0\n", + "40478 0\n", + "40479 0\n", + "40480 0\n", + "40481 0\n", + "40482 0\n", + "40483 1\n", + "40484 0\n", + "40485 0\n", + "40486 0\n", + "40487 1\n", + "40488 0\n", + "40489 0\n", + "40490 0\n", + "40491 0\n", + "40492 0\n", + "40493 1\n", + "40494 0\n", + "40495 0\n", + "40496 0\n", + "40497 0\n", + "40498 0\n", + "40499 1\n", + "40500 0\n", + "40501 0\n", + "40502 0\n", + "40503 0\n", + "40504 0\n", + "40505 0\n", + "40506 0\n", + "40507 1\n", + "40508 0\n", + "40509 0\n", + "40510 0\n", + "40511 0\n", + "40512 0\n", + "40513 0\n", + "40514 0\n", + "40515 0\n", + "40516 0\n", + "40517 0\n", + "40518 0\n", + "40519 1\n", + "40520 0\n", + "40521 0\n", + "40522 0\n", + "40523 0\n", + "40524 0\n", + "40525 0\n", + "40526 0\n", + "40527 0\n", + "40528 0\n", + "40529 1\n", + "40530 0\n", + "40531 1\n", + "40532 0\n", + "40533 0\n", + "40534 0\n", + "40535 0\n", + "40536 0\n", + "40537 0\n", + "40538 0\n", + "40539 0\n", + "40540 0\n", + "40541 0\n", + "40542 0\n", + "40543 1\n", + "40544 0\n", + "40545 0\n", + "40546 0\n", + "40547 0\n", + "40548 0\n", + "40549 0\n", + "40550 0\n", + "40551 0\n", + "40552 0\n", + "40553 0\n", + "40554 0\n", + "40555 0\n", + "40556 0\n", + "40557 0\n", + "40558 0\n", + "40559 1\n", + "40560 0\n", + "40561 0\n", + "40562 0\n", + "40563 0\n", + "40564 0\n", + "40565 0\n", + "40566 0\n", + "40567 0\n", + "40568 0\n", + "40569 0\n", + "40570 0\n", + "40571 0\n", + "40572 0\n", + "40573 0\n", + "40574 0\n", + "40575 0\n", + "40576 0\n", + "40577 1\n", + "40578 0\n", + "40579 0\n", + "40580 0\n", + "40581 0\n", + "40582 0\n", + "40583 1\n", + "40584 0\n", + "40585 0\n", + "40586 0\n", + "40587 0\n", + "40588 0\n", + "40589 0\n", + "40590 0\n", + "40591 1\n", + "40592 0\n", + "40593 0\n", + "40594 0\n", + "40595 0\n", + "40596 0\n", + "40597 1\n", + "40598 0\n", + "40599 0\n", + "40600 0\n", + "40601 0\n", + "40602 0\n", + "40603 0\n", + "40604 0\n", + "40605 0\n", + "40606 0\n", + "40607 0\n", + "40608 0\n", + "40609 1\n", + "40610 0\n", + "40611 0\n", + "40612 0\n", + "40613 0\n", + "40614 0\n", + "40615 0\n", + "40616 0\n", + "40617 0\n", + "40618 0\n", + "40619 0\n", + "40620 0\n", + "40621 0\n", + "40622 0\n", + "40623 0\n", + "40624 0\n", + "40625 0\n", + "40626 0\n", + "40627 1\n", + "40628 0\n", + "40629 0\n", + "40630 0\n", + "40631 0\n", + "40632 0\n", + "40633 0\n", + "40634 0\n", + "40635 0\n", + "40636 0\n", + "40637 1\n", + "40638 0\n", + "40639 1\n", + "40640 0\n", + "40641 0\n", + "40642 0\n", + "40643 0\n", + "40644 0\n", + "40645 0\n", + "40646 0\n", + "40647 0\n", + "40648 0\n", + "40649 0\n", + "40650 0\n", + "40651 0\n", + "40652 0\n", + "40653 0\n", + "40654 0\n", + "40655 0\n", + "40656 0\n", + "40657 0\n", + "40658 0\n", + "40659 0\n", + "40660 0\n", + "40661 0\n", + "40662 0\n", + "40663 0\n", + "40664 0\n", + "40665 0\n", + "40666 0\n", + "40667 0\n", + "40668 0\n", + "40669 0\n", + "40670 0\n", + "40671 0\n", + "40672 0\n", + "40673 0\n", + "40674 0\n", + "40675 0\n", + "40676 0\n", + "40677 0\n", + "40678 0\n", + "40679 0\n", + "40680 0\n", + "40681 0\n", + "40682 0\n", + "40683 0\n", + "40684 0\n", + "40685 0\n", + "40686 0\n", + "40687 0\n", + "40688 0\n", + "40689 0\n", + "40690 0\n", + "40691 0\n", + "40692 0\n", + "40693 1\n", + "40694 0\n", + "40695 0\n", + "40696 0\n", + "40697 1\n", + "40698 0\n", + "40699 1\n", + "40700 0\n", + "40701 0\n", + "40702 0\n", + "40703 0\n", + "40704 0\n", + "40705 0\n", + "40706 0\n", + "40707 0\n", + "40708 0\n", + "40709 1\n", + "40710 0\n", + "40711 0\n", + "40712 0\n", + "40713 0\n", + "40714 0\n", + "40715 0\n", + "40716 0\n", + "40717 0\n", + "40718 0\n", + "40719 0\n", + "40720 0\n", + "40721 0\n", + "40722 0\n", + "40723 0\n", + "40724 0\n", + "40725 0\n", + "40726 0\n", + "40727 0\n", + "40728 0\n", + "40729 0\n", + "40730 0\n", + "40731 0\n", + "40732 0\n", + "40733 0\n", + "40734 0\n", + "40735 0\n", + "40736 0\n", + "40737 0\n", + "40738 0\n", + "40739 1\n", + "40740 0\n", + "40741 0\n", + "40742 0\n", + "40743 0\n", + "40744 0\n", + "40745 0\n", + "40746 0\n", + "40747 0\n", + "40748 0\n", + "40749 0\n", + "40750 0\n", + "40751 1\n", + "40752 0\n", + "40753 0\n", + "40754 0\n", + "40755 0\n", + "40756 0\n", + "40757 0\n", + "40758 0\n", + "40759 1\n", + "40760 0\n", + "40761 0\n", + "40762 0\n", + "40763 1\n", + "40764 0\n", + "40765 0\n", + "40766 0\n", + "40767 0\n", + "40768 0\n", + "40769 0\n", + "40770 0\n", + "40771 1\n", + "40772 0\n", + "40773 0\n", + "40774 0\n", + "40775 0\n", + "40776 0\n", + "40777 0\n", + "40778 0\n", + "40779 0\n", + "40780 0\n", + "40781 0\n", + "40782 0\n", + "40783 0\n", + "40784 0\n", + "40785 0\n", + "40786 0\n", + "40787 1\n", + "40788 0\n", + "40789 0\n", + "40790 0\n", + "40791 0\n", + "40792 0\n", + "40793 0\n", + "40794 0\n", + "40795 0\n", + "40796 0\n", + "40797 0\n", + "40798 0\n", + "40799 0\n", + "40800 0\n", + "40801 1\n", + "40802 0\n", + "40803 0\n", + "40804 0\n", + "40805 0\n", + "40806 0\n", + "40807 0\n", + "40808 0\n", + "40809 0\n", + "40810 0\n", + "40811 0\n", + "40812 0\n", + "40813 1\n", + "40814 0\n", + "40815 0\n", + "40816 0\n", + "40817 0\n", + "40818 0\n", + "40819 1\n", + "40820 0\n", + "40821 0\n", + "40822 0\n", + "40823 1\n", + "40824 0\n", + "40825 0\n", + "40826 0\n", + "40827 0\n", + "40828 0\n", + "40829 1\n", + "40830 0\n", + "40831 0\n", + "40832 0\n", + "40833 0\n", + "40834 0\n", + "40835 0\n", + "40836 0\n", + "40837 0\n", + "40838 0\n", + "40839 0\n", + "40840 0\n", + "40841 1\n", + "40842 0\n", + "40843 0\n", + "40844 0\n", + "40845 0\n", + "40846 0\n", + "40847 1\n", + "40848 0\n", + "40849 1\n", + "40850 0\n", + "40851 0\n", + "40852 0\n", + "40853 1\n", + "40854 0\n", + "40855 0\n", + "40856 0\n", + "40857 0\n", + "40858 0\n", + "40859 0\n", + "40860 0\n", + "40861 0\n", + "40862 0\n", + "40863 0\n", + "40864 0\n", + "40865 0\n", + "40866 0\n", + "40867 1\n", + "40868 0\n", + "40869 0\n", + "40870 0\n", + "40871 0\n", + "40872 0\n", + "40873 0\n", + "40874 0\n", + "40875 0\n", + "40876 0\n", + "40877 0\n", + "40878 0\n", + "40879 1\n", + "40880 0\n", + "40881 0\n", + "40882 0\n", + "40883 1\n", + "40884 0\n", + "40885 0\n", + "40886 0\n", + "40887 0\n", + "40888 0\n", + "40889 0\n", + "40890 0\n", + "40891 0\n", + "40892 0\n", + "40893 0\n", + "40894 0\n", + "40895 0\n", + "40896 0\n", + "40897 1\n", + "40898 0\n", + "40899 0\n", + "40900 0\n", + "40901 0\n", + "40902 0\n", + "40903 1\n", + "40904 0\n", + "40905 0\n", + "40906 0\n", + "40907 0\n", + "40908 0\n", + "40909 0\n", + "40910 0\n", + "40911 0\n", + "40912 0\n", + "40913 0\n", + "40914 0\n", + "40915 0\n", + "40916 0\n", + "40917 0\n", + "40918 0\n", + "40919 0\n", + "40920 0\n", + "40921 0\n", + "40922 0\n", + "40923 0\n", + "40924 0\n", + "40925 0\n", + "40926 0\n", + "40927 1\n", + "40928 0\n", + "40929 0\n", + "40930 0\n", + "40931 0\n", + "40932 0\n", + "40933 1\n", + "40934 0\n", + "40935 0\n", + "40936 0\n", + "40937 0\n", + "40938 0\n", + "40939 1\n", + "40940 0\n", + "40941 0\n", + "40942 0\n", + "40943 0\n", + "40944 0\n", + "40945 0\n", + "40946 0\n", + "40947 0\n", + "40948 0\n", + "40949 1\n", + "40950 0\n", + "40951 0\n", + "40952 0\n", + "40953 0\n", + "40954 0\n", + "40955 0\n", + "40956 0\n", + "40957 0\n", + "40958 0\n", + "40959 0\n", + "40960 0\n", + "40961 1\n", + "40962 0\n", + "40963 0\n", + "40964 0\n", + "40965 0\n", + "40966 0\n", + "40967 0\n", + "40968 0\n", + "40969 0\n", + "40970 0\n", + "40971 0\n", + "40972 0\n", + "40973 1\n", + "40974 0\n", + "40975 0\n", + "40976 0\n", + "40977 0\n", + "40978 0\n", + "40979 0\n", + "40980 0\n", + "40981 0\n", + "40982 0\n", + "40983 0\n", + "40984 0\n", + "40985 0\n", + "40986 0\n", + "40987 0\n", + "40988 0\n", + "40989 0\n", + "40990 0\n", + "40991 0\n", + "40992 0\n", + "40993 1\n", + "40994 0\n", + "40995 0\n", + "40996 0\n", + "40997 0\n", + "40998 0\n", + "40999 0\n", + "41000 0\n", + "41001 0\n", + "41002 0\n", + "41003 0\n", + "41004 0\n", + "41005 0\n", + "41006 0\n", + "41007 0\n", + "41008 0\n", + "41009 0\n", + "41010 0\n", + "41011 1\n", + "41012 0\n", + "41013 0\n", + "41014 0\n", + "41015 0\n", + "41016 0\n", + "41017 1\n", + "41018 0\n", + "41019 0\n", + "41020 0\n", + "41021 0\n", + "41022 0\n", + "41023 1\n", + "41024 0\n", + "41025 0\n", + "41026 0\n", + "41027 0\n", + "41028 0\n", + "41029 0\n", + "41030 0\n", + "41031 0\n", + "41032 0\n", + "41033 0\n", + "41034 0\n", + "41035 0\n", + "41036 0\n", + "41037 0\n", + "41038 0\n", + "41039 1\n", + "41040 0\n", + "41041 0\n", + "41042 0\n", + "41043 0\n", + "41044 0\n", + "41045 0\n", + "41046 0\n", + "41047 1\n", + "41048 0\n", + "41049 0\n", + "41050 0\n", + "41051 1\n", + "41052 0\n", + "41053 0\n", + "41054 0\n", + "41055 0\n", + "41056 0\n", + "41057 1\n", + "41058 0\n", + "41059 0\n", + "41060 0\n", + "41061 0\n", + "41062 0\n", + "41063 0\n", + "41064 0\n", + "41065 0\n", + "41066 0\n", + "41067 0\n", + "41068 0\n", + "41069 0\n", + "41070 0\n", + "41071 0\n", + "41072 0\n", + "41073 0\n", + "41074 0\n", + "41075 0\n", + "41076 0\n", + "41077 1\n", + "41078 0\n", + "41079 0\n", + "41080 0\n", + "41081 1\n", + "41082 0\n", + "41083 0\n", + "41084 0\n", + "41085 0\n", + "41086 0\n", + "41087 0\n", + "41088 0\n", + "41089 0\n", + "41090 0\n", + "41091 0\n", + "41092 0\n", + "41093 0\n", + "41094 0\n", + "41095 0\n", + "41096 0\n", + "41097 0\n", + "41098 0\n", + "41099 0\n", + "41100 0\n", + "41101 0\n", + "41102 0\n", + "41103 0\n", + "41104 0\n", + "41105 0\n", + "41106 0\n", + "41107 0\n", + "41108 0\n", + "41109 0\n", + "41110 0\n", + "41111 0\n", + "41112 0\n", + "41113 1\n", + "41114 0\n", + "41115 0\n", + "41116 0\n", + "41117 1\n", + "41118 0\n", + "41119 0\n", + "41120 0\n", + "41121 0\n", + "41122 0\n", + "41123 0\n", + "41124 0\n", + "41125 0\n", + "41126 0\n", + "41127 0\n", + "41128 0\n", + "41129 0\n", + "41130 0\n", + "41131 1\n", + "41132 0\n", + "41133 0\n", + "41134 0\n", + "41135 0\n", + "41136 0\n", + "41137 0\n", + "41138 0\n", + "41139 0\n", + "41140 0\n", + "41141 1\n", + "41142 0\n", + "41143 1\n", + "41144 0\n", + "41145 0\n", + "41146 0\n", + "41147 0\n", + "41148 0\n", + "41149 1\n", + "41150 0\n", + "41151 0\n", + "41152 0\n", + "41153 0\n", + "41154 0\n", + "41155 0\n", + "41156 0\n", + "41157 0\n", + "41158 0\n", + "41159 0\n", + "41160 0\n", + "41161 1\n", + "41162 0\n", + "41163 0\n", + "41164 0\n", + "41165 0\n", + "41166 0\n", + "41167 0\n", + "41168 0\n", + "41169 0\n", + "41170 0\n", + "41171 0\n", + "41172 0\n", + "41173 0\n", + "41174 0\n", + "41175 0\n", + "41176 0\n", + "41177 1\n", + "41178 0\n", + "41179 1\n", + "41180 0\n", + "41181 0\n", + "41182 0\n", + "41183 1\n", + "41184 0\n", + "41185 0\n", + "41186 0\n", + "41187 0\n", + "41188 0\n", + "41189 1\n", + "41190 0\n", + "41191 0\n", + "41192 0\n", + "41193 0\n", + "41194 0\n", + "41195 0\n", + "41196 0\n", + "41197 0\n", + "41198 0\n", + "41199 0\n", + "41200 0\n", + "41201 1\n", + "41202 0\n", + "41203 1\n", + "41204 0\n", + "41205 0\n", + "41206 0\n", + "41207 0\n", + "41208 0\n", + "41209 0\n", + "41210 0\n", + "41211 0\n", + "41212 0\n", + "41213 1\n", + "41214 0\n", + "41215 0\n", + "41216 0\n", + "41217 0\n", + "41218 0\n", + "41219 0\n", + "41220 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "41221 1\n", + "41222 0\n", + "41223 0\n", + "41224 0\n", + "41225 0\n", + "41226 0\n", + "41227 1\n", + "41228 0\n", + "41229 0\n", + "41230 0\n", + "41231 1\n", + "41232 0\n", + "41233 1\n", + "41234 0\n", + "41235 0\n", + "41236 0\n", + "41237 0\n", + "41238 0\n", + "41239 0\n", + "41240 0\n", + "41241 0\n", + "41242 0\n", + "41243 1\n", + "41244 0\n", + "41245 0\n", + "41246 0\n", + "41247 0\n", + "41248 0\n", + "41249 0\n", + "41250 0\n", + "41251 0\n", + "41252 0\n", + "41253 0\n", + "41254 0\n", + "41255 0\n", + "41256 0\n", + "41257 1\n", + "41258 0\n", + "41259 0\n", + "41260 0\n", + "41261 0\n", + "41262 0\n", + "41263 1\n", + "41264 0\n", + "41265 0\n", + "41266 0\n", + "41267 0\n", + "41268 0\n", + "41269 1\n", + "41270 0\n", + "41271 0\n", + "41272 0\n", + "41273 0\n", + "41274 0\n", + "41275 0\n", + "41276 0\n", + "41277 0\n", + "41278 0\n", + "41279 0\n", + "41280 0\n", + "41281 1\n", + "41282 0\n", + "41283 0\n", + "41284 0\n", + "41285 0\n", + "41286 0\n", + "41287 0\n", + "41288 0\n", + "41289 0\n", + "41290 0\n", + "41291 0\n", + "41292 0\n", + "41293 0\n", + "41294 0\n", + "41295 0\n", + "41296 0\n", + "41297 0\n", + "41298 0\n", + "41299 1\n", + "41300 0\n", + "41301 0\n", + "41302 0\n", + "41303 0\n", + "41304 0\n", + "41305 0\n", + "41306 0\n", + "41307 0\n", + "41308 0\n", + "41309 0\n", + "41310 0\n", + "41311 0\n", + "41312 0\n", + "41313 0\n", + "41314 0\n", + "41315 0\n", + "41316 0\n", + "41317 0\n", + "41318 0\n", + "41319 0\n", + "41320 0\n", + "41321 0\n", + "41322 0\n", + "41323 0\n", + "41324 0\n", + "41325 0\n", + "41326 0\n", + "41327 0\n", + "41328 0\n", + "41329 0\n", + "41330 0\n", + "41331 0\n", + "41332 0\n", + "41333 1\n", + "41334 0\n", + "41335 0\n", + "41336 0\n", + "41337 0\n", + "41338 0\n", + "41339 0\n", + "41340 0\n", + "41341 1\n", + "41342 0\n", + "41343 0\n", + "41344 0\n", + "41345 0\n", + "41346 0\n", + "41347 0\n", + "41348 0\n", + "41349 0\n", + "41350 0\n", + "41351 1\n", + "41352 0\n", + "41353 0\n", + "41354 0\n", + "41355 0\n", + "41356 0\n", + "41357 1\n", + "41358 0\n", + "41359 0\n", + "41360 0\n", + "41361 0\n", + "41362 0\n", + "41363 0\n", + "41364 0\n", + "41365 0\n", + "41366 0\n", + "41367 0\n", + "41368 0\n", + "41369 0\n", + "41370 0\n", + "41371 0\n", + "41372 0\n", + "41373 0\n", + "41374 0\n", + "41375 0\n", + "41376 0\n", + "41377 0\n", + "41378 0\n", + "41379 0\n", + "41380 0\n", + "41381 1\n", + "41382 0\n", + "41383 0\n", + "41384 0\n", + "41385 0\n", + "41386 0\n", + "41387 1\n", + "41388 0\n", + "41389 1\n", + "41390 0\n", + "41391 0\n", + "41392 0\n", + "41393 0\n", + "41394 0\n", + "41395 0\n", + "41396 0\n", + "41397 0\n", + "41398 0\n", + "41399 1\n", + "41400 0\n", + "41401 0\n", + "41402 0\n", + "41403 0\n", + "41404 0\n", + "41405 0\n", + "41406 0\n", + "41407 0\n", + "41408 0\n", + "41409 0\n", + "41410 0\n", + "41411 1\n", + "41412 0\n", + "41413 1\n", + "41414 0\n", + "41415 0\n", + "41416 0\n", + "41417 0\n", + "41418 0\n", + "41419 0\n", + "41420 0\n", + "41421 0\n", + "41422 0\n", + "41423 0\n", + "41424 0\n", + "41425 0\n", + "41426 0\n", + "41427 0\n", + "41428 0\n", + "41429 0\n", + "41430 0\n", + "41431 0\n", + "41432 0\n", + "41433 0\n", + "41434 0\n", + "41435 0\n", + "41436 0\n", + "41437 0\n", + "41438 0\n", + "41439 0\n", + "41440 0\n", + "41441 0\n", + "41442 0\n", + "41443 1\n", + "41444 0\n", + "41445 0\n", + "41446 0\n", + "41447 0\n", + "41448 0\n", + "41449 0\n", + "41450 0\n", + "41451 0\n", + "41452 0\n", + "41453 1\n", + "41454 0\n", + "41455 0\n", + "41456 0\n", + "41457 0\n", + "41458 0\n", + "41459 0\n", + "41460 0\n", + "41461 0\n", + "41462 0\n", + "41463 0\n", + "41464 0\n", + "41465 0\n", + "41466 0\n", + "41467 1\n", + "41468 0\n", + "41469 0\n", + "41470 0\n", + "41471 0\n", + "41472 0\n", + "41473 0\n", + "41474 0\n", + "41475 0\n", + "41476 0\n", + "41477 0\n", + "41478 0\n", + "41479 1\n", + "41480 0\n", + "41481 0\n", + "41482 0\n", + "41483 0\n", + "41484 0\n", + "41485 0\n", + "41486 0\n", + "41487 0\n", + "41488 0\n", + "41489 0\n", + "41490 0\n", + "41491 1\n", + "41492 0\n", + "41493 0\n", + "41494 0\n", + "41495 0\n", + "41496 0\n", + "41497 0\n", + "41498 0\n", + "41499 0\n", + "41500 0\n", + "41501 0\n", + "41502 0\n", + "41503 0\n", + "41504 0\n", + "41505 0\n", + "41506 0\n", + "41507 1\n", + "41508 0\n", + "41509 0\n", + "41510 0\n", + "41511 0\n", + "41512 0\n", + "41513 1\n", + "41514 0\n", + "41515 0\n", + "41516 0\n", + "41517 0\n", + "41518 0\n", + "41519 1\n", + "41520 0\n", + "41521 1\n", + "41522 0\n", + "41523 0\n", + "41524 0\n", + "41525 0\n", + "41526 0\n", + "41527 0\n", + "41528 0\n", + "41529 0\n", + "41530 0\n", + "41531 0\n", + "41532 0\n", + "41533 0\n", + "41534 0\n", + "41535 0\n", + "41536 0\n", + "41537 0\n", + "41538 0\n", + "41539 1\n", + "41540 0\n", + "41541 0\n", + "41542 0\n", + "41543 1\n", + "41544 0\n", + "41545 0\n", + "41546 0\n", + "41547 0\n", + "41548 0\n", + "41549 1\n", + "41550 0\n", + "41551 0\n", + "41552 0\n", + "41553 0\n", + "41554 0\n", + "41555 0\n", + "41556 0\n", + "41557 0\n", + "41558 0\n", + "41559 0\n", + "41560 0\n", + "41561 0\n", + "41562 0\n", + "41563 0\n", + "41564 0\n", + "41565 0\n", + "41566 0\n", + "41567 0\n", + "41568 0\n", + "41569 0\n", + "41570 0\n", + "41571 0\n", + "41572 0\n", + "41573 0\n", + "41574 0\n", + "41575 0\n", + "41576 0\n", + "41577 0\n", + "41578 0\n", + "41579 1\n", + "41580 0\n", + "41581 0\n", + "41582 0\n", + "41583 0\n", + "41584 0\n", + "41585 0\n", + "41586 0\n", + "41587 0\n", + "41588 0\n", + "41589 0\n", + "41590 0\n", + "41591 0\n", + "41592 0\n", + "41593 1\n", + "41594 0\n", + "41595 0\n", + "41596 0\n", + "41597 1\n", + "41598 0\n", + "41599 0\n", + "41600 0\n", + "41601 0\n", + "41602 0\n", + "41603 1\n", + "41604 0\n", + "41605 0\n", + "41606 0\n", + "41607 0\n", + "41608 0\n", + "41609 1\n", + "41610 0\n", + "41611 1\n", + "41612 0\n", + "41613 0\n", + "41614 0\n", + "41615 0\n", + "41616 0\n", + "41617 1\n", + "41618 0\n", + "41619 0\n", + "41620 0\n", + "41621 1\n", + "41622 0\n", + "41623 0\n", + "41624 0\n", + "41625 0\n", + "41626 0\n", + "41627 1\n", + "41628 0\n", + "41629 0\n", + "41630 0\n", + "41631 0\n", + "41632 0\n", + "41633 0\n", + "41634 0\n", + "41635 0\n", + "41636 0\n", + "41637 0\n", + "41638 0\n", + "41639 0\n", + "41640 0\n", + "41641 1\n", + "41642 0\n", + "41643 0\n", + "41644 0\n", + "41645 0\n", + "41646 0\n", + "41647 1\n", + "41648 0\n", + "41649 0\n", + "41650 0\n", + "41651 1\n", + "41652 0\n", + "41653 0\n", + "41654 0\n", + "41655 0\n", + "41656 0\n", + "41657 0\n", + "41658 0\n", + "41659 1\n", + "41660 0\n", + "41661 0\n", + "41662 0\n", + "41663 0\n", + "41664 0\n", + "41665 0\n", + "41666 0\n", + "41667 0\n", + "41668 0\n", + "41669 1\n", + "41670 0\n", + "41671 0\n", + "41672 0\n", + "41673 0\n", + "41674 0\n", + "41675 0\n", + "41676 0\n", + "41677 0\n", + "41678 0\n", + "41679 0\n", + "41680 0\n", + "41681 1\n", + "41682 0\n", + "41683 0\n", + "41684 0\n", + "41685 0\n", + "41686 0\n", + "41687 1\n", + "41688 0\n", + "41689 0\n", + "41690 0\n", + "41691 0\n", + "41692 0\n", + "41693 0\n", + "41694 0\n", + "41695 0\n", + "41696 0\n", + "41697 0\n", + "41698 0\n", + "41699 0\n", + "41700 0\n", + "41701 0\n", + "41702 0\n", + "41703 0\n", + "41704 0\n", + "41705 0\n", + "41706 0\n", + "41707 0\n", + "41708 0\n", + "41709 0\n", + "41710 0\n", + "41711 0\n", + "41712 0\n", + "41713 0\n", + "41714 0\n", + "41715 0\n", + "41716 0\n", + "41717 0\n", + "41718 0\n", + "41719 1\n", + "41720 0\n", + "41721 0\n", + "41722 0\n", + "41723 0\n", + "41724 0\n", + "41725 0\n", + "41726 0\n", + "41727 0\n", + "41728 0\n", + "41729 1\n", + "41730 0\n", + "41731 0\n", + "41732 0\n", + "41733 0\n", + "41734 0\n", + "41735 0\n", + "41736 0\n", + "41737 1\n", + "41738 0\n", + "41739 0\n", + "41740 0\n", + "41741 0\n", + "41742 0\n", + "41743 0\n", + "41744 0\n", + "41745 0\n", + "41746 0\n", + "41747 0\n", + "41748 0\n", + "41749 0\n", + "41750 0\n", + "41751 0\n", + "41752 0\n", + "41753 0\n", + "41754 0\n", + "41755 0\n", + "41756 0\n", + "41757 0\n", + "41758 0\n", + "41759 1\n", + "41760 0\n", + "41761 1\n", + "41762 0\n", + "41763 0\n", + "41764 0\n", + "41765 0\n", + "41766 0\n", + "41767 0\n", + "41768 0\n", + "41769 0\n", + "41770 0\n", + "41771 1\n", + "41772 0\n", + "41773 0\n", + "41774 0\n", + "41775 0\n", + "41776 0\n", + "41777 1\n", + "41778 0\n", + "41779 0\n", + "41780 0\n", + "41781 0\n", + "41782 0\n", + "41783 0\n", + "41784 0\n", + "41785 0\n", + "41786 0\n", + "41787 0\n", + "41788 0\n", + "41789 0\n", + "41790 0\n", + "41791 0\n", + "41792 0\n", + "41793 0\n", + "41794 0\n", + "41795 0\n", + "41796 0\n", + "41797 0\n", + "41798 0\n", + "41799 0\n", + "41800 0\n", + "41801 1\n", + "41802 0\n", + "41803 0\n", + "41804 0\n", + "41805 0\n", + "41806 0\n", + "41807 0\n", + "41808 0\n", + "41809 1\n", + "41810 0\n", + "41811 0\n", + "41812 0\n", + "41813 1\n", + "41814 0\n", + "41815 0\n", + "41816 0\n", + "41817 0\n", + "41818 0\n", + "41819 0\n", + "41820 0\n", + "41821 0\n", + "41822 0\n", + "41823 0\n", + "41824 0\n", + "41825 0\n", + "41826 0\n", + "41827 0\n", + "41828 0\n", + "41829 0\n", + "41830 0\n", + "41831 0\n", + "41832 0\n", + "41833 0\n", + "41834 0\n", + "41835 0\n", + "41836 0\n", + "41837 0\n", + "41838 0\n", + "41839 0\n", + "41840 0\n", + "41841 0\n", + "41842 0\n", + "41843 1\n", + "41844 0\n", + "41845 0\n", + "41846 0\n", + "41847 0\n", + "41848 0\n", + "41849 1\n", + "41850 0\n", + "41851 1\n", + "41852 0\n", + "41853 0\n", + "41854 0\n", + "41855 0\n", + "41856 0\n", + "41857 0\n", + "41858 0\n", + "41859 0\n", + "41860 0\n", + "41861 0\n", + "41862 0\n", + "41863 1\n", + "41864 0\n", + "41865 0\n", + "41866 0\n", + "41867 0\n", + "41868 0\n", + "41869 0\n", + "41870 0\n", + "41871 0\n", + "41872 0\n", + "41873 0\n", + "41874 0\n", + "41875 0\n", + "41876 0\n", + "41877 0\n", + "41878 0\n", + "41879 1\n", + "41880 0\n", + "41881 0\n", + "41882 0\n", + "41883 0\n", + "41884 0\n", + "41885 0\n", + "41886 0\n", + "41887 1\n", + "41888 0\n", + "41889 0\n", + "41890 0\n", + "41891 0\n", + "41892 0\n", + "41893 1\n", + "41894 0\n", + "41895 0\n", + "41896 0\n", + "41897 1\n", + "41898 0\n", + "41899 0\n", + "41900 0\n", + "41901 0\n", + "41902 0\n", + "41903 1\n", + "41904 0\n", + "41905 0\n", + "41906 0\n", + "41907 0\n", + "41908 0\n", + "41909 0\n", + "41910 0\n", + "41911 1\n", + "41912 0\n", + "41913 0\n", + "41914 0\n", + "41915 0\n", + "41916 0\n", + "41917 0\n", + "41918 0\n", + "41919 0\n", + "41920 0\n", + "41921 0\n", + "41922 0\n", + "41923 0\n", + "41924 0\n", + "41925 0\n", + "41926 0\n", + "41927 1\n", + "41928 0\n", + "41929 0\n", + "41930 0\n", + "41931 0\n", + "41932 0\n", + "41933 0\n", + "41934 0\n", + "41935 0\n", + "41936 0\n", + "41937 0\n", + "41938 0\n", + "41939 0\n", + "41940 0\n", + "41941 1\n", + "41942 0\n", + "41943 0\n", + "41944 0\n", + "41945 0\n", + "41946 0\n", + "41947 1\n", + "41948 0\n", + "41949 0\n", + "41950 0\n", + "41951 0\n", + "41952 0\n", + "41953 1\n", + "41954 0\n", + "41955 0\n", + "41956 0\n", + "41957 1\n", + "41958 0\n", + "41959 1\n", + "41960 0\n", + "41961 0\n", + "41962 0\n", + "41963 0\n", + "41964 0\n", + "41965 0\n", + "41966 0\n", + "41967 0\n", + "41968 0\n", + "41969 1\n", + "41970 0\n", + "41971 0\n", + "41972 0\n", + "41973 0\n", + "41974 0\n", + "41975 0\n", + "41976 0\n", + "41977 0\n", + "41978 0\n", + "41979 0\n", + "41980 0\n", + "41981 1\n", + "41982 0\n", + "41983 1\n", + "41984 0\n", + "41985 0\n", + "41986 0\n", + "41987 0\n", + "41988 0\n", + "41989 0\n", + "41990 0\n", + "41991 0\n", + "41992 0\n", + "41993 0\n", + "41994 0\n", + "41995 0\n", + "41996 0\n", + "41997 0\n", + "41998 0\n", + "41999 1\n", + "42000 0\n", + "42001 0\n", + "42002 0\n", + "42003 0\n", + "42004 0\n", + "42005 0\n", + "42006 0\n", + "42007 0\n", + "42008 0\n", + "42009 0\n", + "42010 0\n", + "42011 0\n", + "42012 0\n", + "42013 1\n", + "42014 0\n", + "42015 0\n", + "42016 0\n", + "42017 1\n", + "42018 0\n", + "42019 1\n", + "42020 0\n", + "42021 0\n", + "42022 0\n", + "42023 1\n", + "42024 0\n", + "42025 0\n", + "42026 0\n", + "42027 0\n", + "42028 0\n", + "42029 0\n", + "42030 0\n", + "42031 0\n", + "42032 0\n", + "42033 0\n", + "42034 0\n", + "42035 0\n", + "42036 0\n", + "42037 0\n", + "42038 0\n", + "42039 0\n", + "42040 0\n", + "42041 0\n", + "42042 0\n", + "42043 1\n", + "42044 0\n", + "42045 0\n", + "42046 0\n", + "42047 0\n", + "42048 0\n", + "42049 0\n", + "42050 0\n", + "42051 0\n", + "42052 0\n", + "42053 0\n", + "42054 0\n", + "42055 0\n", + "42056 0\n", + "42057 0\n", + "42058 0\n", + "42059 0\n", + "42060 0\n", + "42061 1\n", + "42062 0\n", + "42063 0\n", + "42064 0\n", + "42065 0\n", + "42066 0\n", + "42067 0\n", + "42068 0\n", + "42069 0\n", + "42070 0\n", + "42071 1\n", + "42072 0\n", + "42073 1\n", + "42074 0\n", + "42075 0\n", + "42076 0\n", + "42077 0\n", + "42078 0\n", + "42079 0\n", + "42080 0\n", + "42081 0\n", + "42082 0\n", + "42083 1\n", + "42084 0\n", + "42085 0\n", + "42086 0\n", + "42087 0\n", + "42088 0\n", + "42089 1\n", + "42090 0\n", + "42091 0\n", + "42092 0\n", + "42093 0\n", + "42094 0\n", + "42095 0\n", + "42096 0\n", + "42097 0\n", + "42098 0\n", + "42099 0\n", + "42100 0\n", + "42101 1\n", + "42102 0\n", + "42103 0\n", + "42104 0\n", + "42105 0\n", + "42106 0\n", + "42107 0\n", + "42108 0\n", + "42109 0\n", + "42110 0\n", + "42111 0\n", + "42112 0\n", + "42113 0\n", + "42114 0\n", + "42115 0\n", + "42116 0\n", + "42117 0\n", + "42118 0\n", + "42119 0\n", + "42120 0\n", + "42121 0\n", + "42122 0\n", + "42123 0\n", + "42124 0\n", + "42125 0\n", + "42126 0\n", + "42127 0\n", + "42128 0\n", + "42129 0\n", + "42130 0\n", + "42131 1\n", + "42132 0\n", + "42133 0\n", + "42134 0\n", + "42135 0\n", + "42136 0\n", + "42137 0\n", + "42138 0\n", + "42139 1\n", + "42140 0\n", + "42141 0\n", + "42142 0\n", + "42143 0\n", + "42144 0\n", + "42145 0\n", + "42146 0\n", + "42147 0\n", + "42148 0\n", + "42149 0\n", + "42150 0\n", + "42151 0\n", + "42152 0\n", + "42153 0\n", + "42154 0\n", + "42155 0\n", + "42156 0\n", + "42157 1\n", + "42158 0\n", + "42159 0\n", + "42160 0\n", + "42161 0\n", + "42162 0\n", + "42163 0\n", + "42164 0\n", + "42165 0\n", + "42166 0\n", + "42167 0\n", + "42168 0\n", + "42169 1\n", + "42170 0\n", + "42171 0\n", + "42172 0\n", + "42173 0\n", + "42174 0\n", + "42175 0\n", + "42176 0\n", + "42177 0\n", + "42178 0\n", + "42179 1\n", + "42180 0\n", + "42181 1\n", + "42182 0\n", + "42183 0\n", + "42184 0\n", + "42185 0\n", + "42186 0\n", + "42187 1\n", + "42188 0\n", + "42189 0\n", + "42190 0\n", + "42191 0\n", + "42192 0\n", + "42193 1\n", + "42194 0\n", + "42195 0\n", + "42196 0\n", + "42197 1\n", + "42198 0\n", + "42199 0\n", + "42200 0\n", + "42201 0\n", + "42202 0\n", + "42203 0\n", + "42204 0\n", + "42205 0\n", + "42206 0\n", + "42207 0\n", + "42208 0\n", + "42209 1\n", + "42210 0\n", + "42211 0\n", + "42212 0\n", + "42213 0\n", + "42214 0\n", + "42215 0\n", + "42216 0\n", + "42217 0\n", + "42218 0\n", + "42219 0\n", + "42220 0\n", + "42221 1\n", + "42222 0\n", + "42223 1\n", + "42224 0\n", + "42225 0\n", + "42226 0\n", + "42227 1\n", + "42228 0\n", + "42229 0\n", + "42230 0\n", + "42231 0\n", + "42232 0\n", + "42233 0\n", + "42234 0\n", + "42235 0\n", + "42236 0\n", + "42237 0\n", + "42238 0\n", + "42239 1\n", + "42240 0\n", + "42241 0\n", + "42242 0\n", + "42243 0\n", + "42244 0\n", + "42245 0\n", + "42246 0\n", + "42247 0\n", + "42248 0\n", + "42249 0\n", + "42250 0\n", + "42251 0\n", + "42252 0\n", + "42253 0\n", + "42254 0\n", + "42255 0\n", + "42256 0\n", + "42257 1\n", + "42258 0\n", + "42259 0\n", + "42260 0\n", + "42261 0\n", + "42262 0\n", + "42263 0\n", + "42264 0\n", + "42265 0\n", + "42266 0\n", + "42267 0\n", + "42268 0\n", + "42269 0\n", + "42270 0\n", + "42271 0\n", + "42272 0\n", + "42273 0\n", + "42274 0\n", + "42275 0\n", + "42276 0\n", + "42277 0\n", + "42278 0\n", + "42279 0\n", + "42280 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "42281 1\n", + "42282 0\n", + "42283 1\n", + "42284 0\n", + "42285 0\n", + "42286 0\n", + "42287 0\n", + "42288 0\n", + "42289 0\n", + "42290 0\n", + "42291 0\n", + "42292 0\n", + "42293 1\n", + "42294 0\n", + "42295 0\n", + "42296 0\n", + "42297 0\n", + "42298 0\n", + "42299 1\n", + "42300 0\n", + "42301 0\n", + "42302 0\n", + "42303 0\n", + "42304 0\n", + "42305 0\n", + "42306 0\n", + "42307 1\n", + "42308 0\n", + "42309 0\n", + "42310 0\n", + "42311 0\n", + "42312 0\n", + "42313 0\n", + "42314 0\n", + "42315 0\n", + "42316 0\n", + "42317 0\n", + "42318 0\n", + "42319 0\n", + "42320 0\n", + "42321 0\n", + "42322 0\n", + "42323 1\n", + "42324 0\n", + "42325 0\n", + "42326 0\n", + "42327 0\n", + "42328 0\n", + "42329 0\n", + "42330 0\n", + "42331 1\n", + "42332 0\n", + "42333 0\n", + "42334 0\n", + "42335 0\n", + "42336 0\n", + "42337 1\n", + "42338 0\n", + "42339 0\n", + "42340 0\n", + "42341 0\n", + "42342 0\n", + "42343 0\n", + "42344 0\n", + "42345 0\n", + "42346 0\n", + "42347 0\n", + "42348 0\n", + "42349 1\n", + "42350 0\n", + "42351 0\n", + "42352 0\n", + "42353 0\n", + "42354 0\n", + "42355 0\n", + "42356 0\n", + "42357 0\n", + "42358 0\n", + "42359 1\n", + "42360 0\n", + "42361 0\n", + "42362 0\n", + "42363 0\n", + "42364 0\n", + "42365 0\n", + "42366 0\n", + "42367 0\n", + "42368 0\n", + "42369 0\n", + "42370 0\n", + "42371 0\n", + "42372 0\n", + "42373 1\n", + "42374 0\n", + "42375 0\n", + "42376 0\n", + "42377 0\n", + "42378 0\n", + "42379 1\n", + "42380 0\n", + "42381 0\n", + "42382 0\n", + "42383 0\n", + "42384 0\n", + "42385 0\n", + "42386 0\n", + "42387 0\n", + "42388 0\n", + "42389 0\n", + "42390 0\n", + "42391 1\n", + "42392 0\n", + "42393 0\n", + "42394 0\n", + "42395 0\n", + "42396 0\n", + "42397 1\n", + "42398 0\n", + "42399 0\n", + "42400 0\n", + "42401 0\n", + "42402 0\n", + "42403 1\n", + "42404 0\n", + "42405 0\n", + "42406 0\n", + "42407 1\n", + "42408 0\n", + "42409 1\n", + "42410 0\n", + "42411 0\n", + "42412 0\n", + "42413 0\n", + "42414 0\n", + "42415 0\n", + "42416 0\n", + "42417 0\n", + "42418 0\n", + "42419 0\n", + "42420 0\n", + "42421 0\n", + "42422 0\n", + "42423 0\n", + "42424 0\n", + "42425 0\n", + "42426 0\n", + "42427 0\n", + "42428 0\n", + "42429 0\n", + "42430 0\n", + "42431 0\n", + "42432 0\n", + "42433 1\n", + "42434 0\n", + "42435 0\n", + "42436 0\n", + "42437 1\n", + "42438 0\n", + "42439 0\n", + "42440 0\n", + "42441 0\n", + "42442 0\n", + "42443 1\n", + "42444 0\n", + "42445 0\n", + "42446 0\n", + "42447 0\n", + "42448 0\n", + "42449 0\n", + "42450 0\n", + "42451 1\n", + "42452 0\n", + "42453 0\n", + "42454 0\n", + "42455 0\n", + "42456 0\n", + "42457 1\n", + "42458 0\n", + "42459 0\n", + "42460 0\n", + "42461 1\n", + "42462 0\n", + "42463 1\n", + "42464 0\n", + "42465 0\n", + "42466 0\n", + "42467 1\n", + "42468 0\n", + "42469 0\n", + "42470 0\n", + "42471 0\n", + "42472 0\n", + "42473 1\n", + "42474 0\n", + "42475 0\n", + "42476 0\n", + "42477 0\n", + "42478 0\n", + "42479 0\n", + "42480 0\n", + "42481 0\n", + "42482 0\n", + "42483 0\n", + "42484 0\n", + "42485 0\n", + "42486 0\n", + "42487 1\n", + "42488 0\n", + "42489 0\n", + "42490 0\n", + "42491 1\n", + "42492 0\n", + "42493 0\n", + "42494 0\n", + "42495 0\n", + "42496 0\n", + "42497 0\n", + "42498 0\n", + "42499 1\n", + "42500 0\n", + "42501 0\n", + "42502 0\n", + "42503 0\n", + "42504 0\n", + "42505 0\n", + "42506 0\n", + "42507 0\n", + "42508 0\n", + "42509 1\n", + "42510 0\n", + "42511 0\n", + "42512 0\n", + "42513 0\n", + "42514 0\n", + "42515 0\n", + "42516 0\n", + "42517 0\n", + "42518 0\n", + "42519 0\n", + "42520 0\n", + "42521 0\n", + "42522 0\n", + "42523 0\n", + "42524 0\n", + "42525 0\n", + "42526 0\n", + "42527 0\n", + "42528 0\n", + "42529 0\n", + "42530 0\n", + "42531 0\n", + "42532 0\n", + "42533 1\n", + "42534 0\n", + "42535 0\n", + "42536 0\n", + "42537 0\n", + "42538 0\n", + "42539 0\n", + "42540 0\n", + "42541 0\n", + "42542 0\n", + "42543 0\n", + "42544 0\n", + "42545 0\n", + "42546 0\n", + "42547 0\n", + "42548 0\n", + "42549 0\n", + "42550 0\n", + "42551 0\n", + "42552 0\n", + "42553 0\n", + "42554 0\n", + "42555 0\n", + "42556 0\n", + "42557 1\n", + "42558 0\n", + "42559 0\n", + "42560 0\n", + "42561 0\n", + "42562 0\n", + "42563 0\n", + "42564 0\n", + "42565 0\n", + "42566 0\n", + "42567 0\n", + "42568 0\n", + "42569 1\n", + "42570 0\n", + "42571 1\n", + "42572 0\n", + "42573 0\n", + "42574 0\n", + "42575 0\n", + "42576 0\n", + "42577 1\n", + "42578 0\n", + "42579 0\n", + "42580 0\n", + "42581 0\n", + "42582 0\n", + "42583 0\n", + "42584 0\n", + "42585 0\n", + "42586 0\n", + "42587 0\n", + "42588 0\n", + "42589 1\n", + "42590 0\n", + "42591 0\n", + "42592 0\n", + "42593 0\n", + "42594 0\n", + "42595 0\n", + "42596 0\n", + "42597 0\n", + "42598 0\n", + "42599 0\n", + "42600 0\n", + "42601 0\n", + "42602 0\n", + "42603 0\n", + "42604 0\n", + "42605 0\n", + "42606 0\n", + "42607 0\n", + "42608 0\n", + "42609 0\n", + "42610 0\n", + "42611 1\n", + "42612 0\n", + "42613 0\n", + "42614 0\n", + "42615 0\n", + "42616 0\n", + "42617 0\n", + "42618 0\n", + "42619 0\n", + "42620 0\n", + "42621 0\n", + "42622 0\n", + "42623 0\n", + "42624 0\n", + "42625 0\n", + "42626 0\n", + "42627 0\n", + "42628 0\n", + "42629 0\n", + "42630 0\n", + "42631 0\n", + "42632 0\n", + "42633 0\n", + "42634 0\n", + "42635 0\n", + "42636 0\n", + "42637 0\n", + "42638 0\n", + "42639 0\n", + "42640 0\n", + "42641 1\n", + "42642 0\n", + "42643 1\n", + "42644 0\n", + "42645 0\n", + "42646 0\n", + "42647 0\n", + "42648 0\n", + "42649 1\n", + "42650 0\n", + "42651 0\n", + "42652 0\n", + "42653 0\n", + "42654 0\n", + "42655 0\n", + "42656 0\n", + "42657 0\n", + "42658 0\n", + "42659 0\n", + "42660 0\n", + "42661 0\n", + "42662 0\n", + "42663 0\n", + "42664 0\n", + "42665 0\n", + "42666 0\n", + "42667 1\n", + "42668 0\n", + "42669 0\n", + "42670 0\n", + "42671 0\n", + "42672 0\n", + "42673 0\n", + "42674 0\n", + "42675 0\n", + "42676 0\n", + "42677 1\n", + "42678 0\n", + "42679 0\n", + "42680 0\n", + "42681 0\n", + "42682 0\n", + "42683 1\n", + "42684 0\n", + "42685 0\n", + "42686 0\n", + "42687 0\n", + "42688 0\n", + "42689 1\n", + "42690 0\n", + "42691 0\n", + "42692 0\n", + "42693 0\n", + "42694 0\n", + "42695 0\n", + "42696 0\n", + "42697 1\n", + "42698 0\n", + "42699 0\n", + "42700 0\n", + "42701 1\n", + "42702 0\n", + "42703 1\n", + "42704 0\n", + "42705 0\n", + "42706 0\n", + "42707 0\n", + "42708 0\n", + "42709 1\n", + "42710 0\n", + "42711 0\n", + "42712 0\n", + "42713 0\n", + "42714 0\n", + "42715 0\n", + "42716 0\n", + "42717 0\n", + "42718 0\n", + "42719 1\n", + "42720 0\n", + "42721 0\n", + "42722 0\n", + "42723 0\n", + "42724 0\n", + "42725 0\n", + "42726 0\n", + "42727 1\n", + "42728 0\n", + "42729 0\n", + "42730 0\n", + "42731 0\n", + "42732 0\n", + "42733 0\n", + "42734 0\n", + "42735 0\n", + "42736 0\n", + "42737 1\n", + "42738 0\n", + "42739 0\n", + "42740 0\n", + "42741 0\n", + "42742 0\n", + "42743 1\n", + "42744 0\n", + "42745 0\n", + "42746 0\n", + "42747 0\n", + "42748 0\n", + "42749 0\n", + "42750 0\n", + "42751 1\n", + "42752 0\n", + "42753 0\n", + "42754 0\n", + "42755 0\n", + "42756 0\n", + "42757 0\n", + "42758 0\n", + "42759 0\n", + "42760 0\n", + "42761 0\n", + "42762 0\n", + "42763 0\n", + "42764 0\n", + "42765 0\n", + "42766 0\n", + "42767 1\n", + "42768 0\n", + "42769 0\n", + "42770 0\n", + "42771 0\n", + "42772 0\n", + "42773 1\n", + "42774 0\n", + "42775 0\n", + "42776 0\n", + "42777 0\n", + "42778 0\n", + "42779 0\n", + "42780 0\n", + "42781 0\n", + "42782 0\n", + "42783 0\n", + "42784 0\n", + "42785 0\n", + "42786 0\n", + "42787 1\n", + "42788 0\n", + "42789 0\n", + "42790 0\n", + "42791 0\n", + "42792 0\n", + "42793 1\n", + "42794 0\n", + "42795 0\n", + "42796 0\n", + "42797 1\n", + "42798 0\n", + "42799 0\n", + "42800 0\n", + "42801 0\n", + "42802 0\n", + "42803 0\n", + "42804 0\n", + "42805 0\n", + "42806 0\n", + "42807 0\n", + "42808 0\n", + "42809 0\n", + "42810 0\n", + "42811 0\n", + "42812 0\n", + "42813 0\n", + "42814 0\n", + "42815 0\n", + "42816 0\n", + "42817 0\n", + "42818 0\n", + "42819 0\n", + "42820 0\n", + "42821 1\n", + "42822 0\n", + "42823 0\n", + "42824 0\n", + "42825 0\n", + "42826 0\n", + "42827 0\n", + "42828 0\n", + "42829 1\n", + "42830 0\n", + "42831 0\n", + "42832 0\n", + "42833 0\n", + "42834 0\n", + "42835 0\n", + "42836 0\n", + "42837 0\n", + "42838 0\n", + "42839 1\n", + "42840 0\n", + "42841 1\n", + "42842 0\n", + "42843 0\n", + "42844 0\n", + "42845 0\n", + "42846 0\n", + "42847 0\n", + "42848 0\n", + "42849 0\n", + "42850 0\n", + "42851 0\n", + "42852 0\n", + "42853 1\n", + "42854 0\n", + "42855 0\n", + "42856 0\n", + "42857 0\n", + "42858 0\n", + "42859 1\n", + "42860 0\n", + "42861 0\n", + "42862 0\n", + "42863 1\n", + "42864 0\n", + "42865 0\n", + "42866 0\n", + "42867 0\n", + "42868 0\n", + "42869 0\n", + "42870 0\n", + "42871 0\n", + "42872 0\n", + "42873 0\n", + "42874 0\n", + "42875 0\n", + "42876 0\n", + "42877 0\n", + "42878 0\n", + "42879 0\n", + "42880 0\n", + "42881 0\n", + "42882 0\n", + "42883 0\n", + "42884 0\n", + "42885 0\n", + "42886 0\n", + "42887 0\n", + "42888 0\n", + "42889 0\n", + "42890 0\n", + "42891 0\n", + "42892 0\n", + "42893 0\n", + "42894 0\n", + "42895 0\n", + "42896 0\n", + "42897 0\n", + "42898 0\n", + "42899 1\n", + "42900 0\n", + "42901 1\n", + "42902 0\n", + "42903 0\n", + "42904 0\n", + "42905 0\n", + "42906 0\n", + "42907 0\n", + "42908 0\n", + "42909 0\n", + "42910 0\n", + "42911 0\n", + "42912 0\n", + "42913 0\n", + "42914 0\n", + "42915 0\n", + "42916 0\n", + "42917 0\n", + "42918 0\n", + "42919 0\n", + "42920 0\n", + "42921 0\n", + "42922 0\n", + "42923 1\n", + "42924 0\n", + "42925 0\n", + "42926 0\n", + "42927 0\n", + "42928 0\n", + "42929 1\n", + "42930 0\n", + "42931 0\n", + "42932 0\n", + "42933 0\n", + "42934 0\n", + "42935 0\n", + "42936 0\n", + "42937 1\n", + "42938 0\n", + "42939 0\n", + "42940 0\n", + "42941 0\n", + "42942 0\n", + "42943 1\n", + "42944 0\n", + "42945 0\n", + "42946 0\n", + "42947 0\n", + "42948 0\n", + "42949 0\n", + "42950 0\n", + "42951 0\n", + "42952 0\n", + "42953 1\n", + "42954 0\n", + "42955 0\n", + "42956 0\n", + "42957 0\n", + "42958 0\n", + "42959 0\n", + "42960 0\n", + "42961 1\n", + "42962 0\n", + "42963 0\n", + "42964 0\n", + "42965 0\n", + "42966 0\n", + "42967 1\n", + "42968 0\n", + "42969 0\n", + "42970 0\n", + "42971 0\n", + "42972 0\n", + "42973 0\n", + "42974 0\n", + "42975 0\n", + "42976 0\n", + "42977 0\n", + "42978 0\n", + "42979 1\n", + "42980 0\n", + "42981 0\n", + "42982 0\n", + "42983 0\n", + "42984 0\n", + "42985 0\n", + "42986 0\n", + "42987 0\n", + "42988 0\n", + "42989 1\n", + "42990 0\n", + "42991 0\n", + "42992 0\n", + "42993 0\n", + "42994 0\n", + "42995 0\n", + "42996 0\n", + "42997 0\n", + "42998 0\n", + "42999 0\n", + "43000 0\n", + "43001 0\n", + "43002 0\n", + "43003 1\n", + "43004 0\n", + "43005 0\n", + "43006 0\n", + "43007 0\n", + "43008 0\n", + "43009 0\n", + "43010 0\n", + "43011 0\n", + "43012 0\n", + "43013 1\n", + "43014 0\n", + "43015 0\n", + "43016 0\n", + "43017 0\n", + "43018 0\n", + "43019 1\n", + "43020 0\n", + "43021 0\n", + "43022 0\n", + "43023 0\n", + "43024 0\n", + "43025 0\n", + "43026 0\n", + "43027 0\n", + "43028 0\n", + "43029 0\n", + "43030 0\n", + "43031 0\n", + "43032 0\n", + "43033 0\n", + "43034 0\n", + "43035 0\n", + "43036 0\n", + "43037 1\n", + "43038 0\n", + "43039 0\n", + "43040 0\n", + "43041 0\n", + "43042 0\n", + "43043 0\n", + "43044 0\n", + "43045 0\n", + "43046 0\n", + "43047 0\n", + "43048 0\n", + "43049 1\n", + "43050 0\n", + "43051 1\n", + "43052 0\n", + "43053 0\n", + "43054 0\n", + "43055 0\n", + "43056 0\n", + "43057 0\n", + "43058 0\n", + "43059 0\n", + "43060 0\n", + "43061 0\n", + "43062 0\n", + "43063 1\n", + "43064 0\n", + "43065 0\n", + "43066 0\n", + "43067 1\n", + "43068 0\n", + "43069 0\n", + "43070 0\n", + "43071 0\n", + "43072 0\n", + "43073 0\n", + "43074 0\n", + "43075 0\n", + "43076 0\n", + "43077 0\n", + "43078 0\n", + "43079 0\n", + "43080 0\n", + "43081 0\n", + "43082 0\n", + "43083 0\n", + "43084 0\n", + "43085 0\n", + "43086 0\n", + "43087 0\n", + "43088 0\n", + "43089 0\n", + "43090 0\n", + "43091 0\n", + "43092 0\n", + "43093 1\n", + "43094 0\n", + "43095 0\n", + "43096 0\n", + "43097 0\n", + "43098 0\n", + "43099 0\n", + "43100 0\n", + "43101 0\n", + "43102 0\n", + "43103 1\n", + "43104 0\n", + "43105 0\n", + "43106 0\n", + "43107 0\n", + "43108 0\n", + "43109 0\n", + "43110 0\n", + "43111 0\n", + "43112 0\n", + "43113 0\n", + "43114 0\n", + "43115 0\n", + "43116 0\n", + "43117 1\n", + "43118 0\n", + "43119 0\n", + "43120 0\n", + "43121 0\n", + "43122 0\n", + "43123 0\n", + "43124 0\n", + "43125 0\n", + "43126 0\n", + "43127 0\n", + "43128 0\n", + "43129 0\n", + "43130 0\n", + "43131 0\n", + "43132 0\n", + "43133 1\n", + "43134 0\n", + "43135 0\n", + "43136 0\n", + "43137 0\n", + "43138 0\n", + "43139 0\n", + "43140 0\n", + "43141 0\n", + "43142 0\n", + "43143 0\n", + "43144 0\n", + "43145 0\n", + "43146 0\n", + "43147 0\n", + "43148 0\n", + "43149 0\n", + "43150 0\n", + "43151 1\n", + "43152 0\n", + "43153 0\n", + "43154 0\n", + "43155 0\n", + "43156 0\n", + "43157 0\n", + "43158 0\n", + "43159 1\n", + "43160 0\n", + "43161 0\n", + "43162 0\n", + "43163 0\n", + "43164 0\n", + "43165 0\n", + "43166 0\n", + "43167 0\n", + "43168 0\n", + "43169 0\n", + "43170 0\n", + "43171 0\n", + "43172 0\n", + "43173 0\n", + "43174 0\n", + "43175 0\n", + "43176 0\n", + "43177 1\n", + "43178 0\n", + "43179 0\n", + "43180 0\n", + "43181 0\n", + "43182 0\n", + "43183 0\n", + "43184 0\n", + "43185 0\n", + "43186 0\n", + "43187 0\n", + "43188 0\n", + "43189 1\n", + "43190 0\n", + "43191 0\n", + "43192 0\n", + "43193 0\n", + "43194 0\n", + "43195 0\n", + "43196 0\n", + "43197 0\n", + "43198 0\n", + "43199 0\n", + "43200 0\n", + "43201 1\n", + "43202 0\n", + "43203 0\n", + "43204 0\n", + "43205 0\n", + "43206 0\n", + "43207 1\n", + "43208 0\n", + "43209 0\n", + "43210 0\n", + "43211 0\n", + "43212 0\n", + "43213 0\n", + "43214 0\n", + "43215 0\n", + "43216 0\n", + "43217 0\n", + "43218 0\n", + "43219 0\n", + "43220 0\n", + "43221 0\n", + "43222 0\n", + "43223 1\n", + "43224 0\n", + "43225 0\n", + "43226 0\n", + "43227 0\n", + "43228 0\n", + "43229 0\n", + "43230 0\n", + "43231 0\n", + "43232 0\n", + "43233 0\n", + "43234 0\n", + "43235 0\n", + "43236 0\n", + "43237 1\n", + "43238 0\n", + "43239 0\n", + "43240 0\n", + "43241 0\n", + "43242 0\n", + "43243 0\n", + "43244 0\n", + "43245 0\n", + "43246 0\n", + "43247 0\n", + "43248 0\n", + "43249 0\n", + "43250 0\n", + "43251 0\n", + "43252 0\n", + "43253 0\n", + "43254 0\n", + "43255 0\n", + "43256 0\n", + "43257 0\n", + "43258 0\n", + "43259 0\n", + "43260 0\n", + "43261 1\n", + "43262 0\n", + "43263 0\n", + "43264 0\n", + "43265 0\n", + "43266 0\n", + "43267 0\n", + "43268 0\n", + "43269 0\n", + "43270 0\n", + "43271 1\n", + "43272 0\n", + "43273 0\n", + "43274 0\n", + "43275 0\n", + "43276 0\n", + "43277 0\n", + "43278 0\n", + "43279 0\n", + "43280 0\n", + "43281 0\n", + "43282 0\n", + "43283 1\n", + "43284 0\n", + "43285 0\n", + "43286 0\n", + "43287 0\n", + "43288 0\n", + "43289 0\n", + "43290 0\n", + "43291 1\n", + "43292 0\n", + "43293 0\n", + "43294 0\n", + "43295 0\n", + "43296 0\n", + "43297 0\n", + "43298 0\n", + "43299 0\n", + "43300 0\n", + "43301 0\n", + "43302 0\n", + "43303 0\n", + "43304 0\n", + "43305 0\n", + "43306 0\n", + "43307 0\n", + "43308 0\n", + "43309 0\n", + "43310 0\n", + "43311 0\n", + "43312 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "43313 1\n", + "43314 0\n", + "43315 0\n", + "43316 0\n", + "43317 0\n", + "43318 0\n", + "43319 1\n", + "43320 0\n", + "43321 1\n", + "43322 0\n", + "43323 0\n", + "43324 0\n", + "43325 0\n", + "43326 0\n", + "43327 0\n", + "43328 0\n", + "43329 0\n", + "43330 0\n", + "43331 1\n", + "43332 0\n", + "43333 0\n", + "43334 0\n", + "43335 0\n", + "43336 0\n", + "43337 0\n", + "43338 0\n", + "43339 0\n", + "43340 0\n", + "43341 0\n", + "43342 0\n", + "43343 0\n", + "43344 0\n", + "43345 0\n", + "43346 0\n", + "43347 0\n", + "43348 0\n", + "43349 0\n", + "43350 0\n", + "43351 0\n", + "43352 0\n", + "43353 0\n", + "43354 0\n", + "43355 0\n", + "43356 0\n", + "43357 0\n", + "43358 0\n", + "43359 0\n", + "43360 0\n", + "43361 0\n", + "43362 0\n", + "43363 0\n", + "43364 0\n", + "43365 0\n", + "43366 0\n", + "43367 0\n", + "43368 0\n", + "43369 0\n", + "43370 0\n", + "43371 0\n", + "43372 0\n", + "43373 0\n", + "43374 0\n", + "43375 0\n", + "43376 0\n", + "43377 0\n", + "43378 0\n", + "43379 0\n", + "43380 0\n", + "43381 0\n", + "43382 0\n", + "43383 0\n", + "43384 0\n", + "43385 0\n", + "43386 0\n", + "43387 0\n", + "43388 0\n", + "43389 0\n", + "43390 0\n", + "43391 1\n", + "43392 0\n", + "43393 0\n", + "43394 0\n", + "43395 0\n", + "43396 0\n", + "43397 1\n", + "43398 0\n", + "43399 1\n", + "43400 0\n", + "43401 0\n", + "43402 0\n", + "43403 1\n", + "43404 0\n", + "43405 0\n", + "43406 0\n", + "43407 0\n", + "43408 0\n", + "43409 0\n", + "43410 0\n", + "43411 1\n", + "43412 0\n", + "43413 0\n", + "43414 0\n", + "43415 0\n", + "43416 0\n", + "43417 0\n", + "43418 0\n", + "43419 0\n", + "43420 0\n", + "43421 0\n", + "43422 0\n", + "43423 0\n", + "43424 0\n", + "43425 0\n", + "43426 0\n", + "43427 1\n", + "43428 0\n", + "43429 0\n", + "43430 0\n", + "43431 0\n", + "43432 0\n", + "43433 0\n", + "43434 0\n", + "43435 0\n", + "43436 0\n", + "43437 0\n", + "43438 0\n", + "43439 0\n", + "43440 0\n", + "43441 1\n", + "43442 0\n", + "43443 0\n", + "43444 0\n", + "43445 0\n", + "43446 0\n", + "43447 0\n", + "43448 0\n", + "43449 0\n", + "43450 0\n", + "43451 1\n", + "43452 0\n", + "43453 0\n", + "43454 0\n", + "43455 0\n", + "43456 0\n", + "43457 1\n", + "43458 0\n", + "43459 0\n", + "43460 0\n", + "43461 0\n", + "43462 0\n", + "43463 0\n", + "43464 0\n", + "43465 0\n", + "43466 0\n", + "43467 0\n", + "43468 0\n", + "43469 0\n", + "43470 0\n", + "43471 0\n", + "43472 0\n", + "43473 0\n", + "43474 0\n", + "43475 0\n", + "43476 0\n", + "43477 0\n", + "43478 0\n", + "43479 0\n", + "43480 0\n", + "43481 1\n", + "43482 0\n", + "43483 0\n", + "43484 0\n", + "43485 0\n", + "43486 0\n", + "43487 1\n", + "43488 0\n", + "43489 0\n", + "43490 0\n", + "43491 0\n", + "43492 0\n", + "43493 0\n", + "43494 0\n", + "43495 0\n", + "43496 0\n", + "43497 0\n", + "43498 0\n", + "43499 1\n", + "43500 0\n", + "43501 0\n", + "43502 0\n", + "43503 0\n", + "43504 0\n", + "43505 0\n", + "43506 0\n", + "43507 0\n", + "43508 0\n", + "43509 0\n", + "43510 0\n", + "43511 0\n", + "43512 0\n", + "43513 0\n", + "43514 0\n", + "43515 0\n", + "43516 0\n", + "43517 1\n", + "43518 0\n", + "43519 0\n", + "43520 0\n", + "43521 0\n", + "43522 0\n", + "43523 0\n", + "43524 0\n", + "43525 0\n", + "43526 0\n", + "43527 0\n", + "43528 0\n", + "43529 0\n", + "43530 0\n", + "43531 0\n", + "43532 0\n", + "43533 0\n", + "43534 0\n", + "43535 0\n", + "43536 0\n", + "43537 0\n", + "43538 0\n", + "43539 0\n", + "43540 0\n", + "43541 1\n", + "43542 0\n", + "43543 1\n", + "43544 0\n", + "43545 0\n", + "43546 0\n", + "43547 0\n", + "43548 0\n", + "43549 0\n", + "43550 0\n", + "43551 0\n", + "43552 0\n", + "43553 0\n", + "43554 0\n", + "43555 0\n", + "43556 0\n", + "43557 0\n", + "43558 0\n", + "43559 0\n", + "43560 0\n", + "43561 0\n", + "43562 0\n", + "43563 0\n", + "43564 0\n", + "43565 0\n", + "43566 0\n", + "43567 0\n", + "43568 0\n", + "43569 0\n", + "43570 0\n", + "43571 0\n", + "43572 0\n", + "43573 1\n", + "43574 0\n", + "43575 0\n", + "43576 0\n", + "43577 1\n", + "43578 0\n", + "43579 1\n", + "43580 0\n", + "43581 0\n", + "43582 0\n", + "43583 0\n", + "43584 0\n", + "43585 0\n", + "43586 0\n", + "43587 0\n", + "43588 0\n", + "43589 0\n", + "43590 0\n", + "43591 1\n", + "43592 0\n", + "43593 0\n", + "43594 0\n", + "43595 0\n", + "43596 0\n", + "43597 1\n", + "43598 0\n", + "43599 0\n", + "43600 0\n", + "43601 0\n", + "43602 0\n", + "43603 0\n", + "43604 0\n", + "43605 0\n", + "43606 0\n", + "43607 1\n", + "43608 0\n", + "43609 1\n", + "43610 0\n", + "43611 0\n", + "43612 0\n", + "43613 1\n", + "43614 0\n", + "43615 0\n", + "43616 0\n", + "43617 0\n", + "43618 0\n", + "43619 0\n", + "43620 0\n", + "43621 0\n", + "43622 0\n", + "43623 0\n", + "43624 0\n", + "43625 0\n", + "43626 0\n", + "43627 1\n", + "43628 0\n", + "43629 0\n", + "43630 0\n", + "43631 0\n", + "43632 0\n", + "43633 1\n", + "43634 0\n", + "43635 0\n", + "43636 0\n", + "43637 0\n", + "43638 0\n", + "43639 0\n", + "43640 0\n", + "43641 0\n", + "43642 0\n", + "43643 0\n", + "43644 0\n", + "43645 0\n", + "43646 0\n", + "43647 0\n", + "43648 0\n", + "43649 1\n", + "43650 0\n", + "43651 1\n", + "43652 0\n", + "43653 0\n", + "43654 0\n", + "43655 0\n", + "43656 0\n", + "43657 0\n", + "43658 0\n", + "43659 0\n", + "43660 0\n", + "43661 1\n", + "43662 0\n", + "43663 0\n", + "43664 0\n", + "43665 0\n", + "43666 0\n", + "43667 0\n", + "43668 0\n", + "43669 1\n", + "43670 0\n", + "43671 0\n", + "43672 0\n", + "43673 0\n", + "43674 0\n", + "43675 0\n", + "43676 0\n", + "43677 0\n", + "43678 0\n", + "43679 0\n", + "43680 0\n", + "43681 0\n", + "43682 0\n", + "43683 0\n", + "43684 0\n", + "43685 0\n", + "43686 0\n", + "43687 0\n", + "43688 0\n", + "43689 0\n", + "43690 0\n", + "43691 1\n", + "43692 0\n", + "43693 0\n", + "43694 0\n", + "43695 0\n", + "43696 0\n", + "43697 0\n", + "43698 0\n", + "43699 0\n", + "43700 0\n", + "43701 0\n", + "43702 0\n", + "43703 0\n", + "43704 0\n", + "43705 0\n", + "43706 0\n", + "43707 0\n", + "43708 0\n", + "43709 0\n", + "43710 0\n", + "43711 1\n", + "43712 0\n", + "43713 0\n", + "43714 0\n", + "43715 0\n", + "43716 0\n", + "43717 1\n", + "43718 0\n", + "43719 0\n", + "43720 0\n", + "43721 1\n", + "43722 0\n", + "43723 0\n", + "43724 0\n", + "43725 0\n", + "43726 0\n", + "43727 0\n", + "43728 0\n", + "43729 0\n", + "43730 0\n", + "43731 0\n", + "43732 0\n", + "43733 0\n", + "43734 0\n", + "43735 0\n", + "43736 0\n", + "43737 0\n", + "43738 0\n", + "43739 0\n", + "43740 0\n", + "43741 0\n", + "43742 0\n", + "43743 0\n", + "43744 0\n", + "43745 0\n", + "43746 0\n", + "43747 0\n", + "43748 0\n", + "43749 0\n", + "43750 0\n", + "43751 0\n", + "43752 0\n", + "43753 1\n", + "43754 0\n", + "43755 0\n", + "43756 0\n", + "43757 0\n", + "43758 0\n", + "43759 1\n", + "43760 0\n", + "43761 0\n", + "43762 0\n", + "43763 0\n", + "43764 0\n", + "43765 0\n", + "43766 0\n", + "43767 0\n", + "43768 0\n", + "43769 0\n", + "43770 0\n", + "43771 0\n", + "43772 0\n", + "43773 0\n", + "43774 0\n", + "43775 0\n", + "43776 0\n", + "43777 1\n", + "43778 0\n", + "43779 0\n", + "43780 0\n", + "43781 1\n", + "43782 0\n", + "43783 1\n", + "43784 0\n", + "43785 0\n", + "43786 0\n", + "43787 1\n", + "43788 0\n", + "43789 1\n", + "43790 0\n", + "43791 0\n", + "43792 0\n", + "43793 1\n", + "43794 0\n", + "43795 0\n", + "43796 0\n", + "43797 0\n", + "43798 0\n", + "43799 0\n", + "43800 0\n", + "43801 1\n", + "43802 0\n", + "43803 0\n", + "43804 0\n", + "43805 0\n", + "43806 0\n", + "43807 0\n", + "43808 0\n", + "43809 0\n", + "43810 0\n", + "43811 0\n", + "43812 0\n", + "43813 0\n", + "43814 0\n", + "43815 0\n", + "43816 0\n", + "43817 0\n", + "43818 0\n", + "43819 0\n", + "43820 0\n", + "43821 0\n", + "43822 0\n", + "43823 0\n", + "43824 0\n", + "43825 0\n", + "43826 0\n", + "43827 0\n", + "43828 0\n", + "43829 0\n", + "43830 0\n", + "43831 0\n", + "43832 0\n", + "43833 0\n", + "43834 0\n", + "43835 0\n", + "43836 0\n", + "43837 0\n", + "43838 0\n", + "43839 0\n", + "43840 0\n", + "43841 0\n", + "43842 0\n", + "43843 0\n", + "43844 0\n", + "43845 0\n", + "43846 0\n", + "43847 0\n", + "43848 0\n", + "43849 0\n", + "43850 0\n", + "43851 0\n", + "43852 0\n", + "43853 1\n", + "43854 0\n", + "43855 0\n", + "43856 0\n", + "43857 0\n", + "43858 0\n", + "43859 0\n", + "43860 0\n", + "43861 0\n", + "43862 0\n", + "43863 0\n", + "43864 0\n", + "43865 0\n", + "43866 0\n", + "43867 1\n", + "43868 0\n", + "43869 0\n", + "43870 0\n", + "43871 0\n", + "43872 0\n", + "43873 0\n", + "43874 0\n", + "43875 0\n", + "43876 0\n", + "43877 0\n", + "43878 0\n", + "43879 0\n", + "43880 0\n", + "43881 0\n", + "43882 0\n", + "43883 0\n", + "43884 0\n", + "43885 0\n", + "43886 0\n", + "43887 0\n", + "43888 0\n", + "43889 1\n", + "43890 0\n", + "43891 1\n", + "43892 0\n", + "43893 0\n", + "43894 0\n", + "43895 0\n", + "43896 0\n", + "43897 0\n", + "43898 0\n", + "43899 0\n", + "43900 0\n", + "43901 0\n", + "43902 0\n", + "43903 0\n", + "43904 0\n", + "43905 0\n", + "43906 0\n", + "43907 0\n", + "43908 0\n", + "43909 0\n", + "43910 0\n", + "43911 0\n", + "43912 0\n", + "43913 1\n", + "43914 0\n", + "43915 0\n", + "43916 0\n", + "43917 0\n", + "43918 0\n", + "43919 0\n", + "43920 0\n", + "43921 0\n", + "43922 0\n", + "43923 0\n", + "43924 0\n", + "43925 0\n", + "43926 0\n", + "43927 0\n", + "43928 0\n", + "43929 0\n", + "43930 0\n", + "43931 0\n", + "43932 0\n", + "43933 1\n", + "43934 0\n", + "43935 0\n", + "43936 0\n", + "43937 0\n", + "43938 0\n", + "43939 0\n", + "43940 0\n", + "43941 0\n", + "43942 0\n", + "43943 1\n", + "43944 0\n", + "43945 0\n", + "43946 0\n", + "43947 0\n", + "43948 0\n", + "43949 0\n", + "43950 0\n", + "43951 1\n", + "43952 0\n", + "43953 0\n", + "43954 0\n", + "43955 0\n", + "43956 0\n", + "43957 0\n", + "43958 0\n", + "43959 0\n", + "43960 0\n", + "43961 1\n", + "43962 0\n", + "43963 1\n", + "43964 0\n", + "43965 0\n", + "43966 0\n", + "43967 0\n", + "43968 0\n", + "43969 1\n", + "43970 0\n", + "43971 0\n", + "43972 0\n", + "43973 1\n", + "43974 0\n", + "43975 0\n", + "43976 0\n", + "43977 0\n", + "43978 0\n", + "43979 0\n", + "43980 0\n", + "43981 0\n", + "43982 0\n", + "43983 0\n", + "43984 0\n", + "43985 0\n", + "43986 0\n", + "43987 1\n", + "43988 0\n", + "43989 0\n", + "43990 0\n", + "43991 1\n", + "43992 0\n", + "43993 0\n", + "43994 0\n", + "43995 0\n", + "43996 0\n", + "43997 1\n", + "43998 0\n", + "43999 0\n", + "44000 0\n", + "44001 0\n", + "44002 0\n", + "44003 0\n", + "44004 0\n", + "44005 0\n", + "44006 0\n", + "44007 0\n", + "44008 0\n", + "44009 0\n", + "44010 0\n", + "44011 0\n", + "44012 0\n", + "44013 0\n", + "44014 0\n", + "44015 0\n", + "44016 0\n", + "44017 1\n", + "44018 0\n", + "44019 0\n", + "44020 0\n", + "44021 1\n", + "44022 0\n", + "44023 0\n", + "44024 0\n", + "44025 0\n", + "44026 0\n", + "44027 1\n", + "44028 0\n", + "44029 1\n", + "44030 0\n", + "44031 0\n", + "44032 0\n", + "44033 0\n", + "44034 0\n", + "44035 0\n", + "44036 0\n", + "44037 0\n", + "44038 0\n", + "44039 0\n", + "44040 0\n", + "44041 1\n", + "44042 0\n", + "44043 0\n", + "44044 0\n", + "44045 0\n", + "44046 0\n", + "44047 0\n", + "44048 0\n", + "44049 0\n", + "44050 0\n", + "44051 0\n", + "44052 0\n", + "44053 1\n", + "44054 0\n", + "44055 0\n", + "44056 0\n", + "44057 0\n", + "44058 0\n", + "44059 1\n", + "44060 0\n", + "44061 0\n", + "44062 0\n", + "44063 0\n", + "44064 0\n", + "44065 0\n", + "44066 0\n", + "44067 0\n", + "44068 0\n", + "44069 0\n", + "44070 0\n", + "44071 1\n", + "44072 0\n", + "44073 0\n", + "44074 0\n", + "44075 0\n", + "44076 0\n", + "44077 0\n", + "44078 0\n", + "44079 0\n", + "44080 0\n", + "44081 0\n", + "44082 0\n", + "44083 0\n", + "44084 0\n", + "44085 0\n", + "44086 0\n", + "44087 1\n", + "44088 0\n", + "44089 1\n", + "44090 0\n", + "44091 0\n", + "44092 0\n", + "44093 0\n", + "44094 0\n", + "44095 0\n", + "44096 0\n", + "44097 0\n", + "44098 0\n", + "44099 0\n", + "44100 0\n", + "44101 1\n", + "44102 0\n", + "44103 0\n", + "44104 0\n", + "44105 0\n", + "44106 0\n", + "44107 0\n", + "44108 0\n", + "44109 0\n", + "44110 0\n", + "44111 1\n", + "44112 0\n", + "44113 0\n", + "44114 0\n", + "44115 0\n", + "44116 0\n", + "44117 0\n", + "44118 0\n", + "44119 1\n", + "44120 0\n", + "44121 0\n", + "44122 0\n", + "44123 1\n", + "44124 0\n", + "44125 0\n", + "44126 0\n", + "44127 0\n", + "44128 0\n", + "44129 1\n", + "44130 0\n", + "44131 1\n", + "44132 0\n", + "44133 0\n", + "44134 0\n", + "44135 0\n", + "44136 0\n", + "44137 0\n", + "44138 0\n", + "44139 0\n", + "44140 0\n", + "44141 0\n", + "44142 0\n", + "44143 0\n", + "44144 0\n", + "44145 0\n", + "44146 0\n", + "44147 0\n", + "44148 0\n", + "44149 0\n", + "44150 0\n", + "44151 0\n", + "44152 0\n", + "44153 0\n", + "44154 0\n", + "44155 0\n", + "44156 0\n", + "44157 0\n", + "44158 0\n", + "44159 1\n", + "44160 0\n", + "44161 0\n", + "44162 0\n", + "44163 0\n", + "44164 0\n", + "44165 0\n", + "44166 0\n", + "44167 0\n", + "44168 0\n", + "44169 0\n", + "44170 0\n", + "44171 1\n", + "44172 0\n", + "44173 0\n", + "44174 0\n", + "44175 0\n", + "44176 0\n", + "44177 0\n", + "44178 0\n", + "44179 1\n", + "44180 0\n", + "44181 0\n", + "44182 0\n", + "44183 0\n", + "44184 0\n", + "44185 0\n", + "44186 0\n", + "44187 0\n", + "44188 0\n", + "44189 1\n", + "44190 0\n", + "44191 0\n", + "44192 0\n", + "44193 0\n", + "44194 0\n", + "44195 0\n", + "44196 0\n", + "44197 0\n", + "44198 0\n", + "44199 0\n", + "44200 0\n", + "44201 1\n", + "44202 0\n", + "44203 1\n", + "44204 0\n", + "44205 0\n", + "44206 0\n", + "44207 1\n", + "44208 0\n", + "44209 0\n", + "44210 0\n", + "44211 0\n", + "44212 0\n", + "44213 0\n", + "44214 0\n", + "44215 0\n", + "44216 0\n", + "44217 0\n", + "44218 0\n", + "44219 0\n", + "44220 0\n", + "44221 1\n", + "44222 0\n", + "44223 0\n", + "44224 0\n", + "44225 0\n", + "44226 0\n", + "44227 0\n", + "44228 0\n", + "44229 0\n", + "44230 0\n", + "44231 0\n", + "44232 0\n", + "44233 0\n", + "44234 0\n", + "44235 0\n", + "44236 0\n", + "44237 0\n", + "44238 0\n", + "44239 0\n", + "44240 0\n", + "44241 0\n", + "44242 0\n", + "44243 0\n", + "44244 0\n", + "44245 0\n", + "44246 0\n", + "44247 0\n", + "44248 0\n", + "44249 1\n", + "44250 0\n", + "44251 0\n", + "44252 0\n", + "44253 0\n", + "44254 0\n", + "44255 0\n", + "44256 0\n", + "44257 1\n", + "44258 0\n", + "44259 0\n", + "44260 0\n", + "44261 0\n", + "44262 0\n", + "44263 1\n", + "44264 0\n", + "44265 0\n", + "44266 0\n", + "44267 1\n", + "44268 0\n", + "44269 1\n", + "44270 0\n", + "44271 0\n", + "44272 0\n", + "44273 1\n", + "44274 0\n", + "44275 0\n", + "44276 0\n", + "44277 0\n", + "44278 0\n", + "44279 1\n", + "44280 0\n", + "44281 1\n", + "44282 0\n", + "44283 0\n", + "44284 0\n", + "44285 0\n", + "44286 0\n", + "44287 0\n", + "44288 0\n", + "44289 0\n", + "44290 0\n", + "44291 0\n", + "44292 0\n", + "44293 1\n", + "44294 0\n", + "44295 0\n", + "44296 0\n", + "44297 0\n", + "44298 0\n", + "44299 0\n", + "44300 0\n", + "44301 0\n", + "44302 0\n", + "44303 0\n", + "44304 0\n", + "44305 0\n", + "44306 0\n", + "44307 0\n", + "44308 0\n", + "44309 0\n", + "44310 0\n", + "44311 0\n", + "44312 0\n", + "44313 0\n", + "44314 0\n", + "44315 0\n", + "44316 0\n", + "44317 0\n", + "44318 0\n", + "44319 0\n", + "44320 0\n", + "44321 0\n", + "44322 0\n", + "44323 0\n", + "44324 0\n", + "44325 0\n", + "44326 0\n", + "44327 0\n", + "44328 0\n", + "44329 0\n", + "44330 0\n", + "44331 0\n", + "44332 0\n", + "44333 0\n", + "44334 0\n", + "44335 0\n", + "44336 0\n", + "44337 0\n", + "44338 0\n", + "44339 0\n", + "44340 0\n", + "44341 0\n", + "44342 0\n", + "44343 0\n", + "44344 0\n", + "44345 0\n", + "44346 0\n", + "44347 0\n", + "44348 0\n", + "44349 0\n", + "44350 0\n", + "44351 1\n", + "44352 0\n", + "44353 0\n", + "44354 0\n", + "44355 0\n", + "44356 0\n", + "44357 1\n", + "44358 0\n", + "44359 0\n", + "44360 0\n", + "44361 0\n", + "44362 0\n", + "44363 0\n", + "44364 0\n", + "44365 0\n", + "44366 0\n", + "44367 0\n", + "44368 0\n", + "44369 0\n", + "44370 0\n", + "44371 1\n", + "44372 0\n", + "44373 0\n", + "44374 0\n", + "44375 0\n", + "44376 0\n", + "44377 0\n", + "44378 0\n", + "44379 0\n", + "44380 0\n", + "44381 1\n", + "44382 0\n", + "44383 1\n", + "44384 0\n", + "44385 0\n", + "44386 0\n", + "44387 0\n", + "44388 0\n", + "44389 1\n", + "44390 0\n", + "44391 0\n", + "44392 0\n", + "44393 0\n", + "44394 0\n", + "44395 0\n", + "44396 0\n", + "44397 0\n", + "44398 0\n", + "44399 0\n", + "44400 0\n", + "44401 0\n", + "44402 0\n", + "44403 0\n", + "44404 0\n", + "44405 0\n", + "44406 0\n", + "44407 0\n", + "44408 0\n", + "44409 0\n", + "44410 0\n", + "44411 0\n", + "44412 0\n", + "44413 0\n", + "44414 0\n", + "44415 0\n", + "44416 0\n", + "44417 1\n", + "44418 0\n", + "44419 0\n", + "44420 0\n", + "44421 0\n", + "44422 0\n", + "44423 0\n", + "44424 0\n", + "44425 0\n", + "44426 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "44427 0\n", + "44428 0\n", + "44429 0\n", + "44430 0\n", + "44431 0\n", + "44432 0\n", + "44433 0\n", + "44434 0\n", + "44435 0\n", + "44436 0\n", + "44437 0\n", + "44438 0\n", + "44439 0\n", + "44440 0\n", + "44441 0\n", + "44442 0\n", + "44443 0\n", + "44444 0\n", + "44445 0\n", + "44446 0\n", + "44447 0\n", + "44448 0\n", + "44449 1\n", + "44450 0\n", + "44451 0\n", + "44452 0\n", + "44453 1\n", + "44454 0\n", + "44455 0\n", + "44456 0\n", + "44457 0\n", + "44458 0\n", + "44459 0\n", + "44460 0\n", + "44461 0\n", + "44462 0\n", + "44463 0\n", + "44464 0\n", + "44465 0\n", + "44466 0\n", + "44467 0\n", + "44468 0\n", + "44469 0\n", + "44470 0\n", + "44471 0\n", + "44472 0\n", + "44473 0\n", + "44474 0\n", + "44475 0\n", + "44476 0\n", + "44477 0\n", + "44478 0\n", + "44479 0\n", + "44480 0\n", + "44481 0\n", + "44482 0\n", + "44483 1\n", + "44484 0\n", + "44485 0\n", + "44486 0\n", + "44487 0\n", + "44488 0\n", + "44489 0\n", + "44490 0\n", + "44491 1\n", + "44492 0\n", + "44493 0\n", + "44494 0\n", + "44495 0\n", + "44496 0\n", + "44497 1\n", + "44498 0\n", + "44499 0\n", + "44500 0\n", + "44501 1\n", + "44502 0\n", + "44503 0\n", + "44504 0\n", + "44505 0\n", + "44506 0\n", + "44507 1\n", + "44508 0\n", + "44509 0\n", + "44510 0\n", + "44511 0\n", + "44512 0\n", + "44513 0\n", + "44514 0\n", + "44515 0\n", + "44516 0\n", + "44517 0\n", + "44518 0\n", + "44519 1\n", + "44520 0\n", + "44521 0\n", + "44522 0\n", + "44523 0\n", + "44524 0\n", + "44525 0\n", + "44526 0\n", + "44527 0\n", + "44528 0\n", + "44529 0\n", + "44530 0\n", + "44531 1\n", + "44532 0\n", + "44533 1\n", + "44534 0\n", + "44535 0\n", + "44536 0\n", + "44537 1\n", + "44538 0\n", + "44539 0\n", + "44540 0\n", + "44541 0\n", + "44542 0\n", + "44543 1\n", + "44544 0\n", + "44545 0\n", + "44546 0\n", + "44547 0\n", + "44548 0\n", + "44549 1\n", + "44550 0\n", + "44551 0\n", + "44552 0\n", + "44553 0\n", + "44554 0\n", + "44555 0\n", + "44556 0\n", + "44557 0\n", + "44558 0\n", + "44559 0\n", + "44560 0\n", + "44561 0\n", + "44562 0\n", + "44563 1\n", + "44564 0\n", + "44565 0\n", + "44566 0\n", + "44567 0\n", + "44568 0\n", + "44569 0\n", + "44570 0\n", + "44571 0\n", + "44572 0\n", + "44573 0\n", + "44574 0\n", + "44575 0\n", + "44576 0\n", + "44577 0\n", + "44578 0\n", + "44579 1\n", + "44580 0\n", + "44581 0\n", + "44582 0\n", + "44583 0\n", + "44584 0\n", + "44585 0\n", + "44586 0\n", + "44587 1\n", + "44588 0\n", + "44589 0\n", + "44590 0\n", + "44591 0\n", + "44592 0\n", + "44593 0\n", + "44594 0\n", + "44595 0\n", + "44596 0\n", + "44597 0\n", + "44598 0\n", + "44599 0\n", + "44600 0\n", + "44601 0\n", + "44602 0\n", + "44603 0\n", + "44604 0\n", + "44605 0\n", + "44606 0\n", + "44607 0\n", + "44608 0\n", + "44609 0\n", + "44610 0\n", + "44611 0\n", + "44612 0\n", + "44613 0\n", + "44614 0\n", + "44615 0\n", + "44616 0\n", + "44617 1\n", + "44618 0\n", + "44619 0\n", + "44620 0\n", + "44621 1\n", + "44622 0\n", + "44623 1\n", + "44624 0\n", + "44625 0\n", + "44626 0\n", + "44627 0\n", + "44628 0\n", + "44629 0\n", + "44630 0\n", + "44631 0\n", + "44632 0\n", + "44633 1\n", + "44634 0\n", + "44635 0\n", + "44636 0\n", + "44637 0\n", + "44638 0\n", + "44639 0\n", + "44640 0\n", + "44641 1\n", + "44642 0\n", + "44643 0\n", + "44644 0\n", + "44645 0\n", + "44646 0\n", + "44647 1\n", + "44648 0\n", + "44649 0\n", + "44650 0\n", + "44651 1\n", + "44652 0\n", + "44653 0\n", + "44654 0\n", + "44655 0\n", + "44656 0\n", + "44657 1\n", + "44658 0\n", + "44659 0\n", + "44660 0\n", + "44661 0\n", + "44662 0\n", + "44663 0\n", + "44664 0\n", + "44665 0\n", + "44666 0\n", + "44667 0\n", + "44668 0\n", + "44669 0\n", + "44670 0\n", + "44671 0\n", + "44672 0\n", + "44673 0\n", + "44674 0\n", + "44675 0\n", + "44676 0\n", + "44677 0\n", + "44678 0\n", + "44679 0\n", + "44680 0\n", + "44681 0\n", + "44682 0\n", + "44683 1\n", + "44684 0\n", + "44685 0\n", + "44686 0\n", + "44687 1\n", + "44688 0\n", + "44689 0\n", + "44690 0\n", + "44691 0\n", + "44692 0\n", + "44693 0\n", + "44694 0\n", + "44695 0\n", + "44696 0\n", + "44697 0\n", + "44698 0\n", + "44699 1\n", + "44700 0\n", + "44701 1\n", + "44702 0\n", + "44703 0\n", + "44704 0\n", + "44705 0\n", + "44706 0\n", + "44707 0\n", + "44708 0\n", + "44709 0\n", + "44710 0\n", + "44711 1\n", + "44712 0\n", + "44713 0\n", + "44714 0\n", + "44715 0\n", + "44716 0\n", + "44717 0\n", + "44718 0\n", + "44719 0\n", + "44720 0\n", + "44721 0\n", + "44722 0\n", + "44723 0\n", + "44724 0\n", + "44725 0\n", + "44726 0\n", + "44727 0\n", + "44728 0\n", + "44729 1\n", + "44730 0\n", + "44731 0\n", + "44732 0\n", + "44733 0\n", + "44734 0\n", + "44735 0\n", + "44736 0\n", + "44737 0\n", + "44738 0\n", + "44739 0\n", + "44740 0\n", + "44741 1\n", + "44742 0\n", + "44743 0\n", + "44744 0\n", + "44745 0\n", + "44746 0\n", + "44747 0\n", + "44748 0\n", + "44749 0\n", + "44750 0\n", + "44751 0\n", + "44752 0\n", + "44753 1\n", + "44754 0\n", + "44755 0\n", + "44756 0\n", + "44757 0\n", + "44758 0\n", + "44759 0\n", + "44760 0\n", + "44761 0\n", + "44762 0\n", + "44763 0\n", + "44764 0\n", + "44765 0\n", + "44766 0\n", + "44767 0\n", + "44768 0\n", + "44769 0\n", + "44770 0\n", + "44771 1\n", + "44772 0\n", + "44773 1\n", + "44774 0\n", + "44775 0\n", + "44776 0\n", + "44777 1\n", + "44778 0\n", + "44779 0\n", + "44780 0\n", + "44781 0\n", + "44782 0\n", + "44783 0\n", + "44784 0\n", + "44785 0\n", + "44786 0\n", + "44787 0\n", + "44788 0\n", + "44789 1\n", + "44790 0\n", + "44791 0\n", + "44792 0\n", + "44793 0\n", + "44794 0\n", + "44795 0\n", + "44796 0\n", + "44797 1\n", + "44798 0\n", + "44799 0\n", + "44800 0\n", + "44801 0\n", + "44802 0\n", + "44803 0\n", + "44804 0\n", + "44805 0\n", + "44806 0\n", + "44807 0\n", + "44808 0\n", + "44809 1\n", + "44810 0\n", + "44811 0\n", + "44812 0\n", + "44813 0\n", + "44814 0\n", + "44815 0\n", + "44816 0\n", + "44817 0\n", + "44818 0\n", + "44819 1\n", + "44820 0\n", + "44821 0\n", + "44822 0\n", + "44823 0\n", + "44824 0\n", + "44825 0\n", + "44826 0\n", + "44827 0\n", + "44828 0\n", + "44829 0\n", + "44830 0\n", + "44831 0\n", + "44832 0\n", + "44833 0\n", + "44834 0\n", + "44835 0\n", + "44836 0\n", + "44837 0\n", + "44838 0\n", + "44839 1\n", + "44840 0\n", + "44841 0\n", + "44842 0\n", + "44843 1\n", + "44844 0\n", + "44845 0\n", + "44846 0\n", + "44847 0\n", + "44848 0\n", + "44849 0\n", + "44850 0\n", + "44851 1\n", + "44852 0\n", + "44853 0\n", + "44854 0\n", + "44855 0\n", + "44856 0\n", + "44857 0\n", + "44858 0\n", + "44859 0\n", + "44860 0\n", + "44861 0\n", + "44862 0\n", + "44863 0\n", + "44864 0\n", + "44865 0\n", + "44866 0\n", + "44867 1\n", + "44868 0\n", + "44869 0\n", + "44870 0\n", + "44871 0\n", + "44872 0\n", + "44873 0\n", + "44874 0\n", + "44875 0\n", + "44876 0\n", + "44877 0\n", + "44878 0\n", + "44879 1\n", + "44880 0\n", + "44881 0\n", + "44882 0\n", + "44883 0\n", + "44884 0\n", + "44885 0\n", + "44886 0\n", + "44887 1\n", + "44888 0\n", + "44889 0\n", + "44890 0\n", + "44891 0\n", + "44892 0\n", + "44893 1\n", + "44894 0\n", + "44895 0\n", + "44896 0\n", + "44897 0\n", + "44898 0\n", + "44899 0\n", + "44900 0\n", + "44901 0\n", + "44902 0\n", + "44903 0\n", + "44904 0\n", + "44905 0\n", + "44906 0\n", + "44907 0\n", + "44908 0\n", + "44909 1\n", + "44910 0\n", + "44911 0\n", + "44912 0\n", + "44913 0\n", + "44914 0\n", + "44915 0\n", + "44916 0\n", + "44917 1\n", + "44918 0\n", + "44919 0\n", + "44920 0\n", + "44921 0\n", + "44922 0\n", + "44923 0\n", + "44924 0\n", + "44925 0\n", + "44926 0\n", + "44927 1\n", + "44928 0\n", + "44929 0\n", + "44930 0\n", + "44931 0\n", + "44932 0\n", + "44933 0\n", + "44934 0\n", + "44935 0\n", + "44936 0\n", + "44937 0\n", + "44938 0\n", + "44939 1\n", + "44940 0\n", + "44941 0\n", + "44942 0\n", + "44943 0\n", + "44944 0\n", + "44945 0\n", + "44946 0\n", + "44947 0\n", + "44948 0\n", + "44949 0\n", + "44950 0\n", + "44951 0\n", + "44952 0\n", + "44953 1\n", + "44954 0\n", + "44955 0\n", + "44956 0\n", + "44957 0\n", + "44958 0\n", + "44959 1\n", + "44960 0\n", + "44961 0\n", + "44962 0\n", + "44963 1\n", + "44964 0\n", + "44965 0\n", + "44966 0\n", + "44967 0\n", + "44968 0\n", + "44969 0\n", + "44970 0\n", + "44971 1\n", + "44972 0\n", + "44973 0\n", + "44974 0\n", + "44975 0\n", + "44976 0\n", + "44977 0\n", + "44978 0\n", + "44979 0\n", + "44980 0\n", + "44981 0\n", + "44982 0\n", + "44983 1\n", + "44984 0\n", + "44985 0\n", + "44986 0\n", + "44987 1\n", + "44988 0\n", + "44989 0\n", + "44990 0\n", + "44991 0\n", + "44992 0\n", + "44993 0\n", + "44994 0\n", + "44995 0\n", + "44996 0\n", + "44997 0\n", + "44998 0\n", + "44999 0\n", + "45000 0\n", + "45001 0\n", + "45002 0\n", + "45003 0\n", + "45004 0\n", + "45005 0\n", + "45006 0\n", + "45007 1\n", + "45008 0\n", + "45009 0\n", + "45010 0\n", + "45011 0\n", + "45012 0\n", + "45013 1\n", + "45014 0\n", + "45015 0\n", + "45016 0\n", + "45017 0\n", + "45018 0\n", + "45019 0\n", + "45020 0\n", + "45021 0\n", + "45022 0\n", + "45023 0\n", + "45024 0\n", + "45025 0\n", + "45026 0\n", + "45027 0\n", + "45028 0\n", + "45029 0\n", + "45030 0\n", + "45031 0\n", + "45032 0\n", + "45033 0\n", + "45034 0\n", + "45035 0\n", + "45036 0\n", + "45037 0\n", + "45038 0\n", + "45039 0\n", + "45040 0\n", + "45041 0\n", + "45042 0\n", + "45043 0\n", + "45044 0\n", + "45045 0\n", + "45046 0\n", + "45047 0\n", + "45048 0\n", + "45049 0\n", + "45050 0\n", + "45051 0\n", + "45052 0\n", + "45053 1\n", + "45054 0\n", + "45055 0\n", + "45056 0\n", + "45057 0\n", + "45058 0\n", + "45059 0\n", + "45060 0\n", + "45061 1\n", + "45062 0\n", + "45063 0\n", + "45064 0\n", + "45065 0\n", + "45066 0\n", + "45067 0\n", + "45068 0\n", + "45069 0\n", + "45070 0\n", + "45071 0\n", + "45072 0\n", + "45073 0\n", + "45074 0\n", + "45075 0\n", + "45076 0\n", + "45077 1\n", + "45078 0\n", + "45079 0\n", + "45080 0\n", + "45081 0\n", + "45082 0\n", + "45083 1\n", + "45084 0\n", + "45085 0\n", + "45086 0\n", + "45087 0\n", + "45088 0\n", + "45089 0\n", + "45090 0\n", + "45091 0\n", + "45092 0\n", + "45093 0\n", + "45094 0\n", + "45095 0\n", + "45096 0\n", + "45097 0\n", + "45098 0\n", + "45099 0\n", + "45100 0\n", + "45101 0\n", + "45102 0\n", + "45103 0\n", + "45104 0\n", + "45105 0\n", + "45106 0\n", + "45107 0\n", + "45108 0\n", + "45109 0\n", + "45110 0\n", + "45111 0\n", + "45112 0\n", + "45113 0\n", + "45114 0\n", + "45115 0\n", + "45116 0\n", + "45117 0\n", + "45118 0\n", + "45119 1\n", + "45120 0\n", + "45121 1\n", + "45122 0\n", + "45123 0\n", + "45124 0\n", + "45125 0\n", + "45126 0\n", + "45127 1\n", + "45128 0\n", + "45129 0\n", + "45130 0\n", + "45131 1\n", + "45132 0\n", + "45133 0\n", + "45134 0\n", + "45135 0\n", + "45136 0\n", + "45137 1\n", + "45138 0\n", + "45139 1\n", + "45140 0\n", + "45141 0\n", + "45142 0\n", + "45143 0\n", + "45144 0\n", + "45145 0\n", + "45146 0\n", + "45147 0\n", + "45148 0\n", + "45149 0\n", + "45150 0\n", + "45151 0\n", + "45152 0\n", + "45153 0\n", + "45154 0\n", + "45155 0\n", + "45156 0\n", + "45157 0\n", + "45158 0\n", + "45159 0\n", + "45160 0\n", + "45161 1\n", + "45162 0\n", + "45163 0\n", + "45164 0\n", + "45165 0\n", + "45166 0\n", + "45167 0\n", + "45168 0\n", + "45169 0\n", + "45170 0\n", + "45171 0\n", + "45172 0\n", + "45173 0\n", + "45174 0\n", + "45175 0\n", + "45176 0\n", + "45177 0\n", + "45178 0\n", + "45179 1\n", + "45180 0\n", + "45181 1\n", + "45182 0\n", + "45183 0\n", + "45184 0\n", + "45185 0\n", + "45186 0\n", + "45187 0\n", + "45188 0\n", + "45189 0\n", + "45190 0\n", + "45191 1\n", + "45192 0\n", + "45193 0\n", + "45194 0\n", + "45195 0\n", + "45196 0\n", + "45197 1\n", + "45198 0\n", + "45199 0\n", + "45200 0\n", + "45201 0\n", + "45202 0\n", + "45203 0\n", + "45204 0\n", + "45205 0\n", + "45206 0\n", + "45207 0\n", + "45208 0\n", + "45209 0\n", + "45210 0\n", + "45211 0\n", + "45212 0\n", + "45213 0\n", + "45214 0\n", + "45215 0\n", + "45216 0\n", + "45217 0\n", + "45218 0\n", + "45219 0\n", + "45220 0\n", + "45221 0\n", + "45222 0\n", + "45223 0\n", + "45224 0\n", + "45225 0\n", + "45226 0\n", + "45227 0\n", + "45228 0\n", + "45229 0\n", + "45230 0\n", + "45231 0\n", + "45232 0\n", + "45233 1\n", + "45234 0\n", + "45235 0\n", + "45236 0\n", + "45237 0\n", + "45238 0\n", + "45239 0\n", + "45240 0\n", + "45241 0\n", + "45242 0\n", + "45243 0\n", + "45244 0\n", + "45245 0\n", + "45246 0\n", + "45247 1\n", + "45248 0\n", + "45249 0\n", + "45250 0\n", + "45251 0\n", + "45252 0\n", + "45253 0\n", + "45254 0\n", + "45255 0\n", + "45256 0\n", + "45257 0\n", + "45258 0\n", + "45259 1\n", + "45260 0\n", + "45261 0\n", + "45262 0\n", + "45263 1\n", + "45264 0\n", + "45265 0\n", + "45266 0\n", + "45267 0\n", + "45268 0\n", + "45269 0\n", + "45270 0\n", + "45271 0\n", + "45272 0\n", + "45273 0\n", + "45274 0\n", + "45275 0\n", + "45276 0\n", + "45277 0\n", + "45278 0\n", + "45279 0\n", + "45280 0\n", + "45281 1\n", + "45282 0\n", + "45283 0\n", + "45284 0\n", + "45285 0\n", + "45286 0\n", + "45287 0\n", + "45288 0\n", + "45289 1\n", + "45290 0\n", + "45291 0\n", + "45292 0\n", + "45293 1\n", + "45294 0\n", + "45295 0\n", + "45296 0\n", + "45297 0\n", + "45298 0\n", + "45299 0\n", + "45300 0\n", + "45301 0\n", + "45302 0\n", + "45303 0\n", + "45304 0\n", + "45305 0\n", + "45306 0\n", + "45307 1\n", + "45308 0\n", + "45309 0\n", + "45310 0\n", + "45311 0\n", + "45312 0\n", + "45313 0\n", + "45314 0\n", + "45315 0\n", + "45316 0\n", + "45317 1\n", + "45318 0\n", + "45319 1\n", + "45320 0\n", + "45321 0\n", + "45322 0\n", + "45323 0\n", + "45324 0\n", + "45325 0\n", + "45326 0\n", + "45327 0\n", + "45328 0\n", + "45329 1\n", + "45330 0\n", + "45331 0\n", + "45332 0\n", + "45333 0\n", + "45334 0\n", + "45335 0\n", + "45336 0\n", + "45337 1\n", + "45338 0\n", + "45339 0\n", + "45340 0\n", + "45341 1\n", + "45342 0\n", + "45343 1\n", + "45344 0\n", + "45345 0\n", + "45346 0\n", + "45347 0\n", + "45348 0\n", + "45349 0\n", + "45350 0\n", + "45351 0\n", + "45352 0\n", + "45353 0\n", + "45354 0\n", + "45355 0\n", + "45356 0\n", + "45357 0\n", + "45358 0\n", + "45359 0\n", + "45360 0\n", + "45361 1\n", + "45362 0\n", + "45363 0\n", + "45364 0\n", + "45365 0\n", + "45366 0\n", + "45367 0\n", + "45368 0\n", + "45369 0\n", + "45370 0\n", + "45371 0\n", + "45372 0\n", + "45373 0\n", + "45374 0\n", + "45375 0\n", + "45376 0\n", + "45377 1\n", + "45378 0\n", + "45379 0\n", + "45380 0\n", + "45381 0\n", + "45382 0\n", + "45383 0\n", + "45384 0\n", + "45385 0\n", + "45386 0\n", + "45387 0\n", + "45388 0\n", + "45389 1\n", + "45390 0\n", + "45391 0\n", + "45392 0\n", + "45393 0\n", + "45394 0\n", + "45395 0\n", + "45396 0\n", + "45397 0\n", + "45398 0\n", + "45399 0\n", + "45400 0\n", + "45401 0\n", + "45402 0\n", + "45403 1\n", + "45404 0\n", + "45405 0\n", + "45406 0\n", + "45407 0\n", + "45408 0\n", + "45409 0\n", + "45410 0\n", + "45411 0\n", + "45412 0\n", + "45413 1\n", + "45414 0\n", + "45415 0\n", + "45416 0\n", + "45417 0\n", + "45418 0\n", + "45419 0\n", + "45420 0\n", + "45421 0\n", + "45422 0\n", + "45423 0\n", + "45424 0\n", + "45425 0\n", + "45426 0\n", + "45427 1\n", + "45428 0\n", + "45429 0\n", + "45430 0\n", + "45431 0\n", + "45432 0\n", + "45433 1\n", + "45434 0\n", + "45435 0\n", + "45436 0\n", + "45437 0\n", + "45438 0\n", + "45439 1\n", + "45440 0\n", + "45441 0\n", + "45442 0\n", + "45443 0\n", + "45444 0\n", + "45445 0\n", + "45446 0\n", + "45447 0\n", + "45448 0\n", + "45449 0\n", + "45450 0\n", + "45451 0\n", + "45452 0\n", + "45453 0\n", + "45454 0\n", + "45455 0\n", + "45456 0\n", + "45457 0\n", + "45458 0\n", + "45459 0\n", + "45460 0\n", + "45461 0\n", + "45462 0\n", + "45463 0\n", + "45464 0\n", + "45465 0\n", + "45466 0\n", + "45467 0\n", + "45468 0\n", + "45469 0\n", + "45470 0\n", + "45471 0\n", + "45472 0\n", + "45473 0\n", + "45474 0\n", + "45475 0\n", + "45476 0\n", + "45477 0\n", + "45478 0\n", + "45479 0\n", + "45480 0\n", + "45481 1\n", + "45482 0\n", + "45483 0\n", + "45484 0\n", + "45485 0\n", + "45486 0\n", + "45487 0\n", + "45488 0\n", + "45489 0\n", + "45490 0\n", + "45491 1\n", + "45492 0\n", + "45493 0\n", + "45494 0\n", + "45495 0\n", + "45496 0\n", + "45497 1\n", + "45498 0\n", + "45499 0\n", + "45500 0\n", + "45501 0\n", + "45502 0\n", + "45503 1\n", + "45504 0\n", + "45505 0\n", + "45506 0\n", + "45507 0\n", + "45508 0\n", + "45509 0\n", + "45510 0\n", + "45511 0\n", + "45512 0\n", + "45513 0\n", + "45514 0\n", + "45515 0\n", + "45516 0\n", + "45517 0\n", + "45518 0\n", + "45519 0\n", + "45520 0\n", + "45521 0\n", + "45522 0\n", + "45523 1\n", + "45524 0\n", + "45525 0\n", + "45526 0\n", + "45527 0\n", + "45528 0\n", + "45529 0\n", + "45530 0\n", + "45531 0\n", + "45532 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "45533 1\n", + "45534 0\n", + "45535 0\n", + "45536 0\n", + "45537 0\n", + "45538 0\n", + "45539 0\n", + "45540 0\n", + "45541 1\n", + "45542 0\n", + "45543 0\n", + "45544 0\n", + "45545 0\n", + "45546 0\n", + "45547 0\n", + "45548 0\n", + "45549 0\n", + "45550 0\n", + "45551 0\n", + "45552 0\n", + "45553 1\n", + "45554 0\n", + "45555 0\n", + "45556 0\n", + "45557 1\n", + "45558 0\n", + "45559 0\n", + "45560 0\n", + "45561 0\n", + "45562 0\n", + "45563 0\n", + "45564 0\n", + "45565 0\n", + "45566 0\n", + "45567 0\n", + "45568 0\n", + "45569 1\n", + "45570 0\n", + "45571 0\n", + "45572 0\n", + "45573 0\n", + "45574 0\n", + "45575 0\n", + "45576 0\n", + "45577 0\n", + "45578 0\n", + "45579 0\n", + "45580 0\n", + "45581 0\n", + "45582 0\n", + "45583 0\n", + "45584 0\n", + "45585 0\n", + "45586 0\n", + "45587 1\n", + "45588 0\n", + "45589 1\n", + "45590 0\n", + "45591 0\n", + "45592 0\n", + "45593 0\n", + "45594 0\n", + "45595 0\n", + "45596 0\n", + "45597 0\n", + "45598 0\n", + "45599 1\n", + "45600 0\n", + "45601 0\n", + "45602 0\n", + "45603 0\n", + "45604 0\n", + "45605 0\n", + "45606 0\n", + "45607 0\n", + "45608 0\n", + "45609 0\n", + "45610 0\n", + "45611 0\n", + "45612 0\n", + "45613 1\n", + "45614 0\n", + "45615 0\n", + "45616 0\n", + "45617 0\n", + "45618 0\n", + "45619 0\n", + "45620 0\n", + "45621 0\n", + "45622 0\n", + "45623 0\n", + "45624 0\n", + "45625 0\n", + "45626 0\n", + "45627 0\n", + "45628 0\n", + "45629 0\n", + "45630 0\n", + "45631 1\n", + "45632 0\n", + "45633 0\n", + "45634 0\n", + "45635 0\n", + "45636 0\n", + "45637 0\n", + "45638 0\n", + "45639 0\n", + "45640 0\n", + "45641 1\n", + "45642 0\n", + "45643 0\n", + "45644 0\n", + "45645 0\n", + "45646 0\n", + "45647 0\n", + "45648 0\n", + "45649 0\n", + "45650 0\n", + "45651 0\n", + "45652 0\n", + "45653 0\n", + "45654 0\n", + "45655 0\n", + "45656 0\n", + "45657 0\n", + "45658 0\n", + "45659 1\n", + "45660 0\n", + "45661 0\n", + "45662 0\n", + "45663 0\n", + "45664 0\n", + "45665 0\n", + "45666 0\n", + "45667 1\n", + "45668 0\n", + "45669 0\n", + "45670 0\n", + "45671 0\n", + "45672 0\n", + "45673 1\n", + "45674 0\n", + "45675 0\n", + "45676 0\n", + "45677 1\n", + "45678 0\n", + "45679 0\n", + "45680 0\n", + "45681 0\n", + "45682 0\n", + "45683 0\n", + "45684 0\n", + "45685 0\n", + "45686 0\n", + "45687 0\n", + "45688 0\n", + "45689 0\n", + "45690 0\n", + "45691 1\n", + "45692 0\n", + "45693 0\n", + "45694 0\n", + "45695 0\n", + "45696 0\n", + "45697 1\n", + "45698 0\n", + "45699 0\n", + "45700 0\n", + "45701 0\n", + "45702 0\n", + "45703 0\n", + "45704 0\n", + "45705 0\n", + "45706 0\n", + "45707 1\n", + "45708 0\n", + "45709 0\n", + "45710 0\n", + "45711 0\n", + "45712 0\n", + "45713 0\n", + "45714 0\n", + "45715 0\n", + "45716 0\n", + "45717 0\n", + "45718 0\n", + "45719 0\n", + "45720 0\n", + "45721 0\n", + "45722 0\n", + "45723 0\n", + "45724 0\n", + "45725 0\n", + "45726 0\n", + "45727 0\n", + "45728 0\n", + "45729 0\n", + "45730 0\n", + "45731 0\n", + "45732 0\n", + "45733 0\n", + "45734 0\n", + "45735 0\n", + "45736 0\n", + "45737 1\n", + "45738 0\n", + "45739 0\n", + "45740 0\n", + "45741 0\n", + "45742 0\n", + "45743 0\n", + "45744 0\n", + "45745 0\n", + "45746 0\n", + "45747 0\n", + "45748 0\n", + "45749 0\n", + "45750 0\n", + "45751 1\n", + "45752 0\n", + "45753 0\n", + "45754 0\n", + "45755 0\n", + "45756 0\n", + "45757 1\n", + "45758 0\n", + "45759 0\n", + "45760 0\n", + "45761 0\n", + "45762 0\n", + "45763 1\n", + "45764 0\n", + "45765 0\n", + "45766 0\n", + "45767 1\n", + "45768 0\n", + "45769 0\n", + "45770 0\n", + "45771 0\n", + "45772 0\n", + "45773 0\n", + "45774 0\n", + "45775 0\n", + "45776 0\n", + "45777 0\n", + "45778 0\n", + "45779 1\n", + "45780 0\n", + "45781 0\n", + "45782 0\n", + "45783 0\n", + "45784 0\n", + "45785 0\n", + "45786 0\n", + "45787 0\n", + "45788 0\n", + "45789 0\n", + "45790 0\n", + "45791 0\n", + "45792 0\n", + "45793 0\n", + "45794 0\n", + "45795 0\n", + "45796 0\n", + "45797 0\n", + "45798 0\n", + "45799 0\n", + "45800 0\n", + "45801 0\n", + "45802 0\n", + "45803 0\n", + "45804 0\n", + "45805 0\n", + "45806 0\n", + "45807 0\n", + "45808 0\n", + "45809 0\n", + "45810 0\n", + "45811 0\n", + "45812 0\n", + "45813 0\n", + "45814 0\n", + "45815 0\n", + "45816 0\n", + "45817 1\n", + "45818 0\n", + "45819 0\n", + "45820 0\n", + "45821 1\n", + "45822 0\n", + "45823 1\n", + "45824 0\n", + "45825 0\n", + "45826 0\n", + "45827 1\n", + "45828 0\n", + "45829 0\n", + "45830 0\n", + "45831 0\n", + "45832 0\n", + "45833 1\n", + "45834 0\n", + "45835 0\n", + "45836 0\n", + "45837 0\n", + "45838 0\n", + "45839 0\n", + "45840 0\n", + "45841 1\n", + "45842 0\n", + "45843 0\n", + "45844 0\n", + "45845 0\n", + "45846 0\n", + "45847 0\n", + "45848 0\n", + "45849 0\n", + "45850 0\n", + "45851 0\n", + "45852 0\n", + "45853 1\n", + "45854 0\n", + "45855 0\n", + "45856 0\n", + "45857 0\n", + "45858 0\n", + "45859 0\n", + "45860 0\n", + "45861 0\n", + "45862 0\n", + "45863 1\n", + "45864 0\n", + "45865 0\n", + "45866 0\n", + "45867 0\n", + "45868 0\n", + "45869 1\n", + "45870 0\n", + "45871 0\n", + "45872 0\n", + "45873 0\n", + "45874 0\n", + "45875 0\n", + "45876 0\n", + "45877 0\n", + "45878 0\n", + "45879 0\n", + "45880 0\n", + "45881 0\n", + "45882 0\n", + "45883 0\n", + "45884 0\n", + "45885 0\n", + "45886 0\n", + "45887 1\n", + "45888 0\n", + "45889 0\n", + "45890 0\n", + "45891 0\n", + "45892 0\n", + "45893 1\n", + "45894 0\n", + "45895 0\n", + "45896 0\n", + "45897 0\n", + "45898 0\n", + "45899 0\n", + "45900 0\n", + "45901 0\n", + "45902 0\n", + "45903 0\n", + "45904 0\n", + "45905 0\n", + "45906 0\n", + "45907 0\n", + "45908 0\n", + "45909 0\n", + "45910 0\n", + "45911 0\n", + "45912 0\n", + "45913 0\n", + "45914 0\n", + "45915 0\n", + "45916 0\n", + "45917 0\n", + "45918 0\n", + "45919 0\n", + "45920 0\n", + "45921 0\n", + "45922 0\n", + "45923 0\n", + "45924 0\n", + "45925 0\n", + "45926 0\n", + "45927 0\n", + "45928 0\n", + "45929 0\n", + "45930 0\n", + "45931 0\n", + "45932 0\n", + "45933 0\n", + "45934 0\n", + "45935 0\n", + "45936 0\n", + "45937 0\n", + "45938 0\n", + "45939 0\n", + "45940 0\n", + "45941 0\n", + "45942 0\n", + "45943 1\n", + "45944 0\n", + "45945 0\n", + "45946 0\n", + "45947 0\n", + "45948 0\n", + "45949 1\n", + "45950 0\n", + "45951 0\n", + "45952 0\n", + "45953 1\n", + "45954 0\n", + "45955 0\n", + "45956 0\n", + "45957 0\n", + "45958 0\n", + "45959 1\n", + "45960 0\n", + "45961 0\n", + "45962 0\n", + "45963 0\n", + "45964 0\n", + "45965 0\n", + "45966 0\n", + "45967 0\n", + "45968 0\n", + "45969 0\n", + "45970 0\n", + "45971 1\n", + "45972 0\n", + "45973 0\n", + "45974 0\n", + "45975 0\n", + "45976 0\n", + "45977 0\n", + "45978 0\n", + "45979 1\n", + "45980 0\n", + "45981 0\n", + "45982 0\n", + "45983 0\n", + "45984 0\n", + "45985 0\n", + "45986 0\n", + "45987 0\n", + "45988 0\n", + "45989 1\n", + "45990 0\n", + "45991 0\n", + "45992 0\n", + "45993 0\n", + "45994 0\n", + "45995 0\n", + "45996 0\n", + "45997 0\n", + "45998 0\n", + "45999 0\n", + "46000 0\n", + "46001 0\n", + "46002 0\n", + "46003 0\n", + "46004 0\n", + "46005 0\n", + "46006 0\n", + "46007 0\n", + "46008 0\n", + "46009 0\n", + "46010 0\n", + "46011 0\n", + "46012 0\n", + "46013 0\n", + "46014 0\n", + "46015 0\n", + "46016 0\n", + "46017 0\n", + "46018 0\n", + "46019 0\n", + "46020 0\n", + "46021 1\n", + "46022 0\n", + "46023 0\n", + "46024 0\n", + "46025 0\n", + "46026 0\n", + "46027 1\n", + "46028 0\n", + "46029 0\n", + "46030 0\n", + "46031 0\n", + "46032 0\n", + "46033 0\n", + "46034 0\n", + "46035 0\n", + "46036 0\n", + "46037 0\n", + "46038 0\n", + "46039 0\n", + "46040 0\n", + "46041 0\n", + "46042 0\n", + "46043 0\n", + "46044 0\n", + "46045 0\n", + "46046 0\n", + "46047 0\n", + "46048 0\n", + "46049 1\n", + "46050 0\n", + "46051 1\n", + "46052 0\n", + "46053 0\n", + "46054 0\n", + "46055 0\n", + "46056 0\n", + "46057 0\n", + "46058 0\n", + "46059 0\n", + "46060 0\n", + "46061 1\n", + "46062 0\n", + "46063 0\n", + "46064 0\n", + "46065 0\n", + "46066 0\n", + "46067 0\n", + "46068 0\n", + "46069 0\n", + "46070 0\n", + "46071 0\n", + "46072 0\n", + "46073 1\n", + "46074 0\n", + "46075 0\n", + "46076 0\n", + "46077 0\n", + "46078 0\n", + "46079 0\n", + "46080 0\n", + "46081 0\n", + "46082 0\n", + "46083 0\n", + "46084 0\n", + "46085 0\n", + "46086 0\n", + "46087 0\n", + "46088 0\n", + "46089 0\n", + "46090 0\n", + "46091 1\n", + "46092 0\n", + "46093 1\n", + "46094 0\n", + "46095 0\n", + "46096 0\n", + "46097 0\n", + "46098 0\n", + "46099 1\n", + "46100 0\n", + "46101 0\n", + "46102 0\n", + "46103 1\n", + "46104 0\n", + "46105 0\n", + "46106 0\n", + "46107 0\n", + "46108 0\n", + "46109 0\n", + "46110 0\n", + "46111 0\n", + "46112 0\n", + "46113 0\n", + "46114 0\n", + "46115 0\n", + "46116 0\n", + "46117 0\n", + "46118 0\n", + "46119 0\n", + "46120 0\n", + "46121 0\n", + "46122 0\n", + "46123 0\n", + "46124 0\n", + "46125 0\n", + "46126 0\n", + "46127 0\n", + "46128 0\n", + "46129 0\n", + "46130 0\n", + "46131 0\n", + "46132 0\n", + "46133 1\n", + "46134 0\n", + "46135 0\n", + "46136 0\n", + "46137 0\n", + "46138 0\n", + "46139 0\n", + "46140 0\n", + "46141 1\n", + "46142 0\n", + "46143 0\n", + "46144 0\n", + "46145 0\n", + "46146 0\n", + "46147 1\n", + "46148 0\n", + "46149 0\n", + "46150 0\n", + "46151 0\n", + "46152 0\n", + "46153 1\n", + "46154 0\n", + "46155 0\n", + "46156 0\n", + "46157 0\n", + "46158 0\n", + "46159 0\n", + "46160 0\n", + "46161 0\n", + "46162 0\n", + "46163 0\n", + "46164 0\n", + "46165 0\n", + "46166 0\n", + "46167 0\n", + "46168 0\n", + "46169 0\n", + "46170 0\n", + "46171 1\n", + "46172 0\n", + "46173 0\n", + "46174 0\n", + "46175 0\n", + "46176 0\n", + "46177 0\n", + "46178 0\n", + "46179 0\n", + "46180 0\n", + "46181 1\n", + "46182 0\n", + "46183 1\n", + "46184 0\n", + "46185 0\n", + "46186 0\n", + "46187 1\n", + "46188 0\n", + "46189 0\n", + "46190 0\n", + "46191 0\n", + "46192 0\n", + "46193 0\n", + "46194 0\n", + "46195 0\n", + "46196 0\n", + "46197 0\n", + "46198 0\n", + "46199 1\n", + "46200 0\n", + "46201 0\n", + "46202 0\n", + "46203 0\n", + "46204 0\n", + "46205 0\n", + "46206 0\n", + "46207 0\n", + "46208 0\n", + "46209 0\n", + "46210 0\n", + "46211 0\n", + "46212 0\n", + "46213 0\n", + "46214 0\n", + "46215 0\n", + "46216 0\n", + "46217 0\n", + "46218 0\n", + "46219 1\n", + "46220 0\n", + "46221 0\n", + "46222 0\n", + "46223 0\n", + "46224 0\n", + "46225 0\n", + "46226 0\n", + "46227 0\n", + "46228 0\n", + "46229 1\n", + "46230 0\n", + "46231 0\n", + "46232 0\n", + "46233 0\n", + "46234 0\n", + "46235 0\n", + "46236 0\n", + "46237 1\n", + "46238 0\n", + "46239 0\n", + "46240 0\n", + "46241 0\n", + "46242 0\n", + "46243 0\n", + "46244 0\n", + "46245 0\n", + "46246 0\n", + "46247 0\n", + "46248 0\n", + "46249 0\n", + "46250 0\n", + "46251 0\n", + "46252 0\n", + "46253 0\n", + "46254 0\n", + "46255 0\n", + "46256 0\n", + "46257 0\n", + "46258 0\n", + "46259 0\n", + "46260 0\n", + "46261 1\n", + "46262 0\n", + "46263 0\n", + "46264 0\n", + "46265 0\n", + "46266 0\n", + "46267 0\n", + "46268 0\n", + "46269 0\n", + "46270 0\n", + "46271 1\n", + "46272 0\n", + "46273 1\n", + "46274 0\n", + "46275 0\n", + "46276 0\n", + "46277 0\n", + "46278 0\n", + "46279 1\n", + "46280 0\n", + "46281 0\n", + "46282 0\n", + "46283 0\n", + "46284 0\n", + "46285 0\n", + "46286 0\n", + "46287 0\n", + "46288 0\n", + "46289 0\n", + "46290 0\n", + "46291 0\n", + "46292 0\n", + "46293 0\n", + "46294 0\n", + "46295 0\n", + "46296 0\n", + "46297 0\n", + "46298 0\n", + "46299 0\n", + "46300 0\n", + "46301 1\n", + "46302 0\n", + "46303 0\n", + "46304 0\n", + "46305 0\n", + "46306 0\n", + "46307 1\n", + "46308 0\n", + "46309 1\n", + "46310 0\n", + "46311 0\n", + "46312 0\n", + "46313 0\n", + "46314 0\n", + "46315 0\n", + "46316 0\n", + "46317 0\n", + "46318 0\n", + "46319 0\n", + "46320 0\n", + "46321 0\n", + "46322 0\n", + "46323 0\n", + "46324 0\n", + "46325 0\n", + "46326 0\n", + "46327 1\n", + "46328 0\n", + "46329 0\n", + "46330 0\n", + "46331 0\n", + "46332 0\n", + "46333 0\n", + "46334 0\n", + "46335 0\n", + "46336 0\n", + "46337 1\n", + "46338 0\n", + "46339 0\n", + "46340 0\n", + "46341 0\n", + "46342 0\n", + "46343 0\n", + "46344 0\n", + "46345 0\n", + "46346 0\n", + "46347 0\n", + "46348 0\n", + "46349 1\n", + "46350 0\n", + "46351 1\n", + "46352 0\n", + "46353 0\n", + "46354 0\n", + "46355 0\n", + "46356 0\n", + "46357 0\n", + "46358 0\n", + "46359 0\n", + "46360 0\n", + "46361 0\n", + "46362 0\n", + "46363 0\n", + "46364 0\n", + "46365 0\n", + "46366 0\n", + "46367 0\n", + "46368 0\n", + "46369 0\n", + "46370 0\n", + "46371 0\n", + "46372 0\n", + "46373 0\n", + "46374 0\n", + "46375 0\n", + "46376 0\n", + "46377 0\n", + "46378 0\n", + "46379 0\n", + "46380 0\n", + "46381 1\n", + "46382 0\n", + "46383 0\n", + "46384 0\n", + "46385 0\n", + "46386 0\n", + "46387 0\n", + "46388 0\n", + "46389 0\n", + "46390 0\n", + "46391 0\n", + "46392 0\n", + "46393 0\n", + "46394 0\n", + "46395 0\n", + "46396 0\n", + "46397 0\n", + "46398 0\n", + "46399 1\n", + "46400 0\n", + "46401 0\n", + "46402 0\n", + "46403 0\n", + "46404 0\n", + "46405 0\n", + "46406 0\n", + "46407 0\n", + "46408 0\n", + "46409 0\n", + "46410 0\n", + "46411 1\n", + "46412 0\n", + "46413 0\n", + "46414 0\n", + "46415 0\n", + "46416 0\n", + "46417 0\n", + "46418 0\n", + "46419 0\n", + "46420 0\n", + "46421 0\n", + "46422 0\n", + "46423 0\n", + "46424 0\n", + "46425 0\n", + "46426 0\n", + "46427 0\n", + "46428 0\n", + "46429 0\n", + "46430 0\n", + "46431 0\n", + "46432 0\n", + "46433 0\n", + "46434 0\n", + "46435 0\n", + "46436 0\n", + "46437 0\n", + "46438 0\n", + "46439 1\n", + "46440 0\n", + "46441 1\n", + "46442 0\n", + "46443 0\n", + "46444 0\n", + "46445 0\n", + "46446 0\n", + "46447 1\n", + "46448 0\n", + "46449 0\n", + "46450 0\n", + "46451 1\n", + "46452 0\n", + "46453 0\n", + "46454 0\n", + "46455 0\n", + "46456 0\n", + "46457 1\n", + "46458 0\n", + "46459 0\n", + "46460 0\n", + "46461 0\n", + "46462 0\n", + "46463 0\n", + "46464 0\n", + "46465 0\n", + "46466 0\n", + "46467 0\n", + "46468 0\n", + "46469 0\n", + "46470 0\n", + "46471 1\n", + "46472 0\n", + "46473 0\n", + "46474 0\n", + "46475 0\n", + "46476 0\n", + "46477 1\n", + "46478 0\n", + "46479 0\n", + "46480 0\n", + "46481 0\n", + "46482 0\n", + "46483 0\n", + "46484 0\n", + "46485 0\n", + "46486 0\n", + "46487 0\n", + "46488 0\n", + "46489 1\n", + "46490 0\n", + "46491 0\n", + "46492 0\n", + "46493 0\n", + "46494 0\n", + "46495 0\n", + "46496 0\n", + "46497 0\n", + "46498 0\n", + "46499 1\n", + "46500 0\n", + "46501 0\n", + "46502 0\n", + "46503 0\n", + "46504 0\n", + "46505 0\n", + "46506 0\n", + "46507 1\n", + "46508 0\n", + "46509 0\n", + "46510 0\n", + "46511 1\n", + "46512 0\n", + "46513 0\n", + "46514 0\n", + "46515 0\n", + "46516 0\n", + "46517 0\n", + "46518 0\n", + "46519 0\n", + "46520 0\n", + "46521 0\n", + "46522 0\n", + "46523 1\n", + "46524 0\n", + "46525 0\n", + "46526 0\n", + "46527 0\n", + "46528 0\n", + "46529 0\n", + "46530 0\n", + "46531 0\n", + "46532 0\n", + "46533 0\n", + "46534 0\n", + "46535 0\n", + "46536 0\n", + "46537 0\n", + "46538 0\n", + "46539 0\n", + "46540 0\n", + "46541 0\n", + "46542 0\n", + "46543 0\n", + "46544 0\n", + "46545 0\n", + "46546 0\n", + "46547 0\n", + "46548 0\n", + "46549 1\n", + "46550 0\n", + "46551 0\n", + "46552 0\n", + "46553 0\n", + "46554 0\n", + "46555 0\n", + "46556 0\n", + "46557 0\n", + "46558 0\n", + "46559 1\n", + "46560 0\n", + "46561 0\n", + "46562 0\n", + "46563 0\n", + "46564 0\n", + "46565 0\n", + "46566 0\n", + "46567 1\n", + "46568 0\n", + "46569 0\n", + "46570 0\n", + "46571 0\n", + "46572 0\n", + "46573 1\n", + "46574 0\n", + "46575 0\n", + "46576 0\n", + "46577 0\n", + "46578 0\n", + "46579 0\n", + "46580 0\n", + "46581 0\n", + "46582 0\n", + "46583 0\n", + "46584 0\n", + "46585 0\n", + "46586 0\n", + "46587 0\n", + "46588 0\n", + "46589 1\n", + "46590 0\n", + "46591 1\n", + "46592 0\n", + "46593 0\n", + "46594 0\n", + "46595 0\n", + "46596 0\n", + "46597 0\n", + "46598 0\n", + "46599 0\n", + "46600 0\n", + "46601 1\n", + "46602 0\n", + "46603 0\n", + "46604 0\n", + "46605 0\n", + "46606 0\n", + "46607 0\n", + "46608 0\n", + "46609 0\n", + "46610 0\n", + "46611 0\n", + "46612 0\n", + "46613 0\n", + "46614 0\n", + "46615 0\n", + "46616 0\n", + "46617 0\n", + "46618 0\n", + "46619 1\n", + "46620 0\n", + "46621 0\n", + "46622 0\n", + "46623 0\n", + "46624 0\n", + "46625 0\n", + "46626 0\n", + "46627 0\n", + "46628 0\n", + "46629 0\n", + "46630 0\n", + "46631 0\n", + "46632 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "46633 1\n", + "46634 0\n", + "46635 0\n", + "46636 0\n", + "46637 0\n", + "46638 0\n", + "46639 1\n", + "46640 0\n", + "46641 0\n", + "46642 0\n", + "46643 1\n", + "46644 0\n", + "46645 0\n", + "46646 0\n", + "46647 0\n", + "46648 0\n", + "46649 1\n", + "46650 0\n", + "46651 0\n", + "46652 0\n", + "46653 0\n", + "46654 0\n", + "46655 0\n", + "46656 0\n", + "46657 0\n", + "46658 0\n", + "46659 0\n", + "46660 0\n", + "46661 0\n", + "46662 0\n", + "46663 1\n", + "46664 0\n", + "46665 0\n", + "46666 0\n", + "46667 0\n", + "46668 0\n", + "46669 0\n", + "46670 0\n", + "46671 0\n", + "46672 0\n", + "46673 0\n", + "46674 0\n", + "46675 0\n", + "46676 0\n", + "46677 0\n", + "46678 0\n", + "46679 1\n", + "46680 0\n", + "46681 1\n", + "46682 0\n", + "46683 0\n", + "46684 0\n", + "46685 0\n", + "46686 0\n", + "46687 1\n", + "46688 0\n", + "46689 0\n", + "46690 0\n", + "46691 1\n", + "46692 0\n", + "46693 0\n", + "46694 0\n", + "46695 0\n", + "46696 0\n", + "46697 0\n", + "46698 0\n", + "46699 0\n", + "46700 0\n", + "46701 0\n", + "46702 0\n", + "46703 1\n", + "46704 0\n", + "46705 0\n", + "46706 0\n", + "46707 0\n", + "46708 0\n", + "46709 0\n", + "46710 0\n", + "46711 0\n", + "46712 0\n", + "46713 0\n", + "46714 0\n", + "46715 0\n", + "46716 0\n", + "46717 0\n", + "46718 0\n", + "46719 0\n", + "46720 0\n", + "46721 0\n", + "46722 0\n", + "46723 1\n", + "46724 0\n", + "46725 0\n", + "46726 0\n", + "46727 1\n", + "46728 0\n", + "46729 0\n", + "46730 0\n", + "46731 0\n", + "46732 0\n", + "46733 0\n", + "46734 0\n", + "46735 0\n", + "46736 0\n", + "46737 0\n", + "46738 0\n", + "46739 0\n", + "46740 0\n", + "46741 0\n", + "46742 0\n", + "46743 0\n", + "46744 0\n", + "46745 0\n", + "46746 0\n", + "46747 1\n", + "46748 0\n", + "46749 0\n", + "46750 0\n", + "46751 1\n", + "46752 0\n", + "46753 0\n", + "46754 0\n", + "46755 0\n", + "46756 0\n", + "46757 1\n", + "46758 0\n", + "46759 0\n", + "46760 0\n", + "46761 0\n", + "46762 0\n", + "46763 0\n", + "46764 0\n", + "46765 0\n", + "46766 0\n", + "46767 0\n", + "46768 0\n", + "46769 1\n", + "46770 0\n", + "46771 1\n", + "46772 0\n", + "46773 0\n", + "46774 0\n", + "46775 0\n", + "46776 0\n", + "46777 0\n", + "46778 0\n", + "46779 0\n", + "46780 0\n", + "46781 0\n", + "46782 0\n", + "46783 0\n", + "46784 0\n", + "46785 0\n", + "46786 0\n", + "46787 0\n", + "46788 0\n", + "46789 0\n", + "46790 0\n", + "46791 0\n", + "46792 0\n", + "46793 0\n", + "46794 0\n", + "46795 0\n", + "46796 0\n", + "46797 0\n", + "46798 0\n", + "46799 0\n", + "46800 0\n", + "46801 0\n", + "46802 0\n", + "46803 0\n", + "46804 0\n", + "46805 0\n", + "46806 0\n", + "46807 1\n", + "46808 0\n", + "46809 0\n", + "46810 0\n", + "46811 1\n", + "46812 0\n", + "46813 0\n", + "46814 0\n", + "46815 0\n", + "46816 0\n", + "46817 1\n", + "46818 0\n", + "46819 1\n", + "46820 0\n", + "46821 0\n", + "46822 0\n", + "46823 0\n", + "46824 0\n", + "46825 0\n", + "46826 0\n", + "46827 0\n", + "46828 0\n", + "46829 1\n", + "46830 0\n", + "46831 1\n", + "46832 0\n", + "46833 0\n", + "46834 0\n", + "46835 0\n", + "46836 0\n", + "46837 0\n", + "46838 0\n", + "46839 0\n", + "46840 0\n", + "46841 0\n", + "46842 0\n", + "46843 0\n", + "46844 0\n", + "46845 0\n", + "46846 0\n", + "46847 0\n", + "46848 0\n", + "46849 0\n", + "46850 0\n", + "46851 0\n", + "46852 0\n", + "46853 1\n", + "46854 0\n", + "46855 0\n", + "46856 0\n", + "46857 0\n", + "46858 0\n", + "46859 0\n", + "46860 0\n", + "46861 1\n", + "46862 0\n", + "46863 0\n", + "46864 0\n", + "46865 0\n", + "46866 0\n", + "46867 1\n", + "46868 0\n", + "46869 0\n", + "46870 0\n", + "46871 0\n", + "46872 0\n", + "46873 0\n", + "46874 0\n", + "46875 0\n", + "46876 0\n", + "46877 1\n", + "46878 0\n", + "46879 0\n", + "46880 0\n", + "46881 0\n", + "46882 0\n", + "46883 0\n", + "46884 0\n", + "46885 0\n", + "46886 0\n", + "46887 0\n", + "46888 0\n", + "46889 1\n", + "46890 0\n", + "46891 0\n", + "46892 0\n", + "46893 0\n", + "46894 0\n", + "46895 0\n", + "46896 0\n", + "46897 0\n", + "46898 0\n", + "46899 0\n", + "46900 0\n", + "46901 1\n", + "46902 0\n", + "46903 0\n", + "46904 0\n", + "46905 0\n", + "46906 0\n", + "46907 0\n", + "46908 0\n", + "46909 0\n", + "46910 0\n", + "46911 0\n", + "46912 0\n", + "46913 0\n", + "46914 0\n", + "46915 0\n", + "46916 0\n", + "46917 0\n", + "46918 0\n", + "46919 1\n", + "46920 0\n", + "46921 0\n", + "46922 0\n", + "46923 0\n", + "46924 0\n", + "46925 0\n", + "46926 0\n", + "46927 0\n", + "46928 0\n", + "46929 0\n", + "46930 0\n", + "46931 0\n", + "46932 0\n", + "46933 1\n", + "46934 0\n", + "46935 0\n", + "46936 0\n", + "46937 0\n", + "46938 0\n", + "46939 0\n", + "46940 0\n", + "46941 0\n", + "46942 0\n", + "46943 0\n", + "46944 0\n", + "46945 0\n", + "46946 0\n", + "46947 0\n", + "46948 0\n", + "46949 0\n", + "46950 0\n", + "46951 0\n", + "46952 0\n", + "46953 0\n", + "46954 0\n", + "46955 0\n", + "46956 0\n", + "46957 1\n", + "46958 0\n", + "46959 0\n", + "46960 0\n", + "46961 0\n", + "46962 0\n", + "46963 0\n", + "46964 0\n", + "46965 0\n", + "46966 0\n", + "46967 0\n", + "46968 0\n", + "46969 0\n", + "46970 0\n", + "46971 0\n", + "46972 0\n", + "46973 0\n", + "46974 0\n", + "46975 0\n", + "46976 0\n", + "46977 0\n", + "46978 0\n", + "46979 0\n", + "46980 0\n", + "46981 0\n", + "46982 0\n", + "46983 0\n", + "46984 0\n", + "46985 0\n", + "46986 0\n", + "46987 0\n", + "46988 0\n", + "46989 0\n", + "46990 0\n", + "46991 0\n", + "46992 0\n", + "46993 1\n", + "46994 0\n", + "46995 0\n", + "46996 0\n", + "46997 1\n", + "46998 0\n", + "46999 0\n", + "47000 0\n", + "47001 0\n", + "47002 0\n", + "47003 0\n", + "47004 0\n", + "47005 0\n", + "47006 0\n", + "47007 0\n", + "47008 0\n", + "47009 0\n", + "47010 0\n", + "47011 0\n", + "47012 0\n", + "47013 0\n", + "47014 0\n", + "47015 0\n", + "47016 0\n", + "47017 1\n", + "47018 0\n", + "47019 0\n", + "47020 0\n", + "47021 0\n", + "47022 0\n", + "47023 0\n", + "47024 0\n", + "47025 0\n", + "47026 0\n", + "47027 0\n", + "47028 0\n", + "47029 0\n", + "47030 0\n", + "47031 0\n", + "47032 0\n", + "47033 0\n", + "47034 0\n", + "47035 0\n", + "47036 0\n", + "47037 0\n", + "47038 0\n", + "47039 0\n", + "47040 0\n", + "47041 1\n", + "47042 0\n", + "47043 0\n", + "47044 0\n", + "47045 0\n", + "47046 0\n", + "47047 0\n", + "47048 0\n", + "47049 0\n", + "47050 0\n", + "47051 1\n", + "47052 0\n", + "47053 0\n", + "47054 0\n", + "47055 0\n", + "47056 0\n", + "47057 1\n", + "47058 0\n", + "47059 1\n", + "47060 0\n", + "47061 0\n", + "47062 0\n", + "47063 0\n", + "47064 0\n", + "47065 0\n", + "47066 0\n", + "47067 0\n", + "47068 0\n", + "47069 0\n", + "47070 0\n", + "47071 0\n", + "47072 0\n", + "47073 0\n", + "47074 0\n", + "47075 0\n", + "47076 0\n", + "47077 0\n", + "47078 0\n", + "47079 0\n", + "47080 0\n", + "47081 0\n", + "47082 0\n", + "47083 0\n", + "47084 0\n", + "47085 0\n", + "47086 0\n", + "47087 1\n", + "47088 0\n", + "47089 0\n", + "47090 0\n", + "47091 0\n", + "47092 0\n", + "47093 1\n", + "47094 0\n", + "47095 0\n", + "47096 0\n", + "47097 0\n", + "47098 0\n", + "47099 0\n", + "47100 0\n", + "47101 0\n", + "47102 0\n", + "47103 0\n", + "47104 0\n", + "47105 0\n", + "47106 0\n", + "47107 0\n", + "47108 0\n", + "47109 0\n", + "47110 0\n", + "47111 1\n", + "47112 0\n", + "47113 0\n", + "47114 0\n", + "47115 0\n", + "47116 0\n", + "47117 0\n", + "47118 0\n", + "47119 1\n", + "47120 0\n", + "47121 0\n", + "47122 0\n", + "47123 1\n", + "47124 0\n", + "47125 0\n", + "47126 0\n", + "47127 0\n", + "47128 0\n", + "47129 1\n", + "47130 0\n", + "47131 0\n", + "47132 0\n", + "47133 0\n", + "47134 0\n", + "47135 0\n", + "47136 0\n", + "47137 1\n", + "47138 0\n", + "47139 0\n", + "47140 0\n", + "47141 0\n", + "47142 0\n", + "47143 1\n", + "47144 0\n", + "47145 0\n", + "47146 0\n", + "47147 1\n", + "47148 0\n", + "47149 1\n", + "47150 0\n", + "47151 0\n", + "47152 0\n", + "47153 0\n", + "47154 0\n", + "47155 0\n", + "47156 0\n", + "47157 0\n", + "47158 0\n", + "47159 0\n", + "47160 0\n", + "47161 1\n", + "47162 0\n", + "47163 0\n", + "47164 0\n", + "47165 0\n", + "47166 0\n", + "47167 0\n", + "47168 0\n", + "47169 0\n", + "47170 0\n", + "47171 0\n", + "47172 0\n", + "47173 0\n", + "47174 0\n", + "47175 0\n", + "47176 0\n", + "47177 0\n", + "47178 0\n", + "47179 0\n", + "47180 0\n", + "47181 0\n", + "47182 0\n", + "47183 0\n", + "47184 0\n", + "47185 0\n", + "47186 0\n", + "47187 0\n", + "47188 0\n", + "47189 1\n", + "47190 0\n", + "47191 0\n", + "47192 0\n", + "47193 0\n", + "47194 0\n", + "47195 0\n", + "47196 0\n", + "47197 0\n", + "47198 0\n", + "47199 0\n", + "47200 0\n", + "47201 0\n", + "47202 0\n", + "47203 0\n", + "47204 0\n", + "47205 0\n", + "47206 0\n", + "47207 1\n", + "47208 0\n", + "47209 0\n", + "47210 0\n", + "47211 0\n", + "47212 0\n", + "47213 0\n", + "47214 0\n", + "47215 0\n", + "47216 0\n", + "47217 0\n", + "47218 0\n", + "47219 0\n", + "47220 0\n", + "47221 1\n", + "47222 0\n", + "47223 0\n", + "47224 0\n", + "47225 0\n", + "47226 0\n", + "47227 0\n", + "47228 0\n", + "47229 0\n", + "47230 0\n", + "47231 0\n", + "47232 0\n", + "47233 0\n", + "47234 0\n", + "47235 0\n", + "47236 0\n", + "47237 1\n", + "47238 0\n", + "47239 0\n", + "47240 0\n", + "47241 0\n", + "47242 0\n", + "47243 0\n", + "47244 0\n", + "47245 0\n", + "47246 0\n", + "47247 0\n", + "47248 0\n", + "47249 0\n", + "47250 0\n", + "47251 1\n", + "47252 0\n", + "47253 0\n", + "47254 0\n", + "47255 0\n", + "47256 0\n", + "47257 0\n", + "47258 0\n", + "47259 0\n", + "47260 0\n", + "47261 0\n", + "47262 0\n", + "47263 0\n", + "47264 0\n", + "47265 0\n", + "47266 0\n", + "47267 0\n", + "47268 0\n", + "47269 1\n", + "47270 0\n", + "47271 0\n", + "47272 0\n", + "47273 0\n", + "47274 0\n", + "47275 0\n", + "47276 0\n", + "47277 0\n", + "47278 0\n", + "47279 1\n", + "47280 0\n", + "47281 0\n", + "47282 0\n", + "47283 0\n", + "47284 0\n", + "47285 0\n", + "47286 0\n", + "47287 1\n", + "47288 0\n", + "47289 0\n", + "47290 0\n", + "47291 0\n", + "47292 0\n", + "47293 1\n", + "47294 0\n", + "47295 0\n", + "47296 0\n", + "47297 1\n", + "47298 0\n", + "47299 0\n", + "47300 0\n", + "47301 0\n", + "47302 0\n", + "47303 1\n", + "47304 0\n", + "47305 0\n", + "47306 0\n", + "47307 0\n", + "47308 0\n", + "47309 1\n", + "47310 0\n", + "47311 0\n", + "47312 0\n", + "47313 0\n", + "47314 0\n", + "47315 0\n", + "47316 0\n", + "47317 1\n", + "47318 0\n", + "47319 0\n", + "47320 0\n", + "47321 0\n", + "47322 0\n", + "47323 0\n", + "47324 0\n", + "47325 0\n", + "47326 0\n", + "47327 0\n", + "47328 0\n", + "47329 0\n", + "47330 0\n", + "47331 0\n", + "47332 0\n", + "47333 0\n", + "47334 0\n", + "47335 0\n", + "47336 0\n", + "47337 0\n", + "47338 0\n", + "47339 1\n", + "47340 0\n", + "47341 0\n", + "47342 0\n", + "47343 0\n", + "47344 0\n", + "47345 0\n", + "47346 0\n", + "47347 0\n", + "47348 0\n", + "47349 0\n", + "47350 0\n", + "47351 1\n", + "47352 0\n", + "47353 1\n", + "47354 0\n", + "47355 0\n", + "47356 0\n", + "47357 0\n", + "47358 0\n", + "47359 0\n", + "47360 0\n", + "47361 0\n", + "47362 0\n", + "47363 1\n", + "47364 0\n", + "47365 0\n", + "47366 0\n", + "47367 0\n", + "47368 0\n", + "47369 0\n", + "47370 0\n", + "47371 0\n", + "47372 0\n", + "47373 0\n", + "47374 0\n", + "47375 0\n", + "47376 0\n", + "47377 0\n", + "47378 0\n", + "47379 0\n", + "47380 0\n", + "47381 1\n", + "47382 0\n", + "47383 0\n", + "47384 0\n", + "47385 0\n", + "47386 0\n", + "47387 1\n", + "47388 0\n", + "47389 1\n", + "47390 0\n", + "47391 0\n", + "47392 0\n", + "47393 0\n", + "47394 0\n", + "47395 0\n", + "47396 0\n", + "47397 0\n", + "47398 0\n", + "47399 0\n", + "47400 0\n", + "47401 0\n", + "47402 0\n", + "47403 0\n", + "47404 0\n", + "47405 0\n", + "47406 0\n", + "47407 1\n", + "47408 0\n", + "47409 0\n", + "47410 0\n", + "47411 0\n", + "47412 0\n", + "47413 0\n", + "47414 0\n", + "47415 0\n", + "47416 0\n", + "47417 1\n", + "47418 0\n", + "47419 1\n", + "47420 0\n", + "47421 0\n", + "47422 0\n", + "47423 0\n", + "47424 0\n", + "47425 0\n", + "47426 0\n", + "47427 0\n", + "47428 0\n", + "47429 0\n", + "47430 0\n", + "47431 1\n", + "47432 0\n", + "47433 0\n", + "47434 0\n", + "47435 0\n", + "47436 0\n", + "47437 0\n", + "47438 0\n", + "47439 0\n", + "47440 0\n", + "47441 1\n", + "47442 0\n", + "47443 0\n", + "47444 0\n", + "47445 0\n", + "47446 0\n", + "47447 0\n", + "47448 0\n", + "47449 0\n", + "47450 0\n", + "47451 0\n", + "47452 0\n", + "47453 0\n", + "47454 0\n", + "47455 0\n", + "47456 0\n", + "47457 0\n", + "47458 0\n", + "47459 1\n", + "47460 0\n", + "47461 0\n", + "47462 0\n", + "47463 0\n", + "47464 0\n", + "47465 0\n", + "47466 0\n", + "47467 0\n", + "47468 0\n", + "47469 0\n", + "47470 0\n", + "47471 0\n", + "47472 0\n", + "47473 0\n", + "47474 0\n", + "47475 0\n", + "47476 0\n", + "47477 0\n", + "47478 0\n", + "47479 0\n", + "47480 0\n", + "47481 0\n", + "47482 0\n", + "47483 0\n", + "47484 0\n", + "47485 0\n", + "47486 0\n", + "47487 0\n", + "47488 0\n", + "47489 0\n", + "47490 0\n", + "47491 1\n", + "47492 0\n", + "47493 0\n", + "47494 0\n", + "47495 0\n", + "47496 0\n", + "47497 1\n", + "47498 0\n", + "47499 0\n", + "47500 0\n", + "47501 1\n", + "47502 0\n", + "47503 0\n", + "47504 0\n", + "47505 0\n", + "47506 0\n", + "47507 1\n", + "47508 0\n", + "47509 0\n", + "47510 0\n", + "47511 0\n", + "47512 0\n", + "47513 1\n", + "47514 0\n", + "47515 0\n", + "47516 0\n", + "47517 0\n", + "47518 0\n", + "47519 0\n", + "47520 0\n", + "47521 1\n", + "47522 0\n", + "47523 0\n", + "47524 0\n", + "47525 0\n", + "47526 0\n", + "47527 1\n", + "47528 0\n", + "47529 0\n", + "47530 0\n", + "47531 0\n", + "47532 0\n", + "47533 1\n", + "47534 0\n", + "47535 0\n", + "47536 0\n", + "47537 0\n", + "47538 0\n", + "47539 0\n", + "47540 0\n", + "47541 0\n", + "47542 0\n", + "47543 1\n", + "47544 0\n", + "47545 0\n", + "47546 0\n", + "47547 0\n", + "47548 0\n", + "47549 0\n", + "47550 0\n", + "47551 0\n", + "47552 0\n", + "47553 0\n", + "47554 0\n", + "47555 0\n", + "47556 0\n", + "47557 0\n", + "47558 0\n", + "47559 0\n", + "47560 0\n", + "47561 0\n", + "47562 0\n", + "47563 1\n", + "47564 0\n", + "47565 0\n", + "47566 0\n", + "47567 0\n", + "47568 0\n", + "47569 1\n", + "47570 0\n", + "47571 0\n", + "47572 0\n", + "47573 0\n", + "47574 0\n", + "47575 0\n", + "47576 0\n", + "47577 0\n", + "47578 0\n", + "47579 0\n", + "47580 0\n", + "47581 1\n", + "47582 0\n", + "47583 0\n", + "47584 0\n", + "47585 0\n", + "47586 0\n", + "47587 0\n", + "47588 0\n", + "47589 0\n", + "47590 0\n", + "47591 1\n", + "47592 0\n", + "47593 0\n", + "47594 0\n", + "47595 0\n", + "47596 0\n", + "47597 0\n", + "47598 0\n", + "47599 1\n", + "47600 0\n", + "47601 0\n", + "47602 0\n", + "47603 0\n", + "47604 0\n", + "47605 0\n", + "47606 0\n", + "47607 0\n", + "47608 0\n", + "47609 1\n", + "47610 0\n", + "47611 0\n", + "47612 0\n", + "47613 0\n", + "47614 0\n", + "47615 0\n", + "47616 0\n", + "47617 0\n", + "47618 0\n", + "47619 0\n", + "47620 0\n", + "47621 0\n", + "47622 0\n", + "47623 1\n", + "47624 0\n", + "47625 0\n", + "47626 0\n", + "47627 0\n", + "47628 0\n", + "47629 1\n", + "47630 0\n", + "47631 0\n", + "47632 0\n", + "47633 0\n", + "47634 0\n", + "47635 0\n", + "47636 0\n", + "47637 0\n", + "47638 0\n", + "47639 1\n", + "47640 0\n", + "47641 0\n", + "47642 0\n", + "47643 0\n", + "47644 0\n", + "47645 0\n", + "47646 0\n", + "47647 0\n", + "47648 0\n", + "47649 0\n", + "47650 0\n", + "47651 0\n", + "47652 0\n", + "47653 1\n", + "47654 0\n", + "47655 0\n", + "47656 0\n", + "47657 1\n", + "47658 0\n", + "47659 1\n", + "47660 0\n", + "47661 0\n", + "47662 0\n", + "47663 0\n", + "47664 0\n", + "47665 0\n", + "47666 0\n", + "47667 0\n", + "47668 0\n", + "47669 0\n", + "47670 0\n", + "47671 0\n", + "47672 0\n", + "47673 0\n", + "47674 0\n", + "47675 0\n", + "47676 0\n", + "47677 0\n", + "47678 0\n", + "47679 0\n", + "47680 0\n", + "47681 1\n", + "47682 0\n", + "47683 0\n", + "47684 0\n", + "47685 0\n", + "47686 0\n", + "47687 0\n", + "47688 0\n", + "47689 0\n", + "47690 0\n", + "47691 0\n", + "47692 0\n", + "47693 0\n", + "47694 0\n", + "47695 0\n", + "47696 0\n", + "47697 0\n", + "47698 0\n", + "47699 1\n", + "47700 0\n", + "47701 1\n", + "47702 0\n", + "47703 0\n", + "47704 0\n", + "47705 0\n", + "47706 0\n", + "47707 0\n", + "47708 0\n", + "47709 0\n", + "47710 0\n", + "47711 1\n", + "47712 0\n", + "47713 1\n", + "47714 0\n", + "47715 0\n", + "47716 0\n", + "47717 1\n", + "47718 0\n", + "47719 0\n", + "47720 0\n", + "47721 0\n", + "47722 0\n", + "47723 0\n", + "47724 0\n", + "47725 0\n", + "47726 0\n", + "47727 0\n", + "47728 0\n", + "47729 0\n", + "47730 0\n", + "47731 0\n", + "47732 0\n", + "47733 0\n", + "47734 0\n", + "47735 0\n", + "47736 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "47737 1\n", + "47738 0\n", + "47739 0\n", + "47740 0\n", + "47741 1\n", + "47742 0\n", + "47743 1\n", + "47744 0\n", + "47745 0\n", + "47746 0\n", + "47747 0\n", + "47748 0\n", + "47749 0\n", + "47750 0\n", + "47751 0\n", + "47752 0\n", + "47753 0\n", + "47754 0\n", + "47755 0\n", + "47756 0\n", + "47757 0\n", + "47758 0\n", + "47759 0\n", + "47760 0\n", + "47761 0\n", + "47762 0\n", + "47763 0\n", + "47764 0\n", + "47765 0\n", + "47766 0\n", + "47767 0\n", + "47768 0\n", + "47769 0\n", + "47770 0\n", + "47771 0\n", + "47772 0\n", + "47773 0\n", + "47774 0\n", + "47775 0\n", + "47776 0\n", + "47777 1\n", + "47778 0\n", + "47779 1\n", + "47780 0\n", + "47781 0\n", + "47782 0\n", + "47783 0\n", + "47784 0\n", + "47785 0\n", + "47786 0\n", + "47787 0\n", + "47788 0\n", + "47789 0\n", + "47790 0\n", + "47791 1\n", + "47792 0\n", + "47793 0\n", + "47794 0\n", + "47795 0\n", + "47796 0\n", + "47797 1\n", + "47798 0\n", + "47799 0\n", + "47800 0\n", + "47801 0\n", + "47802 0\n", + "47803 0\n", + "47804 0\n", + "47805 0\n", + "47806 0\n", + "47807 1\n", + "47808 0\n", + "47809 1\n", + "47810 0\n", + "47811 0\n", + "47812 0\n", + "47813 0\n", + "47814 0\n", + "47815 0\n", + "47816 0\n", + "47817 0\n", + "47818 0\n", + "47819 1\n", + "47820 0\n", + "47821 0\n", + "47822 0\n", + "47823 0\n", + "47824 0\n", + "47825 0\n", + "47826 0\n", + "47827 0\n", + "47828 0\n", + "47829 0\n", + "47830 0\n", + "47831 0\n", + "47832 0\n", + "47833 0\n", + "47834 0\n", + "47835 0\n", + "47836 0\n", + "47837 1\n", + "47838 0\n", + "47839 0\n", + "47840 0\n", + "47841 0\n", + "47842 0\n", + "47843 1\n", + "47844 0\n", + "47845 0\n", + "47846 0\n", + "47847 0\n", + "47848 0\n", + "47849 0\n", + "47850 0\n", + "47851 0\n", + "47852 0\n", + "47853 0\n", + "47854 0\n", + "47855 0\n", + "47856 0\n", + "47857 1\n", + "47858 0\n", + "47859 0\n", + "47860 0\n", + "47861 0\n", + "47862 0\n", + "47863 0\n", + "47864 0\n", + "47865 0\n", + "47866 0\n", + "47867 0\n", + "47868 0\n", + "47869 1\n", + "47870 0\n", + "47871 0\n", + "47872 0\n", + "47873 0\n", + "47874 0\n", + "47875 0\n", + "47876 0\n", + "47877 0\n", + "47878 0\n", + "47879 0\n", + "47880 0\n", + "47881 1\n", + "47882 0\n", + "47883 0\n", + "47884 0\n", + "47885 0\n", + "47886 0\n", + "47887 0\n", + "47888 0\n", + "47889 0\n", + "47890 0\n", + "47891 0\n", + "47892 0\n", + "47893 0\n", + "47894 0\n", + "47895 0\n", + "47896 0\n", + "47897 0\n", + "47898 0\n", + "47899 0\n", + "47900 0\n", + "47901 0\n", + "47902 0\n", + "47903 1\n", + "47904 0\n", + "47905 0\n", + "47906 0\n", + "47907 0\n", + "47908 0\n", + "47909 0\n", + "47910 0\n", + "47911 1\n", + "47912 0\n", + "47913 0\n", + "47914 0\n", + "47915 0\n", + "47916 0\n", + "47917 1\n", + "47918 0\n", + "47919 0\n", + "47920 0\n", + "47921 0\n", + "47922 0\n", + "47923 0\n", + "47924 0\n", + "47925 0\n", + "47926 0\n", + "47927 0\n", + "47928 0\n", + "47929 0\n", + "47930 0\n", + "47931 0\n", + "47932 0\n", + "47933 1\n", + "47934 0\n", + "47935 0\n", + "47936 0\n", + "47937 0\n", + "47938 0\n", + "47939 1\n", + "47940 0\n", + "47941 0\n", + "47942 0\n", + "47943 0\n", + "47944 0\n", + "47945 0\n", + "47946 0\n", + "47947 1\n", + "47948 0\n", + "47949 0\n", + "47950 0\n", + "47951 1\n", + "47952 0\n", + "47953 0\n", + "47954 0\n", + "47955 0\n", + "47956 0\n", + "47957 0\n", + "47958 0\n", + "47959 0\n", + "47960 0\n", + "47961 0\n", + "47962 0\n", + "47963 1\n", + "47964 0\n", + "47965 0\n", + "47966 0\n", + "47967 0\n", + "47968 0\n", + "47969 1\n", + "47970 0\n", + "47971 0\n", + "47972 0\n", + "47973 0\n", + "47974 0\n", + "47975 0\n", + "47976 0\n", + "47977 1\n", + "47978 0\n", + "47979 0\n", + "47980 0\n", + "47981 1\n", + "47982 0\n", + "47983 0\n", + "47984 0\n", + "47985 0\n", + "47986 0\n", + "47987 0\n", + "47988 0\n", + "47989 0\n", + "47990 0\n", + "47991 0\n", + "47992 0\n", + "47993 0\n", + "47994 0\n", + "47995 0\n", + "47996 0\n", + "47997 0\n", + "47998 0\n", + "47999 0\n", + "48000 0\n", + "48001 0\n", + "48002 0\n", + "48003 0\n", + "48004 0\n", + "48005 0\n", + "48006 0\n", + "48007 0\n", + "48008 0\n", + "48009 0\n", + "48010 0\n", + "48011 0\n", + "48012 0\n", + "48013 0\n", + "48014 0\n", + "48015 0\n", + "48016 0\n", + "48017 1\n", + "48018 0\n", + "48019 0\n", + "48020 0\n", + "48021 0\n", + "48022 0\n", + "48023 1\n", + "48024 0\n", + "48025 0\n", + "48026 0\n", + "48027 0\n", + "48028 0\n", + "48029 1\n", + "48030 0\n", + "48031 0\n", + "48032 0\n", + "48033 0\n", + "48034 0\n", + "48035 0\n", + "48036 0\n", + "48037 0\n", + "48038 0\n", + "48039 0\n", + "48040 0\n", + "48041 0\n", + "48042 0\n", + "48043 0\n", + "48044 0\n", + "48045 0\n", + "48046 0\n", + "48047 0\n", + "48048 0\n", + "48049 1\n", + "48050 0\n", + "48051 0\n", + "48052 0\n", + "48053 0\n", + "48054 0\n", + "48055 0\n", + "48056 0\n", + "48057 0\n", + "48058 0\n", + "48059 0\n", + "48060 0\n", + "48061 0\n", + "48062 0\n", + "48063 0\n", + "48064 0\n", + "48065 0\n", + "48066 0\n", + "48067 0\n", + "48068 0\n", + "48069 0\n", + "48070 0\n", + "48071 0\n", + "48072 0\n", + "48073 1\n", + "48074 0\n", + "48075 0\n", + "48076 0\n", + "48077 0\n", + "48078 0\n", + "48079 1\n", + "48080 0\n", + "48081 0\n", + "48082 0\n", + "48083 0\n", + "48084 0\n", + "48085 0\n", + "48086 0\n", + "48087 0\n", + "48088 0\n", + "48089 0\n", + "48090 0\n", + "48091 1\n", + "48092 0\n", + "48093 0\n", + "48094 0\n", + "48095 0\n", + "48096 0\n", + "48097 0\n", + "48098 0\n", + "48099 0\n", + "48100 0\n", + "48101 0\n", + "48102 0\n", + "48103 0\n", + "48104 0\n", + "48105 0\n", + "48106 0\n", + "48107 0\n", + "48108 0\n", + "48109 1\n", + "48110 0\n", + "48111 0\n", + "48112 0\n", + "48113 0\n", + "48114 0\n", + "48115 0\n", + "48116 0\n", + "48117 0\n", + "48118 0\n", + "48119 1\n", + "48120 0\n", + "48121 1\n", + "48122 0\n", + "48123 0\n", + "48124 0\n", + "48125 0\n", + "48126 0\n", + "48127 0\n", + "48128 0\n", + "48129 0\n", + "48130 0\n", + "48131 1\n", + "48132 0\n", + "48133 0\n", + "48134 0\n", + "48135 0\n", + "48136 0\n", + "48137 0\n", + "48138 0\n", + "48139 0\n", + "48140 0\n", + "48141 0\n", + "48142 0\n", + "48143 0\n", + "48144 0\n", + "48145 0\n", + "48146 0\n", + "48147 0\n", + "48148 0\n", + "48149 0\n", + "48150 0\n", + "48151 0\n", + "48152 0\n", + "48153 0\n", + "48154 0\n", + "48155 0\n", + "48156 0\n", + "48157 1\n", + "48158 0\n", + "48159 0\n", + "48160 0\n", + "48161 0\n", + "48162 0\n", + "48163 1\n", + "48164 0\n", + "48165 0\n", + "48166 0\n", + "48167 0\n", + "48168 0\n", + "48169 0\n", + "48170 0\n", + "48171 0\n", + "48172 0\n", + "48173 0\n", + "48174 0\n", + "48175 0\n", + "48176 0\n", + "48177 0\n", + "48178 0\n", + "48179 1\n", + "48180 0\n", + "48181 0\n", + "48182 0\n", + "48183 0\n", + "48184 0\n", + "48185 0\n", + "48186 0\n", + "48187 1\n", + "48188 0\n", + "48189 0\n", + "48190 0\n", + "48191 0\n", + "48192 0\n", + "48193 1\n", + "48194 0\n", + "48195 0\n", + "48196 0\n", + "48197 1\n", + "48198 0\n", + "48199 0\n", + "48200 0\n", + "48201 0\n", + "48202 0\n", + "48203 0\n", + "48204 0\n", + "48205 0\n", + "48206 0\n", + "48207 0\n", + "48208 0\n", + "48209 0\n", + "48210 0\n", + "48211 0\n", + "48212 0\n", + "48213 0\n", + "48214 0\n", + "48215 0\n", + "48216 0\n", + "48217 0\n", + "48218 0\n", + "48219 0\n", + "48220 0\n", + "48221 1\n", + "48222 0\n", + "48223 0\n", + "48224 0\n", + "48225 0\n", + "48226 0\n", + "48227 0\n", + "48228 0\n", + "48229 0\n", + "48230 0\n", + "48231 0\n", + "48232 0\n", + "48233 0\n", + "48234 0\n", + "48235 0\n", + "48236 0\n", + "48237 0\n", + "48238 0\n", + "48239 1\n", + "48240 0\n", + "48241 0\n", + "48242 0\n", + "48243 0\n", + "48244 0\n", + "48245 0\n", + "48246 0\n", + "48247 1\n", + "48248 0\n", + "48249 0\n", + "48250 0\n", + "48251 0\n", + "48252 0\n", + "48253 0\n", + "48254 0\n", + "48255 0\n", + "48256 0\n", + "48257 0\n", + "48258 0\n", + "48259 1\n", + "48260 0\n", + "48261 0\n", + "48262 0\n", + "48263 0\n", + "48264 0\n", + "48265 0\n", + "48266 0\n", + "48267 0\n", + "48268 0\n", + "48269 0\n", + "48270 0\n", + "48271 1\n", + "48272 0\n", + "48273 0\n", + "48274 0\n", + "48275 0\n", + "48276 0\n", + "48277 0\n", + "48278 0\n", + "48279 0\n", + "48280 0\n", + "48281 1\n", + "48282 0\n", + "48283 0\n", + "48284 0\n", + "48285 0\n", + "48286 0\n", + "48287 0\n", + "48288 0\n", + "48289 0\n", + "48290 0\n", + "48291 0\n", + "48292 0\n", + "48293 0\n", + "48294 0\n", + "48295 0\n", + "48296 0\n", + "48297 0\n", + "48298 0\n", + "48299 1\n", + "48300 0\n", + "48301 0\n", + "48302 0\n", + "48303 0\n", + "48304 0\n", + "48305 0\n", + "48306 0\n", + "48307 0\n", + "48308 0\n", + "48309 0\n", + "48310 0\n", + "48311 1\n", + "48312 0\n", + "48313 1\n", + "48314 0\n", + "48315 0\n", + "48316 0\n", + "48317 0\n", + "48318 0\n", + "48319 0\n", + "48320 0\n", + "48321 0\n", + "48322 0\n", + "48323 0\n", + "48324 0\n", + "48325 0\n", + "48326 0\n", + "48327 0\n", + "48328 0\n", + "48329 0\n", + "48330 0\n", + "48331 0\n", + "48332 0\n", + "48333 0\n", + "48334 0\n", + "48335 0\n", + "48336 0\n", + "48337 1\n", + "48338 0\n", + "48339 0\n", + "48340 0\n", + "48341 1\n", + "48342 0\n", + "48343 0\n", + "48344 0\n", + "48345 0\n", + "48346 0\n", + "48347 0\n", + "48348 0\n", + "48349 0\n", + "48350 0\n", + "48351 0\n", + "48352 0\n", + "48353 1\n", + "48354 0\n", + "48355 0\n", + "48356 0\n", + "48357 0\n", + "48358 0\n", + "48359 0\n", + "48360 0\n", + "48361 0\n", + "48362 0\n", + "48363 0\n", + "48364 0\n", + "48365 0\n", + "48366 0\n", + "48367 0\n", + "48368 0\n", + "48369 0\n", + "48370 0\n", + "48371 1\n", + "48372 0\n", + "48373 0\n", + "48374 0\n", + "48375 0\n", + "48376 0\n", + "48377 0\n", + "48378 0\n", + "48379 0\n", + "48380 0\n", + "48381 0\n", + "48382 0\n", + "48383 1\n", + "48384 0\n", + "48385 0\n", + "48386 0\n", + "48387 0\n", + "48388 0\n", + "48389 0\n", + "48390 0\n", + "48391 0\n", + "48392 0\n", + "48393 0\n", + "48394 0\n", + "48395 0\n", + "48396 0\n", + "48397 1\n", + "48398 0\n", + "48399 0\n", + "48400 0\n", + "48401 0\n", + "48402 0\n", + "48403 0\n", + "48404 0\n", + "48405 0\n", + "48406 0\n", + "48407 1\n", + "48408 0\n", + "48409 1\n", + "48410 0\n", + "48411 0\n", + "48412 0\n", + "48413 1\n", + "48414 0\n", + "48415 0\n", + "48416 0\n", + "48417 0\n", + "48418 0\n", + "48419 0\n", + "48420 0\n", + "48421 0\n", + "48422 0\n", + "48423 0\n", + "48424 0\n", + "48425 0\n", + "48426 0\n", + "48427 0\n", + "48428 0\n", + "48429 0\n", + "48430 0\n", + "48431 0\n", + "48432 0\n", + "48433 0\n", + "48434 0\n", + "48435 0\n", + "48436 0\n", + "48437 1\n", + "48438 0\n", + "48439 0\n", + "48440 0\n", + "48441 0\n", + "48442 0\n", + "48443 0\n", + "48444 0\n", + "48445 0\n", + "48446 0\n", + "48447 0\n", + "48448 0\n", + "48449 1\n", + "48450 0\n", + "48451 0\n", + "48452 0\n", + "48453 0\n", + "48454 0\n", + "48455 0\n", + "48456 0\n", + "48457 0\n", + "48458 0\n", + "48459 0\n", + "48460 0\n", + "48461 0\n", + "48462 0\n", + "48463 1\n", + "48464 0\n", + "48465 0\n", + "48466 0\n", + "48467 0\n", + "48468 0\n", + "48469 0\n", + "48470 0\n", + "48471 0\n", + "48472 0\n", + "48473 1\n", + "48474 0\n", + "48475 0\n", + "48476 0\n", + "48477 0\n", + "48478 0\n", + "48479 1\n", + "48480 0\n", + "48481 1\n", + "48482 0\n", + "48483 0\n", + "48484 0\n", + "48485 0\n", + "48486 0\n", + "48487 1\n", + "48488 0\n", + "48489 0\n", + "48490 0\n", + "48491 1\n", + "48492 0\n", + "48493 0\n", + "48494 0\n", + "48495 0\n", + "48496 0\n", + "48497 1\n", + "48498 0\n", + "48499 0\n", + "48500 0\n", + "48501 0\n", + "48502 0\n", + "48503 0\n", + "48504 0\n", + "48505 0\n", + "48506 0\n", + "48507 0\n", + "48508 0\n", + "48509 0\n", + "48510 0\n", + "48511 0\n", + "48512 0\n", + "48513 0\n", + "48514 0\n", + "48515 0\n", + "48516 0\n", + "48517 0\n", + "48518 0\n", + "48519 0\n", + "48520 0\n", + "48521 0\n", + "48522 0\n", + "48523 1\n", + "48524 0\n", + "48525 0\n", + "48526 0\n", + "48527 1\n", + "48528 0\n", + "48529 0\n", + "48530 0\n", + "48531 0\n", + "48532 0\n", + "48533 1\n", + "48534 0\n", + "48535 0\n", + "48536 0\n", + "48537 0\n", + "48538 0\n", + "48539 1\n", + "48540 0\n", + "48541 1\n", + "48542 0\n", + "48543 0\n", + "48544 0\n", + "48545 0\n", + "48546 0\n", + "48547 0\n", + "48548 0\n", + "48549 0\n", + "48550 0\n", + "48551 0\n", + "48552 0\n", + "48553 0\n", + "48554 0\n", + "48555 0\n", + "48556 0\n", + "48557 0\n", + "48558 0\n", + "48559 0\n", + "48560 0\n", + "48561 0\n", + "48562 0\n", + "48563 1\n", + "48564 0\n", + "48565 0\n", + "48566 0\n", + "48567 0\n", + "48568 0\n", + "48569 0\n", + "48570 0\n", + "48571 1\n", + "48572 0\n", + "48573 0\n", + "48574 0\n", + "48575 0\n", + "48576 0\n", + "48577 0\n", + "48578 0\n", + "48579 0\n", + "48580 0\n", + "48581 0\n", + "48582 0\n", + "48583 0\n", + "48584 0\n", + "48585 0\n", + "48586 0\n", + "48587 0\n", + "48588 0\n", + "48589 1\n", + "48590 0\n", + "48591 0\n", + "48592 0\n", + "48593 1\n", + "48594 0\n", + "48595 0\n", + "48596 0\n", + "48597 0\n", + "48598 0\n", + "48599 0\n", + "48600 0\n", + "48601 0\n", + "48602 0\n", + "48603 0\n", + "48604 0\n", + "48605 0\n", + "48606 0\n", + "48607 0\n", + "48608 0\n", + "48609 0\n", + "48610 0\n", + "48611 1\n", + "48612 0\n", + "48613 0\n", + "48614 0\n", + "48615 0\n", + "48616 0\n", + "48617 0\n", + "48618 0\n", + "48619 1\n", + "48620 0\n", + "48621 0\n", + "48622 0\n", + "48623 1\n", + "48624 0\n", + "48625 0\n", + "48626 0\n", + "48627 0\n", + "48628 0\n", + "48629 0\n", + "48630 0\n", + "48631 0\n", + "48632 0\n", + "48633 0\n", + "48634 0\n", + "48635 0\n", + "48636 0\n", + "48637 0\n", + "48638 0\n", + "48639 0\n", + "48640 0\n", + "48641 0\n", + "48642 0\n", + "48643 0\n", + "48644 0\n", + "48645 0\n", + "48646 0\n", + "48647 1\n", + "48648 0\n", + "48649 1\n", + "48650 0\n", + "48651 0\n", + "48652 0\n", + "48653 0\n", + "48654 0\n", + "48655 0\n", + "48656 0\n", + "48657 0\n", + "48658 0\n", + "48659 0\n", + "48660 0\n", + "48661 1\n", + "48662 0\n", + "48663 0\n", + "48664 0\n", + "48665 0\n", + "48666 0\n", + "48667 0\n", + "48668 0\n", + "48669 0\n", + "48670 0\n", + "48671 0\n", + "48672 0\n", + "48673 1\n", + "48674 0\n", + "48675 0\n", + "48676 0\n", + "48677 1\n", + "48678 0\n", + "48679 1\n", + "48680 0\n", + "48681 0\n", + "48682 0\n", + "48683 0\n", + "48684 0\n", + "48685 0\n", + "48686 0\n", + "48687 0\n", + "48688 0\n", + "48689 0\n", + "48690 0\n", + "48691 0\n", + "48692 0\n", + "48693 0\n", + "48694 0\n", + "48695 0\n", + "48696 0\n", + "48697 0\n", + "48698 0\n", + "48699 0\n", + "48700 0\n", + "48701 0\n", + "48702 0\n", + "48703 0\n", + "48704 0\n", + "48705 0\n", + "48706 0\n", + "48707 0\n", + "48708 0\n", + "48709 0\n", + "48710 0\n", + "48711 0\n", + "48712 0\n", + "48713 0\n", + "48714 0\n", + "48715 0\n", + "48716 0\n", + "48717 0\n", + "48718 0\n", + "48719 0\n", + "48720 0\n", + "48721 0\n", + "48722 0\n", + "48723 0\n", + "48724 0\n", + "48725 0\n", + "48726 0\n", + "48727 0\n", + "48728 0\n", + "48729 0\n", + "48730 0\n", + "48731 1\n", + "48732 0\n", + "48733 1\n", + "48734 0\n", + "48735 0\n", + "48736 0\n", + "48737 0\n", + "48738 0\n", + "48739 0\n", + "48740 0\n", + "48741 0\n", + "48742 0\n", + "48743 0\n", + "48744 0\n", + "48745 0\n", + "48746 0\n", + "48747 0\n", + "48748 0\n", + "48749 0\n", + "48750 0\n", + "48751 1\n", + "48752 0\n", + "48753 0\n", + "48754 0\n", + "48755 0\n", + "48756 0\n", + "48757 1\n", + "48758 0\n", + "48759 0\n", + "48760 0\n", + "48761 1\n", + "48762 0\n", + "48763 0\n", + "48764 0\n", + "48765 0\n", + "48766 0\n", + "48767 1\n", + "48768 0\n", + "48769 0\n", + "48770 0\n", + "48771 0\n", + "48772 0\n", + "48773 0\n", + "48774 0\n", + "48775 0\n", + "48776 0\n", + "48777 0\n", + "48778 0\n", + "48779 1\n", + "48780 0\n", + "48781 1\n", + "48782 0\n", + "48783 0\n", + "48784 0\n", + "48785 0\n", + "48786 0\n", + "48787 1\n", + "48788 0\n", + "48789 0\n", + "48790 0\n", + "48791 0\n", + "48792 0\n", + "48793 0\n", + "48794 0\n", + "48795 0\n", + "48796 0\n", + "48797 0\n", + "48798 0\n", + "48799 1\n", + "48800 0\n", + "48801 0\n", + "48802 0\n", + "48803 0\n", + "48804 0\n", + "48805 0\n", + "48806 0\n", + "48807 0\n", + "48808 0\n", + "48809 1\n", + "48810 0\n", + "48811 0\n", + "48812 0\n", + "48813 0\n", + "48814 0\n", + "48815 0\n", + "48816 0\n", + "48817 1\n", + "48818 0\n", + "48819 0\n", + "48820 0\n", + "48821 1\n", + "48822 0\n", + "48823 1\n", + "48824 0\n", + "48825 0\n", + "48826 0\n", + "48827 0\n", + "48828 0\n", + "48829 0\n", + "48830 0\n", + "48831 0\n", + "48832 0\n", + "48833 0\n", + "48834 0\n", + "48835 0\n", + "48836 0\n", + "48837 0\n", + "48838 0\n", + "48839 0\n", + "48840 0\n", + "48841 0\n", + "48842 0\n", + "48843 0\n", + "48844 0\n", + "48845 0\n", + "48846 0\n", + "48847 1\n", + "48848 0\n", + "48849 0\n", + "48850 0\n", + "48851 0\n", + "48852 0\n", + "48853 0\n", + "48854 0\n", + "48855 0\n", + "48856 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "48857 1\n", + "48858 0\n", + "48859 1\n", + "48860 0\n", + "48861 0\n", + "48862 0\n", + "48863 0\n", + "48864 0\n", + "48865 0\n", + "48866 0\n", + "48867 0\n", + "48868 0\n", + "48869 1\n", + "48870 0\n", + "48871 1\n", + "48872 0\n", + "48873 0\n", + "48874 0\n", + "48875 0\n", + "48876 0\n", + "48877 0\n", + "48878 0\n", + "48879 0\n", + "48880 0\n", + "48881 0\n", + "48882 0\n", + "48883 1\n", + "48884 0\n", + "48885 0\n", + "48886 0\n", + "48887 0\n", + "48888 0\n", + "48889 1\n", + "48890 0\n", + "48891 0\n", + "48892 0\n", + "48893 0\n", + "48894 0\n", + "48895 0\n", + "48896 0\n", + "48897 0\n", + "48898 0\n", + "48899 0\n", + "48900 0\n", + "48901 0\n", + "48902 0\n", + "48903 0\n", + "48904 0\n", + "48905 0\n", + "48906 0\n", + "48907 1\n", + "48908 0\n", + "48909 0\n", + "48910 0\n", + "48911 0\n", + "48912 0\n", + "48913 0\n", + "48914 0\n", + "48915 0\n", + "48916 0\n", + "48917 0\n", + "48918 0\n", + "48919 0\n", + "48920 0\n", + "48921 0\n", + "48922 0\n", + "48923 0\n", + "48924 0\n", + "48925 0\n", + "48926 0\n", + "48927 0\n", + "48928 0\n", + "48929 0\n", + "48930 0\n", + "48931 0\n", + "48932 0\n", + "48933 0\n", + "48934 0\n", + "48935 0\n", + "48936 0\n", + "48937 0\n", + "48938 0\n", + "48939 0\n", + "48940 0\n", + "48941 0\n", + "48942 0\n", + "48943 0\n", + "48944 0\n", + "48945 0\n", + "48946 0\n", + "48947 1\n", + "48948 0\n", + "48949 0\n", + "48950 0\n", + "48951 0\n", + "48952 0\n", + "48953 1\n", + "48954 0\n", + "48955 0\n", + "48956 0\n", + "48957 0\n", + "48958 0\n", + "48959 0\n", + "48960 0\n", + "48961 0\n", + "48962 0\n", + "48963 0\n", + "48964 0\n", + "48965 0\n", + "48966 0\n", + "48967 0\n", + "48968 0\n", + "48969 0\n", + "48970 0\n", + "48971 0\n", + "48972 0\n", + "48973 1\n", + "48974 0\n", + "48975 0\n", + "48976 0\n", + "48977 0\n", + "48978 0\n", + "48979 0\n", + "48980 0\n", + "48981 0\n", + "48982 0\n", + "48983 0\n", + "48984 0\n", + "48985 0\n", + "48986 0\n", + "48987 0\n", + "48988 0\n", + "48989 1\n", + "48990 0\n", + "48991 1\n", + "48992 0\n", + "48993 0\n", + "48994 0\n", + "48995 0\n", + "48996 0\n", + "48997 0\n", + "48998 0\n", + "48999 0\n", + "49000 0\n", + "49001 0\n", + "49002 0\n", + "49003 1\n", + "49004 0\n", + "49005 0\n", + "49006 0\n", + "49007 0\n", + "49008 0\n", + "49009 1\n", + "49010 0\n", + "49011 0\n", + "49012 0\n", + "49013 0\n", + "49014 0\n", + "49015 0\n", + "49016 0\n", + "49017 0\n", + "49018 0\n", + "49019 1\n", + "49020 0\n", + "49021 0\n", + "49022 0\n", + "49023 0\n", + "49024 0\n", + "49025 0\n", + "49026 0\n", + "49027 0\n", + "49028 0\n", + "49029 0\n", + "49030 0\n", + "49031 1\n", + "49032 0\n", + "49033 1\n", + "49034 0\n", + "49035 0\n", + "49036 0\n", + "49037 1\n", + "49038 0\n", + "49039 0\n", + "49040 0\n", + "49041 0\n", + "49042 0\n", + "49043 1\n", + "49044 0\n", + "49045 0\n", + "49046 0\n", + "49047 0\n", + "49048 0\n", + "49049 0\n", + "49050 0\n", + "49051 0\n", + "49052 0\n", + "49053 0\n", + "49054 0\n", + "49055 0\n", + "49056 0\n", + "49057 1\n", + "49058 0\n", + "49059 0\n", + "49060 0\n", + "49061 0\n", + "49062 0\n", + "49063 0\n", + "49064 0\n", + "49065 0\n", + "49066 0\n", + "49067 0\n", + "49068 0\n", + "49069 1\n", + "49070 0\n", + "49071 0\n", + "49072 0\n", + "49073 0\n", + "49074 0\n", + "49075 0\n", + "49076 0\n", + "49077 0\n", + "49078 0\n", + "49079 0\n", + "49080 0\n", + "49081 1\n", + "49082 0\n", + "49083 0\n", + "49084 0\n", + "49085 0\n", + "49086 0\n", + "49087 0\n", + "49088 0\n", + "49089 0\n", + "49090 0\n", + "49091 0\n", + "49092 0\n", + "49093 0\n", + "49094 0\n", + "49095 0\n", + "49096 0\n", + "49097 0\n", + "49098 0\n", + "49099 0\n", + "49100 0\n", + "49101 0\n", + "49102 0\n", + "49103 1\n", + "49104 0\n", + "49105 0\n", + "49106 0\n", + "49107 0\n", + "49108 0\n", + "49109 1\n", + "49110 0\n", + "49111 0\n", + "49112 0\n", + "49113 0\n", + "49114 0\n", + "49115 0\n", + "49116 0\n", + "49117 1\n", + "49118 0\n", + "49119 0\n", + "49120 0\n", + "49121 1\n", + "49122 0\n", + "49123 1\n", + "49124 0\n", + "49125 0\n", + "49126 0\n", + "49127 0\n", + "49128 0\n", + "49129 0\n", + "49130 0\n", + "49131 0\n", + "49132 0\n", + "49133 0\n", + "49134 0\n", + "49135 0\n", + "49136 0\n", + "49137 0\n", + "49138 0\n", + "49139 1\n", + "49140 0\n", + "49141 0\n", + "49142 0\n", + "49143 0\n", + "49144 0\n", + "49145 0\n", + "49146 0\n", + "49147 0\n", + "49148 0\n", + "49149 0\n", + "49150 0\n", + "49151 0\n", + "49152 0\n", + "49153 0\n", + "49154 0\n", + "49155 0\n", + "49156 0\n", + "49157 1\n", + "49158 0\n", + "49159 0\n", + "49160 0\n", + "49161 0\n", + "49162 0\n", + "49163 0\n", + "49164 0\n", + "49165 0\n", + "49166 0\n", + "49167 0\n", + "49168 0\n", + "49169 1\n", + "49170 0\n", + "49171 1\n", + "49172 0\n", + "49173 0\n", + "49174 0\n", + "49175 0\n", + "49176 0\n", + "49177 1\n", + "49178 0\n", + "49179 0\n", + "49180 0\n", + "49181 0\n", + "49182 0\n", + "49183 0\n", + "49184 0\n", + "49185 0\n", + "49186 0\n", + "49187 0\n", + "49188 0\n", + "49189 0\n", + "49190 0\n", + "49191 0\n", + "49192 0\n", + "49193 1\n", + "49194 0\n", + "49195 0\n", + "49196 0\n", + "49197 0\n", + "49198 0\n", + "49199 1\n", + "49200 0\n", + "49201 1\n", + "49202 0\n", + "49203 0\n", + "49204 0\n", + "49205 0\n", + "49206 0\n", + "49207 1\n", + "49208 0\n", + "49209 0\n", + "49210 0\n", + "49211 1\n", + "49212 0\n", + "49213 0\n", + "49214 0\n", + "49215 0\n", + "49216 0\n", + "49217 0\n", + "49218 0\n", + "49219 0\n", + "49220 0\n", + "49221 0\n", + "49222 0\n", + "49223 1\n", + "49224 0\n", + "49225 0\n", + "49226 0\n", + "49227 0\n", + "49228 0\n", + "49229 0\n", + "49230 0\n", + "49231 0\n", + "49232 0\n", + "49233 0\n", + "49234 0\n", + "49235 0\n", + "49236 0\n", + "49237 0\n", + "49238 0\n", + "49239 0\n", + "49240 0\n", + "49241 0\n", + "49242 0\n", + "49243 0\n", + "49244 0\n", + "49245 0\n", + "49246 0\n", + "49247 0\n", + "49248 0\n", + "49249 0\n", + "49250 0\n", + "49251 0\n", + "49252 0\n", + "49253 1\n", + "49254 0\n", + "49255 0\n", + "49256 0\n", + "49257 0\n", + "49258 0\n", + "49259 0\n", + "49260 0\n", + "49261 1\n", + "49262 0\n", + "49263 0\n", + "49264 0\n", + "49265 0\n", + "49266 0\n", + "49267 0\n", + "49268 0\n", + "49269 0\n", + "49270 0\n", + "49271 0\n", + "49272 0\n", + "49273 0\n", + "49274 0\n", + "49275 0\n", + "49276 0\n", + "49277 1\n", + "49278 0\n", + "49279 1\n", + "49280 0\n", + "49281 0\n", + "49282 0\n", + "49283 0\n", + "49284 0\n", + "49285 0\n", + "49286 0\n", + "49287 0\n", + "49288 0\n", + "49289 0\n", + "49290 0\n", + "49291 0\n", + "49292 0\n", + "49293 0\n", + "49294 0\n", + "49295 0\n", + "49296 0\n", + "49297 1\n", + "49298 0\n", + "49299 0\n", + "49300 0\n", + "49301 0\n", + "49302 0\n", + "49303 0\n", + "49304 0\n", + "49305 0\n", + "49306 0\n", + "49307 1\n", + "49308 0\n", + "49309 0\n", + "49310 0\n", + "49311 0\n", + "49312 0\n", + "49313 0\n", + "49314 0\n", + "49315 0\n", + "49316 0\n", + "49317 0\n", + "49318 0\n", + "49319 0\n", + "49320 0\n", + "49321 0\n", + "49322 0\n", + "49323 0\n", + "49324 0\n", + "49325 0\n", + "49326 0\n", + "49327 0\n", + "49328 0\n", + "49329 0\n", + "49330 0\n", + "49331 1\n", + "49332 0\n", + "49333 1\n", + "49334 0\n", + "49335 0\n", + "49336 0\n", + "49337 0\n", + "49338 0\n", + "49339 1\n", + "49340 0\n", + "49341 0\n", + "49342 0\n", + "49343 0\n", + "49344 0\n", + "49345 0\n", + "49346 0\n", + "49347 0\n", + "49348 0\n", + "49349 0\n", + "49350 0\n", + "49351 0\n", + "49352 0\n", + "49353 0\n", + "49354 0\n", + "49355 0\n", + "49356 0\n", + "49357 0\n", + "49358 0\n", + "49359 0\n", + "49360 0\n", + "49361 0\n", + "49362 0\n", + "49363 1\n", + "49364 0\n", + "49365 0\n", + "49366 0\n", + "49367 1\n", + "49368 0\n", + "49369 1\n", + "49370 0\n", + "49371 0\n", + "49372 0\n", + "49373 0\n", + "49374 0\n", + "49375 0\n", + "49376 0\n", + "49377 0\n", + "49378 0\n", + "49379 0\n", + "49380 0\n", + "49381 0\n", + "49382 0\n", + "49383 0\n", + "49384 0\n", + "49385 0\n", + "49386 0\n", + "49387 0\n", + "49388 0\n", + "49389 0\n", + "49390 0\n", + "49391 1\n", + "49392 0\n", + "49393 1\n", + "49394 0\n", + "49395 0\n", + "49396 0\n", + "49397 0\n", + "49398 0\n", + "49399 0\n", + "49400 0\n", + "49401 0\n", + "49402 0\n", + "49403 0\n", + "49404 0\n", + "49405 0\n", + "49406 0\n", + "49407 0\n", + "49408 0\n", + "49409 1\n", + "49410 0\n", + "49411 1\n", + "49412 0\n", + "49413 0\n", + "49414 0\n", + "49415 0\n", + "49416 0\n", + "49417 1\n", + "49418 0\n", + "49419 0\n", + "49420 0\n", + "49421 0\n", + "49422 0\n", + "49423 0\n", + "49424 0\n", + "49425 0\n", + "49426 0\n", + "49427 0\n", + "49428 0\n", + "49429 1\n", + "49430 0\n", + "49431 0\n", + "49432 0\n", + "49433 1\n", + "49434 0\n", + "49435 0\n", + "49436 0\n", + "49437 0\n", + "49438 0\n", + "49439 0\n", + "49440 0\n", + "49441 0\n", + "49442 0\n", + "49443 0\n", + "49444 0\n", + "49445 0\n", + "49446 0\n", + "49447 0\n", + "49448 0\n", + "49449 0\n", + "49450 0\n", + "49451 1\n", + "49452 0\n", + "49453 0\n", + "49454 0\n", + "49455 0\n", + "49456 0\n", + "49457 0\n", + "49458 0\n", + "49459 1\n", + "49460 0\n", + "49461 0\n", + "49462 0\n", + "49463 1\n", + "49464 0\n", + "49465 0\n", + "49466 0\n", + "49467 0\n", + "49468 0\n", + "49469 0\n", + "49470 0\n", + "49471 0\n", + "49472 0\n", + "49473 0\n", + "49474 0\n", + "49475 0\n", + "49476 0\n", + "49477 1\n", + "49478 0\n", + "49479 0\n", + "49480 0\n", + "49481 1\n", + "49482 0\n", + "49483 0\n", + "49484 0\n", + "49485 0\n", + "49486 0\n", + "49487 0\n", + "49488 0\n", + "49489 0\n", + "49490 0\n", + "49491 0\n", + "49492 0\n", + "49493 0\n", + "49494 0\n", + "49495 0\n", + "49496 0\n", + "49497 0\n", + "49498 0\n", + "49499 1\n", + "49500 0\n", + "49501 0\n", + "49502 0\n", + "49503 0\n", + "49504 0\n", + "49505 0\n", + "49506 0\n", + "49507 0\n", + "49508 0\n", + "49509 0\n", + "49510 0\n", + "49511 0\n", + "49512 0\n", + "49513 0\n", + "49514 0\n", + "49515 0\n", + "49516 0\n", + "49517 0\n", + "49518 0\n", + "49519 0\n", + "49520 0\n", + "49521 0\n", + "49522 0\n", + "49523 1\n", + "49524 0\n", + "49525 0\n", + "49526 0\n", + "49527 0\n", + "49528 0\n", + "49529 1\n", + "49530 0\n", + "49531 1\n", + "49532 0\n", + "49533 0\n", + "49534 0\n", + "49535 0\n", + "49536 0\n", + "49537 1\n", + "49538 0\n", + "49539 0\n", + "49540 0\n", + "49541 0\n", + "49542 0\n", + "49543 0\n", + "49544 0\n", + "49545 0\n", + "49546 0\n", + "49547 1\n", + "49548 0\n", + "49549 1\n", + "49550 0\n", + "49551 0\n", + "49552 0\n", + "49553 0\n", + "49554 0\n", + "49555 0\n", + "49556 0\n", + "49557 0\n", + "49558 0\n", + "49559 1\n", + "49560 0\n", + "49561 0\n", + "49562 0\n", + "49563 0\n", + "49564 0\n", + "49565 0\n", + "49566 0\n", + "49567 0\n", + "49568 0\n", + "49569 0\n", + "49570 0\n", + "49571 0\n", + "49572 0\n", + "49573 0\n", + "49574 0\n", + "49575 0\n", + "49576 0\n", + "49577 0\n", + "49578 0\n", + "49579 0\n", + "49580 0\n", + "49581 0\n", + "49582 0\n", + "49583 0\n", + "49584 0\n", + "49585 0\n", + "49586 0\n", + "49587 0\n", + "49588 0\n", + "49589 0\n", + "49590 0\n", + "49591 0\n", + "49592 0\n", + "49593 0\n", + "49594 0\n", + "49595 0\n", + "49596 0\n", + "49597 1\n", + "49598 0\n", + "49599 0\n", + "49600 0\n", + "49601 0\n", + "49602 0\n", + "49603 1\n", + "49604 0\n", + "49605 0\n", + "49606 0\n", + "49607 0\n", + "49608 0\n", + "49609 0\n", + "49610 0\n", + "49611 0\n", + "49612 0\n", + "49613 1\n", + "49614 0\n", + "49615 0\n", + "49616 0\n", + "49617 0\n", + "49618 0\n", + "49619 0\n", + "49620 0\n", + "49621 0\n", + "49622 0\n", + "49623 0\n", + "49624 0\n", + "49625 0\n", + "49626 0\n", + "49627 1\n", + "49628 0\n", + "49629 0\n", + "49630 0\n", + "49631 0\n", + "49632 0\n", + "49633 1\n", + "49634 0\n", + "49635 0\n", + "49636 0\n", + "49637 0\n", + "49638 0\n", + "49639 1\n", + "49640 0\n", + "49641 0\n", + "49642 0\n", + "49643 0\n", + "49644 0\n", + "49645 0\n", + "49646 0\n", + "49647 0\n", + "49648 0\n", + "49649 0\n", + "49650 0\n", + "49651 0\n", + "49652 0\n", + "49653 0\n", + "49654 0\n", + "49655 0\n", + "49656 0\n", + "49657 0\n", + "49658 0\n", + "49659 0\n", + "49660 0\n", + "49661 0\n", + "49662 0\n", + "49663 1\n", + "49664 0\n", + "49665 0\n", + "49666 0\n", + "49667 1\n", + "49668 0\n", + "49669 1\n", + "49670 0\n", + "49671 0\n", + "49672 0\n", + "49673 0\n", + "49674 0\n", + "49675 0\n", + "49676 0\n", + "49677 0\n", + "49678 0\n", + "49679 0\n", + "49680 0\n", + "49681 1\n", + "49682 0\n", + "49683 0\n", + "49684 0\n", + "49685 0\n", + "49686 0\n", + "49687 0\n", + "49688 0\n", + "49689 0\n", + "49690 0\n", + "49691 0\n", + "49692 0\n", + "49693 0\n", + "49694 0\n", + "49695 0\n", + "49696 0\n", + "49697 1\n", + "49698 0\n", + "49699 0\n", + "49700 0\n", + "49701 0\n", + "49702 0\n", + "49703 0\n", + "49704 0\n", + "49705 0\n", + "49706 0\n", + "49707 0\n", + "49708 0\n", + "49709 0\n", + "49710 0\n", + "49711 1\n", + "49712 0\n", + "49713 0\n", + "49714 0\n", + "49715 0\n", + "49716 0\n", + "49717 0\n", + "49718 0\n", + "49719 0\n", + "49720 0\n", + "49721 0\n", + "49722 0\n", + "49723 0\n", + "49724 0\n", + "49725 0\n", + "49726 0\n", + "49727 1\n", + "49728 0\n", + "49729 0\n", + "49730 0\n", + "49731 0\n", + "49732 0\n", + "49733 0\n", + "49734 0\n", + "49735 0\n", + "49736 0\n", + "49737 0\n", + "49738 0\n", + "49739 1\n", + "49740 0\n", + "49741 1\n", + "49742 0\n", + "49743 0\n", + "49744 0\n", + "49745 0\n", + "49746 0\n", + "49747 1\n", + "49748 0\n", + "49749 0\n", + "49750 0\n", + "49751 0\n", + "49752 0\n", + "49753 0\n", + "49754 0\n", + "49755 0\n", + "49756 0\n", + "49757 1\n", + "49758 0\n", + "49759 0\n", + "49760 0\n", + "49761 0\n", + "49762 0\n", + "49763 0\n", + "49764 0\n", + "49765 0\n", + "49766 0\n", + "49767 0\n", + "49768 0\n", + "49769 0\n", + "49770 0\n", + "49771 0\n", + "49772 0\n", + "49773 0\n", + "49774 0\n", + "49775 0\n", + "49776 0\n", + "49777 0\n", + "49778 0\n", + "49779 0\n", + "49780 0\n", + "49781 0\n", + "49782 0\n", + "49783 1\n", + "49784 0\n", + "49785 0\n", + "49786 0\n", + "49787 1\n", + "49788 0\n", + "49789 1\n", + "49790 0\n", + "49791 0\n", + "49792 0\n", + "49793 0\n", + "49794 0\n", + "49795 0\n", + "49796 0\n", + "49797 0\n", + "49798 0\n", + "49799 0\n", + "49800 0\n", + "49801 1\n", + "49802 0\n", + "49803 0\n", + "49804 0\n", + "49805 0\n", + "49806 0\n", + "49807 1\n", + "49808 0\n", + "49809 0\n", + "49810 0\n", + "49811 1\n", + "49812 0\n", + "49813 0\n", + "49814 0\n", + "49815 0\n", + "49816 0\n", + "49817 0\n", + "49818 0\n", + "49819 0\n", + "49820 0\n", + "49821 0\n", + "49822 0\n", + "49823 1\n", + "49824 0\n", + "49825 0\n", + "49826 0\n", + "49827 0\n", + "49828 0\n", + "49829 0\n", + "49830 0\n", + "49831 1\n", + "49832 0\n", + "49833 0\n", + "49834 0\n", + "49835 0\n", + "49836 0\n", + "49837 0\n", + "49838 0\n", + "49839 0\n", + "49840 0\n", + "49841 0\n", + "49842 0\n", + "49843 1\n", + "49844 0\n", + "49845 0\n", + "49846 0\n", + "49847 0\n", + "49848 0\n", + "49849 0\n", + "49850 0\n", + "49851 0\n", + "49852 0\n", + "49853 1\n", + "49854 0\n", + "49855 0\n", + "49856 0\n", + "49857 0\n", + "49858 0\n", + "49859 0\n", + "49860 0\n", + "49861 0\n", + "49862 0\n", + "49863 0\n", + "49864 0\n", + "49865 0\n", + "49866 0\n", + "49867 0\n", + "49868 0\n", + "49869 0\n", + "49870 0\n", + "49871 1\n", + "49872 0\n", + "49873 0\n", + "49874 0\n", + "49875 0\n", + "49876 0\n", + "49877 1\n", + "49878 0\n", + "49879 0\n", + "49880 0\n", + "49881 0\n", + "49882 0\n", + "49883 0\n", + "49884 0\n", + "49885 0\n", + "49886 0\n", + "49887 0\n", + "49888 0\n", + "49889 0\n", + "49890 0\n", + "49891 1\n", + "49892 0\n", + "49893 0\n", + "49894 0\n", + "49895 0\n", + "49896 0\n", + "49897 0\n", + "49898 0\n", + "49899 0\n", + "49900 0\n", + "49901 0\n", + "49902 0\n", + "49903 0\n", + "49904 0\n", + "49905 0\n", + "49906 0\n", + "49907 0\n", + "49908 0\n", + "49909 0\n", + "49910 0\n", + "49911 0\n", + "49912 0\n", + "49913 0\n", + "49914 0\n", + "49915 0\n", + "49916 0\n", + "49917 0\n", + "49918 0\n", + "49919 1\n", + "49920 0\n", + "49921 1\n", + "49922 0\n", + "49923 0\n", + "49924 0\n", + "49925 0\n", + "49926 0\n", + "49927 1\n", + "49928 0\n", + "49929 0\n", + "49930 0\n", + "49931 0\n", + "49932 0\n", + "49933 0\n", + "49934 0\n", + "49935 0\n", + "49936 0\n", + "49937 1\n", + "49938 0\n", + "49939 1\n", + "49940 0\n", + "49941 0\n", + "49942 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "49943 1\n", + "49944 0\n", + "49945 0\n", + "49946 0\n", + "49947 0\n", + "49948 0\n", + "49949 0\n", + "49950 0\n", + "49951 0\n", + "49952 0\n", + "49953 0\n", + "49954 0\n", + "49955 0\n", + "49956 0\n", + "49957 1\n", + "49958 0\n", + "49959 0\n", + "49960 0\n", + "49961 0\n", + "49962 0\n", + "49963 0\n", + "49964 0\n", + "49965 0\n", + "49966 0\n", + "49967 0\n", + "49968 0\n", + "49969 0\n", + "49970 0\n", + "49971 0\n", + "49972 0\n", + "49973 0\n", + "49974 0\n", + "49975 0\n", + "49976 0\n", + "49977 0\n", + "49978 0\n", + "49979 0\n", + "49980 0\n", + "49981 0\n", + "49982 0\n", + "49983 0\n", + "49984 0\n", + "49985 0\n", + "49986 0\n", + "49987 0\n", + "49988 0\n", + "49989 0\n", + "49990 0\n", + "49991 1\n", + "49992 0\n", + "49993 1\n", + "49994 0\n", + "49995 0\n", + "49996 0\n", + "49997 0\n", + "49998 0\n", + "49999 1\n", + "50000 0\n", + "50001 0\n", + "50002 0\n", + "50003 0\n", + "50004 0\n", + "50005 0\n", + "50006 0\n", + "50007 0\n", + "50008 0\n", + "50009 0\n", + "50010 0\n", + "50011 0\n", + "50012 0\n", + "50013 0\n", + "50014 0\n", + "50015 0\n", + "50016 0\n", + "50017 0\n", + "50018 0\n", + "50019 0\n", + "50020 0\n", + "50021 1\n", + "50022 0\n", + "50023 1\n", + "50024 0\n", + "50025 0\n", + "50026 0\n", + "50027 0\n", + "50028 0\n", + "50029 0\n", + "50030 0\n", + "50031 0\n", + "50032 0\n", + "50033 1\n", + "50034 0\n", + "50035 0\n", + "50036 0\n", + "50037 0\n", + "50038 0\n", + "50039 0\n", + "50040 0\n", + "50041 0\n", + "50042 0\n", + "50043 0\n", + "50044 0\n", + "50045 0\n", + "50046 0\n", + "50047 1\n", + "50048 0\n", + "50049 0\n", + "50050 0\n", + "50051 1\n", + "50052 0\n", + "50053 1\n", + "50054 0\n", + "50055 0\n", + "50056 0\n", + "50057 0\n", + "50058 0\n", + "50059 0\n", + "50060 0\n", + "50061 0\n", + "50062 0\n", + "50063 0\n", + "50064 0\n", + "50065 0\n", + "50066 0\n", + "50067 0\n", + "50068 0\n", + "50069 1\n", + "50070 0\n", + "50071 0\n", + "50072 0\n", + "50073 0\n", + "50074 0\n", + "50075 0\n", + "50076 0\n", + "50077 1\n", + "50078 0\n", + "50079 0\n", + "50080 0\n", + "50081 0\n", + "50082 0\n", + "50083 0\n", + "50084 0\n", + "50085 0\n", + "50086 0\n", + "50087 1\n", + "50088 0\n", + "50089 0\n", + "50090 0\n", + "50091 0\n", + "50092 0\n", + "50093 1\n", + "50094 0\n", + "50095 0\n", + "50096 0\n", + "50097 0\n", + "50098 0\n", + "50099 0\n", + "50100 0\n", + "50101 1\n", + "50102 0\n", + "50103 0\n", + "50104 0\n", + "50105 0\n", + "50106 0\n", + "50107 0\n", + "50108 0\n", + "50109 0\n", + "50110 0\n", + "50111 1\n", + "50112 0\n", + "50113 0\n", + "50114 0\n", + "50115 0\n", + "50116 0\n", + "50117 0\n", + "50118 0\n", + "50119 1\n", + "50120 0\n", + "50121 0\n", + "50122 0\n", + "50123 1\n", + "50124 0\n", + "50125 0\n", + "50126 0\n", + "50127 0\n", + "50128 0\n", + "50129 1\n", + "50130 0\n", + "50131 1\n", + "50132 0\n", + "50133 0\n", + "50134 0\n", + "50135 0\n", + "50136 0\n", + "50137 0\n", + "50138 0\n", + "50139 0\n", + "50140 0\n", + "50141 0\n", + "50142 0\n", + "50143 0\n", + "50144 0\n", + "50145 0\n", + "50146 0\n", + "50147 1\n", + "50148 0\n", + "50149 0\n", + "50150 0\n", + "50151 0\n", + "50152 0\n", + "50153 1\n", + "50154 0\n", + "50155 0\n", + "50156 0\n", + "50157 0\n", + "50158 0\n", + "50159 1\n", + "50160 0\n", + "50161 0\n", + "50162 0\n", + "50163 0\n", + "50164 0\n", + "50165 0\n", + "50166 0\n", + "50167 0\n", + "50168 0\n", + "50169 0\n", + "50170 0\n", + "50171 0\n", + "50172 0\n", + "50173 0\n", + "50174 0\n", + "50175 0\n", + "50176 0\n", + "50177 1\n", + "50178 0\n", + "50179 0\n", + "50180 0\n", + "50181 0\n", + "50182 0\n", + "50183 0\n", + "50184 0\n", + "50185 0\n", + "50186 0\n", + "50187 0\n", + "50188 0\n", + "50189 0\n", + "50190 0\n", + "50191 0\n", + "50192 0\n", + "50193 0\n", + "50194 0\n", + "50195 0\n", + "50196 0\n", + "50197 0\n", + "50198 0\n", + "50199 0\n", + "50200 0\n", + "50201 0\n", + "50202 0\n", + "50203 0\n", + "50204 0\n", + "50205 0\n", + "50206 0\n", + "50207 1\n", + "50208 0\n", + "50209 0\n", + "50210 0\n", + "50211 0\n", + "50212 0\n", + "50213 0\n", + "50214 0\n", + "50215 0\n", + "50216 0\n", + "50217 0\n", + "50218 0\n", + "50219 0\n", + "50220 0\n", + "50221 1\n", + "50222 0\n", + "50223 0\n", + "50224 0\n", + "50225 0\n", + "50226 0\n", + "50227 1\n", + "50228 0\n", + "50229 0\n", + "50230 0\n", + "50231 1\n", + "50232 0\n", + "50233 0\n", + "50234 0\n", + "50235 0\n", + "50236 0\n", + "50237 0\n", + "50238 0\n", + "50239 0\n", + "50240 0\n", + "50241 0\n", + "50242 0\n", + "50243 0\n", + "50244 0\n", + "50245 0\n", + "50246 0\n", + "50247 0\n", + "50248 0\n", + "50249 0\n", + "50250 0\n", + "50251 0\n", + "50252 0\n", + "50253 0\n", + "50254 0\n", + "50255 0\n", + "50256 0\n", + "50257 0\n", + "50258 0\n", + "50259 0\n", + "50260 0\n", + "50261 1\n", + "50262 0\n", + "50263 1\n", + "50264 0\n", + "50265 0\n", + "50266 0\n", + "50267 0\n", + "50268 0\n", + "50269 0\n", + "50270 0\n", + "50271 0\n", + "50272 0\n", + "50273 1\n", + "50274 0\n", + "50275 0\n", + "50276 0\n", + "50277 0\n", + "50278 0\n", + "50279 0\n", + "50280 0\n", + "50281 0\n", + "50282 0\n", + "50283 0\n", + "50284 0\n", + "50285 0\n", + "50286 0\n", + "50287 1\n", + "50288 0\n", + "50289 0\n", + "50290 0\n", + "50291 1\n", + "50292 0\n", + "50293 0\n", + "50294 0\n", + "50295 0\n", + "50296 0\n", + "50297 0\n", + "50298 0\n", + "50299 0\n", + "50300 0\n", + "50301 0\n", + "50302 0\n", + "50303 0\n", + "50304 0\n", + "50305 0\n", + "50306 0\n", + "50307 0\n", + "50308 0\n", + "50309 0\n", + "50310 0\n", + "50311 1\n", + "50312 0\n", + "50313 0\n", + "50314 0\n", + "50315 0\n", + "50316 0\n", + "50317 0\n", + "50318 0\n", + "50319 0\n", + "50320 0\n", + "50321 1\n", + "50322 0\n", + "50323 0\n", + "50324 0\n", + "50325 0\n", + "50326 0\n", + "50327 0\n", + "50328 0\n", + "50329 1\n", + "50330 0\n", + "50331 0\n", + "50332 0\n", + "50333 1\n", + "50334 0\n", + "50335 0\n", + "50336 0\n", + "50337 0\n", + "50338 0\n", + "50339 0\n", + "50340 0\n", + "50341 1\n", + "50342 0\n", + "50343 0\n", + "50344 0\n", + "50345 0\n", + "50346 0\n", + "50347 0\n", + "50348 0\n", + "50349 0\n", + "50350 0\n", + "50351 0\n", + "50352 0\n", + "50353 0\n", + "50354 0\n", + "50355 0\n", + "50356 0\n", + "50357 0\n", + "50358 0\n", + "50359 1\n", + "50360 0\n", + "50361 0\n", + "50362 0\n", + "50363 1\n", + "50364 0\n", + "50365 0\n", + "50366 0\n", + "50367 0\n", + "50368 0\n", + "50369 0\n", + "50370 0\n", + "50371 0\n", + "50372 0\n", + "50373 0\n", + "50374 0\n", + "50375 0\n", + "50376 0\n", + "50377 1\n", + "50378 0\n", + "50379 0\n", + "50380 0\n", + "50381 0\n", + "50382 0\n", + "50383 1\n", + "50384 0\n", + "50385 0\n", + "50386 0\n", + "50387 1\n", + "50388 0\n", + "50389 0\n", + "50390 0\n", + "50391 0\n", + "50392 0\n", + "50393 0\n", + "50394 0\n", + "50395 0\n", + "50396 0\n", + "50397 0\n", + "50398 0\n", + "50399 0\n", + "50400 0\n", + "50401 0\n", + "50402 0\n", + "50403 0\n", + "50404 0\n", + "50405 0\n", + "50406 0\n", + "50407 0\n", + "50408 0\n", + "50409 0\n", + "50410 0\n", + "50411 1\n", + "50412 0\n", + "50413 0\n", + "50414 0\n", + "50415 0\n", + "50416 0\n", + "50417 1\n", + "50418 0\n", + "50419 0\n", + "50420 0\n", + "50421 0\n", + "50422 0\n", + "50423 1\n", + "50424 0\n", + "50425 0\n", + "50426 0\n", + "50427 0\n", + "50428 0\n", + "50429 0\n", + "50430 0\n", + "50431 0\n", + "50432 0\n", + "50433 0\n", + "50434 0\n", + "50435 0\n", + "50436 0\n", + "50437 0\n", + "50438 0\n", + "50439 0\n", + "50440 0\n", + "50441 1\n", + "50442 0\n", + "50443 0\n", + "50444 0\n", + "50445 0\n", + "50446 0\n", + "50447 0\n", + "50448 0\n", + "50449 0\n", + "50450 0\n", + "50451 0\n", + "50452 0\n", + "50453 0\n", + "50454 0\n", + "50455 0\n", + "50456 0\n", + "50457 0\n", + "50458 0\n", + "50459 1\n", + "50460 0\n", + "50461 1\n", + "50462 0\n", + "50463 0\n", + "50464 0\n", + "50465 0\n", + "50466 0\n", + "50467 0\n", + "50468 0\n", + "50469 0\n", + "50470 0\n", + "50471 0\n", + "50472 0\n", + "50473 0\n", + "50474 0\n", + "50475 0\n", + "50476 0\n", + "50477 0\n", + "50478 0\n", + "50479 0\n", + "50480 0\n", + "50481 0\n", + "50482 0\n", + "50483 0\n", + "50484 0\n", + "50485 0\n", + "50486 0\n", + "50487 0\n", + "50488 0\n", + "50489 0\n", + "50490 0\n", + "50491 0\n", + "50492 0\n", + "50493 0\n", + "50494 0\n", + "50495 0\n", + "50496 0\n", + "50497 1\n", + "50498 0\n", + "50499 0\n", + "50500 0\n", + "50501 0\n", + "50502 0\n", + "50503 1\n", + "50504 0\n", + "50505 0\n", + "50506 0\n", + "50507 0\n", + "50508 0\n", + "50509 0\n", + "50510 0\n", + "50511 0\n", + "50512 0\n", + "50513 1\n", + "50514 0\n", + "50515 0\n", + "50516 0\n", + "50517 0\n", + "50518 0\n", + "50519 0\n", + "50520 0\n", + "50521 0\n", + "50522 0\n", + "50523 0\n", + "50524 0\n", + "50525 0\n", + "50526 0\n", + "50527 1\n", + "50528 0\n", + "50529 0\n", + "50530 0\n", + "50531 0\n", + "50532 0\n", + "50533 0\n", + "50534 0\n", + "50535 0\n", + "50536 0\n", + "50537 0\n", + "50538 0\n", + "50539 1\n", + "50540 0\n", + "50541 0\n", + "50542 0\n", + "50543 1\n", + "50544 0\n", + "50545 0\n", + "50546 0\n", + "50547 0\n", + "50548 0\n", + "50549 1\n", + "50550 0\n", + "50551 1\n", + "50552 0\n", + "50553 0\n", + "50554 0\n", + "50555 0\n", + "50556 0\n", + "50557 0\n", + "50558 0\n", + "50559 0\n", + "50560 0\n", + "50561 0\n", + "50562 0\n", + "50563 0\n", + "50564 0\n", + "50565 0\n", + "50566 0\n", + "50567 0\n", + "50568 0\n", + "50569 0\n", + "50570 0\n", + "50571 0\n", + "50572 0\n", + "50573 0\n", + "50574 0\n", + "50575 0\n", + "50576 0\n", + "50577 0\n", + "50578 0\n", + "50579 0\n", + "50580 0\n", + "50581 1\n", + "50582 0\n", + "50583 0\n", + "50584 0\n", + "50585 0\n", + "50586 0\n", + "50587 1\n", + "50588 0\n", + "50589 0\n", + "50590 0\n", + "50591 1\n", + "50592 0\n", + "50593 1\n", + "50594 0\n", + "50595 0\n", + "50596 0\n", + "50597 0\n", + "50598 0\n", + "50599 1\n", + "50600 0\n", + "50601 0\n", + "50602 0\n", + "50603 0\n", + "50604 0\n", + "50605 0\n", + "50606 0\n", + "50607 0\n", + "50608 0\n", + "50609 0\n", + "50610 0\n", + "50611 0\n", + "50612 0\n", + "50613 0\n", + "50614 0\n", + "50615 0\n", + "50616 0\n", + "50617 0\n", + "50618 0\n", + "50619 0\n", + "50620 0\n", + "50621 0\n", + "50622 0\n", + "50623 0\n", + "50624 0\n", + "50625 0\n", + "50626 0\n", + "50627 1\n", + "50628 0\n", + "50629 0\n", + "50630 0\n", + "50631 0\n", + "50632 0\n", + "50633 0\n", + "50634 0\n", + "50635 0\n", + "50636 0\n", + "50637 0\n", + "50638 0\n", + "50639 0\n", + "50640 0\n", + "50641 0\n", + "50642 0\n", + "50643 0\n", + "50644 0\n", + "50645 0\n", + "50646 0\n", + "50647 1\n", + "50648 0\n", + "50649 0\n", + "50650 0\n", + "50651 1\n", + "50652 0\n", + "50653 0\n", + "50654 0\n", + "50655 0\n", + "50656 0\n", + "50657 0\n", + "50658 0\n", + "50659 0\n", + "50660 0\n", + "50661 0\n", + "50662 0\n", + "50663 0\n", + "50664 0\n", + "50665 0\n", + "50666 0\n", + "50667 0\n", + "50668 0\n", + "50669 0\n", + "50670 0\n", + "50671 1\n", + "50672 0\n", + "50673 0\n", + "50674 0\n", + "50675 0\n", + "50676 0\n", + "50677 0\n", + "50678 0\n", + "50679 0\n", + "50680 0\n", + "50681 0\n", + "50682 0\n", + "50683 1\n", + "50684 0\n", + "50685 0\n", + "50686 0\n", + "50687 0\n", + "50688 0\n", + "50689 0\n", + "50690 0\n", + "50691 0\n", + "50692 0\n", + "50693 0\n", + "50694 0\n", + "50695 0\n", + "50696 0\n", + "50697 0\n", + "50698 0\n", + "50699 0\n", + "50700 0\n", + "50701 0\n", + "50702 0\n", + "50703 0\n", + "50704 0\n", + "50705 0\n", + "50706 0\n", + "50707 1\n", + "50708 0\n", + "50709 0\n", + "50710 0\n", + "50711 0\n", + "50712 0\n", + "50713 0\n", + "50714 0\n", + "50715 0\n", + "50716 0\n", + "50717 0\n", + "50718 0\n", + "50719 0\n", + "50720 0\n", + "50721 0\n", + "50722 0\n", + "50723 1\n", + "50724 0\n", + "50725 0\n", + "50726 0\n", + "50727 0\n", + "50728 0\n", + "50729 0\n", + "50730 0\n", + "50731 0\n", + "50732 0\n", + "50733 0\n", + "50734 0\n", + "50735 0\n", + "50736 0\n", + "50737 0\n", + "50738 0\n", + "50739 0\n", + "50740 0\n", + "50741 1\n", + "50742 0\n", + "50743 0\n", + "50744 0\n", + "50745 0\n", + "50746 0\n", + "50747 0\n", + "50748 0\n", + "50749 0\n", + "50750 0\n", + "50751 0\n", + "50752 0\n", + "50753 1\n", + "50754 0\n", + "50755 0\n", + "50756 0\n", + "50757 0\n", + "50758 0\n", + "50759 0\n", + "50760 0\n", + "50761 0\n", + "50762 0\n", + "50763 0\n", + "50764 0\n", + "50765 0\n", + "50766 0\n", + "50767 1\n", + "50768 0\n", + "50769 0\n", + "50770 0\n", + "50771 0\n", + "50772 0\n", + "50773 1\n", + "50774 0\n", + "50775 0\n", + "50776 0\n", + "50777 1\n", + "50778 0\n", + "50779 0\n", + "50780 0\n", + "50781 0\n", + "50782 0\n", + "50783 0\n", + "50784 0\n", + "50785 0\n", + "50786 0\n", + "50787 0\n", + "50788 0\n", + "50789 1\n", + "50790 0\n", + "50791 0\n", + "50792 0\n", + "50793 0\n", + "50794 0\n", + "50795 0\n", + "50796 0\n", + "50797 0\n", + "50798 0\n", + "50799 0\n", + "50800 0\n", + "50801 0\n", + "50802 0\n", + "50803 0\n", + "50804 0\n", + "50805 0\n", + "50806 0\n", + "50807 0\n", + "50808 0\n", + "50809 0\n", + "50810 0\n", + "50811 0\n", + "50812 0\n", + "50813 0\n", + "50814 0\n", + "50815 0\n", + "50816 0\n", + "50817 0\n", + "50818 0\n", + "50819 0\n", + "50820 0\n", + "50821 1\n", + "50822 0\n", + "50823 0\n", + "50824 0\n", + "50825 0\n", + "50826 0\n", + "50827 0\n", + "50828 0\n", + "50829 0\n", + "50830 0\n", + "50831 0\n", + "50832 0\n", + "50833 1\n", + "50834 0\n", + "50835 0\n", + "50836 0\n", + "50837 0\n", + "50838 0\n", + "50839 1\n", + "50840 0\n", + "50841 0\n", + "50842 0\n", + "50843 0\n", + "50844 0\n", + "50845 0\n", + "50846 0\n", + "50847 0\n", + "50848 0\n", + "50849 1\n", + "50850 0\n", + "50851 0\n", + "50852 0\n", + "50853 0\n", + "50854 0\n", + "50855 0\n", + "50856 0\n", + "50857 1\n", + "50858 0\n", + "50859 0\n", + "50860 0\n", + "50861 0\n", + "50862 0\n", + "50863 0\n", + "50864 0\n", + "50865 0\n", + "50866 0\n", + "50867 1\n", + "50868 0\n", + "50869 0\n", + "50870 0\n", + "50871 0\n", + "50872 0\n", + "50873 1\n", + "50874 0\n", + "50875 0\n", + "50876 0\n", + "50877 0\n", + "50878 0\n", + "50879 0\n", + "50880 0\n", + "50881 0\n", + "50882 0\n", + "50883 0\n", + "50884 0\n", + "50885 0\n", + "50886 0\n", + "50887 0\n", + "50888 0\n", + "50889 0\n", + "50890 0\n", + "50891 1\n", + "50892 0\n", + "50893 1\n", + "50894 0\n", + "50895 0\n", + "50896 0\n", + "50897 0\n", + "50898 0\n", + "50899 0\n", + "50900 0\n", + "50901 0\n", + "50902 0\n", + "50903 0\n", + "50904 0\n", + "50905 0\n", + "50906 0\n", + "50907 0\n", + "50908 0\n", + "50909 1\n", + "50910 0\n", + "50911 0\n", + "50912 0\n", + "50913 0\n", + "50914 0\n", + "50915 0\n", + "50916 0\n", + "50917 0\n", + "50918 0\n", + "50919 0\n", + "50920 0\n", + "50921 0\n", + "50922 0\n", + "50923 1\n", + "50924 0\n", + "50925 0\n", + "50926 0\n", + "50927 0\n", + "50928 0\n", + "50929 1\n", + "50930 0\n", + "50931 0\n", + "50932 0\n", + "50933 0\n", + "50934 0\n", + "50935 0\n", + "50936 0\n", + "50937 0\n", + "50938 0\n", + "50939 0\n", + "50940 0\n", + "50941 0\n", + "50942 0\n", + "50943 0\n", + "50944 0\n", + "50945 0\n", + "50946 0\n", + "50947 0\n", + "50948 0\n", + "50949 0\n", + "50950 0\n", + "50951 1\n", + "50952 0\n", + "50953 0\n", + "50954 0\n", + "50955 0\n", + "50956 0\n", + "50957 1\n", + "50958 0\n", + "50959 0\n", + "50960 0\n", + "50961 0\n", + "50962 0\n", + "50963 0\n", + "50964 0\n", + "50965 0\n", + "50966 0\n", + "50967 0\n", + "50968 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50969 1\n", + "50970 0\n", + "50971 1\n", + "50972 0\n", + "50973 0\n", + "50974 0\n", + "50975 0\n", + "50976 0\n", + "50977 0\n", + "50978 0\n", + "50979 0\n", + "50980 0\n", + "50981 0\n", + "50982 0\n", + "50983 0\n", + "50984 0\n", + "50985 0\n", + "50986 0\n", + "50987 0\n", + "50988 0\n", + "50989 1\n", + "50990 0\n", + "50991 0\n", + "50992 0\n", + "50993 1\n", + "50994 0\n", + "50995 0\n", + "50996 0\n", + "50997 0\n", + "50998 0\n", + "50999 0\n", + "51000 0\n", + "51001 1\n", + "51002 0\n", + "51003 0\n", + "51004 0\n", + "51005 0\n", + "51006 0\n", + "51007 0\n", + "51008 0\n", + "51009 0\n", + "51010 0\n", + "51011 0\n", + "51012 0\n", + "51013 0\n", + "51014 0\n", + "51015 0\n", + "51016 0\n", + "51017 0\n", + "51018 0\n", + "51019 0\n", + "51020 0\n", + "51021 0\n", + "51022 0\n", + "51023 0\n", + "51024 0\n", + "51025 0\n", + "51026 0\n", + "51027 0\n", + "51028 0\n", + "51029 0\n", + "51030 0\n", + "51031 1\n", + "51032 0\n", + "51033 0\n", + "51034 0\n", + "51035 0\n", + "51036 0\n", + "51037 0\n", + "51038 0\n", + "51039 0\n", + "51040 0\n", + "51041 0\n", + "51042 0\n", + "51043 1\n", + "51044 0\n", + "51045 0\n", + "51046 0\n", + "51047 1\n", + "51048 0\n", + "51049 0\n", + "51050 0\n", + "51051 0\n", + "51052 0\n", + "51053 0\n", + "51054 0\n", + "51055 0\n", + "51056 0\n", + "51057 0\n", + "51058 0\n", + "51059 1\n", + "51060 0\n", + "51061 1\n", + "51062 0\n", + "51063 0\n", + "51064 0\n", + "51065 0\n", + "51066 0\n", + "51067 0\n", + "51068 0\n", + "51069 0\n", + "51070 0\n", + "51071 1\n", + "51072 0\n", + "51073 0\n", + "51074 0\n", + "51075 0\n", + "51076 0\n", + "51077 0\n", + "51078 0\n", + "51079 0\n", + "51080 0\n", + "51081 0\n", + "51082 0\n", + "51083 0\n", + "51084 0\n", + "51085 0\n", + "51086 0\n", + "51087 0\n", + "51088 0\n", + "51089 0\n", + "51090 0\n", + "51091 0\n", + "51092 0\n", + "51093 0\n", + "51094 0\n", + "51095 0\n", + "51096 0\n", + "51097 0\n", + "51098 0\n", + "51099 0\n", + "51100 0\n", + "51101 0\n", + "51102 0\n", + "51103 0\n", + "51104 0\n", + "51105 0\n", + "51106 0\n", + "51107 0\n", + "51108 0\n", + "51109 1\n", + "51110 0\n", + "51111 0\n", + "51112 0\n", + "51113 0\n", + "51114 0\n", + "51115 0\n", + "51116 0\n", + "51117 0\n", + "51118 0\n", + "51119 0\n", + "51120 0\n", + "51121 0\n", + "51122 0\n", + "51123 0\n", + "51124 0\n", + "51125 0\n", + "51126 0\n", + "51127 0\n", + "51128 0\n", + "51129 0\n", + "51130 0\n", + "51131 1\n", + "51132 0\n", + "51133 1\n", + "51134 0\n", + "51135 0\n", + "51136 0\n", + "51137 1\n", + "51138 0\n", + "51139 0\n", + "51140 0\n", + "51141 0\n", + "51142 0\n", + "51143 0\n", + "51144 0\n", + "51145 0\n", + "51146 0\n", + "51147 0\n", + "51148 0\n", + "51149 0\n", + "51150 0\n", + "51151 1\n", + "51152 0\n", + "51153 0\n", + "51154 0\n", + "51155 0\n", + "51156 0\n", + "51157 1\n", + "51158 0\n", + "51159 0\n", + "51160 0\n", + "51161 0\n", + "51162 0\n", + "51163 0\n", + "51164 0\n", + "51165 0\n", + "51166 0\n", + "51167 0\n", + "51168 0\n", + "51169 1\n", + "51170 0\n", + "51171 0\n", + "51172 0\n", + "51173 0\n", + "51174 0\n", + "51175 0\n", + "51176 0\n", + "51177 0\n", + "51178 0\n", + "51179 0\n", + "51180 0\n", + "51181 0\n", + "51182 0\n", + "51183 0\n", + "51184 0\n", + "51185 0\n", + "51186 0\n", + "51187 0\n", + "51188 0\n", + "51189 0\n", + "51190 0\n", + "51191 0\n", + "51192 0\n", + "51193 1\n", + "51194 0\n", + "51195 0\n", + "51196 0\n", + "51197 1\n", + "51198 0\n", + "51199 1\n", + "51200 0\n", + "51201 0\n", + "51202 0\n", + "51203 1\n", + "51204 0\n", + "51205 0\n", + "51206 0\n", + "51207 0\n", + "51208 0\n", + "51209 0\n", + "51210 0\n", + "51211 0\n", + "51212 0\n", + "51213 0\n", + "51214 0\n", + "51215 0\n", + "51216 0\n", + "51217 1\n", + "51218 0\n", + "51219 0\n", + "51220 0\n", + "51221 0\n", + "51222 0\n", + "51223 0\n", + "51224 0\n", + "51225 0\n", + "51226 0\n", + "51227 0\n", + "51228 0\n", + "51229 1\n", + "51230 0\n", + "51231 0\n", + "51232 0\n", + "51233 0\n", + "51234 0\n", + "51235 0\n", + "51236 0\n", + "51237 0\n", + "51238 0\n", + "51239 1\n", + "51240 0\n", + "51241 1\n", + "51242 0\n", + "51243 0\n", + "51244 0\n", + "51245 0\n", + "51246 0\n", + "51247 0\n", + "51248 0\n", + "51249 0\n", + "51250 0\n", + "51251 0\n", + "51252 0\n", + "51253 0\n", + "51254 0\n", + "51255 0\n", + "51256 0\n", + "51257 1\n", + "51258 0\n", + "51259 0\n", + "51260 0\n", + "51261 0\n", + "51262 0\n", + "51263 1\n", + "51264 0\n", + "51265 0\n", + "51266 0\n", + "51267 0\n", + "51268 0\n", + "51269 0\n", + "51270 0\n", + "51271 0\n", + "51272 0\n", + "51273 0\n", + "51274 0\n", + "51275 0\n", + "51276 0\n", + "51277 0\n", + "51278 0\n", + "51279 0\n", + "51280 0\n", + "51281 0\n", + "51282 0\n", + "51283 1\n", + "51284 0\n", + "51285 0\n", + "51286 0\n", + "51287 1\n", + "51288 0\n", + "51289 0\n", + "51290 0\n", + "51291 0\n", + "51292 0\n", + "51293 0\n", + "51294 0\n", + "51295 0\n", + "51296 0\n", + "51297 0\n", + "51298 0\n", + "51299 0\n", + "51300 0\n", + "51301 0\n", + "51302 0\n", + "51303 0\n", + "51304 0\n", + "51305 0\n", + "51306 0\n", + "51307 1\n", + "51308 0\n", + "51309 0\n", + "51310 0\n", + "51311 0\n", + "51312 0\n", + "51313 0\n", + "51314 0\n", + "51315 0\n", + "51316 0\n", + "51317 0\n", + "51318 0\n", + "51319 0\n", + "51320 0\n", + "51321 0\n", + "51322 0\n", + "51323 0\n", + "51324 0\n", + "51325 0\n", + "51326 0\n", + "51327 0\n", + "51328 0\n", + "51329 1\n", + "51330 0\n", + "51331 0\n", + "51332 0\n", + "51333 0\n", + "51334 0\n", + "51335 0\n", + "51336 0\n", + "51337 0\n", + "51338 0\n", + "51339 0\n", + "51340 0\n", + "51341 1\n", + "51342 0\n", + "51343 1\n", + "51344 0\n", + "51345 0\n", + "51346 0\n", + "51347 1\n", + "51348 0\n", + "51349 1\n", + "51350 0\n", + "51351 0\n", + "51352 0\n", + "51353 0\n", + "51354 0\n", + "51355 0\n", + "51356 0\n", + "51357 0\n", + "51358 0\n", + "51359 0\n", + "51360 0\n", + "51361 1\n", + "51362 0\n", + "51363 0\n", + "51364 0\n", + "51365 0\n", + "51366 0\n", + "51367 0\n", + "51368 0\n", + "51369 0\n", + "51370 0\n", + "51371 0\n", + "51372 0\n", + "51373 0\n", + "51374 0\n", + "51375 0\n", + "51376 0\n", + "51377 0\n", + "51378 0\n", + "51379 0\n", + "51380 0\n", + "51381 0\n", + "51382 0\n", + "51383 1\n", + "51384 0\n", + "51385 0\n", + "51386 0\n", + "51387 0\n", + "51388 0\n", + "51389 0\n", + "51390 0\n", + "51391 0\n", + "51392 0\n", + "51393 0\n", + "51394 0\n", + "51395 0\n", + "51396 0\n", + "51397 0\n", + "51398 0\n", + "51399 0\n", + "51400 0\n", + "51401 0\n", + "51402 0\n", + "51403 0\n", + "51404 0\n", + "51405 0\n", + "51406 0\n", + "51407 1\n", + "51408 0\n", + "51409 0\n", + "51410 0\n", + "51411 0\n", + "51412 0\n", + "51413 1\n", + "51414 0\n", + "51415 0\n", + "51416 0\n", + "51417 0\n", + "51418 0\n", + "51419 1\n", + "51420 0\n", + "51421 1\n", + "51422 0\n", + "51423 0\n", + "51424 0\n", + "51425 0\n", + "51426 0\n", + "51427 1\n", + "51428 0\n", + "51429 0\n", + "51430 0\n", + "51431 1\n", + "51432 0\n", + "51433 0\n", + "51434 0\n", + "51435 0\n", + "51436 0\n", + "51437 1\n", + "51438 0\n", + "51439 1\n", + "51440 0\n", + "51441 0\n", + "51442 0\n", + "51443 0\n", + "51444 0\n", + "51445 0\n", + "51446 0\n", + "51447 0\n", + "51448 0\n", + "51449 1\n", + "51450 0\n", + "51451 0\n", + "51452 0\n", + "51453 0\n", + "51454 0\n", + "51455 0\n", + "51456 0\n", + "51457 0\n", + "51458 0\n", + "51459 0\n", + "51460 0\n", + "51461 1\n", + "51462 0\n", + "51463 0\n", + "51464 0\n", + "51465 0\n", + "51466 0\n", + "51467 0\n", + "51468 0\n", + "51469 0\n", + "51470 0\n", + "51471 0\n", + "51472 0\n", + "51473 1\n", + "51474 0\n", + "51475 0\n", + "51476 0\n", + "51477 0\n", + "51478 0\n", + "51479 1\n", + "51480 0\n", + "51481 1\n", + "51482 0\n", + "51483 0\n", + "51484 0\n", + "51485 0\n", + "51486 0\n", + "51487 1\n", + "51488 0\n", + "51489 0\n", + "51490 0\n", + "51491 0\n", + "51492 0\n", + "51493 0\n", + "51494 0\n", + "51495 0\n", + "51496 0\n", + "51497 0\n", + "51498 0\n", + "51499 0\n", + "51500 0\n", + "51501 0\n", + "51502 0\n", + "51503 1\n", + "51504 0\n", + "51505 0\n", + "51506 0\n", + "51507 0\n", + "51508 0\n", + "51509 0\n", + "51510 0\n", + "51511 1\n", + "51512 0\n", + "51513 0\n", + "51514 0\n", + "51515 0\n", + "51516 0\n", + "51517 1\n", + "51518 0\n", + "51519 0\n", + "51520 0\n", + "51521 1\n", + "51522 0\n", + "51523 0\n", + "51524 0\n", + "51525 0\n", + "51526 0\n", + "51527 0\n", + "51528 0\n", + "51529 0\n", + "51530 0\n", + "51531 0\n", + "51532 0\n", + "51533 0\n", + "51534 0\n", + "51535 0\n", + "51536 0\n", + "51537 0\n", + "51538 0\n", + "51539 1\n", + "51540 0\n", + "51541 0\n", + "51542 0\n", + "51543 0\n", + "51544 0\n", + "51545 0\n", + "51546 0\n", + "51547 0\n", + "51548 0\n", + "51549 0\n", + "51550 0\n", + "51551 1\n", + "51552 0\n", + "51553 0\n", + "51554 0\n", + "51555 0\n", + "51556 0\n", + "51557 0\n", + "51558 0\n", + "51559 0\n", + "51560 0\n", + "51561 0\n", + "51562 0\n", + "51563 1\n", + "51564 0\n", + "51565 0\n", + "51566 0\n", + "51567 0\n", + "51568 0\n", + "51569 0\n", + "51570 0\n", + "51571 0\n", + "51572 0\n", + "51573 0\n", + "51574 0\n", + "51575 0\n", + "51576 0\n", + "51577 1\n", + "51578 0\n", + "51579 0\n", + "51580 0\n", + "51581 1\n", + "51582 0\n", + "51583 0\n", + "51584 0\n", + "51585 0\n", + "51586 0\n", + "51587 0\n", + "51588 0\n", + "51589 0\n", + "51590 0\n", + "51591 0\n", + "51592 0\n", + "51593 1\n", + "51594 0\n", + "51595 0\n", + "51596 0\n", + "51597 0\n", + "51598 0\n", + "51599 1\n", + "51600 0\n", + "51601 0\n", + "51602 0\n", + "51603 0\n", + "51604 0\n", + "51605 0\n", + "51606 0\n", + "51607 1\n", + "51608 0\n", + "51609 0\n", + "51610 0\n", + "51611 0\n", + "51612 0\n", + "51613 1\n", + "51614 0\n", + "51615 0\n", + "51616 0\n", + "51617 0\n", + "51618 0\n", + "51619 0\n", + "51620 0\n", + "51621 0\n", + "51622 0\n", + "51623 0\n", + "51624 0\n", + "51625 0\n", + "51626 0\n", + "51627 0\n", + "51628 0\n", + "51629 0\n", + "51630 0\n", + "51631 1\n", + "51632 0\n", + "51633 0\n", + "51634 0\n", + "51635 0\n", + "51636 0\n", + "51637 1\n", + "51638 0\n", + "51639 0\n", + "51640 0\n", + "51641 0\n", + "51642 0\n", + "51643 0\n", + "51644 0\n", + "51645 0\n", + "51646 0\n", + "51647 1\n", + "51648 0\n", + "51649 0\n", + "51650 0\n", + "51651 0\n", + "51652 0\n", + "51653 0\n", + "51654 0\n", + "51655 0\n", + "51656 0\n", + "51657 0\n", + "51658 0\n", + "51659 1\n", + "51660 0\n", + "51661 0\n", + "51662 0\n", + "51663 0\n", + "51664 0\n", + "51665 0\n", + "51666 0\n", + "51667 0\n", + "51668 0\n", + "51669 0\n", + "51670 0\n", + "51671 0\n", + "51672 0\n", + "51673 1\n", + "51674 0\n", + "51675 0\n", + "51676 0\n", + "51677 0\n", + "51678 0\n", + "51679 1\n", + "51680 0\n", + "51681 0\n", + "51682 0\n", + "51683 1\n", + "51684 0\n", + "51685 0\n", + "51686 0\n", + "51687 0\n", + "51688 0\n", + "51689 0\n", + "51690 0\n", + "51691 1\n", + "51692 0\n", + "51693 0\n", + "51694 0\n", + "51695 0\n", + "51696 0\n", + "51697 0\n", + "51698 0\n", + "51699 0\n", + "51700 0\n", + "51701 0\n", + "51702 0\n", + "51703 0\n", + "51704 0\n", + "51705 0\n", + "51706 0\n", + "51707 0\n", + "51708 0\n", + "51709 0\n", + "51710 0\n", + "51711 0\n", + "51712 0\n", + "51713 1\n", + "51714 0\n", + "51715 0\n", + "51716 0\n", + "51717 0\n", + "51718 0\n", + "51719 1\n", + "51720 0\n", + "51721 1\n", + "51722 0\n", + "51723 0\n", + "51724 0\n", + "51725 0\n", + "51726 0\n", + "51727 0\n", + "51728 0\n", + "51729 0\n", + "51730 0\n", + "51731 0\n", + "51732 0\n", + "51733 0\n", + "51734 0\n", + "51735 0\n", + "51736 0\n", + "51737 0\n", + "51738 0\n", + "51739 0\n", + "51740 0\n", + "51741 0\n", + "51742 0\n", + "51743 0\n", + "51744 0\n", + "51745 0\n", + "51746 0\n", + "51747 0\n", + "51748 0\n", + "51749 1\n", + "51750 0\n", + "51751 0\n", + "51752 0\n", + "51753 0\n", + "51754 0\n", + "51755 0\n", + "51756 0\n", + "51757 0\n", + "51758 0\n", + "51759 0\n", + "51760 0\n", + "51761 0\n", + "51762 0\n", + "51763 0\n", + "51764 0\n", + "51765 0\n", + "51766 0\n", + "51767 1\n", + "51768 0\n", + "51769 1\n", + "51770 0\n", + "51771 0\n", + "51772 0\n", + "51773 0\n", + "51774 0\n", + "51775 0\n", + "51776 0\n", + "51777 0\n", + "51778 0\n", + "51779 0\n", + "51780 0\n", + "51781 0\n", + "51782 0\n", + "51783 0\n", + "51784 0\n", + "51785 0\n", + "51786 0\n", + "51787 1\n", + "51788 0\n", + "51789 0\n", + "51790 0\n", + "51791 0\n", + "51792 0\n", + "51793 0\n", + "51794 0\n", + "51795 0\n", + "51796 0\n", + "51797 1\n", + "51798 0\n", + "51799 0\n", + "51800 0\n", + "51801 0\n", + "51802 0\n", + "51803 1\n", + "51804 0\n", + "51805 0\n", + "51806 0\n", + "51807 0\n", + "51808 0\n", + "51809 0\n", + "51810 0\n", + "51811 0\n", + "51812 0\n", + "51813 0\n", + "51814 0\n", + "51815 0\n", + "51816 0\n", + "51817 1\n", + "51818 0\n", + "51819 0\n", + "51820 0\n", + "51821 0\n", + "51822 0\n", + "51823 0\n", + "51824 0\n", + "51825 0\n", + "51826 0\n", + "51827 1\n", + "51828 0\n", + "51829 1\n", + "51830 0\n", + "51831 0\n", + "51832 0\n", + "51833 0\n", + "51834 0\n", + "51835 0\n", + "51836 0\n", + "51837 0\n", + "51838 0\n", + "51839 1\n", + "51840 0\n", + "51841 0\n", + "51842 0\n", + "51843 0\n", + "51844 0\n", + "51845 0\n", + "51846 0\n", + "51847 0\n", + "51848 0\n", + "51849 0\n", + "51850 0\n", + "51851 0\n", + "51852 0\n", + "51853 1\n", + "51854 0\n", + "51855 0\n", + "51856 0\n", + "51857 0\n", + "51858 0\n", + "51859 1\n", + "51860 0\n", + "51861 0\n", + "51862 0\n", + "51863 0\n", + "51864 0\n", + "51865 0\n", + "51866 0\n", + "51867 0\n", + "51868 0\n", + "51869 1\n", + "51870 0\n", + "51871 1\n", + "51872 0\n", + "51873 0\n", + "51874 0\n", + "51875 0\n", + "51876 0\n", + "51877 0\n", + "51878 0\n", + "51879 0\n", + "51880 0\n", + "51881 0\n", + "51882 0\n", + "51883 0\n", + "51884 0\n", + "51885 0\n", + "51886 0\n", + "51887 0\n", + "51888 0\n", + "51889 0\n", + "51890 0\n", + "51891 0\n", + "51892 0\n", + "51893 1\n", + "51894 0\n", + "51895 0\n", + "51896 0\n", + "51897 0\n", + "51898 0\n", + "51899 1\n", + "51900 0\n", + "51901 0\n", + "51902 0\n", + "51903 0\n", + "51904 0\n", + "51905 0\n", + "51906 0\n", + "51907 1\n", + "51908 0\n", + "51909 0\n", + "51910 0\n", + "51911 0\n", + "51912 0\n", + "51913 1\n", + "51914 0\n", + "51915 0\n", + "51916 0\n", + "51917 0\n", + "51918 0\n", + "51919 0\n", + "51920 0\n", + "51921 0\n", + "51922 0\n", + "51923 0\n", + "51924 0\n", + "51925 0\n", + "51926 0\n", + "51927 0\n", + "51928 0\n", + "51929 1\n", + "51930 0\n", + "51931 0\n", + "51932 0\n", + "51933 0\n", + "51934 0\n", + "51935 0\n", + "51936 0\n", + "51937 0\n", + "51938 0\n", + "51939 0\n", + "51940 0\n", + "51941 1\n", + "51942 0\n", + "51943 0\n", + "51944 0\n", + "51945 0\n", + "51946 0\n", + "51947 0\n", + "51948 0\n", + "51949 1\n", + "51950 0\n", + "51951 0\n", + "51952 0\n", + "51953 0\n", + "51954 0\n", + "51955 0\n", + "51956 0\n", + "51957 0\n", + "51958 0\n", + "51959 0\n", + "51960 0\n", + "51961 0\n", + "51962 0\n", + "51963 0\n", + "51964 0\n", + "51965 0\n", + "51966 0\n", + "51967 0\n", + "51968 0\n", + "51969 0\n", + "51970 0\n", + "51971 1\n", + "51972 0\n", + "51973 1\n", + "51974 0\n", + "51975 0\n", + "51976 0\n", + "51977 1\n", + "51978 0\n", + "51979 0\n", + "51980 0\n", + "51981 0\n", + "51982 0\n", + "51983 0\n", + "51984 0\n", + "51985 0\n", + "51986 0\n", + "51987 0\n", + "51988 0\n", + "51989 0\n", + "51990 0\n", + "51991 1\n", + "51992 0\n", + "51993 0\n", + "51994 0\n", + "51995 0\n", + "51996 0\n", + "51997 0\n", + "51998 0\n", + "51999 0\n", + "52000 0\n", + "52001 0\n", + "52002 0\n", + "52003 0\n", + "52004 0\n", + "52005 0\n", + "52006 0\n", + "52007 0\n", + "52008 0\n", + "52009 1\n", + "52010 0\n", + "52011 0\n", + "52012 0\n", + "52013 0\n", + "52014 0\n", + "52015 0\n", + "52016 0\n", + "52017 0\n", + "52018 0\n", + "52019 0\n", + "52020 0\n", + "52021 1\n", + "52022 0\n", + "52023 0\n", + "52024 0\n", + "52025 0\n", + "52026 0\n", + "52027 1\n", + "52028 0\n", + "52029 0\n", + "52030 0\n", + "52031 0\n", + "52032 0\n", + "52033 0\n", + "52034 0\n", + "52035 0\n", + "52036 0\n", + "52037 0\n", + "52038 0\n", + "52039 0\n", + "52040 0\n", + "52041 0\n", + "52042 0\n", + "52043 0\n", + "52044 0\n", + "52045 0\n", + "52046 0\n", + "52047 0\n", + "52048 0\n", + "52049 0\n", + "52050 0\n", + "52051 1\n", + "52052 0\n", + "52053 0\n", + "52054 0\n", + "52055 0\n", + "52056 0\n", + "52057 1\n", + "52058 0\n", + "52059 0\n", + "52060 0\n", + "52061 0\n", + "52062 0\n", + "52063 0\n", + "52064 0\n", + "52065 0\n", + "52066 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "52067 1\n", + "52068 0\n", + "52069 1\n", + "52070 0\n", + "52071 0\n", + "52072 0\n", + "52073 0\n", + "52074 0\n", + "52075 0\n", + "52076 0\n", + "52077 0\n", + "52078 0\n", + "52079 0\n", + "52080 0\n", + "52081 1\n", + "52082 0\n", + "52083 0\n", + "52084 0\n", + "52085 0\n", + "52086 0\n", + "52087 0\n", + "52088 0\n", + "52089 0\n", + "52090 0\n", + "52091 0\n", + "52092 0\n", + "52093 0\n", + "52094 0\n", + "52095 0\n", + "52096 0\n", + "52097 0\n", + "52098 0\n", + "52099 0\n", + "52100 0\n", + "52101 0\n", + "52102 0\n", + "52103 1\n", + "52104 0\n", + "52105 0\n", + "52106 0\n", + "52107 0\n", + "52108 0\n", + "52109 0\n", + "52110 0\n", + "52111 0\n", + "52112 0\n", + "52113 0\n", + "52114 0\n", + "52115 0\n", + "52116 0\n", + "52117 0\n", + "52118 0\n", + "52119 0\n", + "52120 0\n", + "52121 1\n", + "52122 0\n", + "52123 0\n", + "52124 0\n", + "52125 0\n", + "52126 0\n", + "52127 1\n", + "52128 0\n", + "52129 0\n", + "52130 0\n", + "52131 0\n", + "52132 0\n", + "52133 0\n", + "52134 0\n", + "52135 0\n", + "52136 0\n", + "52137 0\n", + "52138 0\n", + "52139 0\n", + "52140 0\n", + "52141 0\n", + "52142 0\n", + "52143 0\n", + "52144 0\n", + "52145 0\n", + "52146 0\n", + "52147 1\n", + "52148 0\n", + "52149 0\n", + "52150 0\n", + "52151 0\n", + "52152 0\n", + "52153 1\n", + "52154 0\n", + "52155 0\n", + "52156 0\n", + "52157 0\n", + "52158 0\n", + "52159 0\n", + "52160 0\n", + "52161 0\n", + "52162 0\n", + "52163 1\n", + "52164 0\n", + "52165 0\n", + "52166 0\n", + "52167 0\n", + "52168 0\n", + "52169 0\n", + "52170 0\n", + "52171 0\n", + "52172 0\n", + "52173 0\n", + "52174 0\n", + "52175 0\n", + "52176 0\n", + "52177 1\n", + "52178 0\n", + "52179 0\n", + "52180 0\n", + "52181 1\n", + "52182 0\n", + "52183 1\n", + "52184 0\n", + "52185 0\n", + "52186 0\n", + "52187 0\n", + "52188 0\n", + "52189 1\n", + "52190 0\n", + "52191 0\n", + "52192 0\n", + "52193 0\n", + "52194 0\n", + "52195 0\n", + "52196 0\n", + "52197 0\n", + "52198 0\n", + "52199 0\n", + "52200 0\n", + "52201 1\n", + "52202 0\n", + "52203 0\n", + "52204 0\n", + "52205 0\n", + "52206 0\n", + "52207 0\n", + "52208 0\n", + "52209 0\n", + "52210 0\n", + "52211 0\n", + "52212 0\n", + "52213 0\n", + "52214 0\n", + "52215 0\n", + "52216 0\n", + "52217 0\n", + "52218 0\n", + "52219 0\n", + "52220 0\n", + "52221 0\n", + "52222 0\n", + "52223 1\n", + "52224 0\n", + "52225 0\n", + "52226 0\n", + "52227 0\n", + "52228 0\n", + "52229 0\n", + "52230 0\n", + "52231 0\n", + "52232 0\n", + "52233 0\n", + "52234 0\n", + "52235 0\n", + "52236 0\n", + "52237 1\n", + "52238 0\n", + "52239 0\n", + "52240 0\n", + "52241 0\n", + "52242 0\n", + "52243 0\n", + "52244 0\n", + "52245 0\n", + "52246 0\n", + "52247 0\n", + "52248 0\n", + "52249 1\n", + "52250 0\n", + "52251 0\n", + "52252 0\n", + "52253 1\n", + "52254 0\n", + "52255 0\n", + "52256 0\n", + "52257 0\n", + "52258 0\n", + "52259 1\n", + "52260 0\n", + "52261 0\n", + "52262 0\n", + "52263 0\n", + "52264 0\n", + "52265 0\n", + "52266 0\n", + "52267 1\n", + "52268 0\n", + "52269 0\n", + "52270 0\n", + "52271 0\n", + "52272 0\n", + "52273 0\n", + "52274 0\n", + "52275 0\n", + "52276 0\n", + "52277 0\n", + "52278 0\n", + "52279 0\n", + "52280 0\n", + "52281 0\n", + "52282 0\n", + "52283 0\n", + "52284 0\n", + "52285 0\n", + "52286 0\n", + "52287 0\n", + "52288 0\n", + "52289 1\n", + "52290 0\n", + "52291 1\n", + "52292 0\n", + "52293 0\n", + "52294 0\n", + "52295 0\n", + "52296 0\n", + "52297 0\n", + "52298 0\n", + "52299 0\n", + "52300 0\n", + "52301 1\n", + "52302 0\n", + "52303 0\n", + "52304 0\n", + "52305 0\n", + "52306 0\n", + "52307 0\n", + "52308 0\n", + "52309 0\n", + "52310 0\n", + "52311 0\n", + "52312 0\n", + "52313 1\n", + "52314 0\n", + "52315 0\n", + "52316 0\n", + "52317 0\n", + "52318 0\n", + "52319 0\n", + "52320 0\n", + "52321 1\n", + "52322 0\n", + "52323 0\n", + "52324 0\n", + "52325 0\n", + "52326 0\n", + "52327 0\n", + "52328 0\n", + "52329 0\n", + "52330 0\n", + "52331 0\n", + "52332 0\n", + "52333 0\n", + "52334 0\n", + "52335 0\n", + "52336 0\n", + "52337 0\n", + "52338 0\n", + "52339 0\n", + "52340 0\n", + "52341 0\n", + "52342 0\n", + "52343 0\n", + "52344 0\n", + "52345 0\n", + "52346 0\n", + "52347 0\n", + "52348 0\n", + "52349 0\n", + "52350 0\n", + "52351 0\n", + "52352 0\n", + "52353 0\n", + "52354 0\n", + "52355 0\n", + "52356 0\n", + "52357 0\n", + "52358 0\n", + "52359 0\n", + "52360 0\n", + "52361 1\n", + "52362 0\n", + "52363 1\n", + "52364 0\n", + "52365 0\n", + "52366 0\n", + "52367 0\n", + "52368 0\n", + "52369 1\n", + "52370 0\n", + "52371 0\n", + "52372 0\n", + "52373 0\n", + "52374 0\n", + "52375 0\n", + "52376 0\n", + "52377 0\n", + "52378 0\n", + "52379 1\n", + "52380 0\n", + "52381 0\n", + "52382 0\n", + "52383 0\n", + "52384 0\n", + "52385 0\n", + "52386 0\n", + "52387 1\n", + "52388 0\n", + "52389 0\n", + "52390 0\n", + "52391 1\n", + "52392 0\n", + "52393 0\n", + "52394 0\n", + "52395 0\n", + "52396 0\n", + "52397 0\n", + "52398 0\n", + "52399 0\n", + "52400 0\n", + "52401 0\n", + "52402 0\n", + "52403 0\n", + "52404 0\n", + "52405 0\n", + "52406 0\n", + "52407 0\n", + "52408 0\n", + "52409 0\n", + "52410 0\n", + "52411 0\n", + "52412 0\n", + "52413 0\n", + "52414 0\n", + "52415 0\n", + "52416 0\n", + "52417 0\n", + "52418 0\n", + "52419 0\n", + "52420 0\n", + "52421 0\n", + "52422 0\n", + "52423 0\n", + "52424 0\n", + "52425 0\n", + "52426 0\n", + "52427 0\n", + "52428 0\n", + "52429 0\n", + "52430 0\n", + "52431 0\n", + "52432 0\n", + "52433 1\n", + "52434 0\n", + "52435 0\n", + "52436 0\n", + "52437 0\n", + "52438 0\n", + "52439 0\n", + "52440 0\n", + "52441 0\n", + "52442 0\n", + "52443 0\n", + "52444 0\n", + "52445 0\n", + "52446 0\n", + "52447 0\n", + "52448 0\n", + "52449 0\n", + "52450 0\n", + "52451 0\n", + "52452 0\n", + "52453 1\n", + "52454 0\n", + "52455 0\n", + "52456 0\n", + "52457 1\n", + "52458 0\n", + "52459 0\n", + "52460 0\n", + "52461 0\n", + "52462 0\n", + "52463 0\n", + "52464 0\n", + "52465 0\n", + "52466 0\n", + "52467 0\n", + "52468 0\n", + "52469 0\n", + "52470 0\n", + "52471 0\n", + "52472 0\n", + "52473 0\n", + "52474 0\n", + "52475 0\n", + "52476 0\n", + "52477 0\n", + "52478 0\n", + "52479 0\n", + "52480 0\n", + "52481 0\n", + "52482 0\n", + "52483 0\n", + "52484 0\n", + "52485 0\n", + "52486 0\n", + "52487 0\n", + "52488 0\n", + "52489 1\n", + "52490 0\n", + "52491 0\n", + "52492 0\n", + "52493 0\n", + "52494 0\n", + "52495 0\n", + "52496 0\n", + "52497 0\n", + "52498 0\n", + "52499 0\n", + "52500 0\n", + "52501 1\n", + "52502 0\n", + "52503 0\n", + "52504 0\n", + "52505 0\n", + "52506 0\n", + "52507 0\n", + "52508 0\n", + "52509 0\n", + "52510 0\n", + "52511 1\n", + "52512 0\n", + "52513 0\n", + "52514 0\n", + "52515 0\n", + "52516 0\n", + "52517 1\n", + "52518 0\n", + "52519 0\n", + "52520 0\n", + "52521 0\n", + "52522 0\n", + "52523 0\n", + "52524 0\n", + "52525 0\n", + "52526 0\n", + "52527 0\n", + "52528 0\n", + "52529 1\n", + "52530 0\n", + "52531 0\n", + "52532 0\n", + "52533 0\n", + "52534 0\n", + "52535 0\n", + "52536 0\n", + "52537 0\n", + "52538 0\n", + "52539 0\n", + "52540 0\n", + "52541 1\n", + "52542 0\n", + "52543 1\n", + "52544 0\n", + "52545 0\n", + "52546 0\n", + "52547 0\n", + "52548 0\n", + "52549 0\n", + "52550 0\n", + "52551 0\n", + "52552 0\n", + "52553 1\n", + "52554 0\n", + "52555 0\n", + "52556 0\n", + "52557 0\n", + "52558 0\n", + "52559 0\n", + "52560 0\n", + "52561 1\n", + "52562 0\n", + "52563 0\n", + "52564 0\n", + "52565 0\n", + "52566 0\n", + "52567 1\n", + "52568 0\n", + "52569 0\n", + "52570 0\n", + "52571 1\n", + "52572 0\n", + "52573 0\n", + "52574 0\n", + "52575 0\n", + "52576 0\n", + "52577 0\n", + "52578 0\n", + "52579 1\n", + "52580 0\n", + "52581 0\n", + "52582 0\n", + "52583 1\n", + "52584 0\n", + "52585 0\n", + "52586 0\n", + "52587 0\n", + "52588 0\n", + "52589 0\n", + "52590 0\n", + "52591 0\n", + "52592 0\n", + "52593 0\n", + "52594 0\n", + "52595 0\n", + "52596 0\n", + "52597 0\n", + "52598 0\n", + "52599 0\n", + "52600 0\n", + "52601 0\n", + "52602 0\n", + "52603 0\n", + "52604 0\n", + "52605 0\n", + "52606 0\n", + "52607 0\n", + "52608 0\n", + "52609 1\n", + "52610 0\n", + "52611 0\n", + "52612 0\n", + "52613 0\n", + "52614 0\n", + "52615 0\n", + "52616 0\n", + "52617 0\n", + "52618 0\n", + "52619 0\n", + "52620 0\n", + "52621 0\n", + "52622 0\n", + "52623 0\n", + "52624 0\n", + "52625 0\n", + "52626 0\n", + "52627 1\n", + "52628 0\n", + "52629 0\n", + "52630 0\n", + "52631 1\n", + "52632 0\n", + "52633 0\n", + "52634 0\n", + "52635 0\n", + "52636 0\n", + "52637 0\n", + "52638 0\n", + "52639 1\n", + "52640 0\n", + "52641 0\n", + "52642 0\n", + "52643 0\n", + "52644 0\n", + "52645 0\n", + "52646 0\n", + "52647 0\n", + "52648 0\n", + "52649 0\n", + "52650 0\n", + "52651 0\n", + "52652 0\n", + "52653 0\n", + "52654 0\n", + "52655 0\n", + "52656 0\n", + "52657 0\n", + "52658 0\n", + "52659 0\n", + "52660 0\n", + "52661 0\n", + "52662 0\n", + "52663 0\n", + "52664 0\n", + "52665 0\n", + "52666 0\n", + "52667 1\n", + "52668 0\n", + "52669 0\n", + "52670 0\n", + "52671 0\n", + "52672 0\n", + "52673 1\n", + "52674 0\n", + "52675 0\n", + "52676 0\n", + "52677 0\n", + "52678 0\n", + "52679 0\n", + "52680 0\n", + "52681 0\n", + "52682 0\n", + "52683 0\n", + "52684 0\n", + "52685 0\n", + "52686 0\n", + "52687 0\n", + "52688 0\n", + "52689 0\n", + "52690 0\n", + "52691 1\n", + "52692 0\n", + "52693 0\n", + "52694 0\n", + "52695 0\n", + "52696 0\n", + "52697 1\n", + "52698 0\n", + "52699 0\n", + "52700 0\n", + "52701 0\n", + "52702 0\n", + "52703 0\n", + "52704 0\n", + "52705 0\n", + "52706 0\n", + "52707 0\n", + "52708 0\n", + "52709 1\n", + "52710 0\n", + "52711 1\n", + "52712 0\n", + "52713 0\n", + "52714 0\n", + "52715 0\n", + "52716 0\n", + "52717 0\n", + "52718 0\n", + "52719 0\n", + "52720 0\n", + "52721 1\n", + "52722 0\n", + "52723 0\n", + "52724 0\n", + "52725 0\n", + "52726 0\n", + "52727 1\n", + "52728 0\n", + "52729 0\n", + "52730 0\n", + "52731 0\n", + "52732 0\n", + "52733 1\n", + "52734 0\n", + "52735 0\n", + "52736 0\n", + "52737 0\n", + "52738 0\n", + "52739 0\n", + "52740 0\n", + "52741 0\n", + "52742 0\n", + "52743 0\n", + "52744 0\n", + "52745 0\n", + "52746 0\n", + "52747 1\n", + "52748 0\n", + "52749 0\n", + "52750 0\n", + "52751 0\n", + "52752 0\n", + "52753 0\n", + "52754 0\n", + "52755 0\n", + "52756 0\n", + "52757 1\n", + "52758 0\n", + "52759 0\n", + "52760 0\n", + "52761 0\n", + "52762 0\n", + "52763 0\n", + "52764 0\n", + "52765 0\n", + "52766 0\n", + "52767 0\n", + "52768 0\n", + "52769 1\n", + "52770 0\n", + "52771 0\n", + "52772 0\n", + "52773 0\n", + "52774 0\n", + "52775 0\n", + "52776 0\n", + "52777 0\n", + "52778 0\n", + "52779 0\n", + "52780 0\n", + "52781 0\n", + "52782 0\n", + "52783 1\n", + "52784 0\n", + "52785 0\n", + "52786 0\n", + "52787 0\n", + "52788 0\n", + "52789 0\n", + "52790 0\n", + "52791 0\n", + "52792 0\n", + "52793 0\n", + "52794 0\n", + "52795 0\n", + "52796 0\n", + "52797 0\n", + "52798 0\n", + "52799 0\n", + "52800 0\n", + "52801 0\n", + "52802 0\n", + "52803 0\n", + "52804 0\n", + "52805 0\n", + "52806 0\n", + "52807 1\n", + "52808 0\n", + "52809 0\n", + "52810 0\n", + "52811 0\n", + "52812 0\n", + "52813 1\n", + "52814 0\n", + "52815 0\n", + "52816 0\n", + "52817 1\n", + "52818 0\n", + "52819 0\n", + "52820 0\n", + "52821 0\n", + "52822 0\n", + "52823 0\n", + "52824 0\n", + "52825 0\n", + "52826 0\n", + "52827 0\n", + "52828 0\n", + "52829 0\n", + "52830 0\n", + "52831 0\n", + "52832 0\n", + "52833 0\n", + "52834 0\n", + "52835 0\n", + "52836 0\n", + "52837 1\n", + "52838 0\n", + "52839 0\n", + "52840 0\n", + "52841 0\n", + "52842 0\n", + "52843 0\n", + "52844 0\n", + "52845 0\n", + "52846 0\n", + "52847 0\n", + "52848 0\n", + "52849 0\n", + "52850 0\n", + "52851 0\n", + "52852 0\n", + "52853 0\n", + "52854 0\n", + "52855 0\n", + "52856 0\n", + "52857 0\n", + "52858 0\n", + "52859 1\n", + "52860 0\n", + "52861 1\n", + "52862 0\n", + "52863 0\n", + "52864 0\n", + "52865 0\n", + "52866 0\n", + "52867 0\n", + "52868 0\n", + "52869 0\n", + "52870 0\n", + "52871 0\n", + "52872 0\n", + "52873 0\n", + "52874 0\n", + "52875 0\n", + "52876 0\n", + "52877 0\n", + "52878 0\n", + "52879 1\n", + "52880 0\n", + "52881 0\n", + "52882 0\n", + "52883 1\n", + "52884 0\n", + "52885 0\n", + "52886 0\n", + "52887 0\n", + "52888 0\n", + "52889 1\n", + "52890 0\n", + "52891 0\n", + "52892 0\n", + "52893 0\n", + "52894 0\n", + "52895 0\n", + "52896 0\n", + "52897 0\n", + "52898 0\n", + "52899 0\n", + "52900 0\n", + "52901 1\n", + "52902 0\n", + "52903 1\n", + "52904 0\n", + "52905 0\n", + "52906 0\n", + "52907 0\n", + "52908 0\n", + "52909 0\n", + "52910 0\n", + "52911 0\n", + "52912 0\n", + "52913 0\n", + "52914 0\n", + "52915 0\n", + "52916 0\n", + "52917 0\n", + "52918 0\n", + "52919 1\n", + "52920 0\n", + "52921 0\n", + "52922 0\n", + "52923 0\n", + "52924 0\n", + "52925 0\n", + "52926 0\n", + "52927 0\n", + "52928 0\n", + "52929 0\n", + "52930 0\n", + "52931 0\n", + "52932 0\n", + "52933 0\n", + "52934 0\n", + "52935 0\n", + "52936 0\n", + "52937 1\n", + "52938 0\n", + "52939 0\n", + "52940 0\n", + "52941 0\n", + "52942 0\n", + "52943 0\n", + "52944 0\n", + "52945 0\n", + "52946 0\n", + "52947 0\n", + "52948 0\n", + "52949 0\n", + "52950 0\n", + "52951 1\n", + "52952 0\n", + "52953 0\n", + "52954 0\n", + "52955 0\n", + "52956 0\n", + "52957 1\n", + "52958 0\n", + "52959 0\n", + "52960 0\n", + "52961 0\n", + "52962 0\n", + "52963 1\n", + "52964 0\n", + "52965 0\n", + "52966 0\n", + "52967 1\n", + "52968 0\n", + "52969 0\n", + "52970 0\n", + "52971 0\n", + "52972 0\n", + "52973 1\n", + "52974 0\n", + "52975 0\n", + "52976 0\n", + "52977 0\n", + "52978 0\n", + "52979 0\n", + "52980 0\n", + "52981 1\n", + "52982 0\n", + "52983 0\n", + "52984 0\n", + "52985 0\n", + "52986 0\n", + "52987 0\n", + "52988 0\n", + "52989 0\n", + "52990 0\n", + "52991 0\n", + "52992 0\n", + "52993 0\n", + "52994 0\n", + "52995 0\n", + "52996 0\n", + "52997 0\n", + "52998 0\n", + "52999 1\n", + "53000 0\n", + "53001 0\n", + "53002 0\n", + "53003 1\n", + "53004 0\n", + "53005 0\n", + "53006 0\n", + "53007 0\n", + "53008 0\n", + "53009 0\n", + "53010 0\n", + "53011 0\n", + "53012 0\n", + "53013 0\n", + "53014 0\n", + "53015 0\n", + "53016 0\n", + "53017 1\n", + "53018 0\n", + "53019 0\n", + "53020 0\n", + "53021 0\n", + "53022 0\n", + "53023 0\n", + "53024 0\n", + "53025 0\n", + "53026 0\n", + "53027 0\n", + "53028 0\n", + "53029 0\n", + "53030 0\n", + "53031 0\n", + "53032 0\n", + "53033 0\n", + "53034 0\n", + "53035 0\n", + "53036 0\n", + "53037 0\n", + "53038 0\n", + "53039 0\n", + "53040 0\n", + "53041 0\n", + "53042 0\n", + "53043 0\n", + "53044 0\n", + "53045 0\n", + "53046 0\n", + "53047 1\n", + "53048 0\n", + "53049 0\n", + "53050 0\n", + "53051 1\n", + "53052 0\n", + "53053 0\n", + "53054 0\n", + "53055 0\n", + "53056 0\n", + "53057 0\n", + "53058 0\n", + "53059 0\n", + "53060 0\n", + "53061 0\n", + "53062 0\n", + "53063 0\n", + "53064 0\n", + "53065 0\n", + "53066 0\n", + "53067 0\n", + "53068 0\n", + "53069 1\n", + "53070 0\n", + "53071 0\n", + "53072 0\n", + "53073 0\n", + "53074 0\n", + "53075 0\n", + "53076 0\n", + "53077 1\n", + "53078 0\n", + "53079 0\n", + "53080 0\n", + "53081 0\n", + "53082 0\n", + "53083 0\n", + "53084 0\n", + "53085 0\n", + "53086 0\n", + "53087 1\n", + "53088 0\n", + "53089 1\n", + "53090 0\n", + "53091 0\n", + "53092 0\n", + "53093 1\n", + "53094 0\n", + "53095 0\n", + "53096 0\n", + "53097 0\n", + "53098 0\n", + "53099 0\n", + "53100 0\n", + "53101 1\n", + "53102 0\n", + "53103 0\n", + "53104 0\n", + "53105 0\n", + "53106 0\n", + "53107 0\n", + "53108 0\n", + "53109 0\n", + "53110 0\n", + "53111 0\n", + "53112 0\n", + "53113 1\n", + "53114 0\n", + "53115 0\n", + "53116 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "53117 1\n", + "53118 0\n", + "53119 0\n", + "53120 0\n", + "53121 0\n", + "53122 0\n", + "53123 0\n", + "53124 0\n", + "53125 0\n", + "53126 0\n", + "53127 0\n", + "53128 0\n", + "53129 1\n", + "53130 0\n", + "53131 0\n", + "53132 0\n", + "53133 0\n", + "53134 0\n", + "53135 0\n", + "53136 0\n", + "53137 0\n", + "53138 0\n", + "53139 0\n", + "53140 0\n", + "53141 0\n", + "53142 0\n", + "53143 0\n", + "53144 0\n", + "53145 0\n", + "53146 0\n", + "53147 1\n", + "53148 0\n", + "53149 1\n", + "53150 0\n", + "53151 0\n", + "53152 0\n", + "53153 0\n", + "53154 0\n", + "53155 0\n", + "53156 0\n", + "53157 0\n", + "53158 0\n", + "53159 0\n", + "53160 0\n", + "53161 1\n", + "53162 0\n", + "53163 0\n", + "53164 0\n", + "53165 0\n", + "53166 0\n", + "53167 0\n", + "53168 0\n", + "53169 0\n", + "53170 0\n", + "53171 1\n", + "53172 0\n", + "53173 1\n", + "53174 0\n", + "53175 0\n", + "53176 0\n", + "53177 0\n", + "53178 0\n", + "53179 0\n", + "53180 0\n", + "53181 0\n", + "53182 0\n", + "53183 0\n", + "53184 0\n", + "53185 0\n", + "53186 0\n", + "53187 0\n", + "53188 0\n", + "53189 1\n", + "53190 0\n", + "53191 0\n", + "53192 0\n", + "53193 0\n", + "53194 0\n", + "53195 0\n", + "53196 0\n", + "53197 1\n", + "53198 0\n", + "53199 0\n", + "53200 0\n", + "53201 1\n", + "53202 0\n", + "53203 0\n", + "53204 0\n", + "53205 0\n", + "53206 0\n", + "53207 0\n", + "53208 0\n", + "53209 0\n", + "53210 0\n", + "53211 0\n", + "53212 0\n", + "53213 0\n", + "53214 0\n", + "53215 0\n", + "53216 0\n", + "53217 0\n", + "53218 0\n", + "53219 0\n", + "53220 0\n", + "53221 0\n", + "53222 0\n", + "53223 0\n", + "53224 0\n", + "53225 0\n", + "53226 0\n", + "53227 0\n", + "53228 0\n", + "53229 0\n", + "53230 0\n", + "53231 1\n", + "53232 0\n", + "53233 1\n", + "53234 0\n", + "53235 0\n", + "53236 0\n", + "53237 0\n", + "53238 0\n", + "53239 1\n", + "53240 0\n", + "53241 0\n", + "53242 0\n", + "53243 0\n", + "53244 0\n", + "53245 0\n", + "53246 0\n", + "53247 0\n", + "53248 0\n", + "53249 0\n", + "53250 0\n", + "53251 0\n", + "53252 0\n", + "53253 0\n", + "53254 0\n", + "53255 0\n", + "53256 0\n", + "53257 0\n", + "53258 0\n", + "53259 0\n", + "53260 0\n", + "53261 0\n", + "53262 0\n", + "53263 0\n", + "53264 0\n", + "53265 0\n", + "53266 0\n", + "53267 1\n", + "53268 0\n", + "53269 1\n", + "53270 0\n", + "53271 0\n", + "53272 0\n", + "53273 0\n", + "53274 0\n", + "53275 0\n", + "53276 0\n", + "53277 0\n", + "53278 0\n", + "53279 1\n", + "53280 0\n", + "53281 1\n", + "53282 0\n", + "53283 0\n", + "53284 0\n", + "53285 0\n", + "53286 0\n", + "53287 0\n", + "53288 0\n", + "53289 0\n", + "53290 0\n", + "53291 0\n", + "53292 0\n", + "53293 0\n", + "53294 0\n", + "53295 0\n", + "53296 0\n", + "53297 0\n", + "53298 0\n", + "53299 1\n", + "53300 0\n", + "53301 0\n", + "53302 0\n", + "53303 0\n", + "53304 0\n", + "53305 0\n", + "53306 0\n", + "53307 0\n", + "53308 0\n", + "53309 1\n", + "53310 0\n", + "53311 0\n", + "53312 0\n", + "53313 0\n", + "53314 0\n", + "53315 0\n", + "53316 0\n", + "53317 0\n", + "53318 0\n", + "53319 0\n", + "53320 0\n", + "53321 0\n", + "53322 0\n", + "53323 1\n", + "53324 0\n", + "53325 0\n", + "53326 0\n", + "53327 1\n", + "53328 0\n", + "53329 0\n", + "53330 0\n", + "53331 0\n", + "53332 0\n", + "53333 0\n", + "53334 0\n", + "53335 0\n", + "53336 0\n", + "53337 0\n", + "53338 0\n", + "53339 0\n", + "53340 0\n", + "53341 0\n", + "53342 0\n", + "53343 0\n", + "53344 0\n", + "53345 0\n", + "53346 0\n", + "53347 0\n", + "53348 0\n", + "53349 0\n", + "53350 0\n", + "53351 0\n", + "53352 0\n", + "53353 1\n", + "53354 0\n", + "53355 0\n", + "53356 0\n", + "53357 0\n", + "53358 0\n", + "53359 1\n", + "53360 0\n", + "53361 0\n", + "53362 0\n", + "53363 0\n", + "53364 0\n", + "53365 0\n", + "53366 0\n", + "53367 0\n", + "53368 0\n", + "53369 0\n", + "53370 0\n", + "53371 0\n", + "53372 0\n", + "53373 0\n", + "53374 0\n", + "53375 0\n", + "53376 0\n", + "53377 1\n", + "53378 0\n", + "53379 0\n", + "53380 0\n", + "53381 1\n", + "53382 0\n", + "53383 0\n", + "53384 0\n", + "53385 0\n", + "53386 0\n", + "53387 0\n", + "53388 0\n", + "53389 0\n", + "53390 0\n", + "53391 0\n", + "53392 0\n", + "53393 0\n", + "53394 0\n", + "53395 0\n", + "53396 0\n", + "53397 0\n", + "53398 0\n", + "53399 0\n", + "53400 0\n", + "53401 1\n", + "53402 0\n", + "53403 0\n", + "53404 0\n", + "53405 0\n", + "53406 0\n", + "53407 1\n", + "53408 0\n", + "53409 0\n", + "53410 0\n", + "53411 1\n", + "53412 0\n", + "53413 0\n", + "53414 0\n", + "53415 0\n", + "53416 0\n", + "53417 0\n", + "53418 0\n", + "53419 1\n", + "53420 0\n", + "53421 0\n", + "53422 0\n", + "53423 0\n", + "53424 0\n", + "53425 0\n", + "53426 0\n", + "53427 0\n", + "53428 0\n", + "53429 0\n", + "53430 0\n", + "53431 0\n", + "53432 0\n", + "53433 0\n", + "53434 0\n", + "53435 0\n", + "53436 0\n", + "53437 1\n", + "53438 0\n", + "53439 0\n", + "53440 0\n", + "53441 1\n", + "53442 0\n", + "53443 0\n", + "53444 0\n", + "53445 0\n", + "53446 0\n", + "53447 0\n", + "53448 0\n", + "53449 0\n", + "53450 0\n", + "53451 0\n", + "53452 0\n", + "53453 1\n", + "53454 0\n", + "53455 0\n", + "53456 0\n", + "53457 0\n", + "53458 0\n", + "53459 0\n", + "53460 0\n", + "53461 0\n", + "53462 0\n", + "53463 0\n", + "53464 0\n", + "53465 0\n", + "53466 0\n", + "53467 0\n", + "53468 0\n", + "53469 0\n", + "53470 0\n", + "53471 0\n", + "53472 0\n", + "53473 0\n", + "53474 0\n", + "53475 0\n", + "53476 0\n", + "53477 0\n", + "53478 0\n", + "53479 1\n", + "53480 0\n", + "53481 0\n", + "53482 0\n", + "53483 0\n", + "53484 0\n", + "53485 0\n", + "53486 0\n", + "53487 0\n", + "53488 0\n", + "53489 0\n", + "53490 0\n", + "53491 0\n", + "53492 0\n", + "53493 0\n", + "53494 0\n", + "53495 0\n", + "53496 0\n", + "53497 0\n", + "53498 0\n", + "53499 0\n", + "53500 0\n", + "53501 0\n", + "53502 0\n", + "53503 1\n", + "53504 0\n", + "53505 0\n", + "53506 0\n", + "53507 1\n", + "53508 0\n", + "53509 0\n", + "53510 0\n", + "53511 0\n", + "53512 0\n", + "53513 0\n", + "53514 0\n", + "53515 0\n", + "53516 0\n", + "53517 0\n", + "53518 0\n", + "53519 0\n", + "53520 0\n", + "53521 0\n", + "53522 0\n", + "53523 0\n", + "53524 0\n", + "53525 0\n", + "53526 0\n", + "53527 1\n", + "53528 0\n", + "53529 0\n", + "53530 0\n", + "53531 0\n", + "53532 0\n", + "53533 0\n", + "53534 0\n", + "53535 0\n", + "53536 0\n", + "53537 0\n", + "53538 0\n", + "53539 0\n", + "53540 0\n", + "53541 0\n", + "53542 0\n", + "53543 0\n", + "53544 0\n", + "53545 0\n", + "53546 0\n", + "53547 0\n", + "53548 0\n", + "53549 1\n", + "53550 0\n", + "53551 1\n", + "53552 0\n", + "53553 0\n", + "53554 0\n", + "53555 0\n", + "53556 0\n", + "53557 0\n", + "53558 0\n", + "53559 0\n", + "53560 0\n", + "53561 0\n", + "53562 0\n", + "53563 0\n", + "53564 0\n", + "53565 0\n", + "53566 0\n", + "53567 0\n", + "53568 0\n", + "53569 1\n", + "53570 0\n", + "53571 0\n", + "53572 0\n", + "53573 0\n", + "53574 0\n", + "53575 0\n", + "53576 0\n", + "53577 0\n", + "53578 0\n", + "53579 0\n", + "53580 0\n", + "53581 0\n", + "53582 0\n", + "53583 0\n", + "53584 0\n", + "53585 0\n", + "53586 0\n", + "53587 0\n", + "53588 0\n", + "53589 0\n", + "53590 0\n", + "53591 1\n", + "53592 0\n", + "53593 1\n", + "53594 0\n", + "53595 0\n", + "53596 0\n", + "53597 1\n", + "53598 0\n", + "53599 0\n", + "53600 0\n", + "53601 0\n", + "53602 0\n", + "53603 0\n", + "53604 0\n", + "53605 0\n", + "53606 0\n", + "53607 0\n", + "53608 0\n", + "53609 1\n", + "53610 0\n", + "53611 1\n", + "53612 0\n", + "53613 0\n", + "53614 0\n", + "53615 0\n", + "53616 0\n", + "53617 1\n", + "53618 0\n", + "53619 0\n", + "53620 0\n", + "53621 0\n", + "53622 0\n", + "53623 1\n", + "53624 0\n", + "53625 0\n", + "53626 0\n", + "53627 0\n", + "53628 0\n", + "53629 1\n", + "53630 0\n", + "53631 0\n", + "53632 0\n", + "53633 1\n", + "53634 0\n", + "53635 0\n", + "53636 0\n", + "53637 0\n", + "53638 0\n", + "53639 1\n", + "53640 0\n", + "53641 0\n", + "53642 0\n", + "53643 0\n", + "53644 0\n", + "53645 0\n", + "53646 0\n", + "53647 0\n", + "53648 0\n", + "53649 0\n", + "53650 0\n", + "53651 0\n", + "53652 0\n", + "53653 1\n", + "53654 0\n", + "53655 0\n", + "53656 0\n", + "53657 1\n", + "53658 0\n", + "53659 0\n", + "53660 0\n", + "53661 0\n", + "53662 0\n", + "53663 0\n", + "53664 0\n", + "53665 0\n", + "53666 0\n", + "53667 0\n", + "53668 0\n", + "53669 0\n", + "53670 0\n", + "53671 0\n", + "53672 0\n", + "53673 0\n", + "53674 0\n", + "53675 0\n", + "53676 0\n", + "53677 0\n", + "53678 0\n", + "53679 0\n", + "53680 0\n", + "53681 1\n", + "53682 0\n", + "53683 0\n", + "53684 0\n", + "53685 0\n", + "53686 0\n", + "53687 0\n", + "53688 0\n", + "53689 0\n", + "53690 0\n", + "53691 0\n", + "53692 0\n", + "53693 1\n", + "53694 0\n", + "53695 0\n", + "53696 0\n", + "53697 0\n", + "53698 0\n", + "53699 1\n", + "53700 0\n", + "53701 0\n", + "53702 0\n", + "53703 0\n", + "53704 0\n", + "53705 0\n", + "53706 0\n", + "53707 0\n", + "53708 0\n", + "53709 0\n", + "53710 0\n", + "53711 0\n", + "53712 0\n", + "53713 0\n", + "53714 0\n", + "53715 0\n", + "53716 0\n", + "53717 1\n", + "53718 0\n", + "53719 1\n", + "53720 0\n", + "53721 0\n", + "53722 0\n", + "53723 0\n", + "53724 0\n", + "53725 0\n", + "53726 0\n", + "53727 0\n", + "53728 0\n", + "53729 0\n", + "53730 0\n", + "53731 1\n", + "53732 0\n", + "53733 0\n", + "53734 0\n", + "53735 0\n", + "53736 0\n", + "53737 0\n", + "53738 0\n", + "53739 0\n", + "53740 0\n", + "53741 0\n", + "53742 0\n", + "53743 0\n", + "53744 0\n", + "53745 0\n", + "53746 0\n", + "53747 0\n", + "53748 0\n", + "53749 0\n", + "53750 0\n", + "53751 0\n", + "53752 0\n", + "53753 0\n", + "53754 0\n", + "53755 0\n", + "53756 0\n", + "53757 0\n", + "53758 0\n", + "53759 1\n", + "53760 0\n", + "53761 0\n", + "53762 0\n", + "53763 0\n", + "53764 0\n", + "53765 0\n", + "53766 0\n", + "53767 0\n", + "53768 0\n", + "53769 0\n", + "53770 0\n", + "53771 0\n", + "53772 0\n", + "53773 1\n", + "53774 0\n", + "53775 0\n", + "53776 0\n", + "53777 1\n", + "53778 0\n", + "53779 0\n", + "53780 0\n", + "53781 0\n", + "53782 0\n", + "53783 1\n", + "53784 0\n", + "53785 0\n", + "53786 0\n", + "53787 0\n", + "53788 0\n", + "53789 0\n", + "53790 0\n", + "53791 1\n", + "53792 0\n", + "53793 0\n", + "53794 0\n", + "53795 0\n", + "53796 0\n", + "53797 0\n", + "53798 0\n", + "53799 0\n", + "53800 0\n", + "53801 0\n", + "53802 0\n", + "53803 0\n", + "53804 0\n", + "53805 0\n", + "53806 0\n", + "53807 0\n", + "53808 0\n", + "53809 0\n", + "53810 0\n", + "53811 0\n", + "53812 0\n", + "53813 1\n", + "53814 0\n", + "53815 0\n", + "53816 0\n", + "53817 0\n", + "53818 0\n", + "53819 1\n", + "53820 0\n", + "53821 0\n", + "53822 0\n", + "53823 0\n", + "53824 0\n", + "53825 0\n", + "53826 0\n", + "53827 0\n", + "53828 0\n", + "53829 0\n", + "53830 0\n", + "53831 1\n", + "53832 0\n", + "53833 0\n", + "53834 0\n", + "53835 0\n", + "53836 0\n", + "53837 0\n", + "53838 0\n", + "53839 0\n", + "53840 0\n", + "53841 0\n", + "53842 0\n", + "53843 0\n", + "53844 0\n", + "53845 0\n", + "53846 0\n", + "53847 0\n", + "53848 0\n", + "53849 1\n", + "53850 0\n", + "53851 0\n", + "53852 0\n", + "53853 0\n", + "53854 0\n", + "53855 0\n", + "53856 0\n", + "53857 1\n", + "53858 0\n", + "53859 0\n", + "53860 0\n", + "53861 1\n", + "53862 0\n", + "53863 0\n", + "53864 0\n", + "53865 0\n", + "53866 0\n", + "53867 0\n", + "53868 0\n", + "53869 0\n", + "53870 0\n", + "53871 0\n", + "53872 0\n", + "53873 0\n", + "53874 0\n", + "53875 0\n", + "53876 0\n", + "53877 0\n", + "53878 0\n", + "53879 0\n", + "53880 0\n", + "53881 1\n", + "53882 0\n", + "53883 0\n", + "53884 0\n", + "53885 0\n", + "53886 0\n", + "53887 1\n", + "53888 0\n", + "53889 0\n", + "53890 0\n", + "53891 1\n", + "53892 0\n", + "53893 0\n", + "53894 0\n", + "53895 0\n", + "53896 0\n", + "53897 1\n", + "53898 0\n", + "53899 1\n", + "53900 0\n", + "53901 0\n", + "53902 0\n", + "53903 0\n", + "53904 0\n", + "53905 0\n", + "53906 0\n", + "53907 0\n", + "53908 0\n", + "53909 0\n", + "53910 0\n", + "53911 0\n", + "53912 0\n", + "53913 0\n", + "53914 0\n", + "53915 0\n", + "53916 0\n", + "53917 1\n", + "53918 0\n", + "53919 0\n", + "53920 0\n", + "53921 0\n", + "53922 0\n", + "53923 1\n", + "53924 0\n", + "53925 0\n", + "53926 0\n", + "53927 1\n", + "53928 0\n", + "53929 0\n", + "53930 0\n", + "53931 0\n", + "53932 0\n", + "53933 0\n", + "53934 0\n", + "53935 0\n", + "53936 0\n", + "53937 0\n", + "53938 0\n", + "53939 1\n", + "53940 0\n", + "53941 0\n", + "53942 0\n", + "53943 0\n", + "53944 0\n", + "53945 0\n", + "53946 0\n", + "53947 0\n", + "53948 0\n", + "53949 0\n", + "53950 0\n", + "53951 1\n", + "53952 0\n", + "53953 0\n", + "53954 0\n", + "53955 0\n", + "53956 0\n", + "53957 0\n", + "53958 0\n", + "53959 1\n", + "53960 0\n", + "53961 0\n", + "53962 0\n", + "53963 0\n", + "53964 0\n", + "53965 0\n", + "53966 0\n", + "53967 0\n", + "53968 0\n", + "53969 0\n", + "53970 0\n", + "53971 0\n", + "53972 0\n", + "53973 0\n", + "53974 0\n", + "53975 0\n", + "53976 0\n", + "53977 0\n", + "53978 0\n", + "53979 0\n", + "53980 0\n", + "53981 0\n", + "53982 0\n", + "53983 0\n", + "53984 0\n", + "53985 0\n", + "53986 0\n", + "53987 1\n", + "53988 0\n", + "53989 0\n", + "53990 0\n", + "53991 0\n", + "53992 0\n", + "53993 1\n", + "53994 0\n", + "53995 0\n", + "53996 0\n", + "53997 0\n", + "53998 0\n", + "53999 0\n", + "54000 0\n", + "54001 1\n", + "54002 0\n", + "54003 0\n", + "54004 0\n", + "54005 0\n", + "54006 0\n", + "54007 0\n", + "54008 0\n", + "54009 0\n", + "54010 0\n", + "54011 1\n", + "54012 0\n", + "54013 1\n", + "54014 0\n", + "54015 0\n", + "54016 0\n", + "54017 0\n", + "54018 0\n", + "54019 0\n", + "54020 0\n", + "54021 0\n", + "54022 0\n", + "54023 0\n", + "54024 0\n", + "54025 0\n", + "54026 0\n", + "54027 0\n", + "54028 0\n", + "54029 0\n", + "54030 0\n", + "54031 0\n", + "54032 0\n", + "54033 0\n", + "54034 0\n", + "54035 0\n", + "54036 0\n", + "54037 1\n", + "54038 0\n", + "54039 0\n", + "54040 0\n", + "54041 0\n", + "54042 0\n", + "54043 0\n", + "54044 0\n", + "54045 0\n", + "54046 0\n", + "54047 0\n", + "54048 0\n", + "54049 1\n", + "54050 0\n", + "54051 0\n", + "54052 0\n", + "54053 0\n", + "54054 0\n", + "54055 0\n", + "54056 0\n", + "54057 0\n", + "54058 0\n", + "54059 1\n", + "54060 0\n", + "54061 0\n", + "54062 0\n", + "54063 0\n", + "54064 0\n", + "54065 0\n", + "54066 0\n", + "54067 0\n", + "54068 0\n", + "54069 0\n", + "54070 0\n", + "54071 0\n", + "54072 0\n", + "54073 0\n", + "54074 0\n", + "54075 0\n", + "54076 0\n", + "54077 0\n", + "54078 0\n", + "54079 0\n", + "54080 0\n", + "54081 0\n", + "54082 0\n", + "54083 1\n", + "54084 0\n", + "54085 0\n", + "54086 0\n", + "54087 0\n", + "54088 0\n", + "54089 0\n", + "54090 0\n", + "54091 1\n", + "54092 0\n", + "54093 0\n", + "54094 0\n", + "54095 0\n", + "54096 0\n", + "54097 0\n", + "54098 0\n", + "54099 0\n", + "54100 0\n", + "54101 1\n", + "54102 0\n", + "54103 0\n", + "54104 0\n", + "54105 0\n", + "54106 0\n", + "54107 0\n", + "54108 0\n", + "54109 0\n", + "54110 0\n", + "54111 0\n", + "54112 0\n", + "54113 0\n", + "54114 0\n", + "54115 0\n", + "54116 0\n", + "54117 0\n", + "54118 0\n", + "54119 0\n", + "54120 0\n", + "54121 1\n", + "54122 0\n", + "54123 0\n", + "54124 0\n", + "54125 0\n", + "54126 0\n", + "54127 0\n", + "54128 0\n", + "54129 0\n", + "54130 0\n", + "54131 0\n", + "54132 0\n", + "54133 1\n", + "54134 0\n", + "54135 0\n", + "54136 0\n", + "54137 0\n", + "54138 0\n", + "54139 1\n", + "54140 0\n", + "54141 0\n", + "54142 0\n", + "54143 0\n", + "54144 0\n", + "54145 0\n", + "54146 0\n", + "54147 0\n", + "54148 0\n", + "54149 0\n", + "54150 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "54151 1\n", + "54152 0\n", + "54153 0\n", + "54154 0\n", + "54155 0\n", + "54156 0\n", + "54157 0\n", + "54158 0\n", + "54159 0\n", + "54160 0\n", + "54161 0\n", + "54162 0\n", + "54163 1\n", + "54164 0\n", + "54165 0\n", + "54166 0\n", + "54167 1\n", + "54168 0\n", + "54169 0\n", + "54170 0\n", + "54171 0\n", + "54172 0\n", + "54173 0\n", + "54174 0\n", + "54175 0\n", + "54176 0\n", + "54177 0\n", + "54178 0\n", + "54179 0\n", + "54180 0\n", + "54181 1\n", + "54182 0\n", + "54183 0\n", + "54184 0\n", + "54185 0\n", + "54186 0\n", + "54187 0\n", + "54188 0\n", + "54189 0\n", + "54190 0\n", + "54191 0\n", + "54192 0\n", + "54193 1\n", + "54194 0\n", + "54195 0\n", + "54196 0\n", + "54197 0\n", + "54198 0\n", + "54199 0\n", + "54200 0\n", + "54201 0\n", + "54202 0\n", + "54203 0\n", + "54204 0\n", + "54205 0\n", + "54206 0\n", + "54207 0\n", + "54208 0\n", + "54209 0\n", + "54210 0\n", + "54211 0\n", + "54212 0\n", + "54213 0\n", + "54214 0\n", + "54215 0\n", + "54216 0\n", + "54217 1\n", + "54218 0\n", + "54219 0\n", + "54220 0\n", + "54221 0\n", + "54222 0\n", + "54223 0\n", + "54224 0\n", + "54225 0\n", + "54226 0\n", + "54227 0\n", + "54228 0\n", + "54229 0\n", + "54230 0\n", + "54231 0\n", + "54232 0\n", + "54233 0\n", + "54234 0\n", + "54235 0\n", + "54236 0\n", + "54237 0\n", + "54238 0\n", + "54239 0\n", + "54240 0\n", + "54241 0\n", + "54242 0\n", + "54243 0\n", + "54244 0\n", + "54245 0\n", + "54246 0\n", + "54247 0\n", + "54248 0\n", + "54249 0\n", + "54250 0\n", + "54251 1\n", + "54252 0\n", + "54253 0\n", + "54254 0\n", + "54255 0\n", + "54256 0\n", + "54257 0\n", + "54258 0\n", + "54259 0\n", + "54260 0\n", + "54261 0\n", + "54262 0\n", + "54263 0\n", + "54264 0\n", + "54265 0\n", + "54266 0\n", + "54267 0\n", + "54268 0\n", + "54269 1\n", + "54270 0\n", + "54271 0\n", + "54272 0\n", + "54273 0\n", + "54274 0\n", + "54275 0\n", + "54276 0\n", + "54277 1\n", + "54278 0\n", + "54279 0\n", + "54280 0\n", + "54281 0\n", + "54282 0\n", + "54283 0\n", + "54284 0\n", + "54285 0\n", + "54286 0\n", + "54287 1\n", + "54288 0\n", + "54289 0\n", + "54290 0\n", + "54291 0\n", + "54292 0\n", + "54293 1\n", + "54294 0\n", + "54295 0\n", + "54296 0\n", + "54297 0\n", + "54298 0\n", + "54299 0\n", + "54300 0\n", + "54301 0\n", + "54302 0\n", + "54303 0\n", + "54304 0\n", + "54305 0\n", + "54306 0\n", + "54307 0\n", + "54308 0\n", + "54309 0\n", + "54310 0\n", + "54311 1\n", + "54312 0\n", + "54313 0\n", + "54314 0\n", + "54315 0\n", + "54316 0\n", + "54317 0\n", + "54318 0\n", + "54319 1\n", + "54320 0\n", + "54321 0\n", + "54322 0\n", + "54323 1\n", + "54324 0\n", + "54325 0\n", + "54326 0\n", + "54327 0\n", + "54328 0\n", + "54329 0\n", + "54330 0\n", + "54331 1\n", + "54332 0\n", + "54333 0\n", + "54334 0\n", + "54335 0\n", + "54336 0\n", + "54337 0\n", + "54338 0\n", + "54339 0\n", + "54340 0\n", + "54341 0\n", + "54342 0\n", + "54343 0\n", + "54344 0\n", + "54345 0\n", + "54346 0\n", + "54347 1\n", + "54348 0\n", + "54349 0\n", + "54350 0\n", + "54351 0\n", + "54352 0\n", + "54353 0\n", + "54354 0\n", + "54355 0\n", + "54356 0\n", + "54357 0\n", + "54358 0\n", + "54359 0\n", + "54360 0\n", + "54361 1\n", + "54362 0\n", + "54363 0\n", + "54364 0\n", + "54365 0\n", + "54366 0\n", + "54367 1\n", + "54368 0\n", + "54369 0\n", + "54370 0\n", + "54371 1\n", + "54372 0\n", + "54373 0\n", + "54374 0\n", + "54375 0\n", + "54376 0\n", + "54377 1\n", + "54378 0\n", + "54379 0\n", + "54380 0\n", + "54381 0\n", + "54382 0\n", + "54383 0\n", + "54384 0\n", + "54385 0\n", + "54386 0\n", + "54387 0\n", + "54388 0\n", + "54389 0\n", + "54390 0\n", + "54391 0\n", + "54392 0\n", + "54393 0\n", + "54394 0\n", + "54395 0\n", + "54396 0\n", + "54397 0\n", + "54398 0\n", + "54399 0\n", + "54400 0\n", + "54401 1\n", + "54402 0\n", + "54403 1\n", + "54404 0\n", + "54405 0\n", + "54406 0\n", + "54407 0\n", + "54408 0\n", + "54409 1\n", + "54410 0\n", + "54411 0\n", + "54412 0\n", + "54413 1\n", + "54414 0\n", + "54415 0\n", + "54416 0\n", + "54417 0\n", + "54418 0\n", + "54419 1\n", + "54420 0\n", + "54421 1\n", + "54422 0\n", + "54423 0\n", + "54424 0\n", + "54425 0\n", + "54426 0\n", + "54427 0\n", + "54428 0\n", + "54429 0\n", + "54430 0\n", + "54431 0\n", + "54432 0\n", + "54433 0\n", + "54434 0\n", + "54435 0\n", + "54436 0\n", + "54437 1\n", + "54438 0\n", + "54439 0\n", + "54440 0\n", + "54441 0\n", + "54442 0\n", + "54443 1\n", + "54444 0\n", + "54445 0\n", + "54446 0\n", + "54447 0\n", + "54448 0\n", + "54449 1\n", + "54450 0\n", + "54451 0\n", + "54452 0\n", + "54453 0\n", + "54454 0\n", + "54455 0\n", + "54456 0\n", + "54457 0\n", + "54458 0\n", + "54459 0\n", + "54460 0\n", + "54461 0\n", + "54462 0\n", + "54463 0\n", + "54464 0\n", + "54465 0\n", + "54466 0\n", + "54467 0\n", + "54468 0\n", + "54469 1\n", + "54470 0\n", + "54471 0\n", + "54472 0\n", + "54473 0\n", + "54474 0\n", + "54475 0\n", + "54476 0\n", + "54477 0\n", + "54478 0\n", + "54479 0\n", + "54480 0\n", + "54481 0\n", + "54482 0\n", + "54483 0\n", + "54484 0\n", + "54485 0\n", + "54486 0\n", + "54487 0\n", + "54488 0\n", + "54489 0\n", + "54490 0\n", + "54491 0\n", + "54492 0\n", + "54493 1\n", + "54494 0\n", + "54495 0\n", + "54496 0\n", + "54497 1\n", + "54498 0\n", + "54499 1\n", + "54500 0\n", + "54501 0\n", + "54502 0\n", + "54503 1\n", + "54504 0\n", + "54505 0\n", + "54506 0\n", + "54507 0\n", + "54508 0\n", + "54509 0\n", + "54510 0\n", + "54511 0\n", + "54512 0\n", + "54513 0\n", + "54514 0\n", + "54515 0\n", + "54516 0\n", + "54517 1\n", + "54518 0\n", + "54519 0\n", + "54520 0\n", + "54521 1\n", + "54522 0\n", + "54523 0\n", + "54524 0\n", + "54525 0\n", + "54526 0\n", + "54527 0\n", + "54528 0\n", + "54529 0\n", + "54530 0\n", + "54531 0\n", + "54532 0\n", + "54533 0\n", + "54534 0\n", + "54535 0\n", + "54536 0\n", + "54537 0\n", + "54538 0\n", + "54539 1\n", + "54540 0\n", + "54541 1\n", + "54542 0\n", + "54543 0\n", + "54544 0\n", + "54545 0\n", + "54546 0\n", + "54547 1\n", + "54548 0\n", + "54549 0\n", + "54550 0\n", + "54551 0\n", + "54552 0\n", + "54553 0\n", + "54554 0\n", + "54555 0\n", + "54556 0\n", + "54557 0\n", + "54558 0\n", + "54559 1\n", + "54560 0\n", + "54561 0\n", + "54562 0\n", + "54563 1\n", + "54564 0\n", + "54565 0\n", + "54566 0\n", + "54567 0\n", + "54568 0\n", + "54569 0\n", + "54570 0\n", + "54571 0\n", + "54572 0\n", + "54573 0\n", + "54574 0\n", + "54575 0\n", + "54576 0\n", + "54577 1\n", + "54578 0\n", + "54579 0\n", + "54580 0\n", + "54581 1\n", + "54582 0\n", + "54583 1\n", + "54584 0\n", + "54585 0\n", + "54586 0\n", + "54587 0\n", + "54588 0\n", + "54589 0\n", + "54590 0\n", + "54591 0\n", + "54592 0\n", + "54593 0\n", + "54594 0\n", + "54595 0\n", + "54596 0\n", + "54597 0\n", + "54598 0\n", + "54599 0\n", + "54600 0\n", + "54601 1\n", + "54602 0\n", + "54603 0\n", + "54604 0\n", + "54605 0\n", + "54606 0\n", + "54607 0\n", + "54608 0\n", + "54609 0\n", + "54610 0\n", + "54611 0\n", + "54612 0\n", + "54613 0\n", + "54614 0\n", + "54615 0\n", + "54616 0\n", + "54617 1\n", + "54618 0\n", + "54619 0\n", + "54620 0\n", + "54621 0\n", + "54622 0\n", + "54623 1\n", + "54624 0\n", + "54625 0\n", + "54626 0\n", + "54627 0\n", + "54628 0\n", + "54629 1\n", + "54630 0\n", + "54631 1\n", + "54632 0\n", + "54633 0\n", + "54634 0\n", + "54635 0\n", + "54636 0\n", + "54637 0\n", + "54638 0\n", + "54639 0\n", + "54640 0\n", + "54641 0\n", + "54642 0\n", + "54643 0\n", + "54644 0\n", + "54645 0\n", + "54646 0\n", + "54647 1\n", + "54648 0\n", + "54649 0\n", + "54650 0\n", + "54651 0\n", + "54652 0\n", + "54653 0\n", + "54654 0\n", + "54655 0\n", + "54656 0\n", + "54657 0\n", + "54658 0\n", + "54659 0\n", + "54660 0\n", + "54661 0\n", + "54662 0\n", + "54663 0\n", + "54664 0\n", + "54665 0\n", + "54666 0\n", + "54667 1\n", + "54668 0\n", + "54669 0\n", + "54670 0\n", + "54671 0\n", + "54672 0\n", + "54673 1\n", + "54674 0\n", + "54675 0\n", + "54676 0\n", + "54677 0\n", + "54678 0\n", + "54679 1\n", + "54680 0\n", + "54681 0\n", + "54682 0\n", + "54683 0\n", + "54684 0\n", + "54685 0\n", + "54686 0\n", + "54687 0\n", + "54688 0\n", + "54689 0\n", + "54690 0\n", + "54691 0\n", + "54692 0\n", + "54693 0\n", + "54694 0\n", + "54695 0\n", + "54696 0\n", + "54697 0\n", + "54698 0\n", + "54699 0\n", + "54700 0\n", + "54701 0\n", + "54702 0\n", + "54703 0\n", + "54704 0\n", + "54705 0\n", + "54706 0\n", + "54707 0\n", + "54708 0\n", + "54709 1\n", + "54710 0\n", + "54711 0\n", + "54712 0\n", + "54713 1\n", + "54714 0\n", + "54715 0\n", + "54716 0\n", + "54717 0\n", + "54718 0\n", + "54719 0\n", + "54720 0\n", + "54721 1\n", + "54722 0\n", + "54723 0\n", + "54724 0\n", + "54725 0\n", + "54726 0\n", + "54727 1\n", + "54728 0\n", + "54729 0\n", + "54730 0\n", + "54731 0\n", + "54732 0\n", + "54733 0\n", + "54734 0\n", + "54735 0\n", + "54736 0\n", + "54737 0\n", + "54738 0\n", + "54739 0\n", + "54740 0\n", + "54741 0\n", + "54742 0\n", + "54743 0\n", + "54744 0\n", + "54745 0\n", + "54746 0\n", + "54747 0\n", + "54748 0\n", + "54749 0\n", + "54750 0\n", + "54751 1\n", + "54752 0\n", + "54753 0\n", + "54754 0\n", + "54755 0\n", + "54756 0\n", + "54757 0\n", + "54758 0\n", + "54759 0\n", + "54760 0\n", + "54761 0\n", + "54762 0\n", + "54763 0\n", + "54764 0\n", + "54765 0\n", + "54766 0\n", + "54767 1\n", + "54768 0\n", + "54769 0\n", + "54770 0\n", + "54771 0\n", + "54772 0\n", + "54773 1\n", + "54774 0\n", + "54775 0\n", + "54776 0\n", + "54777 0\n", + "54778 0\n", + "54779 1\n", + "54780 0\n", + "54781 0\n", + "54782 0\n", + "54783 0\n", + "54784 0\n", + "54785 0\n", + "54786 0\n", + "54787 1\n", + "54788 0\n", + "54789 0\n", + "54790 0\n", + "54791 0\n", + "54792 0\n", + "54793 0\n", + "54794 0\n", + "54795 0\n", + "54796 0\n", + "54797 0\n", + "54798 0\n", + "54799 1\n", + "54800 0\n", + "54801 0\n", + "54802 0\n", + "54803 0\n", + "54804 0\n", + "54805 0\n", + "54806 0\n", + "54807 0\n", + "54808 0\n", + "54809 0\n", + "54810 0\n", + "54811 0\n", + "54812 0\n", + "54813 0\n", + "54814 0\n", + "54815 0\n", + "54816 0\n", + "54817 0\n", + "54818 0\n", + "54819 0\n", + "54820 0\n", + "54821 0\n", + "54822 0\n", + "54823 0\n", + "54824 0\n", + "54825 0\n", + "54826 0\n", + "54827 0\n", + "54828 0\n", + "54829 1\n", + "54830 0\n", + "54831 0\n", + "54832 0\n", + "54833 1\n", + "54834 0\n", + "54835 0\n", + "54836 0\n", + "54837 0\n", + "54838 0\n", + "54839 0\n", + "54840 0\n", + "54841 0\n", + "54842 0\n", + "54843 0\n", + "54844 0\n", + "54845 0\n", + "54846 0\n", + "54847 0\n", + "54848 0\n", + "54849 0\n", + "54850 0\n", + "54851 1\n", + "54852 0\n", + "54853 0\n", + "54854 0\n", + "54855 0\n", + "54856 0\n", + "54857 0\n", + "54858 0\n", + "54859 0\n", + "54860 0\n", + "54861 0\n", + "54862 0\n", + "54863 0\n", + "54864 0\n", + "54865 0\n", + "54866 0\n", + "54867 0\n", + "54868 0\n", + "54869 1\n", + "54870 0\n", + "54871 0\n", + "54872 0\n", + "54873 0\n", + "54874 0\n", + "54875 0\n", + "54876 0\n", + "54877 1\n", + "54878 0\n", + "54879 0\n", + "54880 0\n", + "54881 1\n", + "54882 0\n", + "54883 0\n", + "54884 0\n", + "54885 0\n", + "54886 0\n", + "54887 0\n", + "54888 0\n", + "54889 0\n", + "54890 0\n", + "54891 0\n", + "54892 0\n", + "54893 0\n", + "54894 0\n", + "54895 0\n", + "54896 0\n", + "54897 0\n", + "54898 0\n", + "54899 0\n", + "54900 0\n", + "54901 0\n", + "54902 0\n", + "54903 0\n", + "54904 0\n", + "54905 0\n", + "54906 0\n", + "54907 1\n", + "54908 0\n", + "54909 0\n", + "54910 0\n", + "54911 0\n", + "54912 0\n", + "54913 0\n", + "54914 0\n", + "54915 0\n", + "54916 0\n", + "54917 1\n", + "54918 0\n", + "54919 1\n", + "54920 0\n", + "54921 0\n", + "54922 0\n", + "54923 0\n", + "54924 0\n", + "54925 0\n", + "54926 0\n", + "54927 0\n", + "54928 0\n", + "54929 0\n", + "54930 0\n", + "54931 0\n", + "54932 0\n", + "54933 0\n", + "54934 0\n", + "54935 0\n", + "54936 0\n", + "54937 0\n", + "54938 0\n", + "54939 0\n", + "54940 0\n", + "54941 1\n", + "54942 0\n", + "54943 0\n", + "54944 0\n", + "54945 0\n", + "54946 0\n", + "54947 0\n", + "54948 0\n", + "54949 1\n", + "54950 0\n", + "54951 0\n", + "54952 0\n", + "54953 0\n", + "54954 0\n", + "54955 0\n", + "54956 0\n", + "54957 0\n", + "54958 0\n", + "54959 1\n", + "54960 0\n", + "54961 0\n", + "54962 0\n", + "54963 0\n", + "54964 0\n", + "54965 0\n", + "54966 0\n", + "54967 0\n", + "54968 0\n", + "54969 0\n", + "54970 0\n", + "54971 0\n", + "54972 0\n", + "54973 1\n", + "54974 0\n", + "54975 0\n", + "54976 0\n", + "54977 0\n", + "54978 0\n", + "54979 1\n", + "54980 0\n", + "54981 0\n", + "54982 0\n", + "54983 1\n", + "54984 0\n", + "54985 0\n", + "54986 0\n", + "54987 0\n", + "54988 0\n", + "54989 0\n", + "54990 0\n", + "54991 0\n", + "54992 0\n", + "54993 0\n", + "54994 0\n", + "54995 0\n", + "54996 0\n", + "54997 0\n", + "54998 0\n", + "54999 0\n", + "55000 0\n", + "55001 1\n", + "55002 0\n", + "55003 0\n", + "55004 0\n", + "55005 0\n", + "55006 0\n", + "55007 0\n", + "55008 0\n", + "55009 1\n", + "55010 0\n", + "55011 0\n", + "55012 0\n", + "55013 0\n", + "55014 0\n", + "55015 0\n", + "55016 0\n", + "55017 0\n", + "55018 0\n", + "55019 0\n", + "55020 0\n", + "55021 1\n", + "55022 0\n", + "55023 0\n", + "55024 0\n", + "55025 0\n", + "55026 0\n", + "55027 0\n", + "55028 0\n", + "55029 0\n", + "55030 0\n", + "55031 0\n", + "55032 0\n", + "55033 0\n", + "55034 0\n", + "55035 0\n", + "55036 0\n", + "55037 0\n", + "55038 0\n", + "55039 0\n", + "55040 0\n", + "55041 0\n", + "55042 0\n", + "55043 0\n", + "55044 0\n", + "55045 0\n", + "55046 0\n", + "55047 0\n", + "55048 0\n", + "55049 1\n", + "55050 0\n", + "55051 1\n", + "55052 0\n", + "55053 0\n", + "55054 0\n", + "55055 0\n", + "55056 0\n", + "55057 1\n", + "55058 0\n", + "55059 0\n", + "55060 0\n", + "55061 1\n", + "55062 0\n", + "55063 0\n", + "55064 0\n", + "55065 0\n", + "55066 0\n", + "55067 0\n", + "55068 0\n", + "55069 0\n", + "55070 0\n", + "55071 0\n", + "55072 0\n", + "55073 1\n", + "55074 0\n", + "55075 0\n", + "55076 0\n", + "55077 0\n", + "55078 0\n", + "55079 1\n", + "55080 0\n", + "55081 0\n", + "55082 0\n", + "55083 0\n", + "55084 0\n", + "55085 0\n", + "55086 0\n", + "55087 0\n", + "55088 0\n", + "55089 0\n", + "55090 0\n", + "55091 0\n", + "55092 0\n", + "55093 0\n", + "55094 0\n", + "55095 0\n", + "55096 0\n", + "55097 0\n", + "55098 0\n", + "55099 0\n", + "55100 0\n", + "55101 0\n", + "55102 0\n", + "55103 1\n", + "55104 0\n", + "55105 0\n", + "55106 0\n", + "55107 0\n", + "55108 0\n", + "55109 1\n", + "55110 0\n", + "55111 0\n", + "55112 0\n", + "55113 0\n", + "55114 0\n", + "55115 0\n", + "55116 0\n", + "55117 1\n", + "55118 0\n", + "55119 0\n", + "55120 0\n", + "55121 0\n", + "55122 0\n", + "55123 0\n", + "55124 0\n", + "55125 0\n", + "55126 0\n", + "55127 1\n", + "55128 0\n", + "55129 0\n", + "55130 0\n", + "55131 0\n", + "55132 0\n", + "55133 0\n", + "55134 0\n", + "55135 0\n", + "55136 0\n", + "55137 0\n", + "55138 0\n", + "55139 0\n", + "55140 0\n", + "55141 0\n", + "55142 0\n", + "55143 0\n", + "55144 0\n", + "55145 0\n", + "55146 0\n", + "55147 1\n", + "55148 0\n", + "55149 0\n", + "55150 0\n", + "55151 0\n", + "55152 0\n", + "55153 0\n", + "55154 0\n", + "55155 0\n", + "55156 0\n", + "55157 0\n", + "55158 0\n", + "55159 0\n", + "55160 0\n", + "55161 0\n", + "55162 0\n", + "55163 1\n", + "55164 0\n", + "55165 0\n", + "55166 0\n", + "55167 0\n", + "55168 0\n", + "55169 0\n", + "55170 0\n", + "55171 1\n", + "55172 0\n", + "55173 0\n", + "55174 0\n", + "55175 0\n", + "55176 0\n", + "55177 0\n", + "55178 0\n", + "55179 0\n", + "55180 0\n", + "55181 0\n", + "55182 0\n", + "55183 0\n", + "55184 0\n", + "55185 0\n", + "55186 0\n", + "55187 0\n", + "55188 0\n", + "55189 0\n", + "55190 0\n", + "55191 0\n", + "55192 0\n", + "55193 0\n", + "55194 0\n", + "55195 0\n", + "55196 0\n", + "55197 0\n", + "55198 0\n", + "55199 0\n", + "55200 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "55201 1\n", + "55202 0\n", + "55203 0\n", + "55204 0\n", + "55205 0\n", + "55206 0\n", + "55207 1\n", + "55208 0\n", + "55209 0\n", + "55210 0\n", + "55211 0\n", + "55212 0\n", + "55213 1\n", + "55214 0\n", + "55215 0\n", + "55216 0\n", + "55217 1\n", + "55218 0\n", + "55219 1\n", + "55220 0\n", + "55221 0\n", + "55222 0\n", + "55223 0\n", + "55224 0\n", + "55225 0\n", + "55226 0\n", + "55227 0\n", + "55228 0\n", + "55229 1\n", + "55230 0\n", + "55231 0\n", + "55232 0\n", + "55233 0\n", + "55234 0\n", + "55235 0\n", + "55236 0\n", + "55237 0\n", + "55238 0\n", + "55239 0\n", + "55240 0\n", + "55241 0\n", + "55242 0\n", + "55243 1\n", + "55244 0\n", + "55245 0\n", + "55246 0\n", + "55247 0\n", + "55248 0\n", + "55249 1\n", + "55250 0\n", + "55251 0\n", + "55252 0\n", + "55253 0\n", + "55254 0\n", + "55255 0\n", + "55256 0\n", + "55257 0\n", + "55258 0\n", + "55259 1\n", + "55260 0\n", + "55261 0\n", + "55262 0\n", + "55263 0\n", + "55264 0\n", + "55265 0\n", + "55266 0\n", + "55267 0\n", + "55268 0\n", + "55269 0\n", + "55270 0\n", + "55271 0\n", + "55272 0\n", + "55273 0\n", + "55274 0\n", + "55275 0\n", + "55276 0\n", + "55277 0\n", + "55278 0\n", + "55279 0\n", + "55280 0\n", + "55281 0\n", + "55282 0\n", + "55283 0\n", + "55284 0\n", + "55285 0\n", + "55286 0\n", + "55287 0\n", + "55288 0\n", + "55289 0\n", + "55290 0\n", + "55291 1\n", + "55292 0\n", + "55293 0\n", + "55294 0\n", + "55295 0\n", + "55296 0\n", + "55297 0\n", + "55298 0\n", + "55299 0\n", + "55300 0\n", + "55301 0\n", + "55302 0\n", + "55303 0\n", + "55304 0\n", + "55305 0\n", + "55306 0\n", + "55307 0\n", + "55308 0\n", + "55309 0\n", + "55310 0\n", + "55311 0\n", + "55312 0\n", + "55313 1\n", + "55314 0\n", + "55315 0\n", + "55316 0\n", + "55317 0\n", + "55318 0\n", + "55319 0\n", + "55320 0\n", + "55321 0\n", + "55322 0\n", + "55323 0\n", + "55324 0\n", + "55325 0\n", + "55326 0\n", + "55327 0\n", + "55328 0\n", + "55329 0\n", + "55330 0\n", + "55331 1\n", + "55332 0\n", + "55333 1\n", + "55334 0\n", + "55335 0\n", + "55336 0\n", + "55337 1\n", + "55338 0\n", + "55339 1\n", + "55340 0\n", + "55341 0\n", + "55342 0\n", + "55343 1\n", + "55344 0\n", + "55345 0\n", + "55346 0\n", + "55347 0\n", + "55348 0\n", + "55349 0\n", + "55350 0\n", + "55351 1\n", + "55352 0\n", + "55353 0\n", + "55354 0\n", + "55355 0\n", + "55356 0\n", + "55357 0\n", + "55358 0\n", + "55359 0\n", + "55360 0\n", + "55361 0\n", + "55362 0\n", + "55363 0\n", + "55364 0\n", + "55365 0\n", + "55366 0\n", + "55367 0\n", + "55368 0\n", + "55369 0\n", + "55370 0\n", + "55371 0\n", + "55372 0\n", + "55373 1\n", + "55374 0\n", + "55375 0\n", + "55376 0\n", + "55377 0\n", + "55378 0\n", + "55379 0\n", + "55380 0\n", + "55381 1\n", + "55382 0\n", + "55383 0\n", + "55384 0\n", + "55385 0\n", + "55386 0\n", + "55387 0\n", + "55388 0\n", + "55389 0\n", + "55390 0\n", + "55391 0\n", + "55392 0\n", + "55393 0\n", + "55394 0\n", + "55395 0\n", + "55396 0\n", + "55397 0\n", + "55398 0\n", + "55399 1\n", + "55400 0\n", + "55401 0\n", + "55402 0\n", + "55403 0\n", + "55404 0\n", + "55405 0\n", + "55406 0\n", + "55407 0\n", + "55408 0\n", + "55409 0\n", + "55410 0\n", + "55411 1\n", + "55412 0\n", + "55413 0\n", + "55414 0\n", + "55415 0\n", + "55416 0\n", + "55417 0\n", + "55418 0\n", + "55419 0\n", + "55420 0\n", + "55421 0\n", + "55422 0\n", + "55423 0\n", + "55424 0\n", + "55425 0\n", + "55426 0\n", + "55427 0\n", + "55428 0\n", + "55429 0\n", + "55430 0\n", + "55431 0\n", + "55432 0\n", + "55433 0\n", + "55434 0\n", + "55435 0\n", + "55436 0\n", + "55437 0\n", + "55438 0\n", + "55439 1\n", + "55440 0\n", + "55441 1\n", + "55442 0\n", + "55443 0\n", + "55444 0\n", + "55445 0\n", + "55446 0\n", + "55447 0\n", + "55448 0\n", + "55449 0\n", + "55450 0\n", + "55451 0\n", + "55452 0\n", + "55453 0\n", + "55454 0\n", + "55455 0\n", + "55456 0\n", + "55457 1\n", + "55458 0\n", + "55459 0\n", + "55460 0\n", + "55461 0\n", + "55462 0\n", + "55463 0\n", + "55464 0\n", + "55465 0\n", + "55466 0\n", + "55467 0\n", + "55468 0\n", + "55469 1\n", + "55470 0\n", + "55471 0\n", + "55472 0\n", + "55473 0\n", + "55474 0\n", + "55475 0\n", + "55476 0\n", + "55477 0\n", + "55478 0\n", + "55479 0\n", + "55480 0\n", + "55481 0\n", + "55482 0\n", + "55483 0\n", + "55484 0\n", + "55485 0\n", + "55486 0\n", + "55487 1\n", + "55488 0\n", + "55489 0\n", + "55490 0\n", + "55491 0\n", + "55492 0\n", + "55493 0\n", + "55494 0\n", + "55495 0\n", + "55496 0\n", + "55497 0\n", + "55498 0\n", + "55499 0\n", + "55500 0\n", + "55501 1\n", + "55502 0\n", + "55503 0\n", + "55504 0\n", + "55505 0\n", + "55506 0\n", + "55507 0\n", + "55508 0\n", + "55509 0\n", + "55510 0\n", + "55511 1\n", + "55512 0\n", + "55513 0\n", + "55514 0\n", + "55515 0\n", + "55516 0\n", + "55517 0\n", + "55518 0\n", + "55519 0\n", + "55520 0\n", + "55521 0\n", + "55522 0\n", + "55523 0\n", + "55524 0\n", + "55525 0\n", + "55526 0\n", + "55527 0\n", + "55528 0\n", + "55529 1\n", + "55530 0\n", + "55531 0\n", + "55532 0\n", + "55533 0\n", + "55534 0\n", + "55535 0\n", + "55536 0\n", + "55537 0\n", + "55538 0\n", + "55539 0\n", + "55540 0\n", + "55541 1\n", + "55542 0\n", + "55543 0\n", + "55544 0\n", + "55545 0\n", + "55546 0\n", + "55547 1\n", + "55548 0\n", + "55549 0\n", + "55550 0\n", + "55551 0\n", + "55552 0\n", + "55553 0\n", + "55554 0\n", + "55555 0\n", + "55556 0\n", + "55557 0\n", + "55558 0\n", + "55559 0\n", + "55560 0\n", + "55561 0\n", + "55562 0\n", + "55563 0\n", + "55564 0\n", + "55565 0\n", + "55566 0\n", + "55567 0\n", + "55568 0\n", + "55569 0\n", + "55570 0\n", + "55571 0\n", + "55572 0\n", + "55573 0\n", + "55574 0\n", + "55575 0\n", + "55576 0\n", + "55577 0\n", + "55578 0\n", + "55579 1\n", + "55580 0\n", + "55581 0\n", + "55582 0\n", + "55583 0\n", + "55584 0\n", + "55585 0\n", + "55586 0\n", + "55587 0\n", + "55588 0\n", + "55589 1\n", + "55590 0\n", + "55591 0\n", + "55592 0\n", + "55593 0\n", + "55594 0\n", + "55595 0\n", + "55596 0\n", + "55597 0\n", + "55598 0\n", + "55599 0\n", + "55600 0\n", + "55601 0\n", + "55602 0\n", + "55603 1\n", + "55604 0\n", + "55605 0\n", + "55606 0\n", + "55607 0\n", + "55608 0\n", + "55609 1\n", + "55610 0\n", + "55611 0\n", + "55612 0\n", + "55613 0\n", + "55614 0\n", + "55615 0\n", + "55616 0\n", + "55617 0\n", + "55618 0\n", + "55619 1\n", + "55620 0\n", + "55621 1\n", + "55622 0\n", + "55623 0\n", + "55624 0\n", + "55625 0\n", + "55626 0\n", + "55627 0\n", + "55628 0\n", + "55629 0\n", + "55630 0\n", + "55631 1\n", + "55632 0\n", + "55633 1\n", + "55634 0\n", + "55635 0\n", + "55636 0\n", + "55637 0\n", + "55638 0\n", + "55639 1\n", + "55640 0\n", + "55641 0\n", + "55642 0\n", + "55643 0\n", + "55644 0\n", + "55645 0\n", + "55646 0\n", + "55647 0\n", + "55648 0\n", + "55649 0\n", + "55650 0\n", + "55651 0\n", + "55652 0\n", + "55653 0\n", + "55654 0\n", + "55655 0\n", + "55656 0\n", + "55657 0\n", + "55658 0\n", + "55659 0\n", + "55660 0\n", + "55661 1\n", + "55662 0\n", + "55663 1\n", + "55664 0\n", + "55665 0\n", + "55666 0\n", + "55667 1\n", + "55668 0\n", + "55669 0\n", + "55670 0\n", + "55671 0\n", + "55672 0\n", + "55673 1\n", + "55674 0\n", + "55675 0\n", + "55676 0\n", + "55677 0\n", + "55678 0\n", + "55679 0\n", + "55680 0\n", + "55681 1\n", + "55682 0\n", + "55683 0\n", + "55684 0\n", + "55685 0\n", + "55686 0\n", + "55687 0\n", + "55688 0\n", + "55689 0\n", + "55690 0\n", + "55691 1\n", + "55692 0\n", + "55693 0\n", + "55694 0\n", + "55695 0\n", + "55696 0\n", + "55697 1\n", + "55698 0\n", + "55699 0\n", + "55700 0\n", + "55701 0\n", + "55702 0\n", + "55703 0\n", + "55704 0\n", + "55705 0\n", + "55706 0\n", + "55707 0\n", + "55708 0\n", + "55709 0\n", + "55710 0\n", + "55711 1\n", + "55712 0\n", + "55713 0\n", + "55714 0\n", + "55715 0\n", + "55716 0\n", + "55717 1\n", + "55718 0\n", + "55719 0\n", + "55720 0\n", + "55721 1\n", + "55722 0\n", + "55723 0\n", + "55724 0\n", + "55725 0\n", + "55726 0\n", + "55727 0\n", + "55728 0\n", + "55729 0\n", + "55730 0\n", + "55731 0\n", + "55732 0\n", + "55733 1\n", + "55734 0\n", + "55735 0\n", + "55736 0\n", + "55737 0\n", + "55738 0\n", + "55739 0\n", + "55740 0\n", + "55741 0\n", + "55742 0\n", + "55743 0\n", + "55744 0\n", + "55745 0\n", + "55746 0\n", + "55747 0\n", + "55748 0\n", + "55749 0\n", + "55750 0\n", + "55751 0\n", + "55752 0\n", + "55753 0\n", + "55754 0\n", + "55755 0\n", + "55756 0\n", + "55757 0\n", + "55758 0\n", + "55759 0\n", + "55760 0\n", + "55761 0\n", + "55762 0\n", + "55763 1\n", + "55764 0\n", + "55765 0\n", + "55766 0\n", + "55767 0\n", + "55768 0\n", + "55769 0\n", + "55770 0\n", + "55771 0\n", + "55772 0\n", + "55773 0\n", + "55774 0\n", + "55775 0\n", + "55776 0\n", + "55777 0\n", + "55778 0\n", + "55779 0\n", + "55780 0\n", + "55781 0\n", + "55782 0\n", + "55783 0\n", + "55784 0\n", + "55785 0\n", + "55786 0\n", + "55787 1\n", + "55788 0\n", + "55789 0\n", + "55790 0\n", + "55791 0\n", + "55792 0\n", + "55793 1\n", + "55794 0\n", + "55795 0\n", + "55796 0\n", + "55797 0\n", + "55798 0\n", + "55799 1\n", + "55800 0\n", + "55801 0\n", + "55802 0\n", + "55803 0\n", + "55804 0\n", + "55805 0\n", + "55806 0\n", + "55807 1\n", + "55808 0\n", + "55809 0\n", + "55810 0\n", + "55811 0\n", + "55812 0\n", + "55813 1\n", + "55814 0\n", + "55815 0\n", + "55816 0\n", + "55817 1\n", + "55818 0\n", + "55819 1\n", + "55820 0\n", + "55821 0\n", + "55822 0\n", + "55823 1\n", + "55824 0\n", + "55825 0\n", + "55826 0\n", + "55827 0\n", + "55828 0\n", + "55829 1\n", + "55830 0\n", + "55831 0\n", + "55832 0\n", + "55833 0\n", + "55834 0\n", + "55835 0\n", + "55836 0\n", + "55837 1\n", + "55838 0\n", + "55839 0\n", + "55840 0\n", + "55841 0\n", + "55842 0\n", + "55843 1\n", + "55844 0\n", + "55845 0\n", + "55846 0\n", + "55847 0\n", + "55848 0\n", + "55849 1\n", + "55850 0\n", + "55851 0\n", + "55852 0\n", + "55853 0\n", + "55854 0\n", + "55855 0\n", + "55856 0\n", + "55857 0\n", + "55858 0\n", + "55859 0\n", + "55860 0\n", + "55861 0\n", + "55862 0\n", + "55863 0\n", + "55864 0\n", + "55865 0\n", + "55866 0\n", + "55867 0\n", + "55868 0\n", + "55869 0\n", + "55870 0\n", + "55871 1\n", + "55872 0\n", + "55873 0\n", + "55874 0\n", + "55875 0\n", + "55876 0\n", + "55877 0\n", + "55878 0\n", + "55879 0\n", + "55880 0\n", + "55881 0\n", + "55882 0\n", + "55883 0\n", + "55884 0\n", + "55885 0\n", + "55886 0\n", + "55887 0\n", + "55888 0\n", + "55889 1\n", + "55890 0\n", + "55891 0\n", + "55892 0\n", + "55893 0\n", + "55894 0\n", + "55895 0\n", + "55896 0\n", + "55897 1\n", + "55898 0\n", + "55899 0\n", + "55900 0\n", + "55901 1\n", + "55902 0\n", + "55903 1\n", + "55904 0\n", + "55905 0\n", + "55906 0\n", + "55907 0\n", + "55908 0\n", + "55909 0\n", + "55910 0\n", + "55911 0\n", + "55912 0\n", + "55913 0\n", + "55914 0\n", + "55915 0\n", + "55916 0\n", + "55917 0\n", + "55918 0\n", + "55919 0\n", + "55920 0\n", + "55921 1\n", + "55922 0\n", + "55923 0\n", + "55924 0\n", + "55925 0\n", + "55926 0\n", + "55927 1\n", + "55928 0\n", + "55929 0\n", + "55930 0\n", + "55931 1\n", + "55932 0\n", + "55933 1\n", + "55934 0\n", + "55935 0\n", + "55936 0\n", + "55937 0\n", + "55938 0\n", + "55939 0\n", + "55940 0\n", + "55941 0\n", + "55942 0\n", + "55943 0\n", + "55944 0\n", + "55945 0\n", + "55946 0\n", + "55947 0\n", + "55948 0\n", + "55949 1\n", + "55950 0\n", + "55951 0\n", + "55952 0\n", + "55953 0\n", + "55954 0\n", + "55955 0\n", + "55956 0\n", + "55957 0\n", + "55958 0\n", + "55959 0\n", + "55960 0\n", + "55961 0\n", + "55962 0\n", + "55963 0\n", + "55964 0\n", + "55965 0\n", + "55966 0\n", + "55967 1\n", + "55968 0\n", + "55969 0\n", + "55970 0\n", + "55971 0\n", + "55972 0\n", + "55973 0\n", + "55974 0\n", + "55975 0\n", + "55976 0\n", + "55977 0\n", + "55978 0\n", + "55979 0\n", + "55980 0\n", + "55981 0\n", + "55982 0\n", + "55983 0\n", + "55984 0\n", + "55985 0\n", + "55986 0\n", + "55987 1\n", + "55988 0\n", + "55989 0\n", + "55990 0\n", + "55991 0\n", + "55992 0\n", + "55993 0\n", + "55994 0\n", + "55995 0\n", + "55996 0\n", + "55997 1\n", + "55998 0\n", + "55999 0\n", + "56000 0\n", + "56001 0\n", + "56002 0\n", + "56003 1\n", + "56004 0\n", + "56005 0\n", + "56006 0\n", + "56007 0\n", + "56008 0\n", + "56009 1\n", + "56010 0\n", + "56011 0\n", + "56012 0\n", + "56013 0\n", + "56014 0\n", + "56015 0\n", + "56016 0\n", + "56017 0\n", + "56018 0\n", + "56019 0\n", + "56020 0\n", + "56021 0\n", + "56022 0\n", + "56023 0\n", + "56024 0\n", + "56025 0\n", + "56026 0\n", + "56027 0\n", + "56028 0\n", + "56029 0\n", + "56030 0\n", + "56031 0\n", + "56032 0\n", + "56033 0\n", + "56034 0\n", + "56035 0\n", + "56036 0\n", + "56037 0\n", + "56038 0\n", + "56039 1\n", + "56040 0\n", + "56041 1\n", + "56042 0\n", + "56043 0\n", + "56044 0\n", + "56045 0\n", + "56046 0\n", + "56047 0\n", + "56048 0\n", + "56049 0\n", + "56050 0\n", + "56051 0\n", + "56052 0\n", + "56053 1\n", + "56054 0\n", + "56055 0\n", + "56056 0\n", + "56057 0\n", + "56058 0\n", + "56059 0\n", + "56060 0\n", + "56061 0\n", + "56062 0\n", + "56063 0\n", + "56064 0\n", + "56065 0\n", + "56066 0\n", + "56067 0\n", + "56068 0\n", + "56069 0\n", + "56070 0\n", + "56071 0\n", + "56072 0\n", + "56073 0\n", + "56074 0\n", + "56075 0\n", + "56076 0\n", + "56077 0\n", + "56078 0\n", + "56079 0\n", + "56080 0\n", + "56081 1\n", + "56082 0\n", + "56083 0\n", + "56084 0\n", + "56085 0\n", + "56086 0\n", + "56087 1\n", + "56088 0\n", + "56089 0\n", + "56090 0\n", + "56091 0\n", + "56092 0\n", + "56093 1\n", + "56094 0\n", + "56095 0\n", + "56096 0\n", + "56097 0\n", + "56098 0\n", + "56099 1\n", + "56100 0\n", + "56101 1\n", + "56102 0\n", + "56103 0\n", + "56104 0\n", + "56105 0\n", + "56106 0\n", + "56107 0\n", + "56108 0\n", + "56109 0\n", + "56110 0\n", + "56111 0\n", + "56112 0\n", + "56113 1\n", + "56114 0\n", + "56115 0\n", + "56116 0\n", + "56117 0\n", + "56118 0\n", + "56119 0\n", + "56120 0\n", + "56121 0\n", + "56122 0\n", + "56123 1\n", + "56124 0\n", + "56125 0\n", + "56126 0\n", + "56127 0\n", + "56128 0\n", + "56129 0\n", + "56130 0\n", + "56131 1\n", + "56132 0\n", + "56133 0\n", + "56134 0\n", + "56135 0\n", + "56136 0\n", + "56137 0\n", + "56138 0\n", + "56139 0\n", + "56140 0\n", + "56141 0\n", + "56142 0\n", + "56143 0\n", + "56144 0\n", + "56145 0\n", + "56146 0\n", + "56147 0\n", + "56148 0\n", + "56149 1\n", + "56150 0\n", + "56151 0\n", + "56152 0\n", + "56153 0\n", + "56154 0\n", + "56155 0\n", + "56156 0\n", + "56157 0\n", + "56158 0\n", + "56159 0\n", + "56160 0\n", + "56161 0\n", + "56162 0\n", + "56163 0\n", + "56164 0\n", + "56165 0\n", + "56166 0\n", + "56167 1\n", + "56168 0\n", + "56169 0\n", + "56170 0\n", + "56171 1\n", + "56172 0\n", + "56173 0\n", + "56174 0\n", + "56175 0\n", + "56176 0\n", + "56177 0\n", + "56178 0\n", + "56179 1\n", + "56180 0\n", + "56181 0\n", + "56182 0\n", + "56183 0\n", + "56184 0\n", + "56185 0\n", + "56186 0\n", + "56187 0\n", + "56188 0\n", + "56189 0\n", + "56190 0\n", + "56191 0\n", + "56192 0\n", + "56193 0\n", + "56194 0\n", + "56195 0\n", + "56196 0\n", + "56197 1\n", + "56198 0\n", + "56199 0\n", + "56200 0\n", + "56201 0\n", + "56202 0\n", + "56203 0\n", + "56204 0\n", + "56205 0\n", + "56206 0\n", + "56207 1\n", + "56208 0\n", + "56209 1\n", + "56210 0\n", + "56211 0\n", + "56212 0\n", + "56213 0\n", + "56214 0\n", + "56215 0\n", + "56216 0\n", + "56217 0\n", + "56218 0\n", + "56219 0\n", + "56220 0\n", + "56221 0\n", + "56222 0\n", + "56223 0\n", + "56224 0\n", + "56225 0\n", + "56226 0\n", + "56227 0\n", + "56228 0\n", + "56229 0\n", + "56230 0\n", + "56231 0\n", + "56232 0\n", + "56233 0\n", + "56234 0\n", + "56235 0\n", + "56236 0\n", + "56237 1\n", + "56238 0\n", + "56239 1\n", + "56240 0\n", + "56241 0\n", + "56242 0\n", + "56243 0\n", + "56244 0\n", + "56245 0\n", + "56246 0\n", + "56247 0\n", + "56248 0\n", + "56249 1\n", + "56250 0\n", + "56251 0\n", + "56252 0\n", + "56253 0\n", + "56254 0\n", + "56255 0\n", + "56256 0\n", + "56257 0\n", + "56258 0\n", + "56259 0\n", + "56260 0\n", + "56261 0\n", + "56262 0\n", + "56263 1\n", + "56264 0\n", + "56265 0\n", + "56266 0\n", + "56267 1\n", + "56268 0\n", + "56269 1\n", + "56270 0\n", + "56271 0\n", + "56272 0\n", + "56273 0\n", + "56274 0\n", + "56275 0\n", + "56276 0\n", + "56277 0\n", + "56278 0\n", + "56279 0\n", + "56280 0\n", + "56281 0\n", + "56282 0\n", + "56283 0\n", + "56284 0\n", + "56285 0\n", + "56286 0\n", + "56287 0\n", + "56288 0\n", + "56289 0\n", + "56290 0\n", + "56291 0\n", + "56292 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "56293 0\n", + "56294 0\n", + "56295 0\n", + "56296 0\n", + "56297 0\n", + "56298 0\n", + "56299 1\n", + "56300 0\n", + "56301 0\n", + "56302 0\n", + "56303 0\n", + "56304 0\n", + "56305 0\n", + "56306 0\n", + "56307 0\n", + "56308 0\n", + "56309 0\n", + "56310 0\n", + "56311 1\n", + "56312 0\n", + "56313 0\n", + "56314 0\n", + "56315 0\n", + "56316 0\n", + "56317 0\n", + "56318 0\n", + "56319 0\n", + "56320 0\n", + "56321 0\n", + "56322 0\n", + "56323 0\n", + "56324 0\n", + "56325 0\n", + "56326 0\n", + "56327 0\n", + "56328 0\n", + "56329 0\n", + "56330 0\n", + "56331 0\n", + "56332 0\n", + "56333 1\n", + "56334 0\n", + "56335 0\n", + "56336 0\n", + "56337 0\n", + "56338 0\n", + "56339 0\n", + "56340 0\n", + "56341 0\n", + "56342 0\n", + "56343 0\n", + "56344 0\n", + "56345 0\n", + "56346 0\n", + "56347 0\n", + "56348 0\n", + "56349 0\n", + "56350 0\n", + "56351 0\n", + "56352 0\n", + "56353 0\n", + "56354 0\n", + "56355 0\n", + "56356 0\n", + "56357 0\n", + "56358 0\n", + "56359 1\n", + "56360 0\n", + "56361 0\n", + "56362 0\n", + "56363 0\n", + "56364 0\n", + "56365 0\n", + "56366 0\n", + "56367 0\n", + "56368 0\n", + "56369 1\n", + "56370 0\n", + "56371 0\n", + "56372 0\n", + "56373 0\n", + "56374 0\n", + "56375 0\n", + "56376 0\n", + "56377 1\n", + "56378 0\n", + "56379 0\n", + "56380 0\n", + "56381 0\n", + "56382 0\n", + "56383 1\n", + "56384 0\n", + "56385 0\n", + "56386 0\n", + "56387 0\n", + "56388 0\n", + "56389 0\n", + "56390 0\n", + "56391 0\n", + "56392 0\n", + "56393 1\n", + "56394 0\n", + "56395 0\n", + "56396 0\n", + "56397 0\n", + "56398 0\n", + "56399 0\n", + "56400 0\n", + "56401 1\n", + "56402 0\n", + "56403 0\n", + "56404 0\n", + "56405 0\n", + "56406 0\n", + "56407 0\n", + "56408 0\n", + "56409 0\n", + "56410 0\n", + "56411 0\n", + "56412 0\n", + "56413 0\n", + "56414 0\n", + "56415 0\n", + "56416 0\n", + "56417 1\n", + "56418 0\n", + "56419 0\n", + "56420 0\n", + "56421 0\n", + "56422 0\n", + "56423 0\n", + "56424 0\n", + "56425 0\n", + "56426 0\n", + "56427 0\n", + "56428 0\n", + "56429 0\n", + "56430 0\n", + "56431 1\n", + "56432 0\n", + "56433 0\n", + "56434 0\n", + "56435 0\n", + "56436 0\n", + "56437 1\n", + "56438 0\n", + "56439 0\n", + "56440 0\n", + "56441 0\n", + "56442 0\n", + "56443 1\n", + "56444 0\n", + "56445 0\n", + "56446 0\n", + "56447 0\n", + "56448 0\n", + "56449 0\n", + "56450 0\n", + "56451 0\n", + "56452 0\n", + "56453 1\n", + "56454 0\n", + "56455 0\n", + "56456 0\n", + "56457 0\n", + "56458 0\n", + "56459 0\n", + "56460 0\n", + "56461 0\n", + "56462 0\n", + "56463 0\n", + "56464 0\n", + "56465 0\n", + "56466 0\n", + "56467 1\n", + "56468 0\n", + "56469 0\n", + "56470 0\n", + "56471 0\n", + "56472 0\n", + "56473 1\n", + "56474 0\n", + "56475 0\n", + "56476 0\n", + "56477 1\n", + "56478 0\n", + "56479 1\n", + "56480 0\n", + "56481 0\n", + "56482 0\n", + "56483 0\n", + "56484 0\n", + "56485 0\n", + "56486 0\n", + "56487 0\n", + "56488 0\n", + "56489 1\n", + "56490 0\n", + "56491 0\n", + "56492 0\n", + "56493 0\n", + "56494 0\n", + "56495 0\n", + "56496 0\n", + "56497 0\n", + "56498 0\n", + "56499 0\n", + "56500 0\n", + "56501 1\n", + "56502 0\n", + "56503 1\n", + "56504 0\n", + "56505 0\n", + "56506 0\n", + "56507 0\n", + "56508 0\n", + "56509 1\n", + "56510 0\n", + "56511 0\n", + "56512 0\n", + "56513 0\n", + "56514 0\n", + "56515 0\n", + "56516 0\n", + "56517 0\n", + "56518 0\n", + "56519 1\n", + "56520 0\n", + "56521 0\n", + "56522 0\n", + "56523 0\n", + "56524 0\n", + "56525 0\n", + "56526 0\n", + "56527 1\n", + "56528 0\n", + "56529 0\n", + "56530 0\n", + "56531 1\n", + "56532 0\n", + "56533 1\n", + "56534 0\n", + "56535 0\n", + "56536 0\n", + "56537 0\n", + "56538 0\n", + "56539 0\n", + "56540 0\n", + "56541 0\n", + "56542 0\n", + "56543 1\n", + "56544 0\n", + "56545 0\n", + "56546 0\n", + "56547 0\n", + "56548 0\n", + "56549 0\n", + "56550 0\n", + "56551 0\n", + "56552 0\n", + "56553 0\n", + "56554 0\n", + "56555 0\n", + "56556 0\n", + "56557 0\n", + "56558 0\n", + "56559 0\n", + "56560 0\n", + "56561 0\n", + "56562 0\n", + "56563 0\n", + "56564 0\n", + "56565 0\n", + "56566 0\n", + "56567 0\n", + "56568 0\n", + "56569 1\n", + "56570 0\n", + "56571 0\n", + "56572 0\n", + "56573 0\n", + "56574 0\n", + "56575 0\n", + "56576 0\n", + "56577 0\n", + "56578 0\n", + "56579 0\n", + "56580 0\n", + "56581 0\n", + "56582 0\n", + "56583 0\n", + "56584 0\n", + "56585 0\n", + "56586 0\n", + "56587 0\n", + "56588 0\n", + "56589 0\n", + "56590 0\n", + "56591 1\n", + "56592 0\n", + "56593 0\n", + "56594 0\n", + "56595 0\n", + "56596 0\n", + "56597 1\n", + "56598 0\n", + "56599 1\n", + "56600 0\n", + "56601 0\n", + "56602 0\n", + "56603 0\n", + "56604 0\n", + "56605 0\n", + "56606 0\n", + "56607 0\n", + "56608 0\n", + "56609 0\n", + "56610 0\n", + "56611 1\n", + "56612 0\n", + "56613 0\n", + "56614 0\n", + "56615 0\n", + "56616 0\n", + "56617 0\n", + "56618 0\n", + "56619 0\n", + "56620 0\n", + "56621 0\n", + "56622 0\n", + "56623 0\n", + "56624 0\n", + "56625 0\n", + "56626 0\n", + "56627 0\n", + "56628 0\n", + "56629 1\n", + "56630 0\n", + "56631 0\n", + "56632 0\n", + "56633 1\n", + "56634 0\n", + "56635 0\n", + "56636 0\n", + "56637 0\n", + "56638 0\n", + "56639 0\n", + "56640 0\n", + "56641 0\n", + "56642 0\n", + "56643 0\n", + "56644 0\n", + "56645 0\n", + "56646 0\n", + "56647 0\n", + "56648 0\n", + "56649 0\n", + "56650 0\n", + "56651 0\n", + "56652 0\n", + "56653 0\n", + "56654 0\n", + "56655 0\n", + "56656 0\n", + "56657 0\n", + "56658 0\n", + "56659 1\n", + "56660 0\n", + "56661 0\n", + "56662 0\n", + "56663 1\n", + "56664 0\n", + "56665 0\n", + "56666 0\n", + "56667 0\n", + "56668 0\n", + "56669 0\n", + "56670 0\n", + "56671 1\n", + "56672 0\n", + "56673 0\n", + "56674 0\n", + "56675 0\n", + "56676 0\n", + "56677 0\n", + "56678 0\n", + "56679 0\n", + "56680 0\n", + "56681 1\n", + "56682 0\n", + "56683 0\n", + "56684 0\n", + "56685 0\n", + "56686 0\n", + "56687 1\n", + "56688 0\n", + "56689 0\n", + "56690 0\n", + "56691 0\n", + "56692 0\n", + "56693 0\n", + "56694 0\n", + "56695 0\n", + "56696 0\n", + "56697 0\n", + "56698 0\n", + "56699 0\n", + "56700 0\n", + "56701 1\n", + "56702 0\n", + "56703 0\n", + "56704 0\n", + "56705 0\n", + "56706 0\n", + "56707 0\n", + "56708 0\n", + "56709 0\n", + "56710 0\n", + "56711 1\n", + "56712 0\n", + "56713 1\n", + "56714 0\n", + "56715 0\n", + "56716 0\n", + "56717 0\n", + "56718 0\n", + "56719 0\n", + "56720 0\n", + "56721 0\n", + "56722 0\n", + "56723 0\n", + "56724 0\n", + "56725 0\n", + "56726 0\n", + "56727 0\n", + "56728 0\n", + "56729 0\n", + "56730 0\n", + "56731 1\n", + "56732 0\n", + "56733 0\n", + "56734 0\n", + "56735 0\n", + "56736 0\n", + "56737 1\n", + "56738 0\n", + "56739 0\n", + "56740 0\n", + "56741 0\n", + "56742 0\n", + "56743 0\n", + "56744 0\n", + "56745 0\n", + "56746 0\n", + "56747 1\n", + "56748 0\n", + "56749 0\n", + "56750 0\n", + "56751 0\n", + "56752 0\n", + "56753 0\n", + "56754 0\n", + "56755 0\n", + "56756 0\n", + "56757 0\n", + "56758 0\n", + "56759 0\n", + "56760 0\n", + "56761 0\n", + "56762 0\n", + "56763 0\n", + "56764 0\n", + "56765 0\n", + "56766 0\n", + "56767 1\n", + "56768 0\n", + "56769 0\n", + "56770 0\n", + "56771 0\n", + "56772 0\n", + "56773 1\n", + "56774 0\n", + "56775 0\n", + "56776 0\n", + "56777 0\n", + "56778 0\n", + "56779 1\n", + "56780 0\n", + "56781 0\n", + "56782 0\n", + "56783 1\n", + "56784 0\n", + "56785 0\n", + "56786 0\n", + "56787 0\n", + "56788 0\n", + "56789 0\n", + "56790 0\n", + "56791 0\n", + "56792 0\n", + "56793 0\n", + "56794 0\n", + "56795 0\n", + "56796 0\n", + "56797 0\n", + "56798 0\n", + "56799 0\n", + "56800 0\n", + "56801 0\n", + "56802 0\n", + "56803 0\n", + "56804 0\n", + "56805 0\n", + "56806 0\n", + "56807 1\n", + "56808 0\n", + "56809 1\n", + "56810 0\n", + "56811 0\n", + "56812 0\n", + "56813 1\n", + "56814 0\n", + "56815 0\n", + "56816 0\n", + "56817 0\n", + "56818 0\n", + "56819 0\n", + "56820 0\n", + "56821 1\n", + "56822 0\n", + "56823 0\n", + "56824 0\n", + "56825 0\n", + "56826 0\n", + "56827 1\n", + "56828 0\n", + "56829 0\n", + "56830 0\n", + "56831 0\n", + "56832 0\n", + "56833 0\n", + "56834 0\n", + "56835 0\n", + "56836 0\n", + "56837 0\n", + "56838 0\n", + "56839 0\n", + "56840 0\n", + "56841 0\n", + "56842 0\n", + "56843 1\n", + "56844 0\n", + "56845 0\n", + "56846 0\n", + "56847 0\n", + "56848 0\n", + "56849 0\n", + "56850 0\n", + "56851 0\n", + "56852 0\n", + "56853 0\n", + "56854 0\n", + "56855 0\n", + "56856 0\n", + "56857 1\n", + "56858 0\n", + "56859 0\n", + "56860 0\n", + "56861 0\n", + "56862 0\n", + "56863 0\n", + "56864 0\n", + "56865 0\n", + "56866 0\n", + "56867 0\n", + "56868 0\n", + "56869 0\n", + "56870 0\n", + "56871 0\n", + "56872 0\n", + "56873 1\n", + "56874 0\n", + "56875 0\n", + "56876 0\n", + "56877 0\n", + "56878 0\n", + "56879 0\n", + "56880 0\n", + "56881 0\n", + "56882 0\n", + "56883 0\n", + "56884 0\n", + "56885 0\n", + "56886 0\n", + "56887 0\n", + "56888 0\n", + "56889 0\n", + "56890 0\n", + "56891 1\n", + "56892 0\n", + "56893 1\n", + "56894 0\n", + "56895 0\n", + "56896 0\n", + "56897 1\n", + "56898 0\n", + "56899 0\n", + "56900 0\n", + "56901 0\n", + "56902 0\n", + "56903 0\n", + "56904 0\n", + "56905 0\n", + "56906 0\n", + "56907 0\n", + "56908 0\n", + "56909 1\n", + "56910 0\n", + "56911 1\n", + "56912 0\n", + "56913 0\n", + "56914 0\n", + "56915 0\n", + "56916 0\n", + "56917 0\n", + "56918 0\n", + "56919 0\n", + "56920 0\n", + "56921 1\n", + "56922 0\n", + "56923 1\n", + "56924 0\n", + "56925 0\n", + "56926 0\n", + "56927 0\n", + "56928 0\n", + "56929 1\n", + "56930 0\n", + "56931 0\n", + "56932 0\n", + "56933 0\n", + "56934 0\n", + "56935 0\n", + "56936 0\n", + "56937 0\n", + "56938 0\n", + "56939 0\n", + "56940 0\n", + "56941 1\n", + "56942 0\n", + "56943 0\n", + "56944 0\n", + "56945 0\n", + "56946 0\n", + "56947 0\n", + "56948 0\n", + "56949 0\n", + "56950 0\n", + "56951 1\n", + "56952 0\n", + "56953 0\n", + "56954 0\n", + "56955 0\n", + "56956 0\n", + "56957 1\n", + "56958 0\n", + "56959 0\n", + "56960 0\n", + "56961 0\n", + "56962 0\n", + "56963 1\n", + "56964 0\n", + "56965 0\n", + "56966 0\n", + "56967 0\n", + "56968 0\n", + "56969 0\n", + "56970 0\n", + "56971 0\n", + "56972 0\n", + "56973 0\n", + "56974 0\n", + "56975 0\n", + "56976 0\n", + "56977 0\n", + "56978 0\n", + "56979 0\n", + "56980 0\n", + "56981 0\n", + "56982 0\n", + "56983 1\n", + "56984 0\n", + "56985 0\n", + "56986 0\n", + "56987 0\n", + "56988 0\n", + "56989 1\n", + "56990 0\n", + "56991 0\n", + "56992 0\n", + "56993 1\n", + "56994 0\n", + "56995 0\n", + "56996 0\n", + "56997 0\n", + "56998 0\n", + "56999 1\n", + "57000 0\n", + "57001 0\n", + "57002 0\n", + "57003 0\n", + "57004 0\n", + "57005 0\n", + "57006 0\n", + "57007 0\n", + "57008 0\n", + "57009 0\n", + "57010 0\n", + "57011 0\n", + "57012 0\n", + "57013 0\n", + "57014 0\n", + "57015 0\n", + "57016 0\n", + "57017 0\n", + "57018 0\n", + "57019 0\n", + "57020 0\n", + "57021 0\n", + "57022 0\n", + "57023 0\n", + "57024 0\n", + "57025 0\n", + "57026 0\n", + "57027 0\n", + "57028 0\n", + "57029 0\n", + "57030 0\n", + "57031 0\n", + "57032 0\n", + "57033 0\n", + "57034 0\n", + "57035 0\n", + "57036 0\n", + "57037 1\n", + "57038 0\n", + "57039 0\n", + "57040 0\n", + "57041 1\n", + "57042 0\n", + "57043 0\n", + "57044 0\n", + "57045 0\n", + "57046 0\n", + "57047 1\n", + "57048 0\n", + "57049 0\n", + "57050 0\n", + "57051 0\n", + "57052 0\n", + "57053 0\n", + "57054 0\n", + "57055 0\n", + "57056 0\n", + "57057 0\n", + "57058 0\n", + "57059 1\n", + "57060 0\n", + "57061 0\n", + "57062 0\n", + "57063 0\n", + "57064 0\n", + "57065 0\n", + "57066 0\n", + "57067 0\n", + "57068 0\n", + "57069 0\n", + "57070 0\n", + "57071 0\n", + "57072 0\n", + "57073 1\n", + "57074 0\n", + "57075 0\n", + "57076 0\n", + "57077 1\n", + "57078 0\n", + "57079 0\n", + "57080 0\n", + "57081 0\n", + "57082 0\n", + "57083 0\n", + "57084 0\n", + "57085 0\n", + "57086 0\n", + "57087 0\n", + "57088 0\n", + "57089 1\n", + "57090 0\n", + "57091 0\n", + "57092 0\n", + "57093 0\n", + "57094 0\n", + "57095 0\n", + "57096 0\n", + "57097 1\n", + "57098 0\n", + "57099 0\n", + "57100 0\n", + "57101 0\n", + "57102 0\n", + "57103 0\n", + "57104 0\n", + "57105 0\n", + "57106 0\n", + "57107 1\n", + "57108 0\n", + "57109 0\n", + "57110 0\n", + "57111 0\n", + "57112 0\n", + "57113 0\n", + "57114 0\n", + "57115 0\n", + "57116 0\n", + "57117 0\n", + "57118 0\n", + "57119 1\n", + "57120 0\n", + "57121 0\n", + "57122 0\n", + "57123 0\n", + "57124 0\n", + "57125 0\n", + "57126 0\n", + "57127 0\n", + "57128 0\n", + "57129 0\n", + "57130 0\n", + "57131 1\n", + "57132 0\n", + "57133 0\n", + "57134 0\n", + "57135 0\n", + "57136 0\n", + "57137 0\n", + "57138 0\n", + "57139 1\n", + "57140 0\n", + "57141 0\n", + "57142 0\n", + "57143 1\n", + "57144 0\n", + "57145 0\n", + "57146 0\n", + "57147 0\n", + "57148 0\n", + "57149 1\n", + "57150 0\n", + "57151 0\n", + "57152 0\n", + "57153 0\n", + "57154 0\n", + "57155 0\n", + "57156 0\n", + "57157 0\n", + "57158 0\n", + "57159 0\n", + "57160 0\n", + "57161 0\n", + "57162 0\n", + "57163 1\n", + "57164 0\n", + "57165 0\n", + "57166 0\n", + "57167 0\n", + "57168 0\n", + "57169 0\n", + "57170 0\n", + "57171 0\n", + "57172 0\n", + "57173 1\n", + "57174 0\n", + "57175 0\n", + "57176 0\n", + "57177 0\n", + "57178 0\n", + "57179 1\n", + "57180 0\n", + "57181 0\n", + "57182 0\n", + "57183 0\n", + "57184 0\n", + "57185 0\n", + "57186 0\n", + "57187 0\n", + "57188 0\n", + "57189 0\n", + "57190 0\n", + "57191 1\n", + "57192 0\n", + "57193 1\n", + "57194 0\n", + "57195 0\n", + "57196 0\n", + "57197 0\n", + "57198 0\n", + "57199 0\n", + "57200 0\n", + "57201 0\n", + "57202 0\n", + "57203 1\n", + "57204 0\n", + "57205 0\n", + "57206 0\n", + "57207 0\n", + "57208 0\n", + "57209 0\n", + "57210 0\n", + "57211 0\n", + "57212 0\n", + "57213 0\n", + "57214 0\n", + "57215 0\n", + "57216 0\n", + "57217 0\n", + "57218 0\n", + "57219 0\n", + "57220 0\n", + "57221 1\n", + "57222 0\n", + "57223 1\n", + "57224 0\n", + "57225 0\n", + "57226 0\n", + "57227 0\n", + "57228 0\n", + "57229 0\n", + "57230 0\n", + "57231 0\n", + "57232 0\n", + "57233 0\n", + "57234 0\n", + "57235 0\n", + "57236 0\n", + "57237 0\n", + "57238 0\n", + "57239 0\n", + "57240 0\n", + "57241 1\n", + "57242 0\n", + "57243 0\n", + "57244 0\n", + "57245 0\n", + "57246 0\n", + "57247 0\n", + "57248 0\n", + "57249 0\n", + "57250 0\n", + "57251 1\n", + "57252 0\n", + "57253 0\n", + "57254 0\n", + "57255 0\n", + "57256 0\n", + "57257 0\n", + "57258 0\n", + "57259 1\n", + "57260 0\n", + "57261 0\n", + "57262 0\n", + "57263 0\n", + "57264 0\n", + "57265 0\n", + "57266 0\n", + "57267 0\n", + "57268 0\n", + "57269 1\n", + "57270 0\n", + "57271 1\n", + "57272 0\n", + "57273 0\n", + "57274 0\n", + "57275 0\n", + "57276 0\n", + "57277 0\n", + "57278 0\n", + "57279 0\n", + "57280 0\n", + "57281 0\n", + "57282 0\n", + "57283 1\n", + "57284 0\n", + "57285 0\n", + "57286 0\n", + "57287 1\n", + "57288 0\n", + "57289 0\n", + "57290 0\n", + "57291 0\n", + "57292 0\n", + "57293 0\n", + "57294 0\n", + "57295 0\n", + "57296 0\n", + "57297 0\n", + "57298 0\n", + "57299 0\n", + "57300 0\n", + "57301 1\n", + "57302 0\n", + "57303 0\n", + "57304 0\n", + "57305 0\n", + "57306 0\n", + "57307 0\n", + "57308 0\n", + "57309 0\n", + "57310 0\n", + "57311 0\n", + "57312 0\n", + "57313 0\n", + "57314 0\n", + "57315 0\n", + "57316 0\n", + "57317 0\n", + "57318 0\n", + "57319 0\n", + "57320 0\n", + "57321 0\n", + "57322 0\n", + "57323 0\n", + "57324 0\n", + "57325 0\n", + "57326 0\n", + "57327 0\n", + "57328 0\n", + "57329 1\n", + "57330 0\n", + "57331 1\n", + "57332 0\n", + "57333 0\n", + "57334 0\n", + "57335 0\n", + "57336 0\n", + "57337 0\n", + "57338 0\n", + "57339 0\n", + "57340 0\n", + "57341 0\n", + "57342 0\n", + "57343 0\n", + "57344 0\n", + "57345 0\n", + "57346 0\n", + "57347 1\n", + "57348 0\n", + "57349 1\n", + "57350 0\n", + "57351 0\n", + "57352 0\n", + "57353 0\n", + "57354 0\n", + "57355 0\n", + "57356 0\n", + "57357 0\n", + "57358 0\n", + "57359 0\n", + "57360 0\n", + "57361 0\n", + "57362 0\n", + "57363 0\n", + "57364 0\n", + "57365 0\n", + "57366 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "57367 1\n", + "57368 0\n", + "57369 0\n", + "57370 0\n", + "57371 0\n", + "57372 0\n", + "57373 1\n", + "57374 0\n", + "57375 0\n", + "57376 0\n", + "57377 0\n", + "57378 0\n", + "57379 0\n", + "57380 0\n", + "57381 0\n", + "57382 0\n", + "57383 1\n", + "57384 0\n", + "57385 0\n", + "57386 0\n", + "57387 0\n", + "57388 0\n", + "57389 1\n", + "57390 0\n", + "57391 0\n", + "57392 0\n", + "57393 0\n", + "57394 0\n", + "57395 0\n", + "57396 0\n", + "57397 1\n", + "57398 0\n", + "57399 0\n", + "57400 0\n", + "57401 0\n", + "57402 0\n", + "57403 0\n", + "57404 0\n", + "57405 0\n", + "57406 0\n", + "57407 0\n", + "57408 0\n", + "57409 0\n", + "57410 0\n", + "57411 0\n", + "57412 0\n", + "57413 1\n", + "57414 0\n", + "57415 0\n", + "57416 0\n", + "57417 0\n", + "57418 0\n", + "57419 0\n", + "57420 0\n", + "57421 0\n", + "57422 0\n", + "57423 0\n", + "57424 0\n", + "57425 0\n", + "57426 0\n", + "57427 1\n", + "57428 0\n", + "57429 0\n", + "57430 0\n", + "57431 0\n", + "57432 0\n", + "57433 0\n", + "57434 0\n", + "57435 0\n", + "57436 0\n", + "57437 0\n", + "57438 0\n", + "57439 0\n", + "57440 0\n", + "57441 0\n", + "57442 0\n", + "57443 0\n", + "57444 0\n", + "57445 0\n", + "57446 0\n", + "57447 0\n", + "57448 0\n", + "57449 0\n", + "57450 0\n", + "57451 0\n", + "57452 0\n", + "57453 0\n", + "57454 0\n", + "57455 0\n", + "57456 0\n", + "57457 1\n", + "57458 0\n", + "57459 0\n", + "57460 0\n", + "57461 0\n", + "57462 0\n", + "57463 0\n", + "57464 0\n", + "57465 0\n", + "57466 0\n", + "57467 1\n", + "57468 0\n", + "57469 0\n", + "57470 0\n", + "57471 0\n", + "57472 0\n", + "57473 0\n", + "57474 0\n", + "57475 0\n", + "57476 0\n", + "57477 0\n", + "57478 0\n", + "57479 0\n", + "57480 0\n", + "57481 0\n", + "57482 0\n", + "57483 0\n", + "57484 0\n", + "57485 0\n", + "57486 0\n", + "57487 1\n", + "57488 0\n", + "57489 0\n", + "57490 0\n", + "57491 0\n", + "57492 0\n", + "57493 1\n", + "57494 0\n", + "57495 0\n", + "57496 0\n", + "57497 0\n", + "57498 0\n", + "57499 0\n", + "57500 0\n", + "57501 0\n", + "57502 0\n", + "57503 1\n", + "57504 0\n", + "57505 0\n", + "57506 0\n", + "57507 0\n", + "57508 0\n", + "57509 0\n", + "57510 0\n", + "57511 0\n", + "57512 0\n", + "57513 0\n", + "57514 0\n", + "57515 0\n", + "57516 0\n", + "57517 0\n", + "57518 0\n", + "57519 0\n", + "57520 0\n", + "57521 0\n", + "57522 0\n", + "57523 0\n", + "57524 0\n", + "57525 0\n", + "57526 0\n", + "57527 1\n", + "57528 0\n", + "57529 1\n", + "57530 0\n", + "57531 0\n", + "57532 0\n", + "57533 0\n", + "57534 0\n", + "57535 0\n", + "57536 0\n", + "57537 0\n", + "57538 0\n", + "57539 0\n", + "57540 0\n", + "57541 0\n", + "57542 0\n", + "57543 0\n", + "57544 0\n", + "57545 0\n", + "57546 0\n", + "57547 0\n", + "57548 0\n", + "57549 0\n", + "57550 0\n", + "57551 0\n", + "57552 0\n", + "57553 0\n", + "57554 0\n", + "57555 0\n", + "57556 0\n", + "57557 1\n", + "57558 0\n", + "57559 1\n", + "57560 0\n", + "57561 0\n", + "57562 0\n", + "57563 0\n", + "57564 0\n", + "57565 0\n", + "57566 0\n", + "57567 0\n", + "57568 0\n", + "57569 0\n", + "57570 0\n", + "57571 1\n", + "57572 0\n", + "57573 0\n", + "57574 0\n", + "57575 0\n", + "57576 0\n", + "57577 0\n", + "57578 0\n", + "57579 0\n", + "57580 0\n", + "57581 0\n", + "57582 0\n", + "57583 0\n", + "57584 0\n", + "57585 0\n", + "57586 0\n", + "57587 1\n", + "57588 0\n", + "57589 0\n", + "57590 0\n", + "57591 0\n", + "57592 0\n", + "57593 1\n", + "57594 0\n", + "57595 0\n", + "57596 0\n", + "57597 0\n", + "57598 0\n", + "57599 0\n", + "57600 0\n", + "57601 1\n", + "57602 0\n", + "57603 0\n", + "57604 0\n", + "57605 0\n", + "57606 0\n", + "57607 0\n", + "57608 0\n", + "57609 0\n", + "57610 0\n", + "57611 0\n", + "57612 0\n", + "57613 0\n", + "57614 0\n", + "57615 0\n", + "57616 0\n", + "57617 0\n", + "57618 0\n", + "57619 0\n", + "57620 0\n", + "57621 0\n", + "57622 0\n", + "57623 0\n", + "57624 0\n", + "57625 0\n", + "57626 0\n", + "57627 0\n", + "57628 0\n", + "57629 0\n", + "57630 0\n", + "57631 0\n", + "57632 0\n", + "57633 0\n", + "57634 0\n", + "57635 0\n", + "57636 0\n", + "57637 1\n", + "57638 0\n", + "57639 0\n", + "57640 0\n", + "57641 1\n", + "57642 0\n", + "57643 0\n", + "57644 0\n", + "57645 0\n", + "57646 0\n", + "57647 0\n", + "57648 0\n", + "57649 1\n", + "57650 0\n", + "57651 0\n", + "57652 0\n", + "57653 1\n", + "57654 0\n", + "57655 0\n", + "57656 0\n", + "57657 0\n", + "57658 0\n", + "57659 0\n", + "57660 0\n", + "57661 0\n", + "57662 0\n", + "57663 0\n", + "57664 0\n", + "57665 0\n", + "57666 0\n", + "57667 1\n", + "57668 0\n", + "57669 0\n", + "57670 0\n", + "57671 0\n", + "57672 0\n", + "57673 0\n", + "57674 0\n", + "57675 0\n", + "57676 0\n", + "57677 0\n", + "57678 0\n", + "57679 1\n", + "57680 0\n", + "57681 0\n", + "57682 0\n", + "57683 0\n", + "57684 0\n", + "57685 0\n", + "57686 0\n", + "57687 0\n", + "57688 0\n", + "57689 1\n", + "57690 0\n", + "57691 0\n", + "57692 0\n", + "57693 0\n", + "57694 0\n", + "57695 0\n", + "57696 0\n", + "57697 1\n", + "57698 0\n", + "57699 0\n", + "57700 0\n", + "57701 0\n", + "57702 0\n", + "57703 0\n", + "57704 0\n", + "57705 0\n", + "57706 0\n", + "57707 0\n", + "57708 0\n", + "57709 1\n", + "57710 0\n", + "57711 0\n", + "57712 0\n", + "57713 1\n", + "57714 0\n", + "57715 0\n", + "57716 0\n", + "57717 0\n", + "57718 0\n", + "57719 1\n", + "57720 0\n", + "57721 0\n", + "57722 0\n", + "57723 0\n", + "57724 0\n", + "57725 0\n", + "57726 0\n", + "57727 1\n", + "57728 0\n", + "57729 0\n", + "57730 0\n", + "57731 1\n", + "57732 0\n", + "57733 0\n", + "57734 0\n", + "57735 0\n", + "57736 0\n", + "57737 1\n", + "57738 0\n", + "57739 0\n", + "57740 0\n", + "57741 0\n", + "57742 0\n", + "57743 0\n", + "57744 0\n", + "57745 0\n", + "57746 0\n", + "57747 0\n", + "57748 0\n", + "57749 0\n", + "57750 0\n", + "57751 1\n", + "57752 0\n", + "57753 0\n", + "57754 0\n", + "57755 0\n", + "57756 0\n", + "57757 0\n", + "57758 0\n", + "57759 0\n", + "57760 0\n", + "57761 0\n", + "57762 0\n", + "57763 0\n", + "57764 0\n", + "57765 0\n", + "57766 0\n", + "57767 0\n", + "57768 0\n", + "57769 0\n", + "57770 0\n", + "57771 0\n", + "57772 0\n", + "57773 1\n", + "57774 0\n", + "57775 0\n", + "57776 0\n", + "57777 0\n", + "57778 0\n", + "57779 0\n", + "57780 0\n", + "57781 1\n", + "57782 0\n", + "57783 0\n", + "57784 0\n", + "57785 0\n", + "57786 0\n", + "57787 1\n", + "57788 0\n", + "57789 0\n", + "57790 0\n", + "57791 1\n", + "57792 0\n", + "57793 1\n", + "57794 0\n", + "57795 0\n", + "57796 0\n", + "57797 0\n", + "57798 0\n", + "57799 0\n", + "57800 0\n", + "57801 0\n", + "57802 0\n", + "57803 1\n", + "57804 0\n", + "57805 0\n", + "57806 0\n", + "57807 0\n", + "57808 0\n", + "57809 1\n", + "57810 0\n", + "57811 0\n", + "57812 0\n", + "57813 0\n", + "57814 0\n", + "57815 0\n", + "57816 0\n", + "57817 0\n", + "57818 0\n", + "57819 0\n", + "57820 0\n", + "57821 0\n", + "57822 0\n", + "57823 0\n", + "57824 0\n", + "57825 0\n", + "57826 0\n", + "57827 0\n", + "57828 0\n", + "57829 1\n", + "57830 0\n", + "57831 0\n", + "57832 0\n", + "57833 0\n", + "57834 0\n", + "57835 0\n", + "57836 0\n", + "57837 0\n", + "57838 0\n", + "57839 1\n", + "57840 0\n", + "57841 0\n", + "57842 0\n", + "57843 0\n", + "57844 0\n", + "57845 0\n", + "57846 0\n", + "57847 1\n", + "57848 0\n", + "57849 0\n", + "57850 0\n", + "57851 0\n", + "57852 0\n", + "57853 1\n", + "57854 0\n", + "57855 0\n", + "57856 0\n", + "57857 0\n", + "57858 0\n", + "57859 1\n", + "57860 0\n", + "57861 0\n", + "57862 0\n", + "57863 0\n", + "57864 0\n", + "57865 0\n", + "57866 0\n", + "57867 0\n", + "57868 0\n", + "57869 0\n", + "57870 0\n", + "57871 0\n", + "57872 0\n", + "57873 0\n", + "57874 0\n", + "57875 0\n", + "57876 0\n", + "57877 0\n", + "57878 0\n", + "57879 0\n", + "57880 0\n", + "57881 1\n", + "57882 0\n", + "57883 0\n", + "57884 0\n", + "57885 0\n", + "57886 0\n", + "57887 0\n", + "57888 0\n", + "57889 0\n", + "57890 0\n", + "57891 0\n", + "57892 0\n", + "57893 0\n", + "57894 0\n", + "57895 0\n", + "57896 0\n", + "57897 0\n", + "57898 0\n", + "57899 1\n", + "57900 0\n", + "57901 1\n", + "57902 0\n", + "57903 0\n", + "57904 0\n", + "57905 0\n", + "57906 0\n", + "57907 0\n", + "57908 0\n", + "57909 0\n", + "57910 0\n", + "57911 0\n", + "57912 0\n", + "57913 0\n", + "57914 0\n", + "57915 0\n", + "57916 0\n", + "57917 1\n", + "57918 0\n", + "57919 0\n", + "57920 0\n", + "57921 0\n", + "57922 0\n", + "57923 1\n", + "57924 0\n", + "57925 0\n", + "57926 0\n", + "57927 0\n", + "57928 0\n", + "57929 0\n", + "57930 0\n", + "57931 0\n", + "57932 0\n", + "57933 0\n", + "57934 0\n", + "57935 0\n", + "57936 0\n", + "57937 0\n", + "57938 0\n", + "57939 0\n", + "57940 0\n", + "57941 0\n", + "57942 0\n", + "57943 1\n", + "57944 0\n", + "57945 0\n", + "57946 0\n", + "57947 1\n", + "57948 0\n", + "57949 0\n", + "57950 0\n", + "57951 0\n", + "57952 0\n", + "57953 0\n", + "57954 0\n", + "57955 0\n", + "57956 0\n", + "57957 0\n", + "57958 0\n", + "57959 0\n", + "57960 0\n", + "57961 0\n", + "57962 0\n", + "57963 0\n", + "57964 0\n", + "57965 0\n", + "57966 0\n", + "57967 0\n", + "57968 0\n", + "57969 0\n", + "57970 0\n", + "57971 0\n", + "57972 0\n", + "57973 1\n", + "57974 0\n", + "57975 0\n", + "57976 0\n", + "57977 1\n", + "57978 0\n", + "57979 0\n", + "57980 0\n", + "57981 0\n", + "57982 0\n", + "57983 0\n", + "57984 0\n", + "57985 0\n", + "57986 0\n", + "57987 0\n", + "57988 0\n", + "57989 0\n", + "57990 0\n", + "57991 1\n", + "57992 0\n", + "57993 0\n", + "57994 0\n", + "57995 0\n", + "57996 0\n", + "57997 0\n", + "57998 0\n", + "57999 0\n", + "58000 0\n", + "58001 0\n", + "58002 0\n", + "58003 0\n", + "58004 0\n", + "58005 0\n", + "58006 0\n", + "58007 0\n", + "58008 0\n", + "58009 0\n", + "58010 0\n", + "58011 0\n", + "58012 0\n", + "58013 1\n", + "58014 0\n", + "58015 0\n", + "58016 0\n", + "58017 0\n", + "58018 0\n", + "58019 0\n", + "58020 0\n", + "58021 0\n", + "58022 0\n", + "58023 0\n", + "58024 0\n", + "58025 0\n", + "58026 0\n", + "58027 1\n", + "58028 0\n", + "58029 0\n", + "58030 0\n", + "58031 1\n", + "58032 0\n", + "58033 0\n", + "58034 0\n", + "58035 0\n", + "58036 0\n", + "58037 0\n", + "58038 0\n", + "58039 0\n", + "58040 0\n", + "58041 0\n", + "58042 0\n", + "58043 1\n", + "58044 0\n", + "58045 0\n", + "58046 0\n", + "58047 0\n", + "58048 0\n", + "58049 1\n", + "58050 0\n", + "58051 0\n", + "58052 0\n", + "58053 0\n", + "58054 0\n", + "58055 0\n", + "58056 0\n", + "58057 1\n", + "58058 0\n", + "58059 0\n", + "58060 0\n", + "58061 1\n", + "58062 0\n", + "58063 0\n", + "58064 0\n", + "58065 0\n", + "58066 0\n", + "58067 1\n", + "58068 0\n", + "58069 0\n", + "58070 0\n", + "58071 0\n", + "58072 0\n", + "58073 1\n", + "58074 0\n", + "58075 0\n", + "58076 0\n", + "58077 0\n", + "58078 0\n", + "58079 0\n", + "58080 0\n", + "58081 0\n", + "58082 0\n", + "58083 0\n", + "58084 0\n", + "58085 0\n", + "58086 0\n", + "58087 0\n", + "58088 0\n", + "58089 0\n", + "58090 0\n", + "58091 0\n", + "58092 0\n", + "58093 0\n", + "58094 0\n", + "58095 0\n", + "58096 0\n", + "58097 0\n", + "58098 0\n", + "58099 1\n", + "58100 0\n", + "58101 0\n", + "58102 0\n", + "58103 0\n", + "58104 0\n", + "58105 0\n", + "58106 0\n", + "58107 0\n", + "58108 0\n", + "58109 1\n", + "58110 0\n", + "58111 1\n", + "58112 0\n", + "58113 0\n", + "58114 0\n", + "58115 0\n", + "58116 0\n", + "58117 0\n", + "58118 0\n", + "58119 0\n", + "58120 0\n", + "58121 0\n", + "58122 0\n", + "58123 0\n", + "58124 0\n", + "58125 0\n", + "58126 0\n", + "58127 0\n", + "58128 0\n", + "58129 1\n", + "58130 0\n", + "58131 0\n", + "58132 0\n", + "58133 0\n", + "58134 0\n", + "58135 0\n", + "58136 0\n", + "58137 0\n", + "58138 0\n", + "58139 0\n", + "58140 0\n", + "58141 0\n", + "58142 0\n", + "58143 0\n", + "58144 0\n", + "58145 0\n", + "58146 0\n", + "58147 1\n", + "58148 0\n", + "58149 0\n", + "58150 0\n", + "58151 1\n", + "58152 0\n", + "58153 1\n", + "58154 0\n", + "58155 0\n", + "58156 0\n", + "58157 0\n", + "58158 0\n", + "58159 0\n", + "58160 0\n", + "58161 0\n", + "58162 0\n", + "58163 0\n", + "58164 0\n", + "58165 0\n", + "58166 0\n", + "58167 0\n", + "58168 0\n", + "58169 1\n", + "58170 0\n", + "58171 1\n", + "58172 0\n", + "58173 0\n", + "58174 0\n", + "58175 0\n", + "58176 0\n", + "58177 0\n", + "58178 0\n", + "58179 0\n", + "58180 0\n", + "58181 0\n", + "58182 0\n", + "58183 0\n", + "58184 0\n", + "58185 0\n", + "58186 0\n", + "58187 0\n", + "58188 0\n", + "58189 1\n", + "58190 0\n", + "58191 0\n", + "58192 0\n", + "58193 1\n", + "58194 0\n", + "58195 0\n", + "58196 0\n", + "58197 0\n", + "58198 0\n", + "58199 1\n", + "58200 0\n", + "58201 0\n", + "58202 0\n", + "58203 0\n", + "58204 0\n", + "58205 0\n", + "58206 0\n", + "58207 1\n", + "58208 0\n", + "58209 0\n", + "58210 0\n", + "58211 1\n", + "58212 0\n", + "58213 0\n", + "58214 0\n", + "58215 0\n", + "58216 0\n", + "58217 1\n", + "58218 0\n", + "58219 0\n", + "58220 0\n", + "58221 0\n", + "58222 0\n", + "58223 0\n", + "58224 0\n", + "58225 0\n", + "58226 0\n", + "58227 0\n", + "58228 0\n", + "58229 1\n", + "58230 0\n", + "58231 1\n", + "58232 0\n", + "58233 0\n", + "58234 0\n", + "58235 0\n", + "58236 0\n", + "58237 1\n", + "58238 0\n", + "58239 0\n", + "58240 0\n", + "58241 0\n", + "58242 0\n", + "58243 1\n", + "58244 0\n", + "58245 0\n", + "58246 0\n", + "58247 0\n", + "58248 0\n", + "58249 0\n", + "58250 0\n", + "58251 0\n", + "58252 0\n", + "58253 0\n", + "58254 0\n", + "58255 0\n", + "58256 0\n", + "58257 0\n", + "58258 0\n", + "58259 0\n", + "58260 0\n", + "58261 0\n", + "58262 0\n", + "58263 0\n", + "58264 0\n", + "58265 0\n", + "58266 0\n", + "58267 0\n", + "58268 0\n", + "58269 0\n", + "58270 0\n", + "58271 1\n", + "58272 0\n", + "58273 0\n", + "58274 0\n", + "58275 0\n", + "58276 0\n", + "58277 0\n", + "58278 0\n", + "58279 0\n", + "58280 0\n", + "58281 0\n", + "58282 0\n", + "58283 0\n", + "58284 0\n", + "58285 0\n", + "58286 0\n", + "58287 0\n", + "58288 0\n", + "58289 0\n", + "58290 0\n", + "58291 0\n", + "58292 0\n", + "58293 0\n", + "58294 0\n", + "58295 0\n", + "58296 0\n", + "58297 0\n", + "58298 0\n", + "58299 0\n", + "58300 0\n", + "58301 0\n", + "58302 0\n", + "58303 0\n", + "58304 0\n", + "58305 0\n", + "58306 0\n", + "58307 0\n", + "58308 0\n", + "58309 1\n", + "58310 0\n", + "58311 0\n", + "58312 0\n", + "58313 1\n", + "58314 0\n", + "58315 0\n", + "58316 0\n", + "58317 0\n", + "58318 0\n", + "58319 0\n", + "58320 0\n", + "58321 1\n", + "58322 0\n", + "58323 0\n", + "58324 0\n", + "58325 0\n", + "58326 0\n", + "58327 0\n", + "58328 0\n", + "58329 0\n", + "58330 0\n", + "58331 0\n", + "58332 0\n", + "58333 0\n", + "58334 0\n", + "58335 0\n", + "58336 0\n", + "58337 1\n", + "58338 0\n", + "58339 0\n", + "58340 0\n", + "58341 0\n", + "58342 0\n", + "58343 0\n", + "58344 0\n", + "58345 0\n", + "58346 0\n", + "58347 0\n", + "58348 0\n", + "58349 0\n", + "58350 0\n", + "58351 0\n", + "58352 0\n", + "58353 0\n", + "58354 0\n", + "58355 0\n", + "58356 0\n", + "58357 0\n", + "58358 0\n", + "58359 0\n", + "58360 0\n", + "58361 0\n", + "58362 0\n", + "58363 1\n", + "58364 0\n", + "58365 0\n", + "58366 0\n", + "58367 1\n", + "58368 0\n", + "58369 1\n", + "58370 0\n", + "58371 0\n", + "58372 0\n", + "58373 0\n", + "58374 0\n", + "58375 0\n", + "58376 0\n", + "58377 0\n", + "58378 0\n", + "58379 1\n", + "58380 0\n", + "58381 0\n", + "58382 0\n", + "58383 0\n", + "58384 0\n", + "58385 0\n", + "58386 0\n", + "58387 0\n", + "58388 0\n", + "58389 0\n", + "58390 0\n", + "58391 1\n", + "58392 0\n", + "58393 1\n", + "58394 0\n", + "58395 0\n", + "58396 0\n", + "58397 0\n", + "58398 0\n", + "58399 0\n", + "58400 0\n", + "58401 0\n", + "58402 0\n", + "58403 1\n", + "58404 0\n", + "58405 0\n", + "58406 0\n", + "58407 0\n", + "58408 0\n", + "58409 0\n", + "58410 0\n", + "58411 1\n", + "58412 0\n", + "58413 0\n", + "58414 0\n", + "58415 0\n", + "58416 0\n", + "58417 1\n", + "58418 0\n", + "58419 0\n", + "58420 0\n", + "58421 0\n", + "58422 0\n", + "58423 0\n", + "58424 0\n", + "58425 0\n", + "58426 0\n", + "58427 1\n", + "58428 0\n", + "58429 0\n", + "58430 0\n", + "58431 0\n", + "58432 0\n", + "58433 0\n", + "58434 0\n", + "58435 0\n", + "58436 0\n", + "58437 0\n", + "58438 0\n", + "58439 1\n", + "58440 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "58441 1\n", + "58442 0\n", + "58443 0\n", + "58444 0\n", + "58445 0\n", + "58446 0\n", + "58447 0\n", + "58448 0\n", + "58449 0\n", + "58450 0\n", + "58451 1\n", + "58452 0\n", + "58453 1\n", + "58454 0\n", + "58455 0\n", + "58456 0\n", + "58457 0\n", + "58458 0\n", + "58459 0\n", + "58460 0\n", + "58461 0\n", + "58462 0\n", + "58463 0\n", + "58464 0\n", + "58465 0\n", + "58466 0\n", + "58467 0\n", + "58468 0\n", + "58469 0\n", + "58470 0\n", + "58471 0\n", + "58472 0\n", + "58473 0\n", + "58474 0\n", + "58475 0\n", + "58476 0\n", + "58477 1\n", + "58478 0\n", + "58479 0\n", + "58480 0\n", + "58481 1\n", + "58482 0\n", + "58483 0\n", + "58484 0\n", + "58485 0\n", + "58486 0\n", + "58487 0\n", + "58488 0\n", + "58489 0\n", + "58490 0\n", + "58491 0\n", + "58492 0\n", + "58493 0\n", + "58494 0\n", + "58495 0\n", + "58496 0\n", + "58497 0\n", + "58498 0\n", + "58499 0\n", + "58500 0\n", + "58501 0\n", + "58502 0\n", + "58503 0\n", + "58504 0\n", + "58505 0\n", + "58506 0\n", + "58507 0\n", + "58508 0\n", + "58509 0\n", + "58510 0\n", + "58511 1\n", + "58512 0\n", + "58513 0\n", + "58514 0\n", + "58515 0\n", + "58516 0\n", + "58517 0\n", + "58518 0\n", + "58519 0\n", + "58520 0\n", + "58521 0\n", + "58522 0\n", + "58523 0\n", + "58524 0\n", + "58525 0\n", + "58526 0\n", + "58527 0\n", + "58528 0\n", + "58529 0\n", + "58530 0\n", + "58531 0\n", + "58532 0\n", + "58533 0\n", + "58534 0\n", + "58535 0\n", + "58536 0\n", + "58537 1\n", + "58538 0\n", + "58539 0\n", + "58540 0\n", + "58541 0\n", + "58542 0\n", + "58543 1\n", + "58544 0\n", + "58545 0\n", + "58546 0\n", + "58547 0\n", + "58548 0\n", + "58549 1\n", + "58550 0\n", + "58551 0\n", + "58552 0\n", + "58553 0\n", + "58554 0\n", + "58555 0\n", + "58556 0\n", + "58557 0\n", + "58558 0\n", + "58559 0\n", + "58560 0\n", + "58561 0\n", + "58562 0\n", + "58563 0\n", + "58564 0\n", + "58565 0\n", + "58566 0\n", + "58567 1\n", + "58568 0\n", + "58569 0\n", + "58570 0\n", + "58571 0\n", + "58572 0\n", + "58573 1\n", + "58574 0\n", + "58575 0\n", + "58576 0\n", + "58577 0\n", + "58578 0\n", + "58579 1\n", + "58580 0\n", + "58581 0\n", + "58582 0\n", + "58583 0\n", + "58584 0\n", + "58585 0\n", + "58586 0\n", + "58587 0\n", + "58588 0\n", + "58589 0\n", + "58590 0\n", + "58591 0\n", + "58592 0\n", + "58593 0\n", + "58594 0\n", + "58595 0\n", + "58596 0\n", + "58597 0\n", + "58598 0\n", + "58599 0\n", + "58600 0\n", + "58601 1\n", + "58602 0\n", + "58603 1\n", + "58604 0\n", + "58605 0\n", + "58606 0\n", + "58607 0\n", + "58608 0\n", + "58609 0\n", + "58610 0\n", + "58611 0\n", + "58612 0\n", + "58613 1\n", + "58614 0\n", + "58615 0\n", + "58616 0\n", + "58617 0\n", + "58618 0\n", + "58619 0\n", + "58620 0\n", + "58621 0\n", + "58622 0\n", + "58623 0\n", + "58624 0\n", + "58625 0\n", + "58626 0\n", + "58627 0\n", + "58628 0\n", + "58629 0\n", + "58630 0\n", + "58631 1\n", + "58632 0\n", + "58633 0\n", + "58634 0\n", + "58635 0\n", + "58636 0\n", + "58637 0\n", + "58638 0\n", + "58639 0\n", + "58640 0\n", + "58641 0\n", + "58642 0\n", + "58643 0\n", + "58644 0\n", + "58645 0\n", + "58646 0\n", + "58647 0\n", + "58648 0\n", + "58649 0\n", + "58650 0\n", + "58651 0\n", + "58652 0\n", + "58653 0\n", + "58654 0\n", + "58655 0\n", + "58656 0\n", + "58657 1\n", + "58658 0\n", + "58659 0\n", + "58660 0\n", + "58661 1\n", + "58662 0\n", + "58663 0\n", + "58664 0\n", + "58665 0\n", + "58666 0\n", + "58667 0\n", + "58668 0\n", + "58669 0\n", + "58670 0\n", + "58671 0\n", + "58672 0\n", + "58673 0\n", + "58674 0\n", + "58675 0\n", + "58676 0\n", + "58677 0\n", + "58678 0\n", + "58679 1\n", + "58680 0\n", + "58681 0\n", + "58682 0\n", + "58683 0\n", + "58684 0\n", + "58685 0\n", + "58686 0\n", + "58687 1\n", + "58688 0\n", + "58689 0\n", + "58690 0\n", + "58691 0\n", + "58692 0\n", + "58693 1\n", + "58694 0\n", + "58695 0\n", + "58696 0\n", + "58697 0\n", + "58698 0\n", + "58699 1\n", + "58700 0\n", + "58701 0\n", + "58702 0\n", + "58703 0\n", + "58704 0\n", + "58705 0\n", + "58706 0\n", + "58707 0\n", + "58708 0\n", + "58709 0\n", + "58710 0\n", + "58711 1\n", + "58712 0\n", + "58713 0\n", + "58714 0\n", + "58715 0\n", + "58716 0\n", + "58717 0\n", + "58718 0\n", + "58719 0\n", + "58720 0\n", + "58721 0\n", + "58722 0\n", + "58723 0\n", + "58724 0\n", + "58725 0\n", + "58726 0\n", + "58727 1\n", + "58728 0\n", + "58729 0\n", + "58730 0\n", + "58731 0\n", + "58732 0\n", + "58733 1\n", + "58734 0\n", + "58735 0\n", + "58736 0\n", + "58737 0\n", + "58738 0\n", + "58739 0\n", + "58740 0\n", + "58741 1\n", + "58742 0\n", + "58743 0\n", + "58744 0\n", + "58745 0\n", + "58746 0\n", + "58747 0\n", + "58748 0\n", + "58749 0\n", + "58750 0\n", + "58751 0\n", + "58752 0\n", + "58753 0\n", + "58754 0\n", + "58755 0\n", + "58756 0\n", + "58757 1\n", + "58758 0\n", + "58759 0\n", + "58760 0\n", + "58761 0\n", + "58762 0\n", + "58763 1\n", + "58764 0\n", + "58765 0\n", + "58766 0\n", + "58767 0\n", + "58768 0\n", + "58769 0\n", + "58770 0\n", + "58771 1\n", + "58772 0\n", + "58773 0\n", + "58774 0\n", + "58775 0\n", + "58776 0\n", + "58777 0\n", + "58778 0\n", + "58779 0\n", + "58780 0\n", + "58781 0\n", + "58782 0\n", + "58783 0\n", + "58784 0\n", + "58785 0\n", + "58786 0\n", + "58787 1\n", + "58788 0\n", + "58789 1\n", + "58790 0\n", + "58791 0\n", + "58792 0\n", + "58793 0\n", + "58794 0\n", + "58795 0\n", + "58796 0\n", + "58797 0\n", + "58798 0\n", + "58799 0\n", + "58800 0\n", + "58801 0\n", + "58802 0\n", + "58803 0\n", + "58804 0\n", + "58805 0\n", + "58806 0\n", + "58807 0\n", + "58808 0\n", + "58809 0\n", + "58810 0\n", + "58811 0\n", + "58812 0\n", + "58813 0\n", + "58814 0\n", + "58815 0\n", + "58816 0\n", + "58817 0\n", + "58818 0\n", + "58819 0\n", + "58820 0\n", + "58821 0\n", + "58822 0\n", + "58823 0\n", + "58824 0\n", + "58825 0\n", + "58826 0\n", + "58827 0\n", + "58828 0\n", + "58829 0\n", + "58830 0\n", + "58831 1\n", + "58832 0\n", + "58833 0\n", + "58834 0\n", + "58835 0\n", + "58836 0\n", + "58837 0\n", + "58838 0\n", + "58839 0\n", + "58840 0\n", + "58841 0\n", + "58842 0\n", + "58843 0\n", + "58844 0\n", + "58845 0\n", + "58846 0\n", + "58847 0\n", + "58848 0\n", + "58849 0\n", + "58850 0\n", + "58851 0\n", + "58852 0\n", + "58853 0\n", + "58854 0\n", + "58855 0\n", + "58856 0\n", + "58857 0\n", + "58858 0\n", + "58859 0\n", + "58860 0\n", + "58861 0\n", + "58862 0\n", + "58863 0\n", + "58864 0\n", + "58865 0\n", + "58866 0\n", + "58867 0\n", + "58868 0\n", + "58869 0\n", + "58870 0\n", + "58871 0\n", + "58872 0\n", + "58873 0\n", + "58874 0\n", + "58875 0\n", + "58876 0\n", + "58877 0\n", + "58878 0\n", + "58879 0\n", + "58880 0\n", + "58881 0\n", + "58882 0\n", + "58883 0\n", + "58884 0\n", + "58885 0\n", + "58886 0\n", + "58887 0\n", + "58888 0\n", + "58889 1\n", + "58890 0\n", + "58891 0\n", + "58892 0\n", + "58893 0\n", + "58894 0\n", + "58895 0\n", + "58896 0\n", + "58897 1\n", + "58898 0\n", + "58899 0\n", + "58900 0\n", + "58901 1\n", + "58902 0\n", + "58903 0\n", + "58904 0\n", + "58905 0\n", + "58906 0\n", + "58907 1\n", + "58908 0\n", + "58909 1\n", + "58910 0\n", + "58911 0\n", + "58912 0\n", + "58913 1\n", + "58914 0\n", + "58915 0\n", + "58916 0\n", + "58917 0\n", + "58918 0\n", + "58919 0\n", + "58920 0\n", + "58921 1\n", + "58922 0\n", + "58923 0\n", + "58924 0\n", + "58925 0\n", + "58926 0\n", + "58927 0\n", + "58928 0\n", + "58929 0\n", + "58930 0\n", + "58931 0\n", + "58932 0\n", + "58933 0\n", + "58934 0\n", + "58935 0\n", + "58936 0\n", + "58937 1\n", + "58938 0\n", + "58939 0\n", + "58940 0\n", + "58941 0\n", + "58942 0\n", + "58943 1\n", + "58944 0\n", + "58945 0\n", + "58946 0\n", + "58947 0\n", + "58948 0\n", + "58949 0\n", + "58950 0\n", + "58951 0\n", + "58952 0\n", + "58953 0\n", + "58954 0\n", + "58955 0\n", + "58956 0\n", + "58957 0\n", + "58958 0\n", + "58959 0\n", + "58960 0\n", + "58961 0\n", + "58962 0\n", + "58963 1\n", + "58964 0\n", + "58965 0\n", + "58966 0\n", + "58967 1\n", + "58968 0\n", + "58969 0\n", + "58970 0\n", + "58971 0\n", + "58972 0\n", + "58973 0\n", + "58974 0\n", + "58975 0\n", + "58976 0\n", + "58977 0\n", + "58978 0\n", + "58979 1\n", + "58980 0\n", + "58981 0\n", + "58982 0\n", + "58983 0\n", + "58984 0\n", + "58985 0\n", + "58986 0\n", + "58987 0\n", + "58988 0\n", + "58989 0\n", + "58990 0\n", + "58991 1\n", + "58992 0\n", + "58993 0\n", + "58994 0\n", + "58995 0\n", + "58996 0\n", + "58997 1\n", + "58998 0\n", + "58999 0\n", + "59000 0\n", + "59001 0\n", + "59002 0\n", + "59003 0\n", + "59004 0\n", + "59005 0\n", + "59006 0\n", + "59007 0\n", + "59008 0\n", + "59009 1\n", + "59010 0\n", + "59011 1\n", + "59012 0\n", + "59013 0\n", + "59014 0\n", + "59015 0\n", + "59016 0\n", + "59017 0\n", + "59018 0\n", + "59019 0\n", + "59020 0\n", + "59021 1\n", + "59022 0\n", + "59023 1\n", + "59024 0\n", + "59025 0\n", + "59026 0\n", + "59027 0\n", + "59028 0\n", + "59029 1\n", + "59030 0\n", + "59031 0\n", + "59032 0\n", + "59033 0\n", + "59034 0\n", + "59035 0\n", + "59036 0\n", + "59037 0\n", + "59038 0\n", + "59039 0\n", + "59040 0\n", + "59041 0\n", + "59042 0\n", + "59043 0\n", + "59044 0\n", + "59045 0\n", + "59046 0\n", + "59047 0\n", + "59048 0\n", + "59049 0\n", + "59050 0\n", + "59051 1\n", + "59052 0\n", + "59053 1\n", + "59054 0\n", + "59055 0\n", + "59056 0\n", + "59057 0\n", + "59058 0\n", + "59059 0\n", + "59060 0\n", + "59061 0\n", + "59062 0\n", + "59063 1\n", + "59064 0\n", + "59065 0\n", + "59066 0\n", + "59067 0\n", + "59068 0\n", + "59069 1\n", + "59070 0\n", + "59071 0\n", + "59072 0\n", + "59073 0\n", + "59074 0\n", + "59075 0\n", + "59076 0\n", + "59077 1\n", + "59078 0\n", + "59079 0\n", + "59080 0\n", + "59081 0\n", + "59082 0\n", + "59083 1\n", + "59084 0\n", + "59085 0\n", + "59086 0\n", + "59087 0\n", + "59088 0\n", + "59089 0\n", + "59090 0\n", + "59091 0\n", + "59092 0\n", + "59093 1\n", + "59094 0\n", + "59095 0\n", + "59096 0\n", + "59097 0\n", + "59098 0\n", + "59099 0\n", + "59100 0\n", + "59101 0\n", + "59102 0\n", + "59103 0\n", + "59104 0\n", + "59105 0\n", + "59106 0\n", + "59107 1\n", + "59108 0\n", + "59109 0\n", + "59110 0\n", + "59111 0\n", + "59112 0\n", + "59113 1\n", + "59114 0\n", + "59115 0\n", + "59116 0\n", + "59117 0\n", + "59118 0\n", + "59119 1\n", + "59120 0\n", + "59121 0\n", + "59122 0\n", + "59123 1\n", + "59124 0\n", + "59125 0\n", + "59126 0\n", + "59127 0\n", + "59128 0\n", + "59129 0\n", + "59130 0\n", + "59131 0\n", + "59132 0\n", + "59133 0\n", + "59134 0\n", + "59135 0\n", + "59136 0\n", + "59137 0\n", + "59138 0\n", + "59139 0\n", + "59140 0\n", + "59141 1\n", + "59142 0\n", + "59143 0\n", + "59144 0\n", + "59145 0\n", + "59146 0\n", + "59147 0\n", + "59148 0\n", + "59149 1\n", + "59150 0\n", + "59151 0\n", + "59152 0\n", + "59153 0\n", + "59154 0\n", + "59155 0\n", + "59156 0\n", + "59157 0\n", + "59158 0\n", + "59159 1\n", + "59160 0\n", + "59161 0\n", + "59162 0\n", + "59163 0\n", + "59164 0\n", + "59165 0\n", + "59166 0\n", + "59167 1\n", + "59168 0\n", + "59169 0\n", + "59170 0\n", + "59171 0\n", + "59172 0\n", + "59173 0\n", + "59174 0\n", + "59175 0\n", + "59176 0\n", + "59177 0\n", + "59178 0\n", + "59179 0\n", + "59180 0\n", + "59181 0\n", + "59182 0\n", + "59183 1\n", + "59184 0\n", + "59185 0\n", + "59186 0\n", + "59187 0\n", + "59188 0\n", + "59189 0\n", + "59190 0\n", + "59191 0\n", + "59192 0\n", + "59193 0\n", + "59194 0\n", + "59195 0\n", + "59196 0\n", + "59197 1\n", + "59198 0\n", + "59199 0\n", + "59200 0\n", + "59201 0\n", + "59202 0\n", + "59203 0\n", + "59204 0\n", + "59205 0\n", + "59206 0\n", + "59207 1\n", + "59208 0\n", + "59209 1\n", + "59210 0\n", + "59211 0\n", + "59212 0\n", + "59213 0\n", + "59214 0\n", + "59215 0\n", + "59216 0\n", + "59217 0\n", + "59218 0\n", + "59219 1\n", + "59220 0\n", + "59221 1\n", + "59222 0\n", + "59223 0\n", + "59224 0\n", + "59225 0\n", + "59226 0\n", + "59227 0\n", + "59228 0\n", + "59229 0\n", + "59230 0\n", + "59231 0\n", + "59232 0\n", + "59233 1\n", + "59234 0\n", + "59235 0\n", + "59236 0\n", + "59237 0\n", + "59238 0\n", + "59239 1\n", + "59240 0\n", + "59241 0\n", + "59242 0\n", + "59243 1\n", + "59244 0\n", + "59245 0\n", + "59246 0\n", + "59247 0\n", + "59248 0\n", + "59249 0\n", + "59250 0\n", + "59251 0\n", + "59252 0\n", + "59253 0\n", + "59254 0\n", + "59255 0\n", + "59256 0\n", + "59257 0\n", + "59258 0\n", + "59259 0\n", + "59260 0\n", + "59261 0\n", + "59262 0\n", + "59263 1\n", + "59264 0\n", + "59265 0\n", + "59266 0\n", + "59267 0\n", + "59268 0\n", + "59269 0\n", + "59270 0\n", + "59271 0\n", + "59272 0\n", + "59273 1\n", + "59274 0\n", + "59275 0\n", + "59276 0\n", + "59277 0\n", + "59278 0\n", + "59279 0\n", + "59280 0\n", + "59281 1\n", + "59282 0\n", + "59283 0\n", + "59284 0\n", + "59285 0\n", + "59286 0\n", + "59287 0\n", + "59288 0\n", + "59289 0\n", + "59290 0\n", + "59291 0\n", + "59292 0\n", + "59293 0\n", + "59294 0\n", + "59295 0\n", + "59296 0\n", + "59297 0\n", + "59298 0\n", + "59299 0\n", + "59300 0\n", + "59301 0\n", + "59302 0\n", + "59303 0\n", + "59304 0\n", + "59305 0\n", + "59306 0\n", + "59307 0\n", + "59308 0\n", + "59309 0\n", + "59310 0\n", + "59311 0\n", + "59312 0\n", + "59313 0\n", + "59314 0\n", + "59315 0\n", + "59316 0\n", + "59317 0\n", + "59318 0\n", + "59319 0\n", + "59320 0\n", + "59321 0\n", + "59322 0\n", + "59323 0\n", + "59324 0\n", + "59325 0\n", + "59326 0\n", + "59327 0\n", + "59328 0\n", + "59329 0\n", + "59330 0\n", + "59331 0\n", + "59332 0\n", + "59333 1\n", + "59334 0\n", + "59335 0\n", + "59336 0\n", + "59337 0\n", + "59338 0\n", + "59339 0\n", + "59340 0\n", + "59341 1\n", + "59342 0\n", + "59343 0\n", + "59344 0\n", + "59345 0\n", + "59346 0\n", + "59347 0\n", + "59348 0\n", + "59349 0\n", + "59350 0\n", + "59351 1\n", + "59352 0\n", + "59353 0\n", + "59354 0\n", + "59355 0\n", + "59356 0\n", + "59357 1\n", + "59358 0\n", + "59359 1\n", + "59360 0\n", + "59361 0\n", + "59362 0\n", + "59363 0\n", + "59364 0\n", + "59365 0\n", + "59366 0\n", + "59367 0\n", + "59368 0\n", + "59369 1\n", + "59370 0\n", + "59371 0\n", + "59372 0\n", + "59373 0\n", + "59374 0\n", + "59375 0\n", + "59376 0\n", + "59377 1\n", + "59378 0\n", + "59379 0\n", + "59380 0\n", + "59381 0\n", + "59382 0\n", + "59383 0\n", + "59384 0\n", + "59385 0\n", + "59386 0\n", + "59387 1\n", + "59388 0\n", + "59389 0\n", + "59390 0\n", + "59391 0\n", + "59392 0\n", + "59393 1\n", + "59394 0\n", + "59395 0\n", + "59396 0\n", + "59397 0\n", + "59398 0\n", + "59399 1\n", + "59400 0\n", + "59401 0\n", + "59402 0\n", + "59403 0\n", + "59404 0\n", + "59405 0\n", + "59406 0\n", + "59407 1\n", + "59408 0\n", + "59409 0\n", + "59410 0\n", + "59411 0\n", + "59412 0\n", + "59413 0\n", + "59414 0\n", + "59415 0\n", + "59416 0\n", + "59417 1\n", + "59418 0\n", + "59419 1\n", + "59420 0\n", + "59421 0\n", + "59422 0\n", + "59423 0\n", + "59424 0\n", + "59425 0\n", + "59426 0\n", + "59427 0\n", + "59428 0\n", + "59429 0\n", + "59430 0\n", + "59431 0\n", + "59432 0\n", + "59433 0\n", + "59434 0\n", + "59435 0\n", + "59436 0\n", + "59437 0\n", + "59438 0\n", + "59439 0\n", + "59440 0\n", + "59441 1\n", + "59442 0\n", + "59443 1\n", + "59444 0\n", + "59445 0\n", + "59446 0\n", + "59447 1\n", + "59448 0\n", + "59449 0\n", + "59450 0\n", + "59451 0\n", + "59452 0\n", + "59453 1\n", + "59454 0\n", + "59455 0\n", + "59456 0\n", + "59457 0\n", + "59458 0\n", + "59459 0\n", + "59460 0\n", + "59461 0\n", + "59462 0\n", + "59463 0\n", + "59464 0\n", + "59465 0\n", + "59466 0\n", + "59467 1\n", + "59468 0\n", + "59469 0\n", + "59470 0\n", + "59471 1\n", + "59472 0\n", + "59473 1\n", + "59474 0\n", + "59475 0\n", + "59476 0\n", + "59477 0\n", + "59478 0\n", + "59479 0\n", + "59480 0\n", + "59481 0\n", + "59482 0\n", + "59483 0\n", + "59484 0\n", + "59485 0\n", + "59486 0\n", + "59487 0\n", + "59488 0\n", + "59489 0\n", + "59490 0\n", + "59491 0\n", + "59492 0\n", + "59493 0\n", + "59494 0\n", + "59495 0\n", + "59496 0\n", + "59497 1\n", + "59498 0\n", + "59499 0\n", + "59500 0\n", + "59501 0\n", + "59502 0\n", + "59503 0\n", + "59504 0\n", + "59505 0\n", + "59506 0\n", + "59507 0\n", + "59508 0\n", + "59509 1\n", + "59510 0\n", + "59511 0\n", + "59512 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "59513 1\n", + "59514 0\n", + "59515 0\n", + "59516 0\n", + "59517 0\n", + "59518 0\n", + "59519 0\n", + "59520 0\n", + "59521 0\n", + "59522 0\n", + "59523 0\n", + "59524 0\n", + "59525 0\n", + "59526 0\n", + "59527 0\n", + "59528 0\n", + "59529 0\n", + "59530 0\n", + "59531 0\n", + "59532 0\n", + "59533 0\n", + "59534 0\n", + "59535 0\n", + "59536 0\n", + "59537 0\n", + "59538 0\n", + "59539 1\n", + "59540 0\n", + "59541 0\n", + "59542 0\n", + "59543 0\n", + "59544 0\n", + "59545 0\n", + "59546 0\n", + "59547 0\n", + "59548 0\n", + "59549 0\n", + "59550 0\n", + "59551 0\n", + "59552 0\n", + "59553 0\n", + "59554 0\n", + "59555 0\n", + "59556 0\n", + "59557 1\n", + "59558 0\n", + "59559 0\n", + "59560 0\n", + "59561 1\n", + "59562 0\n", + "59563 0\n", + "59564 0\n", + "59565 0\n", + "59566 0\n", + "59567 1\n", + "59568 0\n", + "59569 0\n", + "59570 0\n", + "59571 0\n", + "59572 0\n", + "59573 0\n", + "59574 0\n", + "59575 0\n", + "59576 0\n", + "59577 0\n", + "59578 0\n", + "59579 0\n", + "59580 0\n", + "59581 1\n", + "59582 0\n", + "59583 0\n", + "59584 0\n", + "59585 0\n", + "59586 0\n", + "59587 0\n", + "59588 0\n", + "59589 0\n", + "59590 0\n", + "59591 0\n", + "59592 0\n", + "59593 0\n", + "59594 0\n", + "59595 0\n", + "59596 0\n", + "59597 0\n", + "59598 0\n", + "59599 0\n", + "59600 0\n", + "59601 0\n", + "59602 0\n", + "59603 0\n", + "59604 0\n", + "59605 0\n", + "59606 0\n", + "59607 0\n", + "59608 0\n", + "59609 0\n", + "59610 0\n", + "59611 1\n", + "59612 0\n", + "59613 0\n", + "59614 0\n", + "59615 0\n", + "59616 0\n", + "59617 1\n", + "59618 0\n", + "59619 0\n", + "59620 0\n", + "59621 1\n", + "59622 0\n", + "59623 0\n", + "59624 0\n", + "59625 0\n", + "59626 0\n", + "59627 1\n", + "59628 0\n", + "59629 1\n", + "59630 0\n", + "59631 0\n", + "59632 0\n", + "59633 0\n", + "59634 0\n", + "59635 0\n", + "59636 0\n", + "59637 0\n", + "59638 0\n", + "59639 0\n", + "59640 0\n", + "59641 0\n", + "59642 0\n", + "59643 0\n", + "59644 0\n", + "59645 0\n", + "59646 0\n", + "59647 0\n", + "59648 0\n", + "59649 0\n", + "59650 0\n", + "59651 1\n", + "59652 0\n", + "59653 0\n", + "59654 0\n", + "59655 0\n", + "59656 0\n", + "59657 0\n", + "59658 0\n", + "59659 1\n", + "59660 0\n", + "59661 0\n", + "59662 0\n", + "59663 1\n", + "59664 0\n", + "59665 0\n", + "59666 0\n", + "59667 0\n", + "59668 0\n", + "59669 1\n", + "59670 0\n", + "59671 1\n", + "59672 0\n", + "59673 0\n", + "59674 0\n", + "59675 0\n", + "59676 0\n", + "59677 0\n", + "59678 0\n", + "59679 0\n", + "59680 0\n", + "59681 0\n", + "59682 0\n", + "59683 0\n", + "59684 0\n", + "59685 0\n", + "59686 0\n", + "59687 0\n", + "59688 0\n", + "59689 0\n", + "59690 0\n", + "59691 0\n", + "59692 0\n", + "59693 1\n", + "59694 0\n", + "59695 0\n", + "59696 0\n", + "59697 0\n", + "59698 0\n", + "59699 1\n", + "59700 0\n", + "59701 0\n", + "59702 0\n", + "59703 0\n", + "59704 0\n", + "59705 0\n", + "59706 0\n", + "59707 1\n", + "59708 0\n", + "59709 0\n", + "59710 0\n", + "59711 0\n", + "59712 0\n", + "59713 0\n", + "59714 0\n", + "59715 0\n", + "59716 0\n", + "59717 0\n", + "59718 0\n", + "59719 0\n", + "59720 0\n", + "59721 0\n", + "59722 0\n", + "59723 1\n", + "59724 0\n", + "59725 0\n", + "59726 0\n", + "59727 0\n", + "59728 0\n", + "59729 1\n", + "59730 0\n", + "59731 0\n", + "59732 0\n", + "59733 0\n", + "59734 0\n", + "59735 0\n", + "59736 0\n", + "59737 0\n", + "59738 0\n", + "59739 0\n", + "59740 0\n", + "59741 0\n", + "59742 0\n", + "59743 1\n", + "59744 0\n", + "59745 0\n", + "59746 0\n", + "59747 1\n", + "59748 0\n", + "59749 0\n", + "59750 0\n", + "59751 0\n", + "59752 0\n", + "59753 1\n", + "59754 0\n", + "59755 0\n", + "59756 0\n", + "59757 0\n", + "59758 0\n", + "59759 0\n", + "59760 0\n", + "59761 0\n", + "59762 0\n", + "59763 0\n", + "59764 0\n", + "59765 0\n", + "59766 0\n", + "59767 0\n", + "59768 0\n", + "59769 0\n", + "59770 0\n", + "59771 1\n", + "59772 0\n", + "59773 0\n", + "59774 0\n", + "59775 0\n", + "59776 0\n", + "59777 0\n", + "59778 0\n", + "59779 1\n", + "59780 0\n", + "59781 0\n", + "59782 0\n", + "59783 0\n", + "59784 0\n", + "59785 0\n", + "59786 0\n", + "59787 0\n", + "59788 0\n", + "59789 0\n", + "59790 0\n", + "59791 1\n", + "59792 0\n", + "59793 0\n", + "59794 0\n", + "59795 0\n", + "59796 0\n", + "59797 1\n", + "59798 0\n", + "59799 0\n", + "59800 0\n", + "59801 0\n", + "59802 0\n", + "59803 0\n", + "59804 0\n", + "59805 0\n", + "59806 0\n", + "59807 0\n", + "59808 0\n", + "59809 1\n", + "59810 0\n", + "59811 0\n", + "59812 0\n", + "59813 0\n", + "59814 0\n", + "59815 0\n", + "59816 0\n", + "59817 0\n", + "59818 0\n", + "59819 0\n", + "59820 0\n", + "59821 0\n", + "59822 0\n", + "59823 0\n", + "59824 0\n", + "59825 0\n", + "59826 0\n", + "59827 0\n", + "59828 0\n", + "59829 0\n", + "59830 0\n", + "59831 0\n", + "59832 0\n", + "59833 1\n", + "59834 0\n", + "59835 0\n", + "59836 0\n", + "59837 0\n", + "59838 0\n", + "59839 0\n", + "59840 0\n", + "59841 0\n", + "59842 0\n", + "59843 0\n", + "59844 0\n", + "59845 0\n", + "59846 0\n", + "59847 0\n", + "59848 0\n", + "59849 0\n", + "59850 0\n", + "59851 0\n", + "59852 0\n", + "59853 0\n", + "59854 0\n", + "59855 0\n", + "59856 0\n", + "59857 0\n", + "59858 0\n", + "59859 0\n", + "59860 0\n", + "59861 0\n", + "59862 0\n", + "59863 1\n", + "59864 0\n", + "59865 0\n", + "59866 0\n", + "59867 0\n", + "59868 0\n", + "59869 0\n", + "59870 0\n", + "59871 0\n", + "59872 0\n", + "59873 0\n", + "59874 0\n", + "59875 0\n", + "59876 0\n", + "59877 0\n", + "59878 0\n", + "59879 1\n", + "59880 0\n", + "59881 0\n", + "59882 0\n", + "59883 0\n", + "59884 0\n", + "59885 0\n", + "59886 0\n", + "59887 1\n", + "59888 0\n", + "59889 0\n", + "59890 0\n", + "59891 0\n", + "59892 0\n", + "59893 0\n", + "59894 0\n", + "59895 0\n", + "59896 0\n", + "59897 0\n", + "59898 0\n", + "59899 0\n", + "59900 0\n", + "59901 0\n", + "59902 0\n", + "59903 0\n", + "59904 0\n", + "59905 0\n", + "59906 0\n", + "59907 0\n", + "59908 0\n", + "59909 0\n", + "59910 0\n", + "59911 0\n", + "59912 0\n", + "59913 0\n", + "59914 0\n", + "59915 0\n", + "59916 0\n", + "59917 0\n", + "59918 0\n", + "59919 0\n", + "59920 0\n", + "59921 1\n", + "59922 0\n", + "59923 0\n", + "59924 0\n", + "59925 0\n", + "59926 0\n", + "59927 0\n", + "59928 0\n", + "59929 1\n", + "59930 0\n", + "59931 0\n", + "59932 0\n", + "59933 0\n", + "59934 0\n", + "59935 0\n", + "59936 0\n", + "59937 0\n", + "59938 0\n", + "59939 0\n", + "59940 0\n", + "59941 0\n", + "59942 0\n", + "59943 0\n", + "59944 0\n", + "59945 0\n", + "59946 0\n", + "59947 0\n", + "59948 0\n", + "59949 0\n", + "59950 0\n", + "59951 1\n", + "59952 0\n", + "59953 0\n", + "59954 0\n", + "59955 0\n", + "59956 0\n", + "59957 1\n", + "59958 0\n", + "59959 0\n", + "59960 0\n", + "59961 0\n", + "59962 0\n", + "59963 0\n", + "59964 0\n", + "59965 0\n", + "59966 0\n", + "59967 0\n", + "59968 0\n", + "59969 0\n", + "59970 0\n", + "59971 1\n", + "59972 0\n", + "59973 0\n", + "59974 0\n", + "59975 0\n", + "59976 0\n", + "59977 0\n", + "59978 0\n", + "59979 0\n", + "59980 0\n", + "59981 1\n", + "59982 0\n", + "59983 0\n", + "59984 0\n", + "59985 0\n", + "59986 0\n", + "59987 0\n", + "59988 0\n", + "59989 0\n", + "59990 0\n", + "59991 0\n", + "59992 0\n", + "59993 0\n", + "59994 0\n", + "59995 0\n", + "59996 0\n", + "59997 0\n", + "59998 0\n", + "59999 1\n", + "60000 0\n", + "60001 0\n", + "60002 0\n", + "60003 0\n", + "60004 0\n", + "60005 0\n", + "60006 0\n", + "60007 0\n", + "60008 0\n", + "60009 0\n", + "60010 0\n", + "60011 0\n", + "60012 0\n", + "60013 1\n", + "60014 0\n", + "60015 0\n", + "60016 0\n", + "60017 1\n", + "60018 0\n", + "60019 0\n", + "60020 0\n", + "60021 0\n", + "60022 0\n", + "60023 0\n", + "60024 0\n", + "60025 0\n", + "60026 0\n", + "60027 0\n", + "60028 0\n", + "60029 1\n", + "60030 0\n", + "60031 0\n", + "60032 0\n", + "60033 0\n", + "60034 0\n", + "60035 0\n", + "60036 0\n", + "60037 1\n", + "60038 0\n", + "60039 0\n", + "60040 0\n", + "60041 1\n", + "60042 0\n", + "60043 0\n", + "60044 0\n", + "60045 0\n", + "60046 0\n", + "60047 0\n", + "60048 0\n", + "60049 0\n", + "60050 0\n", + "60051 0\n", + "60052 0\n", + "60053 0\n", + "60054 0\n", + "60055 0\n", + "60056 0\n", + "60057 0\n", + "60058 0\n", + "60059 0\n", + "60060 0\n", + "60061 0\n", + "60062 0\n", + "60063 0\n", + "60064 0\n", + "60065 0\n", + "60066 0\n", + "60067 0\n", + "60068 0\n", + "60069 0\n", + "60070 0\n", + "60071 0\n", + "60072 0\n", + "60073 0\n", + "60074 0\n", + "60075 0\n", + "60076 0\n", + "60077 1\n", + "60078 0\n", + "60079 0\n", + "60080 0\n", + "60081 0\n", + "60082 0\n", + "60083 1\n", + "60084 0\n", + "60085 0\n", + "60086 0\n", + "60087 0\n", + "60088 0\n", + "60089 1\n", + "60090 0\n", + "60091 1\n", + "60092 0\n", + "60093 0\n", + "60094 0\n", + "60095 0\n", + "60096 0\n", + "60097 0\n", + "60098 0\n", + "60099 0\n", + "60100 0\n", + "60101 1\n", + "60102 0\n", + "60103 1\n", + "60104 0\n", + "60105 0\n", + "60106 0\n", + "60107 1\n", + "60108 0\n", + "60109 0\n", + "60110 0\n", + "60111 0\n", + "60112 0\n", + "60113 0\n", + "60114 0\n", + "60115 0\n", + "60116 0\n", + "60117 0\n", + "60118 0\n", + "60119 0\n", + "60120 0\n", + "60121 0\n", + "60122 0\n", + "60123 0\n", + "60124 0\n", + "60125 0\n", + "60126 0\n", + "60127 1\n", + "60128 0\n", + "60129 0\n", + "60130 0\n", + "60131 0\n", + "60132 0\n", + "60133 1\n", + "60134 0\n", + "60135 0\n", + "60136 0\n", + "60137 0\n", + "60138 0\n", + "60139 1\n", + "60140 0\n", + "60141 0\n", + "60142 0\n", + "60143 0\n", + "60144 0\n", + "60145 0\n", + "60146 0\n", + "60147 0\n", + "60148 0\n", + "60149 1\n", + "60150 0\n", + "60151 0\n", + "60152 0\n", + "60153 0\n", + "60154 0\n", + "60155 0\n", + "60156 0\n", + "60157 0\n", + "60158 0\n", + "60159 0\n", + "60160 0\n", + "60161 1\n", + "60162 0\n", + "60163 0\n", + "60164 0\n", + "60165 0\n", + "60166 0\n", + "60167 1\n", + "60168 0\n", + "60169 1\n", + "60170 0\n", + "60171 0\n", + "60172 0\n", + "60173 0\n", + "60174 0\n", + "60175 0\n", + "60176 0\n", + "60177 0\n", + "60178 0\n", + "60179 0\n", + "60180 0\n", + "60181 0\n", + "60182 0\n", + "60183 0\n", + "60184 0\n", + "60185 0\n", + "60186 0\n", + "60187 0\n", + "60188 0\n", + "60189 0\n", + "60190 0\n", + "60191 0\n", + "60192 0\n", + "60193 0\n", + "60194 0\n", + "60195 0\n", + "60196 0\n", + "60197 0\n", + "60198 0\n", + "60199 0\n", + "60200 0\n", + "60201 0\n", + "60202 0\n", + "60203 0\n", + "60204 0\n", + "60205 0\n", + "60206 0\n", + "60207 0\n", + "60208 0\n", + "60209 1\n", + "60210 0\n", + "60211 0\n", + "60212 0\n", + "60213 0\n", + "60214 0\n", + "60215 0\n", + "60216 0\n", + "60217 1\n", + "60218 0\n", + "60219 0\n", + "60220 0\n", + "60221 0\n", + "60222 0\n", + "60223 1\n", + "60224 0\n", + "60225 0\n", + "60226 0\n", + "60227 0\n", + "60228 0\n", + "60229 0\n", + "60230 0\n", + "60231 0\n", + "60232 0\n", + "60233 0\n", + "60234 0\n", + "60235 0\n", + "60236 0\n", + "60237 0\n", + "60238 0\n", + "60239 0\n", + "60240 0\n", + "60241 0\n", + "60242 0\n", + "60243 0\n", + "60244 0\n", + "60245 0\n", + "60246 0\n", + "60247 0\n", + "60248 0\n", + "60249 0\n", + "60250 0\n", + "60251 1\n", + "60252 0\n", + "60253 0\n", + "60254 0\n", + "60255 0\n", + "60256 0\n", + "60257 1\n", + "60258 0\n", + "60259 1\n", + "60260 0\n", + "60261 0\n", + "60262 0\n", + "60263 0\n", + "60264 0\n", + "60265 0\n", + "60266 0\n", + "60267 0\n", + "60268 0\n", + "60269 0\n", + "60270 0\n", + "60271 1\n", + "60272 0\n", + "60273 0\n", + "60274 0\n", + "60275 0\n", + "60276 0\n", + "60277 0\n", + "60278 0\n", + "60279 0\n", + "60280 0\n", + "60281 0\n", + "60282 0\n", + "60283 0\n", + "60284 0\n", + "60285 0\n", + "60286 0\n", + "60287 0\n", + "60288 0\n", + "60289 1\n", + "60290 0\n", + "60291 0\n", + "60292 0\n", + "60293 1\n", + "60294 0\n", + "60295 0\n", + "60296 0\n", + "60297 0\n", + "60298 0\n", + "60299 0\n", + "60300 0\n", + "60301 0\n", + "60302 0\n", + "60303 0\n", + "60304 0\n", + "60305 0\n", + "60306 0\n", + "60307 0\n", + "60308 0\n", + "60309 0\n", + "60310 0\n", + "60311 0\n", + "60312 0\n", + "60313 0\n", + "60314 0\n", + "60315 0\n", + "60316 0\n", + "60317 1\n", + "60318 0\n", + "60319 0\n", + "60320 0\n", + "60321 0\n", + "60322 0\n", + "60323 0\n", + "60324 0\n", + "60325 0\n", + "60326 0\n", + "60327 0\n", + "60328 0\n", + "60329 0\n", + "60330 0\n", + "60331 1\n", + "60332 0\n", + "60333 0\n", + "60334 0\n", + "60335 0\n", + "60336 0\n", + "60337 1\n", + "60338 0\n", + "60339 0\n", + "60340 0\n", + "60341 0\n", + "60342 0\n", + "60343 1\n", + "60344 0\n", + "60345 0\n", + "60346 0\n", + "60347 0\n", + "60348 0\n", + "60349 0\n", + "60350 0\n", + "60351 0\n", + "60352 0\n", + "60353 1\n", + "60354 0\n", + "60355 0\n", + "60356 0\n", + "60357 0\n", + "60358 0\n", + "60359 0\n", + "60360 0\n", + "60361 0\n", + "60362 0\n", + "60363 0\n", + "60364 0\n", + "60365 0\n", + "60366 0\n", + "60367 0\n", + "60368 0\n", + "60369 0\n", + "60370 0\n", + "60371 0\n", + "60372 0\n", + "60373 1\n", + "60374 0\n", + "60375 0\n", + "60376 0\n", + "60377 0\n", + "60378 0\n", + "60379 0\n", + "60380 0\n", + "60381 0\n", + "60382 0\n", + "60383 1\n", + "60384 0\n", + "60385 0\n", + "60386 0\n", + "60387 0\n", + "60388 0\n", + "60389 0\n", + "60390 0\n", + "60391 0\n", + "60392 0\n", + "60393 0\n", + "60394 0\n", + "60395 0\n", + "60396 0\n", + "60397 1\n", + "60398 0\n", + "60399 0\n", + "60400 0\n", + "60401 0\n", + "60402 0\n", + "60403 0\n", + "60404 0\n", + "60405 0\n", + "60406 0\n", + "60407 0\n", + "60408 0\n", + "60409 0\n", + "60410 0\n", + "60411 0\n", + "60412 0\n", + "60413 1\n", + "60414 0\n", + "60415 0\n", + "60416 0\n", + "60417 0\n", + "60418 0\n", + "60419 0\n", + "60420 0\n", + "60421 0\n", + "60422 0\n", + "60423 0\n", + "60424 0\n", + "60425 0\n", + "60426 0\n", + "60427 1\n", + "60428 0\n", + "60429 0\n", + "60430 0\n", + "60431 0\n", + "60432 0\n", + "60433 0\n", + "60434 0\n", + "60435 0\n", + "60436 0\n", + "60437 0\n", + "60438 0\n", + "60439 0\n", + "60440 0\n", + "60441 0\n", + "60442 0\n", + "60443 1\n", + "60444 0\n", + "60445 0\n", + "60446 0\n", + "60447 0\n", + "60448 0\n", + "60449 1\n", + "60450 0\n", + "60451 0\n", + "60452 0\n", + "60453 0\n", + "60454 0\n", + "60455 0\n", + "60456 0\n", + "60457 1\n", + "60458 0\n", + "60459 0\n", + "60460 0\n", + "60461 0\n", + "60462 0\n", + "60463 0\n", + "60464 0\n", + "60465 0\n", + "60466 0\n", + "60467 0\n", + "60468 0\n", + "60469 0\n", + "60470 0\n", + "60471 0\n", + "60472 0\n", + "60473 0\n", + "60474 0\n", + "60475 0\n", + "60476 0\n", + "60477 0\n", + "60478 0\n", + "60479 0\n", + "60480 0\n", + "60481 0\n", + "60482 0\n", + "60483 0\n", + "60484 0\n", + "60485 0\n", + "60486 0\n", + "60487 0\n", + "60488 0\n", + "60489 0\n", + "60490 0\n", + "60491 0\n", + "60492 0\n", + "60493 1\n", + "60494 0\n", + "60495 0\n", + "60496 0\n", + "60497 1\n", + "60498 0\n", + "60499 0\n", + "60500 0\n", + "60501 0\n", + "60502 0\n", + "60503 0\n", + "60504 0\n", + "60505 0\n", + "60506 0\n", + "60507 0\n", + "60508 0\n", + "60509 1\n", + "60510 0\n", + "60511 0\n", + "60512 0\n", + "60513 0\n", + "60514 0\n", + "60515 0\n", + "60516 0\n", + "60517 0\n", + "60518 0\n", + "60519 0\n", + "60520 0\n", + "60521 1\n", + "60522 0\n", + "60523 0\n", + "60524 0\n", + "60525 0\n", + "60526 0\n", + "60527 1\n", + "60528 0\n", + "60529 0\n", + "60530 0\n", + "60531 0\n", + "60532 0\n", + "60533 0\n", + "60534 0\n", + "60535 0\n", + "60536 0\n", + "60537 0\n", + "60538 0\n", + "60539 1\n", + "60540 0\n", + "60541 0\n", + "60542 0\n", + "60543 0\n", + "60544 0\n", + "60545 0\n", + "60546 0\n", + "60547 0\n", + "60548 0\n", + "60549 0\n", + "60550 0\n", + "60551 0\n", + "60552 0\n", + "60553 0\n", + "60554 0\n", + "60555 0\n", + "60556 0\n", + "60557 0\n", + "60558 0\n", + "60559 0\n", + "60560 0\n", + "60561 0\n", + "60562 0\n", + "60563 0\n", + "60564 0\n", + "60565 0\n", + "60566 0\n", + "60567 0\n", + "60568 0\n", + "60569 0\n", + "60570 0\n", + "60571 0\n", + "60572 0\n", + "60573 0\n", + "60574 0\n", + "60575 0\n", + "60576 0\n", + "60577 0\n", + "60578 0\n", + "60579 0\n", + "60580 0\n", + "60581 0\n", + "60582 0\n", + "60583 0\n", + "60584 0\n", + "60585 0\n", + "60586 0\n", + "60587 0\n", + "60588 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "60589 1\n", + "60590 0\n", + "60591 0\n", + "60592 0\n", + "60593 0\n", + "60594 0\n", + "60595 0\n", + "60596 0\n", + "60597 0\n", + "60598 0\n", + "60599 0\n", + "60600 0\n", + "60601 1\n", + "60602 0\n", + "60603 0\n", + "60604 0\n", + "60605 0\n", + "60606 0\n", + "60607 1\n", + "60608 0\n", + "60609 0\n", + "60610 0\n", + "60611 1\n", + "60612 0\n", + "60613 0\n", + "60614 0\n", + "60615 0\n", + "60616 0\n", + "60617 1\n", + "60618 0\n", + "60619 0\n", + "60620 0\n", + "60621 0\n", + "60622 0\n", + "60623 1\n", + "60624 0\n", + "60625 0\n", + "60626 0\n", + "60627 0\n", + "60628 0\n", + "60629 0\n", + "60630 0\n", + "60631 1\n", + "60632 0\n", + "60633 0\n", + "60634 0\n", + "60635 0\n", + "60636 0\n", + "60637 1\n", + "60638 0\n", + "60639 0\n", + "60640 0\n", + "60641 0\n", + "60642 0\n", + "60643 0\n", + "60644 0\n", + "60645 0\n", + "60646 0\n", + "60647 1\n", + "60648 0\n", + "60649 1\n", + "60650 0\n", + "60651 0\n", + "60652 0\n", + "60653 0\n", + "60654 0\n", + "60655 0\n", + "60656 0\n", + "60657 0\n", + "60658 0\n", + "60659 1\n", + "60660 0\n", + "60661 1\n", + "60662 0\n", + "60663 0\n", + "60664 0\n", + "60665 0\n", + "60666 0\n", + "60667 0\n", + "60668 0\n", + "60669 0\n", + "60670 0\n", + "60671 0\n", + "60672 0\n", + "60673 0\n", + "60674 0\n", + "60675 0\n", + "60676 0\n", + "60677 0\n", + "60678 0\n", + "60679 1\n", + "60680 0\n", + "60681 0\n", + "60682 0\n", + "60683 0\n", + "60684 0\n", + "60685 0\n", + "60686 0\n", + "60687 0\n", + "60688 0\n", + "60689 1\n", + "60690 0\n", + "60691 0\n", + "60692 0\n", + "60693 0\n", + "60694 0\n", + "60695 0\n", + "60696 0\n", + "60697 0\n", + "60698 0\n", + "60699 0\n", + "60700 0\n", + "60701 0\n", + "60702 0\n", + "60703 1\n", + "60704 0\n", + "60705 0\n", + "60706 0\n", + "60707 0\n", + "60708 0\n", + "60709 0\n", + "60710 0\n", + "60711 0\n", + "60712 0\n", + "60713 0\n", + "60714 0\n", + "60715 0\n", + "60716 0\n", + "60717 0\n", + "60718 0\n", + "60719 1\n", + "60720 0\n", + "60721 0\n", + "60722 0\n", + "60723 0\n", + "60724 0\n", + "60725 0\n", + "60726 0\n", + "60727 1\n", + "60728 0\n", + "60729 0\n", + "60730 0\n", + "60731 0\n", + "60732 0\n", + "60733 1\n", + "60734 0\n", + "60735 0\n", + "60736 0\n", + "60737 1\n", + "60738 0\n", + "60739 0\n", + "60740 0\n", + "60741 0\n", + "60742 0\n", + "60743 0\n", + "60744 0\n", + "60745 0\n", + "60746 0\n", + "60747 0\n", + "60748 0\n", + "60749 0\n", + "60750 0\n", + "60751 0\n", + "60752 0\n", + "60753 0\n", + "60754 0\n", + "60755 0\n", + "60756 0\n", + "60757 1\n", + "60758 0\n", + "60759 0\n", + "60760 0\n", + "60761 1\n", + "60762 0\n", + "60763 1\n", + "60764 0\n", + "60765 0\n", + "60766 0\n", + "60767 0\n", + "60768 0\n", + "60769 0\n", + "60770 0\n", + "60771 0\n", + "60772 0\n", + "60773 1\n", + "60774 0\n", + "60775 0\n", + "60776 0\n", + "60777 0\n", + "60778 0\n", + "60779 1\n", + "60780 0\n", + "60781 0\n", + "60782 0\n", + "60783 0\n", + "60784 0\n", + "60785 0\n", + "60786 0\n", + "60787 0\n", + "60788 0\n", + "60789 0\n", + "60790 0\n", + "60791 0\n", + "60792 0\n", + "60793 1\n", + "60794 0\n", + "60795 0\n", + "60796 0\n", + "60797 0\n", + "60798 0\n", + "60799 0\n", + "60800 0\n", + "60801 0\n", + "60802 0\n", + "60803 0\n", + "60804 0\n", + "60805 0\n", + "60806 0\n", + "60807 0\n", + "60808 0\n", + "60809 0\n", + "60810 0\n", + "60811 1\n", + "60812 0\n", + "60813 0\n", + "60814 0\n", + "60815 0\n", + "60816 0\n", + "60817 0\n", + "60818 0\n", + "60819 0\n", + "60820 0\n", + "60821 1\n", + "60822 0\n", + "60823 0\n", + "60824 0\n", + "60825 0\n", + "60826 0\n", + "60827 0\n", + "60828 0\n", + "60829 0\n", + "60830 0\n", + "60831 0\n", + "60832 0\n", + "60833 0\n", + "60834 0\n", + "60835 0\n", + "60836 0\n", + "60837 0\n", + "60838 0\n", + "60839 0\n", + "60840 0\n", + "60841 0\n", + "60842 0\n", + "60843 0\n", + "60844 0\n", + "60845 0\n", + "60846 0\n", + "60847 0\n", + "60848 0\n", + "60849 0\n", + "60850 0\n", + "60851 0\n", + "60852 0\n", + "60853 0\n", + "60854 0\n", + "60855 0\n", + "60856 0\n", + "60857 0\n", + "60858 0\n", + "60859 1\n", + "60860 0\n", + "60861 0\n", + "60862 0\n", + "60863 0\n", + "60864 0\n", + "60865 0\n", + "60866 0\n", + "60867 0\n", + "60868 0\n", + "60869 1\n", + "60870 0\n", + "60871 0\n", + "60872 0\n", + "60873 0\n", + "60874 0\n", + "60875 0\n", + "60876 0\n", + "60877 0\n", + "60878 0\n", + "60879 0\n", + "60880 0\n", + "60881 0\n", + "60882 0\n", + "60883 0\n", + "60884 0\n", + "60885 0\n", + "60886 0\n", + "60887 1\n", + "60888 0\n", + "60889 1\n", + "60890 0\n", + "60891 0\n", + "60892 0\n", + "60893 0\n", + "60894 0\n", + "60895 0\n", + "60896 0\n", + "60897 0\n", + "60898 0\n", + "60899 1\n", + "60900 0\n", + "60901 1\n", + "60902 0\n", + "60903 0\n", + "60904 0\n", + "60905 0\n", + "60906 0\n", + "60907 0\n", + "60908 0\n", + "60909 0\n", + "60910 0\n", + "60911 0\n", + "60912 0\n", + "60913 1\n", + "60914 0\n", + "60915 0\n", + "60916 0\n", + "60917 1\n", + "60918 0\n", + "60919 1\n", + "60920 0\n", + "60921 0\n", + "60922 0\n", + "60923 1\n", + "60924 0\n", + "60925 0\n", + "60926 0\n", + "60927 0\n", + "60928 0\n", + "60929 0\n", + "60930 0\n", + "60931 0\n", + "60932 0\n", + "60933 0\n", + "60934 0\n", + "60935 0\n", + "60936 0\n", + "60937 1\n", + "60938 0\n", + "60939 0\n", + "60940 0\n", + "60941 0\n", + "60942 0\n", + "60943 1\n", + "60944 0\n", + "60945 0\n", + "60946 0\n", + "60947 0\n", + "60948 0\n", + "60949 0\n", + "60950 0\n", + "60951 0\n", + "60952 0\n", + "60953 1\n", + "60954 0\n", + "60955 0\n", + "60956 0\n", + "60957 0\n", + "60958 0\n", + "60959 0\n", + "60960 0\n", + "60961 1\n", + "60962 0\n", + "60963 0\n", + "60964 0\n", + "60965 0\n", + "60966 0\n", + "60967 0\n", + "60968 0\n", + "60969 0\n", + "60970 0\n", + "60971 0\n", + "60972 0\n", + "60973 0\n", + "60974 0\n", + "60975 0\n", + "60976 0\n", + "60977 0\n", + "60978 0\n", + "60979 0\n", + "60980 0\n", + "60981 0\n", + "60982 0\n", + "60983 0\n", + "60984 0\n", + "60985 0\n", + "60986 0\n", + "60987 0\n", + "60988 0\n", + "60989 0\n", + "60990 0\n", + "60991 0\n", + "60992 0\n", + "60993 0\n", + "60994 0\n", + "60995 0\n", + "60996 0\n", + "60997 0\n", + "60998 0\n", + "60999 0\n", + "61000 0\n", + "61001 1\n", + "61002 0\n", + "61003 0\n", + "61004 0\n", + "61005 0\n", + "61006 0\n", + "61007 1\n", + "61008 0\n", + "61009 0\n", + "61010 0\n", + "61011 0\n", + "61012 0\n", + "61013 0\n", + "61014 0\n", + "61015 0\n", + "61016 0\n", + "61017 0\n", + "61018 0\n", + "61019 0\n", + "61020 0\n", + "61021 0\n", + "61022 0\n", + "61023 0\n", + "61024 0\n", + "61025 0\n", + "61026 0\n", + "61027 1\n", + "61028 0\n", + "61029 0\n", + "61030 0\n", + "61031 1\n", + "61032 0\n", + "61033 0\n", + "61034 0\n", + "61035 0\n", + "61036 0\n", + "61037 0\n", + "61038 0\n", + "61039 0\n", + "61040 0\n", + "61041 0\n", + "61042 0\n", + "61043 1\n", + "61044 0\n", + "61045 0\n", + "61046 0\n", + "61047 0\n", + "61048 0\n", + "61049 0\n", + "61050 0\n", + "61051 1\n", + "61052 0\n", + "61053 0\n", + "61054 0\n", + "61055 0\n", + "61056 0\n", + "61057 1\n", + "61058 0\n", + "61059 0\n", + "61060 0\n", + "61061 0\n", + "61062 0\n", + "61063 0\n", + "61064 0\n", + "61065 0\n", + "61066 0\n", + "61067 0\n", + "61068 0\n", + "61069 0\n", + "61070 0\n", + "61071 0\n", + "61072 0\n", + "61073 0\n", + "61074 0\n", + "61075 0\n", + "61076 0\n", + "61077 0\n", + "61078 0\n", + "61079 0\n", + "61080 0\n", + "61081 0\n", + "61082 0\n", + "61083 0\n", + "61084 0\n", + "61085 0\n", + "61086 0\n", + "61087 0\n", + "61088 0\n", + "61089 0\n", + "61090 0\n", + "61091 1\n", + "61092 0\n", + "61093 0\n", + "61094 0\n", + "61095 0\n", + "61096 0\n", + "61097 0\n", + "61098 0\n", + "61099 1\n", + "61100 0\n", + "61101 0\n", + "61102 0\n", + "61103 0\n", + "61104 0\n", + "61105 0\n", + "61106 0\n", + "61107 0\n", + "61108 0\n", + "61109 0\n", + "61110 0\n", + "61111 0\n", + "61112 0\n", + "61113 0\n", + "61114 0\n", + "61115 0\n", + "61116 0\n", + "61117 0\n", + "61118 0\n", + "61119 0\n", + "61120 0\n", + "61121 1\n", + "61122 0\n", + "61123 0\n", + "61124 0\n", + "61125 0\n", + "61126 0\n", + "61127 0\n", + "61128 0\n", + "61129 1\n", + "61130 0\n", + "61131 0\n", + "61132 0\n", + "61133 0\n", + "61134 0\n", + "61135 0\n", + "61136 0\n", + "61137 0\n", + "61138 0\n", + "61139 0\n", + "61140 0\n", + "61141 1\n", + "61142 0\n", + "61143 0\n", + "61144 0\n", + "61145 0\n", + "61146 0\n", + "61147 0\n", + "61148 0\n", + "61149 0\n", + "61150 0\n", + "61151 1\n", + "61152 0\n", + "61153 1\n", + "61154 0\n", + "61155 0\n", + "61156 0\n", + "61157 0\n", + "61158 0\n", + "61159 0\n", + "61160 0\n", + "61161 0\n", + "61162 0\n", + "61163 0\n", + "61164 0\n", + "61165 0\n", + "61166 0\n", + "61167 0\n", + "61168 0\n", + "61169 1\n", + "61170 0\n", + "61171 0\n", + "61172 0\n", + "61173 0\n", + "61174 0\n", + "61175 0\n", + "61176 0\n", + "61177 0\n", + "61178 0\n", + "61179 0\n", + "61180 0\n", + "61181 0\n", + "61182 0\n", + "61183 0\n", + "61184 0\n", + "61185 0\n", + "61186 0\n", + "61187 0\n", + "61188 0\n", + "61189 0\n", + "61190 0\n", + "61191 0\n", + "61192 0\n", + "61193 0\n", + "61194 0\n", + "61195 0\n", + "61196 0\n", + "61197 0\n", + "61198 0\n", + "61199 0\n", + "61200 0\n", + "61201 0\n", + "61202 0\n", + "61203 0\n", + "61204 0\n", + "61205 0\n", + "61206 0\n", + "61207 0\n", + "61208 0\n", + "61209 0\n", + "61210 0\n", + "61211 1\n", + "61212 0\n", + "61213 0\n", + "61214 0\n", + "61215 0\n", + "61216 0\n", + "61217 0\n", + "61218 0\n", + "61219 0\n", + "61220 0\n", + "61221 0\n", + "61222 0\n", + "61223 1\n", + "61224 0\n", + "61225 0\n", + "61226 0\n", + "61227 0\n", + "61228 0\n", + "61229 0\n", + "61230 0\n", + "61231 1\n", + "61232 0\n", + "61233 0\n", + "61234 0\n", + "61235 0\n", + "61236 0\n", + "61237 0\n", + "61238 0\n", + "61239 0\n", + "61240 0\n", + "61241 0\n", + "61242 0\n", + "61243 0\n", + "61244 0\n", + "61245 0\n", + "61246 0\n", + "61247 0\n", + "61248 0\n", + "61249 0\n", + "61250 0\n", + "61251 0\n", + "61252 0\n", + "61253 1\n", + "61254 0\n", + "61255 0\n", + "61256 0\n", + "61257 0\n", + "61258 0\n", + "61259 0\n", + "61260 0\n", + "61261 1\n", + "61262 0\n", + "61263 0\n", + "61264 0\n", + "61265 0\n", + "61266 0\n", + "61267 0\n", + "61268 0\n", + "61269 0\n", + "61270 0\n", + "61271 0\n", + "61272 0\n", + "61273 0\n", + "61274 0\n", + "61275 0\n", + "61276 0\n", + "61277 0\n", + "61278 0\n", + "61279 0\n", + "61280 0\n", + "61281 0\n", + "61282 0\n", + "61283 1\n", + "61284 0\n", + "61285 0\n", + "61286 0\n", + "61287 0\n", + "61288 0\n", + "61289 0\n", + "61290 0\n", + "61291 1\n", + "61292 0\n", + "61293 0\n", + "61294 0\n", + "61295 0\n", + "61296 0\n", + "61297 1\n", + "61298 0\n", + "61299 0\n", + "61300 0\n", + "61301 0\n", + "61302 0\n", + "61303 0\n", + "61304 0\n", + "61305 0\n", + "61306 0\n", + "61307 0\n", + "61308 0\n", + "61309 0\n", + "61310 0\n", + "61311 0\n", + "61312 0\n", + "61313 0\n", + "61314 0\n", + "61315 0\n", + "61316 0\n", + "61317 0\n", + "61318 0\n", + "61319 0\n", + "61320 0\n", + "61321 0\n", + "61322 0\n", + "61323 0\n", + "61324 0\n", + "61325 0\n", + "61326 0\n", + "61327 0\n", + "61328 0\n", + "61329 0\n", + "61330 0\n", + "61331 1\n", + "61332 0\n", + "61333 1\n", + "61334 0\n", + "61335 0\n", + "61336 0\n", + "61337 0\n", + "61338 0\n", + "61339 1\n", + "61340 0\n", + "61341 0\n", + "61342 0\n", + "61343 1\n", + "61344 0\n", + "61345 0\n", + "61346 0\n", + "61347 0\n", + "61348 0\n", + "61349 0\n", + "61350 0\n", + "61351 0\n", + "61352 0\n", + "61353 0\n", + "61354 0\n", + "61355 0\n", + "61356 0\n", + "61357 1\n", + "61358 0\n", + "61359 0\n", + "61360 0\n", + "61361 0\n", + "61362 0\n", + "61363 1\n", + "61364 0\n", + "61365 0\n", + "61366 0\n", + "61367 0\n", + "61368 0\n", + "61369 0\n", + "61370 0\n", + "61371 0\n", + "61372 0\n", + "61373 0\n", + "61374 0\n", + "61375 0\n", + "61376 0\n", + "61377 0\n", + "61378 0\n", + "61379 1\n", + "61380 0\n", + "61381 1\n", + "61382 0\n", + "61383 0\n", + "61384 0\n", + "61385 0\n", + "61386 0\n", + "61387 0\n", + "61388 0\n", + "61389 0\n", + "61390 0\n", + "61391 0\n", + "61392 0\n", + "61393 0\n", + "61394 0\n", + "61395 0\n", + "61396 0\n", + "61397 0\n", + "61398 0\n", + "61399 0\n", + "61400 0\n", + "61401 0\n", + "61402 0\n", + "61403 1\n", + "61404 0\n", + "61405 0\n", + "61406 0\n", + "61407 0\n", + "61408 0\n", + "61409 1\n", + "61410 0\n", + "61411 0\n", + "61412 0\n", + "61413 0\n", + "61414 0\n", + "61415 0\n", + "61416 0\n", + "61417 1\n", + "61418 0\n", + "61419 0\n", + "61420 0\n", + "61421 0\n", + "61422 0\n", + "61423 0\n", + "61424 0\n", + "61425 0\n", + "61426 0\n", + "61427 0\n", + "61428 0\n", + "61429 0\n", + "61430 0\n", + "61431 0\n", + "61432 0\n", + "61433 0\n", + "61434 0\n", + "61435 0\n", + "61436 0\n", + "61437 0\n", + "61438 0\n", + "61439 0\n", + "61440 0\n", + "61441 1\n", + "61442 0\n", + "61443 0\n", + "61444 0\n", + "61445 0\n", + "61446 0\n", + "61447 0\n", + "61448 0\n", + "61449 0\n", + "61450 0\n", + "61451 0\n", + "61452 0\n", + "61453 0\n", + "61454 0\n", + "61455 0\n", + "61456 0\n", + "61457 0\n", + "61458 0\n", + "61459 0\n", + "61460 0\n", + "61461 0\n", + "61462 0\n", + "61463 1\n", + "61464 0\n", + "61465 0\n", + "61466 0\n", + "61467 0\n", + "61468 0\n", + "61469 1\n", + "61470 0\n", + "61471 1\n", + "61472 0\n", + "61473 0\n", + "61474 0\n", + "61475 0\n", + "61476 0\n", + "61477 0\n", + "61478 0\n", + "61479 0\n", + "61480 0\n", + "61481 0\n", + "61482 0\n", + "61483 1\n", + "61484 0\n", + "61485 0\n", + "61486 0\n", + "61487 1\n", + "61488 0\n", + "61489 0\n", + "61490 0\n", + "61491 0\n", + "61492 0\n", + "61493 1\n", + "61494 0\n", + "61495 0\n", + "61496 0\n", + "61497 0\n", + "61498 0\n", + "61499 0\n", + "61500 0\n", + "61501 0\n", + "61502 0\n", + "61503 0\n", + "61504 0\n", + "61505 0\n", + "61506 0\n", + "61507 1\n", + "61508 0\n", + "61509 0\n", + "61510 0\n", + "61511 1\n", + "61512 0\n", + "61513 0\n", + "61514 0\n", + "61515 0\n", + "61516 0\n", + "61517 0\n", + "61518 0\n", + "61519 1\n", + "61520 0\n", + "61521 0\n", + "61522 0\n", + "61523 0\n", + "61524 0\n", + "61525 0\n", + "61526 0\n", + "61527 0\n", + "61528 0\n", + "61529 0\n", + "61530 0\n", + "61531 0\n", + "61532 0\n", + "61533 0\n", + "61534 0\n", + "61535 0\n", + "61536 0\n", + "61537 0\n", + "61538 0\n", + "61539 0\n", + "61540 0\n", + "61541 0\n", + "61542 0\n", + "61543 1\n", + "61544 0\n", + "61545 0\n", + "61546 0\n", + "61547 1\n", + "61548 0\n", + "61549 0\n", + "61550 0\n", + "61551 0\n", + "61552 0\n", + "61553 1\n", + "61554 0\n", + "61555 0\n", + "61556 0\n", + "61557 0\n", + "61558 0\n", + "61559 1\n", + "61560 0\n", + "61561 1\n", + "61562 0\n", + "61563 0\n", + "61564 0\n", + "61565 0\n", + "61566 0\n", + "61567 0\n", + "61568 0\n", + "61569 0\n", + "61570 0\n", + "61571 0\n", + "61572 0\n", + "61573 0\n", + "61574 0\n", + "61575 0\n", + "61576 0\n", + "61577 0\n", + "61578 0\n", + "61579 0\n", + "61580 0\n", + "61581 0\n", + "61582 0\n", + "61583 1\n", + "61584 0\n", + "61585 0\n", + "61586 0\n", + "61587 0\n", + "61588 0\n", + "61589 0\n", + "61590 0\n", + "61591 0\n", + "61592 0\n", + "61593 0\n", + "61594 0\n", + "61595 0\n", + "61596 0\n", + "61597 0\n", + "61598 0\n", + "61599 0\n", + "61600 0\n", + "61601 0\n", + "61602 0\n", + "61603 1\n", + "61604 0\n", + "61605 0\n", + "61606 0\n", + "61607 0\n", + "61608 0\n", + "61609 1\n", + "61610 0\n", + "61611 0\n", + "61612 0\n", + "61613 1\n", + "61614 0\n", + "61615 0\n", + "61616 0\n", + "61617 0\n", + "61618 0\n", + "61619 0\n", + "61620 0\n", + "61621 0\n", + "61622 0\n", + "61623 0\n", + "61624 0\n", + "61625 0\n", + "61626 0\n", + "61627 1\n", + "61628 0\n", + "61629 0\n", + "61630 0\n", + "61631 1\n", + "61632 0\n", + "61633 0\n", + "61634 0\n", + "61635 0\n", + "61636 0\n", + "61637 1\n", + "61638 0\n", + "61639 0\n", + "61640 0\n", + "61641 0\n", + "61642 0\n", + "61643 1\n", + "61644 0\n", + "61645 0\n", + "61646 0\n", + "61647 0\n", + "61648 0\n", + "61649 0\n", + "61650 0\n", + "61651 1\n", + "61652 0\n", + "61653 0\n", + "61654 0\n", + "61655 0\n", + "61656 0\n", + "61657 1\n", + "61658 0\n", + "61659 0\n", + "61660 0\n", + "61661 0\n", + "61662 0\n", + "61663 0\n", + "61664 0\n", + "61665 0\n", + "61666 0\n", + "61667 1\n", + "61668 0\n", + "61669 0\n", + "61670 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "61671 0\n", + "61672 0\n", + "61673 1\n", + "61674 0\n", + "61675 0\n", + "61676 0\n", + "61677 0\n", + "61678 0\n", + "61679 0\n", + "61680 0\n", + "61681 1\n", + "61682 0\n", + "61683 0\n", + "61684 0\n", + "61685 0\n", + "61686 0\n", + "61687 1\n", + "61688 0\n", + "61689 0\n", + "61690 0\n", + "61691 0\n", + "61692 0\n", + "61693 0\n", + "61694 0\n", + "61695 0\n", + "61696 0\n", + "61697 0\n", + "61698 0\n", + "61699 0\n", + "61700 0\n", + "61701 0\n", + "61702 0\n", + "61703 1\n", + "61704 0\n", + "61705 0\n", + "61706 0\n", + "61707 0\n", + "61708 0\n", + "61709 0\n", + "61710 0\n", + "61711 0\n", + "61712 0\n", + "61713 0\n", + "61714 0\n", + "61715 0\n", + "61716 0\n", + "61717 1\n", + "61718 0\n", + "61719 0\n", + "61720 0\n", + "61721 0\n", + "61722 0\n", + "61723 1\n", + "61724 0\n", + "61725 0\n", + "61726 0\n", + "61727 0\n", + "61728 0\n", + "61729 1\n", + "61730 0\n", + "61731 0\n", + "61732 0\n", + "61733 0\n", + "61734 0\n", + "61735 0\n", + "61736 0\n", + "61737 0\n", + "61738 0\n", + "61739 0\n", + "61740 0\n", + "61741 0\n", + "61742 0\n", + "61743 0\n", + "61744 0\n", + "61745 0\n", + "61746 0\n", + "61747 0\n", + "61748 0\n", + "61749 0\n", + "61750 0\n", + "61751 1\n", + "61752 0\n", + "61753 0\n", + "61754 0\n", + "61755 0\n", + "61756 0\n", + "61757 1\n", + "61758 0\n", + "61759 0\n", + "61760 0\n", + "61761 0\n", + "61762 0\n", + "61763 0\n", + "61764 0\n", + "61765 0\n", + "61766 0\n", + "61767 0\n", + "61768 0\n", + "61769 0\n", + "61770 0\n", + "61771 0\n", + "61772 0\n", + "61773 0\n", + "61774 0\n", + "61775 0\n", + "61776 0\n", + "61777 0\n", + "61778 0\n", + "61779 0\n", + "61780 0\n", + "61781 1\n", + "61782 0\n", + "61783 0\n", + "61784 0\n", + "61785 0\n", + "61786 0\n", + "61787 0\n", + "61788 0\n", + "61789 0\n", + "61790 0\n", + "61791 0\n", + "61792 0\n", + "61793 0\n", + "61794 0\n", + "61795 0\n", + "61796 0\n", + "61797 0\n", + "61798 0\n", + "61799 0\n", + "61800 0\n", + "61801 0\n", + "61802 0\n", + "61803 0\n", + "61804 0\n", + "61805 0\n", + "61806 0\n", + "61807 0\n", + "61808 0\n", + "61809 0\n", + "61810 0\n", + "61811 0\n", + "61812 0\n", + "61813 1\n", + "61814 0\n", + "61815 0\n", + "61816 0\n", + "61817 0\n", + "61818 0\n", + "61819 1\n", + "61820 0\n", + "61821 0\n", + "61822 0\n", + "61823 0\n", + "61824 0\n", + "61825 0\n", + "61826 0\n", + "61827 0\n", + "61828 0\n", + "61829 0\n", + "61830 0\n", + "61831 0\n", + "61832 0\n", + "61833 0\n", + "61834 0\n", + "61835 0\n", + "61836 0\n", + "61837 1\n", + "61838 0\n", + "61839 0\n", + "61840 0\n", + "61841 0\n", + "61842 0\n", + "61843 1\n", + "61844 0\n", + "61845 0\n", + "61846 0\n", + "61847 0\n", + "61848 0\n", + "61849 0\n", + "61850 0\n", + "61851 0\n", + "61852 0\n", + "61853 0\n", + "61854 0\n", + "61855 0\n", + "61856 0\n", + "61857 0\n", + "61858 0\n", + "61859 0\n", + "61860 0\n", + "61861 1\n", + "61862 0\n", + "61863 0\n", + "61864 0\n", + "61865 0\n", + "61866 0\n", + "61867 0\n", + "61868 0\n", + "61869 0\n", + "61870 0\n", + "61871 1\n", + "61872 0\n", + "61873 0\n", + "61874 0\n", + "61875 0\n", + "61876 0\n", + "61877 0\n", + "61878 0\n", + "61879 1\n", + "61880 0\n", + "61881 0\n", + "61882 0\n", + "61883 0\n", + "61884 0\n", + "61885 0\n", + "61886 0\n", + "61887 0\n", + "61888 0\n", + "61889 0\n", + "61890 0\n", + "61891 0\n", + "61892 0\n", + "61893 0\n", + "61894 0\n", + "61895 0\n", + "61896 0\n", + "61897 0\n", + "61898 0\n", + "61899 0\n", + "61900 0\n", + "61901 0\n", + "61902 0\n", + "61903 0\n", + "61904 0\n", + "61905 0\n", + "61906 0\n", + "61907 0\n", + "61908 0\n", + "61909 1\n", + "61910 0\n", + "61911 0\n", + "61912 0\n", + "61913 0\n", + "61914 0\n", + "61915 0\n", + "61916 0\n", + "61917 0\n", + "61918 0\n", + "61919 0\n", + "61920 0\n", + "61921 0\n", + "61922 0\n", + "61923 0\n", + "61924 0\n", + "61925 0\n", + "61926 0\n", + "61927 1\n", + "61928 0\n", + "61929 0\n", + "61930 0\n", + "61931 0\n", + "61932 0\n", + "61933 1\n", + "61934 0\n", + "61935 0\n", + "61936 0\n", + "61937 0\n", + "61938 0\n", + "61939 0\n", + "61940 0\n", + "61941 0\n", + "61942 0\n", + "61943 0\n", + "61944 0\n", + "61945 0\n", + "61946 0\n", + "61947 0\n", + "61948 0\n", + "61949 1\n", + "61950 0\n", + "61951 0\n", + "61952 0\n", + "61953 0\n", + "61954 0\n", + "61955 0\n", + "61956 0\n", + "61957 0\n", + "61958 0\n", + "61959 0\n", + "61960 0\n", + "61961 1\n", + "61962 0\n", + "61963 0\n", + "61964 0\n", + "61965 0\n", + "61966 0\n", + "61967 1\n", + "61968 0\n", + "61969 0\n", + "61970 0\n", + "61971 0\n", + "61972 0\n", + "61973 0\n", + "61974 0\n", + "61975 0\n", + "61976 0\n", + "61977 0\n", + "61978 0\n", + "61979 1\n", + "61980 0\n", + "61981 1\n", + "61982 0\n", + "61983 0\n", + "61984 0\n", + "61985 0\n", + "61986 0\n", + "61987 1\n", + "61988 0\n", + "61989 0\n", + "61990 0\n", + "61991 1\n", + "61992 0\n", + "61993 0\n", + "61994 0\n", + "61995 0\n", + "61996 0\n", + "61997 0\n", + "61998 0\n", + "61999 0\n", + "62000 0\n", + "62001 0\n", + "62002 0\n", + "62003 1\n", + "62004 0\n", + "62005 0\n", + "62006 0\n", + "62007 0\n", + "62008 0\n", + "62009 0\n", + "62010 0\n", + "62011 1\n", + "62012 0\n", + "62013 0\n", + "62014 0\n", + "62015 0\n", + "62016 0\n", + "62017 1\n", + "62018 0\n", + "62019 0\n", + "62020 0\n", + "62021 0\n", + "62022 0\n", + "62023 0\n", + "62024 0\n", + "62025 0\n", + "62026 0\n", + "62027 0\n", + "62028 0\n", + "62029 0\n", + "62030 0\n", + "62031 0\n", + "62032 0\n", + "62033 0\n", + "62034 0\n", + "62035 0\n", + "62036 0\n", + "62037 0\n", + "62038 0\n", + "62039 1\n", + "62040 0\n", + "62041 0\n", + "62042 0\n", + "62043 0\n", + "62044 0\n", + "62045 0\n", + "62046 0\n", + "62047 1\n", + "62048 0\n", + "62049 0\n", + "62050 0\n", + "62051 0\n", + "62052 0\n", + "62053 1\n", + "62054 0\n", + "62055 0\n", + "62056 0\n", + "62057 1\n", + "62058 0\n", + "62059 0\n", + "62060 0\n", + "62061 0\n", + "62062 0\n", + "62063 0\n", + "62064 0\n", + "62065 0\n", + "62066 0\n", + "62067 0\n", + "62068 0\n", + "62069 0\n", + "62070 0\n", + "62071 1\n", + "62072 0\n", + "62073 0\n", + "62074 0\n", + "62075 0\n", + "62076 0\n", + "62077 0\n", + "62078 0\n", + "62079 0\n", + "62080 0\n", + "62081 1\n", + "62082 0\n", + "62083 0\n", + "62084 0\n", + "62085 0\n", + "62086 0\n", + "62087 0\n", + "62088 0\n", + "62089 0\n", + "62090 0\n", + "62091 0\n", + "62092 0\n", + "62093 0\n", + "62094 0\n", + "62095 0\n", + "62096 0\n", + "62097 0\n", + "62098 0\n", + "62099 1\n", + "62100 0\n", + "62101 0\n", + "62102 0\n", + "62103 0\n", + "62104 0\n", + "62105 0\n", + "62106 0\n", + "62107 0\n", + "62108 0\n", + "62109 0\n", + "62110 0\n", + "62111 0\n", + "62112 0\n", + "62113 0\n", + "62114 0\n", + "62115 0\n", + "62116 0\n", + "62117 0\n", + "62118 0\n", + "62119 1\n", + "62120 0\n", + "62121 0\n", + "62122 0\n", + "62123 0\n", + "62124 0\n", + "62125 0\n", + "62126 0\n", + "62127 0\n", + "62128 0\n", + "62129 1\n", + "62130 0\n", + "62131 1\n", + "62132 0\n", + "62133 0\n", + "62134 0\n", + "62135 0\n", + "62136 0\n", + "62137 1\n", + "62138 0\n", + "62139 0\n", + "62140 0\n", + "62141 1\n", + "62142 0\n", + "62143 1\n", + "62144 0\n", + "62145 0\n", + "62146 0\n", + "62147 0\n", + "62148 0\n", + "62149 0\n", + "62150 0\n", + "62151 0\n", + "62152 0\n", + "62153 0\n", + "62154 0\n", + "62155 0\n", + "62156 0\n", + "62157 0\n", + "62158 0\n", + "62159 0\n", + "62160 0\n", + "62161 0\n", + "62162 0\n", + "62163 0\n", + "62164 0\n", + "62165 0\n", + "62166 0\n", + "62167 0\n", + "62168 0\n", + "62169 0\n", + "62170 0\n", + "62171 1\n", + "62172 0\n", + "62173 0\n", + "62174 0\n", + "62175 0\n", + "62176 0\n", + "62177 0\n", + "62178 0\n", + "62179 0\n", + "62180 0\n", + "62181 0\n", + "62182 0\n", + "62183 0\n", + "62184 0\n", + "62185 0\n", + "62186 0\n", + "62187 0\n", + "62188 0\n", + "62189 1\n", + "62190 0\n", + "62191 1\n", + "62192 0\n", + "62193 0\n", + "62194 0\n", + "62195 0\n", + "62196 0\n", + "62197 0\n", + "62198 0\n", + "62199 0\n", + "62200 0\n", + "62201 1\n", + "62202 0\n", + "62203 0\n", + "62204 0\n", + "62205 0\n", + "62206 0\n", + "62207 1\n", + "62208 0\n", + "62209 0\n", + "62210 0\n", + "62211 0\n", + "62212 0\n", + "62213 1\n", + "62214 0\n", + "62215 0\n", + "62216 0\n", + "62217 0\n", + "62218 0\n", + "62219 1\n", + "62220 0\n", + "62221 0\n", + "62222 0\n", + "62223 0\n", + "62224 0\n", + "62225 0\n", + "62226 0\n", + "62227 0\n", + "62228 0\n", + "62229 0\n", + "62230 0\n", + "62231 0\n", + "62232 0\n", + "62233 1\n", + "62234 0\n", + "62235 0\n", + "62236 0\n", + "62237 0\n", + "62238 0\n", + "62239 0\n", + "62240 0\n", + "62241 0\n", + "62242 0\n", + "62243 0\n", + "62244 0\n", + "62245 0\n", + "62246 0\n", + "62247 0\n", + "62248 0\n", + "62249 0\n", + "62250 0\n", + "62251 0\n", + "62252 0\n", + "62253 0\n", + "62254 0\n", + "62255 0\n", + "62256 0\n", + "62257 0\n", + "62258 0\n", + "62259 0\n", + "62260 0\n", + "62261 0\n", + "62262 0\n", + "62263 0\n", + "62264 0\n", + "62265 0\n", + "62266 0\n", + "62267 0\n", + "62268 0\n", + "62269 0\n", + "62270 0\n", + "62271 0\n", + "62272 0\n", + "62273 1\n", + "62274 0\n", + "62275 0\n", + "62276 0\n", + "62277 0\n", + "62278 0\n", + "62279 0\n", + "62280 0\n", + "62281 0\n", + "62282 0\n", + "62283 0\n", + "62284 0\n", + "62285 0\n", + "62286 0\n", + "62287 0\n", + "62288 0\n", + "62289 0\n", + "62290 0\n", + "62291 0\n", + "62292 0\n", + "62293 0\n", + "62294 0\n", + "62295 0\n", + "62296 0\n", + "62297 1\n", + "62298 0\n", + "62299 1\n", + "62300 0\n", + "62301 0\n", + "62302 0\n", + "62303 1\n", + "62304 0\n", + "62305 0\n", + "62306 0\n", + "62307 0\n", + "62308 0\n", + "62309 0\n", + "62310 0\n", + "62311 1\n", + "62312 0\n", + "62313 0\n", + "62314 0\n", + "62315 0\n", + "62316 0\n", + "62317 0\n", + "62318 0\n", + "62319 0\n", + "62320 0\n", + "62321 0\n", + "62322 0\n", + "62323 1\n", + "62324 0\n", + "62325 0\n", + "62326 0\n", + "62327 1\n", + "62328 0\n", + "62329 0\n", + "62330 0\n", + "62331 0\n", + "62332 0\n", + "62333 0\n", + "62334 0\n", + "62335 0\n", + "62336 0\n", + "62337 0\n", + "62338 0\n", + "62339 0\n", + "62340 0\n", + "62341 0\n", + "62342 0\n", + "62343 0\n", + "62344 0\n", + "62345 0\n", + "62346 0\n", + "62347 1\n", + "62348 0\n", + "62349 0\n", + "62350 0\n", + "62351 1\n", + "62352 0\n", + "62353 0\n", + "62354 0\n", + "62355 0\n", + "62356 0\n", + "62357 0\n", + "62358 0\n", + "62359 0\n", + "62360 0\n", + "62361 0\n", + "62362 0\n", + "62363 0\n", + "62364 0\n", + "62365 0\n", + "62366 0\n", + "62367 0\n", + "62368 0\n", + "62369 0\n", + "62370 0\n", + "62371 0\n", + "62372 0\n", + "62373 0\n", + "62374 0\n", + "62375 0\n", + "62376 0\n", + "62377 0\n", + "62378 0\n", + "62379 0\n", + "62380 0\n", + "62381 0\n", + "62382 0\n", + "62383 1\n", + "62384 0\n", + "62385 0\n", + "62386 0\n", + "62387 0\n", + "62388 0\n", + "62389 0\n", + "62390 0\n", + "62391 0\n", + "62392 0\n", + "62393 0\n", + "62394 0\n", + "62395 0\n", + "62396 0\n", + "62397 0\n", + "62398 0\n", + "62399 0\n", + "62400 0\n", + "62401 1\n", + "62402 0\n", + "62403 0\n", + "62404 0\n", + "62405 0\n", + "62406 0\n", + "62407 0\n", + "62408 0\n", + "62409 0\n", + "62410 0\n", + "62411 0\n", + "62412 0\n", + "62413 0\n", + "62414 0\n", + "62415 0\n", + "62416 0\n", + "62417 1\n", + "62418 0\n", + "62419 0\n", + "62420 0\n", + "62421 0\n", + "62422 0\n", + "62423 1\n", + "62424 0\n", + "62425 0\n", + "62426 0\n", + "62427 0\n", + "62428 0\n", + "62429 0\n", + "62430 0\n", + "62431 0\n", + "62432 0\n", + "62433 0\n", + "62434 0\n", + "62435 0\n", + "62436 0\n", + "62437 0\n", + "62438 0\n", + "62439 0\n", + "62440 0\n", + "62441 0\n", + "62442 0\n", + "62443 0\n", + "62444 0\n", + "62445 0\n", + "62446 0\n", + "62447 0\n", + "62448 0\n", + "62449 0\n", + "62450 0\n", + "62451 0\n", + "62452 0\n", + "62453 0\n", + "62454 0\n", + "62455 0\n", + "62456 0\n", + "62457 0\n", + "62458 0\n", + "62459 1\n", + "62460 0\n", + "62461 0\n", + "62462 0\n", + "62463 0\n", + "62464 0\n", + "62465 0\n", + "62466 0\n", + "62467 1\n", + "62468 0\n", + "62469 0\n", + "62470 0\n", + "62471 0\n", + "62472 0\n", + "62473 1\n", + "62474 0\n", + "62475 0\n", + "62476 0\n", + "62477 1\n", + "62478 0\n", + "62479 0\n", + "62480 0\n", + "62481 0\n", + "62482 0\n", + "62483 1\n", + "62484 0\n", + "62485 0\n", + "62486 0\n", + "62487 0\n", + "62488 0\n", + "62489 0\n", + "62490 0\n", + "62491 0\n", + "62492 0\n", + "62493 0\n", + "62494 0\n", + "62495 0\n", + "62496 0\n", + "62497 1\n", + "62498 0\n", + "62499 0\n", + "62500 0\n", + "62501 1\n", + "62502 0\n", + "62503 0\n", + "62504 0\n", + "62505 0\n", + "62506 0\n", + "62507 1\n", + "62508 0\n", + "62509 0\n", + "62510 0\n", + "62511 0\n", + "62512 0\n", + "62513 0\n", + "62514 0\n", + "62515 0\n", + "62516 0\n", + "62517 0\n", + "62518 0\n", + "62519 0\n", + "62520 0\n", + "62521 0\n", + "62522 0\n", + "62523 0\n", + "62524 0\n", + "62525 0\n", + "62526 0\n", + "62527 0\n", + "62528 0\n", + "62529 0\n", + "62530 0\n", + "62531 0\n", + "62532 0\n", + "62533 1\n", + "62534 0\n", + "62535 0\n", + "62536 0\n", + "62537 0\n", + "62538 0\n", + "62539 1\n", + "62540 0\n", + "62541 0\n", + "62542 0\n", + "62543 0\n", + "62544 0\n", + "62545 0\n", + "62546 0\n", + "62547 0\n", + "62548 0\n", + "62549 1\n", + "62550 0\n", + "62551 0\n", + "62552 0\n", + "62553 0\n", + "62554 0\n", + "62555 0\n", + "62556 0\n", + "62557 0\n", + "62558 0\n", + "62559 0\n", + "62560 0\n", + "62561 0\n", + "62562 0\n", + "62563 1\n", + "62564 0\n", + "62565 0\n", + "62566 0\n", + "62567 0\n", + "62568 0\n", + "62569 0\n", + "62570 0\n", + "62571 0\n", + "62572 0\n", + "62573 0\n", + "62574 0\n", + "62575 0\n", + "62576 0\n", + "62577 0\n", + "62578 0\n", + "62579 0\n", + "62580 0\n", + "62581 1\n", + "62582 0\n", + "62583 0\n", + "62584 0\n", + "62585 0\n", + "62586 0\n", + "62587 0\n", + "62588 0\n", + "62589 0\n", + "62590 0\n", + "62591 1\n", + "62592 0\n", + "62593 0\n", + "62594 0\n", + "62595 0\n", + "62596 0\n", + "62597 1\n", + "62598 0\n", + "62599 0\n", + "62600 0\n", + "62601 0\n", + "62602 0\n", + "62603 1\n", + "62604 0\n", + "62605 0\n", + "62606 0\n", + "62607 0\n", + "62608 0\n", + "62609 0\n", + "62610 0\n", + "62611 0\n", + "62612 0\n", + "62613 0\n", + "62614 0\n", + "62615 0\n", + "62616 0\n", + "62617 1\n", + "62618 0\n", + "62619 0\n", + "62620 0\n", + "62621 0\n", + "62622 0\n", + "62623 0\n", + "62624 0\n", + "62625 0\n", + "62626 0\n", + "62627 1\n", + "62628 0\n", + "62629 0\n", + "62630 0\n", + "62631 0\n", + "62632 0\n", + "62633 1\n", + "62634 0\n", + "62635 0\n", + "62636 0\n", + "62637 0\n", + "62638 0\n", + "62639 1\n", + "62640 0\n", + "62641 0\n", + "62642 0\n", + "62643 0\n", + "62644 0\n", + "62645 0\n", + "62646 0\n", + "62647 0\n", + "62648 0\n", + "62649 0\n", + "62650 0\n", + "62651 0\n", + "62652 0\n", + "62653 1\n", + "62654 0\n", + "62655 0\n", + "62656 0\n", + "62657 0\n", + "62658 0\n", + "62659 1\n", + "62660 0\n", + "62661 0\n", + "62662 0\n", + "62663 0\n", + "62664 0\n", + "62665 0\n", + "62666 0\n", + "62667 0\n", + "62668 0\n", + "62669 0\n", + "62670 0\n", + "62671 0\n", + "62672 0\n", + "62673 0\n", + "62674 0\n", + "62675 0\n", + "62676 0\n", + "62677 0\n", + "62678 0\n", + "62679 0\n", + "62680 0\n", + "62681 0\n", + "62682 0\n", + "62683 1\n", + "62684 0\n", + "62685 0\n", + "62686 0\n", + "62687 1\n", + "62688 0\n", + "62689 0\n", + "62690 0\n", + "62691 0\n", + "62692 0\n", + "62693 0\n", + "62694 0\n", + "62695 0\n", + "62696 0\n", + "62697 0\n", + "62698 0\n", + "62699 0\n", + "62700 0\n", + "62701 1\n", + "62702 0\n", + "62703 0\n", + "62704 0\n", + "62705 0\n", + "62706 0\n", + "62707 0\n", + "62708 0\n", + "62709 0\n", + "62710 0\n", + "62711 0\n", + "62712 0\n", + "62713 0\n", + "62714 0\n", + "62715 0\n", + "62716 0\n", + "62717 0\n", + "62718 0\n", + "62719 0\n", + "62720 0\n", + "62721 0\n", + "62722 0\n", + "62723 1\n", + "62724 0\n", + "62725 0\n", + "62726 0\n", + "62727 0\n", + "62728 0\n", + "62729 0\n", + "62730 0\n", + "62731 1\n", + "62732 0\n", + "62733 0\n", + "62734 0\n", + "62735 0\n", + "62736 0\n", + "62737 0\n", + "62738 0\n", + "62739 0\n", + "62740 0\n", + "62741 0\n", + "62742 0\n", + "62743 1\n", + "62744 0\n", + "62745 0\n", + "62746 0\n", + "62747 0\n", + "62748 0\n", + "62749 0\n", + "62750 0\n", + "62751 0\n", + "62752 0\n", + "62753 1\n", + "62754 0\n", + "62755 0\n", + "62756 0\n", + "62757 0\n", + "62758 0\n", + "62759 0\n", + "62760 0\n", + "62761 1\n", + "62762 0\n", + "62763 0\n", + "62764 0\n", + "62765 0\n", + "62766 0\n", + "62767 0\n", + "62768 0\n", + "62769 0\n", + "62770 0\n", + "62771 0\n", + "62772 0\n", + "62773 1\n", + "62774 0\n", + "62775 0\n", + "62776 0\n", + "62777 0\n", + "62778 0\n", + "62779 0\n", + "62780 0\n", + "62781 0\n", + "62782 0\n", + "62783 0\n", + "62784 0\n", + "62785 0\n", + "62786 0\n", + "62787 0\n", + "62788 0\n", + "62789 0\n", + "62790 0\n", + "62791 1\n", + "62792 0\n", + "62793 0\n", + "62794 0\n", + "62795 0\n", + "62796 0\n", + "62797 0\n", + "62798 0\n", + "62799 0\n", + "62800 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "62801 1\n", + "62802 0\n", + "62803 0\n", + "62804 0\n", + "62805 0\n", + "62806 0\n", + "62807 0\n", + "62808 0\n", + "62809 0\n", + "62810 0\n", + "62811 0\n", + "62812 0\n", + "62813 0\n", + "62814 0\n", + "62815 0\n", + "62816 0\n", + "62817 0\n", + "62818 0\n", + "62819 1\n", + "62820 0\n", + "62821 0\n", + "62822 0\n", + "62823 0\n", + "62824 0\n", + "62825 0\n", + "62826 0\n", + "62827 1\n", + "62828 0\n", + "62829 0\n", + "62830 0\n", + "62831 0\n", + "62832 0\n", + "62833 0\n", + "62834 0\n", + "62835 0\n", + "62836 0\n", + "62837 0\n", + "62838 0\n", + "62839 0\n", + "62840 0\n", + "62841 0\n", + "62842 0\n", + "62843 0\n", + "62844 0\n", + "62845 0\n", + "62846 0\n", + "62847 0\n", + "62848 0\n", + "62849 0\n", + "62850 0\n", + "62851 1\n", + "62852 0\n", + "62853 0\n", + "62854 0\n", + "62855 0\n", + "62856 0\n", + "62857 0\n", + "62858 0\n", + "62859 0\n", + "62860 0\n", + "62861 1\n", + "62862 0\n", + "62863 0\n", + "62864 0\n", + "62865 0\n", + "62866 0\n", + "62867 0\n", + "62868 0\n", + "62869 1\n", + "62870 0\n", + "62871 0\n", + "62872 0\n", + "62873 1\n", + "62874 0\n", + "62875 0\n", + "62876 0\n", + "62877 0\n", + "62878 0\n", + "62879 0\n", + "62880 0\n", + "62881 0\n", + "62882 0\n", + "62883 0\n", + "62884 0\n", + "62885 0\n", + "62886 0\n", + "62887 0\n", + "62888 0\n", + "62889 0\n", + "62890 0\n", + "62891 0\n", + "62892 0\n", + "62893 0\n", + "62894 0\n", + "62895 0\n", + "62896 0\n", + "62897 1\n", + "62898 0\n", + "62899 0\n", + "62900 0\n", + "62901 0\n", + "62902 0\n", + "62903 1\n", + "62904 0\n", + "62905 0\n", + "62906 0\n", + "62907 0\n", + "62908 0\n", + "62909 0\n", + "62910 0\n", + "62911 0\n", + "62912 0\n", + "62913 0\n", + "62914 0\n", + "62915 0\n", + "62916 0\n", + "62917 0\n", + "62918 0\n", + "62919 0\n", + "62920 0\n", + "62921 1\n", + "62922 0\n", + "62923 0\n", + "62924 0\n", + "62925 0\n", + "62926 0\n", + "62927 1\n", + "62928 0\n", + "62929 1\n", + "62930 0\n", + "62931 0\n", + "62932 0\n", + "62933 0\n", + "62934 0\n", + "62935 0\n", + "62936 0\n", + "62937 0\n", + "62938 0\n", + "62939 1\n", + "62940 0\n", + "62941 0\n", + "62942 0\n", + "62943 0\n", + "62944 0\n", + "62945 0\n", + "62946 0\n", + "62947 0\n", + "62948 0\n", + "62949 0\n", + "62950 0\n", + "62951 0\n", + "62952 0\n", + "62953 0\n", + "62954 0\n", + "62955 0\n", + "62956 0\n", + "62957 0\n", + "62958 0\n", + "62959 0\n", + "62960 0\n", + "62961 0\n", + "62962 0\n", + "62963 0\n", + "62964 0\n", + "62965 0\n", + "62966 0\n", + "62967 0\n", + "62968 0\n", + "62969 1\n", + "62970 0\n", + "62971 1\n", + "62972 0\n", + "62973 0\n", + "62974 0\n", + "62975 0\n", + "62976 0\n", + "62977 0\n", + "62978 0\n", + "62979 0\n", + "62980 0\n", + "62981 1\n", + "62982 0\n", + "62983 1\n", + "62984 0\n", + "62985 0\n", + "62986 0\n", + "62987 1\n", + "62988 0\n", + "62989 1\n", + "62990 0\n", + "62991 0\n", + "62992 0\n", + "62993 0\n", + "62994 0\n", + "62995 0\n", + "62996 0\n", + "62997 0\n", + "62998 0\n", + "62999 0\n", + "63000 0\n", + "63001 0\n", + "63002 0\n", + "63003 0\n", + "63004 0\n", + "63005 0\n", + "63006 0\n", + "63007 0\n", + "63008 0\n", + "63009 0\n", + "63010 0\n", + "63011 0\n", + "63012 0\n", + "63013 0\n", + "63014 0\n", + "63015 0\n", + "63016 0\n", + "63017 0\n", + "63018 0\n", + "63019 0\n", + "63020 0\n", + "63021 0\n", + "63022 0\n", + "63023 0\n", + "63024 0\n", + "63025 0\n", + "63026 0\n", + "63027 0\n", + "63028 0\n", + "63029 1\n", + "63030 0\n", + "63031 1\n", + "63032 0\n", + "63033 0\n", + "63034 0\n", + "63035 0\n", + "63036 0\n", + "63037 0\n", + "63038 0\n", + "63039 0\n", + "63040 0\n", + "63041 0\n", + "63042 0\n", + "63043 0\n", + "63044 0\n", + "63045 0\n", + "63046 0\n", + "63047 0\n", + "63048 0\n", + "63049 0\n", + "63050 0\n", + "63051 0\n", + "63052 0\n", + "63053 0\n", + "63054 0\n", + "63055 0\n", + "63056 0\n", + "63057 0\n", + "63058 0\n", + "63059 1\n", + "63060 0\n", + "63061 0\n", + "63062 0\n", + "63063 0\n", + "63064 0\n", + "63065 0\n", + "63066 0\n", + "63067 1\n", + "63068 0\n", + "63069 0\n", + "63070 0\n", + "63071 0\n", + "63072 0\n", + "63073 1\n", + "63074 0\n", + "63075 0\n", + "63076 0\n", + "63077 0\n", + "63078 0\n", + "63079 1\n", + "63080 0\n", + "63081 0\n", + "63082 0\n", + "63083 0\n", + "63084 0\n", + "63085 0\n", + "63086 0\n", + "63087 0\n", + "63088 0\n", + "63089 0\n", + "63090 0\n", + "63091 0\n", + "63092 0\n", + "63093 0\n", + "63094 0\n", + "63095 0\n", + "63096 0\n", + "63097 1\n", + "63098 0\n", + "63099 0\n", + "63100 0\n", + "63101 0\n", + "63102 0\n", + "63103 1\n", + "63104 0\n", + "63105 0\n", + "63106 0\n", + "63107 0\n", + "63108 0\n", + "63109 0\n", + "63110 0\n", + "63111 0\n", + "63112 0\n", + "63113 1\n", + "63114 0\n", + "63115 0\n", + "63116 0\n", + "63117 0\n", + "63118 0\n", + "63119 0\n", + "63120 0\n", + "63121 0\n", + "63122 0\n", + "63123 0\n", + "63124 0\n", + "63125 0\n", + "63126 0\n", + "63127 1\n", + "63128 0\n", + "63129 0\n", + "63130 0\n", + "63131 1\n", + "63132 0\n", + "63133 0\n", + "63134 0\n", + "63135 0\n", + "63136 0\n", + "63137 0\n", + "63138 0\n", + "63139 0\n", + "63140 0\n", + "63141 0\n", + "63142 0\n", + "63143 0\n", + "63144 0\n", + "63145 0\n", + "63146 0\n", + "63147 0\n", + "63148 0\n", + "63149 1\n", + "63150 0\n", + "63151 0\n", + "63152 0\n", + "63153 0\n", + "63154 0\n", + "63155 0\n", + "63156 0\n", + "63157 0\n", + "63158 0\n", + "63159 0\n", + "63160 0\n", + "63161 0\n", + "63162 0\n", + "63163 0\n", + "63164 0\n", + "63165 0\n", + "63166 0\n", + "63167 0\n", + "63168 0\n", + "63169 0\n", + "63170 0\n", + "63171 0\n", + "63172 0\n", + "63173 0\n", + "63174 0\n", + "63175 0\n", + "63176 0\n", + "63177 0\n", + "63178 0\n", + "63179 1\n", + "63180 0\n", + "63181 0\n", + "63182 0\n", + "63183 0\n", + "63184 0\n", + "63185 0\n", + "63186 0\n", + "63187 0\n", + "63188 0\n", + "63189 0\n", + "63190 0\n", + "63191 0\n", + "63192 0\n", + "63193 0\n", + "63194 0\n", + "63195 0\n", + "63196 0\n", + "63197 1\n", + "63198 0\n", + "63199 1\n", + "63200 0\n", + "63201 0\n", + "63202 0\n", + "63203 0\n", + "63204 0\n", + "63205 0\n", + "63206 0\n", + "63207 0\n", + "63208 0\n", + "63209 0\n", + "63210 0\n", + "63211 1\n", + "63212 0\n", + "63213 0\n", + "63214 0\n", + "63215 0\n", + "63216 0\n", + "63217 0\n", + "63218 0\n", + "63219 0\n", + "63220 0\n", + "63221 0\n", + "63222 0\n", + "63223 0\n", + "63224 0\n", + "63225 0\n", + "63226 0\n", + "63227 0\n", + "63228 0\n", + "63229 0\n", + "63230 0\n", + "63231 0\n", + "63232 0\n", + "63233 0\n", + "63234 0\n", + "63235 0\n", + "63236 0\n", + "63237 0\n", + "63238 0\n", + "63239 0\n", + "63240 0\n", + "63241 1\n", + "63242 0\n", + "63243 0\n", + "63244 0\n", + "63245 0\n", + "63246 0\n", + "63247 1\n", + "63248 0\n", + "63249 0\n", + "63250 0\n", + "63251 0\n", + "63252 0\n", + "63253 0\n", + "63254 0\n", + "63255 0\n", + "63256 0\n", + "63257 0\n", + "63258 0\n", + "63259 0\n", + "63260 0\n", + "63261 0\n", + "63262 0\n", + "63263 0\n", + "63264 0\n", + "63265 0\n", + "63266 0\n", + "63267 0\n", + "63268 0\n", + "63269 0\n", + "63270 0\n", + "63271 0\n", + "63272 0\n", + "63273 0\n", + "63274 0\n", + "63275 0\n", + "63276 0\n", + "63277 1\n", + "63278 0\n", + "63279 0\n", + "63280 0\n", + "63281 1\n", + "63282 0\n", + "63283 0\n", + "63284 0\n", + "63285 0\n", + "63286 0\n", + "63287 0\n", + "63288 0\n", + "63289 0\n", + "63290 0\n", + "63291 0\n", + "63292 0\n", + "63293 0\n", + "63294 0\n", + "63295 0\n", + "63296 0\n", + "63297 0\n", + "63298 0\n", + "63299 1\n", + "63300 0\n", + "63301 0\n", + "63302 0\n", + "63303 0\n", + "63304 0\n", + "63305 0\n", + "63306 0\n", + "63307 0\n", + "63308 0\n", + "63309 0\n", + "63310 0\n", + "63311 1\n", + "63312 0\n", + "63313 1\n", + "63314 0\n", + "63315 0\n", + "63316 0\n", + "63317 1\n", + "63318 0\n", + "63319 0\n", + "63320 0\n", + "63321 0\n", + "63322 0\n", + "63323 0\n", + "63324 0\n", + "63325 0\n", + "63326 0\n", + "63327 0\n", + "63328 0\n", + "63329 0\n", + "63330 0\n", + "63331 1\n", + "63332 0\n", + "63333 0\n", + "63334 0\n", + "63335 0\n", + "63336 0\n", + "63337 1\n", + "63338 0\n", + "63339 0\n", + "63340 0\n", + "63341 0\n", + "63342 0\n", + "63343 0\n", + "63344 0\n", + "63345 0\n", + "63346 0\n", + "63347 1\n", + "63348 0\n", + "63349 0\n", + "63350 0\n", + "63351 0\n", + "63352 0\n", + "63353 1\n", + "63354 0\n", + "63355 0\n", + "63356 0\n", + "63357 0\n", + "63358 0\n", + "63359 0\n", + "63360 0\n", + "63361 1\n", + "63362 0\n", + "63363 0\n", + "63364 0\n", + "63365 0\n", + "63366 0\n", + "63367 1\n", + "63368 0\n", + "63369 0\n", + "63370 0\n", + "63371 0\n", + "63372 0\n", + "63373 0\n", + "63374 0\n", + "63375 0\n", + "63376 0\n", + "63377 1\n", + "63378 0\n", + "63379 0\n", + "63380 0\n", + "63381 0\n", + "63382 0\n", + "63383 0\n", + "63384 0\n", + "63385 0\n", + "63386 0\n", + "63387 0\n", + "63388 0\n", + "63389 1\n", + "63390 0\n", + "63391 1\n", + "63392 0\n", + "63393 0\n", + "63394 0\n", + "63395 0\n", + "63396 0\n", + "63397 1\n", + "63398 0\n", + "63399 0\n", + "63400 0\n", + "63401 0\n", + "63402 0\n", + "63403 0\n", + "63404 0\n", + "63405 0\n", + "63406 0\n", + "63407 0\n", + "63408 0\n", + "63409 1\n", + "63410 0\n", + "63411 0\n", + "63412 0\n", + "63413 0\n", + "63414 0\n", + "63415 0\n", + "63416 0\n", + "63417 0\n", + "63418 0\n", + "63419 1\n", + "63420 0\n", + "63421 1\n", + "63422 0\n", + "63423 0\n", + "63424 0\n", + "63425 0\n", + "63426 0\n", + "63427 0\n", + "63428 0\n", + "63429 0\n", + "63430 0\n", + "63431 0\n", + "63432 0\n", + "63433 0\n", + "63434 0\n", + "63435 0\n", + "63436 0\n", + "63437 0\n", + "63438 0\n", + "63439 1\n", + "63440 0\n", + "63441 0\n", + "63442 0\n", + "63443 1\n", + "63444 0\n", + "63445 0\n", + "63446 0\n", + "63447 0\n", + "63448 0\n", + "63449 0\n", + "63450 0\n", + "63451 0\n", + "63452 0\n", + "63453 0\n", + "63454 0\n", + "63455 0\n", + "63456 0\n", + "63457 0\n", + "63458 0\n", + "63459 0\n", + "63460 0\n", + "63461 0\n", + "63462 0\n", + "63463 1\n", + "63464 0\n", + "63465 0\n", + "63466 0\n", + "63467 1\n", + "63468 0\n", + "63469 0\n", + "63470 0\n", + "63471 0\n", + "63472 0\n", + "63473 1\n", + "63474 0\n", + "63475 0\n", + "63476 0\n", + "63477 0\n", + "63478 0\n", + "63479 0\n", + "63480 0\n", + "63481 0\n", + "63482 0\n", + "63483 0\n", + "63484 0\n", + "63485 0\n", + "63486 0\n", + "63487 1\n", + "63488 0\n", + "63489 0\n", + "63490 0\n", + "63491 0\n", + "63492 0\n", + "63493 1\n", + "63494 0\n", + "63495 0\n", + "63496 0\n", + "63497 0\n", + "63498 0\n", + "63499 1\n", + "63500 0\n", + "63501 0\n", + "63502 0\n", + "63503 0\n", + "63504 0\n", + "63505 0\n", + "63506 0\n", + "63507 0\n", + "63508 0\n", + "63509 0\n", + "63510 0\n", + "63511 0\n", + "63512 0\n", + "63513 0\n", + "63514 0\n", + "63515 0\n", + "63516 0\n", + "63517 0\n", + "63518 0\n", + "63519 0\n", + "63520 0\n", + "63521 1\n", + "63522 0\n", + "63523 0\n", + "63524 0\n", + "63525 0\n", + "63526 0\n", + "63527 1\n", + "63528 0\n", + "63529 0\n", + "63530 0\n", + "63531 0\n", + "63532 0\n", + "63533 1\n", + "63534 0\n", + "63535 0\n", + "63536 0\n", + "63537 0\n", + "63538 0\n", + "63539 0\n", + "63540 0\n", + "63541 1\n", + "63542 0\n", + "63543 0\n", + "63544 0\n", + "63545 0\n", + "63546 0\n", + "63547 0\n", + "63548 0\n", + "63549 0\n", + "63550 0\n", + "63551 0\n", + "63552 0\n", + "63553 0\n", + "63554 0\n", + "63555 0\n", + "63556 0\n", + "63557 0\n", + "63558 0\n", + "63559 1\n", + "63560 0\n", + "63561 0\n", + "63562 0\n", + "63563 0\n", + "63564 0\n", + "63565 0\n", + "63566 0\n", + "63567 0\n", + "63568 0\n", + "63569 0\n", + "63570 0\n", + "63571 0\n", + "63572 0\n", + "63573 0\n", + "63574 0\n", + "63575 0\n", + "63576 0\n", + "63577 1\n", + "63578 0\n", + "63579 0\n", + "63580 0\n", + "63581 0\n", + "63582 0\n", + "63583 0\n", + "63584 0\n", + "63585 0\n", + "63586 0\n", + "63587 1\n", + "63588 0\n", + "63589 1\n", + "63590 0\n", + "63591 0\n", + "63592 0\n", + "63593 0\n", + "63594 0\n", + "63595 0\n", + "63596 0\n", + "63597 0\n", + "63598 0\n", + "63599 1\n", + "63600 0\n", + "63601 1\n", + "63602 0\n", + "63603 0\n", + "63604 0\n", + "63605 0\n", + "63606 0\n", + "63607 1\n", + "63608 0\n", + "63609 0\n", + "63610 0\n", + "63611 1\n", + "63612 0\n", + "63613 0\n", + "63614 0\n", + "63615 0\n", + "63616 0\n", + "63617 1\n", + "63618 0\n", + "63619 0\n", + "63620 0\n", + "63621 0\n", + "63622 0\n", + "63623 0\n", + "63624 0\n", + "63625 0\n", + "63626 0\n", + "63627 0\n", + "63628 0\n", + "63629 1\n", + "63630 0\n", + "63631 0\n", + "63632 0\n", + "63633 0\n", + "63634 0\n", + "63635 0\n", + "63636 0\n", + "63637 0\n", + "63638 0\n", + "63639 0\n", + "63640 0\n", + "63641 0\n", + "63642 0\n", + "63643 0\n", + "63644 0\n", + "63645 0\n", + "63646 0\n", + "63647 1\n", + "63648 0\n", + "63649 1\n", + "63650 0\n", + "63651 0\n", + "63652 0\n", + "63653 0\n", + "63654 0\n", + "63655 0\n", + "63656 0\n", + "63657 0\n", + "63658 0\n", + "63659 1\n", + "63660 0\n", + "63661 0\n", + "63662 0\n", + "63663 0\n", + "63664 0\n", + "63665 0\n", + "63666 0\n", + "63667 1\n", + "63668 0\n", + "63669 0\n", + "63670 0\n", + "63671 1\n", + "63672 0\n", + "63673 0\n", + "63674 0\n", + "63675 0\n", + "63676 0\n", + "63677 0\n", + "63678 0\n", + "63679 0\n", + "63680 0\n", + "63681 0\n", + "63682 0\n", + "63683 0\n", + "63684 0\n", + "63685 0\n", + "63686 0\n", + "63687 0\n", + "63688 0\n", + "63689 1\n", + "63690 0\n", + "63691 1\n", + "63692 0\n", + "63693 0\n", + "63694 0\n", + "63695 0\n", + "63696 0\n", + "63697 1\n", + "63698 0\n", + "63699 0\n", + "63700 0\n", + "63701 0\n", + "63702 0\n", + "63703 1\n", + "63704 0\n", + "63705 0\n", + "63706 0\n", + "63707 0\n", + "63708 0\n", + "63709 1\n", + "63710 0\n", + "63711 0\n", + "63712 0\n", + "63713 0\n", + "63714 0\n", + "63715 0\n", + "63716 0\n", + "63717 0\n", + "63718 0\n", + "63719 1\n", + "63720 0\n", + "63721 0\n", + "63722 0\n", + "63723 0\n", + "63724 0\n", + "63725 0\n", + "63726 0\n", + "63727 1\n", + "63728 0\n", + "63729 0\n", + "63730 0\n", + "63731 0\n", + "63732 0\n", + "63733 0\n", + "63734 0\n", + "63735 0\n", + "63736 0\n", + "63737 1\n", + "63738 0\n", + "63739 0\n", + "63740 0\n", + "63741 0\n", + "63742 0\n", + "63743 1\n", + "63744 0\n", + "63745 0\n", + "63746 0\n", + "63747 0\n", + "63748 0\n", + "63749 0\n", + "63750 0\n", + "63751 0\n", + "63752 0\n", + "63753 0\n", + "63754 0\n", + "63755 0\n", + "63756 0\n", + "63757 0\n", + "63758 0\n", + "63759 0\n", + "63760 0\n", + "63761 1\n", + "63762 0\n", + "63763 0\n", + "63764 0\n", + "63765 0\n", + "63766 0\n", + "63767 0\n", + "63768 0\n", + "63769 0\n", + "63770 0\n", + "63771 0\n", + "63772 0\n", + "63773 1\n", + "63774 0\n", + "63775 0\n", + "63776 0\n", + "63777 0\n", + "63778 0\n", + "63779 0\n", + "63780 0\n", + "63781 1\n", + "63782 0\n", + "63783 0\n", + "63784 0\n", + "63785 0\n", + "63786 0\n", + "63787 0\n", + "63788 0\n", + "63789 0\n", + "63790 0\n", + "63791 0\n", + "63792 0\n", + "63793 1\n", + "63794 0\n", + "63795 0\n", + "63796 0\n", + "63797 0\n", + "63798 0\n", + "63799 1\n", + "63800 0\n", + "63801 0\n", + "63802 0\n", + "63803 1\n", + "63804 0\n", + "63805 0\n", + "63806 0\n", + "63807 0\n", + "63808 0\n", + "63809 1\n", + "63810 0\n", + "63811 0\n", + "63812 0\n", + "63813 0\n", + "63814 0\n", + "63815 0\n", + "63816 0\n", + "63817 0\n", + "63818 0\n", + "63819 0\n", + "63820 0\n", + "63821 0\n", + "63822 0\n", + "63823 1\n", + "63824 0\n", + "63825 0\n", + "63826 0\n", + "63827 0\n", + "63828 0\n", + "63829 0\n", + "63830 0\n", + "63831 0\n", + "63832 0\n", + "63833 0\n", + "63834 0\n", + "63835 0\n", + "63836 0\n", + "63837 0\n", + "63838 0\n", + "63839 1\n", + "63840 0\n", + "63841 1\n", + "63842 0\n", + "63843 0\n", + "63844 0\n", + "63845 0\n", + "63846 0\n", + "63847 0\n", + "63848 0\n", + "63849 0\n", + "63850 0\n", + "63851 0\n", + "63852 0\n", + "63853 1\n", + "63854 0\n", + "63855 0\n", + "63856 0\n", + "63857 1\n", + "63858 0\n", + "63859 0\n", + "63860 0\n", + "63861 0\n", + "63862 0\n", + "63863 1\n", + "63864 0\n", + "63865 0\n", + "63866 0\n", + "63867 0\n", + "63868 0\n", + "63869 0\n", + "63870 0\n", + "63871 0\n", + "63872 0\n", + "63873 0\n", + "63874 0\n", + "63875 0\n", + "63876 0\n", + "63877 0\n", + "63878 0\n", + "63879 0\n", + "63880 0\n", + "63881 0\n", + "63882 0\n", + "63883 0\n", + "63884 0\n", + "63885 0\n", + "63886 0\n", + "63887 0\n", + "63888 0\n", + "63889 0\n", + "63890 0\n", + "63891 0\n", + "63892 0\n", + "63893 0\n", + "63894 0\n", + "63895 0\n", + "63896 0\n", + "63897 0\n", + "63898 0\n", + "63899 0\n", + "63900 0\n", + "63901 1\n", + "63902 0\n", + "63903 0\n", + "63904 0\n", + "63905 0\n", + "63906 0\n", + "63907 1\n", + "63908 0\n", + "63909 0\n", + "63910 0\n", + "63911 0\n", + "63912 0\n", + "63913 1\n", + "63914 0\n", + "63915 0\n", + "63916 0\n", + "63917 0\n", + "63918 0\n", + "63919 0\n", + "63920 0\n", + "63921 0\n", + "63922 0\n", + "63923 0\n", + "63924 0\n", + "63925 0\n", + "63926 0\n", + "63927 0\n", + "63928 0\n", + "63929 1\n", + "63930 0\n", + "63931 0\n", + "63932 0\n", + "63933 0\n", + "63934 0\n", + "63935 0\n", + "63936 0\n", + "63937 0\n", + "63938 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "63939 0\n", + "63940 0\n", + "63941 0\n", + "63942 0\n", + "63943 0\n", + "63944 0\n", + "63945 0\n", + "63946 0\n", + "63947 0\n", + "63948 0\n", + "63949 1\n", + "63950 0\n", + "63951 0\n", + "63952 0\n", + "63953 0\n", + "63954 0\n", + "63955 0\n", + "63956 0\n", + "63957 0\n", + "63958 0\n", + "63959 0\n", + "63960 0\n", + "63961 0\n", + "63962 0\n", + "63963 0\n", + "63964 0\n", + "63965 0\n", + "63966 0\n", + "63967 0\n", + "63968 0\n", + "63969 0\n", + "63970 0\n", + "63971 0\n", + "63972 0\n", + "63973 0\n", + "63974 0\n", + "63975 0\n", + "63976 0\n", + "63977 1\n", + "63978 0\n", + "63979 0\n", + "63980 0\n", + "63981 0\n", + "63982 0\n", + "63983 0\n", + "63984 0\n", + "63985 0\n", + "63986 0\n", + "63987 0\n", + "63988 0\n", + "63989 0\n", + "63990 0\n", + "63991 0\n", + "63992 0\n", + "63993 0\n", + "63994 0\n", + "63995 0\n", + "63996 0\n", + "63997 1\n", + "63998 0\n", + "63999 0\n", + "64000 0\n", + "64001 0\n", + "64002 0\n", + "64003 0\n", + "64004 0\n", + "64005 0\n", + "64006 0\n", + "64007 1\n", + "64008 0\n", + "64009 0\n", + "64010 0\n", + "64011 0\n", + "64012 0\n", + "64013 1\n", + "64014 0\n", + "64015 0\n", + "64016 0\n", + "64017 0\n", + "64018 0\n", + "64019 1\n", + "64020 0\n", + "64021 0\n", + "64022 0\n", + "64023 0\n", + "64024 0\n", + "64025 0\n", + "64026 0\n", + "64027 0\n", + "64028 0\n", + "64029 0\n", + "64030 0\n", + "64031 0\n", + "64032 0\n", + "64033 1\n", + "64034 0\n", + "64035 0\n", + "64036 0\n", + "64037 1\n", + "64038 0\n", + "64039 0\n", + "64040 0\n", + "64041 0\n", + "64042 0\n", + "64043 0\n", + "64044 0\n", + "64045 0\n", + "64046 0\n", + "64047 0\n", + "64048 0\n", + "64049 0\n", + "64050 0\n", + "64051 0\n", + "64052 0\n", + "64053 0\n", + "64054 0\n", + "64055 0\n", + "64056 0\n", + "64057 0\n", + "64058 0\n", + "64059 0\n", + "64060 0\n", + "64061 0\n", + "64062 0\n", + "64063 1\n", + "64064 0\n", + "64065 0\n", + "64066 0\n", + "64067 1\n", + "64068 0\n", + "64069 0\n", + "64070 0\n", + "64071 0\n", + "64072 0\n", + "64073 0\n", + "64074 0\n", + "64075 0\n", + "64076 0\n", + "64077 0\n", + "64078 0\n", + "64079 0\n", + "64080 0\n", + "64081 1\n", + "64082 0\n", + "64083 0\n", + "64084 0\n", + "64085 0\n", + "64086 0\n", + "64087 0\n", + "64088 0\n", + "64089 0\n", + "64090 0\n", + "64091 1\n", + "64092 0\n", + "64093 0\n", + "64094 0\n", + "64095 0\n", + "64096 0\n", + "64097 0\n", + "64098 0\n", + "64099 0\n", + "64100 0\n", + "64101 0\n", + "64102 0\n", + "64103 0\n", + "64104 0\n", + "64105 0\n", + "64106 0\n", + "64107 0\n", + "64108 0\n", + "64109 1\n", + "64110 0\n", + "64111 0\n", + "64112 0\n", + "64113 0\n", + "64114 0\n", + "64115 0\n", + "64116 0\n", + "64117 0\n", + "64118 0\n", + "64119 0\n", + "64120 0\n", + "64121 0\n", + "64122 0\n", + "64123 1\n", + "64124 0\n", + "64125 0\n", + "64126 0\n", + "64127 0\n", + "64128 0\n", + "64129 0\n", + "64130 0\n", + "64131 0\n", + "64132 0\n", + "64133 0\n", + "64134 0\n", + "64135 0\n", + "64136 0\n", + "64137 0\n", + "64138 0\n", + "64139 0\n", + "64140 0\n", + "64141 0\n", + "64142 0\n", + "64143 0\n", + "64144 0\n", + "64145 0\n", + "64146 0\n", + "64147 0\n", + "64148 0\n", + "64149 0\n", + "64150 0\n", + "64151 1\n", + "64152 0\n", + "64153 1\n", + "64154 0\n", + "64155 0\n", + "64156 0\n", + "64157 1\n", + "64158 0\n", + "64159 0\n", + "64160 0\n", + "64161 0\n", + "64162 0\n", + "64163 0\n", + "64164 0\n", + "64165 0\n", + "64166 0\n", + "64167 0\n", + "64168 0\n", + "64169 0\n", + "64170 0\n", + "64171 1\n", + "64172 0\n", + "64173 0\n", + "64174 0\n", + "64175 0\n", + "64176 0\n", + "64177 0\n", + "64178 0\n", + "64179 0\n", + "64180 0\n", + "64181 0\n", + "64182 0\n", + "64183 0\n", + "64184 0\n", + "64185 0\n", + "64186 0\n", + "64187 1\n", + "64188 0\n", + "64189 1\n", + "64190 0\n", + "64191 0\n", + "64192 0\n", + "64193 0\n", + "64194 0\n", + "64195 0\n", + "64196 0\n", + "64197 0\n", + "64198 0\n", + "64199 0\n", + "64200 0\n", + "64201 0\n", + "64202 0\n", + "64203 0\n", + "64204 0\n", + "64205 0\n", + "64206 0\n", + "64207 0\n", + "64208 0\n", + "64209 0\n", + "64210 0\n", + "64211 0\n", + "64212 0\n", + "64213 0\n", + "64214 0\n", + "64215 0\n", + "64216 0\n", + "64217 1\n", + "64218 0\n", + "64219 0\n", + "64220 0\n", + "64221 0\n", + "64222 0\n", + "64223 1\n", + "64224 0\n", + "64225 0\n", + "64226 0\n", + "64227 0\n", + "64228 0\n", + "64229 0\n", + "64230 0\n", + "64231 1\n", + "64232 0\n", + "64233 0\n", + "64234 0\n", + "64235 0\n", + "64236 0\n", + "64237 1\n", + "64238 0\n", + "64239 0\n", + "64240 0\n", + "64241 0\n", + "64242 0\n", + "64243 0\n", + "64244 0\n", + "64245 0\n", + "64246 0\n", + "64247 0\n", + "64248 0\n", + "64249 0\n", + "64250 0\n", + "64251 0\n", + "64252 0\n", + "64253 0\n", + "64254 0\n", + "64255 0\n", + "64256 0\n", + "64257 0\n", + "64258 0\n", + "64259 0\n", + "64260 0\n", + "64261 0\n", + "64262 0\n", + "64263 0\n", + "64264 0\n", + "64265 0\n", + "64266 0\n", + "64267 0\n", + "64268 0\n", + "64269 0\n", + "64270 0\n", + "64271 1\n", + "64272 0\n", + "64273 0\n", + "64274 0\n", + "64275 0\n", + "64276 0\n", + "64277 0\n", + "64278 0\n", + "64279 1\n", + "64280 0\n", + "64281 0\n", + "64282 0\n", + "64283 1\n", + "64284 0\n", + "64285 0\n", + "64286 0\n", + "64287 0\n", + "64288 0\n", + "64289 0\n", + "64290 0\n", + "64291 0\n", + "64292 0\n", + "64293 0\n", + "64294 0\n", + "64295 0\n", + "64296 0\n", + "64297 0\n", + "64298 0\n", + "64299 0\n", + "64300 0\n", + "64301 1\n", + "64302 0\n", + "64303 1\n", + "64304 0\n", + "64305 0\n", + "64306 0\n", + "64307 0\n", + "64308 0\n", + "64309 0\n", + "64310 0\n", + "64311 0\n", + "64312 0\n", + "64313 0\n", + "64314 0\n", + "64315 0\n", + "64316 0\n", + "64317 0\n", + "64318 0\n", + "64319 1\n", + "64320 0\n", + "64321 0\n", + "64322 0\n", + "64323 0\n", + "64324 0\n", + "64325 0\n", + "64326 0\n", + "64327 1\n", + "64328 0\n", + "64329 0\n", + "64330 0\n", + "64331 0\n", + "64332 0\n", + "64333 1\n", + "64334 0\n", + "64335 0\n", + "64336 0\n", + "64337 0\n", + "64338 0\n", + "64339 0\n", + "64340 0\n", + "64341 0\n", + "64342 0\n", + "64343 0\n", + "64344 0\n", + "64345 0\n", + "64346 0\n", + "64347 0\n", + "64348 0\n", + "64349 0\n", + "64350 0\n", + "64351 0\n", + "64352 0\n", + "64353 0\n", + "64354 0\n", + "64355 0\n", + "64356 0\n", + "64357 0\n", + "64358 0\n", + "64359 0\n", + "64360 0\n", + "64361 0\n", + "64362 0\n", + "64363 0\n", + "64364 0\n", + "64365 0\n", + "64366 0\n", + "64367 0\n", + "64368 0\n", + "64369 0\n", + "64370 0\n", + "64371 0\n", + "64372 0\n", + "64373 1\n", + "64374 0\n", + "64375 0\n", + "64376 0\n", + "64377 0\n", + "64378 0\n", + "64379 0\n", + "64380 0\n", + "64381 1\n", + "64382 0\n", + "64383 0\n", + "64384 0\n", + "64385 0\n", + "64386 0\n", + "64387 0\n", + "64388 0\n", + "64389 0\n", + "64390 0\n", + "64391 0\n", + "64392 0\n", + "64393 0\n", + "64394 0\n", + "64395 0\n", + "64396 0\n", + "64397 0\n", + "64398 0\n", + "64399 1\n", + "64400 0\n", + "64401 0\n", + "64402 0\n", + "64403 1\n", + "64404 0\n", + "64405 0\n", + "64406 0\n", + "64407 0\n", + "64408 0\n", + "64409 0\n", + "64410 0\n", + "64411 0\n", + "64412 0\n", + "64413 0\n", + "64414 0\n", + "64415 0\n", + "64416 0\n", + "64417 0\n", + "64418 0\n", + "64419 0\n", + "64420 0\n", + "64421 0\n", + "64422 0\n", + "64423 0\n", + "64424 0\n", + "64425 0\n", + "64426 0\n", + "64427 0\n", + "64428 0\n", + "64429 0\n", + "64430 0\n", + "64431 0\n", + "64432 0\n", + "64433 1\n", + "64434 0\n", + "64435 0\n", + "64436 0\n", + "64437 0\n", + "64438 0\n", + "64439 1\n", + "64440 0\n", + "64441 0\n", + "64442 0\n", + "64443 0\n", + "64444 0\n", + "64445 0\n", + "64446 0\n", + "64447 0\n", + "64448 0\n", + "64449 0\n", + "64450 0\n", + "64451 1\n", + "64452 0\n", + "64453 1\n", + "64454 0\n", + "64455 0\n", + "64456 0\n", + "64457 0\n", + "64458 0\n", + "64459 0\n", + "64460 0\n", + "64461 0\n", + "64462 0\n", + "64463 0\n", + "64464 0\n", + "64465 0\n", + "64466 0\n", + "64467 0\n", + "64468 0\n", + "64469 0\n", + "64470 0\n", + "64471 0\n", + "64472 0\n", + "64473 0\n", + "64474 0\n", + "64475 0\n", + "64476 0\n", + "64477 0\n", + "64478 0\n", + "64479 0\n", + "64480 0\n", + "64481 0\n", + "64482 0\n", + "64483 1\n", + "64484 0\n", + "64485 0\n", + "64486 0\n", + "64487 0\n", + "64488 0\n", + "64489 1\n", + "64490 0\n", + "64491 0\n", + "64492 0\n", + "64493 0\n", + "64494 0\n", + "64495 0\n", + "64496 0\n", + "64497 0\n", + "64498 0\n", + "64499 1\n", + "64500 0\n", + "64501 0\n", + "64502 0\n", + "64503 0\n", + "64504 0\n", + "64505 0\n", + "64506 0\n", + "64507 0\n", + "64508 0\n", + "64509 0\n", + "64510 0\n", + "64511 0\n", + "64512 0\n", + "64513 1\n", + "64514 0\n", + "64515 0\n", + "64516 0\n", + "64517 0\n", + "64518 0\n", + "64519 0\n", + "64520 0\n", + "64521 0\n", + "64522 0\n", + "64523 0\n", + "64524 0\n", + "64525 0\n", + "64526 0\n", + "64527 0\n", + "64528 0\n", + "64529 0\n", + "64530 0\n", + "64531 0\n", + "64532 0\n", + "64533 0\n", + "64534 0\n", + "64535 0\n", + "64536 0\n", + "64537 0\n", + "64538 0\n", + "64539 0\n", + "64540 0\n", + "64541 0\n", + "64542 0\n", + "64543 0\n", + "64544 0\n", + "64545 0\n", + "64546 0\n", + "64547 0\n", + "64548 0\n", + "64549 0\n", + "64550 0\n", + "64551 0\n", + "64552 0\n", + "64553 1\n", + "64554 0\n", + "64555 0\n", + "64556 0\n", + "64557 0\n", + "64558 0\n", + "64559 0\n", + "64560 0\n", + "64561 0\n", + "64562 0\n", + "64563 0\n", + "64564 0\n", + "64565 0\n", + "64566 0\n", + "64567 1\n", + "64568 0\n", + "64569 0\n", + "64570 0\n", + "64571 0\n", + "64572 0\n", + "64573 0\n", + "64574 0\n", + "64575 0\n", + "64576 0\n", + "64577 1\n", + "64578 0\n", + "64579 1\n", + "64580 0\n", + "64581 0\n", + "64582 0\n", + "64583 0\n", + "64584 0\n", + "64585 0\n", + "64586 0\n", + "64587 0\n", + "64588 0\n", + "64589 0\n", + "64590 0\n", + "64591 1\n", + "64592 0\n", + "64593 0\n", + "64594 0\n", + "64595 0\n", + "64596 0\n", + "64597 0\n", + "64598 0\n", + "64599 0\n", + "64600 0\n", + "64601 1\n", + "64602 0\n", + "64603 0\n", + "64604 0\n", + "64605 0\n", + "64606 0\n", + "64607 0\n", + "64608 0\n", + "64609 1\n", + "64610 0\n", + "64611 0\n", + "64612 0\n", + "64613 1\n", + "64614 0\n", + "64615 0\n", + "64616 0\n", + "64617 0\n", + "64618 0\n", + "64619 0\n", + "64620 0\n", + "64621 1\n", + "64622 0\n", + "64623 0\n", + "64624 0\n", + "64625 0\n", + "64626 0\n", + "64627 1\n", + "64628 0\n", + "64629 0\n", + "64630 0\n", + "64631 0\n", + "64632 0\n", + "64633 1\n", + "64634 0\n", + "64635 0\n", + "64636 0\n", + "64637 0\n", + "64638 0\n", + "64639 0\n", + "64640 0\n", + "64641 0\n", + "64642 0\n", + "64643 0\n", + "64644 0\n", + "64645 0\n", + "64646 0\n", + "64647 0\n", + "64648 0\n", + "64649 0\n", + "64650 0\n", + "64651 0\n", + "64652 0\n", + "64653 0\n", + "64654 0\n", + "64655 0\n", + "64656 0\n", + "64657 0\n", + "64658 0\n", + "64659 0\n", + "64660 0\n", + "64661 1\n", + "64662 0\n", + "64663 1\n", + "64664 0\n", + "64665 0\n", + "64666 0\n", + "64667 1\n", + "64668 0\n", + "64669 0\n", + "64670 0\n", + "64671 0\n", + "64672 0\n", + "64673 0\n", + "64674 0\n", + "64675 0\n", + "64676 0\n", + "64677 0\n", + "64678 0\n", + "64679 1\n", + "64680 0\n", + "64681 0\n", + "64682 0\n", + "64683 0\n", + "64684 0\n", + "64685 0\n", + "64686 0\n", + "64687 0\n", + "64688 0\n", + "64689 0\n", + "64690 0\n", + "64691 0\n", + "64692 0\n", + "64693 1\n", + "64694 0\n", + "64695 0\n", + "64696 0\n", + "64697 0\n", + "64698 0\n", + "64699 0\n", + "64700 0\n", + "64701 0\n", + "64702 0\n", + "64703 0\n", + "64704 0\n", + "64705 0\n", + "64706 0\n", + "64707 0\n", + "64708 0\n", + "64709 1\n", + "64710 0\n", + "64711 0\n", + "64712 0\n", + "64713 0\n", + "64714 0\n", + "64715 0\n", + "64716 0\n", + "64717 1\n", + "64718 0\n", + "64719 0\n", + "64720 0\n", + "64721 0\n", + "64722 0\n", + "64723 0\n", + "64724 0\n", + "64725 0\n", + "64726 0\n", + "64727 0\n", + "64728 0\n", + "64729 0\n", + "64730 0\n", + "64731 0\n", + "64732 0\n", + "64733 0\n", + "64734 0\n", + "64735 0\n", + "64736 0\n", + "64737 0\n", + "64738 0\n", + "64739 0\n", + "64740 0\n", + "64741 0\n", + "64742 0\n", + "64743 0\n", + "64744 0\n", + "64745 0\n", + "64746 0\n", + "64747 1\n", + "64748 0\n", + "64749 0\n", + "64750 0\n", + "64751 0\n", + "64752 0\n", + "64753 0\n", + "64754 0\n", + "64755 0\n", + "64756 0\n", + "64757 0\n", + "64758 0\n", + "64759 0\n", + "64760 0\n", + "64761 0\n", + "64762 0\n", + "64763 1\n", + "64764 0\n", + "64765 0\n", + "64766 0\n", + "64767 0\n", + "64768 0\n", + "64769 0\n", + "64770 0\n", + "64771 0\n", + "64772 0\n", + "64773 0\n", + "64774 0\n", + "64775 0\n", + "64776 0\n", + "64777 0\n", + "64778 0\n", + "64779 0\n", + "64780 0\n", + "64781 1\n", + "64782 0\n", + "64783 1\n", + "64784 0\n", + "64785 0\n", + "64786 0\n", + "64787 0\n", + "64788 0\n", + "64789 0\n", + "64790 0\n", + "64791 0\n", + "64792 0\n", + "64793 1\n", + "64794 0\n", + "64795 0\n", + "64796 0\n", + "64797 0\n", + "64798 0\n", + "64799 0\n", + "64800 0\n", + "64801 0\n", + "64802 0\n", + "64803 0\n", + "64804 0\n", + "64805 0\n", + "64806 0\n", + "64807 0\n", + "64808 0\n", + "64809 0\n", + "64810 0\n", + "64811 1\n", + "64812 0\n", + "64813 0\n", + "64814 0\n", + "64815 0\n", + "64816 0\n", + "64817 1\n", + "64818 0\n", + "64819 0\n", + "64820 0\n", + "64821 0\n", + "64822 0\n", + "64823 0\n", + "64824 0\n", + "64825 0\n", + "64826 0\n", + "64827 0\n", + "64828 0\n", + "64829 0\n", + "64830 0\n", + "64831 0\n", + "64832 0\n", + "64833 0\n", + "64834 0\n", + "64835 0\n", + "64836 0\n", + "64837 0\n", + "64838 0\n", + "64839 0\n", + "64840 0\n", + "64841 0\n", + "64842 0\n", + "64843 0\n", + "64844 0\n", + "64845 0\n", + "64846 0\n", + "64847 0\n", + "64848 0\n", + "64849 1\n", + "64850 0\n", + "64851 0\n", + "64852 0\n", + "64853 1\n", + "64854 0\n", + "64855 0\n", + "64856 0\n", + "64857 0\n", + "64858 0\n", + "64859 0\n", + "64860 0\n", + "64861 0\n", + "64862 0\n", + "64863 0\n", + "64864 0\n", + "64865 0\n", + "64866 0\n", + "64867 0\n", + "64868 0\n", + "64869 0\n", + "64870 0\n", + "64871 1\n", + "64872 0\n", + "64873 0\n", + "64874 0\n", + "64875 0\n", + "64876 0\n", + "64877 1\n", + "64878 0\n", + "64879 1\n", + "64880 0\n", + "64881 0\n", + "64882 0\n", + "64883 0\n", + "64884 0\n", + "64885 0\n", + "64886 0\n", + "64887 0\n", + "64888 0\n", + "64889 0\n", + "64890 0\n", + "64891 1\n", + "64892 0\n", + "64893 0\n", + "64894 0\n", + "64895 0\n", + "64896 0\n", + "64897 0\n", + "64898 0\n", + "64899 0\n", + "64900 0\n", + "64901 1\n", + "64902 0\n", + "64903 0\n", + "64904 0\n", + "64905 0\n", + "64906 0\n", + "64907 0\n", + "64908 0\n", + "64909 0\n", + "64910 0\n", + "64911 0\n", + "64912 0\n", + "64913 0\n", + "64914 0\n", + "64915 0\n", + "64916 0\n", + "64917 0\n", + "64918 0\n", + "64919 1\n", + "64920 0\n", + "64921 1\n", + "64922 0\n", + "64923 0\n", + "64924 0\n", + "64925 0\n", + "64926 0\n", + "64927 1\n", + "64928 0\n", + "64929 0\n", + "64930 0\n", + "64931 0\n", + "64932 0\n", + "64933 0\n", + "64934 0\n", + "64935 0\n", + "64936 0\n", + "64937 1\n", + "64938 0\n", + "64939 0\n", + "64940 0\n", + "64941 0\n", + "64942 0\n", + "64943 0\n", + "64944 0\n", + "64945 0\n", + "64946 0\n", + "64947 0\n", + "64948 0\n", + "64949 0\n", + "64950 0\n", + "64951 1\n", + "64952 0\n", + "64953 0\n", + "64954 0\n", + "64955 0\n", + "64956 0\n", + "64957 0\n", + "64958 0\n", + "64959 0\n", + "64960 0\n", + "64961 0\n", + "64962 0\n", + "64963 0\n", + "64964 0\n", + "64965 0\n", + "64966 0\n", + "64967 0\n", + "64968 0\n", + "64969 1\n", + "64970 0\n", + "64971 0\n", + "64972 0\n", + "64973 0\n", + "64974 0\n", + "64975 0\n", + "64976 0\n", + "64977 0\n", + "64978 0\n", + "64979 0\n", + "64980 0\n", + "64981 0\n", + "64982 0\n", + "64983 0\n", + "64984 0\n", + "64985 0\n", + "64986 0\n", + "64987 0\n", + "64988 0\n", + "64989 0\n", + "64990 0\n", + "64991 0\n", + "64992 0\n", + "64993 0\n", + "64994 0\n", + "64995 0\n", + "64996 0\n", + "64997 1\n", + "64998 0\n", + "64999 0\n", + "65000 0\n", + "65001 0\n", + "65002 0\n", + "65003 1\n", + "65004 0\n", + "65005 0\n", + "65006 0\n", + "65007 0\n", + "65008 0\n", + "65009 0\n", + "65010 0\n", + "65011 1\n", + "65012 0\n", + "65013 0\n", + "65014 0\n", + "65015 0\n", + "65016 0\n", + "65017 0\n", + "65018 0\n", + "65019 0\n", + "65020 0\n", + "65021 0\n", + "65022 0\n", + "65023 0\n", + "65024 0\n", + "65025 0\n", + "65026 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "65027 1\n", + "65028 0\n", + "65029 1\n", + "65030 0\n", + "65031 0\n", + "65032 0\n", + "65033 1\n", + "65034 0\n", + "65035 0\n", + "65036 0\n", + "65037 0\n", + "65038 0\n", + "65039 0\n", + "65040 0\n", + "65041 0\n", + "65042 0\n", + "65043 0\n", + "65044 0\n", + "65045 0\n", + "65046 0\n", + "65047 0\n", + "65048 0\n", + "65049 0\n", + "65050 0\n", + "65051 0\n", + "65052 0\n", + "65053 1\n", + "65054 0\n", + "65055 0\n", + "65056 0\n", + "65057 0\n", + "65058 0\n", + "65059 0\n", + "65060 0\n", + "65061 0\n", + "65062 0\n", + "65063 1\n", + "65064 0\n", + "65065 0\n", + "65066 0\n", + "65067 0\n", + "65068 0\n", + "65069 0\n", + "65070 0\n", + "65071 1\n", + "65072 0\n", + "65073 0\n", + "65074 0\n", + "65075 0\n", + "65076 0\n", + "65077 0\n", + "65078 0\n", + "65079 0\n", + "65080 0\n", + "65081 0\n", + "65082 0\n", + "65083 0\n", + "65084 0\n", + "65085 0\n", + "65086 0\n", + "65087 0\n", + "65088 0\n", + "65089 1\n", + "65090 0\n", + "65091 0\n", + "65092 0\n", + "65093 0\n", + "65094 0\n", + "65095 0\n", + "65096 0\n", + "65097 0\n", + "65098 0\n", + "65099 1\n", + "65100 0\n", + "65101 1\n", + "65102 0\n", + "65103 0\n", + "65104 0\n", + "65105 0\n", + "65106 0\n", + "65107 0\n", + "65108 0\n", + "65109 0\n", + "65110 0\n", + "65111 1\n", + "65112 0\n", + "65113 0\n", + "65114 0\n", + "65115 0\n", + "65116 0\n", + "65117 0\n", + "65118 0\n", + "65119 1\n", + "65120 0\n", + "65121 0\n", + "65122 0\n", + "65123 1\n", + "65124 0\n", + "65125 0\n", + "65126 0\n", + "65127 0\n", + "65128 0\n", + "65129 1\n", + "65130 0\n", + "65131 0\n", + "65132 0\n", + "65133 0\n", + "65134 0\n", + "65135 0\n", + "65136 0\n", + "65137 0\n", + "65138 0\n", + "65139 0\n", + "65140 0\n", + "65141 1\n", + "65142 0\n", + "65143 0\n", + "65144 0\n", + "65145 0\n", + "65146 0\n", + "65147 1\n", + "65148 0\n", + "65149 0\n", + "65150 0\n", + "65151 0\n", + "65152 0\n", + "65153 0\n", + "65154 0\n", + "65155 0\n", + "65156 0\n", + "65157 0\n", + "65158 0\n", + "65159 0\n", + "65160 0\n", + "65161 0\n", + "65162 0\n", + "65163 0\n", + "65164 0\n", + "65165 0\n", + "65166 0\n", + "65167 1\n", + "65168 0\n", + "65169 0\n", + "65170 0\n", + "65171 1\n", + "65172 0\n", + "65173 1\n", + "65174 0\n", + "65175 0\n", + "65176 0\n", + "65177 0\n", + "65178 0\n", + "65179 1\n", + "65180 0\n", + "65181 0\n", + "65182 0\n", + "65183 1\n", + "65184 0\n", + "65185 0\n", + "65186 0\n", + "65187 0\n", + "65188 0\n", + "65189 0\n", + "65190 0\n", + "65191 0\n", + "65192 0\n", + "65193 0\n", + "65194 0\n", + "65195 0\n", + "65196 0\n", + "65197 0\n", + "65198 0\n", + "65199 0\n", + "65200 0\n", + "65201 0\n", + "65202 0\n", + "65203 1\n", + "65204 0\n", + "65205 0\n", + "65206 0\n", + "65207 0\n", + "65208 0\n", + "65209 0\n", + "65210 0\n", + "65211 0\n", + "65212 0\n", + "65213 1\n", + "65214 0\n", + "65215 0\n", + "65216 0\n", + "65217 0\n", + "65218 0\n", + "65219 0\n", + "65220 0\n", + "65221 0\n", + "65222 0\n", + "65223 0\n", + "65224 0\n", + "65225 0\n", + "65226 0\n", + "65227 0\n", + "65228 0\n", + "65229 0\n", + "65230 0\n", + "65231 0\n", + "65232 0\n", + "65233 0\n", + "65234 0\n", + "65235 0\n", + "65236 0\n", + "65237 0\n", + "65238 0\n", + "65239 1\n", + "65240 0\n", + "65241 0\n", + "65242 0\n", + "65243 0\n", + "65244 0\n", + "65245 0\n", + "65246 0\n", + "65247 0\n", + "65248 0\n", + "65249 0\n", + "65250 0\n", + "65251 0\n", + "65252 0\n", + "65253 0\n", + "65254 0\n", + "65255 0\n", + "65256 0\n", + "65257 1\n", + "65258 0\n", + "65259 0\n", + "65260 0\n", + "65261 0\n", + "65262 0\n", + "65263 0\n", + "65264 0\n", + "65265 0\n", + "65266 0\n", + "65267 1\n", + "65268 0\n", + "65269 1\n", + "65270 0\n", + "65271 0\n", + "65272 0\n", + "65273 0\n", + "65274 0\n", + "65275 0\n", + "65276 0\n", + "65277 0\n", + "65278 0\n", + "65279 0\n", + "65280 0\n", + "65281 0\n", + "65282 0\n", + "65283 0\n", + "65284 0\n", + "65285 0\n", + "65286 0\n", + "65287 1\n", + "65288 0\n", + "65289 0\n", + "65290 0\n", + "65291 0\n", + "65292 0\n", + "65293 1\n", + "65294 0\n", + "65295 0\n", + "65296 0\n", + "65297 0\n", + "65298 0\n", + "65299 0\n", + "65300 0\n", + "65301 0\n", + "65302 0\n", + "65303 0\n", + "65304 0\n", + "65305 0\n", + "65306 0\n", + "65307 0\n", + "65308 0\n", + "65309 1\n", + "65310 0\n", + "65311 0\n", + "65312 0\n", + "65313 0\n", + "65314 0\n", + "65315 0\n", + "65316 0\n", + "65317 0\n", + "65318 0\n", + "65319 0\n", + "65320 0\n", + "65321 0\n", + "65322 0\n", + "65323 1\n", + "65324 0\n", + "65325 0\n", + "65326 0\n", + "65327 1\n", + "65328 0\n", + "65329 0\n", + "65330 0\n", + "65331 0\n", + "65332 0\n", + "65333 0\n", + "65334 0\n", + "65335 0\n", + "65336 0\n", + "65337 0\n", + "65338 0\n", + "65339 0\n", + "65340 0\n", + "65341 0\n", + "65342 0\n", + "65343 0\n", + "65344 0\n", + "65345 0\n", + "65346 0\n", + "65347 0\n", + "65348 0\n", + "65349 0\n", + "65350 0\n", + "65351 0\n", + "65352 0\n", + "65353 1\n", + "65354 0\n", + "65355 0\n", + "65356 0\n", + "65357 1\n", + "65358 0\n", + "65359 0\n", + "65360 0\n", + "65361 0\n", + "65362 0\n", + "65363 0\n", + "65364 0\n", + "65365 0\n", + "65366 0\n", + "65367 0\n", + "65368 0\n", + "65369 0\n", + "65370 0\n", + "65371 1\n", + "65372 0\n", + "65373 0\n", + "65374 0\n", + "65375 0\n", + "65376 0\n", + "65377 0\n", + "65378 0\n", + "65379 0\n", + "65380 0\n", + "65381 1\n", + "65382 0\n", + "65383 0\n", + "65384 0\n", + "65385 0\n", + "65386 0\n", + "65387 0\n", + "65388 0\n", + "65389 0\n", + "65390 0\n", + "65391 0\n", + "65392 0\n", + "65393 1\n", + "65394 0\n", + "65395 0\n", + "65396 0\n", + "65397 0\n", + "65398 0\n", + "65399 0\n", + "65400 0\n", + "65401 0\n", + "65402 0\n", + "65403 0\n", + "65404 0\n", + "65405 0\n", + "65406 0\n", + "65407 1\n", + "65408 0\n", + "65409 0\n", + "65410 0\n", + "65411 0\n", + "65412 0\n", + "65413 1\n", + "65414 0\n", + "65415 0\n", + "65416 0\n", + "65417 0\n", + "65418 0\n", + "65419 1\n", + "65420 0\n", + "65421 0\n", + "65422 0\n", + "65423 1\n", + "65424 0\n", + "65425 0\n", + "65426 0\n", + "65427 0\n", + "65428 0\n", + "65429 0\n", + "65430 0\n", + "65431 0\n", + "65432 0\n", + "65433 0\n", + "65434 0\n", + "65435 0\n", + "65436 0\n", + "65437 1\n", + "65438 0\n", + "65439 0\n", + "65440 0\n", + "65441 0\n", + "65442 0\n", + "65443 0\n", + "65444 0\n", + "65445 0\n", + "65446 0\n", + "65447 1\n", + "65448 0\n", + "65449 1\n", + "65450 0\n", + "65451 0\n", + "65452 0\n", + "65453 0\n", + "65454 0\n", + "65455 0\n", + "65456 0\n", + "65457 0\n", + "65458 0\n", + "65459 0\n", + "65460 0\n", + "65461 0\n", + "65462 0\n", + "65463 0\n", + "65464 0\n", + "65465 0\n", + "65466 0\n", + "65467 0\n", + "65468 0\n", + "65469 0\n", + "65470 0\n", + "65471 0\n", + "65472 0\n", + "65473 0\n", + "65474 0\n", + "65475 0\n", + "65476 0\n", + "65477 0\n", + "65478 0\n", + "65479 1\n", + "65480 0\n", + "65481 0\n", + "65482 0\n", + "65483 0\n", + "65484 0\n", + "65485 0\n", + "65486 0\n", + "65487 0\n", + "65488 0\n", + "65489 0\n", + "65490 0\n", + "65491 0\n", + "65492 0\n", + "65493 0\n", + "65494 0\n", + "65495 0\n", + "65496 0\n", + "65497 1\n", + "65498 0\n", + "65499 0\n", + "65500 0\n", + "65501 0\n", + "65502 0\n", + "65503 0\n", + "65504 0\n", + "65505 0\n", + "65506 0\n", + "65507 0\n", + "65508 0\n", + "65509 0\n", + "65510 0\n", + "65511 0\n", + "65512 0\n", + "65513 0\n", + "65514 0\n", + "65515 0\n", + "65516 0\n", + "65517 0\n", + "65518 0\n", + "65519 1\n", + "65520 0\n", + "65521 1\n", + "65522 0\n", + "65523 0\n", + "65524 0\n", + "65525 0\n", + "65526 0\n", + "65527 0\n", + "65528 0\n", + "65529 0\n", + "65530 0\n", + "65531 0\n", + "65532 0\n", + "65533 0\n", + "65534 0\n", + "65535 0\n", + "65536 0\n", + "65537 1\n", + "65538 0\n", + "65539 1\n", + "65540 0\n", + "65541 0\n", + "65542 0\n", + "65543 1\n", + "65544 0\n", + "65545 0\n", + "65546 0\n", + "65547 0\n", + "65548 0\n", + "65549 0\n", + "65550 0\n", + "65551 1\n", + "65552 0\n", + "65553 0\n", + "65554 0\n", + "65555 0\n", + "65556 0\n", + "65557 1\n", + "65558 0\n", + "65559 0\n", + "65560 0\n", + "65561 0\n", + "65562 0\n", + "65563 1\n", + "65564 0\n", + "65565 0\n", + "65566 0\n", + "65567 0\n", + "65568 0\n", + "65569 0\n", + "65570 0\n", + "65571 0\n", + "65572 0\n", + "65573 0\n", + "65574 0\n", + "65575 0\n", + "65576 0\n", + "65577 0\n", + "65578 0\n", + "65579 1\n", + "65580 0\n", + "65581 1\n", + "65582 0\n", + "65583 0\n", + "65584 0\n", + "65585 0\n", + "65586 0\n", + "65587 1\n", + "65588 0\n", + "65589 0\n", + "65590 0\n", + "65591 0\n", + "65592 0\n", + "65593 0\n", + "65594 0\n", + "65595 0\n", + "65596 0\n", + "65597 0\n", + "65598 0\n", + "65599 1\n", + "65600 0\n", + "65601 0\n", + "65602 0\n", + "65603 0\n", + "65604 0\n", + "65605 0\n", + "65606 0\n", + "65607 0\n", + "65608 0\n", + "65609 1\n", + "65610 0\n", + "65611 0\n", + "65612 0\n", + "65613 0\n", + "65614 0\n", + "65615 0\n", + "65616 0\n", + "65617 1\n", + "65618 0\n", + "65619 0\n", + "65620 0\n", + "65621 0\n", + "65622 0\n", + "65623 0\n", + "65624 0\n", + "65625 0\n", + "65626 0\n", + "65627 0\n", + "65628 0\n", + "65629 1\n", + "65630 0\n", + "65631 0\n", + "65632 0\n", + "65633 1\n", + "65634 0\n", + "65635 0\n", + "65636 0\n", + "65637 0\n", + "65638 0\n", + "65639 0\n", + "65640 0\n", + "65641 0\n", + "65642 0\n", + "65643 0\n", + "65644 0\n", + "65645 0\n", + "65646 0\n", + "65647 1\n", + "65648 0\n", + "65649 0\n", + "65650 0\n", + "65651 1\n", + "65652 0\n", + "65653 0\n", + "65654 0\n", + "65655 0\n", + "65656 0\n", + "65657 1\n", + "65658 0\n", + "65659 0\n", + "65660 0\n", + "65661 0\n", + "65662 0\n", + "65663 0\n", + "65664 0\n", + "65665 0\n", + "65666 0\n", + "65667 0\n", + "65668 0\n", + "65669 0\n", + "65670 0\n", + "65671 0\n", + "65672 0\n", + "65673 0\n", + "65674 0\n", + "65675 0\n", + "65676 0\n", + "65677 1\n", + "65678 0\n", + "65679 0\n", + "65680 0\n", + "65681 0\n", + "65682 0\n", + "65683 0\n", + "65684 0\n", + "65685 0\n", + "65686 0\n", + "65687 1\n", + "65688 0\n", + "65689 0\n", + "65690 0\n", + "65691 0\n", + "65692 0\n", + "65693 0\n", + "65694 0\n", + "65695 0\n", + "65696 0\n", + "65697 0\n", + "65698 0\n", + "65699 1\n", + "65700 0\n", + "65701 1\n", + "65702 0\n", + "65703 0\n", + "65704 0\n", + "65705 0\n", + "65706 0\n", + "65707 1\n", + "65708 0\n", + "65709 0\n", + "65710 0\n", + "65711 0\n", + "65712 0\n", + "65713 1\n", + "65714 0\n", + "65715 0\n", + "65716 0\n", + "65717 1\n", + "65718 0\n", + "65719 1\n", + "65720 0\n", + "65721 0\n", + "65722 0\n", + "65723 0\n", + "65724 0\n", + "65725 0\n", + "65726 0\n", + "65727 0\n", + "65728 0\n", + "65729 1\n", + "65730 0\n", + "65731 1\n", + "65732 0\n", + "65733 0\n", + "65734 0\n", + "65735 0\n", + "65736 0\n", + "65737 0\n", + "65738 0\n", + "65739 0\n", + "65740 0\n", + "65741 0\n", + "65742 0\n", + "65743 0\n", + "65744 0\n", + "65745 0\n", + "65746 0\n", + "65747 0\n", + "65748 0\n", + "65749 0\n", + "65750 0\n", + "65751 0\n", + "65752 0\n", + "65753 0\n", + "65754 0\n", + "65755 0\n", + "65756 0\n", + "65757 0\n", + "65758 0\n", + "65759 0\n", + "65760 0\n", + "65761 1\n", + "65762 0\n", + "65763 0\n", + "65764 0\n", + "65765 0\n", + "65766 0\n", + "65767 0\n", + "65768 0\n", + "65769 0\n", + "65770 0\n", + "65771 0\n", + "65772 0\n", + "65773 0\n", + "65774 0\n", + "65775 0\n", + "65776 0\n", + "65777 1\n", + "65778 0\n", + "65779 0\n", + "65780 0\n", + "65781 0\n", + "65782 0\n", + "65783 0\n", + "65784 0\n", + "65785 0\n", + "65786 0\n", + "65787 0\n", + "65788 0\n", + "65789 1\n", + "65790 0\n", + "65791 0\n", + "65792 0\n", + "65793 0\n", + "65794 0\n", + "65795 0\n", + "65796 0\n", + "65797 0\n", + "65798 0\n", + "65799 0\n", + "65800 0\n", + "65801 0\n", + "65802 0\n", + "65803 0\n", + "65804 0\n", + "65805 0\n", + "65806 0\n", + "65807 0\n", + "65808 0\n", + "65809 1\n", + "65810 0\n", + "65811 0\n", + "65812 0\n", + "65813 0\n", + "65814 0\n", + "65815 0\n", + "65816 0\n", + "65817 0\n", + "65818 0\n", + "65819 0\n", + "65820 0\n", + "65821 0\n", + "65822 0\n", + "65823 0\n", + "65824 0\n", + "65825 0\n", + "65826 0\n", + "65827 1\n", + "65828 0\n", + "65829 0\n", + "65830 0\n", + "65831 1\n", + "65832 0\n", + "65833 0\n", + "65834 0\n", + "65835 0\n", + "65836 0\n", + "65837 1\n", + "65838 0\n", + "65839 1\n", + "65840 0\n", + "65841 0\n", + "65842 0\n", + "65843 1\n", + "65844 0\n", + "65845 0\n", + "65846 0\n", + "65847 0\n", + "65848 0\n", + "65849 0\n", + "65850 0\n", + "65851 1\n", + "65852 0\n", + "65853 0\n", + "65854 0\n", + "65855 0\n", + "65856 0\n", + "65857 0\n", + "65858 0\n", + "65859 0\n", + "65860 0\n", + "65861 0\n", + "65862 0\n", + "65863 0\n", + "65864 0\n", + "65865 0\n", + "65866 0\n", + "65867 1\n", + "65868 0\n", + "65869 0\n", + "65870 0\n", + "65871 0\n", + "65872 0\n", + "65873 0\n", + "65874 0\n", + "65875 0\n", + "65876 0\n", + "65877 0\n", + "65878 0\n", + "65879 0\n", + "65880 0\n", + "65881 1\n", + "65882 0\n", + "65883 0\n", + "65884 0\n", + "65885 0\n", + "65886 0\n", + "65887 0\n", + "65888 0\n", + "65889 0\n", + "65890 0\n", + "65891 0\n", + "65892 0\n", + "65893 0\n", + "65894 0\n", + "65895 0\n", + "65896 0\n", + "65897 0\n", + "65898 0\n", + "65899 1\n", + "65900 0\n", + "65901 0\n", + "65902 0\n", + "65903 0\n", + "65904 0\n", + "65905 0\n", + "65906 0\n", + "65907 0\n", + "65908 0\n", + "65909 0\n", + "65910 0\n", + "65911 0\n", + "65912 0\n", + "65913 0\n", + "65914 0\n", + "65915 0\n", + "65916 0\n", + "65917 0\n", + "65918 0\n", + "65919 0\n", + "65920 0\n", + "65921 1\n", + "65922 0\n", + "65923 0\n", + "65924 0\n", + "65925 0\n", + "65926 0\n", + "65927 1\n", + "65928 0\n", + "65929 1\n", + "65930 0\n", + "65931 0\n", + "65932 0\n", + "65933 0\n", + "65934 0\n", + "65935 0\n", + "65936 0\n", + "65937 0\n", + "65938 0\n", + "65939 0\n", + "65940 0\n", + "65941 0\n", + "65942 0\n", + "65943 0\n", + "65944 0\n", + "65945 0\n", + "65946 0\n", + "65947 0\n", + "65948 0\n", + "65949 0\n", + "65950 0\n", + "65951 1\n", + "65952 0\n", + "65953 0\n", + "65954 0\n", + "65955 0\n", + "65956 0\n", + "65957 1\n", + "65958 0\n", + "65959 0\n", + "65960 0\n", + "65961 0\n", + "65962 0\n", + "65963 1\n", + "65964 0\n", + "65965 0\n", + "65966 0\n", + "65967 0\n", + "65968 0\n", + "65969 0\n", + "65970 0\n", + "65971 0\n", + "65972 0\n", + "65973 0\n", + "65974 0\n", + "65975 0\n", + "65976 0\n", + "65977 0\n", + "65978 0\n", + "65979 0\n", + "65980 0\n", + "65981 1\n", + "65982 0\n", + "65983 1\n", + "65984 0\n", + "65985 0\n", + "65986 0\n", + "65987 0\n", + "65988 0\n", + "65989 0\n", + "65990 0\n", + "65991 0\n", + "65992 0\n", + "65993 1\n", + "65994 0\n", + "65995 0\n", + "65996 0\n", + "65997 0\n", + "65998 0\n", + "65999 0\n", + "66000 0\n", + "66001 0\n", + "66002 0\n", + "66003 0\n", + "66004 0\n", + "66005 0\n", + "66006 0\n", + "66007 0\n", + "66008 0\n", + "66009 0\n", + "66010 0\n", + "66011 0\n", + "66012 0\n", + "66013 0\n", + "66014 0\n", + "66015 0\n", + "66016 0\n", + "66017 0\n", + "66018 0\n", + "66019 0\n", + "66020 0\n", + "66021 0\n", + "66022 0\n", + "66023 0\n", + "66024 0\n", + "66025 0\n", + "66026 0\n", + "66027 0\n", + "66028 0\n", + "66029 1\n", + "66030 0\n", + "66031 0\n", + "66032 0\n", + "66033 0\n", + "66034 0\n", + "66035 0\n", + "66036 0\n", + "66037 1\n", + "66038 0\n", + "66039 0\n", + "66040 0\n", + "66041 1\n", + "66042 0\n", + "66043 0\n", + "66044 0\n", + "66045 0\n", + "66046 0\n", + "66047 1\n", + "66048 0\n", + "66049 0\n", + "66050 0\n", + "66051 0\n", + "66052 0\n", + "66053 0\n", + "66054 0\n", + "66055 0\n", + "66056 0\n", + "66057 0\n", + "66058 0\n", + "66059 0\n", + "66060 0\n", + "66061 0\n", + "66062 0\n", + "66063 0\n", + "66064 0\n", + "66065 0\n", + "66066 0\n", + "66067 1\n", + "66068 0\n", + "66069 0\n", + "66070 0\n", + "66071 1\n", + "66072 0\n", + "66073 0\n", + "66074 0\n", + "66075 0\n", + "66076 0\n", + "66077 0\n", + "66078 0\n", + "66079 0\n", + "66080 0\n", + "66081 0\n", + "66082 0\n", + "66083 1\n", + "66084 0\n", + "66085 0\n", + "66086 0\n", + "66087 0\n", + "66088 0\n", + "66089 1\n", + "66090 0\n", + "66091 0\n", + "66092 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "66093 0\n", + "66094 0\n", + "66095 0\n", + "66096 0\n", + "66097 0\n", + "66098 0\n", + "66099 0\n", + "66100 0\n", + "66101 0\n", + "66102 0\n", + "66103 1\n", + "66104 0\n", + "66105 0\n", + "66106 0\n", + "66107 1\n", + "66108 0\n", + "66109 1\n", + "66110 0\n", + "66111 0\n", + "66112 0\n", + "66113 0\n", + "66114 0\n", + "66115 0\n", + "66116 0\n", + "66117 0\n", + "66118 0\n", + "66119 0\n", + "66120 0\n", + "66121 0\n", + "66122 0\n", + "66123 0\n", + "66124 0\n", + "66125 0\n", + "66126 0\n", + "66127 0\n", + "66128 0\n", + "66129 0\n", + "66130 0\n", + "66131 0\n", + "66132 0\n", + "66133 0\n", + "66134 0\n", + "66135 0\n", + "66136 0\n", + "66137 1\n", + "66138 0\n", + "66139 0\n", + "66140 0\n", + "66141 0\n", + "66142 0\n", + "66143 0\n", + "66144 0\n", + "66145 0\n", + "66146 0\n", + "66147 0\n", + "66148 0\n", + "66149 0\n", + "66150 0\n", + "66151 0\n", + "66152 0\n", + "66153 0\n", + "66154 0\n", + "66155 0\n", + "66156 0\n", + "66157 0\n", + "66158 0\n", + "66159 0\n", + "66160 0\n", + "66161 1\n", + "66162 0\n", + "66163 0\n", + "66164 0\n", + "66165 0\n", + "66166 0\n", + "66167 0\n", + "66168 0\n", + "66169 1\n", + "66170 0\n", + "66171 0\n", + "66172 0\n", + "66173 1\n", + "66174 0\n", + "66175 0\n", + "66176 0\n", + "66177 0\n", + "66178 0\n", + "66179 1\n", + "66180 0\n", + "66181 0\n", + "66182 0\n", + "66183 0\n", + "66184 0\n", + "66185 0\n", + "66186 0\n", + "66187 0\n", + "66188 0\n", + "66189 0\n", + "66190 0\n", + "66191 1\n", + "66192 0\n", + "66193 0\n", + "66194 0\n", + "66195 0\n", + "66196 0\n", + "66197 0\n", + "66198 0\n", + "66199 0\n", + "66200 0\n", + "66201 0\n", + "66202 0\n", + "66203 0\n", + "66204 0\n", + "66205 0\n", + "66206 0\n", + "66207 0\n", + "66208 0\n", + "66209 0\n", + "66210 0\n", + "66211 0\n", + "66212 0\n", + "66213 0\n", + "66214 0\n", + "66215 0\n", + "66216 0\n", + "66217 0\n", + "66218 0\n", + "66219 0\n", + "66220 0\n", + "66221 1\n", + "66222 0\n", + "66223 0\n", + "66224 0\n", + "66225 0\n", + "66226 0\n", + "66227 0\n", + "66228 0\n", + "66229 0\n", + "66230 0\n", + "66231 0\n", + "66232 0\n", + "66233 0\n", + "66234 0\n", + "66235 0\n", + "66236 0\n", + "66237 0\n", + "66238 0\n", + "66239 1\n", + "66240 0\n", + "66241 0\n", + "66242 0\n", + "66243 0\n", + "66244 0\n", + "66245 0\n", + "66246 0\n", + "66247 0\n", + "66248 0\n", + "66249 0\n", + "66250 0\n", + "66251 0\n", + "66252 0\n", + "66253 0\n", + "66254 0\n", + "66255 0\n", + "66256 0\n", + "66257 0\n", + "66258 0\n", + "66259 0\n", + "66260 0\n", + "66261 0\n", + "66262 0\n", + "66263 0\n", + "66264 0\n", + "66265 0\n", + "66266 0\n", + "66267 0\n", + "66268 0\n", + "66269 0\n", + "66270 0\n", + "66271 1\n", + "66272 0\n", + "66273 0\n", + "66274 0\n", + "66275 0\n", + "66276 0\n", + "66277 0\n", + "66278 0\n", + "66279 0\n", + "66280 0\n", + "66281 0\n", + "66282 0\n", + "66283 0\n", + "66284 0\n", + "66285 0\n", + "66286 0\n", + "66287 0\n", + "66288 0\n", + "66289 0\n", + "66290 0\n", + "66291 0\n", + "66292 0\n", + "66293 1\n", + "66294 0\n", + "66295 0\n", + "66296 0\n", + "66297 0\n", + "66298 0\n", + "66299 0\n", + "66300 0\n", + "66301 1\n", + "66302 0\n", + "66303 0\n", + "66304 0\n", + "66305 0\n", + "66306 0\n", + "66307 0\n", + "66308 0\n", + "66309 0\n", + "66310 0\n", + "66311 0\n", + "66312 0\n", + "66313 0\n", + "66314 0\n", + "66315 0\n", + "66316 0\n", + "66317 0\n", + "66318 0\n", + "66319 0\n", + "66320 0\n", + "66321 0\n", + "66322 0\n", + "66323 0\n", + "66324 0\n", + "66325 0\n", + "66326 0\n", + "66327 0\n", + "66328 0\n", + "66329 0\n", + "66330 0\n", + "66331 0\n", + "66332 0\n", + "66333 0\n", + "66334 0\n", + "66335 0\n", + "66336 0\n", + "66337 1\n", + "66338 0\n", + "66339 0\n", + "66340 0\n", + "66341 0\n", + "66342 0\n", + "66343 1\n", + "66344 0\n", + "66345 0\n", + "66346 0\n", + "66347 1\n", + "66348 0\n", + "66349 0\n", + "66350 0\n", + "66351 0\n", + "66352 0\n", + "66353 0\n", + "66354 0\n", + "66355 0\n", + "66356 0\n", + "66357 0\n", + "66358 0\n", + "66359 1\n", + "66360 0\n", + "66361 1\n", + "66362 0\n", + "66363 0\n", + "66364 0\n", + "66365 0\n", + "66366 0\n", + "66367 0\n", + "66368 0\n", + "66369 0\n", + "66370 0\n", + "66371 0\n", + "66372 0\n", + "66373 1\n", + "66374 0\n", + "66375 0\n", + "66376 0\n", + "66377 1\n", + "66378 0\n", + "66379 0\n", + "66380 0\n", + "66381 0\n", + "66382 0\n", + "66383 1\n", + "66384 0\n", + "66385 0\n", + "66386 0\n", + "66387 0\n", + "66388 0\n", + "66389 0\n", + "66390 0\n", + "66391 0\n", + "66392 0\n", + "66393 0\n", + "66394 0\n", + "66395 0\n", + "66396 0\n", + "66397 0\n", + "66398 0\n", + "66399 0\n", + "66400 0\n", + "66401 0\n", + "66402 0\n", + "66403 1\n", + "66404 0\n", + "66405 0\n", + "66406 0\n", + "66407 0\n", + "66408 0\n", + "66409 0\n", + "66410 0\n", + "66411 0\n", + "66412 0\n", + "66413 1\n", + "66414 0\n", + "66415 0\n", + "66416 0\n", + "66417 0\n", + "66418 0\n", + "66419 0\n", + "66420 0\n", + "66421 0\n", + "66422 0\n", + "66423 0\n", + "66424 0\n", + "66425 0\n", + "66426 0\n", + "66427 0\n", + "66428 0\n", + "66429 0\n", + "66430 0\n", + "66431 1\n", + "66432 0\n", + "66433 0\n", + "66434 0\n", + "66435 0\n", + "66436 0\n", + "66437 0\n", + "66438 0\n", + "66439 0\n", + "66440 0\n", + "66441 0\n", + "66442 0\n", + "66443 0\n", + "66444 0\n", + "66445 0\n", + "66446 0\n", + "66447 0\n", + "66448 0\n", + "66449 1\n", + "66450 0\n", + "66451 0\n", + "66452 0\n", + "66453 0\n", + "66454 0\n", + "66455 0\n", + "66456 0\n", + "66457 1\n", + "66458 0\n", + "66459 0\n", + "66460 0\n", + "66461 0\n", + "66462 0\n", + "66463 1\n", + "66464 0\n", + "66465 0\n", + "66466 0\n", + "66467 1\n", + "66468 0\n", + "66469 0\n", + "66470 0\n", + "66471 0\n", + "66472 0\n", + "66473 0\n", + "66474 0\n", + "66475 0\n", + "66476 0\n", + "66477 0\n", + "66478 0\n", + "66479 0\n", + "66480 0\n", + "66481 0\n", + "66482 0\n", + "66483 0\n", + "66484 0\n", + "66485 0\n", + "66486 0\n", + "66487 0\n", + "66488 0\n", + "66489 0\n", + "66490 0\n", + "66491 1\n", + "66492 0\n", + "66493 0\n", + "66494 0\n", + "66495 0\n", + "66496 0\n", + "66497 0\n", + "66498 0\n", + "66499 1\n", + "66500 0\n", + "66501 0\n", + "66502 0\n", + "66503 0\n", + "66504 0\n", + "66505 0\n", + "66506 0\n", + "66507 0\n", + "66508 0\n", + "66509 1\n", + "66510 0\n", + "66511 0\n", + "66512 0\n", + "66513 0\n", + "66514 0\n", + "66515 0\n", + "66516 0\n", + "66517 0\n", + "66518 0\n", + "66519 0\n", + "66520 0\n", + "66521 0\n", + "66522 0\n", + "66523 1\n", + "66524 0\n", + "66525 0\n", + "66526 0\n", + "66527 0\n", + "66528 0\n", + "66529 1\n", + "66530 0\n", + "66531 0\n", + "66532 0\n", + "66533 1\n", + "66534 0\n", + "66535 0\n", + "66536 0\n", + "66537 0\n", + "66538 0\n", + "66539 0\n", + "66540 0\n", + "66541 1\n", + "66542 0\n", + "66543 0\n", + "66544 0\n", + "66545 0\n", + "66546 0\n", + "66547 0\n", + "66548 0\n", + "66549 0\n", + "66550 0\n", + "66551 0\n", + "66552 0\n", + "66553 1\n", + "66554 0\n", + "66555 0\n", + "66556 0\n", + "66557 0\n", + "66558 0\n", + "66559 0\n", + "66560 0\n", + "66561 0\n", + "66562 0\n", + "66563 0\n", + "66564 0\n", + "66565 0\n", + "66566 0\n", + "66567 0\n", + "66568 0\n", + "66569 1\n", + "66570 0\n", + "66571 1\n", + "66572 0\n", + "66573 0\n", + "66574 0\n", + "66575 0\n", + "66576 0\n", + "66577 0\n", + "66578 0\n", + "66579 0\n", + "66580 0\n", + "66581 0\n", + "66582 0\n", + "66583 0\n", + "66584 0\n", + "66585 0\n", + "66586 0\n", + "66587 1\n", + "66588 0\n", + "66589 0\n", + "66590 0\n", + "66591 0\n", + "66592 0\n", + "66593 1\n", + "66594 0\n", + "66595 0\n", + "66596 0\n", + "66597 0\n", + "66598 0\n", + "66599 0\n", + "66600 0\n", + "66601 1\n", + "66602 0\n", + "66603 0\n", + "66604 0\n", + "66605 0\n", + "66606 0\n", + "66607 0\n", + "66608 0\n", + "66609 0\n", + "66610 0\n", + "66611 0\n", + "66612 0\n", + "66613 0\n", + "66614 0\n", + "66615 0\n", + "66616 0\n", + "66617 1\n", + "66618 0\n", + "66619 0\n", + "66620 0\n", + "66621 0\n", + "66622 0\n", + "66623 0\n", + "66624 0\n", + "66625 0\n", + "66626 0\n", + "66627 0\n", + "66628 0\n", + "66629 1\n", + "66630 0\n", + "66631 0\n", + "66632 0\n", + "66633 0\n", + "66634 0\n", + "66635 0\n", + "66636 0\n", + "66637 0\n", + "66638 0\n", + "66639 0\n", + "66640 0\n", + "66641 0\n", + "66642 0\n", + "66643 1\n", + "66644 0\n", + "66645 0\n", + "66646 0\n", + "66647 0\n", + "66648 0\n", + "66649 0\n", + "66650 0\n", + "66651 0\n", + "66652 0\n", + "66653 1\n", + "66654 0\n", + "66655 0\n", + "66656 0\n", + "66657 0\n", + "66658 0\n", + "66659 0\n", + "66660 0\n", + "66661 0\n", + "66662 0\n", + "66663 0\n", + "66664 0\n", + "66665 0\n", + "66666 0\n", + "66667 0\n", + "66668 0\n", + "66669 0\n", + "66670 0\n", + "66671 0\n", + "66672 0\n", + "66673 0\n", + "66674 0\n", + "66675 0\n", + "66676 0\n", + "66677 0\n", + "66678 0\n", + "66679 0\n", + "66680 0\n", + "66681 0\n", + "66682 0\n", + "66683 1\n", + "66684 0\n", + "66685 0\n", + "66686 0\n", + "66687 0\n", + "66688 0\n", + "66689 0\n", + "66690 0\n", + "66691 0\n", + "66692 0\n", + "66693 0\n", + "66694 0\n", + "66695 0\n", + "66696 0\n", + "66697 1\n", + "66698 0\n", + "66699 0\n", + "66700 0\n", + "66701 1\n", + "66702 0\n", + "66703 0\n", + "66704 0\n", + "66705 0\n", + "66706 0\n", + "66707 0\n", + "66708 0\n", + "66709 0\n", + "66710 0\n", + "66711 0\n", + "66712 0\n", + "66713 1\n", + "66714 0\n", + "66715 0\n", + "66716 0\n", + "66717 0\n", + "66718 0\n", + "66719 0\n", + "66720 0\n", + "66721 1\n", + "66722 0\n", + "66723 0\n", + "66724 0\n", + "66725 0\n", + "66726 0\n", + "66727 0\n", + "66728 0\n", + "66729 0\n", + "66730 0\n", + "66731 0\n", + "66732 0\n", + "66733 1\n", + "66734 0\n", + "66735 0\n", + "66736 0\n", + "66737 0\n", + "66738 0\n", + "66739 1\n", + "66740 0\n", + "66741 0\n", + "66742 0\n", + "66743 0\n", + "66744 0\n", + "66745 0\n", + "66746 0\n", + "66747 0\n", + "66748 0\n", + "66749 1\n", + "66750 0\n", + "66751 1\n", + "66752 0\n", + "66753 0\n", + "66754 0\n", + "66755 0\n", + "66756 0\n", + "66757 0\n", + "66758 0\n", + "66759 0\n", + "66760 0\n", + "66761 0\n", + "66762 0\n", + "66763 1\n", + "66764 0\n", + "66765 0\n", + "66766 0\n", + "66767 0\n", + "66768 0\n", + "66769 0\n", + "66770 0\n", + "66771 0\n", + "66772 0\n", + "66773 0\n", + "66774 0\n", + "66775 0\n", + "66776 0\n", + "66777 0\n", + "66778 0\n", + "66779 0\n", + "66780 0\n", + "66781 0\n", + "66782 0\n", + "66783 0\n", + "66784 0\n", + "66785 0\n", + "66786 0\n", + "66787 0\n", + "66788 0\n", + "66789 0\n", + "66790 0\n", + "66791 1\n", + "66792 0\n", + "66793 0\n", + "66794 0\n", + "66795 0\n", + "66796 0\n", + "66797 1\n", + "66798 0\n", + "66799 0\n", + "66800 0\n", + "66801 0\n", + "66802 0\n", + "66803 0\n", + "66804 0\n", + "66805 0\n", + "66806 0\n", + "66807 0\n", + "66808 0\n", + "66809 1\n", + "66810 0\n", + "66811 0\n", + "66812 0\n", + "66813 0\n", + "66814 0\n", + "66815 0\n", + "66816 0\n", + "66817 0\n", + "66818 0\n", + "66819 0\n", + "66820 0\n", + "66821 1\n", + "66822 0\n", + "66823 0\n", + "66824 0\n", + "66825 0\n", + "66826 0\n", + "66827 0\n", + "66828 0\n", + "66829 0\n", + "66830 0\n", + "66831 0\n", + "66832 0\n", + "66833 0\n", + "66834 0\n", + "66835 0\n", + "66836 0\n", + "66837 0\n", + "66838 0\n", + "66839 0\n", + "66840 0\n", + "66841 1\n", + "66842 0\n", + "66843 0\n", + "66844 0\n", + "66845 0\n", + "66846 0\n", + "66847 0\n", + "66848 0\n", + "66849 0\n", + "66850 0\n", + "66851 1\n", + "66852 0\n", + "66853 1\n", + "66854 0\n", + "66855 0\n", + "66856 0\n", + "66857 0\n", + "66858 0\n", + "66859 0\n", + "66860 0\n", + "66861 0\n", + "66862 0\n", + "66863 1\n", + "66864 0\n", + "66865 0\n", + "66866 0\n", + "66867 0\n", + "66868 0\n", + "66869 0\n", + "66870 0\n", + "66871 0\n", + "66872 0\n", + "66873 0\n", + "66874 0\n", + "66875 0\n", + "66876 0\n", + "66877 1\n", + "66878 0\n", + "66879 0\n", + "66880 0\n", + "66881 0\n", + "66882 0\n", + "66883 1\n", + "66884 0\n", + "66885 0\n", + "66886 0\n", + "66887 0\n", + "66888 0\n", + "66889 1\n", + "66890 0\n", + "66891 0\n", + "66892 0\n", + "66893 0\n", + "66894 0\n", + "66895 0\n", + "66896 0\n", + "66897 0\n", + "66898 0\n", + "66899 0\n", + "66900 0\n", + "66901 0\n", + "66902 0\n", + "66903 0\n", + "66904 0\n", + "66905 0\n", + "66906 0\n", + "66907 0\n", + "66908 0\n", + "66909 0\n", + "66910 0\n", + "66911 0\n", + "66912 0\n", + "66913 0\n", + "66914 0\n", + "66915 0\n", + "66916 0\n", + "66917 0\n", + "66918 0\n", + "66919 1\n", + "66920 0\n", + "66921 0\n", + "66922 0\n", + "66923 1\n", + "66924 0\n", + "66925 0\n", + "66926 0\n", + "66927 0\n", + "66928 0\n", + "66929 0\n", + "66930 0\n", + "66931 1\n", + "66932 0\n", + "66933 0\n", + "66934 0\n", + "66935 0\n", + "66936 0\n", + "66937 0\n", + "66938 0\n", + "66939 0\n", + "66940 0\n", + "66941 0\n", + "66942 0\n", + "66943 1\n", + "66944 0\n", + "66945 0\n", + "66946 0\n", + "66947 1\n", + "66948 0\n", + "66949 1\n", + "66950 0\n", + "66951 0\n", + "66952 0\n", + "66953 0\n", + "66954 0\n", + "66955 0\n", + "66956 0\n", + "66957 0\n", + "66958 0\n", + "66959 1\n", + "66960 0\n", + "66961 0\n", + "66962 0\n", + "66963 0\n", + "66964 0\n", + "66965 0\n", + "66966 0\n", + "66967 0\n", + "66968 0\n", + "66969 0\n", + "66970 0\n", + "66971 0\n", + "66972 0\n", + "66973 1\n", + "66974 0\n", + "66975 0\n", + "66976 0\n", + "66977 1\n", + "66978 0\n", + "66979 0\n", + "66980 0\n", + "66981 0\n", + "66982 0\n", + "66983 0\n", + "66984 0\n", + "66985 0\n", + "66986 0\n", + "66987 0\n", + "66988 0\n", + "66989 0\n", + "66990 0\n", + "66991 0\n", + "66992 0\n", + "66993 0\n", + "66994 0\n", + "66995 0\n", + "66996 0\n", + "66997 0\n", + "66998 0\n", + "66999 0\n", + "67000 0\n", + "67001 0\n", + "67002 0\n", + "67003 1\n", + "67004 0\n", + "67005 0\n", + "67006 0\n", + "67007 0\n", + "67008 0\n", + "67009 0\n", + "67010 0\n", + "67011 0\n", + "67012 0\n", + "67013 0\n", + "67014 0\n", + "67015 0\n", + "67016 0\n", + "67017 0\n", + "67018 0\n", + "67019 0\n", + "67020 0\n", + "67021 1\n", + "67022 0\n", + "67023 0\n", + "67024 0\n", + "67025 0\n", + "67026 0\n", + "67027 0\n", + "67028 0\n", + "67029 0\n", + "67030 0\n", + "67031 0\n", + "67032 0\n", + "67033 1\n", + "67034 0\n", + "67035 0\n", + "67036 0\n", + "67037 0\n", + "67038 0\n", + "67039 0\n", + "67040 0\n", + "67041 0\n", + "67042 0\n", + "67043 1\n", + "67044 0\n", + "67045 0\n", + "67046 0\n", + "67047 0\n", + "67048 0\n", + "67049 1\n", + "67050 0\n", + "67051 0\n", + "67052 0\n", + "67053 0\n", + "67054 0\n", + "67055 0\n", + "67056 0\n", + "67057 1\n", + "67058 0\n", + "67059 0\n", + "67060 0\n", + "67061 1\n", + "67062 0\n", + "67063 0\n", + "67064 0\n", + "67065 0\n", + "67066 0\n", + "67067 0\n", + "67068 0\n", + "67069 0\n", + "67070 0\n", + "67071 0\n", + "67072 0\n", + "67073 1\n", + "67074 0\n", + "67075 0\n", + "67076 0\n", + "67077 0\n", + "67078 0\n", + "67079 1\n", + "67080 0\n", + "67081 0\n", + "67082 0\n", + "67083 0\n", + "67084 0\n", + "67085 0\n", + "67086 0\n", + "67087 0\n", + "67088 0\n", + "67089 0\n", + "67090 0\n", + "67091 0\n", + "67092 0\n", + "67093 0\n", + "67094 0\n", + "67095 0\n", + "67096 0\n", + "67097 0\n", + "67098 0\n", + "67099 0\n", + "67100 0\n", + "67101 0\n", + "67102 0\n", + "67103 1\n", + "67104 0\n", + "67105 0\n", + "67106 0\n", + "67107 0\n", + "67108 0\n", + "67109 0\n", + "67110 0\n", + "67111 0\n", + "67112 0\n", + "67113 0\n", + "67114 0\n", + "67115 0\n", + "67116 0\n", + "67117 0\n", + "67118 0\n", + "67119 0\n", + "67120 0\n", + "67121 1\n", + "67122 0\n", + "67123 0\n", + "67124 0\n", + "67125 0\n", + "67126 0\n", + "67127 0\n", + "67128 0\n", + "67129 1\n", + "67130 0\n", + "67131 0\n", + "67132 0\n", + "67133 0\n", + "67134 0\n", + "67135 0\n", + "67136 0\n", + "67137 0\n", + "67138 0\n", + "67139 1\n", + "67140 0\n", + "67141 1\n", + "67142 0\n", + "67143 0\n", + "67144 0\n", + "67145 0\n", + "67146 0\n", + "67147 0\n", + "67148 0\n", + "67149 0\n", + "67150 0\n", + "67151 0\n", + "67152 0\n", + "67153 1\n", + "67154 0\n", + "67155 0\n", + "67156 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "67157 1\n", + "67158 0\n", + "67159 0\n", + "67160 0\n", + "67161 0\n", + "67162 0\n", + "67163 0\n", + "67164 0\n", + "67165 0\n", + "67166 0\n", + "67167 0\n", + "67168 0\n", + "67169 1\n", + "67170 0\n", + "67171 0\n", + "67172 0\n", + "67173 0\n", + "67174 0\n", + "67175 0\n", + "67176 0\n", + "67177 0\n", + "67178 0\n", + "67179 0\n", + "67180 0\n", + "67181 1\n", + "67182 0\n", + "67183 0\n", + "67184 0\n", + "67185 0\n", + "67186 0\n", + "67187 1\n", + "67188 0\n", + "67189 1\n", + "67190 0\n", + "67191 0\n", + "67192 0\n", + "67193 0\n", + "67194 0\n", + "67195 0\n", + "67196 0\n", + "67197 0\n", + "67198 0\n", + "67199 0\n", + "67200 0\n", + "67201 0\n", + "67202 0\n", + "67203 0\n", + "67204 0\n", + "67205 0\n", + "67206 0\n", + "67207 0\n", + "67208 0\n", + "67209 0\n", + "67210 0\n", + "67211 1\n", + "67212 0\n", + "67213 1\n", + "67214 0\n", + "67215 0\n", + "67216 0\n", + "67217 1\n", + "67218 0\n", + "67219 1\n", + "67220 0\n", + "67221 0\n", + "67222 0\n", + "67223 0\n", + "67224 0\n", + "67225 0\n", + "67226 0\n", + "67227 0\n", + "67228 0\n", + "67229 0\n", + "67230 0\n", + "67231 1\n", + "67232 0\n", + "67233 0\n", + "67234 0\n", + "67235 0\n", + "67236 0\n", + "67237 0\n", + "67238 0\n", + "67239 0\n", + "67240 0\n", + "67241 0\n", + "67242 0\n", + "67243 0\n", + "67244 0\n", + "67245 0\n", + "67246 0\n", + "67247 1\n", + "67248 0\n", + "67249 0\n", + "67250 0\n", + "67251 0\n", + "67252 0\n", + "67253 0\n", + "67254 0\n", + "67255 0\n", + "67256 0\n", + "67257 0\n", + "67258 0\n", + "67259 0\n", + "67260 0\n", + "67261 1\n", + "67262 0\n", + "67263 0\n", + "67264 0\n", + "67265 0\n", + "67266 0\n", + "67267 0\n", + "67268 0\n", + "67269 0\n", + "67270 0\n", + "67271 1\n", + "67272 0\n", + "67273 1\n", + "67274 0\n", + "67275 0\n", + "67276 0\n", + "67277 0\n", + "67278 0\n", + "67279 0\n", + "67280 0\n", + "67281 0\n", + "67282 0\n", + "67283 0\n", + "67284 0\n", + "67285 0\n", + "67286 0\n", + "67287 0\n", + "67288 0\n", + "67289 1\n", + "67290 0\n", + "67291 0\n", + "67292 0\n", + "67293 0\n", + "67294 0\n", + "67295 0\n", + "67296 0\n", + "67297 0\n", + "67298 0\n", + "67299 0\n", + "67300 0\n", + "67301 0\n", + "67302 0\n", + "67303 0\n", + "67304 0\n", + "67305 0\n", + "67306 0\n", + "67307 1\n", + "67308 0\n", + "67309 0\n", + "67310 0\n", + "67311 0\n", + "67312 0\n", + "67313 0\n", + "67314 0\n", + "67315 0\n", + "67316 0\n", + "67317 0\n", + "67318 0\n", + "67319 0\n", + "67320 0\n", + "67321 0\n", + "67322 0\n", + "67323 0\n", + "67324 0\n", + "67325 0\n", + "67326 0\n", + "67327 0\n", + "67328 0\n", + "67329 0\n", + "67330 0\n", + "67331 0\n", + "67332 0\n", + "67333 0\n", + "67334 0\n", + "67335 0\n", + "67336 0\n", + "67337 0\n", + "67338 0\n", + "67339 1\n", + "67340 0\n", + "67341 0\n", + "67342 0\n", + "67343 1\n", + "67344 0\n", + "67345 0\n", + "67346 0\n", + "67347 0\n", + "67348 0\n", + "67349 1\n", + "67350 0\n", + "67351 0\n", + "67352 0\n", + "67353 0\n", + "67354 0\n", + "67355 0\n", + "67356 0\n", + "67357 0\n", + "67358 0\n", + "67359 0\n", + "67360 0\n", + "67361 0\n", + "67362 0\n", + "67363 0\n", + "67364 0\n", + "67365 0\n", + "67366 0\n", + "67367 0\n", + "67368 0\n", + "67369 1\n", + "67370 0\n", + "67371 0\n", + "67372 0\n", + "67373 0\n", + "67374 0\n", + "67375 0\n", + "67376 0\n", + "67377 0\n", + "67378 0\n", + "67379 0\n", + "67380 0\n", + "67381 0\n", + "67382 0\n", + "67383 0\n", + "67384 0\n", + "67385 0\n", + "67386 0\n", + "67387 0\n", + "67388 0\n", + "67389 0\n", + "67390 0\n", + "67391 1\n", + "67392 0\n", + "67393 0\n", + "67394 0\n", + "67395 0\n", + "67396 0\n", + "67397 0\n", + "67398 0\n", + "67399 1\n", + "67400 0\n", + "67401 0\n", + "67402 0\n", + "67403 0\n", + "67404 0\n", + "67405 0\n", + "67406 0\n", + "67407 0\n", + "67408 0\n", + "67409 1\n", + "67410 0\n", + "67411 1\n", + "67412 0\n", + "67413 0\n", + "67414 0\n", + "67415 0\n", + "67416 0\n", + "67417 0\n", + "67418 0\n", + "67419 0\n", + "67420 0\n", + "67421 1\n", + "67422 0\n", + "67423 0\n", + "67424 0\n", + "67425 0\n", + "67426 0\n", + "67427 1\n", + "67428 0\n", + "67429 1\n", + "67430 0\n", + "67431 0\n", + "67432 0\n", + "67433 1\n", + "67434 0\n", + "67435 0\n", + "67436 0\n", + "67437 0\n", + "67438 0\n", + "67439 0\n", + "67440 0\n", + "67441 0\n", + "67442 0\n", + "67443 0\n", + "67444 0\n", + "67445 0\n", + "67446 0\n", + "67447 1\n", + "67448 0\n", + "67449 0\n", + "67450 0\n", + "67451 0\n", + "67452 0\n", + "67453 1\n", + "67454 0\n", + "67455 0\n", + "67456 0\n", + "67457 0\n", + "67458 0\n", + "67459 0\n", + "67460 0\n", + "67461 0\n", + "67462 0\n", + "67463 0\n", + "67464 0\n", + "67465 0\n", + "67466 0\n", + "67467 0\n", + "67468 0\n", + "67469 0\n", + "67470 0\n", + "67471 0\n", + "67472 0\n", + "67473 0\n", + "67474 0\n", + "67475 0\n", + "67476 0\n", + "67477 1\n", + "67478 0\n", + "67479 0\n", + "67480 0\n", + "67481 1\n", + "67482 0\n", + "67483 0\n", + "67484 0\n", + "67485 0\n", + "67486 0\n", + "67487 0\n", + "67488 0\n", + "67489 1\n", + "67490 0\n", + "67491 0\n", + "67492 0\n", + "67493 1\n", + "67494 0\n", + "67495 0\n", + "67496 0\n", + "67497 0\n", + "67498 0\n", + "67499 1\n", + "67500 0\n", + "67501 0\n", + "67502 0\n", + "67503 0\n", + "67504 0\n", + "67505 0\n", + "67506 0\n", + "67507 0\n", + "67508 0\n", + "67509 0\n", + "67510 0\n", + "67511 1\n", + "67512 0\n", + "67513 0\n", + "67514 0\n", + "67515 0\n", + "67516 0\n", + "67517 0\n", + "67518 0\n", + "67519 0\n", + "67520 0\n", + "67521 0\n", + "67522 0\n", + "67523 1\n", + "67524 0\n", + "67525 0\n", + "67526 0\n", + "67527 0\n", + "67528 0\n", + "67529 0\n", + "67530 0\n", + "67531 1\n", + "67532 0\n", + "67533 0\n", + "67534 0\n", + "67535 0\n", + "67536 0\n", + "67537 1\n", + "67538 0\n", + "67539 0\n", + "67540 0\n", + "67541 0\n", + "67542 0\n", + "67543 0\n", + "67544 0\n", + "67545 0\n", + "67546 0\n", + "67547 1\n", + "67548 0\n", + "67549 0\n", + "67550 0\n", + "67551 0\n", + "67552 0\n", + "67553 0\n", + "67554 0\n", + "67555 0\n", + "67556 0\n", + "67557 0\n", + "67558 0\n", + "67559 1\n", + "67560 0\n", + "67561 0\n", + "67562 0\n", + "67563 0\n", + "67564 0\n", + "67565 0\n", + "67566 0\n", + "67567 1\n", + "67568 0\n", + "67569 0\n", + "67570 0\n", + "67571 0\n", + "67572 0\n", + "67573 0\n", + "67574 0\n", + "67575 0\n", + "67576 0\n", + "67577 1\n", + "67578 0\n", + "67579 1\n", + "67580 0\n", + "67581 0\n", + "67582 0\n", + "67583 0\n", + "67584 0\n", + "67585 0\n", + "67586 0\n", + "67587 0\n", + "67588 0\n", + "67589 1\n", + "67590 0\n", + "67591 0\n", + "67592 0\n", + "67593 0\n", + "67594 0\n", + "67595 0\n", + "67596 0\n", + "67597 0\n", + "67598 0\n", + "67599 0\n", + "67600 0\n", + "67601 1\n", + "67602 0\n", + "67603 0\n", + "67604 0\n", + "67605 0\n", + "67606 0\n", + "67607 1\n", + "67608 0\n", + "67609 0\n", + "67610 0\n", + "67611 0\n", + "67612 0\n", + "67613 0\n", + "67614 0\n", + "67615 0\n", + "67616 0\n", + "67617 0\n", + "67618 0\n", + "67619 1\n", + "67620 0\n", + "67621 0\n", + "67622 0\n", + "67623 0\n", + "67624 0\n", + "67625 0\n", + "67626 0\n", + "67627 0\n", + "67628 0\n", + "67629 0\n", + "67630 0\n", + "67631 1\n", + "67632 0\n", + "67633 0\n", + "67634 0\n", + "67635 0\n", + "67636 0\n", + "67637 0\n", + "67638 0\n", + "67639 0\n", + "67640 0\n", + "67641 0\n", + "67642 0\n", + "67643 0\n", + "67644 0\n", + "67645 0\n", + "67646 0\n", + "67647 0\n", + "67648 0\n", + "67649 0\n", + "67650 0\n", + "67651 1\n", + "67652 0\n", + "67653 0\n", + "67654 0\n", + "67655 0\n", + "67656 0\n", + "67657 0\n", + "67658 0\n", + "67659 0\n", + "67660 0\n", + "67661 0\n", + "67662 0\n", + "67663 0\n", + "67664 0\n", + "67665 0\n", + "67666 0\n", + "67667 0\n", + "67668 0\n", + "67669 0\n", + "67670 0\n", + "67671 0\n", + "67672 0\n", + "67673 0\n", + "67674 0\n", + "67675 0\n", + "67676 0\n", + "67677 0\n", + "67678 0\n", + "67679 1\n", + "67680 0\n", + "67681 0\n", + "67682 0\n", + "67683 0\n", + "67684 0\n", + "67685 0\n", + "67686 0\n", + "67687 0\n", + "67688 0\n", + "67689 0\n", + "67690 0\n", + "67691 0\n", + "67692 0\n", + "67693 0\n", + "67694 0\n", + "67695 0\n", + "67696 0\n", + "67697 0\n", + "67698 0\n", + "67699 1\n", + "67700 0\n", + "67701 0\n", + "67702 0\n", + "67703 0\n", + "67704 0\n", + "67705 0\n", + "67706 0\n", + "67707 0\n", + "67708 0\n", + "67709 1\n", + "67710 0\n", + "67711 0\n", + "67712 0\n", + "67713 0\n", + "67714 0\n", + "67715 0\n", + "67716 0\n", + "67717 0\n", + "67718 0\n", + "67719 0\n", + "67720 0\n", + "67721 0\n", + "67722 0\n", + "67723 1\n", + "67724 0\n", + "67725 0\n", + "67726 0\n", + "67727 0\n", + "67728 0\n", + "67729 0\n", + "67730 0\n", + "67731 0\n", + "67732 0\n", + "67733 1\n", + "67734 0\n", + "67735 0\n", + "67736 0\n", + "67737 0\n", + "67738 0\n", + "67739 0\n", + "67740 0\n", + "67741 1\n", + "67742 0\n", + "67743 0\n", + "67744 0\n", + "67745 0\n", + "67746 0\n", + "67747 0\n", + "67748 0\n", + "67749 0\n", + "67750 0\n", + "67751 1\n", + "67752 0\n", + "67753 0\n", + "67754 0\n", + "67755 0\n", + "67756 0\n", + "67757 1\n", + "67758 0\n", + "67759 1\n", + "67760 0\n", + "67761 0\n", + "67762 0\n", + "67763 1\n", + "67764 0\n", + "67765 0\n", + "67766 0\n", + "67767 0\n", + "67768 0\n", + "67769 0\n", + "67770 0\n", + "67771 0\n", + "67772 0\n", + "67773 0\n", + "67774 0\n", + "67775 0\n", + "67776 0\n", + "67777 1\n", + "67778 0\n", + "67779 0\n", + "67780 0\n", + "67781 0\n", + "67782 0\n", + "67783 1\n", + "67784 0\n", + "67785 0\n", + "67786 0\n", + "67787 0\n", + "67788 0\n", + "67789 1\n", + "67790 0\n", + "67791 0\n", + "67792 0\n", + "67793 0\n", + "67794 0\n", + "67795 0\n", + "67796 0\n", + "67797 0\n", + "67798 0\n", + "67799 0\n", + "67800 0\n", + "67801 1\n", + "67802 0\n", + "67803 0\n", + "67804 0\n", + "67805 0\n", + "67806 0\n", + "67807 1\n", + "67808 0\n", + "67809 0\n", + "67810 0\n", + "67811 0\n", + "67812 0\n", + "67813 0\n", + "67814 0\n", + "67815 0\n", + "67816 0\n", + "67817 0\n", + "67818 0\n", + "67819 1\n", + "67820 0\n", + "67821 0\n", + "67822 0\n", + "67823 0\n", + "67824 0\n", + "67825 0\n", + "67826 0\n", + "67827 0\n", + "67828 0\n", + "67829 1\n", + "67830 0\n", + "67831 0\n", + "67832 0\n", + "67833 0\n", + "67834 0\n", + "67835 0\n", + "67836 0\n", + "67837 0\n", + "67838 0\n", + "67839 0\n", + "67840 0\n", + "67841 0\n", + "67842 0\n", + "67843 1\n", + "67844 0\n", + "67845 0\n", + "67846 0\n", + "67847 0\n", + "67848 0\n", + "67849 0\n", + "67850 0\n", + "67851 0\n", + "67852 0\n", + "67853 1\n", + "67854 0\n", + "67855 0\n", + "67856 0\n", + "67857 0\n", + "67858 0\n", + "67859 0\n", + "67860 0\n", + "67861 0\n", + "67862 0\n", + "67863 0\n", + "67864 0\n", + "67865 0\n", + "67866 0\n", + "67867 1\n", + "67868 0\n", + "67869 0\n", + "67870 0\n", + "67871 0\n", + "67872 0\n", + "67873 0\n", + "67874 0\n", + "67875 0\n", + "67876 0\n", + "67877 0\n", + "67878 0\n", + "67879 0\n", + "67880 0\n", + "67881 0\n", + "67882 0\n", + "67883 1\n", + "67884 0\n", + "67885 0\n", + "67886 0\n", + "67887 0\n", + "67888 0\n", + "67889 0\n", + "67890 0\n", + "67891 1\n", + "67892 0\n", + "67893 0\n", + "67894 0\n", + "67895 0\n", + "67896 0\n", + "67897 0\n", + "67898 0\n", + "67899 0\n", + "67900 0\n", + "67901 1\n", + "67902 0\n", + "67903 0\n", + "67904 0\n", + "67905 0\n", + "67906 0\n", + "67907 0\n", + "67908 0\n", + "67909 0\n", + "67910 0\n", + "67911 0\n", + "67912 0\n", + "67913 0\n", + "67914 0\n", + "67915 0\n", + "67916 0\n", + "67917 0\n", + "67918 0\n", + "67919 0\n", + "67920 0\n", + "67921 0\n", + "67922 0\n", + "67923 0\n", + "67924 0\n", + "67925 0\n", + "67926 0\n", + "67927 1\n", + "67928 0\n", + "67929 0\n", + "67930 0\n", + "67931 1\n", + "67932 0\n", + "67933 1\n", + "67934 0\n", + "67935 0\n", + "67936 0\n", + "67937 0\n", + "67938 0\n", + "67939 1\n", + "67940 0\n", + "67941 0\n", + "67942 0\n", + "67943 1\n", + "67944 0\n", + "67945 0\n", + "67946 0\n", + "67947 0\n", + "67948 0\n", + "67949 0\n", + "67950 0\n", + "67951 0\n", + "67952 0\n", + "67953 0\n", + "67954 0\n", + "67955 0\n", + "67956 0\n", + "67957 1\n", + "67958 0\n", + "67959 0\n", + "67960 0\n", + "67961 1\n", + "67962 0\n", + "67963 0\n", + "67964 0\n", + "67965 0\n", + "67966 0\n", + "67967 1\n", + "67968 0\n", + "67969 0\n", + "67970 0\n", + "67971 0\n", + "67972 0\n", + "67973 0\n", + "67974 0\n", + "67975 0\n", + "67976 0\n", + "67977 0\n", + "67978 0\n", + "67979 1\n", + "67980 0\n", + "67981 0\n", + "67982 0\n", + "67983 0\n", + "67984 0\n", + "67985 0\n", + "67986 0\n", + "67987 1\n", + "67988 0\n", + "67989 0\n", + "67990 0\n", + "67991 0\n", + "67992 0\n", + "67993 1\n", + "67994 0\n", + "67995 0\n", + "67996 0\n", + "67997 0\n", + "67998 0\n", + "67999 0\n", + "68000 0\n", + "68001 0\n", + "68002 0\n", + "68003 0\n", + "68004 0\n", + "68005 0\n", + "68006 0\n", + "68007 0\n", + "68008 0\n", + "68009 0\n", + "68010 0\n", + "68011 0\n", + "68012 0\n", + "68013 0\n", + "68014 0\n", + "68015 0\n", + "68016 0\n", + "68017 0\n", + "68018 0\n", + "68019 0\n", + "68020 0\n", + "68021 0\n", + "68022 0\n", + "68023 1\n", + "68024 0\n", + "68025 0\n", + "68026 0\n", + "68027 0\n", + "68028 0\n", + "68029 0\n", + "68030 0\n", + "68031 0\n", + "68032 0\n", + "68033 0\n", + "68034 0\n", + "68035 0\n", + "68036 0\n", + "68037 0\n", + "68038 0\n", + "68039 0\n", + "68040 0\n", + "68041 1\n", + "68042 0\n", + "68043 0\n", + "68044 0\n", + "68045 0\n", + "68046 0\n", + "68047 0\n", + "68048 0\n", + "68049 0\n", + "68050 0\n", + "68051 0\n", + "68052 0\n", + "68053 1\n", + "68054 0\n", + "68055 0\n", + "68056 0\n", + "68057 0\n", + "68058 0\n", + "68059 1\n", + "68060 0\n", + "68061 0\n", + "68062 0\n", + "68063 0\n", + "68064 0\n", + "68065 0\n", + "68066 0\n", + "68067 0\n", + "68068 0\n", + "68069 0\n", + "68070 0\n", + "68071 1\n", + "68072 0\n", + "68073 0\n", + "68074 0\n", + "68075 0\n", + "68076 0\n", + "68077 0\n", + "68078 0\n", + "68079 0\n", + "68080 0\n", + "68081 0\n", + "68082 0\n", + "68083 0\n", + "68084 0\n", + "68085 0\n", + "68086 0\n", + "68087 1\n", + "68088 0\n", + "68089 0\n", + "68090 0\n", + "68091 0\n", + "68092 0\n", + "68093 0\n", + "68094 0\n", + "68095 0\n", + "68096 0\n", + "68097 0\n", + "68098 0\n", + "68099 1\n", + "68100 0\n", + "68101 0\n", + "68102 0\n", + "68103 0\n", + "68104 0\n", + "68105 0\n", + "68106 0\n", + "68107 0\n", + "68108 0\n", + "68109 0\n", + "68110 0\n", + "68111 1\n", + "68112 0\n", + "68113 1\n", + "68114 0\n", + "68115 0\n", + "68116 0\n", + "68117 0\n", + "68118 0\n", + "68119 0\n", + "68120 0\n", + "68121 0\n", + "68122 0\n", + "68123 0\n", + "68124 0\n", + "68125 0\n", + "68126 0\n", + "68127 0\n", + "68128 0\n", + "68129 0\n", + "68130 0\n", + "68131 0\n", + "68132 0\n", + "68133 0\n", + "68134 0\n", + "68135 0\n", + "68136 0\n", + "68137 0\n", + "68138 0\n", + "68139 0\n", + "68140 0\n", + "68141 1\n", + "68142 0\n", + "68143 0\n", + "68144 0\n", + "68145 0\n", + "68146 0\n", + "68147 1\n", + "68148 0\n", + "68149 0\n", + "68150 0\n", + "68151 0\n", + "68152 0\n", + "68153 0\n", + "68154 0\n", + "68155 0\n", + "68156 0\n", + "68157 0\n", + "68158 0\n", + "68159 0\n", + "68160 0\n", + "68161 1\n", + "68162 0\n", + "68163 0\n", + "68164 0\n", + "68165 0\n", + "68166 0\n", + "68167 0\n", + "68168 0\n", + "68169 0\n", + "68170 0\n", + "68171 1\n", + "68172 0\n", + "68173 0\n", + "68174 0\n", + "68175 0\n", + "68176 0\n", + "68177 0\n", + "68178 0\n", + "68179 0\n", + "68180 0\n", + "68181 0\n", + "68182 0\n", + "68183 0\n", + "68184 0\n", + "68185 0\n", + "68186 0\n", + "68187 0\n", + "68188 0\n", + "68189 0\n", + "68190 0\n", + "68191 0\n", + "68192 0\n", + "68193 0\n", + "68194 0\n", + "68195 0\n", + "68196 0\n", + "68197 0\n", + "68198 0\n", + "68199 0\n", + "68200 0\n", + "68201 0\n", + "68202 0\n", + "68203 0\n", + "68204 0\n", + "68205 0\n", + "68206 0\n", + "68207 1\n", + "68208 0\n", + "68209 1\n", + "68210 0\n", + "68211 0\n", + "68212 0\n", + "68213 1\n", + "68214 0\n", + "68215 0\n", + "68216 0\n", + "68217 0\n", + "68218 0\n", + "68219 1\n", + "68220 0\n", + "68221 0\n", + "68222 0\n", + "68223 0\n", + "68224 0\n", + "68225 0\n", + "68226 0\n", + "68227 1\n", + "68228 0\n", + "68229 0\n", + "68230 0\n", + "68231 0\n", + "68232 0\n", + "68233 0\n", + "68234 0\n", + "68235 0\n", + "68236 0\n", + "68237 0\n", + "68238 0\n", + "68239 1\n", + "68240 0\n", + "68241 0\n", + "68242 0\n", + "68243 0\n", + "68244 0\n", + "68245 0\n", + "68246 0\n", + "68247 0\n", + "68248 0\n", + "68249 0\n", + "68250 0\n", + "68251 0\n", + "68252 0\n", + "68253 0\n", + "68254 0\n", + "68255 0\n", + "68256 0\n", + "68257 0\n", + "68258 0\n", + "68259 0\n", + "68260 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "68261 1\n", + "68262 0\n", + "68263 0\n", + "68264 0\n", + "68265 0\n", + "68266 0\n", + "68267 0\n", + "68268 0\n", + "68269 0\n", + "68270 0\n", + "68271 0\n", + "68272 0\n", + "68273 0\n", + "68274 0\n", + "68275 0\n", + "68276 0\n", + "68277 0\n", + "68278 0\n", + "68279 1\n", + "68280 0\n", + "68281 1\n", + "68282 0\n", + "68283 0\n", + "68284 0\n", + "68285 0\n", + "68286 0\n", + "68287 0\n", + "68288 0\n", + "68289 0\n", + "68290 0\n", + "68291 0\n", + "68292 0\n", + "68293 0\n", + "68294 0\n", + "68295 0\n", + "68296 0\n", + "68297 0\n", + "68298 0\n", + "68299 0\n", + "68300 0\n", + "68301 0\n", + "68302 0\n", + "68303 0\n", + "68304 0\n", + "68305 0\n", + "68306 0\n", + "68307 0\n", + "68308 0\n", + "68309 0\n", + "68310 0\n", + "68311 1\n", + "68312 0\n", + "68313 0\n", + "68314 0\n", + "68315 0\n", + "68316 0\n", + "68317 0\n", + "68318 0\n", + "68319 0\n", + "68320 0\n", + "68321 0\n", + "68322 0\n", + "68323 0\n", + "68324 0\n", + "68325 0\n", + "68326 0\n", + "68327 0\n", + "68328 0\n", + "68329 1\n", + "68330 0\n", + "68331 0\n", + "68332 0\n", + "68333 0\n", + "68334 0\n", + "68335 0\n", + "68336 0\n", + "68337 0\n", + "68338 0\n", + "68339 0\n", + "68340 0\n", + "68341 0\n", + "68342 0\n", + "68343 0\n", + "68344 0\n", + "68345 0\n", + "68346 0\n", + "68347 0\n", + "68348 0\n", + "68349 0\n", + "68350 0\n", + "68351 1\n", + "68352 0\n", + "68353 0\n", + "68354 0\n", + "68355 0\n", + "68356 0\n", + "68357 0\n", + "68358 0\n", + "68359 0\n", + "68360 0\n", + "68361 0\n", + "68362 0\n", + "68363 0\n", + "68364 0\n", + "68365 0\n", + "68366 0\n", + "68367 0\n", + "68368 0\n", + "68369 0\n", + "68370 0\n", + "68371 1\n", + "68372 0\n", + "68373 0\n", + "68374 0\n", + "68375 0\n", + "68376 0\n", + "68377 0\n", + "68378 0\n", + "68379 0\n", + "68380 0\n", + "68381 0\n", + "68382 0\n", + "68383 0\n", + "68384 0\n", + "68385 0\n", + "68386 0\n", + "68387 0\n", + "68388 0\n", + "68389 1\n", + "68390 0\n", + "68391 0\n", + "68392 0\n", + "68393 0\n", + "68394 0\n", + "68395 0\n", + "68396 0\n", + "68397 0\n", + "68398 0\n", + "68399 1\n", + "68400 0\n", + "68401 0\n", + "68402 0\n", + "68403 0\n", + "68404 0\n", + "68405 0\n", + "68406 0\n", + "68407 0\n", + "68408 0\n", + "68409 0\n", + "68410 0\n", + "68411 0\n", + "68412 0\n", + "68413 0\n", + "68414 0\n", + "68415 0\n", + "68416 0\n", + "68417 0\n", + "68418 0\n", + "68419 0\n", + "68420 0\n", + "68421 0\n", + "68422 0\n", + "68423 0\n", + "68424 0\n", + "68425 0\n", + "68426 0\n", + "68427 0\n", + "68428 0\n", + "68429 0\n", + "68430 0\n", + "68431 0\n", + "68432 0\n", + "68433 0\n", + "68434 0\n", + "68435 0\n", + "68436 0\n", + "68437 1\n", + "68438 0\n", + "68439 0\n", + "68440 0\n", + "68441 0\n", + "68442 0\n", + "68443 1\n", + "68444 0\n", + "68445 0\n", + "68446 0\n", + "68447 1\n", + "68448 0\n", + "68449 1\n", + "68450 0\n", + "68451 0\n", + "68452 0\n", + "68453 0\n", + "68454 0\n", + "68455 0\n", + "68456 0\n", + "68457 0\n", + "68458 0\n", + "68459 0\n", + "68460 0\n", + "68461 0\n", + "68462 0\n", + "68463 0\n", + "68464 0\n", + "68465 0\n", + "68466 0\n", + "68467 0\n", + "68468 0\n", + "68469 0\n", + "68470 0\n", + "68471 0\n", + "68472 0\n", + "68473 1\n", + "68474 0\n", + "68475 0\n", + "68476 0\n", + "68477 1\n", + "68478 0\n", + "68479 0\n", + "68480 0\n", + "68481 0\n", + "68482 0\n", + "68483 1\n", + "68484 0\n", + "68485 0\n", + "68486 0\n", + "68487 0\n", + "68488 0\n", + "68489 1\n", + "68490 0\n", + "68491 1\n", + "68492 0\n", + "68493 0\n", + "68494 0\n", + "68495 0\n", + "68496 0\n", + "68497 0\n", + "68498 0\n", + "68499 0\n", + "68500 0\n", + "68501 1\n", + "68502 0\n", + "68503 0\n", + "68504 0\n", + "68505 0\n", + "68506 0\n", + "68507 1\n", + "68508 0\n", + "68509 0\n", + "68510 0\n", + "68511 0\n", + "68512 0\n", + "68513 0\n", + "68514 0\n", + "68515 0\n", + "68516 0\n", + "68517 0\n", + "68518 0\n", + "68519 0\n", + "68520 0\n", + "68521 1\n", + "68522 0\n", + "68523 0\n", + "68524 0\n", + "68525 0\n", + "68526 0\n", + "68527 0\n", + "68528 0\n", + "68529 0\n", + "68530 0\n", + "68531 1\n", + "68532 0\n", + "68533 0\n", + "68534 0\n", + "68535 0\n", + "68536 0\n", + "68537 0\n", + "68538 0\n", + "68539 1\n", + "68540 0\n", + "68541 0\n", + "68542 0\n", + "68543 1\n", + "68544 0\n", + "68545 0\n", + "68546 0\n", + "68547 0\n", + "68548 0\n", + "68549 0\n", + "68550 0\n", + "68551 0\n", + "68552 0\n", + "68553 0\n", + "68554 0\n", + "68555 0\n", + "68556 0\n", + "68557 0\n", + "68558 0\n", + "68559 0\n", + "68560 0\n", + "68561 0\n", + "68562 0\n", + "68563 0\n", + "68564 0\n", + "68565 0\n", + "68566 0\n", + "68567 1\n", + "68568 0\n", + "68569 0\n", + "68570 0\n", + "68571 0\n", + "68572 0\n", + "68573 0\n", + "68574 0\n", + "68575 0\n", + "68576 0\n", + "68577 0\n", + "68578 0\n", + "68579 0\n", + "68580 0\n", + "68581 1\n", + "68582 0\n", + "68583 0\n", + "68584 0\n", + "68585 0\n", + "68586 0\n", + "68587 0\n", + "68588 0\n", + "68589 0\n", + "68590 0\n", + "68591 0\n", + "68592 0\n", + "68593 0\n", + "68594 0\n", + "68595 0\n", + "68596 0\n", + "68597 1\n", + "68598 0\n", + "68599 0\n", + "68600 0\n", + "68601 0\n", + "68602 0\n", + "68603 0\n", + "68604 0\n", + "68605 0\n", + "68606 0\n", + "68607 0\n", + "68608 0\n", + "68609 0\n", + "68610 0\n", + "68611 1\n", + "68612 0\n", + "68613 0\n", + "68614 0\n", + "68615 0\n", + "68616 0\n", + "68617 0\n", + "68618 0\n", + "68619 0\n", + "68620 0\n", + "68621 0\n", + "68622 0\n", + "68623 0\n", + "68624 0\n", + "68625 0\n", + "68626 0\n", + "68627 0\n", + "68628 0\n", + "68629 0\n", + "68630 0\n", + "68631 0\n", + "68632 0\n", + "68633 1\n", + "68634 0\n", + "68635 0\n", + "68636 0\n", + "68637 0\n", + "68638 0\n", + "68639 1\n", + "68640 0\n", + "68641 0\n", + "68642 0\n", + "68643 0\n", + "68644 0\n", + "68645 0\n", + "68646 0\n", + "68647 0\n", + "68648 0\n", + "68649 0\n", + "68650 0\n", + "68651 0\n", + "68652 0\n", + "68653 0\n", + "68654 0\n", + "68655 0\n", + "68656 0\n", + "68657 0\n", + "68658 0\n", + "68659 1\n", + "68660 0\n", + "68661 0\n", + "68662 0\n", + "68663 0\n", + "68664 0\n", + "68665 0\n", + "68666 0\n", + "68667 0\n", + "68668 0\n", + "68669 1\n", + "68670 0\n", + "68671 0\n", + "68672 0\n", + "68673 0\n", + "68674 0\n", + "68675 0\n", + "68676 0\n", + "68677 0\n", + "68678 0\n", + "68679 0\n", + "68680 0\n", + "68681 0\n", + "68682 0\n", + "68683 1\n", + "68684 0\n", + "68685 0\n", + "68686 0\n", + "68687 1\n", + "68688 0\n", + "68689 0\n", + "68690 0\n", + "68691 0\n", + "68692 0\n", + "68693 0\n", + "68694 0\n", + "68695 0\n", + "68696 0\n", + "68697 0\n", + "68698 0\n", + "68699 1\n", + "68700 0\n", + "68701 0\n", + "68702 0\n", + "68703 0\n", + "68704 0\n", + "68705 0\n", + "68706 0\n", + "68707 0\n", + "68708 0\n", + "68709 0\n", + "68710 0\n", + "68711 1\n", + "68712 0\n", + "68713 1\n", + "68714 0\n", + "68715 0\n", + "68716 0\n", + "68717 0\n", + "68718 0\n", + "68719 0\n", + "68720 0\n", + "68721 0\n", + "68722 0\n", + "68723 0\n", + "68724 0\n", + "68725 0\n", + "68726 0\n", + "68727 0\n", + "68728 0\n", + "68729 1\n", + "68730 0\n", + "68731 0\n", + "68732 0\n", + "68733 0\n", + "68734 0\n", + "68735 0\n", + "68736 0\n", + "68737 1\n", + "68738 0\n", + "68739 0\n", + "68740 0\n", + "68741 0\n", + "68742 0\n", + "68743 1\n", + "68744 0\n", + "68745 0\n", + "68746 0\n", + "68747 0\n", + "68748 0\n", + "68749 1\n", + "68750 0\n", + "68751 0\n", + "68752 0\n", + "68753 0\n", + "68754 0\n", + "68755 0\n", + "68756 0\n", + "68757 0\n", + "68758 0\n", + "68759 0\n", + "68760 0\n", + "68761 0\n", + "68762 0\n", + "68763 0\n", + "68764 0\n", + "68765 0\n", + "68766 0\n", + "68767 1\n", + "68768 0\n", + "68769 0\n", + "68770 0\n", + "68771 1\n", + "68772 0\n", + "68773 0\n", + "68774 0\n", + "68775 0\n", + "68776 0\n", + "68777 1\n", + "68778 0\n", + "68779 0\n", + "68780 0\n", + "68781 0\n", + "68782 0\n", + "68783 0\n", + "68784 0\n", + "68785 0\n", + "68786 0\n", + "68787 0\n", + "68788 0\n", + "68789 0\n", + "68790 0\n", + "68791 1\n", + "68792 0\n", + "68793 0\n", + "68794 0\n", + "68795 0\n", + "68796 0\n", + "68797 0\n", + "68798 0\n", + "68799 0\n", + "68800 0\n", + "68801 0\n", + "68802 0\n", + "68803 0\n", + "68804 0\n", + "68805 0\n", + "68806 0\n", + "68807 0\n", + "68808 0\n", + "68809 0\n", + "68810 0\n", + "68811 0\n", + "68812 0\n", + "68813 1\n", + "68814 0\n", + "68815 0\n", + "68816 0\n", + "68817 0\n", + "68818 0\n", + "68819 1\n", + "68820 0\n", + "68821 1\n", + "68822 0\n", + "68823 0\n", + "68824 0\n", + "68825 0\n", + "68826 0\n", + "68827 0\n", + "68828 0\n", + "68829 0\n", + "68830 0\n", + "68831 0\n", + "68832 0\n", + "68833 0\n", + "68834 0\n", + "68835 0\n", + "68836 0\n", + "68837 0\n", + "68838 0\n", + "68839 0\n", + "68840 0\n", + "68841 0\n", + "68842 0\n", + "68843 0\n", + "68844 0\n", + "68845 0\n", + "68846 0\n", + "68847 0\n", + "68848 0\n", + "68849 0\n", + "68850 0\n", + "68851 0\n", + "68852 0\n", + "68853 0\n", + "68854 0\n", + "68855 0\n", + "68856 0\n", + "68857 0\n", + "68858 0\n", + "68859 0\n", + "68860 0\n", + "68861 0\n", + "68862 0\n", + "68863 1\n", + "68864 0\n", + "68865 0\n", + "68866 0\n", + "68867 0\n", + "68868 0\n", + "68869 0\n", + "68870 0\n", + "68871 0\n", + "68872 0\n", + "68873 0\n", + "68874 0\n", + "68875 0\n", + "68876 0\n", + "68877 0\n", + "68878 0\n", + "68879 1\n", + "68880 0\n", + "68881 1\n", + "68882 0\n", + "68883 0\n", + "68884 0\n", + "68885 0\n", + "68886 0\n", + "68887 0\n", + "68888 0\n", + "68889 0\n", + "68890 0\n", + "68891 1\n", + "68892 0\n", + "68893 0\n", + "68894 0\n", + "68895 0\n", + "68896 0\n", + "68897 1\n", + "68898 0\n", + "68899 1\n", + "68900 0\n", + "68901 0\n", + "68902 0\n", + "68903 1\n", + "68904 0\n", + "68905 0\n", + "68906 0\n", + "68907 0\n", + "68908 0\n", + "68909 1\n", + "68910 0\n", + "68911 0\n", + "68912 0\n", + "68913 0\n", + "68914 0\n", + "68915 0\n", + "68916 0\n", + "68917 1\n", + "68918 0\n", + "68919 0\n", + "68920 0\n", + "68921 0\n", + "68922 0\n", + "68923 0\n", + "68924 0\n", + "68925 0\n", + "68926 0\n", + "68927 1\n", + "68928 0\n", + "68929 0\n", + "68930 0\n", + "68931 0\n", + "68932 0\n", + "68933 0\n", + "68934 0\n", + "68935 0\n", + "68936 0\n", + "68937 0\n", + "68938 0\n", + "68939 0\n", + "68940 0\n", + "68941 0\n", + "68942 0\n", + "68943 0\n", + "68944 0\n", + "68945 0\n", + "68946 0\n", + "68947 1\n", + "68948 0\n", + "68949 0\n", + "68950 0\n", + "68951 0\n", + "68952 0\n", + "68953 0\n", + "68954 0\n", + "68955 0\n", + "68956 0\n", + "68957 0\n", + "68958 0\n", + "68959 0\n", + "68960 0\n", + "68961 0\n", + "68962 0\n", + "68963 1\n", + "68964 0\n", + "68965 0\n", + "68966 0\n", + "68967 0\n", + "68968 0\n", + "68969 0\n", + "68970 0\n", + "68971 0\n", + "68972 0\n", + "68973 0\n", + "68974 0\n", + "68975 0\n", + "68976 0\n", + "68977 0\n", + "68978 0\n", + "68979 0\n", + "68980 0\n", + "68981 0\n", + "68982 0\n", + "68983 0\n", + "68984 0\n", + "68985 0\n", + "68986 0\n", + "68987 0\n", + "68988 0\n", + "68989 0\n", + "68990 0\n", + "68991 0\n", + "68992 0\n", + "68993 1\n", + "68994 0\n", + "68995 0\n", + "68996 0\n", + "68997 0\n", + "68998 0\n", + "68999 0\n", + "69000 0\n", + "69001 1\n", + "69002 0\n", + "69003 0\n", + "69004 0\n", + "69005 0\n", + "69006 0\n", + "69007 0\n", + "69008 0\n", + "69009 0\n", + "69010 0\n", + "69011 1\n", + "69012 0\n", + "69013 0\n", + "69014 0\n", + "69015 0\n", + "69016 0\n", + "69017 0\n", + "69018 0\n", + "69019 1\n", + "69020 0\n", + "69021 0\n", + "69022 0\n", + "69023 0\n", + "69024 0\n", + "69025 0\n", + "69026 0\n", + "69027 0\n", + "69028 0\n", + "69029 1\n", + "69030 0\n", + "69031 1\n", + "69032 0\n", + "69033 0\n", + "69034 0\n", + "69035 0\n", + "69036 0\n", + "69037 0\n", + "69038 0\n", + "69039 0\n", + "69040 0\n", + "69041 0\n", + "69042 0\n", + "69043 0\n", + "69044 0\n", + "69045 0\n", + "69046 0\n", + "69047 0\n", + "69048 0\n", + "69049 0\n", + "69050 0\n", + "69051 0\n", + "69052 0\n", + "69053 0\n", + "69054 0\n", + "69055 0\n", + "69056 0\n", + "69057 0\n", + "69058 0\n", + "69059 0\n", + "69060 0\n", + "69061 1\n", + "69062 0\n", + "69063 0\n", + "69064 0\n", + "69065 0\n", + "69066 0\n", + "69067 1\n", + "69068 0\n", + "69069 0\n", + "69070 0\n", + "69071 0\n", + "69072 0\n", + "69073 1\n", + "69074 0\n", + "69075 0\n", + "69076 0\n", + "69077 0\n", + "69078 0\n", + "69079 0\n", + "69080 0\n", + "69081 0\n", + "69082 0\n", + "69083 0\n", + "69084 0\n", + "69085 0\n", + "69086 0\n", + "69087 0\n", + "69088 0\n", + "69089 0\n", + "69090 0\n", + "69091 0\n", + "69092 0\n", + "69093 0\n", + "69094 0\n", + "69095 0\n", + "69096 0\n", + "69097 0\n", + "69098 0\n", + "69099 0\n", + "69100 0\n", + "69101 0\n", + "69102 0\n", + "69103 0\n", + "69104 0\n", + "69105 0\n", + "69106 0\n", + "69107 0\n", + "69108 0\n", + "69109 1\n", + "69110 0\n", + "69111 0\n", + "69112 0\n", + "69113 0\n", + "69114 0\n", + "69115 0\n", + "69116 0\n", + "69117 0\n", + "69118 0\n", + "69119 1\n", + "69120 0\n", + "69121 0\n", + "69122 0\n", + "69123 0\n", + "69124 0\n", + "69125 0\n", + "69126 0\n", + "69127 1\n", + "69128 0\n", + "69129 0\n", + "69130 0\n", + "69131 0\n", + "69132 0\n", + "69133 0\n", + "69134 0\n", + "69135 0\n", + "69136 0\n", + "69137 0\n", + "69138 0\n", + "69139 0\n", + "69140 0\n", + "69141 0\n", + "69142 0\n", + "69143 1\n", + "69144 0\n", + "69145 0\n", + "69146 0\n", + "69147 0\n", + "69148 0\n", + "69149 1\n", + "69150 0\n", + "69151 1\n", + "69152 0\n", + "69153 0\n", + "69154 0\n", + "69155 0\n", + "69156 0\n", + "69157 0\n", + "69158 0\n", + "69159 0\n", + "69160 0\n", + "69161 0\n", + "69162 0\n", + "69163 1\n", + "69164 0\n", + "69165 0\n", + "69166 0\n", + "69167 0\n", + "69168 0\n", + "69169 0\n", + "69170 0\n", + "69171 0\n", + "69172 0\n", + "69173 0\n", + "69174 0\n", + "69175 0\n", + "69176 0\n", + "69177 0\n", + "69178 0\n", + "69179 0\n", + "69180 0\n", + "69181 0\n", + "69182 0\n", + "69183 0\n", + "69184 0\n", + "69185 0\n", + "69186 0\n", + "69187 0\n", + "69188 0\n", + "69189 0\n", + "69190 0\n", + "69191 1\n", + "69192 0\n", + "69193 1\n", + "69194 0\n", + "69195 0\n", + "69196 0\n", + "69197 1\n", + "69198 0\n", + "69199 0\n", + "69200 0\n", + "69201 0\n", + "69202 0\n", + "69203 1\n", + "69204 0\n", + "69205 0\n", + "69206 0\n", + "69207 0\n", + "69208 0\n", + "69209 0\n", + "69210 0\n", + "69211 0\n", + "69212 0\n", + "69213 0\n", + "69214 0\n", + "69215 0\n", + "69216 0\n", + "69217 0\n", + "69218 0\n", + "69219 0\n", + "69220 0\n", + "69221 1\n", + "69222 0\n", + "69223 0\n", + "69224 0\n", + "69225 0\n", + "69226 0\n", + "69227 0\n", + "69228 0\n", + "69229 0\n", + "69230 0\n", + "69231 0\n", + "69232 0\n", + "69233 1\n", + "69234 0\n", + "69235 0\n", + "69236 0\n", + "69237 0\n", + "69238 0\n", + "69239 1\n", + "69240 0\n", + "69241 0\n", + "69242 0\n", + "69243 0\n", + "69244 0\n", + "69245 0\n", + "69246 0\n", + "69247 1\n", + "69248 0\n", + "69249 0\n", + "69250 0\n", + "69251 0\n", + "69252 0\n", + "69253 0\n", + "69254 0\n", + "69255 0\n", + "69256 0\n", + "69257 1\n", + "69258 0\n", + "69259 1\n", + "69260 0\n", + "69261 0\n", + "69262 0\n", + "69263 1\n", + "69264 0\n", + "69265 0\n", + "69266 0\n", + "69267 0\n", + "69268 0\n", + "69269 0\n", + "69270 0\n", + "69271 0\n", + "69272 0\n", + "69273 0\n", + "69274 0\n", + "69275 0\n", + "69276 0\n", + "69277 0\n", + "69278 0\n", + "69279 0\n", + "69280 0\n", + "69281 0\n", + "69282 0\n", + "69283 0\n", + "69284 0\n", + "69285 0\n", + "69286 0\n", + "69287 0\n", + "69288 0\n", + "69289 0\n", + "69290 0\n", + "69291 0\n", + "69292 0\n", + "69293 0\n", + "69294 0\n", + "69295 0\n", + "69296 0\n", + "69297 0\n", + "69298 0\n", + "69299 0\n", + "69300 0\n", + "69301 0\n", + "69302 0\n", + "69303 0\n", + "69304 0\n", + "69305 0\n", + "69306 0\n", + "69307 0\n", + "69308 0\n", + "69309 0\n", + "69310 0\n", + "69311 0\n", + "69312 0\n", + "69313 1\n", + "69314 0\n", + "69315 0\n", + "69316 0\n", + "69317 1\n", + "69318 0\n", + "69319 0\n", + "69320 0\n", + "69321 0\n", + "69322 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "69323 0\n", + "69324 0\n", + "69325 0\n", + "69326 0\n", + "69327 0\n", + "69328 0\n", + "69329 0\n", + "69330 0\n", + "69331 0\n", + "69332 0\n", + "69333 0\n", + "69334 0\n", + "69335 0\n", + "69336 0\n", + "69337 1\n", + "69338 0\n", + "69339 0\n", + "69340 0\n", + "69341 1\n", + "69342 0\n", + "69343 0\n", + "69344 0\n", + "69345 0\n", + "69346 0\n", + "69347 0\n", + "69348 0\n", + "69349 0\n", + "69350 0\n", + "69351 0\n", + "69352 0\n", + "69353 0\n", + "69354 0\n", + "69355 0\n", + "69356 0\n", + "69357 0\n", + "69358 0\n", + "69359 0\n", + "69360 0\n", + "69361 0\n", + "69362 0\n", + "69363 0\n", + "69364 0\n", + "69365 0\n", + "69366 0\n", + "69367 0\n", + "69368 0\n", + "69369 0\n", + "69370 0\n", + "69371 1\n", + "69372 0\n", + "69373 0\n", + "69374 0\n", + "69375 0\n", + "69376 0\n", + "69377 0\n", + "69378 0\n", + "69379 1\n", + "69380 0\n", + "69381 0\n", + "69382 0\n", + "69383 1\n", + "69384 0\n", + "69385 0\n", + "69386 0\n", + "69387 0\n", + "69388 0\n", + "69389 1\n", + "69390 0\n", + "69391 0\n", + "69392 0\n", + "69393 0\n", + "69394 0\n", + "69395 0\n", + "69396 0\n", + "69397 0\n", + "69398 0\n", + "69399 0\n", + "69400 0\n", + "69401 1\n", + "69402 0\n", + "69403 1\n", + "69404 0\n", + "69405 0\n", + "69406 0\n", + "69407 0\n", + "69408 0\n", + "69409 0\n", + "69410 0\n", + "69411 0\n", + "69412 0\n", + "69413 0\n", + "69414 0\n", + "69415 0\n", + "69416 0\n", + "69417 0\n", + "69418 0\n", + "69419 0\n", + "69420 0\n", + "69421 0\n", + "69422 0\n", + "69423 0\n", + "69424 0\n", + "69425 0\n", + "69426 0\n", + "69427 1\n", + "69428 0\n", + "69429 0\n", + "69430 0\n", + "69431 1\n", + "69432 0\n", + "69433 0\n", + "69434 0\n", + "69435 0\n", + "69436 0\n", + "69437 0\n", + "69438 0\n", + "69439 1\n", + "69440 0\n", + "69441 0\n", + "69442 0\n", + "69443 0\n", + "69444 0\n", + "69445 0\n", + "69446 0\n", + "69447 0\n", + "69448 0\n", + "69449 0\n", + "69450 0\n", + "69451 0\n", + "69452 0\n", + "69453 0\n", + "69454 0\n", + "69455 0\n", + "69456 0\n", + "69457 1\n", + "69458 0\n", + "69459 0\n", + "69460 0\n", + "69461 0\n", + "69462 0\n", + "69463 1\n", + "69464 0\n", + "69465 0\n", + "69466 0\n", + "69467 1\n", + "69468 0\n", + "69469 0\n", + "69470 0\n", + "69471 0\n", + "69472 0\n", + "69473 1\n", + "69474 0\n", + "69475 0\n", + "69476 0\n", + "69477 0\n", + "69478 0\n", + "69479 0\n", + "69480 0\n", + "69481 1\n", + "69482 0\n", + "69483 0\n", + "69484 0\n", + "69485 0\n", + "69486 0\n", + "69487 0\n", + "69488 0\n", + "69489 0\n", + "69490 0\n", + "69491 1\n", + "69492 0\n", + "69493 1\n", + "69494 0\n", + "69495 0\n", + "69496 0\n", + "69497 1\n", + "69498 0\n", + "69499 1\n", + "69500 0\n", + "69501 0\n", + "69502 0\n", + "69503 0\n", + "69504 0\n", + "69505 0\n", + "69506 0\n", + "69507 0\n", + "69508 0\n", + "69509 0\n", + "69510 0\n", + "69511 0\n", + "69512 0\n", + "69513 0\n", + "69514 0\n", + "69515 0\n", + "69516 0\n", + "69517 0\n", + "69518 0\n", + "69519 0\n", + "69520 0\n", + "69521 0\n", + "69522 0\n", + "69523 0\n", + "69524 0\n", + "69525 0\n", + "69526 0\n", + "69527 0\n", + "69528 0\n", + "69529 0\n", + "69530 0\n", + "69531 0\n", + "69532 0\n", + "69533 0\n", + "69534 0\n", + "69535 0\n", + "69536 0\n", + "69537 0\n", + "69538 0\n", + "69539 1\n", + "69540 0\n", + "69541 0\n", + "69542 0\n", + "69543 0\n", + "69544 0\n", + "69545 0\n", + "69546 0\n", + "69547 0\n", + "69548 0\n", + "69549 0\n", + "69550 0\n", + "69551 0\n", + "69552 0\n", + "69553 0\n", + "69554 0\n", + "69555 0\n", + "69556 0\n", + "69557 1\n", + "69558 0\n", + "69559 0\n", + "69560 0\n", + "69561 0\n", + "69562 0\n", + "69563 0\n", + "69564 0\n", + "69565 0\n", + "69566 0\n", + "69567 0\n", + "69568 0\n", + "69569 0\n", + "69570 0\n", + "69571 0\n", + "69572 0\n", + "69573 0\n", + "69574 0\n", + "69575 0\n", + "69576 0\n", + "69577 0\n", + "69578 0\n", + "69579 0\n", + "69580 0\n", + "69581 0\n", + "69582 0\n", + "69583 0\n", + "69584 0\n", + "69585 0\n", + "69586 0\n", + "69587 0\n", + "69588 0\n", + "69589 0\n", + "69590 0\n", + "69591 0\n", + "69592 0\n", + "69593 1\n", + "69594 0\n", + "69595 0\n", + "69596 0\n", + "69597 0\n", + "69598 0\n", + "69599 0\n", + "69600 0\n", + "69601 0\n", + "69602 0\n", + "69603 0\n", + "69604 0\n", + "69605 0\n", + "69606 0\n", + "69607 0\n", + "69608 0\n", + "69609 0\n", + "69610 0\n", + "69611 0\n", + "69612 0\n", + "69613 0\n", + "69614 0\n", + "69615 0\n", + "69616 0\n", + "69617 0\n", + "69618 0\n", + "69619 0\n", + "69620 0\n", + "69621 0\n", + "69622 0\n", + "69623 1\n", + "69624 0\n", + "69625 0\n", + "69626 0\n", + "69627 0\n", + "69628 0\n", + "69629 0\n", + "69630 0\n", + "69631 0\n", + "69632 0\n", + "69633 0\n", + "69634 0\n", + "69635 0\n", + "69636 0\n", + "69637 0\n", + "69638 0\n", + "69639 0\n", + "69640 0\n", + "69641 0\n", + "69642 0\n", + "69643 0\n", + "69644 0\n", + "69645 0\n", + "69646 0\n", + "69647 0\n", + "69648 0\n", + "69649 0\n", + "69650 0\n", + "69651 0\n", + "69652 0\n", + "69653 1\n", + "69654 0\n", + "69655 0\n", + "69656 0\n", + "69657 0\n", + "69658 0\n", + "69659 0\n", + "69660 0\n", + "69661 1\n", + "69662 0\n", + "69663 0\n", + "69664 0\n", + "69665 0\n", + "69666 0\n", + "69667 0\n", + "69668 0\n", + "69669 0\n", + "69670 0\n", + "69671 0\n", + "69672 0\n", + "69673 0\n", + "69674 0\n", + "69675 0\n", + "69676 0\n", + "69677 1\n", + "69678 0\n", + "69679 0\n", + "69680 0\n", + "69681 0\n", + "69682 0\n", + "69683 0\n", + "69684 0\n", + "69685 0\n", + "69686 0\n", + "69687 0\n", + "69688 0\n", + "69689 0\n", + "69690 0\n", + "69691 1\n", + "69692 0\n", + "69693 0\n", + "69694 0\n", + "69695 0\n", + "69696 0\n", + "69697 1\n", + "69698 0\n", + "69699 0\n", + "69700 0\n", + "69701 0\n", + "69702 0\n", + "69703 0\n", + "69704 0\n", + "69705 0\n", + "69706 0\n", + "69707 0\n", + "69708 0\n", + "69709 1\n", + "69710 0\n", + "69711 0\n", + "69712 0\n", + "69713 0\n", + "69714 0\n", + "69715 0\n", + "69716 0\n", + "69717 0\n", + "69718 0\n", + "69719 0\n", + "69720 0\n", + "69721 0\n", + "69722 0\n", + "69723 0\n", + "69724 0\n", + "69725 0\n", + "69726 0\n", + "69727 0\n", + "69728 0\n", + "69729 0\n", + "69730 0\n", + "69731 0\n", + "69732 0\n", + "69733 0\n", + "69734 0\n", + "69735 0\n", + "69736 0\n", + "69737 1\n", + "69738 0\n", + "69739 1\n", + "69740 0\n", + "69741 0\n", + "69742 0\n", + "69743 0\n", + "69744 0\n", + "69745 0\n", + "69746 0\n", + "69747 0\n", + "69748 0\n", + "69749 0\n", + "69750 0\n", + "69751 0\n", + "69752 0\n", + "69753 0\n", + "69754 0\n", + "69755 0\n", + "69756 0\n", + "69757 0\n", + "69758 0\n", + "69759 0\n", + "69760 0\n", + "69761 1\n", + "69762 0\n", + "69763 1\n", + "69764 0\n", + "69765 0\n", + "69766 0\n", + "69767 1\n", + "69768 0\n", + "69769 0\n", + "69770 0\n", + "69771 0\n", + "69772 0\n", + "69773 0\n", + "69774 0\n", + "69775 0\n", + "69776 0\n", + "69777 0\n", + "69778 0\n", + "69779 1\n", + "69780 0\n", + "69781 0\n", + "69782 0\n", + "69783 0\n", + "69784 0\n", + "69785 0\n", + "69786 0\n", + "69787 0\n", + "69788 0\n", + "69789 0\n", + "69790 0\n", + "69791 0\n", + "69792 0\n", + "69793 0\n", + "69794 0\n", + "69795 0\n", + "69796 0\n", + "69797 0\n", + "69798 0\n", + "69799 0\n", + "69800 0\n", + "69801 0\n", + "69802 0\n", + "69803 0\n", + "69804 0\n", + "69805 0\n", + "69806 0\n", + "69807 0\n", + "69808 0\n", + "69809 1\n", + "69810 0\n", + "69811 0\n", + "69812 0\n", + "69813 0\n", + "69814 0\n", + "69815 0\n", + "69816 0\n", + "69817 0\n", + "69818 0\n", + "69819 0\n", + "69820 0\n", + "69821 1\n", + "69822 0\n", + "69823 0\n", + "69824 0\n", + "69825 0\n", + "69826 0\n", + "69827 1\n", + "69828 0\n", + "69829 1\n", + "69830 0\n", + "69831 0\n", + "69832 0\n", + "69833 1\n", + "69834 0\n", + "69835 0\n", + "69836 0\n", + "69837 0\n", + "69838 0\n", + "69839 0\n", + "69840 0\n", + "69841 0\n", + "69842 0\n", + "69843 0\n", + "69844 0\n", + "69845 0\n", + "69846 0\n", + "69847 1\n", + "69848 0\n", + "69849 0\n", + "69850 0\n", + "69851 0\n", + "69852 0\n", + "69853 0\n", + "69854 0\n", + "69855 0\n", + "69856 0\n", + "69857 1\n", + "69858 0\n", + "69859 1\n", + "69860 0\n", + "69861 0\n", + "69862 0\n", + "69863 0\n", + "69864 0\n", + "69865 0\n", + "69866 0\n", + "69867 0\n", + "69868 0\n", + "69869 0\n", + "69870 0\n", + "69871 0\n", + "69872 0\n", + "69873 0\n", + "69874 0\n", + "69875 0\n", + "69876 0\n", + "69877 1\n", + "69878 0\n", + "69879 0\n", + "69880 0\n", + "69881 0\n", + "69882 0\n", + "69883 0\n", + "69884 0\n", + "69885 0\n", + "69886 0\n", + "69887 0\n", + "69888 0\n", + "69889 0\n", + "69890 0\n", + "69891 0\n", + "69892 0\n", + "69893 0\n", + "69894 0\n", + "69895 0\n", + "69896 0\n", + "69897 0\n", + "69898 0\n", + "69899 1\n", + "69900 0\n", + "69901 0\n", + "69902 0\n", + "69903 0\n", + "69904 0\n", + "69905 0\n", + "69906 0\n", + "69907 0\n", + "69908 0\n", + "69909 0\n", + "69910 0\n", + "69911 1\n", + "69912 0\n", + "69913 0\n", + "69914 0\n", + "69915 0\n", + "69916 0\n", + "69917 0\n", + "69918 0\n", + "69919 0\n", + "69920 0\n", + "69921 0\n", + "69922 0\n", + "69923 0\n", + "69924 0\n", + "69925 0\n", + "69926 0\n", + "69927 0\n", + "69928 0\n", + "69929 1\n", + "69930 0\n", + "69931 1\n", + "69932 0\n", + "69933 0\n", + "69934 0\n", + "69935 0\n", + "69936 0\n", + "69937 0\n", + "69938 0\n", + "69939 0\n", + "69940 0\n", + "69941 1\n", + "69942 0\n", + "69943 0\n", + "69944 0\n", + "69945 0\n", + "69946 0\n", + "69947 0\n", + "69948 0\n", + "69949 0\n", + "69950 0\n", + "69951 0\n", + "69952 0\n", + "69953 0\n", + "69954 0\n", + "69955 0\n", + "69956 0\n", + "69957 0\n", + "69958 0\n", + "69959 1\n", + "69960 0\n", + "69961 0\n", + "69962 0\n", + "69963 0\n", + "69964 0\n", + "69965 0\n", + "69966 0\n", + "69967 0\n", + "69968 0\n", + "69969 0\n", + "69970 0\n", + "69971 0\n", + "69972 0\n", + "69973 0\n", + "69974 0\n", + "69975 0\n", + "69976 0\n", + "69977 0\n", + "69978 0\n", + "69979 0\n", + "69980 0\n", + "69981 0\n", + "69982 0\n", + "69983 0\n", + "69984 0\n", + "69985 0\n", + "69986 0\n", + "69987 0\n", + "69988 0\n", + "69989 0\n", + "69990 0\n", + "69991 1\n", + "69992 0\n", + "69993 0\n", + "69994 0\n", + "69995 0\n", + "69996 0\n", + "69997 1\n", + "69998 0\n", + "69999 0\n", + "70000 0\n", + "70001 1\n", + "70002 0\n", + "70003 1\n", + "70004 0\n", + "70005 0\n", + "70006 0\n", + "70007 0\n", + "70008 0\n", + "70009 1\n", + "70010 0\n", + "70011 0\n", + "70012 0\n", + "70013 0\n", + "70014 0\n", + "70015 0\n", + "70016 0\n", + "70017 0\n", + "70018 0\n", + "70019 1\n", + "70020 0\n", + "70021 0\n", + "70022 0\n", + "70023 0\n", + "70024 0\n", + "70025 0\n", + "70026 0\n", + "70027 0\n", + "70028 0\n", + "70029 0\n", + "70030 0\n", + "70031 0\n", + "70032 0\n", + "70033 0\n", + "70034 0\n", + "70035 0\n", + "70036 0\n", + "70037 0\n", + "70038 0\n", + "70039 1\n", + "70040 0\n", + "70041 0\n", + "70042 0\n", + "70043 0\n", + "70044 0\n", + "70045 0\n", + "70046 0\n", + "70047 0\n", + "70048 0\n", + "70049 0\n", + "70050 0\n", + "70051 1\n", + "70052 0\n", + "70053 0\n", + "70054 0\n", + "70055 0\n", + "70056 0\n", + "70057 0\n", + "70058 0\n", + "70059 0\n", + "70060 0\n", + "70061 1\n", + "70062 0\n", + "70063 0\n", + "70064 0\n", + "70065 0\n", + "70066 0\n", + "70067 1\n", + "70068 0\n", + "70069 0\n", + "70070 0\n", + "70071 0\n", + "70072 0\n", + "70073 0\n", + "70074 0\n", + "70075 0\n", + "70076 0\n", + "70077 0\n", + "70078 0\n", + "70079 1\n", + "70080 0\n", + "70081 0\n", + "70082 0\n", + "70083 0\n", + "70084 0\n", + "70085 0\n", + "70086 0\n", + "70087 0\n", + "70088 0\n", + "70089 0\n", + "70090 0\n", + "70091 0\n", + "70092 0\n", + "70093 0\n", + "70094 0\n", + "70095 0\n", + "70096 0\n", + "70097 0\n", + "70098 0\n", + "70099 1\n", + "70100 0\n", + "70101 0\n", + "70102 0\n", + "70103 0\n", + "70104 0\n", + "70105 0\n", + "70106 0\n", + "70107 0\n", + "70108 0\n", + "70109 0\n", + "70110 0\n", + "70111 1\n", + "70112 0\n", + "70113 0\n", + "70114 0\n", + "70115 0\n", + "70116 0\n", + "70117 1\n", + "70118 0\n", + "70119 0\n", + "70120 0\n", + "70121 1\n", + "70122 0\n", + "70123 1\n", + "70124 0\n", + "70125 0\n", + "70126 0\n", + "70127 0\n", + "70128 0\n", + "70129 0\n", + "70130 0\n", + "70131 0\n", + "70132 0\n", + "70133 0\n", + "70134 0\n", + "70135 0\n", + "70136 0\n", + "70137 0\n", + "70138 0\n", + "70139 1\n", + "70140 0\n", + "70141 1\n", + "70142 0\n", + "70143 0\n", + "70144 0\n", + "70145 0\n", + "70146 0\n", + "70147 0\n", + "70148 0\n", + "70149 0\n", + "70150 0\n", + "70151 0\n", + "70152 0\n", + "70153 0\n", + "70154 0\n", + "70155 0\n", + "70156 0\n", + "70157 1\n", + "70158 0\n", + "70159 0\n", + "70160 0\n", + "70161 0\n", + "70162 0\n", + "70163 1\n", + "70164 0\n", + "70165 0\n", + "70166 0\n", + "70167 0\n", + "70168 0\n", + "70169 0\n", + "70170 0\n", + "70171 0\n", + "70172 0\n", + "70173 0\n", + "70174 0\n", + "70175 0\n", + "70176 0\n", + "70177 1\n", + "70178 0\n", + "70179 0\n", + "70180 0\n", + "70181 1\n", + "70182 0\n", + "70183 1\n", + "70184 0\n", + "70185 0\n", + "70186 0\n", + "70187 0\n", + "70188 0\n", + "70189 0\n", + "70190 0\n", + "70191 0\n", + "70192 0\n", + "70193 0\n", + "70194 0\n", + "70195 0\n", + "70196 0\n", + "70197 0\n", + "70198 0\n", + "70199 1\n", + "70200 0\n", + "70201 1\n", + "70202 0\n", + "70203 0\n", + "70204 0\n", + "70205 0\n", + "70206 0\n", + "70207 1\n", + "70208 0\n", + "70209 0\n", + "70210 0\n", + "70211 0\n", + "70212 0\n", + "70213 0\n", + "70214 0\n", + "70215 0\n", + "70216 0\n", + "70217 0\n", + "70218 0\n", + "70219 0\n", + "70220 0\n", + "70221 0\n", + "70222 0\n", + "70223 1\n", + "70224 0\n", + "70225 0\n", + "70226 0\n", + "70227 0\n", + "70228 0\n", + "70229 1\n", + "70230 0\n", + "70231 0\n", + "70232 0\n", + "70233 0\n", + "70234 0\n", + "70235 0\n", + "70236 0\n", + "70237 1\n", + "70238 0\n", + "70239 0\n", + "70240 0\n", + "70241 1\n", + "70242 0\n", + "70243 0\n", + "70244 0\n", + "70245 0\n", + "70246 0\n", + "70247 0\n", + "70248 0\n", + "70249 1\n", + "70250 0\n", + "70251 0\n", + "70252 0\n", + "70253 0\n", + "70254 0\n", + "70255 0\n", + "70256 0\n", + "70257 0\n", + "70258 0\n", + "70259 0\n", + "70260 0\n", + "70261 0\n", + "70262 0\n", + "70263 0\n", + "70264 0\n", + "70265 0\n", + "70266 0\n", + "70267 0\n", + "70268 0\n", + "70269 0\n", + "70270 0\n", + "70271 1\n", + "70272 0\n", + "70273 0\n", + "70274 0\n", + "70275 0\n", + "70276 0\n", + "70277 0\n", + "70278 0\n", + "70279 0\n", + "70280 0\n", + "70281 0\n", + "70282 0\n", + "70283 0\n", + "70284 0\n", + "70285 0\n", + "70286 0\n", + "70287 0\n", + "70288 0\n", + "70289 1\n", + "70290 0\n", + "70291 0\n", + "70292 0\n", + "70293 0\n", + "70294 0\n", + "70295 0\n", + "70296 0\n", + "70297 1\n", + "70298 0\n", + "70299 0\n", + "70300 0\n", + "70301 0\n", + "70302 0\n", + "70303 0\n", + "70304 0\n", + "70305 0\n", + "70306 0\n", + "70307 0\n", + "70308 0\n", + "70309 1\n", + "70310 0\n", + "70311 0\n", + "70312 0\n", + "70313 1\n", + "70314 0\n", + "70315 0\n", + "70316 0\n", + "70317 0\n", + "70318 0\n", + "70319 0\n", + "70320 0\n", + "70321 1\n", + "70322 0\n", + "70323 0\n", + "70324 0\n", + "70325 0\n", + "70326 0\n", + "70327 1\n", + "70328 0\n", + "70329 0\n", + "70330 0\n", + "70331 0\n", + "70332 0\n", + "70333 0\n", + "70334 0\n", + "70335 0\n", + "70336 0\n", + "70337 0\n", + "70338 0\n", + "70339 0\n", + "70340 0\n", + "70341 0\n", + "70342 0\n", + "70343 0\n", + "70344 0\n", + "70345 0\n", + "70346 0\n", + "70347 0\n", + "70348 0\n", + "70349 0\n", + "70350 0\n", + "70351 1\n", + "70352 0\n", + "70353 0\n", + "70354 0\n", + "70355 0\n", + "70356 0\n", + "70357 0\n", + "70358 0\n", + "70359 0\n", + "70360 0\n", + "70361 0\n", + "70362 0\n", + "70363 0\n", + "70364 0\n", + "70365 0\n", + "70366 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "70367 0\n", + "70368 0\n", + "70369 0\n", + "70370 0\n", + "70371 0\n", + "70372 0\n", + "70373 1\n", + "70374 0\n", + "70375 0\n", + "70376 0\n", + "70377 0\n", + "70378 0\n", + "70379 1\n", + "70380 0\n", + "70381 1\n", + "70382 0\n", + "70383 0\n", + "70384 0\n", + "70385 0\n", + "70386 0\n", + "70387 0\n", + "70388 0\n", + "70389 0\n", + "70390 0\n", + "70391 0\n", + "70392 0\n", + "70393 1\n", + "70394 0\n", + "70395 0\n", + "70396 0\n", + "70397 0\n", + "70398 0\n", + "70399 0\n", + "70400 0\n", + "70401 0\n", + "70402 0\n", + "70403 0\n", + "70404 0\n", + "70405 0\n", + "70406 0\n", + "70407 0\n", + "70408 0\n", + "70409 0\n", + "70410 0\n", + "70411 0\n", + "70412 0\n", + "70413 0\n", + "70414 0\n", + "70415 0\n", + "70416 0\n", + "70417 0\n", + "70418 0\n", + "70419 0\n", + "70420 0\n", + "70421 0\n", + "70422 0\n", + "70423 1\n", + "70424 0\n", + "70425 0\n", + "70426 0\n", + "70427 0\n", + "70428 0\n", + "70429 1\n", + "70430 0\n", + "70431 0\n", + "70432 0\n", + "70433 0\n", + "70434 0\n", + "70435 0\n", + "70436 0\n", + "70437 0\n", + "70438 0\n", + "70439 1\n", + "70440 0\n", + "70441 0\n", + "70442 0\n", + "70443 0\n", + "70444 0\n", + "70445 0\n", + "70446 0\n", + "70447 0\n", + "70448 0\n", + "70449 0\n", + "70450 0\n", + "70451 1\n", + "70452 0\n", + "70453 0\n", + "70454 0\n", + "70455 0\n", + "70456 0\n", + "70457 1\n", + "70458 0\n", + "70459 1\n", + "70460 0\n", + "70461 0\n", + "70462 0\n", + "70463 0\n", + "70464 0\n", + "70465 0\n", + "70466 0\n", + "70467 0\n", + "70468 0\n", + "70469 0\n", + "70470 0\n", + "70471 0\n", + "70472 0\n", + "70473 0\n", + "70474 0\n", + "70475 0\n", + "70476 0\n", + "70477 0\n", + "70478 0\n", + "70479 0\n", + "70480 0\n", + "70481 1\n", + "70482 0\n", + "70483 0\n", + "70484 0\n", + "70485 0\n", + "70486 0\n", + "70487 1\n", + "70488 0\n", + "70489 1\n", + "70490 0\n", + "70491 0\n", + "70492 0\n", + "70493 0\n", + "70494 0\n", + "70495 0\n", + "70496 0\n", + "70497 0\n", + "70498 0\n", + "70499 0\n", + "70500 0\n", + "70501 1\n", + "70502 0\n", + "70503 0\n", + "70504 0\n", + "70505 0\n", + "70506 0\n", + "70507 1\n", + "70508 0\n", + "70509 0\n", + "70510 0\n", + "70511 0\n", + "70512 0\n", + "70513 0\n", + "70514 0\n", + "70515 0\n", + "70516 0\n", + "70517 0\n", + "70518 0\n", + "70519 0\n", + "70520 0\n", + "70521 0\n", + "70522 0\n", + "70523 0\n", + "70524 0\n", + "70525 0\n", + "70526 0\n", + "70527 0\n", + "70528 0\n", + "70529 1\n", + "70530 0\n", + "70531 0\n", + "70532 0\n", + "70533 0\n", + "70534 0\n", + "70535 0\n", + "70536 0\n", + "70537 1\n", + "70538 0\n", + "70539 0\n", + "70540 0\n", + "70541 0\n", + "70542 0\n", + "70543 0\n", + "70544 0\n", + "70545 0\n", + "70546 0\n", + "70547 0\n", + "70548 0\n", + "70549 1\n", + "70550 0\n", + "70551 0\n", + "70552 0\n", + "70553 0\n", + "70554 0\n", + "70555 0\n", + "70556 0\n", + "70557 0\n", + "70558 0\n", + "70559 0\n", + "70560 0\n", + "70561 0\n", + "70562 0\n", + "70563 0\n", + "70564 0\n", + "70565 0\n", + "70566 0\n", + "70567 0\n", + "70568 0\n", + "70569 0\n", + "70570 0\n", + "70571 1\n", + "70572 0\n", + "70573 1\n", + "70574 0\n", + "70575 0\n", + "70576 0\n", + "70577 0\n", + "70578 0\n", + "70579 0\n", + "70580 0\n", + "70581 0\n", + "70582 0\n", + "70583 1\n", + "70584 0\n", + "70585 0\n", + "70586 0\n", + "70587 0\n", + "70588 0\n", + "70589 1\n", + "70590 0\n", + "70591 0\n", + "70592 0\n", + "70593 0\n", + "70594 0\n", + "70595 0\n", + "70596 0\n", + "70597 0\n", + "70598 0\n", + "70599 0\n", + "70600 0\n", + "70601 0\n", + "70602 0\n", + "70603 0\n", + "70604 0\n", + "70605 0\n", + "70606 0\n", + "70607 1\n", + "70608 0\n", + "70609 0\n", + "70610 0\n", + "70611 0\n", + "70612 0\n", + "70613 0\n", + "70614 0\n", + "70615 0\n", + "70616 0\n", + "70617 0\n", + "70618 0\n", + "70619 1\n", + "70620 0\n", + "70621 1\n", + "70622 0\n", + "70623 0\n", + "70624 0\n", + "70625 0\n", + "70626 0\n", + "70627 1\n", + "70628 0\n", + "70629 0\n", + "70630 0\n", + "70631 0\n", + "70632 0\n", + "70633 0\n", + "70634 0\n", + "70635 0\n", + "70636 0\n", + "70637 0\n", + "70638 0\n", + "70639 1\n", + "70640 0\n", + "70641 0\n", + "70642 0\n", + "70643 0\n", + "70644 0\n", + "70645 0\n", + "70646 0\n", + "70647 0\n", + "70648 0\n", + "70649 0\n", + "70650 0\n", + "70651 0\n", + "70652 0\n", + "70653 0\n", + "70654 0\n", + "70655 0\n", + "70656 0\n", + "70657 1\n", + "70658 0\n", + "70659 0\n", + "70660 0\n", + "70661 0\n", + "70662 0\n", + "70663 1\n", + "70664 0\n", + "70665 0\n", + "70666 0\n", + "70667 1\n", + "70668 0\n", + "70669 0\n", + "70670 0\n", + "70671 0\n", + "70672 0\n", + "70673 0\n", + "70674 0\n", + "70675 0\n", + "70676 0\n", + "70677 0\n", + "70678 0\n", + "70679 0\n", + "70680 0\n", + "70681 0\n", + "70682 0\n", + "70683 0\n", + "70684 0\n", + "70685 0\n", + "70686 0\n", + "70687 1\n", + "70688 0\n", + "70689 0\n", + "70690 0\n", + "70691 0\n", + "70692 0\n", + "70693 0\n", + "70694 0\n", + "70695 0\n", + "70696 0\n", + "70697 0\n", + "70698 0\n", + "70699 0\n", + "70700 0\n", + "70701 0\n", + "70702 0\n", + "70703 0\n", + "70704 0\n", + "70705 0\n", + "70706 0\n", + "70707 0\n", + "70708 0\n", + "70709 1\n", + "70710 0\n", + "70711 0\n", + "70712 0\n", + "70713 0\n", + "70714 0\n", + "70715 0\n", + "70716 0\n", + "70717 1\n", + "70718 0\n", + "70719 0\n", + "70720 0\n", + "70721 0\n", + "70722 0\n", + "70723 0\n", + "70724 0\n", + "70725 0\n", + "70726 0\n", + "70727 0\n", + "70728 0\n", + "70729 1\n", + "70730 0\n", + "70731 0\n", + "70732 0\n", + "70733 0\n", + "70734 0\n", + "70735 0\n", + "70736 0\n", + "70737 0\n", + "70738 0\n", + "70739 0\n", + "70740 0\n", + "70741 0\n", + "70742 0\n", + "70743 0\n", + "70744 0\n", + "70745 0\n", + "70746 0\n", + "70747 0\n", + "70748 0\n", + "70749 0\n", + "70750 0\n", + "70751 0\n", + "70752 0\n", + "70753 1\n", + "70754 0\n", + "70755 0\n", + "70756 0\n", + "70757 0\n", + "70758 0\n", + "70759 0\n", + "70760 0\n", + "70761 0\n", + "70762 0\n", + "70763 0\n", + "70764 0\n", + "70765 0\n", + "70766 0\n", + "70767 0\n", + "70768 0\n", + "70769 1\n", + "70770 0\n", + "70771 0\n", + "70772 0\n", + "70773 0\n", + "70774 0\n", + "70775 0\n", + "70776 0\n", + "70777 0\n", + "70778 0\n", + "70779 0\n", + "70780 0\n", + "70781 0\n", + "70782 0\n", + "70783 1\n", + "70784 0\n", + "70785 0\n", + "70786 0\n", + "70787 0\n", + "70788 0\n", + "70789 0\n", + "70790 0\n", + "70791 0\n", + "70792 0\n", + "70793 1\n", + "70794 0\n", + "70795 0\n", + "70796 0\n", + "70797 0\n", + "70798 0\n", + "70799 0\n", + "70800 0\n", + "70801 0\n", + "70802 0\n", + "70803 0\n", + "70804 0\n", + "70805 0\n", + "70806 0\n", + "70807 0\n", + "70808 0\n", + "70809 0\n", + "70810 0\n", + "70811 0\n", + "70812 0\n", + "70813 0\n", + "70814 0\n", + "70815 0\n", + "70816 0\n", + "70817 0\n", + "70818 0\n", + "70819 0\n", + "70820 0\n", + "70821 0\n", + "70822 0\n", + "70823 1\n", + "70824 0\n", + "70825 0\n", + "70826 0\n", + "70827 0\n", + "70828 0\n", + "70829 0\n", + "70830 0\n", + "70831 0\n", + "70832 0\n", + "70833 0\n", + "70834 0\n", + "70835 0\n", + "70836 0\n", + "70837 0\n", + "70838 0\n", + "70839 0\n", + "70840 0\n", + "70841 1\n", + "70842 0\n", + "70843 1\n", + "70844 0\n", + "70845 0\n", + "70846 0\n", + "70847 0\n", + "70848 0\n", + "70849 1\n", + "70850 0\n", + "70851 0\n", + "70852 0\n", + "70853 1\n", + "70854 0\n", + "70855 0\n", + "70856 0\n", + "70857 0\n", + "70858 0\n", + "70859 0\n", + "70860 0\n", + "70861 0\n", + "70862 0\n", + "70863 0\n", + "70864 0\n", + "70865 0\n", + "70866 0\n", + "70867 1\n", + "70868 0\n", + "70869 0\n", + "70870 0\n", + "70871 0\n", + "70872 0\n", + "70873 0\n", + "70874 0\n", + "70875 0\n", + "70876 0\n", + "70877 1\n", + "70878 0\n", + "70879 1\n", + "70880 0\n", + "70881 0\n", + "70882 0\n", + "70883 0\n", + "70884 0\n", + "70885 0\n", + "70886 0\n", + "70887 0\n", + "70888 0\n", + "70889 0\n", + "70890 0\n", + "70891 1\n", + "70892 0\n", + "70893 0\n", + "70894 0\n", + "70895 0\n", + "70896 0\n", + "70897 0\n", + "70898 0\n", + "70899 0\n", + "70900 0\n", + "70901 1\n", + "70902 0\n", + "70903 0\n", + "70904 0\n", + "70905 0\n", + "70906 0\n", + "70907 0\n", + "70908 0\n", + "70909 0\n", + "70910 0\n", + "70911 0\n", + "70912 0\n", + "70913 1\n", + "70914 0\n", + "70915 0\n", + "70916 0\n", + "70917 0\n", + "70918 0\n", + "70919 1\n", + "70920 0\n", + "70921 1\n", + "70922 0\n", + "70923 0\n", + "70924 0\n", + "70925 0\n", + "70926 0\n", + "70927 0\n", + "70928 0\n", + "70929 0\n", + "70930 0\n", + "70931 0\n", + "70932 0\n", + "70933 0\n", + "70934 0\n", + "70935 0\n", + "70936 0\n", + "70937 1\n", + "70938 0\n", + "70939 0\n", + "70940 0\n", + "70941 0\n", + "70942 0\n", + "70943 0\n", + "70944 0\n", + "70945 0\n", + "70946 0\n", + "70947 0\n", + "70948 0\n", + "70949 1\n", + "70950 0\n", + "70951 1\n", + "70952 0\n", + "70953 0\n", + "70954 0\n", + "70955 0\n", + "70956 0\n", + "70957 1\n", + "70958 0\n", + "70959 0\n", + "70960 0\n", + "70961 0\n", + "70962 0\n", + "70963 0\n", + "70964 0\n", + "70965 0\n", + "70966 0\n", + "70967 0\n", + "70968 0\n", + "70969 1\n", + "70970 0\n", + "70971 0\n", + "70972 0\n", + "70973 0\n", + "70974 0\n", + "70975 0\n", + "70976 0\n", + "70977 0\n", + "70978 0\n", + "70979 1\n", + "70980 0\n", + "70981 1\n", + "70982 0\n", + "70983 0\n", + "70984 0\n", + "70985 0\n", + "70986 0\n", + "70987 0\n", + "70988 0\n", + "70989 0\n", + "70990 0\n", + "70991 1\n", + "70992 0\n", + "70993 0\n", + "70994 0\n", + "70995 0\n", + "70996 0\n", + "70997 1\n", + "70998 0\n", + "70999 1\n", + "71000 0\n", + "71001 0\n", + "71002 0\n", + "71003 0\n", + "71004 0\n", + "71005 0\n", + "71006 0\n", + "71007 0\n", + "71008 0\n", + "71009 0\n", + "71010 0\n", + "71011 1\n", + "71012 0\n", + "71013 0\n", + "71014 0\n", + "71015 0\n", + "71016 0\n", + "71017 0\n", + "71018 0\n", + "71019 0\n", + "71020 0\n", + "71021 0\n", + "71022 0\n", + "71023 1\n", + "71024 0\n", + "71025 0\n", + "71026 0\n", + "71027 0\n", + "71028 0\n", + "71029 0\n", + "71030 0\n", + "71031 0\n", + "71032 0\n", + "71033 0\n", + "71034 0\n", + "71035 0\n", + "71036 0\n", + "71037 0\n", + "71038 0\n", + "71039 1\n", + "71040 0\n", + "71041 0\n", + "71042 0\n", + "71043 0\n", + "71044 0\n", + "71045 0\n", + "71046 0\n", + "71047 0\n", + "71048 0\n", + "71049 0\n", + "71050 0\n", + "71051 0\n", + "71052 0\n", + "71053 0\n", + "71054 0\n", + "71055 0\n", + "71056 0\n", + "71057 0\n", + "71058 0\n", + "71059 1\n", + "71060 0\n", + "71061 0\n", + "71062 0\n", + "71063 0\n", + "71064 0\n", + "71065 0\n", + "71066 0\n", + "71067 0\n", + "71068 0\n", + "71069 1\n", + "71070 0\n", + "71071 0\n", + "71072 0\n", + "71073 0\n", + "71074 0\n", + "71075 0\n", + "71076 0\n", + "71077 0\n", + "71078 0\n", + "71079 0\n", + "71080 0\n", + "71081 1\n", + "71082 0\n", + "71083 0\n", + "71084 0\n", + "71085 0\n", + "71086 0\n", + "71087 0\n", + "71088 0\n", + "71089 1\n", + "71090 0\n", + "71091 0\n", + "71092 0\n", + "71093 0\n", + "71094 0\n", + "71095 0\n", + "71096 0\n", + "71097 0\n", + "71098 0\n", + "71099 0\n", + "71100 0\n", + "71101 0\n", + "71102 0\n", + "71103 0\n", + "71104 0\n", + "71105 0\n", + "71106 0\n", + "71107 0\n", + "71108 0\n", + "71109 0\n", + "71110 0\n", + "71111 0\n", + "71112 0\n", + "71113 0\n", + "71114 0\n", + "71115 0\n", + "71116 0\n", + "71117 0\n", + "71118 0\n", + "71119 1\n", + "71120 0\n", + "71121 0\n", + "71122 0\n", + "71123 0\n", + "71124 0\n", + "71125 0\n", + "71126 0\n", + "71127 0\n", + "71128 0\n", + "71129 1\n", + "71130 0\n", + "71131 0\n", + "71132 0\n", + "71133 0\n", + "71134 0\n", + "71135 0\n", + "71136 0\n", + "71137 0\n", + "71138 0\n", + "71139 0\n", + "71140 0\n", + "71141 0\n", + "71142 0\n", + "71143 1\n", + "71144 0\n", + "71145 0\n", + "71146 0\n", + "71147 1\n", + "71148 0\n", + "71149 0\n", + "71150 0\n", + "71151 0\n", + "71152 0\n", + "71153 1\n", + "71154 0\n", + "71155 0\n", + "71156 0\n", + "71157 0\n", + "71158 0\n", + "71159 0\n", + "71160 0\n", + "71161 1\n", + "71162 0\n", + "71163 0\n", + "71164 0\n", + "71165 0\n", + "71166 0\n", + "71167 1\n", + "71168 0\n", + "71169 0\n", + "71170 0\n", + "71171 1\n", + "71172 0\n", + "71173 0\n", + "71174 0\n", + "71175 0\n", + "71176 0\n", + "71177 0\n", + "71178 0\n", + "71179 0\n", + "71180 0\n", + "71181 0\n", + "71182 0\n", + "71183 0\n", + "71184 0\n", + "71185 0\n", + "71186 0\n", + "71187 0\n", + "71188 0\n", + "71189 0\n", + "71190 0\n", + "71191 1\n", + "71192 0\n", + "71193 0\n", + "71194 0\n", + "71195 0\n", + "71196 0\n", + "71197 0\n", + "71198 0\n", + "71199 0\n", + "71200 0\n", + "71201 0\n", + "71202 0\n", + "71203 0\n", + "71204 0\n", + "71205 0\n", + "71206 0\n", + "71207 0\n", + "71208 0\n", + "71209 1\n", + "71210 0\n", + "71211 0\n", + "71212 0\n", + "71213 0\n", + "71214 0\n", + "71215 0\n", + "71216 0\n", + "71217 0\n", + "71218 0\n", + "71219 0\n", + "71220 0\n", + "71221 0\n", + "71222 0\n", + "71223 0\n", + "71224 0\n", + "71225 0\n", + "71226 0\n", + "71227 0\n", + "71228 0\n", + "71229 0\n", + "71230 0\n", + "71231 0\n", + "71232 0\n", + "71233 1\n", + "71234 0\n", + "71235 0\n", + "71236 0\n", + "71237 1\n", + "71238 0\n", + "71239 0\n", + "71240 0\n", + "71241 0\n", + "71242 0\n", + "71243 0\n", + "71244 0\n", + "71245 0\n", + "71246 0\n", + "71247 0\n", + "71248 0\n", + "71249 1\n", + "71250 0\n", + "71251 0\n", + "71252 0\n", + "71253 0\n", + "71254 0\n", + "71255 0\n", + "71256 0\n", + "71257 1\n", + "71258 0\n", + "71259 0\n", + "71260 0\n", + "71261 1\n", + "71262 0\n", + "71263 1\n", + "71264 0\n", + "71265 0\n", + "71266 0\n", + "71267 0\n", + "71268 0\n", + "71269 0\n", + "71270 0\n", + "71271 0\n", + "71272 0\n", + "71273 0\n", + "71274 0\n", + "71275 0\n", + "71276 0\n", + "71277 0\n", + "71278 0\n", + "71279 0\n", + "71280 0\n", + "71281 0\n", + "71282 0\n", + "71283 0\n", + "71284 0\n", + "71285 0\n", + "71286 0\n", + "71287 1\n", + "71288 0\n", + "71289 0\n", + "71290 0\n", + "71291 0\n", + "71292 0\n", + "71293 1\n", + "71294 0\n", + "71295 0\n", + "71296 0\n", + "71297 0\n", + "71298 0\n", + "71299 0\n", + "71300 0\n", + "71301 0\n", + "71302 0\n", + "71303 0\n", + "71304 0\n", + "71305 0\n", + "71306 0\n", + "71307 0\n", + "71308 0\n", + "71309 0\n", + "71310 0\n", + "71311 0\n", + "71312 0\n", + "71313 0\n", + "71314 0\n", + "71315 0\n", + "71316 0\n", + "71317 1\n", + "71318 0\n", + "71319 0\n", + "71320 0\n", + "71321 0\n", + "71322 0\n", + "71323 0\n", + "71324 0\n", + "71325 0\n", + "71326 0\n", + "71327 1\n", + "71328 0\n", + "71329 1\n", + "71330 0\n", + "71331 0\n", + "71332 0\n", + "71333 1\n", + "71334 0\n", + "71335 0\n", + "71336 0\n", + "71337 0\n", + "71338 0\n", + "71339 1\n", + "71340 0\n", + "71341 1\n", + "71342 0\n", + "71343 0\n", + "71344 0\n", + "71345 0\n", + "71346 0\n", + "71347 1\n", + "71348 0\n", + "71349 0\n", + "71350 0\n", + "71351 0\n", + "71352 0\n", + "71353 1\n", + "71354 0\n", + "71355 0\n", + "71356 0\n", + "71357 0\n", + "71358 0\n", + "71359 1\n", + "71360 0\n", + "71361 0\n", + "71362 0\n", + "71363 1\n", + "71364 0\n", + "71365 0\n", + "71366 0\n", + "71367 0\n", + "71368 0\n", + "71369 0\n", + "71370 0\n", + "71371 0\n", + "71372 0\n", + "71373 0\n", + "71374 0\n", + "71375 0\n", + "71376 0\n", + "71377 0\n", + "71378 0\n", + "71379 0\n", + "71380 0\n", + "71381 0\n", + "71382 0\n", + "71383 0\n", + "71384 0\n", + "71385 0\n", + "71386 0\n", + "71387 1\n", + "71388 0\n", + "71389 1\n", + "71390 0\n", + "71391 0\n", + "71392 0\n", + "71393 0\n", + "71394 0\n", + "71395 0\n", + "71396 0\n", + "71397 0\n", + "71398 0\n", + "71399 1\n", + "71400 0\n", + "71401 0\n", + "71402 0\n", + "71403 0\n", + "71404 0\n", + "71405 0\n", + "71406 0\n", + "71407 0\n", + "71408 0\n", + "71409 0\n", + "71410 0\n", + "71411 1\n", + "71412 0\n", + "71413 1\n", + "71414 0\n", + "71415 0\n", + "71416 0\n", + "71417 0\n", + "71418 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "71419 1\n", + "71420 0\n", + "71421 0\n", + "71422 0\n", + "71423 0\n", + "71424 0\n", + "71425 0\n", + "71426 0\n", + "71427 0\n", + "71428 0\n", + "71429 1\n", + "71430 0\n", + "71431 0\n", + "71432 0\n", + "71433 0\n", + "71434 0\n", + "71435 0\n", + "71436 0\n", + "71437 1\n", + "71438 0\n", + "71439 0\n", + "71440 0\n", + "71441 0\n", + "71442 0\n", + "71443 1\n", + "71444 0\n", + "71445 0\n", + "71446 0\n", + "71447 0\n", + "71448 0\n", + "71449 0\n", + "71450 0\n", + "71451 0\n", + "71452 0\n", + "71453 1\n", + "71454 0\n", + "71455 0\n", + "71456 0\n", + "71457 0\n", + "71458 0\n", + "71459 0\n", + "71460 0\n", + "71461 0\n", + "71462 0\n", + "71463 0\n", + "71464 0\n", + "71465 0\n", + "71466 0\n", + "71467 0\n", + "71468 0\n", + "71469 0\n", + "71470 0\n", + "71471 1\n", + "71472 0\n", + "71473 1\n", + "71474 0\n", + "71475 0\n", + "71476 0\n", + "71477 0\n", + "71478 0\n", + "71479 1\n", + "71480 0\n", + "71481 0\n", + "71482 0\n", + "71483 1\n", + "71484 0\n", + "71485 0\n", + "71486 0\n", + "71487 0\n", + "71488 0\n", + "71489 0\n", + "71490 0\n", + "71491 0\n", + "71492 0\n", + "71493 0\n", + "71494 0\n", + "71495 0\n", + "71496 0\n", + "71497 0\n", + "71498 0\n", + "71499 0\n", + "71500 0\n", + "71501 0\n", + "71502 0\n", + "71503 1\n", + "71504 0\n", + "71505 0\n", + "71506 0\n", + "71507 0\n", + "71508 0\n", + "71509 0\n", + "71510 0\n", + "71511 0\n", + "71512 0\n", + "71513 0\n", + "71514 0\n", + "71515 0\n", + "71516 0\n", + "71517 0\n", + "71518 0\n", + "71519 0\n", + "71520 0\n", + "71521 0\n", + "71522 0\n", + "71523 0\n", + "71524 0\n", + "71525 0\n", + "71526 0\n", + "71527 1\n", + "71528 0\n", + "71529 0\n", + "71530 0\n", + "71531 0\n", + "71532 0\n", + "71533 0\n", + "71534 0\n", + "71535 0\n", + "71536 0\n", + "71537 1\n", + "71538 0\n", + "71539 0\n", + "71540 0\n", + "71541 0\n", + "71542 0\n", + "71543 0\n", + "71544 0\n", + "71545 0\n", + "71546 0\n", + "71547 0\n", + "71548 0\n", + "71549 1\n", + "71550 0\n", + "71551 1\n", + "71552 0\n", + "71553 0\n", + "71554 0\n", + "71555 0\n", + "71556 0\n", + "71557 0\n", + "71558 0\n", + "71559 0\n", + "71560 0\n", + "71561 0\n", + "71562 0\n", + "71563 1\n", + "71564 0\n", + "71565 0\n", + "71566 0\n", + "71567 0\n", + "71568 0\n", + "71569 1\n", + "71570 0\n", + "71571 0\n", + "71572 0\n", + "71573 0\n", + "71574 0\n", + "71575 0\n", + "71576 0\n", + "71577 0\n", + "71578 0\n", + "71579 0\n", + "71580 0\n", + "71581 0\n", + "71582 0\n", + "71583 0\n", + "71584 0\n", + "71585 0\n", + "71586 0\n", + "71587 0\n", + "71588 0\n", + "71589 0\n", + "71590 0\n", + "71591 0\n", + "71592 0\n", + "71593 1\n", + "71594 0\n", + "71595 0\n", + "71596 0\n", + "71597 1\n", + "71598 0\n", + "71599 0\n", + "71600 0\n", + "71601 0\n", + "71602 0\n", + "71603 0\n", + "71604 0\n", + "71605 0\n", + "71606 0\n", + "71607 0\n", + "71608 0\n", + "71609 0\n", + "71610 0\n", + "71611 0\n", + "71612 0\n", + "71613 0\n", + "71614 0\n", + "71615 0\n", + "71616 0\n", + "71617 0\n", + "71618 0\n", + "71619 0\n", + "71620 0\n", + "71621 0\n", + "71622 0\n", + "71623 0\n", + "71624 0\n", + "71625 0\n", + "71626 0\n", + "71627 0\n", + "71628 0\n", + "71629 0\n", + "71630 0\n", + "71631 0\n", + "71632 0\n", + "71633 1\n", + "71634 0\n", + "71635 0\n", + "71636 0\n", + "71637 0\n", + "71638 0\n", + "71639 0\n", + "71640 0\n", + "71641 0\n", + "71642 0\n", + "71643 0\n", + "71644 0\n", + "71645 0\n", + "71646 0\n", + "71647 1\n", + "71648 0\n", + "71649 0\n", + "71650 0\n", + "71651 0\n", + "71652 0\n", + "71653 0\n", + "71654 0\n", + "71655 0\n", + "71656 0\n", + "71657 0\n", + "71658 0\n", + "71659 0\n", + "71660 0\n", + "71661 0\n", + "71662 0\n", + "71663 1\n", + "71664 0\n", + "71665 0\n", + "71666 0\n", + "71667 0\n", + "71668 0\n", + "71669 0\n", + "71670 0\n", + "71671 1\n", + "71672 0\n", + "71673 0\n", + "71674 0\n", + "71675 0\n", + "71676 0\n", + "71677 0\n", + "71678 0\n", + "71679 0\n", + "71680 0\n", + "71681 0\n", + "71682 0\n", + "71683 0\n", + "71684 0\n", + "71685 0\n", + "71686 0\n", + "71687 0\n", + "71688 0\n", + "71689 0\n", + "71690 0\n", + "71691 0\n", + "71692 0\n", + "71693 1\n", + "71694 0\n", + "71695 0\n", + "71696 0\n", + "71697 0\n", + "71698 0\n", + "71699 1\n", + "71700 0\n", + "71701 0\n", + "71702 0\n", + "71703 0\n", + "71704 0\n", + "71705 0\n", + "71706 0\n", + "71707 1\n", + "71708 0\n", + "71709 0\n", + "71710 0\n", + "71711 1\n", + "71712 0\n", + "71713 1\n", + "71714 0\n", + "71715 0\n", + "71716 0\n", + "71717 0\n", + "71718 0\n", + "71719 1\n", + "71720 0\n", + "71721 0\n", + "71722 0\n", + "71723 0\n", + "71724 0\n", + "71725 0\n", + "71726 0\n", + "71727 0\n", + "71728 0\n", + "71729 0\n", + "71730 0\n", + "71731 0\n", + "71732 0\n", + "71733 0\n", + "71734 0\n", + "71735 0\n", + "71736 0\n", + "71737 0\n", + "71738 0\n", + "71739 0\n", + "71740 0\n", + "71741 1\n", + "71742 0\n", + "71743 0\n", + "71744 0\n", + "71745 0\n", + "71746 0\n", + "71747 0\n", + "71748 0\n", + "71749 0\n", + "71750 0\n", + "71751 0\n", + "71752 0\n", + "71753 0\n", + "71754 0\n", + "71755 0\n", + "71756 0\n", + "71757 0\n", + "71758 0\n", + "71759 0\n", + "71760 0\n", + "71761 1\n", + "71762 0\n", + "71763 0\n", + "71764 0\n", + "71765 0\n", + "71766 0\n", + "71767 0\n", + "71768 0\n", + "71769 0\n", + "71770 0\n", + "71771 0\n", + "71772 0\n", + "71773 0\n", + "71774 0\n", + "71775 0\n", + "71776 0\n", + "71777 1\n", + "71778 0\n", + "71779 0\n", + "71780 0\n", + "71781 0\n", + "71782 0\n", + "71783 0\n", + "71784 0\n", + "71785 0\n", + "71786 0\n", + "71787 0\n", + "71788 0\n", + "71789 1\n", + "71790 0\n", + "71791 0\n", + "71792 0\n", + "71793 0\n", + "71794 0\n", + "71795 0\n", + "71796 0\n", + "71797 0\n", + "71798 0\n", + "71799 0\n", + "71800 0\n", + "71801 0\n", + "71802 0\n", + "71803 0\n", + "71804 0\n", + "71805 0\n", + "71806 0\n", + "71807 1\n", + "71808 0\n", + "71809 1\n", + "71810 0\n", + "71811 0\n", + "71812 0\n", + "71813 0\n", + "71814 0\n", + "71815 0\n", + "71816 0\n", + "71817 0\n", + "71818 0\n", + "71819 0\n", + "71820 0\n", + "71821 1\n", + "71822 0\n", + "71823 0\n", + "71824 0\n", + "71825 0\n", + "71826 0\n", + "71827 0\n", + "71828 0\n", + "71829 0\n", + "71830 0\n", + "71831 0\n", + "71832 0\n", + "71833 0\n", + "71834 0\n", + "71835 0\n", + "71836 0\n", + "71837 1\n", + "71838 0\n", + "71839 0\n", + "71840 0\n", + "71841 0\n", + "71842 0\n", + "71843 1\n", + "71844 0\n", + "71845 0\n", + "71846 0\n", + "71847 0\n", + "71848 0\n", + "71849 1\n", + "71850 0\n", + "71851 0\n", + "71852 0\n", + "71853 0\n", + "71854 0\n", + "71855 0\n", + "71856 0\n", + "71857 0\n", + "71858 0\n", + "71859 0\n", + "71860 0\n", + "71861 1\n", + "71862 0\n", + "71863 0\n", + "71864 0\n", + "71865 0\n", + "71866 0\n", + "71867 1\n", + "71868 0\n", + "71869 0\n", + "71870 0\n", + "71871 0\n", + "71872 0\n", + "71873 0\n", + "71874 0\n", + "71875 0\n", + "71876 0\n", + "71877 0\n", + "71878 0\n", + "71879 1\n", + "71880 0\n", + "71881 1\n", + "71882 0\n", + "71883 0\n", + "71884 0\n", + "71885 0\n", + "71886 0\n", + "71887 1\n", + "71888 0\n", + "71889 0\n", + "71890 0\n", + "71891 0\n", + "71892 0\n", + "71893 0\n", + "71894 0\n", + "71895 0\n", + "71896 0\n", + "71897 0\n", + "71898 0\n", + "71899 1\n", + "71900 0\n", + "71901 0\n", + "71902 0\n", + "71903 0\n", + "71904 0\n", + "71905 0\n", + "71906 0\n", + "71907 0\n", + "71908 0\n", + "71909 1\n", + "71910 0\n", + "71911 0\n", + "71912 0\n", + "71913 0\n", + "71914 0\n", + "71915 0\n", + "71916 0\n", + "71917 1\n", + "71918 0\n", + "71919 0\n", + "71920 0\n", + "71921 0\n", + "71922 0\n", + "71923 0\n", + "71924 0\n", + "71925 0\n", + "71926 0\n", + "71927 0\n", + "71928 0\n", + "71929 0\n", + "71930 0\n", + "71931 0\n", + "71932 0\n", + "71933 1\n", + "71934 0\n", + "71935 0\n", + "71936 0\n", + "71937 0\n", + "71938 0\n", + "71939 0\n", + "71940 0\n", + "71941 1\n", + "71942 0\n", + "71943 0\n", + "71944 0\n", + "71945 0\n", + "71946 0\n", + "71947 1\n", + "71948 0\n", + "71949 0\n", + "71950 0\n", + "71951 0\n", + "71952 0\n", + "71953 0\n", + "71954 0\n", + "71955 0\n", + "71956 0\n", + "71957 0\n", + "71958 0\n", + "71959 0\n", + "71960 0\n", + "71961 0\n", + "71962 0\n", + "71963 1\n", + "71964 0\n", + "71965 0\n", + "71966 0\n", + "71967 0\n", + "71968 0\n", + "71969 0\n", + "71970 0\n", + "71971 1\n", + "71972 0\n", + "71973 0\n", + "71974 0\n", + "71975 0\n", + "71976 0\n", + "71977 0\n", + "71978 0\n", + "71979 0\n", + "71980 0\n", + "71981 0\n", + "71982 0\n", + "71983 1\n", + "71984 0\n", + "71985 0\n", + "71986 0\n", + "71987 1\n", + "71988 0\n", + "71989 0\n", + "71990 0\n", + "71991 0\n", + "71992 0\n", + "71993 1\n", + "71994 0\n", + "71995 0\n", + "71996 0\n", + "71997 0\n", + "71998 0\n", + "71999 1\n", + "72000 0\n", + "72001 0\n", + "72002 0\n", + "72003 0\n", + "72004 0\n", + "72005 0\n", + "72006 0\n", + "72007 0\n", + "72008 0\n", + "72009 0\n", + "72010 0\n", + "72011 0\n", + "72012 0\n", + "72013 0\n", + "72014 0\n", + "72015 0\n", + "72016 0\n", + "72017 0\n", + "72018 0\n", + "72019 1\n", + "72020 0\n", + "72021 0\n", + "72022 0\n", + "72023 0\n", + "72024 0\n", + "72025 0\n", + "72026 0\n", + "72027 0\n", + "72028 0\n", + "72029 0\n", + "72030 0\n", + "72031 1\n", + "72032 0\n", + "72033 0\n", + "72034 0\n", + "72035 0\n", + "72036 0\n", + "72037 0\n", + "72038 0\n", + "72039 0\n", + "72040 0\n", + "72041 0\n", + "72042 0\n", + "72043 1\n", + "72044 0\n", + "72045 0\n", + "72046 0\n", + "72047 1\n", + "72048 0\n", + "72049 0\n", + "72050 0\n", + "72051 0\n", + "72052 0\n", + "72053 1\n", + "72054 0\n", + "72055 0\n", + "72056 0\n", + "72057 0\n", + "72058 0\n", + "72059 0\n", + "72060 0\n", + "72061 0\n", + "72062 0\n", + "72063 0\n", + "72064 0\n", + "72065 0\n", + "72066 0\n", + "72067 0\n", + "72068 0\n", + "72069 0\n", + "72070 0\n", + "72071 0\n", + "72072 0\n", + "72073 1\n", + "72074 0\n", + "72075 0\n", + "72076 0\n", + "72077 1\n", + "72078 0\n", + "72079 0\n", + "72080 0\n", + "72081 0\n", + "72082 0\n", + "72083 0\n", + "72084 0\n", + "72085 0\n", + "72086 0\n", + "72087 0\n", + "72088 0\n", + "72089 1\n", + "72090 0\n", + "72091 1\n", + "72092 0\n", + "72093 0\n", + "72094 0\n", + "72095 0\n", + "72096 0\n", + "72097 0\n", + "72098 0\n", + "72099 0\n", + "72100 0\n", + "72101 1\n", + "72102 0\n", + "72103 1\n", + "72104 0\n", + "72105 0\n", + "72106 0\n", + "72107 0\n", + "72108 0\n", + "72109 1\n", + "72110 0\n", + "72111 0\n", + "72112 0\n", + "72113 0\n", + "72114 0\n", + "72115 0\n", + "72116 0\n", + "72117 0\n", + "72118 0\n", + "72119 0\n", + "72120 0\n", + "72121 0\n", + "72122 0\n", + "72123 0\n", + "72124 0\n", + "72125 0\n", + "72126 0\n", + "72127 0\n", + "72128 0\n", + "72129 0\n", + "72130 0\n", + "72131 0\n", + "72132 0\n", + "72133 0\n", + "72134 0\n", + "72135 0\n", + "72136 0\n", + "72137 0\n", + "72138 0\n", + "72139 1\n", + "72140 0\n", + "72141 0\n", + "72142 0\n", + "72143 0\n", + "72144 0\n", + "72145 0\n", + "72146 0\n", + "72147 0\n", + "72148 0\n", + "72149 0\n", + "72150 0\n", + "72151 0\n", + "72152 0\n", + "72153 0\n", + "72154 0\n", + "72155 0\n", + "72156 0\n", + "72157 0\n", + "72158 0\n", + "72159 0\n", + "72160 0\n", + "72161 1\n", + "72162 0\n", + "72163 0\n", + "72164 0\n", + "72165 0\n", + "72166 0\n", + "72167 1\n", + "72168 0\n", + "72169 1\n", + "72170 0\n", + "72171 0\n", + "72172 0\n", + "72173 1\n", + "72174 0\n", + "72175 0\n", + "72176 0\n", + "72177 0\n", + "72178 0\n", + "72179 0\n", + "72180 0\n", + "72181 0\n", + "72182 0\n", + "72183 0\n", + "72184 0\n", + "72185 0\n", + "72186 0\n", + "72187 0\n", + "72188 0\n", + "72189 0\n", + "72190 0\n", + "72191 0\n", + "72192 0\n", + "72193 0\n", + "72194 0\n", + "72195 0\n", + "72196 0\n", + "72197 0\n", + "72198 0\n", + "72199 0\n", + "72200 0\n", + "72201 0\n", + "72202 0\n", + "72203 0\n", + "72204 0\n", + "72205 0\n", + "72206 0\n", + "72207 0\n", + "72208 0\n", + "72209 0\n", + "72210 0\n", + "72211 1\n", + "72212 0\n", + "72213 0\n", + "72214 0\n", + "72215 0\n", + "72216 0\n", + "72217 0\n", + "72218 0\n", + "72219 0\n", + "72220 0\n", + "72221 1\n", + "72222 0\n", + "72223 1\n", + "72224 0\n", + "72225 0\n", + "72226 0\n", + "72227 1\n", + "72228 0\n", + "72229 1\n", + "72230 0\n", + "72231 0\n", + "72232 0\n", + "72233 0\n", + "72234 0\n", + "72235 0\n", + "72236 0\n", + "72237 0\n", + "72238 0\n", + "72239 0\n", + "72240 0\n", + "72241 0\n", + "72242 0\n", + "72243 0\n", + "72244 0\n", + "72245 0\n", + "72246 0\n", + "72247 0\n", + "72248 0\n", + "72249 0\n", + "72250 0\n", + "72251 1\n", + "72252 0\n", + "72253 1\n", + "72254 0\n", + "72255 0\n", + "72256 0\n", + "72257 0\n", + "72258 0\n", + "72259 0\n", + "72260 0\n", + "72261 0\n", + "72262 0\n", + "72263 0\n", + "72264 0\n", + "72265 0\n", + "72266 0\n", + "72267 0\n", + "72268 0\n", + "72269 1\n", + "72270 0\n", + "72271 1\n", + "72272 0\n", + "72273 0\n", + "72274 0\n", + "72275 0\n", + "72276 0\n", + "72277 1\n", + "72278 0\n", + "72279 0\n", + "72280 0\n", + "72281 0\n", + "72282 0\n", + "72283 0\n", + "72284 0\n", + "72285 0\n", + "72286 0\n", + "72287 1\n", + "72288 0\n", + "72289 0\n", + "72290 0\n", + "72291 0\n", + "72292 0\n", + "72293 0\n", + "72294 0\n", + "72295 0\n", + "72296 0\n", + "72297 0\n", + "72298 0\n", + "72299 0\n", + "72300 0\n", + "72301 0\n", + "72302 0\n", + "72303 0\n", + "72304 0\n", + "72305 0\n", + "72306 0\n", + "72307 1\n", + "72308 0\n", + "72309 0\n", + "72310 0\n", + "72311 0\n", + "72312 0\n", + "72313 1\n", + "72314 0\n", + "72315 0\n", + "72316 0\n", + "72317 0\n", + "72318 0\n", + "72319 0\n", + "72320 0\n", + "72321 0\n", + "72322 0\n", + "72323 0\n", + "72324 0\n", + "72325 0\n", + "72326 0\n", + "72327 0\n", + "72328 0\n", + "72329 0\n", + "72330 0\n", + "72331 0\n", + "72332 0\n", + "72333 0\n", + "72334 0\n", + "72335 0\n", + "72336 0\n", + "72337 1\n", + "72338 0\n", + "72339 0\n", + "72340 0\n", + "72341 1\n", + "72342 0\n", + "72343 0\n", + "72344 0\n", + "72345 0\n", + "72346 0\n", + "72347 0\n", + "72348 0\n", + "72349 0\n", + "72350 0\n", + "72351 0\n", + "72352 0\n", + "72353 1\n", + "72354 0\n", + "72355 0\n", + "72356 0\n", + "72357 0\n", + "72358 0\n", + "72359 0\n", + "72360 0\n", + "72361 0\n", + "72362 0\n", + "72363 0\n", + "72364 0\n", + "72365 0\n", + "72366 0\n", + "72367 1\n", + "72368 0\n", + "72369 0\n", + "72370 0\n", + "72371 0\n", + "72372 0\n", + "72373 0\n", + "72374 0\n", + "72375 0\n", + "72376 0\n", + "72377 0\n", + "72378 0\n", + "72379 1\n", + "72380 0\n", + "72381 0\n", + "72382 0\n", + "72383 1\n", + "72384 0\n", + "72385 0\n", + "72386 0\n", + "72387 0\n", + "72388 0\n", + "72389 0\n", + "72390 0\n", + "72391 0\n", + "72392 0\n", + "72393 0\n", + "72394 0\n", + "72395 0\n", + "72396 0\n", + "72397 0\n", + "72398 0\n", + "72399 0\n", + "72400 0\n", + "72401 0\n", + "72402 0\n", + "72403 0\n", + "72404 0\n", + "72405 0\n", + "72406 0\n", + "72407 0\n", + "72408 0\n", + "72409 0\n", + "72410 0\n", + "72411 0\n", + "72412 0\n", + "72413 0\n", + "72414 0\n", + "72415 0\n", + "72416 0\n", + "72417 0\n", + "72418 0\n", + "72419 0\n", + "72420 0\n", + "72421 1\n", + "72422 0\n", + "72423 0\n", + "72424 0\n", + "72425 0\n", + "72426 0\n", + "72427 0\n", + "72428 0\n", + "72429 0\n", + "72430 0\n", + "72431 1\n", + "72432 0\n", + "72433 0\n", + "72434 0\n", + "72435 0\n", + "72436 0\n", + "72437 0\n", + "72438 0\n", + "72439 0\n", + "72440 0\n", + "72441 0\n", + "72442 0\n", + "72443 0\n", + "72444 0\n", + "72445 0\n", + "72446 0\n", + "72447 0\n", + "72448 0\n", + "72449 0\n", + "72450 0\n", + "72451 0\n", + "72452 0\n", + "72453 0\n", + "72454 0\n", + "72455 0\n", + "72456 0\n", + "72457 0\n", + "72458 0\n", + "72459 0\n", + "72460 0\n", + "72461 1\n", + "72462 0\n", + "72463 0\n", + "72464 0\n", + "72465 0\n", + "72466 0\n", + "72467 1\n", + "72468 0\n", + "72469 1\n", + "72470 0\n", + "72471 0\n", + "72472 0\n", + "72473 0\n", + "72474 0\n", + "72475 0\n", + "72476 0\n", + "72477 0\n", + "72478 0\n", + "72479 0\n", + "72480 0\n", + "72481 1\n", + "72482 0\n", + "72483 0\n", + "72484 0\n", + "72485 0\n", + "72486 0\n", + "72487 0\n", + "72488 0\n", + "72489 0\n", + "72490 0\n", + "72491 0\n", + "72492 0\n", + "72493 1\n", + "72494 0\n", + "72495 0\n", + "72496 0\n", + "72497 1\n", + "72498 0\n", + "72499 0\n", + "72500 0\n", + "72501 0\n", + "72502 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "72503 1\n", + "72504 0\n", + "72505 0\n", + "72506 0\n", + "72507 0\n", + "72508 0\n", + "72509 0\n", + "72510 0\n", + "72511 0\n", + "72512 0\n", + "72513 0\n", + "72514 0\n", + "72515 0\n", + "72516 0\n", + "72517 0\n", + "72518 0\n", + "72519 0\n", + "72520 0\n", + "72521 0\n", + "72522 0\n", + "72523 0\n", + "72524 0\n", + "72525 0\n", + "72526 0\n", + "72527 0\n", + "72528 0\n", + "72529 0\n", + "72530 0\n", + "72531 0\n", + "72532 0\n", + "72533 1\n", + "72534 0\n", + "72535 0\n", + "72536 0\n", + "72537 0\n", + "72538 0\n", + "72539 0\n", + "72540 0\n", + "72541 0\n", + "72542 0\n", + "72543 0\n", + "72544 0\n", + "72545 0\n", + "72546 0\n", + "72547 1\n", + "72548 0\n", + "72549 0\n", + "72550 0\n", + "72551 1\n", + "72552 0\n", + "72553 0\n", + "72554 0\n", + "72555 0\n", + "72556 0\n", + "72557 0\n", + "72558 0\n", + "72559 1\n", + "72560 0\n", + "72561 0\n", + "72562 0\n", + "72563 0\n", + "72564 0\n", + "72565 0\n", + "72566 0\n", + "72567 0\n", + "72568 0\n", + "72569 0\n", + "72570 0\n", + "72571 0\n", + "72572 0\n", + "72573 0\n", + "72574 0\n", + "72575 0\n", + "72576 0\n", + "72577 1\n", + "72578 0\n", + "72579 0\n", + "72580 0\n", + "72581 0\n", + "72582 0\n", + "72583 0\n", + "72584 0\n", + "72585 0\n", + "72586 0\n", + "72587 0\n", + "72588 0\n", + "72589 0\n", + "72590 0\n", + "72591 0\n", + "72592 0\n", + "72593 0\n", + "72594 0\n", + "72595 0\n", + "72596 0\n", + "72597 0\n", + "72598 0\n", + "72599 0\n", + "72600 0\n", + "72601 0\n", + "72602 0\n", + "72603 0\n", + "72604 0\n", + "72605 0\n", + "72606 0\n", + "72607 0\n", + "72608 0\n", + "72609 0\n", + "72610 0\n", + "72611 0\n", + "72612 0\n", + "72613 1\n", + "72614 0\n", + "72615 0\n", + "72616 0\n", + "72617 1\n", + "72618 0\n", + "72619 0\n", + "72620 0\n", + "72621 0\n", + "72622 0\n", + "72623 1\n", + "72624 0\n", + "72625 0\n", + "72626 0\n", + "72627 0\n", + "72628 0\n", + "72629 0\n", + "72630 0\n", + "72631 0\n", + "72632 0\n", + "72633 0\n", + "72634 0\n", + "72635 0\n", + "72636 0\n", + "72637 0\n", + "72638 0\n", + "72639 0\n", + "72640 0\n", + "72641 0\n", + "72642 0\n", + "72643 1\n", + "72644 0\n", + "72645 0\n", + "72646 0\n", + "72647 1\n", + "72648 0\n", + "72649 1\n", + "72650 0\n", + "72651 0\n", + "72652 0\n", + "72653 0\n", + "72654 0\n", + "72655 0\n", + "72656 0\n", + "72657 0\n", + "72658 0\n", + "72659 0\n", + "72660 0\n", + "72661 1\n", + "72662 0\n", + "72663 0\n", + "72664 0\n", + "72665 0\n", + "72666 0\n", + "72667 0\n", + "72668 0\n", + "72669 0\n", + "72670 0\n", + "72671 1\n", + "72672 0\n", + "72673 1\n", + "72674 0\n", + "72675 0\n", + "72676 0\n", + "72677 0\n", + "72678 0\n", + "72679 1\n", + "72680 0\n", + "72681 0\n", + "72682 0\n", + "72683 0\n", + "72684 0\n", + "72685 0\n", + "72686 0\n", + "72687 0\n", + "72688 0\n", + "72689 1\n", + "72690 0\n", + "72691 0\n", + "72692 0\n", + "72693 0\n", + "72694 0\n", + "72695 0\n", + "72696 0\n", + "72697 0\n", + "72698 0\n", + "72699 0\n", + "72700 0\n", + "72701 1\n", + "72702 0\n", + "72703 0\n", + "72704 0\n", + "72705 0\n", + "72706 0\n", + "72707 1\n", + "72708 0\n", + "72709 0\n", + "72710 0\n", + "72711 0\n", + "72712 0\n", + "72713 0\n", + "72714 0\n", + "72715 0\n", + "72716 0\n", + "72717 0\n", + "72718 0\n", + "72719 1\n", + "72720 0\n", + "72721 0\n", + "72722 0\n", + "72723 0\n", + "72724 0\n", + "72725 0\n", + "72726 0\n", + "72727 1\n", + "72728 0\n", + "72729 0\n", + "72730 0\n", + "72731 0\n", + "72732 0\n", + "72733 1\n", + "72734 0\n", + "72735 0\n", + "72736 0\n", + "72737 0\n", + "72738 0\n", + "72739 1\n", + "72740 0\n", + "72741 0\n", + "72742 0\n", + "72743 0\n", + "72744 0\n", + "72745 0\n", + "72746 0\n", + "72747 0\n", + "72748 0\n", + "72749 0\n", + "72750 0\n", + "72751 0\n", + "72752 0\n", + "72753 0\n", + "72754 0\n", + "72755 0\n", + "72756 0\n", + "72757 0\n", + "72758 0\n", + "72759 0\n", + "72760 0\n", + "72761 0\n", + "72762 0\n", + "72763 1\n", + "72764 0\n", + "72765 0\n", + "72766 0\n", + "72767 1\n", + "72768 0\n", + "72769 0\n", + "72770 0\n", + "72771 0\n", + "72772 0\n", + "72773 0\n", + "72774 0\n", + "72775 0\n", + "72776 0\n", + "72777 0\n", + "72778 0\n", + "72779 0\n", + "72780 0\n", + "72781 0\n", + "72782 0\n", + "72783 0\n", + "72784 0\n", + "72785 0\n", + "72786 0\n", + "72787 0\n", + "72788 0\n", + "72789 0\n", + "72790 0\n", + "72791 0\n", + "72792 0\n", + "72793 0\n", + "72794 0\n", + "72795 0\n", + "72796 0\n", + "72797 1\n", + "72798 0\n", + "72799 0\n", + "72800 0\n", + "72801 0\n", + "72802 0\n", + "72803 0\n", + "72804 0\n", + "72805 0\n", + "72806 0\n", + "72807 0\n", + "72808 0\n", + "72809 0\n", + "72810 0\n", + "72811 0\n", + "72812 0\n", + "72813 0\n", + "72814 0\n", + "72815 0\n", + "72816 0\n", + "72817 1\n", + "72818 0\n", + "72819 0\n", + "72820 0\n", + "72821 0\n", + "72822 0\n", + "72823 1\n", + "72824 0\n", + "72825 0\n", + "72826 0\n", + "72827 0\n", + "72828 0\n", + "72829 0\n", + "72830 0\n", + "72831 0\n", + "72832 0\n", + "72833 0\n", + "72834 0\n", + "72835 0\n", + "72836 0\n", + "72837 0\n", + "72838 0\n", + "72839 0\n", + "72840 0\n", + "72841 0\n", + "72842 0\n", + "72843 0\n", + "72844 0\n", + "72845 0\n", + "72846 0\n", + "72847 0\n", + "72848 0\n", + "72849 0\n", + "72850 0\n", + "72851 0\n", + "72852 0\n", + "72853 0\n", + "72854 0\n", + "72855 0\n", + "72856 0\n", + "72857 0\n", + "72858 0\n", + "72859 1\n", + "72860 0\n", + "72861 0\n", + "72862 0\n", + "72863 0\n", + "72864 0\n", + "72865 0\n", + "72866 0\n", + "72867 0\n", + "72868 0\n", + "72869 1\n", + "72870 0\n", + "72871 1\n", + "72872 0\n", + "72873 0\n", + "72874 0\n", + "72875 0\n", + "72876 0\n", + "72877 0\n", + "72878 0\n", + "72879 0\n", + "72880 0\n", + "72881 0\n", + "72882 0\n", + "72883 1\n", + "72884 0\n", + "72885 0\n", + "72886 0\n", + "72887 0\n", + "72888 0\n", + "72889 1\n", + "72890 0\n", + "72891 0\n", + "72892 0\n", + "72893 1\n", + "72894 0\n", + "72895 0\n", + "72896 0\n", + "72897 0\n", + "72898 0\n", + "72899 0\n", + "72900 0\n", + "72901 1\n", + "72902 0\n", + "72903 0\n", + "72904 0\n", + "72905 0\n", + "72906 0\n", + "72907 1\n", + "72908 0\n", + "72909 0\n", + "72910 0\n", + "72911 1\n", + "72912 0\n", + "72913 0\n", + "72914 0\n", + "72915 0\n", + "72916 0\n", + "72917 0\n", + "72918 0\n", + "72919 0\n", + "72920 0\n", + "72921 0\n", + "72922 0\n", + "72923 1\n", + "72924 0\n", + "72925 0\n", + "72926 0\n", + "72927 0\n", + "72928 0\n", + "72929 0\n", + "72930 0\n", + "72931 1\n", + "72932 0\n", + "72933 0\n", + "72934 0\n", + "72935 0\n", + "72936 0\n", + "72937 1\n", + "72938 0\n", + "72939 0\n", + "72940 0\n", + "72941 0\n", + "72942 0\n", + "72943 0\n", + "72944 0\n", + "72945 0\n", + "72946 0\n", + "72947 0\n", + "72948 0\n", + "72949 1\n", + "72950 0\n", + "72951 0\n", + "72952 0\n", + "72953 1\n", + "72954 0\n", + "72955 0\n", + "72956 0\n", + "72957 0\n", + "72958 0\n", + "72959 1\n", + "72960 0\n", + "72961 0\n", + "72962 0\n", + "72963 0\n", + "72964 0\n", + "72965 0\n", + "72966 0\n", + "72967 0\n", + "72968 0\n", + "72969 0\n", + "72970 0\n", + "72971 0\n", + "72972 0\n", + "72973 1\n", + "72974 0\n", + "72975 0\n", + "72976 0\n", + "72977 1\n", + "72978 0\n", + "72979 0\n", + "72980 0\n", + "72981 0\n", + "72982 0\n", + "72983 0\n", + "72984 0\n", + "72985 0\n", + "72986 0\n", + "72987 0\n", + "72988 0\n", + "72989 0\n", + "72990 0\n", + "72991 0\n", + "72992 0\n", + "72993 0\n", + "72994 0\n", + "72995 0\n", + "72996 0\n", + "72997 1\n", + "72998 0\n", + "72999 0\n", + "73000 0\n", + "73001 0\n", + "73002 0\n", + "73003 0\n", + "73004 0\n", + "73005 0\n", + "73006 0\n", + "73007 0\n", + "73008 0\n", + "73009 1\n", + "73010 0\n", + "73011 0\n", + "73012 0\n", + "73013 1\n", + "73014 0\n", + "73015 0\n", + "73016 0\n", + "73017 0\n", + "73018 0\n", + "73019 1\n", + "73020 0\n", + "73021 0\n", + "73022 0\n", + "73023 0\n", + "73024 0\n", + "73025 0\n", + "73026 0\n", + "73027 0\n", + "73028 0\n", + "73029 0\n", + "73030 0\n", + "73031 0\n", + "73032 0\n", + "73033 0\n", + "73034 0\n", + "73035 0\n", + "73036 0\n", + "73037 1\n", + "73038 0\n", + "73039 1\n", + "73040 0\n", + "73041 0\n", + "73042 0\n", + "73043 1\n", + "73044 0\n", + "73045 0\n", + "73046 0\n", + "73047 0\n", + "73048 0\n", + "73049 0\n", + "73050 0\n", + "73051 0\n", + "73052 0\n", + "73053 0\n", + "73054 0\n", + "73055 0\n", + "73056 0\n", + "73057 0\n", + "73058 0\n", + "73059 0\n", + "73060 0\n", + "73061 1\n", + "73062 0\n", + "73063 1\n", + "73064 0\n", + "73065 0\n", + "73066 0\n", + "73067 0\n", + "73068 0\n", + "73069 0\n", + "73070 0\n", + "73071 0\n", + "73072 0\n", + "73073 0\n", + "73074 0\n", + "73075 0\n", + "73076 0\n", + "73077 0\n", + "73078 0\n", + "73079 1\n", + "73080 0\n", + "73081 0\n", + "73082 0\n", + "73083 0\n", + "73084 0\n", + "73085 0\n", + "73086 0\n", + "73087 0\n", + "73088 0\n", + "73089 0\n", + "73090 0\n", + "73091 1\n", + "73092 0\n", + "73093 0\n", + "73094 0\n", + "73095 0\n", + "73096 0\n", + "73097 0\n", + "73098 0\n", + "73099 0\n", + "73100 0\n", + "73101 0\n", + "73102 0\n", + "73103 0\n", + "73104 0\n", + "73105 0\n", + "73106 0\n", + "73107 0\n", + "73108 0\n", + "73109 0\n", + "73110 0\n", + "73111 0\n", + "73112 0\n", + "73113 0\n", + "73114 0\n", + "73115 0\n", + "73116 0\n", + "73117 0\n", + "73118 0\n", + "73119 0\n", + "73120 0\n", + "73121 1\n", + "73122 0\n", + "73123 0\n", + "73124 0\n", + "73125 0\n", + "73126 0\n", + "73127 1\n", + "73128 0\n", + "73129 0\n", + "73130 0\n", + "73131 0\n", + "73132 0\n", + "73133 1\n", + "73134 0\n", + "73135 0\n", + "73136 0\n", + "73137 0\n", + "73138 0\n", + "73139 0\n", + "73140 0\n", + "73141 1\n", + "73142 0\n", + "73143 0\n", + "73144 0\n", + "73145 0\n", + "73146 0\n", + "73147 0\n", + "73148 0\n", + "73149 0\n", + "73150 0\n", + "73151 0\n", + "73152 0\n", + "73153 0\n", + "73154 0\n", + "73155 0\n", + "73156 0\n", + "73157 0\n", + "73158 0\n", + "73159 0\n", + "73160 0\n", + "73161 0\n", + "73162 0\n", + "73163 0\n", + "73164 0\n", + "73165 0\n", + "73166 0\n", + "73167 0\n", + "73168 0\n", + "73169 0\n", + "73170 0\n", + "73171 0\n", + "73172 0\n", + "73173 0\n", + "73174 0\n", + "73175 0\n", + "73176 0\n", + "73177 0\n", + "73178 0\n", + "73179 0\n", + "73180 0\n", + "73181 1\n", + "73182 0\n", + "73183 0\n", + "73184 0\n", + "73185 0\n", + "73186 0\n", + "73187 0\n", + "73188 0\n", + "73189 1\n", + "73190 0\n", + "73191 0\n", + "73192 0\n", + "73193 0\n", + "73194 0\n", + "73195 0\n", + "73196 0\n", + "73197 0\n", + "73198 0\n", + "73199 0\n", + "73200 0\n", + "73201 0\n", + "73202 0\n", + "73203 0\n", + "73204 0\n", + "73205 0\n", + "73206 0\n", + "73207 0\n", + "73208 0\n", + "73209 0\n", + "73210 0\n", + "73211 0\n", + "73212 0\n", + "73213 0\n", + "73214 0\n", + "73215 0\n", + "73216 0\n", + "73217 0\n", + "73218 0\n", + "73219 0\n", + "73220 0\n", + "73221 0\n", + "73222 0\n", + "73223 0\n", + "73224 0\n", + "73225 0\n", + "73226 0\n", + "73227 0\n", + "73228 0\n", + "73229 0\n", + "73230 0\n", + "73231 0\n", + "73232 0\n", + "73233 0\n", + "73234 0\n", + "73235 0\n", + "73236 0\n", + "73237 1\n", + "73238 0\n", + "73239 0\n", + "73240 0\n", + "73241 0\n", + "73242 0\n", + "73243 1\n", + "73244 0\n", + "73245 0\n", + "73246 0\n", + "73247 0\n", + "73248 0\n", + "73249 0\n", + "73250 0\n", + "73251 0\n", + "73252 0\n", + "73253 0\n", + "73254 0\n", + "73255 0\n", + "73256 0\n", + "73257 0\n", + "73258 0\n", + "73259 1\n", + "73260 0\n", + "73261 0\n", + "73262 0\n", + "73263 0\n", + "73264 0\n", + "73265 0\n", + "73266 0\n", + "73267 0\n", + "73268 0\n", + "73269 0\n", + "73270 0\n", + "73271 0\n", + "73272 0\n", + "73273 0\n", + "73274 0\n", + "73275 0\n", + "73276 0\n", + "73277 1\n", + "73278 0\n", + "73279 0\n", + "73280 0\n", + "73281 0\n", + "73282 0\n", + "73283 0\n", + "73284 0\n", + "73285 0\n", + "73286 0\n", + "73287 0\n", + "73288 0\n", + "73289 0\n", + "73290 0\n", + "73291 1\n", + "73292 0\n", + "73293 0\n", + "73294 0\n", + "73295 0\n", + "73296 0\n", + "73297 0\n", + "73298 0\n", + "73299 0\n", + "73300 0\n", + "73301 0\n", + "73302 0\n", + "73303 1\n", + "73304 0\n", + "73305 0\n", + "73306 0\n", + "73307 0\n", + "73308 0\n", + "73309 1\n", + "73310 0\n", + "73311 0\n", + "73312 0\n", + "73313 0\n", + "73314 0\n", + "73315 0\n", + "73316 0\n", + "73317 0\n", + "73318 0\n", + "73319 0\n", + "73320 0\n", + "73321 0\n", + "73322 0\n", + "73323 0\n", + "73324 0\n", + "73325 0\n", + "73326 0\n", + "73327 1\n", + "73328 0\n", + "73329 0\n", + "73330 0\n", + "73331 1\n", + "73332 0\n", + "73333 0\n", + "73334 0\n", + "73335 0\n", + "73336 0\n", + "73337 0\n", + "73338 0\n", + "73339 0\n", + "73340 0\n", + "73341 0\n", + "73342 0\n", + "73343 0\n", + "73344 0\n", + "73345 0\n", + "73346 0\n", + "73347 0\n", + "73348 0\n", + "73349 0\n", + "73350 0\n", + "73351 1\n", + "73352 0\n", + "73353 0\n", + "73354 0\n", + "73355 0\n", + "73356 0\n", + "73357 0\n", + "73358 0\n", + "73359 0\n", + "73360 0\n", + "73361 1\n", + "73362 0\n", + "73363 1\n", + "73364 0\n", + "73365 0\n", + "73366 0\n", + "73367 0\n", + "73368 0\n", + "73369 1\n", + "73370 0\n", + "73371 0\n", + "73372 0\n", + "73373 0\n", + "73374 0\n", + "73375 0\n", + "73376 0\n", + "73377 0\n", + "73378 0\n", + "73379 1\n", + "73380 0\n", + "73381 0\n", + "73382 0\n", + "73383 0\n", + "73384 0\n", + "73385 0\n", + "73386 0\n", + "73387 1\n", + "73388 0\n", + "73389 0\n", + "73390 0\n", + "73391 0\n", + "73392 0\n", + "73393 0\n", + "73394 0\n", + "73395 0\n", + "73396 0\n", + "73397 0\n", + "73398 0\n", + "73399 0\n", + "73400 0\n", + "73401 0\n", + "73402 0\n", + "73403 0\n", + "73404 0\n", + "73405 0\n", + "73406 0\n", + "73407 0\n", + "73408 0\n", + "73409 0\n", + "73410 0\n", + "73411 0\n", + "73412 0\n", + "73413 0\n", + "73414 0\n", + "73415 0\n", + "73416 0\n", + "73417 1\n", + "73418 0\n", + "73419 0\n", + "73420 0\n", + "73421 1\n", + "73422 0\n", + "73423 0\n", + "73424 0\n", + "73425 0\n", + "73426 0\n", + "73427 0\n", + "73428 0\n", + "73429 0\n", + "73430 0\n", + "73431 0\n", + "73432 0\n", + "73433 1\n", + "73434 0\n", + "73435 0\n", + "73436 0\n", + "73437 0\n", + "73438 0\n", + "73439 0\n", + "73440 0\n", + "73441 0\n", + "73442 0\n", + "73443 0\n", + "73444 0\n", + "73445 0\n", + "73446 0\n", + "73447 0\n", + "73448 0\n", + "73449 0\n", + "73450 0\n", + "73451 0\n", + "73452 0\n", + "73453 1\n", + "73454 0\n", + "73455 0\n", + "73456 0\n", + "73457 0\n", + "73458 0\n", + "73459 1\n", + "73460 0\n", + "73461 0\n", + "73462 0\n", + "73463 0\n", + "73464 0\n", + "73465 0\n", + "73466 0\n", + "73467 0\n", + "73468 0\n", + "73469 0\n", + "73470 0\n", + "73471 1\n", + "73472 0\n", + "73473 0\n", + "73474 0\n", + "73475 0\n", + "73476 0\n", + "73477 1\n", + "73478 0\n", + "73479 0\n", + "73480 0\n", + "73481 0\n", + "73482 0\n", + "73483 1\n", + "73484 0\n", + "73485 0\n", + "73486 0\n", + "73487 0\n", + "73488 0\n", + "73489 0\n", + "73490 0\n", + "73491 0\n", + "73492 0\n", + "73493 0\n", + "73494 0\n", + "73495 0\n", + "73496 0\n", + "73497 0\n", + "73498 0\n", + "73499 0\n", + "73500 0\n", + "73501 0\n", + "73502 0\n", + "73503 0\n", + "73504 0\n", + "73505 0\n", + "73506 0\n", + "73507 0\n", + "73508 0\n", + "73509 0\n", + "73510 0\n", + "73511 0\n", + "73512 0\n", + "73513 0\n", + "73514 0\n", + "73515 0\n", + "73516 0\n", + "73517 1\n", + "73518 0\n", + "73519 0\n", + "73520 0\n", + "73521 0\n", + "73522 0\n", + "73523 1\n", + "73524 0\n", + "73525 0\n", + "73526 0\n", + "73527 0\n", + "73528 0\n", + "73529 1\n", + "73530 0\n", + "73531 0\n", + "73532 0\n", + "73533 0\n", + "73534 0\n", + "73535 0\n", + "73536 0\n", + "73537 0\n", + "73538 0\n", + "73539 0\n", + "73540 0\n", + "73541 0\n", + "73542 0\n", + "73543 0\n", + "73544 0\n", + "73545 0\n", + "73546 0\n", + "73547 1\n", + "73548 0\n", + "73549 0\n", + "73550 0\n", + "73551 0\n", + "73552 0\n", + "73553 1\n", + "73554 0\n", + "73555 0\n", + "73556 0\n", + "73557 0\n", + "73558 0\n", + "73559 0\n", + "73560 0\n", + "73561 1\n", + "73562 0\n", + "73563 0\n", + "73564 0\n", + "73565 0\n", + "73566 0\n", + "73567 0\n", + "73568 0\n", + "73569 0\n", + "73570 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "73571 1\n", + "73572 0\n", + "73573 0\n", + "73574 0\n", + "73575 0\n", + "73576 0\n", + "73577 0\n", + "73578 0\n", + "73579 0\n", + "73580 0\n", + "73581 0\n", + "73582 0\n", + "73583 1\n", + "73584 0\n", + "73585 0\n", + "73586 0\n", + "73587 0\n", + "73588 0\n", + "73589 1\n", + "73590 0\n", + "73591 0\n", + "73592 0\n", + "73593 0\n", + "73594 0\n", + "73595 0\n", + "73596 0\n", + "73597 1\n", + "73598 0\n", + "73599 0\n", + "73600 0\n", + "73601 0\n", + "73602 0\n", + "73603 0\n", + "73604 0\n", + "73605 0\n", + "73606 0\n", + "73607 1\n", + "73608 0\n", + "73609 1\n", + "73610 0\n", + "73611 0\n", + "73612 0\n", + "73613 1\n", + "73614 0\n", + "73615 0\n", + "73616 0\n", + "73617 0\n", + "73618 0\n", + "73619 0\n", + "73620 0\n", + "73621 0\n", + "73622 0\n", + "73623 0\n", + "73624 0\n", + "73625 0\n", + "73626 0\n", + "73627 0\n", + "73628 0\n", + "73629 0\n", + "73630 0\n", + "73631 0\n", + "73632 0\n", + "73633 0\n", + "73634 0\n", + "73635 0\n", + "73636 0\n", + "73637 1\n", + "73638 0\n", + "73639 0\n", + "73640 0\n", + "73641 0\n", + "73642 0\n", + "73643 1\n", + "73644 0\n", + "73645 0\n", + "73646 0\n", + "73647 0\n", + "73648 0\n", + "73649 0\n", + "73650 0\n", + "73651 1\n", + "73652 0\n", + "73653 0\n", + "73654 0\n", + "73655 0\n", + "73656 0\n", + "73657 0\n", + "73658 0\n", + "73659 0\n", + "73660 0\n", + "73661 0\n", + "73662 0\n", + "73663 0\n", + "73664 0\n", + "73665 0\n", + "73666 0\n", + "73667 0\n", + "73668 0\n", + "73669 0\n", + "73670 0\n", + "73671 0\n", + "73672 0\n", + "73673 1\n", + "73674 0\n", + "73675 0\n", + "73676 0\n", + "73677 0\n", + "73678 0\n", + "73679 1\n", + "73680 0\n", + "73681 1\n", + "73682 0\n", + "73683 0\n", + "73684 0\n", + "73685 0\n", + "73686 0\n", + "73687 0\n", + "73688 0\n", + "73689 0\n", + "73690 0\n", + "73691 0\n", + "73692 0\n", + "73693 1\n", + "73694 0\n", + "73695 0\n", + "73696 0\n", + "73697 0\n", + "73698 0\n", + "73699 1\n", + "73700 0\n", + "73701 0\n", + "73702 0\n", + "73703 0\n", + "73704 0\n", + "73705 0\n", + "73706 0\n", + "73707 0\n", + "73708 0\n", + "73709 1\n", + "73710 0\n", + "73711 0\n", + "73712 0\n", + "73713 0\n", + "73714 0\n", + "73715 0\n", + "73716 0\n", + "73717 0\n", + "73718 0\n", + "73719 0\n", + "73720 0\n", + "73721 1\n", + "73722 0\n", + "73723 0\n", + "73724 0\n", + "73725 0\n", + "73726 0\n", + "73727 1\n", + "73728 0\n", + "73729 0\n", + "73730 0\n", + "73731 0\n", + "73732 0\n", + "73733 0\n", + "73734 0\n", + "73735 0\n", + "73736 0\n", + "73737 0\n", + "73738 0\n", + "73739 0\n", + "73740 0\n", + "73741 0\n", + "73742 0\n", + "73743 0\n", + "73744 0\n", + "73745 0\n", + "73746 0\n", + "73747 0\n", + "73748 0\n", + "73749 0\n", + "73750 0\n", + "73751 1\n", + "73752 0\n", + "73753 0\n", + "73754 0\n", + "73755 0\n", + "73756 0\n", + "73757 1\n", + "73758 0\n", + "73759 0\n", + "73760 0\n", + "73761 0\n", + "73762 0\n", + "73763 0\n", + "73764 0\n", + "73765 0\n", + "73766 0\n", + "73767 0\n", + "73768 0\n", + "73769 0\n", + "73770 0\n", + "73771 1\n", + "73772 0\n", + "73773 0\n", + "73774 0\n", + "73775 0\n", + "73776 0\n", + "73777 0\n", + "73778 0\n", + "73779 0\n", + "73780 0\n", + "73781 0\n", + "73782 0\n", + "73783 1\n", + "73784 0\n", + "73785 0\n", + "73786 0\n", + "73787 0\n", + "73788 0\n", + "73789 0\n", + "73790 0\n", + "73791 0\n", + "73792 0\n", + "73793 0\n", + "73794 0\n", + "73795 0\n", + "73796 0\n", + "73797 0\n", + "73798 0\n", + "73799 0\n", + "73800 0\n", + "73801 0\n", + "73802 0\n", + "73803 0\n", + "73804 0\n", + "73805 0\n", + "73806 0\n", + "73807 0\n", + "73808 0\n", + "73809 0\n", + "73810 0\n", + "73811 0\n", + "73812 0\n", + "73813 0\n", + "73814 0\n", + "73815 0\n", + "73816 0\n", + "73817 0\n", + "73818 0\n", + "73819 1\n", + "73820 0\n", + "73821 0\n", + "73822 0\n", + "73823 1\n", + "73824 0\n", + "73825 0\n", + "73826 0\n", + "73827 0\n", + "73828 0\n", + "73829 0\n", + "73830 0\n", + "73831 0\n", + "73832 0\n", + "73833 0\n", + "73834 0\n", + "73835 0\n", + "73836 0\n", + "73837 0\n", + "73838 0\n", + "73839 0\n", + "73840 0\n", + "73841 0\n", + "73842 0\n", + "73843 0\n", + "73844 0\n", + "73845 0\n", + "73846 0\n", + "73847 1\n", + "73848 0\n", + "73849 1\n", + "73850 0\n", + "73851 0\n", + "73852 0\n", + "73853 0\n", + "73854 0\n", + "73855 0\n", + "73856 0\n", + "73857 0\n", + "73858 0\n", + "73859 1\n", + "73860 0\n", + "73861 0\n", + "73862 0\n", + "73863 0\n", + "73864 0\n", + "73865 0\n", + "73866 0\n", + "73867 1\n", + "73868 0\n", + "73869 0\n", + "73870 0\n", + "73871 0\n", + "73872 0\n", + "73873 0\n", + "73874 0\n", + "73875 0\n", + "73876 0\n", + "73877 1\n", + "73878 0\n", + "73879 0\n", + "73880 0\n", + "73881 0\n", + "73882 0\n", + "73883 1\n", + "73884 0\n", + "73885 0\n", + "73886 0\n", + "73887 0\n", + "73888 0\n", + "73889 0\n", + "73890 0\n", + "73891 0\n", + "73892 0\n", + "73893 0\n", + "73894 0\n", + "73895 0\n", + "73896 0\n", + "73897 1\n", + "73898 0\n", + "73899 0\n", + "73900 0\n", + "73901 0\n", + "73902 0\n", + "73903 0\n", + "73904 0\n", + "73905 0\n", + "73906 0\n", + "73907 1\n", + "73908 0\n", + "73909 0\n", + "73910 0\n", + "73911 0\n", + "73912 0\n", + "73913 0\n", + "73914 0\n", + "73915 0\n", + "73916 0\n", + "73917 0\n", + "73918 0\n", + "73919 0\n", + "73920 0\n", + "73921 0\n", + "73922 0\n", + "73923 0\n", + "73924 0\n", + "73925 0\n", + "73926 0\n", + "73927 0\n", + "73928 0\n", + "73929 0\n", + "73930 0\n", + "73931 0\n", + "73932 0\n", + "73933 0\n", + "73934 0\n", + "73935 0\n", + "73936 0\n", + "73937 0\n", + "73938 0\n", + "73939 1\n", + "73940 0\n", + "73941 0\n", + "73942 0\n", + "73943 1\n", + "73944 0\n", + "73945 0\n", + "73946 0\n", + "73947 0\n", + "73948 0\n", + "73949 0\n", + "73950 0\n", + "73951 1\n", + "73952 0\n", + "73953 0\n", + "73954 0\n", + "73955 0\n", + "73956 0\n", + "73957 0\n", + "73958 0\n", + "73959 0\n", + "73960 0\n", + "73961 1\n", + "73962 0\n", + "73963 0\n", + "73964 0\n", + "73965 0\n", + "73966 0\n", + "73967 0\n", + "73968 0\n", + "73969 0\n", + "73970 0\n", + "73971 0\n", + "73972 0\n", + "73973 1\n", + "73974 0\n", + "73975 0\n", + "73976 0\n", + "73977 0\n", + "73978 0\n", + "73979 0\n", + "73980 0\n", + "73981 0\n", + "73982 0\n", + "73983 0\n", + "73984 0\n", + "73985 0\n", + "73986 0\n", + "73987 0\n", + "73988 0\n", + "73989 0\n", + "73990 0\n", + "73991 0\n", + "73992 0\n", + "73993 0\n", + "73994 0\n", + "73995 0\n", + "73996 0\n", + "73997 0\n", + "73998 0\n", + "73999 1\n", + "74000 0\n", + "74001 0\n", + "74002 0\n", + "74003 0\n", + "74004 0\n", + "74005 0\n", + "74006 0\n", + "74007 0\n", + "74008 0\n", + "74009 0\n", + "74010 0\n", + "74011 0\n", + "74012 0\n", + "74013 0\n", + "74014 0\n", + "74015 0\n", + "74016 0\n", + "74017 1\n", + "74018 0\n", + "74019 0\n", + "74020 0\n", + "74021 1\n", + "74022 0\n", + "74023 0\n", + "74024 0\n", + "74025 0\n", + "74026 0\n", + "74027 1\n", + "74028 0\n", + "74029 0\n", + "74030 0\n", + "74031 0\n", + "74032 0\n", + "74033 0\n", + "74034 0\n", + "74035 0\n", + "74036 0\n", + "74037 0\n", + "74038 0\n", + "74039 0\n", + "74040 0\n", + "74041 0\n", + "74042 0\n", + "74043 0\n", + "74044 0\n", + "74045 0\n", + "74046 0\n", + "74047 1\n", + "74048 0\n", + "74049 0\n", + "74050 0\n", + "74051 1\n", + "74052 0\n", + "74053 0\n", + "74054 0\n", + "74055 0\n", + "74056 0\n", + "74057 0\n", + "74058 0\n", + "74059 0\n", + "74060 0\n", + "74061 0\n", + "74062 0\n", + "74063 0\n", + "74064 0\n", + "74065 0\n", + "74066 0\n", + "74067 0\n", + "74068 0\n", + "74069 0\n", + "74070 0\n", + "74071 1\n", + "74072 0\n", + "74073 0\n", + "74074 0\n", + "74075 0\n", + "74076 0\n", + "74077 1\n", + "74078 0\n", + "74079 0\n", + "74080 0\n", + "74081 0\n", + "74082 0\n", + "74083 0\n", + "74084 0\n", + "74085 0\n", + "74086 0\n", + "74087 0\n", + "74088 0\n", + "74089 0\n", + "74090 0\n", + "74091 0\n", + "74092 0\n", + "74093 1\n", + "74094 0\n", + "74095 0\n", + "74096 0\n", + "74097 0\n", + "74098 0\n", + "74099 1\n", + "74100 0\n", + "74101 1\n", + "74102 0\n", + "74103 0\n", + "74104 0\n", + "74105 0\n", + "74106 0\n", + "74107 0\n", + "74108 0\n", + "74109 0\n", + "74110 0\n", + "74111 0\n", + "74112 0\n", + "74113 0\n", + "74114 0\n", + "74115 0\n", + "74116 0\n", + "74117 0\n", + "74118 0\n", + "74119 0\n", + "74120 0\n", + "74121 0\n", + "74122 0\n", + "74123 0\n", + "74124 0\n", + "74125 0\n", + "74126 0\n", + "74127 0\n", + "74128 0\n", + "74129 0\n", + "74130 0\n", + "74131 1\n", + "74132 0\n", + "74133 0\n", + "74134 0\n", + "74135 0\n", + "74136 0\n", + "74137 0\n", + "74138 0\n", + "74139 0\n", + "74140 0\n", + "74141 0\n", + "74142 0\n", + "74143 1\n", + "74144 0\n", + "74145 0\n", + "74146 0\n", + "74147 0\n", + "74148 0\n", + "74149 1\n", + "74150 0\n", + "74151 0\n", + "74152 0\n", + "74153 0\n", + "74154 0\n", + "74155 0\n", + "74156 0\n", + "74157 0\n", + "74158 0\n", + "74159 1\n", + "74160 0\n", + "74161 1\n", + "74162 0\n", + "74163 0\n", + "74164 0\n", + "74165 0\n", + "74166 0\n", + "74167 1\n", + "74168 0\n", + "74169 0\n", + "74170 0\n", + "74171 0\n", + "74172 0\n", + "74173 0\n", + "74174 0\n", + "74175 0\n", + "74176 0\n", + "74177 1\n", + "74178 0\n", + "74179 0\n", + "74180 0\n", + "74181 0\n", + "74182 0\n", + "74183 0\n", + "74184 0\n", + "74185 0\n", + "74186 0\n", + "74187 0\n", + "74188 0\n", + "74189 1\n", + "74190 0\n", + "74191 0\n", + "74192 0\n", + "74193 0\n", + "74194 0\n", + "74195 0\n", + "74196 0\n", + "74197 1\n", + "74198 0\n", + "74199 0\n", + "74200 0\n", + "74201 1\n", + "74202 0\n", + "74203 1\n", + "74204 0\n", + "74205 0\n", + "74206 0\n", + "74207 0\n", + "74208 0\n", + "74209 1\n", + "74210 0\n", + "74211 0\n", + "74212 0\n", + "74213 0\n", + "74214 0\n", + "74215 0\n", + "74216 0\n", + "74217 0\n", + "74218 0\n", + "74219 1\n", + "74220 0\n", + "74221 0\n", + "74222 0\n", + "74223 0\n", + "74224 0\n", + "74225 0\n", + "74226 0\n", + "74227 0\n", + "74228 0\n", + "74229 0\n", + "74230 0\n", + "74231 1\n", + "74232 0\n", + "74233 0\n", + "74234 0\n", + "74235 0\n", + "74236 0\n", + "74237 0\n", + "74238 0\n", + "74239 0\n", + "74240 0\n", + "74241 0\n", + "74242 0\n", + "74243 0\n", + "74244 0\n", + "74245 0\n", + "74246 0\n", + "74247 0\n", + "74248 0\n", + "74249 0\n", + "74250 0\n", + "74251 0\n", + "74252 0\n", + "74253 0\n", + "74254 0\n", + "74255 0\n", + "74256 0\n", + "74257 1\n", + "74258 0\n", + "74259 0\n", + "74260 0\n", + "74261 0\n", + "74262 0\n", + "74263 0\n", + "74264 0\n", + "74265 0\n", + "74266 0\n", + "74267 0\n", + "74268 0\n", + "74269 0\n", + "74270 0\n", + "74271 0\n", + "74272 0\n", + "74273 0\n", + "74274 0\n", + "74275 0\n", + "74276 0\n", + "74277 0\n", + "74278 0\n", + "74279 1\n", + "74280 0\n", + "74281 0\n", + "74282 0\n", + "74283 0\n", + "74284 0\n", + "74285 0\n", + "74286 0\n", + "74287 1\n", + "74288 0\n", + "74289 0\n", + "74290 0\n", + "74291 0\n", + "74292 0\n", + "74293 1\n", + "74294 0\n", + "74295 0\n", + "74296 0\n", + "74297 1\n", + "74298 0\n", + "74299 0\n", + "74300 0\n", + "74301 0\n", + "74302 0\n", + "74303 0\n", + "74304 0\n", + "74305 0\n", + "74306 0\n", + "74307 0\n", + "74308 0\n", + "74309 0\n", + "74310 0\n", + "74311 1\n", + "74312 0\n", + "74313 0\n", + "74314 0\n", + "74315 0\n", + "74316 0\n", + "74317 1\n", + "74318 0\n", + "74319 0\n", + "74320 0\n", + "74321 0\n", + "74322 0\n", + "74323 1\n", + "74324 0\n", + "74325 0\n", + "74326 0\n", + "74327 0\n", + "74328 0\n", + "74329 0\n", + "74330 0\n", + "74331 0\n", + "74332 0\n", + "74333 0\n", + "74334 0\n", + "74335 0\n", + "74336 0\n", + "74337 0\n", + "74338 0\n", + "74339 0\n", + "74340 0\n", + "74341 0\n", + "74342 0\n", + "74343 0\n", + "74344 0\n", + "74345 0\n", + "74346 0\n", + "74347 0\n", + "74348 0\n", + "74349 0\n", + "74350 0\n", + "74351 0\n", + "74352 0\n", + "74353 1\n", + "74354 0\n", + "74355 0\n", + "74356 0\n", + "74357 1\n", + "74358 0\n", + "74359 0\n", + "74360 0\n", + "74361 0\n", + "74362 0\n", + "74363 1\n", + "74364 0\n", + "74365 0\n", + "74366 0\n", + "74367 0\n", + "74368 0\n", + "74369 0\n", + "74370 0\n", + "74371 0\n", + "74372 0\n", + "74373 0\n", + "74374 0\n", + "74375 0\n", + "74376 0\n", + "74377 1\n", + "74378 0\n", + "74379 0\n", + "74380 0\n", + "74381 1\n", + "74382 0\n", + "74383 1\n", + "74384 0\n", + "74385 0\n", + "74386 0\n", + "74387 0\n", + "74388 0\n", + "74389 0\n", + "74390 0\n", + "74391 0\n", + "74392 0\n", + "74393 0\n", + "74394 0\n", + "74395 0\n", + "74396 0\n", + "74397 0\n", + "74398 0\n", + "74399 0\n", + "74400 0\n", + "74401 0\n", + "74402 0\n", + "74403 0\n", + "74404 0\n", + "74405 0\n", + "74406 0\n", + "74407 0\n", + "74408 0\n", + "74409 0\n", + "74410 0\n", + "74411 1\n", + "74412 0\n", + "74413 1\n", + "74414 0\n", + "74415 0\n", + "74416 0\n", + "74417 0\n", + "74418 0\n", + "74419 1\n", + "74420 0\n", + "74421 0\n", + "74422 0\n", + "74423 0\n", + "74424 0\n", + "74425 0\n", + "74426 0\n", + "74427 0\n", + "74428 0\n", + "74429 0\n", + "74430 0\n", + "74431 0\n", + "74432 0\n", + "74433 0\n", + "74434 0\n", + "74435 0\n", + "74436 0\n", + "74437 0\n", + "74438 0\n", + "74439 0\n", + "74440 0\n", + "74441 1\n", + "74442 0\n", + "74443 0\n", + "74444 0\n", + "74445 0\n", + "74446 0\n", + "74447 0\n", + "74448 0\n", + "74449 1\n", + "74450 0\n", + "74451 0\n", + "74452 0\n", + "74453 1\n", + "74454 0\n", + "74455 0\n", + "74456 0\n", + "74457 0\n", + "74458 0\n", + "74459 0\n", + "74460 0\n", + "74461 0\n", + "74462 0\n", + "74463 0\n", + "74464 0\n", + "74465 0\n", + "74466 0\n", + "74467 0\n", + "74468 0\n", + "74469 0\n", + "74470 0\n", + "74471 1\n", + "74472 0\n", + "74473 0\n", + "74474 0\n", + "74475 0\n", + "74476 0\n", + "74477 0\n", + "74478 0\n", + "74479 0\n", + "74480 0\n", + "74481 0\n", + "74482 0\n", + "74483 0\n", + "74484 0\n", + "74485 0\n", + "74486 0\n", + "74487 0\n", + "74488 0\n", + "74489 1\n", + "74490 0\n", + "74491 0\n", + "74492 0\n", + "74493 0\n", + "74494 0\n", + "74495 0\n", + "74496 0\n", + "74497 0\n", + "74498 0\n", + "74499 0\n", + "74500 0\n", + "74501 0\n", + "74502 0\n", + "74503 0\n", + "74504 0\n", + "74505 0\n", + "74506 0\n", + "74507 1\n", + "74508 0\n", + "74509 1\n", + "74510 0\n", + "74511 0\n", + "74512 0\n", + "74513 0\n", + "74514 0\n", + "74515 0\n", + "74516 0\n", + "74517 0\n", + "74518 0\n", + "74519 0\n", + "74520 0\n", + "74521 1\n", + "74522 0\n", + "74523 0\n", + "74524 0\n", + "74525 0\n", + "74526 0\n", + "74527 1\n", + "74528 0\n", + "74529 0\n", + "74530 0\n", + "74531 1\n", + "74532 0\n", + "74533 0\n", + "74534 0\n", + "74535 0\n", + "74536 0\n", + "74537 0\n", + "74538 0\n", + "74539 0\n", + "74540 0\n", + "74541 0\n", + "74542 0\n", + "74543 0\n", + "74544 0\n", + "74545 0\n", + "74546 0\n", + "74547 0\n", + "74548 0\n", + "74549 0\n", + "74550 0\n", + "74551 1\n", + "74552 0\n", + "74553 0\n", + "74554 0\n", + "74555 0\n", + "74556 0\n", + "74557 0\n", + "74558 0\n", + "74559 0\n", + "74560 0\n", + "74561 1\n", + "74562 0\n", + "74563 0\n", + "74564 0\n", + "74565 0\n", + "74566 0\n", + "74567 1\n", + "74568 0\n", + "74569 0\n", + "74570 0\n", + "74571 0\n", + "74572 0\n", + "74573 1\n", + "74574 0\n", + "74575 0\n", + "74576 0\n", + "74577 0\n", + "74578 0\n", + "74579 0\n", + "74580 0\n", + "74581 0\n", + "74582 0\n", + "74583 0\n", + "74584 0\n", + "74585 0\n", + "74586 0\n", + "74587 1\n", + "74588 0\n", + "74589 0\n", + "74590 0\n", + "74591 0\n", + "74592 0\n", + "74593 0\n", + "74594 0\n", + "74595 0\n", + "74596 0\n", + "74597 1\n", + "74598 0\n", + "74599 0\n", + "74600 0\n", + "74601 0\n", + "74602 0\n", + "74603 0\n", + "74604 0\n", + "74605 0\n", + "74606 0\n", + "74607 0\n", + "74608 0\n", + "74609 1\n", + "74610 0\n", + "74611 1\n", + "74612 0\n", + "74613 0\n", + "74614 0\n", + "74615 0\n", + "74616 0\n", + "74617 0\n", + "74618 0\n", + "74619 0\n", + "74620 0\n", + "74621 0\n", + "74622 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "74623 1\n", + "74624 0\n", + "74625 0\n", + "74626 0\n", + "74627 0\n", + "74628 0\n", + "74629 0\n", + "74630 0\n", + "74631 0\n", + "74632 0\n", + "74633 0\n", + "74634 0\n", + "74635 0\n", + "74636 0\n", + "74637 0\n", + "74638 0\n", + "74639 0\n", + "74640 0\n", + "74641 0\n", + "74642 0\n", + "74643 0\n", + "74644 0\n", + "74645 0\n", + "74646 0\n", + "74647 0\n", + "74648 0\n", + "74649 0\n", + "74650 0\n", + "74651 0\n", + "74652 0\n", + "74653 1\n", + "74654 0\n", + "74655 0\n", + "74656 0\n", + "74657 0\n", + "74658 0\n", + "74659 0\n", + "74660 0\n", + "74661 0\n", + "74662 0\n", + "74663 0\n", + "74664 0\n", + "74665 0\n", + "74666 0\n", + "74667 0\n", + "74668 0\n", + "74669 0\n", + "74670 0\n", + "74671 0\n", + "74672 0\n", + "74673 0\n", + "74674 0\n", + "74675 0\n", + "74676 0\n", + "74677 0\n", + "74678 0\n", + "74679 0\n", + "74680 0\n", + "74681 0\n", + "74682 0\n", + "74683 0\n", + "74684 0\n", + "74685 0\n", + "74686 0\n", + "74687 1\n", + "74688 0\n", + "74689 0\n", + "74690 0\n", + "74691 0\n", + "74692 0\n", + "74693 0\n", + "74694 0\n", + "74695 0\n", + "74696 0\n", + "74697 0\n", + "74698 0\n", + "74699 1\n", + "74700 0\n", + "74701 0\n", + "74702 0\n", + "74703 0\n", + "74704 0\n", + "74705 0\n", + "74706 0\n", + "74707 1\n", + "74708 0\n", + "74709 0\n", + "74710 0\n", + "74711 0\n", + "74712 0\n", + "74713 1\n", + "74714 0\n", + "74715 0\n", + "74716 0\n", + "74717 1\n", + "74718 0\n", + "74719 1\n", + "74720 0\n", + "74721 0\n", + "74722 0\n", + "74723 0\n", + "74724 0\n", + "74725 0\n", + "74726 0\n", + "74727 0\n", + "74728 0\n", + "74729 1\n", + "74730 0\n", + "74731 1\n", + "74732 0\n", + "74733 0\n", + "74734 0\n", + "74735 0\n", + "74736 0\n", + "74737 0\n", + "74738 0\n", + "74739 0\n", + "74740 0\n", + "74741 0\n", + "74742 0\n", + "74743 0\n", + "74744 0\n", + "74745 0\n", + "74746 0\n", + "74747 1\n", + "74748 0\n", + "74749 0\n", + "74750 0\n", + "74751 0\n", + "74752 0\n", + "74753 0\n", + "74754 0\n", + "74755 0\n", + "74756 0\n", + "74757 0\n", + "74758 0\n", + "74759 1\n", + "74760 0\n", + "74761 1\n", + "74762 0\n", + "74763 0\n", + "74764 0\n", + "74765 0\n", + "74766 0\n", + "74767 0\n", + "74768 0\n", + "74769 0\n", + "74770 0\n", + "74771 1\n", + "74772 0\n", + "74773 0\n", + "74774 0\n", + "74775 0\n", + "74776 0\n", + "74777 0\n", + "74778 0\n", + "74779 1\n", + "74780 0\n", + "74781 0\n", + "74782 0\n", + "74783 0\n", + "74784 0\n", + "74785 0\n", + "74786 0\n", + "74787 0\n", + "74788 0\n", + "74789 0\n", + "74790 0\n", + "74791 0\n", + "74792 0\n", + "74793 0\n", + "74794 0\n", + "74795 0\n", + "74796 0\n", + "74797 1\n", + "74798 0\n", + "74799 0\n", + "74800 0\n", + "74801 0\n", + "74802 0\n", + "74803 0\n", + "74804 0\n", + "74805 0\n", + "74806 0\n", + "74807 0\n", + "74808 0\n", + "74809 0\n", + "74810 0\n", + "74811 0\n", + "74812 0\n", + "74813 0\n", + "74814 0\n", + "74815 0\n", + "74816 0\n", + "74817 0\n", + "74818 0\n", + "74819 0\n", + "74820 0\n", + "74821 1\n", + "74822 0\n", + "74823 0\n", + "74824 0\n", + "74825 0\n", + "74826 0\n", + "74827 1\n", + "74828 0\n", + "74829 0\n", + "74830 0\n", + "74831 1\n", + "74832 0\n", + "74833 0\n", + "74834 0\n", + "74835 0\n", + "74836 0\n", + "74837 0\n", + "74838 0\n", + "74839 0\n", + "74840 0\n", + "74841 0\n", + "74842 0\n", + "74843 1\n", + "74844 0\n", + "74845 0\n", + "74846 0\n", + "74847 0\n", + "74848 0\n", + "74849 0\n", + "74850 0\n", + "74851 0\n", + "74852 0\n", + "74853 0\n", + "74854 0\n", + "74855 0\n", + "74856 0\n", + "74857 1\n", + "74858 0\n", + "74859 0\n", + "74860 0\n", + "74861 1\n", + "74862 0\n", + "74863 0\n", + "74864 0\n", + "74865 0\n", + "74866 0\n", + "74867 0\n", + "74868 0\n", + "74869 1\n", + "74870 0\n", + "74871 0\n", + "74872 0\n", + "74873 1\n", + "74874 0\n", + "74875 0\n", + "74876 0\n", + "74877 0\n", + "74878 0\n", + "74879 0\n", + "74880 0\n", + "74881 0\n", + "74882 0\n", + "74883 0\n", + "74884 0\n", + "74885 0\n", + "74886 0\n", + "74887 1\n", + "74888 0\n", + "74889 0\n", + "74890 0\n", + "74891 1\n", + "74892 0\n", + "74893 0\n", + "74894 0\n", + "74895 0\n", + "74896 0\n", + "74897 1\n", + "74898 0\n", + "74899 0\n", + "74900 0\n", + "74901 0\n", + "74902 0\n", + "74903 1\n", + "74904 0\n", + "74905 0\n", + "74906 0\n", + "74907 0\n", + "74908 0\n", + "74909 0\n", + "74910 0\n", + "74911 0\n", + "74912 0\n", + "74913 0\n", + "74914 0\n", + "74915 0\n", + "74916 0\n", + "74917 0\n", + "74918 0\n", + "74919 0\n", + "74920 0\n", + "74921 0\n", + "74922 0\n", + "74923 1\n", + "74924 0\n", + "74925 0\n", + "74926 0\n", + "74927 0\n", + "74928 0\n", + "74929 1\n", + "74930 0\n", + "74931 0\n", + "74932 0\n", + "74933 1\n", + "74934 0\n", + "74935 0\n", + "74936 0\n", + "74937 0\n", + "74938 0\n", + "74939 0\n", + "74940 0\n", + "74941 1\n", + "74942 0\n", + "74943 0\n", + "74944 0\n", + "74945 0\n", + "74946 0\n", + "74947 0\n", + "74948 0\n", + "74949 0\n", + "74950 0\n", + "74951 0\n", + "74952 0\n", + "74953 0\n", + "74954 0\n", + "74955 0\n", + "74956 0\n", + "74957 0\n", + "74958 0\n", + "74959 1\n", + "74960 0\n", + "74961 0\n", + "74962 0\n", + "74963 0\n", + "74964 0\n", + "74965 0\n", + "74966 0\n", + "74967 0\n", + "74968 0\n", + "74969 0\n", + "74970 0\n", + "74971 0\n", + "74972 0\n", + "74973 0\n", + "74974 0\n", + "74975 0\n", + "74976 0\n", + "74977 0\n", + "74978 0\n", + "74979 0\n", + "74980 0\n", + "74981 0\n", + "74982 0\n", + "74983 0\n", + "74984 0\n", + "74985 0\n", + "74986 0\n", + "74987 0\n", + "74988 0\n", + "74989 0\n", + "74990 0\n", + "74991 0\n", + "74992 0\n", + "74993 0\n", + "74994 0\n", + "74995 0\n", + "74996 0\n", + "74997 0\n", + "74998 0\n", + "74999 0\n", + "75000 0\n", + "75001 0\n", + "75002 0\n", + "75003 0\n", + "75004 0\n", + "75005 0\n", + "75006 0\n", + "75007 0\n", + "75008 0\n", + "75009 0\n", + "75010 0\n", + "75011 1\n", + "75012 0\n", + "75013 1\n", + "75014 0\n", + "75015 0\n", + "75016 0\n", + "75017 1\n", + "75018 0\n", + "75019 0\n", + "75020 0\n", + "75021 0\n", + "75022 0\n", + "75023 0\n", + "75024 0\n", + "75025 0\n", + "75026 0\n", + "75027 0\n", + "75028 0\n", + "75029 1\n", + "75030 0\n", + "75031 0\n", + "75032 0\n", + "75033 0\n", + "75034 0\n", + "75035 0\n", + "75036 0\n", + "75037 1\n", + "75038 0\n", + "75039 0\n", + "75040 0\n", + "75041 1\n", + "75042 0\n", + "75043 0\n", + "75044 0\n", + "75045 0\n", + "75046 0\n", + "75047 0\n", + "75048 0\n", + "75049 0\n", + "75050 0\n", + "75051 0\n", + "75052 0\n", + "75053 0\n", + "75054 0\n", + "75055 0\n", + "75056 0\n", + "75057 0\n", + "75058 0\n", + "75059 0\n", + "75060 0\n", + "75061 0\n", + "75062 0\n", + "75063 0\n", + "75064 0\n", + "75065 0\n", + "75066 0\n", + "75067 0\n", + "75068 0\n", + "75069 0\n", + "75070 0\n", + "75071 0\n", + "75072 0\n", + "75073 0\n", + "75074 0\n", + "75075 0\n", + "75076 0\n", + "75077 0\n", + "75078 0\n", + "75079 1\n", + "75080 0\n", + "75081 0\n", + "75082 0\n", + "75083 1\n", + "75084 0\n", + "75085 0\n", + "75086 0\n", + "75087 0\n", + "75088 0\n", + "75089 0\n", + "75090 0\n", + "75091 0\n", + "75092 0\n", + "75093 0\n", + "75094 0\n", + "75095 0\n", + "75096 0\n", + "75097 0\n", + "75098 0\n", + "75099 0\n", + "75100 0\n", + "75101 0\n", + "75102 0\n", + "75103 0\n", + "75104 0\n", + "75105 0\n", + "75106 0\n", + "75107 0\n", + "75108 0\n", + "75109 1\n", + "75110 0\n", + "75111 0\n", + "75112 0\n", + "75113 0\n", + "75114 0\n", + "75115 0\n", + "75116 0\n", + "75117 0\n", + "75118 0\n", + "75119 0\n", + "75120 0\n", + "75121 0\n", + "75122 0\n", + "75123 0\n", + "75124 0\n", + "75125 0\n", + "75126 0\n", + "75127 0\n", + "75128 0\n", + "75129 0\n", + "75130 0\n", + "75131 0\n", + "75132 0\n", + "75133 1\n", + "75134 0\n", + "75135 0\n", + "75136 0\n", + "75137 0\n", + "75138 0\n", + "75139 0\n", + "75140 0\n", + "75141 0\n", + "75142 0\n", + "75143 0\n", + "75144 0\n", + "75145 0\n", + "75146 0\n", + "75147 0\n", + "75148 0\n", + "75149 1\n", + "75150 0\n", + "75151 0\n", + "75152 0\n", + "75153 0\n", + "75154 0\n", + "75155 0\n", + "75156 0\n", + "75157 0\n", + "75158 0\n", + "75159 0\n", + "75160 0\n", + "75161 1\n", + "75162 0\n", + "75163 0\n", + "75164 0\n", + "75165 0\n", + "75166 0\n", + "75167 1\n", + "75168 0\n", + "75169 1\n", + "75170 0\n", + "75171 0\n", + "75172 0\n", + "75173 0\n", + "75174 0\n", + "75175 0\n", + "75176 0\n", + "75177 0\n", + "75178 0\n", + "75179 0\n", + "75180 0\n", + "75181 1\n", + "75182 0\n", + "75183 0\n", + "75184 0\n", + "75185 0\n", + "75186 0\n", + "75187 0\n", + "75188 0\n", + "75189 0\n", + "75190 0\n", + "75191 0\n", + "75192 0\n", + "75193 1\n", + "75194 0\n", + "75195 0\n", + "75196 0\n", + "75197 0\n", + "75198 0\n", + "75199 0\n", + "75200 0\n", + "75201 0\n", + "75202 0\n", + "75203 0\n", + "75204 0\n", + "75205 0\n", + "75206 0\n", + "75207 0\n", + "75208 0\n", + "75209 1\n", + "75210 0\n", + "75211 1\n", + "75212 0\n", + "75213 0\n", + "75214 0\n", + "75215 0\n", + "75216 0\n", + "75217 1\n", + "75218 0\n", + "75219 0\n", + "75220 0\n", + "75221 0\n", + "75222 0\n", + "75223 1\n", + "75224 0\n", + "75225 0\n", + "75226 0\n", + "75227 1\n", + "75228 0\n", + "75229 0\n", + "75230 0\n", + "75231 0\n", + "75232 0\n", + "75233 0\n", + "75234 0\n", + "75235 0\n", + "75236 0\n", + "75237 0\n", + "75238 0\n", + "75239 1\n", + "75240 0\n", + "75241 0\n", + "75242 0\n", + "75243 0\n", + "75244 0\n", + "75245 0\n", + "75246 0\n", + "75247 0\n", + "75248 0\n", + "75249 0\n", + "75250 0\n", + "75251 0\n", + "75252 0\n", + "75253 1\n", + "75254 0\n", + "75255 0\n", + "75256 0\n", + "75257 0\n", + "75258 0\n", + "75259 0\n", + "75260 0\n", + "75261 0\n", + "75262 0\n", + "75263 0\n", + "75264 0\n", + "75265 0\n", + "75266 0\n", + "75267 0\n", + "75268 0\n", + "75269 1\n", + "75270 0\n", + "75271 0\n", + "75272 0\n", + "75273 0\n", + "75274 0\n", + "75275 0\n", + "75276 0\n", + "75277 1\n", + "75278 0\n", + "75279 0\n", + "75280 0\n", + "75281 0\n", + "75282 0\n", + "75283 0\n", + "75284 0\n", + "75285 0\n", + "75286 0\n", + "75287 0\n", + "75288 0\n", + "75289 1\n", + "75290 0\n", + "75291 0\n", + "75292 0\n", + "75293 0\n", + "75294 0\n", + "75295 0\n", + "75296 0\n", + "75297 0\n", + "75298 0\n", + "75299 0\n", + "75300 0\n", + "75301 0\n", + "75302 0\n", + "75303 0\n", + "75304 0\n", + "75305 0\n", + "75306 0\n", + "75307 1\n", + "75308 0\n", + "75309 0\n", + "75310 0\n", + "75311 0\n", + "75312 0\n", + "75313 0\n", + "75314 0\n", + "75315 0\n", + "75316 0\n", + "75317 0\n", + "75318 0\n", + "75319 0\n", + "75320 0\n", + "75321 0\n", + "75322 0\n", + "75323 1\n", + "75324 0\n", + "75325 0\n", + "75326 0\n", + "75327 0\n", + "75328 0\n", + "75329 1\n", + "75330 0\n", + "75331 0\n", + "75332 0\n", + "75333 0\n", + "75334 0\n", + "75335 0\n", + "75336 0\n", + "75337 1\n", + "75338 0\n", + "75339 0\n", + "75340 0\n", + "75341 0\n", + "75342 0\n", + "75343 0\n", + "75344 0\n", + "75345 0\n", + "75346 0\n", + "75347 1\n", + "75348 0\n", + "75349 0\n", + "75350 0\n", + "75351 0\n", + "75352 0\n", + "75353 1\n", + "75354 0\n", + "75355 0\n", + "75356 0\n", + "75357 0\n", + "75358 0\n", + "75359 0\n", + "75360 0\n", + "75361 0\n", + "75362 0\n", + "75363 0\n", + "75364 0\n", + "75365 0\n", + "75366 0\n", + "75367 1\n", + "75368 0\n", + "75369 0\n", + "75370 0\n", + "75371 0\n", + "75372 0\n", + "75373 0\n", + "75374 0\n", + "75375 0\n", + "75376 0\n", + "75377 1\n", + "75378 0\n", + "75379 0\n", + "75380 0\n", + "75381 0\n", + "75382 0\n", + "75383 0\n", + "75384 0\n", + "75385 0\n", + "75386 0\n", + "75387 0\n", + "75388 0\n", + "75389 1\n", + "75390 0\n", + "75391 1\n", + "75392 0\n", + "75393 0\n", + "75394 0\n", + "75395 0\n", + "75396 0\n", + "75397 0\n", + "75398 0\n", + "75399 0\n", + "75400 0\n", + "75401 1\n", + "75402 0\n", + "75403 1\n", + "75404 0\n", + "75405 0\n", + "75406 0\n", + "75407 1\n", + "75408 0\n", + "75409 0\n", + "75410 0\n", + "75411 0\n", + "75412 0\n", + "75413 0\n", + "75414 0\n", + "75415 0\n", + "75416 0\n", + "75417 0\n", + "75418 0\n", + "75419 0\n", + "75420 0\n", + "75421 0\n", + "75422 0\n", + "75423 0\n", + "75424 0\n", + "75425 0\n", + "75426 0\n", + "75427 0\n", + "75428 0\n", + "75429 0\n", + "75430 0\n", + "75431 1\n", + "75432 0\n", + "75433 0\n", + "75434 0\n", + "75435 0\n", + "75436 0\n", + "75437 1\n", + "75438 0\n", + "75439 0\n", + "75440 0\n", + "75441 0\n", + "75442 0\n", + "75443 0\n", + "75444 0\n", + "75445 0\n", + "75446 0\n", + "75447 0\n", + "75448 0\n", + "75449 0\n", + "75450 0\n", + "75451 0\n", + "75452 0\n", + "75453 0\n", + "75454 0\n", + "75455 0\n", + "75456 0\n", + "75457 0\n", + "75458 0\n", + "75459 0\n", + "75460 0\n", + "75461 0\n", + "75462 0\n", + "75463 0\n", + "75464 0\n", + "75465 0\n", + "75466 0\n", + "75467 0\n", + "75468 0\n", + "75469 0\n", + "75470 0\n", + "75471 0\n", + "75472 0\n", + "75473 0\n", + "75474 0\n", + "75475 0\n", + "75476 0\n", + "75477 0\n", + "75478 0\n", + "75479 1\n", + "75480 0\n", + "75481 0\n", + "75482 0\n", + "75483 0\n", + "75484 0\n", + "75485 0\n", + "75486 0\n", + "75487 0\n", + "75488 0\n", + "75489 0\n", + "75490 0\n", + "75491 0\n", + "75492 0\n", + "75493 0\n", + "75494 0\n", + "75495 0\n", + "75496 0\n", + "75497 0\n", + "75498 0\n", + "75499 0\n", + "75500 0\n", + "75501 0\n", + "75502 0\n", + "75503 1\n", + "75504 0\n", + "75505 0\n", + "75506 0\n", + "75507 0\n", + "75508 0\n", + "75509 0\n", + "75510 0\n", + "75511 1\n", + "75512 0\n", + "75513 0\n", + "75514 0\n", + "75515 0\n", + "75516 0\n", + "75517 0\n", + "75518 0\n", + "75519 0\n", + "75520 0\n", + "75521 1\n", + "75522 0\n", + "75523 0\n", + "75524 0\n", + "75525 0\n", + "75526 0\n", + "75527 1\n", + "75528 0\n", + "75529 0\n", + "75530 0\n", + "75531 0\n", + "75532 0\n", + "75533 1\n", + "75534 0\n", + "75535 0\n", + "75536 0\n", + "75537 0\n", + "75538 0\n", + "75539 1\n", + "75540 0\n", + "75541 1\n", + "75542 0\n", + "75543 0\n", + "75544 0\n", + "75545 0\n", + "75546 0\n", + "75547 0\n", + "75548 0\n", + "75549 0\n", + "75550 0\n", + "75551 0\n", + "75552 0\n", + "75553 1\n", + "75554 0\n", + "75555 0\n", + "75556 0\n", + "75557 1\n", + "75558 0\n", + "75559 0\n", + "75560 0\n", + "75561 0\n", + "75562 0\n", + "75563 0\n", + "75564 0\n", + "75565 0\n", + "75566 0\n", + "75567 0\n", + "75568 0\n", + "75569 0\n", + "75570 0\n", + "75571 1\n", + "75572 0\n", + "75573 0\n", + "75574 0\n", + "75575 0\n", + "75576 0\n", + "75577 1\n", + "75578 0\n", + "75579 0\n", + "75580 0\n", + "75581 0\n", + "75582 0\n", + "75583 1\n", + "75584 0\n", + "75585 0\n", + "75586 0\n", + "75587 0\n", + "75588 0\n", + "75589 0\n", + "75590 0\n", + "75591 0\n", + "75592 0\n", + "75593 0\n", + "75594 0\n", + "75595 0\n", + "75596 0\n", + "75597 0\n", + "75598 0\n", + "75599 0\n", + "75600 0\n", + "75601 0\n", + "75602 0\n", + "75603 0\n", + "75604 0\n", + "75605 0\n", + "75606 0\n", + "75607 0\n", + "75608 0\n", + "75609 0\n", + "75610 0\n", + "75611 1\n", + "75612 0\n", + "75613 0\n", + "75614 0\n", + "75615 0\n", + "75616 0\n", + "75617 1\n", + "75618 0\n", + "75619 1\n", + "75620 0\n", + "75621 0\n", + "75622 0\n", + "75623 0\n", + "75624 0\n", + "75625 0\n", + "75626 0\n", + "75627 0\n", + "75628 0\n", + "75629 1\n", + "75630 0\n", + "75631 0\n", + "75632 0\n", + "75633 0\n", + "75634 0\n", + "75635 0\n", + "75636 0\n", + "75637 0\n", + "75638 0\n", + "75639 0\n", + "75640 0\n", + "75641 1\n", + "75642 0\n", + "75643 0\n", + "75644 0\n", + "75645 0\n", + "75646 0\n", + "75647 0\n", + "75648 0\n", + "75649 0\n", + "75650 0\n", + "75651 0\n", + "75652 0\n", + "75653 1\n", + "75654 0\n", + "75655 0\n", + "75656 0\n", + "75657 0\n", + "75658 0\n", + "75659 1\n", + "75660 0\n", + "75661 0\n", + "75662 0\n", + "75663 0\n", + "75664 0\n", + "75665 0\n", + "75666 0\n", + "75667 0\n", + "75668 0\n", + "75669 0\n", + "75670 0\n", + "75671 0\n", + "75672 0\n", + "75673 0\n", + "75674 0\n", + "75675 0\n", + "75676 0\n", + "75677 0\n", + "75678 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "75679 1\n", + "75680 0\n", + "75681 0\n", + "75682 0\n", + "75683 1\n", + "75684 0\n", + "75685 0\n", + "75686 0\n", + "75687 0\n", + "75688 0\n", + "75689 1\n", + "75690 0\n", + "75691 0\n", + "75692 0\n", + "75693 0\n", + "75694 0\n", + "75695 0\n", + "75696 0\n", + "75697 0\n", + "75698 0\n", + "75699 0\n", + "75700 0\n", + "75701 0\n", + "75702 0\n", + "75703 1\n", + "75704 0\n", + "75705 0\n", + "75706 0\n", + "75707 1\n", + "75708 0\n", + "75709 1\n", + "75710 0\n", + "75711 0\n", + "75712 0\n", + "75713 0\n", + "75714 0\n", + "75715 0\n", + "75716 0\n", + "75717 0\n", + "75718 0\n", + "75719 0\n", + "75720 0\n", + "75721 1\n", + "75722 0\n", + "75723 0\n", + "75724 0\n", + "75725 0\n", + "75726 0\n", + "75727 0\n", + "75728 0\n", + "75729 0\n", + "75730 0\n", + "75731 1\n", + "75732 0\n", + "75733 0\n", + "75734 0\n", + "75735 0\n", + "75736 0\n", + "75737 0\n", + "75738 0\n", + "75739 0\n", + "75740 0\n", + "75741 0\n", + "75742 0\n", + "75743 1\n", + "75744 0\n", + "75745 0\n", + "75746 0\n", + "75747 0\n", + "75748 0\n", + "75749 0\n", + "75750 0\n", + "75751 0\n", + "75752 0\n", + "75753 0\n", + "75754 0\n", + "75755 0\n", + "75756 0\n", + "75757 0\n", + "75758 0\n", + "75759 0\n", + "75760 0\n", + "75761 0\n", + "75762 0\n", + "75763 0\n", + "75764 0\n", + "75765 0\n", + "75766 0\n", + "75767 1\n", + "75768 0\n", + "75769 0\n", + "75770 0\n", + "75771 0\n", + "75772 0\n", + "75773 1\n", + "75774 0\n", + "75775 0\n", + "75776 0\n", + "75777 0\n", + "75778 0\n", + "75779 0\n", + "75780 0\n", + "75781 1\n", + "75782 0\n", + "75783 0\n", + "75784 0\n", + "75785 0\n", + "75786 0\n", + "75787 1\n", + "75788 0\n", + "75789 0\n", + "75790 0\n", + "75791 0\n", + "75792 0\n", + "75793 1\n", + "75794 0\n", + "75795 0\n", + "75796 0\n", + "75797 1\n", + "75798 0\n", + "75799 0\n", + "75800 0\n", + "75801 0\n", + "75802 0\n", + "75803 0\n", + "75804 0\n", + "75805 0\n", + "75806 0\n", + "75807 0\n", + "75808 0\n", + "75809 0\n", + "75810 0\n", + "75811 0\n", + "75812 0\n", + "75813 0\n", + "75814 0\n", + "75815 0\n", + "75816 0\n", + "75817 0\n", + "75818 0\n", + "75819 0\n", + "75820 0\n", + "75821 1\n", + "75822 0\n", + "75823 0\n", + "75824 0\n", + "75825 0\n", + "75826 0\n", + "75827 0\n", + "75828 0\n", + "75829 0\n", + "75830 0\n", + "75831 0\n", + "75832 0\n", + "75833 1\n", + "75834 0\n", + "75835 0\n", + "75836 0\n", + "75837 0\n", + "75838 0\n", + "75839 0\n", + "75840 0\n", + "75841 0\n", + "75842 0\n", + "75843 0\n", + "75844 0\n", + "75845 0\n", + "75846 0\n", + "75847 0\n", + "75848 0\n", + "75849 0\n", + "75850 0\n", + "75851 0\n", + "75852 0\n", + "75853 1\n", + "75854 0\n", + "75855 0\n", + "75856 0\n", + "75857 0\n", + "75858 0\n", + "75859 0\n", + "75860 0\n", + "75861 0\n", + "75862 0\n", + "75863 0\n", + "75864 0\n", + "75865 0\n", + "75866 0\n", + "75867 0\n", + "75868 0\n", + "75869 1\n", + "75870 0\n", + "75871 0\n", + "75872 0\n", + "75873 0\n", + "75874 0\n", + "75875 0\n", + "75876 0\n", + "75877 0\n", + "75878 0\n", + "75879 0\n", + "75880 0\n", + "75881 0\n", + "75882 0\n", + "75883 1\n", + "75884 0\n", + "75885 0\n", + "75886 0\n", + "75887 0\n", + "75888 0\n", + "75889 0\n", + "75890 0\n", + "75891 0\n", + "75892 0\n", + "75893 0\n", + "75894 0\n", + "75895 0\n", + "75896 0\n", + "75897 0\n", + "75898 0\n", + "75899 0\n", + "75900 0\n", + "75901 0\n", + "75902 0\n", + "75903 0\n", + "75904 0\n", + "75905 0\n", + "75906 0\n", + "75907 0\n", + "75908 0\n", + "75909 0\n", + "75910 0\n", + "75911 0\n", + "75912 0\n", + "75913 1\n", + "75914 0\n", + "75915 0\n", + "75916 0\n", + "75917 0\n", + "75918 0\n", + "75919 0\n", + "75920 0\n", + "75921 0\n", + "75922 0\n", + "75923 0\n", + "75924 0\n", + "75925 0\n", + "75926 0\n", + "75927 0\n", + "75928 0\n", + "75929 0\n", + "75930 0\n", + "75931 1\n", + "75932 0\n", + "75933 0\n", + "75934 0\n", + "75935 0\n", + "75936 0\n", + "75937 1\n", + "75938 0\n", + "75939 0\n", + "75940 0\n", + "75941 1\n", + "75942 0\n", + "75943 0\n", + "75944 0\n", + "75945 0\n", + "75946 0\n", + "75947 0\n", + "75948 0\n", + "75949 0\n", + "75950 0\n", + "75951 0\n", + "75952 0\n", + "75953 0\n", + "75954 0\n", + "75955 0\n", + "75956 0\n", + "75957 0\n", + "75958 0\n", + "75959 0\n", + "75960 0\n", + "75961 0\n", + "75962 0\n", + "75963 0\n", + "75964 0\n", + "75965 0\n", + "75966 0\n", + "75967 1\n", + "75968 0\n", + "75969 0\n", + "75970 0\n", + "75971 0\n", + "75972 0\n", + "75973 0\n", + "75974 0\n", + "75975 0\n", + "75976 0\n", + "75977 0\n", + "75978 0\n", + "75979 1\n", + "75980 0\n", + "75981 0\n", + "75982 0\n", + "75983 1\n", + "75984 0\n", + "75985 0\n", + "75986 0\n", + "75987 0\n", + "75988 0\n", + "75989 1\n", + "75990 0\n", + "75991 1\n", + "75992 0\n", + "75993 0\n", + "75994 0\n", + "75995 0\n", + "75996 0\n", + "75997 1\n", + "75998 0\n", + "75999 0\n", + "76000 0\n", + "76001 1\n", + "76002 0\n", + "76003 1\n", + "76004 0\n", + "76005 0\n", + "76006 0\n", + "76007 0\n", + "76008 0\n", + "76009 0\n", + "76010 0\n", + "76011 0\n", + "76012 0\n", + "76013 0\n", + "76014 0\n", + "76015 0\n", + "76016 0\n", + "76017 0\n", + "76018 0\n", + "76019 0\n", + "76020 0\n", + "76021 0\n", + "76022 0\n", + "76023 0\n", + "76024 0\n", + "76025 0\n", + "76026 0\n", + "76027 0\n", + "76028 0\n", + "76029 0\n", + "76030 0\n", + "76031 1\n", + "76032 0\n", + "76033 0\n", + "76034 0\n", + "76035 0\n", + "76036 0\n", + "76037 0\n", + "76038 0\n", + "76039 1\n", + "76040 0\n", + "76041 0\n", + "76042 0\n", + "76043 0\n", + "76044 0\n", + "76045 0\n", + "76046 0\n", + "76047 0\n", + "76048 0\n", + "76049 0\n", + "76050 0\n", + "76051 0\n", + "76052 0\n", + "76053 0\n", + "76054 0\n", + "76055 0\n", + "76056 0\n", + "76057 0\n", + "76058 0\n", + "76059 0\n", + "76060 0\n", + "76061 0\n", + "76062 0\n", + "76063 0\n", + "76064 0\n", + "76065 0\n", + "76066 0\n", + "76067 0\n", + "76068 0\n", + "76069 0\n", + "76070 0\n", + "76071 0\n", + "76072 0\n", + "76073 0\n", + "76074 0\n", + "76075 0\n", + "76076 0\n", + "76077 0\n", + "76078 0\n", + "76079 1\n", + "76080 0\n", + "76081 1\n", + "76082 0\n", + "76083 0\n", + "76084 0\n", + "76085 0\n", + "76086 0\n", + "76087 0\n", + "76088 0\n", + "76089 0\n", + "76090 0\n", + "76091 1\n", + "76092 0\n", + "76093 0\n", + "76094 0\n", + "76095 0\n", + "76096 0\n", + "76097 0\n", + "76098 0\n", + "76099 1\n", + "76100 0\n", + "76101 0\n", + "76102 0\n", + "76103 1\n", + "76104 0\n", + "76105 0\n", + "76106 0\n", + "76107 0\n", + "76108 0\n", + "76109 0\n", + "76110 0\n", + "76111 0\n", + "76112 0\n", + "76113 0\n", + "76114 0\n", + "76115 0\n", + "76116 0\n", + "76117 0\n", + "76118 0\n", + "76119 0\n", + "76120 0\n", + "76121 0\n", + "76122 0\n", + "76123 1\n", + "76124 0\n", + "76125 0\n", + "76126 0\n", + "76127 0\n", + "76128 0\n", + "76129 1\n", + "76130 0\n", + "76131 0\n", + "76132 0\n", + "76133 0\n", + "76134 0\n", + "76135 0\n", + "76136 0\n", + "76137 0\n", + "76138 0\n", + "76139 0\n", + "76140 0\n", + "76141 0\n", + "76142 0\n", + "76143 0\n", + "76144 0\n", + "76145 0\n", + "76146 0\n", + "76147 1\n", + "76148 0\n", + "76149 0\n", + "76150 0\n", + "76151 0\n", + "76152 0\n", + "76153 0\n", + "76154 0\n", + "76155 0\n", + "76156 0\n", + "76157 1\n", + "76158 0\n", + "76159 1\n", + "76160 0\n", + "76161 0\n", + "76162 0\n", + "76163 1\n", + "76164 0\n", + "76165 0\n", + "76166 0\n", + "76167 0\n", + "76168 0\n", + "76169 0\n", + "76170 0\n", + "76171 0\n", + "76172 0\n", + "76173 0\n", + "76174 0\n", + "76175 0\n", + "76176 0\n", + "76177 0\n", + "76178 0\n", + "76179 0\n", + "76180 0\n", + "76181 0\n", + "76182 0\n", + "76183 0\n", + "76184 0\n", + "76185 0\n", + "76186 0\n", + "76187 0\n", + "76188 0\n", + "76189 0\n", + "76190 0\n", + "76191 0\n", + "76192 0\n", + "76193 0\n", + "76194 0\n", + "76195 0\n", + "76196 0\n", + "76197 0\n", + "76198 0\n", + "76199 0\n", + "76200 0\n", + "76201 0\n", + "76202 0\n", + "76203 0\n", + "76204 0\n", + "76205 0\n", + "76206 0\n", + "76207 1\n", + "76208 0\n", + "76209 0\n", + "76210 0\n", + "76211 0\n", + "76212 0\n", + "76213 1\n", + "76214 0\n", + "76215 0\n", + "76216 0\n", + "76217 0\n", + "76218 0\n", + "76219 0\n", + "76220 0\n", + "76221 0\n", + "76222 0\n", + "76223 0\n", + "76224 0\n", + "76225 0\n", + "76226 0\n", + "76227 0\n", + "76228 0\n", + "76229 0\n", + "76230 0\n", + "76231 1\n", + "76232 0\n", + "76233 0\n", + "76234 0\n", + "76235 0\n", + "76236 0\n", + "76237 0\n", + "76238 0\n", + "76239 0\n", + "76240 0\n", + "76241 0\n", + "76242 0\n", + "76243 1\n", + "76244 0\n", + "76245 0\n", + "76246 0\n", + "76247 0\n", + "76248 0\n", + "76249 1\n", + "76250 0\n", + "76251 0\n", + "76252 0\n", + "76253 1\n", + "76254 0\n", + "76255 0\n", + "76256 0\n", + "76257 0\n", + "76258 0\n", + "76259 1\n", + "76260 0\n", + "76261 1\n", + "76262 0\n", + "76263 0\n", + "76264 0\n", + "76265 0\n", + "76266 0\n", + "76267 0\n", + "76268 0\n", + "76269 0\n", + "76270 0\n", + "76271 0\n", + "76272 0\n", + "76273 0\n", + "76274 0\n", + "76275 0\n", + "76276 0\n", + "76277 0\n", + "76278 0\n", + "76279 0\n", + "76280 0\n", + "76281 0\n", + "76282 0\n", + "76283 1\n", + "76284 0\n", + "76285 0\n", + "76286 0\n", + "76287 0\n", + "76288 0\n", + "76289 1\n", + "76290 0\n", + "76291 0\n", + "76292 0\n", + "76293 0\n", + "76294 0\n", + "76295 0\n", + "76296 0\n", + "76297 0\n", + "76298 0\n", + "76299 0\n", + "76300 0\n", + "76301 0\n", + "76302 0\n", + "76303 1\n", + "76304 0\n", + "76305 0\n", + "76306 0\n", + "76307 0\n", + "76308 0\n", + "76309 0\n", + "76310 0\n", + "76311 0\n", + "76312 0\n", + "76313 0\n", + "76314 0\n", + "76315 0\n", + "76316 0\n", + "76317 0\n", + "76318 0\n", + "76319 0\n", + "76320 0\n", + "76321 0\n", + "76322 0\n", + "76323 0\n", + "76324 0\n", + "76325 0\n", + "76326 0\n", + "76327 0\n", + "76328 0\n", + "76329 0\n", + "76330 0\n", + "76331 0\n", + "76332 0\n", + "76333 1\n", + "76334 0\n", + "76335 0\n", + "76336 0\n", + "76337 0\n", + "76338 0\n", + "76339 0\n", + "76340 0\n", + "76341 0\n", + "76342 0\n", + "76343 1\n", + "76344 0\n", + "76345 0\n", + "76346 0\n", + "76347 0\n", + "76348 0\n", + "76349 0\n", + "76350 0\n", + "76351 0\n", + "76352 0\n", + "76353 0\n", + "76354 0\n", + "76355 0\n", + "76356 0\n", + "76357 0\n", + "76358 0\n", + "76359 0\n", + "76360 0\n", + "76361 0\n", + "76362 0\n", + "76363 0\n", + "76364 0\n", + "76365 0\n", + "76366 0\n", + "76367 1\n", + "76368 0\n", + "76369 1\n", + "76370 0\n", + "76371 0\n", + "76372 0\n", + "76373 0\n", + "76374 0\n", + "76375 0\n", + "76376 0\n", + "76377 0\n", + "76378 0\n", + "76379 1\n", + "76380 0\n", + "76381 0\n", + "76382 0\n", + "76383 0\n", + "76384 0\n", + "76385 0\n", + "76386 0\n", + "76387 1\n", + "76388 0\n", + "76389 0\n", + "76390 0\n", + "76391 0\n", + "76392 0\n", + "76393 0\n", + "76394 0\n", + "76395 0\n", + "76396 0\n", + "76397 0\n", + "76398 0\n", + "76399 0\n", + "76400 0\n", + "76401 0\n", + "76402 0\n", + "76403 1\n", + "76404 0\n", + "76405 0\n", + "76406 0\n", + "76407 0\n", + "76408 0\n", + "76409 0\n", + "76410 0\n", + "76411 0\n", + "76412 0\n", + "76413 0\n", + "76414 0\n", + "76415 0\n", + "76416 0\n", + "76417 0\n", + "76418 0\n", + "76419 0\n", + "76420 0\n", + "76421 1\n", + "76422 0\n", + "76423 1\n", + "76424 0\n", + "76425 0\n", + "76426 0\n", + "76427 0\n", + "76428 0\n", + "76429 0\n", + "76430 0\n", + "76431 0\n", + "76432 0\n", + "76433 0\n", + "76434 0\n", + "76435 0\n", + "76436 0\n", + "76437 0\n", + "76438 0\n", + "76439 0\n", + "76440 0\n", + "76441 1\n", + "76442 0\n", + "76443 0\n", + "76444 0\n", + "76445 0\n", + "76446 0\n", + "76447 0\n", + "76448 0\n", + "76449 0\n", + "76450 0\n", + "76451 0\n", + "76452 0\n", + "76453 0\n", + "76454 0\n", + "76455 0\n", + "76456 0\n", + "76457 0\n", + "76458 0\n", + "76459 0\n", + "76460 0\n", + "76461 0\n", + "76462 0\n", + "76463 1\n", + "76464 0\n", + "76465 0\n", + "76466 0\n", + "76467 0\n", + "76468 0\n", + "76469 0\n", + "76470 0\n", + "76471 1\n", + "76472 0\n", + "76473 0\n", + "76474 0\n", + "76475 0\n", + "76476 0\n", + "76477 0\n", + "76478 0\n", + "76479 0\n", + "76480 0\n", + "76481 1\n", + "76482 0\n", + "76483 0\n", + "76484 0\n", + "76485 0\n", + "76486 0\n", + "76487 1\n", + "76488 0\n", + "76489 0\n", + "76490 0\n", + "76491 0\n", + "76492 0\n", + "76493 1\n", + "76494 0\n", + "76495 0\n", + "76496 0\n", + "76497 0\n", + "76498 0\n", + "76499 0\n", + "76500 0\n", + "76501 0\n", + "76502 0\n", + "76503 0\n", + "76504 0\n", + "76505 0\n", + "76506 0\n", + "76507 1\n", + "76508 0\n", + "76509 0\n", + "76510 0\n", + "76511 1\n", + "76512 0\n", + "76513 0\n", + "76514 0\n", + "76515 0\n", + "76516 0\n", + "76517 0\n", + "76518 0\n", + "76519 1\n", + "76520 0\n", + "76521 0\n", + "76522 0\n", + "76523 0\n", + "76524 0\n", + "76525 0\n", + "76526 0\n", + "76527 0\n", + "76528 0\n", + "76529 0\n", + "76530 0\n", + "76531 0\n", + "76532 0\n", + "76533 0\n", + "76534 0\n", + "76535 0\n", + "76536 0\n", + "76537 1\n", + "76538 0\n", + "76539 0\n", + "76540 0\n", + "76541 1\n", + "76542 0\n", + "76543 1\n", + "76544 0\n", + "76545 0\n", + "76546 0\n", + "76547 0\n", + "76548 0\n", + "76549 0\n", + "76550 0\n", + "76551 0\n", + "76552 0\n", + "76553 0\n", + "76554 0\n", + "76555 0\n", + "76556 0\n", + "76557 0\n", + "76558 0\n", + "76559 0\n", + "76560 0\n", + "76561 1\n", + "76562 0\n", + "76563 0\n", + "76564 0\n", + "76565 0\n", + "76566 0\n", + "76567 0\n", + "76568 0\n", + "76569 0\n", + "76570 0\n", + "76571 0\n", + "76572 0\n", + "76573 0\n", + "76574 0\n", + "76575 0\n", + "76576 0\n", + "76577 0\n", + "76578 0\n", + "76579 1\n", + "76580 0\n", + "76581 0\n", + "76582 0\n", + "76583 0\n", + "76584 0\n", + "76585 0\n", + "76586 0\n", + "76587 0\n", + "76588 0\n", + "76589 0\n", + "76590 0\n", + "76591 0\n", + "76592 0\n", + "76593 0\n", + "76594 0\n", + "76595 0\n", + "76596 0\n", + "76597 1\n", + "76598 0\n", + "76599 0\n", + "76600 0\n", + "76601 0\n", + "76602 0\n", + "76603 1\n", + "76604 0\n", + "76605 0\n", + "76606 0\n", + "76607 1\n", + "76608 0\n", + "76609 0\n", + "76610 0\n", + "76611 0\n", + "76612 0\n", + "76613 0\n", + "76614 0\n", + "76615 0\n", + "76616 0\n", + "76617 0\n", + "76618 0\n", + "76619 0\n", + "76620 0\n", + "76621 0\n", + "76622 0\n", + "76623 0\n", + "76624 0\n", + "76625 0\n", + "76626 0\n", + "76627 0\n", + "76628 0\n", + "76629 0\n", + "76630 0\n", + "76631 1\n", + "76632 0\n", + "76633 0\n", + "76634 0\n", + "76635 0\n", + "76636 0\n", + "76637 0\n", + "76638 0\n", + "76639 0\n", + "76640 0\n", + "76641 0\n", + "76642 0\n", + "76643 0\n", + "76644 0\n", + "76645 0\n", + "76646 0\n", + "76647 0\n", + "76648 0\n", + "76649 1\n", + "76650 0\n", + "76651 1\n", + "76652 0\n", + "76653 0\n", + "76654 0\n", + "76655 0\n", + "76656 0\n", + "76657 0\n", + "76658 0\n", + "76659 0\n", + "76660 0\n", + "76661 0\n", + "76662 0\n", + "76663 0\n", + "76664 0\n", + "76665 0\n", + "76666 0\n", + "76667 1\n", + "76668 0\n", + "76669 0\n", + "76670 0\n", + "76671 0\n", + "76672 0\n", + "76673 1\n", + "76674 0\n", + "76675 0\n", + "76676 0\n", + "76677 0\n", + "76678 0\n", + "76679 1\n", + "76680 0\n", + "76681 0\n", + "76682 0\n", + "76683 0\n", + "76684 0\n", + "76685 0\n", + "76686 0\n", + "76687 0\n", + "76688 0\n", + "76689 0\n", + "76690 0\n", + "76691 0\n", + "76692 0\n", + "76693 0\n", + "76694 0\n", + "76695 0\n", + "76696 0\n", + "76697 1\n", + "76698 0\n", + "76699 0\n", + "76700 0\n", + "76701 0\n", + "76702 0\n", + "76703 0\n", + "76704 0\n", + "76705 0\n", + "76706 0\n", + "76707 0\n", + "76708 0\n", + "76709 0\n", + "76710 0\n", + "76711 0\n", + "76712 0\n", + "76713 0\n", + "76714 0\n", + "76715 0\n", + "76716 0\n", + "76717 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "76718 0\n", + "76719 0\n", + "76720 0\n", + "76721 0\n", + "76722 0\n", + "76723 0\n", + "76724 0\n", + "76725 0\n", + "76726 0\n", + "76727 0\n", + "76728 0\n", + "76729 0\n", + "76730 0\n", + "76731 0\n", + "76732 0\n", + "76733 1\n", + "76734 0\n", + "76735 0\n", + "76736 0\n", + "76737 0\n", + "76738 0\n", + "76739 0\n", + "76740 0\n", + "76741 0\n", + "76742 0\n", + "76743 0\n", + "76744 0\n", + "76745 0\n", + "76746 0\n", + "76747 0\n", + "76748 0\n", + "76749 0\n", + "76750 0\n", + "76751 0\n", + "76752 0\n", + "76753 1\n", + "76754 0\n", + "76755 0\n", + "76756 0\n", + "76757 1\n", + "76758 0\n", + "76759 0\n", + "76760 0\n", + "76761 0\n", + "76762 0\n", + "76763 0\n", + "76764 0\n", + "76765 0\n", + "76766 0\n", + "76767 0\n", + "76768 0\n", + "76769 0\n", + "76770 0\n", + "76771 1\n", + "76772 0\n", + "76773 0\n", + "76774 0\n", + "76775 0\n", + "76776 0\n", + "76777 1\n", + "76778 0\n", + "76779 0\n", + "76780 0\n", + "76781 1\n", + "76782 0\n", + "76783 0\n", + "76784 0\n", + "76785 0\n", + "76786 0\n", + "76787 0\n", + "76788 0\n", + "76789 0\n", + "76790 0\n", + "76791 0\n", + "76792 0\n", + "76793 0\n", + "76794 0\n", + "76795 0\n", + "76796 0\n", + "76797 0\n", + "76798 0\n", + "76799 0\n", + "76800 0\n", + "76801 1\n", + "76802 0\n", + "76803 0\n", + "76804 0\n", + "76805 0\n", + "76806 0\n", + "76807 0\n", + "76808 0\n", + "76809 0\n", + "76810 0\n", + "76811 0\n", + "76812 0\n", + "76813 0\n", + "76814 0\n", + "76815 0\n", + "76816 0\n", + "76817 0\n", + "76818 0\n", + "76819 1\n", + "76820 0\n", + "76821 0\n", + "76822 0\n", + "76823 0\n", + "76824 0\n", + "76825 0\n", + "76826 0\n", + "76827 0\n", + "76828 0\n", + "76829 1\n", + "76830 0\n", + "76831 1\n", + "76832 0\n", + "76833 0\n", + "76834 0\n", + "76835 0\n", + "76836 0\n", + "76837 1\n", + "76838 0\n", + "76839 0\n", + "76840 0\n", + "76841 0\n", + "76842 0\n", + "76843 0\n", + "76844 0\n", + "76845 0\n", + "76846 0\n", + "76847 1\n", + "76848 0\n", + "76849 0\n", + "76850 0\n", + "76851 0\n", + "76852 0\n", + "76853 0\n", + "76854 0\n", + "76855 0\n", + "76856 0\n", + "76857 0\n", + "76858 0\n", + "76859 0\n", + "76860 0\n", + "76861 0\n", + "76862 0\n", + "76863 0\n", + "76864 0\n", + "76865 0\n", + "76866 0\n", + "76867 0\n", + "76868 0\n", + "76869 0\n", + "76870 0\n", + "76871 1\n", + "76872 0\n", + "76873 1\n", + "76874 0\n", + "76875 0\n", + "76876 0\n", + "76877 0\n", + "76878 0\n", + "76879 0\n", + "76880 0\n", + "76881 0\n", + "76882 0\n", + "76883 1\n", + "76884 0\n", + "76885 0\n", + "76886 0\n", + "76887 0\n", + "76888 0\n", + "76889 0\n", + "76890 0\n", + "76891 0\n", + "76892 0\n", + "76893 0\n", + "76894 0\n", + "76895 0\n", + "76896 0\n", + "76897 0\n", + "76898 0\n", + "76899 0\n", + "76900 0\n", + "76901 0\n", + "76902 0\n", + "76903 0\n", + "76904 0\n", + "76905 0\n", + "76906 0\n", + "76907 1\n", + "76908 0\n", + "76909 0\n", + "76910 0\n", + "76911 0\n", + "76912 0\n", + "76913 1\n", + "76914 0\n", + "76915 0\n", + "76916 0\n", + "76917 0\n", + "76918 0\n", + "76919 1\n", + "76920 0\n", + "76921 0\n", + "76922 0\n", + "76923 0\n", + "76924 0\n", + "76925 0\n", + "76926 0\n", + "76927 0\n", + "76928 0\n", + "76929 0\n", + "76930 0\n", + "76931 0\n", + "76932 0\n", + "76933 0\n", + "76934 0\n", + "76935 0\n", + "76936 0\n", + "76937 0\n", + "76938 0\n", + "76939 0\n", + "76940 0\n", + "76941 0\n", + "76942 0\n", + "76943 1\n", + "76944 0\n", + "76945 0\n", + "76946 0\n", + "76947 0\n", + "76948 0\n", + "76949 1\n", + "76950 0\n", + "76951 0\n", + "76952 0\n", + "76953 0\n", + "76954 0\n", + "76955 0\n", + "76956 0\n", + "76957 0\n", + "76958 0\n", + "76959 0\n", + "76960 0\n", + "76961 1\n", + "76962 0\n", + "76963 1\n", + "76964 0\n", + "76965 0\n", + "76966 0\n", + "76967 0\n", + "76968 0\n", + "76969 0\n", + "76970 0\n", + "76971 0\n", + "76972 0\n", + "76973 0\n", + "76974 0\n", + "76975 0\n", + "76976 0\n", + "76977 0\n", + "76978 0\n", + "76979 0\n", + "76980 0\n", + "76981 0\n", + "76982 0\n", + "76983 0\n", + "76984 0\n", + "76985 0\n", + "76986 0\n", + "76987 0\n", + "76988 0\n", + "76989 0\n", + "76990 0\n", + "76991 1\n", + "76992 0\n", + "76993 0\n", + "76994 0\n", + "76995 0\n", + "76996 0\n", + "76997 0\n", + "76998 0\n", + "76999 0\n", + "77000 0\n", + "77001 0\n", + "77002 0\n", + "77003 1\n", + "77004 0\n", + "77005 0\n", + "77006 0\n", + "77007 0\n", + "77008 0\n", + "77009 0\n", + "77010 0\n", + "77011 0\n", + "77012 0\n", + "77013 0\n", + "77014 0\n", + "77015 0\n", + "77016 0\n", + "77017 1\n", + "77018 0\n", + "77019 0\n", + "77020 0\n", + "77021 0\n", + "77022 0\n", + "77023 1\n", + "77024 0\n", + "77025 0\n", + "77026 0\n", + "77027 0\n", + "77028 0\n", + "77029 1\n", + "77030 0\n", + "77031 0\n", + "77032 0\n", + "77033 0\n", + "77034 0\n", + "77035 0\n", + "77036 0\n", + "77037 0\n", + "77038 0\n", + "77039 0\n", + "77040 0\n", + "77041 1\n", + "77042 0\n", + "77043 0\n", + "77044 0\n", + "77045 0\n", + "77046 0\n", + "77047 1\n", + "77048 0\n", + "77049 0\n", + "77050 0\n", + "77051 0\n", + "77052 0\n", + "77053 0\n", + "77054 0\n", + "77055 0\n", + "77056 0\n", + "77057 0\n", + "77058 0\n", + "77059 0\n", + "77060 0\n", + "77061 0\n", + "77062 0\n", + "77063 0\n", + "77064 0\n", + "77065 0\n", + "77066 0\n", + "77067 0\n", + "77068 0\n", + "77069 1\n", + "77070 0\n", + "77071 0\n", + "77072 0\n", + "77073 0\n", + "77074 0\n", + "77075 0\n", + "77076 0\n", + "77077 0\n", + "77078 0\n", + "77079 0\n", + "77080 0\n", + "77081 1\n", + "77082 0\n", + "77083 0\n", + "77084 0\n", + "77085 0\n", + "77086 0\n", + "77087 0\n", + "77088 0\n", + "77089 0\n", + "77090 0\n", + "77091 0\n", + "77092 0\n", + "77093 1\n", + "77094 0\n", + "77095 0\n", + "77096 0\n", + "77097 0\n", + "77098 0\n", + "77099 0\n", + "77100 0\n", + "77101 1\n", + "77102 0\n", + "77103 0\n", + "77104 0\n", + "77105 0\n", + "77106 0\n", + "77107 0\n", + "77108 0\n", + "77109 0\n", + "77110 0\n", + "77111 0\n", + "77112 0\n", + "77113 0\n", + "77114 0\n", + "77115 0\n", + "77116 0\n", + "77117 0\n", + "77118 0\n", + "77119 0\n", + "77120 0\n", + "77121 0\n", + "77122 0\n", + "77123 0\n", + "77124 0\n", + "77125 0\n", + "77126 0\n", + "77127 0\n", + "77128 0\n", + "77129 0\n", + "77130 0\n", + "77131 0\n", + "77132 0\n", + "77133 0\n", + "77134 0\n", + "77135 0\n", + "77136 0\n", + "77137 1\n", + "77138 0\n", + "77139 0\n", + "77140 0\n", + "77141 1\n", + "77142 0\n", + "77143 0\n", + "77144 0\n", + "77145 0\n", + "77146 0\n", + "77147 0\n", + "77148 0\n", + "77149 0\n", + "77150 0\n", + "77151 0\n", + "77152 0\n", + "77153 1\n", + "77154 0\n", + "77155 0\n", + "77156 0\n", + "77157 0\n", + "77158 0\n", + "77159 0\n", + "77160 0\n", + "77161 0\n", + "77162 0\n", + "77163 0\n", + "77164 0\n", + "77165 0\n", + "77166 0\n", + "77167 1\n", + "77168 0\n", + "77169 0\n", + "77170 0\n", + "77171 1\n", + "77172 0\n", + "77173 0\n", + "77174 0\n", + "77175 0\n", + "77176 0\n", + "77177 0\n", + "77178 0\n", + "77179 0\n", + "77180 0\n", + "77181 0\n", + "77182 0\n", + "77183 0\n", + "77184 0\n", + "77185 0\n", + "77186 0\n", + "77187 0\n", + "77188 0\n", + "77189 0\n", + "77190 0\n", + "77191 1\n", + "77192 0\n", + "77193 0\n", + "77194 0\n", + "77195 0\n", + "77196 0\n", + "77197 0\n", + "77198 0\n", + "77199 0\n", + "77200 0\n", + "77201 1\n", + "77202 0\n", + "77203 0\n", + "77204 0\n", + "77205 0\n", + "77206 0\n", + "77207 0\n", + "77208 0\n", + "77209 0\n", + "77210 0\n", + "77211 0\n", + "77212 0\n", + "77213 1\n", + "77214 0\n", + "77215 0\n", + "77216 0\n", + "77217 0\n", + "77218 0\n", + "77219 0\n", + "77220 0\n", + "77221 0\n", + "77222 0\n", + "77223 0\n", + "77224 0\n", + "77225 0\n", + "77226 0\n", + "77227 0\n", + "77228 0\n", + "77229 0\n", + "77230 0\n", + "77231 0\n", + "77232 0\n", + "77233 0\n", + "77234 0\n", + "77235 0\n", + "77236 0\n", + "77237 1\n", + "77238 0\n", + "77239 1\n", + "77240 0\n", + "77241 0\n", + "77242 0\n", + "77243 1\n", + "77244 0\n", + "77245 0\n", + "77246 0\n", + "77247 0\n", + "77248 0\n", + "77249 1\n", + "77250 0\n", + "77251 0\n", + "77252 0\n", + "77253 0\n", + "77254 0\n", + "77255 0\n", + "77256 0\n", + "77257 0\n", + "77258 0\n", + "77259 0\n", + "77260 0\n", + "77261 1\n", + "77262 0\n", + "77263 1\n", + "77264 0\n", + "77265 0\n", + "77266 0\n", + "77267 1\n", + "77268 0\n", + "77269 1\n", + "77270 0\n", + "77271 0\n", + "77272 0\n", + "77273 0\n", + "77274 0\n", + "77275 0\n", + "77276 0\n", + "77277 0\n", + "77278 0\n", + "77279 1\n", + "77280 0\n", + "77281 0\n", + "77282 0\n", + "77283 0\n", + "77284 0\n", + "77285 0\n", + "77286 0\n", + "77287 0\n", + "77288 0\n", + "77289 0\n", + "77290 0\n", + "77291 1\n", + "77292 0\n", + "77293 0\n", + "77294 0\n", + "77295 0\n", + "77296 0\n", + "77297 0\n", + "77298 0\n", + "77299 0\n", + "77300 0\n", + "77301 0\n", + "77302 0\n", + "77303 0\n", + "77304 0\n", + "77305 0\n", + "77306 0\n", + "77307 0\n", + "77308 0\n", + "77309 0\n", + "77310 0\n", + "77311 0\n", + "77312 0\n", + "77313 0\n", + "77314 0\n", + "77315 0\n", + "77316 0\n", + "77317 1\n", + "77318 0\n", + "77319 0\n", + "77320 0\n", + "77321 0\n", + "77322 0\n", + "77323 1\n", + "77324 0\n", + "77325 0\n", + "77326 0\n", + "77327 0\n", + "77328 0\n", + "77329 0\n", + "77330 0\n", + "77331 0\n", + "77332 0\n", + "77333 0\n", + "77334 0\n", + "77335 0\n", + "77336 0\n", + "77337 0\n", + "77338 0\n", + "77339 1\n", + "77340 0\n", + "77341 0\n", + "77342 0\n", + "77343 0\n", + "77344 0\n", + "77345 0\n", + "77346 0\n", + "77347 1\n", + "77348 0\n", + "77349 0\n", + "77350 0\n", + "77351 1\n", + "77352 0\n", + "77353 0\n", + "77354 0\n", + "77355 0\n", + "77356 0\n", + "77357 0\n", + "77358 0\n", + "77359 1\n", + "77360 0\n", + "77361 0\n", + "77362 0\n", + "77363 0\n", + "77364 0\n", + "77365 0\n", + "77366 0\n", + "77367 0\n", + "77368 0\n", + "77369 1\n", + "77370 0\n", + "77371 0\n", + "77372 0\n", + "77373 0\n", + "77374 0\n", + "77375 0\n", + "77376 0\n", + "77377 1\n", + "77378 0\n", + "77379 0\n", + "77380 0\n", + "77381 0\n", + "77382 0\n", + "77383 1\n", + "77384 0\n", + "77385 0\n", + "77386 0\n", + "77387 0\n", + "77388 0\n", + "77389 0\n", + "77390 0\n", + "77391 0\n", + "77392 0\n", + "77393 0\n", + "77394 0\n", + "77395 0\n", + "77396 0\n", + "77397 0\n", + "77398 0\n", + "77399 0\n", + "77400 0\n", + "77401 0\n", + "77402 0\n", + "77403 0\n", + "77404 0\n", + "77405 0\n", + "77406 0\n", + "77407 0\n", + "77408 0\n", + "77409 0\n", + "77410 0\n", + "77411 0\n", + "77412 0\n", + "77413 0\n", + "77414 0\n", + "77415 0\n", + "77416 0\n", + "77417 1\n", + "77418 0\n", + "77419 1\n", + "77420 0\n", + "77421 0\n", + "77422 0\n", + "77423 0\n", + "77424 0\n", + "77425 0\n", + "77426 0\n", + "77427 0\n", + "77428 0\n", + "77429 0\n", + "77430 0\n", + "77431 1\n", + "77432 0\n", + "77433 0\n", + "77434 0\n", + "77435 0\n", + "77436 0\n", + "77437 0\n", + "77438 0\n", + "77439 0\n", + "77440 0\n", + "77441 0\n", + "77442 0\n", + "77443 0\n", + "77444 0\n", + "77445 0\n", + "77446 0\n", + "77447 1\n", + "77448 0\n", + "77449 0\n", + "77450 0\n", + "77451 0\n", + "77452 0\n", + "77453 0\n", + "77454 0\n", + "77455 0\n", + "77456 0\n", + "77457 0\n", + "77458 0\n", + "77459 0\n", + "77460 0\n", + "77461 0\n", + "77462 0\n", + "77463 0\n", + "77464 0\n", + "77465 0\n", + "77466 0\n", + "77467 0\n", + "77468 0\n", + "77469 0\n", + "77470 0\n", + "77471 1\n", + "77472 0\n", + "77473 0\n", + "77474 0\n", + "77475 0\n", + "77476 0\n", + "77477 1\n", + "77478 0\n", + "77479 1\n", + "77480 0\n", + "77481 0\n", + "77482 0\n", + "77483 0\n", + "77484 0\n", + "77485 0\n", + "77486 0\n", + "77487 0\n", + "77488 0\n", + "77489 1\n", + "77490 0\n", + "77491 1\n", + "77492 0\n", + "77493 0\n", + "77494 0\n", + "77495 0\n", + "77496 0\n", + "77497 0\n", + "77498 0\n", + "77499 0\n", + "77500 0\n", + "77501 0\n", + "77502 0\n", + "77503 0\n", + "77504 0\n", + "77505 0\n", + "77506 0\n", + "77507 0\n", + "77508 0\n", + "77509 1\n", + "77510 0\n", + "77511 0\n", + "77512 0\n", + "77513 1\n", + "77514 0\n", + "77515 0\n", + "77516 0\n", + "77517 0\n", + "77518 0\n", + "77519 0\n", + "77520 0\n", + "77521 1\n", + "77522 0\n", + "77523 0\n", + "77524 0\n", + "77525 0\n", + "77526 0\n", + "77527 1\n", + "77528 0\n", + "77529 0\n", + "77530 0\n", + "77531 0\n", + "77532 0\n", + "77533 0\n", + "77534 0\n", + "77535 0\n", + "77536 0\n", + "77537 0\n", + "77538 0\n", + "77539 0\n", + "77540 0\n", + "77541 0\n", + "77542 0\n", + "77543 1\n", + "77544 0\n", + "77545 0\n", + "77546 0\n", + "77547 0\n", + "77548 0\n", + "77549 1\n", + "77550 0\n", + "77551 1\n", + "77552 0\n", + "77553 0\n", + "77554 0\n", + "77555 0\n", + "77556 0\n", + "77557 1\n", + "77558 0\n", + "77559 0\n", + "77560 0\n", + "77561 0\n", + "77562 0\n", + "77563 1\n", + "77564 0\n", + "77565 0\n", + "77566 0\n", + "77567 0\n", + "77568 0\n", + "77569 1\n", + "77570 0\n", + "77571 0\n", + "77572 0\n", + "77573 1\n", + "77574 0\n", + "77575 0\n", + "77576 0\n", + "77577 0\n", + "77578 0\n", + "77579 0\n", + "77580 0\n", + "77581 0\n", + "77582 0\n", + "77583 0\n", + "77584 0\n", + "77585 0\n", + "77586 0\n", + "77587 1\n", + "77588 0\n", + "77589 0\n", + "77590 0\n", + "77591 1\n", + "77592 0\n", + "77593 0\n", + "77594 0\n", + "77595 0\n", + "77596 0\n", + "77597 0\n", + "77598 0\n", + "77599 0\n", + "77600 0\n", + "77601 0\n", + "77602 0\n", + "77603 0\n", + "77604 0\n", + "77605 0\n", + "77606 0\n", + "77607 0\n", + "77608 0\n", + "77609 0\n", + "77610 0\n", + "77611 1\n", + "77612 0\n", + "77613 0\n", + "77614 0\n", + "77615 0\n", + "77616 0\n", + "77617 1\n", + "77618 0\n", + "77619 0\n", + "77620 0\n", + "77621 1\n", + "77622 0\n", + "77623 0\n", + "77624 0\n", + "77625 0\n", + "77626 0\n", + "77627 0\n", + "77628 0\n", + "77629 0\n", + "77630 0\n", + "77631 0\n", + "77632 0\n", + "77633 0\n", + "77634 0\n", + "77635 0\n", + "77636 0\n", + "77637 0\n", + "77638 0\n", + "77639 0\n", + "77640 0\n", + "77641 1\n", + "77642 0\n", + "77643 0\n", + "77644 0\n", + "77645 0\n", + "77646 0\n", + "77647 1\n", + "77648 0\n", + "77649 0\n", + "77650 0\n", + "77651 0\n", + "77652 0\n", + "77653 0\n", + "77654 0\n", + "77655 0\n", + "77656 0\n", + "77657 0\n", + "77658 0\n", + "77659 1\n", + "77660 0\n", + "77661 0\n", + "77662 0\n", + "77663 0\n", + "77664 0\n", + "77665 0\n", + "77666 0\n", + "77667 0\n", + "77668 0\n", + "77669 0\n", + "77670 0\n", + "77671 0\n", + "77672 0\n", + "77673 0\n", + "77674 0\n", + "77675 0\n", + "77676 0\n", + "77677 0\n", + "77678 0\n", + "77679 0\n", + "77680 0\n", + "77681 1\n", + "77682 0\n", + "77683 0\n", + "77684 0\n", + "77685 0\n", + "77686 0\n", + "77687 1\n", + "77688 0\n", + "77689 1\n", + "77690 0\n", + "77691 0\n", + "77692 0\n", + "77693 0\n", + "77694 0\n", + "77695 0\n", + "77696 0\n", + "77697 0\n", + "77698 0\n", + "77699 1\n", + "77700 0\n", + "77701 0\n", + "77702 0\n", + "77703 0\n", + "77704 0\n", + "77705 0\n", + "77706 0\n", + "77707 0\n", + "77708 0\n", + "77709 0\n", + "77710 0\n", + "77711 1\n", + "77712 0\n", + "77713 1\n", + "77714 0\n", + "77715 0\n", + "77716 0\n", + "77717 0\n", + "77718 0\n", + "77719 1\n", + "77720 0\n", + "77721 0\n", + "77722 0\n", + "77723 1\n", + "77724 0\n", + "77725 0\n", + "77726 0\n", + "77727 0\n", + "77728 0\n", + "77729 0\n", + "77730 0\n", + "77731 1\n", + "77732 0\n", + "77733 0\n", + "77734 0\n", + "77735 0\n", + "77736 0\n", + "77737 0\n", + "77738 0\n", + "77739 0\n", + "77740 0\n", + "77741 0\n", + "77742 0\n", + "77743 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "77744 0\n", + "77745 0\n", + "77746 0\n", + "77747 1\n", + "77748 0\n", + "77749 0\n", + "77750 0\n", + "77751 0\n", + "77752 0\n", + "77753 0\n", + "77754 0\n", + "77755 0\n", + "77756 0\n", + "77757 0\n", + "77758 0\n", + "77759 0\n", + "77760 0\n", + "77761 1\n", + "77762 0\n", + "77763 0\n", + "77764 0\n", + "77765 0\n", + "77766 0\n", + "77767 0\n", + "77768 0\n", + "77769 0\n", + "77770 0\n", + "77771 0\n", + "77772 0\n", + "77773 1\n", + "77774 0\n", + "77775 0\n", + "77776 0\n", + "77777 0\n", + "77778 0\n", + "77779 0\n", + "77780 0\n", + "77781 0\n", + "77782 0\n", + "77783 1\n", + "77784 0\n", + "77785 0\n", + "77786 0\n", + "77787 0\n", + "77788 0\n", + "77789 0\n", + "77790 0\n", + "77791 0\n", + "77792 0\n", + "77793 0\n", + "77794 0\n", + "77795 0\n", + "77796 0\n", + "77797 1\n", + "77798 0\n", + "77799 0\n", + "77800 0\n", + "77801 1\n", + "77802 0\n", + "77803 0\n", + "77804 0\n", + "77805 0\n", + "77806 0\n", + "77807 0\n", + "77808 0\n", + "77809 0\n", + "77810 0\n", + "77811 0\n", + "77812 0\n", + "77813 1\n", + "77814 0\n", + "77815 0\n", + "77816 0\n", + "77817 0\n", + "77818 0\n", + "77819 0\n", + "77820 0\n", + "77821 0\n", + "77822 0\n", + "77823 0\n", + "77824 0\n", + "77825 0\n", + "77826 0\n", + "77827 0\n", + "77828 0\n", + "77829 0\n", + "77830 0\n", + "77831 0\n", + "77832 0\n", + "77833 0\n", + "77834 0\n", + "77835 0\n", + "77836 0\n", + "77837 0\n", + "77838 0\n", + "77839 1\n", + "77840 0\n", + "77841 0\n", + "77842 0\n", + "77843 0\n", + "77844 0\n", + "77845 0\n", + "77846 0\n", + "77847 0\n", + "77848 0\n", + "77849 1\n", + "77850 0\n", + "77851 0\n", + "77852 0\n", + "77853 0\n", + "77854 0\n", + "77855 0\n", + "77856 0\n", + "77857 0\n", + "77858 0\n", + "77859 0\n", + "77860 0\n", + "77861 0\n", + "77862 0\n", + "77863 1\n", + "77864 0\n", + "77865 0\n", + "77866 0\n", + "77867 1\n", + "77868 0\n", + "77869 0\n", + "77870 0\n", + "77871 0\n", + "77872 0\n", + "77873 0\n", + "77874 0\n", + "77875 0\n", + "77876 0\n", + "77877 0\n", + "77878 0\n", + "77879 0\n", + "77880 0\n", + "77881 0\n", + "77882 0\n", + "77883 0\n", + "77884 0\n", + "77885 0\n", + "77886 0\n", + "77887 0\n", + "77888 0\n", + "77889 0\n", + "77890 0\n", + "77891 0\n", + "77892 0\n", + "77893 1\n", + "77894 0\n", + "77895 0\n", + "77896 0\n", + "77897 0\n", + "77898 0\n", + "77899 1\n", + "77900 0\n", + "77901 0\n", + "77902 0\n", + "77903 0\n", + "77904 0\n", + "77905 0\n", + "77906 0\n", + "77907 0\n", + "77908 0\n", + "77909 0\n", + "77910 0\n", + "77911 0\n", + "77912 0\n", + "77913 0\n", + "77914 0\n", + "77915 0\n", + "77916 0\n", + "77917 0\n", + "77918 0\n", + "77919 0\n", + "77920 0\n", + "77921 0\n", + "77922 0\n", + "77923 0\n", + "77924 0\n", + "77925 0\n", + "77926 0\n", + "77927 0\n", + "77928 0\n", + "77929 1\n", + "77930 0\n", + "77931 0\n", + "77932 0\n", + "77933 1\n", + "77934 0\n", + "77935 0\n", + "77936 0\n", + "77937 0\n", + "77938 0\n", + "77939 0\n", + "77940 0\n", + "77941 0\n", + "77942 0\n", + "77943 0\n", + "77944 0\n", + "77945 0\n", + "77946 0\n", + "77947 0\n", + "77948 0\n", + "77949 0\n", + "77950 0\n", + "77951 1\n", + "77952 0\n", + "77953 0\n", + "77954 0\n", + "77955 0\n", + "77956 0\n", + "77957 0\n", + "77958 0\n", + "77959 0\n", + "77960 0\n", + "77961 0\n", + "77962 0\n", + "77963 0\n", + "77964 0\n", + "77965 0\n", + "77966 0\n", + "77967 0\n", + "77968 0\n", + "77969 1\n", + "77970 0\n", + "77971 0\n", + "77972 0\n", + "77973 0\n", + "77974 0\n", + "77975 0\n", + "77976 0\n", + "77977 1\n", + "77978 0\n", + "77979 0\n", + "77980 0\n", + "77981 0\n", + "77982 0\n", + "77983 1\n", + "77984 0\n", + "77985 0\n", + "77986 0\n", + "77987 0\n", + "77988 0\n", + "77989 0\n", + "77990 0\n", + "77991 0\n", + "77992 0\n", + "77993 0\n", + "77994 0\n", + "77995 0\n", + "77996 0\n", + "77997 0\n", + "77998 0\n", + "77999 1\n", + "78000 0\n", + "78001 0\n", + "78002 0\n", + "78003 0\n", + "78004 0\n", + "78005 0\n", + "78006 0\n", + "78007 1\n", + "78008 0\n", + "78009 0\n", + "78010 0\n", + "78011 0\n", + "78012 0\n", + "78013 0\n", + "78014 0\n", + "78015 0\n", + "78016 0\n", + "78017 1\n", + "78018 0\n", + "78019 0\n", + "78020 0\n", + "78021 0\n", + "78022 0\n", + "78023 0\n", + "78024 0\n", + "78025 0\n", + "78026 0\n", + "78027 0\n", + "78028 0\n", + "78029 0\n", + "78030 0\n", + "78031 1\n", + "78032 0\n", + "78033 0\n", + "78034 0\n", + "78035 0\n", + "78036 0\n", + "78037 0\n", + "78038 0\n", + "78039 0\n", + "78040 0\n", + "78041 1\n", + "78042 0\n", + "78043 0\n", + "78044 0\n", + "78045 0\n", + "78046 0\n", + "78047 0\n", + "78048 0\n", + "78049 1\n", + "78050 0\n", + "78051 0\n", + "78052 0\n", + "78053 0\n", + "78054 0\n", + "78055 0\n", + "78056 0\n", + "78057 0\n", + "78058 0\n", + "78059 1\n", + "78060 0\n", + "78061 0\n", + "78062 0\n", + "78063 0\n", + "78064 0\n", + "78065 0\n", + "78066 0\n", + "78067 0\n", + "78068 0\n", + "78069 0\n", + "78070 0\n", + "78071 0\n", + "78072 0\n", + "78073 0\n", + "78074 0\n", + "78075 0\n", + "78076 0\n", + "78077 0\n", + "78078 0\n", + "78079 1\n", + "78080 0\n", + "78081 0\n", + "78082 0\n", + "78083 0\n", + "78084 0\n", + "78085 0\n", + "78086 0\n", + "78087 0\n", + "78088 0\n", + "78089 0\n", + "78090 0\n", + "78091 0\n", + "78092 0\n", + "78093 0\n", + "78094 0\n", + "78095 0\n", + "78096 0\n", + "78097 0\n", + "78098 0\n", + "78099 0\n", + "78100 0\n", + "78101 1\n", + "78102 0\n", + "78103 0\n", + "78104 0\n", + "78105 0\n", + "78106 0\n", + "78107 0\n", + "78108 0\n", + "78109 0\n", + "78110 0\n", + "78111 0\n", + "78112 0\n", + "78113 0\n", + "78114 0\n", + "78115 0\n", + "78116 0\n", + "78117 0\n", + "78118 0\n", + "78119 0\n", + "78120 0\n", + "78121 1\n", + "78122 0\n", + "78123 0\n", + "78124 0\n", + "78125 0\n", + "78126 0\n", + "78127 0\n", + "78128 0\n", + "78129 0\n", + "78130 0\n", + "78131 0\n", + "78132 0\n", + "78133 0\n", + "78134 0\n", + "78135 0\n", + "78136 0\n", + "78137 1\n", + "78138 0\n", + "78139 1\n", + "78140 0\n", + "78141 0\n", + "78142 0\n", + "78143 0\n", + "78144 0\n", + "78145 0\n", + "78146 0\n", + "78147 0\n", + "78148 0\n", + "78149 0\n", + "78150 0\n", + "78151 0\n", + "78152 0\n", + "78153 0\n", + "78154 0\n", + "78155 0\n", + "78156 0\n", + "78157 1\n", + "78158 0\n", + "78159 0\n", + "78160 0\n", + "78161 0\n", + "78162 0\n", + "78163 1\n", + "78164 0\n", + "78165 0\n", + "78166 0\n", + "78167 1\n", + "78168 0\n", + "78169 0\n", + "78170 0\n", + "78171 0\n", + "78172 0\n", + "78173 1\n", + "78174 0\n", + "78175 0\n", + "78176 0\n", + "78177 0\n", + "78178 0\n", + "78179 1\n", + "78180 0\n", + "78181 0\n", + "78182 0\n", + "78183 0\n", + "78184 0\n", + "78185 0\n", + "78186 0\n", + "78187 0\n", + "78188 0\n", + "78189 0\n", + "78190 0\n", + "78191 1\n", + "78192 0\n", + "78193 1\n", + "78194 0\n", + "78195 0\n", + "78196 0\n", + "78197 0\n", + "78198 0\n", + "78199 0\n", + "78200 0\n", + "78201 0\n", + "78202 0\n", + "78203 1\n", + "78204 0\n", + "78205 0\n", + "78206 0\n", + "78207 0\n", + "78208 0\n", + "78209 0\n", + "78210 0\n", + "78211 0\n", + "78212 0\n", + "78213 0\n", + "78214 0\n", + "78215 0\n", + "78216 0\n", + "78217 0\n", + "78218 0\n", + "78219 0\n", + "78220 0\n", + "78221 0\n", + "78222 0\n", + "78223 0\n", + "78224 0\n", + "78225 0\n", + "78226 0\n", + "78227 0\n", + "78228 0\n", + "78229 1\n", + "78230 0\n", + "78231 0\n", + "78232 0\n", + "78233 1\n", + "78234 0\n", + "78235 0\n", + "78236 0\n", + "78237 0\n", + "78238 0\n", + "78239 0\n", + "78240 0\n", + "78241 1\n", + "78242 0\n", + "78243 0\n", + "78244 0\n", + "78245 0\n", + "78246 0\n", + "78247 0\n", + "78248 0\n", + "78249 0\n", + "78250 0\n", + "78251 0\n", + "78252 0\n", + "78253 0\n", + "78254 0\n", + "78255 0\n", + "78256 0\n", + "78257 0\n", + "78258 0\n", + "78259 1\n", + "78260 0\n", + "78261 0\n", + "78262 0\n", + "78263 0\n", + "78264 0\n", + "78265 0\n", + "78266 0\n", + "78267 0\n", + "78268 0\n", + "78269 0\n", + "78270 0\n", + "78271 0\n", + "78272 0\n", + "78273 0\n", + "78274 0\n", + "78275 0\n", + "78276 0\n", + "78277 1\n", + "78278 0\n", + "78279 0\n", + "78280 0\n", + "78281 0\n", + "78282 0\n", + "78283 1\n", + "78284 0\n", + "78285 0\n", + "78286 0\n", + "78287 0\n", + "78288 0\n", + "78289 0\n", + "78290 0\n", + "78291 0\n", + "78292 0\n", + "78293 0\n", + "78294 0\n", + "78295 0\n", + "78296 0\n", + "78297 0\n", + "78298 0\n", + "78299 0\n", + "78300 0\n", + "78301 1\n", + "78302 0\n", + "78303 0\n", + "78304 0\n", + "78305 0\n", + "78306 0\n", + "78307 1\n", + "78308 0\n", + "78309 0\n", + "78310 0\n", + "78311 1\n", + "78312 0\n", + "78313 0\n", + "78314 0\n", + "78315 0\n", + "78316 0\n", + "78317 1\n", + "78318 0\n", + "78319 0\n", + "78320 0\n", + "78321 0\n", + "78322 0\n", + "78323 0\n", + "78324 0\n", + "78325 0\n", + "78326 0\n", + "78327 0\n", + "78328 0\n", + "78329 0\n", + "78330 0\n", + "78331 0\n", + "78332 0\n", + "78333 0\n", + "78334 0\n", + "78335 0\n", + "78336 0\n", + "78337 0\n", + "78338 0\n", + "78339 0\n", + "78340 0\n", + "78341 1\n", + "78342 0\n", + "78343 0\n", + "78344 0\n", + "78345 0\n", + "78346 0\n", + "78347 1\n", + "78348 0\n", + "78349 0\n", + "78350 0\n", + "78351 0\n", + "78352 0\n", + "78353 0\n", + "78354 0\n", + "78355 0\n", + "78356 0\n", + "78357 0\n", + "78358 0\n", + "78359 0\n", + "78360 0\n", + "78361 0\n", + "78362 0\n", + "78363 0\n", + "78364 0\n", + "78365 0\n", + "78366 0\n", + "78367 1\n", + "78368 0\n", + "78369 0\n", + "78370 0\n", + "78371 0\n", + "78372 0\n", + "78373 0\n", + "78374 0\n", + "78375 0\n", + "78376 0\n", + "78377 0\n", + "78378 0\n", + "78379 0\n", + "78380 0\n", + "78381 0\n", + "78382 0\n", + "78383 0\n", + "78384 0\n", + "78385 0\n", + "78386 0\n", + "78387 0\n", + "78388 0\n", + "78389 0\n", + "78390 0\n", + "78391 0\n", + "78392 0\n", + "78393 0\n", + "78394 0\n", + "78395 0\n", + "78396 0\n", + "78397 0\n", + "78398 0\n", + "78399 0\n", + "78400 0\n", + "78401 1\n", + "78402 0\n", + "78403 0\n", + "78404 0\n", + "78405 0\n", + "78406 0\n", + "78407 0\n", + "78408 0\n", + "78409 0\n", + "78410 0\n", + "78411 0\n", + "78412 0\n", + "78413 0\n", + "78414 0\n", + "78415 0\n", + "78416 0\n", + "78417 0\n", + "78418 0\n", + "78419 0\n", + "78420 0\n", + "78421 0\n", + "78422 0\n", + "78423 0\n", + "78424 0\n", + "78425 0\n", + "78426 0\n", + "78427 1\n", + "78428 0\n", + "78429 0\n", + "78430 0\n", + "78431 0\n", + "78432 0\n", + "78433 0\n", + "78434 0\n", + "78435 0\n", + "78436 0\n", + "78437 1\n", + "78438 0\n", + "78439 1\n", + "78440 0\n", + "78441 0\n", + "78442 0\n", + "78443 0\n", + "78444 0\n", + "78445 0\n", + "78446 0\n", + "78447 0\n", + "78448 0\n", + "78449 0\n", + "78450 0\n", + "78451 0\n", + "78452 0\n", + "78453 0\n", + "78454 0\n", + "78455 0\n", + "78456 0\n", + "78457 0\n", + "78458 0\n", + "78459 0\n", + "78460 0\n", + "78461 0\n", + "78462 0\n", + "78463 0\n", + "78464 0\n", + "78465 0\n", + "78466 0\n", + "78467 1\n", + "78468 0\n", + "78469 0\n", + "78470 0\n", + "78471 0\n", + "78472 0\n", + "78473 0\n", + "78474 0\n", + "78475 0\n", + "78476 0\n", + "78477 0\n", + "78478 0\n", + "78479 1\n", + "78480 0\n", + "78481 0\n", + "78482 0\n", + "78483 0\n", + "78484 0\n", + "78485 0\n", + "78486 0\n", + "78487 1\n", + "78488 0\n", + "78489 0\n", + "78490 0\n", + "78491 0\n", + "78492 0\n", + "78493 0\n", + "78494 0\n", + "78495 0\n", + "78496 0\n", + "78497 1\n", + "78498 0\n", + "78499 0\n", + "78500 0\n", + "78501 0\n", + "78502 0\n", + "78503 0\n", + "78504 0\n", + "78505 0\n", + "78506 0\n", + "78507 0\n", + "78508 0\n", + "78509 1\n", + "78510 0\n", + "78511 1\n", + "78512 0\n", + "78513 0\n", + "78514 0\n", + "78515 0\n", + "78516 0\n", + "78517 1\n", + "78518 0\n", + "78519 0\n", + "78520 0\n", + "78521 0\n", + "78522 0\n", + "78523 0\n", + "78524 0\n", + "78525 0\n", + "78526 0\n", + "78527 0\n", + "78528 0\n", + "78529 0\n", + "78530 0\n", + "78531 0\n", + "78532 0\n", + "78533 0\n", + "78534 0\n", + "78535 0\n", + "78536 0\n", + "78537 0\n", + "78538 0\n", + "78539 1\n", + "78540 0\n", + "78541 1\n", + "78542 0\n", + "78543 0\n", + "78544 0\n", + "78545 0\n", + "78546 0\n", + "78547 0\n", + "78548 0\n", + "78549 0\n", + "78550 0\n", + "78551 0\n", + "78552 0\n", + "78553 1\n", + "78554 0\n", + "78555 0\n", + "78556 0\n", + "78557 0\n", + "78558 0\n", + "78559 0\n", + "78560 0\n", + "78561 0\n", + "78562 0\n", + "78563 0\n", + "78564 0\n", + "78565 0\n", + "78566 0\n", + "78567 0\n", + "78568 0\n", + "78569 1\n", + "78570 0\n", + "78571 1\n", + "78572 0\n", + "78573 0\n", + "78574 0\n", + "78575 0\n", + "78576 0\n", + "78577 1\n", + "78578 0\n", + "78579 0\n", + "78580 0\n", + "78581 0\n", + "78582 0\n", + "78583 1\n", + "78584 0\n", + "78585 0\n", + "78586 0\n", + "78587 0\n", + "78588 0\n", + "78589 0\n", + "78590 0\n", + "78591 0\n", + "78592 0\n", + "78593 1\n", + "78594 0\n", + "78595 0\n", + "78596 0\n", + "78597 0\n", + "78598 0\n", + "78599 0\n", + "78600 0\n", + "78601 0\n", + "78602 0\n", + "78603 0\n", + "78604 0\n", + "78605 0\n", + "78606 0\n", + "78607 1\n", + "78608 0\n", + "78609 0\n", + "78610 0\n", + "78611 0\n", + "78612 0\n", + "78613 0\n", + "78614 0\n", + "78615 0\n", + "78616 0\n", + "78617 0\n", + "78618 0\n", + "78619 0\n", + "78620 0\n", + "78621 0\n", + "78622 0\n", + "78623 1\n", + "78624 0\n", + "78625 0\n", + "78626 0\n", + "78627 0\n", + "78628 0\n", + "78629 0\n", + "78630 0\n", + "78631 0\n", + "78632 0\n", + "78633 0\n", + "78634 0\n", + "78635 0\n", + "78636 0\n", + "78637 0\n", + "78638 0\n", + "78639 0\n", + "78640 0\n", + "78641 0\n", + "78642 0\n", + "78643 1\n", + "78644 0\n", + "78645 0\n", + "78646 0\n", + "78647 0\n", + "78648 0\n", + "78649 1\n", + "78650 0\n", + "78651 0\n", + "78652 0\n", + "78653 1\n", + "78654 0\n", + "78655 0\n", + "78656 0\n", + "78657 0\n", + "78658 0\n", + "78659 0\n", + "78660 0\n", + "78661 0\n", + "78662 0\n", + "78663 0\n", + "78664 0\n", + "78665 0\n", + "78666 0\n", + "78667 0\n", + "78668 0\n", + "78669 0\n", + "78670 0\n", + "78671 0\n", + "78672 0\n", + "78673 0\n", + "78674 0\n", + "78675 0\n", + "78676 0\n", + "78677 0\n", + "78678 0\n", + "78679 0\n", + "78680 0\n", + "78681 0\n", + "78682 0\n", + "78683 0\n", + "78684 0\n", + "78685 0\n", + "78686 0\n", + "78687 0\n", + "78688 0\n", + "78689 0\n", + "78690 0\n", + "78691 1\n", + "78692 0\n", + "78693 0\n", + "78694 0\n", + "78695 0\n", + "78696 0\n", + "78697 1\n", + "78698 0\n", + "78699 0\n", + "78700 0\n", + "78701 0\n", + "78702 0\n", + "78703 0\n", + "78704 0\n", + "78705 0\n", + "78706 0\n", + "78707 1\n", + "78708 0\n", + "78709 0\n", + "78710 0\n", + "78711 0\n", + "78712 0\n", + "78713 1\n", + "78714 0\n", + "78715 0\n", + "78716 0\n", + "78717 0\n", + "78718 0\n", + "78719 0\n", + "78720 0\n", + "78721 1\n", + "78722 0\n", + "78723 0\n", + "78724 0\n", + "78725 0\n", + "78726 0\n", + "78727 0\n", + "78728 0\n", + "78729 0\n", + "78730 0\n", + "78731 0\n", + "78732 0\n", + "78733 0\n", + "78734 0\n", + "78735 0\n", + "78736 0\n", + "78737 1\n", + "78738 0\n", + "78739 0\n", + "78740 0\n", + "78741 0\n", + "78742 0\n", + "78743 0\n", + "78744 0\n", + "78745 0\n", + "78746 0\n", + "78747 0\n", + "78748 0\n", + "78749 0\n", + "78750 0\n", + "78751 0\n", + "78752 0\n", + "78753 0\n", + "78754 0\n", + "78755 0\n", + "78756 0\n", + "78757 0\n", + "78758 0\n", + "78759 0\n", + "78760 0\n", + "78761 0\n", + "78762 0\n", + "78763 0\n", + "78764 0\n", + "78765 0\n", + "78766 0\n", + "78767 0\n", + "78768 0\n", + "78769 0\n", + "78770 0\n", + "78771 0\n", + "78772 0\n", + "78773 0\n", + "78774 0\n", + "78775 0\n", + "78776 0\n", + "78777 0\n", + "78778 0\n", + "78779 1\n", + "78780 0\n", + "78781 1\n", + "78782 0\n", + "78783 0\n", + "78784 0\n", + "78785 0\n", + "78786 0\n", + "78787 1\n", + "78788 0\n", + "78789 0\n", + "78790 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "78791 1\n", + "78792 0\n", + "78793 0\n", + "78794 0\n", + "78795 0\n", + "78796 0\n", + "78797 1\n", + "78798 0\n", + "78799 0\n", + "78800 0\n", + "78801 0\n", + "78802 0\n", + "78803 1\n", + "78804 0\n", + "78805 0\n", + "78806 0\n", + "78807 0\n", + "78808 0\n", + "78809 1\n", + "78810 0\n", + "78811 0\n", + "78812 0\n", + "78813 0\n", + "78814 0\n", + "78815 0\n", + "78816 0\n", + "78817 0\n", + "78818 0\n", + "78819 0\n", + "78820 0\n", + "78821 0\n", + "78822 0\n", + "78823 1\n", + "78824 0\n", + "78825 0\n", + "78826 0\n", + "78827 0\n", + "78828 0\n", + "78829 0\n", + "78830 0\n", + "78831 0\n", + "78832 0\n", + "78833 0\n", + "78834 0\n", + "78835 0\n", + "78836 0\n", + "78837 0\n", + "78838 0\n", + "78839 1\n", + "78840 0\n", + "78841 0\n", + "78842 0\n", + "78843 0\n", + "78844 0\n", + "78845 0\n", + "78846 0\n", + "78847 0\n", + "78848 0\n", + "78849 0\n", + "78850 0\n", + "78851 0\n", + "78852 0\n", + "78853 1\n", + "78854 0\n", + "78855 0\n", + "78856 0\n", + "78857 1\n", + "78858 0\n", + "78859 0\n", + "78860 0\n", + "78861 0\n", + "78862 0\n", + "78863 0\n", + "78864 0\n", + "78865 0\n", + "78866 0\n", + "78867 0\n", + "78868 0\n", + "78869 0\n", + "78870 0\n", + "78871 0\n", + "78872 0\n", + "78873 0\n", + "78874 0\n", + "78875 0\n", + "78876 0\n", + "78877 1\n", + "78878 0\n", + "78879 0\n", + "78880 0\n", + "78881 0\n", + "78882 0\n", + "78883 0\n", + "78884 0\n", + "78885 0\n", + "78886 0\n", + "78887 1\n", + "78888 0\n", + "78889 1\n", + "78890 0\n", + "78891 0\n", + "78892 0\n", + "78893 1\n", + "78894 0\n", + "78895 0\n", + "78896 0\n", + "78897 0\n", + "78898 0\n", + "78899 0\n", + "78900 0\n", + "78901 1\n", + "78902 0\n", + "78903 0\n", + "78904 0\n", + "78905 0\n", + "78906 0\n", + "78907 0\n", + "78908 0\n", + "78909 0\n", + "78910 0\n", + "78911 0\n", + "78912 0\n", + "78913 0\n", + "78914 0\n", + "78915 0\n", + "78916 0\n", + "78917 0\n", + "78918 0\n", + "78919 1\n", + "78920 0\n", + "78921 0\n", + "78922 0\n", + "78923 0\n", + "78924 0\n", + "78925 0\n", + "78926 0\n", + "78927 0\n", + "78928 0\n", + "78929 1\n", + "78930 0\n", + "78931 0\n", + "78932 0\n", + "78933 0\n", + "78934 0\n", + "78935 0\n", + "78936 0\n", + "78937 0\n", + "78938 0\n", + "78939 0\n", + "78940 0\n", + "78941 1\n", + "78942 0\n", + "78943 0\n", + "78944 0\n", + "78945 0\n", + "78946 0\n", + "78947 0\n", + "78948 0\n", + "78949 0\n", + "78950 0\n", + "78951 0\n", + "78952 0\n", + "78953 0\n", + "78954 0\n", + "78955 0\n", + "78956 0\n", + "78957 0\n", + "78958 0\n", + "78959 0\n", + "78960 0\n", + "78961 0\n", + "78962 0\n", + "78963 0\n", + "78964 0\n", + "78965 0\n", + "78966 0\n", + "78967 0\n", + "78968 0\n", + "78969 0\n", + "78970 0\n", + "78971 0\n", + "78972 0\n", + "78973 0\n", + "78974 0\n", + "78975 0\n", + "78976 0\n", + "78977 1\n", + "78978 0\n", + "78979 1\n", + "78980 0\n", + "78981 0\n", + "78982 0\n", + "78983 0\n", + "78984 0\n", + "78985 0\n", + "78986 0\n", + "78987 0\n", + "78988 0\n", + "78989 1\n", + "78990 0\n", + "78991 0\n", + "78992 0\n", + "78993 0\n", + "78994 0\n", + "78995 0\n", + "78996 0\n", + "78997 0\n", + "78998 0\n", + "78999 0\n", + "79000 0\n", + "79001 0\n", + "79002 0\n", + "79003 0\n", + "79004 0\n", + "79005 0\n", + "79006 0\n", + "79007 0\n", + "79008 0\n", + "79009 0\n", + "79010 0\n", + "79011 0\n", + "79012 0\n", + "79013 0\n", + "79014 0\n", + "79015 0\n", + "79016 0\n", + "79017 0\n", + "79018 0\n", + "79019 0\n", + "79020 0\n", + "79021 0\n", + "79022 0\n", + "79023 0\n", + "79024 0\n", + "79025 0\n", + "79026 0\n", + "79027 0\n", + "79028 0\n", + "79029 0\n", + "79030 0\n", + "79031 1\n", + "79032 0\n", + "79033 0\n", + "79034 0\n", + "79035 0\n", + "79036 0\n", + "79037 0\n", + "79038 0\n", + "79039 1\n", + "79040 0\n", + "79041 0\n", + "79042 0\n", + "79043 1\n", + "79044 0\n", + "79045 0\n", + "79046 0\n", + "79047 0\n", + "79048 0\n", + "79049 0\n", + "79050 0\n", + "79051 0\n", + "79052 0\n", + "79053 0\n", + "79054 0\n", + "79055 0\n", + "79056 0\n", + "79057 0\n", + "79058 0\n", + "79059 0\n", + "79060 0\n", + "79061 0\n", + "79062 0\n", + "79063 1\n", + "79064 0\n", + "79065 0\n", + "79066 0\n", + "79067 0\n", + "79068 0\n", + "79069 0\n", + "79070 0\n", + "79071 0\n", + "79072 0\n", + "79073 0\n", + "79074 0\n", + "79075 0\n", + "79076 0\n", + "79077 0\n", + "79078 0\n", + "79079 0\n", + "79080 0\n", + "79081 0\n", + "79082 0\n", + "79083 0\n", + "79084 0\n", + "79085 0\n", + "79086 0\n", + "79087 1\n", + "79088 0\n", + "79089 0\n", + "79090 0\n", + "79091 0\n", + "79092 0\n", + "79093 0\n", + "79094 0\n", + "79095 0\n", + "79096 0\n", + "79097 0\n", + "79098 0\n", + "79099 0\n", + "79100 0\n", + "79101 0\n", + "79102 0\n", + "79103 1\n", + "79104 0\n", + "79105 0\n", + "79106 0\n", + "79107 0\n", + "79108 0\n", + "79109 0\n", + "79110 0\n", + "79111 1\n", + "79112 0\n", + "79113 0\n", + "79114 0\n", + "79115 0\n", + "79116 0\n", + "79117 0\n", + "79118 0\n", + "79119 0\n", + "79120 0\n", + "79121 0\n", + "79122 0\n", + "79123 0\n", + "79124 0\n", + "79125 0\n", + "79126 0\n", + "79127 0\n", + "79128 0\n", + "79129 0\n", + "79130 0\n", + "79131 0\n", + "79132 0\n", + "79133 1\n", + "79134 0\n", + "79135 0\n", + "79136 0\n", + "79137 0\n", + "79138 0\n", + "79139 1\n", + "79140 0\n", + "79141 0\n", + "79142 0\n", + "79143 0\n", + "79144 0\n", + "79145 0\n", + "79146 0\n", + "79147 1\n", + "79148 0\n", + "79149 0\n", + "79150 0\n", + "79151 1\n", + "79152 0\n", + "79153 1\n", + "79154 0\n", + "79155 0\n", + "79156 0\n", + "79157 0\n", + "79158 0\n", + "79159 1\n", + "79160 0\n", + "79161 0\n", + "79162 0\n", + "79163 0\n", + "79164 0\n", + "79165 0\n", + "79166 0\n", + "79167 0\n", + "79168 0\n", + "79169 0\n", + "79170 0\n", + "79171 0\n", + "79172 0\n", + "79173 0\n", + "79174 0\n", + "79175 0\n", + "79176 0\n", + "79177 0\n", + "79178 0\n", + "79179 0\n", + "79180 0\n", + "79181 1\n", + "79182 0\n", + "79183 0\n", + "79184 0\n", + "79185 0\n", + "79186 0\n", + "79187 1\n", + "79188 0\n", + "79189 0\n", + "79190 0\n", + "79191 0\n", + "79192 0\n", + "79193 1\n", + "79194 0\n", + "79195 0\n", + "79196 0\n", + "79197 0\n", + "79198 0\n", + "79199 0\n", + "79200 0\n", + "79201 1\n", + "79202 0\n", + "79203 0\n", + "79204 0\n", + "79205 0\n", + "79206 0\n", + "79207 0\n", + "79208 0\n", + "79209 0\n", + "79210 0\n", + "79211 0\n", + "79212 0\n", + "79213 0\n", + "79214 0\n", + "79215 0\n", + "79216 0\n", + "79217 0\n", + "79218 0\n", + "79219 0\n", + "79220 0\n", + "79221 0\n", + "79222 0\n", + "79223 0\n", + "79224 0\n", + "79225 0\n", + "79226 0\n", + "79227 0\n", + "79228 0\n", + "79229 1\n", + "79230 0\n", + "79231 1\n", + "79232 0\n", + "79233 0\n", + "79234 0\n", + "79235 0\n", + "79236 0\n", + "79237 0\n", + "79238 0\n", + "79239 0\n", + "79240 0\n", + "79241 1\n", + "79242 0\n", + "79243 0\n", + "79244 0\n", + "79245 0\n", + "79246 0\n", + "79247 0\n", + "79248 0\n", + "79249 0\n", + "79250 0\n", + "79251 0\n", + "79252 0\n", + "79253 0\n", + "79254 0\n", + "79255 0\n", + "79256 0\n", + "79257 0\n", + "79258 0\n", + "79259 1\n", + "79260 0\n", + "79261 0\n", + "79262 0\n", + "79263 0\n", + "79264 0\n", + "79265 0\n", + "79266 0\n", + "79267 0\n", + "79268 0\n", + "79269 0\n", + "79270 0\n", + "79271 0\n", + "79272 0\n", + "79273 1\n", + "79274 0\n", + "79275 0\n", + "79276 0\n", + "79277 0\n", + "79278 0\n", + "79279 1\n", + "79280 0\n", + "79281 0\n", + "79282 0\n", + "79283 1\n", + "79284 0\n", + "79285 0\n", + "79286 0\n", + "79287 0\n", + "79288 0\n", + "79289 0\n", + "79290 0\n", + "79291 0\n", + "79292 0\n", + "79293 0\n", + "79294 0\n", + "79295 0\n", + "79296 0\n", + "79297 0\n", + "79298 0\n", + "79299 0\n", + "79300 0\n", + "79301 1\n", + "79302 0\n", + "79303 0\n", + "79304 0\n", + "79305 0\n", + "79306 0\n", + "79307 0\n", + "79308 0\n", + "79309 1\n", + "79310 0\n", + "79311 0\n", + "79312 0\n", + "79313 0\n", + "79314 0\n", + "79315 0\n", + "79316 0\n", + "79317 0\n", + "79318 0\n", + "79319 1\n", + "79320 0\n", + "79321 0\n", + "79322 0\n", + "79323 0\n", + "79324 0\n", + "79325 0\n", + "79326 0\n", + "79327 0\n", + "79328 0\n", + "79329 0\n", + "79330 0\n", + "79331 0\n", + "79332 0\n", + "79333 1\n", + "79334 0\n", + "79335 0\n", + "79336 0\n", + "79337 1\n", + "79338 0\n", + "79339 0\n", + "79340 0\n", + "79341 0\n", + "79342 0\n", + "79343 0\n", + "79344 0\n", + "79345 0\n", + "79346 0\n", + "79347 0\n", + "79348 0\n", + "79349 1\n", + "79350 0\n", + "79351 0\n", + "79352 0\n", + "79353 0\n", + "79354 0\n", + "79355 0\n", + "79356 0\n", + "79357 1\n", + "79358 0\n", + "79359 0\n", + "79360 0\n", + "79361 0\n", + "79362 0\n", + "79363 0\n", + "79364 0\n", + "79365 0\n", + "79366 0\n", + "79367 1\n", + "79368 0\n", + "79369 0\n", + "79370 0\n", + "79371 0\n", + "79372 0\n", + "79373 0\n", + "79374 0\n", + "79375 0\n", + "79376 0\n", + "79377 0\n", + "79378 0\n", + "79379 1\n", + "79380 0\n", + "79381 0\n", + "79382 0\n", + "79383 0\n", + "79384 0\n", + "79385 0\n", + "79386 0\n", + "79387 0\n", + "79388 0\n", + "79389 0\n", + "79390 0\n", + "79391 0\n", + "79392 0\n", + "79393 1\n", + "79394 0\n", + "79395 0\n", + "79396 0\n", + "79397 1\n", + "79398 0\n", + "79399 1\n", + "79400 0\n", + "79401 0\n", + "79402 0\n", + "79403 0\n", + "79404 0\n", + "79405 0\n", + "79406 0\n", + "79407 0\n", + "79408 0\n", + "79409 0\n", + "79410 0\n", + "79411 1\n", + "79412 0\n", + "79413 0\n", + "79414 0\n", + "79415 0\n", + "79416 0\n", + "79417 0\n", + "79418 0\n", + "79419 0\n", + "79420 0\n", + "79421 0\n", + "79422 0\n", + "79423 1\n", + "79424 0\n", + "79425 0\n", + "79426 0\n", + "79427 1\n", + "79428 0\n", + "79429 0\n", + "79430 0\n", + "79431 0\n", + "79432 0\n", + "79433 1\n", + "79434 0\n", + "79435 0\n", + "79436 0\n", + "79437 0\n", + "79438 0\n", + "79439 0\n", + "79440 0\n", + "79441 0\n", + "79442 0\n", + "79443 0\n", + "79444 0\n", + "79445 0\n", + "79446 0\n", + "79447 0\n", + "79448 0\n", + "79449 0\n", + "79450 0\n", + "79451 1\n", + "79452 0\n", + "79453 0\n", + "79454 0\n", + "79455 0\n", + "79456 0\n", + "79457 0\n", + "79458 0\n", + "79459 0\n", + "79460 0\n", + "79461 0\n", + "79462 0\n", + "79463 0\n", + "79464 0\n", + "79465 0\n", + "79466 0\n", + "79467 0\n", + "79468 0\n", + "79469 0\n", + "79470 0\n", + "79471 0\n", + "79472 0\n", + "79473 0\n", + "79474 0\n", + "79475 0\n", + "79476 0\n", + "79477 0\n", + "79478 0\n", + "79479 0\n", + "79480 0\n", + "79481 1\n", + "79482 0\n", + "79483 0\n", + "79484 0\n", + "79485 0\n", + "79486 0\n", + "79487 0\n", + "79488 0\n", + "79489 0\n", + "79490 0\n", + "79491 0\n", + "79492 0\n", + "79493 1\n", + "79494 0\n", + "79495 0\n", + "79496 0\n", + "79497 0\n", + "79498 0\n", + "79499 0\n", + "79500 0\n", + "79501 0\n", + "79502 0\n", + "79503 0\n", + "79504 0\n", + "79505 0\n", + "79506 0\n", + "79507 0\n", + "79508 0\n", + "79509 0\n", + "79510 0\n", + "79511 0\n", + "79512 0\n", + "79513 0\n", + "79514 0\n", + "79515 0\n", + "79516 0\n", + "79517 0\n", + "79518 0\n", + "79519 0\n", + "79520 0\n", + "79521 0\n", + "79522 0\n", + "79523 0\n", + "79524 0\n", + "79525 0\n", + "79526 0\n", + "79527 0\n", + "79528 0\n", + "79529 0\n", + "79530 0\n", + "79531 1\n", + "79532 0\n", + "79533 0\n", + "79534 0\n", + "79535 0\n", + "79536 0\n", + "79537 1\n", + "79538 0\n", + "79539 0\n", + "79540 0\n", + "79541 0\n", + "79542 0\n", + "79543 0\n", + "79544 0\n", + "79545 0\n", + "79546 0\n", + "79547 0\n", + "79548 0\n", + "79549 1\n", + "79550 0\n", + "79551 0\n", + "79552 0\n", + "79553 0\n", + "79554 0\n", + "79555 0\n", + "79556 0\n", + "79557 0\n", + "79558 0\n", + "79559 1\n", + "79560 0\n", + "79561 1\n", + "79562 0\n", + "79563 0\n", + "79564 0\n", + "79565 0\n", + "79566 0\n", + "79567 0\n", + "79568 0\n", + "79569 0\n", + "79570 0\n", + "79571 0\n", + "79572 0\n", + "79573 0\n", + "79574 0\n", + "79575 0\n", + "79576 0\n", + "79577 0\n", + "79578 0\n", + "79579 1\n", + "79580 0\n", + "79581 0\n", + "79582 0\n", + "79583 0\n", + "79584 0\n", + "79585 0\n", + "79586 0\n", + "79587 0\n", + "79588 0\n", + "79589 1\n", + "79590 0\n", + "79591 0\n", + "79592 0\n", + "79593 0\n", + "79594 0\n", + "79595 0\n", + "79596 0\n", + "79597 0\n", + "79598 0\n", + "79599 0\n", + "79600 0\n", + "79601 1\n", + "79602 0\n", + "79603 0\n", + "79604 0\n", + "79605 0\n", + "79606 0\n", + "79607 0\n", + "79608 0\n", + "79609 1\n", + "79610 0\n", + "79611 0\n", + "79612 0\n", + "79613 1\n", + "79614 0\n", + "79615 0\n", + "79616 0\n", + "79617 0\n", + "79618 0\n", + "79619 0\n", + "79620 0\n", + "79621 1\n", + "79622 0\n", + "79623 0\n", + "79624 0\n", + "79625 0\n", + "79626 0\n", + "79627 1\n", + "79628 0\n", + "79629 0\n", + "79630 0\n", + "79631 1\n", + "79632 0\n", + "79633 1\n", + "79634 0\n", + "79635 0\n", + "79636 0\n", + "79637 0\n", + "79638 0\n", + "79639 0\n", + "79640 0\n", + "79641 0\n", + "79642 0\n", + "79643 0\n", + "79644 0\n", + "79645 0\n", + "79646 0\n", + "79647 0\n", + "79648 0\n", + "79649 0\n", + "79650 0\n", + "79651 0\n", + "79652 0\n", + "79653 0\n", + "79654 0\n", + "79655 0\n", + "79656 0\n", + "79657 1\n", + "79658 0\n", + "79659 0\n", + "79660 0\n", + "79661 0\n", + "79662 0\n", + "79663 0\n", + "79664 0\n", + "79665 0\n", + "79666 0\n", + "79667 0\n", + "79668 0\n", + "79669 1\n", + "79670 0\n", + "79671 0\n", + "79672 0\n", + "79673 0\n", + "79674 0\n", + "79675 0\n", + "79676 0\n", + "79677 0\n", + "79678 0\n", + "79679 0\n", + "79680 0\n", + "79681 0\n", + "79682 0\n", + "79683 0\n", + "79684 0\n", + "79685 0\n", + "79686 0\n", + "79687 1\n", + "79688 0\n", + "79689 0\n", + "79690 0\n", + "79691 1\n", + "79692 0\n", + "79693 1\n", + "79694 0\n", + "79695 0\n", + "79696 0\n", + "79697 1\n", + "79698 0\n", + "79699 1\n", + "79700 0\n", + "79701 0\n", + "79702 0\n", + "79703 0\n", + "79704 0\n", + "79705 0\n", + "79706 0\n", + "79707 0\n", + "79708 0\n", + "79709 0\n", + "79710 0\n", + "79711 0\n", + "79712 0\n", + "79713 0\n", + "79714 0\n", + "79715 0\n", + "79716 0\n", + "79717 0\n", + "79718 0\n", + "79719 0\n", + "79720 0\n", + "79721 0\n", + "79722 0\n", + "79723 0\n", + "79724 0\n", + "79725 0\n", + "79726 0\n", + "79727 0\n", + "79728 0\n", + "79729 0\n", + "79730 0\n", + "79731 0\n", + "79732 0\n", + "79733 0\n", + "79734 0\n", + "79735 0\n", + "79736 0\n", + "79737 0\n", + "79738 0\n", + "79739 0\n", + "79740 0\n", + "79741 0\n", + "79742 0\n", + "79743 0\n", + "79744 0\n", + "79745 0\n", + "79746 0\n", + "79747 0\n", + "79748 0\n", + "79749 0\n", + "79750 0\n", + "79751 0\n", + "79752 0\n", + "79753 0\n", + "79754 0\n", + "79755 0\n", + "79756 0\n", + "79757 1\n", + "79758 0\n", + "79759 0\n", + "79760 0\n", + "79761 0\n", + "79762 0\n", + "79763 0\n", + "79764 0\n", + "79765 0\n", + "79766 0\n", + "79767 0\n", + "79768 0\n", + "79769 1\n", + "79770 0\n", + "79771 0\n", + "79772 0\n", + "79773 0\n", + "79774 0\n", + "79775 0\n", + "79776 0\n", + "79777 1\n", + "79778 0\n", + "79779 0\n", + "79780 0\n", + "79781 0\n", + "79782 0\n", + "79783 0\n", + "79784 0\n", + "79785 0\n", + "79786 0\n", + "79787 0\n", + "79788 0\n", + "79789 0\n", + "79790 0\n", + "79791 0\n", + "79792 0\n", + "79793 0\n", + "79794 0\n", + "79795 0\n", + "79796 0\n", + "79797 0\n", + "79798 0\n", + "79799 0\n", + "79800 0\n", + "79801 1\n", + "79802 0\n", + "79803 0\n", + "79804 0\n", + "79805 0\n", + "79806 0\n", + "79807 0\n", + "79808 0\n", + "79809 0\n", + "79810 0\n", + "79811 1\n", + "79812 0\n", + "79813 1\n", + "79814 0\n", + "79815 0\n", + "79816 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "79817 1\n", + "79818 0\n", + "79819 0\n", + "79820 0\n", + "79821 0\n", + "79822 0\n", + "79823 1\n", + "79824 0\n", + "79825 0\n", + "79826 0\n", + "79827 0\n", + "79828 0\n", + "79829 1\n", + "79830 0\n", + "79831 0\n", + "79832 0\n", + "79833 0\n", + "79834 0\n", + "79835 0\n", + "79836 0\n", + "79837 0\n", + "79838 0\n", + "79839 0\n", + "79840 0\n", + "79841 1\n", + "79842 0\n", + "79843 1\n", + "79844 0\n", + "79845 0\n", + "79846 0\n", + "79847 1\n", + "79848 0\n", + "79849 0\n", + "79850 0\n", + "79851 0\n", + "79852 0\n", + "79853 0\n", + "79854 0\n", + "79855 0\n", + "79856 0\n", + "79857 0\n", + "79858 0\n", + "79859 0\n", + "79860 0\n", + "79861 1\n", + "79862 0\n", + "79863 0\n", + "79864 0\n", + "79865 0\n", + "79866 0\n", + "79867 1\n", + "79868 0\n", + "79869 0\n", + "79870 0\n", + "79871 0\n", + "79872 0\n", + "79873 1\n", + "79874 0\n", + "79875 0\n", + "79876 0\n", + "79877 0\n", + "79878 0\n", + "79879 0\n", + "79880 0\n", + "79881 0\n", + "79882 0\n", + "79883 0\n", + "79884 0\n", + "79885 0\n", + "79886 0\n", + "79887 0\n", + "79888 0\n", + "79889 1\n", + "79890 0\n", + "79891 0\n", + "79892 0\n", + "79893 0\n", + "79894 0\n", + "79895 0\n", + "79896 0\n", + "79897 0\n", + "79898 0\n", + "79899 0\n", + "79900 0\n", + "79901 1\n", + "79902 0\n", + "79903 1\n", + "79904 0\n", + "79905 0\n", + "79906 0\n", + "79907 1\n", + "79908 0\n", + "79909 0\n", + "79910 0\n", + "79911 0\n", + "79912 0\n", + "79913 0\n", + "79914 0\n", + "79915 0\n", + "79916 0\n", + "79917 0\n", + "79918 0\n", + "79919 0\n", + "79920 0\n", + "79921 0\n", + "79922 0\n", + "79923 0\n", + "79924 0\n", + "79925 0\n", + "79926 0\n", + "79927 0\n", + "79928 0\n", + "79929 0\n", + "79930 0\n", + "79931 0\n", + "79932 0\n", + "79933 0\n", + "79934 0\n", + "79935 0\n", + "79936 0\n", + "79937 0\n", + "79938 0\n", + "79939 1\n", + "79940 0\n", + "79941 0\n", + "79942 0\n", + "79943 1\n", + "79944 0\n", + "79945 0\n", + "79946 0\n", + "79947 0\n", + "79948 0\n", + "79949 0\n", + "79950 0\n", + "79951 0\n", + "79952 0\n", + "79953 0\n", + "79954 0\n", + "79955 0\n", + "79956 0\n", + "79957 0\n", + "79958 0\n", + "79959 0\n", + "79960 0\n", + "79961 0\n", + "79962 0\n", + "79963 0\n", + "79964 0\n", + "79965 0\n", + "79966 0\n", + "79967 1\n", + "79968 0\n", + "79969 0\n", + "79970 0\n", + "79971 0\n", + "79972 0\n", + "79973 1\n", + "79974 0\n", + "79975 0\n", + "79976 0\n", + "79977 0\n", + "79978 0\n", + "79979 1\n", + "79980 0\n", + "79981 0\n", + "79982 0\n", + "79983 0\n", + "79984 0\n", + "79985 0\n", + "79986 0\n", + "79987 1\n", + "79988 0\n", + "79989 0\n", + "79990 0\n", + "79991 0\n", + "79992 0\n", + "79993 0\n", + "79994 0\n", + "79995 0\n", + "79996 0\n", + "79997 1\n", + "79998 0\n", + "79999 1\n", + "80000 0\n", + "80001 0\n", + "80002 0\n", + "80003 0\n", + "80004 0\n", + "80005 0\n", + "80006 0\n", + "80007 0\n", + "80008 0\n", + "80009 0\n", + "80010 0\n", + "80011 0\n", + "80012 0\n", + "80013 0\n", + "80014 0\n", + "80015 0\n", + "80016 0\n", + "80017 0\n", + "80018 0\n", + "80019 0\n", + "80020 0\n", + "80021 1\n", + "80022 0\n", + "80023 0\n", + "80024 0\n", + "80025 0\n", + "80026 0\n", + "80027 0\n", + "80028 0\n", + "80029 0\n", + "80030 0\n", + "80031 0\n", + "80032 0\n", + "80033 0\n", + "80034 0\n", + "80035 0\n", + "80036 0\n", + "80037 0\n", + "80038 0\n", + "80039 1\n", + "80040 0\n", + "80041 0\n", + "80042 0\n", + "80043 0\n", + "80044 0\n", + "80045 0\n", + "80046 0\n", + "80047 0\n", + "80048 0\n", + "80049 0\n", + "80050 0\n", + "80051 1\n", + "80052 0\n", + "80053 0\n", + "80054 0\n", + "80055 0\n", + "80056 0\n", + "80057 0\n", + "80058 0\n", + "80059 0\n", + "80060 0\n", + "80061 0\n", + "80062 0\n", + "80063 0\n", + "80064 0\n", + "80065 0\n", + "80066 0\n", + "80067 0\n", + "80068 0\n", + "80069 0\n", + "80070 0\n", + "80071 1\n", + "80072 0\n", + "80073 0\n", + "80074 0\n", + "80075 0\n", + "80076 0\n", + "80077 1\n", + "80078 0\n", + "80079 0\n", + "80080 0\n", + "80081 0\n", + "80082 0\n", + "80083 0\n", + "80084 0\n", + "80085 0\n", + "80086 0\n", + "80087 0\n", + "80088 0\n", + "80089 0\n", + "80090 0\n", + "80091 0\n", + "80092 0\n", + "80093 0\n", + "80094 0\n", + "80095 0\n", + "80096 0\n", + "80097 0\n", + "80098 0\n", + "80099 0\n", + "80100 0\n", + "80101 0\n", + "80102 0\n", + "80103 0\n", + "80104 0\n", + "80105 0\n", + "80106 0\n", + "80107 1\n", + "80108 0\n", + "80109 0\n", + "80110 0\n", + "80111 1\n", + "80112 0\n", + "80113 0\n", + "80114 0\n", + "80115 0\n", + "80116 0\n", + "80117 0\n", + "80118 0\n", + "80119 0\n", + "80120 0\n", + "80121 0\n", + "80122 0\n", + "80123 0\n", + "80124 0\n", + "80125 0\n", + "80126 0\n", + "80127 0\n", + "80128 0\n", + "80129 0\n", + "80130 0\n", + "80131 0\n", + "80132 0\n", + "80133 0\n", + "80134 0\n", + "80135 0\n", + "80136 0\n", + "80137 0\n", + "80138 0\n", + "80139 0\n", + "80140 0\n", + "80141 1\n", + "80142 0\n", + "80143 0\n", + "80144 0\n", + "80145 0\n", + "80146 0\n", + "80147 1\n", + "80148 0\n", + "80149 1\n", + "80150 0\n", + "80151 0\n", + "80152 0\n", + "80153 1\n", + "80154 0\n", + "80155 0\n", + "80156 0\n", + "80157 0\n", + "80158 0\n", + "80159 0\n", + "80160 0\n", + "80161 0\n", + "80162 0\n", + "80163 0\n", + "80164 0\n", + "80165 0\n", + "80166 0\n", + "80167 1\n", + "80168 0\n", + "80169 0\n", + "80170 0\n", + "80171 0\n", + "80172 0\n", + "80173 1\n", + "80174 0\n", + "80175 0\n", + "80176 0\n", + "80177 1\n", + "80178 0\n", + "80179 0\n", + "80180 0\n", + "80181 0\n", + "80182 0\n", + "80183 0\n", + "80184 0\n", + "80185 0\n", + "80186 0\n", + "80187 0\n", + "80188 0\n", + "80189 0\n", + "80190 0\n", + "80191 1\n", + "80192 0\n", + "80193 0\n", + "80194 0\n", + "80195 0\n", + "80196 0\n", + "80197 0\n", + "80198 0\n", + "80199 0\n", + "80200 0\n", + "80201 0\n", + "80202 0\n", + "80203 0\n", + "80204 0\n", + "80205 0\n", + "80206 0\n", + "80207 1\n", + "80208 0\n", + "80209 1\n", + "80210 0\n", + "80211 0\n", + "80212 0\n", + "80213 0\n", + "80214 0\n", + "80215 0\n", + "80216 0\n", + "80217 0\n", + "80218 0\n", + "80219 0\n", + "80220 0\n", + "80221 1\n", + "80222 0\n", + "80223 0\n", + "80224 0\n", + "80225 0\n", + "80226 0\n", + "80227 0\n", + "80228 0\n", + "80229 0\n", + "80230 0\n", + "80231 1\n", + "80232 0\n", + "80233 1\n", + "80234 0\n", + "80235 0\n", + "80236 0\n", + "80237 0\n", + "80238 0\n", + "80239 1\n", + "80240 0\n", + "80241 0\n", + "80242 0\n", + "80243 0\n", + "80244 0\n", + "80245 0\n", + "80246 0\n", + "80247 0\n", + "80248 0\n", + "80249 0\n", + "80250 0\n", + "80251 1\n", + "80252 0\n", + "80253 0\n", + "80254 0\n", + "80255 0\n", + "80256 0\n", + "80257 0\n", + "80258 0\n", + "80259 0\n", + "80260 0\n", + "80261 0\n", + "80262 0\n", + "80263 1\n", + "80264 0\n", + "80265 0\n", + "80266 0\n", + "80267 0\n", + "80268 0\n", + "80269 0\n", + "80270 0\n", + "80271 0\n", + "80272 0\n", + "80273 1\n", + "80274 0\n", + "80275 0\n", + "80276 0\n", + "80277 0\n", + "80278 0\n", + "80279 1\n", + "80280 0\n", + "80281 0\n", + "80282 0\n", + "80283 0\n", + "80284 0\n", + "80285 0\n", + "80286 0\n", + "80287 1\n", + "80288 0\n", + "80289 0\n", + "80290 0\n", + "80291 0\n", + "80292 0\n", + "80293 0\n", + "80294 0\n", + "80295 0\n", + "80296 0\n", + "80297 0\n", + "80298 0\n", + "80299 0\n", + "80300 0\n", + "80301 0\n", + "80302 0\n", + "80303 0\n", + "80304 0\n", + "80305 0\n", + "80306 0\n", + "80307 0\n", + "80308 0\n", + "80309 1\n", + "80310 0\n", + "80311 0\n", + "80312 0\n", + "80313 0\n", + "80314 0\n", + "80315 0\n", + "80316 0\n", + "80317 1\n", + "80318 0\n", + "80319 0\n", + "80320 0\n", + "80321 0\n", + "80322 0\n", + "80323 0\n", + "80324 0\n", + "80325 0\n", + "80326 0\n", + "80327 0\n", + "80328 0\n", + "80329 1\n", + "80330 0\n", + "80331 0\n", + "80332 0\n", + "80333 0\n", + "80334 0\n", + "80335 0\n", + "80336 0\n", + "80337 0\n", + "80338 0\n", + "80339 0\n", + "80340 0\n", + "80341 1\n", + "80342 0\n", + "80343 0\n", + "80344 0\n", + "80345 0\n", + "80346 0\n", + "80347 1\n", + "80348 0\n", + "80349 0\n", + "80350 0\n", + "80351 0\n", + "80352 0\n", + "80353 0\n", + "80354 0\n", + "80355 0\n", + "80356 0\n", + "80357 0\n", + "80358 0\n", + "80359 0\n", + "80360 0\n", + "80361 0\n", + "80362 0\n", + "80363 1\n", + "80364 0\n", + "80365 0\n", + "80366 0\n", + "80367 0\n", + "80368 0\n", + "80369 1\n", + "80370 0\n", + "80371 0\n", + "80372 0\n", + "80373 0\n", + "80374 0\n", + "80375 0\n", + "80376 0\n", + "80377 0\n", + "80378 0\n", + "80379 0\n", + "80380 0\n", + "80381 0\n", + "80382 0\n", + "80383 0\n", + "80384 0\n", + "80385 0\n", + "80386 0\n", + "80387 1\n", + "80388 0\n", + "80389 0\n", + "80390 0\n", + "80391 0\n", + "80392 0\n", + "80393 0\n", + "80394 0\n", + "80395 0\n", + "80396 0\n", + "80397 0\n", + "80398 0\n", + "80399 0\n", + "80400 0\n", + "80401 0\n", + "80402 0\n", + "80403 0\n", + "80404 0\n", + "80405 0\n", + "80406 0\n", + "80407 1\n", + "80408 0\n", + "80409 0\n", + "80410 0\n", + "80411 0\n", + "80412 0\n", + "80413 0\n", + "80414 0\n", + "80415 0\n", + "80416 0\n", + "80417 0\n", + "80418 0\n", + "80419 0\n", + "80420 0\n", + "80421 0\n", + "80422 0\n", + "80423 0\n", + "80424 0\n", + "80425 0\n", + "80426 0\n", + "80427 0\n", + "80428 0\n", + "80429 1\n", + "80430 0\n", + "80431 0\n", + "80432 0\n", + "80433 0\n", + "80434 0\n", + "80435 0\n", + "80436 0\n", + "80437 0\n", + "80438 0\n", + "80439 0\n", + "80440 0\n", + "80441 0\n", + "80442 0\n", + "80443 0\n", + "80444 0\n", + "80445 0\n", + "80446 0\n", + "80447 1\n", + "80448 0\n", + "80449 1\n", + "80450 0\n", + "80451 0\n", + "80452 0\n", + "80453 0\n", + "80454 0\n", + "80455 0\n", + "80456 0\n", + "80457 0\n", + "80458 0\n", + "80459 0\n", + "80460 0\n", + "80461 0\n", + "80462 0\n", + "80463 0\n", + "80464 0\n", + "80465 0\n", + "80466 0\n", + "80467 0\n", + "80468 0\n", + "80469 0\n", + "80470 0\n", + "80471 1\n", + "80472 0\n", + "80473 1\n", + "80474 0\n", + "80475 0\n", + "80476 0\n", + "80477 0\n", + "80478 0\n", + "80479 0\n", + "80480 0\n", + "80481 0\n", + "80482 0\n", + "80483 0\n", + "80484 0\n", + "80485 0\n", + "80486 0\n", + "80487 0\n", + "80488 0\n", + "80489 1\n", + "80490 0\n", + "80491 1\n", + "80492 0\n", + "80493 0\n", + "80494 0\n", + "80495 0\n", + "80496 0\n", + "80497 0\n", + "80498 0\n", + "80499 0\n", + "80500 0\n", + "80501 0\n", + "80502 0\n", + "80503 0\n", + "80504 0\n", + "80505 0\n", + "80506 0\n", + "80507 0\n", + "80508 0\n", + "80509 0\n", + "80510 0\n", + "80511 0\n", + "80512 0\n", + "80513 1\n", + "80514 0\n", + "80515 0\n", + "80516 0\n", + "80517 0\n", + "80518 0\n", + "80519 0\n", + "80520 0\n", + "80521 0\n", + "80522 0\n", + "80523 0\n", + "80524 0\n", + "80525 0\n", + "80526 0\n", + "80527 1\n", + "80528 0\n", + "80529 0\n", + "80530 0\n", + "80531 0\n", + "80532 0\n", + "80533 0\n", + "80534 0\n", + "80535 0\n", + "80536 0\n", + "80537 1\n", + "80538 0\n", + "80539 0\n", + "80540 0\n", + "80541 0\n", + "80542 0\n", + "80543 0\n", + "80544 0\n", + "80545 0\n", + "80546 0\n", + "80547 0\n", + "80548 0\n", + "80549 0\n", + "80550 0\n", + "80551 0\n", + "80552 0\n", + "80553 0\n", + "80554 0\n", + "80555 0\n", + "80556 0\n", + "80557 1\n", + "80558 0\n", + "80559 0\n", + "80560 0\n", + "80561 0\n", + "80562 0\n", + "80563 0\n", + "80564 0\n", + "80565 0\n", + "80566 0\n", + "80567 1\n", + "80568 0\n", + "80569 0\n", + "80570 0\n", + "80571 0\n", + "80572 0\n", + "80573 0\n", + "80574 0\n", + "80575 0\n", + "80576 0\n", + "80577 0\n", + "80578 0\n", + "80579 0\n", + "80580 0\n", + "80581 0\n", + "80582 0\n", + "80583 0\n", + "80584 0\n", + "80585 0\n", + "80586 0\n", + "80587 0\n", + "80588 0\n", + "80589 0\n", + "80590 0\n", + "80591 0\n", + "80592 0\n", + "80593 0\n", + "80594 0\n", + "80595 0\n", + "80596 0\n", + "80597 0\n", + "80598 0\n", + "80599 1\n", + "80600 0\n", + "80601 0\n", + "80602 0\n", + "80603 1\n", + "80604 0\n", + "80605 0\n", + "80606 0\n", + "80607 0\n", + "80608 0\n", + "80609 0\n", + "80610 0\n", + "80611 1\n", + "80612 0\n", + "80613 0\n", + "80614 0\n", + "80615 0\n", + "80616 0\n", + "80617 0\n", + "80618 0\n", + "80619 0\n", + "80620 0\n", + "80621 1\n", + "80622 0\n", + "80623 0\n", + "80624 0\n", + "80625 0\n", + "80626 0\n", + "80627 1\n", + "80628 0\n", + "80629 1\n", + "80630 0\n", + "80631 0\n", + "80632 0\n", + "80633 0\n", + "80634 0\n", + "80635 0\n", + "80636 0\n", + "80637 0\n", + "80638 0\n", + "80639 0\n", + "80640 0\n", + "80641 0\n", + "80642 0\n", + "80643 0\n", + "80644 0\n", + "80645 0\n", + "80646 0\n", + "80647 0\n", + "80648 0\n", + "80649 0\n", + "80650 0\n", + "80651 1\n", + "80652 0\n", + "80653 0\n", + "80654 0\n", + "80655 0\n", + "80656 0\n", + "80657 1\n", + "80658 0\n", + "80659 0\n", + "80660 0\n", + "80661 0\n", + "80662 0\n", + "80663 0\n", + "80664 0\n", + "80665 0\n", + "80666 0\n", + "80667 0\n", + "80668 0\n", + "80669 1\n", + "80670 0\n", + "80671 1\n", + "80672 0\n", + "80673 0\n", + "80674 0\n", + "80675 0\n", + "80676 0\n", + "80677 1\n", + "80678 0\n", + "80679 0\n", + "80680 0\n", + "80681 1\n", + "80682 0\n", + "80683 1\n", + "80684 0\n", + "80685 0\n", + "80686 0\n", + "80687 1\n", + "80688 0\n", + "80689 0\n", + "80690 0\n", + "80691 0\n", + "80692 0\n", + "80693 0\n", + "80694 0\n", + "80695 0\n", + "80696 0\n", + "80697 0\n", + "80698 0\n", + "80699 0\n", + "80700 0\n", + "80701 1\n", + "80702 0\n", + "80703 0\n", + "80704 0\n", + "80705 0\n", + "80706 0\n", + "80707 0\n", + "80708 0\n", + "80709 0\n", + "80710 0\n", + "80711 0\n", + "80712 0\n", + "80713 1\n", + "80714 0\n", + "80715 0\n", + "80716 0\n", + "80717 0\n", + "80718 0\n", + "80719 0\n", + "80720 0\n", + "80721 0\n", + "80722 0\n", + "80723 0\n", + "80724 0\n", + "80725 0\n", + "80726 0\n", + "80727 0\n", + "80728 0\n", + "80729 0\n", + "80730 0\n", + "80731 0\n", + "80732 0\n", + "80733 0\n", + "80734 0\n", + "80735 0\n", + "80736 0\n", + "80737 1\n", + "80738 0\n", + "80739 0\n", + "80740 0\n", + "80741 0\n", + "80742 0\n", + "80743 0\n", + "80744 0\n", + "80745 0\n", + "80746 0\n", + "80747 1\n", + "80748 0\n", + "80749 1\n", + "80750 0\n", + "80751 0\n", + "80752 0\n", + "80753 0\n", + "80754 0\n", + "80755 0\n", + "80756 0\n", + "80757 0\n", + "80758 0\n", + "80759 0\n", + "80760 0\n", + "80761 1\n", + "80762 0\n", + "80763 0\n", + "80764 0\n", + "80765 0\n", + "80766 0\n", + "80767 0\n", + "80768 0\n", + "80769 0\n", + "80770 0\n", + "80771 0\n", + "80772 0\n", + "80773 0\n", + "80774 0\n", + "80775 0\n", + "80776 0\n", + "80777 1\n", + "80778 0\n", + "80779 1\n", + "80780 0\n", + "80781 0\n", + "80782 0\n", + "80783 1\n", + "80784 0\n", + "80785 0\n", + "80786 0\n", + "80787 0\n", + "80788 0\n", + "80789 1\n", + "80790 0\n", + "80791 0\n", + "80792 0\n", + "80793 0\n", + "80794 0\n", + "80795 0\n", + "80796 0\n", + "80797 0\n", + "80798 0\n", + "80799 0\n", + "80800 0\n", + "80801 0\n", + "80802 0\n", + "80803 1\n", + "80804 0\n", + "80805 0\n", + "80806 0\n", + "80807 0\n", + "80808 0\n", + "80809 1\n", + "80810 0\n", + "80811 0\n", + "80812 0\n", + "80813 0\n", + "80814 0\n", + "80815 0\n", + "80816 0\n", + "80817 0\n", + "80818 0\n", + "80819 1\n", + "80820 0\n", + "80821 0\n", + "80822 0\n", + "80823 0\n", + "80824 0\n", + "80825 0\n", + "80826 0\n", + "80827 0\n", + "80828 0\n", + "80829 0\n", + "80830 0\n", + "80831 1\n", + "80832 0\n", + "80833 1\n", + "80834 0\n", + "80835 0\n", + "80836 0\n", + "80837 0\n", + "80838 0\n", + "80839 0\n", + "80840 0\n", + "80841 0\n", + "80842 0\n", + "80843 0\n", + "80844 0\n", + "80845 0\n", + "80846 0\n", + "80847 0\n", + "80848 0\n", + "80849 1\n", + "80850 0\n", + "80851 0\n", + "80852 0\n", + "80853 0\n", + "80854 0\n", + "80855 0\n", + "80856 0\n", + "80857 0\n", + "80858 0\n", + "80859 0\n", + "80860 0\n", + "80861 0\n", + "80862 0\n", + "80863 1\n", + "80864 0\n", + "80865 0\n", + "80866 0\n", + "80867 0\n", + "80868 0\n", + "80869 0\n", + "80870 0\n", + "80871 0\n", + "80872 0\n", + "80873 0\n", + "80874 0\n", + "80875 0\n", + "80876 0\n", + "80877 0\n", + "80878 0\n", + "80879 0\n", + "80880 0\n", + "80881 0\n", + "80882 0\n", + "80883 0\n", + "80884 0\n", + "80885 0\n", + "80886 0\n", + "80887 0\n", + "80888 0\n", + "80889 0\n", + "80890 0\n", + "80891 0\n", + "80892 0\n", + "80893 0\n", + "80894 0\n", + "80895 0\n", + "80896 0\n", + "80897 1\n", + "80898 0\n", + "80899 0\n", + "80900 0\n", + "80901 0\n", + "80902 0\n", + "80903 0\n", + "80904 0\n", + "80905 0\n", + "80906 0\n", + "80907 0\n", + "80908 0\n", + "80909 1\n", + "80910 0\n", + "80911 1\n", + "80912 0\n", + "80913 0\n", + "80914 0\n", + "80915 0\n", + "80916 0\n", + "80917 1\n", + "80918 0\n", + "80919 0\n", + "80920 0\n", + "80921 0\n", + "80922 0\n", + "80923 1\n", + "80924 0\n", + "80925 0\n", + "80926 0\n", + "80927 0\n", + "80928 0\n", + "80929 1\n", + "80930 0\n", + "80931 0\n", + "80932 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "80933 1\n", + "80934 0\n", + "80935 0\n", + "80936 0\n", + "80937 0\n", + "80938 0\n", + "80939 0\n", + "80940 0\n", + "80941 0\n", + "80942 0\n", + "80943 0\n", + "80944 0\n", + "80945 0\n", + "80946 0\n", + "80947 0\n", + "80948 0\n", + "80949 0\n", + "80950 0\n", + "80951 0\n", + "80952 0\n", + "80953 1\n", + "80954 0\n", + "80955 0\n", + "80956 0\n", + "80957 0\n", + "80958 0\n", + "80959 0\n", + "80960 0\n", + "80961 0\n", + "80962 0\n", + "80963 1\n", + "80964 0\n", + "80965 0\n", + "80966 0\n", + "80967 0\n", + "80968 0\n", + "80969 0\n", + "80970 0\n", + "80971 0\n", + "80972 0\n", + "80973 0\n", + "80974 0\n", + "80975 0\n", + "80976 0\n", + "80977 0\n", + "80978 0\n", + "80979 0\n", + "80980 0\n", + "80981 0\n", + "80982 0\n", + "80983 0\n", + "80984 0\n", + "80985 0\n", + "80986 0\n", + "80987 0\n", + "80988 0\n", + "80989 1\n", + "80990 0\n", + "80991 0\n", + "80992 0\n", + "80993 0\n", + "80994 0\n", + "80995 0\n", + "80996 0\n", + "80997 0\n", + "80998 0\n", + "80999 0\n", + "81000 0\n", + "81001 1\n", + "81002 0\n", + "81003 0\n", + "81004 0\n", + "81005 0\n", + "81006 0\n", + "81007 0\n", + "81008 0\n", + "81009 0\n", + "81010 0\n", + "81011 0\n", + "81012 0\n", + "81013 1\n", + "81014 0\n", + "81015 0\n", + "81016 0\n", + "81017 1\n", + "81018 0\n", + "81019 1\n", + "81020 0\n", + "81021 0\n", + "81022 0\n", + "81023 1\n", + "81024 0\n", + "81025 0\n", + "81026 0\n", + "81027 0\n", + "81028 0\n", + "81029 0\n", + "81030 0\n", + "81031 1\n", + "81032 0\n", + "81033 0\n", + "81034 0\n", + "81035 0\n", + "81036 0\n", + "81037 0\n", + "81038 0\n", + "81039 0\n", + "81040 0\n", + "81041 1\n", + "81042 0\n", + "81043 1\n", + "81044 0\n", + "81045 0\n", + "81046 0\n", + "81047 1\n", + "81048 0\n", + "81049 1\n", + "81050 0\n", + "81051 0\n", + "81052 0\n", + "81053 0\n", + "81054 0\n", + "81055 0\n", + "81056 0\n", + "81057 0\n", + "81058 0\n", + "81059 0\n", + "81060 0\n", + "81061 0\n", + "81062 0\n", + "81063 0\n", + "81064 0\n", + "81065 0\n", + "81066 0\n", + "81067 0\n", + "81068 0\n", + "81069 0\n", + "81070 0\n", + "81071 1\n", + "81072 0\n", + "81073 0\n", + "81074 0\n", + "81075 0\n", + "81076 0\n", + "81077 1\n", + "81078 0\n", + "81079 0\n", + "81080 0\n", + "81081 0\n", + "81082 0\n", + "81083 1\n", + "81084 0\n", + "81085 0\n", + "81086 0\n", + "81087 0\n", + "81088 0\n", + "81089 0\n", + "81090 0\n", + "81091 0\n", + "81092 0\n", + "81093 0\n", + "81094 0\n", + "81095 0\n", + "81096 0\n", + "81097 1\n", + "81098 0\n", + "81099 0\n", + "81100 0\n", + "81101 1\n", + "81102 0\n", + "81103 0\n", + "81104 0\n", + "81105 0\n", + "81106 0\n", + "81107 0\n", + "81108 0\n", + "81109 0\n", + "81110 0\n", + "81111 0\n", + "81112 0\n", + "81113 0\n", + "81114 0\n", + "81115 0\n", + "81116 0\n", + "81117 0\n", + "81118 0\n", + "81119 1\n", + "81120 0\n", + "81121 0\n", + "81122 0\n", + "81123 0\n", + "81124 0\n", + "81125 0\n", + "81126 0\n", + "81127 0\n", + "81128 0\n", + "81129 0\n", + "81130 0\n", + "81131 1\n", + "81132 0\n", + "81133 0\n", + "81134 0\n", + "81135 0\n", + "81136 0\n", + "81137 0\n", + "81138 0\n", + "81139 0\n", + "81140 0\n", + "81141 0\n", + "81142 0\n", + "81143 0\n", + "81144 0\n", + "81145 0\n", + "81146 0\n", + "81147 0\n", + "81148 0\n", + "81149 0\n", + "81150 0\n", + "81151 0\n", + "81152 0\n", + "81153 0\n", + "81154 0\n", + "81155 0\n", + "81156 0\n", + "81157 1\n", + "81158 0\n", + "81159 0\n", + "81160 0\n", + "81161 0\n", + "81162 0\n", + "81163 1\n", + "81164 0\n", + "81165 0\n", + "81166 0\n", + "81167 0\n", + "81168 0\n", + "81169 0\n", + "81170 0\n", + "81171 0\n", + "81172 0\n", + "81173 1\n", + "81174 0\n", + "81175 0\n", + "81176 0\n", + "81177 0\n", + "81178 0\n", + "81179 0\n", + "81180 0\n", + "81181 1\n", + "81182 0\n", + "81183 0\n", + "81184 0\n", + "81185 0\n", + "81186 0\n", + "81187 0\n", + "81188 0\n", + "81189 0\n", + "81190 0\n", + "81191 0\n", + "81192 0\n", + "81193 0\n", + "81194 0\n", + "81195 0\n", + "81196 0\n", + "81197 1\n", + "81198 0\n", + "81199 1\n", + "81200 0\n", + "81201 0\n", + "81202 0\n", + "81203 1\n", + "81204 0\n", + "81205 0\n", + "81206 0\n", + "81207 0\n", + "81208 0\n", + "81209 0\n", + "81210 0\n", + "81211 0\n", + "81212 0\n", + "81213 0\n", + "81214 0\n", + "81215 0\n", + "81216 0\n", + "81217 0\n", + "81218 0\n", + "81219 0\n", + "81220 0\n", + "81221 0\n", + "81222 0\n", + "81223 1\n", + "81224 0\n", + "81225 0\n", + "81226 0\n", + "81227 0\n", + "81228 0\n", + "81229 0\n", + "81230 0\n", + "81231 0\n", + "81232 0\n", + "81233 1\n", + "81234 0\n", + "81235 0\n", + "81236 0\n", + "81237 0\n", + "81238 0\n", + "81239 1\n", + "81240 0\n", + "81241 0\n", + "81242 0\n", + "81243 0\n", + "81244 0\n", + "81245 0\n", + "81246 0\n", + "81247 0\n", + "81248 0\n", + "81249 0\n", + "81250 0\n", + "81251 0\n", + "81252 0\n", + "81253 0\n", + "81254 0\n", + "81255 0\n", + "81256 0\n", + "81257 0\n", + "81258 0\n", + "81259 0\n", + "81260 0\n", + "81261 0\n", + "81262 0\n", + "81263 0\n", + "81264 0\n", + "81265 0\n", + "81266 0\n", + "81267 0\n", + "81268 0\n", + "81269 0\n", + "81270 0\n", + "81271 0\n", + "81272 0\n", + "81273 0\n", + "81274 0\n", + "81275 0\n", + "81276 0\n", + "81277 0\n", + "81278 0\n", + "81279 0\n", + "81280 0\n", + "81281 1\n", + "81282 0\n", + "81283 1\n", + "81284 0\n", + "81285 0\n", + "81286 0\n", + "81287 0\n", + "81288 0\n", + "81289 0\n", + "81290 0\n", + "81291 0\n", + "81292 0\n", + "81293 1\n", + "81294 0\n", + "81295 0\n", + "81296 0\n", + "81297 0\n", + "81298 0\n", + "81299 1\n", + "81300 0\n", + "81301 0\n", + "81302 0\n", + "81303 0\n", + "81304 0\n", + "81305 0\n", + "81306 0\n", + "81307 1\n", + "81308 0\n", + "81309 0\n", + "81310 0\n", + "81311 0\n", + "81312 0\n", + "81313 0\n", + "81314 0\n", + "81315 0\n", + "81316 0\n", + "81317 0\n", + "81318 0\n", + "81319 0\n", + "81320 0\n", + "81321 0\n", + "81322 0\n", + "81323 0\n", + "81324 0\n", + "81325 0\n", + "81326 0\n", + "81327 0\n", + "81328 0\n", + "81329 0\n", + "81330 0\n", + "81331 1\n", + "81332 0\n", + "81333 0\n", + "81334 0\n", + "81335 0\n", + "81336 0\n", + "81337 0\n", + "81338 0\n", + "81339 0\n", + "81340 0\n", + "81341 0\n", + "81342 0\n", + "81343 1\n", + "81344 0\n", + "81345 0\n", + "81346 0\n", + "81347 0\n", + "81348 0\n", + "81349 1\n", + "81350 0\n", + "81351 0\n", + "81352 0\n", + "81353 1\n", + "81354 0\n", + "81355 0\n", + "81356 0\n", + "81357 0\n", + "81358 0\n", + "81359 1\n", + "81360 0\n", + "81361 0\n", + "81362 0\n", + "81363 0\n", + "81364 0\n", + "81365 0\n", + "81366 0\n", + "81367 0\n", + "81368 0\n", + "81369 0\n", + "81370 0\n", + "81371 1\n", + "81372 0\n", + "81373 1\n", + "81374 0\n", + "81375 0\n", + "81376 0\n", + "81377 0\n", + "81378 0\n", + "81379 0\n", + "81380 0\n", + "81381 0\n", + "81382 0\n", + "81383 0\n", + "81384 0\n", + "81385 0\n", + "81386 0\n", + "81387 0\n", + "81388 0\n", + "81389 0\n", + "81390 0\n", + "81391 0\n", + "81392 0\n", + "81393 0\n", + "81394 0\n", + "81395 0\n", + "81396 0\n", + "81397 0\n", + "81398 0\n", + "81399 0\n", + "81400 0\n", + "81401 1\n", + "81402 0\n", + "81403 0\n", + "81404 0\n", + "81405 0\n", + "81406 0\n", + "81407 0\n", + "81408 0\n", + "81409 1\n", + "81410 0\n", + "81411 0\n", + "81412 0\n", + "81413 0\n", + "81414 0\n", + "81415 0\n", + "81416 0\n", + "81417 0\n", + "81418 0\n", + "81419 0\n", + "81420 0\n", + "81421 1\n", + "81422 0\n", + "81423 0\n", + "81424 0\n", + "81425 0\n", + "81426 0\n", + "81427 0\n", + "81428 0\n", + "81429 0\n", + "81430 0\n", + "81431 0\n", + "81432 0\n", + "81433 0\n", + "81434 0\n", + "81435 0\n", + "81436 0\n", + "81437 0\n", + "81438 0\n", + "81439 1\n", + "81440 0\n", + "81441 0\n", + "81442 0\n", + "81443 0\n", + "81444 0\n", + "81445 0\n", + "81446 0\n", + "81447 0\n", + "81448 0\n", + "81449 0\n", + "81450 0\n", + "81451 0\n", + "81452 0\n", + "81453 0\n", + "81454 0\n", + "81455 0\n", + "81456 0\n", + "81457 1\n", + "81458 0\n", + "81459 0\n", + "81460 0\n", + "81461 0\n", + "81462 0\n", + "81463 1\n", + "81464 0\n", + "81465 0\n", + "81466 0\n", + "81467 0\n", + "81468 0\n", + "81469 0\n", + "81470 0\n", + "81471 0\n", + "81472 0\n", + "81473 0\n", + "81474 0\n", + "81475 0\n", + "81476 0\n", + "81477 0\n", + "81478 0\n", + "81479 0\n", + "81480 0\n", + "81481 0\n", + "81482 0\n", + "81483 0\n", + "81484 0\n", + "81485 0\n", + "81486 0\n", + "81487 0\n", + "81488 0\n", + "81489 0\n", + "81490 0\n", + "81491 0\n", + "81492 0\n", + "81493 0\n", + "81494 0\n", + "81495 0\n", + "81496 0\n", + "81497 0\n", + "81498 0\n", + "81499 0\n", + "81500 0\n", + "81501 0\n", + "81502 0\n", + "81503 0\n", + "81504 0\n", + "81505 0\n", + "81506 0\n", + "81507 0\n", + "81508 0\n", + "81509 1\n", + "81510 0\n", + "81511 0\n", + "81512 0\n", + "81513 0\n", + "81514 0\n", + "81515 0\n", + "81516 0\n", + "81517 1\n", + "81518 0\n", + "81519 0\n", + "81520 0\n", + "81521 0\n", + "81522 0\n", + "81523 0\n", + "81524 0\n", + "81525 0\n", + "81526 0\n", + "81527 1\n", + "81528 0\n", + "81529 0\n", + "81530 0\n", + "81531 0\n", + "81532 0\n", + "81533 1\n", + "81534 0\n", + "81535 0\n", + "81536 0\n", + "81537 0\n", + "81538 0\n", + "81539 0\n", + "81540 0\n", + "81541 0\n", + "81542 0\n", + "81543 0\n", + "81544 0\n", + "81545 0\n", + "81546 0\n", + "81547 1\n", + "81548 0\n", + "81549 0\n", + "81550 0\n", + "81551 1\n", + "81552 0\n", + "81553 1\n", + "81554 0\n", + "81555 0\n", + "81556 0\n", + "81557 0\n", + "81558 0\n", + "81559 1\n", + "81560 0\n", + "81561 0\n", + "81562 0\n", + "81563 1\n", + "81564 0\n", + "81565 0\n", + "81566 0\n", + "81567 0\n", + "81568 0\n", + "81569 1\n", + "81570 0\n", + "81571 0\n", + "81572 0\n", + "81573 0\n", + "81574 0\n", + "81575 0\n", + "81576 0\n", + "81577 0\n", + "81578 0\n", + "81579 0\n", + "81580 0\n", + "81581 0\n", + "81582 0\n", + "81583 0\n", + "81584 0\n", + "81585 0\n", + "81586 0\n", + "81587 0\n", + "81588 0\n", + "81589 0\n", + "81590 0\n", + "81591 0\n", + "81592 0\n", + "81593 0\n", + "81594 0\n", + "81595 0\n", + "81596 0\n", + "81597 0\n", + "81598 0\n", + "81599 0\n", + "81600 0\n", + "81601 0\n", + "81602 0\n", + "81603 0\n", + "81604 0\n", + "81605 0\n", + "81606 0\n", + "81607 0\n", + "81608 0\n", + "81609 0\n", + "81610 0\n", + "81611 1\n", + "81612 0\n", + "81613 0\n", + "81614 0\n", + "81615 0\n", + "81616 0\n", + "81617 0\n", + "81618 0\n", + "81619 1\n", + "81620 0\n", + "81621 0\n", + "81622 0\n", + "81623 0\n", + "81624 0\n", + "81625 0\n", + "81626 0\n", + "81627 0\n", + "81628 0\n", + "81629 1\n", + "81630 0\n", + "81631 0\n", + "81632 0\n", + "81633 0\n", + "81634 0\n", + "81635 0\n", + "81636 0\n", + "81637 1\n", + "81638 0\n", + "81639 0\n", + "81640 0\n", + "81641 0\n", + "81642 0\n", + "81643 0\n", + "81644 0\n", + "81645 0\n", + "81646 0\n", + "81647 1\n", + "81648 0\n", + "81649 1\n", + "81650 0\n", + "81651 0\n", + "81652 0\n", + "81653 0\n", + "81654 0\n", + "81655 0\n", + "81656 0\n", + "81657 0\n", + "81658 0\n", + "81659 0\n", + "81660 0\n", + "81661 0\n", + "81662 0\n", + "81663 0\n", + "81664 0\n", + "81665 0\n", + "81666 0\n", + "81667 1\n", + "81668 0\n", + "81669 0\n", + "81670 0\n", + "81671 1\n", + "81672 0\n", + "81673 0\n", + "81674 0\n", + "81675 0\n", + "81676 0\n", + "81677 1\n", + "81678 0\n", + "81679 0\n", + "81680 0\n", + "81681 0\n", + "81682 0\n", + "81683 0\n", + "81684 0\n", + "81685 0\n", + "81686 0\n", + "81687 0\n", + "81688 0\n", + "81689 1\n", + "81690 0\n", + "81691 0\n", + "81692 0\n", + "81693 0\n", + "81694 0\n", + "81695 0\n", + "81696 0\n", + "81697 0\n", + "81698 0\n", + "81699 0\n", + "81700 0\n", + "81701 1\n", + "81702 0\n", + "81703 1\n", + "81704 0\n", + "81705 0\n", + "81706 0\n", + "81707 1\n", + "81708 0\n", + "81709 0\n", + "81710 0\n", + "81711 0\n", + "81712 0\n", + "81713 0\n", + "81714 0\n", + "81715 0\n", + "81716 0\n", + "81717 0\n", + "81718 0\n", + "81719 0\n", + "81720 0\n", + "81721 0\n", + "81722 0\n", + "81723 0\n", + "81724 0\n", + "81725 0\n", + "81726 0\n", + "81727 1\n", + "81728 0\n", + "81729 0\n", + "81730 0\n", + "81731 0\n", + "81732 0\n", + "81733 0\n", + "81734 0\n", + "81735 0\n", + "81736 0\n", + "81737 1\n", + "81738 0\n", + "81739 0\n", + "81740 0\n", + "81741 0\n", + "81742 0\n", + "81743 0\n", + "81744 0\n", + "81745 0\n", + "81746 0\n", + "81747 0\n", + "81748 0\n", + "81749 1\n", + "81750 0\n", + "81751 0\n", + "81752 0\n", + "81753 0\n", + "81754 0\n", + "81755 0\n", + "81756 0\n", + "81757 0\n", + "81758 0\n", + "81759 0\n", + "81760 0\n", + "81761 1\n", + "81762 0\n", + "81763 0\n", + "81764 0\n", + "81765 0\n", + "81766 0\n", + "81767 0\n", + "81768 0\n", + "81769 1\n", + "81770 0\n", + "81771 0\n", + "81772 0\n", + "81773 1\n", + "81774 0\n", + "81775 0\n", + "81776 0\n", + "81777 0\n", + "81778 0\n", + "81779 0\n", + "81780 0\n", + "81781 0\n", + "81782 0\n", + "81783 0\n", + "81784 0\n", + "81785 0\n", + "81786 0\n", + "81787 0\n", + "81788 0\n", + "81789 0\n", + "81790 0\n", + "81791 0\n", + "81792 0\n", + "81793 0\n", + "81794 0\n", + "81795 0\n", + "81796 0\n", + "81797 0\n", + "81798 0\n", + "81799 1\n", + "81800 0\n", + "81801 0\n", + "81802 0\n", + "81803 0\n", + "81804 0\n", + "81805 0\n", + "81806 0\n", + "81807 0\n", + "81808 0\n", + "81809 0\n", + "81810 0\n", + "81811 0\n", + "81812 0\n", + "81813 0\n", + "81814 0\n", + "81815 0\n", + "81816 0\n", + "81817 1\n", + "81818 0\n", + "81819 0\n", + "81820 0\n", + "81821 0\n", + "81822 0\n", + "81823 0\n", + "81824 0\n", + "81825 0\n", + "81826 0\n", + "81827 0\n", + "81828 0\n", + "81829 0\n", + "81830 0\n", + "81831 0\n", + "81832 0\n", + "81833 0\n", + "81834 0\n", + "81835 0\n", + "81836 0\n", + "81837 0\n", + "81838 0\n", + "81839 1\n", + "81840 0\n", + "81841 0\n", + "81842 0\n", + "81843 0\n", + "81844 0\n", + "81845 0\n", + "81846 0\n", + "81847 1\n", + "81848 0\n", + "81849 0\n", + "81850 0\n", + "81851 0\n", + "81852 0\n", + "81853 1\n", + "81854 0\n", + "81855 0\n", + "81856 0\n", + "81857 0\n", + "81858 0\n", + "81859 0\n", + "81860 0\n", + "81861 0\n", + "81862 0\n", + "81863 0\n", + "81864 0\n", + "81865 0\n", + "81866 0\n", + "81867 0\n", + "81868 0\n", + "81869 1\n", + "81870 0\n", + "81871 0\n", + "81872 0\n", + "81873 0\n", + "81874 0\n", + "81875 0\n", + "81876 0\n", + "81877 0\n", + "81878 0\n", + "81879 0\n", + "81880 0\n", + "81881 0\n", + "81882 0\n", + "81883 1\n", + "81884 0\n", + "81885 0\n", + "81886 0\n", + "81887 0\n", + "81888 0\n", + "81889 0\n", + "81890 0\n", + "81891 0\n", + "81892 0\n", + "81893 0\n", + "81894 0\n", + "81895 0\n", + "81896 0\n", + "81897 0\n", + "81898 0\n", + "81899 1\n", + "81900 0\n", + "81901 1\n", + "81902 0\n", + "81903 0\n", + "81904 0\n", + "81905 0\n", + "81906 0\n", + "81907 0\n", + "81908 0\n", + "81909 0\n", + "81910 0\n", + "81911 0\n", + "81912 0\n", + "81913 0\n", + "81914 0\n", + "81915 0\n", + "81916 0\n", + "81917 0\n", + "81918 0\n", + "81919 1\n", + "81920 0\n", + "81921 0\n", + "81922 0\n", + "81923 0\n", + "81924 0\n", + "81925 0\n", + "81926 0\n", + "81927 0\n", + "81928 0\n", + "81929 1\n", + "81930 0\n", + "81931 1\n", + "81932 0\n", + "81933 0\n", + "81934 0\n", + "81935 0\n", + "81936 0\n", + "81937 1\n", + "81938 0\n", + "81939 0\n", + "81940 0\n", + "81941 0\n", + "81942 0\n", + "81943 1\n", + "81944 0\n", + "81945 0\n", + "81946 0\n", + "81947 0\n", + "81948 0\n", + "81949 0\n", + "81950 0\n", + "81951 0\n", + "81952 0\n", + "81953 1\n", + "81954 0\n", + "81955 0\n", + "81956 0\n", + "81957 0\n", + "81958 0\n", + "81959 0\n", + "81960 0\n", + "81961 0\n", + "81962 0\n", + "81963 0\n", + "81964 0\n", + "81965 0\n", + "81966 0\n", + "81967 1\n", + "81968 0\n", + "81969 0\n", + "81970 0\n", + "81971 1\n", + "81972 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "81973 1\n", + "81974 0\n", + "81975 0\n", + "81976 0\n", + "81977 0\n", + "81978 0\n", + "81979 0\n", + "81980 0\n", + "81981 0\n", + "81982 0\n", + "81983 0\n", + "81984 0\n", + "81985 0\n", + "81986 0\n", + "81987 0\n", + "81988 0\n", + "81989 0\n", + "81990 0\n", + "81991 0\n", + "81992 0\n", + "81993 0\n", + "81994 0\n", + "81995 0\n", + "81996 0\n", + "81997 0\n", + "81998 0\n", + "81999 0\n", + "82000 0\n", + "82001 0\n", + "82002 0\n", + "82003 1\n", + "82004 0\n", + "82005 0\n", + "82006 0\n", + "82007 1\n", + "82008 0\n", + "82009 1\n", + "82010 0\n", + "82011 0\n", + "82012 0\n", + "82013 1\n", + "82014 0\n", + "82015 0\n", + "82016 0\n", + "82017 0\n", + "82018 0\n", + "82019 0\n", + "82020 0\n", + "82021 1\n", + "82022 0\n", + "82023 0\n", + "82024 0\n", + "82025 0\n", + "82026 0\n", + "82027 0\n", + "82028 0\n", + "82029 0\n", + "82030 0\n", + "82031 1\n", + "82032 0\n", + "82033 0\n", + "82034 0\n", + "82035 0\n", + "82036 0\n", + "82037 1\n", + "82038 0\n", + "82039 1\n", + "82040 0\n", + "82041 0\n", + "82042 0\n", + "82043 0\n", + "82044 0\n", + "82045 0\n", + "82046 0\n", + "82047 0\n", + "82048 0\n", + "82049 0\n", + "82050 0\n", + "82051 1\n", + "82052 0\n", + "82053 0\n", + "82054 0\n", + "82055 0\n", + "82056 0\n", + "82057 0\n", + "82058 0\n", + "82059 0\n", + "82060 0\n", + "82061 0\n", + "82062 0\n", + "82063 0\n", + "82064 0\n", + "82065 0\n", + "82066 0\n", + "82067 1\n", + "82068 0\n", + "82069 0\n", + "82070 0\n", + "82071 0\n", + "82072 0\n", + "82073 1\n", + "82074 0\n", + "82075 0\n", + "82076 0\n", + "82077 0\n", + "82078 0\n", + "82079 0\n", + "82080 0\n", + "82081 0\n", + "82082 0\n", + "82083 0\n", + "82084 0\n", + "82085 0\n", + "82086 0\n", + "82087 0\n", + "82088 0\n", + "82089 0\n", + "82090 0\n", + "82091 0\n", + "82092 0\n", + "82093 0\n", + "82094 0\n", + "82095 0\n", + "82096 0\n", + "82097 0\n", + "82098 0\n", + "82099 0\n", + "82100 0\n", + "82101 0\n", + "82102 0\n", + "82103 0\n", + "82104 0\n", + "82105 0\n", + "82106 0\n", + "82107 0\n", + "82108 0\n", + "82109 0\n", + "82110 0\n", + "82111 0\n", + "82112 0\n", + "82113 0\n", + "82114 0\n", + "82115 0\n", + "82116 0\n", + "82117 0\n", + "82118 0\n", + "82119 0\n", + "82120 0\n", + "82121 0\n", + "82122 0\n", + "82123 0\n", + "82124 0\n", + "82125 0\n", + "82126 0\n", + "82127 0\n", + "82128 0\n", + "82129 1\n", + "82130 0\n", + "82131 0\n", + "82132 0\n", + "82133 0\n", + "82134 0\n", + "82135 0\n", + "82136 0\n", + "82137 0\n", + "82138 0\n", + "82139 1\n", + "82140 0\n", + "82141 1\n", + "82142 0\n", + "82143 0\n", + "82144 0\n", + "82145 0\n", + "82146 0\n", + "82147 0\n", + "82148 0\n", + "82149 0\n", + "82150 0\n", + "82151 0\n", + "82152 0\n", + "82153 1\n", + "82154 0\n", + "82155 0\n", + "82156 0\n", + "82157 0\n", + "82158 0\n", + "82159 0\n", + "82160 0\n", + "82161 0\n", + "82162 0\n", + "82163 1\n", + "82164 0\n", + "82165 0\n", + "82166 0\n", + "82167 0\n", + "82168 0\n", + "82169 0\n", + "82170 0\n", + "82171 1\n", + "82172 0\n", + "82173 0\n", + "82174 0\n", + "82175 0\n", + "82176 0\n", + "82177 0\n", + "82178 0\n", + "82179 0\n", + "82180 0\n", + "82181 0\n", + "82182 0\n", + "82183 1\n", + "82184 0\n", + "82185 0\n", + "82186 0\n", + "82187 0\n", + "82188 0\n", + "82189 1\n", + "82190 0\n", + "82191 0\n", + "82192 0\n", + "82193 1\n", + "82194 0\n", + "82195 0\n", + "82196 0\n", + "82197 0\n", + "82198 0\n", + "82199 0\n", + "82200 0\n", + "82201 0\n", + "82202 0\n", + "82203 0\n", + "82204 0\n", + "82205 0\n", + "82206 0\n", + "82207 1\n", + "82208 0\n", + "82209 0\n", + "82210 0\n", + "82211 0\n", + "82212 0\n", + "82213 0\n", + "82214 0\n", + "82215 0\n", + "82216 0\n", + "82217 1\n", + "82218 0\n", + "82219 1\n", + "82220 0\n", + "82221 0\n", + "82222 0\n", + "82223 1\n", + "82224 0\n", + "82225 0\n", + "82226 0\n", + "82227 0\n", + "82228 0\n", + "82229 0\n", + "82230 0\n", + "82231 1\n", + "82232 0\n", + "82233 0\n", + "82234 0\n", + "82235 0\n", + "82236 0\n", + "82237 1\n", + "82238 0\n", + "82239 0\n", + "82240 0\n", + "82241 1\n", + "82242 0\n", + "82243 0\n", + "82244 0\n", + "82245 0\n", + "82246 0\n", + "82247 0\n", + "82248 0\n", + "82249 0\n", + "82250 0\n", + "82251 0\n", + "82252 0\n", + "82253 0\n", + "82254 0\n", + "82255 0\n", + "82256 0\n", + "82257 0\n", + "82258 0\n", + "82259 0\n", + "82260 0\n", + "82261 1\n", + "82262 0\n", + "82263 0\n", + "82264 0\n", + "82265 0\n", + "82266 0\n", + "82267 1\n", + "82268 0\n", + "82269 0\n", + "82270 0\n", + "82271 0\n", + "82272 0\n", + "82273 0\n", + "82274 0\n", + "82275 0\n", + "82276 0\n", + "82277 0\n", + "82278 0\n", + "82279 1\n", + "82280 0\n", + "82281 0\n", + "82282 0\n", + "82283 0\n", + "82284 0\n", + "82285 0\n", + "82286 0\n", + "82287 0\n", + "82288 0\n", + "82289 0\n", + "82290 0\n", + "82291 0\n", + "82292 0\n", + "82293 0\n", + "82294 0\n", + "82295 0\n", + "82296 0\n", + "82297 0\n", + "82298 0\n", + "82299 0\n", + "82300 0\n", + "82301 1\n", + "82302 0\n", + "82303 0\n", + "82304 0\n", + "82305 0\n", + "82306 0\n", + "82307 1\n", + "82308 0\n", + "82309 0\n", + "82310 0\n", + "82311 0\n", + "82312 0\n", + "82313 0\n", + "82314 0\n", + "82315 0\n", + "82316 0\n", + "82317 0\n", + "82318 0\n", + "82319 0\n", + "82320 0\n", + "82321 0\n", + "82322 0\n", + "82323 0\n", + "82324 0\n", + "82325 0\n", + "82326 0\n", + "82327 0\n", + "82328 0\n", + "82329 0\n", + "82330 0\n", + "82331 0\n", + "82332 0\n", + "82333 0\n", + "82334 0\n", + "82335 0\n", + "82336 0\n", + "82337 0\n", + "82338 0\n", + "82339 1\n", + "82340 0\n", + "82341 0\n", + "82342 0\n", + "82343 0\n", + "82344 0\n", + "82345 0\n", + "82346 0\n", + "82347 0\n", + "82348 0\n", + "82349 1\n", + "82350 0\n", + "82351 1\n", + "82352 0\n", + "82353 0\n", + "82354 0\n", + "82355 0\n", + "82356 0\n", + "82357 0\n", + "82358 0\n", + "82359 0\n", + "82360 0\n", + "82361 1\n", + "82362 0\n", + "82363 0\n", + "82364 0\n", + "82365 0\n", + "82366 0\n", + "82367 0\n", + "82368 0\n", + "82369 0\n", + "82370 0\n", + "82371 0\n", + "82372 0\n", + "82373 1\n", + "82374 0\n", + "82375 0\n", + "82376 0\n", + "82377 0\n", + "82378 0\n", + "82379 0\n", + "82380 0\n", + "82381 0\n", + "82382 0\n", + "82383 0\n", + "82384 0\n", + "82385 0\n", + "82386 0\n", + "82387 1\n", + "82388 0\n", + "82389 0\n", + "82390 0\n", + "82391 0\n", + "82392 0\n", + "82393 1\n", + "82394 0\n", + "82395 0\n", + "82396 0\n", + "82397 0\n", + "82398 0\n", + "82399 0\n", + "82400 0\n", + "82401 0\n", + "82402 0\n", + "82403 0\n", + "82404 0\n", + "82405 0\n", + "82406 0\n", + "82407 0\n", + "82408 0\n", + "82409 0\n", + "82410 0\n", + "82411 0\n", + "82412 0\n", + "82413 0\n", + "82414 0\n", + "82415 0\n", + "82416 0\n", + "82417 0\n", + "82418 0\n", + "82419 0\n", + "82420 0\n", + "82421 1\n", + "82422 0\n", + "82423 0\n", + "82424 0\n", + "82425 0\n", + "82426 0\n", + "82427 0\n", + "82428 0\n", + "82429 0\n", + "82430 0\n", + "82431 0\n", + "82432 0\n", + "82433 0\n", + "82434 0\n", + "82435 0\n", + "82436 0\n", + "82437 0\n", + "82438 0\n", + "82439 0\n", + "82440 0\n", + "82441 0\n", + "82442 0\n", + "82443 0\n", + "82444 0\n", + "82445 0\n", + "82446 0\n", + "82447 0\n", + "82448 0\n", + "82449 0\n", + "82450 0\n", + "82451 0\n", + "82452 0\n", + "82453 0\n", + "82454 0\n", + "82455 0\n", + "82456 0\n", + "82457 1\n", + "82458 0\n", + "82459 0\n", + "82460 0\n", + "82461 0\n", + "82462 0\n", + "82463 1\n", + "82464 0\n", + "82465 0\n", + "82466 0\n", + "82467 0\n", + "82468 0\n", + "82469 1\n", + "82470 0\n", + "82471 1\n", + "82472 0\n", + "82473 0\n", + "82474 0\n", + "82475 0\n", + "82476 0\n", + "82477 0\n", + "82478 0\n", + "82479 0\n", + "82480 0\n", + "82481 0\n", + "82482 0\n", + "82483 1\n", + "82484 0\n", + "82485 0\n", + "82486 0\n", + "82487 1\n", + "82488 0\n", + "82489 0\n", + "82490 0\n", + "82491 0\n", + "82492 0\n", + "82493 1\n", + "82494 0\n", + "82495 0\n", + "82496 0\n", + "82497 0\n", + "82498 0\n", + "82499 1\n", + "82500 0\n", + "82501 0\n", + "82502 0\n", + "82503 0\n", + "82504 0\n", + "82505 0\n", + "82506 0\n", + "82507 1\n", + "82508 0\n", + "82509 0\n", + "82510 0\n", + "82511 0\n", + "82512 0\n", + "82513 0\n", + "82514 0\n", + "82515 0\n", + "82516 0\n", + "82517 0\n", + "82518 0\n", + "82519 0\n", + "82520 0\n", + "82521 0\n", + "82522 0\n", + "82523 0\n", + "82524 0\n", + "82525 0\n", + "82526 0\n", + "82527 0\n", + "82528 0\n", + "82529 1\n", + "82530 0\n", + "82531 1\n", + "82532 0\n", + "82533 0\n", + "82534 0\n", + "82535 0\n", + "82536 0\n", + "82537 0\n", + "82538 0\n", + "82539 0\n", + "82540 0\n", + "82541 0\n", + "82542 0\n", + "82543 0\n", + "82544 0\n", + "82545 0\n", + "82546 0\n", + "82547 0\n", + "82548 0\n", + "82549 1\n", + "82550 0\n", + "82551 0\n", + "82552 0\n", + "82553 0\n", + "82554 0\n", + "82555 0\n", + "82556 0\n", + "82557 0\n", + "82558 0\n", + "82559 1\n", + "82560 0\n", + "82561 1\n", + "82562 0\n", + "82563 0\n", + "82564 0\n", + "82565 0\n", + "82566 0\n", + "82567 1\n", + "82568 0\n", + "82569 0\n", + "82570 0\n", + "82571 1\n", + "82572 0\n", + "82573 0\n", + "82574 0\n", + "82575 0\n", + "82576 0\n", + "82577 0\n", + "82578 0\n", + "82579 0\n", + "82580 0\n", + "82581 0\n", + "82582 0\n", + "82583 0\n", + "82584 0\n", + "82585 0\n", + "82586 0\n", + "82587 0\n", + "82588 0\n", + "82589 0\n", + "82590 0\n", + "82591 1\n", + "82592 0\n", + "82593 0\n", + "82594 0\n", + "82595 0\n", + "82596 0\n", + "82597 0\n", + "82598 0\n", + "82599 0\n", + "82600 0\n", + "82601 1\n", + "82602 0\n", + "82603 0\n", + "82604 0\n", + "82605 0\n", + "82606 0\n", + "82607 0\n", + "82608 0\n", + "82609 1\n", + "82610 0\n", + "82611 0\n", + "82612 0\n", + "82613 1\n", + "82614 0\n", + "82615 0\n", + "82616 0\n", + "82617 0\n", + "82618 0\n", + "82619 1\n", + "82620 0\n", + "82621 0\n", + "82622 0\n", + "82623 0\n", + "82624 0\n", + "82625 0\n", + "82626 0\n", + "82627 0\n", + "82628 0\n", + "82629 0\n", + "82630 0\n", + "82631 0\n", + "82632 0\n", + "82633 1\n", + "82634 0\n", + "82635 0\n", + "82636 0\n", + "82637 0\n", + "82638 0\n", + "82639 0\n", + "82640 0\n", + "82641 0\n", + "82642 0\n", + "82643 0\n", + "82644 0\n", + "82645 0\n", + "82646 0\n", + "82647 0\n", + "82648 0\n", + "82649 0\n", + "82650 0\n", + "82651 1\n", + "82652 0\n", + "82653 0\n", + "82654 0\n", + "82655 0\n", + "82656 0\n", + "82657 1\n", + "82658 0\n", + "82659 0\n", + "82660 0\n", + "82661 0\n", + "82662 0\n", + "82663 0\n", + "82664 0\n", + "82665 0\n", + "82666 0\n", + "82667 0\n", + "82668 0\n", + "82669 0\n", + "82670 0\n", + "82671 0\n", + "82672 0\n", + "82673 0\n", + "82674 0\n", + "82675 0\n", + "82676 0\n", + "82677 0\n", + "82678 0\n", + "82679 0\n", + "82680 0\n", + "82681 0\n", + "82682 0\n", + "82683 0\n", + "82684 0\n", + "82685 0\n", + "82686 0\n", + "82687 0\n", + "82688 0\n", + "82689 0\n", + "82690 0\n", + "82691 0\n", + "82692 0\n", + "82693 0\n", + "82694 0\n", + "82695 0\n", + "82696 0\n", + "82697 0\n", + "82698 0\n", + "82699 1\n", + "82700 0\n", + "82701 0\n", + "82702 0\n", + "82703 0\n", + "82704 0\n", + "82705 0\n", + "82706 0\n", + "82707 0\n", + "82708 0\n", + "82709 0\n", + "82710 0\n", + "82711 0\n", + "82712 0\n", + "82713 0\n", + "82714 0\n", + "82715 0\n", + "82716 0\n", + "82717 0\n", + "82718 0\n", + "82719 0\n", + "82720 0\n", + "82721 1\n", + "82722 0\n", + "82723 1\n", + "82724 0\n", + "82725 0\n", + "82726 0\n", + "82727 1\n", + "82728 0\n", + "82729 1\n", + "82730 0\n", + "82731 0\n", + "82732 0\n", + "82733 0\n", + "82734 0\n", + "82735 0\n", + "82736 0\n", + "82737 0\n", + "82738 0\n", + "82739 0\n", + "82740 0\n", + "82741 0\n", + "82742 0\n", + "82743 0\n", + "82744 0\n", + "82745 0\n", + "82746 0\n", + "82747 0\n", + "82748 0\n", + "82749 0\n", + "82750 0\n", + "82751 0\n", + "82752 0\n", + "82753 0\n", + "82754 0\n", + "82755 0\n", + "82756 0\n", + "82757 1\n", + "82758 0\n", + "82759 1\n", + "82760 0\n", + "82761 0\n", + "82762 0\n", + "82763 1\n", + "82764 0\n", + "82765 0\n", + "82766 0\n", + "82767 0\n", + "82768 0\n", + "82769 0\n", + "82770 0\n", + "82771 0\n", + "82772 0\n", + "82773 0\n", + "82774 0\n", + "82775 0\n", + "82776 0\n", + "82777 0\n", + "82778 0\n", + "82779 0\n", + "82780 0\n", + "82781 1\n", + "82782 0\n", + "82783 0\n", + "82784 0\n", + "82785 0\n", + "82786 0\n", + "82787 1\n", + "82788 0\n", + "82789 0\n", + "82790 0\n", + "82791 0\n", + "82792 0\n", + "82793 1\n", + "82794 0\n", + "82795 0\n", + "82796 0\n", + "82797 0\n", + "82798 0\n", + "82799 1\n", + "82800 0\n", + "82801 0\n", + "82802 0\n", + "82803 0\n", + "82804 0\n", + "82805 0\n", + "82806 0\n", + "82807 0\n", + "82808 0\n", + "82809 0\n", + "82810 0\n", + "82811 1\n", + "82812 0\n", + "82813 1\n", + "82814 0\n", + "82815 0\n", + "82816 0\n", + "82817 0\n", + "82818 0\n", + "82819 0\n", + "82820 0\n", + "82821 0\n", + "82822 0\n", + "82823 0\n", + "82824 0\n", + "82825 0\n", + "82826 0\n", + "82827 0\n", + "82828 0\n", + "82829 0\n", + "82830 0\n", + "82831 0\n", + "82832 0\n", + "82833 0\n", + "82834 0\n", + "82835 0\n", + "82836 0\n", + "82837 1\n", + "82838 0\n", + "82839 0\n", + "82840 0\n", + "82841 0\n", + "82842 0\n", + "82843 0\n", + "82844 0\n", + "82845 0\n", + "82846 0\n", + "82847 1\n", + "82848 0\n", + "82849 0\n", + "82850 0\n", + "82851 0\n", + "82852 0\n", + "82853 0\n", + "82854 0\n", + "82855 0\n", + "82856 0\n", + "82857 0\n", + "82858 0\n", + "82859 0\n", + "82860 0\n", + "82861 0\n", + "82862 0\n", + "82863 0\n", + "82864 0\n", + "82865 0\n", + "82866 0\n", + "82867 0\n", + "82868 0\n", + "82869 0\n", + "82870 0\n", + "82871 0\n", + "82872 0\n", + "82873 0\n", + "82874 0\n", + "82875 0\n", + "82876 0\n", + "82877 0\n", + "82878 0\n", + "82879 0\n", + "82880 0\n", + "82881 0\n", + "82882 0\n", + "82883 1\n", + "82884 0\n", + "82885 0\n", + "82886 0\n", + "82887 0\n", + "82888 0\n", + "82889 1\n", + "82890 0\n", + "82891 1\n", + "82892 0\n", + "82893 0\n", + "82894 0\n", + "82895 0\n", + "82896 0\n", + "82897 0\n", + "82898 0\n", + "82899 0\n", + "82900 0\n", + "82901 0\n", + "82902 0\n", + "82903 1\n", + "82904 0\n", + "82905 0\n", + "82906 0\n", + "82907 0\n", + "82908 0\n", + "82909 0\n", + "82910 0\n", + "82911 0\n", + "82912 0\n", + "82913 1\n", + "82914 0\n", + "82915 0\n", + "82916 0\n", + "82917 0\n", + "82918 0\n", + "82919 0\n", + "82920 0\n", + "82921 0\n", + "82922 0\n", + "82923 0\n", + "82924 0\n", + "82925 0\n", + "82926 0\n", + "82927 0\n", + "82928 0\n", + "82929 0\n", + "82930 0\n", + "82931 0\n", + "82932 0\n", + "82933 0\n", + "82934 0\n", + "82935 0\n", + "82936 0\n", + "82937 0\n", + "82938 0\n", + "82939 1\n", + "82940 0\n", + "82941 0\n", + "82942 0\n", + "82943 0\n", + "82944 0\n", + "82945 0\n", + "82946 0\n", + "82947 0\n", + "82948 0\n", + "82949 0\n", + "82950 0\n", + "82951 0\n", + "82952 0\n", + "82953 0\n", + "82954 0\n", + "82955 0\n", + "82956 0\n", + "82957 0\n", + "82958 0\n", + "82959 0\n", + "82960 0\n", + "82961 0\n", + "82962 0\n", + "82963 1\n", + "82964 0\n", + "82965 0\n", + "82966 0\n", + "82967 0\n", + "82968 0\n", + "82969 0\n", + "82970 0\n", + "82971 0\n", + "82972 0\n", + "82973 0\n", + "82974 0\n", + "82975 0\n", + "82976 0\n", + "82977 0\n", + "82978 0\n", + "82979 0\n", + "82980 0\n", + "82981 1\n", + "82982 0\n", + "82983 0\n", + "82984 0\n", + "82985 0\n", + "82986 0\n", + "82987 0\n", + "82988 0\n", + "82989 0\n", + "82990 0\n", + "82991 0\n", + "82992 0\n", + "82993 0\n", + "82994 0\n", + "82995 0\n", + "82996 0\n", + "82997 1\n", + "82998 0\n", + "82999 0\n", + "83000 0\n", + "83001 0\n", + "83002 0\n", + "83003 1\n", + "83004 0\n", + "83005 0\n", + "83006 0\n", + "83007 0\n", + "83008 0\n", + "83009 1\n", + "83010 0\n", + "83011 0\n", + "83012 0\n", + "83013 0\n", + "83014 0\n", + "83015 0\n", + "83016 0\n", + "83017 0\n", + "83018 0\n", + "83019 0\n", + "83020 0\n", + "83021 0\n", + "83022 0\n", + "83023 1\n", + "83024 0\n", + "83025 0\n", + "83026 0\n", + "83027 0\n", + "83028 0\n", + "83029 0\n", + "83030 0\n", + "83031 0\n", + "83032 0\n", + "83033 0\n", + "83034 0\n", + "83035 0\n", + "83036 0\n", + "83037 0\n", + "83038 0\n", + "83039 0\n", + "83040 0\n", + "83041 0\n", + "83042 0\n", + "83043 0\n", + "83044 0\n", + "83045 0\n", + "83046 0\n", + "83047 1\n", + "83048 0\n", + "83049 0\n", + "83050 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "83051 0\n", + "83052 0\n", + "83053 0\n", + "83054 0\n", + "83055 0\n", + "83056 0\n", + "83057 0\n", + "83058 0\n", + "83059 1\n", + "83060 0\n", + "83061 0\n", + "83062 0\n", + "83063 1\n", + "83064 0\n", + "83065 0\n", + "83066 0\n", + "83067 0\n", + "83068 0\n", + "83069 0\n", + "83070 0\n", + "83071 1\n", + "83072 0\n", + "83073 0\n", + "83074 0\n", + "83075 0\n", + "83076 0\n", + "83077 1\n", + "83078 0\n", + "83079 0\n", + "83080 0\n", + "83081 0\n", + "83082 0\n", + "83083 0\n", + "83084 0\n", + "83085 0\n", + "83086 0\n", + "83087 0\n", + "83088 0\n", + "83089 1\n", + "83090 0\n", + "83091 0\n", + "83092 0\n", + "83093 1\n", + "83094 0\n", + "83095 0\n", + "83096 0\n", + "83097 0\n", + "83098 0\n", + "83099 0\n", + "83100 0\n", + "83101 1\n", + "83102 0\n", + "83103 0\n", + "83104 0\n", + "83105 0\n", + "83106 0\n", + "83107 0\n", + "83108 0\n", + "83109 0\n", + "83110 0\n", + "83111 0\n", + "83112 0\n", + "83113 0\n", + "83114 0\n", + "83115 0\n", + "83116 0\n", + "83117 1\n", + "83118 0\n", + "83119 0\n", + "83120 0\n", + "83121 0\n", + "83122 0\n", + "83123 0\n", + "83124 0\n", + "83125 0\n", + "83126 0\n", + "83127 0\n", + "83128 0\n", + "83129 0\n", + "83130 0\n", + "83131 0\n", + "83132 0\n", + "83133 0\n", + "83134 0\n", + "83135 0\n", + "83136 0\n", + "83137 1\n", + "83138 0\n", + "83139 0\n", + "83140 0\n", + "83141 0\n", + "83142 0\n", + "83143 0\n", + "83144 0\n", + "83145 0\n", + "83146 0\n", + "83147 0\n", + "83148 0\n", + "83149 0\n", + "83150 0\n", + "83151 0\n", + "83152 0\n", + "83153 0\n", + "83154 0\n", + "83155 0\n", + "83156 0\n", + "83157 0\n", + "83158 0\n", + "83159 0\n", + "83160 0\n", + "83161 0\n", + "83162 0\n", + "83163 0\n", + "83164 0\n", + "83165 0\n", + "83166 0\n", + "83167 0\n", + "83168 0\n", + "83169 0\n", + "83170 0\n", + "83171 0\n", + "83172 0\n", + "83173 0\n", + "83174 0\n", + "83175 0\n", + "83176 0\n", + "83177 1\n", + "83178 0\n", + "83179 0\n", + "83180 0\n", + "83181 0\n", + "83182 0\n", + "83183 0\n", + "83184 0\n", + "83185 0\n", + "83186 0\n", + "83187 0\n", + "83188 0\n", + "83189 0\n", + "83190 0\n", + "83191 0\n", + "83192 0\n", + "83193 0\n", + "83194 0\n", + "83195 0\n", + "83196 0\n", + "83197 0\n", + "83198 0\n", + "83199 0\n", + "83200 0\n", + "83201 0\n", + "83202 0\n", + "83203 1\n", + "83204 0\n", + "83205 0\n", + "83206 0\n", + "83207 1\n", + "83208 0\n", + "83209 0\n", + "83210 0\n", + "83211 0\n", + "83212 0\n", + "83213 0\n", + "83214 0\n", + "83215 0\n", + "83216 0\n", + "83217 0\n", + "83218 0\n", + "83219 1\n", + "83220 0\n", + "83221 1\n", + "83222 0\n", + "83223 0\n", + "83224 0\n", + "83225 0\n", + "83226 0\n", + "83227 1\n", + "83228 0\n", + "83229 0\n", + "83230 0\n", + "83231 1\n", + "83232 0\n", + "83233 1\n", + "83234 0\n", + "83235 0\n", + "83236 0\n", + "83237 0\n", + "83238 0\n", + "83239 0\n", + "83240 0\n", + "83241 0\n", + "83242 0\n", + "83243 1\n", + "83244 0\n", + "83245 0\n", + "83246 0\n", + "83247 0\n", + "83248 0\n", + "83249 0\n", + "83250 0\n", + "83251 0\n", + "83252 0\n", + "83253 0\n", + "83254 0\n", + "83255 0\n", + "83256 0\n", + "83257 1\n", + "83258 0\n", + "83259 0\n", + "83260 0\n", + "83261 0\n", + "83262 0\n", + "83263 0\n", + "83264 0\n", + "83265 0\n", + "83266 0\n", + "83267 1\n", + "83268 0\n", + "83269 1\n", + "83270 0\n", + "83271 0\n", + "83272 0\n", + "83273 1\n", + "83274 0\n", + "83275 0\n", + "83276 0\n", + "83277 0\n", + "83278 0\n", + "83279 0\n", + "83280 0\n", + "83281 0\n", + "83282 0\n", + "83283 0\n", + "83284 0\n", + "83285 0\n", + "83286 0\n", + "83287 0\n", + "83288 0\n", + "83289 0\n", + "83290 0\n", + "83291 0\n", + "83292 0\n", + "83293 0\n", + "83294 0\n", + "83295 0\n", + "83296 0\n", + "83297 0\n", + "83298 0\n", + "83299 1\n", + "83300 0\n", + "83301 0\n", + "83302 0\n", + "83303 0\n", + "83304 0\n", + "83305 0\n", + "83306 0\n", + "83307 0\n", + "83308 0\n", + "83309 0\n", + "83310 0\n", + "83311 1\n", + "83312 0\n", + "83313 0\n", + "83314 0\n", + "83315 0\n", + "83316 0\n", + "83317 0\n", + "83318 0\n", + "83319 0\n", + "83320 0\n", + "83321 0\n", + "83322 0\n", + "83323 0\n", + "83324 0\n", + "83325 0\n", + "83326 0\n", + "83327 0\n", + "83328 0\n", + "83329 0\n", + "83330 0\n", + "83331 0\n", + "83332 0\n", + "83333 0\n", + "83334 0\n", + "83335 0\n", + "83336 0\n", + "83337 0\n", + "83338 0\n", + "83339 1\n", + "83340 0\n", + "83341 1\n", + "83342 0\n", + "83343 0\n", + "83344 0\n", + "83345 0\n", + "83346 0\n", + "83347 0\n", + "83348 0\n", + "83349 0\n", + "83350 0\n", + "83351 0\n", + "83352 0\n", + "83353 0\n", + "83354 0\n", + "83355 0\n", + "83356 0\n", + "83357 1\n", + "83358 0\n", + "83359 0\n", + "83360 0\n", + "83361 0\n", + "83362 0\n", + "83363 0\n", + "83364 0\n", + "83365 0\n", + "83366 0\n", + "83367 0\n", + "83368 0\n", + "83369 0\n", + "83370 0\n", + "83371 0\n", + "83372 0\n", + "83373 0\n", + "83374 0\n", + "83375 0\n", + "83376 0\n", + "83377 0\n", + "83378 0\n", + "83379 0\n", + "83380 0\n", + "83381 0\n", + "83382 0\n", + "83383 1\n", + "83384 0\n", + "83385 0\n", + "83386 0\n", + "83387 0\n", + "83388 0\n", + "83389 1\n", + "83390 0\n", + "83391 0\n", + "83392 0\n", + "83393 0\n", + "83394 0\n", + "83395 0\n", + "83396 0\n", + "83397 0\n", + "83398 0\n", + "83399 1\n", + "83400 0\n", + "83401 1\n", + "83402 0\n", + "83403 0\n", + "83404 0\n", + "83405 0\n", + "83406 0\n", + "83407 1\n", + "83408 0\n", + "83409 0\n", + "83410 0\n", + "83411 0\n", + "83412 0\n", + "83413 0\n", + "83414 0\n", + "83415 0\n", + "83416 0\n", + "83417 1\n", + "83418 0\n", + "83419 0\n", + "83420 0\n", + "83421 0\n", + "83422 0\n", + "83423 1\n", + "83424 0\n", + "83425 0\n", + "83426 0\n", + "83427 0\n", + "83428 0\n", + "83429 0\n", + "83430 0\n", + "83431 1\n", + "83432 0\n", + "83433 0\n", + "83434 0\n", + "83435 0\n", + "83436 0\n", + "83437 1\n", + "83438 0\n", + "83439 0\n", + "83440 0\n", + "83441 0\n", + "83442 0\n", + "83443 1\n", + "83444 0\n", + "83445 0\n", + "83446 0\n", + "83447 0\n", + "83448 0\n", + "83449 1\n", + "83450 0\n", + "83451 0\n", + "83452 0\n", + "83453 0\n", + "83454 0\n", + "83455 0\n", + "83456 0\n", + "83457 0\n", + "83458 0\n", + "83459 1\n", + "83460 0\n", + "83461 0\n", + "83462 0\n", + "83463 0\n", + "83464 0\n", + "83465 0\n", + "83466 0\n", + "83467 0\n", + "83468 0\n", + "83469 0\n", + "83470 0\n", + "83471 1\n", + "83472 0\n", + "83473 0\n", + "83474 0\n", + "83475 0\n", + "83476 0\n", + "83477 1\n", + "83478 0\n", + "83479 0\n", + "83480 0\n", + "83481 0\n", + "83482 0\n", + "83483 0\n", + "83484 0\n", + "83485 0\n", + "83486 0\n", + "83487 0\n", + "83488 0\n", + "83489 0\n", + "83490 0\n", + "83491 0\n", + "83492 0\n", + "83493 0\n", + "83494 0\n", + "83495 0\n", + "83496 0\n", + "83497 1\n", + "83498 0\n", + "83499 0\n", + "83500 0\n", + "83501 0\n", + "83502 0\n", + "83503 0\n", + "83504 0\n", + "83505 0\n", + "83506 0\n", + "83507 0\n", + "83508 0\n", + "83509 0\n", + "83510 0\n", + "83511 0\n", + "83512 0\n", + "83513 0\n", + "83514 0\n", + "83515 0\n", + "83516 0\n", + "83517 0\n", + "83518 0\n", + "83519 0\n", + "83520 0\n", + "83521 0\n", + "83522 0\n", + "83523 0\n", + "83524 0\n", + "83525 0\n", + "83526 0\n", + "83527 0\n", + "83528 0\n", + "83529 0\n", + "83530 0\n", + "83531 0\n", + "83532 0\n", + "83533 0\n", + "83534 0\n", + "83535 0\n", + "83536 0\n", + "83537 1\n", + "83538 0\n", + "83539 0\n", + "83540 0\n", + "83541 0\n", + "83542 0\n", + "83543 0\n", + "83544 0\n", + "83545 0\n", + "83546 0\n", + "83547 0\n", + "83548 0\n", + "83549 0\n", + "83550 0\n", + "83551 0\n", + "83552 0\n", + "83553 0\n", + "83554 0\n", + "83555 0\n", + "83556 0\n", + "83557 1\n", + "83558 0\n", + "83559 0\n", + "83560 0\n", + "83561 1\n", + "83562 0\n", + "83563 1\n", + "83564 0\n", + "83565 0\n", + "83566 0\n", + "83567 0\n", + "83568 0\n", + "83569 0\n", + "83570 0\n", + "83571 0\n", + "83572 0\n", + "83573 0\n", + "83574 0\n", + "83575 0\n", + "83576 0\n", + "83577 0\n", + "83578 0\n", + "83579 1\n", + "83580 0\n", + "83581 0\n", + "83582 0\n", + "83583 0\n", + "83584 0\n", + "83585 0\n", + "83586 0\n", + "83587 0\n", + "83588 0\n", + "83589 0\n", + "83590 0\n", + "83591 1\n", + "83592 0\n", + "83593 0\n", + "83594 0\n", + "83595 0\n", + "83596 0\n", + "83597 1\n", + "83598 0\n", + "83599 0\n", + "83600 0\n", + "83601 0\n", + "83602 0\n", + "83603 0\n", + "83604 0\n", + "83605 0\n", + "83606 0\n", + "83607 0\n", + "83608 0\n", + "83609 1\n", + "83610 0\n", + "83611 0\n", + "83612 0\n", + "83613 0\n", + "83614 0\n", + "83615 0\n", + "83616 0\n", + "83617 1\n", + "83618 0\n", + "83619 0\n", + "83620 0\n", + "83621 1\n", + "83622 0\n", + "83623 0\n", + "83624 0\n", + "83625 0\n", + "83626 0\n", + "83627 0\n", + "83628 0\n", + "83629 0\n", + "83630 0\n", + "83631 0\n", + "83632 0\n", + "83633 0\n", + "83634 0\n", + "83635 0\n", + "83636 0\n", + "83637 0\n", + "83638 0\n", + "83639 1\n", + "83640 0\n", + "83641 1\n", + "83642 0\n", + "83643 0\n", + "83644 0\n", + "83645 0\n", + "83646 0\n", + "83647 0\n", + "83648 0\n", + "83649 0\n", + "83650 0\n", + "83651 0\n", + "83652 0\n", + "83653 1\n", + "83654 0\n", + "83655 0\n", + "83656 0\n", + "83657 0\n", + "83658 0\n", + "83659 0\n", + "83660 0\n", + "83661 0\n", + "83662 0\n", + "83663 1\n", + "83664 0\n", + "83665 0\n", + "83666 0\n", + "83667 0\n", + "83668 0\n", + "83669 0\n", + "83670 0\n", + "83671 0\n", + "83672 0\n", + "83673 0\n", + "83674 0\n", + "83675 0\n", + "83676 0\n", + "83677 0\n", + "83678 0\n", + "83679 0\n", + "83680 0\n", + "83681 0\n", + "83682 0\n", + "83683 0\n", + "83684 0\n", + "83685 0\n", + "83686 0\n", + "83687 0\n", + "83688 0\n", + "83689 1\n", + "83690 0\n", + "83691 0\n", + "83692 0\n", + "83693 0\n", + "83694 0\n", + "83695 0\n", + "83696 0\n", + "83697 0\n", + "83698 0\n", + "83699 0\n", + "83700 0\n", + "83701 1\n", + "83702 0\n", + "83703 0\n", + "83704 0\n", + "83705 0\n", + "83706 0\n", + "83707 0\n", + "83708 0\n", + "83709 0\n", + "83710 0\n", + "83711 0\n", + "83712 0\n", + "83713 0\n", + "83714 0\n", + "83715 0\n", + "83716 0\n", + "83717 1\n", + "83718 0\n", + "83719 1\n", + "83720 0\n", + "83721 0\n", + "83722 0\n", + "83723 0\n", + "83724 0\n", + "83725 0\n", + "83726 0\n", + "83727 0\n", + "83728 0\n", + "83729 0\n", + "83730 0\n", + "83731 0\n", + "83732 0\n", + "83733 0\n", + "83734 0\n", + "83735 0\n", + "83736 0\n", + "83737 1\n", + "83738 0\n", + "83739 0\n", + "83740 0\n", + "83741 0\n", + "83742 0\n", + "83743 0\n", + "83744 0\n", + "83745 0\n", + "83746 0\n", + "83747 0\n", + "83748 0\n", + "83749 0\n", + "83750 0\n", + "83751 0\n", + "83752 0\n", + "83753 0\n", + "83754 0\n", + "83755 0\n", + "83756 0\n", + "83757 0\n", + "83758 0\n", + "83759 0\n", + "83760 0\n", + "83761 1\n", + "83762 0\n", + "83763 0\n", + "83764 0\n", + "83765 0\n", + "83766 0\n", + "83767 0\n", + "83768 0\n", + "83769 0\n", + "83770 0\n", + "83771 0\n", + "83772 0\n", + "83773 1\n", + "83774 0\n", + "83775 0\n", + "83776 0\n", + "83777 1\n", + "83778 0\n", + "83779 0\n", + "83780 0\n", + "83781 0\n", + "83782 0\n", + "83783 0\n", + "83784 0\n", + "83785 0\n", + "83786 0\n", + "83787 0\n", + "83788 0\n", + "83789 0\n", + "83790 0\n", + "83791 1\n", + "83792 0\n", + "83793 0\n", + "83794 0\n", + "83795 0\n", + "83796 0\n", + "83797 0\n", + "83798 0\n", + "83799 0\n", + "83800 0\n", + "83801 0\n", + "83802 0\n", + "83803 0\n", + "83804 0\n", + "83805 0\n", + "83806 0\n", + "83807 0\n", + "83808 0\n", + "83809 0\n", + "83810 0\n", + "83811 0\n", + "83812 0\n", + "83813 1\n", + "83814 0\n", + "83815 0\n", + "83816 0\n", + "83817 0\n", + "83818 0\n", + "83819 0\n", + "83820 0\n", + "83821 0\n", + "83822 0\n", + "83823 0\n", + "83824 0\n", + "83825 0\n", + "83826 0\n", + "83827 0\n", + "83828 0\n", + "83829 0\n", + "83830 0\n", + "83831 0\n", + "83832 0\n", + "83833 1\n", + "83834 0\n", + "83835 0\n", + "83836 0\n", + "83837 0\n", + "83838 0\n", + "83839 0\n", + "83840 0\n", + "83841 0\n", + "83842 0\n", + "83843 1\n", + "83844 0\n", + "83845 0\n", + "83846 0\n", + "83847 0\n", + "83848 0\n", + "83849 0\n", + "83850 0\n", + "83851 0\n", + "83852 0\n", + "83853 0\n", + "83854 0\n", + "83855 0\n", + "83856 0\n", + "83857 1\n", + "83858 0\n", + "83859 0\n", + "83860 0\n", + "83861 0\n", + "83862 0\n", + "83863 0\n", + "83864 0\n", + "83865 0\n", + "83866 0\n", + "83867 0\n", + "83868 0\n", + "83869 1\n", + "83870 0\n", + "83871 0\n", + "83872 0\n", + "83873 1\n", + "83874 0\n", + "83875 0\n", + "83876 0\n", + "83877 0\n", + "83878 0\n", + "83879 0\n", + "83880 0\n", + "83881 0\n", + "83882 0\n", + "83883 0\n", + "83884 0\n", + "83885 0\n", + "83886 0\n", + "83887 0\n", + "83888 0\n", + "83889 0\n", + "83890 0\n", + "83891 1\n", + "83892 0\n", + "83893 0\n", + "83894 0\n", + "83895 0\n", + "83896 0\n", + "83897 0\n", + "83898 0\n", + "83899 0\n", + "83900 0\n", + "83901 0\n", + "83902 0\n", + "83903 1\n", + "83904 0\n", + "83905 0\n", + "83906 0\n", + "83907 0\n", + "83908 0\n", + "83909 0\n", + "83910 0\n", + "83911 1\n", + "83912 0\n", + "83913 0\n", + "83914 0\n", + "83915 0\n", + "83916 0\n", + "83917 0\n", + "83918 0\n", + "83919 0\n", + "83920 0\n", + "83921 1\n", + "83922 0\n", + "83923 0\n", + "83924 0\n", + "83925 0\n", + "83926 0\n", + "83927 0\n", + "83928 0\n", + "83929 0\n", + "83930 0\n", + "83931 0\n", + "83932 0\n", + "83933 1\n", + "83934 0\n", + "83935 0\n", + "83936 0\n", + "83937 0\n", + "83938 0\n", + "83939 1\n", + "83940 0\n", + "83941 0\n", + "83942 0\n", + "83943 0\n", + "83944 0\n", + "83945 0\n", + "83946 0\n", + "83947 0\n", + "83948 0\n", + "83949 0\n", + "83950 0\n", + "83951 0\n", + "83952 0\n", + "83953 0\n", + "83954 0\n", + "83955 0\n", + "83956 0\n", + "83957 0\n", + "83958 0\n", + "83959 0\n", + "83960 0\n", + "83961 0\n", + "83962 0\n", + "83963 0\n", + "83964 0\n", + "83965 0\n", + "83966 0\n", + "83967 0\n", + "83968 0\n", + "83969 1\n", + "83970 0\n", + "83971 0\n", + "83972 0\n", + "83973 0\n", + "83974 0\n", + "83975 0\n", + "83976 0\n", + "83977 0\n", + "83978 0\n", + "83979 0\n", + "83980 0\n", + "83981 0\n", + "83982 0\n", + "83983 1\n", + "83984 0\n", + "83985 0\n", + "83986 0\n", + "83987 1\n", + "83988 0\n", + "83989 0\n", + "83990 0\n", + "83991 0\n", + "83992 0\n", + "83993 0\n", + "83994 0\n", + "83995 0\n", + "83996 0\n", + "83997 0\n", + "83998 0\n", + "83999 0\n", + "84000 0\n", + "84001 0\n", + "84002 0\n", + "84003 0\n", + "84004 0\n", + "84005 0\n", + "84006 0\n", + "84007 0\n", + "84008 0\n", + "84009 0\n", + "84010 0\n", + "84011 1\n", + "84012 0\n", + "84013 0\n", + "84014 0\n", + "84015 0\n", + "84016 0\n", + "84017 1\n", + "84018 0\n", + "84019 0\n", + "84020 0\n", + "84021 0\n", + "84022 0\n", + "84023 0\n", + "84024 0\n", + "84025 0\n", + "84026 0\n", + "84027 0\n", + "84028 0\n", + "84029 0\n", + "84030 0\n", + "84031 0\n", + "84032 0\n", + "84033 0\n", + "84034 0\n", + "84035 0\n", + "84036 0\n", + "84037 0\n", + "84038 0\n", + "84039 0\n", + "84040 0\n", + "84041 0\n", + "84042 0\n", + "84043 0\n", + "84044 0\n", + "84045 0\n", + "84046 0\n", + "84047 1\n", + "84048 0\n", + "84049 0\n", + "84050 0\n", + "84051 0\n", + "84052 0\n", + "84053 1\n", + "84054 0\n", + "84055 0\n", + "84056 0\n", + "84057 0\n", + "84058 0\n", + "84059 1\n", + "84060 0\n", + "84061 1\n", + "84062 0\n", + "84063 0\n", + "84064 0\n", + "84065 0\n", + "84066 0\n", + "84067 1\n", + "84068 0\n", + "84069 0\n", + "84070 0\n", + "84071 0\n", + "84072 0\n", + "84073 0\n", + "84074 0\n", + "84075 0\n", + "84076 0\n", + "84077 0\n", + "84078 0\n", + "84079 0\n", + "84080 0\n", + "84081 0\n", + "84082 0\n", + "84083 0\n", + "84084 0\n", + "84085 0\n", + "84086 0\n", + "84087 0\n", + "84088 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "84089 1\n", + "84090 0\n", + "84091 0\n", + "84092 0\n", + "84093 0\n", + "84094 0\n", + "84095 0\n", + "84096 0\n", + "84097 0\n", + "84098 0\n", + "84099 0\n", + "84100 0\n", + "84101 0\n", + "84102 0\n", + "84103 0\n", + "84104 0\n", + "84105 0\n", + "84106 0\n", + "84107 0\n", + "84108 0\n", + "84109 0\n", + "84110 0\n", + "84111 0\n", + "84112 0\n", + "84113 0\n", + "84114 0\n", + "84115 0\n", + "84116 0\n", + "84117 0\n", + "84118 0\n", + "84119 0\n", + "84120 0\n", + "84121 1\n", + "84122 0\n", + "84123 0\n", + "84124 0\n", + "84125 0\n", + "84126 0\n", + "84127 1\n", + "84128 0\n", + "84129 0\n", + "84130 0\n", + "84131 1\n", + "84132 0\n", + "84133 0\n", + "84134 0\n", + "84135 0\n", + "84136 0\n", + "84137 1\n", + "84138 0\n", + "84139 0\n", + "84140 0\n", + "84141 0\n", + "84142 0\n", + "84143 1\n", + "84144 0\n", + "84145 0\n", + "84146 0\n", + "84147 0\n", + "84148 0\n", + "84149 0\n", + "84150 0\n", + "84151 0\n", + "84152 0\n", + "84153 0\n", + "84154 0\n", + "84155 0\n", + "84156 0\n", + "84157 0\n", + "84158 0\n", + "84159 0\n", + "84160 0\n", + "84161 0\n", + "84162 0\n", + "84163 1\n", + "84164 0\n", + "84165 0\n", + "84166 0\n", + "84167 0\n", + "84168 0\n", + "84169 0\n", + "84170 0\n", + "84171 0\n", + "84172 0\n", + "84173 0\n", + "84174 0\n", + "84175 0\n", + "84176 0\n", + "84177 0\n", + "84178 0\n", + "84179 1\n", + "84180 0\n", + "84181 1\n", + "84182 0\n", + "84183 0\n", + "84184 0\n", + "84185 0\n", + "84186 0\n", + "84187 0\n", + "84188 0\n", + "84189 0\n", + "84190 0\n", + "84191 1\n", + "84192 0\n", + "84193 0\n", + "84194 0\n", + "84195 0\n", + "84196 0\n", + "84197 0\n", + "84198 0\n", + "84199 1\n", + "84200 0\n", + "84201 0\n", + "84202 0\n", + "84203 0\n", + "84204 0\n", + "84205 0\n", + "84206 0\n", + "84207 0\n", + "84208 0\n", + "84209 0\n", + "84210 0\n", + "84211 1\n", + "84212 0\n", + "84213 0\n", + "84214 0\n", + "84215 0\n", + "84216 0\n", + "84217 0\n", + "84218 0\n", + "84219 0\n", + "84220 0\n", + "84221 1\n", + "84222 0\n", + "84223 1\n", + "84224 0\n", + "84225 0\n", + "84226 0\n", + "84227 0\n", + "84228 0\n", + "84229 1\n", + "84230 0\n", + "84231 0\n", + "84232 0\n", + "84233 0\n", + "84234 0\n", + "84235 0\n", + "84236 0\n", + "84237 0\n", + "84238 0\n", + "84239 1\n", + "84240 0\n", + "84241 0\n", + "84242 0\n", + "84243 0\n", + "84244 0\n", + "84245 0\n", + "84246 0\n", + "84247 1\n", + "84248 0\n", + "84249 0\n", + "84250 0\n", + "84251 0\n", + "84252 0\n", + "84253 0\n", + "84254 0\n", + "84255 0\n", + "84256 0\n", + "84257 0\n", + "84258 0\n", + "84259 0\n", + "84260 0\n", + "84261 0\n", + "84262 0\n", + "84263 1\n", + "84264 0\n", + "84265 0\n", + "84266 0\n", + "84267 0\n", + "84268 0\n", + "84269 0\n", + "84270 0\n", + "84271 0\n", + "84272 0\n", + "84273 0\n", + "84274 0\n", + "84275 0\n", + "84276 0\n", + "84277 0\n", + "84278 0\n", + "84279 0\n", + "84280 0\n", + "84281 0\n", + "84282 0\n", + "84283 0\n", + "84284 0\n", + "84285 0\n", + "84286 0\n", + "84287 0\n", + "84288 0\n", + "84289 0\n", + "84290 0\n", + "84291 0\n", + "84292 0\n", + "84293 0\n", + "84294 0\n", + "84295 0\n", + "84296 0\n", + "84297 0\n", + "84298 0\n", + "84299 1\n", + "84300 0\n", + "84301 0\n", + "84302 0\n", + "84303 0\n", + "84304 0\n", + "84305 0\n", + "84306 0\n", + "84307 1\n", + "84308 0\n", + "84309 0\n", + "84310 0\n", + "84311 0\n", + "84312 0\n", + "84313 1\n", + "84314 0\n", + "84315 0\n", + "84316 0\n", + "84317 1\n", + "84318 0\n", + "84319 1\n", + "84320 0\n", + "84321 0\n", + "84322 0\n", + "84323 0\n", + "84324 0\n", + "84325 0\n", + "84326 0\n", + "84327 0\n", + "84328 0\n", + "84329 0\n", + "84330 0\n", + "84331 0\n", + "84332 0\n", + "84333 0\n", + "84334 0\n", + "84335 0\n", + "84336 0\n", + "84337 0\n", + "84338 0\n", + "84339 0\n", + "84340 0\n", + "84341 0\n", + "84342 0\n", + "84343 0\n", + "84344 0\n", + "84345 0\n", + "84346 0\n", + "84347 1\n", + "84348 0\n", + "84349 1\n", + "84350 0\n", + "84351 0\n", + "84352 0\n", + "84353 0\n", + "84354 0\n", + "84355 0\n", + "84356 0\n", + "84357 0\n", + "84358 0\n", + "84359 0\n", + "84360 0\n", + "84361 0\n", + "84362 0\n", + "84363 0\n", + "84364 0\n", + "84365 0\n", + "84366 0\n", + "84367 0\n", + "84368 0\n", + "84369 0\n", + "84370 0\n", + "84371 0\n", + "84372 0\n", + "84373 0\n", + "84374 0\n", + "84375 0\n", + "84376 0\n", + "84377 1\n", + "84378 0\n", + "84379 0\n", + "84380 0\n", + "84381 0\n", + "84382 0\n", + "84383 0\n", + "84384 0\n", + "84385 0\n", + "84386 0\n", + "84387 0\n", + "84388 0\n", + "84389 1\n", + "84390 0\n", + "84391 1\n", + "84392 0\n", + "84393 0\n", + "84394 0\n", + "84395 0\n", + "84396 0\n", + "84397 0\n", + "84398 0\n", + "84399 0\n", + "84400 0\n", + "84401 1\n", + "84402 0\n", + "84403 0\n", + "84404 0\n", + "84405 0\n", + "84406 0\n", + "84407 1\n", + "84408 0\n", + "84409 0\n", + "84410 0\n", + "84411 0\n", + "84412 0\n", + "84413 0\n", + "84414 0\n", + "84415 0\n", + "84416 0\n", + "84417 0\n", + "84418 0\n", + "84419 0\n", + "84420 0\n", + "84421 1\n", + "84422 0\n", + "84423 0\n", + "84424 0\n", + "84425 0\n", + "84426 0\n", + "84427 0\n", + "84428 0\n", + "84429 0\n", + "84430 0\n", + "84431 1\n", + "84432 0\n", + "84433 0\n", + "84434 0\n", + "84435 0\n", + "84436 0\n", + "84437 1\n", + "84438 0\n", + "84439 0\n", + "84440 0\n", + "84441 0\n", + "84442 0\n", + "84443 1\n", + "84444 0\n", + "84445 0\n", + "84446 0\n", + "84447 0\n", + "84448 0\n", + "84449 1\n", + "84450 0\n", + "84451 0\n", + "84452 0\n", + "84453 0\n", + "84454 0\n", + "84455 0\n", + "84456 0\n", + "84457 1\n", + "84458 0\n", + "84459 0\n", + "84460 0\n", + "84461 0\n", + "84462 0\n", + "84463 1\n", + "84464 0\n", + "84465 0\n", + "84466 0\n", + "84467 1\n", + "84468 0\n", + "84469 0\n", + "84470 0\n", + "84471 0\n", + "84472 0\n", + "84473 0\n", + "84474 0\n", + "84475 0\n", + "84476 0\n", + "84477 0\n", + "84478 0\n", + "84479 0\n", + "84480 0\n", + "84481 1\n", + "84482 0\n", + "84483 0\n", + "84484 0\n", + "84485 0\n", + "84486 0\n", + "84487 0\n", + "84488 0\n", + "84489 0\n", + "84490 0\n", + "84491 0\n", + "84492 0\n", + "84493 0\n", + "84494 0\n", + "84495 0\n", + "84496 0\n", + "84497 0\n", + "84498 0\n", + "84499 1\n", + "84500 0\n", + "84501 0\n", + "84502 0\n", + "84503 1\n", + "84504 0\n", + "84505 0\n", + "84506 0\n", + "84507 0\n", + "84508 0\n", + "84509 1\n", + "84510 0\n", + "84511 0\n", + "84512 0\n", + "84513 0\n", + "84514 0\n", + "84515 0\n", + "84516 0\n", + "84517 0\n", + "84518 0\n", + "84519 0\n", + "84520 0\n", + "84521 1\n", + "84522 0\n", + "84523 1\n", + "84524 0\n", + "84525 0\n", + "84526 0\n", + "84527 0\n", + "84528 0\n", + "84529 0\n", + "84530 0\n", + "84531 0\n", + "84532 0\n", + "84533 1\n", + "84534 0\n", + "84535 0\n", + "84536 0\n", + "84537 0\n", + "84538 0\n", + "84539 0\n", + "84540 0\n", + "84541 0\n", + "84542 0\n", + "84543 0\n", + "84544 0\n", + "84545 0\n", + "84546 0\n", + "84547 0\n", + "84548 0\n", + "84549 0\n", + "84550 0\n", + "84551 1\n", + "84552 0\n", + "84553 0\n", + "84554 0\n", + "84555 0\n", + "84556 0\n", + "84557 0\n", + "84558 0\n", + "84559 1\n", + "84560 0\n", + "84561 0\n", + "84562 0\n", + "84563 0\n", + "84564 0\n", + "84565 0\n", + "84566 0\n", + "84567 0\n", + "84568 0\n", + "84569 0\n", + "84570 0\n", + "84571 0\n", + "84572 0\n", + "84573 0\n", + "84574 0\n", + "84575 0\n", + "84576 0\n", + "84577 0\n", + "84578 0\n", + "84579 0\n", + "84580 0\n", + "84581 0\n", + "84582 0\n", + "84583 0\n", + "84584 0\n", + "84585 0\n", + "84586 0\n", + "84587 0\n", + "84588 0\n", + "84589 1\n", + "84590 0\n", + "84591 0\n", + "84592 0\n", + "84593 0\n", + "84594 0\n", + "84595 0\n", + "84596 0\n", + "84597 0\n", + "84598 0\n", + "84599 0\n", + "84600 0\n", + "84601 0\n", + "84602 0\n", + "84603 0\n", + "84604 0\n", + "84605 0\n", + "84606 0\n", + "84607 0\n", + "84608 0\n", + "84609 0\n", + "84610 0\n", + "84611 0\n", + "84612 0\n", + "84613 0\n", + "84614 0\n", + "84615 0\n", + "84616 0\n", + "84617 0\n", + "84618 0\n", + "84619 0\n", + "84620 0\n", + "84621 0\n", + "84622 0\n", + "84623 0\n", + "84624 0\n", + "84625 0\n", + "84626 0\n", + "84627 0\n", + "84628 0\n", + "84629 1\n", + "84630 0\n", + "84631 1\n", + "84632 0\n", + "84633 0\n", + "84634 0\n", + "84635 0\n", + "84636 0\n", + "84637 0\n", + "84638 0\n", + "84639 0\n", + "84640 0\n", + "84641 0\n", + "84642 0\n", + "84643 0\n", + "84644 0\n", + "84645 0\n", + "84646 0\n", + "84647 0\n", + "84648 0\n", + "84649 1\n", + "84650 0\n", + "84651 0\n", + "84652 0\n", + "84653 1\n", + "84654 0\n", + "84655 0\n", + "84656 0\n", + "84657 0\n", + "84658 0\n", + "84659 1\n", + "84660 0\n", + "84661 0\n", + "84662 0\n", + "84663 0\n", + "84664 0\n", + "84665 0\n", + "84666 0\n", + "84667 0\n", + "84668 0\n", + "84669 0\n", + "84670 0\n", + "84671 0\n", + "84672 0\n", + "84673 1\n", + "84674 0\n", + "84675 0\n", + "84676 0\n", + "84677 0\n", + "84678 0\n", + "84679 0\n", + "84680 0\n", + "84681 0\n", + "84682 0\n", + "84683 0\n", + "84684 0\n", + "84685 0\n", + "84686 0\n", + "84687 0\n", + "84688 0\n", + "84689 0\n", + "84690 0\n", + "84691 1\n", + "84692 0\n", + "84693 0\n", + "84694 0\n", + "84695 0\n", + "84696 0\n", + "84697 1\n", + "84698 0\n", + "84699 0\n", + "84700 0\n", + "84701 1\n", + "84702 0\n", + "84703 0\n", + "84704 0\n", + "84705 0\n", + "84706 0\n", + "84707 0\n", + "84708 0\n", + "84709 0\n", + "84710 0\n", + "84711 0\n", + "84712 0\n", + "84713 1\n", + "84714 0\n", + "84715 0\n", + "84716 0\n", + "84717 0\n", + "84718 0\n", + "84719 1\n", + "84720 0\n", + "84721 0\n", + "84722 0\n", + "84723 0\n", + "84724 0\n", + "84725 0\n", + "84726 0\n", + "84727 0\n", + "84728 0\n", + "84729 0\n", + "84730 0\n", + "84731 1\n", + "84732 0\n", + "84733 0\n", + "84734 0\n", + "84735 0\n", + "84736 0\n", + "84737 1\n", + "84738 0\n", + "84739 0\n", + "84740 0\n", + "84741 0\n", + "84742 0\n", + "84743 0\n", + "84744 0\n", + "84745 0\n", + "84746 0\n", + "84747 0\n", + "84748 0\n", + "84749 0\n", + "84750 0\n", + "84751 1\n", + "84752 0\n", + "84753 0\n", + "84754 0\n", + "84755 0\n", + "84756 0\n", + "84757 0\n", + "84758 0\n", + "84759 0\n", + "84760 0\n", + "84761 1\n", + "84762 0\n", + "84763 0\n", + "84764 0\n", + "84765 0\n", + "84766 0\n", + "84767 0\n", + "84768 0\n", + "84769 0\n", + "84770 0\n", + "84771 0\n", + "84772 0\n", + "84773 0\n", + "84774 0\n", + "84775 0\n", + "84776 0\n", + "84777 0\n", + "84778 0\n", + "84779 0\n", + "84780 0\n", + "84781 0\n", + "84782 0\n", + "84783 0\n", + "84784 0\n", + "84785 0\n", + "84786 0\n", + "84787 1\n", + "84788 0\n", + "84789 0\n", + "84790 0\n", + "84791 0\n", + "84792 0\n", + "84793 1\n", + "84794 0\n", + "84795 0\n", + "84796 0\n", + "84797 0\n", + "84798 0\n", + "84799 0\n", + "84800 0\n", + "84801 0\n", + "84802 0\n", + "84803 0\n", + "84804 0\n", + "84805 0\n", + "84806 0\n", + "84807 0\n", + "84808 0\n", + "84809 1\n", + "84810 0\n", + "84811 1\n", + "84812 0\n", + "84813 0\n", + "84814 0\n", + "84815 0\n", + "84816 0\n", + "84817 0\n", + "84818 0\n", + "84819 0\n", + "84820 0\n", + "84821 0\n", + "84822 0\n", + "84823 0\n", + "84824 0\n", + "84825 0\n", + "84826 0\n", + "84827 1\n", + "84828 0\n", + "84829 0\n", + "84830 0\n", + "84831 0\n", + "84832 0\n", + "84833 0\n", + "84834 0\n", + "84835 0\n", + "84836 0\n", + "84837 0\n", + "84838 0\n", + "84839 0\n", + "84840 0\n", + "84841 0\n", + "84842 0\n", + "84843 0\n", + "84844 0\n", + "84845 0\n", + "84846 0\n", + "84847 0\n", + "84848 0\n", + "84849 0\n", + "84850 0\n", + "84851 0\n", + "84852 0\n", + "84853 0\n", + "84854 0\n", + "84855 0\n", + "84856 0\n", + "84857 1\n", + "84858 0\n", + "84859 1\n", + "84860 0\n", + "84861 0\n", + "84862 0\n", + "84863 0\n", + "84864 0\n", + "84865 0\n", + "84866 0\n", + "84867 0\n", + "84868 0\n", + "84869 1\n", + "84870 0\n", + "84871 1\n", + "84872 0\n", + "84873 0\n", + "84874 0\n", + "84875 0\n", + "84876 0\n", + "84877 0\n", + "84878 0\n", + "84879 0\n", + "84880 0\n", + "84881 0\n", + "84882 0\n", + "84883 0\n", + "84884 0\n", + "84885 0\n", + "84886 0\n", + "84887 0\n", + "84888 0\n", + "84889 0\n", + "84890 0\n", + "84891 0\n", + "84892 0\n", + "84893 0\n", + "84894 0\n", + "84895 0\n", + "84896 0\n", + "84897 0\n", + "84898 0\n", + "84899 0\n", + "84900 0\n", + "84901 0\n", + "84902 0\n", + "84903 0\n", + "84904 0\n", + "84905 0\n", + "84906 0\n", + "84907 0\n", + "84908 0\n", + "84909 0\n", + "84910 0\n", + "84911 0\n", + "84912 0\n", + "84913 1\n", + "84914 0\n", + "84915 0\n", + "84916 0\n", + "84917 0\n", + "84918 0\n", + "84919 1\n", + "84920 0\n", + "84921 0\n", + "84922 0\n", + "84923 0\n", + "84924 0\n", + "84925 0\n", + "84926 0\n", + "84927 0\n", + "84928 0\n", + "84929 0\n", + "84930 0\n", + "84931 0\n", + "84932 0\n", + "84933 0\n", + "84934 0\n", + "84935 0\n", + "84936 0\n", + "84937 0\n", + "84938 0\n", + "84939 0\n", + "84940 0\n", + "84941 0\n", + "84942 0\n", + "84943 0\n", + "84944 0\n", + "84945 0\n", + "84946 0\n", + "84947 1\n", + "84948 0\n", + "84949 0\n", + "84950 0\n", + "84951 0\n", + "84952 0\n", + "84953 0\n", + "84954 0\n", + "84955 0\n", + "84956 0\n", + "84957 0\n", + "84958 0\n", + "84959 0\n", + "84960 0\n", + "84961 1\n", + "84962 0\n", + "84963 0\n", + "84964 0\n", + "84965 0\n", + "84966 0\n", + "84967 1\n", + "84968 0\n", + "84969 0\n", + "84970 0\n", + "84971 0\n", + "84972 0\n", + "84973 0\n", + "84974 0\n", + "84975 0\n", + "84976 0\n", + "84977 1\n", + "84978 0\n", + "84979 1\n", + "84980 0\n", + "84981 0\n", + "84982 0\n", + "84983 0\n", + "84984 0\n", + "84985 0\n", + "84986 0\n", + "84987 0\n", + "84988 0\n", + "84989 0\n", + "84990 0\n", + "84991 1\n", + "84992 0\n", + "84993 0\n", + "84994 0\n", + "84995 0\n", + "84996 0\n", + "84997 0\n", + "84998 0\n", + "84999 0\n", + "85000 0\n", + "85001 0\n", + "85002 0\n", + "85003 0\n", + "85004 0\n", + "85005 0\n", + "85006 0\n", + "85007 0\n", + "85008 0\n", + "85009 1\n", + "85010 0\n", + "85011 0\n", + "85012 0\n", + "85013 0\n", + "85014 0\n", + "85015 0\n", + "85016 0\n", + "85017 0\n", + "85018 0\n", + "85019 0\n", + "85020 0\n", + "85021 1\n", + "85022 0\n", + "85023 0\n", + "85024 0\n", + "85025 0\n", + "85026 0\n", + "85027 1\n", + "85028 0\n", + "85029 0\n", + "85030 0\n", + "85031 0\n", + "85032 0\n", + "85033 0\n", + "85034 0\n", + "85035 0\n", + "85036 0\n", + "85037 1\n", + "85038 0\n", + "85039 0\n", + "85040 0\n", + "85041 0\n", + "85042 0\n", + "85043 0\n", + "85044 0\n", + "85045 0\n", + "85046 0\n", + "85047 0\n", + "85048 0\n", + "85049 1\n", + "85050 0\n", + "85051 0\n", + "85052 0\n", + "85053 0\n", + "85054 0\n", + "85055 0\n", + "85056 0\n", + "85057 0\n", + "85058 0\n", + "85059 0\n", + "85060 0\n", + "85061 1\n", + "85062 0\n", + "85063 0\n", + "85064 0\n", + "85065 0\n", + "85066 0\n", + "85067 0\n", + "85068 0\n", + "85069 0\n", + "85070 0\n", + "85071 0\n", + "85072 0\n", + "85073 0\n", + "85074 0\n", + "85075 0\n", + "85076 0\n", + "85077 0\n", + "85078 0\n", + "85079 0\n", + "85080 0\n", + "85081 1\n", + "85082 0\n", + "85083 0\n", + "85084 0\n", + "85085 0\n", + "85086 0\n", + "85087 1\n", + "85088 0\n", + "85089 0\n", + "85090 0\n", + "85091 1\n", + "85092 0\n", + "85093 1\n", + "85094 0\n", + "85095 0\n", + "85096 0\n", + "85097 0\n", + "85098 0\n", + "85099 0\n", + "85100 0\n", + "85101 0\n", + "85102 0\n", + "85103 1\n", + "85104 0\n", + "85105 0\n", + "85106 0\n", + "85107 0\n", + "85108 0\n", + "85109 1\n", + "85110 0\n", + "85111 0\n", + "85112 0\n", + "85113 0\n", + "85114 0\n", + "85115 0\n", + "85116 0\n", + "85117 0\n", + "85118 0\n", + "85119 0\n", + "85120 0\n", + "85121 1\n", + "85122 0\n", + "85123 0\n", + "85124 0\n", + "85125 0\n", + "85126 0\n", + "85127 0\n", + "85128 0\n", + "85129 0\n", + "85130 0\n", + "85131 0\n", + "85132 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "85133 1\n", + "85134 0\n", + "85135 0\n", + "85136 0\n", + "85137 0\n", + "85138 0\n", + "85139 0\n", + "85140 0\n", + "85141 0\n", + "85142 0\n", + "85143 0\n", + "85144 0\n", + "85145 0\n", + "85146 0\n", + "85147 1\n", + "85148 0\n", + "85149 0\n", + "85150 0\n", + "85151 0\n", + "85152 0\n", + "85153 0\n", + "85154 0\n", + "85155 0\n", + "85156 0\n", + "85157 0\n", + "85158 0\n", + "85159 1\n", + "85160 0\n", + "85161 0\n", + "85162 0\n", + "85163 0\n", + "85164 0\n", + "85165 0\n", + "85166 0\n", + "85167 0\n", + "85168 0\n", + "85169 0\n", + "85170 0\n", + "85171 0\n", + "85172 0\n", + "85173 0\n", + "85174 0\n", + "85175 0\n", + "85176 0\n", + "85177 0\n", + "85178 0\n", + "85179 0\n", + "85180 0\n", + "85181 0\n", + "85182 0\n", + "85183 0\n", + "85184 0\n", + "85185 0\n", + "85186 0\n", + "85187 0\n", + "85188 0\n", + "85189 0\n", + "85190 0\n", + "85191 0\n", + "85192 0\n", + "85193 1\n", + "85194 0\n", + "85195 0\n", + "85196 0\n", + "85197 0\n", + "85198 0\n", + "85199 1\n", + "85200 0\n", + "85201 1\n", + "85202 0\n", + "85203 0\n", + "85204 0\n", + "85205 0\n", + "85206 0\n", + "85207 0\n", + "85208 0\n", + "85209 0\n", + "85210 0\n", + "85211 0\n", + "85212 0\n", + "85213 1\n", + "85214 0\n", + "85215 0\n", + "85216 0\n", + "85217 0\n", + "85218 0\n", + "85219 0\n", + "85220 0\n", + "85221 0\n", + "85222 0\n", + "85223 1\n", + "85224 0\n", + "85225 0\n", + "85226 0\n", + "85227 0\n", + "85228 0\n", + "85229 1\n", + "85230 0\n", + "85231 0\n", + "85232 0\n", + "85233 0\n", + "85234 0\n", + "85235 0\n", + "85236 0\n", + "85237 1\n", + "85238 0\n", + "85239 0\n", + "85240 0\n", + "85241 0\n", + "85242 0\n", + "85243 1\n", + "85244 0\n", + "85245 0\n", + "85246 0\n", + "85247 1\n", + "85248 0\n", + "85249 0\n", + "85250 0\n", + "85251 0\n", + "85252 0\n", + "85253 0\n", + "85254 0\n", + "85255 0\n", + "85256 0\n", + "85257 0\n", + "85258 0\n", + "85259 1\n", + "85260 0\n", + "85261 0\n", + "85262 0\n", + "85263 0\n", + "85264 0\n", + "85265 0\n", + "85266 0\n", + "85267 0\n", + "85268 0\n", + "85269 0\n", + "85270 0\n", + "85271 0\n", + "85272 0\n", + "85273 0\n", + "85274 0\n", + "85275 0\n", + "85276 0\n", + "85277 0\n", + "85278 0\n", + "85279 0\n", + "85280 0\n", + "85281 0\n", + "85282 0\n", + "85283 0\n", + "85284 0\n", + "85285 0\n", + "85286 0\n", + "85287 0\n", + "85288 0\n", + "85289 0\n", + "85290 0\n", + "85291 0\n", + "85292 0\n", + "85293 0\n", + "85294 0\n", + "85295 0\n", + "85296 0\n", + "85297 1\n", + "85298 0\n", + "85299 0\n", + "85300 0\n", + "85301 0\n", + "85302 0\n", + "85303 1\n", + "85304 0\n", + "85305 0\n", + "85306 0\n", + "85307 0\n", + "85308 0\n", + "85309 0\n", + "85310 0\n", + "85311 0\n", + "85312 0\n", + "85313 1\n", + "85314 0\n", + "85315 0\n", + "85316 0\n", + "85317 0\n", + "85318 0\n", + "85319 0\n", + "85320 0\n", + "85321 0\n", + "85322 0\n", + "85323 0\n", + "85324 0\n", + "85325 0\n", + "85326 0\n", + "85327 0\n", + "85328 0\n", + "85329 0\n", + "85330 0\n", + "85331 1\n", + "85332 0\n", + "85333 1\n", + "85334 0\n", + "85335 0\n", + "85336 0\n", + "85337 0\n", + "85338 0\n", + "85339 0\n", + "85340 0\n", + "85341 0\n", + "85342 0\n", + "85343 0\n", + "85344 0\n", + "85345 0\n", + "85346 0\n", + "85347 0\n", + "85348 0\n", + "85349 0\n", + "85350 0\n", + "85351 0\n", + "85352 0\n", + "85353 0\n", + "85354 0\n", + "85355 0\n", + "85356 0\n", + "85357 0\n", + "85358 0\n", + "85359 0\n", + "85360 0\n", + "85361 1\n", + "85362 0\n", + "85363 1\n", + "85364 0\n", + "85365 0\n", + "85366 0\n", + "85367 0\n", + "85368 0\n", + "85369 1\n", + "85370 0\n", + "85371 0\n", + "85372 0\n", + "85373 0\n", + "85374 0\n", + "85375 0\n", + "85376 0\n", + "85377 0\n", + "85378 0\n", + "85379 0\n", + "85380 0\n", + "85381 1\n", + "85382 0\n", + "85383 0\n", + "85384 0\n", + "85385 0\n", + "85386 0\n", + "85387 0\n", + "85388 0\n", + "85389 0\n", + "85390 0\n", + "85391 0\n", + "85392 0\n", + "85393 0\n", + "85394 0\n", + "85395 0\n", + "85396 0\n", + "85397 0\n", + "85398 0\n", + "85399 0\n", + "85400 0\n", + "85401 0\n", + "85402 0\n", + "85403 0\n", + "85404 0\n", + "85405 0\n", + "85406 0\n", + "85407 0\n", + "85408 0\n", + "85409 0\n", + "85410 0\n", + "85411 1\n", + "85412 0\n", + "85413 0\n", + "85414 0\n", + "85415 0\n", + "85416 0\n", + "85417 0\n", + "85418 0\n", + "85419 0\n", + "85420 0\n", + "85421 0\n", + "85422 0\n", + "85423 0\n", + "85424 0\n", + "85425 0\n", + "85426 0\n", + "85427 1\n", + "85428 0\n", + "85429 1\n", + "85430 0\n", + "85431 0\n", + "85432 0\n", + "85433 0\n", + "85434 0\n", + "85435 0\n", + "85436 0\n", + "85437 0\n", + "85438 0\n", + "85439 1\n", + "85440 0\n", + "85441 0\n", + "85442 0\n", + "85443 0\n", + "85444 0\n", + "85445 0\n", + "85446 0\n", + "85447 1\n", + "85448 0\n", + "85449 0\n", + "85450 0\n", + "85451 1\n", + "85452 0\n", + "85453 1\n", + "85454 0\n", + "85455 0\n", + "85456 0\n", + "85457 0\n", + "85458 0\n", + "85459 0\n", + "85460 0\n", + "85461 0\n", + "85462 0\n", + "85463 0\n", + "85464 0\n", + "85465 0\n", + "85466 0\n", + "85467 0\n", + "85468 0\n", + "85469 1\n", + "85470 0\n", + "85471 0\n", + "85472 0\n", + "85473 0\n", + "85474 0\n", + "85475 0\n", + "85476 0\n", + "85477 0\n", + "85478 0\n", + "85479 0\n", + "85480 0\n", + "85481 0\n", + "85482 0\n", + "85483 0\n", + "85484 0\n", + "85485 0\n", + "85486 0\n", + "85487 1\n", + "85488 0\n", + "85489 0\n", + "85490 0\n", + "85491 0\n", + "85492 0\n", + "85493 0\n", + "85494 0\n", + "85495 0\n", + "85496 0\n", + "85497 0\n", + "85498 0\n", + "85499 0\n", + "85500 0\n", + "85501 0\n", + "85502 0\n", + "85503 0\n", + "85504 0\n", + "85505 0\n", + "85506 0\n", + "85507 0\n", + "85508 0\n", + "85509 0\n", + "85510 0\n", + "85511 0\n", + "85512 0\n", + "85513 1\n", + "85514 0\n", + "85515 0\n", + "85516 0\n", + "85517 1\n", + "85518 0\n", + "85519 0\n", + "85520 0\n", + "85521 0\n", + "85522 0\n", + "85523 1\n", + "85524 0\n", + "85525 0\n", + "85526 0\n", + "85527 0\n", + "85528 0\n", + "85529 0\n", + "85530 0\n", + "85531 1\n", + "85532 0\n", + "85533 0\n", + "85534 0\n", + "85535 0\n", + "85536 0\n", + "85537 0\n", + "85538 0\n", + "85539 0\n", + "85540 0\n", + "85541 0\n", + "85542 0\n", + "85543 0\n", + "85544 0\n", + "85545 0\n", + "85546 0\n", + "85547 0\n", + "85548 0\n", + "85549 1\n", + "85550 0\n", + "85551 0\n", + "85552 0\n", + "85553 0\n", + "85554 0\n", + "85555 0\n", + "85556 0\n", + "85557 0\n", + "85558 0\n", + "85559 0\n", + "85560 0\n", + "85561 0\n", + "85562 0\n", + "85563 0\n", + "85564 0\n", + "85565 0\n", + "85566 0\n", + "85567 0\n", + "85568 0\n", + "85569 0\n", + "85570 0\n", + "85571 1\n", + "85572 0\n", + "85573 0\n", + "85574 0\n", + "85575 0\n", + "85576 0\n", + "85577 1\n", + "85578 0\n", + "85579 0\n", + "85580 0\n", + "85581 0\n", + "85582 0\n", + "85583 0\n", + "85584 0\n", + "85585 0\n", + "85586 0\n", + "85587 0\n", + "85588 0\n", + "85589 0\n", + "85590 0\n", + "85591 0\n", + "85592 0\n", + "85593 0\n", + "85594 0\n", + "85595 0\n", + "85596 0\n", + "85597 1\n", + "85598 0\n", + "85599 0\n", + "85600 0\n", + "85601 1\n", + "85602 0\n", + "85603 0\n", + "85604 0\n", + "85605 0\n", + "85606 0\n", + "85607 1\n", + "85608 0\n", + "85609 0\n", + "85610 0\n", + "85611 0\n", + "85612 0\n", + "85613 0\n", + "85614 0\n", + "85615 0\n", + "85616 0\n", + "85617 0\n", + "85618 0\n", + "85619 1\n", + "85620 0\n", + "85621 1\n", + "85622 0\n", + "85623 0\n", + "85624 0\n", + "85625 0\n", + "85626 0\n", + "85627 1\n", + "85628 0\n", + "85629 0\n", + "85630 0\n", + "85631 0\n", + "85632 0\n", + "85633 0\n", + "85634 0\n", + "85635 0\n", + "85636 0\n", + "85637 0\n", + "85638 0\n", + "85639 1\n", + "85640 0\n", + "85641 0\n", + "85642 0\n", + "85643 1\n", + "85644 0\n", + "85645 0\n", + "85646 0\n", + "85647 0\n", + "85648 0\n", + "85649 0\n", + "85650 0\n", + "85651 0\n", + "85652 0\n", + "85653 0\n", + "85654 0\n", + "85655 0\n", + "85656 0\n", + "85657 0\n", + "85658 0\n", + "85659 0\n", + "85660 0\n", + "85661 1\n", + "85662 0\n", + "85663 0\n", + "85664 0\n", + "85665 0\n", + "85666 0\n", + "85667 1\n", + "85668 0\n", + "85669 1\n", + "85670 0\n", + "85671 0\n", + "85672 0\n", + "85673 0\n", + "85674 0\n", + "85675 0\n", + "85676 0\n", + "85677 0\n", + "85678 0\n", + "85679 0\n", + "85680 0\n", + "85681 0\n", + "85682 0\n", + "85683 0\n", + "85684 0\n", + "85685 0\n", + "85686 0\n", + "85687 0\n", + "85688 0\n", + "85689 0\n", + "85690 0\n", + "85691 1\n", + "85692 0\n", + "85693 0\n", + "85694 0\n", + "85695 0\n", + "85696 0\n", + "85697 0\n", + "85698 0\n", + "85699 0\n", + "85700 0\n", + "85701 0\n", + "85702 0\n", + "85703 1\n", + "85704 0\n", + "85705 0\n", + "85706 0\n", + "85707 0\n", + "85708 0\n", + "85709 0\n", + "85710 0\n", + "85711 1\n", + "85712 0\n", + "85713 0\n", + "85714 0\n", + "85715 0\n", + "85716 0\n", + "85717 1\n", + "85718 0\n", + "85719 0\n", + "85720 0\n", + "85721 0\n", + "85722 0\n", + "85723 0\n", + "85724 0\n", + "85725 0\n", + "85726 0\n", + "85727 0\n", + "85728 0\n", + "85729 0\n", + "85730 0\n", + "85731 0\n", + "85732 0\n", + "85733 1\n", + "85734 0\n", + "85735 0\n", + "85736 0\n", + "85737 0\n", + "85738 0\n", + "85739 0\n", + "85740 0\n", + "85741 0\n", + "85742 0\n", + "85743 0\n", + "85744 0\n", + "85745 0\n", + "85746 0\n", + "85747 0\n", + "85748 0\n", + "85749 0\n", + "85750 0\n", + "85751 1\n", + "85752 0\n", + "85753 0\n", + "85754 0\n", + "85755 0\n", + "85756 0\n", + "85757 0\n", + "85758 0\n", + "85759 0\n", + "85760 0\n", + "85761 0\n", + "85762 0\n", + "85763 0\n", + "85764 0\n", + "85765 0\n", + "85766 0\n", + "85767 0\n", + "85768 0\n", + "85769 0\n", + "85770 0\n", + "85771 0\n", + "85772 0\n", + "85773 0\n", + "85774 0\n", + "85775 0\n", + "85776 0\n", + "85777 0\n", + "85778 0\n", + "85779 0\n", + "85780 0\n", + "85781 1\n", + "85782 0\n", + "85783 0\n", + "85784 0\n", + "85785 0\n", + "85786 0\n", + "85787 0\n", + "85788 0\n", + "85789 0\n", + "85790 0\n", + "85791 0\n", + "85792 0\n", + "85793 1\n", + "85794 0\n", + "85795 0\n", + "85796 0\n", + "85797 0\n", + "85798 0\n", + "85799 0\n", + "85800 0\n", + "85801 0\n", + "85802 0\n", + "85803 0\n", + "85804 0\n", + "85805 0\n", + "85806 0\n", + "85807 0\n", + "85808 0\n", + "85809 0\n", + "85810 0\n", + "85811 0\n", + "85812 0\n", + "85813 0\n", + "85814 0\n", + "85815 0\n", + "85816 0\n", + "85817 1\n", + "85818 0\n", + "85819 1\n", + "85820 0\n", + "85821 0\n", + "85822 0\n", + "85823 0\n", + "85824 0\n", + "85825 0\n", + "85826 0\n", + "85827 0\n", + "85828 0\n", + "85829 1\n", + "85830 0\n", + "85831 1\n", + "85832 0\n", + "85833 0\n", + "85834 0\n", + "85835 0\n", + "85836 0\n", + "85837 1\n", + "85838 0\n", + "85839 0\n", + "85840 0\n", + "85841 0\n", + "85842 0\n", + "85843 1\n", + "85844 0\n", + "85845 0\n", + "85846 0\n", + "85847 1\n", + "85848 0\n", + "85849 0\n", + "85850 0\n", + "85851 0\n", + "85852 0\n", + "85853 1\n", + "85854 0\n", + "85855 0\n", + "85856 0\n", + "85857 0\n", + "85858 0\n", + "85859 0\n", + "85860 0\n", + "85861 0\n", + "85862 0\n", + "85863 0\n", + "85864 0\n", + "85865 0\n", + "85866 0\n", + "85867 0\n", + "85868 0\n", + "85869 0\n", + "85870 0\n", + "85871 0\n", + "85872 0\n", + "85873 0\n", + "85874 0\n", + "85875 0\n", + "85876 0\n", + "85877 0\n", + "85878 0\n", + "85879 0\n", + "85880 0\n", + "85881 0\n", + "85882 0\n", + "85883 0\n", + "85884 0\n", + "85885 0\n", + "85886 0\n", + "85887 0\n", + "85888 0\n", + "85889 1\n", + "85890 0\n", + "85891 0\n", + "85892 0\n", + "85893 0\n", + "85894 0\n", + "85895 0\n", + "85896 0\n", + "85897 0\n", + "85898 0\n", + "85899 0\n", + "85900 0\n", + "85901 0\n", + "85902 0\n", + "85903 1\n", + "85904 0\n", + "85905 0\n", + "85906 0\n", + "85907 0\n", + "85908 0\n", + "85909 1\n", + "85910 0\n", + "85911 0\n", + "85912 0\n", + "85913 0\n", + "85914 0\n", + "85915 0\n", + "85916 0\n", + "85917 0\n", + "85918 0\n", + "85919 0\n", + "85920 0\n", + "85921 0\n", + "85922 0\n", + "85923 0\n", + "85924 0\n", + "85925 0\n", + "85926 0\n", + "85927 0\n", + "85928 0\n", + "85929 0\n", + "85930 0\n", + "85931 1\n", + "85932 0\n", + "85933 1\n", + "85934 0\n", + "85935 0\n", + "85936 0\n", + "85937 0\n", + "85938 0\n", + "85939 0\n", + "85940 0\n", + "85941 0\n", + "85942 0\n", + "85943 0\n", + "85944 0\n", + "85945 0\n", + "85946 0\n", + "85947 0\n", + "85948 0\n", + "85949 0\n", + "85950 0\n", + "85951 0\n", + "85952 0\n", + "85953 0\n", + "85954 0\n", + "85955 0\n", + "85956 0\n", + "85957 0\n", + "85958 0\n", + "85959 0\n", + "85960 0\n", + "85961 0\n", + "85962 0\n", + "85963 0\n", + "85964 0\n", + "85965 0\n", + "85966 0\n", + "85967 0\n", + "85968 0\n", + "85969 0\n", + "85970 0\n", + "85971 0\n", + "85972 0\n", + "85973 0\n", + "85974 0\n", + "85975 0\n", + "85976 0\n", + "85977 0\n", + "85978 0\n", + "85979 0\n", + "85980 0\n", + "85981 0\n", + "85982 0\n", + "85983 0\n", + "85984 0\n", + "85985 0\n", + "85986 0\n", + "85987 0\n", + "85988 0\n", + "85989 0\n", + "85990 0\n", + "85991 1\n", + "85992 0\n", + "85993 0\n", + "85994 0\n", + "85995 0\n", + "85996 0\n", + "85997 0\n", + "85998 0\n", + "85999 1\n", + "86000 0\n", + "86001 0\n", + "86002 0\n", + "86003 0\n", + "86004 0\n", + "86005 0\n", + "86006 0\n", + "86007 0\n", + "86008 0\n", + "86009 0\n", + "86010 0\n", + "86011 1\n", + "86012 0\n", + "86013 0\n", + "86014 0\n", + "86015 0\n", + "86016 0\n", + "86017 1\n", + "86018 0\n", + "86019 0\n", + "86020 0\n", + "86021 0\n", + "86022 0\n", + "86023 0\n", + "86024 0\n", + "86025 0\n", + "86026 0\n", + "86027 1\n", + "86028 0\n", + "86029 1\n", + "86030 0\n", + "86031 0\n", + "86032 0\n", + "86033 0\n", + "86034 0\n", + "86035 0\n", + "86036 0\n", + "86037 0\n", + "86038 0\n", + "86039 0\n", + "86040 0\n", + "86041 0\n", + "86042 0\n", + "86043 0\n", + "86044 0\n", + "86045 0\n", + "86046 0\n", + "86047 0\n", + "86048 0\n", + "86049 0\n", + "86050 0\n", + "86051 0\n", + "86052 0\n", + "86053 0\n", + "86054 0\n", + "86055 0\n", + "86056 0\n", + "86057 0\n", + "86058 0\n", + "86059 0\n", + "86060 0\n", + "86061 0\n", + "86062 0\n", + "86063 0\n", + "86064 0\n", + "86065 0\n", + "86066 0\n", + "86067 0\n", + "86068 0\n", + "86069 1\n", + "86070 0\n", + "86071 0\n", + "86072 0\n", + "86073 0\n", + "86074 0\n", + "86075 0\n", + "86076 0\n", + "86077 1\n", + "86078 0\n", + "86079 0\n", + "86080 0\n", + "86081 0\n", + "86082 0\n", + "86083 1\n", + "86084 0\n", + "86085 0\n", + "86086 0\n", + "86087 0\n", + "86088 0\n", + "86089 0\n", + "86090 0\n", + "86091 0\n", + "86092 0\n", + "86093 0\n", + "86094 0\n", + "86095 0\n", + "86096 0\n", + "86097 0\n", + "86098 0\n", + "86099 0\n", + "86100 0\n", + "86101 0\n", + "86102 0\n", + "86103 0\n", + "86104 0\n", + "86105 0\n", + "86106 0\n", + "86107 0\n", + "86108 0\n", + "86109 0\n", + "86110 0\n", + "86111 1\n", + "86112 0\n", + "86113 1\n", + "86114 0\n", + "86115 0\n", + "86116 0\n", + "86117 1\n", + "86118 0\n", + "86119 0\n", + "86120 0\n", + "86121 0\n", + "86122 0\n", + "86123 0\n", + "86124 0\n", + "86125 0\n", + "86126 0\n", + "86127 0\n", + "86128 0\n", + "86129 0\n", + "86130 0\n", + "86131 1\n", + "86132 0\n", + "86133 0\n", + "86134 0\n", + "86135 0\n", + "86136 0\n", + "86137 1\n", + "86138 0\n", + "86139 0\n", + "86140 0\n", + "86141 0\n", + "86142 0\n", + "86143 1\n", + "86144 0\n", + "86145 0\n", + "86146 0\n", + "86147 0\n", + "86148 0\n", + "86149 0\n", + "86150 0\n", + "86151 0\n", + "86152 0\n", + "86153 0\n", + "86154 0\n", + "86155 0\n", + "86156 0\n", + "86157 0\n", + "86158 0\n", + "86159 0\n", + "86160 0\n", + "86161 1\n", + "86162 0\n", + "86163 0\n", + "86164 0\n", + "86165 0\n", + "86166 0\n", + "86167 0\n", + "86168 0\n", + "86169 0\n", + "86170 0\n", + "86171 1\n", + "86172 0\n", + "86173 0\n", + "86174 0\n", + "86175 0\n", + "86176 0\n", + "86177 0\n", + "86178 0\n", + "86179 1\n", + "86180 0\n", + "86181 0\n", + "86182 0\n", + "86183 1\n", + "86184 0\n", + "86185 0\n", + "86186 0\n", + "86187 0\n", + "86188 0\n", + "86189 0\n", + "86190 0\n", + "86191 0\n", + "86192 0\n", + "86193 0\n", + "86194 0\n", + "86195 0\n", + "86196 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "86197 1\n", + "86198 0\n", + "86199 0\n", + "86200 0\n", + "86201 1\n", + "86202 0\n", + "86203 0\n", + "86204 0\n", + "86205 0\n", + "86206 0\n", + "86207 0\n", + "86208 0\n", + "86209 1\n", + "86210 0\n", + "86211 0\n", + "86212 0\n", + "86213 0\n", + "86214 0\n", + "86215 0\n", + "86216 0\n", + "86217 0\n", + "86218 0\n", + "86219 0\n", + "86220 0\n", + "86221 0\n", + "86222 0\n", + "86223 0\n", + "86224 0\n", + "86225 0\n", + "86226 0\n", + "86227 0\n", + "86228 0\n", + "86229 0\n", + "86230 0\n", + "86231 0\n", + "86232 0\n", + "86233 0\n", + "86234 0\n", + "86235 0\n", + "86236 0\n", + "86237 0\n", + "86238 0\n", + "86239 1\n", + "86240 0\n", + "86241 0\n", + "86242 0\n", + "86243 1\n", + "86244 0\n", + "86245 0\n", + "86246 0\n", + "86247 0\n", + "86248 0\n", + "86249 1\n", + "86250 0\n", + "86251 0\n", + "86252 0\n", + "86253 0\n", + "86254 0\n", + "86255 0\n", + "86256 0\n", + "86257 1\n", + "86258 0\n", + "86259 0\n", + "86260 0\n", + "86261 0\n", + "86262 0\n", + "86263 1\n", + "86264 0\n", + "86265 0\n", + "86266 0\n", + "86267 0\n", + "86268 0\n", + "86269 1\n", + "86270 0\n", + "86271 0\n", + "86272 0\n", + "86273 0\n", + "86274 0\n", + "86275 0\n", + "86276 0\n", + "86277 0\n", + "86278 0\n", + "86279 0\n", + "86280 0\n", + "86281 0\n", + "86282 0\n", + "86283 0\n", + "86284 0\n", + "86285 0\n", + "86286 0\n", + "86287 1\n", + "86288 0\n", + "86289 0\n", + "86290 0\n", + "86291 1\n", + "86292 0\n", + "86293 1\n", + "86294 0\n", + "86295 0\n", + "86296 0\n", + "86297 1\n", + "86298 0\n", + "86299 0\n", + "86300 0\n", + "86301 0\n", + "86302 0\n", + "86303 0\n", + "86304 0\n", + "86305 0\n", + "86306 0\n", + "86307 0\n", + "86308 0\n", + "86309 0\n", + "86310 0\n", + "86311 1\n", + "86312 0\n", + "86313 0\n", + "86314 0\n", + "86315 0\n", + "86316 0\n", + "86317 0\n", + "86318 0\n", + "86319 0\n", + "86320 0\n", + "86321 0\n", + "86322 0\n", + "86323 1\n", + "86324 0\n", + "86325 0\n", + "86326 0\n", + "86327 0\n", + "86328 0\n", + "86329 0\n", + "86330 0\n", + "86331 0\n", + "86332 0\n", + "86333 0\n", + "86334 0\n", + "86335 0\n", + "86336 0\n", + "86337 0\n", + "86338 0\n", + "86339 0\n", + "86340 0\n", + "86341 1\n", + "86342 0\n", + "86343 0\n", + "86344 0\n", + "86345 0\n", + "86346 0\n", + "86347 0\n", + "86348 0\n", + "86349 0\n", + "86350 0\n", + "86351 1\n", + "86352 0\n", + "86353 1\n", + "86354 0\n", + "86355 0\n", + "86356 0\n", + "86357 1\n", + "86358 0\n", + "86359 0\n", + "86360 0\n", + "86361 0\n", + "86362 0\n", + "86363 0\n", + "86364 0\n", + "86365 0\n", + "86366 0\n", + "86367 0\n", + "86368 0\n", + "86369 1\n", + "86370 0\n", + "86371 1\n", + "86372 0\n", + "86373 0\n", + "86374 0\n", + "86375 0\n", + "86376 0\n", + "86377 0\n", + "86378 0\n", + "86379 0\n", + "86380 0\n", + "86381 1\n", + "86382 0\n", + "86383 0\n", + "86384 0\n", + "86385 0\n", + "86386 0\n", + "86387 0\n", + "86388 0\n", + "86389 1\n", + "86390 0\n", + "86391 0\n", + "86392 0\n", + "86393 0\n", + "86394 0\n", + "86395 0\n", + "86396 0\n", + "86397 0\n", + "86398 0\n", + "86399 1\n", + "86400 0\n", + "86401 0\n", + "86402 0\n", + "86403 0\n", + "86404 0\n", + "86405 0\n", + "86406 0\n", + "86407 0\n", + "86408 0\n", + "86409 0\n", + "86410 0\n", + "86411 0\n", + "86412 0\n", + "86413 1\n", + "86414 0\n", + "86415 0\n", + "86416 0\n", + "86417 0\n", + "86418 0\n", + "86419 0\n", + "86420 0\n", + "86421 0\n", + "86422 0\n", + "86423 1\n", + "86424 0\n", + "86425 0\n", + "86426 0\n", + "86427 0\n", + "86428 0\n", + "86429 0\n", + "86430 0\n", + "86431 0\n", + "86432 0\n", + "86433 0\n", + "86434 0\n", + "86435 0\n", + "86436 0\n", + "86437 0\n", + "86438 0\n", + "86439 0\n", + "86440 0\n", + "86441 1\n", + "86442 0\n", + "86443 0\n", + "86444 0\n", + "86445 0\n", + "86446 0\n", + "86447 0\n", + "86448 0\n", + "86449 0\n", + "86450 0\n", + "86451 0\n", + "86452 0\n", + "86453 1\n", + "86454 0\n", + "86455 0\n", + "86456 0\n", + "86457 0\n", + "86458 0\n", + "86459 0\n", + "86460 0\n", + "86461 1\n", + "86462 0\n", + "86463 0\n", + "86464 0\n", + "86465 0\n", + "86466 0\n", + "86467 1\n", + "86468 0\n", + "86469 0\n", + "86470 0\n", + "86471 0\n", + "86472 0\n", + "86473 0\n", + "86474 0\n", + "86475 0\n", + "86476 0\n", + "86477 1\n", + "86478 0\n", + "86479 0\n", + "86480 0\n", + "86481 0\n", + "86482 0\n", + "86483 0\n", + "86484 0\n", + "86485 0\n", + "86486 0\n", + "86487 0\n", + "86488 0\n", + "86489 0\n", + "86490 0\n", + "86491 1\n", + "86492 0\n", + "86493 0\n", + "86494 0\n", + "86495 0\n", + "86496 0\n", + "86497 0\n", + "86498 0\n", + "86499 0\n", + "86500 0\n", + "86501 1\n", + "86502 0\n", + "86503 0\n", + "86504 0\n", + "86505 0\n", + "86506 0\n", + "86507 0\n", + "86508 0\n", + "86509 1\n", + "86510 0\n", + "86511 0\n", + "86512 0\n", + "86513 0\n", + "86514 0\n", + "86515 0\n", + "86516 0\n", + "86517 0\n", + "86518 0\n", + "86519 0\n", + "86520 0\n", + "86521 0\n", + "86522 0\n", + "86523 0\n", + "86524 0\n", + "86525 0\n", + "86526 0\n", + "86527 0\n", + "86528 0\n", + "86529 0\n", + "86530 0\n", + "86531 1\n", + "86532 0\n", + "86533 1\n", + "86534 0\n", + "86535 0\n", + "86536 0\n", + "86537 0\n", + "86538 0\n", + "86539 1\n", + "86540 0\n", + "86541 0\n", + "86542 0\n", + "86543 0\n", + "86544 0\n", + "86545 0\n", + "86546 0\n", + "86547 0\n", + "86548 0\n", + "86549 0\n", + "86550 0\n", + "86551 0\n", + "86552 0\n", + "86553 0\n", + "86554 0\n", + "86555 0\n", + "86556 0\n", + "86557 0\n", + "86558 0\n", + "86559 0\n", + "86560 0\n", + "86561 1\n", + "86562 0\n", + "86563 0\n", + "86564 0\n", + "86565 0\n", + "86566 0\n", + "86567 0\n", + "86568 0\n", + "86569 0\n", + "86570 0\n", + "86571 0\n", + "86572 0\n", + "86573 1\n", + "86574 0\n", + "86575 0\n", + "86576 0\n", + "86577 0\n", + "86578 0\n", + "86579 1\n", + "86580 0\n", + "86581 0\n", + "86582 0\n", + "86583 0\n", + "86584 0\n", + "86585 0\n", + "86586 0\n", + "86587 1\n", + "86588 0\n", + "86589 0\n", + "86590 0\n", + "86591 0\n", + "86592 0\n", + "86593 0\n", + "86594 0\n", + "86595 0\n", + "86596 0\n", + "86597 0\n", + "86598 0\n", + "86599 1\n", + "86600 0\n", + "86601 0\n", + "86602 0\n", + "86603 0\n", + "86604 0\n", + "86605 0\n", + "86606 0\n", + "86607 0\n", + "86608 0\n", + "86609 0\n", + "86610 0\n", + "86611 0\n", + "86612 0\n", + "86613 0\n", + "86614 0\n", + "86615 0\n", + "86616 0\n", + "86617 0\n", + "86618 0\n", + "86619 0\n", + "86620 0\n", + "86621 0\n", + "86622 0\n", + "86623 0\n", + "86624 0\n", + "86625 0\n", + "86626 0\n", + "86627 1\n", + "86628 0\n", + "86629 1\n", + "86630 0\n", + "86631 0\n", + "86632 0\n", + "86633 0\n", + "86634 0\n", + "86635 0\n", + "86636 0\n", + "86637 0\n", + "86638 0\n", + "86639 0\n", + "86640 0\n", + "86641 0\n", + "86642 0\n", + "86643 0\n", + "86644 0\n", + "86645 0\n", + "86646 0\n", + "86647 0\n", + "86648 0\n", + "86649 0\n", + "86650 0\n", + "86651 0\n", + "86652 0\n", + "86653 0\n", + "86654 0\n", + "86655 0\n", + "86656 0\n", + "86657 0\n", + "86658 0\n", + "86659 0\n", + "86660 0\n", + "86661 0\n", + "86662 0\n", + "86663 0\n", + "86664 0\n", + "86665 0\n", + "86666 0\n", + "86667 0\n", + "86668 0\n", + "86669 0\n", + "86670 0\n", + "86671 0\n", + "86672 0\n", + "86673 0\n", + "86674 0\n", + "86675 0\n", + "86676 0\n", + "86677 1\n", + "86678 0\n", + "86679 0\n", + "86680 0\n", + "86681 0\n", + "86682 0\n", + "86683 0\n", + "86684 0\n", + "86685 0\n", + "86686 0\n", + "86687 0\n", + "86688 0\n", + "86689 1\n", + "86690 0\n", + "86691 0\n", + "86692 0\n", + "86693 1\n", + "86694 0\n", + "86695 0\n", + "86696 0\n", + "86697 0\n", + "86698 0\n", + "86699 0\n", + "86700 0\n", + "86701 0\n", + "86702 0\n", + "86703 0\n", + "86704 0\n", + "86705 0\n", + "86706 0\n", + "86707 0\n", + "86708 0\n", + "86709 0\n", + "86710 0\n", + "86711 1\n", + "86712 0\n", + "86713 0\n", + "86714 0\n", + "86715 0\n", + "86716 0\n", + "86717 0\n", + "86718 0\n", + "86719 1\n", + "86720 0\n", + "86721 0\n", + "86722 0\n", + "86723 0\n", + "86724 0\n", + "86725 0\n", + "86726 0\n", + "86727 0\n", + "86728 0\n", + "86729 1\n", + "86730 0\n", + "86731 0\n", + "86732 0\n", + "86733 0\n", + "86734 0\n", + "86735 0\n", + "86736 0\n", + "86737 0\n", + "86738 0\n", + "86739 0\n", + "86740 0\n", + "86741 0\n", + "86742 0\n", + "86743 1\n", + "86744 0\n", + "86745 0\n", + "86746 0\n", + "86747 0\n", + "86748 0\n", + "86749 0\n", + "86750 0\n", + "86751 0\n", + "86752 0\n", + "86753 1\n", + "86754 0\n", + "86755 0\n", + "86756 0\n", + "86757 0\n", + "86758 0\n", + "86759 0\n", + "86760 0\n", + "86761 0\n", + "86762 0\n", + "86763 0\n", + "86764 0\n", + "86765 0\n", + "86766 0\n", + "86767 1\n", + "86768 0\n", + "86769 0\n", + "86770 0\n", + "86771 1\n", + "86772 0\n", + "86773 0\n", + "86774 0\n", + "86775 0\n", + "86776 0\n", + "86777 0\n", + "86778 0\n", + "86779 0\n", + "86780 0\n", + "86781 0\n", + "86782 0\n", + "86783 1\n", + "86784 0\n", + "86785 0\n", + "86786 0\n", + "86787 0\n", + "86788 0\n", + "86789 0\n", + "86790 0\n", + "86791 0\n", + "86792 0\n", + "86793 0\n", + "86794 0\n", + "86795 0\n", + "86796 0\n", + "86797 0\n", + "86798 0\n", + "86799 0\n", + "86800 0\n", + "86801 0\n", + "86802 0\n", + "86803 0\n", + "86804 0\n", + "86805 0\n", + "86806 0\n", + "86807 0\n", + "86808 0\n", + "86809 0\n", + "86810 0\n", + "86811 0\n", + "86812 0\n", + "86813 1\n", + "86814 0\n", + "86815 0\n", + "86816 0\n", + "86817 0\n", + "86818 0\n", + "86819 0\n", + "86820 0\n", + "86821 0\n", + "86822 0\n", + "86823 0\n", + "86824 0\n", + "86825 0\n", + "86826 0\n", + "86827 0\n", + "86828 0\n", + "86829 0\n", + "86830 0\n", + "86831 0\n", + "86832 0\n", + "86833 0\n", + "86834 0\n", + "86835 0\n", + "86836 0\n", + "86837 1\n", + "86838 0\n", + "86839 0\n", + "86840 0\n", + "86841 0\n", + "86842 0\n", + "86843 1\n", + "86844 0\n", + "86845 0\n", + "86846 0\n", + "86847 0\n", + "86848 0\n", + "86849 0\n", + "86850 0\n", + "86851 1\n", + "86852 0\n", + "86853 0\n", + "86854 0\n", + "86855 0\n", + "86856 0\n", + "86857 1\n", + "86858 0\n", + "86859 0\n", + "86860 0\n", + "86861 1\n", + "86862 0\n", + "86863 0\n", + "86864 0\n", + "86865 0\n", + "86866 0\n", + "86867 0\n", + "86868 0\n", + "86869 1\n", + "86870 0\n", + "86871 0\n", + "86872 0\n", + "86873 0\n", + "86874 0\n", + "86875 0\n", + "86876 0\n", + "86877 0\n", + "86878 0\n", + "86879 0\n", + "86880 0\n", + "86881 0\n", + "86882 0\n", + "86883 0\n", + "86884 0\n", + "86885 0\n", + "86886 0\n", + "86887 0\n", + "86888 0\n", + "86889 0\n", + "86890 0\n", + "86891 0\n", + "86892 0\n", + "86893 0\n", + "86894 0\n", + "86895 0\n", + "86896 0\n", + "86897 0\n", + "86898 0\n", + "86899 0\n", + "86900 0\n", + "86901 0\n", + "86902 0\n", + "86903 0\n", + "86904 0\n", + "86905 0\n", + "86906 0\n", + "86907 0\n", + "86908 0\n", + "86909 0\n", + "86910 0\n", + "86911 0\n", + "86912 0\n", + "86913 0\n", + "86914 0\n", + "86915 0\n", + "86916 0\n", + "86917 0\n", + "86918 0\n", + "86919 0\n", + "86920 0\n", + "86921 0\n", + "86922 0\n", + "86923 1\n", + "86924 0\n", + "86925 0\n", + "86926 0\n", + "86927 1\n", + "86928 0\n", + "86929 1\n", + "86930 0\n", + "86931 0\n", + "86932 0\n", + "86933 0\n", + "86934 0\n", + "86935 0\n", + "86936 0\n", + "86937 0\n", + "86938 0\n", + "86939 1\n", + "86940 0\n", + "86941 0\n", + "86942 0\n", + "86943 0\n", + "86944 0\n", + "86945 0\n", + "86946 0\n", + "86947 0\n", + "86948 0\n", + "86949 0\n", + "86950 0\n", + "86951 1\n", + "86952 0\n", + "86953 0\n", + "86954 0\n", + "86955 0\n", + "86956 0\n", + "86957 0\n", + "86958 0\n", + "86959 1\n", + "86960 0\n", + "86961 0\n", + "86962 0\n", + "86963 0\n", + "86964 0\n", + "86965 0\n", + "86966 0\n", + "86967 0\n", + "86968 0\n", + "86969 1\n", + "86970 0\n", + "86971 0\n", + "86972 0\n", + "86973 0\n", + "86974 0\n", + "86975 0\n", + "86976 0\n", + "86977 0\n", + "86978 0\n", + "86979 0\n", + "86980 0\n", + "86981 1\n", + "86982 0\n", + "86983 0\n", + "86984 0\n", + "86985 0\n", + "86986 0\n", + "86987 0\n", + "86988 0\n", + "86989 0\n", + "86990 0\n", + "86991 0\n", + "86992 0\n", + "86993 1\n", + "86994 0\n", + "86995 0\n", + "86996 0\n", + "86997 0\n", + "86998 0\n", + "86999 0\n", + "87000 0\n", + "87001 0\n", + "87002 0\n", + "87003 0\n", + "87004 0\n", + "87005 0\n", + "87006 0\n", + "87007 0\n", + "87008 0\n", + "87009 0\n", + "87010 0\n", + "87011 1\n", + "87012 0\n", + "87013 1\n", + "87014 0\n", + "87015 0\n", + "87016 0\n", + "87017 0\n", + "87018 0\n", + "87019 0\n", + "87020 0\n", + "87021 0\n", + "87022 0\n", + "87023 0\n", + "87024 0\n", + "87025 0\n", + "87026 0\n", + "87027 0\n", + "87028 0\n", + "87029 0\n", + "87030 0\n", + "87031 0\n", + "87032 0\n", + "87033 0\n", + "87034 0\n", + "87035 0\n", + "87036 0\n", + "87037 1\n", + "87038 0\n", + "87039 0\n", + "87040 0\n", + "87041 1\n", + "87042 0\n", + "87043 0\n", + "87044 0\n", + "87045 0\n", + "87046 0\n", + "87047 0\n", + "87048 0\n", + "87049 1\n", + "87050 0\n", + "87051 0\n", + "87052 0\n", + "87053 0\n", + "87054 0\n", + "87055 0\n", + "87056 0\n", + "87057 0\n", + "87058 0\n", + "87059 0\n", + "87060 0\n", + "87061 0\n", + "87062 0\n", + "87063 0\n", + "87064 0\n", + "87065 0\n", + "87066 0\n", + "87067 0\n", + "87068 0\n", + "87069 0\n", + "87070 0\n", + "87071 1\n", + "87072 0\n", + "87073 0\n", + "87074 0\n", + "87075 0\n", + "87076 0\n", + "87077 0\n", + "87078 0\n", + "87079 0\n", + "87080 0\n", + "87081 0\n", + "87082 0\n", + "87083 1\n", + "87084 0\n", + "87085 0\n", + "87086 0\n", + "87087 0\n", + "87088 0\n", + "87089 0\n", + "87090 0\n", + "87091 0\n", + "87092 0\n", + "87093 0\n", + "87094 0\n", + "87095 0\n", + "87096 0\n", + "87097 0\n", + "87098 0\n", + "87099 0\n", + "87100 0\n", + "87101 0\n", + "87102 0\n", + "87103 1\n", + "87104 0\n", + "87105 0\n", + "87106 0\n", + "87107 1\n", + "87108 0\n", + "87109 0\n", + "87110 0\n", + "87111 0\n", + "87112 0\n", + "87113 0\n", + "87114 0\n", + "87115 0\n", + "87116 0\n", + "87117 0\n", + "87118 0\n", + "87119 1\n", + "87120 0\n", + "87121 1\n", + "87122 0\n", + "87123 0\n", + "87124 0\n", + "87125 0\n", + "87126 0\n", + "87127 0\n", + "87128 0\n", + "87129 0\n", + "87130 0\n", + "87131 0\n", + "87132 0\n", + "87133 1\n", + "87134 0\n", + "87135 0\n", + "87136 0\n", + "87137 0\n", + "87138 0\n", + "87139 0\n", + "87140 0\n", + "87141 0\n", + "87142 0\n", + "87143 0\n", + "87144 0\n", + "87145 0\n", + "87146 0\n", + "87147 0\n", + "87148 0\n", + "87149 1\n", + "87150 0\n", + "87151 1\n", + "87152 0\n", + "87153 0\n", + "87154 0\n", + "87155 0\n", + "87156 0\n", + "87157 0\n", + "87158 0\n", + "87159 0\n", + "87160 0\n", + "87161 0\n", + "87162 0\n", + "87163 0\n", + "87164 0\n", + "87165 0\n", + "87166 0\n", + "87167 0\n", + "87168 0\n", + "87169 0\n", + "87170 0\n", + "87171 0\n", + "87172 0\n", + "87173 0\n", + "87174 0\n", + "87175 0\n", + "87176 0\n", + "87177 0\n", + "87178 0\n", + "87179 1\n", + "87180 0\n", + "87181 1\n", + "87182 0\n", + "87183 0\n", + "87184 0\n", + "87185 0\n", + "87186 0\n", + "87187 1\n", + "87188 0\n", + "87189 0\n", + "87190 0\n", + "87191 0\n", + "87192 0\n", + "87193 0\n", + "87194 0\n", + "87195 0\n", + "87196 0\n", + "87197 0\n", + "87198 0\n", + "87199 0\n", + "87200 0\n", + "87201 0\n", + "87202 0\n", + "87203 0\n", + "87204 0\n", + "87205 0\n", + "87206 0\n", + "87207 0\n", + "87208 0\n", + "87209 0\n", + "87210 0\n", + "87211 1\n", + "87212 0\n", + "87213 0\n", + "87214 0\n", + "87215 0\n", + "87216 0\n", + "87217 0\n", + "87218 0\n", + "87219 0\n", + "87220 0\n", + "87221 1\n", + "87222 0\n", + "87223 1\n", + "87224 0\n", + "87225 0\n", + "87226 0\n", + "87227 0\n", + "87228 0\n", + "87229 0\n", + "87230 0\n", + "87231 0\n", + "87232 0\n", + "87233 0\n", + "87234 0\n", + "87235 0\n", + "87236 0\n", + "87237 0\n", + "87238 0\n", + "87239 0\n", + "87240 0\n", + "87241 0\n", + "87242 0\n", + "87243 0\n", + "87244 0\n", + "87245 0\n", + "87246 0\n", + "87247 0\n", + "87248 0\n", + "87249 0\n", + "87250 0\n", + "87251 1\n", + "87252 0\n", + "87253 1\n", + "87254 0\n", + "87255 0\n", + "87256 0\n", + "87257 1\n", + "87258 0\n", + "87259 0\n", + "87260 0\n", + "87261 0\n", + "87262 0\n", + "87263 0\n", + "87264 0\n", + "87265 0\n", + "87266 0\n", + "87267 0\n", + "87268 0\n", + "87269 0\n", + "87270 0\n", + "87271 0\n", + "87272 0\n", + "87273 0\n", + "87274 0\n", + "87275 0\n", + "87276 0\n", + "87277 1\n", + "87278 0\n", + "87279 0\n", + "87280 0\n", + "87281 1\n", + "87282 0\n", + "87283 0\n", + "87284 0\n", + "87285 0\n", + "87286 0\n", + "87287 0\n", + "87288 0\n", + "87289 0\n", + "87290 0\n", + "87291 0\n", + "87292 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "87293 1\n", + "87294 0\n", + "87295 0\n", + "87296 0\n", + "87297 0\n", + "87298 0\n", + "87299 1\n", + "87300 0\n", + "87301 0\n", + "87302 0\n", + "87303 0\n", + "87304 0\n", + "87305 0\n", + "87306 0\n", + "87307 0\n", + "87308 0\n", + "87309 0\n", + "87310 0\n", + "87311 0\n", + "87312 0\n", + "87313 1\n", + "87314 0\n", + "87315 0\n", + "87316 0\n", + "87317 1\n", + "87318 0\n", + "87319 0\n", + "87320 0\n", + "87321 0\n", + "87322 0\n", + "87323 1\n", + "87324 0\n", + "87325 0\n", + "87326 0\n", + "87327 0\n", + "87328 0\n", + "87329 0\n", + "87330 0\n", + "87331 0\n", + "87332 0\n", + "87333 0\n", + "87334 0\n", + "87335 0\n", + "87336 0\n", + "87337 1\n", + "87338 0\n", + "87339 0\n", + "87340 0\n", + "87341 0\n", + "87342 0\n", + "87343 0\n", + "87344 0\n", + "87345 0\n", + "87346 0\n", + "87347 0\n", + "87348 0\n", + "87349 0\n", + "87350 0\n", + "87351 0\n", + "87352 0\n", + "87353 0\n", + "87354 0\n", + "87355 0\n", + "87356 0\n", + "87357 0\n", + "87358 0\n", + "87359 1\n", + "87360 0\n", + "87361 0\n", + "87362 0\n", + "87363 0\n", + "87364 0\n", + "87365 0\n", + "87366 0\n", + "87367 0\n", + "87368 0\n", + "87369 0\n", + "87370 0\n", + "87371 0\n", + "87372 0\n", + "87373 0\n", + "87374 0\n", + "87375 0\n", + "87376 0\n", + "87377 0\n", + "87378 0\n", + "87379 0\n", + "87380 0\n", + "87381 0\n", + "87382 0\n", + "87383 1\n", + "87384 0\n", + "87385 0\n", + "87386 0\n", + "87387 0\n", + "87388 0\n", + "87389 0\n", + "87390 0\n", + "87391 0\n", + "87392 0\n", + "87393 0\n", + "87394 0\n", + "87395 0\n", + "87396 0\n", + "87397 0\n", + "87398 0\n", + "87399 0\n", + "87400 0\n", + "87401 0\n", + "87402 0\n", + "87403 1\n", + "87404 0\n", + "87405 0\n", + "87406 0\n", + "87407 1\n", + "87408 0\n", + "87409 0\n", + "87410 0\n", + "87411 0\n", + "87412 0\n", + "87413 0\n", + "87414 0\n", + "87415 0\n", + "87416 0\n", + "87417 0\n", + "87418 0\n", + "87419 0\n", + "87420 0\n", + "87421 1\n", + "87422 0\n", + "87423 0\n", + "87424 0\n", + "87425 0\n", + "87426 0\n", + "87427 1\n", + "87428 0\n", + "87429 0\n", + "87430 0\n", + "87431 0\n", + "87432 0\n", + "87433 1\n", + "87434 0\n", + "87435 0\n", + "87436 0\n", + "87437 0\n", + "87438 0\n", + "87439 0\n", + "87440 0\n", + "87441 0\n", + "87442 0\n", + "87443 1\n", + "87444 0\n", + "87445 0\n", + "87446 0\n", + "87447 0\n", + "87448 0\n", + "87449 0\n", + "87450 0\n", + "87451 0\n", + "87452 0\n", + "87453 0\n", + "87454 0\n", + "87455 0\n", + "87456 0\n", + "87457 0\n", + "87458 0\n", + "87459 0\n", + "87460 0\n", + "87461 0\n", + "87462 0\n", + "87463 0\n", + "87464 0\n", + "87465 0\n", + "87466 0\n", + "87467 0\n", + "87468 0\n", + "87469 0\n", + "87470 0\n", + "87471 0\n", + "87472 0\n", + "87473 1\n", + "87474 0\n", + "87475 0\n", + "87476 0\n", + "87477 0\n", + "87478 0\n", + "87479 0\n", + "87480 0\n", + "87481 1\n", + "87482 0\n", + "87483 0\n", + "87484 0\n", + "87485 0\n", + "87486 0\n", + "87487 0\n", + "87488 0\n", + "87489 0\n", + "87490 0\n", + "87491 1\n", + "87492 0\n", + "87493 0\n", + "87494 0\n", + "87495 0\n", + "87496 0\n", + "87497 0\n", + "87498 0\n", + "87499 0\n", + "87500 0\n", + "87501 0\n", + "87502 0\n", + "87503 0\n", + "87504 0\n", + "87505 0\n", + "87506 0\n", + "87507 0\n", + "87508 0\n", + "87509 1\n", + "87510 0\n", + "87511 1\n", + "87512 0\n", + "87513 0\n", + "87514 0\n", + "87515 0\n", + "87516 0\n", + "87517 1\n", + "87518 0\n", + "87519 0\n", + "87520 0\n", + "87521 0\n", + "87522 0\n", + "87523 1\n", + "87524 0\n", + "87525 0\n", + "87526 0\n", + "87527 0\n", + "87528 0\n", + "87529 0\n", + "87530 0\n", + "87531 0\n", + "87532 0\n", + "87533 0\n", + "87534 0\n", + "87535 0\n", + "87536 0\n", + "87537 0\n", + "87538 0\n", + "87539 1\n", + "87540 0\n", + "87541 1\n", + "87542 0\n", + "87543 0\n", + "87544 0\n", + "87545 0\n", + "87546 0\n", + "87547 1\n", + "87548 0\n", + "87549 0\n", + "87550 0\n", + "87551 0\n", + "87552 0\n", + "87553 1\n", + "87554 0\n", + "87555 0\n", + "87556 0\n", + "87557 1\n", + "87558 0\n", + "87559 1\n", + "87560 0\n", + "87561 0\n", + "87562 0\n", + "87563 0\n", + "87564 0\n", + "87565 0\n", + "87566 0\n", + "87567 0\n", + "87568 0\n", + "87569 0\n", + "87570 0\n", + "87571 0\n", + "87572 0\n", + "87573 0\n", + "87574 0\n", + "87575 0\n", + "87576 0\n", + "87577 0\n", + "87578 0\n", + "87579 0\n", + "87580 0\n", + "87581 0\n", + "87582 0\n", + "87583 1\n", + "87584 0\n", + "87585 0\n", + "87586 0\n", + "87587 1\n", + "87588 0\n", + "87589 1\n", + "87590 0\n", + "87591 0\n", + "87592 0\n", + "87593 0\n", + "87594 0\n", + "87595 0\n", + "87596 0\n", + "87597 0\n", + "87598 0\n", + "87599 0\n", + "87600 0\n", + "87601 0\n", + "87602 0\n", + "87603 0\n", + "87604 0\n", + "87605 0\n", + "87606 0\n", + "87607 0\n", + "87608 0\n", + "87609 0\n", + "87610 0\n", + "87611 0\n", + "87612 0\n", + "87613 1\n", + "87614 0\n", + "87615 0\n", + "87616 0\n", + "87617 0\n", + "87618 0\n", + "87619 0\n", + "87620 0\n", + "87621 0\n", + "87622 0\n", + "87623 1\n", + "87624 0\n", + "87625 0\n", + "87626 0\n", + "87627 0\n", + "87628 0\n", + "87629 1\n", + "87630 0\n", + "87631 1\n", + "87632 0\n", + "87633 0\n", + "87634 0\n", + "87635 0\n", + "87636 0\n", + "87637 0\n", + "87638 0\n", + "87639 0\n", + "87640 0\n", + "87641 1\n", + "87642 0\n", + "87643 1\n", + "87644 0\n", + "87645 0\n", + "87646 0\n", + "87647 0\n", + "87648 0\n", + "87649 1\n", + "87650 0\n", + "87651 0\n", + "87652 0\n", + "87653 0\n", + "87654 0\n", + "87655 0\n", + "87656 0\n", + "87657 0\n", + "87658 0\n", + "87659 0\n", + "87660 0\n", + "87661 0\n", + "87662 0\n", + "87663 0\n", + "87664 0\n", + "87665 0\n", + "87666 0\n", + "87667 0\n", + "87668 0\n", + "87669 0\n", + "87670 0\n", + "87671 1\n", + "87672 0\n", + "87673 0\n", + "87674 0\n", + "87675 0\n", + "87676 0\n", + "87677 0\n", + "87678 0\n", + "87679 1\n", + "87680 0\n", + "87681 0\n", + "87682 0\n", + "87683 1\n", + "87684 0\n", + "87685 0\n", + "87686 0\n", + "87687 0\n", + "87688 0\n", + "87689 0\n", + "87690 0\n", + "87691 1\n", + "87692 0\n", + "87693 0\n", + "87694 0\n", + "87695 0\n", + "87696 0\n", + "87697 1\n", + "87698 0\n", + "87699 0\n", + "87700 0\n", + "87701 1\n", + "87702 0\n", + "87703 0\n", + "87704 0\n", + "87705 0\n", + "87706 0\n", + "87707 0\n", + "87708 0\n", + "87709 0\n", + "87710 0\n", + "87711 0\n", + "87712 0\n", + "87713 0\n", + "87714 0\n", + "87715 0\n", + "87716 0\n", + "87717 0\n", + "87718 0\n", + "87719 1\n", + "87720 0\n", + "87721 1\n", + "87722 0\n", + "87723 0\n", + "87724 0\n", + "87725 0\n", + "87726 0\n", + "87727 0\n", + "87728 0\n", + "87729 0\n", + "87730 0\n", + "87731 0\n", + "87732 0\n", + "87733 0\n", + "87734 0\n", + "87735 0\n", + "87736 0\n", + "87737 0\n", + "87738 0\n", + "87739 1\n", + "87740 0\n", + "87741 0\n", + "87742 0\n", + "87743 1\n", + "87744 0\n", + "87745 0\n", + "87746 0\n", + "87747 0\n", + "87748 0\n", + "87749 0\n", + "87750 0\n", + "87751 1\n", + "87752 0\n", + "87753 0\n", + "87754 0\n", + "87755 0\n", + "87756 0\n", + "87757 0\n", + "87758 0\n", + "87759 0\n", + "87760 0\n", + "87761 0\n", + "87762 0\n", + "87763 0\n", + "87764 0\n", + "87765 0\n", + "87766 0\n", + "87767 1\n", + "87768 0\n", + "87769 0\n", + "87770 0\n", + "87771 0\n", + "87772 0\n", + "87773 0\n", + "87774 0\n", + "87775 0\n", + "87776 0\n", + "87777 0\n", + "87778 0\n", + "87779 0\n", + "87780 0\n", + "87781 0\n", + "87782 0\n", + "87783 0\n", + "87784 0\n", + "87785 0\n", + "87786 0\n", + "87787 0\n", + "87788 0\n", + "87789 0\n", + "87790 0\n", + "87791 0\n", + "87792 0\n", + "87793 1\n", + "87794 0\n", + "87795 0\n", + "87796 0\n", + "87797 1\n", + "87798 0\n", + "87799 0\n", + "87800 0\n", + "87801 0\n", + "87802 0\n", + "87803 1\n", + "87804 0\n", + "87805 0\n", + "87806 0\n", + "87807 0\n", + "87808 0\n", + "87809 0\n", + "87810 0\n", + "87811 1\n", + "87812 0\n", + "87813 0\n", + "87814 0\n", + "87815 0\n", + "87816 0\n", + "87817 0\n", + "87818 0\n", + "87819 0\n", + "87820 0\n", + "87821 0\n", + "87822 0\n", + "87823 0\n", + "87824 0\n", + "87825 0\n", + "87826 0\n", + "87827 0\n", + "87828 0\n", + "87829 0\n", + "87830 0\n", + "87831 0\n", + "87832 0\n", + "87833 1\n", + "87834 0\n", + "87835 0\n", + "87836 0\n", + "87837 0\n", + "87838 0\n", + "87839 0\n", + "87840 0\n", + "87841 0\n", + "87842 0\n", + "87843 0\n", + "87844 0\n", + "87845 0\n", + "87846 0\n", + "87847 0\n", + "87848 0\n", + "87849 0\n", + "87850 0\n", + "87851 0\n", + "87852 0\n", + "87853 1\n", + "87854 0\n", + "87855 0\n", + "87856 0\n", + "87857 0\n", + "87858 0\n", + "87859 0\n", + "87860 0\n", + "87861 0\n", + "87862 0\n", + "87863 0\n", + "87864 0\n", + "87865 0\n", + "87866 0\n", + "87867 0\n", + "87868 0\n", + "87869 1\n", + "87870 0\n", + "87871 0\n", + "87872 0\n", + "87873 0\n", + "87874 0\n", + "87875 0\n", + "87876 0\n", + "87877 1\n", + "87878 0\n", + "87879 0\n", + "87880 0\n", + "87881 1\n", + "87882 0\n", + "87883 0\n", + "87884 0\n", + "87885 0\n", + "87886 0\n", + "87887 1\n", + "87888 0\n", + "87889 0\n", + "87890 0\n", + "87891 0\n", + "87892 0\n", + "87893 0\n", + "87894 0\n", + "87895 0\n", + "87896 0\n", + "87897 0\n", + "87898 0\n", + "87899 0\n", + "87900 0\n", + "87901 0\n", + "87902 0\n", + "87903 0\n", + "87904 0\n", + "87905 0\n", + "87906 0\n", + "87907 0\n", + "87908 0\n", + "87909 0\n", + "87910 0\n", + "87911 1\n", + "87912 0\n", + "87913 0\n", + "87914 0\n", + "87915 0\n", + "87916 0\n", + "87917 1\n", + "87918 0\n", + "87919 0\n", + "87920 0\n", + "87921 0\n", + "87922 0\n", + "87923 0\n", + "87924 0\n", + "87925 0\n", + "87926 0\n", + "87927 0\n", + "87928 0\n", + "87929 0\n", + "87930 0\n", + "87931 1\n", + "87932 0\n", + "87933 0\n", + "87934 0\n", + "87935 0\n", + "87936 0\n", + "87937 0\n", + "87938 0\n", + "87939 0\n", + "87940 0\n", + "87941 0\n", + "87942 0\n", + "87943 1\n", + "87944 0\n", + "87945 0\n", + "87946 0\n", + "87947 0\n", + "87948 0\n", + "87949 0\n", + "87950 0\n", + "87951 0\n", + "87952 0\n", + "87953 0\n", + "87954 0\n", + "87955 0\n", + "87956 0\n", + "87957 0\n", + "87958 0\n", + "87959 1\n", + "87960 0\n", + "87961 1\n", + "87962 0\n", + "87963 0\n", + "87964 0\n", + "87965 0\n", + "87966 0\n", + "87967 0\n", + "87968 0\n", + "87969 0\n", + "87970 0\n", + "87971 0\n", + "87972 0\n", + "87973 1\n", + "87974 0\n", + "87975 0\n", + "87976 0\n", + "87977 1\n", + "87978 0\n", + "87979 0\n", + "87980 0\n", + "87981 0\n", + "87982 0\n", + "87983 0\n", + "87984 0\n", + "87985 0\n", + "87986 0\n", + "87987 0\n", + "87988 0\n", + "87989 0\n", + "87990 0\n", + "87991 1\n", + "87992 0\n", + "87993 0\n", + "87994 0\n", + "87995 0\n", + "87996 0\n", + "87997 0\n", + "87998 0\n", + "87999 0\n", + "88000 0\n", + "88001 1\n", + "88002 0\n", + "88003 1\n", + "88004 0\n", + "88005 0\n", + "88006 0\n", + "88007 1\n", + "88008 0\n", + "88009 0\n", + "88010 0\n", + "88011 0\n", + "88012 0\n", + "88013 0\n", + "88014 0\n", + "88015 0\n", + "88016 0\n", + "88017 0\n", + "88018 0\n", + "88019 1\n", + "88020 0\n", + "88021 0\n", + "88022 0\n", + "88023 0\n", + "88024 0\n", + "88025 0\n", + "88026 0\n", + "88027 0\n", + "88028 0\n", + "88029 0\n", + "88030 0\n", + "88031 0\n", + "88032 0\n", + "88033 0\n", + "88034 0\n", + "88035 0\n", + "88036 0\n", + "88037 1\n", + "88038 0\n", + "88039 0\n", + "88040 0\n", + "88041 0\n", + "88042 0\n", + "88043 0\n", + "88044 0\n", + "88045 0\n", + "88046 0\n", + "88047 0\n", + "88048 0\n", + "88049 0\n", + "88050 0\n", + "88051 0\n", + "88052 0\n", + "88053 0\n", + "88054 0\n", + "88055 0\n", + "88056 0\n", + "88057 0\n", + "88058 0\n", + "88059 0\n", + "88060 0\n", + "88061 0\n", + "88062 0\n", + "88063 0\n", + "88064 0\n", + "88065 0\n", + "88066 0\n", + "88067 0\n", + "88068 0\n", + "88069 1\n", + "88070 0\n", + "88071 0\n", + "88072 0\n", + "88073 0\n", + "88074 0\n", + "88075 0\n", + "88076 0\n", + "88077 0\n", + "88078 0\n", + "88079 1\n", + "88080 0\n", + "88081 0\n", + "88082 0\n", + "88083 0\n", + "88084 0\n", + "88085 0\n", + "88086 0\n", + "88087 0\n", + "88088 0\n", + "88089 0\n", + "88090 0\n", + "88091 0\n", + "88092 0\n", + "88093 1\n", + "88094 0\n", + "88095 0\n", + "88096 0\n", + "88097 0\n", + "88098 0\n", + "88099 0\n", + "88100 0\n", + "88101 0\n", + "88102 0\n", + "88103 0\n", + "88104 0\n", + "88105 0\n", + "88106 0\n", + "88107 0\n", + "88108 0\n", + "88109 0\n", + "88110 0\n", + "88111 0\n", + "88112 0\n", + "88113 0\n", + "88114 0\n", + "88115 0\n", + "88116 0\n", + "88117 1\n", + "88118 0\n", + "88119 0\n", + "88120 0\n", + "88121 0\n", + "88122 0\n", + "88123 0\n", + "88124 0\n", + "88125 0\n", + "88126 0\n", + "88127 0\n", + "88128 0\n", + "88129 1\n", + "88130 0\n", + "88131 0\n", + "88132 0\n", + "88133 0\n", + "88134 0\n", + "88135 0\n", + "88136 0\n", + "88137 0\n", + "88138 0\n", + "88139 0\n", + "88140 0\n", + "88141 0\n", + "88142 0\n", + "88143 0\n", + "88144 0\n", + "88145 0\n", + "88146 0\n", + "88147 0\n", + "88148 0\n", + "88149 0\n", + "88150 0\n", + "88151 0\n", + "88152 0\n", + "88153 0\n", + "88154 0\n", + "88155 0\n", + "88156 0\n", + "88157 0\n", + "88158 0\n", + "88159 0\n", + "88160 0\n", + "88161 0\n", + "88162 0\n", + "88163 0\n", + "88164 0\n", + "88165 0\n", + "88166 0\n", + "88167 0\n", + "88168 0\n", + "88169 1\n", + "88170 0\n", + "88171 0\n", + "88172 0\n", + "88173 0\n", + "88174 0\n", + "88175 0\n", + "88176 0\n", + "88177 1\n", + "88178 0\n", + "88179 0\n", + "88180 0\n", + "88181 0\n", + "88182 0\n", + "88183 0\n", + "88184 0\n", + "88185 0\n", + "88186 0\n", + "88187 0\n", + "88188 0\n", + "88189 0\n", + "88190 0\n", + "88191 0\n", + "88192 0\n", + "88193 0\n", + "88194 0\n", + "88195 0\n", + "88196 0\n", + "88197 0\n", + "88198 0\n", + "88199 0\n", + "88200 0\n", + "88201 0\n", + "88202 0\n", + "88203 0\n", + "88204 0\n", + "88205 0\n", + "88206 0\n", + "88207 0\n", + "88208 0\n", + "88209 0\n", + "88210 0\n", + "88211 1\n", + "88212 0\n", + "88213 0\n", + "88214 0\n", + "88215 0\n", + "88216 0\n", + "88217 0\n", + "88218 0\n", + "88219 0\n", + "88220 0\n", + "88221 0\n", + "88222 0\n", + "88223 1\n", + "88224 0\n", + "88225 0\n", + "88226 0\n", + "88227 0\n", + "88228 0\n", + "88229 0\n", + "88230 0\n", + "88231 0\n", + "88232 0\n", + "88233 0\n", + "88234 0\n", + "88235 0\n", + "88236 0\n", + "88237 1\n", + "88238 0\n", + "88239 0\n", + "88240 0\n", + "88241 1\n", + "88242 0\n", + "88243 0\n", + "88244 0\n", + "88245 0\n", + "88246 0\n", + "88247 0\n", + "88248 0\n", + "88249 0\n", + "88250 0\n", + "88251 0\n", + "88252 0\n", + "88253 0\n", + "88254 0\n", + "88255 0\n", + "88256 0\n", + "88257 0\n", + "88258 0\n", + "88259 1\n", + "88260 0\n", + "88261 1\n", + "88262 0\n", + "88263 0\n", + "88264 0\n", + "88265 0\n", + "88266 0\n", + "88267 0\n", + "88268 0\n", + "88269 0\n", + "88270 0\n", + "88271 0\n", + "88272 0\n", + "88273 0\n", + "88274 0\n", + "88275 0\n", + "88276 0\n", + "88277 0\n", + "88278 0\n", + "88279 0\n", + "88280 0\n", + "88281 0\n", + "88282 0\n", + "88283 0\n", + "88284 0\n", + "88285 0\n", + "88286 0\n", + "88287 0\n", + "88288 0\n", + "88289 1\n", + "88290 0\n", + "88291 0\n", + "88292 0\n", + "88293 0\n", + "88294 0\n", + "88295 0\n", + "88296 0\n", + "88297 0\n", + "88298 0\n", + "88299 0\n", + "88300 0\n", + "88301 1\n", + "88302 0\n", + "88303 0\n", + "88304 0\n", + "88305 0\n", + "88306 0\n", + "88307 0\n", + "88308 0\n", + "88309 0\n", + "88310 0\n", + "88311 0\n", + "88312 0\n", + "88313 0\n", + "88314 0\n", + "88315 0\n", + "88316 0\n", + "88317 0\n", + "88318 0\n", + "88319 0\n", + "88320 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "88321 1\n", + "88322 0\n", + "88323 0\n", + "88324 0\n", + "88325 0\n", + "88326 0\n", + "88327 1\n", + "88328 0\n", + "88329 0\n", + "88330 0\n", + "88331 0\n", + "88332 0\n", + "88333 0\n", + "88334 0\n", + "88335 0\n", + "88336 0\n", + "88337 1\n", + "88338 0\n", + "88339 1\n", + "88340 0\n", + "88341 0\n", + "88342 0\n", + "88343 0\n", + "88344 0\n", + "88345 0\n", + "88346 0\n", + "88347 0\n", + "88348 0\n", + "88349 0\n", + "88350 0\n", + "88351 0\n", + "88352 0\n", + "88353 0\n", + "88354 0\n", + "88355 0\n", + "88356 0\n", + "88357 0\n", + "88358 0\n", + "88359 0\n", + "88360 0\n", + "88361 0\n", + "88362 0\n", + "88363 0\n", + "88364 0\n", + "88365 0\n", + "88366 0\n", + "88367 0\n", + "88368 0\n", + "88369 0\n", + "88370 0\n", + "88371 0\n", + "88372 0\n", + "88373 0\n", + "88374 0\n", + "88375 0\n", + "88376 0\n", + "88377 0\n", + "88378 0\n", + "88379 1\n", + "88380 0\n", + "88381 0\n", + "88382 0\n", + "88383 0\n", + "88384 0\n", + "88385 0\n", + "88386 0\n", + "88387 0\n", + "88388 0\n", + "88389 0\n", + "88390 0\n", + "88391 0\n", + "88392 0\n", + "88393 0\n", + "88394 0\n", + "88395 0\n", + "88396 0\n", + "88397 1\n", + "88398 0\n", + "88399 0\n", + "88400 0\n", + "88401 0\n", + "88402 0\n", + "88403 0\n", + "88404 0\n", + "88405 0\n", + "88406 0\n", + "88407 0\n", + "88408 0\n", + "88409 0\n", + "88410 0\n", + "88411 1\n", + "88412 0\n", + "88413 0\n", + "88414 0\n", + "88415 0\n", + "88416 0\n", + "88417 0\n", + "88418 0\n", + "88419 0\n", + "88420 0\n", + "88421 0\n", + "88422 0\n", + "88423 1\n", + "88424 0\n", + "88425 0\n", + "88426 0\n", + "88427 1\n", + "88428 0\n", + "88429 0\n", + "88430 0\n", + "88431 0\n", + "88432 0\n", + "88433 0\n", + "88434 0\n", + "88435 0\n", + "88436 0\n", + "88437 0\n", + "88438 0\n", + "88439 0\n", + "88440 0\n", + "88441 0\n", + "88442 0\n", + "88443 0\n", + "88444 0\n", + "88445 0\n", + "88446 0\n", + "88447 0\n", + "88448 0\n", + "88449 0\n", + "88450 0\n", + "88451 0\n", + "88452 0\n", + "88453 0\n", + "88454 0\n", + "88455 0\n", + "88456 0\n", + "88457 0\n", + "88458 0\n", + "88459 0\n", + "88460 0\n", + "88461 0\n", + "88462 0\n", + "88463 1\n", + "88464 0\n", + "88465 0\n", + "88466 0\n", + "88467 0\n", + "88468 0\n", + "88469 1\n", + "88470 0\n", + "88471 1\n", + "88472 0\n", + "88473 0\n", + "88474 0\n", + "88475 0\n", + "88476 0\n", + "88477 0\n", + "88478 0\n", + "88479 0\n", + "88480 0\n", + "88481 0\n", + "88482 0\n", + "88483 0\n", + "88484 0\n", + "88485 0\n", + "88486 0\n", + "88487 0\n", + "88488 0\n", + "88489 0\n", + "88490 0\n", + "88491 0\n", + "88492 0\n", + "88493 1\n", + "88494 0\n", + "88495 0\n", + "88496 0\n", + "88497 0\n", + "88498 0\n", + "88499 1\n", + "88500 0\n", + "88501 0\n", + "88502 0\n", + "88503 0\n", + "88504 0\n", + "88505 0\n", + "88506 0\n", + "88507 0\n", + "88508 0\n", + "88509 0\n", + "88510 0\n", + "88511 0\n", + "88512 0\n", + "88513 1\n", + "88514 0\n", + "88515 0\n", + "88516 0\n", + "88517 0\n", + "88518 0\n", + "88519 0\n", + "88520 0\n", + "88521 0\n", + "88522 0\n", + "88523 1\n", + "88524 0\n", + "88525 0\n", + "88526 0\n", + "88527 0\n", + "88528 0\n", + "88529 0\n", + "88530 0\n", + "88531 0\n", + "88532 0\n", + "88533 0\n", + "88534 0\n", + "88535 0\n", + "88536 0\n", + "88537 0\n", + "88538 0\n", + "88539 0\n", + "88540 0\n", + "88541 0\n", + "88542 0\n", + "88543 0\n", + "88544 0\n", + "88545 0\n", + "88546 0\n", + "88547 1\n", + "88548 0\n", + "88549 0\n", + "88550 0\n", + "88551 0\n", + "88552 0\n", + "88553 0\n", + "88554 0\n", + "88555 0\n", + "88556 0\n", + "88557 0\n", + "88558 0\n", + "88559 0\n", + "88560 0\n", + "88561 0\n", + "88562 0\n", + "88563 0\n", + "88564 0\n", + "88565 0\n", + "88566 0\n", + "88567 0\n", + "88568 0\n", + "88569 0\n", + "88570 0\n", + "88571 0\n", + "88572 0\n", + "88573 0\n", + "88574 0\n", + "88575 0\n", + "88576 0\n", + "88577 0\n", + "88578 0\n", + "88579 0\n", + "88580 0\n", + "88581 0\n", + "88582 0\n", + "88583 0\n", + "88584 0\n", + "88585 0\n", + "88586 0\n", + "88587 0\n", + "88588 0\n", + "88589 1\n", + "88590 0\n", + "88591 1\n", + "88592 0\n", + "88593 0\n", + "88594 0\n", + "88595 0\n", + "88596 0\n", + "88597 0\n", + "88598 0\n", + "88599 0\n", + "88600 0\n", + "88601 0\n", + "88602 0\n", + "88603 0\n", + "88604 0\n", + "88605 0\n", + "88606 0\n", + "88607 1\n", + "88608 0\n", + "88609 1\n", + "88610 0\n", + "88611 0\n", + "88612 0\n", + "88613 0\n", + "88614 0\n", + "88615 0\n", + "88616 0\n", + "88617 0\n", + "88618 0\n", + "88619 0\n", + "88620 0\n", + "88621 0\n", + "88622 0\n", + "88623 0\n", + "88624 0\n", + "88625 0\n", + "88626 0\n", + "88627 0\n", + "88628 0\n", + "88629 0\n", + "88630 0\n", + "88631 0\n", + "88632 0\n", + "88633 0\n", + "88634 0\n", + "88635 0\n", + "88636 0\n", + "88637 0\n", + "88638 0\n", + "88639 0\n", + "88640 0\n", + "88641 0\n", + "88642 0\n", + "88643 1\n", + "88644 0\n", + "88645 0\n", + "88646 0\n", + "88647 0\n", + "88648 0\n", + "88649 0\n", + "88650 0\n", + "88651 1\n", + "88652 0\n", + "88653 0\n", + "88654 0\n", + "88655 0\n", + "88656 0\n", + "88657 1\n", + "88658 0\n", + "88659 0\n", + "88660 0\n", + "88661 1\n", + "88662 0\n", + "88663 1\n", + "88664 0\n", + "88665 0\n", + "88666 0\n", + "88667 1\n", + "88668 0\n", + "88669 0\n", + "88670 0\n", + "88671 0\n", + "88672 0\n", + "88673 0\n", + "88674 0\n", + "88675 0\n", + "88676 0\n", + "88677 0\n", + "88678 0\n", + "88679 0\n", + "88680 0\n", + "88681 1\n", + "88682 0\n", + "88683 0\n", + "88684 0\n", + "88685 0\n", + "88686 0\n", + "88687 0\n", + "88688 0\n", + "88689 0\n", + "88690 0\n", + "88691 0\n", + "88692 0\n", + "88693 0\n", + "88694 0\n", + "88695 0\n", + "88696 0\n", + "88697 0\n", + "88698 0\n", + "88699 0\n", + "88700 0\n", + "88701 0\n", + "88702 0\n", + "88703 0\n", + "88704 0\n", + "88705 0\n", + "88706 0\n", + "88707 0\n", + "88708 0\n", + "88709 0\n", + "88710 0\n", + "88711 0\n", + "88712 0\n", + "88713 0\n", + "88714 0\n", + "88715 0\n", + "88716 0\n", + "88717 0\n", + "88718 0\n", + "88719 0\n", + "88720 0\n", + "88721 1\n", + "88722 0\n", + "88723 0\n", + "88724 0\n", + "88725 0\n", + "88726 0\n", + "88727 0\n", + "88728 0\n", + "88729 1\n", + "88730 0\n", + "88731 0\n", + "88732 0\n", + "88733 0\n", + "88734 0\n", + "88735 0\n", + "88736 0\n", + "88737 0\n", + "88738 0\n", + "88739 0\n", + "88740 0\n", + "88741 1\n", + "88742 0\n", + "88743 0\n", + "88744 0\n", + "88745 0\n", + "88746 0\n", + "88747 1\n", + "88748 0\n", + "88749 0\n", + "88750 0\n", + "88751 0\n", + "88752 0\n", + "88753 0\n", + "88754 0\n", + "88755 0\n", + "88756 0\n", + "88757 0\n", + "88758 0\n", + "88759 0\n", + "88760 0\n", + "88761 0\n", + "88762 0\n", + "88763 0\n", + "88764 0\n", + "88765 0\n", + "88766 0\n", + "88767 0\n", + "88768 0\n", + "88769 0\n", + "88770 0\n", + "88771 1\n", + "88772 0\n", + "88773 0\n", + "88774 0\n", + "88775 0\n", + "88776 0\n", + "88777 0\n", + "88778 0\n", + "88779 0\n", + "88780 0\n", + "88781 0\n", + "88782 0\n", + "88783 0\n", + "88784 0\n", + "88785 0\n", + "88786 0\n", + "88787 0\n", + "88788 0\n", + "88789 1\n", + "88790 0\n", + "88791 0\n", + "88792 0\n", + "88793 1\n", + "88794 0\n", + "88795 0\n", + "88796 0\n", + "88797 0\n", + "88798 0\n", + "88799 1\n", + "88800 0\n", + "88801 1\n", + "88802 0\n", + "88803 0\n", + "88804 0\n", + "88805 0\n", + "88806 0\n", + "88807 1\n", + "88808 0\n", + "88809 0\n", + "88810 0\n", + "88811 1\n", + "88812 0\n", + "88813 1\n", + "88814 0\n", + "88815 0\n", + "88816 0\n", + "88817 1\n", + "88818 0\n", + "88819 1\n", + "88820 0\n", + "88821 0\n", + "88822 0\n", + "88823 0\n", + "88824 0\n", + "88825 0\n", + "88826 0\n", + "88827 0\n", + "88828 0\n", + "88829 0\n", + "88830 0\n", + "88831 0\n", + "88832 0\n", + "88833 0\n", + "88834 0\n", + "88835 0\n", + "88836 0\n", + "88837 0\n", + "88838 0\n", + "88839 0\n", + "88840 0\n", + "88841 0\n", + "88842 0\n", + "88843 1\n", + "88844 0\n", + "88845 0\n", + "88846 0\n", + "88847 0\n", + "88848 0\n", + "88849 0\n", + "88850 0\n", + "88851 0\n", + "88852 0\n", + "88853 1\n", + "88854 0\n", + "88855 0\n", + "88856 0\n", + "88857 0\n", + "88858 0\n", + "88859 0\n", + "88860 0\n", + "88861 1\n", + "88862 0\n", + "88863 0\n", + "88864 0\n", + "88865 0\n", + "88866 0\n", + "88867 1\n", + "88868 0\n", + "88869 0\n", + "88870 0\n", + "88871 0\n", + "88872 0\n", + "88873 1\n", + "88874 0\n", + "88875 0\n", + "88876 0\n", + "88877 0\n", + "88878 0\n", + "88879 0\n", + "88880 0\n", + "88881 0\n", + "88882 0\n", + "88883 1\n", + "88884 0\n", + "88885 0\n", + "88886 0\n", + "88887 0\n", + "88888 0\n", + "88889 0\n", + "88890 0\n", + "88891 0\n", + "88892 0\n", + "88893 0\n", + "88894 0\n", + "88895 0\n", + "88896 0\n", + "88897 1\n", + "88898 0\n", + "88899 0\n", + "88900 0\n", + "88901 0\n", + "88902 0\n", + "88903 1\n", + "88904 0\n", + "88905 0\n", + "88906 0\n", + "88907 0\n", + "88908 0\n", + "88909 0\n", + "88910 0\n", + "88911 0\n", + "88912 0\n", + "88913 0\n", + "88914 0\n", + "88915 0\n", + "88916 0\n", + "88917 0\n", + "88918 0\n", + "88919 1\n", + "88920 0\n", + "88921 0\n", + "88922 0\n", + "88923 0\n", + "88924 0\n", + "88925 0\n", + "88926 0\n", + "88927 0\n", + "88928 0\n", + "88929 0\n", + "88930 0\n", + "88931 0\n", + "88932 0\n", + "88933 0\n", + "88934 0\n", + "88935 0\n", + "88936 0\n", + "88937 1\n", + "88938 0\n", + "88939 0\n", + "88940 0\n", + "88941 0\n", + "88942 0\n", + "88943 0\n", + "88944 0\n", + "88945 0\n", + "88946 0\n", + "88947 0\n", + "88948 0\n", + "88949 0\n", + "88950 0\n", + "88951 1\n", + "88952 0\n", + "88953 0\n", + "88954 0\n", + "88955 0\n", + "88956 0\n", + "88957 0\n", + "88958 0\n", + "88959 0\n", + "88960 0\n", + "88961 0\n", + "88962 0\n", + "88963 0\n", + "88964 0\n", + "88965 0\n", + "88966 0\n", + "88967 0\n", + "88968 0\n", + "88969 1\n", + "88970 0\n", + "88971 0\n", + "88972 0\n", + "88973 0\n", + "88974 0\n", + "88975 0\n", + "88976 0\n", + "88977 0\n", + "88978 0\n", + "88979 0\n", + "88980 0\n", + "88981 0\n", + "88982 0\n", + "88983 0\n", + "88984 0\n", + "88985 0\n", + "88986 0\n", + "88987 0\n", + "88988 0\n", + "88989 0\n", + "88990 0\n", + "88991 0\n", + "88992 0\n", + "88993 1\n", + "88994 0\n", + "88995 0\n", + "88996 0\n", + "88997 1\n", + "88998 0\n", + "88999 0\n", + "89000 0\n", + "89001 0\n", + "89002 0\n", + "89003 1\n", + "89004 0\n", + "89005 0\n", + "89006 0\n", + "89007 0\n", + "89008 0\n", + "89009 1\n", + "89010 0\n", + "89011 0\n", + "89012 0\n", + "89013 0\n", + "89014 0\n", + "89015 0\n", + "89016 0\n", + "89017 1\n", + "89018 0\n", + "89019 0\n", + "89020 0\n", + "89021 1\n", + "89022 0\n", + "89023 0\n", + "89024 0\n", + "89025 0\n", + "89026 0\n", + "89027 0\n", + "89028 0\n", + "89029 0\n", + "89030 0\n", + "89031 0\n", + "89032 0\n", + "89033 0\n", + "89034 0\n", + "89035 0\n", + "89036 0\n", + "89037 0\n", + "89038 0\n", + "89039 0\n", + "89040 0\n", + "89041 1\n", + "89042 0\n", + "89043 0\n", + "89044 0\n", + "89045 0\n", + "89046 0\n", + "89047 0\n", + "89048 0\n", + "89049 0\n", + "89050 0\n", + "89051 1\n", + "89052 0\n", + "89053 0\n", + "89054 0\n", + "89055 0\n", + "89056 0\n", + "89057 1\n", + "89058 0\n", + "89059 0\n", + "89060 0\n", + "89061 0\n", + "89062 0\n", + "89063 0\n", + "89064 0\n", + "89065 0\n", + "89066 0\n", + "89067 0\n", + "89068 0\n", + "89069 1\n", + "89070 0\n", + "89071 1\n", + "89072 0\n", + "89073 0\n", + "89074 0\n", + "89075 0\n", + "89076 0\n", + "89077 0\n", + "89078 0\n", + "89079 0\n", + "89080 0\n", + "89081 0\n", + "89082 0\n", + "89083 1\n", + "89084 0\n", + "89085 0\n", + "89086 0\n", + "89087 1\n", + "89088 0\n", + "89089 0\n", + "89090 0\n", + "89091 0\n", + "89092 0\n", + "89093 0\n", + "89094 0\n", + "89095 0\n", + "89096 0\n", + "89097 0\n", + "89098 0\n", + "89099 0\n", + "89100 0\n", + "89101 1\n", + "89102 0\n", + "89103 0\n", + "89104 0\n", + "89105 0\n", + "89106 0\n", + "89107 1\n", + "89108 0\n", + "89109 0\n", + "89110 0\n", + "89111 0\n", + "89112 0\n", + "89113 1\n", + "89114 0\n", + "89115 0\n", + "89116 0\n", + "89117 0\n", + "89118 0\n", + "89119 1\n", + "89120 0\n", + "89121 0\n", + "89122 0\n", + "89123 1\n", + "89124 0\n", + "89125 0\n", + "89126 0\n", + "89127 0\n", + "89128 0\n", + "89129 0\n", + "89130 0\n", + "89131 0\n", + "89132 0\n", + "89133 0\n", + "89134 0\n", + "89135 0\n", + "89136 0\n", + "89137 1\n", + "89138 0\n", + "89139 0\n", + "89140 0\n", + "89141 0\n", + "89142 0\n", + "89143 0\n", + "89144 0\n", + "89145 0\n", + "89146 0\n", + "89147 0\n", + "89148 0\n", + "89149 0\n", + "89150 0\n", + "89151 0\n", + "89152 0\n", + "89153 1\n", + "89154 0\n", + "89155 0\n", + "89156 0\n", + "89157 0\n", + "89158 0\n", + "89159 0\n", + "89160 0\n", + "89161 0\n", + "89162 0\n", + "89163 0\n", + "89164 0\n", + "89165 0\n", + "89166 0\n", + "89167 0\n", + "89168 0\n", + "89169 0\n", + "89170 0\n", + "89171 0\n", + "89172 0\n", + "89173 0\n", + "89174 0\n", + "89175 0\n", + "89176 0\n", + "89177 0\n", + "89178 0\n", + "89179 0\n", + "89180 0\n", + "89181 0\n", + "89182 0\n", + "89183 0\n", + "89184 0\n", + "89185 0\n", + "89186 0\n", + "89187 0\n", + "89188 0\n", + "89189 1\n", + "89190 0\n", + "89191 0\n", + "89192 0\n", + "89193 0\n", + "89194 0\n", + "89195 0\n", + "89196 0\n", + "89197 0\n", + "89198 0\n", + "89199 0\n", + "89200 0\n", + "89201 0\n", + "89202 0\n", + "89203 1\n", + "89204 0\n", + "89205 0\n", + "89206 0\n", + "89207 0\n", + "89208 0\n", + "89209 1\n", + "89210 0\n", + "89211 0\n", + "89212 0\n", + "89213 1\n", + "89214 0\n", + "89215 0\n", + "89216 0\n", + "89217 0\n", + "89218 0\n", + "89219 0\n", + "89220 0\n", + "89221 0\n", + "89222 0\n", + "89223 0\n", + "89224 0\n", + "89225 0\n", + "89226 0\n", + "89227 1\n", + "89228 0\n", + "89229 0\n", + "89230 0\n", + "89231 1\n", + "89232 0\n", + "89233 0\n", + "89234 0\n", + "89235 0\n", + "89236 0\n", + "89237 1\n", + "89238 0\n", + "89239 0\n", + "89240 0\n", + "89241 0\n", + "89242 0\n", + "89243 0\n", + "89244 0\n", + "89245 0\n", + "89246 0\n", + "89247 0\n", + "89248 0\n", + "89249 0\n", + "89250 0\n", + "89251 0\n", + "89252 0\n", + "89253 0\n", + "89254 0\n", + "89255 0\n", + "89256 0\n", + "89257 0\n", + "89258 0\n", + "89259 0\n", + "89260 0\n", + "89261 1\n", + "89262 0\n", + "89263 0\n", + "89264 0\n", + "89265 0\n", + "89266 0\n", + "89267 0\n", + "89268 0\n", + "89269 1\n", + "89270 0\n", + "89271 0\n", + "89272 0\n", + "89273 1\n", + "89274 0\n", + "89275 0\n", + "89276 0\n", + "89277 0\n", + "89278 0\n", + "89279 0\n", + "89280 0\n", + "89281 0\n", + "89282 0\n", + "89283 0\n", + "89284 0\n", + "89285 0\n", + "89286 0\n", + "89287 0\n", + "89288 0\n", + "89289 0\n", + "89290 0\n", + "89291 0\n", + "89292 0\n", + "89293 1\n", + "89294 0\n", + "89295 0\n", + "89296 0\n", + "89297 0\n", + "89298 0\n", + "89299 0\n", + "89300 0\n", + "89301 0\n", + "89302 0\n", + "89303 1\n", + "89304 0\n", + "89305 0\n", + "89306 0\n", + "89307 0\n", + "89308 0\n", + "89309 0\n", + "89310 0\n", + "89311 0\n", + "89312 0\n", + "89313 0\n", + "89314 0\n", + "89315 0\n", + "89316 0\n", + "89317 1\n", + "89318 0\n", + "89319 0\n", + "89320 0\n", + "89321 0\n", + "89322 0\n", + "89323 0\n", + "89324 0\n", + "89325 0\n", + "89326 0\n", + "89327 0\n", + "89328 0\n", + "89329 1\n", + "89330 0\n", + "89331 0\n", + "89332 0\n", + "89333 0\n", + "89334 0\n", + "89335 0\n", + "89336 0\n", + "89337 0\n", + "89338 0\n", + "89339 0\n", + "89340 0\n", + "89341 0\n", + "89342 0\n", + "89343 0\n", + "89344 0\n", + "89345 0\n", + "89346 0\n", + "89347 0\n", + "89348 0\n", + "89349 0\n", + "89350 0\n", + "89351 0\n", + "89352 0\n", + "89353 0\n", + "89354 0\n", + "89355 0\n", + "89356 0\n", + "89357 0\n", + "89358 0\n", + "89359 0\n", + "89360 0\n", + "89361 0\n", + "89362 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "89363 1\n", + "89364 0\n", + "89365 0\n", + "89366 0\n", + "89367 0\n", + "89368 0\n", + "89369 0\n", + "89370 0\n", + "89371 1\n", + "89372 0\n", + "89373 0\n", + "89374 0\n", + "89375 0\n", + "89376 0\n", + "89377 0\n", + "89378 0\n", + "89379 0\n", + "89380 0\n", + "89381 1\n", + "89382 0\n", + "89383 0\n", + "89384 0\n", + "89385 0\n", + "89386 0\n", + "89387 1\n", + "89388 0\n", + "89389 0\n", + "89390 0\n", + "89391 0\n", + "89392 0\n", + "89393 1\n", + "89394 0\n", + "89395 0\n", + "89396 0\n", + "89397 0\n", + "89398 0\n", + "89399 1\n", + "89400 0\n", + "89401 0\n", + "89402 0\n", + "89403 0\n", + "89404 0\n", + "89405 0\n", + "89406 0\n", + "89407 0\n", + "89408 0\n", + "89409 0\n", + "89410 0\n", + "89411 0\n", + "89412 0\n", + "89413 1\n", + "89414 0\n", + "89415 0\n", + "89416 0\n", + "89417 1\n", + "89418 0\n", + "89419 0\n", + "89420 0\n", + "89421 0\n", + "89422 0\n", + "89423 0\n", + "89424 0\n", + "89425 0\n", + "89426 0\n", + "89427 0\n", + "89428 0\n", + "89429 0\n", + "89430 0\n", + "89431 1\n", + "89432 0\n", + "89433 0\n", + "89434 0\n", + "89435 0\n", + "89436 0\n", + "89437 0\n", + "89438 0\n", + "89439 0\n", + "89440 0\n", + "89441 0\n", + "89442 0\n", + "89443 1\n", + "89444 0\n", + "89445 0\n", + "89446 0\n", + "89447 0\n", + "89448 0\n", + "89449 1\n", + "89450 0\n", + "89451 0\n", + "89452 0\n", + "89453 0\n", + "89454 0\n", + "89455 0\n", + "89456 0\n", + "89457 0\n", + "89458 0\n", + "89459 1\n", + "89460 0\n", + "89461 0\n", + "89462 0\n", + "89463 0\n", + "89464 0\n", + "89465 0\n", + "89466 0\n", + "89467 0\n", + "89468 0\n", + "89469 0\n", + "89470 0\n", + "89471 0\n", + "89472 0\n", + "89473 0\n", + "89474 0\n", + "89475 0\n", + "89476 0\n", + "89477 1\n", + "89478 0\n", + "89479 0\n", + "89480 0\n", + "89481 0\n", + "89482 0\n", + "89483 0\n", + "89484 0\n", + "89485 0\n", + "89486 0\n", + "89487 0\n", + "89488 0\n", + "89489 0\n", + "89490 0\n", + "89491 1\n", + "89492 0\n", + "89493 0\n", + "89494 0\n", + "89495 0\n", + "89496 0\n", + "89497 0\n", + "89498 0\n", + "89499 0\n", + "89500 0\n", + "89501 1\n", + "89502 0\n", + "89503 0\n", + "89504 0\n", + "89505 0\n", + "89506 0\n", + "89507 0\n", + "89508 0\n", + "89509 0\n", + "89510 0\n", + "89511 0\n", + "89512 0\n", + "89513 1\n", + "89514 0\n", + "89515 0\n", + "89516 0\n", + "89517 0\n", + "89518 0\n", + "89519 1\n", + "89520 0\n", + "89521 1\n", + "89522 0\n", + "89523 0\n", + "89524 0\n", + "89525 0\n", + "89526 0\n", + "89527 1\n", + "89528 0\n", + "89529 0\n", + "89530 0\n", + "89531 0\n", + "89532 0\n", + "89533 1\n", + "89534 0\n", + "89535 0\n", + "89536 0\n", + "89537 0\n", + "89538 0\n", + "89539 0\n", + "89540 0\n", + "89541 0\n", + "89542 0\n", + "89543 0\n", + "89544 0\n", + "89545 0\n", + "89546 0\n", + "89547 0\n", + "89548 0\n", + "89549 0\n", + "89550 0\n", + "89551 0\n", + "89552 0\n", + "89553 0\n", + "89554 0\n", + "89555 0\n", + "89556 0\n", + "89557 0\n", + "89558 0\n", + "89559 0\n", + "89560 0\n", + "89561 1\n", + "89562 0\n", + "89563 1\n", + "89564 0\n", + "89565 0\n", + "89566 0\n", + "89567 1\n", + "89568 0\n", + "89569 0\n", + "89570 0\n", + "89571 0\n", + "89572 0\n", + "89573 0\n", + "89574 0\n", + "89575 0\n", + "89576 0\n", + "89577 0\n", + "89578 0\n", + "89579 0\n", + "89580 0\n", + "89581 0\n", + "89582 0\n", + "89583 0\n", + "89584 0\n", + "89585 0\n", + "89586 0\n", + "89587 0\n", + "89588 0\n", + "89589 0\n", + "89590 0\n", + "89591 1\n", + "89592 0\n", + "89593 0\n", + "89594 0\n", + "89595 0\n", + "89596 0\n", + "89597 1\n", + "89598 0\n", + "89599 1\n", + "89600 0\n", + "89601 0\n", + "89602 0\n", + "89603 1\n", + "89604 0\n", + "89605 0\n", + "89606 0\n", + "89607 0\n", + "89608 0\n", + "89609 0\n", + "89610 0\n", + "89611 1\n", + "89612 0\n", + "89613 0\n", + "89614 0\n", + "89615 0\n", + "89616 0\n", + "89617 0\n", + "89618 0\n", + "89619 0\n", + "89620 0\n", + "89621 0\n", + "89622 0\n", + "89623 0\n", + "89624 0\n", + "89625 0\n", + "89626 0\n", + "89627 1\n", + "89628 0\n", + "89629 0\n", + "89630 0\n", + "89631 0\n", + "89632 0\n", + "89633 1\n", + "89634 0\n", + "89635 0\n", + "89636 0\n", + "89637 0\n", + "89638 0\n", + "89639 0\n", + "89640 0\n", + "89641 0\n", + "89642 0\n", + "89643 0\n", + "89644 0\n", + "89645 0\n", + "89646 0\n", + "89647 0\n", + "89648 0\n", + "89649 0\n", + "89650 0\n", + "89651 0\n", + "89652 0\n", + "89653 1\n", + "89654 0\n", + "89655 0\n", + "89656 0\n", + "89657 1\n", + "89658 0\n", + "89659 1\n", + "89660 0\n", + "89661 0\n", + "89662 0\n", + "89663 0\n", + "89664 0\n", + "89665 0\n", + "89666 0\n", + "89667 0\n", + "89668 0\n", + "89669 1\n", + "89670 0\n", + "89671 1\n", + "89672 0\n", + "89673 0\n", + "89674 0\n", + "89675 0\n", + "89676 0\n", + "89677 0\n", + "89678 0\n", + "89679 0\n", + "89680 0\n", + "89681 1\n", + "89682 0\n", + "89683 0\n", + "89684 0\n", + "89685 0\n", + "89686 0\n", + "89687 0\n", + "89688 0\n", + "89689 1\n", + "89690 0\n", + "89691 0\n", + "89692 0\n", + "89693 0\n", + "89694 0\n", + "89695 0\n", + "89696 0\n", + "89697 0\n", + "89698 0\n", + "89699 0\n", + "89700 0\n", + "89701 0\n", + "89702 0\n", + "89703 0\n", + "89704 0\n", + "89705 0\n", + "89706 0\n", + "89707 0\n", + "89708 0\n", + "89709 0\n", + "89710 0\n", + "89711 0\n", + "89712 0\n", + "89713 0\n", + "89714 0\n", + "89715 0\n", + "89716 0\n", + "89717 0\n", + "89718 0\n", + "89719 0\n", + "89720 0\n", + "89721 0\n", + "89722 0\n", + "89723 0\n", + "89724 0\n", + "89725 0\n", + "89726 0\n", + "89727 0\n", + "89728 0\n", + "89729 0\n", + "89730 0\n", + "89731 0\n", + "89732 0\n", + "89733 0\n", + "89734 0\n", + "89735 0\n", + "89736 0\n", + "89737 0\n", + "89738 0\n", + "89739 0\n", + "89740 0\n", + "89741 0\n", + "89742 0\n", + "89743 0\n", + "89744 0\n", + "89745 0\n", + "89746 0\n", + "89747 0\n", + "89748 0\n", + "89749 0\n", + "89750 0\n", + "89751 0\n", + "89752 0\n", + "89753 1\n", + "89754 0\n", + "89755 0\n", + "89756 0\n", + "89757 0\n", + "89758 0\n", + "89759 1\n", + "89760 0\n", + "89761 0\n", + "89762 0\n", + "89763 0\n", + "89764 0\n", + "89765 0\n", + "89766 0\n", + "89767 1\n", + "89768 0\n", + "89769 0\n", + "89770 0\n", + "89771 0\n", + "89772 0\n", + "89773 0\n", + "89774 0\n", + "89775 0\n", + "89776 0\n", + "89777 0\n", + "89778 0\n", + "89779 1\n", + "89780 0\n", + "89781 0\n", + "89782 0\n", + "89783 1\n", + "89784 0\n", + "89785 0\n", + "89786 0\n", + "89787 0\n", + "89788 0\n", + "89789 0\n", + "89790 0\n", + "89791 0\n", + "89792 0\n", + "89793 0\n", + "89794 0\n", + "89795 0\n", + "89796 0\n", + "89797 1\n", + "89798 0\n", + "89799 0\n", + "89800 0\n", + "89801 0\n", + "89802 0\n", + "89803 0\n", + "89804 0\n", + "89805 0\n", + "89806 0\n", + "89807 0\n", + "89808 0\n", + "89809 1\n", + "89810 0\n", + "89811 0\n", + "89812 0\n", + "89813 0\n", + "89814 0\n", + "89815 0\n", + "89816 0\n", + "89817 0\n", + "89818 0\n", + "89819 1\n", + "89820 0\n", + "89821 1\n", + "89822 0\n", + "89823 0\n", + "89824 0\n", + "89825 0\n", + "89826 0\n", + "89827 0\n", + "89828 0\n", + "89829 0\n", + "89830 0\n", + "89831 0\n", + "89832 0\n", + "89833 1\n", + "89834 0\n", + "89835 0\n", + "89836 0\n", + "89837 0\n", + "89838 0\n", + "89839 1\n", + "89840 0\n", + "89841 0\n", + "89842 0\n", + "89843 0\n", + "89844 0\n", + "89845 0\n", + "89846 0\n", + "89847 0\n", + "89848 0\n", + "89849 1\n", + "89850 0\n", + "89851 0\n", + "89852 0\n", + "89853 0\n", + "89854 0\n", + "89855 0\n", + "89856 0\n", + "89857 0\n", + "89858 0\n", + "89859 0\n", + "89860 0\n", + "89861 0\n", + "89862 0\n", + "89863 0\n", + "89864 0\n", + "89865 0\n", + "89866 0\n", + "89867 1\n", + "89868 0\n", + "89869 0\n", + "89870 0\n", + "89871 0\n", + "89872 0\n", + "89873 0\n", + "89874 0\n", + "89875 0\n", + "89876 0\n", + "89877 0\n", + "89878 0\n", + "89879 0\n", + "89880 0\n", + "89881 0\n", + "89882 0\n", + "89883 0\n", + "89884 0\n", + "89885 0\n", + "89886 0\n", + "89887 0\n", + "89888 0\n", + "89889 0\n", + "89890 0\n", + "89891 1\n", + "89892 0\n", + "89893 0\n", + "89894 0\n", + "89895 0\n", + "89896 0\n", + "89897 1\n", + "89898 0\n", + "89899 1\n", + "89900 0\n", + "89901 0\n", + "89902 0\n", + "89903 0\n", + "89904 0\n", + "89905 0\n", + "89906 0\n", + "89907 0\n", + "89908 0\n", + "89909 1\n", + "89910 0\n", + "89911 0\n", + "89912 0\n", + "89913 0\n", + "89914 0\n", + "89915 0\n", + "89916 0\n", + "89917 1\n", + "89918 0\n", + "89919 0\n", + "89920 0\n", + "89921 0\n", + "89922 0\n", + "89923 1\n", + "89924 0\n", + "89925 0\n", + "89926 0\n", + "89927 0\n", + "89928 0\n", + "89929 0\n", + "89930 0\n", + "89931 0\n", + "89932 0\n", + "89933 0\n", + "89934 0\n", + "89935 0\n", + "89936 0\n", + "89937 0\n", + "89938 0\n", + "89939 1\n", + "89940 0\n", + "89941 0\n", + "89942 0\n", + "89943 0\n", + "89944 0\n", + "89945 0\n", + "89946 0\n", + "89947 0\n", + "89948 0\n", + "89949 0\n", + "89950 0\n", + "89951 0\n", + "89952 0\n", + "89953 0\n", + "89954 0\n", + "89955 0\n", + "89956 0\n", + "89957 0\n", + "89958 0\n", + "89959 1\n", + "89960 0\n", + "89961 0\n", + "89962 0\n", + "89963 1\n", + "89964 0\n", + "89965 0\n", + "89966 0\n", + "89967 0\n", + "89968 0\n", + "89969 0\n", + "89970 0\n", + "89971 0\n", + "89972 0\n", + "89973 0\n", + "89974 0\n", + "89975 0\n", + "89976 0\n", + "89977 1\n", + "89978 0\n", + "89979 0\n", + "89980 0\n", + "89981 0\n", + "89982 0\n", + "89983 1\n", + "89984 0\n", + "89985 0\n", + "89986 0\n", + "89987 0\n", + "89988 0\n", + "89989 1\n", + "89990 0\n", + "89991 0\n", + "89992 0\n", + "89993 0\n", + "89994 0\n", + "89995 0\n", + "89996 0\n", + "89997 0\n", + "89998 0\n", + "89999 0\n", + "90000 0\n", + "90001 1\n", + "90002 0\n", + "90003 0\n", + "90004 0\n", + "90005 0\n", + "90006 0\n", + "90007 1\n", + "90008 0\n", + "90009 0\n", + "90010 0\n", + "90011 1\n", + "90012 0\n", + "90013 0\n", + "90014 0\n", + "90015 0\n", + "90016 0\n", + "90017 1\n", + "90018 0\n", + "90019 1\n", + "90020 0\n", + "90021 0\n", + "90022 0\n", + "90023 1\n", + "90024 0\n", + "90025 0\n", + "90026 0\n", + "90027 0\n", + "90028 0\n", + "90029 0\n", + "90030 0\n", + "90031 1\n", + "90032 0\n", + "90033 0\n", + "90034 0\n", + "90035 0\n", + "90036 0\n", + "90037 0\n", + "90038 0\n", + "90039 0\n", + "90040 0\n", + "90041 0\n", + "90042 0\n", + "90043 0\n", + "90044 0\n", + "90045 0\n", + "90046 0\n", + "90047 0\n", + "90048 0\n", + "90049 0\n", + "90050 0\n", + "90051 0\n", + "90052 0\n", + "90053 1\n", + "90054 0\n", + "90055 0\n", + "90056 0\n", + "90057 0\n", + "90058 0\n", + "90059 1\n", + "90060 0\n", + "90061 0\n", + "90062 0\n", + "90063 0\n", + "90064 0\n", + "90065 0\n", + "90066 0\n", + "90067 1\n", + "90068 0\n", + "90069 0\n", + "90070 0\n", + "90071 1\n", + "90072 0\n", + "90073 1\n", + "90074 0\n", + "90075 0\n", + "90076 0\n", + "90077 0\n", + "90078 0\n", + "90079 0\n", + "90080 0\n", + "90081 0\n", + "90082 0\n", + "90083 0\n", + "90084 0\n", + "90085 0\n", + "90086 0\n", + "90087 0\n", + "90088 0\n", + "90089 1\n", + "90090 0\n", + "90091 0\n", + "90092 0\n", + "90093 0\n", + "90094 0\n", + "90095 0\n", + "90096 0\n", + "90097 0\n", + "90098 0\n", + "90099 0\n", + "90100 0\n", + "90101 0\n", + "90102 0\n", + "90103 0\n", + "90104 0\n", + "90105 0\n", + "90106 0\n", + "90107 1\n", + "90108 0\n", + "90109 0\n", + "90110 0\n", + "90111 0\n", + "90112 0\n", + "90113 0\n", + "90114 0\n", + "90115 0\n", + "90116 0\n", + "90117 0\n", + "90118 0\n", + "90119 0\n", + "90120 0\n", + "90121 1\n", + "90122 0\n", + "90123 0\n", + "90124 0\n", + "90125 0\n", + "90126 0\n", + "90127 1\n", + "90128 0\n", + "90129 0\n", + "90130 0\n", + "90131 0\n", + "90132 0\n", + "90133 0\n", + "90134 0\n", + "90135 0\n", + "90136 0\n", + "90137 0\n", + "90138 0\n", + "90139 0\n", + "90140 0\n", + "90141 0\n", + "90142 0\n", + "90143 0\n", + "90144 0\n", + "90145 0\n", + "90146 0\n", + "90147 0\n", + "90148 0\n", + "90149 1\n", + "90150 0\n", + "90151 0\n", + "90152 0\n", + "90153 0\n", + "90154 0\n", + "90155 0\n", + "90156 0\n", + "90157 0\n", + "90158 0\n", + "90159 0\n", + "90160 0\n", + "90161 0\n", + "90162 0\n", + "90163 1\n", + "90164 0\n", + "90165 0\n", + "90166 0\n", + "90167 0\n", + "90168 0\n", + "90169 0\n", + "90170 0\n", + "90171 0\n", + "90172 0\n", + "90173 1\n", + "90174 0\n", + "90175 0\n", + "90176 0\n", + "90177 0\n", + "90178 0\n", + "90179 0\n", + "90180 0\n", + "90181 0\n", + "90182 0\n", + "90183 0\n", + "90184 0\n", + "90185 0\n", + "90186 0\n", + "90187 1\n", + "90188 0\n", + "90189 0\n", + "90190 0\n", + "90191 1\n", + "90192 0\n", + "90193 0\n", + "90194 0\n", + "90195 0\n", + "90196 0\n", + "90197 1\n", + "90198 0\n", + "90199 1\n", + "90200 0\n", + "90201 0\n", + "90202 0\n", + "90203 1\n", + "90204 0\n", + "90205 0\n", + "90206 0\n", + "90207 0\n", + "90208 0\n", + "90209 0\n", + "90210 0\n", + "90211 0\n", + "90212 0\n", + "90213 0\n", + "90214 0\n", + "90215 0\n", + "90216 0\n", + "90217 1\n", + "90218 0\n", + "90219 0\n", + "90220 0\n", + "90221 0\n", + "90222 0\n", + "90223 0\n", + "90224 0\n", + "90225 0\n", + "90226 0\n", + "90227 1\n", + "90228 0\n", + "90229 0\n", + "90230 0\n", + "90231 0\n", + "90232 0\n", + "90233 0\n", + "90234 0\n", + "90235 0\n", + "90236 0\n", + "90237 0\n", + "90238 0\n", + "90239 1\n", + "90240 0\n", + "90241 0\n", + "90242 0\n", + "90243 0\n", + "90244 0\n", + "90245 0\n", + "90246 0\n", + "90247 1\n", + "90248 0\n", + "90249 0\n", + "90250 0\n", + "90251 0\n", + "90252 0\n", + "90253 0\n", + "90254 0\n", + "90255 0\n", + "90256 0\n", + "90257 0\n", + "90258 0\n", + "90259 0\n", + "90260 0\n", + "90261 0\n", + "90262 0\n", + "90263 1\n", + "90264 0\n", + "90265 0\n", + "90266 0\n", + "90267 0\n", + "90268 0\n", + "90269 0\n", + "90270 0\n", + "90271 1\n", + "90272 0\n", + "90273 0\n", + "90274 0\n", + "90275 0\n", + "90276 0\n", + "90277 0\n", + "90278 0\n", + "90279 0\n", + "90280 0\n", + "90281 1\n", + "90282 0\n", + "90283 0\n", + "90284 0\n", + "90285 0\n", + "90286 0\n", + "90287 0\n", + "90288 0\n", + "90289 1\n", + "90290 0\n", + "90291 0\n", + "90292 0\n", + "90293 0\n", + "90294 0\n", + "90295 0\n", + "90296 0\n", + "90297 0\n", + "90298 0\n", + "90299 0\n", + "90300 0\n", + "90301 0\n", + "90302 0\n", + "90303 0\n", + "90304 0\n", + "90305 0\n", + "90306 0\n", + "90307 0\n", + "90308 0\n", + "90309 0\n", + "90310 0\n", + "90311 0\n", + "90312 0\n", + "90313 1\n", + "90314 0\n", + "90315 0\n", + "90316 0\n", + "90317 0\n", + "90318 0\n", + "90319 0\n", + "90320 0\n", + "90321 0\n", + "90322 0\n", + "90323 0\n", + "90324 0\n", + "90325 0\n", + "90326 0\n", + "90327 0\n", + "90328 0\n", + "90329 0\n", + "90330 0\n", + "90331 0\n", + "90332 0\n", + "90333 0\n", + "90334 0\n", + "90335 0\n", + "90336 0\n", + "90337 0\n", + "90338 0\n", + "90339 0\n", + "90340 0\n", + "90341 0\n", + "90342 0\n", + "90343 0\n", + "90344 0\n", + "90345 0\n", + "90346 0\n", + "90347 0\n", + "90348 0\n", + "90349 0\n", + "90350 0\n", + "90351 0\n", + "90352 0\n", + "90353 1\n", + "90354 0\n", + "90355 0\n", + "90356 0\n", + "90357 0\n", + "90358 0\n", + "90359 1\n", + "90360 0\n", + "90361 0\n", + "90362 0\n", + "90363 0\n", + "90364 0\n", + "90365 0\n", + "90366 0\n", + "90367 0\n", + "90368 0\n", + "90369 0\n", + "90370 0\n", + "90371 1\n", + "90372 0\n", + "90373 1\n", + "90374 0\n", + "90375 0\n", + "90376 0\n", + "90377 0\n", + "90378 0\n", + "90379 1\n", + "90380 0\n", + "90381 0\n", + "90382 0\n", + "90383 0\n", + "90384 0\n", + "90385 0\n", + "90386 0\n", + "90387 0\n", + "90388 0\n", + "90389 0\n", + "90390 0\n", + "90391 0\n", + "90392 0\n", + "90393 0\n", + "90394 0\n", + "90395 0\n", + "90396 0\n", + "90397 1\n", + "90398 0\n", + "90399 0\n", + "90400 0\n", + "90401 1\n", + "90402 0\n", + "90403 1\n", + "90404 0\n", + "90405 0\n", + "90406 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "90407 1\n", + "90408 0\n", + "90409 0\n", + "90410 0\n", + "90411 0\n", + "90412 0\n", + "90413 0\n", + "90414 0\n", + "90415 0\n", + "90416 0\n", + "90417 0\n", + "90418 0\n", + "90419 0\n", + "90420 0\n", + "90421 0\n", + "90422 0\n", + "90423 0\n", + "90424 0\n", + "90425 0\n", + "90426 0\n", + "90427 0\n", + "90428 0\n", + "90429 0\n", + "90430 0\n", + "90431 0\n", + "90432 0\n", + "90433 0\n", + "90434 0\n", + "90435 0\n", + "90436 0\n", + "90437 1\n", + "90438 0\n", + "90439 1\n", + "90440 0\n", + "90441 0\n", + "90442 0\n", + "90443 0\n", + "90444 0\n", + "90445 0\n", + "90446 0\n", + "90447 0\n", + "90448 0\n", + "90449 0\n", + "90450 0\n", + "90451 0\n", + "90452 0\n", + "90453 0\n", + "90454 0\n", + "90455 0\n", + "90456 0\n", + "90457 0\n", + "90458 0\n", + "90459 0\n", + "90460 0\n", + "90461 0\n", + "90462 0\n", + "90463 0\n", + "90464 0\n", + "90465 0\n", + "90466 0\n", + "90467 0\n", + "90468 0\n", + "90469 1\n", + "90470 0\n", + "90471 0\n", + "90472 0\n", + "90473 1\n", + "90474 0\n", + "90475 0\n", + "90476 0\n", + "90477 0\n", + "90478 0\n", + "90479 0\n", + "90480 0\n", + "90481 1\n", + "90482 0\n", + "90483 0\n", + "90484 0\n", + "90485 0\n", + "90486 0\n", + "90487 0\n", + "90488 0\n", + "90489 0\n", + "90490 0\n", + "90491 0\n", + "90492 0\n", + "90493 0\n", + "90494 0\n", + "90495 0\n", + "90496 0\n", + "90497 0\n", + "90498 0\n", + "90499 1\n", + "90500 0\n", + "90501 0\n", + "90502 0\n", + "90503 0\n", + "90504 0\n", + "90505 0\n", + "90506 0\n", + "90507 0\n", + "90508 0\n", + "90509 0\n", + "90510 0\n", + "90511 1\n", + "90512 0\n", + "90513 0\n", + "90514 0\n", + "90515 0\n", + "90516 0\n", + "90517 0\n", + "90518 0\n", + "90519 0\n", + "90520 0\n", + "90521 0\n", + "90522 0\n", + "90523 1\n", + "90524 0\n", + "90525 0\n", + "90526 0\n", + "90527 1\n", + "90528 0\n", + "90529 1\n", + "90530 0\n", + "90531 0\n", + "90532 0\n", + "90533 1\n", + "90534 0\n", + "90535 0\n", + "90536 0\n", + "90537 0\n", + "90538 0\n", + "90539 0\n", + "90540 0\n", + "90541 0\n", + "90542 0\n", + "90543 0\n", + "90544 0\n", + "90545 0\n", + "90546 0\n", + "90547 1\n", + "90548 0\n", + "90549 0\n", + "90550 0\n", + "90551 0\n", + "90552 0\n", + "90553 0\n", + "90554 0\n", + "90555 0\n", + "90556 0\n", + "90557 0\n", + "90558 0\n", + "90559 0\n", + "90560 0\n", + "90561 0\n", + "90562 0\n", + "90563 0\n", + "90564 0\n", + "90565 0\n", + "90566 0\n", + "90567 0\n", + "90568 0\n", + "90569 0\n", + "90570 0\n", + "90571 0\n", + "90572 0\n", + "90573 0\n", + "90574 0\n", + "90575 0\n", + "90576 0\n", + "90577 0\n", + "90578 0\n", + "90579 0\n", + "90580 0\n", + "90581 0\n", + "90582 0\n", + "90583 1\n", + "90584 0\n", + "90585 0\n", + "90586 0\n", + "90587 0\n", + "90588 0\n", + "90589 0\n", + "90590 0\n", + "90591 0\n", + "90592 0\n", + "90593 0\n", + "90594 0\n", + "90595 0\n", + "90596 0\n", + "90597 0\n", + "90598 0\n", + "90599 1\n", + "90600 0\n", + "90601 0\n", + "90602 0\n", + "90603 0\n", + "90604 0\n", + "90605 0\n", + "90606 0\n", + "90607 0\n", + "90608 0\n", + "90609 0\n", + "90610 0\n", + "90611 0\n", + "90612 0\n", + "90613 0\n", + "90614 0\n", + "90615 0\n", + "90616 0\n", + "90617 1\n", + "90618 0\n", + "90619 1\n", + "90620 0\n", + "90621 0\n", + "90622 0\n", + "90623 0\n", + "90624 0\n", + "90625 0\n", + "90626 0\n", + "90627 0\n", + "90628 0\n", + "90629 0\n", + "90630 0\n", + "90631 1\n", + "90632 0\n", + "90633 0\n", + "90634 0\n", + "90635 0\n", + "90636 0\n", + "90637 0\n", + "90638 0\n", + "90639 0\n", + "90640 0\n", + "90641 1\n", + "90642 0\n", + "90643 0\n", + "90644 0\n", + "90645 0\n", + "90646 0\n", + "90647 1\n", + "90648 0\n", + "90649 0\n", + "90650 0\n", + "90651 0\n", + "90652 0\n", + "90653 0\n", + "90654 0\n", + "90655 0\n", + "90656 0\n", + "90657 0\n", + "90658 0\n", + "90659 1\n", + "90660 0\n", + "90661 0\n", + "90662 0\n", + "90663 0\n", + "90664 0\n", + "90665 0\n", + "90666 0\n", + "90667 0\n", + "90668 0\n", + "90669 0\n", + "90670 0\n", + "90671 0\n", + "90672 0\n", + "90673 0\n", + "90674 0\n", + "90675 0\n", + "90676 0\n", + "90677 1\n", + "90678 0\n", + "90679 1\n", + "90680 0\n", + "90681 0\n", + "90682 0\n", + "90683 0\n", + "90684 0\n", + "90685 0\n", + "90686 0\n", + "90687 0\n", + "90688 0\n", + "90689 0\n", + "90690 0\n", + "90691 0\n", + "90692 0\n", + "90693 0\n", + "90694 0\n", + "90695 0\n", + "90696 0\n", + "90697 1\n", + "90698 0\n", + "90699 0\n", + "90700 0\n", + "90701 0\n", + "90702 0\n", + "90703 1\n", + "90704 0\n", + "90705 0\n", + "90706 0\n", + "90707 0\n", + "90708 0\n", + "90709 1\n", + "90710 0\n", + "90711 0\n", + "90712 0\n", + "90713 0\n", + "90714 0\n", + "90715 0\n", + "90716 0\n", + "90717 0\n", + "90718 0\n", + "90719 0\n", + "90720 0\n", + "90721 0\n", + "90722 0\n", + "90723 0\n", + "90724 0\n", + "90725 0\n", + "90726 0\n", + "90727 0\n", + "90728 0\n", + "90729 0\n", + "90730 0\n", + "90731 1\n", + "90732 0\n", + "90733 0\n", + "90734 0\n", + "90735 0\n", + "90736 0\n", + "90737 0\n", + "90738 0\n", + "90739 0\n", + "90740 0\n", + "90741 0\n", + "90742 0\n", + "90743 0\n", + "90744 0\n", + "90745 0\n", + "90746 0\n", + "90747 0\n", + "90748 0\n", + "90749 1\n", + "90750 0\n", + "90751 0\n", + "90752 0\n", + "90753 0\n", + "90754 0\n", + "90755 0\n", + "90756 0\n", + "90757 0\n", + "90758 0\n", + "90759 0\n", + "90760 0\n", + "90761 0\n", + "90762 0\n", + "90763 0\n", + "90764 0\n", + "90765 0\n", + "90766 0\n", + "90767 0\n", + "90768 0\n", + "90769 0\n", + "90770 0\n", + "90771 0\n", + "90772 0\n", + "90773 0\n", + "90774 0\n", + "90775 0\n", + "90776 0\n", + "90777 0\n", + "90778 0\n", + "90779 0\n", + "90780 0\n", + "90781 0\n", + "90782 0\n", + "90783 0\n", + "90784 0\n", + "90785 0\n", + "90786 0\n", + "90787 1\n", + "90788 0\n", + "90789 0\n", + "90790 0\n", + "90791 0\n", + "90792 0\n", + "90793 1\n", + "90794 0\n", + "90795 0\n", + "90796 0\n", + "90797 0\n", + "90798 0\n", + "90799 0\n", + "90800 0\n", + "90801 0\n", + "90802 0\n", + "90803 1\n", + "90804 0\n", + "90805 0\n", + "90806 0\n", + "90807 0\n", + "90808 0\n", + "90809 0\n", + "90810 0\n", + "90811 0\n", + "90812 0\n", + "90813 0\n", + "90814 0\n", + "90815 0\n", + "90816 0\n", + "90817 0\n", + "90818 0\n", + "90819 0\n", + "90820 0\n", + "90821 1\n", + "90822 0\n", + "90823 1\n", + "90824 0\n", + "90825 0\n", + "90826 0\n", + "90827 0\n", + "90828 0\n", + "90829 0\n", + "90830 0\n", + "90831 0\n", + "90832 0\n", + "90833 1\n", + "90834 0\n", + "90835 0\n", + "90836 0\n", + "90837 0\n", + "90838 0\n", + "90839 0\n", + "90840 0\n", + "90841 1\n", + "90842 0\n", + "90843 0\n", + "90844 0\n", + "90845 0\n", + "90846 0\n", + "90847 1\n", + "90848 0\n", + "90849 0\n", + "90850 0\n", + "90851 0\n", + "90852 0\n", + "90853 0\n", + "90854 0\n", + "90855 0\n", + "90856 0\n", + "90857 0\n", + "90858 0\n", + "90859 0\n", + "90860 0\n", + "90861 0\n", + "90862 0\n", + "90863 1\n", + "90864 0\n", + "90865 0\n", + "90866 0\n", + "90867 0\n", + "90868 0\n", + "90869 0\n", + "90870 0\n", + "90871 0\n", + "90872 0\n", + "90873 0\n", + "90874 0\n", + "90875 0\n", + "90876 0\n", + "90877 0\n", + "90878 0\n", + "90879 0\n", + "90880 0\n", + "90881 0\n", + "90882 0\n", + "90883 0\n", + "90884 0\n", + "90885 0\n", + "90886 0\n", + "90887 1\n", + "90888 0\n", + "90889 0\n", + "90890 0\n", + "90891 0\n", + "90892 0\n", + "90893 0\n", + "90894 0\n", + "90895 0\n", + "90896 0\n", + "90897 0\n", + "90898 0\n", + "90899 0\n", + "90900 0\n", + "90901 1\n", + "90902 0\n", + "90903 0\n", + "90904 0\n", + "90905 0\n", + "90906 0\n", + "90907 1\n", + "90908 0\n", + "90909 0\n", + "90910 0\n", + "90911 1\n", + "90912 0\n", + "90913 0\n", + "90914 0\n", + "90915 0\n", + "90916 0\n", + "90917 1\n", + "90918 0\n", + "90919 0\n", + "90920 0\n", + "90921 0\n", + "90922 0\n", + "90923 0\n", + "90924 0\n", + "90925 0\n", + "90926 0\n", + "90927 0\n", + "90928 0\n", + "90929 0\n", + "90930 0\n", + "90931 1\n", + "90932 0\n", + "90933 0\n", + "90934 0\n", + "90935 0\n", + "90936 0\n", + "90937 0\n", + "90938 0\n", + "90939 0\n", + "90940 0\n", + "90941 0\n", + "90942 0\n", + "90943 0\n", + "90944 0\n", + "90945 0\n", + "90946 0\n", + "90947 1\n", + "90948 0\n", + "90949 0\n", + "90950 0\n", + "90951 0\n", + "90952 0\n", + "90953 0\n", + "90954 0\n", + "90955 0\n", + "90956 0\n", + "90957 0\n", + "90958 0\n", + "90959 0\n", + "90960 0\n", + "90961 0\n", + "90962 0\n", + "90963 0\n", + "90964 0\n", + "90965 0\n", + "90966 0\n", + "90967 0\n", + "90968 0\n", + "90969 0\n", + "90970 0\n", + "90971 1\n", + "90972 0\n", + "90973 0\n", + "90974 0\n", + "90975 0\n", + "90976 0\n", + "90977 1\n", + "90978 0\n", + "90979 0\n", + "90980 0\n", + "90981 0\n", + "90982 0\n", + "90983 0\n", + "90984 0\n", + "90985 0\n", + "90986 0\n", + "90987 0\n", + "90988 0\n", + "90989 1\n", + "90990 0\n", + "90991 0\n", + "90992 0\n", + "90993 0\n", + "90994 0\n", + "90995 0\n", + "90996 0\n", + "90997 1\n", + "90998 0\n", + "90999 0\n", + "91000 0\n", + "91001 0\n", + "91002 0\n", + "91003 0\n", + "91004 0\n", + "91005 0\n", + "91006 0\n", + "91007 0\n", + "91008 0\n", + "91009 1\n", + "91010 0\n", + "91011 0\n", + "91012 0\n", + "91013 0\n", + "91014 0\n", + "91015 0\n", + "91016 0\n", + "91017 0\n", + "91018 0\n", + "91019 1\n", + "91020 0\n", + "91021 0\n", + "91022 0\n", + "91023 0\n", + "91024 0\n", + "91025 0\n", + "91026 0\n", + "91027 0\n", + "91028 0\n", + "91029 0\n", + "91030 0\n", + "91031 0\n", + "91032 0\n", + "91033 1\n", + "91034 0\n", + "91035 0\n", + "91036 0\n", + "91037 0\n", + "91038 0\n", + "91039 0\n", + "91040 0\n", + "91041 0\n", + "91042 0\n", + "91043 0\n", + "91044 0\n", + "91045 0\n", + "91046 0\n", + "91047 0\n", + "91048 0\n", + "91049 0\n", + "91050 0\n", + "91051 0\n", + "91052 0\n", + "91053 0\n", + "91054 0\n", + "91055 0\n", + "91056 0\n", + "91057 0\n", + "91058 0\n", + "91059 0\n", + "91060 0\n", + "91061 0\n", + "91062 0\n", + "91063 0\n", + "91064 0\n", + "91065 0\n", + "91066 0\n", + "91067 0\n", + "91068 0\n", + "91069 0\n", + "91070 0\n", + "91071 0\n", + "91072 0\n", + "91073 0\n", + "91074 0\n", + "91075 0\n", + "91076 0\n", + "91077 0\n", + "91078 0\n", + "91079 1\n", + "91080 0\n", + "91081 1\n", + "91082 0\n", + "91083 0\n", + "91084 0\n", + "91085 0\n", + "91086 0\n", + "91087 0\n", + "91088 0\n", + "91089 0\n", + "91090 0\n", + "91091 0\n", + "91092 0\n", + "91093 0\n", + "91094 0\n", + "91095 0\n", + "91096 0\n", + "91097 1\n", + "91098 0\n", + "91099 1\n", + "91100 0\n", + "91101 0\n", + "91102 0\n", + "91103 0\n", + "91104 0\n", + "91105 0\n", + "91106 0\n", + "91107 0\n", + "91108 0\n", + "91109 0\n", + "91110 0\n", + "91111 0\n", + "91112 0\n", + "91113 0\n", + "91114 0\n", + "91115 0\n", + "91116 0\n", + "91117 0\n", + "91118 0\n", + "91119 0\n", + "91120 0\n", + "91121 1\n", + "91122 0\n", + "91123 0\n", + "91124 0\n", + "91125 0\n", + "91126 0\n", + "91127 1\n", + "91128 0\n", + "91129 1\n", + "91130 0\n", + "91131 0\n", + "91132 0\n", + "91133 0\n", + "91134 0\n", + "91135 0\n", + "91136 0\n", + "91137 0\n", + "91138 0\n", + "91139 1\n", + "91140 0\n", + "91141 1\n", + "91142 0\n", + "91143 0\n", + "91144 0\n", + "91145 0\n", + "91146 0\n", + "91147 0\n", + "91148 0\n", + "91149 0\n", + "91150 0\n", + "91151 1\n", + "91152 0\n", + "91153 1\n", + "91154 0\n", + "91155 0\n", + "91156 0\n", + "91157 0\n", + "91158 0\n", + "91159 1\n", + "91160 0\n", + "91161 0\n", + "91162 0\n", + "91163 1\n", + "91164 0\n", + "91165 0\n", + "91166 0\n", + "91167 0\n", + "91168 0\n", + "91169 0\n", + "91170 0\n", + "91171 0\n", + "91172 0\n", + "91173 0\n", + "91174 0\n", + "91175 0\n", + "91176 0\n", + "91177 0\n", + "91178 0\n", + "91179 0\n", + "91180 0\n", + "91181 0\n", + "91182 0\n", + "91183 1\n", + "91184 0\n", + "91185 0\n", + "91186 0\n", + "91187 0\n", + "91188 0\n", + "91189 0\n", + "91190 0\n", + "91191 0\n", + "91192 0\n", + "91193 1\n", + "91194 0\n", + "91195 0\n", + "91196 0\n", + "91197 0\n", + "91198 0\n", + "91199 1\n", + "91200 0\n", + "91201 0\n", + "91202 0\n", + "91203 0\n", + "91204 0\n", + "91205 0\n", + "91206 0\n", + "91207 0\n", + "91208 0\n", + "91209 0\n", + "91210 0\n", + "91211 0\n", + "91212 0\n", + "91213 0\n", + "91214 0\n", + "91215 0\n", + "91216 0\n", + "91217 0\n", + "91218 0\n", + "91219 0\n", + "91220 0\n", + "91221 0\n", + "91222 0\n", + "91223 0\n", + "91224 0\n", + "91225 0\n", + "91226 0\n", + "91227 0\n", + "91228 0\n", + "91229 1\n", + "91230 0\n", + "91231 0\n", + "91232 0\n", + "91233 0\n", + "91234 0\n", + "91235 0\n", + "91236 0\n", + "91237 1\n", + "91238 0\n", + "91239 0\n", + "91240 0\n", + "91241 0\n", + "91242 0\n", + "91243 1\n", + "91244 0\n", + "91245 0\n", + "91246 0\n", + "91247 0\n", + "91248 0\n", + "91249 1\n", + "91250 0\n", + "91251 0\n", + "91252 0\n", + "91253 1\n", + "91254 0\n", + "91255 0\n", + "91256 0\n", + "91257 0\n", + "91258 0\n", + "91259 0\n", + "91260 0\n", + "91261 0\n", + "91262 0\n", + "91263 0\n", + "91264 0\n", + "91265 0\n", + "91266 0\n", + "91267 0\n", + "91268 0\n", + "91269 0\n", + "91270 0\n", + "91271 0\n", + "91272 0\n", + "91273 0\n", + "91274 0\n", + "91275 0\n", + "91276 0\n", + "91277 0\n", + "91278 0\n", + "91279 0\n", + "91280 0\n", + "91281 0\n", + "91282 0\n", + "91283 1\n", + "91284 0\n", + "91285 0\n", + "91286 0\n", + "91287 0\n", + "91288 0\n", + "91289 0\n", + "91290 0\n", + "91291 1\n", + "91292 0\n", + "91293 0\n", + "91294 0\n", + "91295 0\n", + "91296 0\n", + "91297 1\n", + "91298 0\n", + "91299 0\n", + "91300 0\n", + "91301 0\n", + "91302 0\n", + "91303 1\n", + "91304 0\n", + "91305 0\n", + "91306 0\n", + "91307 0\n", + "91308 0\n", + "91309 1\n", + "91310 0\n", + "91311 0\n", + "91312 0\n", + "91313 0\n", + "91314 0\n", + "91315 0\n", + "91316 0\n", + "91317 0\n", + "91318 0\n", + "91319 0\n", + "91320 0\n", + "91321 0\n", + "91322 0\n", + "91323 0\n", + "91324 0\n", + "91325 0\n", + "91326 0\n", + "91327 0\n", + "91328 0\n", + "91329 0\n", + "91330 0\n", + "91331 1\n", + "91332 0\n", + "91333 0\n", + "91334 0\n", + "91335 0\n", + "91336 0\n", + "91337 0\n", + "91338 0\n", + "91339 0\n", + "91340 0\n", + "91341 0\n", + "91342 0\n", + "91343 0\n", + "91344 0\n", + "91345 0\n", + "91346 0\n", + "91347 0\n", + "91348 0\n", + "91349 0\n", + "91350 0\n", + "91351 0\n", + "91352 0\n", + "91353 0\n", + "91354 0\n", + "91355 0\n", + "91356 0\n", + "91357 0\n", + "91358 0\n", + "91359 0\n", + "91360 0\n", + "91361 0\n", + "91362 0\n", + "91363 0\n", + "91364 0\n", + "91365 0\n", + "91366 0\n", + "91367 1\n", + "91368 0\n", + "91369 1\n", + "91370 0\n", + "91371 0\n", + "91372 0\n", + "91373 1\n", + "91374 0\n", + "91375 0\n", + "91376 0\n", + "91377 0\n", + "91378 0\n", + "91379 0\n", + "91380 0\n", + "91381 1\n", + "91382 0\n", + "91383 0\n", + "91384 0\n", + "91385 0\n", + "91386 0\n", + "91387 1\n", + "91388 0\n", + "91389 0\n", + "91390 0\n", + "91391 0\n", + "91392 0\n", + "91393 1\n", + "91394 0\n", + "91395 0\n", + "91396 0\n", + "91397 1\n", + "91398 0\n", + "91399 0\n", + "91400 0\n", + "91401 0\n", + "91402 0\n", + "91403 0\n", + "91404 0\n", + "91405 0\n", + "91406 0\n", + "91407 0\n", + "91408 0\n", + "91409 0\n", + "91410 0\n", + "91411 1\n", + "91412 0\n", + "91413 0\n", + "91414 0\n", + "91415 0\n", + "91416 0\n", + "91417 0\n", + "91418 0\n", + "91419 0\n", + "91420 0\n", + "91421 0\n", + "91422 0\n", + "91423 1\n", + "91424 0\n", + "91425 0\n", + "91426 0\n", + "91427 0\n", + "91428 0\n", + "91429 0\n", + "91430 0\n", + "91431 0\n", + "91432 0\n", + "91433 1\n", + "91434 0\n", + "91435 0\n", + "91436 0\n", + "91437 0\n", + "91438 0\n", + "91439 0\n", + "91440 0\n", + "91441 0\n", + "91442 0\n", + "91443 0\n", + "91444 0\n", + "91445 0\n", + "91446 0\n", + "91447 0\n", + "91448 0\n", + "91449 0\n", + "91450 0\n", + "91451 0\n", + "91452 0\n", + "91453 1\n", + "91454 0\n", + "91455 0\n", + "91456 0\n", + "91457 1\n", + "91458 0\n", + "91459 1\n", + "91460 0\n", + "91461 0\n", + "91462 0\n", + "91463 1\n", + "91464 0\n", + "91465 0\n", + "91466 0\n", + "91467 0\n", + "91468 0\n", + "91469 0\n", + "91470 0\n", + "91471 0\n", + "91472 0\n", + "91473 0\n", + "91474 0\n", + "91475 0\n", + "91476 0\n", + "91477 0\n", + "91478 0\n", + "91479 0\n", + "91480 0\n", + "91481 0\n", + "91482 0\n", + "91483 0\n", + "91484 0\n", + "91485 0\n", + "91486 0\n", + "91487 0\n", + "91488 0\n", + "91489 0\n", + "91490 0\n", + "91491 0\n", + "91492 0\n", + "91493 1\n", + "91494 0\n", + "91495 0\n", + "91496 0\n", + "91497 0\n", + "91498 0\n", + "91499 1\n", + "91500 0\n", + "91501 0\n", + "91502 0\n", + "91503 0\n", + "91504 0\n", + "91505 0\n", + "91506 0\n", + "91507 0\n", + "91508 0\n", + "91509 0\n", + "91510 0\n", + "91511 0\n", + "91512 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91513 1\n", + "91514 0\n", + "91515 0\n", + "91516 0\n", + "91517 0\n", + "91518 0\n", + "91519 0\n", + "91520 0\n", + "91521 0\n", + "91522 0\n", + "91523 0\n", + "91524 0\n", + "91525 0\n", + "91526 0\n", + "91527 0\n", + "91528 0\n", + "91529 1\n", + "91530 0\n", + "91531 0\n", + "91532 0\n", + "91533 0\n", + "91534 0\n", + "91535 0\n", + "91536 0\n", + "91537 0\n", + "91538 0\n", + "91539 0\n", + "91540 0\n", + "91541 1\n", + "91542 0\n", + "91543 0\n", + "91544 0\n", + "91545 0\n", + "91546 0\n", + "91547 0\n", + "91548 0\n", + "91549 0\n", + "91550 0\n", + "91551 0\n", + "91552 0\n", + "91553 0\n", + "91554 0\n", + "91555 0\n", + "91556 0\n", + "91557 0\n", + "91558 0\n", + "91559 0\n", + "91560 0\n", + "91561 0\n", + "91562 0\n", + "91563 0\n", + "91564 0\n", + "91565 0\n", + "91566 0\n", + "91567 0\n", + "91568 0\n", + "91569 0\n", + "91570 0\n", + "91571 1\n", + "91572 0\n", + "91573 1\n", + "91574 0\n", + "91575 0\n", + "91576 0\n", + "91577 1\n", + "91578 0\n", + "91579 0\n", + "91580 0\n", + "91581 0\n", + "91582 0\n", + "91583 1\n", + "91584 0\n", + "91585 0\n", + "91586 0\n", + "91587 0\n", + "91588 0\n", + "91589 0\n", + "91590 0\n", + "91591 1\n", + "91592 0\n", + "91593 0\n", + "91594 0\n", + "91595 0\n", + "91596 0\n", + "91597 0\n", + "91598 0\n", + "91599 0\n", + "91600 0\n", + "91601 0\n", + "91602 0\n", + "91603 0\n", + "91604 0\n", + "91605 0\n", + "91606 0\n", + "91607 0\n", + "91608 0\n", + "91609 0\n", + "91610 0\n", + "91611 0\n", + "91612 0\n", + "91613 0\n", + "91614 0\n", + "91615 0\n", + "91616 0\n", + "91617 0\n", + "91618 0\n", + "91619 0\n", + "91620 0\n", + "91621 1\n", + "91622 0\n", + "91623 0\n", + "91624 0\n", + "91625 0\n", + "91626 0\n", + "91627 0\n", + "91628 0\n", + "91629 0\n", + "91630 0\n", + "91631 1\n", + "91632 0\n", + "91633 0\n", + "91634 0\n", + "91635 0\n", + "91636 0\n", + "91637 0\n", + "91638 0\n", + "91639 1\n", + "91640 0\n", + "91641 0\n", + "91642 0\n", + "91643 0\n", + "91644 0\n", + "91645 0\n", + "91646 0\n", + "91647 0\n", + "91648 0\n", + "91649 0\n", + "91650 0\n", + "91651 0\n", + "91652 0\n", + "91653 0\n", + "91654 0\n", + "91655 0\n", + "91656 0\n", + "91657 0\n", + "91658 0\n", + "91659 0\n", + "91660 0\n", + "91661 0\n", + "91662 0\n", + "91663 0\n", + "91664 0\n", + "91665 0\n", + "91666 0\n", + "91667 0\n", + "91668 0\n", + "91669 0\n", + "91670 0\n", + "91671 0\n", + "91672 0\n", + "91673 1\n", + "91674 0\n", + "91675 0\n", + "91676 0\n", + "91677 0\n", + "91678 0\n", + "91679 0\n", + "91680 0\n", + "91681 0\n", + "91682 0\n", + "91683 0\n", + "91684 0\n", + "91685 0\n", + "91686 0\n", + "91687 0\n", + "91688 0\n", + "91689 0\n", + "91690 0\n", + "91691 1\n", + "91692 0\n", + "91693 0\n", + "91694 0\n", + "91695 0\n", + "91696 0\n", + "91697 0\n", + "91698 0\n", + "91699 0\n", + "91700 0\n", + "91701 0\n", + "91702 0\n", + "91703 1\n", + "91704 0\n", + "91705 0\n", + "91706 0\n", + "91707 0\n", + "91708 0\n", + "91709 0\n", + "91710 0\n", + "91711 1\n", + "91712 0\n", + "91713 0\n", + "91714 0\n", + "91715 0\n", + "91716 0\n", + "91717 0\n", + "91718 0\n", + "91719 0\n", + "91720 0\n", + "91721 0\n", + "91722 0\n", + "91723 0\n", + "91724 0\n", + "91725 0\n", + "91726 0\n", + "91727 0\n", + "91728 0\n", + "91729 0\n", + "91730 0\n", + "91731 0\n", + "91732 0\n", + "91733 1\n", + "91734 0\n", + "91735 0\n", + "91736 0\n", + "91737 0\n", + "91738 0\n", + "91739 0\n", + "91740 0\n", + "91741 0\n", + "91742 0\n", + "91743 0\n", + "91744 0\n", + "91745 0\n", + "91746 0\n", + "91747 0\n", + "91748 0\n", + "91749 0\n", + "91750 0\n", + "91751 0\n", + "91752 0\n", + "91753 1\n", + "91754 0\n", + "91755 0\n", + "91756 0\n", + "91757 1\n", + "91758 0\n", + "91759 0\n", + "91760 0\n", + "91761 0\n", + "91762 0\n", + "91763 0\n", + "91764 0\n", + "91765 0\n", + "91766 0\n", + "91767 0\n", + "91768 0\n", + "91769 0\n", + "91770 0\n", + "91771 1\n", + "91772 0\n", + "91773 0\n", + "91774 0\n", + "91775 0\n", + "91776 0\n", + "91777 0\n", + "91778 0\n", + "91779 0\n", + "91780 0\n", + "91781 1\n", + "91782 0\n", + "91783 0\n", + "91784 0\n", + "91785 0\n", + "91786 0\n", + "91787 0\n", + "91788 0\n", + "91789 0\n", + "91790 0\n", + "91791 0\n", + "91792 0\n", + "91793 0\n", + "91794 0\n", + "91795 0\n", + "91796 0\n", + "91797 0\n", + "91798 0\n", + "91799 0\n", + "91800 0\n", + "91801 1\n", + "91802 0\n", + "91803 0\n", + "91804 0\n", + "91805 0\n", + "91806 0\n", + "91807 1\n", + "91808 0\n", + "91809 0\n", + "91810 0\n", + "91811 1\n", + "91812 0\n", + "91813 1\n", + "91814 0\n", + "91815 0\n", + "91816 0\n", + "91817 0\n", + "91818 0\n", + "91819 0\n", + "91820 0\n", + "91821 0\n", + "91822 0\n", + "91823 1\n", + "91824 0\n", + "91825 0\n", + "91826 0\n", + "91827 0\n", + "91828 0\n", + "91829 0\n", + "91830 0\n", + "91831 0\n", + "91832 0\n", + "91833 0\n", + "91834 0\n", + "91835 0\n", + "91836 0\n", + "91837 1\n", + "91838 0\n", + "91839 0\n", + "91840 0\n", + "91841 1\n", + "91842 0\n", + "91843 0\n", + "91844 0\n", + "91845 0\n", + "91846 0\n", + "91847 0\n", + "91848 0\n", + "91849 0\n", + "91850 0\n", + "91851 0\n", + "91852 0\n", + "91853 0\n", + "91854 0\n", + "91855 0\n", + "91856 0\n", + "91857 0\n", + "91858 0\n", + "91859 0\n", + "91860 0\n", + "91861 0\n", + "91862 0\n", + "91863 0\n", + "91864 0\n", + "91865 0\n", + "91866 0\n", + "91867 1\n", + "91868 0\n", + "91869 0\n", + "91870 0\n", + "91871 0\n", + "91872 0\n", + "91873 1\n", + "91874 0\n", + "91875 0\n", + "91876 0\n", + "91877 0\n", + "91878 0\n", + "91879 0\n", + "91880 0\n", + "91881 0\n", + "91882 0\n", + "91883 0\n", + "91884 0\n", + "91885 0\n", + "91886 0\n", + "91887 0\n", + "91888 0\n", + "91889 0\n", + "91890 0\n", + "91891 0\n", + "91892 0\n", + "91893 0\n", + "91894 0\n", + "91895 0\n", + "91896 0\n", + "91897 0\n", + "91898 0\n", + "91899 0\n", + "91900 0\n", + "91901 0\n", + "91902 0\n", + "91903 0\n", + "91904 0\n", + "91905 0\n", + "91906 0\n", + "91907 0\n", + "91908 0\n", + "91909 1\n", + "91910 0\n", + "91911 0\n", + "91912 0\n", + "91913 0\n", + "91914 0\n", + "91915 0\n", + "91916 0\n", + "91917 0\n", + "91918 0\n", + "91919 0\n", + "91920 0\n", + "91921 1\n", + "91922 0\n", + "91923 0\n", + "91924 0\n", + "91925 0\n", + "91926 0\n", + "91927 0\n", + "91928 0\n", + "91929 0\n", + "91930 0\n", + "91931 0\n", + "91932 0\n", + "91933 0\n", + "91934 0\n", + "91935 0\n", + "91936 0\n", + "91937 0\n", + "91938 0\n", + "91939 1\n", + "91940 0\n", + "91941 0\n", + "91942 0\n", + "91943 1\n", + "91944 0\n", + "91945 0\n", + "91946 0\n", + "91947 0\n", + "91948 0\n", + "91949 0\n", + "91950 0\n", + "91951 1\n", + "91952 0\n", + "91953 0\n", + "91954 0\n", + "91955 0\n", + "91956 0\n", + "91957 1\n", + "91958 0\n", + "91959 0\n", + "91960 0\n", + "91961 1\n", + "91962 0\n", + "91963 0\n", + "91964 0\n", + "91965 0\n", + "91966 0\n", + "91967 1\n", + "91968 0\n", + "91969 1\n", + "91970 0\n", + "91971 0\n", + "91972 0\n", + "91973 0\n", + "91974 0\n", + "91975 0\n", + "91976 0\n", + "91977 0\n", + "91978 0\n", + "91979 0\n", + "91980 0\n", + "91981 0\n", + "91982 0\n", + "91983 0\n", + "91984 0\n", + "91985 0\n", + "91986 0\n", + "91987 0\n", + "91988 0\n", + "91989 0\n", + "91990 0\n", + "91991 0\n", + "91992 0\n", + "91993 0\n", + "91994 0\n", + "91995 0\n", + "91996 0\n", + "91997 1\n", + "91998 0\n", + "91999 0\n", + "92000 0\n", + "92001 0\n", + "92002 0\n", + "92003 1\n", + "92004 0\n", + "92005 0\n", + "92006 0\n", + "92007 0\n", + "92008 0\n", + "92009 1\n", + "92010 0\n", + "92011 0\n", + "92012 0\n", + "92013 0\n", + "92014 0\n", + "92015 0\n", + "92016 0\n", + "92017 0\n", + "92018 0\n", + "92019 0\n", + "92020 0\n", + "92021 0\n", + "92022 0\n", + "92023 0\n", + "92024 0\n", + "92025 0\n", + "92026 0\n", + "92027 0\n", + "92028 0\n", + "92029 0\n", + "92030 0\n", + "92031 0\n", + "92032 0\n", + "92033 1\n", + "92034 0\n", + "92035 0\n", + "92036 0\n", + "92037 0\n", + "92038 0\n", + "92039 0\n", + "92040 0\n", + "92041 1\n", + "92042 0\n", + "92043 0\n", + "92044 0\n", + "92045 0\n", + "92046 0\n", + "92047 0\n", + "92048 0\n", + "92049 0\n", + "92050 0\n", + "92051 1\n", + "92052 0\n", + "92053 0\n", + "92054 0\n", + "92055 0\n", + "92056 0\n", + "92057 0\n", + "92058 0\n", + "92059 0\n", + "92060 0\n", + "92061 0\n", + "92062 0\n", + "92063 0\n", + "92064 0\n", + "92065 0\n", + "92066 0\n", + "92067 0\n", + "92068 0\n", + "92069 0\n", + "92070 0\n", + "92071 0\n", + "92072 0\n", + "92073 0\n", + "92074 0\n", + "92075 0\n", + "92076 0\n", + "92077 1\n", + "92078 0\n", + "92079 0\n", + "92080 0\n", + "92081 0\n", + "92082 0\n", + "92083 1\n", + "92084 0\n", + "92085 0\n", + "92086 0\n", + "92087 0\n", + "92088 0\n", + "92089 0\n", + "92090 0\n", + "92091 0\n", + "92092 0\n", + "92093 0\n", + "92094 0\n", + "92095 0\n", + "92096 0\n", + "92097 0\n", + "92098 0\n", + "92099 0\n", + "92100 0\n", + "92101 0\n", + "92102 0\n", + "92103 0\n", + "92104 0\n", + "92105 0\n", + "92106 0\n", + "92107 1\n", + "92108 0\n", + "92109 0\n", + "92110 0\n", + "92111 1\n", + "92112 0\n", + "92113 0\n", + "92114 0\n", + "92115 0\n", + "92116 0\n", + "92117 0\n", + "92118 0\n", + "92119 1\n", + "92120 0\n", + "92121 0\n", + "92122 0\n", + "92123 0\n", + "92124 0\n", + "92125 0\n", + "92126 0\n", + "92127 0\n", + "92128 0\n", + "92129 0\n", + "92130 0\n", + "92131 0\n", + "92132 0\n", + "92133 0\n", + "92134 0\n", + "92135 0\n", + "92136 0\n", + "92137 0\n", + "92138 0\n", + "92139 0\n", + "92140 0\n", + "92141 0\n", + "92142 0\n", + "92143 1\n", + "92144 0\n", + "92145 0\n", + "92146 0\n", + "92147 0\n", + "92148 0\n", + "92149 0\n", + "92150 0\n", + "92151 0\n", + "92152 0\n", + "92153 1\n", + "92154 0\n", + "92155 0\n", + "92156 0\n", + "92157 0\n", + "92158 0\n", + "92159 0\n", + "92160 0\n", + "92161 0\n", + "92162 0\n", + "92163 0\n", + "92164 0\n", + "92165 0\n", + "92166 0\n", + "92167 0\n", + "92168 0\n", + "92169 0\n", + "92170 0\n", + "92171 0\n", + "92172 0\n", + "92173 1\n", + "92174 0\n", + "92175 0\n", + "92176 0\n", + "92177 1\n", + "92178 0\n", + "92179 1\n", + "92180 0\n", + "92181 0\n", + "92182 0\n", + "92183 0\n", + "92184 0\n", + "92185 0\n", + "92186 0\n", + "92187 0\n", + "92188 0\n", + "92189 1\n", + "92190 0\n", + "92191 0\n", + "92192 0\n", + "92193 0\n", + "92194 0\n", + "92195 0\n", + "92196 0\n", + "92197 0\n", + "92198 0\n", + "92199 0\n", + "92200 0\n", + "92201 0\n", + "92202 0\n", + "92203 1\n", + "92204 0\n", + "92205 0\n", + "92206 0\n", + "92207 0\n", + "92208 0\n", + "92209 0\n", + "92210 0\n", + "92211 0\n", + "92212 0\n", + "92213 0\n", + "92214 0\n", + "92215 0\n", + "92216 0\n", + "92217 0\n", + "92218 0\n", + "92219 1\n", + "92220 0\n", + "92221 1\n", + "92222 0\n", + "92223 0\n", + "92224 0\n", + "92225 0\n", + "92226 0\n", + "92227 1\n", + "92228 0\n", + "92229 0\n", + "92230 0\n", + "92231 0\n", + "92232 0\n", + "92233 1\n", + "92234 0\n", + "92235 0\n", + "92236 0\n", + "92237 1\n", + "92238 0\n", + "92239 0\n", + "92240 0\n", + "92241 0\n", + "92242 0\n", + "92243 1\n", + "92244 0\n", + "92245 0\n", + "92246 0\n", + "92247 0\n", + "92248 0\n", + "92249 0\n", + "92250 0\n", + "92251 1\n", + "92252 0\n", + "92253 0\n", + "92254 0\n", + "92255 0\n", + "92256 0\n", + "92257 0\n", + "92258 0\n", + "92259 0\n", + "92260 0\n", + "92261 0\n", + "92262 0\n", + "92263 0\n", + "92264 0\n", + "92265 0\n", + "92266 0\n", + "92267 0\n", + "92268 0\n", + "92269 1\n", + "92270 0\n", + "92271 0\n", + "92272 0\n", + "92273 0\n", + "92274 0\n", + "92275 0\n", + "92276 0\n", + "92277 0\n", + "92278 0\n", + "92279 0\n", + "92280 0\n", + "92281 0\n", + "92282 0\n", + "92283 0\n", + "92284 0\n", + "92285 0\n", + "92286 0\n", + "92287 0\n", + "92288 0\n", + "92289 0\n", + "92290 0\n", + "92291 0\n", + "92292 0\n", + "92293 0\n", + "92294 0\n", + "92295 0\n", + "92296 0\n", + "92297 1\n", + "92298 0\n", + "92299 0\n", + "92300 0\n", + "92301 0\n", + "92302 0\n", + "92303 0\n", + "92304 0\n", + "92305 0\n", + "92306 0\n", + "92307 0\n", + "92308 0\n", + "92309 0\n", + "92310 0\n", + "92311 1\n", + "92312 0\n", + "92313 0\n", + "92314 0\n", + "92315 0\n", + "92316 0\n", + "92317 1\n", + "92318 0\n", + "92319 0\n", + "92320 0\n", + "92321 0\n", + "92322 0\n", + "92323 0\n", + "92324 0\n", + "92325 0\n", + "92326 0\n", + "92327 0\n", + "92328 0\n", + "92329 0\n", + "92330 0\n", + "92331 0\n", + "92332 0\n", + "92333 1\n", + "92334 0\n", + "92335 0\n", + "92336 0\n", + "92337 0\n", + "92338 0\n", + "92339 0\n", + "92340 0\n", + "92341 0\n", + "92342 0\n", + "92343 0\n", + "92344 0\n", + "92345 0\n", + "92346 0\n", + "92347 1\n", + "92348 0\n", + "92349 0\n", + "92350 0\n", + "92351 0\n", + "92352 0\n", + "92353 1\n", + "92354 0\n", + "92355 0\n", + "92356 0\n", + "92357 1\n", + "92358 0\n", + "92359 0\n", + "92360 0\n", + "92361 0\n", + "92362 0\n", + "92363 1\n", + "92364 0\n", + "92365 0\n", + "92366 0\n", + "92367 0\n", + "92368 0\n", + "92369 1\n", + "92370 0\n", + "92371 0\n", + "92372 0\n", + "92373 0\n", + "92374 0\n", + "92375 0\n", + "92376 0\n", + "92377 1\n", + "92378 0\n", + "92379 0\n", + "92380 0\n", + "92381 1\n", + "92382 0\n", + "92383 1\n", + "92384 0\n", + "92385 0\n", + "92386 0\n", + "92387 1\n", + "92388 0\n", + "92389 0\n", + "92390 0\n", + "92391 0\n", + "92392 0\n", + "92393 0\n", + "92394 0\n", + "92395 0\n", + "92396 0\n", + "92397 0\n", + "92398 0\n", + "92399 1\n", + "92400 0\n", + "92401 1\n", + "92402 0\n", + "92403 0\n", + "92404 0\n", + "92405 0\n", + "92406 0\n", + "92407 0\n", + "92408 0\n", + "92409 0\n", + "92410 0\n", + "92411 0\n", + "92412 0\n", + "92413 1\n", + "92414 0\n", + "92415 0\n", + "92416 0\n", + "92417 0\n", + "92418 0\n", + "92419 1\n", + "92420 0\n", + "92421 0\n", + "92422 0\n", + "92423 0\n", + "92424 0\n", + "92425 0\n", + "92426 0\n", + "92427 0\n", + "92428 0\n", + "92429 0\n", + "92430 0\n", + "92431 1\n", + "92432 0\n", + "92433 0\n", + "92434 0\n", + "92435 0\n", + "92436 0\n", + "92437 0\n", + "92438 0\n", + "92439 0\n", + "92440 0\n", + "92441 0\n", + "92442 0\n", + "92443 0\n", + "92444 0\n", + "92445 0\n", + "92446 0\n", + "92447 0\n", + "92448 0\n", + "92449 0\n", + "92450 0\n", + "92451 0\n", + "92452 0\n", + "92453 0\n", + "92454 0\n", + "92455 0\n", + "92456 0\n", + "92457 0\n", + "92458 0\n", + "92459 1\n", + "92460 0\n", + "92461 1\n", + "92462 0\n", + "92463 0\n", + "92464 0\n", + "92465 0\n", + "92466 0\n", + "92467 1\n", + "92468 0\n", + "92469 0\n", + "92470 0\n", + "92471 0\n", + "92472 0\n", + "92473 0\n", + "92474 0\n", + "92475 0\n", + "92476 0\n", + "92477 0\n", + "92478 0\n", + "92479 1\n", + "92480 0\n", + "92481 0\n", + "92482 0\n", + "92483 0\n", + "92484 0\n", + "92485 0\n", + "92486 0\n", + "92487 0\n", + "92488 0\n", + "92489 1\n", + "92490 0\n", + "92491 0\n", + "92492 0\n", + "92493 0\n", + "92494 0\n", + "92495 0\n", + "92496 0\n", + "92497 0\n", + "92498 0\n", + "92499 0\n", + "92500 0\n", + "92501 0\n", + "92502 0\n", + "92503 1\n", + "92504 0\n", + "92505 0\n", + "92506 0\n", + "92507 1\n", + "92508 0\n", + "92509 0\n", + "92510 0\n", + "92511 0\n", + "92512 0\n", + "92513 0\n", + "92514 0\n", + "92515 0\n", + "92516 0\n", + "92517 0\n", + "92518 0\n", + "92519 0\n", + "92520 0\n", + "92521 0\n", + "92522 0\n", + "92523 0\n", + "92524 0\n", + "92525 0\n", + "92526 0\n", + "92527 0\n", + "92528 0\n", + "92529 0\n", + "92530 0\n", + "92531 0\n", + "92532 0\n", + "92533 0\n", + "92534 0\n", + "92535 0\n", + "92536 0\n", + "92537 0\n", + "92538 0\n", + "92539 0\n", + "92540 0\n", + "92541 0\n", + "92542 0\n", + "92543 0\n", + "92544 0\n", + "92545 0\n", + "92546 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "92547 0\n", + "92548 0\n", + "92549 0\n", + "92550 0\n", + "92551 1\n", + "92552 0\n", + "92553 0\n", + "92554 0\n", + "92555 0\n", + "92556 0\n", + "92557 1\n", + "92558 0\n", + "92559 0\n", + "92560 0\n", + "92561 0\n", + "92562 0\n", + "92563 0\n", + "92564 0\n", + "92565 0\n", + "92566 0\n", + "92567 1\n", + "92568 0\n", + "92569 1\n", + "92570 0\n", + "92571 0\n", + "92572 0\n", + "92573 0\n", + "92574 0\n", + "92575 0\n", + "92576 0\n", + "92577 0\n", + "92578 0\n", + "92579 0\n", + "92580 0\n", + "92581 1\n", + "92582 0\n", + "92583 0\n", + "92584 0\n", + "92585 0\n", + "92586 0\n", + "92587 0\n", + "92588 0\n", + "92589 0\n", + "92590 0\n", + "92591 0\n", + "92592 0\n", + "92593 1\n", + "92594 0\n", + "92595 0\n", + "92596 0\n", + "92597 0\n", + "92598 0\n", + "92599 0\n", + "92600 0\n", + "92601 0\n", + "92602 0\n", + "92603 0\n", + "92604 0\n", + "92605 0\n", + "92606 0\n", + "92607 0\n", + "92608 0\n", + "92609 0\n", + "92610 0\n", + "92611 0\n", + "92612 0\n", + "92613 0\n", + "92614 0\n", + "92615 0\n", + "92616 0\n", + "92617 0\n", + "92618 0\n", + "92619 0\n", + "92620 0\n", + "92621 0\n", + "92622 0\n", + "92623 1\n", + "92624 0\n", + "92625 0\n", + "92626 0\n", + "92627 1\n", + "92628 0\n", + "92629 0\n", + "92630 0\n", + "92631 0\n", + "92632 0\n", + "92633 0\n", + "92634 0\n", + "92635 0\n", + "92636 0\n", + "92637 0\n", + "92638 0\n", + "92639 1\n", + "92640 0\n", + "92641 1\n", + "92642 0\n", + "92643 0\n", + "92644 0\n", + "92645 0\n", + "92646 0\n", + "92647 1\n", + "92648 0\n", + "92649 0\n", + "92650 0\n", + "92651 0\n", + "92652 0\n", + "92653 0\n", + "92654 0\n", + "92655 0\n", + "92656 0\n", + "92657 1\n", + "92658 0\n", + "92659 0\n", + "92660 0\n", + "92661 0\n", + "92662 0\n", + "92663 0\n", + "92664 0\n", + "92665 0\n", + "92666 0\n", + "92667 0\n", + "92668 0\n", + "92669 1\n", + "92670 0\n", + "92671 1\n", + "92672 0\n", + "92673 0\n", + "92674 0\n", + "92675 0\n", + "92676 0\n", + "92677 0\n", + "92678 0\n", + "92679 0\n", + "92680 0\n", + "92681 1\n", + "92682 0\n", + "92683 1\n", + "92684 0\n", + "92685 0\n", + "92686 0\n", + "92687 0\n", + "92688 0\n", + "92689 0\n", + "92690 0\n", + "92691 0\n", + "92692 0\n", + "92693 1\n", + "92694 0\n", + "92695 0\n", + "92696 0\n", + "92697 0\n", + "92698 0\n", + "92699 1\n", + "92700 0\n", + "92701 0\n", + "92702 0\n", + "92703 0\n", + "92704 0\n", + "92705 0\n", + "92706 0\n", + "92707 1\n", + "92708 0\n", + "92709 0\n", + "92710 0\n", + "92711 0\n", + "92712 0\n", + "92713 0\n", + "92714 0\n", + "92715 0\n", + "92716 0\n", + "92717 1\n", + "92718 0\n", + "92719 0\n", + "92720 0\n", + "92721 0\n", + "92722 0\n", + "92723 1\n", + "92724 0\n", + "92725 0\n", + "92726 0\n", + "92727 0\n", + "92728 0\n", + "92729 0\n", + "92730 0\n", + "92731 0\n", + "92732 0\n", + "92733 0\n", + "92734 0\n", + "92735 0\n", + "92736 0\n", + "92737 1\n", + "92738 0\n", + "92739 0\n", + "92740 0\n", + "92741 0\n", + "92742 0\n", + "92743 0\n", + "92744 0\n", + "92745 0\n", + "92746 0\n", + "92747 0\n", + "92748 0\n", + "92749 0\n", + "92750 0\n", + "92751 0\n", + "92752 0\n", + "92753 1\n", + "92754 0\n", + "92755 0\n", + "92756 0\n", + "92757 0\n", + "92758 0\n", + "92759 0\n", + "92760 0\n", + "92761 1\n", + "92762 0\n", + "92763 0\n", + "92764 0\n", + "92765 0\n", + "92766 0\n", + "92767 1\n", + "92768 0\n", + "92769 0\n", + "92770 0\n", + "92771 0\n", + "92772 0\n", + "92773 0\n", + "92774 0\n", + "92775 0\n", + "92776 0\n", + "92777 0\n", + "92778 0\n", + "92779 1\n", + "92780 0\n", + "92781 0\n", + "92782 0\n", + "92783 0\n", + "92784 0\n", + "92785 0\n", + "92786 0\n", + "92787 0\n", + "92788 0\n", + "92789 1\n", + "92790 0\n", + "92791 1\n", + "92792 0\n", + "92793 0\n", + "92794 0\n", + "92795 0\n", + "92796 0\n", + "92797 0\n", + "92798 0\n", + "92799 0\n", + "92800 0\n", + "92801 1\n", + "92802 0\n", + "92803 0\n", + "92804 0\n", + "92805 0\n", + "92806 0\n", + "92807 0\n", + "92808 0\n", + "92809 1\n", + "92810 0\n", + "92811 0\n", + "92812 0\n", + "92813 0\n", + "92814 0\n", + "92815 0\n", + "92816 0\n", + "92817 0\n", + "92818 0\n", + "92819 0\n", + "92820 0\n", + "92821 1\n", + "92822 0\n", + "92823 0\n", + "92824 0\n", + "92825 0\n", + "92826 0\n", + "92827 0\n", + "92828 0\n", + "92829 0\n", + "92830 0\n", + "92831 1\n", + "92832 0\n", + "92833 0\n", + "92834 0\n", + "92835 0\n", + "92836 0\n", + "92837 0\n", + "92838 0\n", + "92839 0\n", + "92840 0\n", + "92841 0\n", + "92842 0\n", + "92843 0\n", + "92844 0\n", + "92845 0\n", + "92846 0\n", + "92847 0\n", + "92848 0\n", + "92849 1\n", + "92850 0\n", + "92851 0\n", + "92852 0\n", + "92853 0\n", + "92854 0\n", + "92855 0\n", + "92856 0\n", + "92857 1\n", + "92858 0\n", + "92859 0\n", + "92860 0\n", + "92861 1\n", + "92862 0\n", + "92863 1\n", + "92864 0\n", + "92865 0\n", + "92866 0\n", + "92867 1\n", + "92868 0\n", + "92869 0\n", + "92870 0\n", + "92871 0\n", + "92872 0\n", + "92873 0\n", + "92874 0\n", + "92875 0\n", + "92876 0\n", + "92877 0\n", + "92878 0\n", + "92879 0\n", + "92880 0\n", + "92881 0\n", + "92882 0\n", + "92883 0\n", + "92884 0\n", + "92885 0\n", + "92886 0\n", + "92887 0\n", + "92888 0\n", + "92889 0\n", + "92890 0\n", + "92891 0\n", + "92892 0\n", + "92893 1\n", + "92894 0\n", + "92895 0\n", + "92896 0\n", + "92897 0\n", + "92898 0\n", + "92899 1\n", + "92900 0\n", + "92901 0\n", + "92902 0\n", + "92903 0\n", + "92904 0\n", + "92905 0\n", + "92906 0\n", + "92907 0\n", + "92908 0\n", + "92909 0\n", + "92910 0\n", + "92911 0\n", + "92912 0\n", + "92913 0\n", + "92914 0\n", + "92915 0\n", + "92916 0\n", + "92917 0\n", + "92918 0\n", + "92919 0\n", + "92920 0\n", + "92921 1\n", + "92922 0\n", + "92923 0\n", + "92924 0\n", + "92925 0\n", + "92926 0\n", + "92927 1\n", + "92928 0\n", + "92929 0\n", + "92930 0\n", + "92931 0\n", + "92932 0\n", + "92933 0\n", + "92934 0\n", + "92935 0\n", + "92936 0\n", + "92937 0\n", + "92938 0\n", + "92939 0\n", + "92940 0\n", + "92941 1\n", + "92942 0\n", + "92943 0\n", + "92944 0\n", + "92945 0\n", + "92946 0\n", + "92947 0\n", + "92948 0\n", + "92949 0\n", + "92950 0\n", + "92951 1\n", + "92952 0\n", + "92953 0\n", + "92954 0\n", + "92955 0\n", + "92956 0\n", + "92957 1\n", + "92958 0\n", + "92959 1\n", + "92960 0\n", + "92961 0\n", + "92962 0\n", + "92963 0\n", + "92964 0\n", + "92965 0\n", + "92966 0\n", + "92967 0\n", + "92968 0\n", + "92969 0\n", + "92970 0\n", + "92971 0\n", + "92972 0\n", + "92973 0\n", + "92974 0\n", + "92975 0\n", + "92976 0\n", + "92977 0\n", + "92978 0\n", + "92979 0\n", + "92980 0\n", + "92981 0\n", + "92982 0\n", + "92983 0\n", + "92984 0\n", + "92985 0\n", + "92986 0\n", + "92987 1\n", + "92988 0\n", + "92989 0\n", + "92990 0\n", + "92991 0\n", + "92992 0\n", + "92993 1\n", + "92994 0\n", + "92995 0\n", + "92996 0\n", + "92997 0\n", + "92998 0\n", + "92999 0\n", + "93000 0\n", + "93001 1\n", + "93002 0\n", + "93003 0\n", + "93004 0\n", + "93005 0\n", + "93006 0\n", + "93007 0\n", + "93008 0\n", + "93009 0\n", + "93010 0\n", + "93011 0\n", + "93012 0\n", + "93013 0\n", + "93014 0\n", + "93015 0\n", + "93016 0\n", + "93017 0\n", + "93018 0\n", + "93019 0\n", + "93020 0\n", + "93021 0\n", + "93022 0\n", + "93023 0\n", + "93024 0\n", + "93025 0\n", + "93026 0\n", + "93027 0\n", + "93028 0\n", + "93029 0\n", + "93030 0\n", + "93031 0\n", + "93032 0\n", + "93033 0\n", + "93034 0\n", + "93035 0\n", + "93036 0\n", + "93037 0\n", + "93038 0\n", + "93039 0\n", + "93040 0\n", + "93041 0\n", + "93042 0\n", + "93043 0\n", + "93044 0\n", + "93045 0\n", + "93046 0\n", + "93047 1\n", + "93048 0\n", + "93049 0\n", + "93050 0\n", + "93051 0\n", + "93052 0\n", + "93053 1\n", + "93054 0\n", + "93055 0\n", + "93056 0\n", + "93057 0\n", + "93058 0\n", + "93059 1\n", + "93060 0\n", + "93061 0\n", + "93062 0\n", + "93063 0\n", + "93064 0\n", + "93065 0\n", + "93066 0\n", + "93067 0\n", + "93068 0\n", + "93069 0\n", + "93070 0\n", + "93071 0\n", + "93072 0\n", + "93073 0\n", + "93074 0\n", + "93075 0\n", + "93076 0\n", + "93077 1\n", + "93078 0\n", + "93079 0\n", + "93080 0\n", + "93081 0\n", + "93082 0\n", + "93083 1\n", + "93084 0\n", + "93085 0\n", + "93086 0\n", + "93087 0\n", + "93088 0\n", + "93089 1\n", + "93090 0\n", + "93091 0\n", + "93092 0\n", + "93093 0\n", + "93094 0\n", + "93095 0\n", + "93096 0\n", + "93097 1\n", + "93098 0\n", + "93099 0\n", + "93100 0\n", + "93101 0\n", + "93102 0\n", + "93103 1\n", + "93104 0\n", + "93105 0\n", + "93106 0\n", + "93107 0\n", + "93108 0\n", + "93109 0\n", + "93110 0\n", + "93111 0\n", + "93112 0\n", + "93113 1\n", + "93114 0\n", + "93115 0\n", + "93116 0\n", + "93117 0\n", + "93118 0\n", + "93119 0\n", + "93120 0\n", + "93121 0\n", + "93122 0\n", + "93123 0\n", + "93124 0\n", + "93125 0\n", + "93126 0\n", + "93127 0\n", + "93128 0\n", + "93129 0\n", + "93130 0\n", + "93131 1\n", + "93132 0\n", + "93133 1\n", + "93134 0\n", + "93135 0\n", + "93136 0\n", + "93137 0\n", + "93138 0\n", + "93139 1\n", + "93140 0\n", + "93141 0\n", + "93142 0\n", + "93143 0\n", + "93144 0\n", + "93145 0\n", + "93146 0\n", + "93147 0\n", + "93148 0\n", + "93149 0\n", + "93150 0\n", + "93151 1\n", + "93152 0\n", + "93153 0\n", + "93154 0\n", + "93155 0\n", + "93156 0\n", + "93157 0\n", + "93158 0\n", + "93159 0\n", + "93160 0\n", + "93161 0\n", + "93162 0\n", + "93163 0\n", + "93164 0\n", + "93165 0\n", + "93166 0\n", + "93167 0\n", + "93168 0\n", + "93169 1\n", + "93170 0\n", + "93171 0\n", + "93172 0\n", + "93173 0\n", + "93174 0\n", + "93175 0\n", + "93176 0\n", + "93177 0\n", + "93178 0\n", + "93179 1\n", + "93180 0\n", + "93181 0\n", + "93182 0\n", + "93183 0\n", + "93184 0\n", + "93185 0\n", + "93186 0\n", + "93187 1\n", + "93188 0\n", + "93189 0\n", + "93190 0\n", + "93191 0\n", + "93192 0\n", + "93193 0\n", + "93194 0\n", + "93195 0\n", + "93196 0\n", + "93197 0\n", + "93198 0\n", + "93199 1\n", + "93200 0\n", + "93201 0\n", + "93202 0\n", + "93203 0\n", + "93204 0\n", + "93205 0\n", + "93206 0\n", + "93207 0\n", + "93208 0\n", + "93209 0\n", + "93210 0\n", + "93211 0\n", + "93212 0\n", + "93213 0\n", + "93214 0\n", + "93215 0\n", + "93216 0\n", + "93217 0\n", + "93218 0\n", + "93219 0\n", + "93220 0\n", + "93221 0\n", + "93222 0\n", + "93223 0\n", + "93224 0\n", + "93225 0\n", + "93226 0\n", + "93227 0\n", + "93228 0\n", + "93229 1\n", + "93230 0\n", + "93231 0\n", + "93232 0\n", + "93233 0\n", + "93234 0\n", + "93235 0\n", + "93236 0\n", + "93237 0\n", + "93238 0\n", + "93239 1\n", + "93240 0\n", + "93241 1\n", + "93242 0\n", + "93243 0\n", + "93244 0\n", + "93245 0\n", + "93246 0\n", + "93247 0\n", + "93248 0\n", + "93249 0\n", + "93250 0\n", + "93251 1\n", + "93252 0\n", + "93253 1\n", + "93254 0\n", + "93255 0\n", + "93256 0\n", + "93257 1\n", + "93258 0\n", + "93259 0\n", + "93260 0\n", + "93261 0\n", + "93262 0\n", + "93263 1\n", + "93264 0\n", + "93265 0\n", + "93266 0\n", + "93267 0\n", + "93268 0\n", + "93269 0\n", + "93270 0\n", + "93271 0\n", + "93272 0\n", + "93273 0\n", + "93274 0\n", + "93275 0\n", + "93276 0\n", + "93277 0\n", + "93278 0\n", + "93279 0\n", + "93280 0\n", + "93281 1\n", + "93282 0\n", + "93283 1\n", + "93284 0\n", + "93285 0\n", + "93286 0\n", + "93287 1\n", + "93288 0\n", + "93289 0\n", + "93290 0\n", + "93291 0\n", + "93292 0\n", + "93293 0\n", + "93294 0\n", + "93295 0\n", + "93296 0\n", + "93297 0\n", + "93298 0\n", + "93299 0\n", + "93300 0\n", + "93301 0\n", + "93302 0\n", + "93303 0\n", + "93304 0\n", + "93305 0\n", + "93306 0\n", + "93307 1\n", + "93308 0\n", + "93309 0\n", + "93310 0\n", + "93311 0\n", + "93312 0\n", + "93313 0\n", + "93314 0\n", + "93315 0\n", + "93316 0\n", + "93317 0\n", + "93318 0\n", + "93319 1\n", + "93320 0\n", + "93321 0\n", + "93322 0\n", + "93323 1\n", + "93324 0\n", + "93325 0\n", + "93326 0\n", + "93327 0\n", + "93328 0\n", + "93329 1\n", + "93330 0\n", + "93331 0\n", + "93332 0\n", + "93333 0\n", + "93334 0\n", + "93335 0\n", + "93336 0\n", + "93337 1\n", + "93338 0\n", + "93339 0\n", + "93340 0\n", + "93341 0\n", + "93342 0\n", + "93343 0\n", + "93344 0\n", + "93345 0\n", + "93346 0\n", + "93347 0\n", + "93348 0\n", + "93349 0\n", + "93350 0\n", + "93351 0\n", + "93352 0\n", + "93353 0\n", + "93354 0\n", + "93355 0\n", + "93356 0\n", + "93357 0\n", + "93358 0\n", + "93359 0\n", + "93360 0\n", + "93361 0\n", + "93362 0\n", + "93363 0\n", + "93364 0\n", + "93365 0\n", + "93366 0\n", + "93367 0\n", + "93368 0\n", + "93369 0\n", + "93370 0\n", + "93371 1\n", + "93372 0\n", + "93373 0\n", + "93374 0\n", + "93375 0\n", + "93376 0\n", + "93377 1\n", + "93378 0\n", + "93379 0\n", + "93380 0\n", + "93381 0\n", + "93382 0\n", + "93383 1\n", + "93384 0\n", + "93385 0\n", + "93386 0\n", + "93387 0\n", + "93388 0\n", + "93389 0\n", + "93390 0\n", + "93391 0\n", + "93392 0\n", + "93393 0\n", + "93394 0\n", + "93395 0\n", + "93396 0\n", + "93397 0\n", + "93398 0\n", + "93399 0\n", + "93400 0\n", + "93401 0\n", + "93402 0\n", + "93403 0\n", + "93404 0\n", + "93405 0\n", + "93406 0\n", + "93407 1\n", + "93408 0\n", + "93409 0\n", + "93410 0\n", + "93411 0\n", + "93412 0\n", + "93413 0\n", + "93414 0\n", + "93415 0\n", + "93416 0\n", + "93417 0\n", + "93418 0\n", + "93419 1\n", + "93420 0\n", + "93421 0\n", + "93422 0\n", + "93423 0\n", + "93424 0\n", + "93425 0\n", + "93426 0\n", + "93427 1\n", + "93428 0\n", + "93429 0\n", + "93430 0\n", + "93431 0\n", + "93432 0\n", + "93433 0\n", + "93434 0\n", + "93435 0\n", + "93436 0\n", + "93437 0\n", + "93438 0\n", + "93439 0\n", + "93440 0\n", + "93441 0\n", + "93442 0\n", + "93443 0\n", + "93444 0\n", + "93445 0\n", + "93446 0\n", + "93447 0\n", + "93448 0\n", + "93449 0\n", + "93450 0\n", + "93451 0\n", + "93452 0\n", + "93453 0\n", + "93454 0\n", + "93455 0\n", + "93456 0\n", + "93457 0\n", + "93458 0\n", + "93459 0\n", + "93460 0\n", + "93461 0\n", + "93462 0\n", + "93463 1\n", + "93464 0\n", + "93465 0\n", + "93466 0\n", + "93467 0\n", + "93468 0\n", + "93469 0\n", + "93470 0\n", + "93471 0\n", + "93472 0\n", + "93473 0\n", + "93474 0\n", + "93475 0\n", + "93476 0\n", + "93477 0\n", + "93478 0\n", + "93479 1\n", + "93480 0\n", + "93481 1\n", + "93482 0\n", + "93483 0\n", + "93484 0\n", + "93485 0\n", + "93486 0\n", + "93487 1\n", + "93488 0\n", + "93489 0\n", + "93490 0\n", + "93491 1\n", + "93492 0\n", + "93493 1\n", + "93494 0\n", + "93495 0\n", + "93496 0\n", + "93497 1\n", + "93498 0\n", + "93499 0\n", + "93500 0\n", + "93501 0\n", + "93502 0\n", + "93503 1\n", + "93504 0\n", + "93505 0\n", + "93506 0\n", + "93507 0\n", + "93508 0\n", + "93509 0\n", + "93510 0\n", + "93511 0\n", + "93512 0\n", + "93513 0\n", + "93514 0\n", + "93515 0\n", + "93516 0\n", + "93517 0\n", + "93518 0\n", + "93519 0\n", + "93520 0\n", + "93521 0\n", + "93522 0\n", + "93523 1\n", + "93524 0\n", + "93525 0\n", + "93526 0\n", + "93527 0\n", + "93528 0\n", + "93529 1\n", + "93530 0\n", + "93531 0\n", + "93532 0\n", + "93533 0\n", + "93534 0\n", + "93535 0\n", + "93536 0\n", + "93537 0\n", + "93538 0\n", + "93539 0\n", + "93540 0\n", + "93541 0\n", + "93542 0\n", + "93543 0\n", + "93544 0\n", + "93545 0\n", + "93546 0\n", + "93547 0\n", + "93548 0\n", + "93549 0\n", + "93550 0\n", + "93551 0\n", + "93552 0\n", + "93553 1\n", + "93554 0\n", + "93555 0\n", + "93556 0\n", + "93557 1\n", + "93558 0\n", + "93559 1\n", + "93560 0\n", + "93561 0\n", + "93562 0\n", + "93563 1\n", + "93564 0\n", + "93565 0\n", + "93566 0\n", + "93567 0\n", + "93568 0\n", + "93569 0\n", + "93570 0\n", + "93571 0\n", + "93572 0\n", + "93573 0\n", + "93574 0\n", + "93575 0\n", + "93576 0\n", + "93577 0\n", + "93578 0\n", + "93579 0\n", + "93580 0\n", + "93581 1\n", + "93582 0\n", + "93583 0\n", + "93584 0\n", + "93585 0\n", + "93586 0\n", + "93587 0\n", + "93588 0\n", + "93589 0\n", + "93590 0\n", + "93591 0\n", + "93592 0\n", + "93593 0\n", + "93594 0\n", + "93595 0\n", + "93596 0\n", + "93597 0\n", + "93598 0\n", + "93599 0\n", + "93600 0\n", + "93601 1\n", + "93602 0\n", + "93603 0\n", + "93604 0\n", + "93605 0\n", + "93606 0\n", + "93607 1\n", + "93608 0\n", + "93609 0\n", + "93610 0\n", + "93611 0\n", + "93612 0\n", + "93613 0\n", + "93614 0\n", + "93615 0\n", + "93616 0\n", + "93617 0\n", + "93618 0\n", + "93619 0\n", + "93620 0\n", + "93621 0\n", + "93622 0\n", + "93623 0\n", + "93624 0\n", + "93625 0\n", + "93626 0\n", + "93627 0\n", + "93628 0\n", + "93629 1\n", + "93630 0\n", + "93631 0\n", + "93632 0\n", + "93633 0\n", + "93634 0\n", + "93635 0\n", + "93636 0\n", + "93637 1\n", + "93638 0\n", + "93639 0\n", + "93640 0\n", + "93641 0\n", + "93642 0\n", + "93643 0\n", + "93644 0\n", + "93645 0\n", + "93646 0\n", + "93647 0\n", + "93648 0\n", + "93649 0\n", + "93650 0\n", + "93651 0\n", + "93652 0\n", + "93653 0\n", + "93654 0\n", + "93655 0\n", + "93656 0\n", + "93657 0\n", + "93658 0\n", + "93659 0\n", + "93660 0\n", + "93661 0\n", + "93662 0\n", + "93663 0\n", + "93664 0\n", + "93665 0\n", + "93666 0\n", + "93667 0\n", + "93668 0\n", + "93669 0\n", + "93670 0\n", + "93671 0\n", + "93672 0\n", + "93673 0\n", + "93674 0\n", + "93675 0\n", + "93676 0\n", + "93677 0\n", + "93678 0\n", + "93679 0\n", + "93680 0\n", + "93681 0\n", + "93682 0\n", + "93683 1\n", + "93684 0\n", + "93685 0\n", + "93686 0\n", + "93687 0\n", + "93688 0\n", + "93689 0\n", + "93690 0\n", + "93691 0\n", + "93692 0\n", + "93693 0\n", + "93694 0\n", + "93695 0\n", + "93696 0\n", + "93697 0\n", + "93698 0\n", + "93699 0\n", + "93700 0\n", + "93701 1\n", + "93702 0\n", + "93703 1\n", + "93704 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "93705 0\n", + "93706 0\n", + "93707 0\n", + "93708 0\n", + "93709 0\n", + "93710 0\n", + "93711 0\n", + "93712 0\n", + "93713 0\n", + "93714 0\n", + "93715 0\n", + "93716 0\n", + "93717 0\n", + "93718 0\n", + "93719 1\n", + "93720 0\n", + "93721 0\n", + "93722 0\n", + "93723 0\n", + "93724 0\n", + "93725 0\n", + "93726 0\n", + "93727 0\n", + "93728 0\n", + "93729 0\n", + "93730 0\n", + "93731 0\n", + "93732 0\n", + "93733 0\n", + "93734 0\n", + "93735 0\n", + "93736 0\n", + "93737 0\n", + "93738 0\n", + "93739 1\n", + "93740 0\n", + "93741 0\n", + "93742 0\n", + "93743 0\n", + "93744 0\n", + "93745 0\n", + "93746 0\n", + "93747 0\n", + "93748 0\n", + "93749 0\n", + "93750 0\n", + "93751 0\n", + "93752 0\n", + "93753 0\n", + "93754 0\n", + "93755 0\n", + "93756 0\n", + "93757 0\n", + "93758 0\n", + "93759 0\n", + "93760 0\n", + "93761 1\n", + "93762 0\n", + "93763 1\n", + "93764 0\n", + "93765 0\n", + "93766 0\n", + "93767 0\n", + "93768 0\n", + "93769 0\n", + "93770 0\n", + "93771 0\n", + "93772 0\n", + "93773 0\n", + "93774 0\n", + "93775 0\n", + "93776 0\n", + "93777 0\n", + "93778 0\n", + "93779 0\n", + "93780 0\n", + "93781 0\n", + "93782 0\n", + "93783 0\n", + "93784 0\n", + "93785 0\n", + "93786 0\n", + "93787 1\n", + "93788 0\n", + "93789 0\n", + "93790 0\n", + "93791 0\n", + "93792 0\n", + "93793 0\n", + "93794 0\n", + "93795 0\n", + "93796 0\n", + "93797 0\n", + "93798 0\n", + "93799 0\n", + "93800 0\n", + "93801 0\n", + "93802 0\n", + "93803 0\n", + "93804 0\n", + "93805 0\n", + "93806 0\n", + "93807 0\n", + "93808 0\n", + "93809 1\n", + "93810 0\n", + "93811 1\n", + "93812 0\n", + "93813 0\n", + "93814 0\n", + "93815 0\n", + "93816 0\n", + "93817 0\n", + "93818 0\n", + "93819 0\n", + "93820 0\n", + "93821 0\n", + "93822 0\n", + "93823 0\n", + "93824 0\n", + "93825 0\n", + "93826 0\n", + "93827 1\n", + "93828 0\n", + "93829 0\n", + "93830 0\n", + "93831 0\n", + "93832 0\n", + "93833 0\n", + "93834 0\n", + "93835 0\n", + "93836 0\n", + "93837 0\n", + "93838 0\n", + "93839 0\n", + "93840 0\n", + "93841 0\n", + "93842 0\n", + "93843 0\n", + "93844 0\n", + "93845 0\n", + "93846 0\n", + "93847 0\n", + "93848 0\n", + "93849 0\n", + "93850 0\n", + "93851 1\n", + "93852 0\n", + "93853 0\n", + "93854 0\n", + "93855 0\n", + "93856 0\n", + "93857 0\n", + "93858 0\n", + "93859 0\n", + "93860 0\n", + "93861 0\n", + "93862 0\n", + "93863 0\n", + "93864 0\n", + "93865 0\n", + "93866 0\n", + "93867 0\n", + "93868 0\n", + "93869 0\n", + "93870 0\n", + "93871 1\n", + "93872 0\n", + "93873 0\n", + "93874 0\n", + "93875 0\n", + "93876 0\n", + "93877 0\n", + "93878 0\n", + "93879 0\n", + "93880 0\n", + "93881 0\n", + "93882 0\n", + "93883 0\n", + "93884 0\n", + "93885 0\n", + "93886 0\n", + "93887 1\n", + "93888 0\n", + "93889 1\n", + "93890 0\n", + "93891 0\n", + "93892 0\n", + "93893 1\n", + "93894 0\n", + "93895 0\n", + "93896 0\n", + "93897 0\n", + "93898 0\n", + "93899 0\n", + "93900 0\n", + "93901 1\n", + "93902 0\n", + "93903 0\n", + "93904 0\n", + "93905 0\n", + "93906 0\n", + "93907 0\n", + "93908 0\n", + "93909 0\n", + "93910 0\n", + "93911 1\n", + "93912 0\n", + "93913 1\n", + "93914 0\n", + "93915 0\n", + "93916 0\n", + "93917 0\n", + "93918 0\n", + "93919 0\n", + "93920 0\n", + "93921 0\n", + "93922 0\n", + "93923 1\n", + "93924 0\n", + "93925 0\n", + "93926 0\n", + "93927 0\n", + "93928 0\n", + "93929 0\n", + "93930 0\n", + "93931 0\n", + "93932 0\n", + "93933 0\n", + "93934 0\n", + "93935 0\n", + "93936 0\n", + "93937 1\n", + "93938 0\n", + "93939 0\n", + "93940 0\n", + "93941 1\n", + "93942 0\n", + "93943 0\n", + "93944 0\n", + "93945 0\n", + "93946 0\n", + "93947 0\n", + "93948 0\n", + "93949 1\n", + "93950 0\n", + "93951 0\n", + "93952 0\n", + "93953 0\n", + "93954 0\n", + "93955 0\n", + "93956 0\n", + "93957 0\n", + "93958 0\n", + "93959 0\n", + "93960 0\n", + "93961 0\n", + "93962 0\n", + "93963 0\n", + "93964 0\n", + "93965 0\n", + "93966 0\n", + "93967 1\n", + "93968 0\n", + "93969 0\n", + "93970 0\n", + "93971 1\n", + "93972 0\n", + "93973 0\n", + "93974 0\n", + "93975 0\n", + "93976 0\n", + "93977 0\n", + "93978 0\n", + "93979 1\n", + "93980 0\n", + "93981 0\n", + "93982 0\n", + "93983 1\n", + "93984 0\n", + "93985 0\n", + "93986 0\n", + "93987 0\n", + "93988 0\n", + "93989 0\n", + "93990 0\n", + "93991 0\n", + "93992 0\n", + "93993 0\n", + "93994 0\n", + "93995 0\n", + "93996 0\n", + "93997 1\n", + "93998 0\n", + "93999 0\n", + "94000 0\n", + "94001 0\n", + "94002 0\n", + "94003 0\n", + "94004 0\n", + "94005 0\n", + "94006 0\n", + "94007 1\n", + "94008 0\n", + "94009 1\n", + "94010 0\n", + "94011 0\n", + "94012 0\n", + "94013 0\n", + "94014 0\n", + "94015 0\n", + "94016 0\n", + "94017 0\n", + "94018 0\n", + "94019 0\n", + "94020 0\n", + "94021 0\n", + "94022 0\n", + "94023 0\n", + "94024 0\n", + "94025 0\n", + "94026 0\n", + "94027 0\n", + "94028 0\n", + "94029 0\n", + "94030 0\n", + "94031 0\n", + "94032 0\n", + "94033 1\n", + "94034 0\n", + "94035 0\n", + "94036 0\n", + "94037 0\n", + "94038 0\n", + "94039 0\n", + "94040 0\n", + "94041 0\n", + "94042 0\n", + "94043 0\n", + "94044 0\n", + "94045 0\n", + "94046 0\n", + "94047 0\n", + "94048 0\n", + "94049 1\n", + "94050 0\n", + "94051 0\n", + "94052 0\n", + "94053 0\n", + "94054 0\n", + "94055 0\n", + "94056 0\n", + "94057 1\n", + "94058 0\n", + "94059 0\n", + "94060 0\n", + "94061 0\n", + "94062 0\n", + "94063 1\n", + "94064 0\n", + "94065 0\n", + "94066 0\n", + "94067 0\n", + "94068 0\n", + "94069 0\n", + "94070 0\n", + "94071 0\n", + "94072 0\n", + "94073 0\n", + "94074 0\n", + "94075 0\n", + "94076 0\n", + "94077 0\n", + "94078 0\n", + "94079 1\n", + "94080 0\n", + "94081 0\n", + "94082 0\n", + "94083 0\n", + "94084 0\n", + "94085 0\n", + "94086 0\n", + "94087 0\n", + "94088 0\n", + "94089 0\n", + "94090 0\n", + "94091 0\n", + "94092 0\n", + "94093 0\n", + "94094 0\n", + "94095 0\n", + "94096 0\n", + "94097 0\n", + "94098 0\n", + "94099 1\n", + "94100 0\n", + "94101 0\n", + "94102 0\n", + "94103 0\n", + "94104 0\n", + "94105 0\n", + "94106 0\n", + "94107 0\n", + "94108 0\n", + "94109 1\n", + "94110 0\n", + "94111 1\n", + "94112 0\n", + "94113 0\n", + "94114 0\n", + "94115 0\n", + "94116 0\n", + "94117 1\n", + "94118 0\n", + "94119 0\n", + "94120 0\n", + "94121 1\n", + "94122 0\n", + "94123 0\n", + "94124 0\n", + "94125 0\n", + "94126 0\n", + "94127 0\n", + "94128 0\n", + "94129 0\n", + "94130 0\n", + "94131 0\n", + "94132 0\n", + "94133 0\n", + "94134 0\n", + "94135 0\n", + "94136 0\n", + "94137 0\n", + "94138 0\n", + "94139 0\n", + "94140 0\n", + "94141 0\n", + "94142 0\n", + "94143 0\n", + "94144 0\n", + "94145 0\n", + "94146 0\n", + "94147 0\n", + "94148 0\n", + "94149 0\n", + "94150 0\n", + "94151 1\n", + "94152 0\n", + "94153 1\n", + "94154 0\n", + "94155 0\n", + "94156 0\n", + "94157 0\n", + "94158 0\n", + "94159 0\n", + "94160 0\n", + "94161 0\n", + "94162 0\n", + "94163 0\n", + "94164 0\n", + "94165 0\n", + "94166 0\n", + "94167 0\n", + "94168 0\n", + "94169 1\n", + "94170 0\n", + "94171 0\n", + "94172 0\n", + "94173 0\n", + "94174 0\n", + "94175 0\n", + "94176 0\n", + "94177 0\n", + "94178 0\n", + "94179 0\n", + "94180 0\n", + "94181 0\n", + "94182 0\n", + "94183 0\n", + "94184 0\n", + "94185 0\n", + "94186 0\n", + "94187 0\n", + "94188 0\n", + "94189 0\n", + "94190 0\n", + "94191 0\n", + "94192 0\n", + "94193 0\n", + "94194 0\n", + "94195 0\n", + "94196 0\n", + "94197 0\n", + "94198 0\n", + "94199 0\n", + "94200 0\n", + "94201 1\n", + "94202 0\n", + "94203 0\n", + "94204 0\n", + "94205 0\n", + "94206 0\n", + "94207 1\n", + "94208 0\n", + "94209 0\n", + "94210 0\n", + "94211 0\n", + "94212 0\n", + "94213 0\n", + "94214 0\n", + "94215 0\n", + "94216 0\n", + "94217 0\n", + "94218 0\n", + "94219 1\n", + "94220 0\n", + "94221 0\n", + "94222 0\n", + "94223 0\n", + "94224 0\n", + "94225 0\n", + "94226 0\n", + "94227 0\n", + "94228 0\n", + "94229 1\n", + "94230 0\n", + "94231 0\n", + "94232 0\n", + "94233 0\n", + "94234 0\n", + "94235 0\n", + "94236 0\n", + "94237 0\n", + "94238 0\n", + "94239 0\n", + "94240 0\n", + "94241 0\n", + "94242 0\n", + "94243 0\n", + "94244 0\n", + "94245 0\n", + "94246 0\n", + "94247 0\n", + "94248 0\n", + "94249 0\n", + "94250 0\n", + "94251 0\n", + "94252 0\n", + "94253 1\n", + "94254 0\n", + "94255 0\n", + "94256 0\n", + "94257 0\n", + "94258 0\n", + "94259 0\n", + "94260 0\n", + "94261 1\n", + "94262 0\n", + "94263 0\n", + "94264 0\n", + "94265 0\n", + "94266 0\n", + "94267 0\n", + "94268 0\n", + "94269 0\n", + "94270 0\n", + "94271 0\n", + "94272 0\n", + "94273 1\n", + "94274 0\n", + "94275 0\n", + "94276 0\n", + "94277 0\n", + "94278 0\n", + "94279 0\n", + "94280 0\n", + "94281 0\n", + "94282 0\n", + "94283 0\n", + "94284 0\n", + "94285 0\n", + "94286 0\n", + "94287 0\n", + "94288 0\n", + "94289 0\n", + "94290 0\n", + "94291 1\n", + "94292 0\n", + "94293 0\n", + "94294 0\n", + "94295 0\n", + "94296 0\n", + "94297 0\n", + "94298 0\n", + "94299 0\n", + "94300 0\n", + "94301 0\n", + "94302 0\n", + "94303 0\n", + "94304 0\n", + "94305 0\n", + "94306 0\n", + "94307 1\n", + "94308 0\n", + "94309 1\n", + "94310 0\n", + "94311 0\n", + "94312 0\n", + "94313 0\n", + "94314 0\n", + "94315 0\n", + "94316 0\n", + "94317 0\n", + "94318 0\n", + "94319 0\n", + "94320 0\n", + "94321 1\n", + "94322 0\n", + "94323 0\n", + "94324 0\n", + "94325 0\n", + "94326 0\n", + "94327 1\n", + "94328 0\n", + "94329 0\n", + "94330 0\n", + "94331 1\n", + "94332 0\n", + "94333 0\n", + "94334 0\n", + "94335 0\n", + "94336 0\n", + "94337 0\n", + "94338 0\n", + "94339 0\n", + "94340 0\n", + "94341 0\n", + "94342 0\n", + "94343 1\n", + "94344 0\n", + "94345 0\n", + "94346 0\n", + "94347 0\n", + "94348 0\n", + "94349 1\n", + "94350 0\n", + "94351 1\n", + "94352 0\n", + "94353 0\n", + "94354 0\n", + "94355 0\n", + "94356 0\n", + "94357 0\n", + "94358 0\n", + "94359 0\n", + "94360 0\n", + "94361 0\n", + "94362 0\n", + "94363 0\n", + "94364 0\n", + "94365 0\n", + "94366 0\n", + "94367 0\n", + "94368 0\n", + "94369 0\n", + "94370 0\n", + "94371 0\n", + "94372 0\n", + "94373 0\n", + "94374 0\n", + "94375 0\n", + "94376 0\n", + "94377 0\n", + "94378 0\n", + "94379 1\n", + "94380 0\n", + "94381 0\n", + "94382 0\n", + "94383 0\n", + "94384 0\n", + "94385 0\n", + "94386 0\n", + "94387 0\n", + "94388 0\n", + "94389 0\n", + "94390 0\n", + "94391 0\n", + "94392 0\n", + "94393 0\n", + "94394 0\n", + "94395 0\n", + "94396 0\n", + "94397 1\n", + "94398 0\n", + "94399 1\n", + "94400 0\n", + "94401 0\n", + "94402 0\n", + "94403 0\n", + "94404 0\n", + "94405 0\n", + "94406 0\n", + "94407 0\n", + "94408 0\n", + "94409 0\n", + "94410 0\n", + "94411 0\n", + "94412 0\n", + "94413 0\n", + "94414 0\n", + "94415 0\n", + "94416 0\n", + "94417 0\n", + "94418 0\n", + "94419 0\n", + "94420 0\n", + "94421 1\n", + "94422 0\n", + "94423 0\n", + "94424 0\n", + "94425 0\n", + "94426 0\n", + "94427 1\n", + "94428 0\n", + "94429 0\n", + "94430 0\n", + "94431 0\n", + "94432 0\n", + "94433 1\n", + "94434 0\n", + "94435 0\n", + "94436 0\n", + "94437 0\n", + "94438 0\n", + "94439 1\n", + "94440 0\n", + "94441 1\n", + "94442 0\n", + "94443 0\n", + "94444 0\n", + "94445 0\n", + "94446 0\n", + "94447 1\n", + "94448 0\n", + "94449 0\n", + "94450 0\n", + "94451 0\n", + "94452 0\n", + "94453 0\n", + "94454 0\n", + "94455 0\n", + "94456 0\n", + "94457 0\n", + "94458 0\n", + "94459 0\n", + "94460 0\n", + "94461 0\n", + "94462 0\n", + "94463 1\n", + "94464 0\n", + "94465 0\n", + "94466 0\n", + "94467 0\n", + "94468 0\n", + "94469 0\n", + "94470 0\n", + "94471 0\n", + "94472 0\n", + "94473 0\n", + "94474 0\n", + "94475 0\n", + "94476 0\n", + "94477 1\n", + "94478 0\n", + "94479 0\n", + "94480 0\n", + "94481 0\n", + "94482 0\n", + "94483 1\n", + "94484 0\n", + "94485 0\n", + "94486 0\n", + "94487 0\n", + "94488 0\n", + "94489 0\n", + "94490 0\n", + "94491 0\n", + "94492 0\n", + "94493 0\n", + "94494 0\n", + "94495 0\n", + "94496 0\n", + "94497 0\n", + "94498 0\n", + "94499 0\n", + "94500 0\n", + "94501 0\n", + "94502 0\n", + "94503 0\n", + "94504 0\n", + "94505 0\n", + "94506 0\n", + "94507 0\n", + "94508 0\n", + "94509 0\n", + "94510 0\n", + "94511 0\n", + "94512 0\n", + "94513 1\n", + "94514 0\n", + "94515 0\n", + "94516 0\n", + "94517 0\n", + "94518 0\n", + "94519 0\n", + "94520 0\n", + "94521 0\n", + "94522 0\n", + "94523 0\n", + "94524 0\n", + "94525 0\n", + "94526 0\n", + "94527 0\n", + "94528 0\n", + "94529 1\n", + "94530 0\n", + "94531 1\n", + "94532 0\n", + "94533 0\n", + "94534 0\n", + "94535 0\n", + "94536 0\n", + "94537 0\n", + "94538 0\n", + "94539 0\n", + "94540 0\n", + "94541 1\n", + "94542 0\n", + "94543 1\n", + "94544 0\n", + "94545 0\n", + "94546 0\n", + "94547 1\n", + "94548 0\n", + "94549 0\n", + "94550 0\n", + "94551 0\n", + "94552 0\n", + "94553 0\n", + "94554 0\n", + "94555 0\n", + "94556 0\n", + "94557 0\n", + "94558 0\n", + "94559 1\n", + "94560 0\n", + "94561 1\n", + "94562 0\n", + "94563 0\n", + "94564 0\n", + "94565 0\n", + "94566 0\n", + "94567 0\n", + "94568 0\n", + "94569 0\n", + "94570 0\n", + "94571 0\n", + "94572 0\n", + "94573 1\n", + "94574 0\n", + "94575 0\n", + "94576 0\n", + "94577 0\n", + "94578 0\n", + "94579 0\n", + "94580 0\n", + "94581 0\n", + "94582 0\n", + "94583 1\n", + "94584 0\n", + "94585 0\n", + "94586 0\n", + "94587 0\n", + "94588 0\n", + "94589 0\n", + "94590 0\n", + "94591 0\n", + "94592 0\n", + "94593 0\n", + "94594 0\n", + "94595 0\n", + "94596 0\n", + "94597 1\n", + "94598 0\n", + "94599 0\n", + "94600 0\n", + "94601 0\n", + "94602 0\n", + "94603 1\n", + "94604 0\n", + "94605 0\n", + "94606 0\n", + "94607 0\n", + "94608 0\n", + "94609 0\n", + "94610 0\n", + "94611 0\n", + "94612 0\n", + "94613" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mk\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0marange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m1000\u001b[0m\u001b[1;33m*\u001b[0m\u001b[1;36m1000\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 19\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0misprime\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\ipykernel\\iostream.py\u001b[0m in \u001b[0;36mwrite\u001b[1;34m(self, string)\u001b[0m\n\u001b[0;32m 400\u001b[0m \u001b[0mis_child\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_is_master_process\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 401\u001b[0m \u001b[1;31m# only touch the buffer in the IO thread to avoid races\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 402\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpub_thread\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mschedule\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;32mlambda\u001b[0m \u001b[1;33m:\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_buffer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwrite\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstring\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 403\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mis_child\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 404\u001b[0m \u001b[1;31m# newlines imply flush in subprocesses\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\ipykernel\\iostream.py\u001b[0m in \u001b[0;36mschedule\u001b[1;34m(self, f)\u001b[0m\n\u001b[0;32m 203\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_events\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 204\u001b[0m \u001b[1;31m# wake event thread (message content is ignored)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 205\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_event_pipe\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34mb''\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 206\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 207\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\zmq\\sugar\\socket.py\u001b[0m in \u001b[0;36msend\u001b[1;34m(self, data, flags, copy, track, routing_id, group)\u001b[0m\n\u001b[0;32m 398\u001b[0m copy_threshold=self.copy_threshold)\n\u001b[0;32m 399\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgroup\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgroup\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 400\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mSocket\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mflags\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mflags\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrack\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtrack\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 401\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 402\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0msend_multipart\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmsg_parts\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mflags\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrack\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mzmq/backend/cython/socket.pyx\u001b[0m in \u001b[0;36mzmq.backend.cython.socket.Socket.send\u001b[1;34m()\u001b[0m\n", + "\u001b[1;32mzmq/backend/cython/socket.pyx\u001b[0m in \u001b[0;36mzmq.backend.cython.socket.Socket.send\u001b[1;34m()\u001b[0m\n", + "\u001b[1;32mzmq/backend/cython/socket.pyx\u001b[0m in \u001b[0;36mzmq.backend.cython.socket._send_copy\u001b[1;34m()\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\zmq\\backend\\cython\\checkrc.pxd\u001b[0m in \u001b[0;36mzmq.backend.cython.checkrc._check_rc\u001b[1;34m()\u001b[0m\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "#find if a number is prime\n", + "#find if it is a prime of goldbach and the primes that build it\n", + "\n", + "\n", + "def isprime(number):\n", + " if(number%2==0):\n", + " if(number!=2):\n", + " return 0\n", + " else:\n", + " return 1\n", + " dividers = np.arange(3,number,2)\n", + " #print(dividers)\n", + " for k in dividers:\n", + " if number%k==0:\n", + " return 0\n", + " return 1\n", + "\n", + "for k in np.arange(0,1000*1000,1):\n", + " print(k,isprime(k))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lectures/Lecture 4 and 5 - Numpy and Pandas.ipynb b/lectures/Lecture 4 and 5 - Numpy and Pandas.ipynb deleted file mode 100644 index c3a31f7..0000000 --- a/lectures/Lecture 4 and 5 - Numpy and Pandas.ipynb +++ /dev/null @@ -1,8760 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Numpy Arrays\n", - "* multi dimensional arrays or data\n", - "* can be 1d, 2d, 3d\n", - "* very computationally efficient to perform linear algebra operations over\n", - "* elementwise operations\n", - "* row and column wise calculations\n", - "* https://docs.scipy.org/doc/numpy-1.11.0/numpy-user-1.11.0.pdf" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Arrays vs. Matrix Class\n", - "* \"Short Answer: Use Arrays.\"\n", - "* They are the standard vector/matrix/tensor type of numpy. Many numpy functions return arrays, not matrices.\n", - "* The array class is intended to be a general-purposen-dimensional array for many kinds of numerical computing, whilematrixis intended to facilitate linear algebracomputations specifically." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 1-D arrays\n", - "* note his only has one demension\n", - "* we could use a method called reshape to change this (we will get into this more later on)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "a = np.array([1,2,3,4,5,6])" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(6,)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(3, 2)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b = np.reshape(a, (3,2))\n", - "b.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2],\n", - " [3, 4],\n", - " [5, 6]])" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b[1,0]" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### indexing and slicing" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "a = np.array([1,2,3,4,5,6])" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 2])" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[0:2]" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([2, 3])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[1:3]" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "numpy.ndarray" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(a)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "2\n", - "3\n", - "4\n", - "5\n", - "6\n" - ] - } - ], - "source": [ - "for i in a:\n", - " print(i)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### looping\n", - "* numpy loops through the left most axis" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2, 3)" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([\n", - " [1,2,3],\n", - " [2,3,4]\n", - "])\n", - "\n", - "array.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1 2 3]\n", - "[2 3 4]\n" - ] - } - ], - "source": [ - "# since we have 2 items in the first axis we will end up with 2 items in our iteration\n", - "for i in array:\n", - " print(i)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([\n", - " [1,2,3,4],\n", - " [2,3,4,4],\n", - " [2,3,4,4]\n", - "])\n", - "\n", - "array1 = np.array([\n", - " [5,6,7,4],\n", - " [4,6,9,4],\n", - " [2,3,4,4]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2, 3, 4)" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# depth 2\n", - "# rows 3\n", - "# columns 4\n", - "tensor = np.array([array, array1])\n", - "tensor.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* remember numpy will iterate left most index\n", - "* in this 3-d cube, it's iterating the dpeth\n", - "* so we end up printing our 2 initial matrices" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[1 2 3 4]\n", - " [2 3 4 4]\n", - " [2 3 4 4]] \n", - "\n", - "[[5 6 7 4]\n", - " [4 6 9 4]\n", - " [2 3 4 4]] \n", - "\n" - ] - } - ], - "source": [ - "for i in tensor:\n", - " print(i, \"\\n\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### performing matrix operations\n", - "* axis 0 is the y axis\n", - "* the up and down axis\n", - "* the number of rows\n", - "* so any operation done on axis 0 is going to be columns\n", - "* done up and down\n", - "* axis 1 is the length of our array\n", - "* any summing or anything is done across our dataframe\n", - "* doing some operation to our rows" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np \n", - "array = np.array([\n", - " [1,2,3,4],\n", - " [2,3,4,4],\n", - " [2,3,4,4]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ABCD
01234
12344
22344
\n", - "
" - ], - "text/plain": [ - " A B C D\n", - "0 1 2 3 4\n", - "1 2 3 4 4\n", - "2 2 3 4 4" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df = pd.DataFrame(array)\n", - "df.columns = [\"A\", \"B\", \"C\", \"D\"]\n", - "df\n", - "#df.sum(axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 5, 8, 11, 12])" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.sum(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "A 5\n", - "B 8\n", - "C 11\n", - "D 12\n", - "dtype: int64" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.sum(axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(3, 4)" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 3, 4],\n", - " [2, 3, 4, 4],\n", - " [2, 3, 4, 4]])" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "assert len(np.sum(array, axis = 0)) == array.shape[1], \"axis don't align\"" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 5, 8, 11, 12])" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.sum(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([2., 3., 4., 4.])" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.median(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([2.5, 3.5, 3.5])" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.median(array, axis = 1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* the other option would be to loop which is far more costly of an operation" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10\n", - "13\n", - "13\n" - ] - } - ], - "source": [ - "for i in array:\n", - " print(sum(i))" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 3, 4],\n", - " [2, 3, 4, 4],\n", - " [2, 3, 4, 4]])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 2],\n", - " [2, 3, 3],\n", - " [3, 4, 4],\n", - " [4, 4, 4]])" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array.T" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5\n", - "8\n", - "11\n", - "12\n" - ] - } - ], - "source": [ - "for i in array.T:\n", - " print(sum(i))" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 3, 4],\n", - " [2, 3, 4, 4],\n", - " [2, 3, 4, 4]])" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### tranpose, turn rows into columns" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 2],\n", - " [2, 3, 3],\n", - " [3, 4, 4],\n", - " [4, 4, 4]])" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array.T" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Make a 2-d array in numpy:

\n", - "

- find the row wise mean

\n", - "

- find the column wise mean

\n", - "

- do the same for the transpose of the array you've made

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### other useful metrics\n", - "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.quantile.html\n", - "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1101, 2020, 3212],\n", - " [2212, 3112, 4121]])" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([555.5, 546. , 454.5])" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.std(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1656.5, 2566. , 3666.5])" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.mean(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1101, 2020, 3212])" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.min(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([2212, 3112, 4121])" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.max(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1656.5, 2566. , 3666.5])" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.quantile(array,.5, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1106.555, 2025.46 , 3216.545])" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.percentile(array,.5, axis = 0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### reshape\n", - "* change the shape of your data\n", - "* adding indices\n", - "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 2, 3, 4])" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# this is indexed by one element\n", - "array = np.array([1,2,3,4])\n", - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(4, 1)" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.reshape(array, (4,1))\n", - "array.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array[0][0]" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "# we've now added two dimension using reshape\n", - "array1 = np.reshape(array,(2,2))" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2],\n", - " [3, 4]])" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array1" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([1,2,3,4,5,6,7,8])" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 2, 3, 4, 5, 6, 7, 8])" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "array1 = np.reshape(array, (2,2,2))" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[[1, 2],\n", - " [3, 4]],\n", - "\n", - " [[5, 6],\n", - " [7, 8]]])" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array1" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2, 2, 2)" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array1.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[1 2]\n", - " [3 4]] \n", - "\n", - "[[5 6]\n", - " [7 8]] \n", - "\n" - ] - } - ], - "source": [ - "for i in array1:\n", - " print(i, \"\\n\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### norm of a vector\n", - "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.norm.html\n", - "* defaults to the l2 norm" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3.7416573867739413" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([1,2,3])\n", - "np.linalg.norm(array)" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3.7416573867739413" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.sqrt(14)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### matrix multiplication/dot product" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([\n", - " [1,2],\n", - " [2,3]\n", - "])\n", - "\n", - "array1 = np.array([\n", - " [5,6],\n", - " [4,6]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[13, 18],\n", - " [22, 30]])" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# shortcut\n", - "array@array1" - ] - }, - { - "cell_type": "code", - "execution_count": 143, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[13, 18],\n", - " [22, 30]])" - ] - }, - "execution_count": 143, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.matmul(array, array1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html" - ] - }, - { - "cell_type": "code", - "execution_count": 144, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[13, 18],\n", - " [22, 30]])" - ] - }, - "execution_count": 144, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.dot(array, array1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### remember the dimension constraints" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([\n", - " [1,2,3],\n", - " [2,3,3]\n", - "])\n", - "\n", - "array1 = np.array([\n", - " [5,6,2],\n", - " [4,6,1]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(2, 3) (2, 3)\n" - ] - } - ], - "source": [ - "print(array.shape, array1.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "ename": "AssertionError", - "evalue": "The dimensions aren't aligned", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0marray1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"The dimensions aren't aligned\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m@\u001b[0m\u001b[0marray1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAssertionError\u001b[0m: The dimensions aren't aligned" - ] - } - ], - "source": [ - "assert array.shape[1] == array1.shape[0], \"The dimensions aren't aligned\"\n", - "\n", - "array@array1" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(2, 3) (3, 6)\n" - ] - }, - { - "data": { - "text/plain": [ - "array([[19, 27, 10, 17, 14, 21],\n", - " [28, 39, 13, 25, 21, 28]])" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([\n", - " [1,2,3],\n", - " [2,3,3]\n", - "])\n", - "\n", - "array1 = np.array([\n", - " [5,6,2,5,3,2],\n", - " [4,6,1,3,4,5],\n", - " [2,3,2,2,1,3]\n", - "])\n", - "\n", - "print(array.shape, array1.shape)\n", - "assert array.shape[1] == array1.shape[0], \"The dimensions aren't aligned\"\n", - "\n", - "array@array1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Make udf that:

\n", - "

- takes 2 2-d arrays as params

\n", - "

- tests to make sure they can be multipled using assert

\n", - "

- return the dot product of the two matrices

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### broadcasting\n", - "* expand the dimension to add to a matrix\n", - "* https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 1, 1, 1])" - ] - }, - "execution_count": 78, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([\n", - " [1,2,3,1],\n", - " [2,3,3,1]\n", - "])\n", - "\n", - "array1 = np.array([1,1,1,1])\n", - "array1 = np.reshape(array1, (4,))\n", - "array1" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 3, 4, 2],\n", - " [3, 4, 4, 2]])" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 3],\n", - " [2, 3, 3]])" - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 1, 1]])" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array1" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 3, 4],\n", - " [3, 4, 4]])" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.add(array, array1)" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0, 1, 2],\n", - " [1, 2, 2]])" - ] - }, - "execution_count": 120, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.subtract(array, array1)" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 3, 4],\n", - " [3, 4, 4]])" - ] - }, - "execution_count": 73, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0, 1, 2],\n", - " [1, 2, 2]])" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array - array1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### elementwise squaring\n", - "* this is the elementwise operations arrays that make arrays so powerful" - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1, 32, 243],\n", - " [ 32, 243, 243]])" - ] - }, - "execution_count": 127, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array**5" - ] - }, - { - "cell_type": "code", - "execution_count": 128, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1, 32, 243],\n", - " [ 32, 243, 243]])" - ] - }, - "execution_count": 128, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.power(array, 5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Make udf that:

\n", - "

- takes 2 2-d arrays as params

\n", - "

- iterates the rows and columns and squares each element

\n", - "

- puts the squared items in a list

\n", - "

- returns the list

" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0123
01231
12331
\n", - "
" - ], - "text/plain": [ - " 0 1 2 3\n", - "0 1 2 3 1\n", - "1 2 3 3 1" - ] - }, - "execution_count": 88, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([\n", - " [1,2,3,1],\n", - " [2,3,3,1]\n", - "])\n", - "\n", - "lst = [\n", - " [1,2,3,1],\n", - " [2,3,3,1]\n", - "]\n", - "\n", - "pd.DataFrame(lst)" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "16" - ] - }, - "execution_count": 96, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array.sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([7, 9])" - ] - }, - "execution_count": 97, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = np.sum(lst, axis = 1)\n", - "x" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": {}, - "outputs": [], - "source": [ - "x = x.sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2.0" - ] - }, - "execution_count": 86, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array.mean()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### argmax and min\n", - "* returns the index of the max/min value\n", - "* In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are returned.\n", - "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for user in range(100000000):\n", - " \n", - " for cluster in cluster in range(1000):\n", - " \n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "user_matrix = []\n", - "\n", - "cluster_center_matrix = []\n", - "\n", - "distance matrix\n", - "\n", - "argsmix()" - ] - }, - { - "cell_type": "code", - "execution_count": 109, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'C5'" - ] - }, - "execution_count": 109, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "feature = [\"C1\", \"C2\", \"C3\", \"C4\", \"C5\"]\n", - "array = np.array([1,2,3,4,15])\n", - "min_val = np.argmax(array)\n", - "feature[min_val]" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 110, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.argmin(array)" - ] - }, - { - "cell_type": "code", - "execution_count": 115, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([\n", - " [1,6,3,4],\n", - " [3,10,5,2],\n", - " [15,8,9,2]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 118, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[2, 1, 2, 0]" - ] - }, - "execution_count": 118, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(np.argmax(array, axis = 0)) # column level" - ] - }, - { - "cell_type": "code", - "execution_count": 117, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 1, 0])" - ] - }, - "execution_count": 117, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.argmax(array, axis = 1) # row level" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### let's say these are distances\n", - "* each row is an item\n", - "* and each column is the distance to a cluster\n", - "array = np.array([" - ] - }, - { - "cell_type": "code", - "execution_count": 119, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([\n", - " [1,6,3],\n", - " [3,10,5],\n", - " [15,8,9]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 0, 1])" - ] - }, - "execution_count": 120, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# this could then give us the index of the min distance\n", - "np.argmin(array, axis = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [], - "source": [ - "items = [\"user_A\", \"user_B\", \"user_C\"]\n", - "clusters = [\"A\", \"B\", \"C\"]\n", - "closest_cluster_idx = np.argmin(array, axis = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 0, 1])" - ] - }, - "execution_count": 125, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "closest_cluster_idx" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['A', 'A', 'B']" - ] - }, - "execution_count": 126, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "closest_cluster_labels = [clusters[idx] for idx in closest_cluster_idx]\n", - "closest_cluster_labels" - ] - }, - { - "cell_type": "code", - "execution_count": 130, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
usercluster
0user_AA
1user_BA
2user_CB
\n", - "
" - ], - "text/plain": [ - " user cluster\n", - "0 user_A A\n", - "1 user_B A\n", - "2 user_C B" - ] - }, - "execution_count": 130, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "assign_df = pd.DataFrame(list(zip(items, closest_cluster_labels)))\n", - "assign_df.columns = [\"user\", \"cluster\"]\n", - "assign_df" - ] - }, - { - "cell_type": "code", - "execution_count": 132, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([['user_A', 'A'],\n", - " ['user_B', 'A'],\n", - " ['user_C', 'B']], dtype='\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mvectorized_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/opt/anaconda3/lib/python3.7/site-packages/numpy/lib/function_base.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2089\u001b[0m \u001b[0mvargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0m_n\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0m_n\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2090\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2091\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_vectorize_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2092\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2093\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_ufunc_and_otypes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/opt/anaconda3/lib/python3.7/site-packages/numpy/lib/function_base.py\u001b[0m in \u001b[0;36m_vectorize_call\u001b[0;34m(self, func, args)\u001b[0m\n\u001b[1;32m 2165\u001b[0m for a in args]\n\u001b[1;32m 2166\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2167\u001b[0;31m \u001b[0moutputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mufunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2168\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2169\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mufunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnout\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mmyfunc\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmyfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mitems\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m\"item_A\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"item_B\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"item_C\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mitems\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mvectorized_func\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvectorize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmyfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mIndexError\u001b[0m: list index out of range" - ] - } - ], - "source": [ - "vectorized_func(array)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Distance Measures\n", - "* used in many ML algorithms\n", - "* rec systems, kmeans, knn, decision trees\n", - "* https://docs.scipy.org/doc/scipy/reference/spatial.distance.html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### euclidean distance\n", - "* magnitude makes a difference" - ] - }, - { - "cell_type": "code", - "execution_count": 153, - "metadata": {}, - "outputs": [], - "source": [ - "a = np.array([1,2,3])\n", - "b = np.array([4,2,500])" - ] - }, - { - "cell_type": "code", - "execution_count": 154, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "497.00905424348156" - ] - }, - "execution_count": 154, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.sqrt(sum((a-b)**2))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### cosine similarity" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.6415330278717848" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.dot(a, b)/(np.linalg.norm(a)*np.linalg.norm(b))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### jaccard coefficient" - ] - }, - { - "cell_type": "code", - "execution_count": 155, - "metadata": {}, - "outputs": [], - "source": [ - "a = [\"the\", \"old\", \"man\", \"by\", \"the\", \"sea\"]\n", - "b = [\"the\", \"old\", \"man\", \"by\", \"the\", \"chair\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 156, - "metadata": {}, - "outputs": [], - "source": [ - "def jaccard_similarity(a, b):\n", - " return len(set(a).intersection(set(b))) / len(set(a).union(set(b)))" - ] - }, - { - "cell_type": "code", - "execution_count": 157, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.6666666666666666" - ] - }, - "execution_count": 157, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "jaccard_similarity(a,b)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### distance matrix\n", - "* pdist returns a reduced distance matrix, since they are symetrical\n", - "* squareform makes this a dense form" - ] - }, - { - "cell_type": "code", - "execution_count": 160, - "metadata": {}, - "outputs": [], - "source": [ - "from scipy.spatial.distance import pdist, squareform" - ] - }, - { - "cell_type": "code", - "execution_count": 161, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([\n", - " [1,2,3,4],\n", - " [2,4,2,1],\n", - " [2,3,4,5]\n", - " \n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for i in array:\n", - " for i2 in array:\n", - " distance(i,i2)" - ] - }, - { - "cell_type": "code", - "execution_count": 163, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0. , 2.44948974, 2.82842712, 4.35889894],\n", - " [2.44948974, 0. , 2.44948974, 4.12310563],\n", - " [2.82842712, 2.44948974, 0. , 1.73205081],\n", - " [4.35889894, 4.12310563, 1.73205081, 0. ]])" - ] - }, - "execution_count": 163, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "squareform(pdist(array.T, \"euclidean\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Pandas\n", - "* data wrangling\n", - "* groupby\n", - "* extension of numpys to add a dataframe capability\n", - "* similar to R dataframes\n", - "* integrates with numpy\n", - "* https://pandas.pydata.org/" - ] - }, - { - "cell_type": "code", - "execution_count": 164, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Series\n", - "* https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html\n", - "* One-dimensional ndarray with axis labels (including time series)" - ] - }, - { - "cell_type": "code", - "execution_count": 165, - "metadata": {}, - "outputs": [], - "source": [ - "vals = [1,2,3,4,5]\n", - "idxs = [\"a\",\"b\",\"c\",\"d\",\"e\"]\n", - "\n", - "my_series = pd.Series(vals, idxs)" - ] - }, - { - "cell_type": "code", - "execution_count": 172, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a 1\n", - "b 2\n", - "dtype: int64" - ] - }, - "execution_count": 172, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_series[[\"a\",\"b\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 170, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 1\n", - "1 2\n", - "2 2\n", - "Name: A, dtype: int64" - ] - }, - "execution_count": 170, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"A\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a 1\n", - "b 2\n", - "dtype: int64" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_series[[\"a\", \"b\"]]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Dataframe\n", - "* https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html\n", - "* core object in pandas\n", - "* 2 dimensional\n", - "* index and columns" - ] - }, - { - "cell_type": "code", - "execution_count": 198, - "metadata": {}, - "outputs": [], - "source": [ - "array1 = np.array([\n", - " [5,6,2,5,3,2],\n", - " [4,6,1,3,4,5],\n", - " [2,3,2,2,1,3]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 199, - "metadata": {}, - "outputs": [], - "source": [ - "df = pd.DataFrame(array1)" - ] - }, - { - "cell_type": "code", - "execution_count": 200, - "metadata": {}, - "outputs": [], - "source": [ - "#df.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 201, - "metadata": {}, - "outputs": [], - "source": [ - "#df.head(1)\n", - "#df.tail(1)" - ] - }, - { - "cell_type": "code", - "execution_count": 202, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
012345
0562532
1461345
2232213
\n", - "
" - ], - "text/plain": [ - " 0 1 2 3 4 5\n", - "0 5 6 2 5 3 2\n", - "1 4 6 1 3 4 5\n", - "2 2 3 2 2 1 3" - ] - }, - "execution_count": 202, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 203, - "metadata": {}, - "outputs": [], - "source": [ - "df.columns = [\"a\", \"b\", \"c\", \"d\", \"e\", \"f\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 204, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcdef
0562532
1461345
2232213
\n", - "
" - ], - "text/plain": [ - " a b c d e f\n", - "0 5 6 2 5 3 2\n", - "1 4 6 1 3 4 5\n", - "2 2 3 2 2 1 3" - ] - }, - "execution_count": 204, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 205, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
acdef
b
652532
641345
322213
\n", - "
" - ], - "text/plain": [ - " a c d e f\n", - "b \n", - "6 5 2 5 3 2\n", - "6 4 1 3 4 5\n", - "3 2 2 2 1 3" - ] - }, - "execution_count": 205, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df = df.set_index(\"b\")\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df\n", - "df_total = func(df)\n", - "df_total = func1(df_total)\n", - "df = func2(df)" - ] - }, - { - "cell_type": "code", - "execution_count": 197, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
acdef
b
652532
641345
322213
\n", - "
" - ], - "text/plain": [ - " a c d e f\n", - "b \n", - "6 5 2 5 3 2\n", - "6 4 1 3 4 5\n", - "3 2 2 2 1 3" - ] - }, - "execution_count": 197, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 207, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
aabb
0a2
1a2
2b2
\n", - "
" - ], - "text/plain": [ - " aa bb\n", - "0 a 2\n", - "1 a 2\n", - "2 b 2" - ] - }, - "execution_count": 207, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = [\n", - " [\"a\",2],\n", - " [\"a\",2],\n", - " [\"b\",2]\n", - "]\n", - "\n", - "df = pd.DataFrame(array)\n", - "df.columns = [\"aa\", \"bb\"]\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 213, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
aa
bb
4a
2b
\n", - "
" - ], - "text/plain": [ - " aa\n", - "bb \n", - "4 a\n", - "2 b" - ] - }, - "execution_count": 213, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.groupby(\"aa\").sum().reset_index().set_index(\"bb\")" - ] - }, - { - "cell_type": "code", - "execution_count": 187, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Int64Index([5, 4, 2], dtype='int64', name='a')" - ] - }, - "execution_count": 187, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.index" - ] - }, - { - "cell_type": "code", - "execution_count": 188, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
bcdef
a
562532
461345
232213
\n", - "
" - ], - "text/plain": [ - " b c d e f\n", - "a \n", - "5 6 2 5 3 2\n", - "4 6 1 3 4 5\n", - "2 3 2 2 1 3" - ] - }, - "execution_count": 188, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### change headers" - ] - }, - { - "cell_type": "code", - "execution_count": 215, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
aabb
0a2
1a2
2b2
\n", - "
" - ], - "text/plain": [ - " aa bb\n", - "0 a 2\n", - "1 a 2\n", - "2 b 2" - ] - }, - "execution_count": 215, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 239, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Flavor/Scent'" - ] - }, - "execution_count": 239, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"Flavor / Scent \".rstrip().replace(\" \", \"\")" - ] - }, - { - "cell_type": "code", - "execution_count": 230, - "metadata": {}, - "outputs": [], - "source": [ - "df.columns = [\"AfterHour\", \"b\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 233, - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (, line 1)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m df.`a.a.a`\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "source": [ - "df.a.a.a" - ] - }, - { - "cell_type": "code", - "execution_count": 227, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 a\n", - "1 a\n", - "2 b\n", - "Name: a_a_a, dtype: object" - ] - }, - "execution_count": 227, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.a_a_a" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\"10201020101\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df[\"a\"] = df[\"a\"].apply(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 237, - "metadata": {}, - "outputs": [], - "source": [ - "assert df.dtypes[\"b\"] == int, \"column must be integer\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### accessing columns\n", - "* returns series\n", - "* index still attached to the series" - ] - }, - { - "cell_type": "code", - "execution_count": 107, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 5\n", - "1 4\n", - "2 2\n", - "Name: a, dtype: int64" - ] - }, - "execution_count": 107, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"a\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "pandas.core.series.Series" - ] - }, - "execution_count": 108, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(df[\"a\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 109, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[5, 4, 2]" - ] - }, - "execution_count": 109, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"a\"].tolist()" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "RangeIndex(start=0, stop=3, step=1)" - ] - }, - "execution_count": 110, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"a\"].index" - ] - }, - { - "cell_type": "code", - "execution_count": 111, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
056
146
223
\n", - "
" - ], - "text/plain": [ - " a b\n", - "0 5 6\n", - "1 4 6\n", - "2 2 3" - ] - }, - "execution_count": 111, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[[\"a\", \"b\"]]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### index subsetting\n", - "* iloc[] is position selecting\n", - "* iloc[rows, columns]\n", - "* rows/columns can be a list of indicies (integers) or use : to seperate a range\n", - "* [2:] means give me 2 and everything after for slicing\n", - "* [1] means give me index 1\n", - "* [1,2,3] means give me index 1,2,3\n", - "* [1],[0,1] means give me row 1 and columns 0 and 1" - ] - }, - { - "cell_type": "code", - "execution_count": 112, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a 4\n", - "b 6\n", - "c 1\n", - "d 3\n", - "e 4\n", - "f 5\n", - "Name: 1, dtype: int64" - ] - }, - "execution_count": 112, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.iloc[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 113, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a 4\n", - "b 6\n", - "c 1\n", - "Name: 1, dtype: int64" - ] - }, - "execution_count": 113, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# need integer based subsetting\n", - "df.iloc[1,[0,1,2]]" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcdef
1461345
2232213
\n", - "
" - ], - "text/plain": [ - " a b c d e f\n", - "1 4 6 1 3 4 5\n", - "2 2 3 2 2 1 3" - ] - }, - "execution_count": 114, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.iloc[[1,2]]" - ] - }, - { - "cell_type": "code", - "execution_count": 115, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcdef
0562532
2232213
1461345
\n", - "
" - ], - "text/plain": [ - " a b c d e f\n", - "0 5 6 2 5 3 2\n", - "2 2 3 2 2 1 3\n", - "1 4 6 1 3 4 5" - ] - }, - "execution_count": 115, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.iloc[[0,2,1]]" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcdef
0562532
1461345
2232213
\n", - "
" - ], - "text/plain": [ - " a b c d e f\n", - "0 5 6 2 5 3 2\n", - "1 4 6 1 3 4 5\n", - "2 2 3 2 2 1 3" - ] - }, - "execution_count": 116, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.iloc[0:,0:]" - ] - }, - { - "cell_type": "code", - "execution_count": 117, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
a
05
14
22
\n", - "
" - ], - "text/plain": [ - " a\n", - "0 5\n", - "1 4\n", - "2 2" - ] - }, - "execution_count": 117, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.iloc[0:,0:1]" - ] - }, - { - "cell_type": "code", - "execution_count": 118, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
146
\n", - "
" - ], - "text/plain": [ - " a b\n", - "1 4 6" - ] - }, - "execution_count": 118, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.iloc[[1],[0,1]]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### loc\n", - "* used if we have labels and not integer indec" - ] - }, - { - "cell_type": "code", - "execution_count": 119, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "RangeIndex(start=0, stop=3, step=1)" - ] - }, - "execution_count": 119, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.index" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [], - "source": [ - "df.index = [\"aa\", \"bb\", \"cc\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 121, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcdef
aa562532
bb461345
cc232213
\n", - "
" - ], - "text/plain": [ - " a b c d e f\n", - "aa 5 6 2 5 3 2\n", - "bb 4 6 1 3 4 5\n", - "cc 2 3 2 2 1 3" - ] - }, - "execution_count": 121, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a 5\n", - "b 6\n", - "c 2\n", - "d 5\n", - "e 3\n", - "f 2\n", - "Name: aa, dtype: int64" - ] - }, - "execution_count": 122, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.loc[\"aa\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 123, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcdef
aa562532
bb461345
\n", - "
" - ], - "text/plain": [ - " a b c d e f\n", - "aa 5 6 2 5 3 2\n", - "bb 4 6 1 3 4 5" - ] - }, - "execution_count": 123, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.loc[[\"aa\", \"bb\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ab
aa56
\n", - "
" - ], - "text/plain": [ - " a b\n", - "aa 5 6" - ] - }, - "execution_count": 124, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.loc[[\"aa\"], [\"a\",\"b\"]]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

how might we

\n", - "

- filter if we have a large number of indices?

\n", - "

- we don't want to type out a list of 1000s of index labels

" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ac
aa52
bb41
\n", - "
" - ], - "text/plain": [ - " a c\n", - "aa 5 2\n", - "bb 4 1" - ] - }, - "execution_count": 126, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rows = [\"aa\", \"bb\"]\n", - "cols = [\"a\", \"c\"]\n", - "\n", - "df.loc[rows,cols]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### subset for columns" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "df1 = df[[\"a\", \"b\", \"c\", \"d\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcd
05625
14613
22322
\n", - "
" - ], - "text/plain": [ - " a b c d\n", - "0 5 6 2 5\n", - "1 4 6 1 3\n", - "2 2 3 2 2" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### describe" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcd
count3.0000003.0000003.0000003.000000
mean3.6666675.0000001.6666673.333333
std1.5275251.7320510.5773501.527525
min2.0000003.0000001.0000002.000000
25%3.0000004.5000001.5000002.500000
50%4.0000006.0000002.0000003.000000
75%4.5000006.0000002.0000004.000000
max5.0000006.0000002.0000005.000000
\n", - "
" - ], - "text/plain": [ - " a b c d\n", - "count 3.000000 3.000000 3.000000 3.000000\n", - "mean 3.666667 5.000000 1.666667 3.333333\n", - "std 1.527525 1.732051 0.577350 1.527525\n", - "min 2.000000 3.000000 1.000000 2.000000\n", - "25% 3.000000 4.500000 1.500000 2.500000\n", - "50% 4.000000 6.000000 2.000000 3.000000\n", - "75% 4.500000 6.000000 2.000000 4.000000\n", - "max 5.000000 6.000000 2.000000 5.000000" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1.describe()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### correlate" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcd
a1.0000000.944911-0.1889820.928571
b0.9449111.000000-0.5000000.755929
c-0.188982-0.5000001.0000000.188982
d0.9285710.7559290.1889821.000000
\n", - "
" - ], - "text/plain": [ - " a b c d\n", - "a 1.000000 0.944911 -0.188982 0.928571\n", - "b 0.944911 1.000000 -0.500000 0.755929\n", - "c -0.188982 -0.500000 1.000000 0.188982\n", - "d 0.928571 0.755929 0.188982 1.000000" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1.corr()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### summations" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a 11\n", - "b 15\n", - "c 5\n", - "d 10\n", - "dtype: int64" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1.sum(axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 18\n", - "1 14\n", - "2 9\n", - "dtype: int64" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1.sum(axis = 1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### median" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a 4.0\n", - "b 6.0\n", - "c 2.0\n", - "d 3.0\n", - "dtype: float64" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1.median(axis = 0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### new column" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/conagrabrands/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " \"\"\"Entry point for launching an IPython kernel.\n" - ] - } - ], - "source": [ - "df1[\"class\"] = [\"AA\", \"AA\", \"BB\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcdclass
05625AA
14613AA
22322BB
\n", - "
" - ], - "text/plain": [ - " a b c d class\n", - "0 5 6 2 5 AA\n", - "1 4 6 1 3 AA\n", - "2 2 3 2 2 BB" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcd
class
AA91238
BB2322
\n", - "
" - ], - "text/plain": [ - " a b c d\n", - "class \n", - "AA 9 12 3 8\n", - "BB 2 3 2 2" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1.groupby(\"class\").sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcd
class
AA2222
BB1111
\n", - "
" - ], - "text/plain": [ - " a b c d\n", - "class \n", - "AA 2 2 2 2\n", - "BB 1 1 1 1" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1.groupby(\"class\").count()" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcdclass
class
AA21221
BB11111
\n", - "
" - ], - "text/plain": [ - " a b c d class\n", - "class \n", - "AA 2 1 2 2 1\n", - "BB 1 1 1 1 1" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# count distinct\n", - "df1.groupby(\"class\").nunique()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### reset index" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Index(['AA', 'BB'], dtype='object', name='class')" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1.groupby(\"class\").count().index" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
classabcd
0AA2222
1BB1111
\n", - "
" - ], - "text/plain": [ - " class a b c d\n", - "0 AA 2 2 2 2\n", - "1 BB 1 1 1 1" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1.groupby(\"class\").count().reset_index()" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "RangeIndex(start=0, stop=2, step=1)" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1.groupby(\"class\").count().reset_index().index" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### reading in csv" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [], - "source": [ - "path = \"data/iris.csv\"\n", - "df = pd.read_csv(path, sep = \",\")" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal.lengthsepal.widthpetal.lengthpetal.widthvariety
05.13.51.40.2Setosa
14.93.01.40.2Setosa
24.73.21.30.2Setosa
34.63.11.50.2Setosa
45.03.61.40.2Setosa
\n", - "
" - ], - "text/plain": [ - " sepal.length sepal.width petal.length petal.width variety\n", - "0 5.1 3.5 1.4 0.2 Setosa\n", - "1 4.9 3.0 1.4 0.2 Setosa\n", - "2 4.7 3.2 1.3 0.2 Setosa\n", - "3 4.6 3.1 1.5 0.2 Setosa\n", - "4 5.0 3.6 1.4 0.2 Setosa" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

read in the iris csv:

\n", - "

- find the descriptive statistics

\n", - "

- create a correlation matrix

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### subset on rules" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(61, 5)" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1 = df[df[\"sepal.length\"] > 6]\n", - "df1.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(23, 5)" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1 = df[(df[\"sepal.length\"] > 6) & (df[\"sepal.width\"] > 3)]\n", - "df1.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(50, 5)" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1 = df[df[\"variety\"] == \"Setosa\"]\n", - "df1.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### isin()" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['Setosa', 'Versicolor', 'Virginica'], dtype=object)" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"variety\"].unique()" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(100, 5)" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lst = [\"Setosa\", \"Versicolor\"]\n", - "\n", - "df1 = df[df[\"variety\"].isin(lst)]\n", - "df1.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### like" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(50, 5)" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1 = df[df[\"variety\"].str.contains(\"Versi\")]\n", - "df1.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### apply" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "def my_func(x):\n", - " return -x" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal.lengthsepal.widthpetal.lengthpetal.widthvariety
05.13.51.40.2Setosa
\n", - "
" - ], - "text/plain": [ - " sepal.length sepal.width petal.length petal.width variety\n", - "0 5.1 3.5 1.4 0.2 Setosa" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head(1)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "df[\"sepal.length\"] = df[\"sepal.length\"].apply(my_func)" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal.lengthsepal.widthpetal.lengthpetal.widthvariety
0-5.13.51.40.2Setosa
1-4.93.01.40.2Setosa
2-4.73.21.30.2Setosa
3-4.63.11.50.2Setosa
4-5.03.61.40.2Setosa
\n", - "
" - ], - "text/plain": [ - " sepal.length sepal.width petal.length petal.width variety\n", - "0 -5.1 3.5 1.4 0.2 Setosa\n", - "1 -4.9 3.0 1.4 0.2 Setosa\n", - "2 -4.7 3.2 1.3 0.2 Setosa\n", - "3 -4.6 3.1 1.5 0.2 Setosa\n", - "4 -5.0 3.6 1.4 0.2 Setosa" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Index(['sepal.length', 'sepal.width', 'petal.length', 'petal.width',\n", - " 'variety'],\n", - " dtype='object')" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.columns" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [], - "source": [ - "cols = ['sepal.length', 'sepal.width', 'petal.length', 'petal.width']" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [], - "source": [ - "for col in cols:\n", - " df[col] = df[col].apply(my_func)" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal.lengthsepal.widthpetal.lengthpetal.widthvariety
05.1-3.5-1.4-0.2Setosa
14.9-3.0-1.4-0.2Setosa
24.7-3.2-1.3-0.2Setosa
34.6-3.1-1.5-0.2Setosa
45.0-3.6-1.4-0.2Setosa
\n", - "
" - ], - "text/plain": [ - " sepal.length sepal.width petal.length petal.width variety\n", - "0 5.1 -3.5 -1.4 -0.2 Setosa\n", - "1 4.9 -3.0 -1.4 -0.2 Setosa\n", - "2 4.7 -3.2 -1.3 -0.2 Setosa\n", - "3 4.6 -3.1 -1.5 -0.2 Setosa\n", - "4 5.0 -3.6 -1.4 -0.2 Setosa" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "df[\"sepal.length\"] = df[\"sepal.length\"].apply(lambda x: -x)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal.lengthsepal.widthpetal.lengthpetal.widthvariety
0-5.1-3.5-1.4-0.2Setosa
1-4.9-3.0-1.4-0.2Setosa
2-4.7-3.2-1.3-0.2Setosa
3-4.6-3.1-1.5-0.2Setosa
4-5.0-3.6-1.4-0.2Setosa
\n", - "
" - ], - "text/plain": [ - " sepal.length sepal.width petal.length petal.width variety\n", - "0 -5.1 -3.5 -1.4 -0.2 Setosa\n", - "1 -4.9 -3.0 -1.4 -0.2 Setosa\n", - "2 -4.7 -3.2 -1.3 -0.2 Setosa\n", - "3 -4.6 -3.1 -1.5 -0.2 Setosa\n", - "4 -5.0 -3.6 -1.4 -0.2 Setosa" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### datatypes" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "sepal.length float64\n", - "sepal.width float64\n", - "petal.length float64\n", - "petal.width float64\n", - "variety object\n", - "dtype: object" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.dtypes" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "df[\"sepal.length\"] = df[\"sepal.length\"].apply(str)" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "sepal.length object\n", - "sepal.width float64\n", - "petal.length float64\n", - "petal.width float64\n", - "variety object\n", - "dtype: object" - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.dtypes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### get dummies\n", - "* for string or object variables\n", - "* can specify specific columns\n", - "* https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

what might we need dummies for?

" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "df = pd.get_dummies(df)" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal.lengthsepal.widthpetal.lengthpetal.widthvariety_Setosavariety_Versicolorvariety_Virginica
05.13.51.40.2100
14.93.01.40.2100
24.73.21.30.2100
34.63.11.50.2100
45.03.61.40.2100
\n", - "
" - ], - "text/plain": [ - " sepal.length sepal.width petal.length petal.width variety_Setosa \\\n", - "0 5.1 3.5 1.4 0.2 1 \n", - "1 4.9 3.0 1.4 0.2 1 \n", - "2 4.7 3.2 1.3 0.2 1 \n", - "3 4.6 3.1 1.5 0.2 1 \n", - "4 5.0 3.6 1.4 0.2 1 \n", - "\n", - " variety_Versicolor variety_Virginica \n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 " - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 129, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
col_1col_2
0AAA
1BBB
2CCC
\n", - "
" - ], - "text/plain": [ - " col_1 col_2\n", - "0 A AA\n", - "1 B BB\n", - "2 C CC" - ] - }, - "execution_count": 129, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "col_1 = np.array([\"A\", \"B\", \"C\"])\n", - "col_2 = np.array([\"AA\", \"BB\", \"CC\"])\n", - "\n", - "df = pd.DataFrame({\n", - " \"col_1\":col_1,\n", - " \"col_2\":col_2\n", - "})\n", - "\n", - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

perform get dummies on col_1 only?

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### iterate" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 sepal.length 5.1\n", - "sepal.width 3.5\n", - "petal.length 1.4\n", - "petal.width 0.2\n", - "variety_Setosa 1.0\n", - "variety_Versicolor 0.0\n", - "variety_Virginica 0.0\n", - "Name: 0, dtype: float64\n", - "1 sepal.length 4.9\n", - "sepal.width 3.0\n", - "petal.length 1.4\n", - "petal.width 0.2\n", - "variety_Setosa 1.0\n", - "variety_Versicolor 0.0\n", - "variety_Virginica 0.0\n", - "Name: 1, dtype: float64\n", - "2 sepal.length 4.7\n", - "sepal.width 3.2\n", - "petal.length 1.3\n", - "petal.width 0.2\n", - "variety_Setosa 1.0\n", - "variety_Versicolor 0.0\n", - "variety_Virginica 0.0\n", - "Name: 2, dtype: float64\n", - "3 sepal.length 4.6\n", - "sepal.width 3.1\n", - "petal.length 1.5\n", - "petal.width 0.2\n", - "variety_Setosa 1.0\n", - "variety_Versicolor 0.0\n", - "variety_Virginica 0.0\n", - "Name: 3, dtype: float64\n", - "4 sepal.length 5.0\n", - "sepal.width 3.6\n", - "petal.length 1.4\n", - "petal.width 0.2\n", - "variety_Setosa 1.0\n", - "variety_Versicolor 0.0\n", - "variety_Virginica 0.0\n", - "Name: 4, dtype: float64\n" - ] - } - ], - "source": [ - "for idx, r in df.head(5).iterrows():\n", - " print(idx, r)" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.4\n", - "1.4\n", - "1.3\n", - "1.5\n", - "1.4\n" - ] - } - ], - "source": [ - "for idx, r in df.head(5).iterrows():\n", - " print(r[\"petal.length\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### tolist()" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.4,\n", - " 0.3,\n", - " 0.2,\n", - " 0.2,\n", - " 0.1,\n", - " 0.2,\n", - " 0.2,\n", - " 0.1,\n", - " 0.1,\n", - " 0.2,\n", - " 0.4,\n", - " 0.4,\n", - " 0.3,\n", - " 0.3,\n", - " 0.3,\n", - " 0.2,\n", - " 0.4,\n", - " 0.2,\n", - " 0.5,\n", - " 0.2,\n", - " 0.2,\n", - " 0.4,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.4,\n", - " 0.1,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.1,\n", - " 0.2,\n", - " 0.2,\n", - " 0.3,\n", - " 0.3,\n", - " 0.2,\n", - " 0.6,\n", - " 0.4,\n", - " 0.3,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 1.4,\n", - " 1.5,\n", - " 1.5,\n", - " 1.3,\n", - " 1.5,\n", - " 1.3,\n", - " 1.6,\n", - " 1.0,\n", - " 1.3,\n", - " 1.4,\n", - " 1.0,\n", - " 1.5,\n", - " 1.0,\n", - " 1.4,\n", - " 1.3,\n", - " 1.4,\n", - " 1.5,\n", - " 1.0,\n", - " 1.5,\n", - " 1.1,\n", - " 1.8,\n", - " 1.3,\n", - " 1.5,\n", - " 1.2,\n", - " 1.3,\n", - " 1.4,\n", - " 1.4,\n", - " 1.7,\n", - " 1.5,\n", - " 1.0,\n", - " 1.1,\n", - " 1.0,\n", - " 1.2,\n", - " 1.6,\n", - " 1.5,\n", - " 1.6,\n", - " 1.5,\n", - " 1.3,\n", - " 1.3,\n", - " 1.3,\n", - " 1.2,\n", - " 1.4,\n", - " 1.2,\n", - " 1.0,\n", - " 1.3,\n", - " 1.2,\n", - " 1.3,\n", - " 1.3,\n", - " 1.1,\n", - " 1.3,\n", - " 2.5,\n", - " 1.9,\n", - " 2.1,\n", - " 1.8,\n", - " 2.2,\n", - " 2.1,\n", - " 1.7,\n", - " 1.8,\n", - " 1.8,\n", - " 2.5,\n", - " 2.0,\n", - " 1.9,\n", - " 2.1,\n", - " 2.0,\n", - " 2.4,\n", - " 2.3,\n", - " 1.8,\n", - " 2.2,\n", - " 2.3,\n", - " 1.5,\n", - " 2.3,\n", - " 2.0,\n", - " 2.0,\n", - " 1.8,\n", - " 2.1,\n", - " 1.8,\n", - " 1.8,\n", - " 1.8,\n", - " 2.1,\n", - " 1.6,\n", - " 1.9,\n", - " 2.0,\n", - " 2.2,\n", - " 1.5,\n", - " 1.4,\n", - " 2.3,\n", - " 2.4,\n", - " 1.8,\n", - " 1.8,\n", - " 2.1,\n", - " 2.4,\n", - " 2.3,\n", - " 1.9,\n", - " 2.3,\n", - " 2.5,\n", - " 2.3,\n", - " 1.9,\n", - " 2.0,\n", - " 2.3,\n", - " 1.8]" - ] - }, - "execution_count": 69, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"petal.width\"].tolist()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Using iris, group by variety and find the count of the other columns?

\n", - "

Using iris, group by variety and find the sum of the other columns?

" - ] - }, - { - "cell_type": "code", - "execution_count": 132, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
col_1col_1_ind
0A1
1B1
2C1
3D1
4E1
\n", - "
" - ], - "text/plain": [ - " col_1 col_1_ind\n", - "0 A 1\n", - "1 B 1\n", - "2 C 1\n", - "3 D 1\n", - "4 E 1" - ] - }, - "execution_count": 132, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "col_1 = np.array([\"A\", \"B\", \"C\", \"D\", \"E\"])\n", - "col_2 = np.array([\"A\", \"B\", \"C\"])\n", - "\n", - "df = pd.DataFrame({\n", - " \"col_1\":col_1,\n", - " \"col_1_ind\":1\n", - "})\n", - "\n", - "df1 = pd.DataFrame({\n", - " \"col_1\":col_2,\n", - " \"col_2_ind\":1\n", - "})\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 133, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
col_1col_2_ind
0A1
1B1
2C1
\n", - "
" - ], - "text/plain": [ - " col_1 col_2_ind\n", - "0 A 1\n", - "1 B 1\n", - "2 C 1" - ] - }, - "execution_count": 133, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### concat\n", - "* https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html" - ] - }, - { - "cell_type": "code", - "execution_count": 135, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/conagrabrands/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version\n", - "of pandas will change to not sort by default.\n", - "\n", - "To accept the future behavior, pass 'sort=False'.\n", - "\n", - "To retain the current behavior and silence the warning, pass 'sort=True'.\n", - "\n", - " \"\"\"Entry point for launching an IPython kernel.\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
col_1col_1_indcol_2_ind
0A1.0NaN
1B1.0NaN
2C1.0NaN
3D1.0NaN
4E1.0NaN
0ANaN1.0
1BNaN1.0
2CNaN1.0
\n", - "
" - ], - "text/plain": [ - " col_1 col_1_ind col_2_ind\n", - "0 A 1.0 NaN\n", - "1 B 1.0 NaN\n", - "2 C 1.0 NaN\n", - "3 D 1.0 NaN\n", - "4 E 1.0 NaN\n", - "0 A NaN 1.0\n", - "1 B NaN 1.0\n", - "2 C NaN 1.0" - ] - }, - "execution_count": 135, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.concat([df, df1], axis = 0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### merge\n", - "* https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.merge.html\n", - "* assumes inner join" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "select *\n", - "from df inner join df2\n", - " on df.col_1 = df2.col_1" - ] - }, - { - "cell_type": "code", - "execution_count": 142, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
col_1col_1_indcol_2_ind
0A11
1B11
2C11
\n", - "
" - ], - "text/plain": [ - " col_1 col_1_ind col_2_ind\n", - "0 A 1 1\n", - "1 B 1 1\n", - "2 C 1 1" - ] - }, - "execution_count": 142, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.merge(df1, how = \"inner\", left_on = \"col_1\", right_on = \"col_1\")" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "select *\n", - "from df left join df2\n", - " on df.col_1 = df2.col_1" - ] - }, - { - "cell_type": "code", - "execution_count": 141, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
col_1col_1_indcol_2_ind
0A11.0
1B11.0
2C11.0
3D1NaN
4E1NaN
\n", - "
" - ], - "text/plain": [ - " col_1 col_1_ind col_2_ind\n", - "0 A 1 1.0\n", - "1 B 1 1.0\n", - "2 C 1 1.0\n", - "3 D 1 NaN\n", - "4 E 1 NaN" - ] - }, - "execution_count": 141, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.merge(df1, how = \"left\", left_on = \"col_1\", right_on = \"col_1\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Data Imputation\n", - "* https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html\n", - "* https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html#pandas.DataFrame.interpolate\n", - "* missing values\n", - "* When summing data, NA (missing) values will be treated as zero.\n", - "* If the data are all NA, the result will be 0.\n", - "* Cumulative methods like cumsum() and cumprod() ignore NA values by default, but preserve them in the resulting arrays. To override this behaviour and include NA values, use skipna=False.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "data = [1,2,3,4,None,5,2,1]\n", - "df = pd.DataFrame(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0
01.0
12.0
23.0
34.0
4NaN
55.0
62.0
71.0
\n", - "
" - ], - "text/plain": [ - " 0\n", - "0 1.0\n", - "1 2.0\n", - "2 3.0\n", - "3 4.0\n", - "4 NaN\n", - "5 5.0\n", - "6 2.0\n", - "7 1.0" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0
0False
1False
2False
3False
4True
5False
6False
7False
\n", - "
" - ], - "text/plain": [ - " 0\n", - "0 False\n", - "1 False\n", - "2 False\n", - "3 False\n", - "4 True\n", - "5 False\n", - "6 False\n", - "7 False" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.isna()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0
0True
1True
2True
3True
4False
5True
6True
7True
\n", - "
" - ], - "text/plain": [ - " 0\n", - "0 True\n", - "1 True\n", - "2 True\n", - "3 True\n", - "4 False\n", - "5 True\n", - "6 True\n", - "7 True" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.notna()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0
01.0
12.0
23.0
34.0
40.0
55.0
62.0
71.0
\n", - "
" - ], - "text/plain": [ - " 0\n", - "0 1.0\n", - "1 2.0\n", - "2 3.0\n", - "3 4.0\n", - "4 0.0\n", - "5 5.0\n", - "6 2.0\n", - "7 1.0" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.fillna(0)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0
01.0
12.0
23.0
34.0
4100.0
55.0
62.0
71.0
\n", - "
" - ], - "text/plain": [ - " 0\n", - "0 1.0\n", - "1 2.0\n", - "2 3.0\n", - "3 4.0\n", - "4 100.0\n", - "5 5.0\n", - "6 2.0\n", - "7 1.0" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.fillna(100)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0
01.0
12.0
23.0
34.0
55.0
62.0
71.0
\n", - "
" - ], - "text/plain": [ - " 0\n", - "0 1.0\n", - "1 2.0\n", - "2 3.0\n", - "3 4.0\n", - "5 5.0\n", - "6 2.0\n", - "7 1.0" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.dropna(axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0
1
2
3
4
5
6
7
\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: []\n", - "Index: [0, 1, 2, 3, 4, 5, 6, 7]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.dropna(axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0
01.000000
12.000000
23.000000
34.000000
42.571429
55.000000
62.000000
71.000000
\n", - "
" - ], - "text/plain": [ - " 0\n", - "0 1.000000\n", - "1 2.000000\n", - "2 3.000000\n", - "3 4.000000\n", - "4 2.571429\n", - "5 5.000000\n", - "6 2.000000\n", - "7 1.000000" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.fillna(df.mean())" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0
01.0
12.0
23.0
34.0
42.0
55.0
62.0
71.0
\n", - "
" - ], - "text/plain": [ - " 0\n", - "0 1.0\n", - "1 2.0\n", - "2 3.0\n", - "3 4.0\n", - "4 2.0\n", - "5 5.0\n", - "6 2.0\n", - "7 1.0" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.fillna(df.median())" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
index0
001.000000
112.000000
223.000000
334.000000
442.571429
555.000000
662.000000
771.000000
\n", - "
" - ], - "text/plain": [ - " index 0\n", - "0 0 1.000000\n", - "1 1 2.000000\n", - "2 2 3.000000\n", - "3 3 4.000000\n", - "4 4 2.571429\n", - "5 5 5.000000\n", - "6 6 2.000000\n", - "7 7 1.000000" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[0].fillna(df[0].mean()).reset_index()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Json data" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "path = \"/Users/conagrabrands/Documents/PythonForAnalytics/Lectures/data/ca.json\"" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[\n", - "\n", - " {\n", - "\n", - " \"city\": \"Toronto\", \n", - "\n", - " \"admin\": \"Ontario\", \n", - "\n", - " \"country\": \"Canada\", \n", - "\n", - " \"population_proper\": \"3934421\", \n", - "\n", - " \"iso2\": \"CA\", \n", - "\n", - " \"capital\": \"admin\", \n", - "\n", - " \"lat\": \"43.666667\", \n", - "\n", - " \"lng\": \"-79.416667\", \n", - "\n", - " \"population\": \"5213000\"\n", - "\n", - " }, \n", - "\n", - " {\n", - "\n", - " \"city\": \"Montr\\u00e9al\", \n", - "\n", - " \"admin\": \"Qu\\u00e9bec\", \n", - "\n", - " \"country\": \"Canada\", \n", - "\n", - " \"population_proper\": \"2356556\", \n", - "\n", - " \"iso2\": \"CA\", \n", - "\n", - " \"capital\": \"\", \n", - "\n", - " \"lat\": \"45.5\", \n", - "\n", - " \"lng\": \"-73.583333\", \n", - "\n", - " \"population\": \"3678000\"\n", - "\n", - " }, \n", - "\n", - " {\n", - "\n", - " \"city\": \"Vancouver\", \n", - "\n", - " \"admin\": \"British Columbia\", \n", - "\n", - " \"country\": \"Canada\", \n", - "\n", - " \"population_proper\": \"603502\", \n", - "\n", - " \"iso2\": \"CA\", \n", - "\n", - " \"capital\": \"\", \n", - "\n", - " \"lat\": \"49.25\", \n", - "\n", - " \"lng\": \"-123.133333\", \n", - "\n", - " \"population\": \"2313328\"\n", - "\n", - " }, \n", - "\n", - " {\n", - "\n", - " \"city\": \"Ottawa\", \n", - "\n", - " \"admin\": \"Ontario\", \n", - "\n", - " \"country\": \"Canada\", \n", - "\n", - " \"population_proper\": \"812129\", \n", - "\n", - " \"iso2\": \"CA\", \n", - "\n", - " \"capital\": \"primary\", \n", - "\n", - " \"lat\": \"45.416667\", \n", - "\n", - " \"lng\": \"-75.7\", \n", - "\n", - " \"population\": \"1145000\"\n", - "\n", - " }, \n", - "\n", - " {\n", - "\n", - " \"city\": \"Calgary\", \n", - "\n", - " \"admin\": \"Alberta\", \n", - "\n", - " \"country\": \"Canada\", \n", - "\n", - " \"population_proper\": \"915322\", \n", - "\n" - ] - } - ], - "source": [ - "with open(path, \"r\") as file:\n", - " line = file.readlines()\n", - " for l in line[0:50]:\n", - " print(l)" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "{\n", - " \"brian\" {\n", - " \"age\":31,\n", - " \"job\":data scientist,\n", - " \"city\"chicago\n", - " },\n", - " \n", - " \"james\":{\n", - " \"age\":28,\n", - " \"job\":data scientist,\n", - " \"city\"new york\n", - " }\n", - " \n", - " \"james\":{\n", - " \"age\":28,\n", - " }\n", - " \n", - " \n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "\n", - "columns = [\"age\", \"job\", \"city\"]\n", - "data = [\n", - " [31, \"data scientist\", \"chicago\"],\n", - " [28, \"data scientist\", \"new york\"],\n", - " [28,None,None]\n", - "]\n", - "\n", - "df = pd.DataFrame(data, columns = columns)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "df = pd.read_json(path)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html\n", - "* https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.io.json.json_normalize.html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* Nested JSON files can be time consuming and difficult process to flatten and load into Pandas.\n", - "* Let’s unpack the works column into a standalone dataframe. We’ll also grab the flat columns.\n", - "* nycphil = json_normalize(d['programs'])" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "data = [\n", - " {'id': 1, 'name': \"Cole Volk\",'fitness': \n", - " {'height': 130, 'weight': 60}},\n", - " \n", - " {'name': \"Mose Reg\",'fitness': \n", - " {'height': 130, 'weight': 60}},\n", - " \n", - " {'id': 2, 'name': 'Faye Raker','fitness': \n", - " {'height': 130, 'weight': 60}}\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "from pandas.io.json import json_normalize" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idnamefitness.heightfitness.weight
01.0Cole Volk13060
1NaNMose Reg13060
22.0Faye Raker13060
\n", - "
" - ], - "text/plain": [ - " id name fitness.height fitness.weight\n", - "0 1.0 Cole Volk 130 60\n", - "1 NaN Mose Reg 130 60\n", - "2 2.0 Faye Raker 130 60" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "json_normalize(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idnamefitness
01.0Cole Volk{'height': 130, 'weight': 60}
1NaNMose Reg{'height': 130, 'weight': 60}
22.0Faye Raker{'height': 130, 'weight': 60}
\n", - "
" - ], - "text/plain": [ - " id name fitness\n", - "0 1.0 Cole Volk {'height': 130, 'weight': 60}\n", - "1 NaN Mose Reg {'height': 130, 'weight': 60}\n", - "2 2.0 Faye Raker {'height': 130, 'weight': 60}" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "json_normalize(data, max_level = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "data = [\n", - " {'state': 'Florida','shortname': 'FL',\n", - " 'info': {'governor': 'Rick Scott', \"gender\":\"m\"},\n", - " 'counties': [{'name': 'Dade', 'population': 12345},\n", - " {'name': 'Broward', 'population': 40000},\n", - " {'name': 'Palm Beach', 'population': 60000}]},\n", - " \n", - " {'state': 'Ohio', 'shortname': 'OH',\n", - " 'info': {'governor': 'John Kasich', \"gender\":\"m\"},\n", - " 'counties': [{'name': 'Summit', 'population': 1234},\n", - " {'name': 'Cuyahoga', 'population': 1337}]}\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
stateshortnameinfocounties
0FloridaFL{'governor': 'Rick Scott', 'gender': 'm'}[{'name': 'Dade', 'population': 12345}, {'name...
1OhioOH{'governor': 'John Kasich', 'gender': 'm'}[{'name': 'Summit', 'population': 1234}, {'nam...
\n", - "
" - ], - "text/plain": [ - " state shortname info \\\n", - "0 Florida FL {'governor': 'Rick Scott', 'gender': 'm'} \n", - "1 Ohio OH {'governor': 'John Kasich', 'gender': 'm'} \n", - "\n", - " counties \n", - "0 [{'name': 'Dade', 'population': 12345}, {'name... \n", - "1 [{'name': 'Summit', 'population': 1234}, {'nam... " - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "json_normalize(data, max_level = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
stateshortnamecountiesinfo.governorinfo.gender
0FloridaFL[{'name': 'Dade', 'population': 12345}, {'name...Rick Scottm
1OhioOH[{'name': 'Summit', 'population': 1234}, {'nam...John Kasichm
\n", - "
" - ], - "text/plain": [ - " state shortname counties \\\n", - "0 Florida FL [{'name': 'Dade', 'population': 12345}, {'name... \n", - "1 Ohio OH [{'name': 'Summit', 'population': 1234}, {'nam... \n", - "\n", - " info.governor info.gender \n", - "0 Rick Scott m \n", - "1 John Kasich m " - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "json_normalize(data, max_level = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
stateshortnamecountiesinfo.governorinfo.gender
0FloridaFL[{'name': 'Dade', 'population': 12345}, {'name...Rick Scottm
1OhioOH[{'name': 'Summit', 'population': 1234}, {'nam...John Kasichm
\n", - "
" - ], - "text/plain": [ - " state shortname counties \\\n", - "0 Florida FL [{'name': 'Dade', 'population': 12345}, {'name... \n", - "1 Ohio OH [{'name': 'Summit', 'population': 1234}, {'nam... \n", - "\n", - " info.governor info.gender \n", - "0 Rick Scott m \n", - "1 John Kasich m " - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "json_normalize(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
namepopulationinfo.governorinfo.gender
0Dade12345Rick Scottm
1Broward40000Rick Scottm
2Palm Beach60000Rick Scottm
3Summit1234John Kasichm
4Cuyahoga1337John Kasichm
\n", - "
" - ], - "text/plain": [ - " name population info.governor info.gender\n", - "0 Dade 12345 Rick Scott m\n", - "1 Broward 40000 Rick Scott m\n", - "2 Palm Beach 60000 Rick Scott m\n", - "3 Summit 1234 John Kasich m\n", - "4 Cuyahoga 1337 John Kasich m" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# make each row a county, then start parsing data as such\n", - "json_normalize(data, \"counties\", [[\"info\",\"governor\"], [\"info\", \"gender\"]])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Chunks\n", - "* Can use chunks to process pieces of a dataframe at a time if it won't fit into memory" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "chunk_size = 100" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "path = \"/Users/conagrabrands/Documents/PythonForAnalytics/Lectures/data/iris.csv\"" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(100, 5)\n", - "(50, 5)\n" - ] - } - ], - "source": [ - "for c in pd.read_csv(path, chunksize = chunk_size):\n", - " print(c.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(2, 4)\n", - "(1, 4)\n" - ] - } - ], - "source": [ - "for c in pd.read_csv(path, chunksize = chunk_size):\n", - " df = c.groupby(\"variety\").sum()\n", - " print(df.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/lectures/.ipynb_checkpoints/Lecture 4 and 5 - Numpy and Pandas-checkpoint.ipynb b/lectures/Lecture 5 - Pandas.ipynb similarity index 61% rename from lectures/.ipynb_checkpoints/Lecture 4 and 5 - Numpy and Pandas-checkpoint.ipynb rename to lectures/Lecture 5 - Pandas.ipynb index c3a31f7..70f6e2d 100644 --- a/lectures/.ipynb_checkpoints/Lecture 4 and 5 - Numpy and Pandas-checkpoint.ipynb +++ b/lectures/Lecture 5 - Pandas.ipynb @@ -1,2651 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Numpy Arrays\n", - "* multi dimensional arrays or data\n", - "* can be 1d, 2d, 3d\n", - "* very computationally efficient to perform linear algebra operations over\n", - "* elementwise operations\n", - "* row and column wise calculations\n", - "* https://docs.scipy.org/doc/numpy-1.11.0/numpy-user-1.11.0.pdf" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Arrays vs. Matrix Class\n", - "* \"Short Answer: Use Arrays.\"\n", - "* They are the standard vector/matrix/tensor type of numpy. Many numpy functions return arrays, not matrices.\n", - "* The array class is intended to be a general-purposen-dimensional array for many kinds of numerical computing, whilematrixis intended to facilitate linear algebracomputations specifically." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 1-D arrays\n", - "* note his only has one demension\n", - "* we could use a method called reshape to change this (we will get into this more later on)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "a = np.array([1,2,3,4,5,6])" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(6,)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(3, 2)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b = np.reshape(a, (3,2))\n", - "b.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2],\n", - " [3, 4],\n", - " [5, 6]])" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "b[1,0]" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### indexing and slicing" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "a = np.array([1,2,3,4,5,6])" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 2])" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[0:2]" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([2, 3])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[1:3]" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "a[-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "numpy.ndarray" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(a)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "2\n", - "3\n", - "4\n", - "5\n", - "6\n" - ] - } - ], - "source": [ - "for i in a:\n", - " print(i)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### looping\n", - "* numpy loops through the left most axis" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2, 3)" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([\n", - " [1,2,3],\n", - " [2,3,4]\n", - "])\n", - "\n", - "array.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1 2 3]\n", - "[2 3 4]\n" - ] - } - ], - "source": [ - "# since we have 2 items in the first axis we will end up with 2 items in our iteration\n", - "for i in array:\n", - " print(i)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([\n", - " [1,2,3,4],\n", - " [2,3,4,4],\n", - " [2,3,4,4]\n", - "])\n", - "\n", - "array1 = np.array([\n", - " [5,6,7,4],\n", - " [4,6,9,4],\n", - " [2,3,4,4]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2, 3, 4)" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# depth 2\n", - "# rows 3\n", - "# columns 4\n", - "tensor = np.array([array, array1])\n", - "tensor.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* remember numpy will iterate left most index\n", - "* in this 3-d cube, it's iterating the dpeth\n", - "* so we end up printing our 2 initial matrices" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[1 2 3 4]\n", - " [2 3 4 4]\n", - " [2 3 4 4]] \n", - "\n", - "[[5 6 7 4]\n", - " [4 6 9 4]\n", - " [2 3 4 4]] \n", - "\n" - ] - } - ], - "source": [ - "for i in tensor:\n", - " print(i, \"\\n\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### performing matrix operations\n", - "* axis 0 is the y axis\n", - "* the up and down axis\n", - "* the number of rows\n", - "* so any operation done on axis 0 is going to be columns\n", - "* done up and down\n", - "* axis 1 is the length of our array\n", - "* any summing or anything is done across our dataframe\n", - "* doing some operation to our rows" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np \n", - "array = np.array([\n", - " [1,2,3,4],\n", - " [2,3,4,4],\n", - " [2,3,4,4]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ABCD
01234
12344
22344
\n", - "
" - ], - "text/plain": [ - " A B C D\n", - "0 1 2 3 4\n", - "1 2 3 4 4\n", - "2 2 3 4 4" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df = pd.DataFrame(array)\n", - "df.columns = [\"A\", \"B\", \"C\", \"D\"]\n", - "df\n", - "#df.sum(axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 5, 8, 11, 12])" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.sum(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "A 5\n", - "B 8\n", - "C 11\n", - "D 12\n", - "dtype: int64" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.sum(axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(3, 4)" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 3, 4],\n", - " [2, 3, 4, 4],\n", - " [2, 3, 4, 4]])" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "assert len(np.sum(array, axis = 0)) == array.shape[1], \"axis don't align\"" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 5, 8, 11, 12])" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.sum(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([2., 3., 4., 4.])" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.median(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([2.5, 3.5, 3.5])" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.median(array, axis = 1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* the other option would be to loop which is far more costly of an operation" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10\n", - "13\n", - "13\n" - ] - } - ], - "source": [ - "for i in array:\n", - " print(sum(i))" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 3, 4],\n", - " [2, 3, 4, 4],\n", - " [2, 3, 4, 4]])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 2],\n", - " [2, 3, 3],\n", - " [3, 4, 4],\n", - " [4, 4, 4]])" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array.T" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5\n", - "8\n", - "11\n", - "12\n" - ] - } - ], - "source": [ - "for i in array.T:\n", - " print(sum(i))" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 3, 4],\n", - " [2, 3, 4, 4],\n", - " [2, 3, 4, 4]])" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### tranpose, turn rows into columns" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 2],\n", - " [2, 3, 3],\n", - " [3, 4, 4],\n", - " [4, 4, 4]])" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array.T" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Make a 2-d array in numpy:

\n", - "

- find the row wise mean

\n", - "

- find the column wise mean

\n", - "

- do the same for the transpose of the array you've made

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### other useful metrics\n", - "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.quantile.html\n", - "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1101, 2020, 3212],\n", - " [2212, 3112, 4121]])" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([555.5, 546. , 454.5])" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.std(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1656.5, 2566. , 3666.5])" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.mean(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1101, 2020, 3212])" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.min(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([2212, 3112, 4121])" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.max(array, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1656.5, 2566. , 3666.5])" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.quantile(array,.5, axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1106.555, 2025.46 , 3216.545])" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.percentile(array,.5, axis = 0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### reshape\n", - "* change the shape of your data\n", - "* adding indices\n", - "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 2, 3, 4])" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# this is indexed by one element\n", - "array = np.array([1,2,3,4])\n", - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(4, 1)" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.reshape(array, (4,1))\n", - "array.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array[0][0]" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "# we've now added two dimension using reshape\n", - "array1 = np.reshape(array,(2,2))" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2],\n", - " [3, 4]])" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array1" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([1,2,3,4,5,6,7,8])" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 2, 3, 4, 5, 6, 7, 8])" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "array1 = np.reshape(array, (2,2,2))" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[[1, 2],\n", - " [3, 4]],\n", - "\n", - " [[5, 6],\n", - " [7, 8]]])" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array1" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2, 2, 2)" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array1.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[1 2]\n", - " [3 4]] \n", - "\n", - "[[5 6]\n", - " [7 8]] \n", - "\n" - ] - } - ], - "source": [ - "for i in array1:\n", - " print(i, \"\\n\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### norm of a vector\n", - "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.norm.html\n", - "* defaults to the l2 norm" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3.7416573867739413" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([1,2,3])\n", - "np.linalg.norm(array)" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3.7416573867739413" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.sqrt(14)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### matrix multiplication/dot product" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([\n", - " [1,2],\n", - " [2,3]\n", - "])\n", - "\n", - "array1 = np.array([\n", - " [5,6],\n", - " [4,6]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[13, 18],\n", - " [22, 30]])" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# shortcut\n", - "array@array1" - ] - }, - { - "cell_type": "code", - "execution_count": 143, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[13, 18],\n", - " [22, 30]])" - ] - }, - "execution_count": 143, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.matmul(array, array1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html" - ] - }, - { - "cell_type": "code", - "execution_count": 144, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[13, 18],\n", - " [22, 30]])" - ] - }, - "execution_count": 144, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.dot(array, array1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### remember the dimension constraints" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([\n", - " [1,2,3],\n", - " [2,3,3]\n", - "])\n", - "\n", - "array1 = np.array([\n", - " [5,6,2],\n", - " [4,6,1]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(2, 3) (2, 3)\n" - ] - } - ], - "source": [ - "print(array.shape, array1.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "ename": "AssertionError", - "evalue": "The dimensions aren't aligned", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0marray1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"The dimensions aren't aligned\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m@\u001b[0m\u001b[0marray1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAssertionError\u001b[0m: The dimensions aren't aligned" - ] - } - ], - "source": [ - "assert array.shape[1] == array1.shape[0], \"The dimensions aren't aligned\"\n", - "\n", - "array@array1" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(2, 3) (3, 6)\n" - ] - }, - { - "data": { - "text/plain": [ - "array([[19, 27, 10, 17, 14, 21],\n", - " [28, 39, 13, 25, 21, 28]])" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([\n", - " [1,2,3],\n", - " [2,3,3]\n", - "])\n", - "\n", - "array1 = np.array([\n", - " [5,6,2,5,3,2],\n", - " [4,6,1,3,4,5],\n", - " [2,3,2,2,1,3]\n", - "])\n", - "\n", - "print(array.shape, array1.shape)\n", - "assert array.shape[1] == array1.shape[0], \"The dimensions aren't aligned\"\n", - "\n", - "array@array1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Make udf that:

\n", - "

- takes 2 2-d arrays as params

\n", - "

- tests to make sure they can be multipled using assert

\n", - "

- return the dot product of the two matrices

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### broadcasting\n", - "* expand the dimension to add to a matrix\n", - "* https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 1, 1, 1])" - ] - }, - "execution_count": 78, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([\n", - " [1,2,3,1],\n", - " [2,3,3,1]\n", - "])\n", - "\n", - "array1 = np.array([1,1,1,1])\n", - "array1 = np.reshape(array1, (4,))\n", - "array1" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 3, 4, 2],\n", - " [3, 4, 4, 2]])" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 3],\n", - " [2, 3, 3]])" - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 1, 1]])" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array1" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 3, 4],\n", - " [3, 4, 4]])" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.add(array, array1)" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0, 1, 2],\n", - " [1, 2, 2]])" - ] - }, - "execution_count": 120, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.subtract(array, array1)" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[2, 3, 4],\n", - " [3, 4, 4]])" - ] - }, - "execution_count": 73, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array + array1" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0, 1, 2],\n", - " [1, 2, 2]])" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array - array1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### elementwise squaring\n", - "* this is the elementwise operations arrays that make arrays so powerful" - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1, 32, 243],\n", - " [ 32, 243, 243]])" - ] - }, - "execution_count": 127, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array**5" - ] - }, - { - "cell_type": "code", - "execution_count": 128, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1, 32, 243],\n", - " [ 32, 243, 243]])" - ] - }, - "execution_count": 128, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.power(array, 5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Make udf that:

\n", - "

- takes 2 2-d arrays as params

\n", - "

- iterates the rows and columns and squares each element

\n", - "

- puts the squared items in a list

\n", - "

- returns the list

" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0123
01231
12331
\n", - "
" - ], - "text/plain": [ - " 0 1 2 3\n", - "0 1 2 3 1\n", - "1 2 3 3 1" - ] - }, - "execution_count": 88, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = np.array([\n", - " [1,2,3,1],\n", - " [2,3,3,1]\n", - "])\n", - "\n", - "lst = [\n", - " [1,2,3,1],\n", - " [2,3,3,1]\n", - "]\n", - "\n", - "pd.DataFrame(lst)" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "16" - ] - }, - "execution_count": 96, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array.sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([7, 9])" - ] - }, - "execution_count": 97, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x = np.sum(lst, axis = 1)\n", - "x" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": {}, - "outputs": [], - "source": [ - "x = x.sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2.0" - ] - }, - "execution_count": 86, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array.mean()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### argmax and min\n", - "* returns the index of the max/min value\n", - "* In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are returned.\n", - "* https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for user in range(100000000):\n", - " \n", - " for cluster in cluster in range(1000):\n", - " \n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "user_matrix = []\n", - "\n", - "cluster_center_matrix = []\n", - "\n", - "distance matrix\n", - "\n", - "argsmix()" - ] - }, - { - "cell_type": "code", - "execution_count": 109, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'C5'" - ] - }, - "execution_count": 109, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "feature = [\"C1\", \"C2\", \"C3\", \"C4\", \"C5\"]\n", - "array = np.array([1,2,3,4,15])\n", - "min_val = np.argmax(array)\n", - "feature[min_val]" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 110, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.argmin(array)" - ] - }, - { - "cell_type": "code", - "execution_count": 115, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([\n", - " [1,6,3,4],\n", - " [3,10,5,2],\n", - " [15,8,9,2]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 118, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[2, 1, 2, 0]" - ] - }, - "execution_count": 118, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(np.argmax(array, axis = 0)) # column level" - ] - }, - { - "cell_type": "code", - "execution_count": 117, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 1, 0])" - ] - }, - "execution_count": 117, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.argmax(array, axis = 1) # row level" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### let's say these are distances\n", - "* each row is an item\n", - "* and each column is the distance to a cluster\n", - "array = np.array([" - ] - }, - { - "cell_type": "code", - "execution_count": 119, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([\n", - " [1,6,3],\n", - " [3,10,5],\n", - " [15,8,9]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 0, 1])" - ] - }, - "execution_count": 120, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# this could then give us the index of the min distance\n", - "np.argmin(array, axis = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [], - "source": [ - "items = [\"user_A\", \"user_B\", \"user_C\"]\n", - "clusters = [\"A\", \"B\", \"C\"]\n", - "closest_cluster_idx = np.argmin(array, axis = 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 0, 1])" - ] - }, - "execution_count": 125, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "closest_cluster_idx" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['A', 'A', 'B']" - ] - }, - "execution_count": 126, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "closest_cluster_labels = [clusters[idx] for idx in closest_cluster_idx]\n", - "closest_cluster_labels" - ] - }, - { - "cell_type": "code", - "execution_count": 130, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
usercluster
0user_AA
1user_BA
2user_CB
\n", - "
" - ], - "text/plain": [ - " user cluster\n", - "0 user_A A\n", - "1 user_B A\n", - "2 user_C B" - ] - }, - "execution_count": 130, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "assign_df = pd.DataFrame(list(zip(items, closest_cluster_labels)))\n", - "assign_df.columns = [\"user\", \"cluster\"]\n", - "assign_df" - ] - }, - { - "cell_type": "code", - "execution_count": 132, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([['user_A', 'A'],\n", - " ['user_B', 'A'],\n", - " ['user_C', 'B']], dtype='\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mvectorized_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/opt/anaconda3/lib/python3.7/site-packages/numpy/lib/function_base.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2089\u001b[0m \u001b[0mvargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0m_n\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0m_n\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2090\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2091\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_vectorize_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2092\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2093\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_ufunc_and_otypes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/opt/anaconda3/lib/python3.7/site-packages/numpy/lib/function_base.py\u001b[0m in \u001b[0;36m_vectorize_call\u001b[0;34m(self, func, args)\u001b[0m\n\u001b[1;32m 2165\u001b[0m for a in args]\n\u001b[1;32m 2166\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2167\u001b[0;31m \u001b[0moutputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mufunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2168\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2169\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mufunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnout\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mmyfunc\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmyfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mitems\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m\"item_A\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"item_B\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"item_C\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mitems\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mvectorized_func\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvectorize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmyfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mIndexError\u001b[0m: list index out of range" - ] - } - ], - "source": [ - "vectorized_func(array)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Distance Measures\n", - "* used in many ML algorithms\n", - "* rec systems, kmeans, knn, decision trees\n", - "* https://docs.scipy.org/doc/scipy/reference/spatial.distance.html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### euclidean distance\n", - "* magnitude makes a difference" - ] - }, - { - "cell_type": "code", - "execution_count": 153, - "metadata": {}, - "outputs": [], - "source": [ - "a = np.array([1,2,3])\n", - "b = np.array([4,2,500])" - ] - }, - { - "cell_type": "code", - "execution_count": 154, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "497.00905424348156" - ] - }, - "execution_count": 154, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.sqrt(sum((a-b)**2))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### cosine similarity" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.6415330278717848" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.dot(a, b)/(np.linalg.norm(a)*np.linalg.norm(b))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### jaccard coefficient" - ] - }, - { - "cell_type": "code", - "execution_count": 155, - "metadata": {}, - "outputs": [], - "source": [ - "a = [\"the\", \"old\", \"man\", \"by\", \"the\", \"sea\"]\n", - "b = [\"the\", \"old\", \"man\", \"by\", \"the\", \"chair\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 156, - "metadata": {}, - "outputs": [], - "source": [ - "def jaccard_similarity(a, b):\n", - " return len(set(a).intersection(set(b))) / len(set(a).union(set(b)))" - ] - }, - { - "cell_type": "code", - "execution_count": 157, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.6666666666666666" - ] - }, - "execution_count": 157, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "jaccard_similarity(a,b)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### distance matrix\n", - "* pdist returns a reduced distance matrix, since they are symetrical\n", - "* squareform makes this a dense form" - ] - }, - { - "cell_type": "code", - "execution_count": 160, - "metadata": {}, - "outputs": [], - "source": [ - "from scipy.spatial.distance import pdist, squareform" - ] - }, - { - "cell_type": "code", - "execution_count": 161, - "metadata": {}, - "outputs": [], - "source": [ - "array = np.array([\n", - " [1,2,3,4],\n", - " [2,4,2,1],\n", - " [2,3,4,5]\n", - " \n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for i in array:\n", - " for i2 in array:\n", - " distance(i,i2)" - ] - }, - { - "cell_type": "code", - "execution_count": 163, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0. , 2.44948974, 2.82842712, 4.35889894],\n", - " [2.44948974, 0. , 2.44948974, 4.12310563],\n", - " [2.82842712, 2.44948974, 0. , 1.73205081],\n", - " [4.35889894, 4.12310563, 1.73205081, 0. ]])" - ] - }, - "execution_count": 163, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "squareform(pdist(array.T, \"euclidean\"))" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -2661,11 +15,12 @@ }, { "cell_type": "code", - "execution_count": 164, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "import pandas as pd" + "import pandas as pd\n", + "import numpy as np" ] }, { @@ -2679,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 165, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -2691,69 +46,29 @@ }, { "cell_type": "code", - "execution_count": 172, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "a 1\n", - "b 2\n", - "dtype: int64" - ] - }, - "execution_count": 172, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "my_series[[\"a\",\"b\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 170, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 1\n", - "1 2\n", - "2 2\n", - "Name: A, dtype: int64" - ] - }, - "execution_count": 170, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[\"A\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 25, + "execution_count": 7, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "a 1\n", - "b 2\n", - "dtype: int64" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "a 1\n", + "b 2\n", + "c 3\n", + "d 4\n", + "e 5\n", + "dtype: int64\n", + "a 1\n", + "b 2\n", + "dtype: int64\n" + ] } ], "source": [ - "my_series[[\"a\", \"b\"]]" + "print(my_series)\n", + "\n", + "print(my_series[[\"a\", \"b\"]])" ] }, { @@ -2769,221 +84,519 @@ }, { "cell_type": "code", - "execution_count": 198, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(3, 6)\n" + ] + } + ], "source": [ "array1 = np.array([\n", " [5,6,2,5,3,2],\n", " [4,6,1,3,4,5],\n", " [2,3,2,2,1,3]\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 199, - "metadata": {}, - "outputs": [], - "source": [ - "df = pd.DataFrame(array1)" - ] - }, - { - "cell_type": "code", - "execution_count": 200, - "metadata": {}, - "outputs": [], - "source": [ - "#df.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 201, - "metadata": {}, - "outputs": [], - "source": [ - "#df.head(1)\n", - "#df.tail(1)" + "])\n", + "print(array1.shape)" ] }, { "cell_type": "code", - "execution_count": 202, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
012345
0562532
1461345
2232213
\n", - "
" - ], "text/plain": [ - " 0 1 2 3 4 5\n", - "0 5 6 2 5 3 2\n", - "1 4 6 1 3 4 5\n", - "2 2 3 2 2 1 3" + "(3, 6)" ] }, - "execution_count": 202, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 203, - "metadata": {}, - "outputs": [], - "source": [ - "df.columns = [\"a\", \"b\", \"c\", \"d\", \"e\", \"f\"]" + "array1 = np.array([\n", + " [5,6,2,5,3,2],\n", + " [4,6,1,3,4,5],\n", + " [2,3,2,2,1,3]\n", + "])\n", + "df = pd.DataFrame(array1)\n", + "df.shape" ] }, { "cell_type": "code", - "execution_count": 204, + "execution_count": 10, "metadata": {}, "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
abcdef
0562532
1461345
2232213
\n", - "
" - ], + { + "data": { "text/plain": [ - " a b c d e f\n", - "0 5 6 2 5 3 2\n", - "1 4 6 1 3 4 5\n", - "2 2 3 2 2 1 3" + "['T',\n", + " '_AXIS_ALIASES',\n", + " '_AXIS_IALIASES',\n", + " '_AXIS_LEN',\n", + " '_AXIS_NAMES',\n", + " '_AXIS_NUMBERS',\n", + " '_AXIS_ORDERS',\n", + " '_AXIS_REVERSED',\n", + " '__abs__',\n", + " '__add__',\n", + " '__and__',\n", + " '__array__',\n", + " '__array_priority__',\n", + " '__array_wrap__',\n", + " '__bool__',\n", + " '__class__',\n", + " '__contains__',\n", + " '__copy__',\n", + " '__deepcopy__',\n", + " '__delattr__',\n", + " '__delitem__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__div__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__finalize__',\n", + " '__floordiv__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattr__',\n", + " '__getattribute__',\n", + " '__getitem__',\n", + " '__getstate__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__iadd__',\n", + " '__iand__',\n", + " '__ifloordiv__',\n", + " '__imod__',\n", + " '__imul__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__invert__',\n", + " '__ior__',\n", + " '__ipow__',\n", + " '__isub__',\n", + " '__iter__',\n", + " '__itruediv__',\n", + " '__ixor__',\n", + " '__le__',\n", + " '__len__',\n", + " '__lt__',\n", + " '__matmul__',\n", + " '__mod__',\n", + " '__module__',\n", + " '__mul__',\n", + " '__ne__',\n", + " '__neg__',\n", + " '__new__',\n", + " '__nonzero__',\n", + " '__or__',\n", + " '__pos__',\n", + " '__pow__',\n", + " '__radd__',\n", + " '__rand__',\n", + " '__rdiv__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__rfloordiv__',\n", + " '__rmatmul__',\n", + " '__rmod__',\n", + " '__rmul__',\n", + " '__ror__',\n", + " '__round__',\n", + " '__rpow__',\n", + " '__rsub__',\n", + " '__rtruediv__',\n", + " '__rxor__',\n", + " '__setattr__',\n", + " '__setitem__',\n", + " '__setstate__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__sub__',\n", + " '__subclasshook__',\n", + " '__truediv__',\n", + " '__weakref__',\n", + " '__xor__',\n", + " '_accessors',\n", + " '_add_numeric_operations',\n", + " '_add_series_only_operations',\n", + " '_add_series_or_dataframe_operations',\n", + " '_agg_by_level',\n", + " '_agg_examples_doc',\n", + " '_agg_summary_and_see_also_doc',\n", + " '_aggregate',\n", + " '_aggregate_multiple_funcs',\n", + " '_align_frame',\n", + " '_align_series',\n", + " '_box_col_values',\n", + " '_box_item_values',\n", + " '_builtin_table',\n", + " '_check_inplace_setting',\n", + " '_check_is_chained_assignment_possible',\n", + " '_check_label_or_level_ambiguity',\n", + " '_check_percentile',\n", + " '_check_setitem_copy',\n", + " '_clear_item_cache',\n", + " '_clip_with_one_bound',\n", + " '_clip_with_scalar',\n", + " '_combine_const',\n", + " '_combine_frame',\n", + " '_combine_match_columns',\n", + " '_combine_match_index',\n", + " '_consolidate',\n", + " '_consolidate_inplace',\n", + " '_construct_axes_dict',\n", + " '_construct_axes_dict_from',\n", + " '_construct_axes_from_arguments',\n", + " '_constructor',\n", + " '_constructor_expanddim',\n", + " '_constructor_sliced',\n", + " '_convert',\n", + " '_count_level',\n", + " '_create_indexer',\n", + " '_cython_table',\n", + " '_data',\n", + " '_deprecations',\n", + " '_dir_additions',\n", + " '_dir_deletions',\n", + " '_drop_axis',\n", + " '_drop_labels_or_levels',\n", + " '_ensure_valid_index',\n", + " '_find_valid_index',\n", + " '_from_arrays',\n", + " '_from_axes',\n", + " '_get_agg_axis',\n", + " '_get_axis',\n", + " '_get_axis_name',\n", + " '_get_axis_number',\n", + " '_get_axis_resolvers',\n", + " '_get_block_manager_axis',\n", + " '_get_bool_data',\n", + " '_get_cacher',\n", + " '_get_index_resolvers',\n", + " '_get_item_cache',\n", + " '_get_label_or_level_values',\n", + " '_get_numeric_data',\n", + " '_get_space_character_free_column_resolvers',\n", + " '_get_value',\n", + " '_get_values',\n", + " '_getitem_bool_array',\n", + " '_getitem_frame',\n", + " '_getitem_multilevel',\n", + " '_gotitem',\n", + " '_iget_item_cache',\n", + " '_indexed_same',\n", + " '_info_axis',\n", + " '_info_axis_name',\n", + " '_info_axis_number',\n", + " '_info_repr',\n", + " '_init_mgr',\n", + " '_internal_get_values',\n", + " '_internal_names',\n", + " '_internal_names_set',\n", + " '_is_builtin_func',\n", + " '_is_cached',\n", + " '_is_copy',\n", + " '_is_cython_func',\n", + " '_is_datelike_mixed_type',\n", + " '_is_homogeneous_type',\n", + " '_is_label_or_level_reference',\n", + " '_is_label_reference',\n", + " '_is_level_reference',\n", + " '_is_mixed_type',\n", + " '_is_numeric_mixed_type',\n", + " '_is_view',\n", + " '_ix',\n", + " '_ixs',\n", + " '_join_compat',\n", + " '_maybe_cache_changed',\n", + " '_maybe_update_cacher',\n", + " '_metadata',\n", + " '_needs_reindex_multi',\n", + " '_obj_with_exclusions',\n", + " '_protect_consolidate',\n", + " '_reduce',\n", + " '_reindex_axes',\n", + " '_reindex_columns',\n", + " '_reindex_index',\n", + " '_reindex_multi',\n", + " '_reindex_with_indexers',\n", + " '_repr_data_resource_',\n", + " '_repr_fits_horizontal_',\n", + " '_repr_fits_vertical_',\n", + " '_repr_html_',\n", + " '_repr_latex_',\n", + " '_reset_cache',\n", + " '_reset_cacher',\n", + " '_sanitize_column',\n", + " '_selected_obj',\n", + " '_selection',\n", + " '_selection_list',\n", + " '_selection_name',\n", + " '_series',\n", + " '_set_as_cached',\n", + " '_set_axis',\n", + " '_set_axis_name',\n", + " '_set_is_copy',\n", + " '_set_item',\n", + " '_set_value',\n", + " '_setitem_array',\n", + " '_setitem_frame',\n", + " '_setitem_slice',\n", + " '_setup_axes',\n", + " '_shallow_copy',\n", + " '_slice',\n", + " '_stat_axis',\n", + " '_stat_axis_name',\n", + " '_stat_axis_number',\n", + " '_to_dict_of_blocks',\n", + " '_try_aggregate_string_function',\n", + " '_typ',\n", + " '_unpickle_frame_compat',\n", + " '_unpickle_matrix_compat',\n", + " '_update_inplace',\n", + " '_validate_dtype',\n", + " '_values',\n", + " '_where',\n", + " '_xs',\n", + " 'abs',\n", + " 'add',\n", + " 'add_prefix',\n", + " 'add_suffix',\n", + " 'agg',\n", + " 'aggregate',\n", + " 'align',\n", + " 'all',\n", + " 'any',\n", + " 'append',\n", + " 'apply',\n", + " 'applymap',\n", + " 'as_matrix',\n", + " 'asfreq',\n", + " 'asof',\n", + " 'assign',\n", + " 'astype',\n", + " 'at',\n", + " 'at_time',\n", + " 'axes',\n", + " 'between_time',\n", + " 'bfill',\n", + " 'bool',\n", + " 'boxplot',\n", + " 'clip',\n", + " 'clip_lower',\n", + " 'clip_upper',\n", + " 'columns',\n", + " 'combine',\n", + " 'combine_first',\n", + " 'compound',\n", + " 'copy',\n", + " 'corr',\n", + " 'corrwith',\n", + " 'count',\n", + " 'cov',\n", + " 'cummax',\n", + " 'cummin',\n", + " 'cumprod',\n", + " 'cumsum',\n", + " 'describe',\n", + " 'diff',\n", + " 'div',\n", + " 'divide',\n", + " 'dot',\n", + " 'drop',\n", + " 'drop_duplicates',\n", + " 'droplevel',\n", + " 'dropna',\n", + " 'dtypes',\n", + " 'duplicated',\n", + " 'empty',\n", + " 'eq',\n", + " 'equals',\n", + " 'eval',\n", + " 'ewm',\n", + " 'expanding',\n", + " 'explode',\n", + " 'ffill',\n", + " 'fillna',\n", + " 'filter',\n", + " 'first',\n", + " 'first_valid_index',\n", + " 'floordiv',\n", + " 'from_dict',\n", + " 'from_records',\n", + " 'ftypes',\n", + " 'ge',\n", + " 'get',\n", + " 'get_dtype_counts',\n", + " 'get_ftype_counts',\n", + " 'get_values',\n", + " 'groupby',\n", + " 'gt',\n", + " 'head',\n", + " 'hist',\n", + " 'iat',\n", + " 'idxmax',\n", + " 'idxmin',\n", + " 'iloc',\n", + " 'index',\n", + " 'infer_objects',\n", + " 'info',\n", + " 'insert',\n", + " 'interpolate',\n", + " 'isin',\n", + " 'isna',\n", + " 'isnull',\n", + " 'items',\n", + " 'iteritems',\n", + " 'iterrows',\n", + " 'itertuples',\n", + " 'ix',\n", + " 'join',\n", + " 'keys',\n", + " 'kurt',\n", + " 'kurtosis',\n", + " 'last',\n", + " 'last_valid_index',\n", + " 'le',\n", + " 'loc',\n", + " 'lookup',\n", + " 'lt',\n", + " 'mad',\n", + " 'mask',\n", + " 'max',\n", + " 'mean',\n", + " 'median',\n", + " 'melt',\n", + " 'memory_usage',\n", + " 'merge',\n", + " 'min',\n", + " 'mod',\n", + " 'mode',\n", + " 'mul',\n", + " 'multiply',\n", + " 'ndim',\n", + " 'ne',\n", + " 'nlargest',\n", + " 'notna',\n", + " 'notnull',\n", + " 'nsmallest',\n", + " 'nunique',\n", + " 'pct_change',\n", + " 'pipe',\n", + " 'pivot',\n", + " 'pivot_table',\n", + " 'plot',\n", + " 'pop',\n", + " 'pow',\n", + " 'prod',\n", + " 'product',\n", + " 'quantile',\n", + " 'query',\n", + " 'radd',\n", + " 'rank',\n", + " 'rdiv',\n", + " 'reindex',\n", + " 'reindex_like',\n", + " 'rename',\n", + " 'rename_axis',\n", + " 'reorder_levels',\n", + " 'replace',\n", + " 'resample',\n", + " 'reset_index',\n", + " 'rfloordiv',\n", + " 'rmod',\n", + " 'rmul',\n", + " 'rolling',\n", + " 'round',\n", + " 'rpow',\n", + " 'rsub',\n", + " 'rtruediv',\n", + " 'sample',\n", + " 'select_dtypes',\n", + " 'sem',\n", + " 'set_axis',\n", + " 'set_index',\n", + " 'shape',\n", + " 'shift',\n", + " 'size',\n", + " 'skew',\n", + " 'slice_shift',\n", + " 'sort_index',\n", + " 'sort_values',\n", + " 'sparse',\n", + " 'squeeze',\n", + " 'stack',\n", + " 'std',\n", + " 'style',\n", + " 'sub',\n", + " 'subtract',\n", + " 'sum',\n", + " 'swapaxes',\n", + " 'swaplevel',\n", + " 'tail',\n", + " 'take',\n", + " 'to_clipboard',\n", + " 'to_csv',\n", + " 'to_dense',\n", + " 'to_dict',\n", + " 'to_excel',\n", + " 'to_feather',\n", + " 'to_gbq',\n", + " 'to_hdf',\n", + " 'to_html',\n", + " 'to_json',\n", + " 'to_latex',\n", + " 'to_msgpack',\n", + " 'to_numpy',\n", + " 'to_parquet',\n", + " 'to_period',\n", + " 'to_pickle',\n", + " 'to_records',\n", + " 'to_sparse',\n", + " 'to_sql',\n", + " 'to_stata',\n", + " 'to_string',\n", + " 'to_timestamp',\n", + " 'to_xarray',\n", + " 'transform',\n", + " 'transpose',\n", + " 'truediv',\n", + " 'truncate',\n", + " 'tshift',\n", + " 'tz_convert',\n", + " 'tz_localize',\n", + " 'unstack',\n", + " 'update',\n", + " 'values',\n", + " 'var',\n", + " 'where',\n", + " 'xs']" ] }, - "execution_count": 204, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df" + "dir(df)" ] }, { "cell_type": "code", - "execution_count": 205, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -3007,42 +620,38 @@ " \n", " \n", " \n", - " a\n", - " c\n", - " d\n", - " e\n", - " f\n", - " \n", - " \n", - " b\n", - " \n", - " \n", - " \n", - " \n", - " \n", + " 0\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", + " 5\n", " \n", " \n", " \n", " \n", - " 6\n", + " 0\n", " 5\n", + " 6\n", " 2\n", " 5\n", " 3\n", " 2\n", " \n", " \n", - " 6\n", + " 1\n", " 4\n", + " 6\n", " 1\n", " 3\n", " 4\n", " 5\n", " \n", " \n", - " 3\n", " 2\n", " 2\n", + " 3\n", + " 2\n", " 2\n", " 1\n", " 3\n", @@ -3052,38 +661,24 @@ "" ], "text/plain": [ - " a c d e f\n", - "b \n", - "6 5 2 5 3 2\n", - "6 4 1 3 4 5\n", - "3 2 2 2 1 3" + " 0 1 2 3 4 5\n", + "0 5 6 2 5 3 2\n", + "1 4 6 1 3 4 5\n", + "2 2 3 2 2 1 3" ] }, - "execution_count": 205, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df = df.set_index(\"b\")\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df\n", - "df_total = func(df)\n", - "df_total = func1(df_total)\n", - "df = func2(df)" + "df.head(3)" ] }, { "cell_type": "code", - "execution_count": 197, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -3107,42 +702,38 @@ " \n", " \n", " \n", - " a\n", - " c\n", - " d\n", - " e\n", - " f\n", - " \n", - " \n", - " b\n", - " \n", - " \n", - " \n", - " \n", - " \n", + " 0\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", + " 5\n", " \n", " \n", " \n", " \n", - " 6\n", + " 0\n", " 5\n", + " 6\n", " 2\n", " 5\n", " 3\n", " 2\n", " \n", " \n", - " 6\n", + " 1\n", " 4\n", + " 6\n", " 1\n", " 3\n", " 4\n", " 5\n", " \n", " \n", - " 3\n", " 2\n", " 2\n", + " 3\n", + " 2\n", " 2\n", " 1\n", " 3\n", @@ -3152,14 +743,13 @@ "" ], "text/plain": [ - " a c d e f\n", - "b \n", - "6 5 2 5 3 2\n", - "6 4 1 3 4 5\n", - "3 2 2 2 1 3" + " 0 1 2 3 4 5\n", + "0 5 6 2 5 3 2\n", + "1 4 6 1 3 4 5\n", + "2 2 3 2 2 1 3" ] }, - "execution_count": 197, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -3170,257 +760,63 @@ }, { "cell_type": "code", - "execution_count": 207, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
aabb
0a2
1a2
2b2
\n", - "
" - ], "text/plain": [ - " aa bb\n", - "0 a 2\n", - "1 a 2\n", - "2 b 2" + "RangeIndex(start=0, stop=3, step=1)" ] }, - "execution_count": 207, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "array = [\n", - " [\"a\",2],\n", - " [\"a\",2],\n", - " [\"b\",2]\n", - "]\n", - "\n", - "df = pd.DataFrame(array)\n", - "df.columns = [\"aa\", \"bb\"]\n", - "df" + "df.index" ] }, { "cell_type": "code", - "execution_count": 213, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
aa
bb
4a
2b
\n", - "
" - ], "text/plain": [ - " aa\n", - "bb \n", - "4 a\n", - "2 b" + "RangeIndex(start=0, stop=6, step=1)" ] }, - "execution_count": 213, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.groupby(\"aa\").sum().reset_index().set_index(\"bb\")" + "df.columns" ] }, { - "cell_type": "code", - "execution_count": 187, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Int64Index([5, 4, 2], dtype='int64', name='a')" - ] - }, - "execution_count": 187, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "df.index" + "#### change headers" ] }, { "cell_type": "code", - "execution_count": 188, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
bcdef
a
562532
461345
232213
\n", - "
" - ], - "text/plain": [ - " b c d e f\n", - "a \n", - "5 6 2 5 3 2\n", - "4 6 1 3 4 5\n", - "2 3 2 2 1 3" - ] - }, - "execution_count": 188, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "markdown", + "execution_count": 18, "metadata": {}, + "outputs": [], "source": [ - "#### change headers" + "df.columns = [\"R\", \"A\", \"F\", \"4\", \"Echo\", \"Lima\"]" ] }, { "cell_type": "code", - "execution_count": 215, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -3444,38 +840,54 @@ " \n", " \n", " \n", - " aa\n", - " bb\n", + " R\n", + " A\n", + " F\n", + " 4\n", + " Echo\n", + " Lima\n", " \n", " \n", " \n", " \n", " 0\n", - " a\n", + " 5\n", + " 6\n", + " 2\n", + " 5\n", + " 3\n", " 2\n", " \n", " \n", " 1\n", - " a\n", - " 2\n", + " 4\n", + " 6\n", + " 1\n", + " 3\n", + " 4\n", + " 5\n", " \n", " \n", " 2\n", - " b\n", " 2\n", + " 3\n", + " 2\n", + " 2\n", + " 1\n", + " 3\n", " \n", " \n", "\n", "" ], "text/plain": [ - " aa bb\n", - "0 a 2\n", - "1 a 2\n", - "2 b 2" + " R A F 4 Echo Lima\n", + "0 5 6 2 5 3 2\n", + "1 4 6 1 3 4 5\n", + "2 2 3 2 2 1 3" ] }, - "execution_count": 215, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -3486,99 +898,51 @@ }, { "cell_type": "code", - "execution_count": 239, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Flavor/Scent'" - ] - }, - "execution_count": 239, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"Flavor / Scent \".rstrip().replace(\" \", \"\")" - ] - }, - { - "cell_type": "code", - "execution_count": 230, - "metadata": {}, - "outputs": [], - "source": [ - "df.columns = [\"AfterHour\", \"b\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 233, + "execution_count": 27, "metadata": {}, "outputs": [ { - "ename": "SyntaxError", - "evalue": "invalid syntax (, line 1)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m df.`a.a.a`\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + "name": "stdout", + "output_type": "stream", + "text": [ + "R\n", + "A\n", + "F\n", + "4\n", + "Echo\n", + "Lima\n" ] } ], "source": [ - "df.a.a.a" + "for k in range(len(df.columns)):\n", + " print(df.columns[k])" ] }, { "cell_type": "code", - "execution_count": 227, + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0 a\n", - "1 a\n", - "2 b\n", - "Name: a_a_a, dtype: object" + "R int32\n", + "A int32\n", + "F int32\n", + "4 int32\n", + "Echo int32\n", + "Lima int32\n", + "dtype: object" ] }, - "execution_count": 227, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.a_a_a" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\"10201020101\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df[\"a\"] = df[\"a\"].apply(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 237, - "metadata": {}, - "outputs": [], - "source": [ - "assert df.dtypes[\"b\"] == int, \"column must be integer\"" + "df.dtypes" ] }, { @@ -3592,7 +956,7 @@ }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -3601,21 +965,21 @@ "0 5\n", "1 4\n", "2 2\n", - "Name: a, dtype: int64" + "Name: R, dtype: int32" ] }, - "execution_count": 107, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df[\"a\"]" + "df[\"R\"]" ] }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -3624,38 +988,38 @@ "pandas.core.series.Series" ] }, - "execution_count": 108, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "type(df[\"a\"])" + "type(df[\"R\"])" ] }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[5, 4, 2]" + "list" ] }, - "execution_count": 109, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df[\"a\"].tolist()" + "df[\"R\"].tolist()" ] }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -3664,18 +1028,18 @@ "RangeIndex(start=0, stop=3, step=1)" ] }, - "execution_count": 110, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df[\"a\"].index" + "df[\"R\"].index" ] }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -3699,44 +1063,44 @@ " \n", " \n", " \n", - " a\n", - " b\n", + " R\n", + " Echo\n", " \n", " \n", " \n", " \n", " 0\n", " 5\n", - " 6\n", + " 3\n", " \n", " \n", " 1\n", " 4\n", - " 6\n", + " 4\n", " \n", " \n", " 2\n", " 2\n", - " 3\n", + " 1\n", " \n", " \n", "\n", "" ], "text/plain": [ - " a b\n", - "0 5 6\n", - "1 4 6\n", - "2 2 3" + " R Echo\n", + "0 5 3\n", + "1 4 4\n", + "2 2 1" ] }, - "execution_count": 111, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df[[\"a\", \"b\"]]" + "df[[\"R\", \"Echo\"]]" ] }, { @@ -3755,57 +1119,57 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 4\n", - "b 6\n", - "c 1\n", - "d 3\n", - "e 4\n", - "f 5\n", - "Name: 1, dtype: int64" + "R 5\n", + "A 6\n", + "F 2\n", + "4 5\n", + "Echo 3\n", + "Lima 2\n", + "Name: 0, dtype: int32" ] }, - "execution_count": 112, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.iloc[1]" + "df.iloc[0]" ] }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 4\n", - "b 6\n", - "c 1\n", - "Name: 1, dtype: int64" + "R 5\n", + "A 6\n", + "F 2\n", + "Name: 0, dtype: int32" ] }, - "execution_count": 113, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# need integer based subsetting\n", - "df.iloc[1,[0,1,2]]" + "df.iloc[0,[0,1,2]]" ] }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -3829,23 +1193,23 @@ " \n", " \n", " \n", - " a\n", - " b\n", - " c\n", - " d\n", - " e\n", - " f\n", + " R\n", + " A\n", + " F\n", + " 4\n", + " Echo\n", + " Lima\n", " \n", " \n", " \n", " \n", - " 1\n", - " 4\n", + " 0\n", + " 5\n", " 6\n", - " 1\n", - " 3\n", - " 4\n", + " 2\n", " 5\n", + " 3\n", + " 2\n", " \n", " \n", " 2\n", @@ -3861,23 +1225,23 @@ "" ], "text/plain": [ - " a b c d e f\n", - "1 4 6 1 3 4 5\n", - "2 2 3 2 2 1 3" + " R A F 4 Echo Lima\n", + "0 5 6 2 5 3 2\n", + "2 2 3 2 2 1 3" ] }, - "execution_count": 114, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.iloc[[1,2]]" + "df.iloc[[0,2]]" ] }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 49, "metadata": {}, "outputs": [ { @@ -3901,32 +1265,32 @@ " \n", " \n", " \n", - " a\n", - " b\n", - " c\n", - " d\n", - " e\n", - " f\n", + " R\n", + " A\n", + " F\n", + " 4\n", + " Echo\n", + " Lima\n", " \n", " \n", " \n", " \n", - " 0\n", - " 5\n", - " 6\n", " 2\n", - " 5\n", + " 2\n", " 3\n", " 2\n", + " 2\n", + " 1\n", + " 3\n", " \n", " \n", + " 0\n", + " 5\n", + " 6\n", " 2\n", - " 2\n", + " 5\n", " 3\n", " 2\n", - " 2\n", - " 1\n", - " 3\n", " \n", " \n", " 1\n", @@ -3942,24 +1306,24 @@ "" ], "text/plain": [ - " a b c d e f\n", - "0 5 6 2 5 3 2\n", - "2 2 3 2 2 1 3\n", - "1 4 6 1 3 4 5" + " R A F 4 Echo Lima\n", + "2 2 3 2 2 1 3\n", + "0 5 6 2 5 3 2\n", + "1 4 6 1 3 4 5" ] }, - "execution_count": 115, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.iloc[[0,2,1]]" + "df.iloc[[2,0,1]]" ] }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -3983,12 +1347,12 @@ " \n", " \n", " \n", - " a\n", - " b\n", - " c\n", - " d\n", - " e\n", - " f\n", + " R\n", + " A\n", + " F\n", + " 4\n", + " Echo\n", + " Lima\n", " \n", " \n", " \n", @@ -4024,13 +1388,13 @@ "" ], "text/plain": [ - " a b c d e f\n", - "0 5 6 2 5 3 2\n", - "1 4 6 1 3 4 5\n", - "2 2 3 2 2 1 3" + " R A F 4 Echo Lima\n", + "0 5 6 2 5 3 2\n", + "1 4 6 1 3 4 5\n", + "2 2 3 2 2 1 3" ] }, - "execution_count": 116, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -4041,7 +1405,7 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 53, "metadata": {}, "outputs": [ { @@ -4065,7 +1429,7 @@ " \n", " \n", " \n", - " a\n", + " R\n", " \n", " \n", " \n", @@ -4086,13 +1450,13 @@ "" ], "text/plain": [ - " a\n", + " R\n", "0 5\n", "1 4\n", "2 2" ] }, - "execution_count": 117, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -4103,7 +1467,7 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -4127,8 +1491,8 @@ " \n", " \n", " \n", - " a\n", - " b\n", + " R\n", + " A\n", " \n", " \n", " \n", @@ -4142,11 +1506,11 @@ "" ], "text/plain": [ - " a b\n", + " R A\n", "1 4 6" ] }, - "execution_count": 118, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -4165,7 +1529,7 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -4174,7 +1538,7 @@ "RangeIndex(start=0, stop=3, step=1)" ] }, - "execution_count": 119, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -4185,7 +1549,7 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 57, "metadata": {}, "outputs": [], "source": [ @@ -4194,7 +1558,7 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 58, "metadata": {}, "outputs": [ { @@ -4218,12 +1582,12 @@ " \n", " \n", " \n", - " a\n", - " b\n", - " c\n", - " d\n", - " e\n", - " f\n", + " R\n", + " A\n", + " F\n", + " 4\n", + " Echo\n", + " Lima\n", " \n", " \n", " \n", @@ -4259,13 +1623,13 @@ "" ], "text/plain": [ - " a b c d e f\n", - "aa 5 6 2 5 3 2\n", - "bb 4 6 1 3 4 5\n", - "cc 2 3 2 2 1 3" + " R A F 4 Echo Lima\n", + "aa 5 6 2 5 3 2\n", + "bb 4 6 1 3 4 5\n", + "cc 2 3 2 2 1 3" ] }, - "execution_count": 121, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -4276,22 +1640,22 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 5\n", + "R 5\n", "b 6\n", "c 2\n", "d 5\n", "e 3\n", "f 2\n", - "Name: aa, dtype: int64" + "Name: aa, dtype: int32" ] }, - "execution_count": 122, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -4302,7 +1666,7 @@ }, { "cell_type": "code", - "execution_count": 123, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -4326,12 +1690,12 @@ " \n", " \n", " \n", - " a\n", - " b\n", - " c\n", - " d\n", - " e\n", - " f\n", + " R\n", + " A\n", + " F\n", + " 4\n", + " Echo\n", + " Lima\n", " \n", " \n", " \n", @@ -4358,12 +1722,12 @@ "" ], "text/plain": [ - " a b c d e f\n", - "aa 5 6 2 5 3 2\n", - "bb 4 6 1 3 4 5" + " R A F 4 Echo Lima\n", + "aa 5 6 2 5 3 2\n", + "bb 4 6 1 3 4 5" ] }, - "execution_count": 123, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -4374,7 +1738,7 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -4398,32 +1762,32 @@ " \n", " \n", " \n", - " a\n", - " b\n", + " R\n", + " Echo\n", " \n", " \n", " \n", " \n", " aa\n", " 5\n", - " 6\n", + " 3\n", " \n", " \n", "\n", "" ], "text/plain": [ - " a b\n", - "aa 5 6" + " R Echo\n", + "aa 5 3" ] }, - "execution_count": 124, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.loc[[\"aa\"], [\"a\",\"b\"]]" + "df.loc[[\"aa\"], [\"R\",\"Echo\"]]" ] }, { @@ -4437,7 +1801,7 @@ }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 64, "metadata": {}, "outputs": [ { @@ -4461,39 +1825,39 @@ " \n", " \n", " \n", - " a\n", - " c\n", + " R\n", + " Echo\n", " \n", " \n", " \n", " \n", " aa\n", " 5\n", - " 2\n", + " 3\n", " \n", " \n", " bb\n", " 4\n", - " 1\n", + " 4\n", " \n", " \n", "\n", "" ], "text/plain": [ - " a c\n", - "aa 5 2\n", - "bb 4 1" + " R Echo\n", + "aa 5 3\n", + "bb 4 4" ] }, - "execution_count": 126, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rows = [\"aa\", \"bb\"]\n", - "cols = [\"a\", \"c\"]\n", + "cols = [\"R\", \"Echo\"]\n", "\n", "df.loc[rows,cols]" ] @@ -4507,16 +1871,16 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 65, "metadata": {}, "outputs": [], "source": [ - "df1 = df[[\"a\", \"b\", \"c\", \"d\"]]" + "df1 = df[[ \"R\", \"4\", \"Echo\"]]" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 66, "metadata": {}, "outputs": [ { @@ -4540,46 +1904,42 @@ " \n", " \n", " \n", - " a\n", - " b\n", - " c\n", - " d\n", + " R\n", + " 4\n", + " Echo\n", " \n", " \n", " \n", " \n", - " 0\n", + " aa\n", " 5\n", - " 6\n", - " 2\n", " 5\n", + " 3\n", " \n", " \n", - " 1\n", + " bb\n", " 4\n", - " 6\n", - " 1\n", " 3\n", + " 4\n", " \n", " \n", + " cc\n", " 2\n", " 2\n", - " 3\n", - " 2\n", - " 2\n", + " 1\n", " \n", " \n", "\n", "" ], "text/plain": [ - " a b c d\n", - "0 5 6 2 5\n", - "1 4 6 1 3\n", - "2 2 3 2 2" + " R 4 Echo\n", + "aa 5 5 3\n", + "bb 4 3 4\n", + "cc 2 2 1" ] }, - "execution_count": 12, + "execution_count": 66, "metadata": {}, "output_type": "execute_result" } @@ -4597,7 +1957,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 67, "metadata": {}, "outputs": [ { @@ -4621,10 +1981,12 @@ " \n", " \n", " \n", - " a\n", - " b\n", - " c\n", - " d\n", + " R\n", + " A\n", + " F\n", + " 4\n", + " Echo\n", + " Lima\n", " \n", " \n", " \n", @@ -4634,6 +1996,8 @@ " 3.000000\n", " 3.000000\n", " 3.000000\n", + " 3.000000\n", + " 3.000000\n", " \n", " \n", " mean\n", @@ -4641,6 +2005,8 @@ " 5.000000\n", " 1.666667\n", " 3.333333\n", + " 2.666667\n", + " 3.333333\n", " \n", " \n", " std\n", @@ -4648,6 +2014,8 @@ " 1.732051\n", " 0.577350\n", " 1.527525\n", + " 1.527525\n", + " 1.527525\n", " \n", " \n", " min\n", @@ -4655,6 +2023,8 @@ " 3.000000\n", " 1.000000\n", " 2.000000\n", + " 1.000000\n", + " 2.000000\n", " \n", " \n", " 25%\n", @@ -4662,6 +2032,8 @@ " 4.500000\n", " 1.500000\n", " 2.500000\n", + " 2.000000\n", + " 2.500000\n", " \n", " \n", " 50%\n", @@ -4669,6 +2041,8 @@ " 6.000000\n", " 2.000000\n", " 3.000000\n", + " 3.000000\n", + " 3.000000\n", " \n", " \n", " 75%\n", @@ -4676,6 +2050,8 @@ " 6.000000\n", " 2.000000\n", " 4.000000\n", + " 3.500000\n", + " 4.000000\n", " \n", " \n", " max\n", @@ -4683,30 +2059,32 @@ " 6.000000\n", " 2.000000\n", " 5.000000\n", + " 4.000000\n", + " 5.000000\n", " \n", " \n", "\n", "" ], "text/plain": [ - " a b c d\n", - "count 3.000000 3.000000 3.000000 3.000000\n", - "mean 3.666667 5.000000 1.666667 3.333333\n", - "std 1.527525 1.732051 0.577350 1.527525\n", - "min 2.000000 3.000000 1.000000 2.000000\n", - "25% 3.000000 4.500000 1.500000 2.500000\n", - "50% 4.000000 6.000000 2.000000 3.000000\n", - "75% 4.500000 6.000000 2.000000 4.000000\n", - "max 5.000000 6.000000 2.000000 5.000000" + " R A F 4 Echo Lima\n", + "count 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000\n", + "mean 3.666667 5.000000 1.666667 3.333333 2.666667 3.333333\n", + "std 1.527525 1.732051 0.577350 1.527525 1.527525 1.527525\n", + "min 2.000000 3.000000 1.000000 2.000000 1.000000 2.000000\n", + "25% 3.000000 4.500000 1.500000 2.500000 2.000000 2.500000\n", + "50% 4.000000 6.000000 2.000000 3.000000 3.000000 3.000000\n", + "75% 4.500000 6.000000 2.000000 4.000000 3.500000 4.000000\n", + "max 5.000000 6.000000 2.000000 5.000000 4.000000 5.000000" ] }, - "execution_count": 13, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df1.describe()" + "df.describe()" ] }, { @@ -4718,7 +2096,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 74, "metadata": {}, "outputs": [ { @@ -4742,39 +2120,28 @@ " \n", " \n", " \n", - " a\n", - " b\n", - " c\n", - " d\n", + " R\n", + " 4\n", + " Echo\n", " \n", " \n", " \n", " \n", - " a\n", + " R\n", " 1.000000\n", - " 0.944911\n", - " -0.188982\n", " 0.928571\n", + " 0.785714\n", " \n", " \n", - " b\n", - " 0.944911\n", - " 1.000000\n", - " -0.500000\n", - " 0.755929\n", - " \n", - " \n", - " c\n", - " -0.188982\n", - " -0.500000\n", + " 4\n", + " 0.928571\n", " 1.000000\n", - " 0.188982\n", + " 0.500000\n", " \n", " \n", - " d\n", - " 0.928571\n", - " 0.755929\n", - " 0.188982\n", + " Echo\n", + " 0.785714\n", + " 0.500000\n", " 1.000000\n", " \n", " \n", @@ -4782,14 +2149,13 @@ "" ], "text/plain": [ - " a b c d\n", - "a 1.000000 0.944911 -0.188982 0.928571\n", - "b 0.944911 1.000000 -0.500000 0.755929\n", - "c -0.188982 -0.500000 1.000000 0.188982\n", - "d 0.928571 0.755929 0.188982 1.000000" + " R 4 Echo\n", + "R 1.000000 0.928571 0.785714\n", + "4 0.928571 1.000000 0.500000\n", + "Echo 0.785714 0.500000 1.000000" ] }, - "execution_count": 14, + "execution_count": 74, "metadata": {}, "output_type": "execute_result" } @@ -4807,20 +2173,19 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 76, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 11\n", - "b 15\n", - "c 5\n", - "d 10\n", + "R 11\n", + "4 10\n", + "Echo 8\n", "dtype: int64" ] }, - "execution_count": 17, + "execution_count": 76, "metadata": {}, "output_type": "execute_result" } @@ -4831,25 +2196,20 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 77, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "0 18\n", - "1 14\n", - "2 9\n", - "dtype: int64" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] } ], "source": [ - "df1.sum(axis = 1)" + "a = df1.sum(axis = 1)\n", + "print(type(a))" ] }, { @@ -4861,20 +2221,19 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 78, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 4.0\n", - "b 6.0\n", - "c 2.0\n", - "d 3.0\n", + "R 4.0\n", + "4 3.0\n", + "Echo 3.0\n", "dtype: float64" ] }, - "execution_count": 19, + "execution_count": 78, "metadata": {}, "output_type": "execute_result" } @@ -4892,14 +2251,14 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 83, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/conagrabrands/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: \n", + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:1: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", @@ -4909,12 +2268,12 @@ } ], "source": [ - "df1[\"class\"] = [\"AA\", \"AA\", \"BB\"]" + "df1[\"new_class\"] = [\"AA\", \"AA\",\"\"]" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -4938,50 +2297,50 @@ " \n", " \n", " \n", - " a\n", - " b\n", - " c\n", - " d\n", + " R\n", + " 4\n", + " Echo\n", " class\n", + " new_class\n", " \n", " \n", " \n", " \n", - " 0\n", + " aa\n", " 5\n", - " 6\n", - " 2\n", " 5\n", + " 3\n", + " AA\n", " AA\n", " \n", " \n", - " 1\n", + " bb\n", " 4\n", - " 6\n", - " 1\n", " 3\n", + " 4\n", + " AA\n", " AA\n", " \n", " \n", + " cc\n", " 2\n", " 2\n", - " 3\n", - " 2\n", - " 2\n", + " 1\n", " BB\n", + " \n", " \n", " \n", "\n", "" ], "text/plain": [ - " a b c d class\n", - "0 5 6 2 5 AA\n", - "1 4 6 1 3 AA\n", - "2 2 3 2 2 BB" + " R 4 Echo class new_class\n", + "aa 5 5 3 AA AA\n", + "bb 4 3 4 AA AA\n", + "cc 2 2 1 BB " ] }, - "execution_count": 23, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } @@ -4992,7 +2351,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 92, "metadata": {}, "outputs": [ { @@ -5016,46 +2375,42 @@ " \n", " \n", " \n", - " a\n", - " b\n", - " c\n", - " d\n", + " R\n", + " 4\n", + " Echo\n", " \n", " \n", " class\n", " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", " AA\n", " 9\n", - " 12\n", - " 3\n", " 8\n", + " 7\n", " \n", " \n", " BB\n", " 2\n", - " 3\n", - " 2\n", " 2\n", + " 1\n", " \n", " \n", "\n", "" ], "text/plain": [ - " a b c d\n", - "class \n", - "AA 9 12 3 8\n", - "BB 2 3 2 2" + " R 4 Echo\n", + "class \n", + "AA 9 8 7\n", + "BB 2 2 1" ] }, - "execution_count": 24, + "execution_count": 92, "metadata": {}, "output_type": "execute_result" } @@ -5066,7 +2421,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 94, "metadata": {}, "outputs": [ { @@ -5090,10 +2445,10 @@ " \n", " \n", " \n", - " a\n", - " b\n", - " c\n", - " d\n", + " R\n", + " 4\n", + " Echo\n", + " new_class\n", " \n", " \n", " class\n", @@ -5123,13 +2478,13 @@ "" ], "text/plain": [ - " a b c d\n", - "class \n", - "AA 2 2 2 2\n", - "BB 1 1 1 1" + " R 4 Echo new_class\n", + "class \n", + "AA 2 2 2 2\n", + "BB 1 1 1 1" ] }, - "execution_count": 25, + "execution_count": 94, "metadata": {}, "output_type": "execute_result" } @@ -5140,7 +2495,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 95, "metadata": {}, "outputs": [ { @@ -5164,11 +2519,11 @@ " \n", " \n", " \n", - " a\n", - " b\n", - " c\n", - " d\n", + " R\n", + " 4\n", + " Echo\n", " class\n", + " new_class\n", " \n", " \n", " class\n", @@ -5183,10 +2538,10 @@ " \n", " AA\n", " 2\n", - " 1\n", " 2\n", " 2\n", " 1\n", + " 1\n", " \n", " \n", " BB\n", @@ -5201,13 +2556,13 @@ "" ], "text/plain": [ - " a b c d class\n", - "class \n", - "AA 2 1 2 2 1\n", - "BB 1 1 1 1 1" + " R 4 Echo class new_class\n", + "class \n", + "AA 2 2 2 1 1\n", + "BB 1 1 1 1 1" ] }, - "execution_count": 27, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" } @@ -5226,7 +2581,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 96, "metadata": {}, "outputs": [ { @@ -5235,7 +2590,7 @@ "Index(['AA', 'BB'], dtype='object', name='class')" ] }, - "execution_count": 28, + "execution_count": 96, "metadata": {}, "output_type": "execute_result" } @@ -5246,7 +2601,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 97, "metadata": {}, "outputs": [ { @@ -5271,10 +2626,10 @@ " \n", " \n", " class\n", - " a\n", - " b\n", - " c\n", - " d\n", + " R\n", + " 4\n", + " Echo\n", + " new_class\n", " \n", " \n", " \n", @@ -5299,12 +2654,12 @@ "" ], "text/plain": [ - " class a b c d\n", - "0 AA 2 2 2 2\n", - "1 BB 1 1 1 1" + " class R 4 Echo new_class\n", + "0 AA 2 2 2 2\n", + "1 BB 1 1 1 1" ] }, - "execution_count": 29, + "execution_count": 97, "metadata": {}, "output_type": "execute_result" } @@ -5315,7 +2670,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 98, "metadata": {}, "outputs": [ { @@ -5324,7 +2679,7 @@ "RangeIndex(start=0, stop=2, step=1)" ] }, - "execution_count": 30, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" } @@ -5342,17 +2697,17 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 99, "metadata": {}, "outputs": [], "source": [ - "path = \"data/iris.csv\"\n", + "path = \"../data/iris.csv\"\n", "df = pd.read_csv(path, sep = \",\")" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 102, "metadata": {}, "outputs": [ { @@ -5437,13 +2792,38 @@ "4 5.0 3.6 1.4 0.2 Setosa" ] }, - "execution_count": 33, + "execution_count": 102, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.head(5)" + "df.head(5)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "sepal.length float64\n", + "sepal.width float64\n", + "petal.length float64\n", + "petal.width float64\n", + "variety object\n", + "dtype: object" + ] + }, + "execution_count": 108, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.dtypes" ] }, { @@ -5455,6 +2835,202 @@ "

- create a correlation matrix

" ] }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal.lengthsepal.widthpetal.lengthpetal.width
count150.000000150.000000150.000000150.000000
mean5.8433333.0573333.7580001.199333
std0.8280660.4358661.7652980.762238
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000
\n", + "
" + ], + "text/plain": [ + " sepal.length sepal.width petal.length petal.width\n", + "count 150.000000 150.000000 150.000000 150.000000\n", + "mean 5.843333 3.057333 3.758000 1.199333\n", + "std 0.828066 0.435866 1.765298 0.762238\n", + "min 4.300000 2.000000 1.000000 0.100000\n", + "25% 5.100000 2.800000 1.600000 0.300000\n", + "50% 5.800000 3.000000 4.350000 1.300000\n", + "75% 6.400000 3.300000 5.100000 1.800000\n", + "max 7.900000 4.400000 6.900000 2.500000" + ] + }, + "execution_count": 110, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal.lengthsepal.widthpetal.lengthpetal.width
sepal.length1.000000-0.1175700.8717540.817941
sepal.width-0.1175701.000000-0.428440-0.366126
petal.length0.871754-0.4284401.0000000.962865
petal.width0.817941-0.3661260.9628651.000000
\n", + "
" + ], + "text/plain": [ + " sepal.length sepal.width petal.length petal.width\n", + "sepal.length 1.000000 -0.117570 0.871754 0.817941\n", + "sepal.width -0.117570 1.000000 -0.428440 -0.366126\n", + "petal.length 0.871754 -0.428440 1.000000 0.962865\n", + "petal.width 0.817941 -0.366126 0.962865 1.000000" + ] + }, + "execution_count": 111, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.corr()" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -5464,49 +3040,200 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 113, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal.lengthsepal.widthpetal.lengthpetal.widthvariety
1456.73.05.22.3Virginica
1466.32.55.01.9Virginica
1476.53.05.22.0Virginica
1486.23.45.42.3Virginica
1495.93.05.11.8Virginica
\n", + "
" + ], "text/plain": [ - "(61, 5)" + " sepal.length sepal.width petal.length petal.width variety\n", + "145 6.7 3.0 5.2 2.3 Virginica\n", + "146 6.3 2.5 5.0 1.9 Virginica\n", + "147 6.5 3.0 5.2 2.0 Virginica\n", + "148 6.2 3.4 5.4 2.3 Virginica\n", + "149 5.9 3.0 5.1 1.8 Virginica" ] }, - "execution_count": 36, + "execution_count": 113, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df1 = df[df[\"sepal.length\"] > 6]\n", - "df1.shape" + "df1 = df[df[\"sepal.length\"] > 5]" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 119, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal.lengthsepal.widthpetal.lengthpetal.widthvariety
1406.73.15.62.4Virginica
1416.93.15.12.3Virginica
1436.83.25.92.3Virginica
1446.73.35.72.5Virginica
1486.23.45.42.3Virginica
\n", + "
" + ], "text/plain": [ - "(23, 5)" + " sepal.length sepal.width petal.length petal.width variety\n", + "140 6.7 3.1 5.6 2.4 Virginica\n", + "141 6.9 3.1 5.1 2.3 Virginica\n", + "143 6.8 3.2 5.9 2.3 Virginica\n", + "144 6.7 3.3 5.7 2.5 Virginica\n", + "148 6.2 3.4 5.4 2.3 Virginica" ] }, - "execution_count": 37, + "execution_count": 119, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1 = df[(df[\"sepal.length\"] > 6) & (df[\"sepal.width\"] > 3)]\n", - "df1.shape" + "df1.tail()" ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 120, "metadata": {}, "outputs": [ { @@ -5515,7 +3242,7 @@ "(50, 5)" ] }, - "execution_count": 38, + "execution_count": 120, "metadata": {}, "output_type": "execute_result" } @@ -5534,7 +3261,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 121, "metadata": {}, "outputs": [ { @@ -5543,7 +3270,7 @@ "array(['Setosa', 'Versicolor', 'Virginica'], dtype=object)" ] }, - "execution_count": 39, + "execution_count": 121, "metadata": {}, "output_type": "execute_result" } @@ -5554,7 +3281,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 60, "metadata": {}, "outputs": [ { @@ -5563,7 +3290,7 @@ "(100, 5)" ] }, - "execution_count": 40, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -5584,7 +3311,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -5593,7 +3320,7 @@ "(50, 5)" ] }, - "execution_count": 42, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -5612,7 +3339,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 122, "metadata": {}, "outputs": [], "source": [ @@ -5622,7 +3349,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 123, "metadata": {}, "outputs": [ { @@ -5671,7 +3398,7 @@ "0 5.1 3.5 1.4 0.2 Setosa" ] }, - "execution_count": 44, + "execution_count": 123, "metadata": {}, "output_type": "execute_result" } @@ -5682,7 +3409,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 129, "metadata": {}, "outputs": [], "source": [ @@ -5691,7 +3418,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 130, "metadata": {}, "outputs": [ { @@ -5725,7 +3452,7 @@ " \n", " \n", " 0\n", - " -5.1\n", + " 5.1\n", " 3.5\n", " 1.4\n", " 0.2\n", @@ -5733,7 +3460,7 @@ " \n", " \n", " 1\n", - " -4.9\n", + " 4.9\n", " 3.0\n", " 1.4\n", " 0.2\n", @@ -5741,7 +3468,7 @@ " \n", " \n", " 2\n", - " -4.7\n", + " 4.7\n", " 3.2\n", " 1.3\n", " 0.2\n", @@ -5749,7 +3476,7 @@ " \n", " \n", " 3\n", - " -4.6\n", + " 4.6\n", " 3.1\n", " 1.5\n", " 0.2\n", @@ -5757,7 +3484,7 @@ " \n", " \n", " 4\n", - " -5.0\n", + " 5.0\n", " 3.6\n", " 1.4\n", " 0.2\n", @@ -5769,14 +3496,14 @@ ], "text/plain": [ " sepal.length sepal.width petal.length petal.width variety\n", - "0 -5.1 3.5 1.4 0.2 Setosa\n", - "1 -4.9 3.0 1.4 0.2 Setosa\n", - "2 -4.7 3.2 1.3 0.2 Setosa\n", - "3 -4.6 3.1 1.5 0.2 Setosa\n", - "4 -5.0 3.6 1.4 0.2 Setosa" + "0 5.1 3.5 1.4 0.2 Setosa\n", + "1 4.9 3.0 1.4 0.2 Setosa\n", + "2 4.7 3.2 1.3 0.2 Setosa\n", + "3 4.6 3.1 1.5 0.2 Setosa\n", + "4 5.0 3.6 1.4 0.2 Setosa" ] }, - "execution_count": 46, + "execution_count": 130, "metadata": {}, "output_type": "execute_result" } @@ -5787,7 +3514,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 131, "metadata": {}, "outputs": [ { @@ -5798,7 +3525,7 @@ " dtype='object')" ] }, - "execution_count": 48, + "execution_count": 131, "metadata": {}, "output_type": "execute_result" } @@ -5809,7 +3536,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 133, "metadata": {}, "outputs": [], "source": [ @@ -5818,7 +3545,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 134, "metadata": {}, "outputs": [], "source": [ @@ -5828,7 +3555,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 135, "metadata": {}, "outputs": [ { @@ -5862,7 +3589,7 @@ " \n", " \n", " 0\n", - " 5.1\n", + " -5.1\n", " -3.5\n", " -1.4\n", " -0.2\n", @@ -5870,7 +3597,7 @@ " \n", " \n", " 1\n", - " 4.9\n", + " -4.9\n", " -3.0\n", " -1.4\n", " -0.2\n", @@ -5878,7 +3605,7 @@ " \n", " \n", " 2\n", - " 4.7\n", + " -4.7\n", " -3.2\n", " -1.3\n", " -0.2\n", @@ -5886,7 +3613,7 @@ " \n", " \n", " 3\n", - " 4.6\n", + " -4.6\n", " -3.1\n", " -1.5\n", " -0.2\n", @@ -5894,7 +3621,7 @@ " \n", " \n", " 4\n", - " 5.0\n", + " -5.0\n", " -3.6\n", " -1.4\n", " -0.2\n", @@ -5906,14 +3633,14 @@ ], "text/plain": [ " sepal.length sepal.width petal.length petal.width variety\n", - "0 5.1 -3.5 -1.4 -0.2 Setosa\n", - "1 4.9 -3.0 -1.4 -0.2 Setosa\n", - "2 4.7 -3.2 -1.3 -0.2 Setosa\n", - "3 4.6 -3.1 -1.5 -0.2 Setosa\n", - "4 5.0 -3.6 -1.4 -0.2 Setosa" + "0 -5.1 -3.5 -1.4 -0.2 Setosa\n", + "1 -4.9 -3.0 -1.4 -0.2 Setosa\n", + "2 -4.7 -3.2 -1.3 -0.2 Setosa\n", + "3 -4.6 -3.1 -1.5 -0.2 Setosa\n", + "4 -5.0 -3.6 -1.4 -0.2 Setosa" ] }, - "execution_count": 51, + "execution_count": 135, "metadata": {}, "output_type": "execute_result" } @@ -5924,7 +3651,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 136, "metadata": {}, "outputs": [], "source": [ @@ -5933,7 +3660,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 137, "metadata": {}, "outputs": [ { @@ -5967,7 +3694,7 @@ " \n", " \n", " 0\n", - " -5.1\n", + " 5.1\n", " -3.5\n", " -1.4\n", " -0.2\n", @@ -5975,7 +3702,7 @@ " \n", " \n", " 1\n", - " -4.9\n", + " 4.9\n", " -3.0\n", " -1.4\n", " -0.2\n", @@ -5983,7 +3710,7 @@ " \n", " \n", " 2\n", - " -4.7\n", + " 4.7\n", " -3.2\n", " -1.3\n", " -0.2\n", @@ -5991,7 +3718,7 @@ " \n", " \n", " 3\n", - " -4.6\n", + " 4.6\n", " -3.1\n", " -1.5\n", " -0.2\n", @@ -5999,7 +3726,7 @@ " \n", " \n", " 4\n", - " -5.0\n", + " 5.0\n", " -3.6\n", " -1.4\n", " -0.2\n", @@ -6011,14 +3738,14 @@ ], "text/plain": [ " sepal.length sepal.width petal.length petal.width variety\n", - "0 -5.1 -3.5 -1.4 -0.2 Setosa\n", - "1 -4.9 -3.0 -1.4 -0.2 Setosa\n", - "2 -4.7 -3.2 -1.3 -0.2 Setosa\n", - "3 -4.6 -3.1 -1.5 -0.2 Setosa\n", - "4 -5.0 -3.6 -1.4 -0.2 Setosa" + "0 5.1 -3.5 -1.4 -0.2 Setosa\n", + "1 4.9 -3.0 -1.4 -0.2 Setosa\n", + "2 4.7 -3.2 -1.3 -0.2 Setosa\n", + "3 4.6 -3.1 -1.5 -0.2 Setosa\n", + "4 5.0 -3.6 -1.4 -0.2 Setosa" ] }, - "execution_count": 54, + "execution_count": 137, "metadata": {}, "output_type": "execute_result" } @@ -6036,7 +3763,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 138, "metadata": {}, "outputs": [ { @@ -6050,7 +3777,7 @@ "dtype: object" ] }, - "execution_count": 56, + "execution_count": 138, "metadata": {}, "output_type": "execute_result" } @@ -6061,22 +3788,22 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 141, "metadata": {}, "outputs": [], "source": [ - "df[\"sepal.length\"] = df[\"sepal.length\"].apply(str)" + "df[\"sepal.length\"] = df[\"sepal.length\"].apply(float)" ] }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 142, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "sepal.length object\n", + "sepal.length float64\n", "sepal.width float64\n", "petal.length float64\n", "petal.width float64\n", @@ -6084,7 +3811,7 @@ "dtype: object" ] }, - "execution_count": 58, + "execution_count": 142, "metadata": {}, "output_type": "execute_result" } @@ -6112,7 +3839,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 145, "metadata": {}, "outputs": [], "source": [ @@ -6121,7 +3848,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 147, "metadata": {}, "outputs": [ { @@ -6156,87 +3883,87 @@ " \n", " \n", " \n", - " 0\n", - " 5.1\n", - " 3.5\n", - " 1.4\n", - " 0.2\n", - " 1\n", + " 145\n", + " 6.7\n", + " -3.0\n", + " -5.2\n", + " -2.3\n", " 0\n", " 0\n", + " 1\n", " \n", " \n", - " 1\n", - " 4.9\n", - " 3.0\n", - " 1.4\n", - " 0.2\n", - " 1\n", + " 146\n", + " 6.3\n", + " -2.5\n", + " -5.0\n", + " -1.9\n", " 0\n", " 0\n", + " 1\n", " \n", " \n", - " 2\n", - " 4.7\n", - " 3.2\n", - " 1.3\n", - " 0.2\n", - " 1\n", + " 147\n", + " 6.5\n", + " -3.0\n", + " -5.2\n", + " -2.0\n", " 0\n", " 0\n", + " 1\n", " \n", " \n", - " 3\n", - " 4.6\n", - " 3.1\n", - " 1.5\n", - " 0.2\n", - " 1\n", + " 148\n", + " 6.2\n", + " -3.4\n", + " -5.4\n", + " -2.3\n", " 0\n", " 0\n", + " 1\n", " \n", " \n", - " 4\n", - " 5.0\n", - " 3.6\n", - " 1.4\n", - " 0.2\n", - " 1\n", + " 149\n", + " 5.9\n", + " -3.0\n", + " -5.1\n", + " -1.8\n", " 0\n", " 0\n", + " 1\n", " \n", " \n", "\n", "" ], "text/plain": [ - " sepal.length sepal.width petal.length petal.width variety_Setosa \\\n", - "0 5.1 3.5 1.4 0.2 1 \n", - "1 4.9 3.0 1.4 0.2 1 \n", - "2 4.7 3.2 1.3 0.2 1 \n", - "3 4.6 3.1 1.5 0.2 1 \n", - "4 5.0 3.6 1.4 0.2 1 \n", + " sepal.length sepal.width petal.length petal.width variety_Setosa \\\n", + "145 6.7 -3.0 -5.2 -2.3 0 \n", + "146 6.3 -2.5 -5.0 -1.9 0 \n", + "147 6.5 -3.0 -5.2 -2.0 0 \n", + "148 6.2 -3.4 -5.4 -2.3 0 \n", + "149 5.9 -3.0 -5.1 -1.8 0 \n", "\n", - " variety_Versicolor variety_Virginica \n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 " + " variety_Versicolor variety_Virginica \n", + "145 0 1 \n", + "146 0 1 \n", + "147 0 1 \n", + "148 0 1 \n", + "149 0 1 " ] }, - "execution_count": 65, + "execution_count": 147, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.head()" + "df.tail()" ] }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 150, "metadata": {}, "outputs": [ { @@ -6285,34 +4012,108 @@ "" ], "text/plain": [ - " col_1 col_2\n", - "0 A AA\n", - "1 B BB\n", - "2 C CC" + " col_1 col_2\n", + "0 A AA\n", + "1 B BB\n", + "2 C CC" + ] + }, + "execution_count": 150, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "col_1 = np.array([\"A\", \"B\", \"C\"])\n", + "col_2 = np.array([\"AA\", \"BB\", \"CC\"])\n", + "\n", + "df = pd.DataFrame({\n", + " \"col_1\":col_1,\n", + " \"col_2\":col_2\n", + "})\n", + "\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

perform get dummies on col_1 only?

" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
col_2col_1_Acol_1_Bcol_1_C
0AA100
1BB010
2CC001
\n", + "
" + ], + "text/plain": [ + " col_2 col_1_A col_1_B col_1_C\n", + "0 AA 1 0 0\n", + "1 BB 0 1 0\n", + "2 CC 0 0 1" ] }, - "execution_count": 129, + "execution_count": 161, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "col_1 = np.array([\"A\", \"B\", \"C\"])\n", - "col_2 = np.array([\"AA\", \"BB\", \"CC\"])\n", - "\n", - "df = pd.DataFrame({\n", - " \"col_1\":col_1,\n", - " \"col_2\":col_2\n", - "})\n", - "\n", - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

perform get dummies on col_1 only?

" + "pd.get_dummies(df,columns=['col_1'])" ] }, { @@ -6324,7 +4125,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 162, "metadata": { "scrolled": true }, @@ -6333,46 +4134,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "0 sepal.length 5.1\n", - "sepal.width 3.5\n", - "petal.length 1.4\n", - "petal.width 0.2\n", - "variety_Setosa 1.0\n", - "variety_Versicolor 0.0\n", - "variety_Virginica 0.0\n", - "Name: 0, dtype: float64\n", - "1 sepal.length 4.9\n", - "sepal.width 3.0\n", - "petal.length 1.4\n", - "petal.width 0.2\n", - "variety_Setosa 1.0\n", - "variety_Versicolor 0.0\n", - "variety_Virginica 0.0\n", - "Name: 1, dtype: float64\n", - "2 sepal.length 4.7\n", - "sepal.width 3.2\n", - "petal.length 1.3\n", - "petal.width 0.2\n", - "variety_Setosa 1.0\n", - "variety_Versicolor 0.0\n", - "variety_Virginica 0.0\n", - "Name: 2, dtype: float64\n", - "3 sepal.length 4.6\n", - "sepal.width 3.1\n", - "petal.length 1.5\n", - "petal.width 0.2\n", - "variety_Setosa 1.0\n", - "variety_Versicolor 0.0\n", - "variety_Virginica 0.0\n", - "Name: 3, dtype: float64\n", - "4 sepal.length 5.0\n", - "sepal.width 3.6\n", - "petal.length 1.4\n", - "petal.width 0.2\n", - "variety_Setosa 1.0\n", - "variety_Versicolor 0.0\n", - "variety_Virginica 0.0\n", - "Name: 4, dtype: float64\n" + "0 col_1 A\n", + "col_2 AA\n", + "Name: 0, dtype: object\n", + "1 col_1 B\n", + "col_2 BB\n", + "Name: 1, dtype: object\n", + "2 col_1 C\n", + "col_2 CC\n", + "Name: 2, dtype: object\n" ] } ], @@ -6383,24 +4153,28 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 165, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1.4\n", - "1.4\n", - "1.3\n", - "1.5\n", - "1.4\n" + "col_1 A\n", + "col_2 AA\n", + "Name: 0, dtype: object\n", + "col_1 B\n", + "col_2 BB\n", + "Name: 1, dtype: object\n", + "col_1 C\n", + "col_2 CC\n", + "Name: 2, dtype: object\n" ] } ], "source": [ - "for idx, r in df.head(5).iterrows():\n", - " print(r[\"petal.length\"])" + "for idx, r in df.tail(5).iterrows():\n", + " print(r)" ] }, { @@ -6412,171 +4186,23 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 169, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "[0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.4,\n", - " 0.3,\n", - " 0.2,\n", - " 0.2,\n", - " 0.1,\n", - " 0.2,\n", - " 0.2,\n", - " 0.1,\n", - " 0.1,\n", - " 0.2,\n", - " 0.4,\n", - " 0.4,\n", - " 0.3,\n", - " 0.3,\n", - " 0.3,\n", - " 0.2,\n", - " 0.4,\n", - " 0.2,\n", - " 0.5,\n", - " 0.2,\n", - " 0.2,\n", - " 0.4,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.4,\n", - " 0.1,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.1,\n", - " 0.2,\n", - " 0.2,\n", - " 0.3,\n", - " 0.3,\n", - " 0.2,\n", - " 0.6,\n", - " 0.4,\n", - " 0.3,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 0.2,\n", - " 1.4,\n", - " 1.5,\n", - " 1.5,\n", - " 1.3,\n", - " 1.5,\n", - " 1.3,\n", - " 1.6,\n", - " 1.0,\n", - " 1.3,\n", - " 1.4,\n", - " 1.0,\n", - " 1.5,\n", - " 1.0,\n", - " 1.4,\n", - " 1.3,\n", - " 1.4,\n", - " 1.5,\n", - " 1.0,\n", - " 1.5,\n", - " 1.1,\n", - " 1.8,\n", - " 1.3,\n", - " 1.5,\n", - " 1.2,\n", - " 1.3,\n", - " 1.4,\n", - " 1.4,\n", - " 1.7,\n", - " 1.5,\n", - " 1.0,\n", - " 1.1,\n", - " 1.0,\n", - " 1.2,\n", - " 1.6,\n", - " 1.5,\n", - " 1.6,\n", - " 1.5,\n", - " 1.3,\n", - " 1.3,\n", - " 1.3,\n", - " 1.2,\n", - " 1.4,\n", - " 1.2,\n", - " 1.0,\n", - " 1.3,\n", - " 1.2,\n", - " 1.3,\n", - " 1.3,\n", - " 1.1,\n", - " 1.3,\n", - " 2.5,\n", - " 1.9,\n", - " 2.1,\n", - " 1.8,\n", - " 2.2,\n", - " 2.1,\n", - " 1.7,\n", - " 1.8,\n", - " 1.8,\n", - " 2.5,\n", - " 2.0,\n", - " 1.9,\n", - " 2.1,\n", - " 2.0,\n", - " 2.4,\n", - " 2.3,\n", - " 1.8,\n", - " 2.2,\n", - " 2.3,\n", - " 1.5,\n", - " 2.3,\n", - " 2.0,\n", - " 2.0,\n", - " 1.8,\n", - " 2.1,\n", - " 1.8,\n", - " 1.8,\n", - " 1.8,\n", - " 2.1,\n", - " 1.6,\n", - " 1.9,\n", - " 2.0,\n", - " 2.2,\n", - " 1.5,\n", - " 1.4,\n", - " 2.3,\n", - " 2.4,\n", - " 1.8,\n", - " 1.8,\n", - " 2.1,\n", - " 2.4,\n", - " 2.3,\n", - " 1.9,\n", - " 2.3,\n", - " 2.5,\n", - " 2.3,\n", - " 1.9,\n", - " 2.0,\n", - " 2.3,\n", - " 1.8]" - ] - }, - "execution_count": 69, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "['A', 'B', 'C']\n", + "[0 A\n", + "1 B\n", + "2 C\n", + "Name: col_1, dtype: object]\n" + ] } ], "source": [ - "df[\"petal.width\"].tolist()" + "df[\"col_1\"].tolist()" ] }, { @@ -6589,7 +4215,7 @@ }, { "cell_type": "code", - "execution_count": 132, + "execution_count": 171, "metadata": {}, "outputs": [ { @@ -6656,7 +4282,7 @@ "4 E 1" ] }, - "execution_count": 132, + "execution_count": 171, "metadata": {}, "output_type": "execute_result" } @@ -6679,7 +4305,7 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -6734,7 +4360,7 @@ "2 C 1" ] }, - "execution_count": 133, + "execution_count": 82, "metadata": {}, "output_type": "execute_result" } @@ -6753,14 +4379,14 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 172, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/conagrabrands/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version\n", + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version\n", "of pandas will change to not sort by default.\n", "\n", "To accept the future behavior, pass 'sort=False'.\n", @@ -6861,7 +4487,7 @@ "2 C NaN 1.0" ] }, - "execution_count": 135, + "execution_count": 172, "metadata": {}, "output_type": "execute_result" } @@ -6890,7 +4516,7 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -6949,7 +4575,7 @@ "2 C 1 1" ] }, - "execution_count": 142, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } @@ -6969,7 +4595,7 @@ }, { "cell_type": "code", - "execution_count": 141, + "execution_count": 85, "metadata": {}, "outputs": [ { @@ -7042,7 +4668,7 @@ "4 E 1 NaN" ] }, - "execution_count": 141, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" } @@ -7066,7 +4692,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 173, "metadata": {}, "outputs": [], "source": [ @@ -7077,7 +4703,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 174, "metadata": {}, "outputs": [ { @@ -7153,7 +4779,7 @@ "7 1.0" ] }, - "execution_count": 3, + "execution_count": 174, "metadata": {}, "output_type": "execute_result" } @@ -7164,7 +4790,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 175, "metadata": {}, "outputs": [ { @@ -7240,7 +4866,7 @@ "7 False" ] }, - "execution_count": 4, + "execution_count": 175, "metadata": {}, "output_type": "execute_result" } @@ -7251,7 +4877,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 176, "metadata": {}, "outputs": [ { @@ -7327,7 +4953,7 @@ "7 True" ] }, - "execution_count": 6, + "execution_count": 176, "metadata": {}, "output_type": "execute_result" } @@ -7338,7 +4964,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 177, "metadata": {}, "outputs": [ { @@ -7414,7 +5040,7 @@ "7 1.0" ] }, - "execution_count": 7, + "execution_count": 177, "metadata": {}, "output_type": "execute_result" } @@ -7425,7 +5051,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 91, "metadata": {}, "outputs": [ { @@ -7501,7 +5127,7 @@ "7 1.0" ] }, - "execution_count": 8, + "execution_count": 91, "metadata": {}, "output_type": "execute_result" } @@ -7512,7 +5138,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 92, "metadata": {}, "outputs": [ { @@ -7583,7 +5209,7 @@ "7 1.0" ] }, - "execution_count": 9, + "execution_count": 92, "metadata": {}, "output_type": "execute_result" } @@ -7594,7 +5220,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 93, "metadata": {}, "outputs": [ { @@ -7655,7 +5281,7 @@ "Index: [0, 1, 2, 3, 4, 5, 6, 7]" ] }, - "execution_count": 13, + "execution_count": 93, "metadata": {}, "output_type": "execute_result" } @@ -7666,7 +5292,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 94, "metadata": {}, "outputs": [ { @@ -7742,7 +5368,7 @@ "7 1.000000" ] }, - "execution_count": 14, + "execution_count": 94, "metadata": {}, "output_type": "execute_result" } @@ -7753,8 +5379,10 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": {}, + "execution_count": 95, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { @@ -7829,7 +5457,7 @@ "7 1.0" ] }, - "execution_count": 15, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" } @@ -7840,7 +5468,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 96, "metadata": {}, "outputs": [ { @@ -7925,7 +5553,7 @@ "7 7 1.000000" ] }, - "execution_count": 20, + "execution_count": 96, "metadata": {}, "output_type": "execute_result" } @@ -7943,166 +5571,37 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 97, "metadata": {}, - "outputs": [], - "source": [ - "path = \"/Users/conagrabrands/Documents/PythonForAnalytics/Lectures/data/ca.json\"" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "scrolled": true - }, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "[\n", - "\n", - " {\n", - "\n", - " \"city\": \"Toronto\", \n", - "\n", - " \"admin\": \"Ontario\", \n", - "\n", - " \"country\": \"Canada\", \n", - "\n", - " \"population_proper\": \"3934421\", \n", - "\n", - " \"iso2\": \"CA\", \n", - "\n", - " \"capital\": \"admin\", \n", - "\n", - " \"lat\": \"43.666667\", \n", - "\n", - " \"lng\": \"-79.416667\", \n", - "\n", - " \"population\": \"5213000\"\n", - "\n", - " }, \n", - "\n", - " {\n", - "\n", - " \"city\": \"Montr\\u00e9al\", \n", - "\n", - " \"admin\": \"Qu\\u00e9bec\", \n", - "\n", - " \"country\": \"Canada\", \n", - "\n", - " \"population_proper\": \"2356556\", \n", - "\n", - " \"iso2\": \"CA\", \n", - "\n", - " \"capital\": \"\", \n", - "\n", - " \"lat\": \"45.5\", \n", - "\n", - " \"lng\": \"-73.583333\", \n", - "\n", - " \"population\": \"3678000\"\n", - "\n", - " }, \n", - "\n", - " {\n", - "\n", - " \"city\": \"Vancouver\", \n", - "\n", - " \"admin\": \"British Columbia\", \n", - "\n", - " \"country\": \"Canada\", \n", - "\n", - " \"population_proper\": \"603502\", \n", - "\n", - " \"iso2\": \"CA\", \n", - "\n", - " \"capital\": \"\", \n", - "\n", - " \"lat\": \"49.25\", \n", - "\n", - " \"lng\": \"-123.133333\", \n", - "\n", - " \"population\": \"2313328\"\n", - "\n", - " }, \n", - "\n", - " {\n", - "\n", - " \"city\": \"Ottawa\", \n", - "\n", - " \"admin\": \"Ontario\", \n", - "\n", - " \"country\": \"Canada\", \n", - "\n", - " \"population_proper\": \"812129\", \n", - "\n", - " \"iso2\": \"CA\", \n", - "\n", - " \"capital\": \"primary\", \n", - "\n", - " \"lat\": \"45.416667\", \n", - "\n", - " \"lng\": \"-75.7\", \n", - "\n", - " \"population\": \"1145000\"\n", - "\n", - " }, \n", - "\n", - " {\n", - "\n", - " \"city\": \"Calgary\", \n", - "\n", - " \"admin\": \"Alberta\", \n", - "\n", - " \"country\": \"Canada\", \n", - "\n", - " \"population_proper\": \"915322\", \n", - "\n" + "ename": "NameError", + "evalue": "name 'os' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mos\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgetcwd\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0mdir\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mos\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgetcwd\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mglob\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mNameError\u001b[0m: name 'os' is not defined" ] } ], "source": [ - "with open(path, \"r\") as file:\n", - " line = file.readlines()\n", - " for l in line[0:50]:\n", - " print(l)" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "{\n", - " \"brian\" {\n", - " \"age\":31,\n", - " \"job\":data scientist,\n", - " \"city\"chicago\n", - " },\n", - " \n", - " \"james\":{\n", - " \"age\":28,\n", - " \"job\":data scientist,\n", - " \"city\"new york\n", - " }\n", - " \n", - " \"james\":{\n", - " \"age\":28,\n", - " }\n", - " \n", - " \n", - "}" + "print(os.getcwd())\n", + "\n", + "dir(os.getcwd())\n", + "\n", + "import glob\n", + "path = glob.glob('../data/ca*')\n", + "print(path)" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 179, "metadata": {}, "outputs": [], "source": [ - "import pandas as pd\n", "\n", "columns = [\"age\", \"job\", \"city\"]\n", "data = [\n", @@ -8111,7 +5610,30 @@ " [28,None,None]\n", "]\n", "\n", - "df = pd.DataFrame(data, columns = columns)" + "path = '../data/class.json'\n", + "\n", + "df = pd.DataFrame(data, columns = columns)\n", + "df.to_json(path)" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\"age\":{\"0\":31,\"1\":28,\"2\":28},\"job\":{\"0\":\"data scientist\",\"1\":\"data scientist\",\"2\":null},\"city\":{\"0\":\"chicago\",\"1\":\"new york\",\"2\":null}}\n" + ] + } + ], + "source": [ + "with open(path, \"r\") as file:\n", + " line = file.readlines()\n", + " for l in line[0:50]:\n", + " print(l)" ] }, { @@ -8123,18 +5645,96 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 102, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ValueError", + "evalue": "Expected object or value", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread_json\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'../data/ca.json'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pandas\\io\\json\\_json.py\u001b[0m in \u001b[0;36mread_json\u001b[1;34m(path_or_buf, orient, typ, dtype, convert_axes, convert_dates, keep_default_dates, numpy, precise_float, date_unit, encoding, lines, chunksize, compression)\u001b[0m\n\u001b[0;32m 590\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mjson_reader\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 591\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 592\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mjson_reader\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 593\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mshould_close\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 594\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pandas\\io\\json\\_json.py\u001b[0m in \u001b[0;36mread\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 715\u001b[0m \u001b[0mobj\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_object_parser\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_combine_lines\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"\\n\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 716\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 717\u001b[1;33m \u001b[0mobj\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_object_parser\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 718\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclose\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 719\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mobj\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pandas\\io\\json\\_json.py\u001b[0m in \u001b[0;36m_get_object_parser\u001b[1;34m(self, json)\u001b[0m\n\u001b[0;32m 737\u001b[0m \u001b[0mobj\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 738\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mtyp\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m\"frame\"\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 739\u001b[1;33m \u001b[0mobj\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mFrameParser\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mjson\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparse\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 740\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 741\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mtyp\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m\"series\"\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mobj\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pandas\\io\\json\\_json.py\u001b[0m in \u001b[0;36mparse\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 847\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 848\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 849\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_parse_no_numpy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 850\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 851\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mobj\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pandas\\io\\json\\_json.py\u001b[0m in \u001b[0;36m_parse_no_numpy\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 1091\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0morient\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m\"columns\"\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1092\u001b[0m self.obj = DataFrame(\n\u001b[1;32m-> 1093\u001b[1;33m \u001b[0mloads\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mjson\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mprecise_float\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mprecise_float\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1094\u001b[0m )\n\u001b[0;32m 1095\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0morient\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m\"split\"\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mValueError\u001b[0m: Expected object or value" + ] + } + ], "source": [ - "df = pd.read_json(path)" + "df = pd.read_json('../data/ca.json')" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 181, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agejobcity
031data scientistchicago
128data scientistnew york
228NoneNone
\n", + "
" + ], + "text/plain": [ + " age job city\n", + "0 31 data scientist chicago\n", + "1 28 data scientist new york\n", + "2 28 None None" + ] + }, + "execution_count": 181, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "df" ] @@ -8158,7 +5758,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 182, "metadata": {}, "outputs": [], "source": [ @@ -8176,7 +5776,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 183, "metadata": {}, "outputs": [], "source": [ @@ -8185,7 +5785,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 184, "metadata": {}, "outputs": [ { @@ -8248,7 +5848,7 @@ "2 2.0 Faye Raker 130 60" ] }, - "execution_count": 23, + "execution_count": 184, "metadata": {}, "output_type": "execute_result" } @@ -8259,7 +5859,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 187, "metadata": {}, "outputs": [ { @@ -8318,7 +5918,7 @@ "2 2.0 Faye Raker {'height': 130, 'weight': 60}" ] }, - "execution_count": 24, + "execution_count": 187, "metadata": {}, "output_type": "execute_result" } @@ -8329,7 +5929,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 188, "metadata": {}, "outputs": [], "source": [ @@ -8349,7 +5949,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 192, "metadata": {}, "outputs": [ { @@ -8375,8 +5975,9 @@ " \n", " state\n", " shortname\n", - " info\n", " counties\n", + " info.governor\n", + " info.gender\n", " \n", " \n", " \n", @@ -8384,42 +5985,44 @@ " 0\n", " Florida\n", " FL\n", - " {'governor': 'Rick Scott', 'gender': 'm'}\n", " [{'name': 'Dade', 'population': 12345}, {'name...\n", + " Rick Scott\n", + " m\n", " \n", " \n", " 1\n", " Ohio\n", " OH\n", - " {'governor': 'John Kasich', 'gender': 'm'}\n", " [{'name': 'Summit', 'population': 1234}, {'nam...\n", + " John Kasich\n", + " m\n", " \n", " \n", "\n", "" ], "text/plain": [ - " state shortname info \\\n", - "0 Florida FL {'governor': 'Rick Scott', 'gender': 'm'} \n", - "1 Ohio OH {'governor': 'John Kasich', 'gender': 'm'} \n", + " state shortname counties \\\n", + "0 Florida FL [{'name': 'Dade', 'population': 12345}, {'name... \n", + "1 Ohio OH [{'name': 'Summit', 'population': 1234}, {'nam... \n", "\n", - " counties \n", - "0 [{'name': 'Dade', 'population': 12345}, {'name... \n", - "1 [{'name': 'Summit', 'population': 1234}, {'nam... " + " info.governor info.gender \n", + "0 Rick Scott m \n", + "1 John Kasich m " ] }, - "execution_count": 29, + "execution_count": 192, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "json_normalize(data, max_level = 0)" + "json_normalize(data)" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 313, "metadata": {}, "outputs": [ { @@ -8481,7 +6084,7 @@ "1 John Kasich m " ] }, - "execution_count": 30, + "execution_count": 313, "metadata": {}, "output_type": "execute_result" } @@ -8565,7 +6168,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 193, "metadata": {}, "outputs": [ { @@ -8644,7 +6247,7 @@ "4 Cuyahoga 1337 John Kasich m" ] }, - "execution_count": 53, + "execution_count": 193, "metadata": {}, "output_type": "execute_result" } @@ -8664,7 +6267,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 194, "metadata": {}, "outputs": [], "source": [ @@ -8673,59 +6276,152 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 198, "metadata": {}, "outputs": [], "source": [ - "chunk_size = 100" + "chunk_size = 15" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 199, "metadata": {}, "outputs": [], "source": [ - "path = \"/Users/conagrabrands/Documents/PythonForAnalytics/Lectures/data/iris.csv\"" + "path = \"../data/iris.csv\"" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 211, + "metadata": {}, + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 1)", + "output_type": "error", + "traceback": [ + "\u001b[1;36m File \u001b[1;32m\"\"\u001b[1;36m, line \u001b[1;32m1\u001b[0m\n\u001b[1;33m for k in blocks\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" + ] + } + ], + "source": [ + "for k in blocks" + ] + }, + { + "cell_type": "code", + "execution_count": 212, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "(100, 5)\n", - "(50, 5)\n" + " 5.8 4 1.2 .2 Setosa\n", + "0 5.7 4.4 1.5 0.4 Setosa\n", + "1 5.4 3.9 1.3 0.4 Setosa\n", + "2 5.1 3.5 1.4 0.3 Setosa\n", + "3 5.7 3.8 1.7 0.3 Setosa\n", + "4 5.1 3.8 1.5 0.3 Setosa\n", + "5 5.4 3.4 1.7 0.2 Setosa\n", + "6 5.1 3.7 1.5 0.4 Setosa\n", + "7 4.6 3.6 1.0 0.2 Setosa\n", + "8 5.1 3.3 1.7 0.5 Setosa\n", + "9 4.8 3.4 1.9 0.2 Setosa\n", + "10 5.0 3.0 1.6 0.2 Setosa\n", + "11 5.0 3.4 1.6 0.4 Setosa\n", + "12 5.2 3.5 1.5 0.2 Setosa\n", + "13 5.2 3.4 1.4 0.2 Setosa\n", + "14 4.7 3.2 1.6 0.2 Setosa\n", + " 4.7 3.2 1.6 .2 Setosa\n", + "0 4.8 3.1 1.6 0.2 Setosa\n", + "1 5.4 3.4 1.5 0.4 Setosa\n", + "2 5.2 4.1 1.5 0.1 Setosa\n", + "3 5.5 4.2 1.4 0.2 Setosa\n", + "4 4.9 3.1 1.5 0.2 Setosa\n", + "5 5.0 3.2 1.2 0.2 Setosa\n", + "6 5.5 3.5 1.3 0.2 Setosa\n", + "7 4.9 3.6 1.4 0.1 Setosa\n", + "8 4.4 3.0 1.3 0.2 Setosa\n", + "9 5.1 3.4 1.5 0.2 Setosa\n", + "10 5.0 3.5 1.3 0.3 Setosa\n", + "11 4.5 2.3 1.3 0.3 Setosa\n", + "12 4.4 3.2 1.3 0.2 Setosa\n", + "13 5.0 3.5 1.6 0.6 Setosa\n", + "14 5.1 3.8 1.9 0.4 Setosa\n", + " 5.1 3.8 1.9 .4 Setosa\n", + "0 4.8 3.0 1.4 0.3 Setosa\n", + "1 5.1 3.8 1.6 0.2 Setosa\n", + "2 4.6 3.2 1.4 0.2 Setosa\n", + "3 5.3 3.7 1.5 0.2 Setosa\n", + "4 5.0 3.3 1.4 0.2 Setosa\n", + "5 7.0 3.2 4.7 1.4 Versicolor\n", + "6 6.4 3.2 4.5 1.5 Versicolor\n", + "7 6.9 3.1 4.9 1.5 Versicolor\n", + "8 5.5 2.3 4.0 1.3 Versicolor\n", + "9 6.5 2.8 4.6 1.5 Versicolor\n", + "10 5.7 2.8 4.5 1.3 Versicolor\n", + "11 6.3 3.3 4.7 1.6 Versicolor\n", + "12 4.9 2.4 3.3 1.0 Versicolor\n", + "13 6.6 2.9 4.6 1.3 Versicolor\n", + "14 5.2 2.7 3.9 1.4 Versicolor\n", + " 5.2 2.7 3.9 1.4 Versicolor\n", + "0 5.0 2.0 3.5 1.0 Versicolor\n", + "1 5.9 3.0 4.2 1.5 Versicolor\n", + "2 6.0 2.2 4.0 1.0 Versicolor\n", + "3 6.1 2.9 4.7 1.4 Versicolor\n", + "4 5.6 2.9 3.6 1.3 Versicolor\n", + "5 6.7 3.1 4.4 1.4 Versicolor\n", + "6 5.6 3.0 4.5 1.5 Versicolor\n", + "7 5.8 2.7 4.1 1.0 Versicolor\n", + "8 6.2 2.2 4.5 1.5 Versicolor\n", + "9 5.6 2.5 3.9 1.1 Versicolor\n", + "10 5.9 3.2 4.8 1.8 Versicolor\n", + "11 6.1 2.8 4.0 1.3 Versicolor\n", + "12 6.3 2.5 4.9 1.5 Versicolor\n", + "13 6.1 2.8 4.7 1.2 Versicolor\n", + "14 6.4 2.9 4.3 1.3 Versicolor\n" ] } ], "source": [ - "for c in pd.read_csv(path, chunksize = chunk_size):\n", - " print(c.shape)" + "for k in [1,2,3,4]:\n", + " a = pd.read_csv(path, skiprows=0+k*chunk_size, nrows = chunk_size)\n", + " print(a)" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 210, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "(2, 4)\n", - "(1, 4)\n" + " 5 3.3 1.4 .2 Setosa\n", + "0 7.0 3.2 4.7 1.4 Versicolor\n", + "1 6.4 3.2 4.5 1.5 Versicolor\n", + "2 6.9 3.1 4.9 1.5 Versicolor\n", + "3 5.5 2.3 4.0 1.3 Versicolor\n", + "4 6.5 2.8 4.6 1.5 Versicolor\n", + "5 5.7 2.8 4.5 1.3 Versicolor\n", + "6 6.3 3.3 4.7 1.6 Versicolor\n", + "7 4.9 2.4 3.3 1.0 Versicolor\n", + "8 6.6 2.9 4.6 1.3 Versicolor\n", + "9 5.2 2.7 3.9 1.4 Versicolor\n", + "10 5.0 2.0 3.5 1.0 Versicolor\n", + "11 5.9 3.0 4.2 1.5 Versicolor\n", + "12 6.0 2.2 4.0 1.0 Versicolor\n", + "13 6.1 2.9 4.7 1.4 Versicolor\n", + "14 5.6 2.9 3.6 1.3 Versicolor\n" ] } ], "source": [ - "for c in pd.read_csv(path, chunksize = chunk_size):\n", - " df = c.groupby(\"variety\").sum()\n", - " print(df.shape)" + "print(a)" ] }, { diff --git a/lectures/Lecture 6 - Matplotlib, Seaborn.ipynb b/lectures/Lecture 6 - Matplotlib, Seaborn.ipynb index 0ce5e8c..aadd623 100644 --- a/lectures/Lecture 6 - Matplotlib, Seaborn.ipynb +++ b/lectures/Lecture 6 - Matplotlib, Seaborn.ipynb @@ -24,7 +24,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -46,12 +46,12 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 46, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEdCAYAAADwwTuSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAZ9ElEQVR4nO3dfZQddZ3n8Xd3hMCQMFlD8xwgA/YXnGFIgAEddAc1ZM+Cu+OsiihxJMjTWTmsR0E5IjB6lvEMs8joirjChjjAiIijswhhHQEFREWGJ8OYr4jgimaGTCcSAomG7rt/3Nt4ufRD3e77fN+vc/rYdau66tdlkU9/6/erXw2USiUkSSpisN0NkCR1D0NDklSYoSFJKszQkCQVZmhIkgozNCRJhb2i3Q2QWiEiXgN8AlhI+Y+lnwPnZuajEXEkcH5mvq1BxyoBQ5n5bwW3PwB4HPhh1ccDwKcyc1VEnAK8LTPfPM1+rgI+l5n/NKOGSwUYGup5ETEX+DqwPDMfqHy2AlgTEYsz836gIYExC1szc8n4QkTsA6yNiPvr2MdxwP9qeMukKoaG+sHvAAuAeVWfXQ9sBuZExOuBz2TmH0TEauB54FBgD+D/ACPAfwL2BE7LzDsq220FlgC7A98AzsnM7dUHjoj3Av+VcnUzApydmeuma3Bm/iIiHgOGa/a3L3AlcADlauQLmfnXEXEJsDdwfUT8eWZ+v+C5kepin4Z6XmZuAj4E3BYRP42Ia4GVwDcz8zcT/MjhwBuBfw98ENiSmX8MfAo4v2q7oyn/df/qyteZ1TuJiD8B3gO8PjOXApcCXy3S5oh4LXAQUPuP//XAnZl5KHAMsCIiTsrMC4BfAicbGGomQ0N9ITM/SblyOAdYD3wYeDAifneCzW/OzO2Z+S/Ac8Btlc8fB15Ztd3qzNySmb8G/hb4DzX7OYHyP/z3RsRDlEPj30XEK3m5nSPiocrXWsr9Lydn5s/HN4iIXSgHxRWV3+kZYDXwH4ueB2m2vD2lnhcRxwB/nJl/Tblv4+sR8RFgLeVKobbD+tc1y9uZ2AtV3w8CozXr5wDXZuaHK+0YpHwLadME+3pJn8YkBinfkqr9bIdpfk5qGCsN9YMNwEcj4nVVn+0F/C4vHbFUr3dExNyI2Inybaiba9b/X+CdEbFXZfks4PaZHiwznwW+B7wPoFIl/Tnwj5VNXsAAUZMZGup5mflj4C3AX1b6NP4ZuBFYmZk5i10/D9xNOXjuBq6pOe43gL8C/jEiHgHeBfyXzJzN1NInA2+KiB8C9wF/T/kWFZXvr4uI5bPYvzSlgWZPjR4RFwMnVhZvycwP1axfAlwN7ArcBZyVmS8gdbDK6Km1mfk/2t0WqZWaWmlExDJgObCU8tDEIyLiz2o2u47yMMRhyvdrT29mmyRJM9fsjvD1wAfHhzVGxI+A/cZXRsT+wM6Z+b3KR6uBj1Eehy51rMw8pd1tkNqhqaGRmY+Ofx8Rr6J8m+qYqk32phws49YD+zazTZKkmWvJkNuI+H3gFuC8zHysatUgUN2pMgCM1bHrucAfUQ6b2uGOkqSXm0N59OAPePnw8mk1PTQqY+S/Arw/M2+oWf0U5caP25PyU61F/RHlUSuSpPq8Hrin3h9qamhExCLga8A7MvOO2vWZ+bOI2BYRx2Tmd4B3A2vqOMR6gE2bnmNsrLmjwPrBwoXzGBnZ0u5m9AzPZ2N5PmfmV1t+zU3fepwf//xXHLj3rpx03DC/t+iV8NKugcKaXWmcC+wEfDIixj/7HPCfgYsqs4ueDFwVEbsCDwCfrmP/owBjYyVDo0E8j43l+Wwsz2dxpVKJux9Zz5fueIzRsRJvP/Yg3nD4PrxizouDZmd0S7/pz2k02QHAEyMjW7yYGmBoaD4bNjzb7mb0DM9nY3k+i9u4eRur16xj7RMbiUULWHnCIey+YGcABgcHWLhwHsBi4Ml69+3cU5LUI8arixtuf4xSCU4+bpg3HL4PgwO1U5bNnKEhqW+98pW7MGdOb82m9NZlu/LWZS92BzA6OsbGjc81bP+GhqS+NWfOYM/f8hoamt/Q/fVWxEqSmsrQkCQVZmhIkgqzT0OSOsQDD9zPqlWfZ999F/GWt7yVgw9+dbub9DKGhiR1mPPPv7DdTZiUoSFJHebss8/g1FPPAODaa69hp5124sknn+DAAw/i4osvYYcddmDNmq/z5S9/kbGxEhEH84EPfJi5c+c2vW2GhiRN4Ds/XM89j8xoeiYAXveHe3HMoXtNv+E01q59hOuvv4nddhvizDNP4fvf/y57770PN9/8Na68chVz587lc5/7DF/84rWccsppsz7edAwNSepgixcfyO677wHA/vsv5tlnN/Pgg+t56qmfc+aZKwF44YXtDA8f3JL2GBqSNIFjDm1MpTBbO+6444vfDwwMUCqVGB0d441vXMb7338eAM8//zyjo615pZBDbiWpyyxdegR33fUtNm3aSKlU4rLLPsGNN/5dS45tpSFJXeZVrxpm5crTOeecsyiVShx00DArVpzSkmM7Nbpe5NTTjeX5bKxmnM9++P+o9nec7dTo3p6SJBVmaEiSCjM0JEmFGRqSpMIMDUlSYQ65ldS3RkfHGv5mu04zOjrW0P0ZGpL6ViPfnf3iPjdvY/Wadax9YiMH77eAU44/hN0X7Nzw47SLoSFJDVAqlbj7kfV86Y7HGBuDk48b5g2H78PgwEC7m9ZQhoYkzVKvVxfVDA1JmqHq6mJ0rNSz1UU1Q0OSZqC6uohFC1h5Qu9WF9UMDUmqQz9WF9UMDUkqqF+ri2qGhiRNo19GRhVhaEjSFPppZFQRhoYkTaC2ulixfJhjl/ZndVHN0JCkGrXVxcrjD2Goj6uLaoaGJFXYdzE9Q0OSsO+iKENDUl+zuqiPoSGpb1ld1M/QkNR3rC5mztCQ1FesLmbH0JDUF6wuGsPQkNTznDOqcQwNST2r32ekbQZDQ1JPsrpoDkNDUk+xumguQ0NSzxh5Zhurb1vHo46MahpDQ1LXG68ubrj9MUolR0Y1k6Ehqav53EVrGRqSupLPXbRHS0IjInYF7gXenJlP1qy7GDgV2FT56KrMvKIV7ZLUnawu2qfpoRERRwNXAcOTbHIkcFJmfrfZbZHU3awu2q8VlcbpwPuAaydZfyTwkYjYH7gLODczt7WgXZK6yIZNW7n8xoetLtqs6aGRmacBRMTL1kXEPOBB4DzgJ8Bq4ELggma3S1J3GK8ubrzzJ4yO+txFu7W1IzwztwDHjy9HxGXAKuoMjYUL5zW4Zf1raGh+u5vQUzyfs7Nh01au+PJDPJBPc+iBu3HOO5aw58Jd2t2svtbW0IiI/YBlmbmq8tEAsL3e/YyMbGFsrNTQtvWjoaH5bNjwbLub0TM8nzM3Ud/FicsPZmRki+d0lgYHB2b1h3a7h9xuBS6NiDuBJyn3fXy1rS2S1FaTjYwaHPR2VCdoS2hExK3ARZl5f0ScCdwM7AjcA1zWjjZJaq/qp7rHSvZddKqBUqmrb+scADzh7anG8HZKY3k+i9u4eRvXrJl6zijPZ2NU3Z5aTPkOT13afXtKUh9zzqjuY2hIagtnpO1OhoaklvKp7u5maEhqGeeM6n6GhqSms7roHYaGpKayuugthoakprC66E2GhqSGs7roXYaGpIaprS5WLB/m2KVWF73E0JDUELXVxcrjD2HI6qLnGBqSZsXqor8YGpJmzL6L/mNoSKpbdXUxOuaMtP3E0JBUl+rqIhYtYOUJVhf9xNCQVIgz0goMDUkFFHnfhfqDoSFpUr5NT7UMDUkTcmSUJmJoSHoJ54zSVAwNSS+yutB0DA1JVhcqzNCQ+pzVhephaEh9yupCM2FoSH3I6kIzZWhIfcTqQrNlaEh9wupCjWBoSD3O6kKNZGhIPczqQo1maEg9yPddqFkMDanHWF2omQwNqUfYd6FWMDSkHmB1oVYxNKQuZnWhVjM0pC5ldaF2MDSkLmN1oXYyNKQuUl1dxKIFrDzB6kKtNWloRMQPgdJk6zPzD5vSIkkvY3WhTjFVpXF2y1ohaVL2XaiTTBoamfnt8e8j4ihgKXANcERmfrcFbZP6mtWFOtG0fRoRcQpwHrAT8FXgHyLigsy8qsltk/qW1YU6VZGO8HOA1wLfzsynI+II4DbA0JAazOpCna5IaIxm5uaIACAzfx4RLzS3WVL/GXlmG6tvW8ejjoxSBysSGhsjYgmVkVQRcTKwsamtkvrIeHVxw+2PUSpZXaizFQmN/wbcBBwYEeuBrcCfNrVVUp+w70LdZtrQyMx1EXEYMAzMKX+U25veMqmH2XehblVk9NQgcBpwHLAduBW4tsntknqW1YW6WZHbU5cBhwHXAYPAGRExnJkXNrVlUo+xulAvKBIaxwFLMvMFgIi4DvgnoFBoRMSuwL3AmzPzyZp1S4CrgV2Bu4Czxo8j9RKrC/WKwQLbPMtLw2UM2FJk5xFxNHAP5f6QiVwHnJ2Zw8AAcHqR/UrdolQqcdfDv+TC//19HnvqGU4+bphz37nUwFDXmmrCwg9Uvv0X4K6IuBYYBU4C1hXc/+nA+5igDyQi9gd2zszvVT5aDXwMuLLgvqWO9vSm5/nkjQ/zqNWFeshUt6cOrfzvrypfh1eWHy+688w8DWD8wcAaewPrq5bXA/sW3bfUqX7bd/ETxsZK9l2op0w1YeHKJh97kJdOvT5A+dZX3RYunNeQBgmGhua3uwldbcOmrVzx5Yd4IJ/m0AN345x3LGHPhbu0u1k9w+uz/YoMuX0tcD4wj/I/7HOAxZm53yyP/RSwV9XynsAvZ7KjkZEtjI1N+uoPFTQ0NJ8NG55tdzO60kQjo05cfjAjI1s8pw3i9dkYg4MDs/pDu0hH+NWURz/tClwPbAa+MuMjVmTmz4BtEXFM5aN3A2tmu1+p1TZu3sblNz7M6jXr2H+P+XzsvUfxpiP2ZXDQ21HqPUWG3JYy868iYjfKHeAnAvfP9IARcStwUWbeD5wMXFUZlvsA8OmZ7ldqNeeMUj8qEhrj9eDjwB9k5nciYrSeg2TmAVXfH1/1/cPAUfXsS+oE1TPSOjJK/aRIaNwXEV+i/DDfLRExDPgAnvqST3Wr3xUJjfcDR2fmjyPi/cAy4J3NbZbUeXyqW5r64b7DqxZ/U1leT/lBPccQqm9YXUi/NVWlMdUIqRLwew1ui9RxrC6kl5rq4b7FrWyI1EmsLqSJFenTkPqK1YU0OUNDqrC6kKZnaEhYXUhFFZl76ivAlZn5zRa0R2opqwupPkUqjb8HLoyIzwKfB1Zl5sbmNktqPqsLqX7ThkZmXg9cHxEHA6cCP4iIe4H/mZn3NbuBUqNVVxejvu9CqkuhPo2IGAReRfm1ra8AngY+GxG3ZObFTWyf1FDV1UUsWsDKE6wupHoU6dP478BK4KfAZ4G3Z+b2iNgF+H+AoaGO54y0UmMUqTR2B46vzEj7osx8LiKcg0odb+PmbVyzxhlppUYo0qdxxhTrvtHY5kiNU11djJXsu5Aawec01JMcGSU1h6GhnuJzF1JzGRrqGRs3l9+mt/anVhdSsxga6npWF1LrGBrqavZdSK1laKgrWV1I7WFoqOtYXUjtY2ioa9RWFyuWD3PsUqsLqZUMDXWF2upi5fGHMGR1IbWcoaGOZnUhdRZDQx3Lvgup8xga6ji+70LqXIaGOorvu5A6m6GhjuD7LqTuYGio7Uae2cYXbrPvQuoGhobaxvddSN3H0FBbjDxTnpHWt+lJ3cXQUEvV9l343IXUXQwNtUx1deHIKKk7GRpqOvsupN5haKipfKpb6i2GhprC911IvcnQUMNZXUi9y9BQw1hdSL3P0FBDOGeU1B8MDc2K1YXUXwwNzZhv05P6j6Ghuvk2Pal/GRqqiyOjpP5maKgQqwtJYGioAKsLSeMMDU3KkVGSajU9NCLiXcBHgR2Av8nMK2rWXwycCmyqfHRV7TZqPasLSRNpamhExD7AJcARwK+BeyPizsz856rNjgROyszvNrMtKsbqQtJUml1pLAPuyMyNABFxE/A24ONV2xwJfCQi9gfuAs7NzG1NbpcmsGHTVi6/8WGfu5A0qWaHxt7A+qrl9cBR4wsRMQ94EDgP+AmwGrgQuKDJ7VKV8erixjt/wuhoyZFRkibV7NAYBEpVywPA2PhCZm4Bjh9fjojLgFXUGRoLF86bXSv72IZNW7niyw/xQD7NoQfuxjnvWMKeC3dpd7N6xtDQ/HY3oad4Ptuv2aHxFPD6quU9gV+OL0TEfsCyzFxV+WgA2F7vQUZGtjA2Vpp+Q72ouu9idKz8Nr0Tlx/MyMgWNmx4tt3N6wlDQ/M9lw3k+WyMwcGBWf2h3ezQ+CbwFxExBDwHvBU4o2r9VuDSiLgTeBJ4H/DVJrep7002I+3goLejJE2tqaGRmb+IiAuAO4Edgasz876IuBW4KDPvj4gzgZsr6+8BLmtmm/rZRNWFI6Mk1WOgVOrq2zoHAE94e2p6I89sY/Vt63h0iucuLP8by/PZWJ7Pxqi6PbWY8h2euvhEeI8bry5uuP0xSiWfu5A0O4ZGD/OpbkmNZmj0IJ/qltQshkaPsbqQ1EyGRo+wupDUCoZGD7C6kNQqhkYXs7qQ1GqGRpeyupDUDoZGl7G6kNROhkYXsbqQ1G6GRheofqp7rOScUZLax9DocBs3b+OaNVPPGSVJrWJodCjnjJLUiQyNDlRkRlpJagdDo4M4MkpSpzM0OoQjoyR1A0OjzawuJHUTQ6ONrC4kdRtDow2sLiR1K0OjxawuJHUzQ6NFaquLFcuHOXap1YWk7mJotEBtdbHy+EMYsrqQ1IUMjSayupDUawyNJrHvQlIvMjQarLq6GB1zRlpJvcXQaKDq6iIWLWDlCVYXknqLodEAzkgrqV8YGrPk+y4k9RNDY4Z8m56kfmRozIAjoyT1K0OjDs4ZJanfGRoFWV1IkqExLasLSfotQ2MKVheS9FKGxgSsLiRpYoZGDasLSZqcoVFhdSFJ0zM0gJFntrH6Np/qlqTp9HVoOGeUJNWnb0PD6kKS6td3oWF1IUkz11eh4cgoSZqdvggNR0ZJUmP0fGhYXUhS4/RsaFhdSFLj9WRoWF1IUnM0PTQi4l3AR4EdgL/JzCtq1i8BrgZ2Be4CzsrMF2ZyLKsLSWquwWbuPCL2AS4BXgcsAc6IiFfXbHYdcHZmDgMDwOkzOdbGzdu4/MaHWb1mHfvvMZ+Pv/co3nTEvgaGJDVQsyuNZcAdmbkRICJuAt4GfLyyvD+wc2Z+r7L9auBjwJX1HOS+H/0r19z6I8bGYMXyYY5danUhSc3Q7NDYG1hftbweOGqa9fvWe5CbvvU4++8x374LSWqyZofGIFCqWh4AxupYP505AO9cNsxhBy20umiAwUHPYSN5PhvL8zl7Vedwzkx+vtmh8RTw+qrlPYFf1qzfa4r109kLYNlrDphh81Rr4cJ57W5CT/F8Npbns6H2Ah6v94eaHRrfBP4iIoaA54C3AmeMr8zMn0XEtog4JjO/A7wbWFPH/n9AOZTWA6ONa7Yk9aw5lAPjBzP54YFSqTT9VrNQGXL7EWBH4OrMvDQibgUuysz7I+Iw4CrKQ24fAFZm5q+b2ihJ0ow0PTQkSb2jqc9pSJJ6i6EhSSrM0JAkFWZoSJIKMzQkSYUZGpKkwrrifRqtnF69HxQ4nxcDpwKbKh9dVbuNfisidgXuBd6cmU/WrPParNM059Nrsw6V83ViZfGWzPxQzfq6r8+OrzRaOb16Pyh4Po8ETsrMJZUv/6OcREQcDdwDDE+yiddmHQqcT6/NgiJiGbAcWEr5v/UjIuLPajar+/rs+NCganr1zHwOGJ9eHZh0evW3t7yV3WPK81lxJPCRiHgkIj4TETu1vJXd43TgfUwwZ5rX5oxMej4rvDaLWw98MDN/k5nbgR8B+42vnOn12Q2hMd306Q2ZXr2PTHm+ImIe8CBwHnA4sAC4sJUN7CaZeVpm3j3Jaq/NOk11Pr0265OZj44HQkS8ivJtqlurNpnR9dkNfRrNnl6930x5vjJzC3D8+HJEXAasAi5oVQN7iNdmA3ltzkxE/D5wC3BeZj5WtWpG12c3VBrTTZ8+2+nV+82U5ysi9ouIU6vWDwDbW9S2XuO12UBem/WLiGOA24HzM/MLNatndH12Q2h8E3hTRAxFxO9Qnl79tvGVmfkzYFvl5ED906v3mynPJ7AVuDQiFkfEAOX7y19tQzu7ntdmw3lt1iEiFgFfA96VmTfUrp/p9dnxoZGZv6Bcft4JPAT8XWbeFxG3RsSRlc1OBi6PiHXAPODT7Wlt55vufGbmBuBM4GYgKf81d1nbGtyFvDYby2tzxs4FdgI+GREPVb7Omu316dTokqTCOr7SkCR1DkNDklSYoSFJKszQkCQVZmhIkgozNCRJhRka0ixExJNVY94n22Z1RJxb536PjYi1s2ud1HiGhiSpsG6YsFBquYh4D3ARcBjlSd3uBz6RmX87yfaDwOXAa4D5lJ9WPi0zv1PZ5HUR8TbKL7v5BnBuZr4QEYcAnwIWAnOAT2fmqub9ZtLsWGlIE6hM7vY94FLKUyvcPVlgVBxNearp12bmq4EvAOdXrd8XeBPll+EcBpweEa+g/D6T8zPzCOBPgHMj4jWN/n2kRrHSkCZ3FvAw5Ynyjphqw8z8bkR8FDgzIg4EjgWerdrk2spLr4iI64ATgG8DBwKrImJ8u50pv2ntR437NaTGMTSkye1BecK3uZSriJ9OtmFEnED5NtNlwD8A64AVVZuMVn0/SHlK7znAM5m5pGo/ewDPUL7NJXUcb09JE4iIHYAvUu7X+BhwQ+WzyRwH3JyZV1Lu/3gL5VAYd1JEzK28nvQ9lKegTmBrRKyoHHMRsJZpqhqpnQwNaWJ/CfxrZl6dmZ8H/g24ZIrtPwccGxE/BB4AHgcWVzrIAZ4A7qb8utK7gC9k5m+APwVOi4hHKHeQX1jVeS51HKdGlyQVZqUhSSrM0JAkFWZoSJIKMzQkSYUZGpKkwgwNSVJhhoYkqTBDQ5JU2P8H60rnC7EypxYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEXCAYAAABoPamvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hc1bno4d80SaMuS7ItV7kuN9wNBjfAphjTklDtUBMSDnCAk17g5uYeknNzk0CAg4FgwBwMBAIpBGyqwRXjXnBZ7rJldcmy2oym7H3/2NtGGFnF0mhG0vc+jx/PrL32nm8PRp9W2Ws5TNNECCGEaAtntAMQQgjR+UkyEUII0WaSTIQQQrSZJBMhhBBtJslECCFEm0kyEUII0WbuaAcgRCxTSk0F/gvIxPrl6yjwI631TqXUZOBnWuvr2umzTCBba13Wwvq5wAFgR4NiB/C41voFpdTtwHVa6yubuc5zwDNa601nFbgQSDIR4oyUUvHAO8ClWuvNdtm3gWVKqUFa641AuySSNvBprceffKOU6gt8oZTa2IprXAI82+6RiW5FkokQZ5YIpAPJDcpeAaoAl1JqBvDfWusxSqnFQB1wDtALeBsoB64CegPf1Vovt+v5gPFAT+AD4H6tdbDhByulvgPcg9UaKgfu01rvaS5grfUxpdQ+YPhp1+sHPA3kYrVeXtJa/14p9RugD/CKUupWrfXnLfxuhPgKGTMR4gy01seBnwDvKaUOKqVeBu4APtJaBxo5ZSJwMTAT+CFQo7W+AHgc+FmDeudhtQZG2X++3/AiSqlZwG3ADK31BOD/AX9vScxKqfOBocDpSeEV4BOt9TnANODbSqmbtNa/BAqABZJIRFtIMhGiCVrrR7FaGvcDhcBPgS1KqbRGqv9Lax3UWhcBtcB7dvkBoEeDeou11jVa63rgf4DLTrvOPKyEsFYptRUrmWQopXrwdV6l1Fb7zxdY4zsLtNZHT1ZQSiVhJZCn7Hs6ASwG5rb0exCiOdLNJcQZKKWmARdorX+PNXbyjlLqF8AXWC2L0wfK6097H6RxoQavnUD4tOMu4GWt9U/tOJxYXVHHG7nWV8ZMzsCJ1bV1epmnmfOEaDFpmQhxZqXAQ0qp6Q3KcoA0vjqDqrVuVErFK6USsLqz/nXa8feBm5VSOfb7u4GPz/bDtNbVwDrgXgC7VXUr8KFdJYQkFtFGkkyEOAOt9V7gWuC39pjJLuAN4A6ttW7DpeuAVVgJaRXw4mmf+wHwO+BDpdR2YD7wTa11W5b4XgDMVkrtANYDf8Pq6sJ+vUQpdWkbri+6OYcsQS9Ex7Fnc32htf5DtGMRoj1Jy0QIIUSbSctECCFEm0nLRAghRJtJMhFCCNFm3fE5k3hgCtYDaKfP7xdCCNE4F9bU+A18/ZmqbplMpmBNxxRCCNF6M4DVpxd2x2RSCHD8eC2GcXaTDzIzkykvr2nXoNqDxNU6ElfrSFyt09XicjodZGQkgf0z9HTdMZmEAQzDPOtkcvL8WCRxtY7E1ToSV+t00bgaHR6QAXghhBBtJslECCFEm3XHbq4zMk2T48dLCQT8wJmbgSUlTgzD6LjAWqgzxeVyuUlOTsfrTYpSVEKI9hTRZGJvcfpz++0yrfWPlFLjgUVAKrASuFtrHVJKDQCWYO0+p7H2ZKhRSqVjbewzGGsV1xu01kVKqTjgeWAy1s5181uyE11TampO4HA46NWrHw7HmRttbreTUCj2fmh3lrhM0yQYDFBZWQogCUWILiBi3VxKqUTgCWAWMA6YoZSag5Uw7tNaD8faY+Eu+5SFwEKt9QhgI/CwXf4IsEprPRJ4DmvXOrA2K6q1yx/kyxVQz5rPV0NKSnqTiUS0ncPhIC4unvT0bGpqKqMdjhCiHUTyp6bLvn4S1l4JHqzNgrxa63V2ncXA9UopD9ZWp282LLdfz8NqmQC8Bsy1658q11qvBLLt1s1ZM4wwLpf0/HUUjyeOcDjUfEUhRMyLWDKxN+R5GNgD5AOHgQBfnaNcCPQDsoAqrXXotHKwdpgrtK8ZAqqA7IbljZxz1hyO0zekE5Ei37UQHcc0DHwfLaTsg+cjcv2I/RqulBoL3AkMBE5gdW9dyldHth2AgZXUTh/xNhrUaehM5zganNOszMzkr5WVlDhxu1uWX1ta72wVFBRwww3XMmjQYAAMw6C2tpZ5867krrv+rcm4nnvuad5551/ceON85s//9qljU6dOZN26zV8755ZbbuLll//S/jdxWlyNcTqdZGenRPSzmxLNz26KxNU6ElfzKlb8hdDB9cSNvIfUCMQVyT6dy4CPtdYlcGpToB9hre1yUm+gACgB0pRSLq112K5TYNc5ZtfLV0q5gRSgHKu1kwMcOO1aLVJeXvO1B3cMw2jRAHZHDHSHwwZZWdm8+OKrp8rKykq56aZvcNFFl5KbO+iMcS1dupTHHnuKAQMGfi3OxuJ+8cVXI3o/TX1fhmFQWlodsc9uSnZ2StQ+uykSV+tIXM0LHdmGb/VfcQ+fTsq4i88qLqfT0egv4aeOtyXAZmwD5iilkpRSDuAqYAXgV0pNs+vcgjXLK4i1XtaNdvmtwDL79VL7PfbxVXb9U+X2Ht1+rfWRCN5P1JWVlWGaJomJiYRCIX73u0f4/vfv4Prrr+HnP/8hfr+f3//+t5SWFvOLX/yIfftatrPs9OmTAXj++Wf53e8e4b77vsf111/NSy9ZzeFwOMyTTz7KnXcu4Lbbbub1119p6nJCiBhiVJfi++TPODP7kzD9loh1L0esZaK1/kApNQHYhDXwvh74v8DfgeeUUqnAZqwZXwD3AC8ppR4CjgA32+UPA4uVUjuBSqy9rAGeBJ61y+uxElO7WbOjkNXbG12CBocD2rKn2PSxOUw7J6fZemVlpdx++3wCgXpOnKhkxIjR/Pa3f6Bnz15s3boZt9vDs8++iGEY3H//3axdu4Yf//gXfP75Z/z+94+Tk9On1bHt37+PhQsXUVNTzQ03XMs3v3kDH3/8PgAvvPAKgUCAH/zgPkaMGMW4cRNafX0hRMcxQwF8Hz4FpoH3kn/H4Y6P2GdFdOqS1vp3wO9OK94GnNtI3TzgwkbKK4CrGyn3A7e1S6AxKisrm8WLX8UwDP77vx/j8OFDTJlyHgDjx08kNTWNt956gyNHDpOffxSfr67Nnzlx4mQ8Hg8ZGT1ITU2ltraGjRvXs2/fXjZt2giAz1fHgQP7JZkIEePq1y7BKDuM99IHcKb2jOhnyTzYM5h2zplbDx39cKDT6eSeex7gjjvm89prL7NgwW2sXr2CRYue5frrb+KKK66msrKS9tiCOS4u7tRrh8OBaZqEwwb33HM/s2ZdDEBlZSVer7fNnyWEiJzAnhUE96wkbsJVuHMj/4ufPJ3XSbjdbu6990EWL36e8vIyNm5cz8UXz2HevKtJTk5my5ZNEVtKZdKkybz99j8IhULU1dVxzz3fYefOHRH5LCFE24VLDlK/+mVc/cYQN+kbHfKZ0jLpRKZOvYAxY85h0aJnuO66m/j1r3/JRx+9j9vt4ZxzxlJQcKzZa1xyyYxTr3v1ymHJkjeaPefaa68jP/8od9wxn3A4zBVXXMXEiZPbdC9CiMgwfFX4PnoKR2Ia3ovvxuHsmDaDoz26RjqZXOBQY1ODi4ry6N17YLMX6CxrYMWKpuJq6XceCbE0dbMhiat1JK4vmUYY37I/Ei7aS+LVD+HKzm23uBpMDR6E9RD6V4+3+opCCCFiUmDDW4SP7SJh+m2NJpJIkmQihBBdQPDgegLbluIZdTEeNaP5E9qZJBMhhOjkwhX5+D99HmevocSfPz8qMUgyEUKITsysr8X3wRM4PAl459yLI0orn0syEUKITso0DHzLn8WsKSfhkvtwJmVELRZJJkII0UkFNv2d8NHtxF+wAHfvYVGNRZKJEEJ0QsGDGwhs+RceNRPPyIuiHY48tBirCgsLuPnmb5Kba+1nYprWfiZz517Jd77z/SbPff75Z3n33be54YabuemmL/czmT59MqtXb/xa/dtvn8/ixa9+rby1Xnjhzyxf/hEAF1wwjXvueaDN1xRCfF244ij+Txfh7DmE+AiuBNwakkxi2MmFHk86uZ/J7NmN72dy0nvvLeVPf1rIgAEtexiwPRLJhg2fs2HDOl588RUcDgc//OG/s2LFJ8yaFf3fmIToSkx/Db73n8AR58V7yX04XJ5ohwRIMjmj4N41BPXKRo+dXADxbHnUTDzDpzVf8TSn72fyxz/+Xw4ePEBFRQVDhw7lP//zv3jssT+c2s/kV796hGHDVLPXPdlief75ZykrK+Xo0SMUFxdx5ZXXcNtt3yEcDrNw4eNs2bKJcNjgiiuu5MYbF3zlGpmZWdx773/g8Vj/sAcOzKW4uKjV9yiEODPTCONb/gxm7XESr/pZVAfcTyfJJIZ1pv1MBg8ecur10aNHWL78I55+OjJ7TQvRXdV//gbh/C+In3kHrl5Dox3OV0gyOQPP8GlnbD101BpYnXE/k4MHD/CTnzzIvfc+QP/+A9ocjxDCEty7huCO9/GMnk3ciFnRDudrIpZMlFLfBe5rUDQIeBn4B/Ao4AVe11o/ZNcfDywCUoGVwN1a65BSagCwBOgJaGCB1rpGKZUOvAIMBkqBG7TWXbJfpbPsZ7J9+1Yeeuin3H//D5gz57I2xyKEsIRLDuBf9SKuPiOJP//m5k+IgohNDdZaL9Jaj9daj8faarcEa9fFF4BrgJHAFKXUXPuUJcB9WuvhgAO4yy5fCCzUWo8ANmJt4wvwCNZ+8COB54DHI3UvsSDW9zMpLi46NU4jiUSI9mPUHsf3wZM4EjOsJ9ydsdmh1FFRPQ38AqsVsU9rfQhAKbUEuF4ptQvwaq3X2fUXA79WSi0CZgLXNihfAfwUmGcfA3gNeEop5dFaByN/O9ERy/uZvPbaEurrAzz55GMNzvsm1157XSvuUAjRkBkK4PvgCcygn8QrfogjITnaIZ1RxPczUUrNAf5Laz1FKXUzME9r/e0Gx34C/Ar4vdZ6ul0+FFgKzAI2aK372eVuoE5rHaeUqgeStNYh+1g+cK7WuqCZkHKBQ40d2LlzF336RGdvje6qoCCP0aNHRTsMIWKOaZqU/vNxanauotd1PyVJnRvtkE5qdD+TjmiZfB9rjASsbrWG2csBGK0oxy4/WachR4NjzWpscyzDMFo0sN4ZN6GKpqbiMgwjahsbyaZKrSNxtU5b46rf+g6BnauIm/xN6nqMpK6d7rEdNsdq/HhbgmqOUioOq3Xxtl2UD+Q0qNIbKGiivARIU0q57PIcuxzgmF3vZIslBShv/7sQQoiOFTq8hcD6t3APOY+4CVdFO5wWifTaXGOBvVrrWvv954BSSg21E8R8YJnWOg/wK6VOzsW9xS4PAquAG+3yW4Fl9uul9nvs46vaY7ykG25jHDXyXQvxdeHyo/iWP4MzO5eEWXfGxFIpLRHpZDIYq9UBgNbaD9wOvAXsAvYAb9qHFwCPKaX2AMnAE3b5PcD37EH6GcBDdvnDwFSl1E67zr1tDdbpdBEOh9p6GdFCwWAAV5T2XhAiFhm+Knzv/8laKuXS+3G446MdUotFfAA+BuUChxobM6muriQUCpKenonDceY82xnHJqLp9LhM0yQYDFBZWUpKSgZeb1JU4uqqfe2RInG1TmvjMsNBfO/8P8JleSRe/XNc2Wdef68j4zqpwZhJ1AbgO43k5DSOHy+luDifr4/7f8npdEbsmY626ExxuVzuqCYSIWKJaZr4Vy4mXLyPhNn3RCyRRJIkkwYcDgc9evRstl5X+U2oo8RqXELEisDWdwntW0Pc5G/gGRIzU4BbRTbHEkKIKAoe3EBgw5u4h04lbsLV0Q7nrEkyEUKIKAmXHsb/yXM4ew0lYWbnmbnVGEkmQggRBUZNuTVzy5uC95J/x+GOa/6kGCbJRAghOpgZ8OF7/0+YwXq8l/8AZ2JatENqM0kmQgjRgUzDwLf8GYyKY3jn3IOrR99oh9QuJJkIIUQHql/3GuEj24if9m3c/c+JdjjtRpKJEEJ0kMAXHxL84kM8Yy4lbtTF0Q6nXUkyEUKIDhDK20L9Z6/iHjiB+Kk3RTucdifJRAghIixcdhjfx0/jzMol4eK7cTi73o/erndHQggRQ4zqMnzLHsORkIL3sgdweDrP4o2tIclECCEixKyvxffeo5jhgD0FOD3aIUWMJBMhhIgAMxzE9+F/Y5woxnvp/V1mCvCZSDIRQoh2Zpompe8+TbhgNwkz78TdZ2S0Q4o4WTVYCCHaWWDj3wjsWGGtAjx8WvMndAERTSZKqauAXwFJwAda6weUUnOARwEv8LrW+iG77nhgEZAKrATu1lqHlFIDgCVAT0ADC7TWNUqpdOAVrN0cS4EbtNZFkbwfIYRoTmD3pwS2/IuU8XMwO/EqwK0VsW4updRg4BngWqy94CcqpeYCLwDXACOBKXYZWAnjPq31cMAB3GWXLwQWaq1HABuxtusFeARr3/eRwHPA45G6FyGEaInQka3Ur34JV/+xZM39XqdeBbi1Ijlm8g2slke+1joI3AjUAfu01oe01iGsBHK9Umog4NVar7PPXWyXe4CZfLlP/GLgevv1PKyWCcBrwFy7vhBCdLhwyUF8Hy3EmTkQ75x7cDhd0Q6pQ0Wym2soEFBKvQ0MAN4BdgKFDeoUAv2APmcozwKq7MTTsJyG59jdYVVANlDQkuDsvYzPWnZ2SpvOjxSJq3UkrtaRuBoXrCjk2Ad/wp2cTp8FD+NOTo+JuM4kEnFFMpm4sVoVFwI1wNuAj69uru4ADKwWUkvKsctP1mnI0eBYs8rLazCMM+/z3pRY3YZW4modiat1JK7GGXUnqPvnI2CYxF/2A477XOCrjnpcZ3K2cTmdjiZ/CY9kN1cR8JHWulRr7QP+DswBchrU6Y3Vksg/Q3kJkKaUOtlezOHLlscxux5KKTeQApRH5laEEOLrTu1LUncC7+UP4kzrHe2QoiaSyeQd4DKlVLqdDOZijX0opdRQu2w+sExrnQf4lVIn59DdYpcHgVVY4y0AtwLL7NdL7ffYx1fZ9YUQIuLMcMh6KLEsz9qXpOeQaIcUVRFLJlrrz4H/B6wGdgF5wNPA7cBbdtkevhxcXwA8ppTaAyQDT9jl9wDfU0rtAmYAD9nlDwNTlVI77Tr3RupehBCiIdM08K9YRPjYThJm3oF74PhohxR1EX3ORGv9AtZU4IY+BsY1UncbcG4j5XlY4y6nl1cA3WcStxAiJpimSf261wntX0fclOvwqBnRDikmyHIqQgjRCoFtSwnueB/P6DnEjZ8X7XBihiQTIYRooaBeRWD9X3EPmUr8BfO71UOJzZFkIoQQLRDK24J/5Yu4+o0h4cLv4nDIj8+G5NsQQohmhAq19XR71kC8l9yHwyVr5J5OkokQQjQhXJaH770/4UzJxjv3Bzg8CdEOKSZJMhFCiDMwThThW/ZHHPGJeK/4Ec6E2FweJRZIMhFCiEYYNRXUvft7ME0Sr/gRzuQe0Q4ppkkyEUKI0xj+anxL/4BZX4t37g9xpuc0f1I3J8lECCEaMAM+fEv/iFFdivfy/8CVnRvtkDoFSSZCCGEzQ/X43v8TRvlRvJfciztHRTukTkOSiRBCcHLhxqcIF+4l4aK7cA+Q9bZaQ5KJEKLbM40w/uXPED66nfgZt+EZOjXaIXU6kkyEEN2aaRr4V75I6NBG4qfeTNzIC6MdUqckyUQI0W2Zpkn9miWE9q4mbtK1xI29LNohdVqSTIQQ3ZJpmtR//gbBXcvxjL2cuInXRDukTi2iC8wopT4BegInd0D8PjAEa4MrD/AnrfVTdt05wKOAF3hda/2QXT4eWASkAiuBu7XWIaXUAGCJfX0NLNBa10TyfoQQXUdg8z8Jbl+GZ9TFxJ93o6wA3EYRa5kopRzAcGCc1nq81no81l7vvwGmA+OxdlAcpZTyYm2idQ0wEpiilJprX2oJcJ/WejjgAO6yyxcCC7XWI4CNWDsvCiFEs+q3LiWw6R+4h08nftq3JZG0g0h2c52coP2BUmqbUuo+YA6wXGtdobWuxdqy9zqsHRb3aa0Paa1DWAnkeqXUQMCrtV5nX2uxXe4BZvLllr+LgesjeC9CiC4isON9AuvfwD3kPBJm3ilLybeTSH6LGVhb9H4DmA3cDQwAChvUKQT6AX1aWZ4FVNmJp2G5EEKcUWDXcuo/ew137iQSLroLh1MSSXuJ2JiJ1voz4LOT75VSz2ONiTzSoJoDMLCSmtmGcuzyFsvMTG5N9a/Jzo7N1UMlrtaRuFqnM8dVtfVjqlf/D4lDJ9Hruh/jcHliIq5oiERcEUsmSqnpQLzW+mO7yAEcBhqumNYbKMAaS2lNeQmQppRyaa3Ddp2C1sRXXl6DYZyej1omOzuF0tLqszo3kiSu1pG4WqczxxXcuxr/p8/j6jcG58zvU1bhB/xRjysazjYup9PR5C/hkWzjpQO/V0olKKVSgNuAbwOzlVLZSqlE4FvAe8DngFJKDVVKuYD5wDKtdR7gV0pNs695i10eBFYBN9rltwLLIngvQohOKrhvrZVI+o7Ce+n9ONxx0Q6pS4pYMtFavwO8C2wBNgEvaK3XAL8EPgG2Aq9qrddrrf3A7cBbwC5gD18Ori8AHlNK7QGSgSfs8nuwZoPtAmZgTTcWQohTgvvX4f/0OVx9RuC9TBJJJDlM8+y6ejqxXOCQdHN1HImrdSSu1jlTXMH96/B/8iyu3sPxXv4DHJ74mIgr2tqhm2sQ1pDFV4+3OTIhhIgxwQOfRzWRdEeSTIQQXUrwwOf4lz+Lq9cwvJf/hySSDhLR5VSEEKIjnera6jUM79wf4PAkRDukbuOMyUQptYOvP8txitZ6bEQiEkKIs2DN2nrO7tr6D0kkHayplsl9HRaFEEK0QXDvGvwrFuHqraRrK0rOmEy01itOvlZKnQtMAF4EJtlPtwshRNRVbf0I/6eLrOm/lz+Iwy2JJBqaHYBXSt2OlUR+gvUg4j+VUnc1eZIQQnSAwK7llL37NK5+o60WiSSSqGnJbK77gfOxFlYsASYBD0Y0KiGEaEbgiw+pt9fakifbo68lySSsta46+UZrfRQINVFfCCEiqn7ru9SvfQV37kRr0UZJJFHXkqnBFfZuhyaAUmoBUBHRqIQQohGmaRLY9A8Cm/9p7Udy0V326r+RXbRRNK8lyeQBrHWyhiilCgEf1o6IQgjRYUzTJLD+rwS2LcU9fLq1sZXsRxIzmk0mWus9SqlxWFvwuqwiHWzmNCGEaDemaVC/ZgnBXcvxjLyI+Om3yA6JMabZZKKUcgLfBS4BgsBS4OUIxyWEEACYRhj/yhcI7V2DZ+zlxJ93o+zZHoNaktr/iLVvyFKsbXi/p5T6z4hGJYQQgBkO4v/4aUJ71xA3+RuSSGJYS8ZMLgHGn9xvXSm1BGt/kocjGZgQonszg/X4PnyScP4XxE+9mbixl0U7JNGEliSTarveyenABlATsYiEEN2eGajDt+wxwiX7iZ95B3EjZkU7JNGMphZ6/IH9sghYqZR6GQgDN2HthNgiSqk/AFla69vtKcaLgFRgJXC31jqklBoALAF6AhpYoLWuUUqlA68Ag4FS4AatdZFSKg54HpiMNbtsvta6xTEJIWKX4avCt/SPGMfzSZj9b3gGnxvtkEQLNDVmco79pxLYCUwEpgAHsFonzVJKzcba+/2kJcB9WuvhgAM4uSzLQmCh1noEsJEvu9AeAVZprUcCzwGP2+X3A7V2+YPA4pbEI4SIbUZ1KXVv/wajshDvZQ9IIulEmlro8Y62XFgp1QP4DfBbYJxSaiDg1Vqvs6ssBn6tlFoEzASubVC+AvgpMM8+BvAa8JRSymOX/y87zpVKqWyl1ACt9ZG2xCyEiJ7w8WP4lv4BM1hP4rwf4+o9LNohdTnBkEF9MByRa7dkavD5wM+AZKzWhAsYpLUe0MypzwK/BPrb7/sAhQ2OFwL9gCysdb9Cp5V/5Ry7O6wKyG7iWpJMhOiEwsX7qXvvMRwuD4lX/xxXj/7NnyRaZeOeEpZ8uJdJI3pyyyXD2/36LRmAXwT8D3Ad8AxWC+Ktpk5QSn0XOKq1/thedRisLrWGm205sLrLTi+HL7vRTp8DeKZzHLSw6+2kzMzk1lT/muzslDadHykSV+tIXK0Tibjq9m+m+N3f407pQc7ND+PJ6B0TcbWHWIirosrPM3/bzmc7ChnSL41vXTwsInG1JJmYWuvfKaWysAbeb8Aa12jKjUCOUmor0AOrVWMCOQ3q9AYKgBIgTSnl0lqH7ToFdp1jdr18pZQbSAHKgXy73oHTrtVi5eU1GMYZN5JsUnZ2CqWl1Wd1biRJXK0jcbVOJOKydkd8HmePfsTP/QGVoSRo5Wd0p++rNQzTZNW2At745AChsMH1Fw7h0nP707tX6lnF5XQ6mvwlvCUPLZ781APAGK21D2tW1xlprS/RWo/RWo/HGtt42x6D8SulptnVbgGW2UuzrMJKQAC3Asvs10vt99jHV9n1T5UrpaYDfhkvEaJzCWxfhv+TP+PKGU7iVT/DmZgW7ZC6jKKKOn7/6hZeek8zsFcyv77zXOZOHYgrgmuZtaRlsl4p9TrWDKt3lVLDOfsl6BcAzymlUoHNwBN2+T3AS0qph7DGPW62yx8GFiuldmLNKltglz8JPGuX12MlJiFEJ2CaBvXrXie4433cg6eQcNH37JV/RVuFwgbL1uXxr7V5xLmd3D53BDPG5nTIqgEtSSYPAudprfcqpR4E5vDlD/tmaa0XY0/d1VpvA742109rnQdc2Eh5BXB1I+V+vjrlWAjRCZjhEP4ViwjtX4dn9BziL5gvCza2k/3HTvDSsj0cK6tlyoiezJ8zjLTkjtt5sqmHFic2eBuw3xdiLfKYFOnAhBBdixmow/fBk4QLdhN37nXEjZsn62y1gzp/kDdXHGTFlmNkpMZz/3VjGT80q8PjaKpl0tSMLRPrqXQhhGiWUVOB771HMY4XknDhXXiGT2v+JNEk0zTZsKeE1z7aR1VdgEum9OfaGYNIiGtJh1P7a+qhxUEdGYgQomsKVxzFt+wxzEAd3rk/wN1vdLRD6jdE7/YAACAASURBVPRKKn0s+UDzxcEKBvZK4YHrx5LbOzWqMUUnhQkhuoXQsV34PngShyeexKt+jitrYLRD6tRCYYP3Pj/Cv9Yexul0cPPsYVw8qW9EZ2m1lCQTIUREBPeuxr/iRZzpOXjn/gfO5Mxoh9Sp7ck7zssfaArL65ikspk/ZzgZKR03wN4cSSZCiHZlmiaBTf8gsPmfuPqOxnvJvTjiEqMdVqd1ojbAG8v389nOIrLSEnjw+rGMHdLxA+zNaWo21/8BfqW1PrvHxIUQ3Y4ZDuJf8bw19VfNIH76bThc8jvr2TAMk0+2HONvKw8SCIa58oKBzDs/l3iPK9qhNaqp/8oXAzOVUjdprYs6KiAhROdk+Kvxf/Ak4aK9xE25jrjxMvX3bB0oOMGSD/aSV1TNqNwMFlwynJzM2H4io6lkMhP4BbBRKXWn1vqDDopJCNHJhCsL8L33J8zaCmtDqyHnRTukTqm6LsBbKw6wclsh6clx3H3NaKaM6NkpknJTU4MN4BGl1LvAIqXUNXy5sCJa60c7ID4hRIwLHduF78P/xuFyk3jlz3D1GhrtkDodwzBZsdXq0vIHwlx+3gCuuiAXb3zn6SJsSaRhrOXdRwMnR9FkHEUIQWDXJ9SvWWLN2Lr8AZwp2dEOqdPZl1/JKx/s5UhJDSMGpLPgUkXfrNju0mpMUwPwDqxurh8Dv9RaP9VhUQkhYppphKn/7DWCOz/C1X8s3tn/hiPOG+2wOpXj1fW8+ekBPttZREZKPP927Rgmq+xO0aXVmKZaJmuxWiLTtdZfdFA8QogYZ9bX4vv4acL5X+A55zLiz7sRRww8NNdZhMIGH244yttrDxMOG8w7fyBXnp9LfFxsztJqqaaSySbgh1rr+o4KRggR24zKQurefxyzqpT4mXcQN2JWtEPqVLbtL+MvH++j+LiP8UOzuGn2UHpmdI1ncJoagL+vIwMRQsS2ugNbqP3HH3E43Xiv/AnuHBXtkDqNwvJa/vLxfnYcLKd3j0QevH4cY4d0rRUBOs9UASFEVJimSXD7e1Sv/yvOjL54L3sAZ0rsPYEdi2r9Qd5efZjlm/OJ8zi58eKhzJ7UD7er63ULRjSZ2E/RX4c1++t5rfWjSqk5wKOAF3hda/2QXXc8sAhIBVYCd2utQ0qpAcASoCeggQVa6xqlVDrwCtZS+KXADfJwpRDtywwF8K98gdD+dSSNmIrj/NtxeBKiHVbMCxsG7645xJJlu6n1B5k5rg/fmDGY1KS4aIcWMRFLj0qpWVhP0Y8FJgP/rpQaB7wAXAOMBKYopebapywB7tNaDwccwF12+UJgodZ6BLARaytfgEew9oQfCTwHPB6pexGiOzJqyql7+zeE9n9O3ORv0vObP5JE0gI7Dpbzqxc28MzfttMvO4lf3T6F2y4f0aUTCUQwmWitVwAXaa1DWK0KN5AO7NNaH7LLlwDXK6UGAl6t9Tr79MV2uQfrSfw3G5bbr+dhtUwAXgPm2vWFEG0UKthN3d/+N8aJEryXPUD8xKs77ZTVjnKstIZH39jKY29sIxQ2+OUd5/LjmycwoFdKtEPrEBHt5tJaB5VSvwZ+BPwV6IO19e9JhUC/JsqzgCo78TQsp+E5dndYFZANFLQktszM5LO5pVOys2PzH4jE1ToS11eZpsmJ9f+i+uOX8WT2odd1PyEus2/U42pONOOqrK7n1ff38P66w3gTPHzn6tHMmzYYjzt2x0Ui8X1FfABea/0rpdTvgH8Bw/nq0/MOrKfrnS0sxy4/WachR4NjzSovr8Ewzu5B/uzsFEpLq8/q3EiSuFpH4voqM+jHv/JFQgc+x507ifgLv8sJwwt2LPJ9fVV9MMyHG46ydF0ewZDBxRP7cfX0QSR7PVQer+1y35fT6Wjyl/CIJROl1AggQWu9VWtdp5T6G9ZgfLhBtd5YLYl8IKeR8hIgTSnl0lqH7TonWx7H7Hr5Sik3kAKUR+p+hOjKjMoifB8+iVFZICv+NsMwTD7bWcTfVh7keHU9E4Zlcd2FQ2J+Vd9Ii2Q7bDDwnFIqXikVhzXo/iyglFJDlVIuYD6wTGudB/iVUtPsc2+xy4PAKuBGu/xWYJn9eqn9Hvv4Kru+EKIVgoc2Ufv3/43pq8J7xY+Jn3ClJJIz+OJQOb9evIHn391NWlIcP50/gX//1thun0gggi0TrfVSpdS5wBas1shbWuu/KKVKgbeABKyEcHJwfQFW8kkFNgNP2OX3AC8ppR4CjgA32+UPA4uVUjuBSvt8IUQLmUaI+vVvEtz+Hs7swXgvuVe21j2DvKJq3vx0PzsPHycrLYG7rxnN5BE9cUrSPcVhmt1uAeBc4JCMmXQciat1OiIuo/Y4/o+fJly0F8+o2cSffxMOV9OTIbvj91Va6ePvKw+yblcxSQlurrogl4sm9mvR4HpX+74ajJkMAg6fflyegBeimwnl78S//BnMUICEi7+PZ+j50Q4p5lTVBvjX2sN8uuUYLqeDeecPZO55A0lMkB+ZZyLfjBDdhGkYBDb/k8Dmt3Fm5OCdcy+ujL7Nn9iN+OpDvL/+CO9vOEowaDBjXA5XTxtERkp8tEOLeZJMhOgGjLpK/MufJVywG/fwaSRMuxWHR35AnhQMhflk8zHe+SyPGl+QySqbb8wcLAPrrSDJRIguLpT/Bf5P/owZ8JMw6zt41IxohxQzQmGDtV8U8faaQ1RU1TMqN4NvzRrCoJzUaIfW6UgyEaKLMo0QgY3/ILD1XZwZffBe+VPp1rIZpsn63cX8Y9UhSo77GNwnle9cMZKRuT2iHVqnJclEiC7IqCrFt/wZjJIDeNRM4qctwOGWbi3TNNm8t4x/rD7IsdJa+mUncf+3xjJuaKY8W9NGkkyE6GKCB9bjX/kiAAmz/w3PkPOiHFH0mabJjoPl/H3VIfKKqunVI5HvXT2Kc0f2kmdF2okkEyG6CDPgw7/2FUJ7V+PsOQTvxXfjTM2OdlhRZZomuw4f5x+rDnKgoIqstATuvGIk54/phUv2rW9XkkyE6ALCJQfxLX8Gs7qUuAlXETfpGhzO7vu/t2ma7Mo7zj9XH2J//gl6pMZz2+WKaefkdMldDmNB9/3XJkQXYBphAlvfJbDpnziS0vFe+bNuvTe7aZrstpPIvvwTZKTE8+1LhzNjbJ+YXhK+K5BkIkQnZVSV4PvkzxjF+3EPmUrC9FtwxHfP5yJM02Tn4QreXnOY/ZJEokKSiRCdjGmahPQq/J+9Cg5Ht14SxTRNNuwqYsmy3RwsqKJHajy3XDqc6ZJEOpwkEyE6EaPuBP6VLxI+shVXn5EkXPjdbrnSr2GabNlbyjtr88grriYzNYFbL7PGRCSJRIckEyE6ieDBDdSv/h/MoJ/48+fjGTMHh6N7/eAMGwbrd5fw7md5FJTV0jPdywM3jmf0gHQZWI8ySSZCxDjTX4N/zcuEDnyOM3sQ3gvvwpXRJ9phdahgyGDNF4W8t+4IJZU++mYl8b2rRjFlZE9690qLyaXeu5uIJhOl1K+AG+y372qtf6KUmgM8CniB17XWD9l1xwOLgFRgJXC31jqklBoALAF6AhpYoLWuUUqlA69g7ehYCtygtS6K5P0I0dGChzdTv+olzPoa4iZ/09pO1+mKdlgdxlcfYuW2At5ff4TKmgCDclK47+JzGD8sSx42jDERaxfaSeNSYAIwHpiklLoZeAFrC9+RwBSl1Fz7lCXAfVrr4YADuMsuXwgs1FqPADZi7bAI8AjWVr0jgeeAxyN1L0J0NMNfje/jZ/B/8ASOxFQSr/1fxE+8utskkqq6AH9feZCfPL2W15fvp3ePRH5403geunUyE4dnSyKJQZFsmRQCP9RaBwCUUruB4cA+rfUhu2wJcL1Sahfg1Vqvs89dDPxaKbUImAlc26B8BfBTYJ59DOA14CmllEf2gRedXc2ez6hb+mdMfy1xk75htUZc3aNHuqTSxwfrj7B6eyGBkMHE4dnMnTqAIX3Soh2aaEYk94DfefK1UmoYVnfXk1hJ5qRCoB/Q5wzlWUCV1jp0WjkNz7G7w6qAbKCg3W9GiA5g1FVSv/plqg9vwpk1EO8VP8aV2T/aYXWIw0VVvPf5ETbsKcHpcHD+mN5cfu4A+mR1z+dmOqOI/7qjlBoNvAv8GAhhtU5OcgAGVneb2YJy7PKTdRpyNDjWLHsv47OWnZ3SpvMjReJqnViIyzRNqrd9TMXH/4MZCtLj4ltIO++qmOzSas/vyzRNNu0p4e+f7mf7/jISE9x8Y9ZQrp45mMw0b9Tiak/dKa5ID8BPA94CHtRa/0UpNQvIaVClN1ZLIv8M5SVAmlLKpbUO23VOtjyO2fXylVJuIAUob2ls5eU1GMbpeaplsrNTYnL2iMTVOrEQl3GiCP/KxYQL9+DqPRzvzDtJHzYs6nE1pr2+r2AozGc7i/lgw1EKymrJSInnhouGMnNcHxIT3BiBUKs+Jxb+Ozamq8XldDqa/CU8YslEKdUf+Adwo9Z6uV38uXVIDQUOAfOBF7TWeUopv1JqmtZ6DXALsExrHVRKrQJuBF4FbgWW2ddaar//rX18lYyXiM7CDIcIbFtKYMvb4PIQP+N2PCNmdunnRqpqA3y65RjLN+dTVRekf89kvnvlSM4d2UueEekCItky+RGQADyq1KmF554BbsdqrSRgJYQ37WMLgOeUUqnAZuAJu/we4CWl1EPAEeBmu/xhYLFSaidQaZ8vRMwLFWrqV72EUVmAe9Bk4qd9G2dierTDipj80ho+3HCUz3YWEwobjB2SyaVT+jNyYIZsSNWFRHIA/gHggTMcHtdI/W3AuY2U5wEXNlJeAVzdtiiF6DiGv5rA528Q1KtwJGfivfxB3APGRzusiDBMk+37y/lw41F25x0nzu1k+jm9uWRKf3IyZVC9K+oe8w2FiCLTNAjqVdR//gYE/HjGziV+0rU4PF1vG906f4jVOwpZvimfkkofGSnxfGvWYGaN70uy1xPt8EQESTIRIoLCpYfxr3kZo+QArhxF/LRbcfXoG+2w2t2xslqWb85n7RdF1AfCDO2XxjdnDWbi8GwZD+kmJJkIEQGmv4b6DW8S3L0ChzeFhAvvwj3sgi41RhA2DLbuK2P55mPszjuO2+XkvJE9mT25H7m9U6MdnuhgkkyEaEemESa4+1PqN/4NAj48Y+YQP/kbOOISox1auzlRU8/KbQV8urWA49X19Ei1urJmjOtDamJctMMTUSLJRIh2EirYTf3aVzEqjuLKGUH8BQu6zBPspmmyfX8pf/9kP1v2lhI2TEbnZvDtS4YzbmgWTmfXaXGJsyPJRIg2MqpKqF/3OqHDm3AkZ5Iw517cgyZ3iS6tGl+QNTsKWbG1gKKKOpIS3Mye1I8LJ/Sld4+u09oSbSfJRIizZAbqCGx5h8COD8DpspaIH3s5Dnfn7uoxTZO9RytZua2ADXtKCYUNhvRJ5YEbJzCyXypxnthb5kVEnyQTIVrJNEIEd39KYNM/Mf01uIdfQPyU63AmZUQ7tDapqg2w9osiVm6zWiHeeBczxuVw4fi+9O+ZHLPLg4jYIMlEiBYyTZPQ4c0E1v8V40QRrj4jiZ96I66s3GiHdtYMw2Tn4QpWbStgy74ywobJkD6p3HnFSKaM6El8nLRCRMtIMhGiBcJF+/B//jpG8X6c6Tl4L3sA14DxnXZcpKTSx+rthazZUcjx6nqSvR5mT+rHjHF96CvLvouzIMlEiCaEK/IJbHiLUN4WHInp1oKMakZMLg/fHH8gxMY9pazeUcjeo5U4gNGDe3Dz7GGMG5qFxy0PF4qzJ8lEiEYYVSXUb/onoX1rwZNA3JRvETfm0k63BIphmui846z5oohNupT6YJheGV6+OXMwF4zpTY/UhGiHKLoISSZCNGDUVBDY8jbBPavA6cQz9nLix8/DkdC2zdQ6WkFZLZ/tLGLdziLKq+rxxrs4b1Qvpp3Tm6F90zpt95yIXZJMhMDaMjew9V2Cuz8B08QzchZxE67qVDO0TtTU8/nuEj7bWUReUTVOh4PRg3pw3YVDmTAsS6b0ioiSZCK6NaOuksC2ZQR3LQcjjGf4NOImXo0zJTvaobWIrz7E5r2lrNtVzK7DFZgmDOyVwk0XD+W80b1JS+rcz7yIzkOSieiWjNrjlG15g9rNH4IRwj3sAuInXoMztWe0Q2tWIBhm+4Fy1u8uZtuBcoIhg6y0BOadP5Cpo3rTR2ZjiSiIeDKxd05cC1yptT6slJoDPAp4gde11g/Z9cYDi4BUYCVwt9Y6pJQaACwBegIaWKC1rlFKpQOvAIOBUuAGrXVRpO9HdG5GVSmBbUsJ6lVgGriHTSN+wpU403pFO7QmBUMGOw9XsGF3MZv3lVEfCJOa6GHmuD5MHdWLwX1SZRxERFVEk4lS6jzgOWC4/d4LvADMAo4C7yql5mqtl2EljO9qrdcppZ4H7gKeBhYCC7XWf1FKPYy1Xe9PgUew9n2fp5S6BXgcay94Ib4mfPwYga1LCe3/DBxOPMOn03v2DVQGY3d9qVDYYNfhCjbsKWHz3jJ89SES492cO6In543qhRqQjssp03lFbIh0y+Qu4F7gZfv9ucA+rfUhAKXUEuB6pdQuwKu1XmfXWwz8Wim1CJgJXNugfAVWMplnHwN4DXhKKeXRWgcjekeiUwkV7SOw9V3CR7aCKw7P6DnEjZuLMykDT3oKxNjyIMFQmPU7i1i+Po8t+8qoqw/hjXcxcVg2U0b2ZFRuD9lsSsSkiCYTrfV3AZRSJ4v6AIUNqhQC/ZoozwKqtNah08q/ci27O6wKyAYK2v1GRKdiGgahvC0Eti/DKN4P8UnETbwGz5g5OBNSoh3e1/gDIb44WMFGXcL2A+X4A2G88W4mDsti8ggrgcgDhSLWdfQAvBMwG7x3AEYryrHLT9ZpyNHgWLMyM9v23EB2duz9UILuHZcR8FO9/VOqNrxDsKIQd1pPMi69k5Rxs3HGNf5wXrS+rxM19WzYVcRnO4rYsreEYMggNSmOmRP6ccHYHMYOzY7JBNKd/32dje4UV0cnk3wgp8H73lgtiTOVlwBpSimX1jps1znZ8jhm18tXSrmBFKC8pYGUl9dgGKfnqZaJ1dVTu2tcRk05wZ0fE9j9KQTqcGYPJmHOPbhzJxFwuig/EQS+3vvZ0d9X8fE6tu4rY8u+MvblV2KakJESz6xxfZg4PJth/dNwOZ3d9r/j2ZK4Wuds43I6HU3+Et7RyeRzQCmlhgKHgPnAC1rrPKWUXyk1TWu9BrgFWKa1DiqlVmENrL8K3Aoss6+11H7/W/v4Khkv6T5M0yRcuIfgFx8RytsMgHvQZOLOuQxnzyExMbPJMEz2HzvBtgNlbN1XRmF5HQD9spO48vxcJg7PZkCv5JiIVYi26tBkorX2K6VuB94CErASwpv24QXAc/ZU4s3AE3b5PcBLSqmHgCPAzXb5w8BipdROoNI+X3RxZsBHcP9nBHcuxzieb42HjJ2LZ9TFOFOyoh0eNb4gOw9VsP1AGTsOVlDjC+JyOhjeP50LJ/Rl/NAsstO90Q5TiHbXIclEa53b4PXHwLhG6mzDmu11enkecGEj5RXA1e0Zp4hd4bI8gntWENy3FoJ+nJkDiZ95B56h50d1Z0PDNDlaXMP2g+XsOFjOgWMnME1I9no4Z3Am44dlMTq3B4kJ8nyw6NrkX7iIWWbAR/DgeoK7V2CUHgSXG/fgc4kbPRtn9uCodQ9V1QXYdaiCL+w/VbUBAAb2TmHe+bmMG5LJoJxUnE7pvhLdhyQTEVNM08Qo3k9QryR4YD2E6nFm9CH+ggVWKyQKq/cGQ2H2H6ti56EKdh6q4EhxNSZW62NUbgbnDM5kzOBMWQdLdGuSTERMMGrKCe5dQ3DfGswTxeCOxzPkPDwjZnb4gLphmBwpqWb34ePsOlzBvvwTBEIGLqeDIX3TuHbGIMYMzmRgrxRpfQhhk2QiosYM1BE6uJHgvrWECzVg4spReMZfiXvQZBxxHTNQbZgmBaW17D5ynD15x9FHKqmrt56T7ZuVxMzxfRg1sAdqQDreePlfRojGyP8ZokOZoQChI9sI7V9H6Og2CIdwpPUibtK1eIad3yGr9hqmSX5JDZ/tKWHTrmL2Hq2kxmfNKs9KS2CSymbkwAxGDMwgPblz7awoRLRIMhERZ4QCBA9vJnRwA6G8LRD04/Cm4hlxoZVAIjyYHgwZHC6qYl/+CfYerWRf/gl8dssjKy2BcUMyUQMyGDEwnaw0mbYrxNmQZCIiwgz6CR3dQejQJvKObsMM+CA+Cc/gc3EPnYorZwSOCK14W1Ub4MCxE+wvOMH+/BMcKqwmFLZW2undI5EpI3oyvH8a54/vhyMUjkgMQnQ3kkxEuzHqThA6spXQ4c2Ej+2CcBBHQgrJIy8g1HcCrj4jcDjb959cKGyQX1rDgWNVHCw4wYFjVZRU+gBwOR3k9k5h9qS+DOuXztC+aaQ2mHGVnZEYk8tdCNEZSTIRZ800TYzyI9YYyJFtGCUHARNHciaeEbNwD5qEq/dwsnult8sPbcM0Ka6o43BhNYcKqzhUWEVecc2pVkdaUhxD+qYxa3wfhvZLI7d3Ch637HsuREeQZCJaxfTXEDq2i9DRHYTzd2DWVQLgzB5M3KRrcedOwNmjf5vHQAzDpPh4HXnF1eQV2X+Kq/HVW91ScR4nA3tZrY7BfdIYlJNCZmqCrHMlRJRIMhFNMkMBwsX7CR/bRejYTozSw4AJcYm4+43B3f8cXP3PwZmYftafUR8MU1BWy5Hiao6U1HC0uIajJTXUB63E4XY56d8zmamjepPbO4VBOankZCXKLoNCxBBJJuIrzFA94ZKDhAv2EC7cQ7j4ABghcLhw9RpC3KRrcPcdjbPnYBzO1nUhGYZJSaWPY6U1HCutJb+0hqOltZRU1J3atMYb76JfdjIzxuYwoFcKA3ol0ycrSXYXFCLGSTLp5oy6E1bLo3gf4eL9GKWHwAgDDpyZA/CMmYO7z0hcvYe3+CHCUNig+LiPwrJaCstrqagJcvBYJYXldafGNxxAdrqXfj2TmTqqF/2ykxnQK5msNOmqEqIzkmTSjZhBP+GyPIzSw4RLDhAuPYhZXWYddLpxZucSd85luHIUrl5DccQnnfFahmlSWV1P8XEfxRV1FFXUnfq7tNKPYX658Vh2hpfeGYmMys2gT1YS/bKT6ZOZRHycDI4L0VVIMumiDF8VRvlRjPIjhMvzMMqOYFQWcnIXZEdSD1y9huAaPRtXz6E4s3NxuDxfuUZ9IExZlZ+ySh9lJ/yUHPdRWmn9Kan0EQx9uUuyx+2kZ4aX/j2TmTKyFzk9EsnJSqR3j0T6982QKbhCdHGSTDox0zQxfVUYJ4owjh+jrL6MuoLDGBX5mL6qU/UcST1wZg4gbsi5uLJzcWblQkIaVXUBjlfXU3HCT/nRIiqq/JRX+Sk/Yf1dXffVjSvjPE56pnvpmeHlnMGZ9Mzwnmp1ZKTG45TuKSG6rU6dTJRS84GHAA/wJ631U1EOqd2ZRhizrhKjugyzqgSjqgSjqhSjqhjjRBEEfKfqBjwJkJZDqPcYfN5eVHl6UubKoqLeTWVtgBN5ASp31lNZs5PK6sBXuqIA4txOeqQmkJmWwIBeKWSlJZCVnkBWmpfstARSk+JkPEMI0ahOm0yUUn2B3wCTgHpgrVLqE631ruhG1jJmOIRZX4Ppqzr1x6ittBJH3XHC1RWYtcfBV4nD/LI7ycSB35NGjTuDSreizJVOUSiZI/5UCmri8BcbDT7FBxwFICnBTXpyPOnJcfQekEFGSjw9UuLJSEkgIyWezLQEkhLckiyEEGel0yYTYA6w3N6+F6XUm8B1wP+J5Ice2bWDvJpy6nz1YBrWzCczDOGwNYU2HMJhBHCEAjjCARzhelxhP66Q9bfb8BNn+PCYwUavX2+6qTK8HDeSqDTSqTT6Um4kczycRIWRTIWRRBgX8XEuUrwekrwekhM99MzyMCYzCTeQmhRHamIcqUlxpCVZf3vcMrVWCBE5nTmZ9Pn/7d17kJV1Hcfx99mzF3aXZbi4SeFlzPJrdkOxvOFEIzZNOpMN0sVIHVuBSaeZBnQcwUmosYsBhhY2KsLgkCRdjBgdMigJUzPd0MxvjIGTSo1jhUGwy2X74/c79bCes+zynH2es+3nNcPAczm7X77Pb5/v/p7L7wfsTCzvpMwc8pWMG3d0M/a9tnkpIwr7GXuE/bp66unuqaerp56unga6Co10MYLuwii66prpLrZwoNjMgYaRHGxs41DTSGgZTWNLK81N9bQ0NTCmuZ4JTaFgtDbX09rcQFtLI63NDUPuvYv29ra8QyhLcQ2M4hqY4RTXUC4mdUDyon8BOFRh3zd5/fXdHDrUc+Qde2ma/nWKPfvY9UYXhQIUivUU6ooU6ooUGxqpa2ikrr6BlmKRUcUCxWKhqm9qd+/tpntvd9lt7e1tNfnUlOIaGMU1MIprYI42rrq6Qp+/hA/lYvIycH5ieTzw6mB/01Fjx9VsIxERyctQLiaPADebWTuwB5gGzMw3JBGR4WloXXhPcPdXgHnAJqATWO3uT+YblYjI8DSUeya4+2pgdd5xiIgMd0O2ZyIiIrVDxURERFJTMRERkdSG9D2To1SE8Mx0Gmk/P1gU18AoroFRXAPz/xRX4jNl544o9PQM/MW9IW4ysDnvIEREhqjzgV/3Xjkci0kT8AHC8CsHc45FRGSoKAJvBX5LGFz3MMOxmIiISJXpBryIiKSmYiIiIqmpmIiISGoqJiIikpqKiYiIpKZiIiIiqamYiIhIasNxOJWjZmaXAfOBBuA2d/9OjrF8GfhkXFzv7teb2b2EN/z3xPUL3P3HGce1CXgLsD+umgWcTI55M7MO4NrEqpOAVUArOeXLzEYBjwEXu/sOM5sKLAaagTXuPj/uNxG4GxgFPArMdvcDGcY1E/giYYrsp4BZ7t4d299VyTdIWgAABg1JREFUwD/iR+8azONaJq6ybb1SHrOICzgNuCWxeQLwhLtfnGW+KpwbBr196aXFfjKzCYQhBCYR3v58DPiMuz+fQyxTgQXAhwk/5A8DdwALgY+4+86sY4pxFQjTKZ9YapC1lLcYz7uBnwDnECZWyzxfZnYWcBdwKnAK8DfAgQ8BfwHWE4ruQ2b2HNDh7o+b2T3AU+6+LKO4GmMsk4B/ASuATndfYmbrgFvc/TeDEUtfccVi8iy9jp2ZNVMhj1nFldg2HtgCfNTdt2WVrwrnhruBbzDI7UuXufpvKrDR3f/u7nuAtcClOcWyE5jj7t3uvh/4I3BC/LPczLaa2QIzy/r4Wvx7g5n93syupbbyBrAMuBH4N/nl62rgGuDVuPxBYJu7b49F+D5gupmdCDS7++NxvxXA9Azj6gK+4O5vuHsP8CwhZwBnAjfG3N1hZiOyisvMWih/7MrmMau4erkVuNPdt8XlrPJV7txwChm0LxWT/nsb4UCV7ASOyyMQd/9DqQGY2TsJXdqHgY2ErvTZhMHYPp9xaGOAXwCfAC4AZhN+6Gsib/G3tmZ3fwAYT075cvcOd08ONlqpbWXa5nrH5e4vufvPAcysnXCp8EEzGwk8A1wHnAGMBm7KKi4qH7tc81USfyanAEvjcmb5qnBuOEQG7Uv3TPqvjtBtLCkQDlJu4iWb9cB17u6Ek3hp2+3A5YRueCZiF/6/3fjYbV4MfDWxW555m0WIB3f/MznnK6FS26qJNhcvVT4E3OPuv4yrP5bYvghYDszLIp4+jt1aaiBfwEzgu+7eBeDuu8k4X8lzA3CA0DspGZT2pZ5J/71MGDGzZDzlu7eZMLPzCL2AG9x9pZm918ymJXYp8L+b4FnFNNnMLugVww5qIG9m1ki4ZvzTuJx7vhIqta3c25yZnUq4z7XS3b8S151gZlcldss0d30cu9zzFV0C3F9ayDpfvc8NZNS+1DPpv0eAm2N3fw8wjfAbSObM7HjCTeRPufvGuLoA3GZmG4HdMbaVGYc2GlhoZucSnty6ApgB3FcDeXsf8Kd43wZqI18lTwBmZu8AtgOXAcvd/SUz22dm57n7FuBzhB5CJsysDdgAzHP3VYlNe4Fvxif3dhDuG2T51GClY1c2jxnGhZkdQ7iUuj2xOrN8VTg3ZNK+1DPpJ3d/hdAt3QR0Aqvd/cmcwpkLjAAWm1mnmXUC5wJfIzxB8jzhqZvvZxmUu/+M0LV+BvgdocFuoTby9nbCb2KlWLeSc74SsewDrgR+GGN5gXDJBuCzwBIzewEYSbwOn5EO4FhgTqmdmdlCd3+NcMlwHeHpqQKwKKugKh27I+QxK4e1M4CM81Xu3HAlGbQvPRosIiKpqWciIiKpqZiIiEhqKiYiIpKaiomIiKSmYiIiIqmpmIhUiZmdYWa7zOzMxLpjzOxFM7uozP47kvtW+JorzGzuAOOYEgfwE8mMiolIlbj708D1wANmNsbM6oEfEN63WZ9vdCKDS2/Ai1SRu3/PzCYT3rx+Efgnh89x8SZxxNslhEEL2wgvtXXEFz4BJpvZpYQ5JzYAc939gJm9C/g2MA4oAkvdPdM3vkVK1DMRqb7ZwHsIQ+1fHodv78tZhBFcz3H30whDg9yQ2H4cYRTmicD7gatjr2ctYfylSYRxx+aa2dlV/Z+I9JOKiUj1GaGHMZowsVSf4mjL84FZZvYtQhEamdhllbvvcfduwlwUFxJGgT2ZMKdHJ/Arwix6p1fzPyLSX7rMJVJFcaC/HwFfIoyRdL+Zne7uf+3jMxcRLlctAh4kjJ00I7HLwcS/6wgjzhaBXe4+MfF1jgV2ES6XiWRKPRORKjGzIrAGWBcHHryXMGnZmritkgvjZ5YR5lm/hFAsSj5tZk1xdr4rCCO7OrDXzGbE73088Bz96AmJDAYVE5HquRVoBeYk1l0DjKXvm/B3AlPivOZPE27cn5SYRng7sJkwGvOjhLlFuoGPAx1mtpVwY/6mxE17kUxp1GAREUlNPRMREUlNxURERFJTMRERkdRUTEREJDUVExERSU3FREREUlMxERGR1FRMREQktf8A6a884NNyo6YAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -63,10 +63,12 @@ } ], "source": [ - "x = np.linspace(0, 2, 100)\n", - "plt.plot(x, x, label='line')\n", - "plt.xlabel('x label')\n", - "plt.ylabel('y label')\n", + "x = np.linspace(0, 200, 100)\n", + "plt.plot(x, x*x, label='Raf Line')\n", + "plt.plot(x, x*x*2, label='Raf Line 2 ')\n", + "\n", + "plt.xlabel('X label')\n", + "plt.ylabel('Y label')\n", "plt.title(\"Simple Plot\")\n", "plt.legend()\n", "plt.show()" @@ -81,33 +83,34 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 30, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEGCAYAAACD7ClEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1STd74u8IdACHcRSAC5iwgUBRmpWlpFO1YQpTLoeKn11s7Umek4s53ZtDO1q652nS6dvV3Hddbqmb12Zwm2ap3qWMejQoR6tzBVsWqtSRS5I5BwkVsuJOQ9f8xsqrVVCYGXkOfzV0NiePrjR55vXpI3LoIgCCAiIqckETsAERGJhyVAROTEWAJERE6MJUBE5MRYAkRETowlQETkxJ6oBHp6erB48WI0NDQAAMrKypCTk4MFCxZg586dA7dTqVTIy8tDZmYmtmzZAovFMjypiYjILh5bAteuXcOqVatQU1MDADAajXjrrbfw5z//GUVFRbhx4wbOnj0LAMjPz8c777yDEydOQBAEHDhwYFjDExHR0Dy2BA4cOICtW7dCoVAAAK5fv46oqChERETAzc0NOTk5UCqVaGxshNFoxLRp0wAAeXl5UCqVw5ueiIiGxO1xN3j//fcfuKzVaiGXywcuKxQKtLS0PPR1uVyOlpYWO0YlIiJ7G/Qfhq1WK1xcXAYuC4IAFxeXH/w6ERGNXoMugZCQEOh0uoHLOp0OCoXioa+3trYOHEIiIqLR6bGHg74rJSUF1dXVqK2tRXh4OI4dO4alS5ciLCwMMpkMFRUVmD59Oo4cOYI5c+bYFKqjoxdWK89rN1SBgT5oa+sRO8aYwfW0L67n0PVbrfjyphY5GZNsvo9Bl4BMJsP27duxadMmmEwmZGRkICsrCwCwY8cOvP322+jp6UFSUhLWrl1rUyirVWAJ2AnX0b64nvbF9bRdbXM3CopUMJn7h1QCLqPxVNJtbT3cHHYgl/tCp+sWO8aYwfW0L66nbcwWK46WVaOovA6+XlK8tiQJc6ZH2nx/g34mQERE4qhu6kLBcRUaW3uRPiUEK38cBz9v9yHdJ0uAiGiUM1v68fcL1VB+WQd/Hxn+7afJSI4Nsst9swSIiEaxysZOFBap0NSmx5yUUCyfFwcvD/s9dLMEiIhGIZO5H4fPVaH0Uj0C/GT4/YppSIoJsPv3YQkQEY0ymroOFBaroe0wYF5qGJbNjYWnbHgerlkCRESjhLHPgkNnqnDySgPk/h7IX5WKxKjxw/o9WQJERKOAqqYdhcVqtHUaMT8tHEvnxELm7jrs35clQEQkIoPJgoOnK3Hm6l0Ej/fEm6t/hMkR/iP2/VkCREQiuVHdho+K1WjvNiFzRgRyZ0+ETDr80//9WAJERCNMbzTjr6cqceF6E0IDvfDWy9MRGzZOlCwsASKiEXStshUfn9DgXo8J2bOisOS5aEjdRnb6vx9LgIhoBPQYzNj/+W2Uf9OMMLk3fp03FTGhfmLHYgkQEQ23K7d02HNCgx6DGTnp0VicHg2p26A/zmVYsASIiIZJt74P+0pv4aJKi0iFDzYvT0FksK/YsR7AEiAiGgaX1FrsLdFAb7Qgd3YMsmdFwc11dEz/92MJEBHZUWdvH/aWaFCh0SE6xBf5KxMRrvARO9YPYgkQEdmBIAj4x80WfFJ6CyazFUszJiJrZiRcJaNv+r8fS4CIaIju9ZjwsVKDq5WtiJ3ghw3ZiZgQ5C12rCfCEiAispEgCCi70Yz9n9+Gud+K5fMmYcHTEZBIXMSO9sRYAkRENmjvMuLjExpcv9OGuPBxeCU7EcEBXmLHGjSWABHRIAiCgHPX7uLTU5WwCgJemh+H56eHQ+LiONP//VgCRERPqPWeAbuVatys6UBCpD/WZydC4e8pdqwhYQkQET2GVRBw+koj/nbmDuACrMmMR8a0CQ47/d+PJUBE9AjaDj0Ki9TQ1N9DUvR4rFuYgKBxjj39348lQET0PayCgJOXG3Do7B24urpg/cIEzE4OhcsYmP7vxxIgIvqO5nY9CopUqGzoRHJsINZmxiPAz0PsWMOCJUBE9C9Wq4CSS/U4fL4KUlcJXl2UiPQpIWNu+r8fS4CICEBjay8Ki1SoutuF1LggrMmMh7+PTOxYw44lQEROrd9qhfLLOhy5UA0PdzdsfDEJMxIVY3r6vx9LgIicVr22BwXHVaht6UZavByrF8RjnLe72LFGFEuAiJyOpd+K4+W1OFZWAy8PN/wqdwrSEhRixxIFS4CInEptczcKilSo1/Zg5lPBeGl+HHy9nGv6vx9LgIicgtlixdGyahSV18HXS4pNeVOROlkudizRsQSIaMyrbupCwXEVGlt78eyUEKycHwdvD6nYsUYFlgARjVlmSz/+fr4ayot18PeR4d9+mozk2CCxY40qLAEiGpMqGzpRUKRCc7sec1JCsXxeHLw8+JD3XUNakSNHjuDDDz8EAMyZMwdvvvkmVCoVtmzZgt7eXqSlpeHdd9+FmxsXnohGhsncj8PnqlB6qR4BfjL8bkUKpsQEih1r1LL5E5ANBgPef/997NmzB0eOHMHly5dRVlaG/Px8vPPOOzhx4gQEQcCBAwfsmZeI6Afdqr+HrQUXUXKpHnNTw/DeqzNZAI9hcwn09/fDarXCYDDAYrHAYrHAzc0NRqMR06ZNAwDk5eVBqVTaLSwR0fcx9lmwr+QWtu+7AqtVQP6qVKzJjIenjEchHsfmFfLx8cFvf/tbLFy4EJ6ennj66achlUohl3/7kiu5XI6Wlha7BCUi+j6qmnYUFqvR1mnE/OnhWJoRC5m7q9ixHIbNJaBWq3Ho0CGcPn0avr6++Pd//3d88cUXD5xvQxAEm86/ERjoY2ss+g653FfsCGMK19O+hrKeeqMZhcduQlleg9Agb2x7/TkkTeShn8GyuQQuXLiAZ555BoGB/1z0vLw87Nq1CzqdbuA2ra2tUCgG/1bstrYeWK2CrdHoX+RyX+h03WLHGDO4nvY1lPW8Ud2G3cVqdHSZkDkjArmzJ0ImdXXKn49E4jKkwdnmvwkkJCSgrKwMer0egiDg1KlTmDFjBmQyGSoqKgD889VDc+bMsTkcEdH99EYzCopU+N+fXoNM6oq31kzHiufjIJPy8I+tbH4m8Nxzz+HmzZvIy8uDVCrF1KlT8dprr+GFF17A22+/jZ6eHiQlJWHt2rX2zEtETupaZSs+PqFBZ08fsmdFYclz0ZC68cF/qFwEQRh1x114OMg+ePjCvrie9vWk69ljMGP/57dR/k0zwuTeeCU7ETGhfiOQ0DEM9XAQXz9FRKPWlVs67DmhQY/BjJz0aOQ8Gw03V5uPYtP3YAkQ0ajTre/DvtJbuKjSIlLhg83LUxAZzFdmDQeWABGNKpfUWuwt0UBvtCB3dgyyZ0Vx+h9GLAEiGhU6e/uwt0SDCo0O0SG+yF+ZiHAF3zM03FgCRCQqQRDwj5st+KT0FkxmK5ZmTETWzEi4Sjj9jwSWABGJpqPbhD0nNLha2YrYCX7YkJ2ICUHeYsdyKiwBIhpxgiDg5KU6fHj4a5j7rVg+bxIWPB0BiWTwp5mhoWEJENGIau8y4iOlBl9XtSEufBw2ZCciJMBL7FhOiyVARCNCEAScv96ET0/dRr9VwGu5UzEjPggSG04ySfbDEiCiYdd6z4DdSjVu1nQgIdIf67MTkRSn4DuwRwGWABENG6sg4MxXjTh45g4AYE1mPDKmTeD0P4qwBIhoWGg79NhdrIa67h6SYgKwPisBgeM8xI5F38ESICK7sgoCTl5uwKFzd+AqccH6hQmYnRxq0wdM0fBjCRCR3TS361FYpMLthk5MnRiIdVnxCPDj9D+asQSIaMisVgEll+px+HwVpK4SvLooEelTQjj9OwCWABENSWNrLwqOq1Dd1IXUuCCsyYyHv49M7Fj0hFgCRGSTfqsVyi/rcORCNTzc3fDai09hZmIwp38HwxIgokFr0PZgV5EKtc3dSEtQ4OUXJsPP213sWGQDlgARPTFLvxVF5bU4WlYDbw83/Cp3CtISFGLHoiFgCRDRE6lt7kZBkQr12h7MeioYq+bHwdeL07+jYwkQ0SOZLVYcLatGUXkdfL2k2JQ3FamT5WLHIjthCRDRD6pu6kLBcRUaW3vx7JQQrPhxHHw8pWLHIjtiCRDRQ8yWfvz9fDWUF+vg7yPDv/00GcmxQWLHomHAEiCiB1Q2dqLguArN7XrMSQnF8nlx8PLgQ8VYxZ8sEQEATOZ+HD5XhdJL9Qjwk+F3K1IwJSZQ7Fg0zFgCRIRb9fdQUKSCtsOAealhWDY3Fp4yPjw4A/6UiZyYsc+CQ2eqcPJKA+T+HshflYrEqPFix6IRxBIgclKqmnYUFqvR1mnE/OnhWJoRC5m7q9ixaISxBIicjMFkwcHTlThz9S6Cx3vizdU/wuQIf7FjkUhYAkRO5EZVG3Yr1ejoMiFzRgRyZ0+ETMrp35mxBIicgN5oxl9PVeLC9SaEBnrhrTXTERs2TuxYNAqwBIjGuGuVrfhIqUZnbx+yZ0VhyXPRkLpx+qd/YgkQjVE9BjP2f34L5d+0IEzujU1LkxET6id2LBplWAJEY9CVWzp8fEKDXoMZOenRWJweDambROxYNAqxBIjGkG59H/aV3sJFlRaRCh/8bnkKIoN9xY5Fo9iQSuDUqVP44IMPYDAY8Oyzz+Ltt99GWVkZtm3bBpPJhIULF2Lz5s32ykpEj3BJrcXeEg30RgtyZ8cge1YU3Fw5/dOj2VwC9fX12Lp1Kw4ePIjAwECsW7cOZ8+exdatW7Fnzx6EhoZi48aNOHv2LDIyMuyZmYju09nbh70lGlRodIgO8UX+ykSEK3zEjkUOwuYSKC0tRXZ2NkJCQgAAO3fuRG1tLaKiohAREQEAyMnJgVKpZAkQDQNBEPCPmy34pPQWTGYrls2NReaMCLhKOP3Tk7O5BGprayGVSvGLX/wCTU1NmDt3LuLi4iCXf/uJQwqFAi0tLXYJSkTf6ug2Yc8JDa5WtiJ2gh9eWZSI0EBvsWORA7K5BPr7+3H58mXs2bMHXl5e+OUvfwkPDw+4uLgM3EYQhAcuE9HQCIKAL75uxl9P3oa534oVz0/CC2kRkEj4e0a2sbkEgoKC8MwzzyAgIAAAMH/+fCiVSri6fvsmFJ1OB4VCMej7Dgzk8Ux7kcv5yhB7EnM9dR0G/N+/XcUVtRZJEwPxm+XTMEHu2L8r3J/is7kE5s2bhzfffBNdXV3w9vbG+fPnkZWVhQ8//BC1tbUIDw/HsWPHsHTp0kHfd1tbD6xWwdZo9C9yuS90um6xY4wZYq2nIAg4d+0uPj1VCasg4KX5cXh+ejgkEBz658v9aR8SicuQBmebSyAlJQU/+9nP8NJLL8FsNuPZZ5/FqlWrMHHiRGzatAkmkwkZGRnIysqyORyRs2u9Z8BupRo3azqQEOmP9dmJUPh7ih2LxhAXQRBG3cjNZwL2wUnLvkZyPa2CgLNfNeLAmTsAgOXzJiFj2gRIxtDf2Lg/7UO0ZwJENDy0HXrsLlZDXXcPSdHjsW5hAoLGcfqn4cESIBolrIKAk5cbcOjcHbhKXLBhYQKeSw7lK+xoWLEEiEaB5nY9CopUqGzoRHJsINZmxiPAz0PsWOQEWAJEIrJaBZRcqsfh81WQukrw6qJEpE8J4fRPI4YlQCSSxtZeFBapUHW3C6lxQViTGQ9/H5nYscjJsASIRli/1Qrll3U4cqEaHu5ueO3FpzAzMZjTP4mCJUA0ghq0PdhVpEJtczfSEhRY/cJkjPN2FzsWOTGWANEIsPRbUVRei6NlNfD2cMOvcqcgLWHwp1QhsjeWANEwq23uRkGRCvXaHsx6Khir5sfB14vTP40OLAGiYWK2WHG0rBpF5XXw9ZJiU95UpE6WP/4fEo0glgDRMKhu6kLBcRUaW3uRPiUEK38cBx9PqdixiB7CEiCyI7OlH38/Xw3lxTr4+8jw22XJSJkUJHYsoh/EEiCyk8qGThQUqdDcrsfs5FCseD4OXh78FaPRjTuUaIhM5n4cPleF0kv1CPCT4XcrUjAlJlDsWERPhCVANASaug4UFquh7TBgbmoYfjo3Fp4y/lqR4+BuJbKBsc+CQ2eqcPJKA4LGeSB/VSoSo8aLHYto0FgCRIOkqmlHYbEabZ1GzJ8ejqUZsZC5uz7+HxKNQiwBoiekN5rxsVKNM1fvIni8J95c/SNMjvAXOxbRkLAEiJ7Ajao2fFxyC22dBmTOiEDu7ImQSTn9k+NjCRA9gt5oxl9PVeLC9SZEBPvgrTXTETthnNixiOyGJUD0A65WtuJjpRpdvWZkz4rCq7lT0XlPL3YsIrtiCRB9R4/BjP2f30b5N80Ik3tj09JkxIT6wZ2Hf2gMYgkQ3efKLR32nNCgx2DGi89GY3F6NNxcJWLHIho2LAEiAF36PnxSegsXVVpEKnyweXkKIoN9xY5FNOxYAuT0Lqm12Fuigd5oQe7sGGTPiuL0T06DJUBOq7O3D3tLNKjQ6BAV4ov8lYkIV/iIHYtoRLEEyOkIgoAvb7bgk89vw9jXj2VzY5E5IwKuEk7/5HxYAuRU7vWY8LFSg6uVrYid4IcN2YmYEOQtdiwi0bAEyCkIgoCyG83Y//ltmPutWPH8JLyQFgGJxEXsaESiYgnQmNfeZcRHSg2+rmpDXPg4vJKdiOAAL7FjEY0KLAEaswRBwLlrd/HpqUpYBQEvzY/D89PDIXHh9E/0P1gCNCa13jNgt1KNmzUdSIj0x/rsRCj8PcWORTTqsARoTLEKAs581YiDp+8ALsCaBZORkRrG6Z/oB7AEaMzQduixu1gNdd09JEWPx7qFCQgax+mf6FFYAuTwrIKAk5cbcOjcHbhKXLB+YQJmJ4fChdM/0WOxBMihNbfrUVCkQmVDJ5JjA7E2Mx4Bfh5ixyJyGEMugT/96U/o6OjA9u3boVKpsGXLFvT29iItLQ3vvvsu3NzYM2R/VquAkkv1OHy+ClJXCV5dlIj0KSGc/okGaUjvky8vL8fhw4cHLufn5+Odd97BiRMnIAgCDhw4MOSARN/V2NqL9/dU4MDpSkyJCcD/+vlMPDuVh3+IbGFzCdy7dw87d+7EL37xCwBAY2MjjEYjpk2bBgDIy8uDUqm0T0oiAP1WK46V1eDdwovQ3TPgtRefwq/zpsLfRyZ2NCKHZfOxmnfeeQebN29GU1MTAECr1UIulw9cL5fL0dLSMvSERAAatD3YVaRCbXM30uLlWL0gHuO83cWOReTwbCqBgwcPIjQ0FM888ww+++wzAIDVan3g6bggCHx6TkNm6beiqLwWR8tq4OXhhl/lTkFagkLsWERjhk0lUFRUBJ1OhyVLlqCzsxN6vR4uLi7Q6XQDt2ltbYVCYdsva2Agz+luL3K543461p2Ge/g/n36F6rtdmJMahtdyp2KcyId+HHk9RyOup/hsKoHCwsKB//7ss89w8eJFbNu2DYsXL0ZFRQWmT5+OI0eOYM6cOTaFamvrgdUq2PRv6VtyuS90um6xYwya2WLF0bIaFJXXwtdLik15U5E6WY4+Qx90hj7Rcjnqeo5WXE/7kEhchjQ42/X1mzt27MDbb7+Nnp4eJCUlYe3atfa8e3IC1U1dKDiuQmNrL9KnhGDlj+Pg4ykVOxbRmOUiCMKoG7n5TMA+HGnSMlv68fcL1VB+WQd/HxnWZcUjOTZI7FgPcKT1dARcT/sYVc8EiGxR2diJwiIVmtr0mJMSiuXz4uDlwa1JNBL4m0aiMZn7cfhcFUov1SPAT4bfr5iGpJgAsWMRORWWAIlCU9eBwmI1tB0GzE0Nw0/nxsJTxu1INNL4W0cjythnwaEzVTh5pQFB4zyQv3IaEqM5/ROJhSVAI0ZV047CYjXaOo2YPz0ceRkT4eHOLUgkJv4G0rAzmCw4eLoSZ67eRfB4T7y5+keYHOEvdiwiAkuAhtmNqjZ8pFSjvduEzBkRyJ09ETKpq9ixiOhfWAI0LPRGM/56qhIXrjchNNALb708HbFh48SORUTfwRIgu7tW2YqPlGp09ZqRPSsKS56LhtSN0z/RaMQSILvpMZix//PbKP+mGWFyb2xamoyYUD+xYxHRI7AEyC6u3NJhzwkNegxm5KRHY3F6NKRuQ/rgOiIaASwBGpJufR/2ld7CRZUWEQofbF6egshgnh6YyFGwBMhml9Ra7C3RQG+0IHd2DLJnRcHNldM/kSNhCdCgdfb2YW+JBhUaHaJCfJG/MhHhCn4QEJEjYgnQExMEAV/ebMG+0lswmfuxNGMismZGwlXC6Z/IUbEE6Il0dJuw54QGVytbETvBDxuyEzEhyFvsWEQ0RCwBeiRBEFB2oxn7P78Nc78Vy+dNwoKnIyCRuIgdjYjsgCVAP6i9y4iPlBp8XdWGyeHjsCE7EcEBXmLHIiI7YgnQQwRBwLlrd3HgdCX6rQJemh+H56eHQ+LC6Z9orGEJ0ANa7xmwW6nGzZoOJET6Y312IhT+nmLHIqJhwhIgAIBVEHDmq0YcPHMHALBmwWRkpIZx+ica41gCBG2HHruL1VDX3UNS9HisW5iAoHGc/omcAUvAiVkFAScvN+DQuTtwlbhg/cIEzE4OhQunfyKnwRJwUs3tehQUqVDZ0Ink2ECszYxHgJ+H2LGIaISxBJyM1Sqg5FI9Dp+vgtRVglcXJSJ9SginfyInxRJwIo2tvSg4rkJ1UxdS44KwJjMe/j4ysWMRkYhYAk6g32qF8ss6HLlQDQ93N2x8MQkzEhWc/omIJTDW1Wt7UHBchdqWbqTFy/Hygnj4ebuLHYuIRgmWwBhl6bdif4kGn5Zq4OXhhl/lTkFagkLsWEQ0yrAExqDa5m4UFKlQr+3BzKeC8dL8OPh6cfonooexBMYQs8WKo2XVKCqvg6+XFFs2zEBsMD/shYh+GEtgjKhu6kLBcRUaW3uRPiUEK38ch5jIAOh03WJHI6JRjCXg4MyWfvz9QjWUX9bB30eG3y5LRsqkILFjEZGDYAk4sMrGThQWqdDUpseclFAsnxcHLw/+SInoyfERwwGZzP04fK4KpZfqEeAnw+9XTENSTIDYsYjIAbEEHIymrgOFxWpoOwyYlxqGZXNj4Snjj5GIbDOkR48PPvgAxcXFAICMjAy88cYbKCsrw7Zt22AymbBw4UJs3rzZLkGdnbHPgkNnqnDySgPk/h7IX5WKxKjxYsciIgdncwmUlZXhwoULOHz4MFxcXPCzn/0Mx44dw44dO7Bnzx6EhoZi48aNOHv2LDIyMuyZ2emoatpRWKxGW6cR86eHY2lGLGTurmLHIqIxwOYSkMvl+MMf/gB393++CSk2NhY1NTWIiopCREQEACAnJwdKpZIlYCODyYKDpytx5updKMZ74s3VP8LkCH+xYxHRGGJzCcTFxQ38d01NDYqLi/Hyyy9DLpcPfF2hUKClpWVoCZ3Ujeo27C5Wo6PbhMwZEcidPREyKad/IrKvIf9F8fbt29i4cSPeeOMNuLq6oqamZuA6QRBsOlNlYKDzvsu1x2BGwf+7gdKLdQhX+OCP62cgIcr2V/7I5b52TEdcT/vieopvSCVQUVGB3/zmN3jrrbewaNEiXLx4ETqdbuB6nU4HhWLwJy1ra+uB1SoMJZpDulbZio+UanT29iF7VhSWPBcNqZurze/6lct9+Y5hO+J62hfX0z4kEpchDc42l0BTUxNef/117Ny5E8888wwAICUlBdXV1aitrUV4eDiOHTuGpUuX2hzOWfQYzNj/+W2Uf9OMMLk3Ni1NRkyon9ixiMgJ2FwCu3btgslkwvbt2we+tnLlSmzfvh2bNm2CyWRCRkYGsrKy7BJ0rKrQ6LCnRINegxk56dFYnB4NqZtE7FhE5CRcBEEYdcddnOFwUJe+D5+U3sJFlRaRCh+8sigRkcH2PT7Kp9v2xfW0L66nfYh2OIhsd0mtxd4SDfRGC3JnxyB7VhTcXDn9E9HIYwmMoM7ePuwt0aBCo0N0iC/yVyYiXOG8r4QiIvGxBEaAIAj4x80WfFJ6CyazFUszJiJrZiRcJZz+iUhcLIFh1tFtwp4TGlytbEXsBD9syE7EhCBvsWMREQFgCQwbQRBQdqMZ+z+/DXO/FcvnTcKCpyMgkQz+zXNERMOFJTAM2ruM+EipwddVbYgLH4cN2YkICfASOxYR0UNYAnYkCALOXbuLA6cr0W8V8NL8ODw/PRwSG06dQUQ0ElgCdtJ6z4DdSjVu1nQgIdIf67MTofD3FDsWEdEjsQSGyCoIOPNVIw6euQMAWJMZj4xpEzj9E5FDYAkMgbZDj8IiNTT195AUPR7rFiYgaBynfyJyHCwBG1itAk5WNODQuTtwlbhg/cIEzE4Otem02UREYmIJDFJTWy8Ki9SobOxEcmwg1mbGI8DPQ+xYREQ2YQk8IatVQMmlehw+XwWpqwSvLkpE+pQQTv9E5NBYAk+gsbUXBcdVqG7qQmpcENZkxsPfRyZ2LCKiIWMJPEK/1Qrll3U4cqEaHu5u2PhiEmYkKjj9E9GYwRL4AQ3aHuwqUqG2uRtp8XKsXhCPcd7uYsciIrIrlsB3WPqtKCqvxdGyGnh5uOFXuVOQljD4z0kmInIELIH71DZ3o6BIhXptD2Y9FYxV8+Pg68Xpn4jGLpYAALPFiqNl1Sgqr4OvlxSb8qYidbJc7FhERMPO6UuguqkLBcdVaGztRfqUEKz8cRx8PKVixyIiGhFOWwJ95n4cuVAN5cU6+PvI8NtlyUiZFCR2LCKiEeWUJVDZ0ImCIhWa2/WYnRyKFc/HwcvDKZeCiJycUz3ymcz9OHyuCqWX6hHgJ8PvVqRgSkyg2LGIiETjNCVwq/4eCopU0HYYMC81DMvmxsJT5jT/+0RE32vMPwoa+yw4dKYKJ680IGicB/JXpSIxarzYsYiIRoUxXQKqmnYUFqvR1mnE/OnhWJoRC5m7q9ixiIhGjTFZAgaTBQdPV+LM1bsIHu+JN1f/CJMj/MWORUQ06oy5ErhR3YbdxWp0dJuQOSMCubMnQibl9E9E9H3GTAnojWb89VQlLlxvQmigF956eTpiw8aJHYuIaFQbEyVwtbIVHyvV6Oo1I3tWFJY8Fw2pG6d/IqLHcegS6DGYsWqsAH4AAAVASURBVP/z2yj/phlhcm9sWpqMmFA/sWMRETkMhy2BCo0Oe0o06DWYkZMejZxno+HmKhE7FhGRQ3G4EujW92Ff6S1cVGkRqfDB75anIDLYV+xYREQOyaFK4JJai70lGuiNFuTOjkH2rChO/0REQ+AQJdDZ24e9JRpUaHSIDvFF/spEhCt8xI5FROTwhqUEjh49iv/6r/+CxWLBunXrsHr1apvuRxAE/ONmCz4pvQWT2Yplc2OROSMCrhJO/0RE9mD3EmhpacHOnTvx2Wefwd3dHStXrsTMmTMxadKkQd1PR7cJe05ocLWyFbET/PDKokSEBnrbOy4RkVOzewmUlZVh1qxZ8Pf/52kaMjMzoVQq8etf//qJ7+OyWouC4yqY+61Y8fwkvJAWAYnExd5RiYicnt1LQKvVQi7/9vN5FQoFrl+/Pqj7OHC6EmFyb2zITkRIgJe9IxIR0b/YvQSsVitcXL6d2gVBeODyk1g5Pw7TJgVBMsh/Rw/jMyj74nraF9dz6Ia6hnYvgZCQEFy+fHngsk6ng0KhGNR9vDArxt6xnFZgIF9FZU9cT/vieorP7i+zSU9PR3l5Odrb22EwGFBSUoI5c+bY+9sQEZEd2P2ZQHBwMDZv3oy1a9fCbDZj2bJlSE5Otve3ISIiO3ARBEEQOwQREYmD77oiInJiLAEiIifGEiAicmIsASIiJ8YSICJyYiwBIiInJkoJHD16FNnZ2ViwYAH27dv30PUqlQp5eXnIzMzEli1bYLFYREjpOB63nh988AHmzZuHJUuWYMmSJd97G/pWT08PFi9ejIaGhoeu494cvEetJ/fm4HzwwQdYtGgRFi1ahP/4j/946Hqb9qcwwpqbm4V58+YJHR0dQm9vr5CTkyPcvn37gdssWrRI+OqrrwRBEIQ//vGPwr59+0Y6psN4kvXcuHGjcOXKFZESOparV68KixcvFpKSkoT6+vqHrufeHJzHrSf35pP74osvhBUrVggmk0no6+sT1q5dK5SUlDxwG1v254g/E7j/VNNeXl4Dp5r+H42NjTAajZg2bRoAIC8v74Hr6UGPW08AuHHjBv77v/8bOTk5eO+992AymURKO/odOHAAW7du/d7zXXFvDt6j1hPg3hwMuVyOP/zhD3B3d4dUKkVsbCzu3r07cL2t+3PES+D7TjXd0tLyg9fL5fIHrqcHPW49e3t7kZiYiPz8fBw+fBhdXV3485//LEZUh/D+++8jLS3te6/j3hy8R60n9+bgxMXFDTzA19TUoLi4GBkZGQPX27o/R7wEHneqaXucitqZPG69vL298Ze//AWxsbFwc3PDK6+8grNnz4oR1eFxb9oX96Ztbt++jVdeeQVvvPEGoqOjB75u6/4c8RIICQmBTqcbuPzdU01/9/rW1tZBn4ramTxuPe/evYu//e1vA5cFQYCb27B8tPSYx71pX9ybg1dRUYH169fj97//PX7yk588cJ2t+3PES+Bxp5oOCwuDTCZDRUUFAODIkSM8FfUjPG49PTw88J//+Z+or6+HIAjYt28fXnjhBRETOy7uTfvi3hycpqYmvP7669ixYwcWLVr00PW27s8RL4H7TzWdm5uLxYsXIzk5GT//+c/x9ddfAwB27NiBbdu2ISsrC3q9HmvXrh3pmA7jcesZEBCA9957D7/85S+RlZUFQRCwYcMGsWM7FO5N++LetM2uXbtgMpmwffv2gZfU7t+/f8j7k6eSJiJyYnzHMBGRE2MJEBE5MZYAEZETYwkQETkxlgARkRNjCRAROTGWABGRE2MJEBE5sf8PFTn7sZwHGjEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD7CAYAAACPDORaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3RU553/8bdEkwCJIgSIXvUVppviGLBxwWCwHReMC7jguMQbO+WXOLvJrnMSeze7Z3/7W29OipMcOwhsXEjAJTYSxYDBgMEGg6v00EQRCBCiqSNp5vfHDFmZCNAIzczV6PM6h2PmznM1Hz8zfPXMvTPfG+f3+xERkdgUH+0AIiISPiryIiIxTEVeRCSGqciLiMQwFXkRkRjWMtoBamkDjAMKgJooZxERaSpaAGnAx0DluXd6qciPAz6IdggRkSbqKmD9uRu9VOQLAE6cKMXnC/2z+ykp7SkqKmn0UJfKq7nAu9mUKzTKFZpYyxUfH0enTu0gWEPP5aUiXwPg8/kbVOTP7utFXs0F3s2mXKFRrtDEaK46D3PrxKuISAxTkRcRiWEq8iIiMazex+TN7P8BXZxzc81sFPAikAysAx53zlWbWR9gIdAVcMAc55z3znCIiDQT9VrJm9n1wIO1Ni0EnnTOpQNxwKPB7c8DzzvnMoAtwM8aMauIiITookXezDoDvwT+PXi7L5DonNsUHDIfmGVmrYCrgcW1tzdyXhERCUF9VvJ/BP4FOBG83YOvfx6zAOgFdAFOO+eqz9kuIiLnsdUd5Sd//JB12/LD8vMveEzezB4BDjjnVpnZ3ODmeKD2hznjAF8d2wluD0lKSvtQd/mb1NSkBu8bTl7NBd7NplyhUa7QeCHXidMV/OHNz9j4WQEDenYgo29nUju3bfTHudiJ17uBNDPbDnQG2hMo5Gm1xnQHDgFHgQ5m1sI5VxMccyjUQEVFJQ36QkBqahKFhcUh7xduXs0F3s2mXKFRrtBEO5ff72fD54dZtHonlVU+Zk4ewLTxfejauW2DcsXHx11wcXzBIu+cu+Hs34Mr+Wuccw+Z2RdmNtE5twG4H8h2zlWZ2QcEfjG8CjwAZIecWEQkRh07Wc6C5Y4v844zuFcH5k7PIC2lXVgfs6FtDeYAL5hZMvAJ8Ovg9u8AC8zsaWA/cO+lRxQRadp8fj+rt+azZO0eiIM5N6Rz7eU9iY+LC/tj17vIO+fmE/jEDM65T4HxdYzZB1zTONFERJq+Q8dKmZ+dy66DpxjWvzMP3Gh06ZAYscf3UoMyEZGYUV3jY9nm/fx1Qx5tWrXg4ZuGMGFYd+IisHqvTUVeRKSR7TtcTGZWDvuPljDWUpkz1ejQrnVUsqjIi4g0kjNVNfx1w16Wbd5PUttWPHH7cMZYalQzqciLiDSCHQdOkpmdy5HjZUwansbd1w+iXUKraMdSkRcRuRTlldUsWbub1Z8cpEuHBH50zyiG9usc7Vh/oyIvItJAn+0u4qXluZw4XcmUsb244+oBJLT2Vln1VhoRkSagpLyK197byYdfHqZHl3b89P5hDOrZIdqx6qQiLyJST36/n49zj/LKyh2UVVRzy4R+3DyhH61aevf6SyryIiL1cKK4koUrHNt2HqNv9ySeumcIvbs2vKFipKjIi4hcgN/v54PPCli0ehfVNT5mXTuQqeN60yLeu6v32lTkRUTOo/BkOQuW5fLV3hOk9+7IQ9Mz6BaGdsDhpCIvInIOn8/Pqq35LFm3m/i4OO6fms7k0ZFpKNbYVORFRGo5eKyU+Vk57D50mhEDU3hgmtE5OSHasRpMRV5EhEBDsaxN+3h3414SWrfk0Vsu4xuXdYt4Q7HGpiIvIs1eXsFpMrNyyS8sYfyQrsyekk5ylBqKNTYVeRFptiqranh7fR7LP9pPh3at+e7M4YweHN2GYo2tXkXezJ4F7iRwfdc/OeeeM7NMYBJQGhz2jHPuTTObAjwHJAKLnHNPhyG3iMglcftPkJmdy9ET5Vw9sgd3XTuItgmxt+696P+RmU0GrgNGAK2Ar8xsKTAWuNo5V1BrbCIwD5gMHACWmtl055yu9SoinlBWUcVLyx3vbztIascEfnzPKIZ4qKFYY7tokXfOrTWza51z1WbWM7hPOdAHmBfc9ibwDIFLAu50zuUBmNlCYBa6oLeIeMCnu47xysodFJ2uYNr43tx21QDatGoR7VhhVa/3Js65KjN7BngK+AuBFf1qAhfuPgW8CzwMlAAFtXYtAHqFEiglpeFfE05NTWrwvuHk1Vzg3WzKFRrlurBTJZW88NYXrN2WT5/uSfzkwXFYX++t3sMxX6FcyPvnZvafwDvA9c6528/eZ2a/AR4AFhM4bn9WHOALJVBRUQk+n//iA8+RmppEYWFxyPuFm1dzgXezKVdolOv8/H4/H+UEGoqVV1Zz66T+PHjLME6eKI16tnM1dL7i4+MuuDiuzzH5DCDBObfdOVdmZm8Ad5tZkXNuSXBYHFAF5ANptXbvDhwKObWIyCU6UVzJy8sd23cdo39aMg/NyKBXantPd4wMh/qs5AcAz5jZJAKr9FuBtcCvzGw1gUM0jwELgM2AmdkgIA+YTeBErIhIRNRuKFZT4+OuawcxdVxv4uOb9peaGqo+J16zzGw8sA2oAZY45541s2PABgLH55c4514DMLO5wBIgAcgicAhHRCTsjp4oY352Lrn7T5LRpyMPTs+gW6em1VCssdX3xOsvgF+cs+154Pk6xq4CRjZCNhGRevH5/KzccoA31+2hRYs4HrzRuGpkjybZUKyxxd4n/0WkWckvLCEzK5e8gtOMHJjC/U28oVhjU5EXkSapusbH0g8DDcUS27Tk298cyvghXZt8Q7HGpiIvIk3OnkOnyczO4WBhKd+4rBv3TBlMctvYaCjW2FTkRaTJqKyq4c11e1i55QAd27fhe3eOYNSgLtGO5Wkq8iLSJOTsO8H87BwKT1ZwzagezLp2EIltVMIuRjMkIp5WVlHNn9fsYt2nh+jaKZF/mj0a69Mp2rGaDBV5EfGs7TuP8dLyXE6VnuHG8X249ar+Md9QrLGpyIuI55wuPcOr7+3go5yj9Eptx3dnjqB/WnK0YzVJKvIi4hl+v59NXx3htfd2Ul5ZzW1X9WfGN/rSskXz6jfTmFTkRcQTjp+u4KXljs92FzGwRzJzZwyhZ5d20Y7V5KnIi0hU+fx+1m4/xF/W7MLn93PP9YOZMqZXs20o1thU5EUkao4cDzQUcwdOMqRvJx6cnkHXjonRjhVTVORFJOJqfD5WfHyAtz7Io2WLeOZOz+CqEWlqSRAGKvIiElEHjpaQmZXD3sPFjB7chfumGp2S2kQ7VsxSkReRiKiq9vHuxr1kbdpH24SWPH7rUMZlqKFYuKnIi0jY7T54iszsXA4dK+XKod25d8pg2ie2inasZqFeRd7MngXuJHD5vz85554zsynAc0AisMg593Rw7CjgRSAZWAc87pyrDkd4EfG2yjM1vLFuD+9tOUCn5Db8YNZIRgxMiXasZuWi3zAws8nAdcAIYCzwXTMbSeDarbcCQ4BxZjY9uMtC4EnnXDqBC3w/Go7gIuJt23cc5Wd/2szKLQe49vKe/OvDV6jAR8FFi7xzbi1wbXA13pXA6r8jsNM5lxfcvhCYZWZ9gUTn3Kbg7vOBWWFJLiKeVFZRxbysHH72xw9pER/HT+Zczn1TTR0jo6S+13itMrNngKeAvwA9gIJaQwqAXhfYXm8pKe1DGf41qalJDd43nLyaC7ybTblC45VcH35ewB/e+JSTJWe487rB3DPVPNlQzCvzda5w5Kr3r1bn3M/N7D+Bd4B0Asfnz4oDfATeGdS1vd6Kikrw+fwXH3iO1NQkCguLQ94v3LyaC7ybTblC44Vcp0rP8MrKHWzJPUrvru158o7hjBveM+q56uKF+apLQ3PFx8ddcHF80SJvZhlAgnNuu3OuzMzeIHAStqbWsO7AISAfSKtju4jEIL/fz8YvDvP6qp1UVtVwx9UDuPGKPmoo5iH1WckPAJ4xs0kEVum3An8E/svMBgF5wGxgnnNun5lVmNlE59wG4H4gO0zZRSSKik5VsGB5Ll/sOc6gnh2YOz2DHmoo5jkXLfLOuSwzGw9sI7B6X+Kce93MCoElQAKQBSwO7jIHeMHMkoFPgF+HJbmIRIXP7+f9bQf5y/u7wQ+zpwzmusvVUMyr6nvi9RfAL87ZtgoYWcfYT4HxjZBNRDymoKiU+dm57Mw/xdB+nXjgxgxS1VDM0/SZJhG5qOoaH8s/2s/b6/fSumU835oxhInDu6slQROgIi8iF7TvcDGZ2TnsP1LCmPRU5kxNp2N7NRRrKlTkRaROVdU1/HXDXrI37ad921Z857ZhjM3oGu1YEiIVeRH5OzvzT5KZlcvh42VMHN6du69TQ7GmSkVeRP6m4kw1S9buYfXWfDonJ/DDu0cyrL/6zTRlKvIiAsAXe4pYsCyX46cruW5ML2ZOHkBCa5WIpk7PoEgzV1JexaLVO9nw+WHSUtryk/suZ3CvjtGOJY1ERV6kGduSe5SFK3dQWl7FTVf25ZsT+9GqpfcaiknDqciLNEMnSyp5ZcUOtu4opG+3JH5410j6dPNmZ0a5NCryIs2I3+9n/ecFLFq1izPVPmZODjQUaxGvhmKxSkVepJk4drKcBcty+XLvCdJ7dWDujCF079w22rEkzFTkRWKcz+9n9dZ8lqzdA3Fw39R0rhndk3i1JGgWVORFYlhBUSmZWbnsOniKYQM68+C0DFI6JEQ7lkSQirxIDKqu8bFs837+uiGPNq1a8PBNQ5gwTA3FmiMVeZEYs+9wMfOycjhwtIRxGV2ZfUM6Hdq1jnYsiZJ6FXkz+zlwV/DmUufcP5pZJjAJKA1uf8Y596aZTQGeAxKBRc65pxs7tIj8vTNVNby9IY/lmw+Q1LYVT9w+nDGWGu1YEmX1ucbrFGAqMJrA5f+WmdntwFjgaudcQa2xicA8YDJwAFhqZtOdc7oEoEgY7ThwkszsXI4cL+OqEWncdd0g2iWooZjUbyVfAPzIOXcGwMxygD7BP/PMrCfwJvAMgStC7XTO5QXHLgRmoeu8ioRFeWU1v1/yKVkb99KlQwI/umcUQ/t1jnYs8ZD6XOP1y7N/N7PBBA7bXAVcA3wHOAW8CzwMlBD4pXBWAdCr8eKKyFmf7S7ipeW5nCiu5Iaxvbnj6gG0aa2WBPJ19T7xamZDgaXAj51zDri91n2/AR4gcDFvf63d4gBfKIFSUtqHMvxrUlO9+bVsr+YC72ZTrvM7XXqGF9/+nDVb8+ndLYmfzh1PRl9vrt69MF91aU656nvidSKwBPiBc+51MxsOpDvnlgSHxAFVQD6QVmvX7sChUAIVFZXg8/kvPvAcqalJFBYWh7xfuHk1F3g3m3LVze/383HuUV5ZuYOyimpumdCPmyf0o0daB81XCGItV3x83AUXx/U58dobeAu42zm3Org5DviVma0mcIjmMWABsDmwiw0C8oDZBE7EisglOFFcycIVjm07j9GvexJP3TOE3l0b/q5Xmo/6rOSfAhKA58zs7LY/AP8BbABaAUucc68BmNlcAqv+BCCLwCEcEWkAv9/PB58VsGj1LqprfNx17SBuGNdLDcWk3upz4vX7wPfPc/fzdYxfBYy8xFwizd7Rk+UsyM4lZ98JrHdH5k7PoJsaikmI9I1XEY/x+fy8tzWfN9btJj4ujgemGVeP6qGGYtIgKvIiHnLwWCnzs3LYfeg0Iwam8MA0o3OyGopJw6nIi3hAdY2PrE37eHfjXhJat+SxWy7jisu6qaGYXDIVeZEoyys4TWZWLvmFJYwf0pXZU9JJVkMxaSQq8iJRUllVw9vr81j+0X46tGvNd2cOZ/RgNRSTxqUiLxIFbv8JMrNzOXqinKtH9uCuawfSVg3FJAxU5EUiqKyimsXv7+L97YdI7ZjAj+8ZxRA1FJMwUpEXiZBPdx3jpeWOkyWVTB3Xm9uvHkCbVmooJuGlIi8SZqfLzvD6ezvZ9NUReqa244nbhzOgR3K0Y0kzoSIvEiZ+v5+PcgINxcorq/nmxEBDsZYt1JJAIkdFXiQMjp+uYOGKHWzfdYz+ack8NCODXqlqKCaRpyIv0oj8fj9rPz3EX9bsoqbGz93XDeKGsb2Jj9eXmiQ6VORFGsnRE2XMz84ld/9JMvoEGop17aSGYhJdKvIil8jn87NyywHeXLeHFi3iePBG4+qRPdSSQDxBRV7kEuQXlpCZlUtewWlGDerC/dOMTkltoh1L5G9U5EUaoLrGx9IPAw3FEtu05LFvXsYVQ9RQTLynvtd4/TlwV/DmUufcP5rZFOA5IBFY5Jx7Ojh2FPAikAysAx53zlU3enKRKNlz6DSZ2TkcLCzlG0O7ce/1g0lqq4Zi4k0X/cBusJhPBUYDo4AxZnYvgWu33goMAcaZ2fTgLguBJ51z6QSuBftoOIKLRFrFmWpeX7WTX768hbKKar535wgeu2WoCrx4Wn1W8gXAj5xzZwDMLAdIB3Y65/KC2xYCs8zsKyDRObcpuO984Bng940dXCSScvad4OUVmzhcVMY1o3sy65qBJLbR0U7xvvpc4/XLs383s8EEDtv8hkDxP6sA6AX0OM92kSaprKKaP6/ZxbpPD5HWpR3/NHs01qdTtGOJ1Fu9lyJmNhRYCvwYqCawmj8rDvAROPzjr2N7vaWkNPxbgampSQ3eN5y8mgu8m80LuTZ/UcDzSz7jZHEFM68dxL3TMjzbUMwL81UX5QpNOHLV98TrRGAJ8APn3OtmNhlIqzWkO3AIyD/P9norKirB5/NffOA5UlOTKCwsDnm/cPNqLvButmjnOl16hlff28FHOUfpldqOJ24fS/+0ZNq0aqH5CoFyhaahueLj4y64OL5okTez3sBbwN3OudXBzZsDd9kgIA+YDcxzzu0zswozm+ic2wDcD2SHnFokCvx+P5u+PMKr7+2gsqqG26/qz/Rv9FVDMWnS6rOSfwpIAJ4zs7Pb/gDMJbC6TwCygMXB++YAL5hZMvAJ8OtGzCsSFsdPV/DScsdnu4sY2COZuTOG0LNLu2jHErlk9Tnx+n3g++e5e2Qd4z8Fxl9iLpGI8Pn9rN12kD+/vxu/38+91w/m+jG91FBMYoY+AybN1pHjZWRm57LjwEku69eJB2/MILVjYrRjiTQqFXlpdmp8PlZ8dIC31ufRskU8D03PYNKINLUkkJikIi/NyoGjJczLymHf4WJGD+7CfVPVUExim4q8NAtV1T7e2biX7E37aJfQkn+4bRhjLVWrd4l5KvIS83YdPEVmVg4FRWVMGNade64fTPvEVtGOJRIRKvISsyrOVPPGuj2s2pJP5+Q2/J+7RjJ8QEq0Y4lElIq8xKQv9x5nQXYux05VcN3lPZk5WQ3FpHnSq15iSmlFFYtW72L9ZwV069yWn8y5nPTeHaMdSyRqVOQlZmx1hSxc4Sguq+KmK/tyy4R+tPZoQzGRSFGRlybvVOkZXlm5gy25R+nTtT0/mDWSvt292WVQJNJU5KXJ8vv9bPziMK+v2klllY+ZkwcwbXwfNRQTqUVFXpqkY6fKeWmZ44u84wzq2YGHZmSQlqKGYiLnUpGXJsXn97Pmk4MsXrsb/DB7ymCuG9OLeH2pSaROKvLSZBQUlZKZncuu/FMM7d+ZB6cZXdRQTOSCVOTF86prfCz/aD9vr99Lm1bxPHzTECYM666WBCL1oCIvnrbvcDGZ2TnsP1LCGEvlvhvS6dBeDcVE6iuUC3knAxuBm51ze80sE5gElAaHPOOce9PMpgDPAYnAIufc040dWmJfVXUNf92wl+xN+2nfthXfuW0YYzO6RjuWSJNT3wt5XwG8AKTX2jwWuNo5V1BrXCIwD5gMHACWmtl055yu8yr19lVeEf/z6iccPl7GpOFp3HXdIDUUE2mg+q7kHwWeAF4GMLO2QB9gnpn1BN4EniFw2b+dzrm84LiFwCx0MW+ph4oz1Sx5fw+rt+XTOSmBH949kmH91VBM5FLUq8g75x4BqHUh7+7AauA7wCngXeBhoAQoqLVrAdArlEApKe1DGf41qane/JajV3OBd7J9knuU3y7ezrGT5dw8aQD3Tx/iyYZiXpmvcylXaJpTrgb9K3LO7QFuP3vbzH4DPAAsBvy1hsYBvlB+dlFRCT6f/+IDz5GamkRhYXHI+4WbV3OBN7KVlFexaNVONnxxmLSUtvx0zhiuHN2LwsJiSqKa7O95Yb7qolyhibVc8fFxF1wcN6jIm9lwIN05tyS4KQ6oAvKBtFpDuwOHGvIYEvu25B5l4codlJZXcfOEQEOxVi3VUEykMTX0/XAc8CszW03gEM1jwAJgM2BmNgjIA2YTOBEr8jcnSyp5ZcUOtu4opG+3JH5410j6dPPm22eRpq6hh2s+M7P/ADYArYAlzrnXAMxsLrAESACyCBzCEcHv97P+8wIWrdrFmWofd14zkGnje9MiXg3FRMIlpCLvnOtX6+/PA8/XMWYVMPKSk0lMOXaynAXLcvly7wnSe3Vg7owhdO/cNtqxRGKe9z6+IDHF5/Oz6pN83li7B+LgvqnpXDO6pxqKiUSIiryEzaFjpczPzmXXwVMMG9CZB6dlkNIhIdqxRJoVFXlpdNU1PrI37+edDXm0adWCR24ewpVD1VBMJBpU5KVR7TtczLysHA4cLWFcRldm35BOh3atox1LpNlSkZdGcaaqhrc35LF88wGS2rbiyTuGc3l6arRjiTR7KvJyyXYcOElmdi5Hjpdx1YhAQ7F2CWooJuIFKvLSYOWV1Sxeu5s1nxykS4cEnrpnFJf16xztWCJSi4q8NMhnu4t4aXkuJ05XcsPY3txx9QDatFZLAhGvUZGXkJSUV/Haezv58MvD9OjSjn++fxgDe3aIdiwROQ8VeakXv9/Px7lHeWXlDsoqqvnmxH7cdGU/WrVUSwIRL1ORl4s6UVzJwhWObTuP0a97Ek/dM4TeXRve919EIkdFXs7L7/fzwWcFLFq9i+oaH7OuHcjUcWooJtKUqMhLnY6eLGdBdi45+05gvTsyd0YG3TqpoZhIU6MiL1/j8/l5b2s+b6zbTXxcHA9MM64e1UMNxUSaKBV5+ZuDhSVkZuey59BpRgxM4YFpRudkNRQTacrqXeTNLBnYCNzsnNtrZlOA54BEYJFz7unguFHAi0AysA543DlX3ejJpdFU1/jI2rSPdzbsJbFNSx675TKuuKybGoqJxIB6nUEzsyuA9UB68HYigcv63QoMAcaZ2fTg8IXAk865dAKXCXy0sUNL48krOM2z8z/mrQ/yGGOp/NujV/ANdYwUiRn1Xck/CjwBvBy8PR7Y6ZzLAzCzhcAsM/sKSHTObQqOmw88A/y+0RJLo6isqmHeO1/y1tpddGjXmu/OHM7owWooJhJr6lXknXOPAJjZ2U09gIJaQwqAXhfYLh6Su+8E87NzOXqynMmjejDrmkG0TdDpGZFY1NB/2fGAv9btOMB3ge31lpLS8C/ZpKYmNXjfcPJKrtLyKjLf/ZLlm/aRltKOX/7DBEYM8ubq3Stzdi7lCo1yhSYcuRpa5POBtFq3uwOHLrC93oqKSvD5/BcfeI7U1CQKC4tD3i/cvJJr+65jvLzccbKkkmnje3PbVQPo1aOjJ7Kdyytzdi7lCo1yhaahueLj4y64OG5okd8MmJkNAvKA2cA859w+M6sws4nOuQ3A/UB2Ax9DGsHpsjO89t5ONn91hJ6p7Xji9uEM6JEc7VgiEiENKvLOuQozmwssARKALGBx8O45wAvBj1x+Avy6EXJKiPx+P5tzjvDqyp2UV1Zz66T+3HRlX1q2UEsCkeYkpCLvnOtX6++rgJF1jPmUwKdvJEqOn67g5eWOT3cX0T8tmYdmZNArVQ3FRJojfaQihvj8ftZtP8Sf1+zC5/Nzz3WDmDK2N/Hx+sy7SHOlIh8jjpwoY0F2Lrn7T5LRpyNzp2fQVQ3FRJo9FfkmrsbnY+XH+bz5wR5atohj7vQMrhqRpm+sigigIt+k5R8tITM7h7yCYkYN6sL904xOSW2iHUtEPERFvgmqqvax9MO9LP1wH20TWvL4rUMZl9FVq3cR+Tsq8k3M7kOnmJ+Vy8FjpVw5tBv3XD+YpLatox1LRDxKRb6JqDxTw5sf7GHlxwfomNSG7985gpGDukQ7loh4nIp8E5Cz9zjzl+VSeLKCa0f35M5rBpLYRk+diFycKoWHlVVU8ec1u1j3aQHdOiXyT7NHY306RTuWiDQhKvIetW1HIS+tcJwuPcP0K/pw66T+tG7VItqxRKSJUZH3mNOlZ3j1vR18lHOUXqnt+d7MEfRPU0MxEWkYFXmP8Pv9bPryCK++t4PKqhpuv3oA06/oo4ZiInJJVOQ9oOhUBS8td3y+p4iBPZN5aPoQenRpF+1YIhIDVOSjyOf3s3bbQf78/m78fj/3ThnM9Zf3UkMxEWk0KvJRcvh4GfOzctiRf4rL+nXiwRszSO2YGO1YIhJjVOQjrMbnY8VHB3hrfR6tWsTz0IwMJg1XQzERCY9LKvJmtgboClQFN30bGAg8DbQCfuWc+90lJYwh+48Uk5mVy74jxVyensp9U9Pp2F4NxUQkfBpc5M0sDkgH+jrnqoPbegKvA2OASmCjma1xzn3VGGGbqqpqH+9s3Ev2pn20S2jJP9w2jLGWqtW7iITdpazkLfjfFWaWArwAFAOrnXPHAcxsMXAn8OwlpWzCcvce57lXt1JQVMaEYd255/rBtE9sFe1YItJMXEqR7wSsAr5L4NDM+8AioKDWmAKa6fVeK85U88baPaz6JJ/OSW34P3eNZPiAlGjHEpFmpsFF3jn3IfDh2dtm9ifgOeDfag2LA3yh/NyUlIZfcDo1NanB+zambe4ov138KUePl3HzxP7cP2MIbRO8uXr3ypydS7lCo1yhaU65LuWY/CSgjXNuVXBTHLAXSKs1rDtwKJSfW1RUgs/nDzlPamoShYXFIe/XmEorqli0ahfrPy+ge+e2/GTO5Uy8vDeFhcWUFldENVtdvDBndVGu0ChXaGItV3x83AUXx5dyuKYj8KyZTSBwuOZB4D5goZmlAqXATOCxS3iMJmOrK2ThCkdxWef4+fgAAAkiSURBVBU3XdmXb07sR6uWaigmItF1KYdr3jWzK4BtQAvgd865DWb2L8AaoDXwonPuo8aJ6k2nSip5ZeUOtrhC+nRtzw9mjaRvd2++FRSR5ueSPifvnPsZ8LNztr0KvHopP7cp8Pv9bPziMK+v2klllY+ZkwcwbbwaiomIt+gbrw1w7FQ5Ly1zfJF3nEG9OvDQ9AzSUtRQTES8R0U+BD6/nzWfHGTx+7sBmHNDOtde3pN4falJRDxKRb6eCopKyczOZVf+KYb278yDNxpdOqihmIh4m4r8RVTX+Fj+0X7eXr+XNq3i+daMIUwc3l0tCUSkSVCRv4B9h4vJzMph/9ESxloqc25Ip4MaiolIE6IiX4eq6hreXr+XZZv3k9S2FU/cPowx1jXasUREQqYif44dB06SmZ3LkeNlTBqext3XD6KdR1sSiIhcjIp8UHlloKHY6k/ySemQwI/uHsXQ/p2jHUtE5JKoyANf7CliwbJcjp+u5Poxvbhj8gASWmtqRKTpa9aVrKS8itdX7WTjF4dJS2nLT+8bw6BeHaIdS0Sk0TTbIr8l9ygLVzhKK6q5eUJfbpmghmIiEnuaXZE/WVLJKyt2sHVHIX27JfHDuzPo000NxUQkNjWbIu/3+1n/eQGLVu3iTLWPO68ZyLTxvWkRr4ZiIhK7mkWRLzxZzoJluXy19wTpvTowd8YQunduG+1YIiJhF9NF3ufzs2prPkvW7SYuLo77p6YzebQaiolI8xGzRf7gsVLmZ+ew++Bphg9I4YFpRkqHhGjHEhGJqLAUeTObDTxN4LKAv3LO/S4cj1OX6hof2Zv28c7GvSS0bsmjt1zGNy7rpoZiItIsNXqRN7OewC+BMUAlsNHM1jjnvmrsxzrX3sOnmbc0l/zCEsZldGXODekkt2sd7ocVEfGscKzkpwCrnXPHAcxsMXAn8GwYHgsIHHuf/+6XvPH+LpLbtea7dwxndHpquB5ORKTJCEeR7wEU1LpdAIyv784pKe1DfsA9B0+xZM0ubhjfh299cxjtE73VUCw11bufw/dqNuUKjXKFpjnlCkeRjwf8tW7HAb767lxUVILP57/4wFqSWsez6JczKC2uoLwk8McrUlOTKCwsjnaMOnk1m3KFRrlCE2u54uPjLrg4Dsc3gfKBtFq3uwOHwvA4X9NW7YBFRP5OOFby7wG/MLNUoBSYCTwWhscREZGLaPSVvHPuIPAvwBpgO/Cqc+6jxn4cERG5uLB8Tt459yrwajh+toiI1J+6c4mIxDAVeRGRGKYiLyISw7zUoKwFBD7z2VCXsm84eTUXeDebcoVGuUITS7lq7VPnpe3i/P7QvngURpOAD6IdQkSkiboKWH/uRi8V+TbAOAJtEGqinEVEpKloQeALqB8TaAr5NV4q8iIi0sh04lVEJIapyIuIxDAVeRGRGKYiLyISw1TkRURimIq8iEgMU5EXEYlhXmpr0GBmNht4GmgF/Mo597soZvk5cFfw5lLn3D+aWSaBb/SWBrc/45x7M8K51gBdgargpm8DA4nivJnZI8CTtTb1B14G2hGl+TKzZGAjcLNzbq+ZTQGeAxKBRc65p4PjRgEvAsnAOuBx51x1BHM9BnyPwKU2twDfds6dCb7+vgWcCO76Qjif1zpy1flaP988RiIXcBnw77Xu7glsds7dHMn5Ok9tCPvrq8l/GcrMehL4Ku8YAt/22gjc65z7KgpZpgDPANcS+Me3DPgt8Cww1TlXcIHdw5krjsBlGfuefaF4ad6CeYYCbwFXErjgTMTny8yuAF4AMoB04AjggMnAAWApgV+G2Wb2BfCIc26Tmf0J2OKc+32EcrUOZhkDFAPzge3Ouf8xs3eAf3fOfRiOLBfKFSzyn3POc2dmiZxnHiOVq9Z93YENwI3OuZ2Rmq/z1IYXgf8kzK+vWDhcMwVY7Zw77pwrBRYDd0YpSwHwI+fcGedcFZAD9An+mWdmn5nZM2YW6Xm34H9XmNmnZvYk3po3gN8D/wyUEb35ehR4gv+9JvF4YKdzLi/4y3EhMMvM+gKJzrlNwXHzgVkRzFUJfMc5d9o55wc+JzBnAGOBfw7O3W/NLCFSucysLXU/d3XOY6RyneO/gD8453YGb0dqvuqqDelE4PUVC0W+B4EJPKsA6BWNIM65L88+MWY2mMBbs2XAagJvCb9BoInQwxGO1glYBdwOXA88TuAfoyfmLbjKSXTO/YXAhd+jMl/OuUecc7Wb5J3vtRXR19y5uZxz+5xzKwGC11J+EnjbzNoD24AfA5cDHYGfRSoX53/uojpfZwX/TV4D/Dp4O2LzdZ7a4CMCr69YOCYfT+Dtz1lxBCYvaoKHHpYCP3bOOQLF9ex9vwEeIPB2MiKCb0X/9nY0+PbvOeDfag2L5rx9m0AenHN7iPJ81XK+15YnXnPBQ27ZwJ+cc+8HN8+odf9/A/MIXHM57C7w3C3GA/MFPAY875yrBHDOlRDh+apdG4BqAqv5s8Ly+oqFlXw+gQ5sZ3Wn7rdpEWFmEwmsmn/inFtgZsPNbGatIXH878nPSGWaZGbXn5NhLx6YNzNrTeCY5F+Dt6M+X7Wc77UV9decmWUQOI+ywDn3r8FtfczsW7WGRXTuLvDcRX2+gm4DXj97I9LzdW5tIEKvr1hYyb8H/CL4trUUmEngN3bEmVlvAicP73bOrQ5ujgN+ZWargZJgtgURjtYReNbMJhD4JM2DwH3AQg/M2whgR/C8AHhjvs7aDJiZDQLygNnAPOfcPjOrMLOJzrkNwP0EVtQRYWZJwArgX5xzL9e6qxz4v8FPUu0lcFw6kp/iOt9zV+c8RjAXZtaFwCHBvFqbIzZf56kNEXl9NfmVvHPuIIG3V2uA7cCrzrmPohTnKSABeM7MtpvZdmAC8B8Ezuh/ReBTEK9FMpRz7l0CbxG3AVsJvJA24I15G0Bg5XI262dEeb5qZakA5gJLgllyCRx6AJgD/I+Z5QLtCR7njZBHgG7Aj86+zszsWedcIYFDX+8Q+DRLHPDfkQp1vufuIvMYKV97nQFEeL7qqg1zicDrq8l/hFJERM6vya/kRUTk/FTkRURimIq8iEgMU5EXEYlhKvIiIjFMRV5EJIapyIuIxDAVeRGRGPb/AaLCGxABHR2xAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "import seaborn as sns; sns.set()\n", - "sns.lineplot(x, list(range(len(x))))" + "sns.lineplot(x, 2*x)" ] }, { @@ -120,27 +123,19 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 52, "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEGCAYAAAB8Ys7jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAARVUlEQVR4nO3cf2iVdf/H8de17WxzzlP7cdLz3yz6I4JEAmup2cxWnlmzKaSWUhK0EEcSmbeUUpS3P4LRkP64QQ2zW0to/SIj0QrL9cMgBxUixkzZiba5Op7ado471/ePG3fffu87z5mda5fvy+fjnzW54rw+LJ9+OLk5ruu6AgCYU+D3AADApSHgAGAUAQcAowg4ABhFwAHAKAIOAEYVZXtg79692rVr18jnp0+fVmNjo9atW+fpMADAxTmj+Xvgx48f14oVK7Rnzx5VVlZ6uQsAkMWoAv7ggw/qoYce0ty5c73cBADIQc7vgR8+fFiDg4PEGwAuEzkHfM+ePXrkkUe83AIAGIWcAp5KpfT1119r9uzZXu8BAOQo699CkaRjx46ppqZGZWVlo36B/v7flckE8+dlVVWVq68v6fcMz3A+24J8viCfraDAUUXF+JyezSngp06d0qRJky5pTCbjBjbgkgJ9NonzWRfk8wX5bLnKKeCxWEyxWMzrLQCAUeA7MQHAKAIOAEYRcAAwioADgFEEHACMIuAAYBQBBwCjCDgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABgFAEHAKMIOAAYRcABwCgCDgBGEXAAMIqAA4BRBBwAjCLgAGAUAQcAowg4ABhFwAHAKAIOAEYRcAAwioADgFE5BfzgwYNqamrS3Llz9cILL3i9CQCQg6wBP3XqlNavX69XXnlF7777rr7//nt9+umnY7ENAHARRdke2L9/v2KxmCZNmiRJam1tVUlJiefDAFw6x3FGPrqu6/MaeCXrDfzkyZMaHh5Wc3OzGhsb9c9//lNXXXXVWGwDcAlCoUKVh0vV3ZtUebhUoeJCvyfBI1lv4MPDwzpy5Ihee+01lZWV6fHHH1d7e7uamprGYh+AUXAcR6VlxXqq7ZC64gnVRMPa0jJT59KD3MQDKGvAq6urVVtbq8rKSknSnDlz1NnZmXPAq6rK/9rCy1wkMsHvCZ7ifPZ09ybVFU9IkrriCfUnhhStDt7vwyB+7UYra8Dr6ur09NNPK5FIaPz48Tp06JDuvPPOnF+gry+pTCaYf/JHIhPU03PW7xme4Xz2OI6jynCpaqLhkRt4RbhEvb3JQN3Ag/i1O6+gwMn54ps14FOmTNGjjz6qJUuWKJ1Oa/r06VqwYMFfHgkg/1zX1eBASltaZqo/MaSKcIkGB1KBijf+LWvAJWnhwoVauHCh11sA5EE6Naxz6UFFq8sDd/PGhfhOTCCAzkebeAcbAQcAowg4ABhFwAHAKAIOAEYRcAAwioADgFEEHACMIuAAYBQBBwCjCDgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABgFAEHAKMIOAAYRcABwCgCDgBGEXAAMIqAA4BRBBwAjCLgAGAUAQcAowg4ABhFwAHAKAIOAEYV5fLQ0qVLdebMGRUV/evx559/XlOmTPF0GADg4rIG3HVddXV16eOPPx4JOGCd4zgjH13X9XkNcGmyvoXy448/SpKWL1+u++67T7t27fJ8FOClUKhQ5eFSdfcmVR4uVai40O9JwCXJeqVOJBKqra3Vs88+q3Q6rWXLlmny5MmaPn36WOwD8spxHJWWFeuptkPqiidUEw1rS8tMnUsPchOHOY47yv9qX331VXV3d2vt2rVebQI81d2b1GN/PzDy+T/+NkfR6vE+LgIuTdYb+JEjR5ROp1VbWyvpX++Jj+a98L6+pDKZYN5sIpEJ6uk56/cMzwTxfI7jqDJcqppoeOQGXhEuUW9vMnA38CB+/c4L8tkKChxVVZXn9GzWEp89e1ZtbW3as2eP0um02tvb9dxzz/3lkYAfXNfV4EBKW1pmqj8xpIpwiQYHUoGLN64MWQNeV1eno0ePav78+cpkMlqyZImmTp06FtsAT6RTwzqXHlS0ujyQN29cOUb9Hvho8RaKXZzPtiCfL8hnG81bKHwnJgAYRcABwCgCDgBGEXAAMIqAA4BRBBwAjCLgAGAUAQcAowg4ABhFwAHAKAIOAEYRcAAwioADgFEEHACMIuAAYBQBBwCjCDgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABgFAEHAKMIOAAYRcABwCgCDgBGEXAAMCrngG/atElr1qzxcgsAYBRyCnhHR4fa29u93mKK4zgXfASAsZY14L/++qtaW1vV3Nw8FntMCIUKVR4uVXdvUuXhUoWKC/2eBOAKVJTtgXXr1mnVqlWKx+Njseey5ziOSsuK9VTbIXXFE6qJhrWlZabOpQfluq7f8wBcQS4a8L179yoajaq2tlZvvfXWJb1AVVX5Jf17l7Pu3qS64glJUlc8of7EkKLVwTunJEUiE/ye4CnOZ1eQz5ariwb8gw8+UE9PjxobG/Xbb7/pjz/+0IYNG7R27dqcX6CvL6lMJjg3U8dxVBkuVU00PHIDrwiXqLc3GbgbeCQyQT09Z/2e4RnOZ1eQz1ZQ4OR88XXcHKvz1ltv6auvvtLGjRtHNSZoAZekUHGhSscVqz8xpIpwiQYHUkqnhv2elXdB/k0icT7Lgny20QQ863vg+G/p1LDOpQcVrS4P5M0bgA05B7ypqUlNTU1ebjHlfLSJNwC/8J2YAGAUAQcAowg4ABhFwAHAKAIOAEYRcAAwioADgFEEHACMIuAAYBQBBwCjCDgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABgFAEHAKMIOAAYRcABwCgCDgBGEXAAMIqAA4BRBBwAjCLgAGAUAQcAowg4ABhFwAHAqJwC/vLLLysWi6mhoUE7duzwehMAIAdF2R746quv9MUXX+jdd9/VuXPnFIvFNGvWLF177bVjsQ8ALuA4zshH13V9XuOvrDfwadOmaefOnSoqKlJfX5+Gh4dVVlY2FtsA4AKhUKHKw6Xq7k2qPFyqUHGh35N8lfUGLkmhUEhtbW3avn277rnnHk2cONHrXQBwAcdxVFpWrKfaDqkrnlBNNKwtLTN1Lj14xd7EHXcUJx8YGFBzc7NisZgeeOABL3cBwH/p7k3qsb8fGPn8H3+bo2j1eB8X+SvrDfzEiRNKpVK64YYbNG7cONXX1+vYsWM5v0BfX1KZTDD/dIxEJqin56zfMzzD+WwL2vkcx1FluFQ10fDIDbwiXKLe3mSgbuAFBY6qqspzejZrwE+fPq22tjbt3r1bknTgwAEtWLDgry0EgFFyXVeDAyltaZmp/sSQKsIlGhxIBSreo5U14LNmzVJnZ6fmz5+vwsJC1dfXq6GhYSy2AcAF0qlhnUsPKlpdHrib96XI6X9irly5UitXrvR6CwBkdT7aV3q8Jb4TEwDMIuAAYBQBBwCjCDgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABgFAEHAKMIOAAYRcABwCgCDgBGEXAAMIqAA4BRBBwAjCLgAGAUAQcAowg4ABhFwAHAKAIOAEYRcAAwioADgFEEHACMIuAAYBQBBwCjCDgAGFWUy0Nbt27Vvn37JEmzZs3S6tWrPR0FAMgu6w388OHD+uyzz9Te3q63335b3333nfbv3z8W2wAAF5H1Bh6JRLRmzRoVFxdLkq677jp1d3d7Pgz+chxn5KPruj6vAfC/ZA349ddfP/LPXV1d2rdvn3bv3u3pKPgrFCpUaVmxunuTqgyXanAgpXRq2O9ZAP6fnN4Dl6Tjx4/rscce0+rVq1VTU+PhJPjJcRyVlhXrqbZD6oonVBMNa0vLTJ1LD3ITBy4zOQX8m2++UUtLi9auXauGhoZRvUBVVfklDbMiEpng94S86+5NqiuekCR1xRPqTwwpWh3Mr2MQv37/KcjnC/LZcpU14PF4XCtWrFBra6tqa2tH/QJ9fUllMsG8uUUiE9TTc9bvGXnlOI4qw6WqiYZHbuAV4RL19iYDdwMP4tfvPwX5fEE+W0GBk/PFN2vAt23bpqGhIW3cuHHk1xYtWqTFixdf+kJctlzX1eBASltaZqo/MaSKcIkGB1KBizcQBI7r8e9MbuA2OY6j6uryQN68zwvy108K9vmCfLbR3MD5Tkz8T+ejHdR4A0FAwAHAKAIOAEYRcAAwioADgFEEHACMIuAAYBQBBwCjCDgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABgFAEHAKMIOAAYRcABwCgCDgBGEXAAMIqAA4BRBBwAjCLgAGAUAQcAowg4ABhFwAHAKAIOAEYRcAAwKueAJ5NJzZs3T6dPn/ZyDwAgRzkF/OjRo1q8eLG6uro8ngMAyFVOAX/zzTe1fv16XXPNNV7vAQDkqCiXh1588UWvdwAARimngP8VBQWO1y/hK85nG+ezK6hnG825PA94RcV4r1/CV1VV5X5P8BTnsy3I5wvy2XLFXyMEAKMIOAAY5biu6/o9AgAwetzAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABglGcBf++99xSLxVRfX6/XX3/dq5fxTZB/vO7WrVvV0NCghoYGbd682e85effyyy8rFoupoaFBO3bs8HuOZzZt2qQ1a9b4PSPvli5dqoaGBjU2NqqxsVFHjx71e1JeHTx4UE1NTZo7d65eeOGFiz/seuDnn3926+rq3P7+fvf333937733Xvf48eNevJQvvv32W3fevHnujTfe6J46dcrvOXn1+eefuw888IA7NDTkplIpd9myZe5HH33k96y8+fLLL91Fixa56XTaHRgYcOvq6twTJ074PSvvDh8+7N5yyy3u008/7feUvMpkMu6MGTPcdDrt9xRP/PTTT+6MGTPceDzuplIpd/Hixe4nn3zyp897cgM/fPiwbr31Vl199dUqKyvT3XffrQ8//NCLl/JFkH+8biQS0Zo1a1RcXKxQKKTrrrtO3d3dfs/Km2nTpmnnzp0qKipSX1+fhoeHVVZW5vesvPr111/V2tqq5uZmv6fk3Y8//ihJWr58ue677z7t2rXL50X5tX//fsViMU2aNEmhUEitra2aMmXKnz7vyQ+z+uWXXxSJREY+v+aaa9TZ2enFS/kiyD9e9/rrrx/5566uLu3bt0+7d+/2cVH+hUIhtbW1afv27brnnns0ceJEvyfl1bp167Rq1SrF43G/p+RdIpFQbW2tnn32WaXTaS1btkyTJ0/W9OnT/Z6WFydPnlQoFFJzc7Pi8bjuuOMOPfHEE3/6vCc38EwmI8f5949EdF33gs9x+Tt+/LiWL1+u1atXq6amxu85edfS0qKOjg7F43G9+eabfs/Jm7179yoajaq2ttbvKZ6YOnWqNm/erAkTJqiyslILFy7Up59+6vesvBkeHlZHR4c2bNigN954Q52dnWpvb//T5z0J+KRJk9TT0zPyeU9PTyDfbgiqb775Rg8//LCefPJJ3X///X7PyasTJ07ohx9+kCSNGzdO9fX1OnbsmM+r8ueDDz7Q559/rsbGRrW1tengwYPasGGD37Py5siRI+ro6Bj53HVdFRV5/lOxx0x1dbVqa2tVWVmp0tJSzZkz56LvXngS8Ntuu00dHR06c+aMBgYG9NFHH+n222/34qWQZ/F4XCtWrNBLL72khoYGv+fk3enTp/XMM88olUoplUrpwIEDuvnmm/2elTc7duzQ+++/r3feeUctLS2aPXu21q5d6/esvDl79qw2b96soaEhJZNJtbe366677vJ7Vt7U1dXps88+UyKR0PDwsA4dOqQbb7zxT5/35I+uiRMnatWqVVq2bJnS6bQWLlyom266yYuXQp5t27ZNQ0ND2rhx48ivLVq0SIsXL/ZxVf7MmjVLnZ2dmj9/vgoLC1VfXx/IP6iCqq6uTkePHtX8+fOVyWS0ZMkSTZ061e9ZeTNlyhQ9+uijWrJkidLptKZPn64FCxb86fP8OFkAMIrvxAQAowg4ABhFwAHAKAIOAEYRcAAwioADgFEEHACMIuAAYNT/ARt0dNMttzo7AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEXCAYAAACjyo8UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAbtklEQVR4nO3de3xU5Z3H8c8kcfCShJgQoVtvgPBT6EWxVEEU0eouxVYLvrS13Up3tfZVsd4vL62r0lW36uqy1mtXgVKtN3TbinS1FllbWBevFag/WKrWVlEMSjKWMoTM/nEmNAlJmCRzMplnvu/XixeZkznn+T0JfHPynOc8J5HJZBARkXCVFboAERGJl4JeRCRwCnoRkcAp6EVEAqegFxEJnIJeRCRwFYUuQKS3zOxw4Hqgjuik5S3gIndfZWafAS5z95Pz1FYGqHf393N8//7AOuDVNpsTwBx3v9fMZgInu/sJOznOD4E73f2FXhUugoJeipSZDQIeB4539xez274GLDaz4e7+PJCXkO+Dze5+cOsLM/s4sNLMnu/BMY4D7sp7ZVJSFPRSrHYHaoDKNtvuAxqBcjM7EviBu3/CzOYBfwY+CQwFfgY0AF8AhgFnuPuvsu/bDBwM7AU8CXzH3be2bdjM/hH4NtFvEQ3ALHd/bWcFu/ufzGwtMLrD8fYG7gD2Jzrrn+/uN5rZtcDfAPeZ2dfd/bkcvzYi7WiMXoqSu38AXAL8wsx+b2YLgG8Av3T3dCe7jAOOAY4CLgRS7j4RmANc1uZ9hxGdRY/J/jmr7UHMbDJwOnCkux8C3AA8lkvNZjYBOADoGNj3AUvc/ZPAEcDXzOzL7n4F8DbwVYW89IWCXoqWu99MdIb+HeAd4FLgJTMb3Mnbf+7uW919PfAR8Ivs9nVAbZv3zXP3lLtvAX4E/G2H40wjCutlZvYyUdDvaWa17Gg3M3s5+2cl0fWEr7r7W61vMLM9iML9tmyfNgHzgKm5fh1EdkZDN1KUzOwIYKK730g0Vv+4mV0OrCQ6I+940XRLh9db6Vxzm4/LgG0dPl8OLHD3S7N1lBENr3zQybHajdF3oYxouKbjtl12sp9IznRGL8VqA/BdM5vUZtvHgMG0n+nSU6ea2SAz25VoiObnHT7/X8BXzOxj2dffAp7ubWPu3gT8D3A2QPa3ka8DT2Xf0oxCX/pIQS9Fyd3XACcB12XH6FcDDwHfcHfvw6H/DDxL9MPiWWBuh3afBL4PPGVmvwVOA6a7e1+Wgf0qcKyZvQr8L/Ao0fAN2Y9/bGbH9+H4UuISWqZYJJKddbPS3W8qdC0i+aQzehGRwOmMXkQkcDqjFxEJnIJeRCRwA3Ee/SBgPNENMB3nMIuISOfKiaYYr6DDfSMDMejHE01rExGRnjsS+HXbDQMx6N8B+OCDj2hp6d2F4rq6ShoaUnktaiBTf8NXan1Wf3uurCzBnnvuAdkMbWsgBv02gJaWTK+DvnX/UqL+hq/U+qz+9toOQ966GCsiEjgFvYhI4Abi0I2IlJhMJsMHH2wgnf4LkOG998poaWkpdFn9Jvf+Jkgmd2XPPetJJDoueto1Bb2IFFwqtYlEIsHQoXuTSJRRUVFGc3PpBH2u/c1kWvjww/dJpTZRVVWT+/H7UtzOmNkXgKuAPYAn3f3cONsTCc3yVet5dOk6NjZuobZ6ENMnj2TC2GGFLivvNm9OUVs7lERCo8ndSSTKqKrak40b3+1R0Mf2VTWzEcCdREvJfgoYZ2Z6ao5IjpavWs/8xa/R0LiFDNDQuIX5i19j+ar1hS4t71patlFergGGXJSXV9DS0rN7SeP88fkl4EF3/2P24cqnsuOzMkWkC48uXUe6w6/z6eYWHl26rkAVxasnY86lrDdfpzh/hB4ApM3sZ8C+RI97uzLXnevqKvvUeH19VZ/2Lzbqb3g2NnZ8+uFft4fW//fei8bl2+r4uj+9/fbbnHLKSQwfPoJEIsHWrVsZMqSeK6+8mr32GtrpPtdeO5vp00/moIPGdHncb3/7m9x++92dfq5tf5977n9YsGAuP/jBXZ2+t6ysrEf/BuIM+grgKOBoIAX8jOjRbPNy2bmhIdXrGwjq66vYsKGpV/sWI/U3TLXVg2joJOxrqwcF1/+WlpZ2FyMLfTF227YWhgypZ+7c+7dvu/XWW5gz5xauuea6Tve59NLvAnRb94svPt/p51v729LSwoMP3s+CBXMZMWJkl8dqaWnZ4d9AWVmiyxPkOIN+PfBLd98AYGaPAZ8lx6AXKXXTJ49k/uLX2g3fJCvKmD55ZAGrGjhaL1Q3NG6hrh8uVI8b9xnuuusHrFz5KnPm3EQ6naampoaLL76cvffeh1mzvsk//MM3AViwYC677rorb7zxOiNHHsBVV13Lbbf9GwBnnnk6d9xxD9dffw2//300DDdjximccMJJvPHG67z55utceukVPPzwA3mrPc7fjR4H/tbMasysHJgKvBBjeyJBmTB2GKdPPZC66kEkgLrqQZw+9cAgZ930VNsL1RD/herm5maeeeZpDjxwDFdffTkXXHAJ8+f/hBNPnMHVV1+xw/tXrvwt559/Cffd9wjvvrue555bznnnXQzAD384n1dffYXGxkbmzr2fG2+cwyuvvATAiBEjueyyK6mqqs5r/bGd0bv7c2Z2A9EqarsQPdV+bvd7iUhbE8YOY8LYYSUzXJWr7i5U5+sH4fvvb2DmzNMA2Lo1zUEHjWXatC+ydq1z0EFjATjmmM9xww3Xkkq1X5Bs+PCR28fy99tvOE1Nje0+P2LESP7whze54IJZHH74EcyadV5eau5KrPOZ3P1e4N442xCR0tPZtYvutvfGkCH1zJt3f7tt//d/azt5Z2aH6Y7JZHL7x4lEgo6PbB08uIYFCx5ixYrnWL78N8yceRo/+tFDVFXFc5FddyeISNGpqx7Uo+35su+++7Fp0yZ+97tVADz99FMMHfoxqqsH57R/eXk5zc3N/PrXS/ne9/6JiRMncd55F7Hbbrvz3nvvxla37lAQkaJTqAvVyWSS2bOv5+abb+Avf9lMdfVgZs++Puf9J006ipkzT+Puu+fyzDO/4u///hSSySR/93efZ+TIA2KrO9HxV4oBYH/gdU2vzJ36G77Q+7x+/ZsMG7bf9te5TK/s71k3cerpdNKOXy9oN71yOPBGu+P3vUQRkf7XeqFadk5j9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETtMrRUQ6eOedt/nKV6az//4jSCRg69ZmhgwZwuWXX9XlevT/8i/f46STZnDggV2vR3/OOWdx662drzEP8P7773PdddewcWMDZWUJzj77PA49dHyf+6OgF5GilF67jPSKhWRSDSQq60iOn0Fy1MS8Hb/jWje33noLt902p8v16C+7bOfPVXrppe4X8L399jkcccSRzJhxCn/4wxvMmnUWjz32BOXl5T0rvgMFvYgUnfTaZWx5dh40pwHIpBqi15DXsG+rP9ajP+qooxk3LjqD//jH9yGd3sLmzZuprOzbE/c0Ri8iRSe9YuH2kN+uOR1tj0F/rUd/9NHHUl0drUX/k58sYNQo63PIg87oRaQIZVINPdreG4Vcj/6hh+7npz99rMtnxvaUgl5Eik6isq7TUE9U1uWtjUKtR3/77XNYtuw33Hbb3V1e+O0pDd2ISNFJjp8BFcn2GyuS0fYYxb0e/UMP3c+LL77AHXfck7eQB53Ri0gRar3gGuesm07bjXE9+hEjRnL22Weyxx57cM45Z23f56ab5jBkSH2f6tZ69AFQf8MXep97sx59SOJej15DNyIigVPQi4gETkEvIgPCABxGHpB683VS0ItIwZWVlbNtW3OhyygK27Y1U1bWsyURFPQiUnC77VZJU9OHZDKlcwG2NzKZFpqaPmC33Xp2t6ymV4pIwVVWDuaDDzbw7rt/BDKUlZXR0lI6oZ97fxMkk7tSWZnbvP1WCnoRKbhEIkFt7V7bX4c+nbSjuPuroRsRkcAp6EVEAqegFxEJnIJeRCRwsV6MNbMlwF7A1uyms9z9uTjblHCtXrKYqjWLaCTFJippGj2NMVOmFroskQEvtqA3swQwGtjP3XUnhPTJ6iWLGbrmEZKJaN3vGlLsvuYRVoPCXmQn4hy6sezfT5rZK2Y2K8a2JHBVaxZtD/lWycQ2qtYsKlBFIsUjzqGbPYGngXOAXYBnzMzd/alcds4ut9lr9fVVfdq/2ITe30ZSnW4fTCr4vrcqlX62Un/zJ7agd/flwPLW12Z2D/B5IKeg13r0uSuF/m6ikppOwn4TlcH3HUrje9yW+ttzbdaj3/FzfTpyN8xskpkd22ZTgr9elBXpkabR00hn2i/klM6U0zR6WoEqEikecQ7d1ACzzWwi0dDN6cC3YmxPAjZmylRWE43VD9asG5EeiXPo5nEzOwx4CSgHbssO54j0ypgpU2HK1JL7tV6kr2KdR+/uVwJXxtmGiIh0T3fGiogETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhK4irgbMLObgCHuPjPutpavWs+jS9exsXELtdWDmD55JBPGDou7WRGRXkmvXUZ6xUKaUhtJVNaSHD+D5KiJeW8n1jN6MzsWOD3ONlotX7We+Ytfo6FxCxmgoXEL8xe/xvJV6/ujeRGRHkmvXcaWZ+eRSTUAGTKpBrY8O4/02mV5byu2oDezWuBa4Lq42mjr0aXrSDe3tNuWbm7h0aXr+qN5EZEeSa9YCM3p9hub09H2PItz6OYu4Apgn97sXFdX2aP3b2zc0uX2+vqq3pRQVEqhj22VWn+h9Pocen+bUhs73Z5Jbcx732MJejM7A3jL3Z82s5m9OUZDQ4qWlkzO76+tHkRDJ2FfWz2IDRuaelNC0aivrwq+j22VWn+h9PpcCv1NVNZmh2123N6bvpeVJbo8QY5r6OZU4HgzexmYDXzRzG6JqS0Apk8eSbKifXeSFWVMnzwyzmZFRHolOX4GVCTbb6xIRtvzLJYzenc/rvXj7Bn90e5+fhxttWqdXaNZNyJSDFpn16RXLCQT86ybLoPezF4Fuhw7cfdP5b2aPpowdhgTxg4riV/7RKT4JUdNJDlqYuyZ1d0Z/ax8NODu84B5+TiWiIj0XJdB7+5LWz82s88ChwBzgUPdfXk/1CYiInmw04ux2TH2ucAlQA3wUzM7M+a6REQkT3KZdfMdYALQ6O7vAYcC58ValYiI5E0uQb/N3RtbX7j7W0BzfCWJiEg+5RL0G83sYLIzcMzsq0Dnt3SJiMiAk8s8+nOBR4CRZvYOsBk4MdaqREQkb3Ya9O7+mpl9GhgNlEebfGvslYmISF7sNOjNrAw4AzgO2Ao8ASyIuS4REcmTXMbo/5Vo7ZongKeBb5rZ92KtSkRE8iaXMfrjgIPdvRnAzH4MvABcGWdhIiKSH7mc0TfR/gdCC5CKpxwREcm37hY1uyD74Xrgv81sAbAN+DLwWj/UJiIiedDd0M0ns39/mP0zLvtaz+YTESki3S1q9o3+LEREROKRy/TKCcBlQCWQIJpLP9zd9425NhERyYNcLsb+B7AMqAbuAxqB/D+mXEREYpFL0Gfc/fvAM0QXYU8Bjo+zKBERyZ9cp1dCdBH2E+6+mWj2jYiIFIFcbpj6XzN7kOgGqUVmNhotUywiUjRyOaM/D7jF3ddkPy4DvhJrVSIikjfd3TA1rs3LdPb1O0QLmu0Rd2EiIpIf3Q3ddDezJgOMyHMtIiISg+5umBren4WIiEg8chmjFxGRIqagFxEJnIJeRCRwXQa9mc02s0R/FiMiIvnX3Rn9McASMxvWX8WIiEj+dRf0RwG/BJ43M61tIyJSpLqbXtkC/LOZLQL+w8xOpM1DR9z95n6oT0RE+iiXtW62ET0ndiywe3ZbJpeDm9ls4OTs++/RDwcR6c7qJYupWrOIRlJsopKm0dMYM2Vqocsqet0tgZAALgcuBq5w99t6cmAzm0w0zv8pYBdgtZktcnfvQ70iEqjVSxYzdM0jJBPR4rg1pNh9zSOsBoV9H3U3Rr+MaO35ST0NeQB3XwpMcfdmYC+iHyof9apKEQle1ZpF20O+VTKxjao1iwpUUTi6G7p5AbjQ3bf09uDuvtXMrgEuAh4G/pTrvnV1lb1tFoD6+qo+7V9s1N/whd7nRlKdbh9MKvi+Q7zf3+4uxs7KRwPufpWZfR/4OXAmcHcu+zU0pGhpyelSwA7q66vYsKFp528MhPobvlLo8yYqqekk7DdRGXzf8/H9LStLdHmCHNudsWZ2oJkdDODufwYeJRqvFxHZQdPoaaQz5e22pTPlNI2eVqCKwpHLrJveGgFcY2aTiGbdnAjcG2N7IlLExkyZymqisfrBmnWTV7EFvbs/YWafBV4imqK50N0fiKs9ESl+Y6ZMhSlTS2Koqj/FeUaPu18NXB1nGyIi0j2tXikiEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEriKOA9uZlcBp2RfLnL3S+JsT0REdhRb0JvZ54DjgUOADPALM/uSuz8WV5ulZvWSxVStWUQjKTZRSdPoaYyZMrXQZYnIABPn0M07wIXunnb3rcDvgH1jbK+krF6ymKFrHqEmkSKRgJpEiqFrHmH1ksWFLk1EBpjYzujdfVXrx2Y2imgI54i42is1VWsWkUxsa7ctmdhG1ZpFoLN6EWkj1jF6ADMbCywCLnb3tbnuV1dX2ad26+ur+rT/QNdIqtPtg0kF33cI//vbmVLrs/qbP3FfjD0CWAic5+4P9GTfhoYULS2ZXrVbX1/Fhg1Nvdq3WGyikppOwn4TlcH3vRS+vx2VWp/V354rK0t0eYIc2xi9me0D/CdwWk9DXnauafQ00pnydtvSmXKaRk8rUEUiMlDFeUZ/EbArcLOZtW67093vjLHNkjFmylRWE43VD9asGxHpRpwXY88Fzo3r+BKFPVOmltyvuSLSM7ozVkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAVcTdgJlVA8uAE9z9jbjbExGR9mINejM7DPghMDrOdkRClV67jPSKhTSlNpKorCU5fgbJURMLXZYUmbiHbs4EzgbejrkdkeCk1y5jy7PzyKQagAyZVANbnp1Heu2yQpcmRSbWoHf3M9z92TjbEAlVesVCaE6339icjraL9EDsY/S9VVdX2af96+ur8lRJcVB/w9OU2tjp9kxqY0n0vxT62Fac/R2wQd/QkKKlJdOrfevrq9iwoSnPFQ1c6m+YEpW12WGbHbeH3v9S+R63ykd/y8oSXZ4ga3qlyACVHD8DKpLtN1Yko+0iPTBgz+hFSl3r7Jr0ioVkNOtG+qBfgt7d9++PdkRCkxw1keSoiSU3lCH5paEbEZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAI3EOfRl0N0l1df9HX/YqP+hq/U+qz+9nr/8o6fS2QyvVtmIEaTAC2EJiLSO0cCv267YSAG/SBgPPAOsK3AtYiIFIty4GPACmBL208MxKAXEZE80sVYEZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCdxAXAKhT8ysGlgGnODubxS4nFiZ2VXAKdmXi9z9kkLW0x/MbDZwMpAB7nH3mwtcUr8ws5uAIe4+s9C1xMnMlgB7AVuzm85y9+cKWFKszOwLwFXAHsCT7n5uHO0EdUZvZocR3fo7utC1xM3MPgccDxwCHAwcamZfKmxV8TKzycAxwKeAzwDnmJkVtqr4mdmxwOmFriNuZpYg+r/7aXc/OPsn5JAfAdwJnET0b3qcmU2No62ggh44EzgbeLvQhfSDd4AL3T3t7luB3wH7FrimWLn7UmCKuzcTnfVVAB8Vtqp4mVktcC1wXaFr6QetP7SfNLNXzGxWQauJ35eAB939j9n/w6cCsfxgC2roxt3PACiBkzzcfVXrx2Y2imgI54jCVdQ/3H2rmV0DXAQ8DPypwCXF7S7gCmCfQhfSD/YEngbOAXYBnjEzd/enCltWbA4A0mb2M6KTtMeBK+NoKLQz+pJjZmOBp4CL3X1toevpD+5+FVBPFH5nFric2JjZGcBb7v50oWvpD+6+3N2/7u6b3P194B7g84WuK0YVwOeAfwQmAIcR0xCdgr6ImdkRRGdAl7n7/ELXEzczO9DMDgZw9z8DjxKNbYbqVOB4M3sZmA180cxuKXBNsTGzSdnrEa0S/PWibIjWA7909w3uvhl4DPhsHA0FNXRTSsxsH+A/gVPd/VeFrqefjACuMbNJRLNuTgTuLWxJ8XH341o/NrOZwNHufn7hKopdDTDbzCYSDd2cDnyrsCXF6nFgvpnVAE3AVKL/03mnM/ridRGwK3Czmb2c/RPyfwrc/QlgEfAS8AKwzN0fKGxVki/u/jjtv7/3uvvywlYVn+yMohuIZgquBt4E5sbRltajFxEJnM7oRUQCp6AXEQmcgl5EJHAKehGRwCnoRUQCp6CXkmBm48xsk5l9ps22IWa2zsymdfL+N9q+t4tjzjOzi3pYx9FmtrIn+4j0lYJeSoK7vwhcAjxsZnuaWQXwENFc7UWFrU4kXrozVkqGu9+Vvav2XmAd8CE7WRXSzMqAW4DDgSqi2/LPcPffZN8yycxOBqqBJ4GL3L3ZzA4C5gB1QDnw7+4e7F28MrDpjF5KzbeATxA9vOTr7r6zOwYPA/4GmODuY4D5wGVtPr83cCzRMwE+DZyZ/W3hEaI1iA4FJgMXmdnhee2JSI4U9FJqjOjMvAY4dGdvzt6C/13grOxTnk4GKtu8ZYG7f+TuaeDHwHFED88YCdybXZBsKbAb0UNiRPqdhm6kZJjZEKIVL88nWifoATM7xN3Xd7PPNKIhmH8Ffgq8BnytzVu2tfm4jGi1xXJgk7sf3OY4Q4FNRENAIv1KZ/RSEsysHHgQ+Lm7/8Td5wK/AB7Mfq4rx2X3uQN4nuixb23f/2UzG2RmuxKttrgYcGCzmX0t2/Y+wEpy+A1CJA4KeikVNxI9gPnCNtvOBmrp/oLsncDRZvYq8CLRRdzh2Yu0AK8DzxKtuPjfwPzsMM6JwBlm9luii7RXtrmAK9KvtHqliEjgdEYvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gE7v8BPtgVMOgYEnYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -148,32 +143,40 @@ "x = [1,2,3,4,5]\n", "y = [4,2,5,6,3]\n", "\n", - "plt.scatter(x,y)" + "plt.scatter(x,y, label='Points1')\n", + "plt.scatter(y,x, label='Points2')\n", + "plt.xlabel('X label')\n", + "plt.ylabel('Y label')\n", + "plt.title(\"Simple Plot\")\n", + "plt.legend()\n", + "plt.show()" ] }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 69, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEGCAYAAAB8Ys7jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAQxElEQVR4nO3cfWiV9f/H8deuna22qa1tx5v/XNEfEiQSWEtprWzlWTWbA29KKRFa+FUcgYqkUpioBLMh/VdCWVpC646MRGt4szKFNqgh4l0OFx2PrbOt5Tmdc/3+iPb99eun52yey8v31fPxV4srrteH0dOLa/Pkua7rCgBgjuP3AADA6BBwADCKgAOAUQQcAIwi4ABgFAEHAKNCmS7Ys2ePdu7cOfx1T0+P6uvrtX79ek+HAQCuLm8kvwd+8uRJLVu2TLt371ZZWZmXuwAAGYwo4E899ZSefvppzZ4928tNAIAsZP0O/MiRI/r999+JNwDcILIO+O7du/Xss896uQUAMAJZBTyRSOjbb7/Vgw8+6PUeAECWMv4WiiSdOHFCkydPVnFx8Yhv8Msvg0qng/l5WeXlYxSLDfg9wzOcz7Ygny/IZ3OcPN16a0lW12YV8PPnz2vixImjGpNOu4ENuKRAn03ifNYF+XxBPlu2sgp4JBJRJBLxegsAYAT4m5gAYBQBBwCjCDgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABgFAEHAKMIOAAYRcABwCgCDgBGEXAAMIqAA4BRBBwAjCLgAGAUAQcAowg4ABhFwAHAKAIOAEYRcAAwioADgFEEHACMIuAAYBQBBwCjCDgAGEXAAcCorAJ+4MABNTQ0aPbs2dq4caPXmwAAWcgY8PPnz2vDhg16/fXX9fHHH+uHH35Qe3v79dgGALiKUKYL9u3bp0gkookTJ0qSWlpadNNNN3k+DABwdRmfwM+dO6dUKqWmpibV19fr3Xff1S233HI9tgEYBcdxpFC+us/EpFC+nHx+1BVUGZ/AU6mUjh07prffflvFxcV6/vnn1dbWpoaGhuuxD8AIpZ08rWxpV3wwoXElhdrWXO33JHgkY8ArKipUVVWlsrIySdKsWbPU1dWVdcDLy8dc28IbXDg81u8JnuJ89nSfiSk+mJAkxQcTutg3pCmV5T6vyr0gfu9GKmPAa2pqtHr1asXjcZWUlOjgwYN66KGHsr5BLDagdNq9ppE3qnB4rKLRfr9neIbz2VRRWqRxJYXDT+AVpUWBO2dQv3eS5Dh5WT/4Zgz41KlTtXTpUi1cuFDJZFIzZszQ3Llzr3kkAG84rqttzdW62DekitIiOa6rtN+j4ImMAZekxsZGNTY2er0FQA6kU3/mekpluaLRfuIdYPx4GgCMIuAAYBQBBwCjCDgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABgFAEHAKMIOAAYRcABwCgCDgBGEXAAMIqAA4BRBBwAjCLgAGAUAQcAowg4ABhFwAHAKAIOAEYRcAAwioADgFEEHACMIuAAYBQBBwCjCDgAGEXAAcCoUDYXLVq0SJcuXVIo9OflL7/8sqZOnerpMADA1WUMuOu6Onv2rL788svhgAMA/JfxFcrp06clSUuWLNETTzyhnTt3ej4K8JLjOFIoX91nYlIoX04+bxJhU8ZH6ng8rqqqKq1bt07JZFKLFy9WZWWlZsyYcT32ATmXdvK0sqVd8cGExpUUaltztd+TgFHJGPBp06Zp2rRpw183Njaqvb0964CXl48Z/ToDwuGxfk/wVBDP130mpvhgQpIUH0zoYt+QplSW+7zKG0H8/v0lyGfLVsaAHzt2TMlkUlVVVZL+fCc+knfhsdiA0ml39AtvYOHwWEWj/X7P8ExQz1dRWqRxJYXDT+AVpUWBPGdQv39SsM/mOHlZP/hmLHF/f79aW1u1e/duJZNJtbW16aWXXrrmkYBfHNfVtuZqXewbUkVpkRzXVdrvUcAoZAx4TU2NOjs7NWfOHKXTaS1cuPBvr1QAa9KpP3M9pbJc0Wg/8YZZea7revp+g1codnE+24J8viCfbSSvUPj9KQAwioADgFEEHACMIuAAYBQBBwCjCDgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABgFAEHAKMIOAAYRcABwCgCDgBGEXAAMIqAA4BRBBwAjCLgAGAUAQcAowg4ABhFwAHAKAIOAEYRcAAwioADgFEEHACMIuAAYFTWAd+yZYvWrFnj5RYAwAhkFfCOjg61tbV5vQUAMAIZA97X16eWlhY1NTVdjz0mOI4jhfLVfSYmhfLl5PMmCsD1F8p0wfr169Xc3Kze3t7rsceEtJOnlS3tig8mNK6kUNuaq/2eBOBf6KoB37NnjyZNmqSqqip98MEHo7pBefmYUf13N7LuMzHFBxOSpPhgQhf7hjSlstznVd4Ih8f6PcFTnM+uIJ8tW1cN+GeffaZoNKr6+nr9+uuv+u2337Rp0yatXbs26xvEYgNKp91rHnojqSgt0riSwuEn8IrSIkWj/X7PyrlweGwgz/UXzmdXkM/mOHlZP/jmua6bVV0/+OADHT16VJs3bx7RmCAG3Ml3lM7L08W+IVWUFslxXaVTab9n5VyQ/yeROJ9lQT7bSALOT99GIZ1KS3+k/nxt8kcqkPEGcOPL+EPMvzQ0NKihocHLLQCAEeAJHACMIuAAYBQBBwCjCDgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABgFAEHAKMIOAAYRcABwCgCDgBGEXAAMIqAA4BRBBwAjCLgAGAUAQcAowg4ABhFwAHAKAIOAEYRcAAwioADgFEEHACMIuAAYBQBBwCjCDgAGJVVwF977TVFIhHV1dVpx44dXm8CAGQhlOmCo0eP6uuvv9bHH3+sP/74Q5FIRNXV1brtttuuxz4AwBVkfAKfPn263nrrLYVCIcViMaVSKRUXF1+PbQDwN47jSKF8dZ+JSaF8Ofn/7rfAGZ/AJamgoECtra1688039eijj2rChAle7wKAf0g7eVrZ0q74YELjSgq1rbna70m+ynNd18324qGhITU1NSkSiWjevHle7gKAf+g+E9Oq7YeGv976n5maUlnu4yJ/ZXwCP3XqlBKJhKZMmaKioiLV1tbqxIkTWd8gFhtQOp31nxGmhMNjFY32+z3DM5zPtiCer6K0SONKCoefwCtKiwJ3RsfJU3n5mKyuzRjwnp4etba2ateuXZKk/fv3a+7cude2EABGwXFdbWuu1sW+IVWUFslxXaX9HuWjjAGvrq5WV1eX5syZo/z8fNXW1qquru56bAOAv0mn/sz1lMpyRaP9/+p4S1n+EHP58uVavny511sAACPw7/4dHAAwjIADgFEEHACMIuAAYBQBBwCjCDgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABgFAEHAKMIOAAYRcABwCgCDgBGEXAAMIqAA4BRBBwAjCLgAGAUAQcAowg4ABhFwAHAKAIOAEYRcAAwioADgFEEHACMIuAAYFQom4u2b9+uvXv3SpKqq6u1atUqT0cBADLL+AR+5MgRHTp0SG1tbfrwww/1/fffa9++fddjGwDgKjI+gYfDYa1Zs0aFhYWSpNtvv10XLlzwfBgA4OoyBvyOO+4Y/uezZ89q79692rVrl6ej4C/HcZR28tR9JqaK0iI5rqt0Ku33LAD/R1bvwCXp5MmTeu6557Rq1SpNnjzZw0nwW9rJ08qWdsUHExpXUqhtzdV+TwLw/8gq4MePH9eKFSu0du1a1dXVjegG5eVjRjXMinB4rN8Tcq77TEzxwYQkKT6Y0MW+IU2pLPd5lTeC+P3734J8viCfLVsZA97b26tly5appaVFVVVVI75BLDagdNod1bgbXTg8VtFov98zcq6itEjjSgqHn8ArSosCec6gfv/+EuTzBflsjpOX9YNvxoC/8cYbunz5sjZv3jz87+bPn68FCxaMfiFuaI7raltztS72Df33HbjfowD8Q57rup4+HvMEbhfnsy3I5wvy2UbyBM7fxAQAowg4ABhFwAHAKAIOAEYRcAAwioADgFEEHACMIuAAYBQBBwCjCDgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIwi4ABgFAEHAKMIOAAYRcABwCgCDgBGEXAAMIqAA4BRBBwAjCLgAGAUAQcAowg4ABhFwAHAKAIOAEZlHfCBgQE99thj6unp8XIPACBLWQW8s7NTCxYs0NmzZz2eAwDIVlYBf//997VhwwaNHz/e6z0AgCyFsrnolVde8XoHAGCEsgr4tXCcPK9v4SvOZxvnsyuoZxvJuTwP+K23lnh9C1+Vl4/xe4KnOJ9tQT5fkM+WLX6NEACMIuAAYFSe67qu3yMAACPHEzgAGEXAAcAoAg4ARhFwADCKgAOAUQQcAIzyLOCffPKJIpGIamtr9c4773h1G98E+eN1t2/frrq6OtXV1Wnr1q1+z8m51157TZFIRHV1ddqxY4ffczyzZcsWrVmzxu8ZObdo0SLV1dWpvr5e9fX16uzs9HtSTh04cEANDQ2aPXu2Nm7cePWLXQ/89NNPbk1NjfvLL7+4g4OD7uOPP+6ePHnSi1v54rvvvnMfe+wx984773TPnz/v95ycOnz4sDtv3jz38uXLbiKRcBcvXux+8cUXfs/KmW+++cadP3++m0wm3aGhIbempsY9deqU37Ny7siRI+4999zjrl692u8pOZVOp92ZM2e6yWTS7yme+PHHH92ZM2e6vb29biKRcBcsWOB+9dVXV7zekyfwI0eO6N5771VpaamKi4v1yCOP6PPPP/fiVr4I8sfrhsNhrVmzRoWFhSooKNDtt9+uCxcu+D0rZ6ZPn6633npLoVBIsVhMqVRKxcXFfs/Kqb6+PrW0tKipqcnvKTl3+vRpSdKSJUv0xBNPaOfOnT4vyq19+/YpEolo4sSJKigoUEtLi6ZOnXrF6z35MKuff/5Z4XB4+Ovx48erq6vLi1v5Isgfr3vHHXcM//PZs2e1d+9e7dq1y8dFuVdQUKDW1la9+eabevTRRzVhwgS/J+XU+vXr1dzcrN7eXr+n5Fw8HldVVZXWrVunZDKpxYsXq7KyUjNmzPB7Wk6cO3dOBQUFampqUm9vrx544AGtXLnyitd78gSeTqeVl/ffj0R0XfdvX+PGd/LkSS1ZskSrVq3S5MmT/Z6TcytWrFBHR4d6e3v1/vvv+z0nZ/bs2aNJkyapqqrK7ymemDZtmrZu3aqxY8eqrKxMjY2Nam9v93tWzqRSKXV0dGjTpk1677331NXVpba2tite70nAJ06cqGg0Ovx1NBoN5OuGoDp+/LieeeYZvfDCC3ryySf9npNTp06dUnd3tySpqKhItbW1OnHihM+rcuezzz7T4cOHVV9fr9bWVh04cECbNm3ye1bOHDt2TB0dHcNfu66rUMjzT8W+bioqKlRVVaWysjLdfPPNmjVr1lXfXngS8Pvuu08dHR26dOmShoaG9MUXX+j+++/34lbIsd7eXi1btkyvvvqq6urq/J6Tcz09PXrxxReVSCSUSCS0f/9+3X333X7PypkdO3bo008/1UcffaQVK1bowQcf1Nq1a/2elTP9/f3aunWrLl++rIGBAbW1tenhhx/2e1bO1NTU6NChQ4rH40qlUjp48KDuvPPOK17vyR9dEyZMUHNzsxYvXqxkMqnGxkbdddddXtwKOfbGG2/o8uXL2rx58/C/mz9/vhYsWODjqtyprq5WV1eX5syZo/z8fNXW1gbyD6qgqqmpUWdnp+bMmaN0Oq2FCxdq2rRpfs/KmalTp2rp0qVauHChksmkZsyYoblz517xej5OFgCM4m9iAoBRBBwAjCLgAGAUAQcAowg4ABhFwAHAKAIOAEYRcAAw6n8AOIL67+zMESgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD7CAYAAAB+B7/XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAXoklEQVR4nO3df4zkdZ3n8WdVzQg9O4M0bXeA4CBGeXvnng46zF4O/AmYSO5wSVRciTJBXAiycfEHd44i4q7DnqtwMYq6wOyYkCwmixh1ho0eElFEWF3Rjeg75oKcyNz23KRzyzjDOtNd90dVz9QU093f6q7uqvn4fCSErs/nW1OvfKfmVd/61LfrW2s2m0iSylEfdABJUn9Z7JJUGItdkgpjsUtSYSx2SSrMqgE//nHA2cAuYHrAWSTpWNEATgH+Efi37slBF/vZwHcHnEGSjlWvAr7XPTjoYt8FMDX1W2ZmFnc+/djYWvbs2dvXUP1grt6Yq7phzATm6tVSctXrNUZH/wDaHdpt0MU+DTAz01x0sc/efxiZqzfmqm4YM4G5etWHXEddwvbDU0kqjMUuSYWx2CWpMBa7JBWm0oenEfFfgBuAPwC+mZnv7ZrfANwOnAA8AFyVmQf7nFXSEGo06hwEJqf2QaPOKmB6embQsX6vLXjEHhEvBL4A/DHwMuAVEfHGrs3uBK7JzDOBGvDufgeVNHwajTpT+w7woVsf5F1/+S0+dOuDTO07QKPhYsAgVdn7FwNfzswnM/MAcAnw8OxkRJwOjGTmD9pD24G39DuopOFzENi6/REmp/YDMDm1n63bH8G364NVZSnmRcDvIuJrwHrgG8D1HfOncuRJ8ruA03oJMTa2tpfNn2V8fN2S7r9czNUbc1U3LJkmp/YdKvXDY/uhVhuajDA8+6vbcuWqUuyrgFcDrwX2Al8DLqN1ZA6to/7Os+xrQE8LbHv27F30ifrj4+vYvfvpRd13OZmrN+aqbqgyNepMjI4cUe4ToyPQbA5NxqHaXx2Wkqter817QFxlKeb/AP8zM3dn5n7gHmBTx/yTtL6MZtbJwFOLyCrpGLMK2LJ5U6vMaZX6ls2bBv4r7b/vquz/bwBfiogTgaeBNwJfnZ3MzCci4pmIOCczHwTeAdy7LGklDZXp6RlG16zmpqvPgVoNmk3PihkCCx6xZ+bDwCdpfYPYY8ATwN9GxM6I2Nje7FLgloj4BbAW+Mwy5ZU0ZKanZ6hNzzAxuoba9IylPgQqvWPKzG3Atq7hCzvmf8KRyzOSpAHxZFNJKozFLkmFsdglqTAWuyQVxmKXpMJY7JJUGItdkgpjsUtSYSx2SSqMxS5JhbHYJakwFrskFcZil6TCWOySVBiLXZIKU+n72CPifmACONAeurJ9AY7Z+b8FzgV+2x66MTPv6WdQSVI1CxZ7RNSAM4HTM/PgHJttBF6dmbv6GU6S1LsqSzHR/v83I+InEXHNEZMRa4D1wLaI+GlE3BgRLvFI0oBUKeBR4D7gYuA84KqIuKBj/mTg28DlwH8EXgW8q885JUkV1ZrNZk93iIhrgfWZee0c8xcD78zMiyv8cS8AHu8pgCRp1hnAr7oHq6yxnwscl5n3tYdqHP4QlYj4D8CZmXn30ear2LNnLzMzvb3AzBofX8fu3U8v6r7LyVy9MVd1w5gJzNWrpeSq12uMja2dc77KWTEnAh+PiP8ErAYuA67qmK8B/yMivg3sBf4U+NKi0kqSlmzBNfbM/AawA/gx8CNgW2Y+FBGPRsSpmflT4CbgQeAx4NHM/LvlDC1Jmlul89gz83rg+q6xDR0/3wrc2t9okqTF8LRESSqMxS5JhbHYJakwFrskFcZil6TCWOySVBiLXZIKY7FLUmEsdkkqjMUuSYWx2CWpMBa7JBXGYpekwljsklQYi12SCmOxS1JhKl1oIyLuByY4fC3TKzPz4Y7584GbgRHgy5n5kX4HlSRVU+Vi1jXgTOD0zDx4lPkRYBvwGuDXwI6IeGNm3tvvsNJKaTTqHAQmp/ZBo84qYHp6ZtCxpEqqHLFH+//fjIgx4LbM/GzH/Cbgl5n5OEBE3Am8BbDYdUxqNOpM7TvA1u2PMDm1n4nREbZs3sTomtWWu44JVdbYR4H7gIuB84CrIuKCjvlTgV0dt3cBp/UtobTCDsKhUgeYnNrP1u2P8Ky3q9KQWvCIPTMfAh6avR0RdwAXAt9qD9WBZsddakBPhzVjY2t72fxZxsfXLen+y8VcvRmWXJNT+w6V+uGx/VCrDU3GYcnRzVy9Wa5cVdbYzwWOy8z72kM1Dn+ICvAkcErH7ZOBp3oJsWfPXmZmmgtveBTj4+vYvfvpRd13OZmrN0OVq1FnYnTkiHKfGB2BZnMoMg7Vvupgrt4sJVe9Xpv3gLjKUsyJwF9HxPERsQ64DLinY/5hICLiRRHRAN6O6+s6hq0Ctmze1CpzOLTGXukUMmkIVFmK+UZE/BHwY6ABfC4zH4qIR4ELM/OpiNgM3A0cD+wE/n4ZM0vLanp6htE1q7np6nOgVoNm07NidEypdBCSmdcD13eNbej4+T7g5f2NJg3O9PQMNQ6/XZ4edCCpB/7mqSQVxmKXpMJY7JJUGItdkgpjsUtSYSx2SSqMxS5JhbHYJakwFrskFcZil6TCWOySVBiLXZIKY7FLUmEsdkkqjMUuSYXp6aIwEfEp4HmZublr/DLgr4B/aQ/tyMwP9yWhJKknlYs9Is6jdVm8HUeZ3gi8LzP/rl/BJEmLU2kpJiJOAj4BbJ1jk7OByyLinyPizogY7VdASVJvqq6xfxH4MDA1x/wu4C+AlwG/Bj679GiSpMWoNZvNeTeIiCuAf5+Z72tftPq13WvsXduPAv8rM0+q8PgvAB6vnFaS1OkM4Ffdg1XW2C8BTomIR4GTgLURcUtmXgsQEc8FLs/MW9rb14CDvSTbs2cvMzPzv8DMZfZiw8PGXL0xV3XDmAnM1aul5KrXa4yNrZ1zfsFiz8wLZn/uOGK/tmOTvcB1EfH9zHwYuAa4Z1FpJUlLtujz2CPi9oi4KDOngbcCn4+InwOvBK7rV0BJUm96Oo89M7cD29s/X9Ex/l3gFf0MJklaHH/zVJIKY7FLUmEsdkkqjMUuSYWx2CWpMBa7JBXGYpekwljsklQYi12SCmOxS1JhLHZJKozFLkmFsdglqTAWuyQVxmKXpMJY7JJUmMoX2oiITwHP676QdUSsB+4EJoAELs3Mvf0MKUmqrtIRe0ScB1w2x/StwK2Z+RLgh8D1fco2r0ajTrNRZ3JqH81GnUbDNx+SBBWO2CPiJOATwFbg5V1zq4FXA3/cHtoOfAf4r31N2aXRqDO17wBbtz/C5NR+JkZH2LJ5E6NrVjM9PbOcDy1JQ6/KYe4XgQ8DU0eZex7wr5l5sH17F3Ban7LN6SAcKnWAyan9bN3+CAfnv5sk/V6Y94g9Iq4Afp2Z90XE5qNsUgeaXWM9HzKPja3tafvJqX2HSv3w2H6o1RgfX9frwy+bYcrSyVy9GcZcw5gJzNWr5cq10FLMJcApEfEocBKwNiJuycxr2/OTwHMjopGZ08ApwFO9htizZy8zM92vD/No1JkYHTmi3CdGR6DZZPfup3t9+GUxPr5uaLJ0MldvhjHXMGYCc/VqKbnq9dq8B8TzLsVk5gWZ+YeZuQH4KPC1jlInMw8A36X1AgDwTuDeRSXtwSpgy+ZNrTKHQ2vslU/xkaSCLaoLI+J2WiX/NeBq4EsR8RHgfwN/0sd8RzU9PcPomtXcdPU5UKtBs8mq9rgk/b6rXOyZuZ3WWS9k5hUd408Ar+1zrgVNT89Q4/DbmemVDiBJQ8qTvyWpMBa7JBXGYpekwljsklQYi12SCmOxS1JhLHZJKozFLkmFsdglqTAWuyQVxmKXpMJY7JJUGItdkgpjsUtSYSx2SSpMpe9jj4iPA2+mdX3TOzLz5q75G4DLOXzB69sy83P9DCpJqmbBYo+I1wCvB14GrAYei4gdmZkdm20E3paZDy1PTElSVQsuxWTmd4DXZeZBYILWi8FvuzbbCGyJiJ9GxGcj4vj+R5UkVVFpjT0zD0TEjcBjwH3Ab2bnImIt8GPgg8ArgBOB6/sfVZJURa3ZbFbeOCLWAF8HvpyZfzPHNmcB2zLzrAp/5AuAxysHkCR1OgP4VfdglTX2lwDHZ+ajmbkvIr5Ca719dn49cH5mbmsP1YADvSTbs2cvMzPVX2A6zV7MetiYqzfmqm4YM4G5erWUXPV6jbGxtXPOVzkr5oXAjRFxLq2zYt4EbOuY3w98MiLup/XK8R7gnkWllSQtWZUPT3cCO2ito/8I+H5m3hUROyNiY2buBq6ktUSTtI7YP72MmSVJ86h0Hntmfgz4WNfYhR0/3w3c3c9gkqTF8TdPJakwFrskFcZil6TCWOySVBiLXZIKY7FLUmEsdkkqjMUuSYWx2CWpMBa7JBXGYpekwljsklQYi12SCmOxS1JhLHZJKozFLkmFqXShjYj4OPBmWpfGuyMzb+6a3wDcDpwAPABclZkH+5xVklTBgkfsEfEa4PW0LmC9EfiziIiuze4ErsnMM2ldGu/d/Q4qSSVoNOo0G3Ump/bRbNRpNPq/cFLlmqffAV7XPgKfoHWU/9vZ+Yg4HRjJzB+0h7YDb+l7Ukk6xjUadab2HeBDtz7Iu/7yW3zo1geZ2neg7+Ve6U/LzAMRcSPwGHAf8JuO6VOBXR23dwGn9S2hJBXiILB1+yNMTu0HYHJqP1u3P0K/160rrbEDZOYNEfHfga/TWmr5m/ZUndba+6waMNNLiLGxtb1s/izj4+uWdP/lYq7emKu6YcwE5lrI5NS+Q6V+eGw/1Gp9zbhgsUfES4DjM/PRzNwXEV+htd4+60nglI7bJwNP9RJiz569zMw0F97wKMbH17F799OLuu9yMldvzFXdMGYCc1XSqDMxOnJEuU+MjkCz2VPGer027wFxlaWYFwK3RcRxEfEc4E3A92YnM/MJ4JmIOKc99A7g3soJJen3xCpgy+ZNrTKnVepbNm+qvnTSw+PMKzN3RsQm4MfANHB3Zt4VETuBj2bmD4FLaZX/CcA/AZ/pc05JOuZNT88wumY1N119DtRq0Gyyqj3eT5VeKDLzY8DHusYu7Pj5J8CmfgaTpBJNT89Q4/AS0fQyPIa/eSpJhbHYJakwFrskFcZil6TCWOySVBiLXZIKY7FLUmEsdkkqjMUuSYWx2CWpMBa7JBXGYpekwljsklQYi12SCmOxS1JhKn0fe0TcALy1fXNHZl53lPnLgan20G2Z+bm+pZQkVVblmqfnA28AzqJ10ep/iIiLM/Oejs02Am/LzIeWJ6YkqaoqR+y7gPdn5u8AIuLnwPqubTYCWyLidOAB4AOZ+Uxfk0qSKllwjT0zf5aZPwCIiBfTWpLZOTsfEWtpXQ/1g8ArgBOB65clrSRpQbVms1lpw4h4KbADuCEzvzTPdmcB2zLzrAp/7AuAxysFkCR1OwP4Vfdg1Q9PzwHuBv48M+/qmlsPnJ+Z29pDNeBAL8n27NnLzEy1F5husxeEHTbm6o25qhvGTGCuXi0lV71eY2xs7ZzzVT48fT7wVeCSzPz2UTbZD3wyIu6n9crxHuCeo2wnSVoBVY7YPwAcD9wcEbNjXwAuAj6amT+MiCuBrwPPAb4HfHoZskqSKliw2DPzvcB7jzL1hY5t7qa1VCNJGjB/81SSCmOxS1JhLHZJKozFLkmFsdglqTAWuyQVxmKXpMJY7JJUGItdkgpjsUtSYSx2SSqMxS5JhbHYJakwFrskFcZil6TCWOySVJiq1zy9AXhr++aOzLyua34DcDtwAvAAcFVmHuxnUElSNQsesUfE+cAbgLOADcArI+Lirs3uBK7JzDNpXcz63f0OqqVpNOo0G3Ump/bRbNRpNHyzJpWqyhH7LuD9mfk7gIj4ObB+djIiTgdGMvMH7aHtwI3A5/sbVYvVaNSZ2neArdsfYXJqPxOjI2zZvInRNauZnp4ZdDxJfbbgYVtm/my2tCPixbSWZHZ2bHIqrfKftQs4rZ8htTQH4VCpA0xO7Wfr9kdwrUwqU6U1doCIeCmwA/hgZv6yY6oONDtu14CeDgPHxtb2svmzjI+vW9L9l8uw5Jqc2neo1A+P7YdabWgywvDsr27DmGsYM4G5erVcuap+eHoOcDfw55l5V9f0k8ApHbdPBp7qJcSePXuZmWkuvOFRjI+vY/fupxd13+U0VLkadSZGR44o94nREWg2hybjUO2vDsOYaxgzgbl6tZRc9Xpt3gPiKh+ePh/4KvD2o5Q6mfkE8Ey7/AHeAdy7qLRaFquALZs3tcocDq2xV367JumYUuXf9geA44GbI2J27AvARcBHM/OHwKXAbRFxAvBPwGeWIasWaXp6htE1q7np6nOgVoNmk1XtcUnlWbDYM/O9wHuPMvWFjm1+AmzqYy712fT0DDUOv/2bHnQgScvGk5klqTAWuyQVxmKXpMJY7JJUmEGf8daA1jmZS7HU+y8Xc/XGXNUNYyYwV68Wm6vjfo2jzdeazcX9YlCfnAt8d5ABJOkY9irge92Dgy7244CzaX2/jGfgSVI1DVq/8f+PwL91Tw662CVJfeaHp5JUGItdkgpjsUtSYSx2SSqMxS5JhbHYJakwFrskFWbQXynQk/aFPL4P/OfM/FXX3AbgduAE4AHgqsxckes1L5DrBuByYKo9dFtmfm4FMt1A68LjADsy87qu+RXfXxUyDWpffRx4M61r996RmTd3zQ/kuVUh10D2V8fjfwp4XmZu7hpfD9wJTAAJXJqZe4cg12XAXwH/0h7akZkfXoE899PaFwfaQ1dm5sMd8+cDNwMjwJcz8yNLfcxj5og9Iv6I1q/OnjnHJncC12TmmbQuqP3uIcm1EXhbZm5o/7cSRXU+8AbgLGAD8MqIuLhrsxXdXxUzDWJfvQZ4PfCy9uP/WXRcKqxtxZ9bFXOt+P7qyHcecNkc07cCt2bmS4AfAtcPSa6NwPs69tdKlHqNVje8vONxO0t9BNgGvAn4d8DZEfHGpT7uMVPstP4xvYejXCg7Ik4HRjLzB+2h7cBbBp2rbSOwJSJ+GhGfjYjjVyDTLuD9mfm7zDwA/BxYPzs5oP01b6a2Fd9Xmfkd4HXtI/AJWu9ifzs7P6jn1kK52gbx3CIiTgI+AWw9ytxq4NXA37eHtrNC/xbny9V2NnBZRPxzRNwZEaMrEav9/29GxE8i4pqu+U3ALzPz8fbf9Z30YX8dM8WemVdk5lxfGHYqreKYtQs4bflTzZ8rItYCPwY+CLwCOJEVOHrJzJ/NFlFEvJjW8sfOjk1WfH8tlGlQ+6qd7UBE3Ag8BtwH/KZjepDPrTlzDXJ/AV8EPszhJaBOzwP+tWOpasX21wK5ZrP8Ba13Qb8GPrsCmUZp/d1dDJwHXBURF3TML8vz65gp9gXUaa1DzqoBA79Sc2buzcwLM/MX7Sf6p4ELV+rxI+KlwLeAD2bmLzumBra/5so06H2VmTcA48DzOXKpZaDPrblyDWp/RcQVwK8z8745NuneX7AC+6tCLjLz4sx8MDObwCeBJS95LCQzH8rMd2bm/8vM/wvcwZF/T8vy/Cql2J+k9U1ns05m7qWRFRMR6yPi8o6hGoc/QFnuxz6H1pHCf8vML3VND2R/zZdpUPsqIl7S/nCUzNwHfIXWEd2sQe2reXMN8Ll1CfCGiHgU+DhwUUTc0jE/CTw3Ima/J/wUVubf4ry5IuK5EXFtx/Y1YCU+AD+3ve7f+bidf0/L8vwqotgz8wngmXZxALwDuHeAkWbtBz4ZEWe0P0R5D3DPcj9oRDwf+Crw9sy8q3t+EPtroUwMaF8BLwRui4jjIuI5tD7EOvT91gN8bs2biwHtr8y8IDP/MDM3AB8FvpaZ13bMH6B1jYVL2kPvZAX210K5gL3Ade2THQCuYWWeXycCfx0Rx0fEOlof7HY+7sNARMSL2i+Gb6cP++uYLvaI2BkRG9s3LwVuiYhfAGuBzww6V2buBq4Evk7rtK8arbfMy+0DwPHAzRHxaPu/qwa8v+bNNKh9lZk7gR201qt/BHw/M+8a9HNroVwDfG4dVUTcHhEXtW9eDfxpRDxG60IQSz59b6m5MnOa1uc6n4+InwOvBK6b/95Ll5nf4Mi/x22Z+VD7+X9qZj4DbAbupvVZyi84/MHzovl97JJUmGP6iF2S9GwWuyQVxmKXpMJY7JJUGItdkgpjsUtSYSx2SSqMxS5Jhfn/84GbrLtgVCsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -192,38 +195,51 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 55, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[6 6 3 7 5 7 1 9 1 9 8 3 2 5 7 2 1 6 2 5 5 3 8 9 0 5 3 7 9 1 3 2 8 2 8 4 4\n", + " 6 1 2 0 8 1 3 8 8 2 2 0 4 2 6 3 3 3 5 3 0 4 9 9 3 1 4 8 6 3 2 5 5 4 7 3 3\n", + " 3 3 8 1 6 0 1 0 8 1 0 4 5 5 1 4 7 0 4 4 6 3 4 8 6 4]\n" + ] + } + ], "source": [ - "x = np.random.randint(0,10,100)" + "x = np.random.randint(0,10,100)\n", + "print(x)" ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(array([12., 7., 15., 7., 10., 7., 6., 13., 14., 9.]),\n", + "(array([ 8., 11., 10., 17., 12., 10., 9., 6., 11., 6.]),\n", " array([0. , 0.9, 1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1, 9. ]),\n", " )" ] }, - "execution_count": 49, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEGCAYAAACAd+UpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAR+0lEQVR4nO3dW0xUZ7/H8R8ooG7owXGoxhqbWBsbY2lMDKUarY21IhDawbRiojGWWBrruVFqjCRGPDQ19GC9MCFeWLWiQlGrRhOsETA1mlbSGhPbCkqkOp6qFOQwrH3hfvH1fXfTmTVrZsHD93PFTFzz/GcxfrMcmYcYy7IsAQCMFOv2AACAyCHyAGAwIg8ABiPyAGAwIg8ABiPyAGCwoCPf1NSkzMxMNTQ0SJJ+/PFHvfPOO8rIyNCyZcvU1tYWsSEBAPYEFfnz588rNzdXdXV1kh4Gf+HChVq7dq2+++47SdK+ffsiNiQAwJ6gIl9aWqrCwkIlJydLkqqrq/Xyyy9r1KhRkqTVq1frjTfeiNyUAABb+gbzh4qKih67XV9frwEDBmjp0qX6/fffNXbsWBUUFERkQACAfbb+4zUQCKiqqkrLli1TWVmZWlpatG3bNqdnAwCEyVbkBw0apJSUFA0bNkx9+vRRenq6amtrnZ4NABCmoN6u+U8TJkzQl19+qcbGRg0ZMkQnTpzQ6NGjQ36cO3f+Umcn+6N5PIm6davJ7TFcx3l4hHPxCOfiodjYGD399P+EfJytyA8ZMkRr165Vfn6+Wltb9eKLL2rlypUhP05np0Xk/w/n4SHOwyOci0c4F/bFuLnV8K1bTXzzJHm9SfL777s9hus4D49wLh7hXDwUGxsjjycx9OMiMAsAoJsg8gBgMCIPAAYj8gBgMCIPAAYj8gBgMCIPAAYj8gBgMCIPAAYj8gBgMFt71yB0SU/0V7+Evz/dXm9SRNZ90Nqh+/daIvLYALo/Ih8l/RL6Kmt5RdTXPbg5W+z6AfRevF0DAAYj8gBgMCIPAAYj8gBgMCIPAAYj8gBgMCIPAAYLKvJNTU3KzMxUQ0PDY/d//fXXmj17dkQGAwCE7x8jf/78eeXm5qquru6x+3/99Vdt27YtUnMBABzwj5EvLS1VYWGhkpOTu+5ra2vTmjVrtGjRoogOBwAIzz9ua1BUVPRf923evFk5OTl69tlnIzIUAMAZIf/Ha3V1tRobG5WTkxOJeQAADgp5g7JDhw7p0qVLys7OVnNzs27evKklS5bos88+C3lxjycx5GMQukjtcBkJPWnWSOvu56KtPaD4uD5RWevfz0U01zVByJHfsGFD19c//PCDtmzZYivwknTrVpM6Oy1bx/Y0bv6F9ft7xj6UXm9Sj5k10nrCufB6k1zbWbW7n5tIiI2NsXVhzM/JA4DBgr6Sr6ys/K/7UlNTlZqa6uhAAADncCUPAAYj8gBgMCIPAAYj8gBgMCIPAAYj8gBgMCIPAAYj8gBgMCIPAAYLee8aAN1H0hP91S+Bv8b4e7w6gB6sX0JfVzYJkx5uFIbuj7drAMBgRB4ADEbkAcBgRB4ADEbkAcBgRB4ADEbkAcBgRB4ADBZ05JuampSZmamGhgZJ0p49e5SZmamsrCx9/PHHamtri9iQAAB7gor8+fPnlZubq7q6OknS5cuXVVJSom+++UYHDhxQZ2endu3aFck5AQA2BBX50tJSFRYWKjk5WZIUHx+vwsJCJSYmKiYmRi+88IKuXbsW0UEBAKELau+aoqKix24PHTpUQ4cOlSTdvn1bO3fu1IYNG5yfDgAQlrA2KLt+/bry8vKUk5Oj1NTUkI/3eBLDWd6WtvaA4uP6RH1dN3m9SW6PELSeNGukcS7+HucmeLYj/9tvvykvL0+zZ8/WvHnzbD3Ge+uO6cadFrsj2HJwc7b8/vtRXVNy90XpxvO1w+tN6jGzRlqw56K3xq43vk5iY2NsXRjbinxTU5Pee+89LVmyRG+99ZadhwAARIGtn5Pft2+fbt68qe3btys7O1vZ2dn6/PPPnZ4NABCmkK7kKysrJUlz587V3LlzIzEPAMBBfOIVAAxG5AHAYEQeAAxG5AHAYEQeAAxG5AHAYEQeAAxG5AHAYEQeAAxG5AHAYEQeAAxG5AHAYEQeAAxG5AHAYEQeAAxG5AHAYEQeAAxG5AHAYEQeAAwWdOSbmpqUmZmphoYGSVJNTY2ysrI0depUFRcXR2xAAIB9QUX+/Pnzys3NVV1dnSTpwYMHWrVqlbZu3arDhw/r559/1smTJyM5JwDAhqAiX1paqsLCQiUnJ0uSamtrNXz4cA0bNkx9+/ZVVlaWjh49GtFBAQCh6xvMHyoqKnrs9o0bN+T1ertuJycn6/r1685OBgAIW1CR/0+dnZ2KiYnpum1Z1mO3uzuvN8ntEaLKjefb1h5QfFyfkI8Ld1a763ZHve11GgrOTfBsRX7w4MHy+/1dt/1+f9dbOT2B338/6mu6+aJ06/lmLa+I+roHN2e78nyd5vUmBfU8emvsTPgehyo2NkYeT2Lox9lZLCUlRZcvX1Z9fb0CgYAOHTqkiRMn2nkoAEAE2bqST0hI0MaNG7Vw4UK1trZq0qRJmjZtmtOzAQDCFFLkKysru75OS0vTgQMHHB8IAOAcPvEKAAYj8gBgMCIPAAYj8gBgMCIPAAYj8gBgMCIPAAYj8gBgMCIPAAazta0BALilrT3gysZsD1o7dP9eS9TXDReRB9CjxMf1cW2H05649yVv1wCAwYg8ABiMyAOAwYg8ABiMyAOAwYg8ABiMyAOAwYg8ABgsrMhXVFQoIyNDGRkZ2rRpk1MzAQAcYjvyLS0tKioq0o4dO1RRUaGzZ8+qpqbGydkAAGGyHflAIKDOzk61tLSoo6NDHR0dSkhIcHI2AECYbO9dk5iYqMWLFys9PV39+/fXuHHjNHbsWCdnAwCEyXbkL168qP379+vEiRNKSkrSRx99pJKSEuXl5Tk5X0S4sYOdm3i+PZMpz8MkPfF7YjvyVVVVSktLk8fjkST5fD7t2rWrR0Te74/+XnJuvjh4vj2P15sU1PPoidHpydx8bcXGxsjjSQz9OLsLjho1SjU1NWpubpZlWaqsrNSYMWPsPhwAIAJsX8lPmDBBFy5ckM/nU1xcnMaMGaP58+c7ORsAIExh/dKQ+fPnE3YA6Mb4xCsAGIzIA4DBiDwAGIzIA4DBiDwAGIzIA4DBiDwAGIzIA4DBiDwAGCysT7z2RG3tgV61qRPPNzoetHbo/r2WqK8L/JNeF/n4uD7KWl4R9XUPbs6O+poSzzdaDm7OVs/f+xIm4u0aADAYkQcAgxF5ADAYkQcAgxF5ADAYkQcAgxF5ADAYkQcAg4UV+crKSvl8PqWnp2vdunVOzQQAcIjtyF+9elWFhYXaunWrDhw4oAsXLujkyZNOzgYACJPtbQ2OHz+u6dOna/DgwZKk4uJiJSQkODYYACB8tq/k6+vrFQgElJ+fr+zsbO3atUtPPvmkk7MBAMJk+0o+EAjo7Nmz2rFjhwYMGKAPPvhA5eXl8vl8Ts4H9AiR2P2yN+0e2lP0xO+J7cgPGjRIaWlpGjhwoCRpypQpqq2tJfLolXrbbp+9ld/v3l6jsbEx8ngSQz/O7oKTJ09WVVWV7t27p0AgoFOnTmn06NF2Hw4AEAG2r+RTUlKUl5enWbNmqb29XePHj1dOTo6TswEAwhTWLw2ZMWOGZsyY4dQsAACH8YlXADAYkQcAgxF5ADAYkQcAgxF5ADAYkQcAgxF5ADAYkQcAgxF5ADAYkQcAgxF5ADAYkQcAgxF5ADAYkQcAgxF5ADAYkQcAgxF5ADAYkQcAgxF5ADCYI5HftGmTCgoKnHgoAICDwo786dOnVV5e7sQsAACHhRX5u3fvqri4WPn5+U7NAwBwUFiRX7NmjZYuXaonnnjCqXkAAA7qa/fAvXv3asiQIUpLS1NZWZmTMwFAt+T1Jrk9QshsR/7w4cPy+/3Kzs7Wn3/+qebmZq1fv16rVq1ycj4A6Db8/vuurR0bGyOPJzHk42xHfvv27V1fl5WV6cyZMwQeALoZfk4eAAxm+0r+3/l8Pvl8PiceCgDgIK7kAcBgRB4ADEbkAcBgRB4ADEbkAcBgRB4ADEbkAcBgRB4ADEbkAcBgRB4ADEbkAcBgRB4ADEbkAcBgRB4ADEbkAcBgRB4ADEbkAcBgRB4ADEbkAcBgYf2O1y1btujIkSOSpEmTJmnFihWODAUAcIbtK/mamhpVVVWpvLxc3377rX755RcdP37cydkAAGGyfSXv9XpVUFCg+Ph4SdKIESN07do1xwYDAITPduRHjhzZ9XVdXZ2OHDmi3bt3OzIUAMAZYb0nL0mXLl3S+++/rxUrVui5555zYCQA6J683iS3RwhZWJE/d+6cFi1apFWrVikjI8OpmQCgW/L777u2dmxsjDyexJCPsx35xsZGLViwQMXFxUpLS7P7MACACLId+ZKSErW2tmrjxo1d982cOVO5ubmODAYACJ/tyK9evVqrV692chYAgMP4xCsAGIzIA4DBiDwAGIzIA4DBiDwAGIzIA4DBiDwAGIzIA4DBiDwAGIzIA4DBiDwAGIzIA4DBiDwAGIzIA4DBiDwAGIzIA4DBiDwAGIzIA4DBwor8wYMHNX36dE2dOlU7d+50aiYAgENs/47X69evq7i4WGVlZYqPj9fMmTOVmpqq559/3sn5AABhsH0lX1NTo1deeUVPPfWUBgwYoDfffFNHjx51cjYAQJhsR/7GjRvyer1dt5OTk3X9+nVHhgIAOMP22zWdnZ2KiYnpum1Z1mO3g+F5sp/d5cOS/HR/1mVd1u3Ba7u1bmxsaI3rDmvHWJZl2TmwvLxcZ8+eVVFRkSTpq6++kmVZ+vDDD20NAgBwnu23a1599VWdPn1at2/fVktLi44dO6aJEyc6ORsAIEy236555plntHTpUs2ZM0ft7e2aMWOGXnrpJSdnAwCEyfbbNQCA7o9PvAKAwYg8ABiMyAOAwYg8ABiMyAOAwYg8ABgs6pFne+JHtmzZooyMDGVkZOiTTz5xe5xuYdOmTSooKHB7DFdVVlbK5/MpPT1d69atc3scV1VUVHT9Hdm0aZPb40RdU1OTMjMz1dDQIOnhxpBZWVmaOnWqiouLg3sQK4r++OMPa/LkydadO3esv/76y8rKyrIuXboUzRG6jerqauvdd9+1Wltbrba2NmvOnDnWsWPH3B7LVTU1NVZqaqq1cuVKt0dxzZUrV6wJEyZYjY2NVltbm5Wbm2t9//33bo/liubmZmvcuHHWrVu3rPb2dmvGjBlWdXW122NFzU8//WRlZmZao0ePtq5evWq1tLRYkyZNsq5cuWK1t7db8+bNC+q1EdUrebYnfsTr9aqgoEDx8fGKi4vTiBEjdO3aNbfHcs3du3dVXFys/Px8t0dx1fHjxzV9+nQNHjxYcXFxKi4uVkpKittjuSIQCKizs1MtLS3q6OhQR0eHEhIS3B4rakpLS1VYWKjk5GRJUm1trYYPH65hw4apb9++ysrKCqqftrc1sOP/2564trY2miN0GyNHjuz6uq6uTkeOHNHu3btdnMhda9as0dKlS9XY2Oj2KK6qr69XXFyc8vPz1djYqNdee01LlixxeyxXJCYmavHixUpPT1f//v01btw4jR071u2xouZfmz/+i93t3aN6Je/E9sSmuXTpkubNm6cVK1boueeec3scV+zdu1dDhgxRWlqa26O4LhAI6PTp01q/fr327Nmj2tpalZeXuz2WKy5evKj9+/frxIkTOnXqlGJjY1VSUuL2WK6x28+oRn7w4MHy+/1dt/1+f9c/RXqjc+fOae7cuVq+fLnefvttt8dxzeHDh1VdXa3s7Gx98cUXqqys1Pr1690eyxWDBg1SWlqaBg4cqH79+mnKlCm99l+7VVVVSktLk8fjUXx8vHw+n86cOeP2WK6x28+oRp7tiR9pbGzUggUL9OmnnyojI8PtcVy1fft2HTp0SBUVFVq0aJFef/11rVq1yu2xXDF58mRVVVXp3r17CgQCOnXqlEaPHu32WK4YNWqUampq1NzcLMuyVFlZqTFjxrg9lmtSUlJ0+fJl1dfXKxAI6NChQ0H1M6rvybM98SMlJSVqbW3Vxo0bu+6bOXOmcnNzXZwKbktJSVFeXp5mzZql9vZ2jR8/Xjk5OW6P5YoJEybowoUL8vl8iouL05gxYzR//ny3x3JNQkKCNm7cqIULF6q1tVWTJk3StGnT/vE4thoGAIPxiVcAMBiRBwCDEXkAMBiRBwCDEXkAMBiRBwCDEXkAMBiRBwCD/S+9mVUPIzqDCQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAD7CAYAAACYLnSTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAPN0lEQVR4nO3dfYxc1XnH8e/u+o3YawW200JSCIoITxok8oKApoTGUngREi5BSWM1igQihlQhLU0NURAQUKW80QAVUiX4I8QoUROqpOFVqC6mqeLSUopEaEN4hCqguBhltUVllxjbeLd/zGztdc3u3Dsze71nvx/J0tzxnnueOb7z2+M7d84dmpmZQZK0tA03XYAkqXeGuSQVwDCXpAIY5pJUAMNckgqwooE+VwOnA7uA/Q30L0lL0QhwHPAEsOfQv2wizE8HftpAv5JUgrOBHYc+2USY7wJ49dXXmZ6ufo372Ng6Jiam+l7UUuV4zOV4HOBYzLXUx2N4eIijj14LnQw9VBNhvh9genqmVpjPttUBjsdcjscBjsVchYzHYU9P+wGoJBXAMJekAhjmklQAw1ySCmCYS1IBDHNJKoBhLkkFaOI6cy0ho+uPYs3qxT9M3tjzJpOv7V70fqWlyjDXvNasXsHGLfcter8P3HIRk4veq7R0eZpFkgpgmEtSAQxzSSqAYS5JBTDMJakAhrkkFcAwl6QCdH2deUSsBx4DLszMFyLiw8BtwCjwNHBJZu4dTJmSpPl0NTOPiDNp33Pu5M72euBvgCsy85TOj312IBVKkhbU7cz8cuBK4Lud7XOBf8rMpzvbf1RhX5KkPusqgDNzM0BEzD51EjAVET8A3gv8I7ClSsdjY+uq/PgcrdZo7bYlKnU86r6uUsejDsdirpLHo+5segVwPvDbwH8C3wa+DNzU7Q4mJqZq3Vy11RplfNxVO2YNejyaPPjrvC6PjwMci7mW+ngMDw/NOwmuezXLK8A/Z+bzmbkf+GvgjJr7kiT1qG6YbwNOi4jjO9sXAk/2pyRJUlW1wjwzXwI+BzwQEc8CxwBf72dhkqTuVTpnnpknHvT4IeChfhckSarOb4BKUgEMc0kqgGEuSQUwzCWpAIa5JBXAMJekAhjmklQAw1ySCmCYS1IBDHNJKoBhLkkFMMwlqQCGuSQVwDCXpAIY5pJUgK7CPCLWR8S/R8SJhzz/hYj4ySAKkyR1b8Ewj4gzgR3AyYc8/z7aN3GWJDWsm5n55cCVwMuzT0TEauBO4CsDqkuSVMGCt43LzM0AEXHw018H7gKeH0xZkqQqKt0DFCAizgVOyMw/jYgNdTseG1tXtymt1mjttiUqdTzqvq5Sx6MOx2KuksejcpgDfwCcEhFPAeuAYyPinszcVGUnExNTTE/PVO681RplfHyycrtSDXo8mjz467wuj48DHIu5lvp4DA8PzTsJrhzmmXnZ7OPOzPymqkEuSeovrzOXpAJ0PTPPzBMP89xPgA39K0eSVIczc0kqgGEuSQUwzCWpAIa5JBXAMJekAhjmklQAw1ySCmCYS1IBDHNJKoBhLkkFMMwlqQCGuSQVwDCXpAIY5pJUAMNckgrQ9XrmEbEeeAy4MDNfiIgrgD8GZoB/BT6XmXsHU6YkaT5dzcwj4kxgB3ByZ/tk4Brgd4BTO/u5ckA1SpIW0O1plstph/XLne09wOcz87XMnAH+DThhAPVJkrrQ1WmWzNwMEBGz2y8CL3aeawFfAC4dSIWSpAV1fc78cCLincDDwLc79wPt2tjYutr9tlqjtduWqMTx2Ltvf+3X1ct47N23n1UrR2q3P9KUeGz0ouTxqB3mEfFe4G+B2zPzlqrtJyammJ6eqdxvqzXK+Phk5XalGvR4NHXwr1o5wsYt9y16vw/cclExx5fvlbmW+ngMDw/NOwmuFeYRMQpsA67LzO/WrE2S1Cd1Z+abgd8AtkTEls5z92fmV/pTliSpikphnpkndh7e1vkjSToC+A1QSSqAYS5JBTDMJakAhrkkFcAwl6QCGOaSVADDXJIK0NPaLMvN6PqjWLN68YfsjT1vMvna7kXvVxq0xX5PzS5PUeJ7yjCvYM3qFY2tF7J0V5SQ3prvqf7xNIskFcAwl6QCGOaSVADDXJIKYJhLUgEMc0kqgGEuSQXo+jrziFgPPAZcmJkvRMQ5wK3AUcA9mXn9gGqUJC2gq5l5RJwJ7ABO7mwfBdwFXAT8FnB6RFwwqCIlSfPr9jTL5cCVwMud7TOA5zLz+cx8E/ge8PsDqE+S1IWuTrNk5maAiJh96h3AroN+ZBfwm1U6HhtbV+XH55hdX2G52Ltv/7yvebmNxyAtNNaD7nvVypG+7tNj462VNjZ112YZBmYO2h4CpqvsYGJiiunpmYV/8BCt1ijj482sqtDUP/6qlSONrF8B7TUslpOmx7qfx3aT75VuNRmoR/rYHGp4eGjeSXDdq1l2AscdtH0sB07BSJIWWd2Z+eNARMRJwPPAp2l/ICpJakCtmXlmvgFcCvwIeAZ4Fvhh/8qSJFVRaWaemSce9Hg78P5+FyRJqs5vgEpSAQxzSSqAYS5JBTDMJakAhrkkFcAwl6QCGOaSVIC63wCV1GeDWOSrm/29sedNJl/b3dd+tfgMc+kI0dQiXw/cchFLa8kpHY6nWSSpAIa5JBXAMJekAhjmklQAw1ySCmCYS1IBero0MSI+A1zb2Xw4M6/uvSRJUlW1Z+YR8TbgduCjtG9ScXZEnNOvwiRJ3evlNMtIp/1aYGXnj18jk6QG1A7zzJwEbqB9/8+dwAvAY/0pS5JURe1z5hFxKnAZ8C7gf4DvAVcDf95N+7GxdbX6HcT6FdJytxzfU6W95l4+AD0f2J6ZvwSIiK3A5+kyzCcmppienqncaas12sj6FdBew0Iq0fh4M6uzNBmoTb3muoaHh+adBPcS5j8Dbo6ItcCvgI3AEz3sT5JUUy/nzLcB3weeBJ6m/QHoN/pUlySpgp6uM8/MbwLf7FMtkqSa/AaoJBXAMJekAhjmklQAw1ySCmCYS1IBDHNJKoBhLkkFMMwlqQCGuSQVwDCXpAIY5pJUAMNckgpgmEtSAQxzSSqAYS5JBTDMJakAPd2cIiI2AjcCa4FtmXlVX6qSJFVSe2YeEe8G7gA+DpwKfCgiLuhXYZKk7vUyM78YuCczdwJExCbgjb5UJUmqpJcwPwnYGxH3AycADwI3dNt4bGxdD11L6pe9+/bTao02XcaiavI17923n1UrR/q+317CfAXwu8AGYAq4H7gE2NpN44mJKaanZyp3utwOOmnQVq0cYeOW+xrp+4FbLmqk36Zf8/j4ZOV2w8ND806Ce7ma5RXgkcwcz8zdwI+BM3rYnySppl5m5g8Cd0fE24FJ4ALg3r5UJUmqpPbMPDMfB24GdgDPAC8C3+lTXZKkCnq6zjwz7wLu6lMtkqSa/AaoJBXAMJekAhjmklQAw1ySCmCYS1IBDHNJKoBhLkkFMMwlqQCGuSQVwDCXpAIY5pJUAMNckgpgmEtSAQxzSSqAYS5JBehLmEfEtyJiaz/2JUmqrucwj4iP0b6RsySpIT2FeUQcA3wV+Fp/ypEk1dHrzPxO4Drg1T7UIkmqqfY9QCNiM/BSZm6PiEurth8bW1e3a0la0lqt0b7vs5cbOm8CjouIp4BjgHURcVtmfrGbxhMTU0xPz1TudBCDIEmLaXx8snKb4eGheSfBtcM8M8+dfdyZmW/oNsglSf3ldeaSVIBeTrP8n8zcCmztx74kSdU5M5ekAhjmklQAw1ySCmCYS1IBDHNJKoBhLkkFMMwlqQCGuSQVwDCXpAIY5pJUAMNckgpgmEtSAQxzSSqAYS5JBTDMJakAPa1nHhE3Ap/qbD6UmV/qvSRJUlW1Z+YRcQ5wHvBB4APAaRFxcb8KkyR1r5eZ+S5gS2buBYiIXwAn9KUqSVIlvdzQ+eezjyPiPbRPt5zVj6IkSdX0fA/QiDgFeAi4JjOf67bd2Ni6XruWpCWp1Rrt+z57/QD0LOBHwJ9k5g+qtJ2YmGJ6eqZyn4MYBElaTOPjk5XbDA8PzTsJrh3mEXE8cC+wKTMfrbsfSVLvepmZXw2sAW6NiNnn7sjMO3quSpJUSS8fgF4FXNXHWiRJNfkNUEkqgGEuSQUwzCWpAIa5JBXAMJekAhjmklQAw1ySCmCYS1IBDHNJKoBhLkkFMMwlqQCGuSQVwDCXpAIY5pJUAMNckgpgmEtSAXq9B+ingeuBlcBfZOZf9qUqSVIltWfmEfFO4KvAR4APAFdExPv6VZgkqXu9zMzPAR7NzP8GiIgfAp8E/myBdiPQvtN0Xb9+9FG12/aqqb59zeX322TfvubFVSf/Dmozcri/H5qZmalVTERcC6zNzOs725uBMzLzigWafgT4aa1OJUlnAzsOfbKXmfkwcPBvgiFguot2T3SK2QXs76F/SVpORoDjaGfo/9NLmO+kHcqzjgVe7qLdHg7zW0WStKD/eKu/6CXMHwFuiogW8DrwCWChUyySpAGofTVLZv4XcB3w98BTwF9l5r/0qzBJUvdqfwAqSTpy+A1QSSqAYS5JBTDMJakAhrkkFaCnhbYWmwt7HRARNwKf6mw+lJlfarKeI0VEfAv4tcy8tOlamhQRG4EbgbXAtsy8quGSGhMRnwGu7Ww+nJlXN1nPoCyZmbkLex0QEecA5wEfpD0Wp0XExc1W1byI+BhwSdN1NC0i3g3cAXwcOBX4UERc0GxVzYiItwG3Ax8F3g+c3Xn/FGfJhDkHLeyVma8Dswt7LUe7gC2ZuTcz9wG/AE5ouKZGRcQxtH/Zf63pWo4AFwP3ZObOzvGxCXi84ZqaMkI759bS/h/9SmB3oxUNyFI6zfIO2iE2axdwRkO1NCozfz77OCLeQ/t0y1nNVXREuJP2l9iOb7qQI8BJwN6IuJ/2L/kHgRuaLakZmTkZETcAzwK/Av4BeKzZqgZjKc3M6y7sVayIOAX4O+CazHyu6Xqa0lmx86XM3N50LUeIFbT/J/tZ4MPAmSzT008RcSpwGfAu2hPC/YDnzBu2k/aKYbO6XdirSBFxFrAd+HJm3t10PQ3bBJwXEU/RXk//9yLitoZratIrwCOZOZ6Zu4Efs0z/FwucD2zPzF9m5h5gK7Ch0YoGZCmdZnFhr46IOB64F9iUmY82XU/TMvPc2ccRcSmwITO/2FxFjXsQuDsi3g5MAhfQPl6Wo58BN0fEWtqnWTbyFkvILnVLZmbuwl5zXA2sAW6NiKc6f/6w6aJ0ZMjMx4GbaS81/QzwIvCdRotqSGZuA74PPAk8TfsD0G80WtSAuNCWJBVgyczMJUlvzTCXpAIY5pJUAMNckgpgmEtSAQxzSSqAYS5JBTDMJakA/wvLrXHmcatJEQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -233,27 +249,29 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 50, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVxTd74//ld2CAmEJQuLIAqCiojWVqQtjkvBjWKp/Y7d8PGbq9P6+3W0Ph5Xa5drH516p859eC+90079zvXOrd/b0ft1qdVhxqJTq10EW8EFFFRQBAkQAmEL2ZPz+8MxFbcECDkn4f38i5NzTvJKQvLOOeez8BiGYUAIIWRM47MdgBBCCPuoGBBCCKFiQAghhIoBIYQQUDEghBACKgaEEELgZTEoLS3FkiVLkJeXh927dz9wu02bNuHgwYP33F5bW4uMjIzhpySEEDKqPBYDnU6HkpIS7NmzB4cOHcLevXvR0NBwzzavvvoqjh49es/+ZrMZ77//Pux2u+9SE0II8SmPxaC8vBzZ2dlQKBSQSqXIz89HWVnZoG1KS0uxYMECLF68+J79t23bhlWrVvkuMSGEEJ8Tetqgo6MDSqXSvaxSqVBdXT1om9WrVwMAqqqqBt1+/PhxWCwWLFq0yBdZCSGEjBKPxcDlcoHH47mXGYYZtPwger0eO3bswK5du0YUkBBCyOjzeJpIo9FAr9e7l/V6PVQqlcc7PnnyJHp6evDiiy+isLAQAFBYWAij0TiCuIQQQkaDxyODnJwcfPTRRzAYDAgNDcWxY8fw/vvve7zj5557Ds8995x7OS0tDYcPHx5ywO7uAbhc3BlLLzpahq4ubhU0yuQ9LuaiTN6hTN7h83mIjAwb8n4ei4FarcaGDRtQXFwMu92OFStWIDMzE2vWrMG6deswbdq0YQX2lsvFcKoYAOBcHoAyDQUXc1Em71Cm0cPj+hDWXV1GTr3YSqUcen0/2zEGoUze42IuyuQdyuQdPp+H6GjZ0PcbhSyEEEICDBUDQgghVAwIIYRQMSCEEAIqBoQQQkDFgBBCCKgYEEIIARUDQgghoGJACCEEVAwIIYSAigEhhBBQMSCEEAIqBoQQQkDFgBBCCKgYEEIIgReT2xBCApPDBVjtjmHtyxhMMFmHt+/dJCIhhPSzk/OoGBASpKx2B87U6Ya1r1wWgn6jxSc5Hp2shlBCXzVcR/WaEEIIFQNCCCFUDAghhICKASGEEFAxIIQQAioGhBBC4GUxKC0txZIlS5CXl4fdu3c/cLtNmzbh4MGD7uWqqiqsWLEChYWFWLVqFbRa7cgTE0II8TmPjX91Oh1KSkpw8OBBiMVirFy5ErNnz0ZKSsqgbd59911UVFQgOzvbffvGjRvxySefID09HQcOHMDWrVuxY8eO0XkmhHV3dnLyZaeloaAOToQMj8diUF5ejuzsbCgUCgBAfn4+ysrK8Nprr7m3KS0txYIFC9zbAIDNZsP69euRnp4OAEhLS8Of/vQnX+cnHHJnJydfdloaCurgRMjwePzUdHR0QKlUupdVKhWqq6sHbbN69WoAt04L3SYWi1FYWAgAcLlc+Pjjj7Fw4UKfhCaEEOJbHouBy+UCj8dzLzMMM2jZE5vNhs2bN8PhcOCVV14ZcsDoaNmQ9xltSqWc7Qj34EImxmCCXBbiXr7zb3+RSiVQRkkfug0XXqu7jUamu9+PofLV++fNe+KtsfLescFjMdBoNKisrHQv6/V6qFQqr+58YGAAa9euhUKhwI4dOyASiYYcsKvLCJeLGfJ+o0WplEOv72c7xiBcyWSyOtynhtg6TWQyWaF3Oh+4niuv1Z1GK9Od78dQ+fL98/SeeGssvXcjwefzhvUj2uOltpycHFRUVMBgMMBsNuPYsWPIzc316s43btyIpKQkfPjhhxCLxUMORwghxD88Hhmo1Wps2LABxcXFsNvtWLFiBTIzM7FmzRqsW7cO06ZNu+9+tbW1OH78OFJSUvDMM88AuHW9YefOnb59BoQQQkbMq2YXBQUFKCgoGHTb/b7Ut23b5v57ypQpuHLlygjjEUII8QdqkU0IIYSKASGEECoGhBBCQMWAEEIIqBgQQggBFQNCCCGgYkAIIQRUDAghhICKASGEEFAxIIQQAioGhBBCQMWAEEIIqBgQQggBFQNCCCGgYkAIIQRUDAghhICKASGEEHg50xkhJDC5XAy6jVb0DdhgNNkhEQsgCxUhKjwEIWIB2/EIh1AxICQIGfos+KqqBd+c18Jsdd6zns/nITlWjslJkYgKD2EhIeEaKgZBoN9kw4DVwXYMuBi2E3CHwwVY7d69J4zBBJOP3j+n04WvKltQ9kMTnE4GccowTIgNh0IugSxUBKvdCaPJjiZdP65pe3FN24cp4yMxc5ISfD7PJxlIYKJiEATMFgfO1OnYjoHpk5RsR+AMq93790QuC0G/0TLix+zut+K7C63oMdqQpJHjxfw0tOj6B20jEvIhCxVBEy3FjNQYnL3aidob3dD3mJE7PQ5hoaIR5yCBiS4gExIEbnYY8eXpJljtTvxsRhzmZsUhOuLhp3/EIgGyp6qROz0WPf02HP3xJkwW9o8wCTuoGBAS4GobDThxVouIMAmWzklColo+pP3Hx4bjqccSYLE58LfKm7DY7r3GQIKfV8WgtLQUS5YsQV5eHnbv3v3A7TZt2oSDBw+6l1tbW/Hiiy9i0aJFWLt2LQYGBkaemBDiVt3QicoreiSpZcifPQ7SkOGd5omJCMX8mQnoN9nxdVULHE6Xj5MSrvNYDHQ6HUpKSrBnzx4cOnQIe/fuRUNDwz3bvPrqqzh69Oig29977z288MILKCsrQ0ZGBj755BPfpidkDLvQ0InzDV2YEBeOJ7PiIBSM7EBfEy1F7vRYdPZacLqmzUcpSaDw+N9TXl6O7OxsKBQKSKVS5Ofno6ysbNA2paWlWLBgARYvXuy+zW6348yZM8jPzwcAFBUV3bMfCR4Mw0BnMKGxtQ9nr+rx7bkWnKppw+lLOtRc68L11j70m2xgGGpy5AsXGw240NCFifHhyJmmAZ/nm5ZAiWo50hMVuNDQCa3e6JP7JIHBY2uijo4OKJU/tRJRqVSorq4etM3q1asBAFVVVe7buru7IZPJIBTeegilUgmdjv0WL8S3eoxWXNP2obGtz33xkce7dXFSwOfB4XTBZv/plINUIkS8MgwT4sOhUoSC56MvsbHkmrYXZ6/okaSRY06G7wrBbY+kKdHRY8GpmnYUPD4eoRJqdDgWeHyXXS7XoA8swzBefYDvt91wPvjR0bIh7zPalMqhXaAbbR0GE+Qy/3Yc6u6z4IdL7bim7QWfB4xTy5GTGQeXi0FkeAgEd7RZdzhd6DVa0dY5gBa9EY1t/ahv6UWETIysVCXSx0eN+BTHbVKpBMoo6UO38cf7xwzxPfF22+b2PlRcbEe8UobFc8ZD8JDXTSQSDvv/Im92IvYfr8f5hi7kzU4a1n3c5s174i2uffYAbmYaDo/FQKPRoLKy0r2s1+uhUqk83nFUVBT6+/vhdDohEAi83u9uXV1GuDjUm0mplEOv7/e8oT8JBD5pp+4Np8uFc1c7UXejGwIBD5kTo5GepECIWIjpk5S4cFUPk8l6T9t5sYCHJLUMSWoZHktXoVnXjyvNPfjmnBY/XGrHtInRSBunGHHHJ5PJCr3zwa1h/PX+mawOr98Tb/sZ9BitKKtoRoRMgiena2Ay2x66vd3ufYa7RUeEYmpyFKqvdWFCnBzqyOF/mXt6T7zFxc8eFzPx+bxh/Yj2+HMsJycHFRUVMBgMMJvNOHbsGHJzcz3esUgkwqxZs3DkyBEAwKFDh7zaj3BXd78VRyqaUXujGykJEXgmdwKyUmMQIh7aaQSRkI+J8RFYnJ2IvEfHIUImxpm6Dvz51A200Hnq+7LanDhxVguBgIf5M+MhFo7+uEIZE6IgDRHix9oOuOhaT9DzWAzUajU2bNiA4uJiLF++HMuWLUNmZibWrFmDmpqah+777rvvYt++fViyZAkqKyvx+uuv+yw48a+Wv3dqMlsdmD8zHnMyNCM+l8zj8aCJliLv0XGYNzMeAPB1lRbfnG+FmQPDa3CFy8Xg2wutGDDb8bMZ8X7rJSwU8PFImhLd/VY0tPT65TEJe7z6NBcUFKCgoGDQbTt37rxnu23btg1ajo+Px2effTaCeIQLrjb34IdaHaLCJZj/SILPLyjyeDyMU8kQFxOGS40GVDd0oa1rALOnqJEcG+7TxwpEVVf0aOsyISdDA1VkqF8fe7xGjqvNPTh3tRPJseEQCamfarCid5Y81KVGA07X6hCnDEPeY4mj2rJEwL91DaLg8fEIl4rx3YU2nKppg90xdjtA1bf0oK6pG5OTIpGSEOH3x+fxeJg5SQmr3YkrN3v8/vjEf6gYkAe62tyDqr83YZw3I95vvwojZGIsmp2IaROjcU3bh7+U30BXr38ukHNJR7cJP1zSITZaikfS2BsEUBkZithoKWobDWO6MAc7Kgbkvhpb+3C6Vod4ZRieyIz1+/DGfD4PM1JjkPfYODhdDL483YRLjYYx02nNaLbj5LlWhIWKkJsVx/rw0tNTYmCxOXGVjg6CFhUDcg99jxmnatqhjgzF3Ky4QX0G/E0TJUVBzngkqGSouqLHibNaWO3BPZCa3eHCibNaOF0M5s+Mh0TE/oxkqr8fHVxqNNC4RUGKuhaSQUwWB06ea4U0RIi5M+J91hlsJCRiAeZmxeFKcw8qL3fgr+VNDxyimcfnPXSiH19OJPMww+0awzAMyi+2o7vfigWPxCNCJvFtsBHITInG0R9uor6lF5OTItmOQ3yMigFxc7oYfHNeC7vDiYXZiZyaI5fH4yE9KRLRESH45nwrvjzdjMemqJCaEDGoZ7vV7sSFq/oH3o+vJpLxZLgT/Zxv6EJTez8eSVMiXsmt3vfqSCliIkJwuakb6YkKGkokyLD/s49wxvn6Tuh7LMjJ0CBSzs15cZWKUCzLSYImOhSnL+lwqqY9aE5bXNP2ouZaF1ISIjBlPDd/eU8eH4l+kx1aPQ1HH2yoGBAAQHuXCZcaDUhNiMB4jrftDxELMf+RBExPicb11j4cqWhC38DDh2bgunaDCRUX26GJkiJ7ipqzv7qT1HJIJULUNXWzHYX4GBUDAqvdie9r2iCXijArfejjR7GBz+NhekoMFs5KgNnqxF/Lm9DUzq0xYrzV02/FyXNayKVizJ3Bfsuhh+HzeUhLVKCty4SefivbcYgPUTEgOFPXAbPVgSenxwZcD9O4mDAsy0lChEyMb8634vC31zk1sKEnFpsTfzl1HTzwMP8RbrQc8iR1nAICPo+ODoJMYH3yic+1dg7gemsfMiZEIybCv0Md+EpYqAj5sxORnqTAt+dbcfTHZpgsdrZjeeRwunDynBZGkx3zZsZDLhWzHckrIWIBkuPC0djWB5sjuJv5jiVUDMYwh9OFH2p1kEtFyJwQxXacERHweXhsshovLUpDd78VfylvQmsndy9yOl0MTp5rRUe3GQseHef3MYdGKjUhAg4ngxttgXlqjtyLisEYVnOtC/0mO7Knqh86SUogmTFJiaVzkiARC/BVZQuqr3Vxrteyy8XguwutaO0cwJypaqSO42bLoYeJiQiBQiZGPY1mGjSC4xuADFnfgA2XGg2YEBeO2OgwtuP4VIRMgiXZSUiOleN8fSe+PquF1caN0xlOlwvfXmhFs86IWelKpI5TsB1pWHg8HlITFOjqtcDQN/bGjQpGVAzGqMorevD5PFYHQBtNIiEfT2TGYvYUFdo6TSg9dYP1tvEO561hJm4XginjA/vUXHJcOPg8Hs11ECSoGIxBbV0DaOkwYtqE6KCe7JzH4yEtMRKLsxMhEvFxvKoFJ6puwsbC2EZmqwPHfryJ1k4T5mSoA74QALcuJCeqZbje2hc0Hf/GMioGY4yLYVB5WY+wECFne7n6WnRECJbNScLU5EjUNhpw+PtG3Gjr89u1hM5eC/5a3oQeoxVzs+KQmhCYp4buJyUhAjaHCy0dNF1poKNiMMZc1/ahu9+KmWnKoLlo7A2BgI9H0lR4bn4qQiVCfHuhDX+rbBnV890Mw6D2hgFHf2gGjwcsmp2IJI181B6PDZpoKaQSIa639rEdhYzQ2Pk2IHC6XLjQ0InoiBCMD7IvJW+poqRYkp2ERyerYOiz4C/lTfi+us3nw1nou8049uNNVF7WIzZaiqU5SYgK5+Z4TyPB5/GQHCeHtnMAFhvNWx3IgveEMblH/c1eDFgcmJOh4ezYN/7A5/MwOSkSE+LCUXOtC1eae3C9tQ9JGjkmJymgVIQO+/UxWRyovtaJhpZeCAR85GRoMDE+PKhf7wlx4bjU2I0bbf1Ip6GtAxYVgzHC4XSh5noX1H+fpIQAEpEAs9JVmJochbob3bhyswdN7f0IDxNjQlw44pVhiJJLPH6RO10M2rsG0NDSi5sdAwAYzJkWi7hoaVBfoL8tUh6CSLkE11v7qBgEsOD/TyUAgCvNPTBbncidHhPUv1KHI1QixMw0JaZNjEZTez/qW3pxvr4T5+s7ESIWICpcAoVMAmmIEEIBH3weDxa7E2aLA4Y+Czp7LXC6GEhEAqQlKpCepMATWfEPnVch2CTHhePsFT36BmwIDwuMYTXIYFQMxgC7w4WL1w2IjZZCHUVHBQ8iEvKRkhCBlIQImK0OtHYO3Bqd02jFleYeOO8aAE/A50Ehk2DSOAU00VLExYSxOkUom5Jj5Th7RY/Gtj5MT4lhOw4ZBq+KQWlpKXbs2AGHw4FVq1bhxRdfHLS+rq4Ob7/9NgYGBjBr1iy89957EAqFaGlpwRtvvAGj0Yjw8HBs27YN8fHxo/JEyIM1tPTCanfSh3QIQiVCTIyPwMT4CAC3muTaHS44nC64XAxCxEIIBTw6yvq7sBARNFFS3GjrR+bEaHpdApDH1kQ6nQ4lJSXYs2cPDh06hL1796KhoWHQNhs3bsSWLVtw9OhRMAyDffv2AQD+/d//HUuXLsXhw4eRl5eHkpKS0XkW5IGcLgaXGg1QR4YG3GBoXMLn8SARCRAWIoJcKoZIyKcvvLskaeToHbChxxjYEw2NVR6LQXl5ObKzs6FQKCCVSpGfn4+ysjL3eq1WC4vFgqysLABAUVGRe73L5YLReKszitlsRkhI8DWt47rrrb0wWR3ImBDNdhQS5BLVMvAA3GijPgeByONpoo6ODiiVP41fo1KpUF1d/cD1SqUSOp0OALB+/XqsXLkSn332Gex2O/bu3evL7MQDF8Pg4nUDosIliIuhawVkdIVKhFBHS3GjvR9ZqdRQIdB4LAYul2vQm8owzKDlh61/44038Otf/xoLFy7E0aNH8dprr+HPf/7zkP5JoqNlXm/rL0oltzpsdRhMkMvuPepqaOlBv8mORdlJCJeP/ikikUg4KMf9Mvk7w/34I5c3Oe40GpmGmuFuw9k3PSkKJ8+2wOoElIpb+0ulEih91HCBa589gJuZhsNjMdBoNKisrHQv6/V6qFSqQev1+p+a0HV2dkKlUsFgMOD69etYuHAhACA/Px/vvvsuuru7ERXl/SBdXV1GTk1jqFTKoddzbEIPgQD9xnuHVaiquzVxTUyE5L7rfc1ud7gfRy4L8ctjPizD/fgrl6ccdxqtTEPJcLfhZlIpJODxgNprnZj59xFxTSYr9M6RDw7Ixc8eFzPx+bxh/Yj2eM0gJycHFRUVMBgMMJvNOHbsGHJzc93r4+PjIZFIUFVVBQA4fPgwcnNzERkZCYlE4i4kVVVVCAsLG1IhIMOn7zajs9eCyUmR4NPhOvGTELHwVqui9n7OTSpEHs7jkYFarcaGDRtQXFwMu92OFStWIDMzE2vWrMG6deswbdo0bN++He+88w6MRiOmTp2K4uJi8Hg8fPzxx3j//fdhsVgQFhaGjz76yB/PiQCovWGAWMh3N40kxF/Ga+SouKSDod+K6CAcjylYedXPoKCgAAUFBYNu27lzp/vv9PR0HDhw4J79MjMzsX///hFGJEPVb7KhWWfElOQoiIQ0FiHxrwSVDLxLOtzUGakYBBD6pghCl5t6AB6QnhQ84+aTwBEqEUIZGYpmHbfOpZOHo2IQZOwOFxq0vUjSyBEWImI7DhmjEtUy9Bht6DdRB7RAQcUgyFxv7YPd4UJ6Io0eSdgzTnWrNUuzjmZACxRUDIIIwzC40tyNSLnE3cabEDbIpWJEyiVUDAIIFYMg0tFtRo/RhvQkBfX+JKxLVMug7zH7fBY5MjqoGASRy809EIv4SI4NZzsKIe5TRTXXu1hOQrxBxSBImCwONOv6kRIfAeEYmuiecFekXAJZqAjVDZ1sRyFeoG+NIHFN2wuGASaNo+akhBt4PB4S1TJcvdkDs9XBdhziARWDIOBiGDRoe6GODKUpBwmnjFPJ4HAydKooAFAxCAJXm7rRb7IjdRwNPUG4RRkZClmoCGfH0HzQgYqKQRD47oIWIiEfiergGEqXBA8+j4dpE6NRfa0LdoeL7TjkIagYBLgBix2VdR2YEBdOF44JJ2VOjIbF5kRdUzfbUchD0LdHgDt9SQeH04XUBDpFRLgpLTESErEA5+rpVBGXUTEIYAzD4JvzrUjSyBFFo0MSjhIJ+Zg2IRrn6jvhojkOOIuKQQC70d6PFr0RuVnxbEch5KFmpsagb8CGxtY+tqOQB6BiEMC+u9AKsZCPx6Zq2I5CyENNmxgNPo+H89QBjbOoGAQoq82JH+p0mJWugpSGqiYcFxYiwqRxEThXT8WAq6gYBKjKKx0wW53InR7HdhRCvDIjVYnWzgHouk1sRyH3QcUgQH17oRXqKCm1IiIBY3pqDADgAh0dcBIVgwCkM5hQ39KL3MxYGqqaBAyVIhTxyjA6VcRRVAwCUPnFdvB4QDZdOCYBZkZqDOpbemE029mOQu5CxSDAMAyDikvtmJIUiUi5hO04hAxJVooSLoZBzTUauI5rqBgEmPqWXnT2WjAng44KSOAZHytHhExMvZE5yKtiUFpaiiVLliAvLw+7d+++Z31dXR2KioqQn5+Pt99+Gw7HrbHLOzo68Mtf/hLLly/HypUr0dLS4tv0Y1DFpXaIRXzMnKRkOwohQ8bn8ZCVEoOaRgMNXMcxHouBTqdDSUkJ9uzZg0OHDmHv3r1oaGgYtM3GjRuxZcsWHD16FAzDYN++fQCATZs2Yd68eTh06BAKCwuxffv20XkWY4Td4cSZug48MkmJELGQ7TiEDEtWSgysNieuNNPAdVzisRiUl5cjOzsbCoUCUqkU+fn5KCsrc6/XarWwWCzIysoCABQVFaGsrAwGgwGXL1/GypUrAQDPPvssXn/99VF6GmPDhYYumKwOOkVEAtrkpEiIRXyco97InOKxGHR0dECp/OmUhEqlgk6ne+B6pVIJnU6HmzdvIi4uDtu2bcOzzz6LdevWQSSinrIjUXGpHREyMaYkRbEdhZBhE4sEyEiOxvn6TjA0cB1neDzX4HK5BrVlZxhm0PKD1jscDtTW1uJXv/oV3nzzTezfvx+bN2/GZ599NqSA0dGyIW3vD0ql/yeR6TVaUXO9C8uemAC1OnzQug6DCXIZ+6OWikTCQTnYyHR3hvvxRy5vctxpNDINNcPdfJVJKpVAGSUddNuTMxJw9uo59NlcSEnwft5uNj57nnAx03B4LAYajQaVlZXuZb1eD5VKNWi9Xv9Ty4DOzk6oVCoolUqEhYVh3rx5AIBly5Zh69atQw7Y1WWEy8WdXw9KpRx6fb/fH/d4VQscTgZZE6LufXyBAP1Gi98z3c1ud7hzyGUhrGS6M8P9+CuXpxx3Gq1MQ8lwN19mMpms0Dudg25LVoeBxwNO/NiECInAq/th67P3MFzMxOfzhvUj2uNpopycHFRUVMBgMMBsNuPYsWPIzc11r4+Pj4dEIkFVVRUA4PDhw8jNzUViYiI0Gg2++eYbAMCJEycwderUIQckt1RcakeCMoymtiRBIVwqRkp8BM5Tb2TO8FgM1Go1NmzYgOLiYixfvhzLli1DZmYm1qxZg5qaGgDA9u3b8cEHH2DRokUwmUwoLi4GAHz00Uf4z//8Tyxbtgz//d//jd/85jej+2yCVLvBhOutfXThmASVrNQYNHcY0dXL/lEt8eI0EQAUFBSgoKBg0G07d+50/52eno4DBw7cs9+ECROGfI2A3KviYjt4ALKnUDEgwSMrJQb7T1zD+YZOLHgkge04Yx71QOa428NPTB5Pw0+Q4BIbHQZNlBTnqTcyJ1Ax4Dj38BM0KB0JQlmpMbjc3AOTxcF2lDGPigHH3R5+4pE0Gn6CBJ+slBg4XQwuNtLAdWyjYsBhNPwECXYp8RGQhYqoVREHUDHgMBp+ggQ7Pp+H6SnRqL7WBYeTBq5jExUDDqPhJ8hYkJWihMnqQH1LL9tRxjQqBhxlNNtRfa0L2VPU4PNpaksSvDKSoyAU8GmOA5ZRMeCoH+t0cLoYakVEgp5ELMCU8ZE0cB3LqBhwFA0/QcaSrNQYdPZaoO0cYDvKmEXFgIN03SZc0/bRUQEZM7JSYgAA56hVEWuoGHDQ6Us68ADMnqJmOwohfqGQSZAcG05NTFlExYBjGIZBxcV2pCdFIiqc/TkKCPGXrNQYNLb1ocdoZTvKmETFgGOut/aho8dMp4jImDMj9dapogs0HSYrqBhwTPmldoiENPwEGXviY8IQExFC1w1YQsWAQxxOF87UdWBGagxCJTT8BBlbeDweslJjUHujG1ab0/MOxKeoGHBIzfUuGM12OkVExqwZqUo4nC5cumFgO8qYQ8WAQyou6SCXijA1mYafIGNTakIEpBIh9UZmARUDjjBZ7Dhf34nHJqshFNDbQsYmoYCPzInRuNDQBZeLeiP7E33rcETlFT0cThdyaIRSMsZlpcbAaLbjWisNXOdPVAw4ouJiO9RRUozX0PATZGzLSI6GgM+jVkV+RsWAA7p6Lbhyswc5U9Xg8WiEUjK2SUOESE9UUG9kP6NiwAGna9sBANnUiogQAEBWqhLtBhNaaeA6v6FiwDKGYVB+sR2pCRFQKkLZjkMIJ8ycdKvTZdWVDpaTjB1eFYPS0lIsWbIEeXl52L179z3r6+rqUN/eeHUAABfUSURBVFRUhPz8fLz99ttwOByD1tfW1iIjI8M3iYNMs86Iti4T9S0g5A6RcglSEiJQeYWamPqLx2Kg0+lQUlKCPXv24NChQ9i7dy8aGhoGbbNx40Zs2bIFR48eBcMw2Ldvn3ud2WzG+++/D7vd7vv0QaD8YjuEAh4enaxiOwohnDIrTYWbHUboDCa2o4wJHotBeXk5srOzoVAoIJVKkZ+fj7KyMvd6rVYLi8WCrKwsAEBRUdGg9du2bcOqVatGIXrgc7pc+KFOh8yJMQgLEbEdhxBOmfX38bkq6VSRX3gsBh0dHVAqfxo0TaVSQafTPXC9Uql0rz9+/DgsFgsWLVrky8xBo/ZGN/oGbHSKiJD7iAoPwcS4cDpV5CceR0NzuVyDmjsyDDNo+UHr9Xo9duzYgV27do0oYHS0bET7jwal0jd9Ac4evYqwUBEWZCdBJBQM+346DCbIZezPfSASCQflYCPT3Rnuxx+5vMlxp9HINNQMd/NVJqlUAmWUdFj7zn1kHP6r9BKc/Fu/W3312fMlLmYaDo/FQKPRoLKy0r2s1+uhUqkGrdfrf6rcnZ2dUKlUOHnyJHp6evDiiy+61xUWFmL37t2Qybz/gu/qMnKqW7pSKYde3z/i+xmw2HGquhVPTo9FT/cIz4kKBOg3WkacaaTsdoc7h1wWwkqmOzPcj79yecpxp9HKNJQMd/NlJpPJCr1zeKOQpseHAwCOVTSieFmGTz57vuSr7wNf4vN5w/oR7fE0UU5ODioqKmAwGGA2m3Hs2DHk5ua618fHx0MikaCqqgoAcPjwYeTm5uK5557DV199hcOHD+Pw4cPudUMpBMHsh1odHE4XcjPj2I5CCGfFKEKRHBuOH2vpusFo81gM1Go1NmzYgOLiYixfvhzLli1DZmYm1qxZg5qaGgDA9u3b8cEHH2DRokUwmUwoLi4e9eCB7rsLbUhUyZBEw08Q8lCzJ6vQpOuHVm9kO0pQ82oGlYKCAhQUFAy6befOne6/09PTceDAgYfex5UrV4YRLzg16/rRpOvHCwtT2Y5CCOc9OlmNvV834NtzWiycQUfSo4V6ILPgu+o2CAV8Gn6CEC9EyiWYNE6Bb8+1gGG4c/0w2FAx8DO7w4nTl9oxc1IMZKHUt4AQb8yeokZLhxEtehqraLRQMfCzc/WdGLA48OR0OtwlxFuPpCnB5/PwQ63O88ZkWKgY+Nl3F1oRHR6CyUmRbEchJGDIpWJkTVLixzodXHSqaFRQMfCjzl4zam9044nMWPBp3gJChuRnMxPQ2WtBQwvNgDYaqBj40amaW/MWPD6NLhwTMlRzMmIhEQlQfrGN7ShBiYqBn7gYBt9Xt2HK+EjERNC8BYQMVYhEiFlpSpy53AGbfXg9msmDUTHwk7ob3ejqs9CFY0JGICdDA7PVifMNNCWmr1Ex8JNvzmsRFiLEjNQYtqMQErDSkiIRFS5B+cV2tqMEHSoGftDdb8XZq514cnrciEYnJWSs4/N4mDNVg4vXDeg1WtmOE1SoGPjBtxdawTAMfpZFp4gIGamcDA1cDIOKS9TnwJeoGIwyh9OFb85rMXVCFFSRwxvTnRDyk9joMKTER7h/ZBHfoGIwys7Xd6LHaMP8GQlsRyEkaOROj0O7wYSrN3vYjhI0qBiMshPntIgOlyBzYjTbUQgJGo+mqxAqEeDbC61sRwkaVAxGUYveiLqmbvxsRjz4fOpxTIivSMQCZE/RoPKKHgMWO9txggIVg1H0tzM3IRbyMTcrnu0ohASd3OlxsDtcqKBmpj5BxWCU9A3YUHFJh5xpsTRUNSGjIEkjR5JGjm/O04VkX6BiMEpOntfC4XThqVl04ZiQ0TJ/Zjy0nQO43EwXkkeKisEosDtc+PqsFtMmRCM2OoztOIQErdmT1ZCFinC8qoXtKAGPisEoOF3bjr4BG556lI4KCBlNYpEAc7PicK5ej84eM9txAhoVAx9zuRh8eboZiSoZpo6PYjsOIUFv3ox48MDD1+e0bEcJaFQMfOzsVT3aDSYsmZMEHk1gQ8ioiwoPwcxJMfjuQiusNLT1sFEx8CGGYfDX001QR4ZiVpqK7TiEjBkLZ43DgMWB76tp4pvh8qoYlJaWYsmSJcjLy8Pu3bvvWV9XV4eioiLk5+fj7bffhsPhAABUVVVhxYoVKCwsxKpVq6DVBvdh3KUbBjS192NxdhJ1MiPEj1ITIjAxPhxlPzTD4XSxHScgeSwGOp0OJSUl2LNnDw4dOoS9e/eioaFh0DYbN27Eli1bcPToUTAMg3379rlv37p1Kw4fPoyCggJs3bp1dJ4FBzAMg7+WNyFSLsGcqTStJSH+xOPxsCQ7CV19Fpy53MF2nIDksRiUl5cjOzsbCoUCUqkU+fn5KCsrc6/XarWwWCzIysoCABQVFaGsrAw2mw3r169Heno6ACAtLQ1tbcF7CFfX1I0rN3uweHYiREI6+0aIv01PiUFcTBiOnG6iTmjD4PFbq6OjA0ql0r2sUqmg0+keuF6pVEKn00EsFqOwsBAA4HK58PHHH2PhwoW+zM4ZDMPgi2+vIypcQkNPEMISPo+HxbMTodUPoPpaF9txAo7Q0wYul2tQqxiGYQYte1pvs9mwefNmOBwOvPLKK0MOGB0tG/I+o02plA9aPlPbjmutfXjtuemIi43we54OgwlyWYjfH/duIpFwUA42Mt2d4X78kcubHHcajUxDzXA3X2WSSiVQRvlmLo+7P3t3WzY3DH8uv4Evf2zGguzxfmnR5ylToPBYDDQaDSorK93Ler0eKpVq0Hq9Xu9e7uzsdK8fGBjA2rVroVAosGPHDohEQx+jp6vLCJeLO4d8SqUcen2/e9nFMNj1l0tQKkKQOT5y0Dq/EQjQb7T4/3HvYrc73DnkshBWMt2Z4X78lctTjjuNVqahZLibLzOZTFbonSNv8nn3Z+9BlmYnYdeXl/G3ikbMSFV63N4fmfyJz+cN60e0x9NEOTk5qKiogMFggNlsxrFjx5Cbm+teHx8fD4lEgqqqKgDA4cOH3es3btyIpKQkfPjhhxCLxUMOFwh+rNOhWWfE048nQyigawWEsC0nQwNVZCi++LYRLrp24DWP315qtRobNmxAcXExli9fjmXLliEzMxNr1qxBTU0NAGD79u344IMPsGjRIphMJhQXF6O2thbHjx/H2bNn8cwzz6CwsBBr1qwZ9SfkTza7EwdOXkOiSkYtiAjhCKGAj+VPJqNFb8SZOmpZ5C2Pp4kAoKCgAAUFBYNu27lzp/vv9PR0HDhwYND6KVOm4MqVKz6IyF3HztyEoc+K1UunUL8CQjjksclqHKlowqHvruORNCUdtXuBXqFh6jVa8dfTTZg5SYn0pEi24xBC7sDn8VA0dyJ03WacOBvcnV19hYrBMB345hocDheemzeR7SiEkPuYPjEaU5OjcOj7RvSZbGzH4TwqBsNQ19SNUzXtyH8sEepI3zSZI4T4Fo/Hw/MLUmGzO/HFt9fZjsN5VAyGyGZ34r/LLkOlCMXTj49nOw4h5CHiYsKw4JEEfHu+FU3t3GoCyjVUDIZo31dXoes24+VFaRCLBGzHIYR48PTjyZBLRdj15WUaxO4hqBgMQVN7Pz4/UY85UzU0cQ0hAUIaIsRLeWlo0vWj7IdmtuNwFhUDL1ntTvxH6SWEh0nw/MJUtuMQQoZgVroKs9JV+POpRmj1RrbjcBIVAy/t+7oBbV0mbHh+BmShQx9WgxDCrpeemoQQsRD/daSOThfdBxUDL5y7qseJc1rkPzYOWZNoBjNCAlF4mBjF+WlobOvHgZPX2I7DOVQMPGjrGsB//rUWSWo5inKpTwEhgWxWugoLZibg2JmbOHtV73mHMYSKwUOYLA589HkNhAI+XiuaRpPWEBIE/tf8FIzXyPHHv9aho9vEdhzOoG+3B3C6XPiP0kvQ95jx/y7PQHQE+/MFEEJGTiTkY+3yDPB5wIf7q2E029mOxAlUDO7DxTDYdeQyqq914YWnJiEtkcYeIiSYKBWh+NWzmejsteCjz6thd4x8voVAR8XgLgzD4P8er8epi+1Y/mQy5s2gaSwJCUaTximwetlk1Lf04j/+XDvmWxhRMbgDwzDYd6IBX1W24KlZ41CQM57tSISQUfTYZDVWLkhF1VU9/vfhS2O6IFAx+Duny4X/OlKHoz/exIKZCfj5ghS/zJ9KCGFX3qPj8PyCVJy9qscnX1wcs6eMqBgAMFns+PjzGpyqacfyJ5LxwlOp4FMhIGTMeOrRcXgpbxLON3Tit3vOocdoZTuS3435YtDSYcSv/08lLjYa8HJ+Gp5+IpmOCAgZg+bPTMD/98w0aPUDeP//VKKxrY/tSH41ZouBi2FwvKoFWz+rhNXmxMbnZ9DFYkLGuEfSlHjzpZng84DffFaF0vIbcLrGxnUEr+ZADjZtXQPY9eVl1Lf0IiM5Cr9YOhkKmYTtWIQQDkhUy/Hu//MY/nTsCr749jqqGzrxUl4akjRytqONqjFVDHqMVvz5+0Z8e6ENIWIB/mHpZORkaOi0ECFkEFmoCK8WZiArtR3/81U9fr3rDB7PjMUzT05ApDw4fziOiWLQ1jWAv1W2oLymDU4Xg3kz4lHw+HiEh4nZjkYI4bDsKRpkTohBaXkjvqpsQcXFdszJ0GDRY4mIiwljO55PeVUMSktLsWPHDjgcDqxatQovvvjioPV1dXV4++23MTAwgFmzZuG9996DUChEa2srNm7ciK6uLiQnJ2P79u0IC/PPCzhgsaPqih6nL7XjcnMPhAI+sqeqsXROEs1bTAjxmjREiJ/PT8X8mQk4+mMzvqtuw/fVbUiJj8CinPFIiZUjXBr4Pyw9FgOdToeSkhIcPHgQYrEYK1euxOzZs5GSkuLeZuPGjdi6dSuysrLw1ltvYd++fXjhhRfw3nvv4YUXXsDSpUvx+9//Hp988gk2btw4Kk/EbHWgqb0f9S09uNhowDVtH1wMA3VkKJ55Mhlzs+LpSIAQMmxKRSheykvD048n49TFWwXh4/0XwAMwMT4CGclRSEmIQHJsOEIlgXfSxWPi8vJyZGdnQ6FQAADy8/NRVlaG1157DQCg1WphsViQlZUFACgqKsLvfvc7PPfcczhz5gx+//vfu29/6aWXhl0MBix2dPdZYbI60G+yocdog6HPgnaDCW1dJui6TWCYW9smaeRYMicRM1KVGK+R0zUBQojPhIeJsXh2EhY9log+qwsnzjThwrUuHP6+EQwAHm4VjnhlGNSRUkSFS6CQSRAqEUIiFiBELECISIAImYRTIyF7LAYdHR1QKpXuZZVKherq6geuVyqV0Ol06O7uhkwmg1AoHHT7cDAMg007KmC2OgbdLuDzoI6SIi4mDI9NVmFCXAQmxIXTTGSEkFHH4/GQMk6BiBABlj85ASaLA9dbe3GttQ/azgFo9UZcbDTA7rh/09SJ8eF4++VZfk79YB6LgcvlGvTLmmGYQcsPWn/3dgCG9Qudz+cB4OMfV2bBZHEgRCyANESEcJkYYSFCVnoK38rEHQyfB2kI+wVQKOC7c4RKhHA6/J/pzgz3469cnnLcabQyDSXD3XyZSSjg++wzw7XPHvBTJplUhMyUGGSmxLjXMQyDAYsDfQM2WO1OWO0u2OxOWO0OKBWho/J8hnufHouBRqNBZWWle1mv10OlUg1ar9f/NGNQZ2cnVCoVoqKi0N/fD6fTCYFAcM9+3oqMvHXBOTpaNuR9RwuXsty29EluzMI2IYH94b65kAHgRg4uZPAlLn72PGWKeeha7vB4wionJwcVFRUwGAwwm804duwYcnNz3evj4+MhkUhQVVUFADh8+DByc3MhEokwa9YsHDlyBABw6NChQfsRQgjhDh7D3L7s+mClpaX4wx/+ALvdjhUrVmDNmjVYs2YN1q1bh2nTpuHy5ct45513YDQaMXXqVHzwwQcQi8XQarXYvHkzurq6EBsbi3/7t39DRESEP54XIYSQIfCqGBBCCAlu3GnXRAghhDVUDAghhFAxIIQQQsWAEEIIqBgQQggBFQNCCCEIkGJQW1uLjIwMtmMAAKqqqrBixQoUFhZi1apV0Gq1rOYpLS3FkiVLkJeXh927d7Oa5baPP/4YS5cuxdKlS/Ev//IvbMcZ5Le//S02b97MdgwAwNdff42ioiIsXrwYW7duZTsOgFudRm+/d7/97W9ZzWI0GrFs2TK0tLQAuDVoZkFBAfLy8lBSUsKJTHv37sWyZctQUFCAN998EzabjRO5bvvTn/6El19+2bs7YTjOZDIxK1euZCZNmsR2FIZhGGbevHlMXV0dwzAMs3//fubVV19lLUt7ezszb948pru7mxkYGGAKCgqY+vp61vIwDMOcOnWK+fnPf85YrVbGZrMxxcXFzLFjx1jNdFt5eTkze/Zs5o033mA7CtPc3Mw88cQTTFtbG2Oz2Zjnn3+eOXnyJKuZTCYT8+ijjzJdXV2M3W5nVqxYwZw6dYqVLOfPn2eWLVvGTJ06lbl58yZjNpuZuXPnMs3NzYzdbmd+8Ytf+P31ujvT9evXmaeeeorp7+9nXC4Xs2nTJubTTz/1a6b75bqtvr6eefLJJ5mXXnrJq/vh/JHBtm3bsGrVKrZjAABsNhvWr1+P9PR0AEBaWhra2tpYy3Pn8OJSqdQ9vDiblEolNm/eDLFYDJFIhIkTJ6K1tZXVTADQ09ODkpISvPrqq2xHAQD87W9/w5IlS6DRaCASiVBSUoLp06ezmsnpdMLlcsFsNsPhcMDhcEAiYWeKx3379uHdd991j2dWXV2NpKQkjBs3DkKhEAUFBX7/X787k1gsxrvvvguZTAYej4dJkyax8r9+dy7g1nfVli1bsG7dOq/vh9MzMBw/fhwWiwWLFi1iOwqAW29+YWEhgFujtX788cdYuHAha3k8DS/OhtTUVPffN27cwJdffon/+Z//YTHRLVu2bMGGDRtYLd53ampqgkgkwquvvoq2tjb87Gc/w+uvv85qJplMhvXr12Px4sUIDQ3Fo48+ipkzZ7KS5Z//+Z8HLd/vf324Q+L7KlN8fDzi4+MBAAaDAbt378YHH3zg10z3ywUA//qv/4pnn30WCQkJXt8PJ4rBl19+ec+LOGHCBBiNRuzatYtTmXbt2gWbzYbNmzfD4XDglVdeYSUf4Hl4cTbV19fjlVdewaZNmzB+/HhWs+zfvx+xsbGYM2cODh48yGqW25xOJyorK/HZZ59BKpVi7dq1+OKLL1BUVMRapsuXL+Pzzz/HiRMnIJfL8Y//+I/44x//iNWrV7OW6TYu/6/rdDqsXr0azz77LGbPns12HJw6dQptbW1488038cMPP3i9HyeKweLFi7F48eJBt+3fvx9/+MMfBs23XFhYiN27d0MmG/1hbO+XCQAGBgawdu1aKBQK7NixAyIRe/MIeBpenC1VVVVYt24d3nrrLSxdupTtODhy5Aj0ej0KCwvR29sLk8mE3/zmN3jrrbdYyxQTE4M5c+YgKioKALBw4UJUV1ezWgy+//57zJkzB9HR0QBuzU64Z88eThSDu4fK58r/+rVr17B69Wq8/PLL+MUvfsF2HADAX/7yF9TX16OwsBAmkwmdnZ14/fXX8eGHHz58x9G5pOF7XLmAvHbtWuadd95hnE4n21HcF5C7uroYk8nEPP3008yFCxdYzdTa2srMnj2bKS8vZzXHg3z++eecuIB8/vx5Jj8/n+nt7WUcDgfzyiuvMPv27WM103fffcc8/fTTzMDAAONyuZh/+qd/Yn73u9+xmmnevHnMzZs3GYvFwuTm5jI3btxgHA4H8w//8A/MkSNHWM3U39/PzJ07l/niiy9YyXG327nudPr0aa8vIHPiyCBQ1NbW4vjx40hJScEzzzwD4Na5y507d7KSR61WY8OGDSguLnYPL56ZmclKltv++Mc/wmq1Ytu2be7bVq5cieeff57FVNwzffp0rF69Gi+88ALsdjsef/xxPPvss6xmeuKJJ1BbW4uioiKIRCJMmzYNv/zlL1nNdJtEIsG2bdvwq1/9ClarFXPnzmX9WuKBAwfQ2dmJTz/9FJ9++ikAYP78+Vi/fj2ruYaLhrAmhBASGJ3OCCGEjC4qBoQQQqgYEEIIoWJACCEEVAwIIYSAigEhhBBQMSCEEAIqBoQQQgD8//nbBtYu4H+KAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD8CAYAAAB6paOMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3xc1bXo8d/MqHdZGsuS3HBb7pYr1TSbEkgg9IADBD5AeCR5SW76A+7N5YWEF5JACiR5j9wLCTGEEEhCMIQQGzDFNhg3XBauslVsyZLVLVll3h8zImMhW0f2aM5Is76fjz6fOefss886M5pZZ5+ytycQCGCMMSZ+ed0OwBhjjLssERhjTJyzRGCMMXHOEoExxsQ5SwTGGBPnLBEYY0ycS3BSSERuAO4BEoGHVfWRHssvB/4T8AC7gVtU9ZCIjAaeBIYDCixR1SYRyQF+D4wDqoFrVXW/g1CSgflAJdDpJHZjjDH4gELgXaCt58I+E4GIFAP3A3NDFbwtIitUdUtoeRbwS2C+qpaLyH3Ad4EvA48Cj6rq0yJyL3Av8C3ge8BKVb1URG4Efgpc52Bn5gMrHZQzxhjzcQuBN3vOdNIiWAwsV9VaABF5FrgauC+0PBH4gqqWh6Y3AktEJBE4G/h0aP7jwOsEE8GloWUATwGPiEiiqrb3EUslwKFDzXR1BR+Ey8vLoKamycFuRFesxgWxG1usxgUW24mI1bgg/mLzej3k5qZD6De0JyeJoKjHypXAgu4JVa0BngcQkVTg28DPgXygQVU7wtYb2bNOVe0QkQbAD1T0EUsnQFdX4KNE0D0di2I1Lojd2GI1LrDYTkSsxgVxG1uvp9SdJAIvEB6VB+jqWUhEsgkmhA2q+kTolFLPvelez9Njfq91HkteXsZR035/ptNVoypW44LYjS1W4wKL7UTEalxgsYVzkgjKCJ5X6jaCHkfuIlII/B1YDnw1NLsKyBYRn6p2ErxQ0b1eeaieMhFJADKBGqdB19Q0fZQx/f5Mqqsbna4aNbEaF8RubLEaF1hsJyJW44L4i83r9XzsAPqo5Q7qeBVYJCJ+EUkDrgJe7l4oIj7gBeAZVf2KqgYAQuf7V/Kvi8A3AS+FXi8LTRNavtLB9QFjjDEDoM8WQehOoLuBFUAS8JiqrhGRZcC/A6OAOUCCiFwdWu09Vb0NuAt4QkTuAfYC14eW3ws8LiKbgTpgSSR3yhhjjHOOniNQ1aXA0h7zLgm9fI9jtCxUtRQ4t5f5tcBl/QnUGGPMwLAni40xJs5ZIjDGmDjn6NSQMYNRRxe0tXf0XdCBQG0LLW1915WcmECCHV6ZQcYSgRmy2to7eHfrgYjUlZmRQmNTa5/l5k8pICHZvlZmcLFjF2OMiXOWCIwxJs5ZIjDGmDhnicAYY+KcJQJjjIlzlgiMMSbOWSIwxpg4Z4nAGGPinCUCY4yJc5YIjDEmzlkiMMaYOGeJwBhj4pwlAmOMiXOWCIwxJs456i9XRG4A7gESgYdV9ZFjlPstsFxVHxeR4cArYYuzAb+qZojIOcBzwL7QsnWqesuJ7oQxxpgT12ciEJFi4H5gLtAGvC0iK1R1S1iZIuDXwCJgOYCqVgEloeVe4J/A3aFV5gE/UtUfRG5XjDHGnAgnLYLFBI/yawFE5FngauC+sDJLgL8ANceo4xagRVWXhqbnAwUicj2wB/iCqu47xrrGGGMGkJNrBEVAZdh0JTAyvICqPqiqj/W2soj4CLYEvh02uw74uarOBJYBT/cnaGOMMZHjpEXgBQJh0x6gqx/buBjYrqqbumeo6p1hr38lIg+ISLaq1jupMC8v46hpvz+zH+FET6zGBbEbWyTjCtS2kJmRErH6nNSVlpaMf1haxLbpVDx8npFmsf2Lk0RQBiwMmx4BVPRjG58m7Ig/dL3gO8ADqtoZVs7xKOM1NU10dQVzk9+fSXV1Yz/CiY5YjQtiN7ZIx9XS1uFonGEnnI5Z3NLSRnVnZ5/lIilePs9IirfYvF7Pxw6gj1ruoI5XgUUi4heRNOAq4OV+xHA6sLJ7QlW7gCtC9SAiNwGrVbW5H3UaY4yJkD4TgaqWEzzHvwJYDyxV1TUiskxE5jnYxjiCrYpwNwNfEZHNBC8k39a/sI0xxkSKo+cIQnf7LO0x75Jeyn2ul3kfO2GqqpuBMxxHaYwxZsDYk8XGGBPnLBEYY0ycs0RgjDFxzhKBMcbEOUsExhgT5ywRGGNMnLNEYIwxcc4SgTHGxDlLBMYYE+csERhjTJyzRGCMMXHOEoExxsQ5SwTGGBPnLBEYY0ycs0RgjDFxzhKBMcbEOUsExhgT5ywRGGNMnHM0VKWI3ADcAyQCD6vqI8co91tguao+Hpq+GXgAOBAq8qKq3i0io4EngeGAAktUtelkdsQYY8yJ6bNFICLFwP3AWUAJcIeITO1RpkhEXgCu7rH6PODfVLUk9Hd3aP6jwKOqOhl4D7j3JPfDGGPMCXLSIlhM8Ci/FkBEniX4g39fWJklwF+Amh7rzgcmisj/AjYAXwKagLOBT4fKPA68DnzrxHbBGGPMyXByjaAIqAybrgRGhhdQ1QdV9bFe1q0E/jcwE9gH/ALIBxpUteNY9RljjIkeJy0CLxAIm/YAXU4qV9Urul+LyA+BncA3e9SH0/q65eVlHDXt92f2Z/WoidW4IHZji2RcgdoWMjNSIlafk7rS0pLxD0uL2DadiofPM9Istn9xkgjKgIVh0yOAir5WEpFs4FZVfSg0ywN0AFVAtoj4VLUTKHRSX7iamia6uoK5xO/PpLq6sT+rR0WsxgWxG1uk42pp66CxqTUidWVmpDiqq6WljerOzohs06l4+TwjKd5i83o9HzuAPmq5gzpeBRaJiF9E0oCrgJcdrNcEfFNETg1NfxF4XlXbgZXAdaH5NwEvOajPGGPMAOgzEahqOXA3sAJYDyxV1TUiskxE5h1nvU7gWuCXIrIVmEvwtBDAXQTvPtpCsLVxz8nthjHGmBPl6DkCVV0KLO0x75Jeyn2ux/RKYE4v5UqBc/sRpzHGmAFiTxYbY0ycs0RgjDFxzhKBMcbEOUsExhgT5ywRGGNMnLNEYIwxcc4SgTHGxDlLBMYYE+csERhjTJyzRGCMMXHOEoExxsQ5SwTGGBPnLBEYY0ycs0RgjDFxzhKBMcbEOUfjERgzmBxqbKO8uom91U1o6aHgTI+H9JQEstKSyM1KJjnR526QxsQQSwRmSKisaeatTfvZuPMgZdXNRy3zeCAQCJsG8nNSGDk8gwnF2aQm29fAxDf7BphBbfOeWl5evZfNu2vxeT1MHJnNtedN4JTCTLIyktlWWovH46ErEKCltYOG5iNUHTpMeXUz6z48yIbtBxk9IpMZ44aRm5ni9u4Y4wpHiUBEbiA4rnAi8LCqPnKMcr8Flqvq46HpM4GHgCSgBrhVVUtF5BzgOWBfaNV1qnrLyeyIiS9lVU08s2IHH+yuJScjiSsWnsI5JcVkpSd9VKa5rQOPxwOA1+MhIzWRjNREivLTKZmYT0PzEXRvHTvK69lT2cj44ixKJuaTnpLo1m4Z44o+E4GIFAP3Exx8vg14W0RWqOqWsDJFwK+BRcDysNV/D1ymqhtF5FbgZ8DlwDzgR6r6g4jtiYkL7R2d/PnN3by8ei9pyQl85vwJnDdnJIkJ/b/vISs9iflThjNzfB6bdtWwrbSO0v2NzBU/k0blfJREjBnqnLQIFhM8yq8FEJFngauB+8LKLAH+QvCon1C5ZOAeVd0YmrUR+FLo9XygQESuB/YAX1DVfZioaGw5QnNbR1S3mZyYwAn8Vh+ldH8j/+9vW6g42MzCmYVcc94EMlJP/ug9OcnHvMnDkdE5rNp8gNVbqijd38SZM0aQHoH6jYl1ThJBEVAZNl0JLAgvoKoPAojIWWHz2oAnQ/O9wHeBP4cW1wHPqOpzInIn8DRwptOg8/Iyjpr2+zOdrhpVsRpXVW0L2/bVR3Wbc2Q4/mFpfZbr7T0LBAK8snovv35+I1npSXz39tOYO7mgz7oCtS1kZjg/75+ZkcIV/ky27qnlzQ0VvPhOKRcsGM3oEVkfLe9LWlqyo/2MtFj9X4vVuMBiC+ckEXiBsHsu8ABdTjcgIknAE6FtfR9AVe/sXq6qvxKRB0QkW1Ud/TrV1DTR1RUMye/PpLq60Wk4UROrcQHg89HY1BrVTba0tFHd2XncMr29Z+0dXfzuFeXNjZVMG5vLHZdNIzMtydF729LWcUL7OcqfziWnjeH19eW88OZuSibkccasYpqa2/repoP9jLRY/V+L1bgg/mLzej0fO4AO5yQRlAELw6ZHABVONi4iGcBfCZ4yulxV20Otg+8AD6hq+DcmuucqTMxrbm3nF3/ahO6r45NnjOHTZ43D643OefvsjCQuOX0MqzYfYP2OGprbOlkw2Y/PZ89gmqHHyX/1q8AiEfGLSBpwFfCyw/qfBHYA14VOFaGqXcAVoXoQkZuA1arafMxaTNw5WH+Y7/9uLTsr6rn9U1O58uzxUUsC3RJ8Xs6cMYLZE/PZvq+OV97dR9uR6B7tGxMNfSYCVS0H7gZWAOuBpaq6RkSWici8Y60nIrMJ3iF0JvC+iKwXkWWhxTcDXxGRzcAtwG0nuR9mCKmsaeYHT75PfdMRvnZdCadPG+FaLB6Phxnj87jotDHU1Lfx9zV7ORzlC+3GDDRHzxGo6lJgaY95l/RS7nNhr9cRvJ7QW32bgTP6E6iJD6X7G/nJM+vxeDx8a8kcRg0/9nnNaJowMofOjk5eW1fOy6v3csH8URG5Y8mYWGAnPE3M2F1Rz4+eXkdSgpfvxFAS6FaUn87ieaNoPdLJy6v30tB8xO2QjIkISwQmJlTWNHPvr98mKdHHN2+YQ4ELt2A6MTw3lYsWjKKrK8DLq/dS2xDdu6+MGQiWCIzrqg618OBT6/B4PHzj+tn4c1LdDum4hmWlcNGC0Xi9Hl55d58lAzPoWSIwrqqpb+XBp9bT0Rnge58/gxEx2hLoKTsjiYsXjCbB5+Uf75ZxqLHvZwyMiVWWCIxr6praePDpdbS0dfC160oYU5jldkj9kpGWyIXzR+H1evjHu/uob7JkYAYnSwTGFYfbOnjomQ3UNx3hq9fOYsyI2H3c/3iy0pO4cP4oAF55dx9Vhw67HJEx/WeJwERdR2cXv/zLB5RXN3PXFdOZUJztdkgnJTsjiQsXjCIQgJ8/u4GqOksGZnCxgWlMVAUCAZ585UM+2FXLzRcLM8bluR1SRORkJHPB/JH8c205Dy5dx7eWzCY/O7Yvep+Mji5oaz/+g3WB2hZaIvjwXSR6sDW9s0RgomrZqlLe2FDBpaeP4ZySYrfDiajczBS+eOUMfvGnTTz41Dq+dcMchmUNzVHP2to7eHfrgeOWycxIiWjnhvOnFJBgw4oOCMuvJmpWbdnPn17fxalTC7ji7HFuhzMgRhVk8rXPlNB0uJ0Hn1pHnV1ANoOAJQITFbvK6/mvF7cyaWQ2t14yBe8QHv3rlMIsvnptCXXNR3jwqXXU2xPIJsZZIjADrqW1ncf+toVhWSl88aqZJzSs5GAzoTibr14zi5qGVn701DoaWiwZmNg19L+RxlWdXV28tq6CI+1dfOnKGXHVUdukUTl8+epZVNUd5sdPr6fpcLvbIRnTK0sEZsAEAgFWb6niYH0rn71IKPbHVidy0TBlTC5fumoGlTUt/PgP62lptWRgYo8lAjNgPtxXz46yemaMG0bJxHy3w3HN9FPy+OKV0ymvbuLHf9hg4xmYmGOJwAyIqkMtvLv1AMX56cyK4yTQbeb4fP7Hp6ez90AjDz1jycDEFksEJuIOt3Xw+voK0lMTWTircEjfIdQfsyf6+fxl09hV0cBP/7jBhr00McPR0xkicgNwD5AIPKyqjxyj3G+B5ar6eGh6NMFxi4cDCixR1SYRyQF+D4wDqoFrVXX/Se6LiQGBQICVGys50t7F4nmjSEr0uR1STJk3eTh3BAL8+q+b+fEz6/nK1bNIS7GHpIy7+mwRiEgxcD9wFlAC3CEiU3uUKRKRF4Cre6z+KPCoqk4G3gPuDc3/HrBSVacA/w/46UnthYkZH+yqZX9NCwumDCc3M9ntcGLSgikF3Hn5dHZXNPCjp9fZ3UTGdU5ODS0meJRfq6rNwLN8/Ad/CfAX4JnuGSKSCJwdKg/wOHBN6PWlBFsEAE8BnwiVN4NY9aHDrN9xkLEjMpkwcnB3JDfQ5k8ezheunEFZdRM/XLrOhr00rnKSCIqAyrDpSmBkeAFVfVBVH+uxXj7QoKodvaz3UZ2h5Q2Av3+hm1jS1t7JGxsqSE9J5LRpBXjsukCfSibkB58zONTC/1n6vg1uY1zj5OSkFwiETXuArhNYj7D1ev5KOK0TgLy8o+9H9/tjsy/7WI2rqraFzIzIdYYWCAR4a1Uph9s6uPK8ieTlfnyUsbS0ZPwORh+L5HsWiPB+OqnL6X52O9efSX5eOvf9ZhUPPr2O/7zjdIry+/e8RWPLEQK+6F6L8SU6ez8i+f73973tS6x+PyH6sTlJBGXAwrDpEUCFg/WqgGwR8alqJ1AYtl55qJ4yEUkAMoEap0HX1DTR1RXMMX5/JtXVjU5XjZpYjQsAny+ivULq3jp2ltczV/ykJXl7rbulpY3qzuPfJRPp96ylrSNi++m0J00n+9lTQVYy/3ZdCT/940a+9vAbfPmamYwvcn5qLeDz8fravf3a5smaNcnf5/sR6d5HT+S9PZZY/n4ORGxer+djB9BHLXdQx6vAIhHxi0gacBXwcl8rqWo7sBK4LjTrJuCl0OtloWlCy1eGyptBpqH5CO9tq6IoP42pY3PdDmfQGl+Uzf+6cS6pyT4eXLqOddur3Q7JxJE+E4GqlgN3AyuA9cBSVV0jIstEZF4fq99F8C6jLQRbFfeE5t8LnCYim0NlvnCiO2Dc0xUI8NamSnw+D2dML7TrAidpxLA07r5xHsX+dH7x3CZWrCt3OyQTJxzdwKyqS4GlPeZd0ku5z/WYLgXO7aVcLXBZP+I0MWjrnkNU17Vy1sxCuxc+QrLSk/jm9XP41V8+4Hd/Vw7WH+aqs8fj9VqSNQPHniw2J6S+qY312w8yangGpxTG7kW3wSg5yccXr5rBubOLeWnVXh7+4wZ71sAMKEsEpt+Cp4T24/N57FbRAeLzernpIuHmi4Vtew9x3+PvUro/Ni9umsHPEoHpty17DnGwvpUFUwpItTFkB9Q5JcV8e8lcOrsCfP/Jtby1qbLvlYzpJ0sEpl/qQqeERhfYKaFoGVeUxX98bj7ji7L4zYtbefylbdZhnYkoSwTGsUAgwDsf7CfR5+XUqXZKKJqy0pP42mdK+MRpo1m5oYLv/vcadlc2uB2WGSIsERjHdpTXU13Xylzx2ykhF/i8Xq45dwLfuH427Z1d3P/btfzxtR0cabfWgTk59m02jrQe6eR9Pcjw3FTGF2e5HU5cmzwml/tuXcAflu/gpVV7WavVzByfR1F+utuhmUHKWgTGkXUfVnOko9NOCcWItJREbrlkCl//TAkAr75Xxor3y2lssV5MTf9ZIjB9qq47zPayeqaMybUxBmLM1LHDuO+OM5g9KZ/Kmmb+vHI3qzbvp6XVnjswztmpIXNcXV0BVm0+QFpyArMm2NjDsSgxwcuMcXmML8pm484atpfVsaO8gQnFWUwdO4ys9CS3QzQxzhKBOS7dV8ehxjbOLikiMcEakLEsLSWB06YVMO2UXDbtqmVHWQMf7qtnpD+dSaNyKPKn2/jRpleWCMwxtbR2sH77QQrz0hhT0L8+8o17MtOSOGP6CGZPzGdb6SG2l9VTVl1OanICowsyGFOQyfDcVOu/yHzEEoE5pnUfVtPZGbALxINUanICsyf5mTUhn31VTeyqaGBHWT26t47kRB+jCjIYNTyDgtxUkhKjO7CNiS2WCEyvahpa2VnRwLRTcu0c8yDn9XoYMyKTMSMyae/oouJgM6UHGimtbGRHWT0eYFhWMgXD0hgxLI3hlhjijiUC8zGBQIC126pJTvQxY1ye2+GYCEpM8H6UFDq7uqiua2V/TQsHalvYVlrHlj2H8AA5mckUDEulIDeYGOwBwqHNPl3zMeXVzeyvbWH+lOF2ZDiE+bxeRoRaAQAdnV1U1x2m6tBhDtQeZvu+eraV1gGQk5FEUX46xf50CnoZk9oMbpYIzFG6ugKs1Woy0xKZNCrH7XBMFCX4vBTmpVOYF3xCubMrQG1DKwdqW6io+VeLITnRx/byenIzkvHnpNj1oyHAEoE5yvayeuqbj3Du7CJ8dldJXPN5PfhzUvHnpDJ9XN5H1xf2Hmhk/YcHaWvvJDsjicmjc5lQnIXPZ7cXD1aOEoGI3EBwvOFE4GFVfaTH8hLgMSALeAO4ExgGvBJWLBvwq2qGiJwDPAfsCy1bp6q3nMyOmJN3pKOTDTuC/QmNGm63i5qjhV9fmDx2GC+8uYsP99azessBNu48yPRT8pg0OscOIAahPhOBiBQD9wNzgTbgbRFZoapbwoo9CdymqqtE5DfA7ar6S6AkVIcX+Cdwd6j8POBHqvqDyO2KOVmbd9XSeqST8+f6rblvjis5ycfEkTlMKM5mf20LG3fW8O62KnRfHfMnD6fYbx3gDSZO2nKLgeWqWquqzcCzwNXdC0VkDJCqqqtCsx4HrulRxy1Ai6ouDU3PBy4UkY0i8lcRGXUyO2FOXnNrO1v2HOKUwkzys1PdDscMEh6Ph8K8dC5aMJrz5xQTCAT459oy3txYSZt1jz1oOEkERUD4+HiVwEiny0XER7Al8O2wMnXAz1V1JrAMeLp/YZtI27ijhkAgwOyJfrdDMYPUyOEZXHbWWGaOz2N3RQN/+IdSdajF7bCMA06uEXiBQNi0B+jqx/KLge2quql7hqreGfb6VyLygIhkq2q9k6Dz8o4+f+33x+aQibEaV1VtC5kZKR9N1zW1saO8nunj8igcPjAxp6Ul4x/W922HkXzPAj3282Q5qcvpfkZSz88zGhITE465zYWz05g4Opd/rNnLK2v2cc6ckUw95eSfR4n0exur30+IfmxOEkEZsDBsegRQ0WN54XGWf5qwI/7Q9YLvAA+oanjbscNhzNTUNNHVFcw9fn8m1dWNTleNmliNCwCfj8am1o8m39lYidfjQUblHDU/klpa2qjuPP6pgki/Zy1tHRHbn8yMFEd1OdnPiOvxeUZDe/vx39v0ZB/XLprEsrd3sWJtGfsPNjN3sv+kOr2L5Hsby9/PgYjN6/V87AD6qOUO6ngVWCQifhFJA64CXu5eqKqlQKuInBmadSPwUtj6pwMrw8p3AVeE6kFEbgJWh64/mCira2pjV0UDk8fkkJZidxObyElO8nH+nJFMHpPD1tJDvLWx8qMDOBNb+kwEqlpO8Bz/CmA9sFRV14jIMhGZFyq2BHhIRLYBGcDPwqoYR7DVEO5m4CsispngheTbTm43zIlav/0giT4v0yLQdDemJ6/Xw4IpBcyemM/uykZWbqig05JBzHF0CBi622dpj3mXhL3eACw4xrofO6mnqpuBM/oVqYm4mvpW9h5oYub4PFKSrCsJM3BmjM/D5/Pw3rZq2FDBwpIiGxshhtijgHFs/Y6DJCV6mTo21+1QTByYOnYY88RP6YEm1mypIhCwlkGssJPCcar60GHKq5uZPSnfOpYzUTP1lGEcPtLJ5t21pCb7bPjTGGGJIE6t236QlCQfk0dba8BE15xJ+bQe6WDDjhqy0pM4pTDL7ZDinp0aikNaWsv+2hamjxtm4xCbqPN4PJw2bQTDc1N5e9N+ahqie+ur+ThrEcShF97cTUqSL6rdTHu8Hprbjv+oSKC2hZY+yvSHGzenONnPSPMlRnVzEeHzejinpIgX3yllxfvlXHr6GBv8xkX2zseZ7WV1bN1TyzzxkxDFboPb2jvZ8GH1ccs4fWjLqVmTot9dhpP9jLR50wr7LhSDUpMTOG92MS+t3stbmypZNHekdXboEjsvEGdeeGsPGWmJTLRBZ0wMyMtOYf7k4VQcbGHz7lq3w4lblgjiyK6KBj7YXctFp46xawMmZkwalc2YggzWbT9I9aHDbocTl+zXII688NZu0lMSOG+u9fptYofH4+H06SNIT0lk5cZK2ju6+l7JRJQlgjhRur+RDTtruHDBaLsoZ2JOUqKPM2eOoOlwO+9tq3I7nLhjiSBOvPD2HtKSE1g0Z2TfhY1xQUFuGtNOyWV7WT3l1U1uhxNXLBHEgX1VTbz/YTWL5420HkZNTCuZkE9ORhJvf7DfRjiLIksEceCFt/eQkuTjgvl2bcDENp/Py5kzCmlt6+R9je5tuPHMEsEQV36wmbXbqlg0dyTpKYPwySMTd/KyU5gyNniKyIa6jA5LBEPci2/vISnRx4XWGjCDyKwJ+aSnJPDO5gM2fkEUWCIYwiprmlm99QDnzykmMy3J7XCMcSwxwcupUwuobzrCFnvQbMBZIhjCXnynlESfl4sWjHY7FGP6beTwDMYUZLBhZw0NzUfcDmdIs0QwRFUdamHV5gOcO7uYrHRrDZjBaf6UAnxeD6u3HLCBbAaQo3sJReQG4B4gEXhYVR/psbwEeAzIAt4A7lTVDhG5GXgAOBAq+qKq3i0io4EngeGAAktU1W4cjqAX3ynF6/Vw8anWGjCDV1pKArMn5bNmSxXvbavi3JJit0MakvpsEYhIMXA/cBZQAtwhIlN7FHsS+KKqTgI8wO2h+fOAf1PVktDf3aH5jwKPqupk4D3g3pPfFdPtYN1h3v5gP+fMKiInI9ntcIw5KZNG5ZCfncJzr++iubXd7XCGJCenhhYDy1W1VlWbgWeBq7sXisgYIFVVV4VmPQ5cE3o9H7hZRDaJyJMikisiicDZoXp6ljcRsGz1Xjwe+MRp1howg5/X4+G0aQU0t7bz55W73Q5nSHKSCIqAyrDpSmCkw+WVwP8GZgL7gF8A+UCDqnb0Ut6cpNqGVlZuqOCsmUUMy0pxOxxjImJYVgpnzSxk+ftl7Kuys8iR5uQagRcIv0rjAbqcLFfVK7pnisgPgZ3AN3uUp0d9fcrLyzhq2u/P7M/qUeNGXM+FjphuvGQq/mFpvZapqm0hMyO6SSIxMV5uplgAABM2SURBVMHRNiMZl9NtOuWkrkhv06l4+DyvXlTI+u01PPPaTn5w15knPYhNrP5uQPRjc5IIyoCFYdMjgIoeywt7LheRbOBWVX0oNN8DdABVQLaI+FS1M7RueH19qqlpoiv0kInfn0l1dWN/Vo8KN+I61NjGy6v2cMb0EXg6O4+9fZ8voiOBOdHe3tHnNiM9QpmTbTrlNLZIbrM/4uHz9Aa6uPLsU3jiZeVvr+/gtGkjTriuWP3dgIGJzev1fOwA+qjlDup4FVgkIn4RSQOuAl7uXqiqpUCriJwZmnUj8BLQBHxTRE4Nzf8i8LyqtgMrgetC828KlTcn6cV39hAIwKfOGOt2KMYMiIUzixg7IpM/rNjB4SiPDT2U9ZkIVLUcuBtYAawHlqrqGhFZJiLzQsWWAA+JyDYgA/hZ6Gj/WuCXIrIVmEvwtBDAXQTvPtpCsLVxTyR3Kh7VNrTyxoYKzpxRSH5OqtvhGDMgvF4PSy6cRH3TEV54e4/b4QwZjp4jUNWlwNIe8y4Je70BWNDLeiuBOb3MLwXO7Wes5jiWrSolEIBPnj7G7VCMGVDji7I5a2Yh/3h3HwtnFlKYl+52SIOePVk8BHS3Bs6aaa0BEx+uPmc8SYk+lv7jQ3viOAIsEQwBL4ZaA5daa8DEiaz0JK5YeAqb9xzi/Q8Puh3OoGeJYJDrfm5g4cxC8rOtNWDix3lzihnpT+fpf2630cxOkiWCQe7Fd7pbA2PdDsWYqPJ5vSy5YBI1Da28tKrU7XAGNUsEg1j3tYGFs4rIy7aniE38kdG5nDa1gGWr9lJVd9jtcAYtSwSD2F/f2gPApafZtQETv645bwI+n4enX93udiiDliWCQaqyppmVGys4b06xtQZMXMvNTOayM8ayfsdBNu60C8cnwhLBIPXc67tITvTxSXuK2BgumD+KgmFpLH11O+0d/eq6zGCJYFDaWV7P2g+rufjU0WTZWMTGkODzsuSCiVQdOswr7+51O5xBxxLBIBMIBPjjazvJSk/iwvmj3A7HmJgx/ZQ85kzy88Lbe6htiH7Hf4OZJYJBZtOuGj7cV8dlZ44lJclRDyHGxI3PnD+BQAD+sHyH26EMKpYIBpGurgDPvraT4TmpnD2ryO1wjIk5+TmpXHraGN7dVsXWPbVuhzNoWCIYRFZt2U9ZdTNXnjOOBJ99dMb05uJTR5OfncLvX91OR6ddOHbCfk0GifaOLp5/YzdjCjKZN3m42+EYE7OSEn1cv3giFQebWb62zO1wBgVLBIPEq2v3UdPQytXnjcd7kkP0GTPUlUzIZ8a4PP7y1m7qm9rcDifmWSIYBOqb2njhrT2UTMhn2thhbodjTMzzeDzcsHgi7R1dPPvaTrfDiXmWCAaBZ1/fSXtHF9edP8HtUIwZNAqGpXHRgtG89cF+PtxX53Y4Mc0SQYzbVdHAW5v2c2HoyUljjHOfPH0seVkpPP7SNto7rKvqY3F0I7qI3EBwXOFE4GFVfaTH8hLgMSALeAO4U1U7QgPaPwQkATXArapaKiLnAM8B+0JVrFPVWyKxQ0NJV1eA3/9DyU5Psq4kjDkByUk+bv6E8JM/bOCvb+3hqnPGux1STOqzRSAixcD9wFlACcFB56f2KPYk8EVVnQR4gNtD838P3KaqJaHXPwvNnwf8SFVLQn+WBHqxYl05uysbuW7RBFKT7eExY07E9FPyOGtGIS+t2kvp/ka3w4lJTk4NLQaWq2qtqjYDzwJXdy8UkTFAqqquCs16HLhGRJKBe1R1Y2j+RmB06PV84EIR2SgifxUR6yuhh0ONbfzp9Z1MG5vLqVMK3A7HmEHtukUTyExL5DcvbrVO6XrhJBEUAZVh05XAyL6Wq2qbqj4JICJe4LvAn0Nl6oCfq+pMYBnw9AlFP4Q99eqHdHQG+OxFgsduFzXmpKSnJHLzJyZTVt3En9/c5XY4McfJ+QYvEAib9gBdTpeLSBLwRGhb3wdQ1Tu7l6vqr0TkARHJVtV6J0Hn5WUcNe33ZzpZLepONK53NlXwnlbz2YsnM31S5FsDVbUtZGZEdwyDxMQER9uMZFxOt+mUk7oivU2n4uHzTEtLxn8SN0xc4M9k2756Xl5dyjlzRzNtXF7EYou0aP+mOUkEZcDCsOkRQEWP5YW9LReRDOCvBC8UX66q7aHWwXeAB1Q1/DJ+h9Oga2qa6OoK5h6/P5Pq6tg773eicTW0HOHnz6xndEEGZ88YMTD75vPR2BTd3hnb2zv63GZmRkpE43KyTaecxhbJbfZHPHyeLS1tVHee3J0/l58xhve3HeChp97n32+eF5PX3gbiN83r9XzsAPqo5Q7qeBVYJCJ+EUkDrgJe7l6oqqVAa+gOIYAbgZdCr58EdgDXqWpbqHwXcEWoHkTkJmB16PpD3HvylQ9pae3gtkunWn9CxkRYanICt39qKtV1h3ni5W0EAoG+V4oDff7SqGo5cDewAlgPLFXVNSKyTETmhYotAR4SkW1ABvAzEZkNXA6cCbwvIutFZFmo/M3AV0RkM3ALcFtE92qQWr3lAO9tq+Lys05h5PBjZ29jzImbODKHz148mTVbq3h9Q0XfK8QBR+0iVV0KLO0x75Kw1xuABT1WW0fwekFv9W0GzuhXpENcVd1hfvv3bYwvyuITp43uewVjzAm76ryJrN2yn6X/2M64wixGF8TmdcZosXMPMaCjs4tf/fkDPHj4/GXT8HntYzFmIHm9Hm7/1DTSUxN45PlNNB1udzskV9kvTgx49rWd7NnfyC2XTCY/J9XtcIyJC1npSXzxihkcamzjV3/5gM6u+H2+wBKBy1Zt3s8r7+7j/DnFzBUbZ8CYaBpfnM2NFwpb9hzijyvit5fS2Lt3Ko7srmzgv1/axqRROXxm0US3wzEmLi2cVcTeqiZeeXcf+dkpLJ4Xfx0dWCJwyaHGNn7x3Cay0pK464rpdquoMS66ftFEahtaeerV7eRkJMfdKID26+OC5tZ2fvLMelraOvjSVTPISktyOyRj4prX6+GOy6YxrjiL//vClrgb+N4SQZS1tXfy02c3cqC2hf955Yy4v23NmFiRnOjjy1fPoiA3lZ8+u5FtpYfcDilqLBFEUVt7J794bhM7y+q541PTmGLDThoTUzJSE/nG9bPJz0nl4Wc3xE0ysEQQJYfbOnjomQ1s2V3LLZdMibtzkMYMFlnpSXzj+tnkZaXwk2c2sFar3A5pwFkiiIKGliP8+A/r2VFWz+2XTeWsmYV9r2SMcU12ehLfXjKHMQUZPPr8B/xzbZnbIQ0oSwQDrKy6ie898R77qpq464rpnDZ1hNshGWMcyExL4uvXz2bWhHx+/48PeeLlbUN2UBu7fXQArdUqfvPiVpKTfHx7yRxOKcxyOyRjTD8kJ/r4wpXTef6N3SxbVcreA438j09PJz97aPUAYC2CAdDW3skv/rieR57/gMK8NO69aZ4lAWMGKZ/Xy9XnjucLV8ygsqaFf//NGt7YUDGkurC2FkGEbdlTy+/+rhw4dJhPnDqaK84eZw+LGTMEzBU/owsW8F8vbuXxl7bx3rYqbrhgEiNOYtS0WGGJIEIO1h3mT2/sYvWWAwzPSeV7nz+DotzoD1lojBk4/pxUvnHDbJavLeO5N3Zx72OrWTxvJJeePpaM1ES3wzthlghOUk19Ky+uKmXlhgo8Hg+XnTmWS08fQ1FhTkwOoWmMOTlej4fF80Yxf0oBf3p9J6+s2cdr6ys4f04xF84fTXb64OspwBLBCegKBNDSQyx/v5z3t1fj9Xg4e1YRl54+hmFZ1gowJh5kpydx6yVTuHD+KP729h5eXrWXV9bsY674OW92MRNH5eD19Do2V8xxlAhE5AbgHiAReFhVH+mxvAR4DMgC3gDuVNUOERlNcNzi4YACS1S1SURygN8D44Bq4FpV3R+hfRoQHZ1d7KpoYN32atZsreJQYxvpKQlcfOpozp89krxsSwDGxKOR/gzuvHw6n17YwvL3y3hr037WbK0iNzOZueJn9oR8JozMITEhdq8V9pkIRKQYuB+YC7QBb4vIClXdElbsSeA2VV0lIr8Bbgd+CTwKPKqqT4vIvcC9wLeA7wErVfVSEbkR+ClwXSR37GQ1HW5nX1UTuyrq2VnegO47xOG2TnxeDzPG5XHNeeOZM9FPUqLP7VCNMTFgxLA0blg8iavOGc+6D6t5d1sVr62r4NX3ykhK8DK+OJuxIzIZE/rz56TGTIvBSYtgMbBcVWsBRORZ4GrgvtD0GCBVVVeFyj8O/KeIPAacDXw6bP7rBBPBpaFlAE8Bj4hIoqoO6Hhx7R2dtLR20HqkM/TXQUtrB7WNbdQ2tnKooY3ahlYO1B2mvunIR+sVDEtj/uQCZozLY8qYXNJS7IyaMaZ3yYk+Tps2gtOmjaD1SAfb9taxeVctO8rreeXdfXR2BW87TU32UZCbRl5WCrlZyQzLTGFYVjLFhw7TevgIqUkJpCT5SElKwOf14PV6BqxV4eQXrQioDJuu5OiB6ntbPhLIBxpUtaPH/KPWCZ1CagD8QEUfsfgg2GVsuJ7TvWk+3M7/Wfo+rUc6e6/Y6yErPYnc7BQmjMymYFg6I4alMWp4xgn/8DuJyw0Br4e0lOje4ZDg8/a5zdTkBDo7IheXk2065TS2SG7TqQRf/HyekfxOReP7mZaSyJxJfuZM8gPQ2dXF/prDlB9sovxgMzX1rdQ1tbFtbx1H2nv/bQp36eljOaekqN9xhO1rr6cwnPzCeYHwJyc8QJeD5T3nE7Zez0+gZ53HUgiQm5t+1My8vIw+V8wDHvnmIgebiBwncbnl0oXjo77NcSNzbZsDZFRB9B9YdGM/I8mt7+dwfxYzKXBl2wR/Qz82JqeTRFAGLAybHsHRR+5locp7Lq8CskXEp6qdoTLd65WHypWJSAKQCdQ4iOXdUCyVQN/p0xhjDARbAoUEf0M/xkkieBX4roj4gWbgKuCO7oWqWioirSJypqq+BdwIvKSq7SKykuBF4KXATcBLodWWhaa/H1q+0uH1gTbgTQfljDHGHO1jLYFufV55UNVy4G5gBbAeWKqqa0RkmYjMCxVbAjwkItuADOBnofl3AXeIyBaCR/L3hObfC5wmIptDZb7Q/30yxhgTCZ6h1HGSMcaY/ovdJxyMMcZEhSUCY4yJc5YIjDEmzlkiMMaYOGeJwBhj4tyQ6TRHRGYDq1Q12e1YuonImcBDQBLBB+ZuVdVSF+M5bi+ybhKR/wCuDU2+qKrfdDOenkTkR0C+qn7O7Vi6icingP8A0oFXVPXLLof0ERH5LPCd0ORLqvp1l+PJAt4GPqmqe0RkMfATIBX4g6rec9wKohvbHcD/JNgzw3vA51X1yPHqOFlDokUgImnAzwn+4MaS3xPslbUk9PpnfZQfMGG9yJ4FlBB8vmOqW/GEC30pLwRmE4xtrohc4W5U/yIii4Cb3Y4jnIiMA35FsFPHmcAcEfmEu1EFhb6PPwPOAWYBC0OfsVvxnErwQdRJoelU4L+Ay4EpwHy33rteYpsEfAM4g+Dn6iUKz1kNiUQA/Bh42O0gwolIMnCPqm4MzdoIjHYxpI96kVXVZqC7F9lYUAl8TVWPhJ4w34q779VHRGQYwQT6fbdj6eEKgkeyZaH37DpgtcsxdfMR/G1JJ9j6TAQOuxjP7QR/TLu7uFkAbFfV3aFOMZ8EromR2NqAu1S1QVUDwCai8F0Y9KeGROQyIE1VnxURt8P5iKq2EfwHQ0S8wHeBP7sYUl+9yLpGVTd3vxaRiQRPEZ3pXkRH+TXBJ+tHuR1IDxOAIyLyV4I/FH8j+MS+61S1MTT+yDaghWD382+7GM9tAGG/D8fqMTnqesYWOnVcGprnB74IfG6g4xg0iUBEriF4vj3cNoKjornW7IRjx6aqi0UkCXiC4Hvt5lFlX73Iuk5EpgEvAt9Q1e0xEM9twD5V/aeIfM7teHpIIDimx7lAE/BXgqevHncvpCARmQncCowB6gkeEH0deNDNuMIMhu9CMcG+2X6jqq8N9PYGTSJQ1T8CfwyfF/qifgd4ozujish6YKGqRm3k+N5iC8WSQfALWgNcPtAD7/Shr15kXRW6sP4n4Cuq+rTb8YRcBxSG/qeGARki8pCqftXluAD2A6+qajWAiDxPsIX3uJtBhVwE/FNVqwBE5HGCfYrFSiI4Vo/JMUFEJgN/B36mqj+OxjYHTSLojao+RnCsZABEJBC6MBsrngR2EBzD2e0jjuP2IusmERlF8LTZdaq63O14uqnqBd2vQy2Cc2MkCUDwVNATofG/G4FP4O6px3AbgB+KSDrBU0Of4hjdH7tkNSAiMgHYDdxA8OKx60QkE3gFuFtVfxet7Q6Vi8UxJ3Q76+UEz3W/LyLrRWSZW/EcqxdZt+Lp4etACvCT0Pu0XkTudDuoWKaqq4EfErzjZAvB88r/7WpQIar6CsEhaNcSvEkiEXjA1aDCqGorwfPufyL43m0jePNELLgNKAC+FvZduG+gN2q9jxpjTJyzFoExxsQ5SwTGGBPnLBEYY0ycs0RgjDFxzhKBMcbEOUsExhgT5ywRGGNMnLNEYIwxce7/A9IirT/oJQMNAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -263,27 +281,29 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 51, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de0CUdd7//+cMDOczzICAgmcQRTwfKtIy8UQY2q5Z4b2tdri/W+b9zbbD3vZrc7d273bd3dr67m37rd+WltpBo0zptsOWWAqiqKACHhCEYTjI+TDDXN8/TDYyBRG4rhnej7+85poZXsPgvOa6rs/1uXSKoigIIYQY0PRqBxBCCKE+KQMhhBBSBkIIIaQMhBBCIGUghBACKQMhhBB0swzS09NZsGABc+fOZdOmTVe83+OPP87777/fsZydnc3SpUtJSUlhxYoVlJaWXn9iIYQQva7LMjCbzWzYsIHNmzezfft2tmzZQmFh4WX3efDBB9m9e3en29euXcv69evZsWMHycnJrF+/vnfTCyGE6BVdlkFmZibTp08nICAALy8vkpKS2LVrV6f7pKenc+uttzJ//vyO29ra2li9ejUxMTEAjB49mrKysl6OL4QQoje4dnWHiooKjEZjx7LJZCI3N7fTfVauXAlc3C10iZubGykpKQDY7XZefvll5syZ0yuhhRBC9K4utwzsdjs6na5jWVGUTstdaWtr47HHHsNms/HAAw/0LKUQQog+1WUZhIWFYbFYOpYtFgsmk6lbT97Y2MjKlSux2Wy8+uqrGAyGnicVQgjRZ7rcTTRz5kxeeuklqqur8fT0JCMjg+eee65bT7527VqioqJ49tln0et7Noq1pqYRu107c+kFB/tQVdWgdoxOJFP3aTGXZOoeydQ9er2OwEDva35cl2UQGhrKmjVrSEtLw2q1snTpUuLj41m1ahWPPPII48aN+9HH5eXlsWfPHkaMGMEdd9wBXDzesHHjxmsKaLcrmioDQHN5QDJdCy3mkkzdI5n6jk7rU1hXVTVo6pdtNPpisdSrHaMTydR9WswlmbpHMnWPXq8jONjn2h/XB1mEEEI4GCkDIYQQUgZCCCGkDIQQQiBlIIQQAikDIYQQSBkIIYRAykAIIQRSBkIIIZAyEEIIgZSBEEIIpAyEEEIgZSCEEAIpAyGEEEgZCCGEQMpACCEEUgZCCCGQMhBCCIGUgRBCCKQMhBBCIGUghBACcFU7gBCi71htdk6X1VFiaaC8ugl/bzfCgrwYEeGPv4+72vGEhkgZCOGEWtva+eJQKbv2F1Pb0AaAm0FPm9UOgKuLjpvHR7BgRhSBvlIKQspACKdz7Ew1r6XnUdvYRsyQAO65bTRDB/kS6OtOS1s75dVNfHnoPF8cKuWfuef5+cJYpsaGqh1bqEzKQAgnYbcrfLj3NOl7zxAW7MW/3zGWkZEBne7j6e7K0EF+DB3kx8IZUbz2UR7/Z8cxqmpbmDdtCDqdTqX0Qm1SBkI4AVu7nb99eIzsExZuGBfGPbeNxt3N5aqPMQZ48tiyBP7+cT7bviiiqdXGkpuH91NioTVSBkI4OKvNzqvbj3KosJKf3jKCpKlDuv1Yg6sL998eh4ebKx/vO0uk0YdpY2SX0UAkQ0uFcGC2djt//eAIhworuWfuqGsqgkv0Oh33zB3FyEh/Xt+ZT7G5vg+SCq3rVhmkp6ezYMEC5s6dy6ZNm654v8cff5z333+/Y/n8+fPcfffdzJs3j4ceeojGxsbrTyyEAEBRFDZ9epLcoiruTRrNLRMje/xcri56/v2OcXh7Gnj5/SM0tVh7MalwBF2WgdlsZsOGDWzevJnt27ezZcsWCgsLL7vPgw8+yO7duzvd/uyzz7J8+XJ27drF2LFjeeWVV3o3vRAD2K5vi/ny0HkWzohi9oSI634+f283HkyJo6q2hbczTvRCQuFIuiyDzMxMpk+fTkBAAF5eXiQlJbFr165O90lPT+fWW29l/vz5HbdZrVYOHDhAUlISAKmpqZc9Tjif2sY2couq+PJgCV8eKmXfsXIKSi5Q29CqdjSnklNgYdsXRUyNNXFH4rBee96RkQEkJoTz4VenOFfR0GvPK7SvywPIFRUVGI3GjmWTyURubm6n+6xcuRKA7Ozsjttqamrw8fHB1fXijzAajZjN5l4JLbTFXN3E5zmlHCqopOJC8xXvNyjYi3HDgpkaG8qwcL9+TOhczDVNvPZRPtFhvvx8YSz6Xh4OuuTm4RwqrOQfu4/z5D2Tev35hTZ1WQZ2u73T2GNFUbo1FvnH7idjmJ3L+cpGtnxWyJFTVbjodYwbFsysCREMHeRLVGQgTQ0ttFrbqaxtodTSyLHTVXx2sISMA+cYOsiXOZMHMy02FL1e/i66q83azisfHEWvg39fPBaD69WHj/aEj6eBny2K40/v5LD3SBk3xYf3+s8Q2tNlGYSFhZGVldWxbLFYMJlMXT5xUFAQ9fX1tLe34+Li0u3H/VBwsM81P6avGY2+ake4TH9marW2s+XTE3zwRSEebq7cPS+GpGlRBPp5dL5j6OWZmlqsfJ51jo/2nmZjeh6fZpXwb4vGMHG0qd++LDjy+/eXLTmUWBpY9/PpxI689v9P3XVLiA87M0/z8TfFJN88EoOrNgYeOvJ7p3VdlsHMmTN56aWXqK6uxtPTk4yMDJ577rkun9hgMDB58mR27txJcnIy27dvJzEx8ZoDVlU1YLcr1/y4vmI0+mKxaGvoXX9mqq5r4aX3jnDWXM/MsWH8ZPYI/LzdsLVasVj+NQLlapmmjjYyZVQIB45X8N6XRfx/G79hwsgQ7k0aTUAfT57myO9f9okKPt1fzMIZUUSFePXp6zAafVkwLYo/bTvMjs9PcnPC9R+g7o1Mjvre9Se9XtejL9Fd1n1oaChr1qwhLS2NxYsXs2jRIuLj41m1ahVHjhy56mOfeeYZtm7dyoIFC8jKyuLRRx+95oBCOwpLa/n1/5+FuaaJR5bEs3LRGPy83Xr0XDqdjqmxofxm1XTunD2co6er+dXGb9l7pAxF0U75a0VNfStvfHKc6DBfUm4c2i8/c9ywIIYO8uOjzLPY2u398jOFenSKxv/nyZZB1/oj0/GzNfxp22ECfNx5eGk8ESHevZqpvLqJ13fmU1BSy4y4UO5NGo2HW++fIO+I759dUdiw9TAF5y7wzM+mMCj46r/73syUW1TFn7YdZsW80apvHTjie6eGPtsyEKKg5AJ/fjeXkABPnkqb1GUR9ERYkBe/XD6RxTcO5Zs8M8++kUVppZykCLAnu4Rjp6v56a0j+6UIvm/csCCGhV/cOmi3y9aBM5MyEFd1tryeDVsPE+DrztplCfh59Wy3UHfo9Tpuv3Eoa5dNoLnVxm/fzOLoqao++3mOoNTSwLbPi4gfHsyshP4f1aPT6Zg/LYqquhYOFQzs98LZSRmIK6prbOOl93Px8nDl8bsm9NuVsWKiAvnPtMkE+3nyp2257Mku6ZefqzVWm53/Ts/D092Fny2IVW1odsLIYIL83NmTfU6Vny/6h5SB+FG2djuvfHCEhiYrD6fG9/vVsIL9PXjynomMGxbEpk9Psinj5IDbTfHBd2cB/2x+LP49PFDfG1z0emZPiOB48QVKLHJWsrOSMhA/asueQk6W1PJvC2KIClNnHLWnuysPL4knaepg9hws4c/bcmlutamSpb/ln61h97fFzEoIJ2FkiNpxSBwfjquLns8G6FbaQCBlIC6TW1TJnoMl3DZ5MNPHhKmaRa/X8dNbRvJv82PIO1PD7zYddPp5jhpbrLz2UR6mIC9+estIteMA4OvlxvQxoWQeK6dRZjR1SlIGopP6pjZe33mcCKM3S2f13gRo1ytxfDir74zHXNPMb97Mpry6Se1IfUJRFN7KOEldYxv3J4/p8mpl/enWSZG0We1kHi1XO4roA1IGooOiKLy5+wQNzVZWLRrTJ/PeXI9xw4J5fPkEWq3t/PbNbIrO16odqddlHi3n2zwzt98QzdBB2prMLyrMlyGhPmQekTJwRlIGokP2CQtZJywsvmkoQ35kXiEtGDrIj6funYSnuwv/9XYOhwsr1Y7Ua8qrm3gr4yQxQwJYOCNa7Tg/6oaxgzhrrpcDyU5IykAA0NrWztt7Cog0+jBv2rVfOrE/hQZ68dS9kxkU5M1L7x3hq9zzake6blabnf+z4ygGVz2rkuM0O5PrtLhQXPQ62TpwQlIGAoAPM09TU9/KvUmjcNFr/8/C39uNx5dPIDYqgNd3Hic984xDz2m07YtCis0N3Lcgtt+H8V4LPy834ocHk3msfMAN9XV22v9fL/rc+cpGMvaf44ZxYYyMDFA7Trd5uruy+s7xTI8L5YN/nuKtT09qah6r7tp/rJz/ySphzqRITQwj7coN4wZR19jGsdPVakcRvUjKQPDOZwW4G1y4c9YItaNcM1cXPSsXjWHetCF8frCUV7cfxWprVztWt9XUt/Knd3IYYvLhztmO8fuPHx6Mj6eBr2VXkVORMhjg8s9Uc/RUNYtmRvd4Omq16XU6fjJ7BMtuHUn2SQt/eOeQQ4yFt7Xb+e8Pj2G1tfNASpxmLiDTFVcXPVNjTeQWVtLSNjBOAhwIHOOvT/QJRVF498sigvzcuXWS+hcvuV5zpwzmwZQ4TpXV8cJbB6mua1E70lVt+ayQE+cu8O9Lx/f7bKTXa0qMiTabndwimbzOWUgZDGDZJyycLqtn8Y3DNHdOQU9NjQ1lzZ3jqapr4TdvZlOq0SGQ/zx8nj3ZJcydMpjZkwarHeeajYwMwN/HjQP5FWpHEb1EymCAarfbee/LIiJCvJk5Vt0pJ3pbbHQQT9w9Ebui8PxbBzl57oLakTo5ee4Cb+4+QVx0IHfOHq52nB7R63VMHm0i91TVgJkvytlJGQxQ+/MqMNc0c0fiMM2Oab8eQ0J9efqeSfh5u/HiO4fIOq6Nb7DnKhr487u5GAM8eSBlrEMM472SKTEmrDY7h4uc58S/gcxx/xJFj9kVhY/2nSHS6OMQQxl7KiTAkyfvmUhUmA+vbD/Ke18W0a7i0FPLhWb+uPUQHm4u/O+fJuDjaVAtS28YEelPgOwqchpSBgNQ9gkLZVVNLJoZhV6lC6b0F18vNx6/awKJ4wfx8b6z/Pq1b6hrauv3HJYLzfzX2zlYrXb+4yfjCfb36PcMvU2v0zE5xsSRU9Wyq8gJSBkMMIqikL73DGFBXkwebVI7Tr8wuLrwb/NjSZs3mtzCSp75v/vJO9N/J0yVVTXywqaDNLfa+I+fJhBhvPaLlWvV5NEmbO0yqsgZSBkMMIcLqyixNLBwRpRTHiu4mlkJEfzx0US83F35wzuHeGdPAa3Wvj1B7eS5C7yw6SDtdoVfLp/IsHBtzUR6vUZE+OPrZSCnwKJ2FHGdpAwGmF37iwn2c2famFC1o6hiaLg/61ZM4eaEcDIOnGPd378lvw+2EhRFYU92Cf/1dg6e7q48cfdEIk3Os0VwiV6vY/zwEI6cqsLWLnMVOTIpgwHkbHk9J89d4NZJg3F1GbhvvbubC2nzYnj8rgnodDr+651DvPz+kV67YE5NfSuvfHCUTZ+eZNywYNatmExYkFevPLcWTRgVQnNrOyeKtTWEV1wbV7UDiP6TcaAYdzcXEseHqx1FE2KiAvn1fVPJOHCOj785y+HXKpkeF0rSlCE9+hbfam3ni5xStn99GrtdYems4cybNsTpD9KPiQ7CzVVPToGFuKFBascRPSRlMEDU1LeyP7+C2RMj8PKQt/0SN4MLi2ZGc9P4cD7KPMNXuefZe6ScmCEBTIkNZdIo41XnbFIUhbKqJr7JK+fzg6U0ttgYOzSIe+aOwhTovFsD3+ducCFuaBCHCiu5+7ZR6Jy8/JyVfCoMEJ8dLMFuV5gz2fGmPugP/t5u3H3bKFJuHMqXh0r5+kg5b+4+wVu7T2AK8iIq1AdjgCcebi646PXUNbZRXd9CQUktNfWt6ICEkSEkTR3CyEj/AfeBmDAyhJyCSorNDUSFafMqeeLqpAwGgLbvdl9MGGXEFOCpdhxN8/E0sHBGNAumR1Fa2cihgkpOl9VRVFrLgeMVXLp+jquLnkBfN4aF+zF2aBBjhwY7xbkDPTV+RAg6HeQUWKQMHJSUwQCQdaKCxhYbt050/JlJ+4tOpyPS6EPk984JUBSFNpsdW7sdL3fXAfft/2r8vNwYHuHP4aIqFt80TO04oge6NaQkPT2dBQsWMHfuXDZt2nTZ+vz8fFJTU0lKSuLpp5/GZrt4NmJJSQl33303KSkp3HvvvZSWlvZuetEtn+eUEhrkRUxUoNpRHJpOp8Pd4IK3h0GK4EfEDwvmbHk9tY39f4a3uH5dloHZbGbDhg1s3ryZ7du3s2XLFgoLCzvdZ+3ataxbt47du3ejKApbt24F4M9//jMLFy5kx44dzJ07lw0bNvTNqxBXVGyup6i0jtkJ4fIBJvpU/PBgAI6ekrORHVGXZZCZmcn06dMJCAjAy8uLpKQkdu3a1bG+tLSUlpYWEhISAEhNTe1Yb7fbaWi4OJ98c3MzHh4Dd5+qWr44dB6Dq56Z4wapHUU4ucEmH/x93GRqCgfV5TGDiooKjEZjx7LJZCI3N/eK641GI2azGYDVq1ezbNky3nzzTaxWK1u2bOnN7KILza029h0rZ2qMyeFnyBTap9PpiB8WTNYJC+12u0NPzz0QdVkGdru90+4FRVE6LV9t/S9/+Ut+/etfM2fOHHbv3s0vfvELPvzww2vaXREcrL1T+I1G7Y2W+LFMu/adobWtncW3jFQlsxZ/T6DNXM6S6cYJkXyVW0ZVo424YcGayNTXtJipJ7osg7CwMLKysjqWLRYLJpOp03qL5V+TVFVWVmIymaiurubUqVPMmTMHgKSkJJ555hlqamoICur+WYpVVQ3YVZyD/oeMRl8slnq1Y3RypUyfZJ4mIsSbIE/Xfs+sxd8TaDOXM2WKDPLERa/jn9nnMPle+WS9/szUl7SYSa/X9ehLdJfbcTNnzmTfvn1UV1fT3NxMRkYGiYmJHesjIiJwd3cnOzsbgB07dpCYmEhgYCDu7u4dRZKdnY23t/c1FYHoudLKRk6dr+PG+EFy4Fj0G093V0ZG+stxAwfU5ZZBaGgoa9asIS0tDavVytKlS4mPj2fVqlU88sgjjBs3jhdffJFf/epXNDQ0EBcXR1paGjqdjpdffpnnnnuOlpYWvL29eemll/rjNQlgb24ZLnodM+Kc6/rGQvvGDQ9m2+dF1NS3EujrrnYc0U3dOuksOTmZ5OTkTrdt3Lix498xMTG8++67lz0uPj6ebdu2XWdEca1s7XYyj5UTPzz4qvPqCNEX4qKD2EYRx05Xc2O8jGJzFHK43wkdOVVFXWOb/EcUqog0+eDnZejXq8mJ6ydl4IS+zi3Dz9uNcX0wmkOIruh1OsZEB5F3phq7op3BH+LqpAycTEOzldyiKqaPCR3QF7AR6hoTHURdk5WSiga1o4hukk8LJ3PgeAXtdkUOHAtVXbrITd6ZGpWTiO6SMnAy+46VEx7izZBQ7Z2sJwaOQF93BgV7cUyOGzgMKQMnYrnQTGFJLTPiQuXcAqG6uKFBnDx3AautXe0oohukDJzIN3kX54SaNiZU5SRCXBxiarXZKSipVTuK6AYpAyehKArfHCtn1OAAQvzlamZCfaOHBOCi18muIgchZeAkis0NlFU1MT1OtgqENni4uTI8wp9jp6UMHIGUgZPYf9yMi17H5NGmru8sRD+Jiw6k2NxAXZNc/UzrpAycgKIoHMivIDYqUK5bIDRlzHdDTPNliKnmSRk4gaKSWiprW5gSI1sFQluGhvnh5e4qxw0cgJSBE/j6cCkueh0TRhm7vrMQ/Uiv1xEbFUjemWoUmZpC06QMHJyiKHx9+Dyx0bKLSGhT3NAgqutaKa9uUjuKuAopAwd3prwec3WT7CISmjVGpqZwCFIGDu7A8YqLu4hGyi4ioU2mAE+MAR4yxFTjpAwcmKIoZB2vIGGUUXYRCU2Liw7ieHEN7Xa72lHEFUgZOLAz5fVU1rZw4/hwtaMIcVWx0UG0tLVzukxbF48X/yJl4MAu7SKaPlauaCa0LWZIAAD5MsRUs6QMHNSlE83ihgbh4yXXORba5uvlxpBQH/LPykFkrZIycFBnyuupqmuR6SeEwxgTFURhaS2tVpnSWoukDBzUgfzvRhGNClE7ihDdEhsdiK1doaDkgtpRxI+QMnBAiqJw4PjFXUTeHjKKSDiGUZEXp7SWeYq0ScrAAZ01yy4i4Xjc3VwYHu5Hnhw30CQpAweUc7ISnQ7GjwhWO4oQ1yQ2Ooji8noamq1qRxE/IGXggHIKLIyKDMBXRhEJBxMbFYgCnCiWrQOtkTJwMBU1TZRYGmWGUuGQhoX74W5wkV1FGiRl4GByCioBmDBSRhEJx+PqomfU4AA5iKxB3SqD9PR0FixYwNy5c9m0adNl6/Pz80lNTSUpKYmnn34am80GQEVFBffffz+LFy9m2bJllJSU9G76ASinoJJIow/GALnovXBMY6IDKa9uorquRe0o4nu6LAOz2cyGDRvYvHkz27dvZ8uWLRQWFna6z9q1a1m3bh27d+9GURS2bt0KwOOPP87s2bPZvn07KSkpvPjii33zKgaIuqY2CkouMFHOLRAOLDYqEEDORtaYLssgMzOT6dOnExAQgJeXF0lJSezatatjfWlpKS0tLSQkJACQmprKrl27qK6u5vjx4yxbtgyAJUuW8Oijj/bRyxgYDhdWoijIdNXCoUWafPDxNMj1DTSmyzKoqKjAaPzXh4/JZMJsNl9xvdFoxGw2c+7cOcLDw3nhhRdYsmQJjzzyCAaDnCB1PXJOVhLs586QUB+1owjRY3rdxUth5p+VS2FqiWtXd7Db7eh0uo5lRVE6LV9pvc1mIy8vj4cffpgnn3ySbdu28cQTT/Dmm29eU8DgYO198BmNvv3+M1vabOSdrWHutCGYTH6ayNQVLWYCbeYaaJmmjh3EgeMVtCo6Bpu6/3MG2u+pP3VZBmFhYWRlZXUsWywWTCZTp/UWi6VjubKyEpPJhNFoxNvbm9mzZwOwaNEi1q9ff80Bq6oasNu18+3BaPTFYun/OdkPnrTQZm0nNtL/sp+vVqar0WIm0GaugZhpcPDFARB7c0q4dVKkJjL1hBYz6fW6Hn2J7nI30cyZM9m3bx/V1dU0NzeTkZFBYmJix/qIiAjc3d3Jzs4GYMeOHSQmJjJkyBDCwsL48ssvAfj888+Ji4u75oDiopyTFrw9XBk5OEDtKEJcN2OAJ8F+HnIQWUO6LIPQ0FDWrFlDWloaixcvZtGiRcTHx7Nq1SqOHDkCwIsvvsjzzz/PvHnzaGpqIi0tDYCXXnqJ1157jUWLFvGPf/yD3/72t337apxUu93O4aIq4oeH4Ooip4YIx6fT6YiNDuT42RpNbfkPZF3uJgJITk4mOTm5020bN27s+HdMTAzvvvvuZY8bNmzYNR8jEJcrLKmlodkqJ5oJpzImOpCvc8s4a65n6KDLj4OJ/iVfMx3AwZOVuLroGTssSO0oQvSa2KiLf895cilMTZAy0DhFUcgpsBAXHYiHW7c25IRwCP7ebkQYveW4gUZIGWhciaWRytoWmZhOOKXYqEAKSmqx2uRSmGqTMtC4nJMWdMD4EXK8QDifMVFBWG12Ckvr1I4y4EkZaNzBAgvDI/3x95ZrFwjnM3pIAHqdjvyzctxAbVIGGlZV20KxuYGJMheRcFKe7q4MHeQrU1prgJSBhuUUXDyzW4aUCmcWGx3I6bJ6mlttakcZ0KQMNCynoJLwEG9Cg7zUjiJEn4mNCsKuKJwovqB2lAFNykCjGpqtnCi+IFsFwumNiPDDzVUv5xuoTMpAo44UVWFXFLl2gXB6BlcXRkb6y/kGKpMy0KiDBRYCfNyIHuQc0+MKcTWx0UGUVjZS29CqdpQBS8pAg6y2do6eqiZhpBH9964VIYSzkkthqk/KQIPyztTQam2X4wViwIgK9cXL3ZU8KQPVSBloUE5BJR5uLsQMCVQ7ihD9Qq/XERMVSP6ZGrkUpkqkDDTGrigcKqxk3LBgDK7y9oiBIzYqkKq6FiwXmtWOMiDJp43GnDpfR11jm+wiEgPOmOiLW8Kyq0gdUgYak1NgwUWvI354sNpRhOhXYUFeBPq6kydTU6hCykBjDhVUMnpIAF4eBrWjCNGvdDodsVHfXQpTjhv0OykDDSmraqSsqklONBMDVmxUIA3NVkoqGtSOMuBIGWjIoYJKABLk2gVigBoTfelSmLKrqL9JGWhITkElUaG+BPt7qB1FCFUE+roTFuQlJ5+pQMpAI2ob2ygqrZVRRGLAi40O5OS5C9ja7WpHGVCkDDTicGElCpAgZSAGuDFRgbRa2zl1Xi6F2Z+kDDQi56SFEH8PBpt81I4ihKpGDwlEh8xT1N+kDDSgpc3GsTM1JIwMQScT04kBzsfTwJAwX7m+QT+TMtCAY6ersbXbZUipEN8ZEx3IqfN1tLTJpTD7i5SBBuQUVOLt4cqowf5qRxFCE8ZGB9FuVzh+Vi6F2V+kDFTWbrdzuLCS+OEhuOjl7RACYERkAO4GF46crlI7yoDRrU+f9PR0FixYwNy5c9m0adNl6/Pz80lNTSUpKYmnn34am63zpl1eXh5jx47tncROpuBcLY0tNhlSKsT3GFz1xEYFcqSoSqa07iddloHZbGbDhg1s3ryZ7du3s2XLFgoLCzvdZ+3ataxbt47du3ejKApbt27tWNfc3Mxzzz2H1Wrt/fROIKegElcXPWOHBakdRQhNGTssiMraFipqZErr/tBlGWRmZjJ9+nQCAgLw8vIiKSmJXbt2dawvLS2lpaWFhIQEAFJTUzutf+GFF1ixYkUfRHd8iqKQU2BhTHQgHm6uascRQlPGDrs4c++RU7KrqD90WQYVFRUYjf8a5WIymTCbzVdcbzQaO9bv2bOHlpYW5s2b15uZnUaJpZHK2hbZRSTEjzAFeBIa6MnR0zLEtD90+XXUbrd3GvuuKEqn5Sutt1gsvPrqq7zxxhvXFTA4WHsnYRmNvr3yPHsOnUeng1unRRPod33zEfVWpt6kxUygzVyS6cdNiR+8SWcAABaVSURBVAsj49ti/AO8AG1k+iEtZuqJLssgLCyMrKysjmWLxYLJZOq03mKxdCxXVlZiMpn44osvuHDhAnfffXfHupSUFDZt2oSPT/c/4KuqGrDbtXMAyWj0xWKp75Xn+ufBEoaF+2FrtWKx9PyYSm9m6i1azATazCWZrmzEIF8+sraTmVPCrKlRmsj0fVr5PX2fXq/r0ZfoLncTzZw5k3379lFdXU1zczMZGRkkJiZ2rI+IiMDd3Z3s7GwAduzYQWJiInfeeSf/8z//w44dO9ixY0fHumspAmdmrm7iXEUDU0abur6zEAPU6CGBuLroyS2S4wZ9rcsyCA0NZc2aNaSlpbF48WIWLVpEfHw8q1at4siRIwC8+OKLPP/888ybN4+mpibS0tL6PLijyzpRAcAkKQMhrsjd4EJsVCC5RZVqR3F63RrCkpycTHJycqfbNm7c2PHvmJgY3n333as+x4kTJ3oQz3llHbcwLNxPrl0gRBfGjwjmrYwqSi0NuKkdxonJKa8qqLjQzFlzPZNlq0CILsUPvzjE9EBeucpJnJuUgQqyj1/cRTR5tExMJ0RXQvw9iTB6cyDP3PWdRY9JGajgwPEKhg7yJSTAU+0oQjiE8cNDOHaqiqYWmcW0r0gZ9DPLhWbOlNczOUZ2EQnRXeNHBNNuVzgm1zjoM1IG/Sz7xMVzMuR4gRDdNzzcH18vA4cLZVRRX5Ey6GcHjlcQFeaLUXYRCdFter2OSbGh5BZV0W63qx3HKUkZ9KPK2mZOl9XJgWMhemBaXBgNzVYKS2rVjuKUpAz6UccuIjleIMQ1mzjahKuLnoMnZVdRX5Ay6EdZJyoYYvIhNNBL7ShCOBwvDwNjogPJKbDIBW/6gJRBP6mua6GotE62CoS4DhNHGamsbeFcRYPaUZyOlEE/yZJdREJct4QRIeh0cPCkpes7i2siZdBPvs0rZ4jJh7Ag2UUkRE/5ebsxMsJfjhv0ASmDfmCubuJ0WT3T48LUjiKEw5swykiJpYGKC3Jt5N4kZdAP9h0rRwdMGxOqdhQhHN7EUReHZmd/Nw286B1SBn1MURS+zTMzekgAgb7uascRwuEZAzyJDvPlQL6UQW+SMuhjZ8rrMdc0yy4iIXrRlFgTZ8rrZVdRL5Iy6GP7jpXj6qKTs46F6EVTvhuVdyBfprXuLVIGfajdbmd/fgXxw0Pw8jCoHUcIpxHi78mwcD8OHJddRb1FyqAPHTlVTV1jGzPHyi4iIXrb1BgTxeYGzNVNakdxClIGfWjvkTJ8vQwdl+0TQvSeSydw7petg14hZdBH6pvaOFRQyYy4MFxd5NcsRG8L8vNgRKQ/+/PMMldRL5BPqT7yTZ6ZdrvCDeMGqR1FCKc1Iy6M0spGis0yV9H1kjLoI3uPlBEV6stgk4/aUYRwWlNiTLi66Mg8Wq52FIcnZdAHis31FJsbuDFetgqE6Es+ngbGjwjh27xybO1yBbTrIWXQB/55+DyuLnqZfkKIfjAzLoy6JivHTlerHcWhSRn0spY2G5lHy5kSY8LHU84tEKKvjRsejI+nQXYVXScpg162P7+ClrZ2Zk+IUDuKEAOCq4ueabGh5BRU0tRiVTuOw5Iy6GWf55QSafRmeISf2lGEGDBmjgvD1m5n3zGZnqKnulUG6enpLFiwgLlz57Jp06bL1ufn55OamkpSUhJPP/00NpsNgOzsbJYuXUpKSgorVqygtLS0d9NrzOmyOs6W1zNrQgQ6nU7tOEIMGNFhvgwJ9eHLQ6VyzkEPdVkGZrOZDRs2sHnzZrZv386WLVsoLCzsdJ+1a9eybt06du/ejaIobN26teP29evXs2PHDpKTk1m/fn3fvAqN+CKnFHeDCzNkhlIh+pVOp2NWQgQllkaKztepHcchdVkGmZmZTJ8+nYCAALy8vEhKSmLXrl0d60tLS2lpaSEhIQGA1NRUdu3aRVtbG6tXryYmJgaA0aNHU1ZW1kcvQ331TW18k2dmelwonu6uascRYsCZNiYUdzcXvsxx7j0QfaXLMqioqMBo/Nf0yyaTCbPZfMX1RqMRs9mMm5sbKSkpANjtdl5++WXmzJnTm9k15YtD57Ha7MyZPFjtKEIMSJ7urkwfE8r+4xU0yoHka9ZlGdjt9k77vxVF6bTc1fq2tjYee+wxbDYbDzzwQG/l1hSrzc5n2SWMHRpERIi32nGEGLBmJURgtdllmGkPdLk/IywsjKysrI5li8WCyWTqtN5isXQsV1ZWdqxvbGzkoYceIiAggFdffRWD4drH3QcHa286B6PRt9PyZ1nF1Da28R9zRl+2Tq1MWqDFTKDNXJKpe7rKZDT6MmpIAF8eOs+ypFj0+r4fyKHF31NPdFkGM2fO5KWXXqK6uhpPT08yMjJ47rnnOtZHRETg7u5OdnY2kyZNYseOHSQmJgIXDyBHRUXx7LPPotf3bBRrVVUDdrt2RgcYjb5YLPUdy4qi8N6eAsJDvIkM8ui0Tq1MWqDFTKDNXJKpe7qbaXZCBH/78Bh7vjlDwsgQTWTqT3q9rkdforv8hA4NDWXNmjWkpaWxePFiFi1aRHx8PKtWreLIkSMAvPjiizz//PPMmzePpqYm0tLSyMvLY8+ePRw8eJA77riDlJQUVq1ade2vTOPyz9ZQXNHAbZMjZTipEBowabSRID93Mg4Uqx3FoXRr2EtycjLJycmdbtu4cWPHv2NiYnj33Xc7rR8zZgwnTpzohYja9lHmGfx93ORqZkJohKuLnjmTBrP180LOltcTFeYcu3H6mpyBfB1OnrvA8eILzJ86BIOri9pxhBDfSRwfjrubC7tl66DbpAyuw0f7zuDrZeDmBJmHSAgt8fJwJTE+nAP5FVTWNqsdxyFIGfTQ6bI6jp6qZu6Uwbi7yVaBEFqTNHUwOh18vO+s2lEcgpRBD+34+jTeHq7cMjFS7ShCiB8R5OfBTePD+Tq3TLYOukHKoAdOFNeQW1TF/OlRMvWEEBq2cHqUbB10k5TBNVIUhW1fFBHo686cSbJVIISWydZB90kZXKPMI2WcOl/H4huH4maQYwVCaN2lrYMdX51WO4qmSRlcA1u7nTd35hEe4s3McXJegRCOIMjPgzmTB5N5tJyz5do6W1hLpAyuwadZ5yi1NHLnrOG49HB6DSFE/1s0IxpvTwPv7CmQi99cgXyidVN1XQs7vj7NtLgwxo/o2/lOhBC9y8vDlTtuGsqJcxc4eLJS7TiaJGXQTW/vKQAFVi0ep3YUIUQPJCaEExHizdbPC2iztqsdR3OkDLoht6iS7BMWFs2MJjTIS+04QogecNHrWX7bKCwXLm7li86kDLrQ0GzljU+OMyjYi6SpQ9SOI4S4DrFRgSSOD2fX/mJOl8m1kr9PyqALb2WcoL7JyqrkMRhc5dclhKP7yezh+Hm78frO49ja7WrH0Qz5dLuKb/LK2Z9fwe03RBMd5qd2HCFEL/DyMJA2dzQllgbZXfQ9UgZXYK5p4s3dJxke7seCGVFqxxFC9KIJo4zcFD+Ij/ed5eipKrXjaIKUwY9obrXx8ntH0Ovg/tvj5JwCIZzQ8ttGEWH05r/T86ipb1U7jurkU+4HFEXh/+7M53xVIw8uHosxwFPtSEKIPuBucOHfF4/FarPz6vajWG0De7iplMEPfPDVKbJPWLhz1gjiooPUjiOE6EODgr25b2EshaW1vPZRPvYBfHaylMH37N5fzEeZZ0kcP4ikqYPVjiOE6AdTYkz8ZPYIDhyv4N0vitSOoxqZjP87/zx8ni2fFTI5xkRaUgw6nU7tSEKIfpI0dTCVtc3s+rYYDzcXkmdGD7jPACkDIOPAOd7ZU0Dc0CBWLRqDXj+w/giEGOh0Oh3L54yita2d7V+dxmqzk5o4bEAVwoAuA0VReP+fp/h431kmjTZyv5xYJsSApdfr+NnCWFxd9Xy87yxNrTbuunUkri4D4zNhwJZBU4uVv3+cT05BJbMSwrln7mjZIhBigNPrdKQljcbT3ZVd3xZTVtnIQ4vH4uvlpna0PjcwKu8HTpfV8ewbB8gtqmLZrSO5N0mKQAhxkU6n4yezR/DzhbEUltbx6zcOcPxsjdqx+tyA2jJobWtn+9enyDhwjgAfd365fCIjIv3VjiWE0KAbxg0iPMSbv314jN+/ncOtEyNZMmsYHm7O+bHpnK/qB9rtdvYdNbPj61NU1bVyc0I4S2cNx9vDoHY0IYSGDR3kx7P3TeW9L4vYk1VC1okKUm4cyk3jBzndzAROXQat1nb255n55NtiyqubiAr1ZVVyHKMGB6gdTQjhINwNLiyfM4ppY0LZ+lkh/9h9gl37i5k7ZTAps0aqHa/XdKsM0tPTefXVV7HZbKxYsYK777670/r8/HyefvppGhsbmTx5Ms8++yyurq6cP3+etWvXUlVVxdChQ3nxxRfx9vbukxdyiV1RKCypJet4BZlHy2lqtRFp9OF/3TGOiaNCBtRQMSFE7xke7s8Td0/kUEElH+07y1sZJ/ngq9NMGW1k2phQRg4OQO/Any9dloHZbGbDhg28//77uLm5sWzZMqZNm8aIESM67rN27VrWr19PQkICTz31FFu3bmX58uU8++yzLF++nIULF/LXv/6VV155hbVr1/bqC2i32zFXN1NYWsuJ4hryztRQ29iGq4uOCSON3DIxglGDA6QEhBDXTafTMWGUkYSRIRSV1vH1sXIyj5bxxaHz+HoZiI0KZEx0EEMH+REe4uVQu5K6LIPMzEymT59OQMDFXStJSUns2rWLX/ziFwCUlpbS0tJCQkICAKmpqfzlL3/hzjvv5MCBA/z1r3/tuP2ee+7pcRmcOl9HqaWBxhYbtY2tVNW2YLnQwvmqRqy2ixeo8PMyEBMVyISRRuKHB+Pp7tR7wYQQKtHpdIyI9GfGhEhKSi9wqLCS3KIq8s5Wsz+/AgCDq56wIC9MAZ6EBHjg5+WGj5cBDzdXDC56Ik3ehPhrZyLMLj8tKyoqMBqNHcsmk4nc3NwrrjcajZjNZmpqavDx8cHV1bXT7T2hKAq/33yQtu8+9A2ueoL8PAjx92D2kAgGm3yIHuRHeLCXbAEIIfqVu5sL08aEMm1MKIqiUF7dxJnyes6W11Ne3URpZSO5p6o6vrReEmn05tc/n6ZS6st1WQZ2u73TB6yiKJ2Wr7T+h/cDevRBfXH8v54/PnwjVms7nh4G3A16VT/0tXhOgmTqPi3mkkzdo/1MOiKMPkQYfbhh3KCOWxVFoc1mp7HZSpvNjq3dToCPe5+8np4+Z5dlEBYWRlZWVseyxWLBZDJ1Wm+xWDqWKysrMZlMBAUFUV9fT3t7Oy4uLpc9rrsCAy8ecA6+5kf2neBgH7UjXEYydZ8Wc0mm7pFMfafLoxszZ85k3759VFdX09zcTEZGBomJiR3rIyIicHd3Jzs7G4AdO3aQmJiIwWBg8uTJ7Ny5E4Dt27d3epwQQgjt0ClK11dzSE9P529/+xtWq5WlS5eyatUqVq1axSOPPMK4ceM4fvw4v/rVr2hoaCAuLo7nn38eNzc3SktLeeKJJ6iqqmLQoEH88Y9/xN9fzvgVQgit6VYZCCGEcG6OMwhWCCFEn5EyEEIIIWUghBBCykAIIQRSBkIIIZAyEEIIgYOUQV5eHmPHjlU7BgDZ2dksXbqUlJQUVqxYQWlpqap50tPTWbBgAXPnzmXTpk2qZrnk5ZdfZuHChSxcuJDf//73asfp5He/+x1PPPGE2jEA+Oyzz0hNTWX+/PmsX79e7TjAxZNGL713v/vd71TN0tDQwKJFiygpKQEuTpqZnJzM3Llz2bBhgyYybdmyhUWLFpGcnMyTTz5JW1ubJnJd8tZbb3Hvvfd270kUjWtqalKWLVumjBo1Su0oiqIoyuzZs5X8/HxFURRl27ZtyoMPPqhalvLycmX27NlKTU2N0tjYqCQnJysFBQWq5VEURdm7d6/y05/+VGltbVXa2tqUtLQ0JSMjQ9VMl2RmZirTpk1TfvnLX6odRSkuLlZuvPFGpaysTGlra1Puuusu5YsvvlA1U1NTkzJlyhSlqqpKsVqtytKlS5W9e/eqkuXQoUPKokWLlLi4OOXcuXNKc3OzcvPNNyvFxcWK1WpV7rvvvn7/ff0w06lTp5TbbrtNqa+vV+x2u/L4448rr7/+er9m+rFclxQUFCg33XSTcs8993TreTS/ZfDCCy+wYsUKtWMA0NbWxurVq4mJiQFg9OjRlJWVqZbn+9OLe3l5dUwvriaj0cgTTzyBm5sbBoOB4cOHc/78eVUzAVy4cIENGzbw4IMPqh0FgE8//ZQFCxYQFhaGwWBgw4YNjB8/XtVM7e3t2O12mpubsdls2Gw23N3dVcmydetWnnnmmY75zHJzc4mKimLw4MG4urqSnJzc73/rP8zk5ubGM888g4+PDzqdjlGjRqnyt/7DXHDxs2rdunU88sgj3X4eTU/4v2fPHlpaWpg3b57aUYCLb35KSgpwcbbWl19+mTlz5qiWp6vpxdUwcuS/LgN45swZPvnkE95++20VE120bt061qxZo2p5f9/Zs2cxGAw8+OCDlJWVMWvWLB599FFVM/n4+LB69Wrmz5+Pp6cnU6ZMYeLEiapk+c1vftNp+cf+1ns6JX5vZYqIiCAiIgKA6upqNm3axPPPP9+vmX4sF8Af/vAHlixZQmRkZLefRxNl8Mknn1z2Sxw2bBgNDQ288cYbmsr0xhtv0NbWxhNPPIHNZuOBBx5QJR90Pb24mgoKCnjggQd4/PHHiY6OVjXLtm3bGDRoEDNmzOD9999XNcsl7e3tZGVl8eabb+Ll5cVDDz3EBx98QGpqqmqZjh8/znvvvcfnn3+Or68vjz32GH//+99ZuXKlapku0fLfutlsZuXKlSxZsoRp09S/PsHevXspKyvjySef5Ntvv+324zRRBvPnz2f+/Pmdbtu2bRt/+9vfOl1vOSUlhU2bNuHj0/dTxv5YJoDGxkYeeughAgICePXVVzEYDH2e5Uq6ml5cLdnZ2TzyyCM89dRTLFy4UO047Ny5E4vFQkpKCrW1tTQ1NfHb3/6Wp556SrVMISEhzJgxg6CgIADmzJlDbm6uqmXw9ddfM2PGDIKDL04Yn5qayubNmzVRBj+cKl8rf+tFRUWsXLmSe++9l/vuu0/tOAB89NFHFBQUkJKSQlNTE5WVlTz66KP86U9/uvoD++aQRu/TygHkhx56SPnVr36ltLe3qx2l4wByVVWV0tTUpNx+++3K4cOHVc10/vx5Zdq0aUpmZqaqOa7kvffe08QB5EOHDilJSUlKbW2tYrPZlAceeEDZunWrqpm++uor5fbbb1caGxsVu92u/Od//qfyl7/8RdVMs2fPVs6dO6e0tLQoiYmJypkzZxSbzab8/Oc/V3bu3Klqpvr6euXmm29WPvjgA1Vy/NClXN/3zTffdPsAsia2DBxFXl4ee/bsYcSIEdxxxx3AxX2XGzduVCVPaGgoa9asIS0trWN68fj4eFWyXPL3v/+d1tZWXnjhhY7bli1bxl133aViKu0ZP348K1euZPny5VitVm644QaWLFmiaqYbb7yRvLw8UlNTMRgMjBs3jvvvv1/VTJe4u7vzwgsv8PDDD9Pa2srNN9+s+rHEd999l8rKSl5//XVef/11AG655RZWr16taq6ekimshRBCOMZJZ0IIIfqWlIEQQggpAyGEEFIGQgghkDIQQgiBlIEQQgikDIQQQiBlIIQQAvh/v8AUU8xoLXsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD7CAYAAABpJS8eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3xU15338c/MqHchjToSRehIVNGLAIMptnFvcWLsxHFsr7NJtmX32VceO0+8Jdt37fWus9nEiUtssklwbIPBxsZgMFU0IUDSsRFIQl1IAjUkJM08f8zAChmsUb13Zn7vf9Btmq8ump/OnHvuuRan04kQQgjfZzU6gBBCiLEhBV8IIfyEFHwhhPATUvCFEMJPSMEXQgg/EWB0gBsIBuYDNUCvwVmEEMJb2IBk4BDQ1X+jWQv+fOBTo0MIIYSXWgbs6b/SrAW/BqC5uR2Hw3WfQFxcBI2NbYaGuh6z5gLzZjNrLpBsQ2HWXOB/2axWC7Gx4eCuof2ZteD3AjgczqsF/8qyGZk1F5g3m1lzgWQbCrPmAr/Ndt2ucLloK4QQfkIKvhBC+Akp+EII4Sek4AshhJ+Qgi+EEH5CCr4QQvgJsw7LFGJADoeT6vPtnK6+yPkLnTidTqxWCynx4UxKiSIhJhSLxWJ0TCFMQwq+8DrNrV3sPFbFroIqWju6AbBZLVgsFpxOJ73usc0JsaGsmpvG0hnJhAbLr7oQ8i4QXqOru5dNe87y4aFzOBxOZmXGMy/bzuTU6Kut+V6Hg6qGdkqrW9h3soZfb/+cdz49w33LJ7NydipWq7T4hf+Sgi+8Qkl5M6+8X0zDhU6WzkjmjiUZJMSGfWE/m9VKemIk6YmRrJydytmaFt7aVcqbH33G/lO1fOv2HJLjwg34CYQwnly0FabmdDr56PA5/vl/jmGxWPg/X5vN47fnXLfYX8/E5Ci+/1AuT94xlfrmS/zt64cpLG0c5dRCmJMUfGFavQ4Hr2/T/Hr75+RmxvOjx+aTnRE76O9jsVhYPD2JHz02H3t0KP/+u+Nsy68YhcRCmJsUfGFKvQ4H/72piF0F1dy+OIPv3Ddj2Bde46JD+MEjc5mr7Pxmx2ne3XN2hNIK4R2k4AvTuVLsD5fU85WVmdx/02SsIzS8MjjIxtN3TydvRhLv7jnLO5+ewek072yKQowkuWgrTMXpdPLLLSVXi/2tC9NH/DWsVgvfXJeDxWJh094yggNt3LYoY8RfRwizkYIvTOXdPWfZf6qWe5ZNHJVif4XVYuGx27K53N3L7z4pJTYqmEVTk0bt9YQwAyn4wjT2FNawaW8ZS2cmc+eSCaP+elaLhW/dnsOFtsv8cksxsRHB2O2Ro/66QhhF+vCFKZRWXeS1D0qYOiGWr9+ixmxKhMAAG9+9bwb2mFBeevsk9U0dY/K6QhhBCr4wXEv7ZX7yzknGRQXz7XumE2Ab21/LiNBAvnf/THodDv7utXwud1/36XBCeD2P3llKqYeVUkVKqc+VUt/5kv1eV0o91mc5TymVr5QqUEp9rJSSK2PiGq4ROadou9TNd+6dQXhIoCE5ksaF8eSd0yitvMivtmkZuSN80oAFXymVCvwYWArkAk8ppab22ydFKbUZeKDf4W8CT2itc91fvzgiqYXP2Ly3jOLyZh5dq0hPNLb/PDcznq+tVew9Wcu+k7WGZhFiNHjSwl8N7NBaN2mt24GNfLGwrwfeBX57ZYVSKhh4Vmtd6F5VCIzesAvhdU5XXmTzvjIWT0ti6cxko+MA8NAaRdb4GN746DPqm6U/X/gWTwp+ClDTZ7kGSOu7g9b6n7XWL/db16W1fgNAKWUFngPeGVZa4TM6Onv42eZTxEWF8MjaLKPjXGWzWnjyjqlYLRZ+trmInl6H0ZGEGDGeDMu0An07NC2Ax+8CpVQQ8Jr7tf5uMOHi4iKuWTbrkDmz5gLzZnvr0zM0tXbxj99ZSnra4OfHGU3ZmXa+92Au//TGYXYU1LD+1myjI11l1v9Ps+YCydaXJwW/EljWZzkJqPbkmyulIoBNQCNwt9a6ezDhGhvbcLgfZmG3R9LQ0DqYw8eEWXOBebOdqWtj55FK7lwygbjwQFNlvHLOstOiyJuexG+2ayYkhJM1PsboaKb9/zRrLvC/bFar5QsN5Wu2e/A9tgOrlFJ2pVQYcD/wgYev/wZwGnhIa93l4THCh7Vd6ualjcdJs0dwZ94Eo+N8qYfXZBEfHcLPNxfR0dljdBwhhm3Agq+1rgKeAXYCBcAGrXW+UmqrUmrejY5TSs0G7gbygKPuoZlbRyi38FL/8/HnXGy/zLduzxnz8faDFRocwFN3TqO5tYs3PtJGxxFi2DyaWkFrvQHY0G/duuvs91ifr4/h6u8XAoATZxrZd7KWh1ZnkZFk3n7VvianRnNn3gTe3XOW+SqB2Vl2oyMJMWTmbmIJn9HV3cuvtmmS48J4aI15RuV44vbFGYxPiOD1DzXtnYO6DCWEqUjBF2Ni056znL/YyddvUQQG2IyOMygBNiuPr8uhtb2b33x82ug4QgyZFHwx6s7Vt7Et/xxLZyaj0s01BNNTGUmR3LYonT0najh5Rp6JK7yTFHwxqpxOJ7/6UBMWEsBXVmYaHWdY7sqbQHJcGK9+UMKlLhm1I7yPFHwxqg4W13G68iIPrJhMRKgxE6ONlMAAG99cl0NzSxcbPyk1Oo4QgyYFX4yazss9/G5nKRlJkSydYY65coYrMzWaNfPHs/NYFbqi2eg4QgyKFHwxarbsL6e5tYv1q7OwWn1nhO69yyeREBPKK1tL6JK584UXkYIvRkV9cwfb8itYPC2RzLRoo+OMqOBAG4/dlk39hUu8vfuM0XGE8JgUfDEqfrPjNDarlQdWePeF2hvJzohlxexUPjp0jtKqi0bHEcIjUvDFiDt5tpFjn5/nzrwJxEYGGx1n1Dy4YjKxUcH8cmsx3T3StSPMTwq+GFE9vQ5+vf1zEmJDWTNvvNFxRlVocADfuDWbmsYONu0tMzqOEAOSgi9G1CfHqqhp7OCrN08hMMD3f71mTIojb0YS7x+ooLzWnNPwCnGF778jxZi51NXD5n1lZKfHMCszzug4Y+arq6YQGRbIL7YUyxOyhKlJwRcjZlt+Ba0d3Ty4MhOLxXeGYQ4kPCSQr9+iqGxoY+uBcqPjCHFDUvDFiLjYfplt+eeYp+xMTI4yOs6Ym51lZ0FOApv3llHZ0GZ0HCGuSwq+GBHv7S2ju8fBfTdNNjqKYdavySIsJIBXthbT65CuHWE+UvDFsNU3d/BJQRXLZyWTNC7M6DiGiQwLYv2aLM7WtPJh/jmj4wjxBVLwxbC9/elZbFYLd+ZNNDqK4eZnJzAny87bn56lprHd6DhCXEMKvhiW8tpWDhbVsWb+eJ++ycpTFouFR9ZmERxo5ZWtJTgcTqMjCXGVFHwxLBt3lRIeEsBtC9ONjmIaMRHBfHXVFE5XXeTjo5VGxxHiKin4Ysh0RTOnzjZx++IJhIV491z3I23J9CRmTIrjrV2l1Dd3GB1HCEAKvhiGTXvLiAoPYuWcVKOjmI7FYuEbtypsVis/f69IRu0IU5CCL4bk88oLFJc3c+uCdIIDveuh5GNlXFQIj67NorSqha375YYsYbwAT3ZSSj0MPAsEAi9orV+6wX6vAzu01q+6l9OBN4AEQAPrtdZyV4oP2LS3jMiwQFbOltb9l1k0LYmC0+fZtLeM6ZPi/PKmNGEeA7bwlVKpwI+BpUAu8JRSamq/fVKUUpuBB/od/hPgJ1rrbOAw8MMRSS0MVVp1kVNnm1yt+yBp3Q/k0VsUUeFB/HxzkTwhSxjKky6d1bha7U1a63ZgI18s7OuBd4HfXlmhlAoElrv3B3gVeHC4gYXxNu8rIyI0UPruPRQeEsi3bs+htqmD3+48bXQc4cc8KfgpQE2f5Rogre8OWut/1lq/3O+4eKBFa91zo+OE9zlb00JhaSNr548nJMijHkEBTJ0wjrXzx7PzaBWFpY1GxxF+ypN3rBXoe/eIBfBkyEH/4/DwuKvi4iKuWbbbIwdz+Jgxay4Y+Ww/3VRERGggD92SPayhmP50zq74g/tnUXLuAq99UMK/f38FsZEhg/4eZj1vZs0Fkq0vTwp+JbCsz3ISUO3BcfVAtFLKprXuBZI9PO6qxsa2q3cq2u2RNDSY7wETZs0FI5+tvLaV/KJa7lk2kfbWTtpbO02RaySNdrZvrcvhb18/zN+/ks/3H8rFavV8Gmmznjez5gL/y2a1Wr7QUL5muwffYzuwSillV0qFAfcDHwx0kNa6G/gUeMi96uvA+x68njCpzfvKCA0OYPVc6ZkbqvEJETyyJovi8mY27T1rdBzhZwYs+FrrKuAZYCdQAGzQWucrpbYqpeYNcPgf4hrVU4TrU8Kzww0sjFHT2M7RzxpYNTdN7qodpqUzk8mbnsTmvWWcPCv9+WLseHTVTWu9AdjQb9266+z3WL/lcmDF0OMJs/jw0DkCbFZp3Y8Ai8XCI7coyupa+dmmIp775nzGRQ2+P1+IwZI7bcWAWjous+9kLUumJxIVHmR0HJ8QHGjjD++ZTnevg5++e0qehSvGhBR8MaCdR6vo7nGwdr7MiDmSkuPC+catitNVF3lrV6nRcYQfkIIvvtTl7l52HK1k5uQ4UuLDjY7jcxZNTWLlnFS25Z9j/8lao+MIHycFX3yp/adqae3o5pYF0rofLV9bNYXs9Bheeb+E0qqLRscRPkwKvrghh9PJh4fOkZ4YQXZ6jNFxfFaAzcq375lOTEQQ//H7EzReHNr9DUIMRAq+uKETpY3UNHZwy4J0LBbPbxASgxcZFsQfPzCT7p5eXvjdcTo6u42OJHyQFHxxQ9vyK4iNDGZ+doLRUfxCqj2C7947g9qmDv7z9yfo7pGRO2JkScEX11Ve20pJxQVWz0sjwCa/JmMlZ8I4vnV7DiUVF/j5e0XyEHQxouSdLK7rw0MVBAfZuGlWitFR/M6iaUl8ZWUmh0vqeeX9YhxOKfpiZMj8tuILWjouc6iknptmpco0Cga5dWE6Xd29vLvnLEGBNh5Zk2V0JOEDpOCLL9hbWENPr5MVs6V1b6S78ibQ1d3LBwcrcDqc/On6gaauEuLLScEX13A4nXxSUEXW+BhS7TeeZlWMPovFwoMrJmOzWtiyvxyL7SgPr8rEZpWeWDE0UvDFNYrONtFwoZN7l08yOorAVfTvv2kyQYE23t59hqYLl/iDu6fJ08bEkEhTQVxj57EqIsMCmZslQzHN5M4lE/j2/TMpPNPIP755jAttXUZHEl5ICr64qqmlk4LT51k6M5nAAPnVMJt1SybyvftnUtPUzt+8dlimYRCDJu9qcdXu49XghJtyU42OIm4gNzOe//vIXGxWC//w5lE+PlKJU4ZtCg9JwRcA9PQ62H28mmmTxpEQE2p0HPEl0hMj+dE35zN94jje/OgzXtxYKF08wiNS8AUAx083cqHtMitnS+veG4SHBPK9B2bytVVTKCpv5ocvH2T/yVpp7YsvJQVfAPDJsUpiI4OZOTnO6CjCQ1aLhTXzx/PcN+eTOC6Mn79XxD++eZSKulajowmTkoIvqGvu4FRZMzflpsgYby+UHBfO/310Lo/dlk11Ywd/9cohfrb5FHVNHUZHEyYjg3kFuwuqsVosLJspd9Z6K6vFwvJZKczJsvP+wXI+PlJJflE983MSWDt/PBOTo4yOKExACr6f63U42HeqlpmT44iNDDY6jhimiNBAHlyRydr56XxwsJzdx6s5WFTH5NQols5IZn52ImEh8rb3V/I/7+eKypq52HaZvBlJRkcRIyg6PIiHbp7CXXkT+bSwhl0FVbz2gWbD9s+Zm2Unb2YyOemxWK3yYBt/4lHBV0o9DDwLBAIvaK1f6rc9F3gZiAJ2A09rrXuUUhOA193rLwDf0FqXj1x8MVx7T9QQERrIrMx4o6OIURAaHMDa+eNZMy+NstpW9pyo4eCpOg4U1REbGczCnEQWTUtkfEKEPNXMDwx4hU4plQr8GFgK5AJPKaWm9tvtDeC7WusswAI86V7/N8Cvtda5wFvu7yNMor2zm6OfnWdhTqI85MTHWSwWJiZH8ehaxfPfy+Pb90wnIzGSjw6f47lXDvH/fpHPlv1lNLfKeH5f5kkLfzWwQ2vdBKCU2gg8APy1ezkDCNVaH3Dv/yrwV8B/ATZcrXuAcODSiCUXw3aouJ6eXgd5M6U7x58EBtiYn53A/OwEWjsuc7iknv1Fdby16wxv7z7L7CnxrJqbhkqPkVa/j/Gk4KcANX2Wa4AFA2xPc3/9Q2CfUuqPgCBg8dCjipG290QNqfZwMhIjjY4iDBIZFsTKOWmsnJNGXXMHuwqq2VNYw5HPGshMi+bOJROYPnGcFH4f4UnBtwJ9b9+zAA4Pt78GPKW1flcpdT/wtlJqptbao9sB4+KunY/dbjdnYTJrLrhxtsr6VkqrW/jmHdNISBj7IXveeM7MYDSz2e2RTM9K5Il7Z7I9v4KNOz7n+d8eZ3aWnSfvmcH4L2kY+Os5G66xzuZJwa8ElvVZTgKq+21P7r9dKWUHsrXW7wJord9SSv0UiAcaPAnX2Nh29SHOdnskDQ3mu4PQrLngy7O9t7sUq8XCjAkxY57fW8+Z0cYy24KseOZMHsfOY1W88+lZvvcvO7ltUQZ35U34wvUeOWdDMxrZrFbLFxrK12z34HtsB1YppexKqTDgfuCDKxvdo246lVJ57lWPAu8D593rlwG4t7dqrT0q9mL0OBxO9p2sZfqkccREyNh7cX0BNitr5o3n7/9gEQunJvLevjL+4c2j1F+QS3HeasCCr7WuAp4BdgIFwAatdb5SaqtS6spDNtcDzyulSoAI4EV3t819wL8opQqBf8L1x0IYrLi8mebWLvJmJA+8s/B7UWFBPHHHVJ6+exo1jR381Sv5FJc1GR1LDIFH4/C11huADf3Wrevz9XGuvZB7ZX0+sHCYGcUI23uihvCQAHIzZaI04bkFOYlMSo7i3zcW8m+/Pc5jt2VLo8HLyOBrP9PR2cPRzxpYkJNIYIDN6DjCy8THhPKDR+YwJS2aX2wpZvvhc0ZHEoMgBd/PHNH1XO5xsESmUhBDFBYSyJ89lMvsKfFs2P45Hx2Um+e9hRR8P3OwuI6EmFAmyeyJYhgCbFaevns60yeO4z9+V8DBojqjIwkPSMH3Ixfbuigub2bB1ES5kUYMW2CAle/cN4OpE+P4xZZizlS3GB1JDEAKvh85VFKP0wkLpyYaHUX4iOBAGz/4xnxiIoL4z98XclGerWtqUvD9yMHiOtLsEaTGhxsdRfiQ6IhgvnvfDDq6enjp7ZP09DoGPkgYQgq+nzh/4RKlVS0snJpgdBThg9ITI3l8XQ6nqy7y7p6zRscRNyAF308cLHZdVFuYI905YnQsyElk6cxkth4o5/PKC0bHEdchBd9P5BfXMzkliviYUKOjCB/2tVVTiIsK4eX3irjU1WN0HNGPFHw/UH2+nXP1bSyQi7VilIUGB/DEHVM5f6GTjZ+UGh1H9CMF3w8cLKrDYoEF2dJ/L0Zf1vgYVs1L45NjVZytkaGaZiIF38c5nU4OFteRnR5LtMyMKcbIvcsmERURxOvb9NUpzoXxpOD7uLLaVuqbL8nYezGmQoMD+OrNUyivbWXnsSqj4wg3Kfg+7mBRHTarhbnKbnQU4WcW5CQwdUIsv999hrZL3UbHEUjB92kOh5NDJfXMmBRHeEig0XGEn7FYLHxt1RQ6L/fw3r4yo+MIpOD7tOKyJppbu1ggN1sJg6TaI1g6I5mPj1TSIE/KMpwUfB+2t7CaAJuVWZPjjY4i/Ng9yyZhs1p4e/cZo6P4PSn4PsrhdLKvsJoZk8YRGuzRg82EGBWxkcGsXTCeA0V1lNea84Hi/kIKvo86U9VC48VO5snYe2ECty3MIDwkQObZMZgUfB91WNcTYLOSmyndOcJ4ocEBrJ0/noLT56WVbyAp+D7I4XRyWNczRyVId44wjVVzxxMWHMCmvdLKN4oUfB90tqaFppYu8mYlGx1FiKvCQlyt/GOfn6eiTlr5RpCC74MOl9Rjs1pYME0KvjCX1fPSCA0OYNPeMqOj+CWPPu8rpR4GngUCgRe01i/1254LvAxEAbuBp7XWPUqpZPf6FKADWK+1Lhu5+KI/p9PJ4ZIGpk0cR0RoIJfaOo2OJMRVYSGBrJqbxpZ9ZdQ2dZA0LszoSH5lwBa+UioV+DGwFMgFnlJKTe232xvAd7XWWYAFeNK9/lfAZq31bPfX/zhSwcX1ldW20tjSyTwlo3OEOa2am4bNZmVbfoXRUfyOJ106q4EdWusmrXU7sBF44MpGpVQGEKq1PuBe9SrwoFIqHpgF/Ld7/Su4PiWIUXSlOyd3iozOEeYUHR5E3owk9p6o5WL7ZaPj+BVPCn4KUNNnuQZI82D7ZKAC+Fel1CFcfyjkf3cUOd2jc3ImxBIRKnPnCPO6ZUE6vb0OPj5yzugofsWTPnwr0HdCawvg8GB7ADAb+JHW+s+UUk8ArwErPA0XFxdxzbLdHunpoWPKLLlOV16g4UInX12bfTWTWbL1Z9ZcINmGYrC57PZIFs1IZuexar5+x/RRHT5s1nMGY5/Nk7NcCSzrs5wEVPfbnnyd7bVAq9b6Pff6DcCLgwnX2Nh29eEJdnskDQ3mG8plplzbD5RhtVjITIqgoaHVVNn6MmsukGxDMdRcK2elsP9EDZt3nWbl7NRRSGbecwajk81qtXyhoXzNdg++x3ZglVLKrpQKA+4HPriyUWtdDnQqpfLcqx4F3tdalwKVSqnb3OvvBI4M4WcQHnA6XVMh52TEEBkWZHQcIQY0OTWK9MQIdhypxOmUp2KNhQELvta6CngG2AkUABu01vlKqa1KqXnu3dYDzyulSoAI/rclfx/wl0qpk8AfA4+P9A8gXM7Vt1HffIm5MneO8BIWi4VVc9KoOt+OrrhgdBy/4FHHmdZ6A64umb7r1vX5+jiw4DrHaQbRZy+G7rCux2KBOVnyZCvhPRZOTeS3O0+z42gl2RmxRsfxeXKnrQ9wdec0kJ0eS5R05wgvEhRoY9msFI5+dp6mFrlJcLRJwfcBVQ3t1DV1ME+eWyu80MrZqTidTj4pqB54ZzEsUvB9wGFdjwWYI3fXCi9kjwll5uQ4dhdU0d3jGPgAMWRS8H3AoZJ6ssbHEB0u3TnCO62am0ZLRzdHdL3RUXyaFHwvV3W+nZrGDnmylfBqUyeOIzE2lI+PVhodxadJwfdyR0rc3TkyOkd4MavFwso5aZRWtcgTsUaRFHwvd0jXk5kWTWxksNFRhBiWpTOSCAq0Sit/FEnB92I1je1UNbRLd47wCWEhgSyelsTBojraO7uNjuOTpOB7scMlrgtcc6U7R/iIFbmpdPc4OHCqzugoPkkKvhc7rBvITI1mXFSI0VGEGBEZSZFkJEayq6Ba5tcZBVLwvVRdUwfn6tvkZivhc5bPSqayoY0yuXg74qTge6nD7vHKc+VmK+FjFk51XbzdJXfejjgp+F7qUEk9k1KiiIuW7hzhW8JCApifncDB4jo6L/cYHcenSMH3QnVNHVTUtTFfRucIH7V8Vgpdl3vJL5Y7b0eSFHwvlO8enSMFX/iqzNRokuPC2H1cunVGkhR8L3SouF5G5wifZrFYuGlWCmeqW6isbzM6js+Qgu9lahrbqWyQ7hzh+xZPTyLAZpFW/giSgu9lDrm7c+TuWuHrIsOCmJNlZ/+pWrp7eo2O4xOk4HuZQ8X1TJG5c4SfWD4rhfbOHo7oBqOj+AQp+F6kqqGNqvPtLMhJNDqKEGMiOyOW+OgQ6dYZIVLwvcgh91TIc+XuWuEnrBYLy2elUFJxgbqmDqPjeD0p+F7C9aBy15OtYiKkO0f4j7wZyVgtFnYXSit/uKTge4krT7aanyMXa4V/iY0MZubkOPaeqKWnV555OxwBnuyklHoYeBYIBF7QWr/Ub3su8DIQBewGntZa9/TZPhs4oLWWpukQ5RfXY7HI3DnCPy3PTaHg9HmOn26ULs1hGLCFr5RKBX4MLAVygaeUUlP77fYG8F2tdRZgAZ7sc3wY8B+APGF7iK5052Snx8qDyoVfmjFpHLGRwXLxdpg86dJZDezQWjdprduBjcADVzYqpTKAUK31AfeqV4EH+xz/r8ALIxPXP52rb6OuqUNuthJ+y2a1kjcjmZNnGmm82Gl0HK/lScFPAWr6LNcAaZ5sV0rdBYRprTcOM6dfyy+ux2qxMEc+ygo/tnxmMgCfysXbIfOkD98K9H30jAVwDLRdKZWEq99/9VDDxcVFXLNst0cO9VuNqtHM5XA4yS+pZ7ayMzkjbtDH++M5Gy7JNnhjkctuj2R2dgL7Ttby+N0zsNk8G3Ni1nMGY5/Nk4JfCSzrs5wEVPfbnnyd7XcAccBupRQASqkCYJnW2qNH2TQ2tuFwuP6W2O2RNDSY7wk4o51LVzRz/sIl7ls2cdCv46/nbDgk2+CNZa7FOYkcLalnR345uZnxA+5v1nMGo5PNarV8oaHclycFfzvwnFLKDrQD9wNPXdmotS5XSnUqpfK01nuBR4H3tdYv4xq5A4BSyqm1zh3iz+G39p+qJTjIxmx5ULkQzMqMIzo8iN0F1R4VfHGtAT8Taa2rgGeAnUABsEFrna+U2qqUmufebT3wvFKqBIgAXhytwP6ku6eXQyUNzM2yExxoMzqOEIYLsFlZOjOZ46XnaWqRi7eD5dE4fK31BmBDv3Xr+nx9HFgwwPewDCWgPzt+upFLXT0snpZkdBQhTGPZrBS27C9nT2ENdy2daHQcryJ32prY/lO1REcEkZMRa3QUIUwjISaUaRNi2V1YffUan/CMFHyTarvUTWFpI4umJmK1yocjIfq6KTeVppYuTp5tNDqKV5GCb1KHiuvodTilO0eI68idEk9UWCC7CmRM/mBIwTep/afqSLWHMz7hxkOshPBXATYreTOTOX66kebWLqPjeA0p+CZUf+ESp6susnhaEhaLdOcIcT3LZ6XgcDrZc6Jm4J0FIAXflA6crMUCLJoqT7YS4kYSY8PIyYhld4FcvPWUFHyTcTqd7D9Vi0qPYVxUiNFxhDC1lbNTaWzp5HBmfP8AABA8SURBVPjp80ZH8QpS8E3mTE0Ldc2X5GKtEB6YnRVPbGQw249UGh3FK0jBN5lPj9cQFGhlnkyFLMSAbFYrN89Jpbi8marz7UbHMT0p+CbSebmHg8V1LMhOJDTYo5ughfB7y2elEGCz8rG08gckBd9EDhXX03W5l+WzUoyOIoTXiAwLYtHURPadrKGjs9voOKYmBd9EdhdWkxwXxuTUKKOjCOFVVs1N43K3gz2FMkTzy0jBN4mqhjZKq1pYPitFxt4LMUgZSZFkpkXz8dFKGaL5JaTgm8SnhTXYrBYWT5fROUIMxeq5aTRc6KTwjMyvcyNS8E2gq7uXPYU1zMmyExUWZHQcIbzSnCw7MRFBcvH2S0jBN4GDRXV0dPVw85xUo6MI4bUCbFZWzk7l1NkmahpliOb1SME3mNPpZMfRSlLt4WSNjzE6jhBe7abcVAJsFrkR6wak4BustLqFiro2bp6TJhdrhRimqPAgFk5NZG9hDa0dl42OYzpS8A2242glIUE2mShNiBFy68IMLvc42HG0yugopiMF30AX27o4VFxP3vRkubNWiBGSGh9ObmY8Hx+ppLOrx+g4piIF30BXxgyvmpdmdBQhfMpti9Jpu9TNR/kVRkcxFSn4Bum63MvOo1XkToknaVyY0XGE8ClT0mLITIvmnV2n6el1GB3HNKTgG2TPiRraO3u4dWG60VGE8EnrFmVQ33yJA6fqjI5iGh51HCulHgaeBQKBF7TWL/Xbngu8DEQBu4GntdY9Sqk84HkgCGgEHtdal49gfq/kcDj58FAFk1OiyEyNNjqOED5p1uQ4JqdF896+MhZPT8RmlfbtgGdAKZUK/BhYCuQCTymlpvbb7Q3gu1rrLMACPOle/ybwhNY61/31iyMV3Jsd/ayBhgud3LIgXYZiCjFKLBYLD6/Npv7CJfaflFY+eNalsxrYobVu0lq3AxuBB65sVEplAKFa6wPuVa8CDyqlgoFntdaF7vWFgN/3XzidTjbvKyMxNpQ5WXaj4wjh0+ZPTSQjMZL39pXR65C+fE+6dFKAvnOO1gALBtieprXuwtXyRyllBZ4D3hlMuLi4iGuW7fbIwRw+ZgaT68DJGs7Vt/GnX5tNYuLoT4PsC+dsrEm2wTNrLoBH1+Xwt6/kc6LsAmsWZhgd5xpjfd48KfhWoO98oxbA4el2pVQQ8Jr7tf5uMOEaG9uuTnVqt0fS0NA6mMPHxGByOZ1OfrW1iISYUKaOjx71n8cXztlYk2yDZ9Zc4Mo2MSGcCUmRvPFBMdPSowkMsBkdCxid82a1Wr7QUL5muwffoxJI7rOcBFR7sl0pFQF8gKvY36219uvH0Rw/3UhFXRu3L8mQC0hCjBGLxcKDKzNpauny+zl2PKk624FVSim7UioMuB9XEQfAPeqm0z0iB+BR4H33128Ap4GH3F08fsvhdPLu3rPER4eweJrMeS/EWMrJiGXGpDi27Cun7ZL/tjsHLPha6yrgGWAnUABs0FrnK6W2KqXmuXdbDzyvlCoBIoAXlVKzgbuBPOCoUqpAKbV1VH4KL3CouJ7y2lbuyptIgE1a90KMtQdWTOZSVw9b9/vvyHCPxuFrrTcAG/qtW9fn6+NceyEX4Biu/ny/193j4K1dpaTZI1giT7QSwhDjEyJYMiOJ7UfOcVNuCol+eIe7NDXHwM6jlZy/2MlXbp6M1Sp/A4Uwyv03TSbAZuXN7Z/hdPrfs2+l4I+y9s5uNu8rY9qEWKZPjDM6jhB+LSYimHuWTuTkmSaOfX7e6DhjTgr+KPv9rjN0dPXw4MpMo6MIIYCb56aRGh/Or7d/Tld3r9FxxpQU/FF0prqFT45VsWpuGumJ5r0xRQh/EmCz8sjaLBpbOnn307NGxxlTUvBHSa/DwevbSoiOCOLeZZOMjiOE6EOlx3JTbgrb8is4XXXR6DhjRgr+KNlxpIqKuja+tjpLnmYlhAl9ZWUm46KC+cWWYi77SdeOFPxRUNPYzlu7Spk5OY55SiZIE8KMQoMDeGxdDnVNHfx+9xmj44wJKfgjrKfXwc83FxEUaOOx27Jl+mMhTGzahHHcPCeVDw+do+C074/akYI/wjbtLaOstpVv3KqIiQg2Oo4QYgAP3ZxJemIEv3iviMaLnUbHGVVS8EfQqbNNbNlfRt70JOaqBKPjCCE8EBhg49v3TKfX4eSn756ku8d3582Xgj9C6i9c4qfvniQlPpz1a7OMjiOEGITE2DAeX5dDaXULr75f4rN34UrBHwFdl3v5z7cKcTrhe/fNICRIRuUI4W3mZSdwz7KJ7D9Vy+a9ZUbHGRVSmYapp9fBf717kqqGdv70K7NIiPW/CZmE8BV3LplAffMl3tlzlnFRISydmTzwQV5ECv4wOBxOnv/1UQpLG/n6rYrpk2SuHCG8mcVi4Ru3ZnOhrYtXthZjs1pY7EMz3EqXzhA5nE5+9aFm97EqHlgxmRW5qUZHEkKMgMAAK9+7fyYqPYaXtxSx/1St0ZFGjBT8IejucfCzTafYVVDNg6umsG6RuR6MLIQYnuBAG3/8wCzU+Bhe3lzEBwcrfOJCrhT8Qero7ObfNx4nv7ier6zM5OvrphodSQgxCoKDbPzJg7OYm53Ab3ee5lfbND293j1kU/rwB6GirpWfvH2SxpZOvnV7DnkzfOuCjhDiWkGBNp6+expvxYTw/oEKztW38dRd07DHhBodbUikhe8Bh9PJx0cq+dvXj9Dd6+AvH54jxV4IP2G1WHhwRSZP3z2N6sZ2nnsln30na7yyi0da+AOobGjjtQ9KKK1qYfrEcTxxx1SiwoOMjiWEGGMLchKZmBzFzzaf4uX3itlTWMMjaxUp8eFGR/OYFPwbOH/xEpv2lrHvRC1hIQE8cUcOi6clyWRoQvgxe0woP1g/l13Hq3nrk1J+9Mt8lkxP4o4lE7yim0cKfj9na1rYcbSSg0V1ANw8J5U78iYQFSateiEEWK0WVs5OZW6Wnff2lfFJQTX7TtYyV9lZOTuVrPExpm0YSsEH6po7OFxSz6GSeirq2ggOtLFsVgq3L8pgXFSI0fGEECYUFR7Ew2uyuG1RBtvyK9hTWEN+cT2JsaHMy05gnkpgfGIEVhMVf48KvlLqYeBZIBB4QWv9Ur/tucDLQBSwG3haa92jlEoH3gASAA2s11q3jWD+QevpdVDV0E55XSunqy5SUt7MefeUqJNSoli/Josl05PkKVVCCI/ERgbz1VVTuHf5JPKL6zhwqo73D1SwZX85EaGBZKfHkJkWQ0ZiBOMTIgkLMa62DPjKSqlU4MfAXKAL2KeU2qm1Luqz2xvAE1rrA0qpXwBPAv8F/AT4idb6f5RSPwR+CPzlSP8QfTmdTorKm6lv6qDtUjdtl3pou9RNS8dl6ps7aLzYhcN9dT08JACVHsstC9LJzYwnLlpa80KIoQkOtLFsZgrLZqbQ2nGZwtJGisubKalo5rBuuLpfeEgAcVEhJNsjiAgJIDo8iOBAG0GBVve/NnIyYkel0enJd1wN7NBaNwEopTYCDwB/7V7OAEK11gfc+78K/JVS6mVgOXBPn/W78Kzg28DVV9ZX/+Xrab3Uw5sffna1qAcF2ggPDiA8NJDcKXbiokNIHhdGanw446JDRuTjlie5jGLWbGbNBZJtKMyaC4zJFh0RzLJZKSyblQJAS8dlqs+3U9vYQXNbF82tXbR2dPNZQxtd13me7srZady2KH3Qr9vnZ7Vdb7snBT8FqOmzXAMsGGB7GhAPtGite/qt90QyQGzstcOd4uIiBjwwDvj5M2s8fJmR4Ukuo5g1m1lzgWQbCrPmAnNki4uDiePHjeVLJgOl/Vd6UvCtQN87DCyAw4Pt/dfT77gvcwhYhuuPhH88Tl4IIYbPhqvYH7reRk8KfiWu4ntFElDdb3vydbbXA9FKKZvWute9T9/jvkwXsMfDfYUQQvyvL7Tsr/BkaoXtwCqllF0pFQbcD3xwZaPWuhzoVErluVc9Cryvte4GPgUecq//OvD+EMILIYQYAQMWfK11FfAMsBMoADZorfOVUluVUvPcu60HnldKlQARwIvu9X8IPKWUKsL1KeHZkf4BhBBCeMbijRMACSGEGDyZLVMIIfyEFHwhhPATUvCFEMJPSMEXQgg/4XUzhCmlZgMHtNbBRme5wj0k9XkgCGgEHncPVzUqz5dOdmckpdSPgK+4F7dorf+PkXn6U0r9CxCvtX7M6CxXKKXuBH4EhAMfaq3/2OBIVymlHgF+4F58X2v95wbniQL2AXdorcuUUquBfwNCgd9orQ0bKXidbE8Bf4TrBtXDwB9orS+PZgavauG77wP4D1yF1UzexDV5XK776xcH2H/U9JnsbimQi2tYrCmetO5+860FZuPKNlcpda+xqf6XUmoV8A2jc/SllJoE/BTXnFQzgTlKqduMTeXifj++CNwEzAKWuf+PjcqzENcNm1nu5VDgl8DdQA4w36hzd51sWcBfAEtw/b9age+Mdg6vKvjAvwIvGB2iL6VUMPCs1rrQvaoQGPysRyPn6mR3Wut24Mpkd2ZQA3xfa33ZfWNeMcaeq6uUUuNw/aH8O6Oz9HMvrpZppfucPQQcNDjTFTZcNSQc16fJQOCSgXmexFU0r9zRvwD4XGt91j2n1xvAgybJ1gX8oda6RWvtBE4wBu8Fr+nSUUrdBYRprTcqpYyOc5XWugvXLxJKKSvwHPCOgZEGmuzOMFrrU1e+VkpNwdW1k3fjI8bUf+O6wXC80UH6yQQuK6U24SoI7+GaZtxwWutW97TnJUAHrtlw9xmY5wmAPvXhRhM7jrn+2dxdvuXudXbgu8Bjo53DdAVfKfUgrv7wvkpwPVzFsI+LcONsWuvVSqkg4DVc59TIVuJAk90ZTik1DdgC/IXW+nMT5HkCOKe1/lgp9ZjRefoJwDXN+AqgDdiEq9vpVeMiuSilZgKPAxnARVwNnz8H/tnIXH14w3shFdeUM7/QWn8y2q9nuoKvtf4d8Lu+69xvyB8Au6/8hVRKFQDLtNatRmZzZ4nA9UZsBO52f/Q2ykCT3RnKfYH7LeBPtNb/Y3Qet4eAZPfv1DggQin1vNb6Tw3OBVALbNfa9QQNpdTbuD6xvWpkKLdbgI+11vUASqlXcU2nYpaCf6OJHU1BKZUNbANe1Fr/61i8pukK/vVorV/G9QhFAJRSTvcFUrN4AziN69GORrcgtgPPuT8mtuOa7O4pYyO5KKXG4+ruekhrvcPoPFdora8+QMHdwl9hkmIPri6c15RSMUArcBvGdhn2dRz4J6VUOK4unTu5wbS8BjkIKKVUJnAWeBjXRVzDKaUigQ+BZ7TWvxqr1/W2i7am4x4mejeuvuijSqkCpdRWo/LcaLI7o/L08+dACPBv7vNUoJR62uhQZqa1Pgj8E64RHkW4+n1fMTSUm9b6Q+DXwBFcgxUCgX8wNFQfWutOXP3ib+E6dyW4BjGYwRNAIvD9Pu+Fvx7tF5XJ04QQwk9IC18IIfyEFHwhhPATUvCFEMJPSMEXQgg/IQVfCCH8hBR8IYTwE1LwhRDCT0jBF0IIP/H/AV7P23zTamCdAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -293,27 +313,29 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 52, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3hU9YE38O/c75O5J5MrhABBERBBAS1KtaICokC3WOvybpfHy263aNcqdbv16cVq+2wf27c8a+s+PuvW6tb7tcqrFUuxWBVUUG4CuZH7TGYmk7nfzvvHJAMB0eTMJGcm8/08Tx6SueVLkvM9Z37nnN+RCYIggIiIyoZc6gBERDS5WPxERGWGxU9EVGZY/EREZYbFT0RUZlj8RERlZszFHwqFsHr1anR2do66/fe//z1uuummggcjIqKJMabi37dvH2644Qa0tbWNuv3YsWN4+OGHJyIXERFNkDEV/1NPPYV7770XLpcrd1sikcAPfvADfPvb356wcEREVHjKsTzovvvuO+O2X/ziF1i/fj1qa2sLHoqIiCaOqJ27f/3rX9HT04P169cXOg8REU2wMW3xn+6VV17B0aNHsXbtWkQiEXi9Xtx+++345S9/Weh8RERUYKKK//777899/u6772Lbtm2iSt/vDyOTKc054ux2IwYGQlLHEKWUswPMLzXml45cLoPVasj7dUQVf6FkMkLJFj8AZpcQ80uL+UvbuIp/x44dZ9x20UUX4aKLLipYICIimlg8c5eIqMyw+ImIygyLn4iozLD4iYjKDIufiKjMsPiJiMoMi5+IqMyw+ImIygyLn4iozEha/OFoUspvT0RUliQt/h89+j5ae4JSRiAiKjuSFr8AwBOIShmBiKjsSD7GHwglpI5ARFRWJC1+vUaJbm9pzotNRFSqJC3++ioTPj0xKGUEIqKyI2nxz6y1oNcXQa8vImUMIqKyMubiD4VCWL16NTo7OwEATz75JFavXo01a9bge9/7HhKJ8Y/Vz2+yQy6TYdf+7nE/l4iIxBlT8e/btw833HAD2traAACtra145JFH8Ic//AEvvfQSMpkMnnjiiXF/c7NejfNnOfDnD7sQ4jH9RESTYkzF/9RTT+Hee++Fy+UCAKjVatx7770wGo2QyWSYNWsWurvFbbWvvWQ6YvE0Xnq7VdTziYhofMZU/Pfddx8WLVqU+7qmpgYXX3wxAMDn8+Hxxx/H5ZdfLipArdOIFQtr8ObeThzp8It6DSIiGrtxXWz9dH19fdi8eTPWr18v6oLrdrsRAHDrhgU41B7Ab18+iF9sWQ6XVZ9PrEnjdJqkjiBaKWcHmF9qzF/aRBf/8ePHsXnzZtx000345je/Keo1BgZCyGQEAMA/XT8XP31sD37w29347sbzYTaoxUabFE6nCR7PkNQxRCnl7ADzS435pSOXy3IbzHm9jpgnhUIh/OM//iO2bNkiuvRPV+Mw4FvXnwePP4qfPfEBfMFYQV6XiIhGE1X8zzzzDLxeL/77v/8ba9euxdq1a/GrX/0q7zBzptnwna8tgH8ojh//bg8+PRHI+zWJiGg0mSAIglTf/NShnlN19oew7fmP4Q3EsO7SRqy8sA4KueTTCo1Sym8XSzk7wPxSY37pSDrUM9FqXUb8YNNinD/LgWf+fBw/+d1edPSV5i+KiKjYFGXxA4Beq8Q/XTcXt103F/5gDD96dA9+9/+OIBCKSx2NiKik5XU450STyWRY3OzCnAYrXtjVgp0fdWP3Jz34yqI6rLywHkadSuqIREQlp6iLf4RRp8I3rpyNryyuw/N/acEf32nHG++fwCXz3LhycV3JHPdPRFQMSqL4R1Ra9bh17VysXhbC6++dwM6PuvHWh104f6YTy+dXY+50G+RymdQxiYiKWkkV/4hapxHfXDUH1y9vxJt7O7Frfzc++NQDq0mDi89z45J5brgsOqljEhEVpZIs/hFWkwYbLpuB6740HR8d9WLX/h78cXcbXtndhsZqMxY3u7Botgv2Cq3UUYmIikZJF/8IpUKORc0uLGp2wReM4W8H+/D+4X48ueMYntxxDDOqzbhgtgvzm+yosukhk3E4iIjK15Qo/lPZzFpcs6QB1yxpQL8/gvcP9+P9Q/146q1jeOqtY3BZdJg3w455TXbMrrNCpSzaI1qJiCbElCv+U7mseqxaOg2rlk6DdzCKj48PYN/xAezc140/7e2ERqXA7HoLmuutmNNgRV2lEXK+GyCiKW5KF/+pHBU6rFhYixULaxFPpnG43Y/9LQPZf48PAAAMWiWaG7Irgdl1FrgdBq4IiGjKKZviP5VGpcD8JgfmNzkAAP6hOA63+3Gw3YdD7X7sPeIBkF0RzKipwMzaCjTVVGC62wy1SiFldCKivJVl8Z/OatJg6dwqLJ1bBUEQ4AlE8emJQRztDOBY12DuHYFCLsO0KhNm1FRg3iwX7EYVXBYddxYTUUlh8Z9GJpPBZdXDZdXjknluAMBQJIHjXUEc7QzgaNcg3vqwC6+/fwJA9l3BNLcZ090mTK8yY3q1GRajRsr/AhHR52Lxj4FJr8aCmQ4smJkdGkqlM4imgQ8O9qC1J4jWniG8+k4HMsMzXFcY1KivNKG+0pj712nRcX8BERUFFr8ISoUcjVUmmNRyXLqgBgAQT6bR0TeE1p4hdPQNoaMvhINtPqSHrzegVStQ58quCOpcRtQ4Dai2G6DT8FdARJNrzK0TCoWwceNG/OY3v0FtbS12796N+++/H/F4HFdffTXuuOOOicxZ9DQqBWbWWjCz1pK7LZlKo8sbRkdfKLcyeHt/D+LJdO4xdrMG1Y7siqDGYUC1I7tC0Ki5E5mIJsaYin/fvn34/ve/j7a2NgBALBbDPffcg8ceewxutxu33HILdu7ciUsvvXQis5YclVKBaVVmTKsy527LDO887vaE0eUNo9sbRqcnjEPtPqTS2XcHMgAOixY1DiOqHYbcSsFt10Ol5AqBiPIzpuJ/6qmncO+99+Kuu+4CAOzfvx8NDQ2oq6sDAKxZswbbt29n8Y+BXCZDpVWPSqse589y5m5PZzLo90fR7Q2j65SVwsctA7nhIpkMcFl0qHEOrxCGP1xWHQ8zJaIxG1Px33fffaO+7u/vh9N5srRcLhf6+voKm6zMKORyuO0GuO0GXDD75O2pdAZ9vkhuRdA1vGL46Kg3tzNZhuxUFVU2HapsBlTadKiy6VFl08Nm1nKqaiIaRdSexUwmM+rYdUEQRB3LXoiLBkvJ6TRNyvdxV1VgwWm3JVNpdPaHcKJvCF2eMLo9IXR6Qth9oBfReCr3OJVSDrfDgBqncfjDgJpQEtVOA8wGdcmegzBZP/uJwvzSKvX8+RJV/FVVVfB4PLmvPR4PXC7XuF9nYCCEzPAwRqlxOk3weKS9ALxRJcec2grMqa3I3SYIAoKRJHoHwujzR9Hri6B3IIK27kG8d6A3N2wEZM9BqLLpUTn8MfIuwWXVQVPEQ0fF8LPPB/NLq5Tzy+Wygmwwiyr++fPno7W1Fe3t7aitrcUrr7yC9evX5x2G8ieTyVBhUKPCoMbseuuo+9KZDLyDMcTSwJHWAfT6IujzRXCo3Y/dn/SOeqzVpIHLooPTooPTqoPLooPLmv3aoFWW7DsFIhJZ/BqNBg888AD+5V/+BfF4HJdeeimuuuqqQmejAlPI5ai06uF0mtDgGH2d4lgihf6Rdwi+CPr9UfQHovi4ZQCD4cSox+o0yuxK4dQVQoUWTqsONhP3KRAVO5kgCJKNtXCoRxrjzR5PpOEZjMIzvDLoD0ThCWS/9g7GRg0fKRUy2Ct0w+8WtKNWEA5LYYaQSvlnDzC/1Eo5v6RDPVReNGoFap1G1DrP/IPLZAT4grHcyqA/cHIFcawrgGg8PerxFUZ19l3CKSuEkeEkk07FISSiScDip7zI5TI4hrfmTycIAsKx1PCwUSS3QvAEYjjY7of/tP0KWrUit0JwnrZysJk1UMh5tTSiQmDx04SRyWQw6lQw6lRorDafcX8imYZnMAaP/5R3C4Eoujxh7DvmzZ3JDGSnxLabs/sR6t1mmDTK3M5ml0XHKS6IxoHFT5JRqxS5s49PlxEEBIbiuZ3MnpGhJH8Uuz7sQiiaHPV4s0F9ctjIooXLqoPLoofTqoNZzyEkolOx+KkoyWUy2Mxa2MxaNDeMPizV6TSh7YQP/f7RKwRPIIojJ/z424E4Tj1kQKNSwGnRZt8dnLZfwW7WQqngEBKVFxY/lSSDVoXpbhWmu88cQkqmMvAOnlwh9Aei8AZi6PNH8UmrD8lUJvfY7ApGg0qrDi6rHk6Lbvjz7MqBcyDRVMTipylHpTw579HpMoKAwVBi1Eph5PP3DvUhHEuNerzVlF0pjLxbqLTqcysFXkuBShX/cqmsyGUyWE0aWE0azKqznHF/KJqEJxBFn3/4JLbhlcO+4wMInnYi28h+BZf15MfIisGgVU3Wf4lo3CQ9gauzZxCpdOaLH1iE9HoNIpG41DFEKeXsgHT5Y4kUvIFYbr+CdzAG7/DngdDolYJeo4TjlB3NlTZ9bqVgqdDz5y+hQuXXqJRQTvLuoUKdwCVp8f9x13FEYskvfmARMhm1GArFpI4hSilnB4ozfyqdQSiSRDCSwFAkOfyR/fz0I5CMehVMOhUqDGqYjerc3Eo6TWnMgVSMP//xKFT+xXMqYZjk4T6euUtURJQKOSwmDSwmzRn3pdIZDEWSGAwnEAwnEImnMBCI4ljX4KhzFZSK7AR75uEVgdmoyf6rV0HBI4+ogFj8RBNMqZDn9isAJ7c4BUFANJ7CYDiRXSmEsv/2+6No7Rk9l4xx5B3C8EqhwqSG1ajhUUckCoufSCIymQx6rQp6reqMI5CSqQyGItkVwWAo+05hMJxAnz8y6l2CXquE1aiBxaSGxZh9x2ExqPkOgT4Xi5+oCKmU8twJbKcamf8oMBRHIBSHfyiOQCiBnoHIqEtxmgxqWE0a2M2a4dfRQKvm4k5Z/EsgKiGnzn9U6zq5ky+TERCMJIZXCAn4h+IYGIyhvffkkJFeq4TNrM2tDOxmDfQ87LQssfiJpgC5XJYd6jGO3rkcT6ThG4rBF4zDF8z+29kfyt2v1yqzF9EZnmHVbtZwmKgM5FX8L774Ih5++GEAwPLly3H33XcXJBQRFYZGrTjjLOZkKpN7R+AZzE5n0d6XXRnIZYDNnF0RVNqy5x8U8/WXSRzRxR+NRnHfffdh+/btMJvNuOGGG7B7924sW7askPmIqMBUSnnuTOM5yE6AF42nhk9My56U9umJAA61+wEAdrMGVXYDqmzZE9Co9Iku/nQ6jUwmg2g0Cr1ej1QqBY3mzGOYiaj46TRK1FeaUF9pAgCkMwK8g1H0DkTQOxDBoTYfDrT6IJcB1U4jqu161FcauY+gRIkufqPRiC1btuDqq6+GTqfD4sWLsXDhwkJmIyKJKOQyVFqz00zMb8oOD3kCUfQMhNHljeC9Q/1471A/HBVa1FcaMa3KDKOeK4FSIXrKhsOHD2Pr1q145JFHYDKZcOedd2LevHnYvHnzmF9j5wediMZTX/xAIioqvmAMLV2DaOkehMcfBQA0VJkwd4YDDVWmkph6Il8LZ7vgsumljiGK6C3+t99+G0uXLoXdbgcArFu3Dk888cS4ij8UjnOuHgmUcnaA+aVmMmqhkgOz6yowu64CoWgSxzoHcbQzgD/+tRVGnQpzp9vQVFcBeRGuAAr1849E4vCk0wVINHaFmqtH9HFbzc3N2L17NyKRCARBwI4dO3DeeeflHYiISotRp8KCmQ6su3QGls93Q6dR4G8H+/DqO+3oH343QMVF9Bb/JZdcgoMHD2LdunVQqVQ477zzcPPNNxcyGxGVEIVchmluMxqqTGjvHcKewx5sf7cDi2Y7cc50m9Tx6BR5Hcd/8803s+yJaBSZLLsCqHEasfvjHuw54oFcIUNzvfWLn0yTgqfoEdGEUCnl+NL8alQ7DNhz2DPqWsckLRY/EU0YuVyGc6dbkckI6PNFpI5Dw1j8RDSh4snslr6ScwAVDf4miGjCJJJpfHx8ADqNAi4bp3soFix+IpoQ8UQaOz7owmAojmVz3UV5TH+5knRa5jnTbUilS3OHj0qlRDJZmmcdl3J2gPmlNpb8h9v9eGFXK8LRJG5cORuLmishL5Le1+s1iETieb+ORlW6s9pLmvxQq49n7kqglLMDzC+1z8s/FEngo6NetPYMocKoxlVL6iFDdrpng6Y4itJp00/6GbfFpjh+E0RU0iKxFD5uGcDREwHIZDLMbbRh/gw7L+pSpFj8RCSaLxjDwTY/2nqCEADMrK3AvBkO6LWslmLG3w4RjUs6I6C9dwifngigZyACpUKGWXUWzJlmhUmvljoejQGLn4jGZCiSwLHOQRzvDiISS0GvVWLhLAdm1ll4ecYSw+InorNKpNJo7w2hpWsQff4oZAAa3GY0uk2odhp4iGaJYvET0SiZjIDugTBauoI40R9COiPArM9OvTyjxowqh6mkj0oiFj8RARAEAb5gHC3dQbT2BBFLpKFRKdBUW4HGajMcFdqyuKpWuWDxE5WxcDSJlp4gWrqDGAwlIJfJUOsyoLE6O62yoljOuqKCyqv4d+zYgW3btiEajeLiiy/G97///ULlIqIJkkxl0N47hJbuIHqHZ8x0WnRYck4lGtwm7qgtA6KL/8SJE7j33nvx9NNPw263Y9OmTdi5cycuvfTSQuYjogIQBAF9/iiOdw6ivW8IqbQAk16F+U12NFabeRhmmRFd/G+88QauueYaVFVVAQAefPBBaDSaggUjovyFokm0dA3iWFcQoWgSKoUc09xmNNWY4bToOG5fpkQXf3t7O1QqFW699Vb09PTgsssuw+23317IbEQkQiqdQUdfCMe7BtEzkB3KqbLpMb/JjvpKE1RKTqNQ7kQXfzqdxp49e/DYY49Br9fjtttuw/PPP49169YVMh8RjVEwnMCRjgCOdw0ikcrAqMsO5cyoroBRr5I6HhUR0cXvcDiwdOlS2Gw2AMAVV1yB/fv3j6v4jQYNFMrS3ZFkMmqljiBaKWcHmH+EIAjo6B3C/uNedPQOQS4DGmssOLfRjhqnYcKGcsabX6/XwGnTT0gWMZxOk9QRJCW6+FesWIG7774bwWAQBoMBu3btwuWXXz6u1wiF45yWWQKlnB1gfiB7klV77xA+afXBPxSHTqPA/CY7ZtZachOkhcL5zzn/WcTkj0TiRTMVstNpgsczJHUMUeRyGex2Y96vI7r458+fj82bN+PrX/86kskkLr74Yqxfvz7vQER0doIgoKU7iH3HBhCKJlFhUGPZ3CpMrzbzmHsas7yO49+wYQM2bNhQqCxE9Dm6vWHsPeKBfygOm1mDy5qrUecy8sgcGjeeuUtU5KLxFN492IeOvhCMOhW+NM+NaW4TC59EY/ETFbG2niD+drAPqZSA82c6cM50KxRyHo5J+WHxExUhQRDw0VEvPm7xwVGhxbLzqmAx8gRJKgxJi3/OdBtS6YyUEURTqZRIJlNSxxCllLMDUz9/RhDwh9c/xcctPiw5txLXXzYDygm6dq1SLsd49wnr9RpEIuM7Ykij4jZmMZH0t3Go1cfDOSVQytmBqZ//w089+LjFhwVNdsysrcCB4wMTlmXxnEoYNOOrAadNXzSHZpI4HCwkKiJ9vgg+bvFhZm0Fzpth5w5cmhAsfqIi8uFRL3QaBRbPcbH0acKw+ImKRDSeQr8/iuZ664SN6RMBLH6iouELZneYOi06iZPQVMfiJyoSPDyfJgv/1IiKhEmXvQqWL1i6RyxRaWDxExUJo14Fe4UWx7oGIQiC1HFoCmPxExWROQ1WBEIJHDkRkDoKTWEsfqIiMt1tgtuuxwdHPBzyoQnD4icqIjKZDBef54ZapcCOvV0IRUvzzHYqbix+oiKj1ypx+QU1SKYz2P5uB4LhhNSRaIopSPH/7Gc/w9atWwvxUkQEwGrS4soL65DJCNj+bgf6/BGpI9EUknfxv/POO3j++ecLkYWITmE3a7HywnqolHK8/t4JHO7w82gfKoi8ij8QCODBBx/ErbfeWqg8RHSKCqMaq5Y2oNphwHsH+/GXj7oRT3JmTMpPXsX/gx/8AHfccQfMZnOh8hDRadQqBb68sAYLZznQ0R/Cy39tQ7c3LHUsKmGii//pp5+G2+3G0qVLC5mHiD6DTCbD3EY7rl7SAKVCjj/t6cTuT3qR4NY/iSATRA4a/sM//AM8Hg8UCgUGBwcRiURw3XXX4Z577hnza+z8oBPReOleSYlICql0Bu8f7MWHRzzQaZVYOteN2Q1WUdM4L5ztgsumn4CUVMxEF/+pnnvuObz33nt44IEHxvW8P+46zitwSaCUswPMP8I7GMN7B/vgHYzBXqHFhc0uOK3jm9lT1BW4nCZ4PEPjek4xKeX8crkMdrsx/9cpQBYikoCjQourl9TjknlViMRSeO3dDry9v6dkN6Zo8hTkmrvr1q3DunXrCvFSRDQOMpkMjdUVqHOZ8EnLAA60+dHRN4S5jXacM40XdKHPJunF1omoMFRKOc6f5URTbQX2HvHgo6NeHOscxAWznaivNPIyjjRKQcb4xWrp9COVzkj17fOiUimRTJbmjulSzg4w/1gcOxHAC39pQc9ABDNqKnDd8umodp45NqxRKSBkxlcBer0GkUi8UFEn3Wfl16iUUJbAm6NCjfFLWvzcuSuNUs4OMP9YZTICjnYO4qOjXiSSacysq8CCmQ5o1fm90Z+KP38xO7mlUKjiL/7/KRGJIpfLMLvegmlVJuw77sWRjgDaeoYwv8mB2fUWyOUc/ilXJfDmhojyoVErcOGcSqy5eBrsFVq8f7gfL/+1DV0env1brlj8RGXCYtTgikW1WLGwBhlBwJt7O7FjbyenfS5DLH6iMiKTyVDnMuLaS6Zh4Wwn+nxRvPTXNuw75kW6RA+0oPHjGD9RGVLI5Zg73YZGtxl7jvRj37EBtHQHcdE5lah2GKSORxOMW/xEZUyvVWL5/GpcsagWAPCnPZ3Yta+bc2hNcSx+IkK1w4BrL56GeTPsaO8N4cW3W9HaE5Q6Fk0QFj8RAQAUCjkWzHRgzcXTYNarsWtfD3bt60YixamfpxoWPxGNUmFU46qL6rGgyY623iG8+k4HAqHSPVOXzsTiJ6IzyOUyzGty4CuL65BIpvHqO+286tcUwuInorOqsumxalkDTHo1duztQkdfac5jT6Ox+Inocxm0Klx5YR1sZg12ftSNbk9I6kiUJxY/EX0hjUqBKxbVwqRX47V32hCOlubkipSVV/Fv27YNq1atwqpVq/Dzn/+8UJmIqAipVQp8eWENkqkMPjzqlToO5UF08e/evRtvv/02nn/+ebzwwgs4cOAA3njjjUJmI6IiYzaoMX+mAy3dQc7xU8JEF7/T6cTWrVuhVquhUqkwY8YMdHd3FzIbERWhc6bbAQA9AzzKp1SJnqtn5syZuc/b2trw2muv4X//938LEoqIipfZoIZSIUMgxC3+UpX3JG1Hjx7FLbfcgrvuugvTpk0b13ONBg0USkW+ESRjMmqljiBaKWcHmF9K6UwGqbQAs0FTsv+P03Pr9Ro4bXqJ0ky+vIp/7969+Pa3v4177rkHq1atGvfzQ+E4L70ogVLODjC/1Hr9UQCASacsyf/HZ/38I5E4POnin5pC8ksv9vT04J//+Z/x4IMPYunSpXkHIaLil0il8d7BPpj0KtQ4OX1zqRJd/I888gji8TgeeOCB3G0bN27EDTfcMObXmDPdhlSJXvxBpVIimSzNqWtLOTvA/FJJpzP4n1cPIxiK45br5qKpzjLm5yrlchTLJX71eg0ikdFzD2lU5XVpEpkgCIJU3/yPu45zqEcCpZwdYH4pxBNp7PyoG72+CJYvqMG0qvENNyyeUwmDpjjK1ek0weMpzaknJB/qIaLy0DsQwe5PehGJpXDxeVU4r8lRcisuGo3FT0SfKZZIYe8RD453BWHUqXDlhbVwWcvnyJepjMVPRKPEEmkcbPPhcLsf6YyAudNtmNdkh1LBqb2mChY/EQEAQpEkjpwI4NOOAJLpDKZVmTCvyQ6LUSN1NCowFj9RGRMEAT0DERzuCKCrPzvdcn2VCfNm2GE1sfCnKhY/URkaDMXR0h1Ea88QQtEktGoF5jbaMLPOAqNOJXU8mmAsfqIyEYom0dE3hNbuIAaCccgAuB16LJjpQEOVEQo5x/DLBYufaIoSBAGBUBwdfSGc6A/BF8yetGQ3a7Co2YnpbjN0RXJsPU0u/taJppBkKoNeXwTd3jC6PGGEhq+U5bTocMFsJ+pcRpgNaolTktRY/EQlTBAE+Ifi6PaG0e2NoN8fQUYAlAoZKm16zG20oc5l5JY9jcK/BqISMjJ80zsQRa8vgj5/BIlkdr4rq0mDOdNsqHbo4bLqOGZPZ8XiJypimYwAXzCG/kAU/f5s2Y8UvVGnQr3LhEqbDm67AXotF2caG/6lEBWReCINTyCK/kAUHn8U3sEY0pnsPIpGnQp1LiOqbHpU2vQ87JJEY/ETSSSdyY7PewPZgh8YjGFw+ALmMhlgM2sxq84Cp1UHl0ULvZZFT4XB4ieaBBlBQDCcgC8Yw2BkAD2e7OGVmeFZ0bVqBRwWHaZXm+Gy6GCv0EKl5Bg9TQwWP1GBpdMZ+ENx+IJx+IIx+IJx+IfiuSEbpUIOu1mDOdMscFRkS96gVUImK5IrldCUl1fxv/zyy3jooYeQSqWwadMm3HjjjYXKRVQSEsk0fEMnC94XzA7XjFzeSKWUw2bSYFadBTazBjazFrVVZoTD8c9/YaIJJLr4+/r68OCDD+K5556DWq3Gxo0bcdFFF6GpqamQ+YiKgiAIiMbT8A3FRm3Jj5wgBQA6jQI2sxZ1LiNsZi1sZg2MOtUZW/JybtmTxEQX/+7du7FkyRJYLNnrbq5cuRLbt2/Ht771rYKFI5JCIplGIBRHYCgBfyiOwFAcgVAC8WQ69xiTXgV7hRYzaytyJc+TpKhUiP5L7e/vh9PpzH3tcrmwf//+goQimgzpdAaBcCJX7IGhOPyhOCKxkxdCVynksJjUqK80wmLSwGbSwGrWQK1USJicKD+iiz+TyYx6C8YFc/sAAA7XSURBVCsIwrh3Tl10XjUyGcmu9U5lIpMR0O+PoNMTQld/CF2e7EefL5Ibi1cqZHDbDZjX5ECN05j9cBlhN2u507UAdFolTPrimSPI6TRJHUFSoou/qqoKe/bsyX3t8XjgcrnG9RqydBqyEi1+p9MEj2dI6hiilHJ24Oz5U+kM+vxR9HjD6BkIo3sggh5v9t9UOnu2qwyAy6pDjdOIxbNdqHUZUeMwwGXVffalBTOZSctfKsTkj4XTiBXJDu1S/vnL5TLY7ca8X0d08S9btgy//vWv4fP5oNPp8Prrr+PHP/5x3oGIvkgskUJ77xC6B7IF3+ONoHsgjH5/NHfIJADYzVq4HXrMmWZFjcOIWpcBbrsBGhWHaai8iS7+yspK3HHHHfj7v/97JJNJbNiwAfPmzStkNipzkVgS3QPZKYZ7BsLoGf58IBjLDdHIZTK4rDq47XosnOVEtd0At0OPKpseWjV3thJ9lryWjDVr1mDNmjWFykJlSBg+o/WzCn5k+gIge9KT265HY7UZVy6ZBotOCbc9O2fNZw7RENFZcZOIJkVGEOAbjGXH3QfCwyWf/Tx8ylE0WrUC1Q4D5jbahrfeDai26+Go0EEuz+5kLeUxWqJiwOKngkqlM+j3R0/uXB0eg+/xhXPTCQPZ4+DddgMWz6mE265HtcOAarsBFqOaR9EQTTAWP4kST6Szl/j7gh2sNrMG1XYDZtXVwO3QZ7fi7fqiOrSPqNyw+OlzhaLJUePu3cMlPxCM5R5z+g5Wt10P93DBcwcrUfHhUknDl/NLnCz24ePfewbCCEZOzkWjUsrhtunRVFuBL9ndua137mAlKi0s/jKSyQjwDEbR0hfC4daB3MlNPQNhxBIn56HRa5RwO/SY1+RAtd2Aakd2C95eoeUEY0RTAIt/ChKE7JWdOj1hdHlD6PKE0eXJbs0nUyd3sFYY1ai2G7BsbhWqHdmTm6rtepgN3MFKNJWx+EtcMJxAlyeETm+23Lu8IXR7w4jGT27BW4xq1DiNWFFfgxqHAefMdEInBy/lR1SmWPwlIhJLossbzn54wtmJxrxhDJ0yBm/QKlHrNGLpuVWocRhQ4zSi2mE446LcPA6eqLyx+IuMIAjwDsbQ0RdCR98QTvSH0NE/BF/w5ARXGrUCNQ4DFuRmkjSg1mHgEA0RjQmLX0KpdAY9AxF09A3lir6jP4RoPHsmq0wGuO0GzKq15GaRrHEaYDNzJysRicfinyTReAqdntDJgu8LocsbQiqdPdlJrZSjzmXERedUor7SiHqXCbVOA9ScSZKICozFPwFGpg1u7RlCa08QHX1D6PdHMXI+q1GnQkOlEVcsqkN9pRENlSZUWvW5uWiIiCYSiz9PqXQGXZ4wWnuCaOkJoq0niC5vODdtsKNCi4ZKE5bNrUJdpQkNlSbOR0NEkmLxj1M4lsTxrkF0vX8C+z/1oLUniMTwsfFGnQrT3WYsnOVEY7UZ09xmmDknDREVGRb/FxgYjOFwhx9HOwdxrGsQ3d4wgOwl0OpdRixfUI0Z1RVorDbDUcHrsxJR8RNd/Hv37sX999+PZDIJi8WCn/70p6ipqSlkNkn4gtmiP9wewOEOP7yD2cnI9BolmmorcNE5lZhZU4HF51VjKBiVOC0R0fiJLv7vfve7+M///E80NzfjmWeewU9+8hM89NBDhcw2KaLxFA63+/Fxqw8HW33oD2TL3KBVYladBV9ZXIfmeitqnIZRh1BqNUrwFCgiKkWiij+RSGDLli1obm4GAMyePRu///3vCxpsogiCgBP9IXzS6sMnLQM42jmIdEaARqVAc70FX76gFs312ePmeaw8EU1FoopfrVZj7dq1AIBMJoNt27bhiiuuKGiwQspkBBztDOCDT7348KgnN3xT5zLiygvrMHe6HTNrKzi1MBGVBZkgCMLnPeC1117D/fffP+q2xsZGPProo0gkEti6dSsGBwfxm9/8BipV8Uz6lc4I+PiYB3/5sAvvHuhFMJyASinHgllOLJnrxgXNLtgrdFLHJCKadF9Y/GcTDodx2223wWKx4D/+4z+gVo//sMWBgRAyGVHf/jONDOO8c6AXfzvYh8FQAjqNAvNnOLBwlhPnTrdBpynMgUylPNFZKWcHmF9qzC8duVwGu92Y9+vktXO3oaEBP/zhDyGXSztEEo2n8LeDfXjrgy50ekJQyGWYN8OOpedWYX6THSolpz0gIhohqvgPHjyIN998E01NTbj++usBAC6XC//1X/9V0HBfpNsbxpsfdOKdT3oRS6RRX2nETStnY3Gz64ypiImIKEtU8Z9zzjk4cuRIobOMWXvvEF55pw0fHPFAoZDjwjkurFhYg0a3mSdQERF9gZI6c7fTE8Izfz6O/ccHoNMosGpZA65YVMdpEYiIxqEkij8YSeDFXa3480dd0KmVWLe8EV9eWAu9tiTiExEVlaJuTkEQ8O7BPjz+xqeIxtP48sJarL1kOsfviYjyULTFH4om8T/bD2PvEQ9m1Jjxf66egxqHQepYREQlryiLv8sTwq+f/Ri+oRi+etkMrLywnhcpISIqkKIr/sPtfvzfZ/dDo1Lg7q8vxIyaCqkjERFNKUVV/Ifb/fjl0/vgsOjwnb+bD5tZK3UkIqIpp2iKv9sbxq+e3Q+HRYe7bjgfZgMP0SQimghFMR1lNJ7Cr5/7GBqlHN/5u/ksfSKiCVQUxf/cX1rQ74vgtuvmcniHiGiCSV78J/pD2LG3EysW1mB2vVXqOEREU57kxf/K7jZoNQpcv7xR6ihERGVB0uIfDCew50g/LltQA4OWZ+MSEU0GSYt///EBCAJwyTy3lDGIiMqKpMV/tDMAt10Pt51TMRARTZa8i//gwYOYO3euqOd29A5hZi3PzCUimkx5FX80GsWPf/xjJJNJUc+PxFOoduR//UgiIhq7vIr/gQcewKZNm0Q/32bWYHadJZ8IREQ0TqKnbHjzzTcRi8Vw1VVXif7mW2+8AJmMIPr5REQ0fl9Y/K+99hruv//+Ubc1NjYiFArh0Ucfzeubl/pUy6Wcv5SzA8wvNeaXRqFyywRBGPcm99NPP43f/va3MBiyR+McPnwYzc3NePzxx2E0csyeiKiYiSr+082ePRtHjhwpRB4iIppgkk/ZQEREk6sgW/xERFQ6uMVPRFRmWPxERGWGxU9EVGZY/EREZYbFT0RUZlj8RERlZkKK/+WXX8Y111yDK6+8Eo8//vgZ9x86dAjr1q3DypUr8W//9m9IpVIAgO7ubtx444246qqrcNtttyEcDk9EvM8lNvvevXuxYcMGrF27Fps2bUJXV9dkRwcgPv+IfKbZLgSx+fv7+3HzzTfjuuuuw8aNG9HZ2TnZ0QGIz9/Z2Ykbb7wRa9euxU033VS0fz8j7rrrLjz33HO5r4th2QXE5y+G5Vds9hHjWnaFAuvt7RVWrFgh+P1+IRwOC2vWrBGOHj066jGrVq0SPvzwQ0EQBOF73/ue8PjjjwuCIAg333yz8MorrwiCIAjbtm0Tfv7znxc63oRlX7FihXDo0CFBEATh6aefFm699dZJzS4I+eUXBEGIRCLCxo0bhVmzZk1q7hH55N+0aZPwxBNPCIIgCE888YSwZcuWyQ0v5Jf/zjvvzH3+u9/9TvjXf/3XyQ0vjC1/b2+vcMsttwjz5s0Tnn322dztUi+7I9nE5pd6+c0nuyCMf9kt+Bb/7t27sWTJElgsFuj1eqxcuRLbt2/P3d/V1YVYLIYFCxYAANatW4ft27cjmUzi/fffx8qVK0fdPpnEZk8kEtiyZQuam5sBZKew6OnpmdTs+eQfke802/kSm9/n8+Hw4cPYuHEjAGD9+vW4/fbbSyY/AGQyGYRCIQDZ61xotdqiyw9kt0ovv/xyXH311bnbimHZBcTnL4blV2z2EeNddkVPy3w2/f39cDqdua9dLhf2799/1vudTif6+vrg9/thNBqhVCpH3T6ZxGZXq9VYu3YtgOwCvG3bNlxxxRWTF/ws+caaHyjMNNv5Epv/xIkTqK6uxgMPPIA9e/bA6XTi3//93yc1+2flG8/Pf8uWLdi4cSMee+wxJJNJPPnkk5MX/Cz5Ts8PAJs3bwaQHRoZUQzLLiA+fzEsv2KzA+KW3YJv8WcyGchkJ6cOFQRh1Ndnu//0xwE44+uJJjb7iEQigTvvvBOpVAq33HLL5IQ+hdj8Ho8HDz30kCRleSqx+VOpFA4ePIglS5bg2WefxeWXX46tW7dOavbPyzeW+++++2786Ec/wq5du/DDH/4Q3/rWtyBM8mwqX5T/bIph2QXE5x8h5fIrNrvYZbfgxV9VVQWPxzMqmMvlOuv9Xq8XLpcLNpsNQ0NDSKfTn/m8ySA2OwCEw2Fs3rwZqVQKDz30EFQq1eQFP0u+seb/85//jEAgkNu5CABr167NDT1MFrH5nU4nDAYDVqxYAQBYvXr1GVtLk0Fsfp/Ph5aWltxW5sqVK+HxeOD3+ycv/GfkG+syWAzLLiA+PyD98is2u9hlt+DFv2zZMrzzzjvw+XyIRqN4/fXXsXz58tz9NTU10Gg0ubcrL774IpYvXw6VSoVFixbh1VdfBQC88MILo543GcRmB4Dvfve7aGhowC9/+Uuo1epJzZ1v/q9+9av405/+hBdffBEvvvhi7r7JvraC2Pz19fWoqqrCzp07AQBvvfUWzj333EnNnk9+q9UKjUaDPXv2AMi+lTcYDLDZbEWV/2yKYdkFxOcHpF9+xWYXveyK3g39OV566SVh1apVwpVXXik8/PDDgiAIwubNm4X9+/cLgiAIhw4dEtavXy+sXLlS+M53viPE43FBEAShs7NT+MY3viFcffXVwje/+U0hEAhMRLyCZz9w4IAwa9Ys4ZprrhGuvfZa4dprrxU2b9486dnF5j+dVEf1CIL4/MePHxe+8Y1vCKtWrRK+9rWvCa2trSWVf9++fcKGDRuE1atXC1/72teEAwcOFGX+EXffffeoI0uKYdkVBHH5i2X5FfuzP9VYl11Oy0xEVGZ45i4RUZlh8RMRlRkWPxFRmWHxExGVGRY/EVGZYfETEZUZFj8RUZlh8RMRlZn/DwIz7JP7oHIwAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD7CAYAAABpJS8eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3hj133m8S/AXgASJMFep/BwRtOrike9usuy5cSO62N7vbYTJ5usn3htP85m19k0x1mnORvHkWK5xrZs2SqRJY00KpZGZWY4mnKmiL333obA/gHMiJalGRIAeQHi/TzPPA8A3gu8ujr84fLcc89xBYNBRERk9XM7HUBERFaGCr6ISJJQwRcRSRIq+CIiSUIFX0QkSaQ68JkZwG6gC5h34PNFRBJRClAGPA/MRPIGThT83cCTDnyuiMhqsA94KpIdnSj4XQBDQxMEAvF9D0BhYS4DA+NOx7goZYwNZYydRMiZiBndbhc+Xw6Ea2gknCj48wCBQDDuCz6gjDGijLGRCBkhMXImcMaIu8J10VZEJEmo4IuIJAkVfBGRJKGCLyKSJFTwRUSShAq+iEiScKzg//PPXnbqo0VEkpJjBf+VzlECWnxFRGTFLPrGK2OMF3gGeKu1ttkY8wng94Ag8ALwX6y1s4t9vyAwPTNPdqYT936JiCSfRZ3hG2P2Epq7oT78vB7478CVwJbw+3x6qR8+MT231F1ERCRCi+3S+Tihgt4Zfj4DfMpaO2qtDQJHgeqlfnj34ORSdxERkQgtqj/FWvsxAGPM+ectQEv4NT/wGeDDS/3wlu4xNq8pXOpuIiISgag60I0xFcCDwL9aax9fyr5+Xxbdw1P4/Z5oIiy7eM8Hyhgryhg7iZAzGTNGXPCNMQ3AfwJft9Z+dan7VxfncuBwJ13dI6SmxOftAH6/h76+MadjXJQyxoYyxk4i5EzEjG63i8LC3KjeM6JKa4zxAA8DX4yk2ANcVlvIxPQ5TrQMRbK7iIgsUaSn1h8DSoA/NMYcDv/706W8QUNNPp7sNB4/1BFhBBERWYoldelYa2vDD78W/hf5B6e4uWZbBb94ppm23nGqiqP7U0VERC7O0c7zW/ZUkZWRyg8fO01Qd92KiCwrRwt+TmYa77p6Dceah3j6aLeTUUREVj3Hh8dct6OC+so87vmlpb03vhcVFhFJZI4XfLfLxSffuYmsjFS+/uNGBkennY4kIrIqOV7wAfJzM/i9O7YwPjXHX33vEENjM05HEhFZdeKi4APUlXn5gzu3Mjw+y599+wXa+9S9IyISS3FT8AHWV+bzx+/fwblAkP9zz4u8cLLX6UgiIqtGXBV8gJpSD1/64C5KC3L4x5++zN0PnWRmdt7pWCIiCS/uCj5AgTeTz//ODm67vJonDnfyxW8+x+Ez/U7HEhFJaHFZ8CF0J+57rl3HH79/B5npKXz9R4383Y8b6RqYcDqaiEhCituCf159VT5f/shu7rhmDcdbhvjSNw9y90MnNZJHRGSJEmJB2dQUN2+5opZ9W8r5+TPNPH6og6ePdnHV5jJu21tNsS/b6YgiInEvIQr+ed6cdN5/Uz037a7ioWdbeOpoFweOdLK7oZgbd1axtsKLy+VyOqaISFxKqIJ/XnF+Fh+8tYG3v6mOh59v44nDHRw80Ut1cS7X76xk78YSMtJSnI4pIhJXErLgn5efm8Gd163j7VfV8uyxHh57qZ27HjzJDx47ze6GEt60uUxn/SIiYQld8M/LTE/l2u0VXLOtnNPtIzx5pJNnj3dz4EgnJb4srtxUyp6NJZSor19EktiiC74xxgs8A7zVWttsjLkR+BsgC/iBtfaLy5Rx0VwuF/VV+dRX5fO+m+p5wfbydGMX9z7ZxL1PNlFT6mHvhhJ2NxRTmJfpdFwRkRW1qIJvjNkL/AtQH36eBXwLuAZoA+43xtxmrX1wuYIuVVZGKvu2lLNvSzkDI9M8f7KXgyd6+OH+M/xw/xlqSz1sW1fEtvVFVBXnqttHRFa9xZ7hfxz4NPDt8PM9wGlrbROAMeYe4D1A3BT8hQrzMrl1bzW37q2md2iS50/2cvhMPz97qomfPtVEgTeDrWtDxb+h2kdaatzfniAismSLKvjW2o8BGGPOv1QOdC3YpAuojGmyZVLsy+YtV9TylitqGZ2Y5cjZfg6f7ufpl7vYf6iDjLQUNtUVsHVdEdfvTXc6rohIzER60dYNLFyE1gUElvIGhYXOL1ru98Pa2kLedYNhdm6exjP9HDzWzcHj3bx4qo9/e/AE9VU+ttX72Vbvx9QUxOXZv9/vcTrCJSljbCRCRkiMnMmYMdKC3w6ULXheCnQu5Q0GBsYJBOJr4fKaomxqrlnDu6+uo7VnnNOdozx3rIv/ePQ0P3jkFBlpKZjqfDbWFrCx1kdFUY7jff9+v4e+vjFHM1yKMsZGImSExMiZiBndblfUJ8qRFvznAGOMWQc0Ae8jdBF3VXC5XNSUeti1uZwbd1QwOX2Ok61DHG8e5FjzEI1nTwOQl5vOxppQ8d9YW4DPk+FwchGRNxZRwbfWThtjPgz8GMgEHgB+FMNccSU7M5Ud9X521PsBGBiZDhf/QV5uGuBXx7oBqCjKoaHah6kODQ315ugagIjEjyUVfGtt7YLHjwJbYx0oERTmZbJvazn7tpYTCAZp7x3nePMQx5oHeepoF4++1A5AeVEOpiofU52PqfaRpy8AEXHQqrjT1klul4vqEg/VJR5u3VvNufkALd1j2LZhTrYO8cyxbvYf6gCgrDAbU5VPfXU+psqnLiARWVEq+DGWmuJmbUUeayvyePPlNcwHArT2jHOydQjbOsxzJ3p4/HDo+naJL+vC2b+pyqfAq7t/RWT5qOAvsxS3m7oyL3VlXm7bW0MgEKS1d4yTLcOcahvmhZN9HDgSuqWhOD8rfPafT0O1T9M/iEhMqeCvMLfbRW2pl9pSL7furSYQCNLWO45tG8a2DnHoVB9PNYa+AIryMsPXAEIXgovyMh0fBioiiUsF32Fud2gIaE2ph5t3V124CGzbhjnVOsyRswM8/XJoFFCBNwNT5aOhOp+GGh/+/CyH04tIIlHBjzMLLwLftCv0BdDZP4FtDf0FsHAYaKE3k23GT11JLg3VPl0DEJGLUsGPc26Xi0p/LpX+XG7YWUkw/AVwomWIk63DHDzWzaPPzwFQ7MuiodpHQ00+G6p95OVqFJCIvMqxgj81O8+5+SVNv7PigoOTTM6cczrGb8j3ZnLF5jKu2FxGZlY6Z1oGOdU+zOm2YQ6e6OHAkfAooIIs1lfmh28E85Gd6cz/7ng9jgstV8aMtFTicPolSVKOFfwjZ/qZnJ5z6uMXxZObydj4tNMxLup8Rk9WGjvq/WxbX8Tg6Azdg5P0DEzy7LFunmrswuWCorwsKvw5lBdlU+hduQvAiXQcY233hhJSM/SHtMQHtcRVxu1yUZSXSVFeJpvqCggEgvQNT9HZP0Fn/wSHT/dz+DRkpKVQVpRNRVEO5UU5ZKkoiax6+i1f5dxuFyUF2ZQUZLO93s/07Dk6+ycvfAE0d4Vm4/N5MigvyqHCn0NxfhZut4Z/iqw2KvhJJjM9lTXlXtaUewkGgwyOzYSKf99EaEK4pkHS09xU+XOpKsmlvCiH1BR1QousBir4SczlclHozaTQm8nmNYXMnQvQ2T9BW+84bX3jnO0cJcXtorwoh9oyD5X+3LhcAEZEFkcFXy5IS3VfuAksEAjSMzRJW884LT3jtPWOk5riosKfS12Zhwp/DiluFX+RRKKCL6/L7XZRVphDWWEOuzcU0zs0RVPXGC3doX/paW7WlHtZV5GnG75EEoQKvlySy/Xqhd89G4rpGpjkbMcIp1pHONkyTIE3g/qqfNaUe9XfLxLHoir4xpjfAT4ffvqgtfaPoo8k8cztdlHhD43mmZmdp6lrlNPtIzx7rIdDp/pZX5VHQ3U+2ZlpTkcVkdeIuOAbY7KBrwP1wDDwtDHmRmvtI7EKJ/EtIz2FhprQTJ69Q1OcaBni5VcGOd40yLrKPDavKSQnS4VfJF5Ec4afAriBHGACSAOmYhFKEsvCLp+xyVmONQ1ypn2EM+2jrK/K46qtFU5HFBFCBTsi1tox4EvASaAdaAaeiU0sSVSe7HQuv6yUd169hrUVXk61DfOdh05iW4cJBINOxxNJaq5ghL+ExpgtwN3ALcAIcA9w0Fr7V5fYtRZoeuKldqbifEItid7AyBQHDnXQ2T9BSUE2N+2pTqpZPHeYYooLsp2OIatLHaET7CWLpkvnFuBRa20vgDHmLuBTwKUKPgDjEzOaPC0G4j1jeoqLd16zlsbTfTx3vIcf/PIUey8rYU251+lov2a5juPk5Ax98/MxeS+/30Nf31hM3ms5JULORMzodrsoLMyN6j2jKfhHgL80xuQAk8DbgOejSiOrksvlYk25l2JfFk81dvFUYxejE7NsXVeoJRtFVlA0ffgPA98DXgQaCV20/fMY5ZJVKDcrjZt3V7GuIo/GswP86lgPkXYpisjSRTUO31r7F8BfxCiLJAG328UVm0rIykjh6CuDpKW42dXg15m+yArQnbay4lwuF9vWF3FuPsiJliHyctKpr853OpbIqudYwd9QVxD3SxympaUyNxffI4kSOeOWej//et9xnj/ZyxVbyqgsju6CVDSyMtOZX4bjmJGmcyqJH461xhNNgxqlEwOJnnHL2kKau0b59oMnue3yase6dq7ZWY1L0wDJKqcmLo7KTE9hR72f/pFpXukcdTqOyKqmgi+OW1vhpSgvkxdtH7NzsRmzLiK/SQVfHOdyudizsYTp2Xkazw44HUdk1VLBl7hQlJfJuso8TrQMMTw+43QckVVJBV/ixo76ItJS3Bw80asbskSWgQq+xI3M9FS2rS+ie2BSF3BFloEKvsQVU51PsS+Lgyd6437YrkiiUcGXuOJyubhyUymBQFBz7YjEmAq+xB1vTjo76v109E1wrGnQ6Tgiq4YKvsSlhpp8aks9vHSqn9ae+J63XCRRqOBLXHK5XFy5uZSivEwOHO6is3/C6UgiCU8FX+JWaoqbG3ZVkpebzv6XOmjrHXc6kkhCU8GXuJaRlsJNu6vweTJ4/FAHp9qGnY4kkrCimi3TGPM24MtADvCwtfazMUklskBmeqjoP3G4k2eP9TA0NsPuhmLcbi2aIrIUEZ/hG2PWAN8A3glsAXYYY26LVTCRhdJS3Vy/s4LL6nzY1mEeeq6VsclZp2OJJJRounRuB35grW231s4B7wWei00skd/kdrnYaYq5emsZIxOz/OKZFs52jGisvsgiRdOlsw6YNcbcB1QDvwC+FJNUIhdRW+alKC+LJxu7ePpoN81dY1x+WQk5WWlORxOJa65Iz46MMf8CXAlcC4wD9wHfsdbedYlda4Gmtp5Rzs3rzCyRpKa4yUhLcTrGBYFAkEdfaOMnj5/G5XLxjqvXcsOuKlJTlv6Ha1ZmKp7s9GVIKRJzdUBzJDtGc4bfDTxire0DMMbcC+wB7lrMzo2n+uJ+rpREXz4w1nZvKIloGUC/30NfX+xvnkoBbt5Zwba1BXz3l6f44SOnePpwB79143ouqy1Y0nt5srOXJWMsLddxjLVEyJmIGd1uF4WF0a37HE0f/i+AW4wx+caYFOA24MWo0ohEoDg/i8++ewu/e8dmZubm+er3D/PV7x+ipTu+f6FFVlrEBd9a+xzwl8BTwHGgBfi3GOUSWRKXy8X29X6+8vG9/Nb162jpGed/3vU83/jZy/QMTTodTyQuRDUO31r7LeBbMcoiErW01BRu3lPNm7aU89DBVh5+vpUXbR9Xby3nrVfW4vNkOB1RxDFRFXyReJWdmcq7rl7DDTsquO/pZg4c6eTJxk6u2lzGbXurKfZlOx1RZMWp4MuqlpebwQduMdy6t5qHnmvlycYuDhzpZO+GEt58eQ2VxdFdBBNJJCr4khT8+Vl84BbD266q5eHn29h/qINnj/ewbV0Rb7miBr/f43REkWWngi9JJT83gzuvW8ebL6/h0RfbeeSFNr7y7X4aDrzCtdvK2Wn8pLg1p6CsTir4kpRys9J4x5vquGVPFU81drH/UCff+NkxCrwZ3LCzkqu3lpOTqTt3ZXVRwZeklpmeyo27qrjzlg089mwzDz/fyn/sP8t9TzVz1eZSbtxVRWmBLvDK6qCCLwKkuF1sW1/EtvVFtPaM8cgL7Rw40sljL3VwWa2Pa7dXsm19obp7JKGp4Iu8RnWJh4++ZQN3XLuWA0c6eeJwB/9w71F8ngyu2VrO1dvKyc/VeH5JPCr4Im8gLyedt11Zy5svr6bxzAD7D3Xw06ea+PkzzWxfX8R1OyppqM7H5dJCLJIYVPBFLiHF7WZ7vZ/t9X56hiZ5/FAHTzV28YLto6wwm2u3V3DVplKydZFX4pwKvsgSlPiyee/167l93xqeP9nL/kMdfO+R0/z4ibNcvrGE67ZXUlOqMf0Sn1TwRSKQnpbCVZvLuGpzGc3do+x/qYNnj/Vw4EgXa8q9XLe9gj0biklLjZ/1A0RU8EWiVFvq5SNv9nLn9et45mg3+w918K/3n+D7j55m35Zyrt1errl7JC6o4IvESE5mGjftruLGXZWcbBli/6EOHn6+jYcOtrKproDrtlewZZ2GdopzIl7iMAq1QNMr7UOcmw+s9GcvSVpaKnNz55yOcVErmTEjLYVgYOntJTs7g8nJmWVIFDvLlXFkfIZnXu7m6cYuRiZm8XkyuHJzKVduKsObs7QlFRPhOEJi5HQqY0ZaKqmL/L6/yIpXES9x6FjBv//Js1riMAaUMTaWO2MgEKS9bxzbOkzXwCQuF9SUethYW0BRXmZcZIyVRMjpVMbdG0rIyVhcx8pyFPyYdOkYY/4aKLLWfjgW7yey2rjdLqpLPFSXeBidmMW2DnOmfYTmrjFKfFlsqPVRVZyrMf2yrKIu+MaYG4APAfdHH0dk9fPmpLN7QzFb1xdypm2EEy1DPH6oE092GhtqfawtzyNtsX/3iyxBVAXfGFMAfAX4M2BrTBKJJIn01BQ21hXQUOOjpWeM481DHDzey+HT/TRU+9hQ6yMjTcM6JXaiPcP/Z+ALQFUMsogkJbfbRV2Zl9pSD73DUxxvGqLx7AAnWoZoqPGxscZHRroKv0Qv4oJvjPkY0GatfdQY8+Gl7p+bk0FKAtyU4sld3AU1JyljbMRDRq8ni3VVBfQPT/HCiR6Onh3gVOswOxuK2bwuPS4yLkYi5HQiY3Z2Bv4lTLcd65XYIh6lY4z5JVAGnAMKgFzgbmvtH1xi11o0SidmlDE24jXj4Og0L53qp7N/Ak92Ojvqi6guie+Lu/F6LBfSKJ0lstbedP5x+Az/2kUUexFZggJvJjfuqqSzf4JDp/t54nAnVcW57NlYrBW5ZMk0FEAkAZQX5XDnDfXsMH46+ye476lmWnvGLr2jyAIxGYdvrb0LuCsW7yUir8/tdrGproCaklwOHOni8UOdXFbnY0e9P667eCR+6AxfJMF4stO5dW8V9VX5HGsa4lfHenDgjnlJQJo8TSQBpbjd7N1YTGZ6Co1nB0hPdbOrodjpWBLnVPBFEpTLFVp4fWZunuPNQ1T6cykt1DTM8sbUpSOS4HYaP7lZaRw63e90FIlzKvgiCS41xc26yjz6hqfi/t4WcZYKvsgq4PNkADA1M+9wEolnKvgiq8D0bKjQp7g1PFPemGMXbTfUFWjFqxhYyYypbjeR1BOtgBQbF8v47LEeCrwZ3LC7CrfDY/IT/Vgup4w0Z8fJOPbpJ5oG476/UXOC/LqlzAOykL8gm775+O5qSOSMzx3v4VTbMO+5di2eOJhuIZGP5WqnLh2RBHamY4S7HzrJ2nIvN+/RLOVycRqHL5KgTjQP8vWfHCU/J53/+s5NpLh1/iYXp4IvkmACwSAP/KqFe598hdKCbP7ot7ZfGKUjcjEq+CIJpGtggn9/yGLbhtm7sYQP3WrITNevsSyOWopIApiZnee7/3mS/3j0FOmpKXz4tgb2bSnTLJmyJCr4InFsPhDg6aPd3PvkK4yMz7JnQzG/fcN68nLVhSNLp4IvEofmAwEOHu/lF79qpmtgkrUVXv7Hh/fgz013OpoksKgKvjHmy8Cd4af3W2s/F30kkeQ1d26eXx3r4YFftdA7PEWlP4dP376JHfV+iou9v7bGqchSRVzwjTE3AjcD24Eg8JAx5nZr7b2xCieSLIbGZth/qIMnDncwNjlHTYmHz7xrM9vWFzl+56ysHtGc4XcBf2itnQUwxpwAqmOSSiRJnO0c4ZEX2nnhZC+BQJCt64q4cVclG2p8uiArMRdxwbfWHjv/2BiznlDXzlWxCCWyms2dC/Ci7eWXL7TT1DVKVkYK1++o5IadFRT7tICJLB9XtGthGmMuA+4HvmytvXsRu9QCTU+81M7UTHxPTCa/bocpprhABSlSTZ0j/PJgK4+/2MbY5BzlRTm8bd8art9VRXYczIEjCaMOaI5kx2gv2l4F/Bj4fWvt95ey7/jEjCZPi4GVzDg5ORPRhFN+vyfuLzYuV8bJ6TmeO97DgcYuWrrHSE1xsX29n31by9hYW4Db5WJibJqJsUv/P0yE4wiJkTMRM7rdLgoLc6N6z2gu2lYBPwXea619LKoUIqtIIBjEtgzx5NEuXrR9zJ0LUOnP5bdvXM8Vl5WSm6WzeXFGNGf4fwRkAn9jjDn/2jestd+IOpVIggkGg7T2jPPc8R6eO9HD0NgM2RmpvGlLGVdvKae6JFcXYcVx0Vy0/Szw2RhmEUk4PUOToSJ/vIeugUlS3C42rynkzuvWsX19EelpKU5HFLlAd9qKLNHI+AwHT/Ty7PEemrpGAaivyuemXVXsaihWl43ELS1xeBFa4vDXudwuJiIYWRUcnGQyzkdkXSrj0NgMjWf6OXymn7MdIwSDUOnP4R376thp/Pg8mRe2jeQYLTVjRloqqZr+XpZISxxehEbpxEaiZhybnKWlZ5zW7jH6R0I/y89NZ/OaQmrLPOSHJzA70z4CjKxoxt0bSkiNYLlJSW5qMSILDI/P0No9RkvPOENjoUWuC70ZbF9fRHWJhzxNXiYJTAVfklogEKR3aIrGs4O80jHM6GTor05/fia7jJ/qEg+52eqTl9VBBV+SzvTsOTr6Jmjvm6Czf4K5cwHcbhclviwaanxUl3jIztSvhqw+atWy6gWDQYbHZ2jvnaC9b5y+4VA/eFZGCjWlHir9OayvKWAmzq8piURLBV9WpenZc3QPTNI5MEln/wST06HRLYXeTLauK6TSn0uBN+PCzVDpqSnMoIIvq5sKvqwK8/MBeoen6OyfpGtggsHR0AXXtFQ3ZYXZVKzLpaIoR101ktTU+iUhBYNBhsZm6ByYpKt/gt6hKeYDQVwuKM7PYtv6IsoKsyn0ZuJ2a0oDEVDBlwQRDAYZmZilZ3CKnsFJugcnmZ4NzdyZl5tOfVU+ZYXZlBRkk6Y7kkRelwq+xKXzZ/A9g1P0DE3SOzR1ocBnZaRQXpRDWWE2ZYXZmkteZJFU8CUuBAJBBsdm6BmcpGdoit6hSWbnQlNv5GSmUl6UQ0lBFiW+bDzZaZp5UiQCKvjiiLlzAQZGpukbnqJnaIq+oSnmwnMrebLTqC7xUOLLoqQgW5ORicSICr4su2AwyPjUHH1DU/QOT9E/PMXg2AznV9fMy0mnrtxDSUE2Jb5sjaQRWSb6zZKYmw8EGBydoW9oir7hKfpHppkIj4NPTXFRlJfFproC/L4s/HlZZKRrzniRlRDtmrbvA74IpAF/a639h5ikkoQRDAaZmD7HwMg0/SNT9A5NMzA6TSAQOn3PzUqj3J+LLzcdvy8LX26GhkmKOCSaNW0rgK8AO4EZ4BljzH5r7fFYhZP4Mz07z8DINAMjoTP3/pHpC6Nn3C4XhXkZNFTn48/Pwp+fRXZmakJMjyySDKI5w78ReMxaOwhgjPkR8G7gT2MRTJx3bj7AwOh06Ox9OHTmPjb56vQDeTnpVBTlUJiXSVF+Jj5PBilujYEXiVfRFPxyoGvB8y5gT3RxxCmBQGiCsfNn7QMj0wyPv3phNTszlaK8TNZX5lGUl0VBXgbpqep7F0kk0RR8NxBc8NwFLHrNwr2byy/088rKCgZDc8A3dY7Q3DVKU+cIrd1jzJ4L/e/LzkxlTXkeb9paTm1ZHnXlXvLCqztJfMjKTMWTHb+Lsfj9HqcjXFIyZoym4LcD+xY8LwU6F7uza34eV5wXfL/fQ1/fmNMxLmoxGYfHZ2jqGqWpa4ymrlGau0YvjJpJT3VTXerh2u0V1JZ5WFPmxZ+f9Zs3Ns3PL2tGpyVaxumJeaYnZhxO9PoS7VjGq9dmdLtdFBbmRvWe0RT8R4A/Mcb4gQngDuATUaWRqE1On6Ole5RXukZp7hrjla7RC0v1uV0uKvw57DTF1JV5qCvzUuHPUb+7SJKIuOBbazuMMV8A9gPpwDettQdjlkwuae5cgFOtQ7x0vDt8Bj9K98DkhX62Yl8W9VX51JV5qSvzUF3iISNN/e4iySqqcfjW2u8C341RFrmIQDBI98DkhcLe1DVKa8848+FuMW9OOmvKvFy+sYS6Mi+1ZV5NSSAiv0Z32sah8zNFNnWFumaaOkdp6RljaibUj56RnkJdqYebd1extaGEopw0fJ4MTSgmIhelgh8HJqbnXr2o2hk6ex+ZmAUgxe2iqjiXyy8rpa7US125l7KC7At3qybCxScRiQ8q+CtsPhCgvXeCMx0jnO0coalzlJ6hqQs/Ly3IZmNtAWvKvdSVeakqziFN491FJAZU8JfZ+NQcr3SOcKZjhDPtI7zSNXphnvf83PTQePctZaF+91KPFvMQkWWjgh9DwWCQ7sFJzrSHC3zHCF0Dk0BoSGR1SS77tpSzriKPdRV5FHjV7y4iK0cFPwrn5gM0d41xsnUo1EXTMXLhhqaczFTWVeRx5aZS1lXkUVvq1TTAIuIoFfwlmA8EaO4e42TLELZ1mNPtI8zMhUbOlBflsNP4WRs+ey8tyNbZu4jEFRX8i5gPBGnuHuVkyzAnW4c41TZ8YSrgiqIc3rS5jIaafEy1T2PeRSTuqeAvEAwG6eyf4FjTICdbhzndPnyhi6a0IIDbuQoAAAoUSURBVJvLLyuloTqfhmof3pz4nbhKROT1JH3Bn5o5x/HmIY6+MsDLTQMMjobmnSnOz+KqrRXUFudgqn34PJotUkQSW1IW/P7hKQ6d7ufQ6T5Ot48wHwiSmZ7CxtoC3nZlAZvqCinMy9RNTSKyqiRFwQ8Gg7T1jvPSqT4One6nrXccCPXD37ynii1rCllbkUdqimaNFJHVa1UX/K6BCZ473sPBE710D07iAtZV5nHndevYXl9EiS/b6YgiIitm1RX80clZfvVyN8+83E1b7zguwFTnc/OeKnas9+tiq4gkrVVR8AOBIC83DfJkYyeHT/czHwhSV+blt29Yz66GYl1wFREhwQv+1Mw5nmzs4pEX2ugfmSY3K40bdlayb0sZFf7olgITEVltIi74xpirgK8RWu1qAPiotbYlVsEuZmhshv882MqBI51Mz86zvjKPd1+7lh31fl14FRF5A9Gc4X8HeLu1ttEY81Hg68A7YhPr9Q2Pz/DAsy08cbiT+fkgezYUc9PuKurKvMv5sSIiq0JEBd8YkwF80VrbGH6pEfjdmKV6jdm5eR58rpUHn23h3HyQKzeV8tarainOz1qujxQRWXUiKvjW2hngHgBjjBv4E+CnsYv1qpdO9fG9R04zMDrNroZi7rhmjYZTiohEwBUMBi+6gTHmPYT66hc6aa290RiTDtwN+IC3WWvnFvGZtUDTpTYan5rj/93byP4X26kt8/KJd25m87qiRby9iMiqVgc0R7LjJQv+GzHG5AL3Ebpg+zvhs/7FqAWaBgbGCQRe/7Obu0f5+58cZXhslrdeWcNbr6x15GJsIkytoIyxoYyxkwg5EzGj2+2isDAXoij40Vy0vQc4A3zSWhuI4n1+zcETPXzr/hPkZqfx+Q/sYG15XqzeWkQkqUV60XY7oRE5x4GXjDEAndbaN0cT5onDHdz9kGVdZR6fuX2z7ooVEYmhSC/aHgJiupzT00e7uPshy+Y1hXzmXZtIS9VygCIisRQXdymdahvmrgdPsqHGp2IvIrJMHC/4E9Nz/NPPXqYoL5NP3a5iLyKyXBwv+N9/9DRjE3N88h2byMnUurAiIsvF0YLf0j3G00e7uWVvFTWlHiejiIiseo4W/PuebiInM5W3XF7jZAwRkaTgWMEfHp/h8Jl+rtlWQba6ckRElp1jBf/ImQGCQbh6a5lTEUREkopjBf9EyyCV/lyKNRGaiMiKcKzgt/SMs7HW59THi4gkHccK/vx8gNoyjcwREVkpjo7S8edpARMRkZXiaMEv8GY6+fEiIknFsYLvyU4nT7NhioisGMcK/ufetx23O6YTboqIyEU4VvAz0jRJmojISnJ88jQREVkZKvgiIkki6oJvjNlujFnsAuYiIuKQqAq+MSYb+DtAw21EROJctGf4XwX+NhZBRERkebmCwWBEOxpj3g7cYa39kDEmaK1d7BjLWqApog8VEZE6oDmSHVMvtYEx5j3A117z8knAC9wYwWemAAwNTRAIRPZls1IKC3MZGBh3OsZFKWNsKGPsJELORMzodrvw+XIgXEMjEdEZvjHmY8DngbHwS1uBI8A+a+3YG+4Y8ibgySV/qIiIAOwDnopkx4i7dBZaYpdOBrAb6ALmo/5wEZHkkAKUAc8DEY2MvGSXzjKYIcJvJxGRJHc2mp1jcoYvIiLxT3faiogkCRV8EZEkoYIvIpIkVPBFRJKECr6ISJJQwRcRSRIxGYdvjHkf8EUgDfhba+0/vObn24BvEpqO4QDwSWvtOWNMNXAPUAxY4P3W2nFjTD7wHWAN0Afcaa3tdijjVYSmlkgHBoCPWmtbjDHXAD8B2sJvccha+5FoMkaZ80PAnwM94U3vt9Z+4Y2O8UpnBAqAhxdslgf4rbW5y3EsL5VxwXb/Djxmrb0r/Dxu2uRFMq5Ym4wi44q1x0hzGmOKiaM2aYx5B/A/AReh+cY+Yq0dimWbjMV8+BXAVwhNmbAN+IQxZuNrNrsH+Iy1tj78H/Px8Ov/CPyjtbYBeAH4Uvj1/w08aa3dAPwL8H8dzPgd4GPW2m3hx18Pv74L+Gtr7bbwv1gU+2hy7gL+24I8Xwi//kbHeEUzWmt7z2cDdhCa/OkTC7LH7FguJqMxptwY83Pg3a/ZPW7a5EUyrkibjDLjirTHaHLGU5s0xniBfwLeYq3dCjQCfxL+cczaZCy6dG4k9I05aK2dAH7EgoNqjKkBsqy1z4Zfugt4jzEmDbg6vP2F18OP30KoIQN8D7gtvP1KZ8wAvmitbQy/3ghUhx/vBm42xjQaY+4zxlRFkS+qnAvyfMgYc9QYc48xxneJY+xExvM+Akxaa7+7IHssj+VFM4a9H/gZ8MMF2eOmTV4k40q2yYgyLsiyEu0x2pznOd0m04BPW2s7ws8bgepYt8lYFPxyQvPinNcFVC7i50XAqLX23Ovsd2Gf8M9HAf9KZ7TWzlhr7wEwxrgJfeP+NLzNMPB31totwAPA96PIF1XOBY//F7CF0J+hf8/Fj7ETGTHGpABfAP54wTaxPpaXyoi19q+std98zX7x1CZfN+MKt8lIj+P5bVeiPUabMy7apLV2wFp7bzhPVjjLT4lxm4xFwXcDC+dncAGBRfz8ta+zYL/XTsT22vdcqYwAGGPSCX2TpgJ/BmCt/aS19ifhx98ALjPG5EWRMaqc1trbrbVPW2uDwF8Ct73O9hDdcYwqY9itwGlr7dHzLyzDsbxUhsXuB861yYtaoTYZccYVbI9R5QyLmzYZ/oz7gSPW2rtfZz+Iok3GouC3E5rB7bxSoHMRP+8F8sLfroS3Ob9fR3g7jDGpgIfQxamVzogxJhd4iNAv1justXPGGLcx5gsLsp93juhElNMYk2eM+YMFr7vCWS52jFc044Ln72TB2dIyHctLZXgj8dQm39AKtsmIMq5we4w45wJx0SaNMWWEpo5vBD4WfjmmbTIWBf8R4AZjjN+E1ri9g1BjBMBa2wJMh0cWAHwAeNBaO0foP+694dc/CDwYfvxA+Dnhnz8Z3n5FM4Yf3wOcAd5rrZ0Jbx8Abg+/D8aYDwLPhfvmohFpznHgc8aYveHXPwPce4ljvNIZz7uCBeshLNOxvGjGNxJPbfISVqpNRppxJdtjNDnPc7xNhgv6z4EfWmt/P/yXUczbZNQFP3yR4QvAfuAw8F1r7UFjzAPGmF3hzd4PfM0YcxLI5dVRBZ8idLX6OKFJ/b8Yfv1LwOXGmGPhbT7tREZjzHbgHcBVwEvGmMPGmAfC238I+P1wxo/w6jfyiue01s4DdwL/ZIw5AewEPhfe/o2O8YpmXPAWawid7SwU02O5yIxvJJ7a5G9YyTYZacaVbI/R5FwgHtrk2wmNFHp3+P/pYWPM+WsOMWuTmh5ZRCRJ6E5bEZEkoYIvIpIkVPBFRJKECr6ISJJQwRcRSRIq+CIiSUIFX0QkSajgi4gkif8PrXvBo6+wn9QAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -323,27 +345,29 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 53, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1RU973//+cMzAwMDPcZEBS8ixdQE6/EkJgYUCMlMaa1SYtr9WiT/L6tiet3TG3Tk6yc5DS2K+eY06R19Xj6S75NtUuTWq1toiYm5iIaBS+ogPEOchmG+2UG5rZ/f9hQ8TaAA3uA9+Mv9uy9Z14wzLxm9uWzNYqiKAghhBjStGoHEEIIoT4pAyGEEFIGQgghpAyEEEIgZSCEEAIpAyGEEHSzDHbt2sXixYvJyspi8+bNt1zu+eefZ/v27TfcXlxczJQpU3qfUgghRJ/yWQZWq5UNGzawZcsWduzYwdatWzl37twNyzz99NPs2bPnhvUdDgevvPIKLpfLf6mFEEL4lc8yyM/PZ86cOURFRWE0GsnOzmb37t1dltm1axcPPvggixYtumH99evXs2LFCv8lFkII4XfBvhaoqanBbDZ3TlssFoqKiross3LlSgAKCwu73L5v3z7a29tZuHChP7IKIYToIz7LwOv1otFoOqcVRekyfSs2m42NGzfyzjvv3FFAIYQQfc/nZqKEhARsNlvntM1mw2Kx+Lzj/fv309jYyJNPPklubi4Aubm5tLa23kFcIYQQfcHnN4OMjAzefPNN6uvrCQ0NZe/evbzyyis+7/jxxx/n8ccf75yeMGECO3fu7HHAhoY2vN7AGUsvNjacurrAKjTJ1H2BmEsydY9k6h6tVkN0dFiP1/NZBvHx8axZs4a8vDxcLhfLli0jPT2dVatWsXr1atLS0noVuLu8XiWgygAIuDwgmXoiEHNJpu6RTH1HE+hDWNfVtQbUH9tsNmGztagdowvJ1H2BmEsydY9k6h6tVkNsbHjP1+uDLEIIIQYYKQMhhBBSBkIIIaQMhBBCIGUghBACKQMhhBBIGQghhEDKQAghBFIGQgghkDIQQgiBlIEQQgikDIQQQiBlIIQQAikDIYQQSBkIIYSgGxe3EUIMTB6tkw6Ps1fr2tqc2JXerXs9Q5CeIK/eL/cl+o6UgRCDVIfHydHKU71a12QKoaWl3S857kqcglEjZRDoZDOREEIIKQMhhBBSBkIIIZAyEEIIgZSBEEIIpAyEEELQzTLYtWsXixcvJisri82bN99yueeff57t27d3ThcWFrJs2TJyc3NZsWIFFRUVd55YCCGE3/k8z8BqtbJhwwa2b9+OXq9n+fLlzJ49m7Fjx3ZZ5qWXXuLgwYPMmTOn8/a1a9fy29/+ltTUVN5//31effVVNm7c2De/iVDdtSc5+fOkpZ6QE5yE6B2fZZCfn8+cOXOIiooCIDs7m927d/OjH/2oc5ldu3bx4IMPdi4D4HQ6efbZZ0lNTQVgwoQJ/PGPf/R3fhFArj3JyZ8nLfWEnOAkRO/4LIOamhrMZnPntMVioaioqMsyK1euBK5uFvqGXq8nNzcXAK/Xy1tvvcWCBQv8EloIIYR/+SwDr9eLRqPpnFYUpcu0L06nk3Xr1uF2u3nqqad6HDA2NrzH6/Q1s9mkdoQbBEImW5sTkymkc/ran/uLMUyPOez2f4tA+Ftdry8yXf989JS/nr/uPCfdNVSeOzX4LIOEhAQKCgo6p202GxaLpVt33tbWxjPPPENUVBQbN25Ep9P1OGBdXSter9Lj9fqK2WzCZmtRO0YXgZLJrjg7Nw2ptZnIbnJis9/6bxEof6tr9VWma5+PnvLn8+frOemuofTc3QmtVtOrD9E+jybKyMjg4MGD1NfX43A42Lt3L5mZmd2687Vr15KSksIbb7yBXi/bcYUQIlD5/GYQHx/PmjVryMvLw+VysWzZMtLT01m1ahWrV68mLS3tpusVFxezb98+xo4dy6OPPgpc3d+wadMm//4GQggh7li3hrDOyckhJyeny203e1Nfv35958+TJk3izJkzdxhPCCFEf5AzkIUQQkgZCCGEkDIQQgiBlIEQQgikDIQQQiBlIIQQAikDIYQQSBkIIYRAykAIIQRSBkIIIZAyEEIIgZSBEEIIpAyEEEIgZSCEEAIpAyGEEEgZCCGEQMpACCEE3bzSmRBiYPIqXho7mmlxttDqsmMI0hOuCyM6JBJDkEHteCKASBkIMQg1tDeyv+ILvrxymHZPxw3ztRotKabhTIgeS3RIlAoJRaCRMhgEWp1t2JVWtWPg1XrUjhAwPFonHR5nt5a1tTmxK91b1ufjej3sL8vn48uf4/F6GBYWT0pEMlGGCMJ1YXR4nLS62ihvqeBC02UuNpeRGj2OqebJaDWy1XgokzIYBByudo5WnlI7BmmJ49WOEDA6PM5uPycmUwgtLe13/JiNHU3kVx6hydnMCFMS35mcQ0VDTZdlgrXBhOmMxBvNpMdN4kTtaUobzlLrqCMjcRZhOuMd5xADk3wUEGIQqGit4qPLn9Hh6eDexDnMS5xNTOjtN//og/TMjJ/OPcNm0ehsZl/559jdjn5KLAKNlIEQA1xp/Vk+rzhIhCGc7JQHGG5K7NH6yRHDeWD4PDrcTj4t/5KOm+xjEINft8pg165dLF68mKysLDZv3nzL5Z5//nm2b9/eOV1ZWcmTTz7JwoULeeaZZ2hra7vzxEKITqdqSzhmO8mI8CQeHJGJURfaq/uJDY0hc/hcWl1tfHYlH7dX9v8MNT7LwGq1smHDBrZs2cKOHTvYunUr586du2GZp59+mj179nS5/eWXX+aJJ55g9+7dTJkyhd/+9rf+TS/EEHaytoSTdSWMjEgmI3EWwdo72wUYbzSTMWwmde0NHL5y3E8pxUDhswzy8/OZM2cOUVFRGI1GsrOz2b17d5dldu3axYMPPsiiRYs6b3O5XBw5coTs7GwAli5desN6YvBQFIWatjouNZdzwnaKLy8f4VBVIUesxzhdV8ql5jJanW0oiqJ21EGhpP5rTtWVMCoimdkJd6PVaPxyvyNMSYyPGsOpmjNUtlb75T7FwODzo0RNTQ1ms7lz2mKxUFRU1GWZlStXAlBYWNh5W0NDA+Hh4QQHX30Is9mM1Wr1S2gROJo6mrnYXMbl5vLOnY8aNOiDdARpgnB7PTi9/zxsMjQ4hMSwBEZFJBMXGovGT29iQ8nFpjKO206RbEpilh+L4BvTzFOwddRyqLqQRSMfJDQ4xK/3LwKTzzLwer1dXrCKonTrBXyz5Xrzwo+NDe/xOn3NbDapHaELW1sdJlP/vmAbHU0cqSziYkM5Go2GERHDmJ30AF68RIdEotX+80un2+umub2V6lYblS1WLjeVc77pEhGGcNLjJzI+bjTB2iC/5DKG6TGH3f756Y/nz9bm7NFz0t1ly5sq+cpaSKIpnofGzSPoNn83nS6o1/8XD+rv4S/FuznZcJoHR9/Tq/v4Rneek+4KtNceBGam3vBZBgkJCRQUFHRO22w2LBaLzzuOiYmhpaUFj8dDUFBQt9e7Xl1dK15v4GxaMJtN2GwtasfoyohfjlPvDo/XQ1FtMWcazhKkCWZKbCrjosYQEmwgLX48Jyu/pu0fb4TXZtIRwojQEYwIHcFdcdO40lLB2cYLfFl2hIKKIibHpjI2atQdn/hkNzmx2W/9/PTX82dXnN1+Trp7nkFTRzMflX1JpD6CjPhZ2NtcgOuWy7tMnl7/X8SYokiNGc/pulJGhaVgNsb16n7A93PSXYH42gvETFqtplcfon2+8jIyMjh48CD19fU4HA727t1LZmamzzvW6XTMmDGDDz74AIAdO3Z0az0RuBo7mthbtp/ShrOMjhxJzugs0uImERLcszFudNpgRkWm8FDy/Tww4l4i9CYKa07wwaWPZTv1LXR4nHxecZAgTRCZSXPRBen6/DEnxYzHGBxKQc0JvLKvZ9DzWQbx8fGsWbOGvLw8HnnkEZYsWUJ6ejqrVq3i5MmTt133pZdeYtu2bSxevJiCggKee+45vwUX/auitYq9l/fjcLeTmTSXWQl3EXKH25I1Gg3xRjMPjLiXzKS5AHxWkc+Byq9wuPvnm85A4FW8HKg8jN1l596kOf12lnCwNphp5jQaO5q40HSpXx5TqKdbx6Ll5OSQk5PT5bZNmzbdsNz69eu7TCclJfHuu+/eQTwRCM41XqDAepxoQxSZwzP8vkNRo9GQFD6MhLB4Suu/5lRdKdVtNcyIn05KxHC/PtZAdMx2Equ9htkJd2EOje3Xx042JXG2MY6i2tOkRIxAd4eHr4rAJWcgi9sqqf+aI9bjDAuL54HkzD49siRIo2VybCqLRj6ISW8iv+owh6oKcXndffaYge584yW+bjjPhOixjI4c2e+Pr9FomGaeTIfHybnGC/3++KL/SBmIWzrXeKHzEMZ7k+b226fCCL2JBcmZTI6dwMXmy+y59An17Q398tiBxGavo8B6jASjhWnmKarliAuNJcFooaT+LO4hXMyDnZSBuKlLzeUcsR4nMSyBOcNm9vvwxlqNlvS4yTw44l48ioePLu+npP7rIXPSWpvLzheVhwjThXFP4izVh5eeEjeRDk8HZxsvqppD9B0pA3GDWkc9X1UXYg6N457E2QSp+EZkMZpZOPJBEsOHcdx2is8rDuLs5nUCBiq3183nFQfxKh4yk+aiD9KrHQlzaCzxRgsl9V/Lt4NBSvYGiS4cbgdfVh4iNDiEe5Nm++1ksDthCNIzL3E2ZxsvcKymiN2XP7k6RHNI9A3LaoLA7rn1hX78eSGZ2+nthX4UReFQdSGNHU3cl5RBhCFwTmhKi03l4/LPudB0mfHRY9SOI/xMykB08ihevqz4CqfHxUPJ9wfUNXI1Gg3jo8cQExLNgcqv+KjsM+62TGVM5MguZ7Y7PU5OVn59y/vx14VkfOnthX5O1hVT3lLBNPMUEsMT/JzqzpiNccSGRPN1w3nGRY2WoUQGGdlMJDqdrC2mtr2eOQl3Ex0SqXacm4oLjWFhygNYQuM4Yj3GoerCQbPZ4mLTZU7XnWFM5EhSo8epHeemJkSPpcXVSmWbnBw42EgZCACsdhsl9V8zJnIkyQF+bL8h2MB9w+9hSuxELjWXsffyfpqdgTUkQE/V2G0crj5KvNHMjPhpAfupe4QpidDgEM40nFc7ivAzKQOB0+PkUFUBJl04d1nS1Y7TLVqNhrS4idw//B4cnnb2XP6UspYKtWP1SmN7M19UHCJcH868xNmqHzl0O1qNlnFRY7Daa2jqaFY7jvCjwP2vE/2msKYIh7uducNm3PEFUvrbsLB4FqY8QKQ+ggOVX/H3s/vwKl61Y3Vbh6eD3Wf3o9FouC8pIyCOHPJlbNRIgjRazjSc872wGDCkDIa46rYaLjWXMSl2PLGhMWrH6ZUwnZEHkzMZHzWGA1eOsK/sc+yuwL+wu9vr5ouKQ7Q57dybNJdwfZjakbrFEGQgJWIEl5rLcXluPWqqGFikDIYwt9fDEesxwnVhTI5JVTvOHQnSaLk7firLJ+XS2NHM7sufUN1Wo3asW/IoXr6s/Aqbo477R83t9zGH7tSYyFF4FA+XW66oHUX4iZTBEFZcV0qrq42Z8dNve5GUgSQ9fiLZKfMxBOn59MqXnKorDbizlr2Kl4OVh6lqszIrfjpjYlLUjtRjsSHRROojOC+jmQ4aUgZDVLOzhZL6rxkZkUxCWM8vOhTIIgwmslLmk2IawcnaYj6vyKcjQM5a9ng95Fcepry1kunmdMZEjVI7Uq9oNBrGRI2kvr2BhvZGteMIP5AyGKKO206h1QSpOgBaX9Jpg5k7bAYzLNOottv48NLHVLWpew3ub4aZ+KYIUmPGqprnTo2MGIFWo+VC02W1owg/kDIYgqrbaqhorWJS7IRBfbFzjUbDuOjRPJR8Hzqtjv1XDvD5patnWPc3h7udT8q/pNpew6z4uwZ8EcDVHcnDwxO52FyG29u74TdE4JAyGGK8isIx20nCgo2kRg/8N6TuiAmJZmHKA6RGj6O09jwfXPyIsuYr/bYvoa69gT2XP6Gxo4l5ibMZEzWyXx63P4yJHInL66KytUrtKOIOSRkMMZeaL9PY0cRU85RBs9O4O4K0QUy3pPHoxGxCgkM4UHWYT6982afbuxVFobT+HPvKPkOLloeS72OEKanPHk8NFqOZ0OAQLjWXqR1F3CEpgyHE4/VwsraEmJBokgfZm1J3mcNiyUq5n7stU2lob2L35U84WFXg9+Esau317Cv/gmO2IuKNFrJS5hMdEuXXxwgEWo2GFNMIKtusdLg71I4j7sDAOt1U3JHzTZewux3MSrgrYMe+6Q9ajZbx0WMYGTGC03VnONt4nkvNZSSbkhgfNZa40Jhe/33sbgena0u58PUlgjRBzE64m1ERyYP67z0yIpnShrNcbrkiQ1sPYFIGQ4Tb6+Z0XSnm0DgSjIPrUNLe0gfpmW5JIzVmHGcaznGu8QJlLRWY9OGMikhmWFgC0YZIn2/kHsWLta2GC02XqWirAkVhVtJ0EkISBvUO+m9Eh0QSZYjkUnO5lMEAJmUwRJxtvEi7p4N74mYP6k+pvREaHMI08xQmx6ZS3nKF802XKaotpqi2GEOQgWhDJJGGCIzBRoK1QWg1Wjo8HTjc7TS0N1LXXo9H8aIP0jM2ahQTosYyd+T0215XYbAZGTGC47ZTtDhbMenD1Y4jekHKYAhwe92U1J8hwWjBYoxTO07A0mmDGR05ktGRI3G426luq6HaXkNTRxPnGi/guW4AvCBNEJEGE2OjRmMxxjEsLEHVS4SqKcU0nOO2U1xqLictbqLacUQvdKsMdu3axcaNG3G73axYsYInn3yyy/ySkhJeeOEF2tramDFjBi+//DLBwcFcuXKFn/zkJ7S2thIREcH69etJShqaOy7VdL7pEh0eJ1PkRdptocEhjIpMZlRkMnD1kFy314Xb68arKBiC9QRrguVb1j8YdUYsRjNlLVeYEpsqf5cByOfHGKvVyoYNG9iyZQs7duxg69atnDvXdejatWvX8uKLL7Jnzx4URWHbtm0A/Pd//zcPP/wwO3fuJCsriw0bNvTNbyFuyaN4Kan/GnNo3IAbDC2QaDUa9EF6jDoj4fowdFqdvOFdJ9mURLOzhSanXOdgIPJZBvn5+cyZM4eoqCiMRiPZ2dns3r27c35FRQXt7e1MmzYNgKVLl3bO93q9tLZevTi5w+EgJGTw70wLNJeaynC425kcO0HtKGKQGxGeiAYoa5aRTAcin5uJampqMJvNndMWi4WioqJbzjebzVitV8eAefbZZ1m+fDnvvvsuLpeLrVu3+jO78MGrKJTUf020IUqOIBJ9LiQ45B+biipIi5sk35wGGJ9l4PV6uzypiqJ0mb7d/J/85Cf8+7//OwsWLGDPnj386Ec/4q9//WuP/kliYwPvyASz2aR2hC5sbXWYTDd+67pQX0aLq5UFY+YRERHa5zl0uqAuOW6Wqb8z3Ex/5OpOjmv1RaaeZrheb9Ydbx7FF5cP4wxuJ84YDYAxTI85zD+vmUB77UFgZuoNn2WQkJBAQUFB57TNZsNisXSZb7PZOqdra2uxWCzU19dz4cIFFixYAEB2djYvvfQSDQ0NxMR0/4padXWteL2BMx692WzCZguwi68boaWl/Yabj1UWE64LIzbIfNP5/uYyeTofx2QK6ZfHvF2Gm+mvXL5yXKuvMvUkw/V6m8kcbEaDhpLq850j4tpNTmz2O3/NBOJrLxAzabWaXn2I9rnPICMjg4MHD1JfX4/D4WDv3r1kZmZ2zk9KSsJgMFBYWAjAzp07yczMJDo6GoPB0FkkhYWFhIWF9agIRO/VOuqoa69nQvRYtPJ1XfQTQ7CBeKOZ8paKgLuokLg9n98M4uPjWbNmDXl5ebhcLpYtW0Z6ejqrVq1i9erVpKWl8frrr/Pzn/+c1tZWJk+eTF5eHhqNhrfeeotXXnmF9vZ2wsLCePPNN/vjdxJAaf05dFodoyIH3lW0xMCWbErisPUYDR1NxAzC8ZgGq26dZ5CTk0NOTk6X2zZt2tT5c2pqKu+///4N66Wnp/Pee+/dYUTRU63ONq60VpAaMx6dVs4rFP0rKXwYGusxKlorpQwGkKF5uuQg93XjeUDD+KjRakcRQ1BIcAhxobGUt1SqHUX0gJTBIOPyurnQdIlkUxJGnVHtOGKIGh6eSJOzmRZnq9pRRDdJGQwyl5rLcHndjJPRI4WKhocnAnBFroA2YEgZDCKKonC24QJRhkjiQuSoLaGecH0YUYZIrrTKpqKBQspgELE56mhyNjM+aoyc/SlUNzw8kVpHnWwqGiCkDAaRs43n0Wt1pEQMVzuKEAwPHwZAce3Qua7DQCZlMEg43A7KWyoZFZlCsBxOKgJAlCGSMJ2RU7ZStaOIbpAyGCQuNJWhoDBODicVAUKj0TA8PJGzDRdxuPt/aBLRM1IGg4BX8XKh6RKW0Di55KAIKMPDE/EoHorr5NtBoJMyGATO1V2i1dXG6MiRakcRoou40FjCdEZO2E6rHUX4IGUwCOSXF6LT6hhhkkuKisCi1WiYHDeB03WluLxuteOI25AyGODsLjvHqk4zMmIEwdogteMIcYMpcRNo93TwdcM53wsL1UgZDHCHrcdwe92MkU1EIkCNjR6NIUgvm4oCnJTBAKYoCvmVh0mOTCRaRocUAUoXFMyk2FSKak/jVbxqxxG3IGUwgJW1XKGitYqM5BlqRxHitqbGTabF2crl5nK1o4hbkDIYwPIrD6PT6piRmK52FCFua3LsBLQaLUW1xWpHEbcgZTBAdXicFFhPcJclnVBd/194XoieMOqMjI0cJWUQwKQMBqhjNUW0e9rJSJyldhQhuiXdPJnqNis19lq1o4ibkDIYoPIrD2MxxslRRGLASIubCMAp+XYQkKQMBqAau43zTZfIGDZLhqoWA0ZcaCyJYQmyqShASRkMQIerj6JBw8yE6WpHEaJH0uMmcb7p6vApIrBIGQwwiqJwuPoYE6LHEmWIVDuOED2SZp6EV/FSXHdG7SjiOlIGA8z5pkvUtdczK+EutaMI0WPJpuFE6k0UydnIAadbZbBr1y4WL15MVlYWmzdvvmF+SUkJS5cuJTs7mxdeeAG3++qAVDU1Nfzwhz/kkUceYfny5Vy5csW/6Yegw9VH0Wt1TDVPUTuKED2m1WiZEjeJ4vozMnBdgPFZBlarlQ0bNrBlyxZ27NjB1q1bOXeu64BTa9eu5cUXX2TPnj0oisK2bdsAeP7555k/fz47duwgNzeX119/vW9+iyHC5XFxtKaIqeY0QoINascRolfS4ybR4XFytuG82lHENXyWQX5+PnPmzCEqKgqj0Uh2dja7d+/unF9RUUF7ezvTpk0DYOnSpezevZv6+npKS0tZvnw5AI899hjPPfdcH/0aQ8OpulIcbgezZRORGMDGR49Fr9VxUo4qCig+y6Cmpgaz2dw5bbFYsFqtt5xvNpuxWq2Ul5eTmJjI+vXreeyxx1i9ejU6nc7P8YeWw9VHidSbmBAzVu0oQvSaPkjHxNgJFNUWoyiK2nHEP/i8crrX6+1yLLuiKF2mbzXf7XZTXFzMj3/8Y37605/y3nvvsW7dOt59990eBYyNDbzLOJrNpn5/zOaOVk7Xl7Jo3HziLV2PIrK11WEyqT8khU4X1CWHGpmuz3Az/ZGrOzmu1ReZeprhev7KZAzTYw7r+pq5Z9RdnDh8itbgRkbHJHf7vtR47fkSiJl6w2cZJCQkUFBQ0Dlts9mwWCxd5ttsts7p2tpaLBYLZrOZsLAw5s+fD8CSJUt49dVXexywrq4VrzdwPj2YzSZstpZ+f9zPruTj8XpIi5hy4+MboaVF/QuOu0yezhwmU4gqma7NcDP9lctXjmv1VaaeZLiePzPZTU5s9q7/s8n6kWjQ8PnZI5hGR3frftR67d1OIGbSajW9+hDtczNRRkYGBw8epL6+HofDwd69e8nMzOycn5SUhMFgoLCwEICdO3eSmZlJcnIyCQkJfPbZZwB8+umnTJ48uccBxVWHq4+SGJbAcFOi2lGEuGMmfTijI1PkbOQA4rMM4uPjWbNmDXl5eTzyyCMsWbKE9PR0Vq1axcmTJwF4/fXXee2111i4cCF2u528vDwA3nzzTf73f/+XJUuW8Ic//IFf/OIXffvbDFJWu41LzWVyboEYVNLiJnGltZL69ga1owi6sZkIICcnh5ycnC63bdq0qfPn1NRU3n///RvWGz16dI/3EYgbHZHhJ8QglB43iR3nP+BkbQn3Dc9QO86QJ2cgBzgZfkIMVvFhFuKNZjkbOUBIGQQ4GX5CDGZpcZM423gBh9uhdpQhT8ogwMnwE2IwS4ubhEfxUFz3tdpRhjwpgwAmw0+IwW50ZArhujCKamVTkdqkDAKYDD8hBjutRsuU2ImcrjuDx+tRO86QJmUQwGT4CTEUpJkn4XA7ON90Ue0oQ5qUQYBqdbVxuq6UGfHT0WrkaRKD18SY8QRrgymyyQloapJ3mQB11HoCj+KRo4jEoGcI0pMaPVYGrlOZlEGAOlx9TIafEENGWtwk6trrqWqz+l5Y9AkpgwBUY6/lYvNl+VYghoy0uEkAclSRiqQMAtAR6zE0aJgRP03tKEL0i0hDBCkRI2TgOhVJGQSYq8NPHGVc9BiiQ6LUjiNEv0mPm8Tl5nKaOprVjjIkSRkEmEvNZdQ66mQTkRhy0uOuDnF/qrZE5SRDk5RBgDlcfRSdNphpMvyEGGKGhcUTGxIj+w1UImUQQNxeN4U1J0iPm0xosPqXsRSiP2k0GtLjJlHacI4Oj1PtOEOOlEEAKa47Q5vLLpuIxJCVbp6E2+umtF4GrutvUgYB5LD1GOG6MCbGjFc7ihCqGBM5itDgUDkbWQVSBgHC7nJwsraYu+OnEaQNUjuOEKoI0gYxOXYCp+pK8CpeteMMKVIGAeK47SRur1tGKBVDXnrcZFpdbVxsKlM7ypAiZRAgDlcfxWKMI9k0XO0oQqhqUux4gjRBclRRP5MyCAD17Q2cbbzArPi70Wg0ascRQlWhwaGMixrNSTkbuV9JGQSAI9XHAJiZMBkJLugAABg/SURBVF3lJEIEhnTzZKx2G9UycF2/kTJQ2TfDT4yJHElcaIzacYQICFPNV89GPlZzSuUkQ0e3ymDXrl0sXryYrKwsNm/efMP8kpISli5dSnZ2Ni+88AJut7vL/OLiYqZMkTNqb6a8tYJqew0zZcexEJ2iDJGMjhzJMVuR2lGGDJ9lYLVa2bBhA1u2bGHHjh1s3bqVc+fOdVlm7dq1vPjii+zZswdFUdi2bVvnPIfDwSuvvILL5fJ/+kHgcPVRgjVB3G1JVzuKEAFluiWNitYqauw2taMMCT7LID8/nzlz5hAVFYXRaCQ7O5vdu3d3zq+oqKC9vZ1p064Ot7x06dIu89evX8+KFSv6IPrA5/F6KLAeZ3LcRIw6o9pxhAgo081pAByXTUX9wmcZ1NTUYDabO6ctFgtWq/WW881mc+f8ffv20d7ezsKFC/2ZedAobThHi7NVhp8Q4iaiQ6IYFZEsm4r6SbCvBbxeb5fDHRVF6TJ9q/k2m42NGzfyzjvv3FHA2NjwO1q/L5jNJr/cT9G5IsJ0odw/YQa6IF2v78fWVofJpP7AdjpdUJccamS6PsPN9Eeu7uS4Vl9k6mmG6/krkzFMjzmsd6+ZeaNm8u6JP6OEdgAmv732/CkQM/WGzzJISEigoKCgc9pms2GxWLrMt9n+uU2vtrYWi8XC/v37aWxs5Mknn+ycl5uby+bNmwkP7/4bfF1dK15v4Fwk22w2YbO13PH92F12Dl05RsawmTTWtwPtvb8zI7S03MH6fuIyeTpzmEwhqmS6NsPN9FcuXzmu1VeZepLhev7MZDc5sdl795oZZxwHwMelB3liRo5fXnv+5K/3A3/SajW9+hDtczNRRkYGBw8epL6+HofDwd69e8nMzOycn5SUhMFgoLCwEICdO3eSmZnJ448/zscff8zOnTvZuXNn57yeFMFgVmA9jtvrZm7iTLWjCBGwYkNjSIkYQWHNCbWjDHo+yyA+Pp41a9aQl5fHI488wpIlS0hPT2fVqlWcPHkSgNdff53XXnuNhQsXYrfbycvL6/PgA11+1RGGhyfK8BNC+DDDMpXylgoqW+QEtL7kczMRQE5ODjk5OV1u27RpU+fPqampvP/++7e9jzNnzvQi3uBU3lJJeUsFj4/LVTuKEAHvrvipbD/3d/LLCrjPkul7BdErcgayCg5WHSFYGyzDTwjRDVGGSMZGjeLA5QIUJXD2Hw42Ugb9zOVxcaT6KFPjJhMm5xYI0S13x0+joqWayrZqtaMMWlIG/ayo9jR2t4OMxFlqRxFiwJhuTkOr0VJgPa52lEFLyqCf5VceISYkmvHRY9SOIsSAEa4PIz0+lULrcbkCWh+RMuhHdY4GzjScY86wGWg18qcXoifmpcyirr2BC02X1Y4yKMk7Uj86VH315L05CTNUTiLEwDNr+DT0QXq+qipUO8qgJGXQT7yKl0NVBUyIHktsaLTacYQYcEKCDUw3p3G0pginR0ZB9jcpg35ypuEc9e0NZMgZx0L02uyEu2n3tHNSro/sd1IG/eRAxVeEBRtJj5usdhQhBqxx0aOJNkTxVfVRtaMMOlIG/aCxo4kTtaeZmzjzjkYnFWKo02q0zEyYTkn91zR1BNYAcQOdlEE/OFB5GEVRmJc4R+0oQgx4sxPuxqt4OWKVbwf+JGXQxzxeDwcqvmJizHjMxli14wgx4CWEWRgdmUL+Pz5kCf+QMuhjRbXFNDmbyRw+V+0oQgwaGYmzsdptnGu8qHaUQUPKoI99XnGQaEMUk2NT1Y4ixKBxlyWdkKAQDlQeVjvKoCFl0IcqW6v5uuEc9ybNkTOOhfAjQ5CemQnTOW4rwu6yqx1nUJB3qD70afkX6LQ65iXJjmMh/O2exFm4vG4OVx9TO8qgIGXQR1qcrRy2HmP2sLtlqGoh+sAIUxLJpiS+rDwkO5L9QMqgj3xZcQi318384fPUjiLEoJWZlEFVm5WzjefVjjLgSRn0AZfXzWcV+UyKnUBCmEXtOEIMWnfHTyNMZ2T/lXy1owx4UgZ9oKD6GC3OVh4Yfq/aUYQY1PRBOu5JnE2R7TR1jnq14wxoUgZ+5lW8fFS2n+HhiaTGjFM7jhCDXmbSXDQaDZ9XHFQ7yoAmZeBnJ2ynsdptZKXMR6PRqB1HiEEvOiSKqXGTya88jNPjVDvOgCVl4EeKorD38idYQuOYbklTO44QQ8b9I+Zhdzs4WFWgdpQBq1tlsGvXLhYvXkxWVhabN2++YX5JSQlLly4lOzubF154AbfbDUBhYSHLli0jNzeXFStWUFFR4d/0Aaa0/ixlLRUsSLlPTjIToh+NiRzJqIgUPi77DI/Xo3acAcnnO5bVamXDhg1s2bKFHTt2sHXrVs6dO9dlmbVr1/Liiy+yZ88eFEVh27Ztnbe/+uqr7Ny5k5ycHF599dW++S0CgKIo7Ln8CVGGSGYl3K12HCGGFI1GQ1bK/dS3N1BYc0LtOAOSzzLIz89nzpw5REVFYTQayc7OZvfu3Z3zKyoqaG9vZ9q0aQAsXbqU3bt343Q6efbZZ0lNvTomz4QJE6iqquqjX0N9ZxrOcbbxAg8l349OG6x2HCGGnClxE0kIi+ejy/vlJLRe8FkGNTU1mM3mzmmLxYLVar3lfLPZjNVqRa/Xk5ubC4DX6+Wtt95iwYIF/sweMBRF4W8X9hBtiOKepNlqxxFiSNJqtGQl309lWzWn60rVjjPg+PwI6/V6uxwVoyhKl2lf851OJ+vWrcPtdvPUU0/1OGBsbHiP1+lrZrOpy/TRypNcbC7jhzOeJDG+/y92b2urw2QK6ffHvZ5OF9QlhxqZrs9wM/2Rqzs5rtUXmXqa4Xr+ymQM02MOM/lesBuuf+1db2HsvXxw+SM+uvIp96fO7Jcj+nxlGih8lkFCQgIFBf/cQ2+z2bBYLF3m22y2zuna2trO+W1tbTzzzDNERUWxceNGdLqeX/Kxrq4VrzdwvvKZzSZstn9ebs+reNl8bAdxITFMCZ/SZV6/MUJLS3v/P+51XCZPZw6TKUSVTNdmuJn+yuUrx7X6KlNPMlzPn5nsJic2+52/Lq5/7d1KVvJ8tpT+mU9KviLd3LfXHO9upv6k1Wp69SHa52aijIwMDh48SH19PQ6Hg71795KZmdk5PykpCYPBQGFhIQA7d+7snL927VpSUlJ444030Ov1PQ43EBy1nqC8tZLFox4iSBukdhwhhrw5CTMwh8byt4t78SpeteMMGD7LID4+njVr1pCXl8cjjzzCkiVLSE9PZ9WqVZw8eRKA119/nddee42FCxdit9vJy8ujuLiYffv2cfToUR599FFyc3NZtWpVn/9C/cnpcbHj/IcMD09kZsJ0teMIIYAgbRBLRmVR0VrF0ZoiteMMGN067CUnJ4ecnJwut23atKnz59TUVN5///0u8ydNmsSZM2f8EDFwfVL+BQ0djeRN+o6cVyBEALkrfip7Ln/K3y/sZbo5Tb61d4O8g/VSU0cLey9/wlTzFMZHj1E7jhDiGlqNlm+NWUiNo1bGLOomKYNe+uv5D3F7PTwyZrHaUYQQNzEldiITY8bz94t7aXG2qh0n4EkZ9MLXDec4VF3Ag8mZWIxxascRQtyERqNh2bgcOjxOdl3Yo3acgCdl0ENOj4s/lW4nLjSWRSMH50l0QgwWCWHx3D/8HvIrD1PWckXtOAFNyqCHthd/SI2jlu9OWIo+qOfnTQgh+tfiUQsI14WxpfTPMojdbUgZ9EB5SwU7S/cyK+EuuXCNEANEaHAo35nwKOUtFXxU9pnacQKWlEE3OT1O3j79JyIM4Tw2Lsf3CkKIgDHdksZ0SzofXvyIytZqteMEJCmDbtp+7u9Y7TX8n1krCNeFqR1HCNFD3xn/CCHBIfyx5D3cXrfacQKOlEE3nLCd5ouKgzw4IpP0hIlqxxFC9IJJH87yCUu53FLOzvMfqh0n4EgZ+FDdVsMfircywpREzpiFascRQtyB6ZY07huewSflX3DCdkrtOAFFyuA2HG4H/3Py/xKsDeKHaXly0RohBoFHxy4h2TScd0u2YbPXqR0nYEgZ3ILH6+Ht03/C5qhj5ZTvExPS/9cpEEL4n04bzL9M+R5atGws+v9odbWpHSkgSBnchFfxsrn0fU7XlfLt8bmMix6tdiQhhB/Fhcbww/QV1LU38D9F/xeXx6V2JNVJGVxHURS2n/0bX1UXsmRUFvcmzVU7khCiD4yNGkXexG9zvukS7xT/acifkCZlcA1FUfjLub/z6ZUvmT9iHgtHPqh2JCFEH7o7fhqPjcvhuO0Uvz+9eUgfcipl8A8er4c/lrzHvvLPuW94BkvHLumX66cKIdT1wIh7WTbuW5ywneJ/T707ZDcZSRkAdpeD/zn5Bw5VF/DwqId4fFyuXKxGiCFk/oh5fGf8I5ysLeGNY7+jqaNZ7Uj9bsi/41W0VvGrgl9TXH+G5RMeZfGoh+QbgRBDUObwDFal5VHZVs2vCt7kcnO52pH61ZAtA6/iZf+VA7xe8BYdHifPTn9KdhYLMcRNM0/h/73r/0GDhtcLf8PuS/uGzI7lIXkWVXVbDVtK3+d80yUmxozn+xO/TaQhQu1YQogAMNyUyE9nPcfWM39h14U9nKot4dsTHiHZNFztaH1qSJVBU0czH1z8iPyqIxiCDHx/4reZnXC3bBYSQnQRpjPygylPkl49iffO/pVfHXmTOcNmsGR0FlGGSLXj9YkhUQbWtho+ufIlX1UV4lE83Js0h0UjF2DSh6sdTQgRwGYkTGdyXCofXtzH/isHOFx9lFkJd7EgOZOEsHi14/lVt8pg165dbNy4EbfbzYoVK3jyySe7zC8pKeGFF16gra2NGTNm8PLLLxMcHExlZSVr166lrq6OUaNG8frrrxMW1j/DP9tddo7ZTnKk+hhnGy8QrA1mZvx0slLmy3WLhRDdFhocytJxS8gcnsG+ss85WHWYg1VHGB2ZwoJx8xgdMmZQfLD0WQZWq5UNGzawfft29Ho9y5cvZ/bs2YwdO7ZzmbVr1/Lqq68ybdo0fvazn7Ft2zaeeOIJXn75ZZ544gkefvhhfvOb3/Db3/6WtWvX9skv0u5up6ylgvONlyipP8PF5jK8ihdLaBxLRmUzL2n2oHjChBDqiAuN4TsTHmHxqAUcqirgUFUB/1OwGQ0aRkUmMzFmPKMjRzIyYgQhwSFqx+0xn2WQn5/PnDlziIqKAiA7O5vdu3fzox/9CICKigra29uZNm0aAEuXLuXXv/41jz/+OEeOHOE3v/lN5+3f+973el0Gdpedho4mHO52Wp2tNDqbaWxvwmq3YbXXUGOvRUEBINmURFby/aSbJ5NsGi77BIQQfmPSh/NQyv0sSL6P1uAGPj9bwKm6Ej64+DEKCho0xIbGkBiWgNkYS4whmkhDBCHBBgxBBkKCDBiC9EQYIgJqJGSfSWpqajCbzZ3TFouFoqKiW843m81YrVYaGhoIDw8nODi4y+29oSgKLx5cj8Pd3uX2IE0QZmMcCWHx3G2ZysjIZFIiRsiVyIQQfU6j0TA6JgXT6BgeHp2Fw+3gYlMZF5vLqGqzUtVaTUn9GVy3GOJiVEQK/zrj//Rz6lvzWQZer7fLJ2tFUbpM32r+9csBvfqErtVqAC0/nr6KNredkCADRl0oEXoTxuBQVc4UvpopgGi0GPXqfy0N1gZ15ggJNuDRq5vhZvorl68c1+qrTD3JcD1/ZgrSBqH107fzgHvt8c9MYXojU8ypTDGnds5TFAW720GzswWnx4nT66TD48LpdhIXGtMnv09v79NnGSQkJFBQUNA5bbPZsFgsXebbbLbO6draWiwWCzExMbS0tODxeAgKCrphve6Kjr76KT82dlKP1+0rsbGBt+8he9K9akcAYGSc+sdiB0IGCIwcgZDBnwLxtec7kwno+Xtff/P5sTojI4ODBw9SX1+Pw+Fg7969ZGZmds5PSkrCYDBQWFgIwM6dO8nMzESn0zFjxgw++OADAHbs2NFlPSGEEIFDoyiK4muhXbt28bvf/Q6Xy8WyZctYtWoVq1atYvXq1aSlpVFaWsrPf/5zWltbmTx5Mq+99hp6vZ6KigrWrVtHXV0dw4YN47/+67+IjBycJ2wIIcRA1q0yEEIIMbgN2YHqhBBC/JOUgRBCCCkDIYQQUgZCCCGQMhBCCIGUgRBCCAZIGRQXFzNlyhS1YwBQWFjIsmXLyM3NZcWKFVRUVKiaZ9euXSxevJisrCw2b96sapZvvPXWWzz88MM8/PDD/OpXv1I7The//OUvWbdundoxAPjkk09YunQpixYt4tVXX1U7DnD1pNFvnrtf/vKXqmZpbW1lyZIlXLlyBbg6aGZOTg5ZWVls2LAhIDJt3bqVJUuWkJOTw09/+lOcTmdA5PrGH//4R77//e93706UAGe325Xly5cr48ePVzuKoiiKMn/+fKWkpERRFEV57733lKefflq1LNXV1cr8+fOVhoYGpa2tTcnJyVHOnj2rWh5FUZQDBw4o3/nOd5SOjg7F6XQqeXl5yt69e1XN9I38/Hxl9uzZyk9+8hO1oyhlZWXKvHnzlKqqKsXpdCrf/e53lf3796uayW63KzNnzlTq6uoUl8ulLFu2TDlw4IAqWY4fP64sWbJEmTx5slJeXq44HA7lvvvuU8rKyhSXy6X84Ac/6Pe/1/WZLly4oDz00ENKS0uL4vV6leeff155++23+zXTzXJ94+zZs8q9996rfO973+vW/QT8N4P169ezYsUKtWMA4HQ6efbZZ0lNvToQ1YQJE6iqqlItz7XDixuNxs7hxdVkNptZt24der0enU7HmDFjqKysVDUTQGNjIxs2bODpp59WOwoAH330EYsXLyYhIQGdTseGDRuYOnWqqpk8Hg9erxeHw4Hb7cbtdmMwGFTJsm3bNl566aXO8cyKiopISUlhxIgRBAcHk5OT0+//69dn0uv1vPTSS4SHh6PRaBg/frwq/+vX54Kr71Uvvvgiq1ev7vb9BM5g2jexb98+2tvbWbhwodpRgKtPfm5uLnB1tNa33nqLBQsWqJbH1/Diahg3blznz5cuXeLDDz/kT3/6k4qJrnrxxRdZs2aNquV9rcuXL6PT6Xj66aepqqri/vvv57nnnlM1U3h4OM8++yyLFi0iNDSUmTNnctddd6mS5T/+4z+6TN/sf723Q+L7K1NSUhJJSUkA1NfXs3nzZl577bV+zXSzXAD/+Z//yWOPPcbw4d0fqDAgyuDDDz+84Y84evRoWltbeeeddwIq0zvvvIPT6WTdunW43W6eeuopVfKB7+HF1XT27Fmeeuopnn/+eUaOHKlqlvfee49hw4Yxd+5ctm/frmqWb3g8HgoKCnj33XcxGo0888wz/OUvf2Hp0qWqZSotLeXPf/4zn376KSaTiX/913/l97//PStXrlQt0zcC+X/darWycuVKHnvsMWbPnq12HA4cOEBVVRU//elP+eqrr7q9XkCUwaJFi1i0aFGX29577z1+97vfdbnecm5uLps3byY8vO+Hsb1ZJoC2tjaeeeYZoqKi2LhxIzqdrs+z3Iqv4cXVUlhYyOrVq/nZz37Gww8/rHYcPvjgA2w2G7m5uTQ1NWG32/nFL37Bz372M9UyxcXFMXfuXGJiYgBYsGABRUVFqpbBl19+ydy5c4mNjQWuXp1wy5YtAVEG1w+VHyj/6+fPn2flypV8//vf5wc/+IHacQD429/+xtmzZ8nNzcVut1NbW8tzzz3HG2+8cfsV+2aXhv8Fyg7kZ555Rvn5z3+ueDwetaN07kCuq6tT7Ha78q1vfUs5ceKEqpkqKyuV2bNnK/n5+armuJU///nPAbED+fjx40p2drbS1NSkuN1u5amnnlK2bdumaqYvvvhC+da3vqW0tbUpXq9X+bd/+zfl17/+taqZ5s+fr5SXlyvt7e1KZmamcunSJcXtdiv/8i//onzwwQeqZmppaVHuu+8+5S9/+YsqOa73Ta5rHTp0qNs7kAPim8FAUVxczL59+xg7diyPPvoocHXb5aZNm1TJEx8fz5o1a8jLy+scXjw9PV2VLN/4/e9/T0dHB+vXr++8bfny5Xz3u99VMVXgmTp1KitXruSJJ57A5XJxzz338Nhjj6maad68eRQXF7N06VJ0Oh1paWn88Ic/VDXTNwwGA+vXr+fHP/4xHR0d3HfffarvS3z//fepra3l7bff5u233wbggQce4Nlnn1U1V2/JENZCCCEGxklnQggh+paUgRBCCCkDIYQQUgZCCCGQMhBCCIGUgRBCCKQMhBBCIGUghBAC+P8BnKHt556PLnoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD8CAYAAAB6paOMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3Rc9Zn/8ffMSKM6llVGtiVb7n7cu2nGVAcIJcDSNjjUACEJaVuymwV+v/yyS5aTZAMhARICWULASQgJARKbEGMDJhQbcC+Pu1wk27JkySpWn98fMyJjIVtX9mjuSPO8zvE5c9v3fu6VZ5659879Xk8oFMIYY0zy8rodwBhjjLusEBhjTJKzQmCMMUnOCoExxiQ5KwTGGJPkrBAYY0ySS3Eyk4jcCNwHpAIPq+qjnaZfCfw/wAPsBG5T1cMiUgI8CxQCCixQ1ToRGQg8B4wCKoDrVXW/gyhpwBygHGhzkt0YYww+YAiwEmjqPLHbQiAixcADwKxIA++IyDJV3RiZPgB4HJijqvtE5DvAt4GvAY8Bj6nqb0TkfuB+4N+A/wKWq+plInIT8CPgBgcbMwdY7mA+Y4wxnzQPeLvzSCdHBPOBpapaBSAiLwDXAt+JTE8Fvqyq+yLDa4EFIpIKnANcFRn/NPAm4UJwWWQawK+BR0UkVVVbuslSDnD4cD3t7eEb4fLzs6msrHOwGfGVqLkgcbMlai6wbCcjUXNB8mXzej3k5mZB5DO0MyeFoKjTwuXAaR0DqloJvAggIhnAvwM/BgqAI6raGrXc0M5tqmqriBwBgkBZN1naANrbQx8Xgo7hRJSouSBxsyVqLrBsJyNRc0HSZuvylLqTQuAFolN5gPbOM4lIDuGCsEZVfxk5pdR5azqW83Qa32Wbx5Ofn33McDAYcLpoXCVqLkjcbImaCyzbyUjUXGDZojkpBHsJn1fqMJhO39xFZAjwF2Ap8I3I6INAjoj4VLWN8IWKjuX2RdrZKyIpQACodBq6srLu44oZDAaoqKh1umjcJGouSNxsiZoLLNvJSNRckHzZvF7PJ75AHzPdQRtLgAtFJCgimcA1wKsdE0XEB7wCPK+qX1fVEEDkfP9y/n4R+GZgceT1osgwkenLHVwfMMYY0wu6PSKI/BLoXmAZ4AeeVNUVIrII+D/AMGAmkCIi10YW+0BV7wC+BPxSRO4DdgOfjUy/H3haRDYA1cCCWG6UMcYY5xzdR6CqC4GFncZdGnn5Acc5slDVUuC8LsZXAZ/pSVBjjDG9w+4sNsaYJGeFwBhjkpyjU0PG9EVt3maa2ppj0lZFfTMNoe7bSvP58bX7Y7JOY+LFCoHpt5ramvmobH1M2goE0qmtbex2vplFk8n0WCEwfYudGjLGmCRnhcAYY5KcFQJjjElyVgiMMSbJWSEwxpgkZ4XAGGOSnBUCY4xJclYIjDEmyVkhMMaYJGeFwBhjkpwVAmOMSXJWCIwxJslZITDGmCRnhcAYY5Kco26oReRG4D4gFXhYVR89znzPAEtV9WkRKQRei5qcAwRVNVtEzgX+AOyJTFulqred7EYYY4w5ed0WAhEpBh4AZgFNwDsiskxVN0bNUwT8DLgQWAqgqgeB6ZHpXuB14N7IIrOBH6jqf8duU4wxxpwMJ0cE8wl/y68CEJEXgGuB70TNswB4Cag8Thu3AQ2qujAyPAcYJCKfBXYBX1bVPcdZ1hhjTC9yco2gCCiPGi4HhkbPoKrfV9Unu1pYRHyEjwT+PWp0NfBjVZ0KLAJ+05PQxhhjYsfJEYEXCEUNe4D2HqzjEmCrqq7rGKGqd0e9/qmIPCgiOapa46TB/PzsY4aDwUAP4sRPouaCxM0Wy1wV9c0EAukxa89JW5lZfoJZ8d+3yfD3jDXL9ndOCsFeYF7U8GCgrAfruIqob/yR6wXfAh5U1bao+VqdNlhZWUd7e7g2BYMBKipqexAnPhI1FyRutljnagg1O3rOsBNOn1ncEGimoiG++zZZ/p6xlGzZvF7PJ75AHzPdQRtLgAtFJCgimcA1wKs9yHAmsLxjQFXbgasj7SAiNwPvq2p9D9o0xhgTI90WAlXdR/gc/zJgNbBQVVeIyCIRme1gHaMIH1VEuwX4uohsIHwh+Y6exTbGGBMrju4jiPzaZ2GncZd2Md+tXYzL7GLcBuAsxymNMcb0Gruz2BhjkpwVAmOMSXJWCIwxJslZITDGmCRnhcAYY5KcFQJjjElyVgiMMSbJWSEwxpgkZ4XAGGOSnBUCY4xJclYIjDEmyVkhMMaYJGeFwBhjkpwVAmOMSXJWCIwxJslZITDGmCRnhcAYY5KcFQJjjElyjh5VKSI3AvcBqcDDqvroceZ7Bliqqk9Hhm8BHgQORGb5s6reKyIlwLNAIaDAAlWtO5UNMcYYc3K6PSIQkWLgAeBsYDpwl4hM7DRPkYi8AlzbafHZwD+p6vTIv3sj4x8DHlPV8cAHwP2nuB3GGGNOkpMjgvmEv+VXAYjIC4Q/8L8TNc8C4CWgstOyc4CxIvIfwBrgK0AdcA5wVWSep4E3gX87uU0wxhhzKpxcIygCyqOGy4Gh0TOo6vdV9ckuli0H/hOYCuwBfgIUAEdUtfV47RljjIkfJ0cEXiAUNewB2p00rqpXd7wWke8B24FvdmoPp+11yM/PPmY4GAz0ZPG4SdRckLjZYpmror6ZQCA9Zu05aSszy08wK/77Nhn+nrFm2f7OSSHYC8yLGh4MlHW3kIjkALer6kORUR6gFTgI5IiIT1XbgCFO2otWWVlHe3u4lgSDASoqanuyeFwkai5I3GyxztUQaqa2tjEmbQUC6Y7aagg0U9EQ332bLH/PWEq2bF6v5xNfoI+Z7qCNJcCFIhIUkUzgGuBVB8vVAd8UkdMjw/cAL6pqC7AcuCEy/mZgsYP2jDHG9IJuC4Gq7gPuBZYBq4GFqrpCRBaJyOwTLNcGXA88LiKbgFmETwsBfInwr482Ej7auO/UNsMYY8zJcnQfgaouBBZ2GndpF/Pd2ml4OTCzi/lKgfN6kNMYY0wvsTuLjTEmyVkhMMaYJGeFwBhjkpwVAmOMSXJWCIwxJslZITDGmCRnhcAYY5KcFQJjjElyVgiMMSbJWSEwxpgkZ4XAGGOSnBUCY4xJclYIjDEmyVkhMMaYJGeFwBhjkpyj5xEY05dUN9VQVreffQ372Fq5kxDg8UBmSiYBfza5aTn4fX63YxqTMKwQmH5hf/1B3t//IesPbaKsfv8x0zx4CBGKGob89DyKs4cwMmc4GSmxe8C9MX2RFQLTp22u2sqS3W+yqWoLXo+X0TkjuHrMZQwPDCOQkcnWQzvxeDy0h0IcbT3KkeZaKo5WUl6/nzWHNrDu0EaGBYqZkCfkpue4vTnGuMJRIRCRGwk/VzgVeFhVHz3OfM8AS1X16cjwXOAhwA9UAreraqmInAv8AdgTWXSVqt52Khtiksu+unJe3PZnNlVtIcc/gMtHXszZxacT8Gd/PE9DqA6PxwOA1+MhKzWTrNRMhmQNYmrBRGqb69hSvZ2dNaWU1u5l5IASphZMJDM1063NMsYV3RYCESkGHiD88Pkm4B0RWaaqG6PmKQJ+BlwILI1a/DngM6q6VkRuBx4BrgRmAz9Q1f+O2ZaYpNDS1sKfd/6VJbvfJCMlnWvGXM68oWeR6u35wW3An82swmlMzp/AxkplS/V29tSWMT04mTEDR35cRIzp75y8e+YT/pZfBSAiLwDXAt+JmmcB8BLhb/1E5ksD7lPVtZFRa4GvRF7PAQaJyGeBXcCXVXUPJi7qmutpCNXFdZ1pPj++9lO7QLundh9Pb/wN++sPcNaQOVw15jKyYvDtPc3nZ0bhFMYOHMXKA6v44OBqdtft44zBs2LSvjGJzkkhKALKo4bLgdOiZ1DV7wOIyNlR45qAZyPjvcC3gT9GJlcDz6vqH0TkbuA3wFynofPzs48ZDgYDTheNq0TNVVFfydbabXFd57TBEwlmdb8/utpnoVCIpTv+xi8++i2BtGz+45x7mD5kUrdtVdQ3Ewg4vxAcIJ0r8i5ED23n3T0f8Zfdy7hg5JkMyykKT3fQVmaW39F2xlqi/l9L1Fxg2aI5KQReiPrJRfhHF+1OVyAifuCXkXV9F0BV7+6Yrqo/FZEHRSRHVWuctFlZWUd7ezhSMBigoqLWaZy4SdRcAGRCbW1jXFfZEGimouHE+6OrfdbS3spv9UXeLV/J+Nyx3DbpRrJTshzt24ZQ80ltZ3H6UC4ansPb+95n8dY3mJI/gTNGTKeurqn7dTrYzlhL1P9riZoLki+b1+v5xBfoaE4KwV5gXtTwYKDMycpFJBt4mfApoytVtSVydPAt4EFVbYuavdVJmyZ5NLQ08MS6Z9havYNLhl/AZaMuwuuJzz2QA/wBLhp+HisPrGJd5SaOhhqYmT8dn9cXl/UbE09O3lVLgAtFJCgimcA1wKsO238W2AbcEDlVhKq2A1dH2kFEbgbeV9X6noY3/Vfl0cP84MPH2FlTyi0T/5ErRl8StyLQIcWbwhmDZzO1YCLbqkpZumc5TW3Ncc1gTDx0+85S1X3AvcAyYDWwUFVXiMgiEZl9vOVEZAbhXwjNBT4SkdUisigy+Rbg6yKyAbgNuOMUt8P0I/vrD/LDjx7jSHMt90y/k9MGz3Qti8fjYVL+eOaPOpuqpmpe3/0WR1vje1rNmN7m6Dd3qroQWNhp3KVdzHdr1OtVhK8ndNXeBuCsngQ1yWFP7T5+svpJPB4P35h5N8XZQ9yOBMCovBLamuGtfe+yZPebXDBsnv2iyPQb1umcSRil1Xt5ZNUTpHpT+aeZX0yYItBhcFYh5w87m6a2ZpbsfpMjzYl5sdGYnrJCYBLC/vqD/OcbP8Lv8/P1mXdTmBl0O1KXghn5XDhsHm2hdpbsfovDjdVuRzLmlFkhMK6raKjkkVVP4PF4+eqMuyjIyHM70gnlpg9kfsk5+Dxelu5ZbsXA9HlWCIyrqhoP88jqJ2gNtXL/uV9lUIIeCXQ2wB/gwpJzSPGmsHTv21Q3OboFxpiEZIXAuKam6QiPrHqCo61HuWf6HZQMLHY7Uo9kp2ZxwbB5kSODtznSZNcMTN9khcC4orG1kUfXPEVNcy1fmvZ5SgJD3Y50UgL+bC4YNg8PsHTPcioaKrtdxphEY4XAxF1bextPrX+O8voD3DH5JkblDHc70ikZ4A9wwbB5tBPiZ6t/xaGjVgxM32IPpjFxFQqF+O2WF9lYpdwo1zApX9yOFBM5aQM4f+jZvLXvHX606gm+PuNu8jNy3Y7Va9q8zd3eZV1R30xDKHZ3YseiB1vTNSsEJq7+WvoGfytbwUXDz2du8elux4mp3PQc7pz+OZ5Y/SyPrPoZX595N7npA92O1Sua2pr5qGz9CecJBNJj2rnhzKLJZHqsEPQGOzVk4uaD/at4acdiZg+azhWjLnY7Tq8YGhjCV6bfQV1LA4+seoKapiNuRzKmW1YITFzsrN7NrzY9z+ickXxuwvVx70AunoYPGMaXp3+emuYj/GjVE3YHskl4/ffdaBJGQ8tRntnwO3LTB/KFqbec1GMl+5pROcP50rTPc7jxMI+seoLa5vg+Ec6YnrBCYHpVW3sbb5e9R0tbC3dNuSWpOmobM3AkX5x2G4eOVvLj1T+nvqXB7UjGdMkKgek1oVCIDw+uobLxMDdMuJKi7MFuR4q7cblj+MKUWznQUMFPVv+chpajbkcy5hOsEJhes61mJ9trdjExT5gSnOB2HNdMyB/HnZNvoqxuPz9Z86Q9z8AkHCsEpldUNFTy0YE1DMkaxJSCiW7Hcd3kggl8fvLn2FO7j8fWPEWjFQOTQKwQmJg72trI22XvkZmayVlD5uD1dPl8oqQzNTiJ2yctYNeRPTy25n/tsZcmYTj6+YaI3AjcB6QCD6vqo8eZ7xlgqao+HRkuIfzc4kJAgQWqWiciA4HngFFABXC9qu4/xW0xCSAUCvFu+Upa2ls5f9jZ+H12A1C0GYVTuDX0j/zvhl/zk9VP8qVpt5GRkuF2LJPkuj0iEJFi4AHgbGA6cJeITOw0T5GIvAJc22nxx4DHVHU88AFwf2T8fwHLVXUC8HPgR6e0FSZhbKzawoGGCmYVTmVgWo7bcRLSrEHTuX3yAnYd2c0jq+zXRMZ9Tk4NzSf8Lb9KVeuBF/jkB/4C4CXg+Y4RIpIKnBOZH+Bp4LrI68sIHxEA/Br4dGR+04cdOlrJukMbKQkMZVTOCLfjJLSZhVO5a8rNlNWV86NVP7P7DIyrnBSCIqA8argcOKbPYFX9vqo+2Wm5AuCIqrZ2sdzHbUamHwH6xhNJTJea25p5p2wlmakZzBk0A49dF+jWlIKJ3D3tNg42HOKhj35qD7cxrnFyjcALhKKGPUD7SSxH1HKdPyWctglAfn72McPBYMDponGVqLkq6isJBNJj1l4oFGLJjpU0tB3lSvkU+dmf3O7MLD/BrO73Ryz3WUV9c0y300lbTrezQzA4i4LcATy4/FEeWf0z7j33KwwOFPYoV11zPWTG98JzSpvH0f6I5f7v6b7tTqK+PyH+2ZwUgr3AvKjhwUCZg+UOAjki4lPVNmBI1HL7Iu3sFZEUIAA47sS9srKO9vZwjQkGA1RUJF5fLomaC4BMYtor5NbqHew8vIfpwclkhLK7bLsh0ExFw4n3R6z3WUOoOWbb6bQnTSfb2VnQM5h7pt3J42t/wX/89XvcPfU2RuaUOG8gs5m3t37Uo3WeqilF47rdH7HuffRk9u3xJPL7szeyeb2eT3yBPma6gzaWABeKSFBEMoFrgFe7W0hVW4DlwA2RUTcDiyOvF0WGiUxfHpnf9DFHmmtZdXAtgzMLGZ871u04fdbInBL+edaXSfel8aNVP2NtxQa3I5kk0m0hUNV9wL3AMmA1sFBVV4jIIhGZ3c3iXyL8K6ONhI8q7ouMvx84Q0Q2ROb58slugHFPeyjE++Uf4vP4OGPILLsucIoGZQb5l9n3UJQ1mCfWPcPyfe+6HckkCUf3EajqQmBhp3GXdjHfrZ2GS4HzupivCvhMD3KaBKSHt3GosYozh8y238LHSMCfzddmfoFfrH+O3+iLVB49zGdGX9Kvu+027rP/XeakHGmqZd2hDRRnD2F4YJjbcfqVNJ+fu6bczNnFZ/DX3W/w2JpfUNdS73Ys049ZITA91h4K8d7+D/F5Uuynor3E5/XxWfkHbpRr2Hp4O99b+Qh7ave5Hcv0U1YITI/p4a1UNlYxa9A0MlJi9/NA80lzi0/nG7O+SFuonf/58FHeK//A7UimH7JCYHqkpukIaw9tZGh2EcMDQ7tfwJyyEQNK+Pc5X2PkgOH8atPzLNz8gnVYZ2LKCoFxLBQKsWL/R6R4U5g9aLqdEoqjgD+be6bfwadKzuOdspU8uOJhSo/scTuW6SesEBjHdtSUcqixihnBKXZKyAU+r4+rxlzKV2fcRUt7Kz/48FH+uG0RzW12C445Nf3/KeImJpramlh9aD3BjHxGDujBXa8m5sbljuY/TvsGL277E3/d/QarD61jUt54hmQNcjua6aPsiMA4sqZiAy1tLXZKKEFkpmawYMJ1fGX6nYQI8cbev/HWvnetF1NzUqwQmG4dOlrF9ppdSO4Ye8ZAghmfN5b7zv0q0womcaD+IH/e+VdW7l9FQ8tRt6OZPsRODZkTag+1s/LAKjJS0plcMN7tOKYLqb4UJuYLI3JK2FC5me3Vu9hxpJRRA4YzPm8sAf/xOxszBqwQmG5sq95JdVMNc4tOI9Vrzw5KZJkp4WdBTMgdx8YqZceRUrbV7KQ4azCjB45kSNZge3606ZIVAnNcR1uPsvbQBgZnFjIsu9jtOMahbH8Wpw2eyZSCiWw9vJ3tNbvYt28/GSnpDM0uYligmGBGvvVfZD5mhcAc15qKDbSF2u0CcR+VkZLO1OAkJhdMYF9dObuO7GZHzS62Vu8gzednaHYRxdlDCGYU4PfZ0V4ys0JgulTVWM3OI7sZn2vnmPs6r8fLsEAxwwLFtLa3UlZ/gL21+yit3cv2ml14gNy0gRRmBinMLLDCkISsEJhPCIVCrK5Yh9/nZ1K+uB3HxFCKN4WSQDElgWLa2tuobKziQEMFBxsOsaV6O5sPb8UD5KTlUJhRQDCzgGBGvt1A2M9ZITCfUFa/nwMNFcwqnIbf53c7juklPq8vchQQBKC1vY1DRyupOFpJxdFDbK/ZxZbq7QDk+AcwJGsQQ7IGUZhZ4GZs0wusEJhjtIfaWV2xnkBqNqMHjnQ7jomjFK+PwVmFDM4qBKAt1M7hxmoONlSwv+Hgx0cMfp+f7bU7GZg6kIL0PLt+1A9YITDH2F6ziyPNtcwrOgOf/aokqfk8Xgoy8ijIyGNivtDa3kp5/QH21Jax9uAmmtuaGeAPMC53NKMGDMfn9bkd2ZwkR4VARG4k/LzhVOBhVX200/TpwJPAAOAt4G4gD3gtarYcIKiq2SJyLvAHoKP7xFWqetupbIg5dS1tLaw7tIlgRj7F2UPcjmMSTIo35eOLzuMKR7B4yxtsq9nBBwdWs+HQZibkj2PMwFH2BaIP6rYQiEgx8AAwC2gC3hGRZaq6MWq2Z4E7VPU9EXkKuFNVHwemR9rwAq8D90bmnw38QFX/O3abYk7VpqotNLU1MSN4ph3umxNKS/EzeuAIRuUM50BDBRsqN/PRwbVsrd7BrMJp1gFeH+OkdM8HlqpqlarWAy8A13ZMFJHhQIaqvhcZ9TRwXac2bgMaVHVhZHgOcJGIrBWRl0XEHnrrsoaWBjYf3srwwDDyM/LcjmP6CI/Hw+CsQi4sOYdzis8kFAp3gPdu+UqaW+3hOX2Fk0JQBJRHDZcDQ51OFxEf4SOBf4+apxr4sapOBRYBv+lZbBNr6ys3EwqFmBqc6HYU00cVZw/h0hHzmZw/ntIje3hh42IqGirdjmUccHKNwAuEooY9QHsPpl8CbFXVdR0jVPXuqNc/FZEHRSRHVWuchM7PP/YGp2Aw4GSxuEvUXBX1lQQCf/9deE1jLTtqSplYOJYhefm9ss7MLD/BrO73Ryz3WUV98zHbeaqctOV0O2Op898zHlJTfcdd51k5MxkdHMbSne/y+t63mFcyh/HBMae8zljv20R9f0L8szkpBHuBeVHDg4GyTtOHnGD6VUR9449cL/gW8KCqtkXN1+owM5WVdbS3h2tPMBigoqLW6aJxk6i5AMiE2trGjwffL1+N1+NlbGD0MeNjqSHQTEXDifdHrPdZQ6g5ZtsTCKQ7asvJdsZcp79nPLQE2k64zkwC/MOES/jLlrd4q3QFB45UMT045ZQ6vYvlvk3k92dvZPN6PZ/4An3MdAdtLAEuFJGgiGQC1wCvdkxU1VKgUUTmRkbdBCyOWv5MYHnU/O3A1ZF2EJGbgfcj1x9MnNU0HWHXkT2MHTiKjJQMt+OYfiQtxc+5Q89i3MDR6OFtvFf+Ae2h9u4XNHHXbSFQ1X2Ez/EvA1YDC1V1hYgsEpHZkdkWAA+JyGYgG3gkqolRhI8aot0CfF1ENhC+kHzHqW2GOVnrDm0kxZvCxPxxbkcx/ZDX42XWoGlMLZhIae0e3ilbSZsVg4Tj6D6CyK99FnYad2nU6zXAacdZNrOLcRuAs3qU1MRcVeNh9tSVMTl/PGm+NLfjmH5sUv54fB4fqyrWQRmcVXSaPRshgdidH0ls3aFN+L2pSO5Yt6OYJDA+bywzglPYU7ePDw+uJhQKdb+QiQvrYiJJHTpaSVn9fqYVTLIuh03cjM8bS2NbE5uqtpDhS2dywQS3IxmsECSttYc2kuZLY1zuaLejmCQzrWASja2NrKvcRMAfYPiAod0vZHqVnRpKQlsrd3KgoYKJeUKK174LmPjyeDzMGTyTYEY+7+//kKrGarcjJT37FEhCi7cuI92Xxpg4djPt8UFDW90J56mob6YhFLtuCdq9bd3PFGNOtjPWUtr63kVXn8fL3KLTea10Gcv3vcvFw88n3R5+4xorBElme/Uu9NAOZgSnkBLHboOb25pZV7blhPM4vWnLqSlF8f9JrJPtjLWZw/vmefaMlHTmFZ/BX3e/ybvlH3De0LnW2aFL7NRQklm8awnZ/sy4Hg0Yczx56bnMLJzK/oaDbKra6nacpGWFIInsOrKbTVVbuHDU2XZtwCSMMTkjGZZdzNpDGzh01Dqpc4MVgiSyeOfrZKVkcs6I092OYszHPB4Ppw2eQWZqBu+Ur6SlvcXtSEnHCkGS2F27l/WVm7igZB7pKXYXsUksfp+fMwfPpr6lgVUH13W/gIkpKwRJ4tVdS8lIyeDcodazh0lMwcwCxueOZXvNLsrq9rsdJ6lYIUgC++rKWVOxnvOHzrUeRk1Cm1owkRz/AFbs/4jmNnvCWbxYIUgCi3e9TrovjfOHne12FGNOyOf1ccaQWTS2NbK6Yr3bcZKGFYJ+rrz+AKsPruPcoXPJTP1ER7DGJJy89FzG5Y5he80ue9RlnFgh6Ode3fU6qb5ULhg2r/uZjUkQUwomkpmSwYoDH9nzC+LACkE/dqD+IB8eWMO5xWeR7c9yO44xjqV6U5g9aDpHmmvZXBXfO7WTkRWCfuwvpctI8aZwYck5bkcxpseKs4cwLLuY9ZWbqW2Ob/9NycYKQT9V0VDJygOrmFd8BgH/8R9abUwimzloKj6Pl5UH7EE2vclRPwMiciNwH5AKPKyqj3aaPh14EhgAvAXcraqtInIL8CBwIDLrn1X1XhEpAZ4FCgEFFqiqlfwYeq10KV6Pl/kl57odxZiTlpmSwbSCSXxwcA0fHVjHvCF2H0xv6PaIQESKgQeAs4HpwF0iMrHTbM8C96jqOMAD3BkZPxv4J1WdHvl3b2T8Y8Bjqjoe+AC4/9Q3xXSoPFrFe/s/ZG7RaeSkDXA7jjGnZPTAUeSn5/LKttdoaGlwO06/5OTU0HxgqapWqWo98AJwbcdEERkOZKjqe5FRTwPXRV7PAW4RkXUi8qyI5IpIKnBOpJ3O85sYeG33G3jx8KmS89yOYswp83o8zBk0g4aWo/xp51/djtMvOSkERUB51HA5MNTh9HLgP4GpwB7gJ0ABcERVW4/TnjkFhxurebdsJWcUzSE3faDbcYyJidz0gZxRPIu39uS9CJQAABOzSURBVL7Dvrry7hcwPeLkGoEXiL5K4wHanUxX1as7RorI94DtwDc7zU+n9rqVn3/sxc9gMNCTxePGjVyvfLgICPHZGZcTzOp6/RX1lQQC8X0aVGqqz9E6Y5nL6TqdctJWrNfpVDL8Pa8efhHrKzbx4s5X+Pb5/3TKD7FJ1M8NiH82J4VgLxB9N9JgoKzT9CGdp4tIDnC7qj4UGe8BWoGDQI6I+FS1LbJsdHvdqqyso709XEuCwQAVFbU9WTwu3MhV3VTDku3LOX3wLGjwU9FwnPVnEtMngTnREmjrdp2xfkKZk3U65TRbLNfpWF5y/D09gRSuGHkJC/X3LF6/nDmDZ5x0W4n6uQG9k83r9XziC/Qx0x20sQS4UESCIpIJXAO82jFRVUuBRhGZGxl1E7AYqAO+KSIdnd/fA7yoqi3AcuCGyPibI/ObU/SXXctoJ8QlIy50O4oxveLMojmUBIby4rY/0dga54Lbj3VbCFR1H3AvsAxYDSxU1RUiskhEZkdmWwA8JCKbgWzgkci3/euBx0VkEzCL8GkhgC8R/vXRRsJHG/fFcqOS0eHGat4pe58zh8wmPyPP7TjG9Aqvx8v1466iprmWxbtedztOv+HoPgJVXQgs7DTu0qjXa4DTulhuOTCzi/GlwHk9zGpO4LXSN2gnxMXDL3A7ijG9amROCWcOmcPSPcs5c8gcBmcVuh2pz7M7i/uBvx8NzLGjAZMUrhz9adJ8fn635SW74zgGrBD0A6+VLiMEdjRgkkbAn83lIy9m8+GtrDm0we04fZ4Vgj4ufDSwInJtINftOMbEzbziMyjKGszvt75iTzM7RVYI+ri/dBwNjLCjAZNcfF4f14+7iqrGw7xW+obbcfo0KwR92MdHA0VzyEu3owGTfMbmjmL2oOn8dfcbHDpqTzM7WVYI+rDFu5YAcPHw811OYox7rh5zGT6Plxe2vuJ2lD7LCkEftb/+IO+UreSc4jPtaMAktYFpOXx6xHzWHdrI+kOb3I7TJ1kh6KNe2fEqaT6/XRswBjh/2NkUZhbwwtaXaWlv7X4BcwwrBH3QzppSVlesZ37Jufb0MWOAFG8K14+9ioqjlSzd/ZbbcfocKwR9TCgU4o/bFxHwZ3P+sHndL2BMkpiQP45pwcm8uut1DjdWux2nT7FC0MdsqNzMtuqdXDpiPukpaW7HMSahXDPmckKE+MO2P7kdpU+xQtCHtIfaeWn7Ygoy8plbdHr3CxiTZPIz8rho+Pl8dHAtWrXN7Th9hhWCPmTl/lWU1e/nM6Muxuf1uR3HmIQ0v+Q88tPzeH7rS7S1t7kdp0+wQtBHtLS38qedrzEsUMyMwqluxzEmYfl9qVw79gr21x/gzb1/cztOn2CFoI94Y8/bVDUe5qrRl+L12J/NmBOZUjCRifnCn3cuoaYpMZ9ElkjsE6UPqGmq5dVdrzOlYALj88a6HceYhOfxeLhu7GdobW/hpe2L3I6T8KwQ9AEvb19MS3sr/zDmcrejGNNnFGYGuaDkHN7f/yHbqne6HSehWSFIcLuO7Oa9/R9wwbB5FGYG3Y5jTJ9yyYgLyUvPZeHmF2hpa3E7TsJy9KhKEbmR8HOFU4GHVfXRTtOnA08CA4C3gLtVtTXyQPuHAD9QCdyuqqUici7wB2BPpIlVqnpbLDaoP2kPtfO8vsQAf4BLrCsJY3oszefnRrmGn6x5kkW7lnDl6E+7HSkhdXtEICLFwAPA2cB0wg+dn9hptmeBe1R1HOAB7oyMfw64Q1WnR14/Ehk/G/iBqk6P/LMi0IW39r1Lae0erhlzOekp6W7HMaZPmpA/jjOGzGbJ7jfZXbvX7TgJycmpofnAUlWtUtV64AXg2o6JIjIcyFDV9yKjngauE5E04D5VXRsZvxYoibyeA1wkImtF5GURGRaDbelXqptqeGX7q4zPHcusQdPdjmNMn3bNmMvJTs3i2U2/s07puuCkEBQB5VHD5cDQ7qarapOqPgsgIl7g28AfI/NUAz9W1anAIuA3J5W+H3thy8u0htq4Qa7G4/G4HceYPi0zNZMbx1/Dvrpy/rzjNbfjJBwn1wi8QChq2AO0O50uIn7gl5F1fRdAVe/umK6qPxWRB0UkR1VrnITOzz+2x81gMOBksbg72Vwr9q5mVcU6bph8BZOGj4xxKqioryQQiO+pptRUn6N1xjKX03U65aStWK/TqWT4e2Zm+Qlmnfx7/YLg6Wyp28qSHW8yb8wsxgfHxCxbrMX7M81JIdgLRHdzORgo6zR9SFfTRSQbeJnwheIrVbUlcnTwLeBBVY2+/9vx8VplZR3t7eHaEwwGqKhIvBtGTjZXbXMdP13xLMOyi5hbcFbvbFsm1NY2xr7dE2gJtHW7zkAgPaa5nKzTKafZYrlOx/KS4+/ZEGimouHU3g+XDb2YNWWb+Mn7T/PNWV8jIwGvvfXGZ5rX6/nEF+hjpjtoYwlwoYgERSQTuAZ4tWOiqpYCjZFfCAHcBCyOvH4W2AbcoKpNkfnbgasj7SAiNwPvR64/JL3fbvkjR1sbuWniDdafkDExlp6Szi0T/5FDDYf59ebfEwqFul8oCXRbCFR1H3AvsAxYDSxU1RUiskhEZkdmWwA8JCKbgWzgERGZAVwJzAU+EpHVItJxi98twNdFZANwG3BHTLeqj/rgwGpWHVzLpSM/RXH2kO4XMMb02OiBI7hh8hV8eHANfyt73+04CcHRfQSquhBY2GncpVGv1wCndVpsFeHrBV21twE4q0dJ+7lDRyv59eY/MHJACZ8qOdftOMb0a1dOuIhVezfyu60vM2JACUMDRW5HcpXdWZwAWttbeWr9c3g8Hm6bdKOdEjKml3k9Xm6d9FmyUjL4+bpnqG9pcDuSq6wQJICXti9md+1ePjf+WvIz8tyOY0xSCPizuXPKzVQ31fCL9c8l9bMLrBC4bOX+VSzds5xzis9ieuEUt+MYk1RG5gznBvkHNh/eyh+TuJdSR9cITO8oPbKH5zb/jjEDR3LNWOtZ1Bg3nFU0h711ZSzds5z89DzOGza3+4X6GSsELqluquGJdc8Q8Ae4Y/JNpHjtT2GMW64dewWHG6t5YevL5KQNYEaSHZ3bqSEXNLQ08OjqpzjaepQvTLmFgP/4N3oYY3qf1+PltkmfZcSAEp7e+Ouke/C9FYI4a25r5vG1T3OwoYIvTLk16X+2Zkyi8Pv83D3tVoIZ+Ty+9n/Zcni725HixgpBHDW3NfPEumfYWVPKLZM+i+Qlbl8nxiSj7NQsvjbjC+Rn5PH4ml8kTTGwQhAnja2NPLrmKTZXbWXBhOuYWTjV7UjGmC4E/Nl8bcZd5KXn8uiap1h9cJ3bkXqdFYI4qG2u48ern2RHTSm3TvxHzhwyu/uFjDGuGeAP8I2ZX2RYdhFPrn+WN/e+43akXmWFoJeV1e3n+x/8mH11Zdwx+XPMHjzD7UjGGAey/Vl8dcZdTC4Yz/Nb/sjCzb/vtw+1sd8s9qLVB9fxq03Pk+bz842ZX2T4AHsQmzF9id/n587JN/Onna/xWuky9taW8fnJnyM/I9ftaDFlRwS9oLmtmSdWPsfP1/+KQZmF/Ovsr1gRMKaP8nl9XDn609w55WYONBzkuyt+yDtlK/pVF9Z2RBBjm6u28lt9kYNHD/GpkvO4fNRFdrOYMf3A9OBkhp5WxLObnue5zS/w0cG1XDfuSgZlBt2OdsrsEypGKo9W8fKOV/ngwGoKMvK5/7yvMdhb7HYsY0wMFWTk8dUZd/HW3nd5ZcerPPD+Dzlv6FwuGnE+2alZbsc7aVYITlFV42H+UrqMd8tW4vF4uHTEfC4afj5Fg/IS8hGaxphT4/V4OW/YXGYOmsrL219l6Z7lvF32HucUn8UFJfMY4E/MZ6ifiBWCk9Aeamfr4R28te8d1lRswOvxclbRaVw8/Hxy0we6Hc8YEwcD/AE+N+E6Lhg2j1d3vc6S3W+ydM9ypgcnM6/4DEYPHInX0zcuwzoqBCJyI3AfkAo8rKqPdpo+HXgSGAC8Bdytqq0iUkL4ucWFgAILVLVORAYCzwGjgArgelXdH6Nt6hVt7W3sPLKbtRUb+PDgGqqbashKyWR+ybmcM/RM8tL7168IjDHOFGUP5vbJC7is4SKW732X9/Z/wIcH1zAwLYcZwSlMKZjIqIEjSE3ga4XdJhORYuABYBbQBLwjIstUdWPUbM8Cd6jqeyLyFHAn8DjwGPCYqv5GRO4H7gf+DfgvYLmqXiYiNwE/Am6I5YadqvqWBvbVlbGzZjc7j5Sy9fBOGtsa8Xl8TMwfx9WjL2VqcDJ+X6rbUY0xCWBQZpBrx32Gz4y+hDUVG1h1cC3Ly95j2d63SfWmMipnOCWBoQwLFDMsUExBRl7CHDE4KVHzgaWqWgUgIi8A1wLfiQwPBzJU9b3I/E8D/09EngTOAa6KGv8m4UJwWWQawK+BR0UkVVVbTnWDTqSlrYWG1kaa2hppamumsbWJhtajVDfVcLixmsNN1RxurOHQ0UPUNP/9/H5hZgGzBk1lYv54JHc0GSkZvRnTGNOH+X1+5gyewZzBM2hsbWJr9XY2VW1hR00pS/cspy0UfhJaui+dwswC8tIHkps2kIHpOeSmDaSoLZ/GunYyUtJI86WRnpKG1+PD6/H22lGFk1aLgPKo4XKOfVB9V9OHAgXAEVVt7TT+mGUip5COAEGgrJssPgCv13PMyM7DXWloOcpDHz1OU1tTl9O9Hh8D/AFyMwYwamAJg7KCFGYGKc4eQuZJfvA7yeUKj5dMf3pcV5ni9XW7zvSUNNr88V2nU06zxXKdTvlcWKcbf0+f14fXE7v3VDzen5n+dKYVTmJa4SQgfIr54NFDlNXtp7x+P1WN1dQ0HWFLzTaaq5rDC+08fnsXj7iAuUWn9zhH1LZ2+UB0J4XAC0TfOeEB2h1M7zyeqOU6/wU6t3k8QwByc4/9mVZ+fvf9+eeTzQ8v/T8OVhE7TnK55eKJ8+K+zhEFQ7ufydZ5UobmDIn7Ot3Yzlhy6/1ZSA6TGe3Kugl/hn6iS1UnhWAvEP2pMZhjv7nvjTTeefpBIEdEfKraFpmnY7l9kfn2ikgKEAAqHWRZGclSDiTvk6aNMaZnfIQ/g1d2NdFJIVgCfFtEgkA9cA1wV8dEVS0VkUYRmauqfwNuAharaouILCd8EXghcDOwOLLYosjwdyPTlzu8PtAEvO1gPmOMMcc67sMVur1krar7gHuBZcBqYKGqrhCRRSLS0Z/yAuAhEdkMZAOPRMZ/CbhLRDYS/iZ/X2T8/cAZIrIhMs+Xe75NxhhjYsHTnzpOMsYY03OJ8SNWY4wxrrFCYIwxSc4KgTHGJDkrBMYYk+SsEBhjTJJL3O7wekhEZgDvqWqa21k6iMhc4CHAT/iGudtVtdTFPCfsRdZNIvJ/gesjg39W1W+6maczEfkBUKCqt7qdpYOIXAH8XyALeE1Vv+ZypI+JyOeAb0UGF6vqv7icZwDwDnC5qu4SkfnAD4EM4Leqet8JG4hvtruArxLumeED4Auq2tybGfrFEYGIZAI/JvyBm0ieI9wr6/TI60e6mb/XRPUiezYwnfD9HRPdyhMt8qa8CJhBONssEbna3VR/JyIXAre4nSOaiIwCfkq4U8epwEwR+bS7qcIi78dHgHOBacC8yN/YrTynE74RdVxkOAP4BXAlMAGY49a+6yLbOOBfgbMI/129xOE+q35RCID/AR52O0Q0EUkD7lPVtZFRa4ESFyN93IusqtYDHb3IJoJy4J9VtTlyh/km3N1XHxORPMIF9LtuZ+nkasLfZPdG9tkNwPsuZ+rgI/zZkkX46DMVOOpinjsJf5h2dHFzGrBVVXdGOsV8FrguQbI1AV9S1SOqGgLWEYf3Qp8/NSQinwEyVfUFEXE7zsdUtYnwfzBExAt8G/iji5G660XWNaq6oeO1iIwlfIpornuJjvEzwnfWD3M7SCdjgGYReZnwB8WfCN+x7zpVrY08f2Qz0EC4+/l3XMxzB0DU58PxekyOu87ZIqeOSyPjgsA9wK29naPPFAIRuY7w+fZomwk/Fc21w044fjZVnS8ifuCXhPe1m98qu+tF1nUiMgn4M/Cvqro1AfLcAexR1ddF5Fa383SSQviZHucBdcDLhE9fPe1epDARmQrcDgwHagh/IfoX4Ptu5orSF94LxYT7ZntKVd/o7fX1mUKgqr8Dfhc9LvJG/RbwVkdFFZHVwDxVjduT47vKFsmSTfgNWglc2dsP3ulGd73IuipyYf33wNdV9Tdu54m4ARgS+T+VB2SLyEOq+g2XcwHsB5aoagWAiLxI+AjvaTdDRVwMvK6qBwFE5GnCfYolSiE4Xo/JCUFExgN/AR5R1f+Jxzr7TCHoiqo+SfhZyQCISChyYTZRPAtsI/wMZ7e/cZywF1k3icgwwqfNblDVpW7n6aCqn+p4HTkiOC9BigCETwX9MvL871rg07h76jHaGuB7IpJF+NTQFRyn+2OXvA+IiIwh/BiYGwlfPHadiASA14B7VfVX8Vpvf7lYnHAiP2e9kvC57o9EZLWILHIrz/F6kXUrTyf/AqQDP4zsp9UicrfboRKZqr4PfI/wL042Ej6v/L+uhopQ1dcIP4L2Q8I/kkgFHnQ1VBRVbSR83v33hPfdZsI/nkgEdwCDgH+Oei98p7dXar2PGmNMkrMjAmOMSXJWCIwxJslZITDGmCRnhcAYY5KcFQJjjElyVgiMMSbJWSEwxpgkZ4XAGGOS3P8HskyY/n7C5HMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -360,27 +384,29 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 54, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3wU9aH//9dectskkBB2k3ATJFwEEhSwREpBVIhcQhTpEUGjVZCLFs3vB55UPQJaT63HGluLHi+tVgULCkFiMaKiVg1agSIgIBdFkECyuZJkc9nszvcPak4j4CawYZfwfj4ePszszHzynt0l752Z3VmTYRgGIiJyXjMHOoCIiASeykBERFQGIiKiMhAREVQGIiKCykBERGhhGeTl5TFhwgTGjRvHsmXLTrncBx98wBVXXNE0fezYMW6//XbGjx/PjBkzcDqdZ55YRET8zmcZFBUVkZOTw/Lly1mzZg0rVqxg3759JyxXUlLCb3/722a3PfHEEwwbNoy33nqLn//85zz88MP+Sy4iIn7jswwKCgpITU0lJiYGm81GWloa+fn5Jyx3//33c+eddza77YMPPiA9PR2ASZMm8fe//x232+2n6CIi4i8+y6C4uBi73d407XA4KCoqarbMSy+9xIABAxg8ePAp17VarURFRVFWVuaP3CIi4kc+y8Dr9WIymZqmDcNoNr1nzx7Wr1/PvHnzfP4ywzAwm3XOWkQk2Pj8y5yQkNDsxK/T6cThcDRN5+fn43Q6ue6667j99tspLi5m+vTpwPG9iJKSEgAaGxupqakhJibG39sgIiJnyOTrQnVFRUXccMMNvP7660RERDBt2jQeeughUlJSTlj2u+++IzMzkw0bNgCwZMkS4uPjmTNnDmvXruXNN9/k2WefbVXA8vIavN7guZZeXFwUpaXVgY7RjDK1XDDmUqaWUaaWMZtNxMZGtno9q68F4uPjycrKIjMzE7fbzdSpU0lJSWHWrFnMnz+f5OTkU6571113kZ2dzcSJE4mOjuaxxx5rdUCv1wiqMgCCLg8oU2sEYy5lahllajs+9wwCrbS0OqjubLs9GqezKtAxmlGmlgvGXMrUMsrUMmazibi4qNav1wZZRETkHKMyEBERlYGIiKgMREQElYGIiKAyEBERVAYiIoLKQEREUBmIiAgqAxERQWUgIiKoDEREBJWBiIjQgktYi7Qn1Q01uIwzv/58mCUUizfUD4lEgoPKQM4rte46thTuOONxhnQZhM2kMpD2Q4eJREREZSAiIioDERFBZSAiIrSwDPLy8pgwYQLjxo1j2bJlJ8x/5513SE9PZ+LEiWRnZ9PQ0ABAbm4uI0eOJCMjg4yMDHJycvybXkRE/MLnu4mKiorIyclh9erVhIaGMm3aNIYPH05SUhIALpeLBx98kNzcXDp37kxWVha5ublcf/317Nixg+zsbCZNmtTmGyIiIqfP555BQUEBqampxMTEYLPZSEtLIz8/v2m+zWZjw4YNdO7cmdraWkpLS+nQoQMA27dvJzc3l/T0dBYsWEBlZWXbbYmIiJw2n2VQXFyM3W5vmnY4HBQVFTVbJiQkhA8//JDLL7+c8vJyRo4cCYDdbmfevHmsXbuWxMREHnzwQT/HFxERf/BZBl6vF5PJ1DRtGEaz6e+NHj2azz77jDFjxrB48WIAli5dytChQzGZTMycOZOPPvrIf8lFRMRvfJ4zSEhIYNOmTU3TTqcTh8PRNF1RUcGOHTua9gbS09PJysqiqqqKVatWccsttwDHS8RisbQ6YFxcVKvXaWt2e3SgI5xAmVrGWVNKdHT4GY9jiwzFHum/7QvG+0qZWiYYM50On2UwYsQInnzyScrKyoiIiGD9+vU89NBDTfMNw2DhwoWsWrWKLl26kJ+fz5AhQ7DZbDz//PNccsklDB48mFdeeYWxY8e2OmBpaTVer9Hq9dqK3R6N01kV6BjNKFMr2KCqqu6Mh3FFN+B0+Wf7gvG+UqaWCcZMZrPptF5E+yyD+Ph4srKyyMzMxO12M3XqVFJSUpg1axbz588nOTmZhx56iNmzZ2MymUhKSmLJkiVYLBaeeOIJFi9eTF1dHT179uTRRx89rY0TEZG2ZTIMI3hedp+E9gx8U6ZWsDXw8d4tZzzM8QvV+ecQZjDeV8rUMsGY6XT3DPQJZBERURmIiIjKQEREUBmIiAgqAxERQWUgIiKoDEREBJWBiIigMhAREVpwOQqR01HdUIPLqPbLWGGWUCzeUL+MJSInpzKQNlHrrmNL4Q6/jHX80g8qA5G2pMNEIiKiMhAREZWBiIigMhAREVQGIiKCykBERFAZiIgIKgMREaGFZZCXl8eECRMYN24cy5YtO2H+O++8Q3p6OhMnTiQ7O5uGhgYACgsLmTFjBldffTVz586lpqbGv+lFRMQvfJZBUVEROTk5LF++nDVr1rBixQr27dvXNN/lcvHggw/ywgsv8Le//Y36+npyc3MBWLJkCdOnTyc/P59Bgwbx1FNPtd2WiIjIafNZBgUFBaSmphITE4PNZiMtLY38/Pym+TabjQ0bNtC5c2dqa2spLS2lQ4cOuN1uPv/8c9LS0gCYMmVKs/VERCR4+CyD4uJi7HZ707TD4aCoqKjZMiEhIXz44YdcfvnllJeXM3LkSMrLy4mKisJqPX75I7vdfsJ6IiISHHxeqM7r9WIymZqmDcNoNv290aNH89lnn/H444+zePFi7rnnnhOWO9l6vsTFRbV6nbZmt0cHOsIJgi2Ts6aU6Ohwv4xliwzFHumf7fNXLn9mguB7/ECZWioYM50On2WQkJDApk2bmqadTicOh6NpuqKigh07djBy5EgA0tPTycrKolOnTlRVVeHxeLBYLCes11KlpdV4vUar12srdns0TmdVoGM0E4yZsEFVVZ1fhnJFN+B0+Wn7/JTLn5mC8fFTppYJxkxms+m0XkT7PEw0YsQINm7cSFlZGbW1taxfv55Ro0Y1zTcMg4ULF1JYWAhAfn4+Q4YMISQkhGHDhrFu3ToA1qxZ02w9EREJHj7LID4+nqysLDIzM7nmmmuYNGkSKSkpzJo1i+3btxMbG8tDDz3E7NmzmTx5Mt988w0LFy4EYNGiRaxcuZIJEyawadMm7r777jbfIBERaT2TYRjBcwzmJHSYyLdgzIStgY/3bvHLUMe/3MZP5478lMufmYLx8VOmlgnGTG12mEhERNo/lYGIiKgMREREZSAiIqgMREQElYGIiKAyEBERVAYiIoLKQEREUBmIiAgqAxERQWUgIiKoDEREBJWBiIigMhAREVQGIiKCykBERFAZiIgIKgMREaGFZZCXl8eECRMYN24cy5YtO2H+u+++S0ZGBpMnT2bevHlUVlYCkJuby8iRI8nIyCAjI4OcnBz/phcREb+w+lqgqKiInJwcVq9eTWhoKNOmTWP48OEkJSUBUF1dzeLFi1m1ahXx8fH8/ve/58knn+T+++9nx44dZGdnM2nSpDbfEBEROX0+9wwKCgpITU0lJiYGm81GWloa+fn5TfPdbjeLFi0iPj4egH79+nHkyBEAtm/fTm5uLunp6SxYsKBpj0FERIKLzzIoLi7Gbrc3TTscDoqKipqmY2NjGTt2LAB1dXU8++yzXHXVVQDY7XbmzZvH2rVrSUxM5MEHH/R3fhER8QOfh4m8Xi8mk6lp2jCMZtPfq6qq4o477qB///5ce+21ACxdurRp/syZM5tKozXi4qJavU5bs9ujAx3hBMGWyVlTSnR0uF/GskWGYo/0z/b5K5c/M0HwPX6gTC0VjJlOh88ySEhIYNOmTU3TTqcTh8PRbJni4mJuu+02UlNTuffee4Hj5bBq1SpuueUW4HiJWCyWVgcsLa3G6zVavV5bsdujcTqrAh2jmWDMhA2qqur8MpQrugGny0/b56dc/swUjI+fMrVMMGYym02n9SLa52GiESNGsHHjRsrKyqitrWX9+vWMGjWqab7H42HOnDmMHz+e++67r2mvwWaz8fzzz/PFF18A8Morr5zWnoGIiLQ9n3sG8fHxZGVlkZmZidvtZurUqaSkpDBr1izmz5/P0aNH2blzJx6Ph7fffhuAQYMG8fDDD/PEE0+wePFi6urq6NmzJ48++mibb5CIiLSeyTCM4DkGcxI6TORbMGbC1sDHe7f4ZaghXQZhM/np3JGfcvkzUzA+fsrUMsGYqc0OE4mISPunMhAREZWBiIioDEREBJWBiIigMhAREVQGIiKCykBERFAZiIgIKgMREUFlICIiqAxERASVgYiIoDIQERFUBiIigspARERQGYiICCoDERFBZSAiIrSwDPLy8pgwYQLjxo1j2bJlJ8x/9913ycjIYPLkycybN4/KykoACgsLmTFjBldffTVz586lpqbGv+lFRMQvfJZBUVEROTk5LF++nDVr1rBixQr27dvXNL+6uprFixfz7LPPsnbtWvr168eTTz4JwJIlS5g+fTr5+fkMGjSIp556qu22RERETpvPMigoKCA1NZWYmBhsNhtpaWnk5+c3zXe73SxatIj4+HgA+vXrx5EjR3C73Xz++eekpaUBMGXKlGbriYhI8PBZBsXFxdjt9qZph8NBUVFR03RsbCxjx44FoK6ujmeffZarrrqK8vJyoqKisFqtANjt9mbriYhI8LD6WsDr9WIymZqmDcNoNv29qqoq7rjjDvr378+1115LUVHRCcudbD1f4uKiWr1OW7PbowMd4QTBlslZU0p0dLhfxrJFhmKP9M/2+SuXPzNB8D1+oEwtFYyZTofPMkhISGDTpk1N006nE4fD0WyZ4uJibrvtNlJTU7n33nsB6NSpE1VVVXg8HiwWy0nXa4nS0mq8XqPV67UVuz0ap7Mq0DGaCcZM2KCqqs4vQ7miG3C6/LR9fsrlz0zB+PgpU8sEYyaz2XRaL6J9HiYaMWIEGzdupKysjNraWtavX8+oUaOa5ns8HubMmcP48eO57777ml79h4SEMGzYMNatWwfAmjVrmq0nIiLBw+eeQXx8PFlZWWRmZuJ2u5k6dSopKSnMmjWL+fPnc/ToUXbu3InH4+Htt98GYNCgQTz88MMsWrSI7Oxsnn76aRITE3n88cfbfINERKT1fJYBQHp6Ounp6c1ue+655wBITk5m9+7dJ12va9euvPzyy2cYUURE2po+gSwiIioDERFRGYiICCoDERFBZSAiIqgMREQElYGIiKAyEBERVAYiIoLKQEREUBmIiAgqAxERQWUgIiKoDEREBJWBiIigMhAREVQGIiKCykBERFAZiIgILSyDvLw8JkyYwLhx41i2bNkpl7vnnntYvXp103Rubi4jR44kIyODjIwMcnJyzjyxiIj4ndXXAkVFReTk5LB69WpCQ0OZNm0aw4cPJykpqdkyixYtYuPGjaSmpjbdvmPHDrKzs5k0aVLbpBcREb/wuWdQUFBAamoqMTEx2Gw20tLSyM/Pb7ZMXl4eV155JePHj292+/bt28nNzSU9PZ0FCxZQWVnp3/QiIuIXPvcMiouLsdvtTdMOh4Nt27Y1W2bmzJkAbN68udntdrudW2+9lSFDhvD444/z4IMP8rvf/c4fuaWNeMwN1Hsazngcq8fkhzTHmSzg8lT7ZSx/5hJpT3yWgdfrxWT6v39AhmE0m/4xS5cubfp55syZjB07ttUB4+KiWr1OW7PbowMd4QT+yuSsKWXv0X1nPE6fkF5ER4f7IREYZg97K77xy1j+ymWLDMUe6b/nQXt+TvmTMrUdn2WQkJDApk2bmqadTicOh8PnwFVVVaxatYpbbrkFOF4iFoul1QFLS6vxeo1Wr9dW7PZonM6qQMdoxp+ZXEYDVVV1Zz5QJ/wzDuCO9vhtLH/lckU34HT55z5v788pf1GmljGbTaf1ItrnOYMRI0awceNGysrKqK2tZf369YwaNcrnwDabjeeff54vvvgCgFdeeeW09gxERKTt+dwziI+PJysri8zMTNxuN1OnTiUlJYVZs2Yxf/58kpOTT7qexWLhiSeeYPHixdTV1dGzZ08effRRv2+AiIicOZ9lAJCenk56enqz25577rkTlnvkkUeaTQ8bNozc3NwziCciImeDPoEsIiIqAxERURmIiAgqAxERQWUgIiKoDEREBJWBiIigMhAREVQGIiKCykBERFAZiIgIKgMREUFlICIiqAxERASVgYiIoDIQERFUBiIigspARERQGYiICC38DuS8vDyefvppGhsbufnmm5kxY8ZJl7vnnntITU1lypQpABQWFrJw4UJKS0vp1asXjz32GJGRkf5LLyLNeLwevqsu5JvKgxx1FeN0lVBRX0mdp556TwNWs4UwSxgdQqNwRNhJiHSQFNOLHtHdsJgtgY4vAeSzDIqKisjJyWH16tWEhoYybdo0hg8fTlJSUrNlFi1axMaNG0lNTW26fcmSJUyfPp2JEyeydOlSnnrqKRYuXNg2WyJyniqtLWd76U6+LNnN3oqvcXvdAERYI3BEdCYhMp5waxhhllAavR7qPfVU1h9jV9lXfHp0EwDhlnAGde5PasIw+nVK+rFfJ+2UzzIoKCggNTWVmJgYANLS0sjPz+fOO+9sWiYvL48rr7yyaRkAt9vN559/ztKlSwGYMmUKN954o8qgHfMYXho8Dbi9bo5WFVNeV4HJZMJismA1WwmzhGE2mQIds12ocbv4x9EtbC7ayjfHDgLgiOjMiC4/ISmmF7069CAmrCMmH/d3VUM1e8r3s7tsL1ud29lUtJXYsBiuGTCOlA6DCbWEnI3NkSDgswyKi4ux2+1N0w6Hg23btjVbZubMmQBs3ry56bby8nKioqKwWo//CrvdTlFRkV9CS2DVN9ZTUldGRX0lFfWVVDfUUN3oosHT0LTM3745cT0TJiKs4f/6L4LIEBsxYR2ICetIx9AOOkzRAgePfceHhwvYXLQVt7eRrlGJZFw4nosdg3DY7L4H+IHo0CiGxg9maPxg/qPfNWwv2ckHhz7mhX+upEPoW0zoNZafdvkJZpNOL7Z3PsvA6/U2e3VhGIbPVxunWq4l6/1QXFxUq9dpa3Z7dKAjnMBfmZw1DURHhze7zeP1cKSqmG8rD1N4rIjyusqmedFhUcSERRPfoTORIRGEWcMItYTQNTqRohonhmHQ6G2kwevG1VBLjbsWV4OLanc1R2qK8Bge4HhRdAyPprOtEwlRdhKi7cSGH39lGxJiOSHTmfDHWLbIUOyR/nse/Njj1+Bx8+mhLby99wP2lh0gzBrG6F6XkZY0igtiuvktA0CX+J8ybsAIdjr3smL7Wv761Wo+L97MbUOnkRTX06+/63S05397geazDBISEti0aVPTtNPpxOFw+By4U6dOVFVV4fF4sFgsLV7vh0pLq/F6jVav11bs9miczqpAx2jGn5lcRgNVVXUYhoGztpRvjn3LoapC3F43FpMFe0QcKZ0HYo+IIzasIyGnOIwwOOEitnz7gxsjmk96DYNqdzUV9ceoqK+goq6S7yqPsK/sAAAh5hDsEZ1Iib8IPOYWHfbwqRNUVdWd2RiAK7oBp8s/9/mpHr/S2nI+LvyUgsJ/UO2uId5mZ2qfyaQmDiXCGgFu2uy5ONDRlzuTb2dT0VZy973Jfe8+ytU9r2R8zysDtgfX3v/t+YvZbDqtF9E+y2DEiBE8+eSTlJWVERERwfr163nooYd8DhwSEsKwYcNYt24d6enprFmzhlGjRrU6oJxd9Y0N7Cnfz56K/VQ1VGM1WegW3ZXu0V1IsDmwmlv0BrQWMZtMdAiNpkNoND2iuwLH9yhr3C6ctSU4a0tx1paS//UHAIRZwkiw2UmIjCfB5sAWEvEjo5+bvIaXr8r28eHhAnaU7AIgpfMARnUbQb/YpDMvw1YwmUxcmnAJgzr357U9a3nrwLvsLPuKWwfOoHNEp7OWQ84On/+y4+PjycrKIjMzE7fbzdSpU0lJSWHWrFnMnz+f5OTkU667aNEisrOzefrpp0lMTOTxxx/3a3jxH5fbxYZDH/H+dx9T11hPXHgswxOG0j26KyF+LABfTCYTUaGRRIVG0qvjBQD0iEvkg68/5WhNMUddxXxb9R0AHUKjSYh0kGBz4LDZz2pOf3O5XXx6dDMffbeR4toSokIiGXfBGEZ2HU6n8NiAZouwRpA54HoGdb6I5btX8ejnf+DWQTPo36lPQHOJf5kMwwieYzAnocNEvp1JpnpPA+8d/JD3Dn5EnaeOQfb+JEYknPErvyEXXMSWb3ed0RjfS+7Sl+2Fe4Djew4V9ZUcdRVztKYYZ20JHsOLGRNxEXEk2OzERzqIC4896UlPf+Ua0mUQNtOZnc/yGl72lO9nc9k/+cd3W2n0NtKrQw9GdRvBJY6UgJbbqZ5Txa4Snt3+F47WFHNdn3TGdB8Z8EyBFIyZ2uwwkbRPXsPLZ0e3kLc/n8qGY1xsH8SEXmOJjYxmS+GOQMc7JZPJRGx4DLHhMVzUqS8erwdnbSlHXcUU1RSzvXQX20t3YTVZcdg6E29zkBBpp2Noh7N6iOVUDMPgSE0R/yzexqdHN1NWV05kqI2fdvkJlyVeSvd/HS4LVg5bZxYMvYOXdq7g9b1rKasr59qkiXq3UTugMjgPHa4+wl+/Ws3Xld/Ss0MPbht0I71jegLgMqoDG66VLGbL8UNFkQ6wQ72nnmJXCUdriilyOSmsOQpOCLWEYg/vRIW3nIY6D53CY7GepROhHq+Hryu/ZVvJl2wr2UlJbSkmTPSLTSKj93iuvCiVyrIzP6l9toRbw5mZfBOv713LhkMfcayhipsu+g+/nk+Ss0+P3nnE4/Xw1oH3ePvbDURYw7nxov8gNWFoULxi9pcwSxjdo7s2vcKucbsochVT7CqlpK6Ut/a+D4AZEx3/9RmH7//rGNaBcEvYGd8ftY21HK4+yoFjB9lfcYD9Fd9Q0+jCarLQNzaJq3qMIrnzAGLCOgL864Nd504ZAJhNZn7eJ4OYsI68sf8t6hrrmTnoxlO+u0yCn8rgPFHsKuEvO//KgWMHuTR+CFP7pBMV2v6vExUZYuPCjj25sGNPAPolXsCGvZ/irC09fu6hprjpE7wAVpMVW0gEtn99KM5mjcBqtmI1W7CYLFjMFswmM9ZiM2bDistdS5W7mmP1xyipK8fpKqG8vqJpPHtEHMn2AQyM68+ATn0Jt/rv8xKBZjKZGHfBGCKs4fz1q1ye2f4Xbk++WZ9aPkepDNo5wzDYeORzXtu7FovJwq0DZzA0fnCgYwVMZKiNrlGJdI1KbLqtrrGeivpKKhuOUeN2UeN24Wp0UV5dSb2n/qTjfHT4/342cfwdUJ3D4+gd05MukQl0jUqke3Q3Ooa1jw8k/Zifdb0Mi8nK8t2v88y2F5kz+Bfn9Du7zld6xNoxl9vFst2vs9W5g74xvckccD2x4TG+VzzPhFvDSLD+67zDD3gMLx5vI42GB4/Xg8fw4DG8DHL0JdrSAZvVhi0k4rw/gTqiy6WYTCZe2bWSF79czq0DZ+jyIucYlUE7VVh9lGe2/4Xyugqu6T2BK3uMOu//YJ0Oi8mMxRJK6A9uT4yKP+O3lrY3lyUOo66xjtf3rmX57lXMuGiqnnPnEJVBO/SF80v+svNVQi2h3D1kdtPxcpG2Nqb7SGoba/nbN+8Qbg1jap/J7eoNCu2ZyqAd8Rpe3j6wgTe/Wc8F0d2ZlXyTDgvJWTe+51XUNtax4dBHRFgjmHThuEBHkhZQGbQT9Z4GXtq5gq3O7fwkYQjT+12nt/lJQJhMJqYkTaKusY63DrxLZIjtrH5SWU6PyqAdOFZfzR/++SzfHjvElKRJXNH9Z9o1l4AymUzc0P86ahprWbU3j9jwGC62Dwp0LPkROrtzjiutLeO/3vsfvqsuZGbyTVzZY5SKQIKC2WTmlgHTuKBDd1788lW+qTzoeyUJGJXBOey7qkIe27yUY3VV/PLiWXrlJUEn1BLKnJRb6Bgazf9ue4GS2tJAR5JTUBmco/aU7yNny/9iNpl58MoFJMX0CnQkkZOKDo1i3uBbMQyDp774MzVuV6AjyUmoDM5B25xfsnTrn4gN78iCoXfQvWOXQEcS+VHxkQ5uT7mZ0toyntn2F9wed6AjyQ+oDM4xW4q38dyOl+ka1YWsIXP11lE5ZyTF9CJzwPXsr/yGl3etxGt4Ax1J/o3eTXQO+cfRLby0cwW9Ol7AvMG3EtGOLnom54eh8RdTWlfOG/vfIi6iExm9xwc6kvyLyuAcUVD4D5bvXkWfmAuZnXIL4dawQEcSOS1je1xOSW0Z6799n7jwWEZ2TQ10JKGFh4ny8vKYMGEC48aNY9myZSfM37VrF1OmTCEtLY377ruPxsZGAHJzcxk5ciQZGRlkZGSQk5Pj3/Tnib9/V8Cy3a/Tv1Mf5g6+VUUg5zSTycT1fa9hQFw/VuxZw44S/3w9qpwZn2VQVFRETk4Oy5cvZ82aNaxYsYJ9+/Y1W2bhwoU88MADvP322xiGwcqVKwHYsWMH2dnZvPHGG7zxxhtkZWW1zVa0Y+8d/Dsr9qwhufNFzE65RdeKl3bBYrZw28Ab6RqVyJ92vMK3xw4FOtJ5z2cZFBQUkJqaSkxMDDabjbS0NPLz85vmHz58mLq6Oi6++GIApkyZ0jR/+/bt5Obmkp6ezoIFC6isrGyjzWif8g9sYPW+N7nEnszMQTfpGvHSroRbw5ibcivRoVE8/YU+gxBoPsuguLgYu93eNO1wOCgqKjrlfLvd3jTfbrczb9481q5dS2JiIg8++KA/s7dbhmHw5tdvk/d1PpfGX8IvBk7X98tKu9QxLJp5g2/DY3hY+sWfqHbXBDrSectnGXi93maXNzAMo9n0j81funQpQ4ce/47dmTNn8tFHH/kze7tkGAZr9q/jrQPvcVnipWQOuF5fEiLtWkKkg9kpt1BWV8Ez216kQZ9BCAifLzcTEhLYtGlT07TT6cThcDSb73Q6m6ZLSkpwOBxUVVWxatUqbrnlFuD4HzmLpfV/1OLigu8LROz2tvkqQ6/h5cV/vsa7Bz9kXO9R3Dr0+hZ/OYi/MjlrGoiO9s9bVv01TkiIxW9jgX9y2SJDsUf673nQVs+pM3E2M9ntKZjCf0FOwfO8uv81/r/LZmE2n/jcP4za2nwAABBoSURBVN/vp7bkswxGjBjBk08+SVlZGREREaxfv56HHnqoaX7Xrl0JCwtj8+bNDB06lDfeeINRo0Zhs9l4/vnnueSSSxg8eDCvvPIKY8eObXXA0tJqvF6j1eu1Fbs9Gqezyu/jeg0vf/1qNZ8U/oMruv+MyT0mUlrSsl1mf2ZyGQ1UVdWd+UCd8M84gDva47ex/JXLFd2A0+Wf+7ytnlNnIhCZeof3YUrSRFbte5NnNr7K1L6TA57Jl2DMZDabTutFtM8yiI+PJysri8zMTNxuN1OnTiUlJYVZs2Yxf/58kpOTeeyxx7j//vuprq5m4MCBZGZmYrFYeOKJJ1i8eDF1dXX07NmTRx999LQ2rr3zeD0s2/06nx3dTNoFV5B+YZquPCrnpSt6jKKsvoL3D31MbHgMV/YYFehI540WnZVMT08nPT292W3PPfdc08/9+/fn9ddfP2G9YcOGkZube4YR2ze3t5EXv3yVrc7tTOo1jvG9rgp0JJGAmpI0iYq6SlbvexNbiI3LEocFOtJ5QW9RCaB6TwPPbX+JXWV7uC5pElfoVZAIZpOZmwdMo3ZbHct2vUaI2cqw+IsDHavd04XqAqS2sZY/bn2e3WV7mdF/qopA5N+EWEKYnXIzvWN68pedf+UL545AR2r3VAYBUNVQze+3PMO3xw7xi4HTGdHlJ4GOJBJ0Qi2hzE35BT2iu/HnHcvYeuTLQEdq11QGZ1lpbRk5W/6Xo65iZqfczND4wYGOJBK0wq3h3DH4NhIj4/mfT55hT/k+3yvJaVEZnEXfHjvE/2z+I8caqrhj8EwGxvUPdCSRoGcLieDOi2cRH9mZp794gd1lewMdqV1SGZwl25xf8sSW/yXUHMKCofPoE3thoCOJnDOiQiN5YMzddI6I4+ltL7C9ZGegI7U7KoOz4INDn/Ds9pdIiIxnwbA7SYiMD3QkkXNOTHgH7h4yh66RiTy7/SX+cXRLoCO1KyqDNuTxenh9z1pe2/sGyZ0HcPeQOXQIbR8fXRcJhMgQG7+8ZBa9Ox5/l9H6b9/HMILnCgXnMn3OoI1U1Ffy5x3L2V/5DWO6jWRKn0ktvs6QiJxahDWcOy6eycs7V/DG/rcoq6vg530m64KOZ0hl0Ab2lO/jzzuWU++p5+YB0/hJwpBARxJpV0LMVm4ZeAOx4TG8e/BDimqKuS35RqJCIgMd7Zyll6p+5DW8vH1gA3/453PYQmzcc+l8FYFIGzGbzFybNJHMi67n68oDPPr5kxyqOhzoWOcs7Rn4SUV9Jct2v87O0q8Y6hjM9P5T9V3FImfB8MShOGx2nt/xMo9t+iNT+qQzqutluthjK6kMzpBhGGwu2sqKPWtwexu5vu81/ExPRJGzqlfHHvzq0rt5adcKVu5Zw+6yvdzQf4resNEKKoMzUFJbyoo9a9hZ+hW9OvTgpgHXE2+z+15RRPwuKjSSOSm3sOHQR+R9/Ta//ux3XN/3GoY4BuvFWQuoDE5DvaeB9w5+yPpv38dsMnNd0iQu7z5S7xYSCTCzycxVPUYzKK4/L+1cyZ+/XM7GI5v4ed8MvVDzQWXQCh6vhw1fF/DqF29Q2XCMi+3JTO2TTmx4TKCjici/SYiM5/8fOo+/H97Im1+v5+HPHmd0txGk9bxC7zg6BZVBC3i8Hj47uoW3D7xHSV0ZF3Tozq2DZpAU0yvQ0UTkFCxmC2O6j2SIYzBrv36L9w99TEHh51zR42dc3u2nRIbYAh0xqKgMfkRVQzWfFH7G37/bSGXDMXpEd+WeYXPoEdJLxyBFzhEdw6K56aL/4Koeo8n7+m3WffMO7x78kJ92+Qmjuo7AYesc6IhBQWXwAx6vh51lX/Hpkc1sL9mJx/BwUae+zOg+lQGd+uFwdAi6L8AWEd8SI+O5PTmTw9VHePfgh3z4XQHvH/qY/rF9uCxxGMn2gYRZQgMdM2BaVAZ5eXk8/fTTNDY2cvPNNzNjxoxm83ft2sV9991HTU0Nw4YNY8mSJVitVgoLC1m4cCGlpaX06tWLxx57jMjI4DteV91Qw56K/ewo2cW2kp3UNtYSFRLJ6G4jGNHlJyTqwnIi7UbXqERuHjCNjN7j2Vi4iU8KP+OFna8Sag5hUOeLGBDXn/6xSefduUCfZVBUVEROTg6rV68mNDSUadOmMXz4cJKSkpqWWbhwIb/+9a+5+OKLuffee1m5ciXTp09nyZIlTJ8+nYkTJ7J06VKeeuopFi5c2KYb5IthGFQ2HOPAsUPsKd/P3vL9FNYcBcBmjSCl8wAucSQzoFM/XetEpB2LCevI+F5XktZzDPsrvmFz8Ta2Fm9nS/E2AOJtdvrF9qFfbG+6RXclLjy2XR8e9lkGBQUFpKamEhNzvCXT0tLIz8/nzjvvBODw4cPU1dVx8cXHv7B6ypQp/OEPf+DnP/85n3/+OUuXLm26/cYbbzxrZVDbWEd5XQUV9ZWU1JZxpOYohTVHOVJdRE2jC4AQcwi9O/ZkaPzF9I3tzQXR3VQAIucZs8lMn9je9IntzfV9r6Gw5ii7y/ayu3wvnx75nL8fLgAg3BJOl6gEukUlkhgZT6fwWHqHdIXGECKsEQHeijPnswyKi4ux2//v/bkOh4Nt27adcr7dbqeoqIjy8nKioqKwWq3Nbj9de8u/xllbgtvbSKO38V//d1PbWIersZbaxlpc7lpq3C4q6iup89Q3Wz/CGk5iZAKXOJJJjEqge1RXLujQDatZp01E5DiTyUTXqES6RiVyZY9RNHobOVRVyOHqQg5XH+Fw9RH+cfSf1Hnqjq/wrz+FEdZwOoR2IDIkApvVRmSIDZs1gjBrGCFmK1azlVBzCFZzCBaTudnvCRY+/xJ6vd5mu0aGYTSbPtX8Hy4HnNYultl8fKzX9q2hwdNwwvxwaxjhlnDCreHERcTSrUMiHUKj6RjW4fj/Qzs0/eyvXTyzOfh2Ff2VyWJYsIWGn/k4Zv+MA2D141j+ymUxWzD78ZBBe35O+dPZzhRqDqF37AX0jr2g6TbDMKhyV1NZfwxPSAOHy4qpqK+k2u2i1l1LraeOsvoyDtfU0eBpwODk37eQGBnP3MG3+j3z6d5HPssgISGBTZs2NU07nU4cDkez+U6ns2m6pKQEh8NBp06dqKqqwuPxYLFYTlivpWJjj59wzpmwqNXrtpW4uKhARziB/zJF0a1z6x+nk+nW0X+venp27ua3sfyZy1/a93PKf4IlU2eigePPo6FdA5vFX3xeP2HEiBFs3LiRsrIyamtrWb9+PaNGjWqa37VrV8LCwti8eTMAb7zxBqNGjSIkJIRhw4axbt06ANasWdNsPRERCR4mowXfGZeXl8czzzyD2+1m6tSpzJo1i1mzZjF//nySk5PZvXs3999/P9XV1QwcOJDf/OY3hIaGcvjwYbKzsyktLSUxMZHHH3+cjh07no3tEhGRVmhRGYiISPumy2yKiIjKQEREVAYiIoLKQEREUBmIiAgqAxER4Rwpg507dzJo0KBAxwBg8+bNTJ06lYyMDG6++WYOHz4c0Dx5eXlMmDCBcePGsWzZsoBm+d4f//hHJk6cyMSJE3n00UcDHaeZ3/72t2RnZwc6BgAbNmxgypQpjB8/nl//+teBjgMc/9Do94/db3/724Bmqa6uZtKkSXz33XfA8YtmpqenM27cOHJycoIi04oVK5g0aRLp6en86le/oqHhxEvmBCLX91555RVuuummlg1iBDmXy2VMmzbN6Nu3b6CjGIZhGGPGjDF27dplGIZhvPbaa8acOXMCluXo0aPGmDFjjPLycqOmpsZIT0839u7dG7A8hmEYn3zyiXH99dcb9fX1RkNDg5GZmWmsX78+oJm+V1BQYAwfPtz4z//8z0BHMQ4ePGiMHDnSOHLkiNHQ0GDccMMNxgcffBDQTC6Xy7j00kuN0tJSw+12G1OnTjU++eSTgGTZunWrMWnSJGPgwIHGoUOHjNraWmP06NHGwYMHDbfbbdx6661n/f76Yaavv/7aGDt2rFFVVWV4vV7jnnvuMV544YWzmulkub63d+9e42c/+5lx4403tmicoN8zeOSRR7j55psDHQOAhoYG7rrrLvr37w9Av379OHLkSMDy/PvlxW02W9PlxQPJbreTnZ1NaGgoISEh9O7dm8LCwoBmAqioqCAnJ4c5c+YEOgoA77zzDhMmTCAhIYGQkBBycnIYPHhwQDN5PB68Xi+1tbU0NjbS2NhIWFhYQLKsXLmSRYsWNV3PbNu2bVxwwQV0794dq9VKenr6WX+u/zBTaGgoixYtIioqCpPJRN++fQPyXP9hLjj+t+qBBx5g/vz5LR4nqK/f/N5771FXV8fVV18d6CjA8Qc/IyMDOH611j/+8Y9cddVVAcvj6/LigdCnT5+mnw8cOMBbb73Fq6++GsBExz3wwANkZWUFtLz/3bfffktISAhz5szhyJEjXH755dx9990BzRQVFcVdd93F+PHjiYiI4NJLL2XIkCEByfLwww83mz7Zc/1MLonvj0xdu3ala9fjV6krKytj2bJl/OY3vzmrmU6WC+B3v/sd1113Hd26tfwCj0FRBm+99dYJd+KFF15IdXU1L774YlBlevHFF2loaCA7O5vGxkZmz54dkHzg+/LigbR3715mz57NPffcQ8+ePQOa5bXXXiMxMZHLLruM1atXBzTL9zweD5s2beLll1/GZrMxd+5ccnNzmTJlSsAy7d69m1WrVvH+++8THR3NggUL+NOf/sTMmTMDlul7wfxcLyoqYubMmVx33XUMHz480HH45JNPOHLkCL/61a/47LPPWrxeUJTB+PHjGT9+fLPbXnvtNZ555plm37eckZHBsmXLiIpq+8vYniwTQE1NDXPnziUmJoann36akJCQNs9yKr4uLx4omzdvZv78+dx7771MnDgx0HFYt24dTqeTjIwMKisrcblc/Pd//zf33ntvwDJ17tyZyy67jE6dOgFw1VVXsW3btoCWwccff8xll11GXFwccPzbCZcvXx4UZfDDS+UHy3N9//79zJw5k5tuuolbb/X/dxOcjjfffJO9e/eSkZGBy+WipKSEu+++myeeeOLHV2ybUxr+FywnkOfOnWvcf//9hsfjCXSUphPIpaWlhsvlMiZPnmx88cUXAc1UWFhoDB8+3CgoKAhojlNZtWpVUJxA3rp1q5GWlmZUVlYajY2NxuzZs42VK1cGNNNHH31kTJ482aipqTG8Xq/xX//1X8Yf/vCHgGYaM2aMcejQIaOurs4YNWqUceDAAaOxsdG47bbbjHXr1gU0U1VVlTF69GgjNzc3IDl+6Ptc/+7TTz9t8QnkoNgzOFfs3LmT9957j6SkJK699lrg+LHL5557LiB54uPjycrKIjMzs+ny4ikpKQHJ8r0//elP1NfX88gjjzTdNm3aNG644YYApgo+gwcPZubMmUyfPh23281Pf/pTrrvuuoBmGjlyJDt37mTKlCmEhISQnJzM7bffHtBM3wsLC+ORRx7hl7/8JfX19YwePTrg5xJff/11SkpKeOGFF3jhhRcAuOKKK7jrrrsCmut06RLWIiJybnzoTERE2pbKQEREVAYiIqIyEBERVAYiIoLKQEREUBmIiAgqAxERAf4fJJTld9PMm/4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD7CAYAAABpJS8eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxV9Z3/8de92ZdLQpIbICSswpcdZFGngru2tXaxbi1atWqto+1M986MdqbLw/l17HS0HZex2lYtYtvR6tRdEW1RWgGRzcCHRfYECAlINrLd+/vj3tAYwdzATc6F834+Hjy4Z837JjfvnHvuWQLRaBQRETnxBb0OICIi/UOFLyLiEyp8ERGfUOGLiPiECl9ExCfSvQ5wBFnALKAa6PA4i4jI8SINGAIsBVq6T0zVwp8FLPI6hIjIcWoO8Hr3kala+NUA+/Y1EolEKS7Op7a2wetMh6VsvZequUDZjkaq5oLUzdZXuYLBAAMH5kG8Q7tL1cLvAIhEokQisRPDOv9PRcrWe6maC5TtaKRqLkjdbH2c67C7wvWhrYiIT6jwRUR8QoUvIuITKnwREZ9Q4YuI+IQKX0TEJ1T4IiI+karH4Yt4oqG1kaZock6IyUrLJC2SmZR1iSSDCl+ki+a2gyyvWpOUdU0vm0RuQIUvqUO7dEREfEKFLyLiEyp8ERGfUOGLiPhEQh/aOufmArcBGcBdZnZPt+kXAz8gdvH9pcCNZtbqnLsG+DGwOz7rs2Z2a7LCi4hI4nosfOfcUOB2YAaxO6gsds69amaV8el5wN3AdDPb7Zz7LXAt8AtgJvANM3usj/KLiEiCEtmlcx6w0MzqzKwReBy4tHNifNyIeNnnAqXAvvjkWcA1zrnVzrl5zrmBSc4vIiIJSqTwy3j/3VOqgfKuM5hZm3Pu48B2oAR4qcu8PwKmxKfdfayBRUTk6CSyDz8IdL01SwCIdJ/JzJ4Hip1z/w7cB8w1s4s7pzvn7gA29SZccXH+ocfhcKg3i/YrZeu9VM1V01hLKJSdlHXl5mUSzkvu80zV71uq5oLUzeZFrkQKfwexG+J2GgxUdQ4454qAmWbWuVX/KPA751wBcJ2Z3RkfHwDaexOutraBSCRKOByipqa+N4v2G2XrvVTNBUAu1NcfTMqqmkKt1DQl73mm6vctVXNB6mbrq1zBYOB9G8ofmJ7AOhYA5zrnwvF99JcAL3SZHgDmOeeGxYcvI3a39AbgO865U+PjvwI82cv8IiKSJD0WvpntBG4FXgVWAPPNbIlz7jnn3EwzqwVuBJ5xzq0EHPBdM+sALgfuc86tJXaUz3f66omIiMiHS+g4fDObD8zvNu7CLo+fAp46zHKLgOnHmFFERJJAZ9qKiPiECl9ExCdU+CIiPqHCFxHxCRW+iIhPqPBFRHxChS8i4hMqfBERn1Dhi4j4hApfRMQnVPgiIj6hwhcR8QkVvoiIT6jwRUR8QoUvIuITKnwREZ9Q4YuI+IQKX0TEJ1T4IiI+kdA9bZ1zc4HbgAzgLjO7p9v0i4EfAGnAUuBGM2t1zg0D5gGlgAFXmllDEvOLiEiCetzCd84NBW4HZgPTgBudcxO6TM8D7gbON7OJQDZwbXzyvcC9ZjYOWAZ8L6npRUQkYYns0jkPWGhmdWbWCDwOXNo5MT5uhJntds7lEtua3+ecywDOiM8P8BBwWTLDi4hI4hIp/DKgustwNVDedQYza3POfRzYDpQAL8X/P2Bm7UdaTkRE+k8i+/CDQLTLcACIdJ/JzJ4Hip1z/w7cB3y723IcbrkPU1ycf+hxOBzqzaL9Stl6L1Vz1TTWEgplJ2VduXmZhPOS+zxT9fuWqrkgdbN5kSuRwt8BzOkyPBio6hxwzhUBM83spfioR4HfAXuAAudcmpl1AEO6LpeI2toGIpEo4XCImpr63izab5St91I1FwC5UF9/MCmragq1UtOUvOeZqt+3VM0FqZutr3IFg4H3bSh/YHoC61gAnOucC8f30V8CvNBlegCYFz8iB2L76V83szZgEXBFfPzVwPO9zC8iIknSY+Gb2U7gVuBVYAUw38yWOOeec87NNLNa4EbgGefcSsAB340vfjOxo3oqib1LuK0vnoSIiPQsoePwzWw+ML/buAu7PH4KeOowy20Fzjq2iCIikgw601ZExCdU+CIiPqHCFxHxCRW+iIhPJPShrUgq6wi20tLRmpR1pXcEkrIekVSkwpfjXktHK8ur1iRlXdOHj0/KekRSkXbpiIj4hApfRMQnVPgiIj6hwhcR8QkVvoiIT6jwRUR8QoUvIuITKnwREZ9Q4YuI+IQKX0TEJ1T4IiI+ocIXEfEJFb6IiE8kdLVM59xcYjcgzwDuMrN7uk3/NPADIABsBr5oZvucc9cAPwZ2x2d91sxuTVZ4ERFJXI+F75wbCtwOzABagMXOuVfNrDI+fQBwHzDLzHY6534IfB/4R2Am8A0ze6yP8ouISIIS2aVzHrDQzOrMrBF4HLi0y/QM4BYz2xkfXgUMiz+eBVzjnFvtnJvnnBuYrOAiItI7iRR+GVDdZbgaKO8cMLNaM3sSwDmXA/wT8FSXeX8ETAG2A3cnIbOIiByFRPbhB4Fol+EAEOk+k3OuAHgSWGlmDwOY2cVdpt8BbOpNuOLi/EOPw+FQbxbtV8rWe8nMVdPYSiiUnbT1JWtduXmZhPOS+/33w88z2VI1mxe5Ein8HcCcLsODgaquMzjnhgAvAguBr8fHFQDXmdmd8dkCQHtvwtXWNhCJRAmHQ9TU1Pdm0X6jbL2X7FxN0Vbq6w8mZ2VFJG1dTaFWapqS9zz98vNMplTN1le5gsHA+zaUPzA9gXUsAM51zoWdc7nAJcALnROdc2nA08DvzexrZtb5bqAB+I5z7tT48FeIvQMQEREP9LiFHz/y5lbgVSATeNDMljjnngP+FagApgPpzrnOD3OXmdkNzrnLgfvi+/bXA1f3ybMQEZEeJXQcvpnNB+Z3G3dh/OEyjvBOwcwWEftjICIiHtOZtiIiPqHCFxHxCRW+iIhPqPBFRHxChS8i4hMqfBERn1Dhi4j4hApfRMQnVPgiIj6hwhcR8QkVvoiIT6jwRUR8QoUvIuITKnwREZ9Q4YuI+IQKX0TEJ1T4IiI+ocIXEfEJFb6IiE+o8EVEfCKhm5g75+YCtwEZwF1mdk+36Z8GfgAEgM3AF81sn3NuGDAPKAUMuNLMGpKYX0REEtTjFr5zbihwOzAbmAbc6Jyb0GX6AOA+4BNmNhVYBXw/Pvle4F4zGwcsA76X1PQiIpKwRHbpnAcsNLM6M2sEHgcu7TI9A7jFzHbGh1cBw5xzGcAZ8fkBHgIuS0pqERHptUR26ZQB1V2Gq4FTOgfMrBZ4EsA5lwP8E/DfQAlwwMzauyxX3ptwxcX5hx6Hw6HeLNqvlK33kpmrprGVUCg7aetL1rpy8zIJ5yX3+++Hn2eypWo2L3IlUvhBINplOABEus/knCsgVvwrzezh+K6gaLfZPrDch6mtbSASiRIOh6ipqe/Nov1G2Xov2bmaoq3U1x9MzsqKSNq6mkKt1DQl73n65eeZTKmara9yBYOB920of2B6AuvYAQzpMjwYqOo6g3NuCLCI2O6cG+Kj9wAFzrm0+PCQ7suJiEj/SaTwFwDnOufCzrlc4BLghc6J8UJ/Gvi9mX3NzKIAZtZG7I/AFfFZrwaeT2Z4ERFJXI+7dMxsp3PuVuBVIBN40MyWOOeeA/4VqACmA+nOuc4Pc5eZ2Q3AzcDDzrnbgG3A5/viSYiISM8SOg7fzOYD87uNuzD+cBlHeKdgZluBs44hn4iIJInOtBUR8QkVvoiIT6jwRUR8QoUvIuITCX1oK9IRbKWlozUp62po1XaGiBdU+JKQlo5WlletScq6ZudNJ3aEr4j0J21qiYj4hApfRMQnVPgiIj6hwhcR8QkVvoiIT6jwRUR8QoUvIuITOg5f+l1HpIOWaEPS1hcJdiRtXSInMhW+9LuW9laWV61N2voml41N2rpETmTapSMi4hMqfBERn1Dhi4j4hApfRMQnEvrQ1jk3F7gNyADuMrN7jjDfI8BCM3soPnwN8GNgd3yWZ83s1mMNLSIivddj4TvnhgK3AzOAFmCxc+5VM6vsMk8ZcD9wLrCwy+IzgW+Y2WNJTS0iIr2WyC6d84httdeZWSPwOHBpt3muBP4P+H238bOAa5xzq51z85xzA485sYiIHJVECr8MqO4yXA2Ud53BzH5iZg8eZtlq4EfAFGA7cPdR5hQRkWOUyD78IBDtMhwAIoms3Mwu7nzsnLsD2NSbcMXF+Yceh8Oh3izar/yQraaxlVAoOynrApK6royMtJTMlpuXSTgvua+NVH2tpWouSN1sXuRKpPB3AHO6DA8GqnpayDlXAFxnZnfGRwWA9t6Eq61tIBKJEg6HqKmp782i/cYv2ZqirdTXH0zKuigieesC2kIdKZmtKdRKTVPyXhup+lpL1VyQutn6KlcwGHjfhvIHpiewjgXAuc65sHMuF7gEeCGB5RqA7zjnTo0PfwV4MoHlRESkD/RY+Ga2E7gVeBVYAcw3syXOueecczM/ZLkO4HLgPufcWmJH+XwnObFFRKS3EjoO38zmA/O7jbvwMPNd2214ETD9GPKJiEiS6ExbERGfUOGLiPiECl9ExCdU+CIiPqHCFxHxCd3iUI4rLR0t7Dv4Hgda66lvbeBgRwtL9rzF/ubYSSwBIDMtk8y0TPIycgll5FOQNYDCrAEEA9q+EX9T4UtKa4u0satxD9WNu9nTvJf61r/d/Dw9kE5OejYDcwrICMZeylGiNLc3s7/lPZrbmw9dEyQtkEZx9kAG55VSljeYwqwCAoGAB89IxDsqfEk57ZEOqhqr2XpgO1WNu4lEI2QE0wnnlDBqwHCKsgdSkBUiOy2bQCDA5LKxrK5a/4H1dEQ6aGhrZF/Le9Q211HTXMuqvZWs2ltJbnoOwwdUMDxUwcDsAg+epUj/U+FLyjjQWs/G/ZvZ/N5WWiNt5KRlc1LhSMrzywjnFPd6l0xaMI2CrAEUZA1gxIAKAJrbD1LduIvt9TtZV7eBtXXrKckuYszA0VSEhvbF0xJJGSp88Vxtcx2VdevZ0VBFgAAVoTJGF4ykNDdMMMm7XXLSsxlVMIJRBSNoaW9h84HtbNi/ib9UL+XtPavY11FLHvnkpOck9euKpAIVvngiGo2yp3kvlbXGrqY9ZAQzmFjsGFM4mpz05F3q+MNkpWcxrugk3MDRVDfuZv3+Tby8aRHBQJDRBSOYUDSW3Izcfski0h9U+NLvtuzfwSvb/0xNcy3ZaVlMLZnEmMKRZKRleJInEAhQlj+YsvzBVJQM4ok1z7Nx/2Y2vbeFUQXDmVDkyFPxywlAhS/9pr61gRU1a9hhVWSnZTGjdCqjCkaQHkzzOtoh4bwiThk8nQnFjspa4939W3h3/xZGF45kYvG4fnv3IdIXVPjS5w62t7Cmdi0b928mLZDGBaPPoCBYSHowdV9++Rl5nDJ4OhOLx1FZa4c+TB5XNIZxRWPICHrzbkTkWKTub5wc9yLRKJv2v8vKvZW0R9oZXTiCScXjOX30ySzfutbreAnJy8hl1uCTGVc0hpV732FN7To27N/M5OJxjC4cqZO55Liiwpc+Udtcx7LdK6hr2c+g3DAzSqdSkDXA61hHLZSZz+yyU6ltrmNFzRqW7VnJun0bmRqeSEX+UJ3EJccFFb4kVWtHKytr3mHje5vJScvmI0NmMSxUfsIUYnFOEedUzKGqcRcra97hjaolFGUPZFp4EoNyw17HE/lQKnxJmh31VSzd/TYtHa24gScxuXi8Z0fe9KVAIMDQ/CEMyRvMlgPbWL23koXbFzEkbxBTSyYyMLvQ64gih6XCl2PW0t7Csj0r2Va/g8KsAs4sP50iH5ReMBBgVMFwhoXK2bB/E+/UGi9sXcjwUAWTS8Z7HU/kAxIqfOfcXOA2IAO4y8zuOcJ8jwALzeyh+PAwYB5QChhwpZk1HG5ZOT5tq9/Bst0raetoZXLxeMYXO9J89kFmejCN8UVjGV0wgsq69azft4lt9TuobanjkyM/dlx/diEnlh5/M51zQ4HbgdnANOBG59yEbvOUOeeeBi7ttvi9wL1mNg5YBnwvKanFc20dbfyleilvVC0hLz2Hj444h0kl431X9l1lpmUyLTyJT466gJMKR/Jm9XL+7S//wVMbn6OprcnreCIJbeGfR2yrvQ7AOfc4sWL/YZd5rgT+D6jtHOGcywDOAD4TH/UQ8Cfgu8ecWjy1t7mWxdVLaWprYlLxeCYWOx2e2EVOeg4zB03js+MuZOHmN1iw7U+8XvVXzqmYw1nls8nN0HV6xBuJFH4ZUN1luBo4pesMZvYTAOfc7C6jS4ADZtbeZbnyo48qXotEo1TWGWv2riU3PYdzK84knFvsdayUVZJTxLUTP8/5w8/i6Xdf4NnNL/PKtkWcVXE6Z1fMJj8jz+uI4jOJFH4QDt1HAmI3FYocxXIkuNwhxcX5hx6Hw6HeLNqv/JBtY20tf656g+qGPYwuGs6cYbPITM886vWFQsm7REFGRlpS15esdeXmZRLOCxEOh5g2cixb9m3nicrneWHLK7y643U+etIZXDj2HIpyEv+AO1Vfa6maC1I3mxe5Ein8HcCcLsODgaoEltsDFDjn0sysAxiS4HKH1NY2EIlECYdD1NTU92bRfuOHbJv2b+GBNY/Q1NbMaYNnMGLAMFqaI7Rw8OhWWAT19Ue57GG0hTqSt74kZmsKtVLT9Lfvfx6FXD3285xXdjYvbl3I0+sW8KwtZHrpVM4ZNpthoQ9/A5yqr7VUzQWpm62vcgWDgfdtKHeXSOEvAL7vnAsDjcAlwI09LWRmbc65RcAVwHzgauD5REJLaohGo/xp52Ke2PA0RdmFzC47lcIs3R3qWJXlD+aLE+fyyVEf5bXtb7C4eglLdy/npMKRnF0xh8nF40lLoQvKyYmjx8I3s53OuVuBV4FM4EEzW+Kcew74VzNb9iGL3ww87Jy7DdgGfD4ZoaXvtXa08pj9gSW7ljO5ZDyXjfska2s2eh3rhFKSU8ylYz/FJ0adz+Kqpby24w0eWP0IAzJDnDp4Bn9XNktn70pSJXQcvpnNJ7aV3nXchYeZ79puw1uBs44+nnhhf8t7/M+qh9hRX8VFIy/goyPO4SA6rLCv5KTncO6wMzir/HTeqV3H4uqlvLL9z7y87TVGF4zgtCEzmRKeSJjU3Bctxw+daSvvs7OhmntX/orm9mZumnItkzrPGO3+8bskXVowjSnhiUwJT+S9lgO8uest/lK9lEfXPc5j9gcmlo5hQsEEpoYnUZCl8pfeU+HLIWvr1vPg6t+QlZbF16ffTEWozOtIvlWQNYALhp/N+cPOYnv9Tt6uWc3qunf43e4n+f36pxg2oBw38CTGDhzN6IIRZKYd/RFT4h8qfAFgcdVSHrMnGJI3iL+f8kVdACxFBAIBhg0oZ9iAcq4/9TJWbdnIiprVrK3bwIJtf+Klra+SHkhjRMEwRg4YTkVoKBWhoYRzik+YK5RK8qjwfS4ajfLc5pd5bssCxheN5fpJV+k2fimq6713Lxx5PgfbW9j03hbW79vI+n0bWbh9ER3RDgBy0rMpzy9jUF4pg3JKKM0NU5pbQnF2kY4A8jEVvo9Fo1Ge2Pg0r25/ndOGzGSuu0RlcBzJTs9iYrFjYrEDoC3STnXjLrbX72Rb/U521Ffx1u6VNLc3H1omGAgyMKuQkpwiirOLKMmJ/SvOKaIku5i8jFy9MziBqfB9KhKN8Ni6P7C4eglnl8/ms2Mu0vVwjnMZwXSGhcoZFirn9Pi4aDRKY1sTe5r3sqephpqmvew9WEdtcx2r91ZS3/b+i9dmp2VRnFPE4NxSyvPLKA+VUREaSijzyCfzyPFDhe9DHZEOHq78LW/tWcnHRpzLRSMv0FbdCSoQCJCfmUd+Zh6jCoZ/YPrB9hbqDu5jb3MttfH/9zbXsuXANt7as/LQfAWZIUYVjGDswNGMKxpDqc4POC6p8H2mraONX74zj9V71/KZ0Rdy/vCzvI4kHspOzzr0uUB3TW1N7GioZkd8F9HG/Zt5u2Y1AINyS5kansisQSen7LVq5INU+D7SFmnnF6sfobLOuGLsxZxR/ndeR5IUlpuRy9iBoxk7cDQQ2z20t7mOd+rWsbqm8tBRQiM3VHBKeCanDplBlg4PTWkqfJ9oj7Tz4OrfUFlnzB13CaeXnep1JDnOBAIBwrnFnJV7OmeVn059awPLdq9gWc1yfrf+SZ5+9wVmDz2NcyrmaJ9/ilLh+0BHpINfrXmUNbVr+Zy7WGUvSRHKzOfsitlcdvLHeHPjGhZuX8TLW1/jtR1vcHb5bM4bdqZu9pJiVPgnuI5IB79+Zz4r977DZWM/zZyh2o0jyRUIBBhdOILRhSPY1bib5zYv4MWtC3mj6k0+OeqjfKTsFB0BliL0UziBRSIRHq78LW/XrOaSky7irPLTe15I5BgMzhvEdZOu5J9m/SODckt5zP7AHcv+m+31vboVhvQRFf4JKhqN8otlj/LWnpV8ZvSFnDPsDK8jiY9UhIby9ek38cWJc9nf8h53LPs5f9z0Am2R9p4Xlj6jXTonoGg0ypMbn2Xh9sV8fMS5OvRSPBEIBJg5aBrji8byhw3P8OLWhVTWruPaiXMZnFfqdTxf0hb+CejFrQt5Zfuf+diYs/jEyAu8jiM+l5eRyxcmXM6XJ1/Dvpb3+PHSn7G4aonXsXxJhX+C+dOOxTz97ovMGjSda0++TGfQSsqYEp7Iv5zydUYXjIhd43/dE9rF089U+CeQJbuW8/v1TzG5ZDxfGH+ZjoyQlFOQNYBbpl3P+cPO4vWqN/nZ8vvZ3/Ke17F8Q41wgli9t5LfrP09YwpHcf3Eq3TVS0lZwUCQz5x0IddPuoqdjdX8x9Kfs2n/Fq9j+UJCH9o65+YCtwEZwF1mdk+36dOAB4EBwJ+Bm8ys3Tl3DfBjYHd81mfN7NZkhZeY9fs28eCaeZTnl3HTlGvJSMvwOpJIj6aXTmFwbin3r36Yn719P59zn+UjZbO8jnVC63EL3zk3FLgdmA1MA250zk3oNts84CtmNhYIAF+Kj58JfMPMpsX/qeyTbOuB7dy/6iFKcoq5Zer1ZOvmJXIcKcsfzHdnfpUxhaN4dN3/8sy7LxKN6gbKfSWRXTrnAQvNrM7MGoHHgUs7JzrnhgM5ZvbX+KiHgMvij2cB1zjnVjvn5jnnBiYvulQ17OKelb8kLyOXr067gfzMPK8jifRabkYuN0+9jtOGzOT5La/wyNrf0a4Pc/tEIoVfBlR3Ga4GyhOcXg38CJgCbAfuPuqk8j57m2u5e8UDpAfS+Oq0GynMKvA6kshRSwumcdW4y7ho5AUs2bWce1b+6n136pLkSGQffhDo+h4rAEQSmW5mF3eOdM7dAWzqTbji4r9dcS+Vr7nd39nqmvZz95sP0kGEH5zzDSoKyo44b7Ky1TS2Egolb3dRMteVkZGWktly8zIJ5yX3tZGqvwfJynV16cUMCw/m/qXz+NnK+/nnM26hJLcoJbIlmxe5Ein8HcCcLsODgapu04d0n+6cKwCuM7M74+MDQK/ep9XWNhCJRAmHQ9TU1Pdm0X7T39nqWxu4c/n/UN/SwD+cfCPZrUf++snM1hRtpb7+YFLWRRHJWxfQFupIyWxNoVZqmpL32kjV34Nk55qYP4mbp17PA6sf4V9euoNbpl5/2Bu0eJEtWfoqVzAYeN+G8gemJ7COBcC5zrmwcy4XuAR4oXOimW0FDjrnOq/M9QXgeaAB+I5zrvNavF8Bnuz9U5BOze3N3LPiQeoO1nHTlC8yfECF15FE+sS4ojF8bfrfE4lG+K/l97Fx/2avI50Qeix8M9sJ3Aq8CqwA5pvZEufcc865mfHZrgTudM6tA/KBn5tZB3A5cJ9zbi0wA/hOXzwJP2jpaOXelb9mZ+Mubpj0BcYMHOV1JJE+VREq41szbiGUmcfdKx5gZc0aryMd9xI6Dt/M5gPzu427sMvjlcAph1luETD9GDP6XluknQdWP8Lm97Zy3aQrmVQy3utIIv2iOKeIb06/hftW/ZoHVv+GK9xndE+HY6AzbVNcW6SdX615lLV165k77lKml07xOpJIv8rPzOMfTr6RCcWO39qTPPPuSzpW/yip8FNYW0cbD65+hFV73+HysZ/RWYjiW1lpmXx58jXxY/UXMH/dE3REOryOddzR9fBTVGtHG79Y/TBr69bzOfdZ5gw9zetIIp7qPFa/MHMAL2xdSH1bPddNvJLMtEyvox03tIWfglo7Wrl/1UOsq9vAleMuVdmLxAUCAT45+mNcMfYzrNm7jp+//QANbY1exzpuqPBTzMH2Fu5b+Wts30auGn8ZHyn7wGfhIr53RvlHuH7SVWxv2MlP37qH3U01Xkc6LqjwU8iB1np+9vb9bNj/LldPuILThszseSERnzq5dDJfnfYlmtqa+cmyu1lXt8HrSClPhZ8idjXu4T+X3c2uxt18eco1nDJYR7OK9OSkwpF8e+ZXGZhVwD0rf8mfdiz2OlJKU+GngI37N/PTt+6htaONr02/ickl3a8+LSJHUpJTxDdn3MzEYsfv1z/Fb+1JHcFzBDpKx2Nv7V7JI2t/R1F2IbdMvZ6SnGKvI4kcd7LTs7lx8jX8cdMLvLztNXY2VPPFiZ8nTGpeOM0r2sL3SCQa4Zl3X+JX7zzKsFA535xxi8pe5Bh03jrxixPnsrOhiv+35C6W7FjhdayUoi18DzS2NfHQO49RWWecOngGn3ef1W0JRZJk5qBpDAuV86t3HuU/37ifM8tP5+LRF+p3DBV+v9uwbxMPVf6W+tYGPuc+y+yyUwkEAl7HEjmhlOaW8M0Zt/BS1QKeW7+QTfs3c+3EzzMkb5DX0TylXTr9pC3Szv9tep6fvf0LMoMZfHPGzcwZeprKXqSPZATTufbky7hpyrXsa9nPj5fcxfObX/H1B7rawu8Hm/Zv4dF1j7O7aQ8fGTKLS8Z8iuz0LK9jifjC5JIJfO/Ub/H79U/xzOYXWb5nJZeP/TRjBo72Olq/U+H3oQOt9Ty96QX+Ur2MwqwCbpl6PZkEKd4AAAktSURBVBOKndexRHwnlJnP9ZOuYmbNOzy+4Y/c9fb9zCidyqdGf5ySnGO7heLxRIXfBw62t/DnHYt5cetCWiNtnF0xm0+MvEBb9SIemxqeyPiiMby89TVe3vYaK2rWMHvoaXx0+DkUZJ34h3Cq8JPoYPtBXq96k5e3vkZDWyOTisfz2TEXMSg37HU0EYnLTMvkE6Mu4PShp/Lc5gUs2vkX3qh6k9OGzOT8YWee0IdHq/CTYE/TXhbt/AuLq5ZysOMg4waO4ROjLmBUwXCvo4nIERRmFTB33CWcN+xMFmx7jb9WLeWNnW8ysdgxZ+jfMaHYEQycWMe1qPCPUkNbI6tqKlm+egVrazYQDASZXjqFsytmM2LAMK/jiUiCSnNLmDvuUi4ceT6v7/wrb1Qt4b5Vv6YgM8SMQdOYXjqF4QMqTojyV+EnKBqNUtW4i3V1G6isNdbv30QkGmFIfimfGvUxTh0yg8KsAq9jishRKswq4KJRH+XjI85j1d5Klu5azp92LGbh9kXkpecyrmgME4od44vccbu/P6HCd87NBW4DMoC7zOyebtOnAQ8CA4A/AzeZWbtzbhgwDygFDLjSzBqSmL9PRKNR3ms9wNYDO9h2YDtb63ewrX4HjW1NAAzKLeW8YWdycngy00eNY+/elH9KIpKgtGAaJ5dO5uTSyTS1NVFZt57KWqOyznhrz0oASnNKqAgNPfRvWGgouRm5HifvWY+F75wbCtwOzABagMXOuVfNrLLLbPOAG8zsr865XwJfAu4D7gXuNbPfOue+B3wP+G6yn0RvdEQ6aGpvpqGtkYbWBhramjjQWk9tcx21B+vY2xz7d7DjIBC7PseQvEFMLZnIyIIRjC8aw8DswkPr04lTIieu3IxcZg6axsxB04hEI+xs2MXaWmNL/XY2H9h26A8AQH5GHsXZRRTnDKQkp5ii7EJCGfnkZeQRyswjLyOP3PQc0oJpnj2fRLbwzwMWmlkdgHPuceBS4Ifx4eFAjpn9NT7/Q8APnHMPAmcAn+ky/k8kVvhpAMHg38q06+MPc6C1nqc2PkdjWyPtkQ7aIm20Rdtp72inLdJOJHr4s+zSg+kMzCpkeMFQpg2aRHF2EWX5gxmSV0pG8MOvwZFoNi8kK1taNI3czOzkrCuYvHUBpCdxfcnMlhZMI5jkDYJUfa2lai5IXrYgaQwvGMrwgqGHxjW1NVPVuItdjbupO7iffQf3s69lPzv3Vh+xa4KBIJnpGaQF0skIpJMRzCA9LZ2MYKyO00jjvOFnUhEaetjlPzTj357rYf+qJFL4ZUB1l+Fq4JQeppcDJcABM2vvNj4RQwAGDsw7NKK4OD+hBYvJ5+tDrk/wyyRHotm8kLxs+ZSXlCZpXVBeMCRp6wIYUZLoS6tnyc6WTKn6WkvVXNC32YrJp4IwMLnPvsZRGgJs6j4ykcIPAtEuwwEgksD07uPpttyHWQrMIfZHwr8XvhAR6Z00YmW/9HATEyn8HcTKt9NgoKrb9CGHmb4HKHDOpZlZR3yerst9mBbg9QTnFRGRv/nAln2nRA4sXQCc65wLO+dygUuAFzonmtlW4KBz7vT4qC8Az5tZG7AIuCI+/mrg+aMILyIiSdBj4ZvZTuBW4FVgBTDfzJY4555zzs2Mz3YlcKdzbh2QD/w8Pv5m4EbnXCWxdwm3JfsJiIhIYgLRaPfd7CIiciI6/s8VFhGRhKjwRUR8QoUvIuITKnwREZ847q6W6Zw7GfirmaXE7aPih6PeCWQCtcB18UNVvcz0oRe785Jz7t+Ay+ODz5rZd7zM051z7j+BEjO71ussnZxznwT+DcgDXjKzf/Q40iHOuauAf44PPm9m3/I4zwBgMXCRmW1xzp0H/BeQA/zOzDw7UvAw2W4E/oHYCarLgC+bWWtfZjiutvDj5wH8N7FyTRWPErtw3LT445/3MH+f6nKxu9nANGKHxU7wMlOn+C/fBcDJxLLNcM5d7G2qv3HOnQtc43WOrpxzo4D/IXZNqinAdOfcx71NFRP/ffw5cCYwFZgT/xl7ledUYidsjo0P5wC/Aj4NjAdmefW9O0y2scC3gY8Q+7kGgVv6OsdxVfjAT4G7vA7RyTmXBdxmZqvio1YBXt/95NDF7sysEei82F0qqAa+aWat8RPz1uL99wsA51wRsT+U/+51lm4uJrZluiP+PbsCeNPjTJ3SiHVIHrF3kxlAs4d5vkSsNDvP6D8F2GBmm+PX9JoHXJYi2VqAm83sgJlFgdX0w+/CcbNLxzn3KSDXzB53znkdBwAzayH2IsI5FwS+DzzlZSZ6vtidZ8zsnc7HzrkxxHbtnH7kJfrV/cROMKzwOkg3JwGtzrk/EiuEZ4hdZtxzZlYfv+z5OqCJ2NVwF3uY5waALv1wpAs79rvu2eK7fbfGx4WBrwDX9nWOlCt859xlxPaJd7WO2M1VvHy7eNhcZnaecy4TeJjY99PrLcSeLnbnOefcROBZ4NtmtiEF8twAbDezV5xz13qdp5t0YpcZPwtoAP5IbLfTQ95FinHOTQGuA4YD7xHb+PkW8BMvc3VxPPwuDCV2yZlfmtlrff31Uq7wzex/gf/tOi7+C/nPwJ87/0I651YAc8ys3qtc8Rz5xH4Ja4FPx992e6mni915Kv4h9xPA18zst17nibsCGBJ/TRUB+c65O83s6x7nAtgFLDCzGgDn3JPE3rE95GWouI8Cr5jZHgDn3EPELqeSKoV/pAs7pgTn3DjgReDnZvbT/viaKVf4h2NmDxK7hSIAzrlo/EPSVDAP2Ejsto6psPWwAPh+/G1iI7GL3d3obaQY51wFsV1eV5jZQq/zdDKz8zsfx7fwz0qRsofYLpyHnXOFQD3wcbzfbdhpJXCHcy6P2C6dT3KEy/J65E3AOedOAjYDc4l9iOs551wIeAm41cx+019f93j70DalxA8R/TSx/dDLnXMrnHPPeZnpSBe78zJTF98CsoH/in+vVjjnbvI6VCozszeBO4gd4VFJbL/vrz0NFWdmLwGPAW8RO2AhA/ixp6G6MLODxPaLP0Hse7eO2EEMqeAGYBDwzS6/Cz/s6y+qi6eJiPiEtvBFRHxChS8i4hMqfBERn1Dhi4j4hApfRMQnVPgiIj6hwhcR8QkVvoiIT/x/a15YBMRyyFsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -391,7 +417,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 62, "metadata": {}, "outputs": [], "source": [ @@ -401,7 +427,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -410,18 +436,20 @@ "" ] }, - "execution_count": 43, + "execution_count": 63, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAEGCAYAAACXVXXgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAOGElEQVR4nO3db0zV9d/H8RcKB/QHZuIhm7Vs2p+tqZuLFGu5mlEIzDrQgrZ0S+dsVuZ+zBmz6EaUbhVrK+8xbjg0tUDAhLQoJoNpWNPMtbkSi9ng+CeTIIVzznXjusY1f0s558v3/L7HN8/HLU504MWHfPrdIc5JikQiEQEAbmoTvB4AABg7Yg4ABhBzADCAmAOAAcQcAAwg5gBgQFQx7+/vV0FBgXp6eiRJu3btUkFBgQoLC/X666/r6tWrcR0JALixUWN+7NgxlZaWqru7W5J0+vRpVVdX65NPPlFjY6PC4bB27NgR750AgBsYNea7d+9WRUWFsrKyJEk+n08VFRVKT09XUlKS7r33Xp09ezbuQwEA15c82r9QWVl5ze2ZM2dq5syZkqQLFy6otrZW7777bnzWAQCi4vgHoL29vVq5cqWKioq0cOFCNzcBAGLkKOY///yzSkpK9Mwzz2jdunVubwIAxGjUh1n+U39/v1atWqXXXntNTz/9tONPfPHiXwqHE+M5vjIz03X+fL/XM8zifOOL842vRDnfCROSdOut/7ru+2OO+aeffqpz586ppqZGNTU1kqTHH39c69evj+njhMORhIm5pITaYhHnG1+cb3zdDOeb5NVT4J4/358wB+T3ZygYvOz1DLM43/jifOMrUc53woQkZWamX//9/8UtAIA4IeYAYAAxBwADiDkAGEDMAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAYQMwBwABiDgAGxPx85gAQbxlTJiktNXHy5PdneD1hVIlzWgDwf9JSk1X47wavZySUrFsnqXpz7nXfz8MsAGAAMQcAA4g5ABhAzAHAAGIOAAYQcwAwgJgDgAHEHAAMIOYAYAAxBwADiDkAGEDMAcCAqGLe39+vgoIC9fT0SJI6OjpUWFio3NxcVVVVxXUgAGB0o8b82LFjKi0tVXd3tyTp77//Vnl5ubZt26b9+/frxIkTamtri/dOAMANjBrz3bt3q6KiQllZWZKk48eP66677tKdd96p5ORkFRYWqqWlJe5DAQDXN+rzmVdWVl5zu6+vT36/f+R2VlaWent73V8GAIhazD8ADYfDSkpKGrkdiUSuuQ0A+O+L+ZWGZsyYoWAwOHI7GAyOPAQTi8zM9JjvE083w8tC3cysne/VoZB8KRO9njEiUc430c5lPIk55vPnz9fp06d15swZ3XHHHdq3b5+Kiopi/sTnz/crHI7EfL948PszFAxe9nqGWRbP1+/P4GXN/kHT+8td+V4nyl9ON5OYY56amqotW7bolVde0ZUrV7RkyRI99dRT8dgGAIhS1DFvbW0deTsnJ0eNjY1xGQQAiB2/AQoABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAYQMwBwABiDgAGEHMAMICYA4ABxBwADCDmAGAAMQcAA4g5ABhAzAHAAGIOAAYQcwAwgJgDgAHEHAAMIOYAYAAxBwADiDkAGEDMAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgwJhi3tDQoPz8fOXn52vr1q1ubQIAxMhxzAcHB1VZWant27eroaFBXV1d6ujocHMbACBKjmMeCoUUDoc1ODio4eFhDQ8PKzU11c1tAIAoJTu9Y3p6utavX6+8vDxNmjRJ2dnZWrBggZvbAABRchzzn376SZ999pm+/vprZWRkqKysTNXV1Vq9enVU98/MTHf6qePC78/weoIk6epQSL6UiV7PcF2inC/ij++1NxzHvL29XTk5OcrMzJQkBQIB7dixI+qYr3r7gPouDjr99GY1vb9cweBlr2e4yu/PMPk14Z+58b3mfGPn+DHz+++/Xx0dHRoYGFAkElFra6vmzp3r5jYAQJQcX5k/8sgjOnnypAKBgFJSUjR37lytWbPGzW0AgCg5jrkkrVmzhoADQALgN0ABwABiDgAGEHMAMICYA4ABxBwADCDmAGAAMQcAA4g5ABhAzAHAAGIOAAYQcwAwgJgDgAHEHAAMIOYAYAAxBwADiDkAGEDMAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAYQMwBwABiDgAGEHMAMICYA4ABY4p5a2urAoGA8vLy9Pbbb7u1CQAQI8cx/+2331RRUaFt27apsbFRJ0+eVFtbm5vbAABRSnZ6x4MHD2rZsmWaMWOGJKmqqkqpqamuDQMARM/xlfmZM2cUCoW0du1aLV++XDt27NAtt9zi5jYAQJQcX5mHQiF1dXVp+/btmjx5sl566SXV19crEAi4uW9c8vszvJ7gOotfE/4Z32tvOI759OnTlZOTo2nTpkmSli5dquPHjxNzFwSDl72e4Cq/P8Pk14R/5sb3mvONneOHWR577DG1t7frzz//VCgU0qFDh/TAAw+4uQ0AECXHV+bz58/X6tWr9fzzz2toaEgPP/ywioqK3NwGAIiS45hLUnFxsYqLi93aAgBwiN8ABQADiDkAGEDMAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAYQMwBwABiDgAGEHMAMICYA4ABY3oKXCSujCmTlJaaON/eRHnlmL+vDOvyn4NezwBclzh/2uGqtNRkFf67wesZCafp/eWy9QJ2wP/iYRYAMICYA4ABxBwADCDmAGAAMQcAA4g5ABhAzAHAAGIOAAYQcwAwgJgDgAHEHAAMIOYAYMCYY75161Zt2rTJjS0AAIfGFPPOzk7V19e7tQUA4JDjmP/xxx+qqqrS2rVr3dwDAHDAcczffPNNbdiwQVOmTHFzDwDAAUcvTrFnzx7dfvvtysnJUV1dndubxr1EeVUeqzjf+OJ8veEo5vv371cwGNTy5ct16dIlDQwM6J133lF5ebnb+8alYHDsr4XDH6jr43zji/P1hqOY19TUjLxdV1enI0eOEHIA8BD/nzkAGDDmF3QOBAIKBAJubAEAOMSVOQAYQMwBwABiDgAGEHMAMICYA4ABxBwADCDmAGAAMQcAA4g5ABhAzAHAAGIOAAYQcwAwgJgDgAHEHAAMIOYAYAAxBwADiDkAGEDMAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAYQMwBwABiDgAGEHMAMCB5LHf+6KOP1NzcLElasmSJNm7c6MooAEBsHF+Zd3R0qL29XfX19dq7d69+/PFHHTx40M1tAIAoOb4y9/v92rRpk3w+nyRp9uzZOnv2rGvDAADRcxzze+65Z+Tt7u5uNTc3a+fOna6MAgDEZsw/AD116pRefPFFbdy4UbNmzXJhEgAgVmP6AejRo0f16quvqry8XPn5+W5tGvf8/gyvJ5jG+cYX5+sNxzH//ffftW7dOlVVVSknJ8fNTeNeMHh5zB+DP1DXx/nGF+frDccxr66u1pUrV7Rly5aRf1ZSUqLS0lJXhgEAouc45ps3b9bmzZvd3AIAcIjfAAUAA4g5ABhAzAHAAGIOAAYQcwAwgJgDgAHEHAAMIOYAYAAxBwADiDkAGEDMAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAYQMwBwABiDgAGEHMAMICYA4ABxBwADCDmAGAAMQcAA4g5ABhAzAHAAGIOAAaMKeZNTU1atmyZcnNzVVtb69YmAECMkp3esbe3V1VVVaqrq5PP51NJSYkWLlyoOXPmuLkPABAFx1fmHR0dWrRokaZOnarJkyfrySefVEtLi5vbAABRchzzvr4++f3+kdtZWVnq7e11ZRQAIDaOH2YJh8NKSkoauR2JRK65PZrMW9KcfmrzJkyI/hxvJOvWSa58HGs43/jifONjtGYmRSKRiJMPXF9fr66uLlVWVkqSPv74Y0UiEb388stOPhwAYAwcP8yyePFidXZ26sKFCxocHNSBAwf06KOPurkNABAlxw+z3HbbbdqwYYNWrFihoaEhFRcXa968eW5uAwBEyfHDLACAxMFvgAKAAcQcAAwg5gBgADEHAAOIOQAYQMwBwABijrg4fPiwXnjhBa9nAK7YtGmT6urqvJ5xQ8QcAAxw/BugN7vh4WG99dZbOnXqlM6dO6f77rtPH3zwgdLSeAIwt1y8eFGrVq1SX1+f5s2bp4qKCvl8Pq9nmRGJRPTee+/pyy+/1MSJE/Xcc89p5cqVXs8yIRKJaMuWLfrmm2+UlZWlUCikhx56yOtZNzRur8y///57paSkaNeuXTp48KAuX76strY2r2eZ0tPTozfeeEONjY3666+/tHPnTq8nmdLS0qLvvvtOTU1N2rNnj+rq6hQMBr2eZcIXX3yhkydPat++ffrwww/166+/ej1pVOP2yjw7O1tTp05VbW2tfvnlF3V3d2tgYMDrWaY8+OCDmjVrliSpsLBQdXV1XDm66Ntvv1VeXp58Pp98Pp8aGhq8nmTGkSNHlJubq5SUFE2bNu2meBLBcXtl/tVXX6msrExpaWkKBALKzs4WT1PjruTk/79WiEQi19zG2CUnJ1/zGgI9PT1ckLgkKSnpmh7cDP/tjtuYd3Z2Ki8vT0VFRZoyZYoOHz6sUCjk9SxTjh49qrNnzyocDmvv3r1avHix15NMyc7O1oEDBzQ0NKTBwUGtXr2aV/tySU5Ojpqbm3X16lVdunRJhw4d8nrSqBL/r5s4efbZZ1VWVqbPP/9cKSkpWrBggXp6eryeZcqcOXNUXl6uYDCoRYsWqbi42OtJpjzxxBM6ceKEAoGAwuGwVqxYobvvvtvrWSYsXbpUP/zwgwoKCjR9+nTNnj3b60mj4ilwAcCAcfswCwBYQswBwABiDgAGEHMAMICYA4ABxBwADCDmAGAAMQcAA/4HrU9UykxAIWYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD7CAYAAAB37B+tAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAL0UlEQVR4nO3de4yddZnA8e+cTm1rO0SYPQpe8BLcZ9cL3gJGAcXYvWCslYASjVnBoDESgwY0MWI0Jhpv9ZYYMUboJup6V0BWQ8A1yJogWeN6QR6JUSNa42REbbX0NuMfZ6qjUvvO+7717dP5fhKSOdO+5336m+m3P95z5pypxcVFJEl1jYYeQJLUjSGXpOIMuSQVZ8glqThDLknFTQ9wznXAacAO4MAA55ekitYAJwG3AXuW/8IQIT8N+NoA55WkY8FZwC3LPzFEyHcA3H3371hYqPcc9tnZTczP7xp6jLJcv25cv24qr99oNMXxx2+EpYYuN0TIDwAsLCyWDDlQdu6jhevXjevXzTGwfn91SdoHOyWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TihngeuaRVaua4DaxfN2x2xuOZQc9/z5797Pzt7l7v05BL+rtZv26aLZddM/QYg7pu21Z29nyfXlqRpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqrtGrH0bEccDXgWdn5o8jYjPwbmAD8MnMvOIIzihJ+hsOuyOPiCcDtwD/uHR7A3AVsBX4Z+C0iDjnSA4pSTq0JpdWXgpcAvx86fbpwJ2Z+aPM3A98FHjeEZpPknQYh720kpkXA0TEwU89ENix7LfsAB7c+2SSpEbavEPQCFhcdnsKWFjpnczObmpx6qPD0G8VVV3l9du77wD3Wbtm0BmGXL+j4c9/LOj7a9gm5HcBJy27fSJ/uuzS2Pz8LhYWFg//G48y4/EMc3N9v1HT6lF9/cbjmVX9VmXXbdva6etX+R/xPrVZw9Fo6pAb4DYhvxWIiDgF+BHwQiYPfkqSBrDi55Fn5j3AhcBngduBO4DP9DuWJKmpxjvyzHzYso9vAh53JAaSJK2MP9kpScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVNx0l4Mj4kXA65ZufikzL+8+kiRpJVrvyCPivsD7gacDjwPOiojNfQ0mSWqmy6WVNUvHbwTWLv23u4+hJEnNtQ55Zu4E3gDcAdwF/Bj4ej9jSZKaan2NPCJOBV4CPBT4DfBR4HLgnU2On53d1Oq8e/cd4D5r17Q6ti/j8cxg5z4a/vxdDbl+6s6vX3d9r2GXBzv/DbgpM38JEBHbgVfQMOTz87tYWFhc8UnH4xm2XHbNio87Vly3bStzczuHHqO18Xim/PyrXZevn+s30WYNR6OpQ26Au4T8/4F3RMRG4PfAFuC2DvcnSWqhyzXyG4D/Av4P+DaTBzvf1tNckqSGOj2PPDPfDry9p1kkSS34k52SVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxU13OTgitgBvBDYCN2Tmpb1MJUlqrPWOPCIeAVwJPBc4FXhiRJzT12CSpGa67MjPBT6ZmXcBRMQFwD29TCVJaqxLyE8B9kbEtcDJwBeBNzQ9eHZ2U4dTr27j8czQI3RSff7Vzq9fd32vYZeQTwNPA84GdgHXAi8Gtjc5eH5+FwsLiys+qd9EMDe3c+gRWhuPZ8rPv9p1+fq5fhNt1nA0mjrkBrjLs1Z+AdyYmXOZuRv4PHB6h/uTJLXQZUf+ReA/I+J+wE7gHOALvUwlSWqs9Y48M28F3gHcAtwO/AS4uqe5JEkNdXoeeWZeBVzV0yySpBb8yU5JKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiOr36oeqZOW4D69cN+2Uf8l1i7tmzn52/3T3Y+aUjwZCvMuvXTbPlsmuGHmMw123bSt03mpPunZdWJKk4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySiusc8oh4V0Rs72EWSVILnUIeEc8EXtzTLJKkFlqHPCJOAN4CvLW/cSRJK9VlR/4h4PXA3T3NIklqodU7BEXExcBPM/OmiLiwzX3Mzm5qc5gY9q3SjgWuXzeuX3d9r2Hbt3q7ADgpIr4FnABsioj3ZOarm97B/PwuFhYWV3xiv4lgbq79m5W5fq5fV65fd23WcDSaOuQGuFXIM/NfDn68tCM/eyURlyT1x+eRS1JxbS+t/FFmbge2d55EktSKO3JJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4qa7HBwRbwSev3Tz+sx8bfeRJEkr0XpHHhGbgX8FngA8HnhSRJzb12CSpGa67Mh3AJdl5l6AiPg+cHIvU0mSGmsd8sz83sGPI+KRTC6xnNHHUJKk5jpdIweIiEcD1wOvycw7mx43O7up66lXrfF4ZugRSnP9unH9uut7Dbs+2HkG8FngVZn5iZUcOz+/i4WFxRWf028imJvb2fpY18/168r1667NGo5GU4fcALcOeUQ8BPgCcEFmfqXt/UiSuumyI78cWA+8OyIOfu7KzLyy81SSpMa6PNh5KXBpj7NIklrwJzslqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySipvucnBEvBC4AlgLvDczP9DLVJKkxlrvyCPiQcBbgDOBxwMvi4hH9TWYJKmZLjvyzcBXMvNXABHxGeB84M2HOW4NwGg01frE9z9+Q+tjjwVd1g5cP9evG9evuzZruOyYNX/5a1OLi4utBomI1wEbM/OKpdsXA6dn5ssOc+iZwNdanVSSdBZwy/JPdNmRj4Dl/wpMAQsNjrttaZAdwIEO55ek1WQNcBKThv6ZLiG/i0mQDzoR+HmD4/bwF/+aSJIa+eG9fbJLyG8E3hQRY+B3wHnA4S6rSJJ61vpZK5n5M+D1wP8A3wI+npnf6GswSVIzrR/slCQdHfzJTkkqzpBLUnGGXJKKM+SSVJwh199FRJwdEV8deg4JICK2R8SFQ8/RF0MuScV1ehnb1SQipoEPAo8BHgB8G3hBZu4edLBa/iEivgw8CLgVuCQz9ww8UwkRMQW8DTgX2A98KDPfN+xUdSyt3zbg2Ux+An0N8NUhZ+qTO/LmngrszcynAKcA9wOeNexI5TwceCVwKjADvHzYcUo5HzgDeCxwOnBRRJw47EilnAc8AXg08Dwmf4ePGe7IG8rMmyNiPiIuAf4JeCSwaeCxqrk5M+8EiIiPARcB7iqbeTrwqaX/g9nD5D0A1NzZwOcycx8wFxH/PfA8vXJH3lBEPAf4GPB74GrgZiav+Kjm9i/7eATsG2qQgvax7NVGI+JhEbFxwHmqWeTP/77uP9RvrMiQN7eZyY7oauDXwDO4lxd41990ZkScHBEj4D+YvPCamrkZOC8i1kbEfYGDjzWomRuB50fEuog4Hvj3oQfqkyFv7sPACyLiO8Cngf9lcs1XzX0PuAr4DvAz4CPDjlNHZn6eyffcN5m8HvX7MvMHw05VR2Zew+TBze8C1wK3DzpQz3zRLEkqzh25JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6Ti/gAdnCjkBZ4AygAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -431,27 +459,29 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 44, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAEGCAYAAACXVXXgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAOTUlEQVR4nO3df0yV9d/H8dchOJhfMBMP2axl035sTd28I8VarmYUCrMOtKDv0vubzNmszM05Yhb9EYXftVhb+dfNuHc7MLVA0dSkKCeDaVrTjLW5EovR4IhmEiRwzrn/+d407omcc52L7/G8ez7+4up4nfPeZ5dPP7vonOMJh8NhAQASWlK8BwAAxI6YA4ABxBwADCDmAGAAMQcAA4g5ABgQUcz7+vqUl5enzs5OSdKOHTuUl5en/Px8vfrqqxocHJzQIQEA1zZuzE+ePKni4mJ1dHRIks6ePavq6mp9+OGHamxsVCgUUl1d3UTPCQC4hnFjvnPnTpWXlyszM1OS5PV6VV5errS0NHk8Ht19993q6uqa8EEBAGNLHu8PVFRUjDqeOXOmZs6cKUm6cOGCamtr9fbbb0/MdACAiDj+BWh3d7dWrVqlgoICLVy40M2ZAABRchTzH374QUVFRXrqqae0bt06t2cCAERp3Nss/19fX59Wr16tV155RU8++aTjF7548XeFQnzGFwBEIinJo5tv/tuYj0cd848++kjnz59XTU2NampqJEmPPvqo1q9fH9XzhEJhYg4ALvHE6yNwe3v7iDkARCgpyaOMjLSxH/83zgIAmCDEHAAMIOYAYAAxBwADiDkAGEDMAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAYQMwBwICoP88cANw0Nd2rlEmp8R7jujD0xxX9ennQ0bnEHEBcpUxK1f6V/4j3GNeFZf9TIzmMObdZAMAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAYQMwBwABiDgAGEHMAMICYA4ABEcW8r69PeXl56uzslCS1trYqPz9fOTk5qqqqmtABAQDjGzfmJ0+eVHFxsTo6OiRJf/zxh8rKyrR161bt379fp0+f1uHDhyd6TgDANYwb8507d6q8vFyZmZmSpFOnTumOO+7Q7bffruTkZOXn5+vgwYMTPigAYGzjfp55RUXFqOOenh75fL6R48zMTHV3d7s/GQAgYlH/AjQUCsnj8Ywch8PhUccAgH+/qL9paMaMGQoEAiPHgUBg5BZMNDIy0qI+B7geDA4PyZucEu8xrgushft8vnRH50Ud8/nz5+vs2bM6d+6cbrvtNu3bt08FBQVRv3Bvb59CoXDU5wHx5vOl6z9r1sd7jOvCf//jPQUCl2N6Dqfxsmqs9UxK8lxzExx1zFNTU1VZWamXXnpJV65c0ZIlS/TEE09E+zQAABdFHPPm5uaRn7Ozs9XY2DghAwEAosc7QAHAAGIOAAYQcwAwgJgDgAHEHAAMIOYAYAAxBwADiDkAGEDMAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAYQMwBwABiDgAGEHMAMICYA4ABxBwADCDmAGAAMQcAA4g5ABhAzAHAAGIOAAYQcwAwgJgDgAHEHAAMiCnme/bs0fLly7V8+XJt2bLFrZkAAFFyHPOBgQFVVFRo27Zt2rNnj44fP67W1lY3ZwMARMhxzIPBoEKhkAYGBjQ8PKzh4WGlpqa6ORsAIELJTk9MS0vT+vXrlZubqxtvvFFZWVlasGCBm7MBACLkOObff/+9Pv74Y33xxRdKT0/Xxo0bVV1drZKSkojOz8hIu+bjg0NBeVNucDqeKawFrmc+X3q8RzDF6Xo6jnlLS4uys7OVkZEhSfL7/aqrq4s45r29fQqFwmM+7vOl69lNtU7HM6Xun39XIHA53mPgX4jXaLFem6znaGOtZ1KS55qbYMf3zO+99161traqv79f4XBYzc3Nmjt3rtOnAwDEwPHO/KGHHlJ7e7v8fr9SUlI0d+5crVmzxs3ZAAARchxzSVqzZg0BB4DrAO8ABQADiDkAGEDMAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAYQMwBwABiDgAGEHMAMICYA4ABxBwADCDmAGAAMQcAA4g5ABhAzAHAAGIOAAYQcwAwgJgDgAHEHAAMIOYAYAAxBwADiDkAGEDMAcAAYg4ABsQU8+bmZvn9fuXm5urNN990ayYAQJQcx/znn39WeXm5tm7dqsbGRrW3t+vw4cNuzgYAiFCy0xObmpq0bNkyzZgxQ5JUVVWl1NRU1wYDAETO8c783LlzCgaDWrt2rVasWKG6ujrddNNNbs4GAIiQ4515MBjU8ePHtW3bNk2ePFkvvPCCGhoa5Pf7Izo/IyPN6Uv/Jfl86fEeAbgqrk13OV1PxzGfPn26srOzNW3aNEnS0qVLderUqYhj3tvbp1AoPObjXCCjBQKX4z0C/oVrc7RYr03Wc7Sx1jMpyXPNTbDj2yyPPPKIWlpa9NtvvykYDOrIkSO67777nD4dACAGjnfm8+fPV0lJiZ599lkNDQ3pwQcfVEFBgZuzAQAi5DjmklRYWKjCwkK3ZgEAOMQ7QAHAAGIOAAYQcwAwgJgDgAHEHAAMIOYAYAAxBwADiDkAGEDMAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgQEwfgYvEcfNNXiV7+cLt4cErunhpMN5jAK4j5n8Ryd5UnfhnSbzHiLv/2PRfkog57OE2CwAYQMwBwABiDgAGEHMAMICYA4ABxBwADCDmAGAAMQcAA4g5ABhAzAHAAGIOAAYQcwAwIOaYb9myRaWlpW7MAgBwKKaYt7W1qaGhwa1ZAAAOOY75r7/+qqqqKq1du9bNeQAADjiO+euvv64NGzZoypQpbs4DAHDA0ZdT7Nq1S7feequys7NVX1/v6IUzMtIcnfdX5fOlx3sEM1hLd7Ge7nK6no5ivn//fgUCAa1YsUKXLl1Sf3+/3nrrLZWVlUX8HL29fQqFwmM+zgUyWiBwOabzWc8/sZbuYj3dNdZ6JiV5rrkJdhTzmpqakZ/r6+t17NixqEIOAHAX/585ABgQ8xc6+/1++f1+N2YBADjEzhwADCDmAGAAMQcAA4g5ABhAzAHAAGIOAAYQcwAwgJgDgAHEHAAMIOYAYAAxBwADiDkAGEDMAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAYQMwBwABiDgAGEHMAMICYA4ABxBwADCDmAGAAMQcAA4g5ABiQHMvJ77//vg4cOCBJWrJkiTZt2uTKUACA6Djembe2tqqlpUUNDQ3avXu3vvvuOzU1Nbk5GwAgQo535j6fT6WlpfJ6vZKk2bNnq6ury7XBAACRcxzzu+66a+Tnjo4OHThwQNu3b3dlKABAdGL+BeiZM2f0/PPPa9OmTZo1a5YLIwEAohXTL0BPnDihl19+WWVlZVq+fHlU52ZkpMXy0n85Pl96vEcwg7V0F+vpLqfr6Tjmv/zyi9atW6eqqiplZ2dHfX5vb59CofCYj3OBjBYIXI7pfNbzT6ylu1hPd421nklJnmtugh3HvLq6WleuXFFlZeXIfysqKlJxcbHTpwQAOOQ45ps3b9bmzZvdnAUA4BDvAAUAA4g5ABhAzAHAAGIOAAYQcwAwgJgDgAHEHAAMIOYAYAAxBwADiDkAGEDMAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAYQMwBwABiDgAGEHMAMICYA4ABxBwADCDmAGAAMQcAA4g5ABhAzAHAAGIOAAbEFPO9e/dq2bJlysnJUW1trVszAQCilOz0xO7ublVVVam+vl5er1dFRUVauHCh5syZ4+Z8AIAION6Zt7a2atGiRZo6daomT56sxx9/XAcPHnRzNgBAhBzHvKenRz6fb+Q4MzNT3d3drgwFAIiO49ssoVBIHo9n5DgcDo86Hk9S0vh/dvrNf3M0m0WRrNd4vFMyXJgk8bmxltPTprkwiQ1urOeN07k2/89Y6zneOnvC4XDYyQs2NDTo+PHjqqiokCR98MEHCofDevHFF508HQAgBo5vsyxevFhtbW26cOGCBgYGdOjQIT388MNuzgYAiJDj2yy33HKLNmzYoJUrV2poaEiFhYWaN2+em7MBACLk+DYLAOD6wTtAAcAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADHHhDt69Kiee+65eI8BjKu0tFT19fXxHsMRYg4ABjh+B6hlw8PDeuONN3TmzBmdP39e99xzj959911NmjQp3qMlrIsXL2r16tXq6enRvHnzVF5eLq/XG++xEk44HNY777yjzz77TDfccIOeeeYZrVq1Kt5jJaxwOKzKykp9+eWXyszMVDAY1AMPPBDvsRxhZ34V33zzjVJSUrRjxw41NTXp8uXLOnz4cLzHSmidnZ167bXX1NjYqN9//13bt2+P90gJ6eDBg/r666+1d+9e7dq1S/X19QoEAvEeK2F9+umnam9v1759+/Tee+/pp59+ivdIjrEzv4qsrCxNnTpVtbW1+vHHH9XR0aH+/v54j5XQ7r//fs2aNUuSlJ+fr/r6enaUDnz11VfKzc2V1+uV1+vVnj174j1SQjt27JhycnKUkpKiadOmJfSHBbIzv4rPP/9cGzdu1KRJk+T3+5WVlSU+wiY2ycl/7hvC4fCoY0QuOTl51PcGdHZ2stGIgcfjGfV3O5GvS2J+FW1tbcrNzVVBQYGmTJmio0ePKhgMxnushHbixAl1dXUpFApp9+7dWrx4cbxHSkhZWVk6dOiQhoaGNDAwoJKSEr7hKwbZ2dk6cOCABgcHdenSJR05ciTeIzmWuP8MTaCnn35aGzdu1CeffKKUlBQtWLBAnZ2d8R4roc2ZM0dlZWUKBAJatGiRCgsL4z1SQnrsscd0+vRp+f1+hUIhrVy5UnfeeWe8x0pYS5cu1bfffqu8vDxNnz5ds2fPjvdIjvERuABgALdZAMAAYg4ABhBzADCAmAOAAcQcAAwg5gBgADEHAAOIOQAY8L/EyVNvSHPYlwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD7CAYAAAB37B+tAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAALtklEQVR4nO3de4xmdXnA8e+8O7sL7o5lGSYFL3gJ+Ki0qDVgWkAxrlWIN4JIpI1Cg6YpMbQpJTFibJrYKF4xMUJUdtsIXvFCvIWAGkQTJDRWK/UpMdoU3cbJFM2uwl6Y8Y+ZtTOws3PmnLM588x+P8km8847532f/PLud3973suMzc3NIUmqazT0AJKkbgy5JBVnyCWpOEMuScUZckkqbnyA+9wMnAHsAh4Z4P4lqaINwEnAPcDexVcMEfIzgG8PcL+StB6cA9y1+BtDhHwXwIMP/obZWV/DLklNjEZjbNu2BRYautgQIX8EYHZ2zpBL0uo95pS0T3ZKUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxQ3xOnJJAuC4iU1sPGbz0GOsCfsf3suvdu9rdawhlzSYjcds5qtvuGzoMdaE8/91B7QMuadWJKk4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySimv06YcR8Xjgu8ArMvNnEbEdeD9wLPDpzLzmCM4oSTqMFXfkEfEC4C7gGQuXjwVuBF4NPAs4IyLOO5JDSpKW1+TUypuAK4BfLFw+E7g/M3+amQeATwAXHaH5JEkrWPHUSmZeDhARB7/1BGDXoh/ZBTyp98kkSY20+Q1BI2Bu0eUxYHa1NzI5ubXFXUvD23dgP5vGNw49xprgWvRramqi1XFtQv4AcNKiyyfy/6ddGpuZ2cPs7NzKPyitMVNTE1y648qhx1gTdl52HdPTu1sf3zZc69Xh1nI0Glt2A9wm5HcDERGnAD8FLmH+yU9J0gBW/TryzHwYuBS4BbgP+DHwuX7HkiQ11XhHnplPXfT1HcBzjsRAkqTV8Z2dklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScWNdzk4Iv4SeOvCxa9l5lXdR5IkrUbrHXlEPA74EPAi4DnAORGxva/BJEnNdDm1smHh+C3AxoU/D/UxlCSpudYhz8zdwNuBHwMPAD8DvtvPWJKkplqfI4+I04G/Ap4C/Br4BHAV8J4mx09Obl32un37H2HTxg1tR1tXXAutdVNTE0OPsG60XcsuT3a+DLgjM38JEBE7gb+hYchnZvYwOzt3yOumpia45OqbOoy2ftx87V8wPb176DG0iOFaqsvj07Vc6nBrORqNLbsB7hLyfweujYgtwG+BVwL3dLg9SVILXc6R3wZ8ErgX+AHzT3a+q6e5JEkNdXodeWa+G3h3T7NIklrwnZ2SVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxY13OTgiXgm8A9gC3JaZV/YylSSpsdY78oh4OnA98BrgdOBPIuK8vgaTJDXTZUd+AfDpzHwAICIuBh7uZSpJUmNdQn4KsC8ibgVOBr4MvL3pwZOTWzvc9dFlampi6BGkZfn47E/btewS8nHghcC5wB7gVuCNwM4mB8/M7GF2du6Q1/nAWGp6evfQI2gRH59LdXl8upZLHW4tR6OxZTfAXV618r/A7Zk5nZkPAV8Azuxwe5KkFrrsyL8M/EtEHAfsBs4DvtjLVJKkxlrvyDPzbuBa4C7gPuC/gR09zSVJaqjT68gz80bgxp5mkSS14Ds7Jak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySiuv06YeqYdsfbGJ80+ahx1gTDuzby4O/3jf0GFKvDPlRYHzTZu699vKhx1gTnn/1xwBDrvXFUyuSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFdQ55RLw3Inb2MIskqYVOIY+IlwBv7GkWSVILrUMeEccD7wT+ub9xJEmr1WVHfgPwNuDBnmaRJLXQ6jcERcTlwP9k5h0RcWmb25ic3NrmsKPS1NTE0COsK65nv1zP/rRdy7a/6u1i4KSI+D5wPLA1Ij6QmX/X9AZmZvYwOzt3yOt8YCw1Pb270/Gu51KuZ7+6rKdrudTh1nI0Glt2A9wq5Jn50oNfL+zIz11NxCVJ/fF15JJUXNtTK7+XmTuBnZ0nkSS14o5ckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqbjxLgdHxDuA1y1c/EpmXt19JEnSarTekUfEduDPgecBzwWeHxEX9DWYJKmZLjvyXcDfZ+Y+gIj4T+DkXqaSJDXWOuSZ+aODX0fEqcyfYjmrj6EkSc11OkcOEBGnAV8B/iEz72963OTk1q53fdSYmpoYeoR1xfXsl+vZn7Zr2fXJzrOAW4C/zcxPrebYmZk9zM7OHfI6HxhLTU/v7nS867mU69mvLuvpWi51uLUcjcaW3QC3DnlEPBn4InBxZn6j7e1IkrrpsiO/CjgGeH9EHPze9Zl5feepJEmNdXmy80rgyh5nkSS14Ds7Jak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckoob73JwRFwCXANsBD6YmR/uZSpJUmOtd+QR8UTgncDZwHOBN0fEs/saTJLUTJcd+XbgG5n5fwAR8TngtcA/rXDcBoDRaOywP3TCti0dRltfVlqrJjY9frKHSdaHPtbzhK3H9zDJ+tB1PY89wcfmQYdby0XXbXj0dWNzc3Ot7jAi3gpsycxrFi5fDpyZmW9e4dCzgW+3ulNJ0jnAXYu/0WVHPgIW/yswBsw2OO6ehUF2AY90uH9JOppsAE5ivqFLdAn5A8wH+aATgV80OG4vj/rXRJLUyE8O9c0uIb8d+MeImAJ+A1wIrHRaRZLUs9avWsnMnwNvA74JfB+4OTO/19dgkqRmWj/ZKUlaG3xnpyQVZ8glqThDLknFGXJJKs6Q64iKiHMj4ltDzyGtJCJ2RsSlQ8/RhiGXpOI6fYztehQR48BHgD8C/hD4AfD6zHxo0MFqOyEivg48EbgbuCIz9w48U0kRMQa8C7gAOADckJnXDTtVTQtr+T7gFcy/K30D8K0hZ2rLHflj/RmwLzP/FDgFOA44f9iRynsa8BbgdGAC+OthxynttcBZwB8DZwKXRcSJw45U1oXA84DTgIuY//tekjvyR8nMOyNiJiKuAJ4JnApsHXis6u7MzPsBIuIm4DLAXWQ7LwI+s/A/mr3M/y4AtXMu8PnM3A9MR8RXB56nNXfkjxIRrwJuAn4L7ADuZP6THdXegUVfj4D9Qw2yDuxn0aeORsRTI8IP729njqV/tw8s94NrnSF/rO3M73h2AL8CXswhPshdq3J2RJwcESPgDcx/4JrauRO4MCI2RsTjgIPPPWj1bgdeFxGbI2Ib8PKhB2rLkD/WR4HXR8QPgc8C32H+HK/a+xFwI/BD4OfAx4cdp67M/ALzj8l/Y/5zqa/LzP8adqqaMvNLzD+5+R/ArcB9gw7UgR+aJUnFuSOXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklTc7wCWVwQ5VEkbzgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -468,7 +498,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 65, "metadata": {}, "outputs": [], "source": [ @@ -477,7 +507,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 67, "metadata": {}, "outputs": [ { @@ -512,90 +542,102 @@ " \n", " \n", " \n", - " 0\n", - " 16.99\n", - " 1.01\n", - " Female\n", - " No\n", - " Sun\n", - " Dinner\n", - " 2\n", - " \n", - " \n", - " 1\n", - " 10.34\n", - " 1.66\n", + " 239\n", + " 29.03\n", + " 5.92\n", " Male\n", " No\n", - " Sun\n", + " Sat\n", " Dinner\n", " 3\n", " \n", " \n", + " 240\n", + " 27.18\n", + " 2.00\n", + " Female\n", + " Yes\n", + " Sat\n", + " Dinner\n", " 2\n", - " 21.01\n", - " 3.50\n", + " \n", + " \n", + " 241\n", + " 22.67\n", + " 2.00\n", " Male\n", - " No\n", - " Sun\n", + " Yes\n", + " Sat\n", " Dinner\n", - " 3\n", + " 2\n", " \n", " \n", - " 3\n", - " 23.68\n", - " 3.31\n", + " 242\n", + " 17.82\n", + " 1.75\n", " Male\n", " No\n", - " Sun\n", + " Sat\n", " Dinner\n", " 2\n", " \n", " \n", - " 4\n", - " 24.59\n", - " 3.61\n", + " 243\n", + " 18.78\n", + " 3.00\n", " Female\n", " No\n", - " Sun\n", + " Thur\n", " Dinner\n", - " 4\n", + " 2\n", " \n", " \n", "\n", "" ], "text/plain": [ - " total_bill tip sex smoker day time size\n", - "0 16.99 1.01 Female No Sun Dinner 2\n", - "1 10.34 1.66 Male No Sun Dinner 3\n", - "2 21.01 3.50 Male No Sun Dinner 3\n", - "3 23.68 3.31 Male No Sun Dinner 2\n", - "4 24.59 3.61 Female No Sun Dinner 4" + " total_bill tip sex smoker day time size\n", + "239 29.03 5.92 Male No Sat Dinner 3\n", + "240 27.18 2.00 Female Yes Sat Dinner 2\n", + "241 22.67 2.00 Male Yes Sat Dinner 2\n", + "242 17.82 1.75 Male No Sat Dinner 2\n", + "243 18.78 3.00 Female No Thur Dinner 2" ] }, - "execution_count": 72, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "tips.head(5)" + "tips.tail(5)" ] }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 68, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVwAAAFcCAYAAACEFgYsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd2BV5f348fe5+2bPm02YgUDYM6DiQDaCe2u1fqttf9raWlcdraPa1spXbW1ra/utqFUcOBBQUUQg7L1iAmTvndzcfe/5/RG54XKTMO89N8nz+svznHPDxxA+ec4zPo8ky7KMIAiCEHAqpQMQBEHoL0TCFQRBCBKRcAVBEIJEJFxBEIQgEQlXEAQhSETCFQRBCJKAJ9yvv/6aq666innz5vHMM88AkJeXx6JFi5g9ezZLly4NdAiCIAghIaAJt6ysjCeffJJXX32VTz75hEOHDrF+/XoeffRRXn31VVatWsWBAwdYv359IMMQBEEICQFNuF9++SXz588nOTkZrVbL0qVLMRqNZGZmkpGRgUajYdGiRaxZsyaQYQiCIIQETSC/eElJCVqtlnvuuYeqqiouvvhihg0bRmJiovcZk8lETU1NIMMQBEEICQFNuG63mx07drBs2TLCwsL48Y9/jMFgQJIk7zOyLPtcC4Ig9FUBTbgJCQnk5uYSFxcHwKxZs1izZg1qtdr7TF1dHSaTKZBhCIIghISAJtxLLrmEhx56iNbWVsLDw9mwYQNz587ltddeo6SkhPT0dFauXMnVV199xl+7ocGMxyPq7giCEFoSEyO7vRfQhDt27FjuuusubrrpJpxOJzNmzODGG29k8ODB3HvvvdjtdmbOnMncuXMDGYYgCEJIkHpreUbRwxUEIRT11MMVO80EQRCCRCRcQRCEIBEJVxAEIUhEwhUEQQgSkXAFQRCCRCRcQRCEIBEJVxAEIUhEwhUEQQgSkXAFQRCCRCRcQRCEIBEJVxAEIUhEwhUEQQgSkXAFQRCCRCRcQRCEIBEJVxAEIUhEwhUEQQgSkXAFQRCCRCRcQRCEIBEJVxAEIUhEwhUEQQgSkXAFQRCCRCRcQRCEIBEJVxAEIUhEwhUEQQgSkXAFQRCCRCRcQRCEIBEJVxAEIUhEwhUEQQgSkXAFQRCCRCRcQRCEIBEJVxAEIUhEwhUEQQgSkXAFQRCCRCRcQRCEIBEJVxAEIUhEwhUEQQgSkXAFQRCCRCRcQRCEINEoHYAg9Ff11ga+KFlHq6ONKckTmWAao3RIQoCJhCsICnB6XCzd9Tea7S0A7K8/jGr0bYxLzFE4MiGQAp5wb731VhobG9FoOv6op556itLSUv7617/icrm4/fbbufnmmwMdhiCElKPNRd5ke9yOmj0i4fZxAU24sixTXFzMunXrvAm3pqaG+++/nw8//BCdTscNN9zA1KlTGTp0aCBDEYSQEqOP9muL7aJN6FsCOml27NgxAO68806uuOIK3nzzTfLy8pg2bRoxMTGEhYUxZ84c1qxZE8gwBCHkJIebuCzjIiQkAJLCEpk1YKbCUQmBFtAebmtrK7m5uTz++OM4nU5uu+025s2bR2JiovcZk8nEvn37AhmGIISkq4Yt5KL0XFodZgZGZaCSxKKhvi6gf8Pjx4/nD3/4A5GRkcTFxXHNNdfw8ssvI0mS9xlZln2uBaE/STDGMzg6UyTbfiKgPdwdO3bgdDrJzc0FOpJrWloadXV13mfq6uowmUxn/LXj4yPOW5yCIAjBENCE29bWxssvv8w777yD0+lkxYoV/PGPf+RXv/oVjY2NGI1GvvjiC55++ukz/toNDWY8HjkAUQuCIJy9xMTIbu8FNOFecskl7N27lyVLluDxeLjpppuYOHEi999/P7fddhtOp5NrrrmGMWPEgm9BEPo+SZblXtlNFD1cQRBCUU89XDFSLwiCECRia68gKKiktQyPLDMoeoDfvTaHmbzKbdjcdqYmTyQ5/Mwnl4XQIoYUBEEBbo+bV/f+i/ymQgCGRA/i/427C51aC4DD7eCZrS/SYGsEQKfS8uDk+0gJT1Is5lDXsnEDrXkbUUdGEr9wMfqMDEXiEEMKghBi9tTt9yZbgKMtReyo2eO9PtCQ7022AA6Pk82V24MaY2/StmM7Nf/3OtaC7zDv3EHZn36Px2ZTOiw/IuEKggJaHG3+bfZW73/rVFq/+8d7v4I/866dPtcesxlLQb5C0XRPJFxBUMDYhByfpKpRaZhgGu29zo7LYnD0QO91tC6KC9KmBTPEXkVrSvRr0yWG3pi3GMMVBIWUtpXzTdkmPLLMzPTpfhNnbo+bAw352Fw2xiSOxKgxKhRp6HObzVS8/CK2Y8dArSZu3gISllylSCw9jeGKhCsIQp/hqKpEFRaOJlq5UpeK7TQTBEEIJl1KqtIh9EiM4QqCIASJSLiCIAhBIhKuIAhCkIiEKwiCECQi4QqCIASJSLiCIAhBIhKuIAhCkIh1uIIghCRL/mFq//sWroZ6IiZPwXTTLai0OqXDOici4QqCEHI8djuVr76Cx2IBoHXDt2hiYklYfKXCkZ0bMaQgCELIsZeXeZPtcdbCAoWiOX9EwhUEIeTo09JQGQw+bYZBgxWK5vwRCVcQhJCjMhhJ/tGP0SYkgkpF5JSpxC+8QumwzpmoFiYIIcjpdrKy6AvyGwtJi0hh8ZB5ROujlA5LEbLHg6TqPX1DUS1MEHqZFUdXsb58EwDl5krqrQ38YuJPFI5KGb0p2Z5K3/k/EYQ+ZF/dQZ/roy3FtDst3Twt9BYi4QpCCEoK8z0yJloXiUGtVyga4XwRCVcQQtDVwxYRb4gDIExj5MYRV6NWqRWOSjhXYtJMEEKUR/ZQZ20gVh8jTuztRcSk2Tmoamjn36vyKapqZfiAGO6cn01clOHUHxSEc6SSVH5DC0LvJoYUTuG1Tw9xpKIFt0fmUHETb3z+ndIhCYLQS4mE2wOX20NJdZtPW2F5i0LRCILQ24mE2wONWkVmsu94zNA05Y5fFgShdxMJ9xR+tGgkQ9KiUEkS2Zmx3D53uNIhCYLQS4lVCoIgCOdRT6sURA9XEAQhSETCFQRBCBKRcAVBEIJEbHwIoB35tRSUNTMoJYqpo5JQSZLSIQmCoCCRcANkZV4xH357zHtdVN3KTbOyFIxIEASliSGFAPlqV7nP9fo9lbg9HoWiEQQhFIiEGyB6rW9lJ51GhSSGFAQhYGylJTSt/RLr0SNKh9KtoCTc3//+9zz88MMAHD58mKuuuoo5c+bw61//GpfLFYwQgm7xBYM4Mb1eMWOQGMMVhABp2bCe0qeepO6dtyh77hkaP1+tdEhdCnjC3bx5MytWrPBe/+pXv+KJJ57g888/R5Zlli9fHugQFJE7Kpln/mcqt88dzm/umMzlkzOUDimonMe2Y8t7C2dhHrIshlKEwGpY+YnPdeNnnxKKe7oCmnCbm5tZunQp99xzDwAVFRXYbDbGjRsHwFVXXcWaNWsCGYKiUuLDmTkujQFJ3e886Yvsuz7BtvYvOA98iW3da9i3vKt0SEIfJ7vcJ127oL8l3CeeeIL777+fqKiO00Zra2tJTOys75mYmEhNTU0gQxAU4Dz4le/1oa+RxYShEECxs2b7XMdcOiskD58M2LKw9957j5SUFHJzc/nwww8B8Hg8PhNHsiyLiaS+SKPzvxZ/z0IAxc2bjz49Hct3+RgGDSZy4iSlQ+pSwBLuqlWrqKurY/HixbS0tGCxWJAkibq6Ou8z9fX1mEyms/r68fER5ytU4TwzXHIjdZ+8AnS80sXPvIFoU5SyQYUYh9vJsj0fsKNiH6lRJm4fdy0DYtKUDqtXS7x0Blw6Q+kwehSUamEffvgh27Zt4/nnn2fhwoX89re/ZeLEiTz++ONkZmZy1113nfHXFNXCQpu7uRJ3VQFq02DU8QOUDifkrDjyGWtL13uv4w1x/Cb3QVRS6L0GC2cmpM40e+GFF3jssccwm82MGjWK2267LdghCEGgjklFHZOqdBghK7+x0Oe6wdZInaWepPCze+MTegdRD1cQFLDs8HK2VO3wXodpjDw747FuT+fNbyzkSPMxMqMyGJ0wMlhhCmchpHq4giDA4iHzqLc2cKS5iGhdJDeNuKbbZLuubCPvF3auM52deQmLh8wLVqjCeSR6uIKgIIvTikGj73Hs9rFNv6PJ3uy91qm0vHDRU6hV6m4/IyhHnPggCCEqTGs85UTZyfdVUv+ty+FsqKf94AE8drvSoZwVMaQgCArIbyxkecHHNNgaGZ84mhtHXI1erevy2TkDL+Ht/A+815dnXtwvVzM0fbGGuvfeBVlGFRFB+v0PYMgcqHRYZ0QkXEEIMofbwT8PvInVZQVge81uYvTRLBk6v8vnZ6ROJT0ilcLmY2RGpjMsdkgwww0JbquV+hUfeLfresxmGj5eQdp99ysc2ZkRCVcQgqy6vdabbI871lLc42cyozLIjOpfBZBO5LG0IzudPm2u5uZung5d/e+9RBAUlhxuIkxj9GkbHD1QmWB6CW18AsZhviemROVOVyiasydWKQiCAs5kDFfo4G5vp+nz1TiqqggfO47oCy5UOqQu9bRKQSRcQRCE80gsCxMEQQgBIuEKgiAEiUi4giAIQSISriAIQpCIhCsIvUSDtZED9YexOK2nflgISWLjgyD0At+UbeL9wk+QkTGo9fx47J0MjRmkdFjCGRI9XEEIcQ63g0+OrUb+/sgim9vOp8f67mnXfZno4QpCiHO4ndjdDp+2Nke7QtGENrfZTOuWzchuF1FTc9HExCgdkg+RcAUhxEXowsmJH8GBhnxv27TkiQpGFJrcViulz/wWZ33HQbVNa1Yx4Imn0MbGKhxZJ5Fwz0Jjq40DRY0kx4WRlRFav0GFvumOUTezrmwjle1VjIwbzrSU0DwGPFBkjwfrkUIkSYVh6NAu6wGbd+3wJlsAd1sbrXkbiV+wKJih9kgk3DNUUNbMn97dg9PlAeCyiencfHnWKT4lCOfGoNEzb9BlSoehCI/dTvmf/oDt2FEANAkJpD/wELqERJ/nJJX/lFRXbUoKrWh6gZWbi73JFuDrXeW0tDu6/4AgCOekbdsWb7IFcNXXU/qbx/3KMxqHDYcTE6xKRcTkKcEK87SIhHuGHA63z7Usw9ZD1Tz35k7+9729HK1oUSgyQeib3G1tfm0em43WzXk+bW3bt4HHc8JDHp9EHQpEwj1Dl05M97kemBzJO18dobC8hX1HG3jh3T20WkSPVxDOl4hJU0Dtf2CmpPZNX7LL6feM7PBvU5JIuGdoSnYSD944nssnZXDr7CwyTBE+9+0ON4eKGxWKThD6Hp3JRPoDD6EydhZt18TFEXlSAfKo3Om+z8TGETEhtFZziHq452jN1lKWrzvi0/b47ZMYlBKlUESC0Dd5bFbaduxAdruJnDQZdXi43zPOujpa8jai0mqJmnEhmujooMcpCpAHkN3h5pUP93GouAmVJDF7cgbXXTpU6bAEQVDIWSfc8ePHd7neTZZlJEli165d5yfCsxAqCfe42mYrBq2aqHBxTIog9Gc9Jdwe1+GuXLnyvAfTV5lijKd+SBCEfq3HhHvw4MEeP5yWlnZegxEEoYPb42Zz1XbKzJWMiB3GeNNopUMKeZaC76h79784G+qJnDSFxOtvRKXVKh2Wjx4T7rJly7q9J0kSs2fPPu8B9QYeWeazvGK2HKohJkLPNRcPEZNkwnn1Vv77bK3eCcDGii1cOXQBswbMVDiq0OVxOKj8y8t42juK+rR88zWaqCjir1iicGS+zjrh9mfrdlWwYkMRAFUNFl58dw8v/HQGeq3/WkFBOFM2l53tNbt92jZUbBEJ93u2omO0HzyAPj2D8LHjkCQJe3mZN9keZ/kun3iFYuxOjwn32Wef5de//jX33HNPl/f/9re/BSSoULf/WIPPdbvNxbHKVrIzQ6cqkdB7qVVqtCqNT0lGo1qvYESho3XrZqr/+VrHFk8g5tJZmG66BV1KKpLegGy3eZ81DAy9Au09Jtzc3FwA5syZE5Rgeou0xHD2He1MumqVREp8mIIRCX2JVqVh3sBZfHR0FQAqScWCwf1z+O5kTWtWe5MtQPP6dcRfeTVqo5GU/7mb2reX4WpqImL8BOIXXaFgpF077XW4TU1N7NmzB41Gw9ixY4mKUnbMUsllYRabk1c/OsCh4iYMOjXXXTKUi8eLCUTh/KowV1HeVsnQmMHEG/vn25PbYsFy+BAt69eBDI66WlwnlGBErWboS39GZehYJSTLMrjdSBrlCiGe88aHb775hoceeohhw4bhdrspKytj6dKlTJ48+bwGeiZCYR1ua7sDg06NTozdCsJ5V/vO2zR/vda3II0k+fRwYy67HNONNysQXffOeh3ucS+99BJvvvkmw4YNAzqWiz3++ON8+OGH5yfCXkpschCEwGg/eIDmtV/435BlomdegjY+Hl1aOuFjxgY/uHNwWglXkiRvsgUYNWoUvXRHsCCEvGZ7C2/nf8CR5mMMisrkxhFXk2CMUzqsoLKXl3V7L2z4CCKnTA1iNOdPj9XCmpubaW5uJicnh9dff5329nasVitvvfUW06ZNC1aMgtCvvJX/Pgcb8rG7HeQ3FfLGoXeUDinowkfldAwfnCRi0hQiJvbe44V6HMMdMWIEkiT59GaPX0uSxOHDh4MSZFdCYQxXEALh/vWP4TjplN5XLnkeldS/qqm27dxO4+pV4HYTNf0CIiZMRBsfaitr/Z31GG5+fn5Pt4GOegsLFy4886gEQejSwMgMCpo7TyoYEJne75ItQOTEyUROVG5iPhDO+W/x9ddf7/H+Sy+9xPz581mwYAH//ve/AcjLy2PRokXMnj2bpUuXnmsIgtCn3DTiGgZFZQKQEZnGbSOvVzgiZXlsVuo/XkHlX16hef03Pm/cjZ+v5uj993L0/ntp/Hy1glGennNerNbT5Nm2bdvYsmULn3zyCS6Xi/nz55Obm8ujjz7KsmXLSElJ4e6772b9+vXMnCm2LQr9j9vjZn/DYaxOK2MTcwjTGkkMi+eBST/F7XGjVoklh1V//yvt+/cBYN69E3dbK/ELr8CSf5j69971Plf/3rsYMgcSNiJbqVBP6Zx7uF3Vyz1uypQpvPHGG2g0GhoaGnC73bS2tpKZmUlGRgYajYZFixaxZs2acw1DEHodj+zh2W1L+cf+N3gz/z0e2fQ01e213vsi2YLbbPYm2+OOHx5pPXrE73nrkcKgxHW2Aj4wpNVqefnll1mwYAG5ubnU1taSmNh5nrzJZKKmpibQYQSNxyOzZmspf/zvbt7+sgCzNbQOsRNCx57aA9RYOhOsy+PircPvKRhR6JH0OqSTSiy6mhop+NGdtG7d7Pe8cUhon7YSlJH4++67j82bN1NVVUVxcbFPr/j4ioe+4pNNRSxfd4TDJU2s3VnOnz/cr3RIQoiqtdb5tTXZWxSIJHRJGi2oTjqd1+EAjwdnZSXq2FhUERGowsNJuPpawrJHKhTp6QnoGO7Ro0dxOBxkZ2djNBqZPXs2a9asQX3Ckcd1dXWYTKYz/nPj4yNO/ZACdhbU+1wXlDWjMWiJjTQoFJEQqhZHXsbKY18g0/lvaNqAcT0uK+pvZI+Ho/KJ3yFf7qYmpn+4HKmLY9RD0Tkn3EWLFnV7r7y8nJdffpn//ve/AHz11VfccMMN/OEPf6CkpIT09HRWrlzJ1VdffcZ/bqiuw42J0FFxQsfFqNdgNdtw2cTQguDvrpxbebdgBZbvJ83mps2mrq5N6bBCStRFM2le+2WX9wyDBlPfaAlyRD076+I1PSVTgE8//fSUf/grr7zC6tWrUavVzJ49m3vvvZfNmzfz3HPPYbfbmTlzJo888sgZDyuEasItrWlj6fK9tLQ70KhV3D53ODNGpygdlqI87U049q1BtjSjHZaLZsA4pUMKOVXtNbx1+H3KzRUMjx3KzdnXEqUTPV3o6OW2bdmMtego+pQ0zLt3YSnIxzh4CEm334kuOVnpEH2cdcLdtm1bj194ypQpZx/VOQrVhAvgdHkorWkjKS6MCGNonakUbLLHRfvyR5FbOyeHjHN+jiZTJN0TPbv1RSrbq73X4xNHc9foWxWMSDhbZ73T7MSE2tzcjNVqRZZl3G43paWl5y/CPsDucIMEeq0arUbFkLRopUMKCe7qQp9kC+As3CQS7gmsLqtPsgU42lKsTDC9lMdup/mbr3FUVRExbjwR48YrHVKXTrs842uvvQaAWq3G6XQydOjQ0xpS6OtkWebttYV8s7sCSZK4fHI6114c2ktTgkky+v/ikYziwM0TGTVGksOTqG7vXB45KGqAghH1PpV//TOWAx0rglo3fkvS7XcQfWHobaY6rWVhH3/8MevWrWPOnDl88cUXPPfccwwdKpIKwK6COr7aWY7bI+Nye1i9pZSDxY1KhxUy1LGpaEde6r2WIuLRjZmnYESh6c5RN5ERmYaExIjYYQyPHcq/D77N6qK12Fwd53Ttqt3Hn/f8k38deIsKc5XCEYcOZ2ODN9ke1/LteoWi6dlp9XDj4uIwmUwMHjyY/Px8lixZwj/+8Y9Ax9YrlNWa/dtqzIwa2L/ql/bEcMFtaEdeimxpRp0yHEndv8e1u5IWkcLDk38GwDdlm1he+LH33pHmImYNmMnrB970th1uLOC3uQ8TpjUGPdZQo9LpQa0Gt7uzLSw0zxg8rR6uRqOhtLSUwYMHs2PHDlwuF3a7PdCx9QojT0qsEjByYP88f6on6rh0NOk5Itmehi1V232u85sK2Vy1w6fN4rKS3xTa21iDRR0RQdy8+d5rSa8nftFiBSPq3mn1cO+++24ef/xx/vrXv/LSSy/x0UcfcfHFFwc4tN4hKyOGO+aN4PPtZagkmD8tkwFJYjmPcPYidL6berQqDYlh/nVg4w3iF/txCUuuJmLCJBzVVYRlj0QTGZrzBKd1iGRNTQ1JSUkAWK1WSkpKUKlUZGVlBTzA7oTysjDBl8fSjLtsP1KUCU3KcKXDCXlFLaX8ec8/sbltSEhcMWQuF6ZN4897Xqe4tRQJiYvSc7kua4nSoQpdOOt1uM3NzQDcdtttLFu2zLuN1+Vyccsttyha5UuphFvdaKHFbGdoejTqE/Z478iv5Z2vC2ltd5A7Kplb5wxHo+5/RaNP5q45guWzP4Cr4wQDbfYlGC68XeGoQovb4+bjY6vZVbOPWEM0Vw5dSHKYiaMtRSSFJWIK6yz2VGGuwqgxECd6tyHrrNfh/vKXv2TTpk0ATJ3aeWibRqNhzpw55ym83uOtLwv4amc5AKZYIw/dNIHYSD0t7Q5e+/QgLnfHL4AN+6pIjgtj3rRMJcMNCY49n3mTLYDz8Dfoxi9CFSEmFY/7umwDX5V+C0CTvZm/7f03z8x4lNEJ/oVYbC47jbYmIrQR6MR4uA9XWyvmXbtQh4cRMW4CkuacKxecdz1GdPw0h0ceeYTnnnsuKAGFqor6dm+yBahtsvL5tlJuuGwYJdVt3mR73NHK1mCHGJJk18mTqzKcdF5Xf5ff6Dv51e6yUNZWyZCYgd42j+zhnwfeZG/dAQBi9TE8MOmnxOjFBhsAR20tpb97Co+5Y9WQYegwMh58BEkVWm+Zp/Ur4LnnnmPv3r1s2LABp9PJBRdcwOTJfeusoVNpNvuvyjjeNiglEq1GhdPl8d4bli7+IQBoR16Ku+IwfF/vSZ02ClV0aO19V8rxnmpGZJrPigOtSkNSeMcwQrO9hTcOvct3Tb7FtpvszXxTtoklQ+cjQMu6r7zJFsB2pBBL/mHCR45SMCp/p5X+P/roI+677z5aWlpob2/nF7/4BcuXLw90bCElKz2G+Ci9T9u0kR2JIzJMx48X55AUF4ZRr+ayCenMmpSuRJghRztoEsZFD6PNuRz99FswzrlP6ZAU12xv4ffbX+LxvOd4dNPTJBoTyIkfAUCENpxbsq8jQhsOwHsFn/gl2+MsrtCqkqUk2e3yb3P5tynttFYpLFmyhNdee81bt7ampoYf/vCHrFy5MuABdkeJSbP6Ziurt5bS0u5gek4yE7IST/0hQTjJskPL2VLdua5Wr9bxuxmPAaBVaX2O1vn1pmdp7qIouUpScf+EexgcPTDg8fYG9vIySn/3dEdxckCXmkrmE08pMo571pNmx3k8Hp8i4UlJSahCbGwkGBJijNw6RyxrEs5NlcX3SCm720GjrZnUiM6hlt21+ylsPkqMPton4YZrwxmXOIppKZNEsj2BPj2DzCeeonXrZtTh4URNv6D3TZodFxMTw9q1a5k1axYAa9euJTpajFEKwtnIiR9BSWuZ9zrBEEdyeGeH5vPir/nkWOeSy3hDHG1OM+kRqdw4/CqfxNzXOWprafp8NW5zG1EzLiRizNhun9UlJ5Ow+MogRnfmTmtIYfv27Tz66KM4vu+ua7Va/vKXvzB8uHK9PbHxQeit3B43q4rXsrfuACZjAouHzCPphIR78jCCRqXhxYue7nen+HrsdooefQh3S8d+ACSJtJ//kvBROXgcDmrffhPzjm1o4hMw3XhzyByPftZDCsc3Pjz99NO89957HDlyBEmSSEtL4wc/+IE43lwQzoJapWbR4DksGtyxlt3itPJFyTqa7a1MShqHXq3zfV5SYXPbCFeFKxGuYiz5hzuTLYAs07Z1M+Gjcmhc9SmtGzvWLjsqyql89RUG/3EpKr2+m68WGk5740Nubi7QUf+1v258EITzzSN7eGn33yk3VwLwbXkeszMv4YuSdd7DJe1uB4/nPcddObcyMr7/zCFYvsv3b1RrcNTUYC0o8Gn2WCzYKyowDh4cpOjOjtj4IAgKKm4t9SZbABmZOms9T0x7gBd2/IX275d+2d0OPij8tH8l3IMH/NpaN6yndcN6dCmpPu0qoxF9aqrf86HmtDc+CGfu272VbNxfRaRRyxUzBpGZLKqICb70av9XYINaT6IxAZvbd7NNV8vD+jJ1ePdDKI6qSoxZw7EePYI2Lg7TTbeiMhiCGN3ZCb11E33E9vxa/m915ytRQVkzf/jxdIx68S0XOqVFpDDRNJadtXsBCNeEcdmAi5AkiYlJY9lWvcv77MSk/nUOXPTFl2I9UggeT5f3IydPJbxio0EAACAASURBVP1XD5/xid9KEv/6A2RXQZ3PdbvNxXdlzYwbmqBQREKoumPUTVyQNpVmeyuj4kcQru04rWBq8iSqzDW0uyxMMI1h4eD+NW/StHplt8kWSSJ87NhelWxBJNwz4vHIfLWznIPFjQxIimDe1Mxue6xJsf5Hn3TVJvQ/Ja1lbKnaSbjWyEXp04nSRZIVO5SjzcUcbviO7Pjh1Fhq+cvef+KROxLOzpq9LBg0W+HIg8fV3Iy9rKz7ByQJbVxnUXbZ5UJ2OVEZQvvfmEi4Z+CjjcdYmVcCwL6jDZTWmPn5tV0vxJ49OYNDJU0cKW9BrZJYkJtJSnz/WtYj+CtqKeXFXa96E+n26t08Nu0Bln/3EXlV2wAwagwMjx3mfQY6itXkNxYwJjG0irEEijoyEnV0NO6Wrsetw4aP8P53y7frqXt/OR6rhYjxE0j+4Y9CdnmYSLhnYMtB3y2Z+442YLE5CTP41yUNM2h59JaJ1DRaMBo0RIXp/J4R+p/NVdt9Emm9rZGtVTu8yRbA6rJR3V7r99lwbf/5hS2p1STf8UOq//16R9LVaDoOiZQkwkZkk3T7nQA4GxupefM/3qEH866dNA34nPiFVygZfrf6X0GEcxAT6ftbM9ygQaftefdPUlyYSLaCl1HjP5Oukvx/hqL1kT5nlo1NzPGpj9sfhOeMYfAfXsQ4PBtcLpBl8HjQpaWjje8YTnBUlPuN89pLS5QI97SIhHsGrr14CGHfj9mqVRLXXzpMHKMjnJGL02f4FA3Pic9meupkBkYN8LZJSFycPoPHpz7Aj8fcwS8n/oQfjb5NiXAVJzsdWL877NNm3tH5NmAYMgRJ7/tLzFZcRNuO7b23PGMoUqqWgs3hoqiqjdSEcKLDRc9VOHN2t4NDDd8RrjUyLGYIkiRhddnYULGZRlszE0xjyIodonSYIUH2eDj2wM9xt3aeoGIYOoy4+Qto+GgFHosFY3Y2bVs2IzudPp/VxMaR/ssH0SUHt9jPWR8iGcqCnXCtdhdltWbSEyMIM3T0co+Ut7D3aD3JcWFMHZkkertnyGNpQbabUcemKR2KEMLadmyj+l//RHY4UEdEYvrBHVT/7dXT6sFGTs0l5X/uDkKUnc65Hm5/d+BYA3/56AB2hxu9Vs2Pl4zC5nDz948Pcjzl7z/WwD2LcxSNszex71iBY/dKkN2oEgdhnPcLVAaxE8/sbOfTY59T2lrOsNjBLBw0G526f79JRU6aQtjIUTiqq9FnZGDetcsv2aoiInyO2DnO1dQYrDBPi+iSnYa31xZid7gBsDvdvP1lIWt3lHNi/3r74douzz0T/HlaanDs+gTkju+pp66I9uWP4izacYpP9n3/OfQOGyu2UNpWzlel3/La/jeUDikkqMPCMQ4egkqrQ58xwO9+zCWXYRyRDSdthIicOi1YIZ4WkXBPQ2Obze9ao/b9i5UkCZWqd+16UYqnrQ44aTjI1oZt7at4Wv2XQ/UH7U4L7U4Lhxt8q2AdbixgQ8UWhaIKTfrUVBJvuAmV0QgqFVG5M4hfsIjEa64ncso0dBkDMA4fQdIPfkjMzEuUDteHGFI4DVOyk9i4r8rnetrIJArLW3B/P4588fhUsfzrNKmThyEZIpFtbb43ZA/uqu9QRZm6/mAf5PS4WHboXXbV7kMtqdGr9djcvr/gvy3P48K00OqpKS121mxiLr4U2e1GpddjLy+j7PlnvEMN6shIIsZPUDhKfyLhnoZbZ2eREGWgsLyZIWnRzJ+WiU6r5pm7prL/WAMp8eGMHBh76i8kACBp9BgXPoxt/T/w1BX73FMlDFQkJqXkVW7zFq5xyS5cXZw+e3wMV5ZlnB5nvx/TPU7SaLznlrVu2ewzrutua8O8ZzfRMy5QKrwuiYR7GrQaNVdcMMivPSkujKS4MAUi6v3UcWmELX4c+8Y3cBZsBLUO/cTFqOMzlA4tqCrNVX5tOfHZHGjoWHuqltTMG3gZBU1HePPw+zTYGsmKGcIdOTcRpesfk4yyLNO+fy/2sjLCx47HkJ7u94w6PMK/LcK/TWliWZigONnlAJUKSdX/fv/vrTvIa/v/473WSGp+O/1hmu0tVJqryYodSqw+ml/nPUubo3MWfkryBG4feYMSIQdd1T//TtuWzd7r+CuWEH/FEp9n3GYzZb//HY6qjmLuYdmjSLv/l0gKnC4uloUFgSzLHC5poqHVxpghCWJTxBmQNP33ezU2cRTXZi1mU8VWDBo98wdeTow+mhh9tHf3Wb210SfZApS2VSgRbtC5Wlp8ki1Aw8pPiJ07H5Wu8+dGHRFB5pNPYck/hKTTYxyWFZKlG0XCPU/+8ekhthzqKG5j0Kl5+OYJDEjqH69858LTVo9j/xfI9na0wy9Ekzri1B/qQyrN1YyMG87F6TO6fSbOEEOCIY56W+ea0uH9ZSdaVy/gHg9V//g7cXPnYRwy1NvsamvDmDXCJxGHGvVvfvOb3ygdxNmwWh1d/l0ooaqhnTc+/8577XLL2BxuJg7vP7PtZ0N22rF88ATuioN4GstwFW5CnTYSVUT8qT/cyzncTv6893U+OvoZ68s3UWupY2ziqC57ZZIkkRU7hKr2GuwuB2MSRnLNsMVo+sEQjMpgoG37VtwnbWpwVlfRunkT4WPHgaSi/MU/Uv/uf2n+ei3qiEg0cXGKlWgMD+/+zxXrcM8Dh9O/Kr3d2bGo/0h5C4eKG3F3V7m+H3NVHEC2+B6D7SrIUy6gINpavYOCpiPe6x01e9hS1fXGD5fHRbg2jEsyLkSSJHbW7uXPe/5Ji721y+f7moxHn0CX0cVkqttN29bNNHzyEbajHd9Lj9VKzRv/5tj991H6/LO4TjxmPQQE/Ffkn//8Z1avXg3AzJkzefDBB8nLy+O5557Dbrczb9487r///kCHEVCZyZEMTo3kWGXHulJJgpljU3nx3T0cKOp4DUxLDOeRmyd0WTu3v5IMUf5txv4xDNNgbfJr+/jIanbX7qO0rYJB0QO4PutKytoqePPwe7S7LEhI3qPTi1pL+OTYGm7Nvi7YoQed2mhEpe16mEAdEYWtaG+X92xHCqlf8SHJP7gzkOGdkYAm3Ly8PDZu3MiKFSuQJIm77rqLlStX8sILL7Bs2TJSUlK4++67Wb9+PTNnzgxkKAFjtjr558pDFFW2EW7QMHxADPOmZmK2Or3JFqCirp1v91Yxd6r/tsT+SpM8DM3gKbiOdZTbk6KS0I6apXBUwTE6YSRfln7j02Z2tXOosWOn2f76w5gdFsraynF9vwVaPml3XldLyvqqrgrVaJNTiL6oI29YC77zuw9gL+/hmB4FBHRIITExkYcffhidTodWq2XIkCEUFxeTmZlJRkYGGo2GRYsWsWbNmkCGEVArNhxj39EGZL4/KLK0mQxTBG0Wp9+zbRZH8AMMccZZPyHsyicxzn+A8OueRRUWfeoP9QEHG/JP+UxRa4k32XYlO274+QwppMXO8j3PLWxUDgN/+wzq8HBi58wl/ool6FJSkbS+b5DhOaFVUCqgPdxhw4Z5/7u4uJjVq1dzyy23kJiY6G03mUzU1NR09fFeobjKdxyt3eaittnKuGEJ6LVq71iuWiUxbVRw63L2FupE/00lfd3xjQ1nKkxjJExjZEziKOYN6h9vAwBR02egSUigbetmnE1N6DMG4GppQRsXh6RSedfm2ivKqVv+Ds7aGiLGTyR+4WKlQ/cRlGnOwsJC7r77bh588EHUajXFxcXee7Ish+R6udM1fEAsRVWdNQGiI3Qkx4VxsKjRm2wBNGoVcVGhebCdEHzJYSYqThgSOHF8tic/G3836ZGpgQwtpDhqqkEGXXIymthY2rZuwWOzYdm3l9YN6xn41O98dpTp09JJv/8BBSPuWcAT7s6dO7nvvvt49NFHWbBgAdu2baOurs57v66uDpPpzJdPxccHf9tefkkjf/1gHxV1ZqaOSuan14zlh0tG40Fi8/4qUhPD+dGS0aQkR/Pe+mM+n7U73VQ02pgxNi7ocQuh584p11K/oZ6SlgrCdWHcmHMFXxz9ltKWyi6fV0sqfjHjR4xP6x/DCLLbTf4f/kTjlq0AxE2ZTNiggXhsnYV93K2tUHiQxNm9p6cf0IRbVVXFT3/6U5YuXUpubi4AY8eOpaioiJKSEtLT01m5ciVXX331GX/tYG/tdbk9PPOvrbSYO8Zhv91dgVYlcfPlWSycNoDcbBMZpghUKom6ujYiDf7fWoMa6ura/NqF/kjHgxN/RoO1iShdBFq1FtUAXbf1b92yhwh3TL/5+Wnbsc2bbAEat23HKfn/m2p3yiH3PVFsa+/rr7+O3W7n+eef97bdcMMNPP/889x7773Y7XZmzpzJ3LlzAxnGeVHXbPUm2+MKy5v5Zk8Fb39ZiMvtISHawC+uH0dyXBiXTUxn/7EGCstbUEkSsydniJ1ngp94Y2eVudEJI5meMpnNVTv8hhdi9THEGWKCHZ5inHX1fm2ahAS0piSctR1zPvrMgSFZgrEnonjNabI5XDz01zzarJ3LUy4ck8LWwzU+Gx+iI3QMMEUyJDWK6aOTcbo8GPUaYiLE+K1wetocZiwuK58eXcOBhsMkhydx4/CrMGgMNFgbGRozqM+XaHRUV1Hym8c7l4Op1WQ++RTahETa9+1BUmsIHz3GW54xlIhDJM/Rp5uKWLW1FLfbg16rpt3mYvywBBZNH8hT/+n+WBi1Cu67ZiyjB/f9rapCYK089jmri78CIFIbwc8m3E1KeJLCUQWW5bt8mr78HGSZ2MvnEDYiu8vnZI8HJClkJt9FtbBzUFDWzIoNRd5rl9vFj5eMYvKIjh/29MQIyuv8D68DcHvg003FIuEKPqwuG7tr93G0pRiNSsO05EkMiu56Q4wsy1S2V/N5yTpvW5vTzJrir7hj1E3BClkRYcNHEDa862JGjqpK7JUVWPIP07ppI5JGS/wVi/3W64YakXBPoaTaf0C+pNrM5BFJtLQ7ONULgs3R/cJ1of+pNFfzv7v+RrvL4m3Lq9zGLyb8xC/pFreW8u8Db/tUCTuu1R5aE0WBYis6RsuGb5F0OmIum4Uu0UTj6s+o/+A9n+dkh4O6d97GOCwLQ+ZAPA4HHrsNTaT/9nEliYR7CsMHxCDhe+RhdmbHRMeqzSVU1Lf3+PlLJ6QFLjih1/miZJ1PsgXwyB7+dfAtbh1xHVlxnWUXlx1+r8tkCzAlZWJA4wwF9rJSyn7/O+84buvmPDKf/C0Nn37c7WdsRcewHTtK3fvvIdtthOWMJuXun6A2GoMVdo9Ewj2FAUmR3Lkgm5WbS3C7PVw+OYNRgzrW0tY2Wbr9XEK0gVtmZzFmSEKwQhV6gXZn1z8zjbYmXtrzdyK0EcQaopGQqG733YGpQoVGpcbhcbK37gBjE0YRpg2NRBIIrVvyfGooeNrNNKz8FNnRzRZ5SUJrSqLif/8E31fnsxzYT9MXa0hYfGUwQj4lkXBPw4zRKcwYneLXPj4rgb1HG7r8zHWXDBXJVvCTmzqZQ41dF1oBMDvNmJ1dzwlIEjg8HTU69tcf4rOiL7g2K7S2rp5PKqP/eYGW/EOEjxlL+74TKoRptag0WqIuuLCjYPlJpVAd5eWBDvW0iYR7GsxWJ7sK6jDo1IwflohWo8LpcrNxX7X3mTC9hpzB8Xg8HqaOTGbi8MQevqLQX00wjUE35g521+7nYEM+bd0k15MZNQasLt/j00taQyeRBEJU7nQaPvrQp83dZiblyZ/Q/PVX2CvLcZvNWPbvw+N00vzl59iKjiFptcjOzuJRYaNHBzv0bomEewqNrTae+s8OWts7XmMGpUTyyC0T2Xa4liMVLd7nLHYXowbFcuGY/rPPXTg7OQnZ5CRkc7ihgL/sff20aihYXTYitOGYnZ1zBsNiBwcyTMVp4xPQJJpw1dV622SrBXdbK3Hz5lP1j79j2b/P5zO2I4UAqIxGNNExRE2fQfSFoVP6VSTcU/hmT6U32QIUVbVx4Fhjl+UXzV20CUJ3suOzeHzaA3xR/DUFTUdpsrdgUOuxum1+z8bqY7gz52beL/iEOms94xJHM29g76khcLZ0yck+CReg9NmnQK3G3dz9aQ4eq5XEu39CeE7o9G5BJNxTcrn9j8ZxuT1MGpHIx5uKsH+/7EuvVTNphDjDTDgzSWGJ3Dryeu/18oKPWF/uf8xQk70Zj+zhwcn3BjM8xUVNm+7Xi3W3nd6SuIr/fZHIqdNIvvMuJLU6EOGdMXGm2SlcOCYFtcp3B0tJVSttFicP3zyBi8encfG4VB69dSKJMZ0zxi63h53f1fL1rnLabaLnK3TP5rKxv/4Q1e01WJz+vdvjtlXvCmJUoSFq6jQSr7/x9B72S6oybVs307Z1y3mP62yJHu4pxETo8Zy0ueGzraV8trWU+CgDv7yho1jNiTwemWf+s4PS2o4JkbfXFvLL68eSndl/SjO6G8pwHvwS2WbuODpn0ETUSUNP/cF+prytkpd3v+Zdm5tgiPNb931cpC74JUlDQeTkqTSsWomni56tJj4e45ChRF1wEdrYWCr/8TccpaU+z9grK4IV6imJhHsKZbXmbo9jb2i1seLbY9yzeBROlxubw0NUuI5DJY3eZAsdCfj1zw7zwk9mBClqZXnMDVg+fgZcdm+bc99qdJOvRj9+kYKRhZ7VxV/5bIQ4vtEhKSyxYy2upWP8MtEYz8z06YrEqKTa/75F8zdfg7uLHZsaDem/eBBdUhKyx0PpM7/1S7YA4WPGBiHS0yMS7imkJ4ajVkm4uymUU1jezN0vfIPL3XE/OzOW3FH+RUVOnHjry9y1R7F+/rJPsj3OseczdGPnIanEj91xRS0lXbbXWxt5cebTVJirsLisZMUMQa0KjXHIYLEcPkTzV192e19nSkKX1PFvzfpdPvZS3++lOiKSxOtvICwrdIq2izHcUwgzaPnxkhzC9F0niWazw5tsAQ6XNFFW145W4/utzcro+7VMZdmDde2ryNaWrh/wuOj2daEfKm0to8XR2uU9g0aPSlKRGZVBdlwWKknFtupdvPPdCrZX7z5lDY++wF7V9ekXx2nj46n/6EOcjY1djN9CxOTJROWG1lulSLinYUJWItdf5j/+GBvZdY3bvUfqmZ6ThCnWiF6rYsyQeO5ZHFqnhwaCbGlBNne98w5Am30pklrb7f3+ZlXR2m7vzR04C5XU+c/zo6Or+M+hd9hQsZn/O/Rf/rbv38EIUVHho3L8EmnCtTcQO3ceklZL+/59NK78hNJnn0KXmobxhMpiKqOR2EtDb9mceLc7TemJ/hMWE4Yl8NUu/wH52iYrtU1Wwg0afvej3G4Tc18jhcUgRZmQW09YN2mMRjtsOurEQWgGT1YuuBBUY/E/1eC4BmsDD274DVqVlvmDZvktFTvQkN9RTyGx7/4i1yUlk3bvz2hc9Rmyy0nMZbOJnDKVkicf89lJ5m5ppn3PbtLvfwDznt2421qJmDARTXTovVWKhHuaBqVEccWMgazaUorb42HyCBPXXzaMuGgDqzaXYHe60agkbCec/tBuc7HlUDXzpmYqGHnwSJKEbtQs7Jvf7my0tqBJH4Umve8mhrM1JGYgtdY6v/Y4QwzflG/yXr+d/wH6Lk542Ft3sE8nXIDwnDGE54zxXlvyD+PoYtWBymBA0miInBTav9RFwj0DSy4czNypA3C5ZSKMHa/G86ZmehPqhn2V/HtVvs9ndJr+NdEhO/yrYbnrS0TC7cLF6TPYVr0Lt+w7Ax+hjaTR5ruLakj0YA41+v5smcL6R70O65FCnHV1hOXk4Gpu6vIZ50m70UKVGMM9QwadxptsTzZ5hInUhHDvtSnWyLQuViz0Zeq0USe1SGjSRioSS6jbU3fAL9kClLf59+CuGDKHcYmd21Rj9NFckDo1oPGFgpq33qDs+Wepfv01ih5+EHV0DKqwcL/nGj5e0XHUTogTPdxz5JFlVm4qZlt+LXGReu6YN4KGVhsej8z4YYnodf2rh6tJHob+ojtw7lsDkoRu7ALUiYOUDiskdXcGlwcPM1KnsKNmD1qVlnmDZpEankxxa+ca02Z7C+vLN7FgcGgfKXMunI0NtHzTebSQbLfRsu4rMh5+lJLfPuGzNld2uWhctZL4hVcoEeppEwn3NDmcblotDr7dWwXIXDgmlcQYI2t3lPPRxo4zzyrr2ymtNfPHH0/3WxbWn+hGzEQ3InQqNIWq6SmT+bY8z6cCGEBGRCo3jbiGC9NyWXnsC7ZU7aDJ1kyz3Xe53eHGgj6dcD02u98yQo/Vhj41DX1aut+624aPPkTSaombMy+YYZ4RkXBPob7FymufHOJIRQuS1Pn3v25XBU/9cCr7j/rONLe2OyipbmNoerQC0Qq9Sawhhsem/pKdtXspa62gxdFKcriJ3JTJ7KrZx3+/+wCLywpAWVsFGkmN64QhiLQI/6L4fYk+NRVj1nCsBZ0F26NnXgxA3Nz5VL32V7/PNH72KWHZIzEMCM2JanFM+im89N7eHk91aDbb+WJ7mbdNo5Z44acziArzn1UWhJ7UWxtZV7qBDZVbuhzbHRCZTqOtCbOznWExg/lhzi19vr6Cx2ajef06nPV1RE6YRFh253xA/acf0fjxR11+LuG6G4ibPTdYYfoQx6Sfg+IuTu09Tq9VsXD6QIqr2ygoa8aoV3P9pcNEshXO2O7a/fzr4Ft45O4nfobHDmXR4DlY3R3FyPsDlcHQ5RCBvbKS5rXdb/utf+9doqZMRRMTG8jwzphIuKcwIjOWrYdq/NqT48LQa9Xk7a/izgXZ6DQqwvQadFo1FpuTt74s5FBJI5lJkdx8eZZP6cb+xtNchat0D1JUEprMcUjf76By1xXjrjyEKmFgv1/JsLLoix6T7ZDogVyeeTFqlZoIVf9Itse5Le1YCwrQpaSgS0oGoOmL1XjaezgxW5axlZQQIRJu73Lz5Vl4PDKHihvJMEUwISuR6Ag9efur+OdnhwH44Ntj/GRJDokxRlITwnnrywI2H+xI0vvMDbS2H+CJH4T2guxAcZUfxLrmRfB0vCJrhk3HeMmPcBZsxPbN6xwvRKgbvwj95KsVjDQ4ZFlmXdkG9tQdIMEYz4JBs4k3xtLu6Dp5ZMdlARChDafR1ky41v9gxb7MevQIFUtfwGOzgSSRcNW1xFx6Wcd1T9RqDINC7wgikXBPIcLYUbzmuGOVLXz4bRGHihu9bU6Xh5fe76hKPzA5ksZW3x+G4uo2LDYXYYb+9+127FvtTbYArsLNeCZfjWP3Sk6s+urY9zm6CVf0+VoLX5dt4MMjKwE42lJMcWsZj039BXq1jrYT6tRLSFyUNp0NFZvx0NHz3V9/iCdzHyRK1/0YYV/T8PGKzuQqy9R/8B71HyxHazJx4iy2LiMDbaIJy8GDqGOiMV17A5qoKAUj71r/ywDnYMvBal779FCPzxRXt5EYY4ATzjczxRgx6vvXelwvvzlZGWRPFwcnevpFJbE9dft9rmsstVS113QkjxPIyLQ52rzJFsDmtnOg/jDTU6cEJdZQ4H+cTsfPiLO2Fl16BmFZWWhiYomeeQnq8NAfaum/i0XPwvvfHD2t50zRRownlHPMyojpdpF7X6cbfTmcUPVKM2gSqshEdKN9Z5C1o2Yhafr+ZGOCMd7nWiNpWFe2kVa7/+Tsrrp9fm2x+tAryBIosseDJqH77cvOmmpMN91K3PyF3mTrrK/DbfHfXh4qRA/3DLhOcxlaVIQOq93lvd64v4qLxqUyNK3/rc3VDBhH2JVP4jz0Ne6GUjxOO66SPehGXoIqNhV3xSFUCZloMscrHWpQLBg0m+LWUmot9WhUGgZHZbK5avtpfXaiaSwj4oYFOMLQ0fjZp7Tv3tnZoNGCq/PN0Tg82/vfbrOZyr+8jLWwAEmrJX7JVSG5AUL0cM/A3CkZPd6XgKRYIy1dnO7w0YZjAYoq9HksTTgL8/DUFeEp34/185dwVxeiSRmOftKVaAdO6DdvAAnGOB6f+gCPTrmf3814jBbH6Z1AmxJm4s6cm/vN9wmgbfs23waXE+OIbFTh4YSPG0/yD+703mr8fDXWwgIAZKeT+veX42zovvylUkQP9wzMnZpJYoyRDXuraGyzUV7nO7MsAzVNVmqarH6frW4I3decQJE9Lqyrl+KuOHjyHWwb/oPhkv9BnRCaO4ICSSWpvLvE0iNSqLH4V7rSqDS4PJ1vSUatkaKWUgZFDwhanErTxMX7lGJUGQyk3ftzVHr/+tKO6irfBlnGUVODNj4h0GGeEdHDPUMTh5v4+XVjGTu057/Ik49WTzf17R1BXXEV7eoi2XbwNJVj+fgZ3M09H6PS1105dIHfqoNFg+fwVO4jXJg6DZ2qY1z7WEsJL+56lcKm/vOmlHj1Nai/X2kgaTQkXndjl8kWIGLsOJ9rVUQExiGhd0q06OGeQn2zlX+tOkxheQtDUqO4c0E2ptgwjlZ2fRbVcReNTWVnQR2t7Q7SEsK58bL+M/Z2XLdnmx3nduI6shX1pCuDE1CIcLqd5FVtp7q9hpyEbH434zG2Vu2k2lLL8NihZMd3rL0dbxrDhsot3s95ZA/vFX7MVUMX9ouxXH3GAAb9/k/YS4rRJiWhiex+mVf0BRfhsdlo3ZyHJjqa+CVXdZuclSRqKZzCH/+7m8MlnUWPB6VG8titk7jr9+t8FjapVBKyp2Ox08iBsdx79RjUKonWdgdxUYaAxxkq3DVHkB1W1KnZyNYW2t/7NTi/X0cpqeCk3VT66Tejy7lcgUiV89q+/7C3vrPnf/OIa5me6r8xpqS1jD/seKXLr7F48DxmD7wkYDEKZ0/UUjgHheW+lfeLKttoszpJSwz3GcNNTwhnwvBEosN1XDg2FdX3kxv9JdnKsozty1dwFe8CQIpOIuyKXxN2xaM4D3yJ7PGgHXkxjm0f4K7qOLlAFZeBNusCJcMOuhZ7q0+yb+iJLQAAEqRJREFUBdhQsbnLhJsZlcG4xBz21B3wu/d5yTqRcHshkXBPISHaQHWj7yRY3v5qfjAvm799fID6FhsxEXoqG9op3WAGoKCsmf9ZdPLJB32bu+o7b7IFkFtqcB78Cv2kK1HP/KG3Xb3wIdzVBeB2ok7NRlL1rw0hWpUGtaT2qQZmUPu/+laYq/i6bANqSc01w67gk6OrcXg6l0TZ3DbaHOY+Xy2srxGTZqcwY7R/zVFZlhmcGsXz9+Typ5/OYGByBC535wDD5oM11Db7r1Toy2Sb//KmrtokSUKTMhxNek6/S7YAYdowLhtwkfdaq9Iwb9BlPs+02Nt4ceerbKnawc7avXxQ+KnfhgnoKEAu9C6ih3sKM8emsmpLCVZ7R48k3KAhN6ejYpFKkoiN1OPuosiTu6vGPkyTMRopLAbZ8v0QjKRCmzVD2aBC1OIh8xiXmENVew3JYSaMGt9hp/31B7G57d5rGZkme/PJX4YEQ1zAYxXOr6D0cM1mMwsXLqS8vByAvLw8Fi1axOzZs1m6dGkwQjhreQeqvckWOs4wq260cOBYA67vk+plE9N9tsIPMEVQ12zF3QsOtTtfJK2BsMWPoR09B03WhRgXPYLaNETpsELWgMh0jjYX8cLOv/DU1hd4Zfc/cLg7hgyi9f6z8VaXDbXk+0ZQZu77S+rcFgsteZuwFhWd8lmP04l5907M+/bicdhP+bwSAr5KYe/evTz22GMUFRWxZs0aEhISmDt3LsuWLSMlJYW7776b2267jZkzz+wMrGCtUnhx+R4OHGvs8p4p1sgjt0wkOlxHcXUrWw7WsPVQjXen2aCUKH55/ViMek2/2iF0NmSbGdnjQhXWP2oFfNd4hJf3vObTdn3WEi5Kn47VaeWBDU+e8mtkxQ7lZ+N/FKgQFWcpLKD8hd97D4s0jsgm44GHunzW3d5O6e+exllT7W0zDssi+X/uRhvnPxwTSD2tUgh4D3f58uU8+eSTmEwmAPbt20dmZiYZGRloNBoWLVrEmjVrAh3GWcvoYcNCbZOVr3d29NoHJkcRH2Xw2dZbVNXK//vfDTzwah57joTeNsNQYdvyDuZlP6P9zZ9j/eIVZLfz1B/q5ept/sc21Vs7frFr1Fq/3qxKUqE66Z9rYhfjun1JzRv/53MyrzX/MNYjR7p8tmXjtz7JFsBaWEDtW8sCGeIZC3jCffbZZ5k0aZL3ura2lsTEzgpAJpOJmhr/ExVCxYJpA8kZ3DFWptf6f7uqGi28/WUB735dSF1L1xNlTW12/vHpQWwOV5f3+zN3dWHHkerfz9q7infi/G6DwlEF3qj4EehUnbV/JSTGmTrqLmtVGkbFj/B53iN7uDzzYjSqjmmX1PBk5g+aFbyAFeBfmhFsJcX+z1kstHy7vsuvYSsKrZ15QZ8083g8Pq/XsiyH9Ot2mEHDL64bR7vNiSzLPP76NlrMHb1YCdh7pB6nq2OsNkyvQa9VY3f6HwBotbupabSSmdx/ikefjq629nqaq7p4sm+J0Udz3/gf/f/27jQoymvNA/j/bZpuaBbpJmyKMe5gDBoUUAMiuDWMSwRCSKawypkkQzTWHTOVkZq5lYnRyrWsxJQk1uWamqo7U2ONcYvRTMmAIqmghlzEBM1V1IR1QNlFbJZu+p0PxJaWLWg4b9P8f5843e9LPZzqfjh9+pznIK+yAN1WM5ZOWoxpE56xPa9z7X8kk6erBz544fdo676HQJ2/Q79vfgue4eFoeySRekdG2bWbTp5A0/+cshsJ9+U+K2TAx5UiPOEGBgaioaHB1m5oaLBNN4yEr6/Y9YcPxuR7fxeLU4U/o/2XAuNn/lJlu8bUZUHaqtno7LLgemUzrlc83KHm46nFvNAAuKrH31KooVg0Uag+/1920wi+YYuhG2IezFn4+c1F5Iy5Az638P5cfFtXbPfYyZ9PI2Lqswib6Hg1AkaDdd5cu4TratAjYEoAJJfe99D98grcODnwqb1QqWCIjMCMzf8A1wmO81oSnnDnzZuH8vJyVFZWIjg4GF999RWSk0d+lpWoL80eJQFYt7i3wlVecXW/533c1YgMn4SEiGAcOnsLxWX18PNxxyvLZ6K1ZfxVDBueG9yM29B9+RRkcxc0zy7Hfc9puN/w68oWOqsQXSgWB0XY1co1Wy04ceUM0uekKhiZOLX59qNbc3MLqouvwn1a71llbT/eHPhGlQqT/vGf4DHnWbR2AxD8WnKorb1arRa7d+/G1q1b0dXVhdjYWBiNypwf/6RemBuEr7+vRW1j7xbf6ZO8ET6rdyzsqnZB+urZSF89W8kQxwT1pDnj/tTeR0mShCUTI/sVJ3f2aYS+1IZH1hmrVFDrH57CqwsJhaTRQO5++EW1x/xw+P7NGoc8QBJg8ZonZumx4mp5M9QuEuZMMUClGj9vCBpdsixj3+U/4WZr7xc/GpUr3l6wGZO9JikcmRjmpkbUfLgH5oZ6QKWC77oX4btmnd017VdKUX/wP2E1meD5fDgCN72mULQPDTXCZcJ9AqZOM76/1QgPN1dI6C0+PneaAUG+jn+YnWjmn4pgvnEekrs3tPPXQOUTqHRIY4LZasHl+lK0dd/D837Pwdd9fO0uk61WdFZUQK3Xw7XP6PaBmo/2wHTt4cGufmmvQr9ilcgQ+3GoKYWxrr7FhILva3G/w4ySGw2432m/1MvlnIStyWEIm+7cayRHwlxxCZ1n/2hr99RchUfannFxaOSTclWpERkYrnQYipFUKtuc7aPMLS12yRYA2s4XKp5wh8KEOwJ327uw8z+K+yXZvnqsMk5/W8mE24flVpFdWza1oqeuDOrJzykUETkDlZsbJFdXyOaHK1wenBDhqFgtbASKy/qPaAfS4wBzy45E8uz/z2egx4hGwsXdHb7rN+BBIROVuzt81ycpHNXQOMIdAZ12+O6SAKyMGPp03/FGMy8BPdVXYG2pASDBNWw1XPQTlQ7LYf3YdB3f11+Fn7svYoIX96smRg8ZjInwDF+I7tt1cJ85Cy7u/TeMOBJ+aTYC3eYe7D5Ygorbvev6XNUqTHrKA946NTQaNfReWkSGBGD6pAlC4xoLZNkKa2MlJDcvqLwc6yRVR/KX25fx57/+t609w2cqtoW/qWBENFKKFq9xJhpXF/zrxgWYNrF3nshssaLi9j2U/tyC4usN+O5a7yYH6k+SVHDxm8pkO4zztfbz3bday1F333FrjYjW9X816K7vf6z8WMGEO0KWHhnlg5zYe7e9Gxd/vD3gc0S/hk7d/x/2n0r/jNauYU5AdnLWri5U7/kDKv/t96j4l39G3b8fwFj8cM6EO0KuahW8PQZfzsRtD/QkjM8sh/aRM84aOpqQW1mgTEAO4u75b9Bxo8zWvnfxQr8lYWMBE+4IqSQJf7tyFjTq3q7ru9NS76XForlc0E+P72nvYPzds6/2e7y5c+Ai+OOFpbF/PemBHnN0XKXwGBaG+CP0GT3qGk14aoIWl281wWqVETUnAJ7ursP/AqIhhBpmQa/1sTvHLNx/noIRKc9zwUK05P0v8Ms0gqTVwiNs7PUJVykQOaAGUxNyKs+itfMuFgY+j8VBC4e/ycndv1KK1nNnIWk0MKxOcNgCNaylQEQkCJeFERE5AM7h0qiTzV3oKvocluorcPF9GtrFaVB5+Q1/I5GTYcKlUdf17SGYr50DAFjuNcDa3giPpB0KR0UkHqcUaNRZaq7Yta2NlbB2DLx5hMiZMeHSqFPpg+3akoceklbsIaBEjoAJl0ad25JXoTL0VlCTdD5wi/17SCq+9Gj84bIwEsZqaoXk5gVJxaPiyXnxiB1yCCqdj9IhECmKn+uIiARhwiUiEoQJl4hIECZcIiJBmHCJiARhwiUiEoTLwogUUNt+G7mVBejs6cALE6Pw3FNzlA6JBGDCJRLMZDbh45I/wmTpAABcbbyO3z3/BmbqpyscGY02TikQCfbX5hu2ZAsAMmRcqi9VMCIShQmXSDCDW/8ddwYtd+GNB0y4RIJNm/AMFgdF2NpPewUjJniRghGRKCxeQ6SQelMjOi2dmOw1CZIkKR0O/UZYvIbIAfnrnlI6BBKMUwpERIIw4RIRCcKES0QkCBMuEZEgTLhERIIw4RIRCaJYwj116hQSExOxatUqHDx4UKkwiIiEUWQd7p07d/Dxxx/j+PHj0Gg0SEtLQ1RUFGbMmKFEOEREQigywr1w4QIWLVoEHx8f6HQ6rF69Gjk5OUqEQkQkjCIJt76+Hn5+fra2v78/7ty5o0QoRETCKDKlYLVa7faOy7I84r3kKhX3nhPR2KJIwg0MDERxcbGt3dDQAH9//xH9Dr3e47cOi4hoVCkypbBkyRJcvHgRzc3N6OjoQG5uLpYuXapEKEREwigywg0ICMC2bduwceNGmM1mpKSkICwsTIlQiIiEGbP1cImIxhruNCMiEoQJl4hIECZcIiJBmHCJiARhwiUiEoQJl4hIEJ7aO4QdO3agpKQEZrMZVVVVmD59OgCgra0NSUlJ2Lp1q8IROq6amhoYjUZbnz2QnZ2NoKAgW/v111/Hrl27EBAQIDpExeXk5ODAgQOwWCyQZRnr16/Ha6+9Nuj1hw8fhk6nw5o1awRGqayR9pHDk2lY1dXVclxcnK2dlZUlZ2VlKRiR43u0z8je7du35WXLlsnNzc2yLMtye3u7vGHDBvnMmTOD3rN9+3b52LFjokJU3OP0kaPjlMJjKi0tRVpaGuLi4vDJJ58AAI4fP47MzEzbNenp6SgqKkJRURFSUlKQlJSE7du3KxWyQ8jMzERGRgYSEhKQn5+P+Ph41NTUKB2WcC0tLTCbzejs7AQAeHh4YPfu3ZgxYwZOnz6N1NRUrFu3DkajESUlJbhw4QLy8/ORlZWFb775RuHoxRiqj/q+boqKipCeng6g9z23Z88evPzyy1i5ciW+/vprxeIfCKcUHlNTUxMOHTqE9vZ2xMfHY9OmTUNeX1FRgXPnzsHLy0tQhMqrr6/H+vXrbe21a9cCAHx8fJCdnQ0A2LVrlyKxKS0kJATLly/HihUrEBoaiqioKKxduxaTJ0/Gu+++i+zsbBgMBhw9ehQHDhxAdnY24uPjERkZiZiYGKXDF2KwPpoyZcqQ95nNZnz++efIz8/Hvn37EBsbKyji4THhPqaYmBhoNBoYDAbo9XrcvXt3yOunTp06rpIt0Fvn+Msvv7R7LDMzk3UzfrFjxw5s3rwZhYWFKCwsRGpqKj788EPs378f+fn5KC8vx3fffQeVavx+EB2sj4by4B/SzJkz0draKiLMX40J9zGp1Q+7TpIkW01fuU9pCrPZbPvZzc1NaHyOjH0BFBQUwGQyITExEcnJyUhOTsbhw4dx8OBB7N27F+vWrUNERARmz549bs/8G6yPjh49CgC295rFYrG7T6vVAsCIa2yLMH7/dY4CvV6Pn376CbIso7q6GmVlZUqHRA7Kzc0NH330kW0eUpZlXLt2DRqNBpIkISMjA1FRUcjLy0NPTw8AwMXFxfbzeDBYH4WGhkKv1+PWrVsAgLNnzyoZ5ohwhPsbWrJkCY4dOwaj0YipU6diwYIFSodEDmrRokV46623kJGRYfskFBMTg/379yMzMxMJCQmQJAnR0dG4dOkSgN7X1969e+Hl5QWj0ahk+EIM1kdbtmxBeHg4du7ciU8//RTR0dEKR/rrsTwjEZEgnFIgIhKECZeISBAmXCIiQZhwiYgEYcIlIhKECZeISBAmXBpXcnJybIVOiERjwiUiEoQJl5zevn37sGLFCqSkpCAvLw8AUF5ejk2bNiE1NRVxcXF488030dXVhZMnTyItLc12b21tLaKjo9Hd3a1U+OREmHDJqZ05cwa5ubk4ceKErZwm0Ht6wosvvojDhw8jNzcXNTU1KCgogNFoRFVVFW7evAkAOHLkCDZs2ACNRqPkn0FOggmXnNrFixexcuVKeHp6Qq1WIzk5GQDwzjvvwGAw4LPPPsN7772H+vp6mEwmaDQavPTSSzhy5Ah6enrwxRdfIDU1VeG/gpwFi9eQ0+tbLsTFxQUA8Pbbb6OnpwcJCQlYtmwZ6urqbNelpaUhJSUFkZGRmDlzJiZPnqxI3OR8OMIlp7Z06VLk5OSgra0NVqvVVhC9sLAQW7ZsQWJiIgDghx9+sJU+DAoKwvz58/HBBx/glVdeUSx2cj4c4ZJTi42NRVlZGZKTk+Ht7Y2QkBC0tLRg27Zt2LJlC3Q6HTw9PREREYGqqirbfUlJSdi5c6dDHc9CYx/LMxI9wmq14v3338fEiRPxxhtvKB0OORFOKRD10d7ejqioKNTV1WHjxo1Kh0NOhiNcIiJBOMIlIhKECZeISBAmXCIiQZhwiYgEYcIlIhKECZeISJD/B5DPFdYqFOqRAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "" ] }, + "execution_count": 68, "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3wU17nw8d/2XfVeQQUJBhAdjA3GYNww7rFjx45L7DjFuU7y+jpOcvMm902celNuctPbdUnsxL3ENmBjU4zB9A4SAwgkhHpvW2d33j9WWrGsGmU1I+l8/4E5M7s8H0DPzp4553kMqqoiCIIgjDyj1gEIgiCMVyIBC4IgaEQkYEEQBI2IBCwIgqCR0ZSAzUBBz6+CIAij3mhKZhOAk83NXQQCYuWGIAijR3p6vKG/8dF0BywIgjCmiAQsCIKgEZGABUEQNCISsCAIgkZEAhYEQdCISMCCIAgaEQlYEARBIyIBC4IgaEQkYEEQBI2IBCwIgqARkYAFQRA0IhKwIAiCRkQCFoRRoNPbxe76/dR112sdinARjaZqaIIwLh1tPc4f9j+DL+AD4LaiG7g2/0ptgxIuCnEHLAg6986JtaHkC7D65Pt4/F4NIxIuFpGABUHnuhVX2LEvoIQlZGH0EglYEHTu8pyFYcez00uIs8RqFI1wMUV1DliSpA1ABtD7cf1FoAj4DmAB/keW5d9HMwZBGO2umngFidYESptlcuKyuCJ3kdYhCReJQVWj095HkiQDcBrIl2VZ6RnLBTYD8wEP8DFwjyzLpcN4ywJESyJBEEahgVoSRfMOWOr5da0kSanAX4FOYL0syy0AkiS9CnwS+H4U4xAEQdClaCbgZGAd8BWC0w0bgZeA2jOuqQUWRrxyEKmpcRcpPEEQBG1FLQHLsrwV2Np7LEnSU8AvgR+ecZkBCJzL+4opCEEQRpv09Ph+x6O2CkKSpCWSJF19xpABqACyzxjLAmqiFYMgCIKeRXMKIgn4viRJiwlOQXwGuA94XpKkdKAbuAP4QhRjEARB0K2o3QHLsvwOsArYC+wGnpZleQvwbWADsA/4pyzLO6IVgyAIgp5FbRlaFBQglqEJgjAKDbQMTeyEEwSdcituWtytWochRJGohiYIGlICCu9WrKO0+Si5cVncNOl6Em3xbKzawr/KV+MN+ChKLOCLsx4k1hKjdbiaCvi8eKqqsGZmYYodG1uxRQIWBA29Vf4u66o2AVDZWUWds4GHZ9zHa8ffJqAGV2iWt1ewtnIDnyi+UctQNeU+eYLq3/wKf2cnBquVzAc/S8LCy7QO64KJKQhB0ND+psNhxyfaK6loPxVKvr3quhtGMizdaXzlJfydnQCoXi+N//wHqqJoHNWFEwlYEDSU7kgNO46zxDIluTii2tnMtGkjGZbu+Jqbwo79XZ0EvB6Norl4RAIWBA3dXnwTKfZkAOwmO3dLtxNjcfDlOZ9nRupUJsTl8IniG7k851KNI9VW/ILwigUxJTMwxYz+eWCxDE0QNBZQA9R1N5DqSMFmsmodji6pfj+t762hu/Qwtol5pN50y6h6EDfQMjSRgAVBEKJMrAMWBEHQGZGABUEQNCISsCAIgkZEAhYEQdCISMCCIAgaEQlYEARBIyIBC4IgaEQkYEEQBI2IBCwIgqARkYAFQRjTVEXB73JpHUa/RD1gQRDGrPYtH9H48osEnE5iZ88h+3NfxGi3ax1WiLgDFgRhTFLa2qj/+7MEurtBVenet5eW99ZoHVYYkYAFQRiTPDXV4PeHj52q1Cia/okELAjCmGQvnITR4Qgbi5leolE0/RMJWBCEMcnkcJDzlcewFxVjTk0l5cabSVp+tdZhhRH1gAVBZ1yKG4dZPw+KhAs3UD1gsQpCEHSipquOZw7/k5ruOrJjM3mo5NPkxmVrHZYQRWIKQhB04p9HXqWmuw6A2u56ni97ReOIhGgTCVgQdKKqszrs+HRXjUaRCCNFJGBB0IkpKcVhx1Jy8QBXCmOFSMCCoBP3Tb2LOekziLfGMTuthPum3al1SEKUiVUQgiAIUSa6Imugoc1FeU07gdHzIScIwggSy9Ci5IUPjvHBripUIDctlifumUtirFXrsARB0BFxBxwFpxu7eL8n+QJUN3WzducpTWMSBEF/RAKOgtZOT8RYS0fkmCAI45tIwFEgTUwiMS58uuHSaZkaRSMIgl6JVRBRUt/iZNW2Sjq7vVw+M5sFUzO0DkkQBI0MtApCJGBBEIQoE8vQBEEQdEYkYEEQBI2IBCwIgqARkYAFQRA0IhLwMPkUP0er2mjvEut5BUG4OMRW5GE4Vd/JL1/aR4fTh8lo4NPXTmH53FytwxIEYZQTd8DD8NqHJ+hw+gDwB1Re3nAcj9c/xKsEQRAGJxLwMLR2usOOPV4/3W6fRtEIgjBWiAQ8DJdOD99GPHlCIikJomutIOiFu+IkDS+9QMuaVfi7u7UOZ9jEHPAw3HBZPnarmf3lTeSkxnLT4gKtQxIEoYfr2FGqfvFT8AenBTu2bSX/u9/HYNT//aVIwMNgMBi4ev4Erp4/QetQRg1VVfHXlBHobMQ8cRbG2GStQxLGqLZNG0PJF8BbfRrXsaPESFO1C2qYop6AJUn6BZAmy/KDkiTNAf4XSAA2AY/IsqxEOwZh5Hk2PYNP3hT8vdlKzI3fwJQpmkwKF5/Raoscs0WO6VFU79ElSboa+MwZQ88DX5ZleQpgAD4fzT9f0Eagqxmf/FHfgOLFu3+1dgEJY1rytSswxsWFjmPnzMVeUKhhRMMXtTtgSZJSgB8BPwZmS5KUDzhkWd7Wc8mzwJPAH6MVg6ARxQuEV6xTFa82sQhjnjUri8If/ZTuA/sxJSQQM71E65CGLZpTEH8Gvg1M7DnOAWrPOF8LnPOkampq3NAXCdpKj6e2cBaukwd6BgykXXYjsenxmoY1GnV7nRgwEGN1aB2KvqXHQ0GW1lGcs6gkYEmSPgdUybK8TpKkB3uGjYTfFhmAwLm+t6gHPDqYlj+KLecjAh2NmAsX4EyZjLOxU+uwRo2AGuBF+Q221u4EYGnuIj45+RYMhn7Lygo6lz7AzUe07oA/BWRLkrQPSAHiCCbf7DOuyQJqovTnCxozmG1YS67ROoxRa1/jIbbUbA8dbzy9hempUylJlTSMSrjYovIQTpbla2VZniHL8hzg/wFvybL8EOCWJOnynsvuB9ZE488XhNGutqsucqw7ckwY3UZ6pfK9wK8kSTpC8K74NyP85wuCbrV52mn3BKdppqdKGOibbjBgYFrKFK1CE6JE9IQTBI35A36eKX2BvQ0HMGDg8pyF3C3dzq76fayr2oQRI9fmX8ncjJlahyqcp4F6womdcIKgsV31+9jbEFwxoqKyuWY7s9NncEnWXC7JmqtxdEI06X+ztCCMcfXOxoixBmeTBpEII00kYEHQ2My06WHzvSaDiemDrHZQVRVfQOzgP5O/q4uObR/jPFLGKJpWFVMQgqC1wsQ8Hp5xHxuqNmM2mrg2/0oyYtL6vfZws8yL8uu0utsoSZX4zPS7ibHEjHDE+uKprqbqpz8m4AyWoYy/9DKyP/+IxlENj0jAgqADczNmDvmQzev38szhf+JSXAAcaj7C2yfW8inptpEIUbda31sTSr4Andu3kXLDzdhy9d82TExBCMIo0ehqDiXfXqc6T2sUjX4EPO7IMbernyv1RyRgQRglMmPSibeG10KZnDRJo2j0I3HplXDGFm1bXj72SUXaBXQOxDpgQRhFTraf4tVjb9HoamJO+gw+OflWrCaL1mFpznX8GJ07tmNOTiFx2ZWYYvQ1Lz7QOmCRgAVBEKJsoAQspiAEQRA0IhKwIAiCRkQCFgRB0IhIwIIgCBoRCVgQBEEjIgELgiBoRGxFFgSdOd52koNNpWTGpLMwax5mo/gxHavEv6wg6Mju+n08ffifoePDzUf4/MwHNIxIiCYxBSEIOrLx9Mdhx/saD9HqbtMoGiHaRAIWBB2xnDXdYDQYxRTEeQj4vHSXHsZbV6t1KIMS/7KCoCPX5S+nvO0kiuoHYEnOZREFeITBeRsaOP3zn6C0tgKQvGIl6Xd+SuOo+idqQQiCzjS5WihtlsmMSUdKKdY6nFGn7tmn6Nj8Ud+AwUDhT36GJS1ds5hEU84Rsu9YE+9urwRgxcI85k7R7h9dGJ3SHCksnbBI6zB0qWP7Njp3bseSkkryyhuxJCdHXONvbw8fUFWUjk5NE/BARAK+iKoauvjd6wcJ9HyrOFZ9kO8+eAl5mfEaRyYIo1/H1o+pe+ovoeOu/fso/MnPMBiNdO3dTcf27VhSUoidPZfugwdC11mzc7AXFGgQ8dBEAr6IDpQ3hZIvgKrC/vJmkYAF4SJoeXdV2LHS3ITr+DH8He3U/ukPoXFrdg5ZjzxK164dwTvlFddjMOpzvYFIwEOQT7WyZvspfEqAa+ZPGHRKITs1NnIsRV+FoQVhtAq4I1sPKa0tdG7fFjbmra3BkpJCziOPjlRo502fHws60dTu4r9f2s+B8mbKKlv53esHKa9uH/D6OZPTWDIrG4MBDMDlM7KYJ+aABeGiiCmJbFrqmFSMKSExfNBgwByfMEJRXRhxBzyIg+XNKP5A6FgF9hxrpCg3sd/rjQYDn71hGncsC/ajSoy1jkSYgjAupH/iDjyVFXgqK8BkIvWW27Ckp5Oy8ka6Dx3A3xbcsJJ8zXVY0kfHjY9IwIPISI6cPsjsZ+xsIvEKwsVnio8n/z+/h7euFlNsHKb44LMVa2YmhT/5Ga6jRzEnp2DLydE40uETUxCDmF6QzBWzsuldwDe7KJVFJVmaxiQI4501KzuUfHsZLVZiS2aMquQLYiPGsLR0uFECKhlJjhH9cwVBGBvERowLkJJg1zoEQRDGIDEFIQiCoBFxBywIOlfRcYoGZxPTUqaM68I87lOVtKx6m4DTSeLSK4m/ZKHWIV0wkYAvQJfLx9ZDdSiBAItKskiKs2kdkjDGvH7sHdZVbQLAarLylTmfZ1JivsZRjTx/Vxenf/5fBFwuAJxlpRgdDmJnRK4NHk3EFMR5cnkUvv/sTl5Yd4xXNpTz3ad30Nrp0TosYQzp8Hay4fTm0LHX7+XdinUaRqQdZ1lpKPn26tqzS6NoLh6RgM/TLrmBpva+rZGdTh8fH9J38WdhdPH6fQTUQNiYW4ncjjse9Lexwnn0KOVf+z/U/uWP+Lu6NIjqwokEfJ6MhshVJf2NCcL5SnOkMDV5ctjYktzLNIpGW/aCQpKuvhZ6fsYMdju+ulr87e107thO/fN/0zjC8yPmgM/TfCmdVVsrqWtxApAUZ2XxzGyNoxLGmi/M+gxbqrdR72pidloJ01MlrUPSTMY995K8YiX+rg5Off97YeecpaXaBHWBRAI+T3armf/8zAJ2HWlACahcMjWDOIdF67CEMcZmsnJV3lKtw9ANS0oKlpQUrNk5eGtr+sazRucOVZGAL4DDZuaK2aNr66MgjAVxc+fRckYC9re10XVgH02vvoLS1kbCZYtIv+tuDGZ9pzh9RycIgtAPd8XJsGOlpZmaP/wOFAWAtvUfYE5NJWXFSi3CGzbxEE4QdKbN086m01s50Hg4YhWEEGRJSwsfMBpDybeX69jREYzo/Ig7YEHQkarOan615494/F4AZqZN55FZD2oblA6l3HgLTlnGV18HJhMpK2+g9d01qGckYXtBoYYRDo9IwIKgI+urPgolX4CDTaVUd9WSGydW2JzJkppKwQ9+jKfqFOakJMyJSdgmTKTxpRdQOjqIX3gpySuu1zrMIYkELAg6ogSUYY0JYDAasecXhI7jFywkfsFC1EBAt004zzY6ohSEcWJp7mJMBlPoeFJiAfkJEzWMaPQZLckXREF2QdCd6q5a9tTvJ8meyKVZ87GaRIursymdHXTt2gWqivtUBZ7Tp4mdXkLKzbdgtOjv70sUZBeEUSI3LlvM+Q7C19zEqR88ib+rM2zcU3GSgNtNxqfv0yiycxfVBCxJ0veBTxJsKPyULMu/lCTpGuCXgAN4SZbl70QzBkHQs931+3ir/F1cipvFOQu5peh6jIb+v0KrqsrBplKqOquRUiZTnKT/p/zR0P7hxojk26tr7x6RgAEkSVoGXAXMAixAqSRJ64CngWVAFbBKkqSVsiyviVYcIy0QUDEaRVEeYWjNrlaeLX0xtNb3/VMbyYzNYFH2gn6vf/34O6yv+giA1RUf8Ompd3B5zqUjFq9eqIGB10ZbMjPDjrsO7Kd9wzoMZgvJ16/EUVQc7fDOSdRmq2VZ/hBYLsuyAmQQTPZJwDFZlk/2jD8P3BmtGEaS1+fnr28f5ou/2MjXfr+FXUcatA5J0LmT7RURGy2Ot53o91qf38em6q1hY+tObYpabHqWuGQpRkdkg1xTfDzpd90dOnadOEHNb/+H7oMH6Nq7m9P//TN8Lc0jGeqQBr0DliSpk+D0wdkMgCrLcsJgr5dl2SdJ0pPAE8ArQA5wZtHcWmDCuQScmqrPliwvvS+z9XA9AK2dHv76TimL504gUXTJEAYw1zGNZ8sMnPkgfFbuFNLT4yOu9fp9GM4qd2o2m/q9dsxLjyf5v3/GvsceR/X6QsP2zEwmzp8ROq5YfQDO+LtVvV4MJ2TSpRUjGu5ghpqCmDHE+SHJsvxdSZJ+CrwNTCE8oRuAc9prqddVEAeONYYd+5QA+8rqmF6QolFEgt6ZsHOv9En+dWIN7p454Jnxs2hs7H9+c/mEJayt3ACAAQNX5y4b8NqxLhAwo/rC10d72trC/j58MZH3hx57vCZ/ZwN9UA6VgOcPcb5yoBOSJE0F7LIs75Nl2SlJ0usEH8j5z7gsC6jp9w1GGWliEgfK+77e2CwmCrLG4d2JcE4W5VzCopxLUFU14g73bLcWrWRKchGnO2uQkovJSzinL49jitHuIG7efLp297UlSly8JOyahMVL6NqzG2fpYQDiFy0mpuSC7ykvqkHXAUuStGGQ16qyLF81yGtvAJ4ElhC8632H4AO4nwPLgZO9Y7IsvzKMWAvQ8TpgxR/gpXXH2VZaR1KcjU9dVcyMSalah6Vb/pZq8LkwZhQNmXjGKq/fx+aabdR3NzAzbToz0qZpHdKoEvB4aFv3Pu5TlcRMLyHximX9/l/y1NRgtFj6bWs0UgZaBxzVjRiSJH0PuIvgXe9rsix/T5KkqwkuQ7MDq4HHZVkeThAF6DgBC8Ojqiru9X9GKd8GgDEtn5gbv4HBFqtxZCPvj/uf5lDzkdDxvVPvZHHOJRpGJETLeSVgSZL+R5blxyRJept+HsbJsnzLxQtxSAWIBDzqKTVluN75adiYdeGd2ObcqFFE2mh1t/Gdj38cNpafMJFvLPiKRhEJ0XS+O+F6e2C/enHDGV0a2ly4PQp5mWJO90Kp3a3DGhvrrCYrJoMJv9r3SMRhsmsY0djRuXtnsDSlqpJ83QoSFuq3kemgCViW5bd7fv2bJEmpwCLAB2yXZbltBOLT3DOry/joQHDlXFFuAo/fNQeHTezgPl/mibPAFgue7uCAwYClWL8/INESa4nh6ryloVUNVqOFlYXXaBzV6OepOkXtn/4QWn5W99c/Y0nLwDFpksaR9W9YmUSSpBuBvwGHARNQJEnSp2RZHtMrwY9WtYWSL0B5dQcf7qvh+kvzNIxqdDPY44i55f/iO/AuqteFZdpyTJn62p00Um4tWsnc9JnUORuYmjKZBGvkNyyX4mLdqU3UdjcwM20as9NL2FKzgy5vN/Mz5zAxXvQkPFP3oYNha39RVZyHD47uBAz8AFgmy/JhAEmS5gF/AfrfMzlGNHe4I8aa2l0aRDK2mJJzMS17WOswdCEvYcKgy8n+cuDvHG0rB2Bf40HeKk+g3dsBBIu3Pzbvi0xKLBiJUEcFa25u5FiOfj+khrsVWe1NvgCyLO85h9eOWjMKU3DY+mqzGoBLpmZoF5AwrrS620LJt1dv8gXwq342V28f6bB0LXbmbJKuuhpMJjAaSVx6JXFzh9rOoJ2htiL3buPaKUnSE8CfCO5cexBYH93QtBcfY+Wbn57Hmu2ncHkUrpybi5SXrHVYwjhhN9uxGM34BumIYTFZRjAi/TMYDGR8+n5Sb7sdVDDF6nt541DL0AIEl5+duYSi91iVZdnU7wujowCxDE0YZz449SFvHl+NikqM2UFWbCYn2isAiDE7+Nr8R8mKFd/K9C5qGzEkSbpHluUXLuhNhqeAUZSAnW4fSkAlIUZ/1fm1pHpd+I5sJNDVgmXSQkxZk7UOSVcCaiCiHnCTq4V6ZyNFiflYTVZKm2U6vV3MTJtOnFXfd3hCUDQ7YnwdGIkErBtOt0JFXQcTMuL6TbAvrjvGut2nCQRULi3J5LM3TMNsGvNT5kNSVRXn6p8TaAiWXPQd/gDH9Y9jnjhT48i05wsovCi/zs66vcRb47hj8s3My5gFQJojhTRHX1EnsWV57LgYCXhcbeQ/XNHC714/iMfrx2wy8rmbprFwWl8R6COVrazdWRU63na4npKCFC6fKVrMBJoqQ8kXAFXFV7ZRJGBgQ9VHbKsNFpZp87Tzt8MvMDlpEvHWYPlVVVWpdzaQYI0nxhKjZai6pXR04KmswJZfgDlh0Eq5unExErD+5wMuopfXH8fjDe5eUvwBXlh3jEumZoSKgNQ0d0e8propcmxc6q9ZollM0QBUtJ8KO1ZUP1Wd1UxPlWh1t/H7/U9R212PxWjm9uKbWDphsUaR6lPn7p3U/fXPqIqCwWwm6wtfIn6eflc/9BLfi89Ra6cn7Liz24f/jDnpksIUTGe1JJolqqIBYErKwVy8qG/A6sA6+wbtAtKRorP6u5kMRrbW7mJ3/T5Wn3yf2u5gsX9fQOG1Y2/T5RUf6mdqfOUlVCW4WkRVFJpeeVHjiIZH7Kk9R4tKsnh/V98Uw4Kp6WHzu5nJMXzljpms2lqJTwlwzYIJTM0XS9d62Zd/Af/UpahdLZjyZmG0i/oaAFfkXMbBpjJOtFdgMBhQAgp7Gvazp2E/afbwD3BF9dPqaRMP4M7gb28PO1Y6Oga4Ul/EHPA5uuuqIpLjbcinWinMTuh3W/KsojRmFaVpEJ3+GQwGzDniIdLZXjr6Jsd6N12cNannDXjDjtPsKaJt/VkSFl9O+4cb+44XXa5dMOfgYiTgf1yE9xg1TEYj11+aJ+pBCBeNx+9lR/2eAc+nO1K5Jm8ZexsOkOpI4cbC6wZsXT9eZdxzH5aMTNzlx3EUTybpqtFR2GiojRgHGeQhmyzLs6IR1AAKGEXrgAVhuHwBhf/46Encfk/EOYvRwr/NfogpycGCRbvq9lLWeowJcTksyb0Mi1HMIo4G57sO+MtRiEUQhDNYjGZWFl7DG8dXAWAymLij+CbibfFhS9Her9zIm+WrQ6+r6DjFQyWf1iRmLXhqaujYsgmDxUrisuVYkkf/s5Wh6gF/2Pv7nroQsQTnfE3A+KwhKAhRcE3eMqalTOF0Zw2TkyeRYo9MLltqwgvv7K7fzz3S7djNY7+Qu7eujlM/ehLVE/yW0P7RJgp+8CNMMbF4a2toWbMKf1cXCUuWjorlZ72GWw/4+8C3eg4VwAqUAmIFvSBcJLlx2aGHa76AQoenk1RHXyJ2mB1h19tMVkzjZAqiY9uWUPIF8Le30bV3D/HzL6HqZz/B3xlsNd99YD/Gxx4ndsZIzo6ev+H+6z0A5BFspvl1gl2Nx1cTL0GIgmZXK+9VrqfN086CzDkszJrHgcbDPH/kFbp9TrJjM/nizAdJj0nlpkkr+MvBv6H0VEe7sfDacTMH7K2vjxgz2h04j5SFkm+vzh3bx1wCbpBluVaSpDJgtizLz0mS9B/RDEwQxjp/wM+v9/6ZZncLAIebjxBQA7xxfBXdPicAtd31vFG+ii/MfICSVInvL/oPjrWdYEJcNlmxmYO9/ZgR8HrpPnggbMwYE0Pc7Dl4aqojrldVaHr9VawTJhC/YCEGo35XjAw3AfskSSoCZOAKSZLeI9hWXhCE81TRURVKvr121O2hyxe+y62uu+/uL9GWwILMOSMSn174uzpR3eHdaUyJSRjMZux5+SQuv5r2DcH+weaUFDq3bgld5zpSRuYDD41ovOdiuB8NPyHYgugd4HaginFQkL2Xqqq8veUk3/7rNn7+wl5O1IyOXTaCviXZEjCctY8pMyY9YpNFSerUkQxLdywpqdjyC8LG4hdcEvp95r33U/CTn5H3ne9ijAnfHdi++SP8TudIhHlehpuA98qyfLUsy93AHOB64NfRC0tfNu6t5o2PTlLb7KSsspVfvbwvVJBHEM5XqiOFFQVXhZJwuiOV6/KX88WZn2FuxiyyYjO5Om8pt0y6XuNItZd6861g7vvC3n1gH77m5tCxNT0De0EhBvNZX+pVFV9j5PyxXgy1EaO3COkG4Er6th1bgA9lWR7Jj+YCNNqI8ZtXD7DveFPY2NfvnsO0gpQBXiEIw9fsaqXd20FBwsRh7XDr9jmRW4+T7kgbN12RK3/4JJ6Kk2FjjqnTmPjEN8PGOnfvovaPvwsbMyUlUfiTn2O0aNe+6Xw3YrwAXNvz++YzxhXg1YsQ16iQmx4bloBNRgNZqUMXQqlu7MLjC1CYHR8qVykIZ0t1JIctNxtMZUcVv977Fzw9u+auzbuS24rHfkU5X0PkXaxLPhIxFj9/AW1TJFxH5dCYv60N94lyYiT9TeUMtRFjBYAkSU/LsvzZkQlJf1Zemk9FbQeHK1qxW03ctbyY5HjbgNerqsqf/nWYnUcaACjMTuCJu+fgsI2PJUNC9Lxw5LVQ8gX44NRGrs5bGtotN1bFzZ1Px5aPwsZsBYW0f/QhSlsbcfMvwdbTft6WlxeWgDEYsKSlj2S4wzasjCDL8mclSbqU4NyvBVgry/KmqEamIzF2M1+7ey4d3V7sVhNWy+C9SEsrWkPJF+BkbQcf7a/huoWigI9w/nx+H1VdNWFjKuD0ucd8As749H1ggM4dO1C9HmwT80ANUP+3ZwBoWfU2E574Jo7iyaSsvBHnkSN4T1eByUTqLbdhSdVnTe7h7oS7H/gx8BrBB3cvSJL0PVmW/xrN4PQmIXZ43RvOLtoO0NLPmCCciw5vZ7/jKmP/gbDRZiPrwerw8d0AACAASURBVIfJevBhVEXBc7qKUz98MnReVRRa1qwi4PHgPlGOvaiY3H9/AtvEPF23Jxrud+LHgYWyLNcCSJL0X8BaYFwl4OGaVZyKw2bG5QnuWDIaDGF94wThfKQ6UnCY7biUvjWxJoOJ5H7qRoxlBrMZ+nmm4j5RHtoV5yorpRUDE7729ZEO75wMNwEbe5MvgCzLNZIkjf2P3fOUEGPlW/fO470dp/D4/Fw5N5dJOfr9FBZGj0dnPcwfDjyNU3FhMZq5d+qd2Ezjo69ex45tNL/xOn6Xk6SlV+IomYHr8CEADFZrxJZk1zG5v7fRlUGXofWSJGk98GtZlv/Vc3wb8Jgsy1dGN7wwBYh6wIIABDsnx1pix00tCF9jIye//U0IBEJj9qJizImJmJKScJWV4q2tDXuNY4rExG986+y30sT5LkPr9T3gaUmSehfYeYHbLkJco4pP8WMxD/4AThBGQpItUesQRpSr/FhY8gVwlx8HwGCxoPp8YefsxZPJfPDhEYvvfA2agM/YiPFbYCFQAgSASuADQH8L66LgaFUbT68uo6HVxdS8JL5wSwlJccFlaN1uH+9uP0VNUzezi9O4Yla2WPN7BqXuKMrRzRhscVhmXIsxdnzNVw6XW/HQ7G4hKyYDk1F8yJ/NXjgpOO/bzzf2s5OvwWwm7z++PVKhXZBz2YjR2POrgXG0ESMQUPnzW4dDKxuOnGrjxXXHeOTWGQD8/vWDHDnVBsDeY0043YroF9dDqZVxvfNTUIN3Lr4TO4i96ycYTP3vSAp0NWMw2zDYx/aSqrPtazzEc6Uv4/a7SbIl8qVZDzFhnOxwGy5rZhaZDzxI0xuvBed6B5k6dUydPoKRXRixEWMI7d3eiGVlFXXByf6WDnco+fbaerhOJOAeytHNoeQLoHY24a8+jDkvvJqXqnhwvf97/FUHwGjCOmsltoWfHOlwNeEP+HlRfh23P7iyoc3Tzu/3P8Vj8x4hM0afmwe0knjFMhKvWIanvo7TP/0x/p7W83ELL0V1u3GdKMdRPJnM+x7QONLhG/ZGjGgHoldJcVYyU2Kob+mrqDQ1L/g12mEzY7UY8fr6kkxi3Ph4Ij0stsg7WUM/Y77SjcHkCxDw4933DuZJCzClFUQ5QO15/B46vV1hYx3eTn695888ueibWAb4tjCe2TKzKPzJz3GWlWJOSsZeUDDgtZ27dtK1ZzeWjAySr12BKXboEgIjSb+VinXCYDDw5U/MQJqYRJzDwqKSTO5aHmyH57CZuWNpEcaeOd9Yu5nbl07SMlxdsc64FkNc3w4kc+ECTJmRrQQDbbXDGhuLYiwxTE6K/D/T7u2gvL1i5AMaJYw2G3Fz5g6afNs3b6L2T7+nc8c2Wt55i+rf/GrkAhym8bGG5QLlpsfxzXvn9Xvu2ksmMl9Kp7bFSXFOIjareIDSyxiXQuxdP8FfXYrBHtdv8gUwF8zBd2TjGQNWTLklIxOkDny25F6+8/GP8avhS+tT7EkaRTQ2dGzZHHbsLj+Ot64Wa1b2AK8YeSIBXwQpCXZSEkSDkP4YzFbM+YN3cDDnzcG+7GG8ZRswWBxY59+K0TF+Nq6YjaaI5Gs0GClrOUaqPUWsijhPpvj4swZMEQXbtSYSsKALFukKLNIVWoehiRhLDLlx2VR39U27BNQALx99k9Od1dw77U4NoxudfC3NWNLSwGQCf/DDLXbGTN3VhRBzwIKgAw+X3NvvXPD2uj2hLsjC8Hhqaqj87ndoXfteKPlCsGW9+1SlhpFFEgn4Ap2s7eC1D8v5aH8NPiUw9AsEoR+ZsRk8Nu8Rss/qdGw32YbVJUPo075xPQGXK/KEqobXCdYBMQVxAfYfb+I3rx0IrQnffbSRx+6crW1QOqQGAvhK1+OvPYIxfRLWmdcOuBljvLt50vU8deh5/KofAwZuLro+IgE7fU6cios0hz5r3GrN39V/2U4Ae0HhCEYyNJGAL8AHu0+Hbcg5UN5MfauTzOQY7YLSIc+Ol/EdeDd4cHIXgdZqHMs/r21QOjU7vYQnF32TE+0VTIzPJeOszRhrKzaw6uRaFNVPUWIBj8x6kBiL+P/Wy9fSQufevZEnLBZSrl2Bo3jyyAc1CPHd5gKYjZE1H0z9jI13ytEt4cfHt6EGRDXTMzU4G3n92Du8fuwdfAEf8zPnRCTfRmczb514F6VnxUR5ewU/3/17GpxN/b3luOPv6qL2j78HnzfypM9Hy3traF3/wcgHNghxB3we9h5r5PVNJ+jo9mI0GAj03AYvnpFFWqJD4+j0x+BIQHX3fS002ONAzGuGtLrb+Nmu34YKrW+p2c51+cuJtcQwP3M2AVXl/cqNHG87iUp4DYQGZyN/OvAM/3npE+O+CFTds0/hPlk+8AV+P02vvkzCossxOfTxcyoS8Dlq6XDz+zcOhdUkXjwji4XTMpkxSbSp74/t0rtwvf878PvAYMJ22afGfbKA4Fzux7U7KW2Ww7pcuP0e3joRnLJ5+8R7GDHS4Rt4XrPe2Uijqynijnm86T6wf8hrVK8Xf1fn+EjAkiR9F7ir53CVLMvfkCTpGuCXgAN4SZbl70Qzhovt7Y8rIgrCGw0GZhWJByIDMefNJvbeXxJoKMeYmi9KUgK+gMIvdv+BemfDoNd1+bqHfC+H2T7u6gP3x5qdg7f6dOjYYLGAwYjq7SumZS+chDU9Q4vw+hW1BNyTaK8D5hJs3vquJEn3AD8FlgFVwCpJklbKsrwmWnFcbAeOR8635WWNr/KJ58Noj8eYN/iOuPHkSMvRIZPvYKxGK96AF4fZwT3S7VjHSVuiwWQ+8CC1f/oDSmsL5pRUcr70aLB1/cYNdO3bgzU7m5QbbtY6zDDRvAOuBb4my7IXQJKkMmAKcEyW5ZM9Y88DdwKjJgGf3QzQaICls4K1W9u7vbz+YTlVDV2UFKZwy+WFWMxirlOIZL7AVkIxFgf/Of9rxFviRMW0Ho6iYgr/6+corS343W46t22lu/QwiUuXkbT8Kq3D61fUsoMsy4dlWd4GIEnSZIJTEQGCiblXLTAhWjFEw7ULJoYdr1iYh9US3Kv/xzcP8dGBWirqOlm1tZJXNh7XIkRhFJCSiylK7FuTajJE1nsoSigY8PWd3k42V28XdSLOYjCZCLjdVP34B7S+u5rmN16j6sc/IODtZ2WEDkT9IZwkSSXAKuDrBDtpTDnjtIFgUh621FRtv+7ff1MJ04vTOHi8iSl5yQRUlafWHCEpzsbRqvDi7PvLm/k/98QP8E7CePeD677GnpqDdHmdGDHwh51/D50rTingx9d+k6NNJzjadIK/738t7LV+NcB7levJSErm5qnXjHTouuXr6GD/n36HekbC9TU2Yj51jNRFl2kYWf+i/RDucuA1gh2UX5QkaRlwZi24LKDmXN5TD12R81JjyEvNY+vhOv76dmlo/MwlaQDpiXYaGwd+ei0IhbYiCLYX5MuzP8eehgOkOpJZmruYxsZOkklnYUoaq+zraXa3Rrx+V9VBLku9dISj1q/av/4ZT119xHinO0BAw5/F9PT+b8Si+RBuIvAm8ClZltf3DG8PnpKKgZPAp4GnoxVDtG09VBd2HFBVTEYD/oBKaoKdu6/S164bQd+mpU5hWuqUiHGDwcB90+7i6UP/oNMX3j0jN04/tW31wHXsWMSYvaiImOn6rC8dzTvgJwA78EtJknrH/gQ8SPCu2A6sZhQ390yMjXzy7O+5O7/1igImZIjVEcLFMSW5iB9d/m0+PP0xayrW4VScTEuZwop8fT5c0op9UhFdLc2hY1NiEhO+/i0MRn0+DDeog3QX1ZkC4KQepiAA3F6Ff20+yfs7q+gvnMm5CXzr/gUjH5gwpqiqytHWcto87ZSkTSXOEosSUPD6vaIGRD+U9jbqnv5fnKWHsU2YQOZnHh60bdFISU+P73fnkUjA58EfCPCDZ3dxqqFrwGvMJgNfuWMWMyeJDRrC+Xv60D/Y3RDc4eUwO3h83pfIicvSOCrhXA2UgPV5X64zqqriU/qKx5RWtA6afAEUv8pTq8pQ/KJGsDC4Tm8X/n6KE9V01YWSL4BLcfFm+WrWV33EqY7TEdePd57TVVT94qec+Prj1P/jOfxuF0pP63q9ErUghlBW2cqza8pobHMzLT+ZL95ScvZejBCzyYDi77s77+j20un0kRxvG6FohdGk1d3GXw8+R2VnFWaDiRR7MksnLGb5xCUAePyRa1cPNx/hcPMRAO6WbueKXP0trdKCGghQ/dv/QWkOzv+2b1hHx8ebUT0ebPkF5PzbV7Ck6u/bqLgDHoTiD/Dntw7T2BYslFJW2corG44zPT+FGFv4Z5fFbGT+lPA95hPSY0XyFQb0xvFVVHZWAaCofhpcTbx67C221uwEoCBhInnxA+9Terdi3YjEqRf+7m6a3nyd2r/8kc6dO8LO+errQsm3l+oJ1oDwVFbQ+MqLIxbnuRB3wINo6fTQ0R1+F1JR14nRaEAJhE8t+JQAD1wvEeswc/BEM7lpcdx9df9t2AUB4HRX/0vgnz/yCi8ffZNbi27gS7MeYkf9Htrc7Wyp2Y434Atd19+0xVhW/Ztf4S4P7i7t3LGd7kMHyHrocwAonYOv8fWe1ueUjUjAg0hLtJOWaKepva9U4NS8YCWvwqwE5DN2vk3MiMNhM3PfdVLE+wjC2VrdbbS62wY87w34eOXYv1h98n0+O+NeluYuwmQ08cGpD0PX9E5VjAfe+rpQ8u3VsWUzcfMWEDd7DgGnc9DXx8yYEc3wzptIwIMwGgx8+faZ/PP9o9Q0O5ldlMrty4Kdaz+zcip//tdhKus7yU2L5eEbp+HyKOw/3oTFbGJ2cSpmk5jhEfq3qXpr2N3sQLoVJ08deh5fwIdfDTA1eTIT43MpTipkRtq0EYhUH4wxMcFCWGet2urau4e42XOImTYdU1IS/ra+DzX7pCKUlmaMMbGAAV9zs+7mgcUytAvk8fqxWU3UNTv58fO76XIFf6gKs+P51n3zRRIW+vXq0bfYcHrzeb32M9PvZmHWvIsckf7VP/cs7R9uDBtL++RdpFx/AwDdZaVU//qXoCgA2KdMwV1eHmpNb0pMovBHP8FoH/li7GIZWpTYrCbqWpx875kdoeQLcLK2k/391A4WBIBFOZdgMfaVkUyzp3B59sJhvXagueOxLvP+B0lcugx6drXFTCsh6cq+nYBtG9aHki+A++jRUPIF8Le30TWMrhkjSUxBXARrd5zCq0Su9/X4xtdDEmH4cuOy+dKsh3im9J90ertwKW5K0qZRkJjPjrrdeP0KKgEyY9LZXb+fwBlFA6elRNaLGOtUVaVr106MMbFkff4RHAWFWNKDLZjcJ0/QtmkjrrLDQ76PKSY22qGeE5GALwKXNzLRxsdYmDt5fPfoEga3pWY7nd7ghp5uxcnfS19EVcET8GDAwG3FN3BN3jLmZMzk3Yp1+Pw+rpy4ZFwm4MaX/knbB++HjtPuuhsUBWdZKU75CASG3vAUUzJDd0V5RAIegqqqHDvdjqqqTJ6YhLGfXRgzJ6WyvbSvBF58jIXvPXgJDpv46xUGVtsdXjbR7e/rXaai8s6JtSzJuZQ56TOYk67Pp/gjIeDz0b5xQ9hY87/eCK3zHYrBYiH7C18ids5c3TWDFRliED4lwH+/tC9UaL0oJ4En7pmLracDxr7jTWzYc5qyyvA6rddfmkdygn3E4xVGl+mpEjXdfSVNzQYTitr3bcoX8OHxe7Gb7SgBhR11e6jtrmdm2jSmJI+fNeYGgwFMprD53cGSb8KSKzCYzXhrazHFxpJyw03YCwoHvF5LIgEPYpfcENblorymg+2l9SydncOL646xdmdVv697/cMTTMtPpiArYaRC1T1V8eDZ+Tr+mjJMaQVYF34SoyMhdM539GNUZxvmSZdgShlVXarO202TVhBQAxxqKiMzNoPs2EzWVvbd6U1LmUKiLfh39LfSF9nTcACA9VUfkROXxS2Trmdm2nRNYh9JBrOZlOtvoPlfb/SNWSyovshlfPbiyWQ+8FCo/KSvsZHW9R/QvulDEpcu010iFsvQBrF2xyleXB+++PuOZZNYPjeXr/76o37LUPaaMSmFx+8SXYB7uTc9g+9I3yYCU24JMTd+HQDnWz/GX3c0eMJownHTNzFnjb95ToAddXs41FRGdmwmyycuweP3Udtdx+/2/S8q4f/hDBh4bN4jFCfpK6lEi+vYUdyVlcRMnUrd00/hOVURfkHPOmHH5CnkfPXfQQ1Q8e1v4e8MFuQxmM3kffu72CZOjHzzKBtoGZq4Ax7EfCmD1zadwNezwsFoMOByK/zw77sHTb4AVfVd+JSA6IrcQ6ncG3bsrz6MZ/8azNlSX/IFCPjxHV43bhPwwqx5oTW+71asY9XJ9wmo/T9gUlHZ13Bw3CRgx+QpOCYH/1/ETJsWmYB7biZdx47Stv4DLCmpoeQLoCoKHdu2kD7x7pEKeUgiOwzCYjYSOOPpakBVWb39FHUtg297hGCL+ufXytEMb1QxJkbWsPVufwmlrp+/owts2T4WtLrbeOfE2gGTb68UR/IIRaQvKdffgK13OqGfB2u+hgaMsZFLzkyx+upSIxLwICrqOhiqnO+MwhQ+eWUR//XFyzAZw/8jbD0c2RxwvLItvhdskf/51bY6THmz+wbMNqwzrxvByPTD4/dS2izT5Gqmxd0WMeVwtuKkQi7PGZ8NOU3x8eR+5TEsmVkR25MB4ubNJ3bGTGJK+laPWLKySFx65QhGOTRxqzGI/KyEiBq/Z3N5FRbPyCIpzkZaop36VlfoXFJcZM+48UQN+FEq96G6OjAXzMNxw9dxvfHdsGuMKROwLXkgeJ2zFXP+PIxxKRpFrJ2qzhp+u+8vdPucGDBwfcHgvd7+bdZnKUmbOkLR6VPLu6vx1Yc3xrUVFpJ81bXEzQ4+f8n+0pdpevkFvHV1xC9ajClO3AGPGomxVr5wcwlpiXasZiNXzMpmTnF4MY/y6g7+sTY4h/mpqyaH5nzNJiOfGuddkV1rfon7/d/i2fw3ul/+FgazBesld4DJChgwT7oEy7QrMRhNWArnYy25ZlwmX4DVJ9+n2xec2lJRWVu5ccBr4yyxTEkZP8vQBuJraowYS7/jLhIWLQ4d1z31F9o3fYjrqEzD356hZfU7IxnikMQd8BAWTM1gwdS+QutdLh9f/fVHYdeU17QDMGdyGv/96OVU1HWQnxlPfMz4vQP21x/HX33G1lCvE9+h97Ff8RmsM64Dvw+DXV93I1rq8IbXs/Wr/W9jT7QmcO+0O7GIeXLi5y+ge++e0LEpMRF3ZQXe+nriF14KgQDd+8If/rZv2UzKDTeNdKgDEv+K5yjOYSE3LZbqpu7Q2JSJSWHnZxTqq+SdFlR/5BpN1R9cSG+w2MAiOoWc6dKseVR0nBr0mpX513DDpGswGsQXV4CEyxb3rGzYijEmBpd8hKZXXgKgZfU7ZNx7PwarNWzThjlBX2vzxb/keXjk1hKKchOwmo3MKU7j09eMzyVTgzFlSxjT8s8YMGOdvly7gHRu6YTFpNkH/uA2GUyc6KgItSsSghIWL8GWk0v3/n0EuvtuipTmJmp+8ytMMTGhMYPNRuptt2sR5oDEHfB5yE2P49v3LwgbK6toQa5qY1JOIrOKxB2wwWAk5qb/wHd0c/AhXPFlmJJztQ5L5/p/2GsxmvEFFOTW48itx/H4PVyVt3SEY9On9k0baVv/wYDnldZWklfeiKOoGEfxZN09hBMJ+CJYu7OKF9cdCx3fcnkBt10xiUBAxWjUV/GPkWSwOrDOuFbrMHSvydVCbXcd8zNm896p8KIzMWYHTsUVNrazfq9IwD3c5eVDX+T3EzdnbvSDOQ8iAQ+T4g9w8EQzPiXA7OK0UEEegPd2hM/drdl+is0Hamjr8rFgajoPrZyGzWo6+y0FgQ1Vm3nt2NuoqNhNNq7NW06LuwWbyUZRYj5TUor5/raf4wv0FaLprQ8hBGs/dGzdMvAFJlPwgZxOiQQ8DD4lwH/9Yw8na4PbGtOT7HzngQWhVQ5nb8TxKQFaOoPdlHeUNZCR7OD2pUUjGrOgf16/l7dOvBvacOH2e6joqOSxeY/g9DnZVreb7bV7uDpvGWsrNxBQA8Rb4ripcIXGkY88X2srDc89i+tEOY6iYjLu+wyW5GQSr1hK69o1+OrDNz3FzJyJKSaWxGXLdVeA50wiAQ/DvuNNoeQL0NjmZvPBWlZeGnzIdONl+Ty39uhAL+dETceA54Txy+P34vV7w8Y6fd14/T5+vut3NLiCLa3MRjMPTruHeFssBQn5WE2W/t5uTKt/5n9xlgaXNXbv30e9ojDh35/AYDSSfufd1Pzu12HXexubmPi1z2JJ1vdWbbEKYhjcXiVizHNGF4zl8ybw7fvnc+eVRTx256yIQuxnLlMThF7x1jhKUsN3s12WNZ9DzWWh5AugBBSeLf0nZqNlXCZfINj14szjI2Wh38fNmUv6vfeHnVfqaml+8/URie1CiAQ8DPOmpJN4xrZim9XEohl9xWU6nF7W7znNwRMttHR4ePS2EiakxxFjM3Pl3NzQnfJ4pXq68TdVoAYiP8hUrxN/Y0VojfB489mSe7mp8DrmZczivml3cW3+lZj6WecbQGXdqQ/7eYfxwZ5fEHZsywv/mfI1RjbAdZcfjxjTG1EPeJhaOz18uK8anxJgyaxsslODlZa63T6e+P0WPL6+qj13X1XMdQvzRjxGPfId+xj3pmfB78UQm4xj5eOYUoL1WH0nduDe+BQoHgyORBzX/zum9AJN49UDJaDww+2/pNEVnlTMBjOpjmRW5F/FpdnzNYpOG56aamr/8ke8p0+DwYDBaiX15ltDLelb3lsT2oTRK27BJeQ88qgW4UYQbekvUHK8jduumMSdy4vJTo1F8QdYtbWC7z69Iyz5Amw6UKtNkDqjKl7cW56HnnlOtbsVz/ZXgr8P+PFsfg6U4C4l1dWOZ9uLmsWqJ/XORjrP2poMoKgK9c5Gnit7marOag0i044tJ5fUG28JHqgqqsdD06sv4zpxgu5DB/A1NmKw9e2uNNrtZHz6/gHeTT/EQ7hh2LS/hs0HaomPsXDL5YXkZ8Xz4rpjrN/T/w9Bc7uLNdsqWXFpXr9NPMcL1esEb3jtZLWjIfgbnxvVHZ5kAp2RxVXGo3WnNoU16DybisrR1nImxo+vjS3uihMRY63vraZr967Qsb2omLg5c0lYfLnuth33R9wBD2HnkQaeXXOE49Xt7D3WxC9e3IvLo4R1QT6bxxfglY3lrN3Rf8+48cIYk4QpM7winHnSJQAYbLGYckv6PTee+AN+zpwGbPO0U9M19DeovHGWfAEc0lnlNw2GiI0YnsoKkq65DnPi6Hjwbfre976ndQzDlQQ85nJ5+6u/HDWrPq7gdGPfHnOfEqA4N5GKug46nJEFZ87kUfxcMSsn2iHqmil/TnCO12TBMm051rk3Y+h5yGTOm43ae27qUmzzbwudG+t8AYV/lL3C04f/wUfV20i0JqAEFH6689e0etoHfa3ZaOauKbdhMo6vzT3WzCwMNluw23FCAhmfugf3yRP4u7r6LlJVOnftQGlpIWaKFGrOqbXYWNuT/Y2LKYghZCQ7Isb8gQA5abFUN3YP2rMgs5/XjjdGRwL2JQ8AoAYC+A69j1JTiiktH+vsG7Bfrv95umjYWLWZ7XW7gWApyufKXmZ6ioQ3EPmhbsAQ1h1DCSg4FTeJ43BJWsqKlaSsWNk3YDRQ99Rf+7piqCq+ujpa312NwWQi7RN3aBPoMOnj40HHrrtkIsUTEgEwGQ1cVpLJH988zI6yhkGTr9Vs5LYlk0YmyFHCu/NVPNtewH9qP949b+He8FetQ9JMRUf49JRf9dPp6+r32rNbExUnFZJoi49abKNJwmWLyf33r/V7rvvggRGO5tyJO+AhxNgt/N/75lPf6iTGZuaZ1UcIDGMO5N5rp5CaaB+BCEcP3/FtYcdKxW5UnydYH3icmZw0iX2NB0PHFqOZqycu5ZnSf/bbiLMkdSoexcPE+FyuL7h6JEPVPcMAUzHWXP3Pk4sEPEyZycG6oibT8FY1mE1Gapu7Q+uFBaCfHxTl9CEsheNrTSvA0gmLaHG3sr1uN/HWOG4ruoEZadNIc6SwrW4XO+r24FLcQHDO93DzEYwGI1OSi4iziv9TZ7IXFWFKSMDf0bfl35yaStonPqlhVMMjNmIMU0uHm6qGLoxGA79//SBeZYh2yT3uXF407nfC9er6x+Oo3S1hY5aZ12NfdLdGEelXl6+bPfUHONRcxuHm8G24/++yr5MZk65RZPrkOV1F87/exNfWQuysOaTdfKvWIYUZaCOGuAMehg/3VfPce0cJqCo2i4mHbphGl8tHWqKdCRlxlFW28uwAUxP/+ugkV82dIMpRQmTZOMCYOlGDQPTDrXh4v3IDlZ2nmZJcxNUTl2IymoizxLJ0wiKOtUXWuz3YVMbLzW/S7etmUc5Clk1Y3M87jy+2CRPJefQrWodxzkQCHoLiD/DqxvJQcvX4/Ly/q4rvPNDXEWPJzGwmT0hk7c4qth+ux+npq2vgVQJ4FP+4SsD+ltMEWqsxZU/FGJMYGrdIS/HufiN0bIhPwzrlci1C1I3nyl5iX+MhAMpajtLh7eSTk28JnZ+TPoM9DX0Pk2LNMaw6sRZvILi7sOrom8Rb45iXMWtkAxcuCpGAh+BTAjjd4YViGttctHZ6SI7ve3i09VAdG/rZGTenOI2EcdQd2bP3Hbw7Xw0emCw4Vj6OOWcaANZ5N2OwOlCqDmBMmYBtjn6602rhZHtlKPn22lW/LywBz8+cg8fvY3vdLuKt8RQm5PH68fDW6oeaykQCHqXEMrQhOGxm5knh822dTh/f+OPH7Cjr2w33/q7wZUVmk4E7ryzii7eG7/Yay1SfG++et/oG/D68u8644zUYf0LInwAAEMVJREFUsc68jpgbnsB+2d3jui19m6ed3+z9S8R4si18B1d1Vy1Oxcl1+VfxcMm9lKRKEa/Jis2IWpxCdIk74GH43E3Tyc+s4p2PK0IP3/wBlVc3lrNwWiZARM2HOIeFlZeNr4dvqt8HZ7WjV8+qBSEEHWwqi9h0YTaYub34RpSAgtloZl/DQf730POhdcBXTricO6fcys2TVrCmYh1KQGF6qsSyCeN7Gmc0Ewl4GGwWEzctLuCdrRVh452uvh+gmxYX8NL6vvqjvYl5PDHa4zEXzEOp2B0as0xdpmFE+pVsS4wYW5yzkBfk16l3NjIluRinzxm2CWNT9VZuLLyO6wuuZtmEy/H4PST18z7C6CES8DlYMjM7rALakpnZod+vWJhHepKDp1aV4vL4WbuziuZ2N4/ePlOLUDVjv+qL+Eo3EGg9jWniLCzjsMDOcExPlZiTPjO0GaMwIZ+9DQdCu+GOtkYWEw+ogVBCdpjtOMxio89oJxLwObjnmslkp8ZyoLwZfyBAUpyVLpePxjYX+483UVnXicvT16po99FGyqvbKcodP3cpBrMV66zx1zTyXBkNRj4/835quupQAgq13fX8veylIV/X4GyiMHF8FvtXOjpo/+hDVI+HhMVLsGZlEfD5cB8/hjk5BXNyMkpLM5bMrLAiPGogQNeunXhqa4ibNRt7oX5KBIgEfA6MBgOTchJ4af1xFH+A0opW1u0+TVuXd8DXdLsHr5g2nqg+D6qnC2Ncqtah6EZOXLC11Vvl7w7r+hZ3aygB+wP+cVMRLeB2c+qHT6K0NAPQuu59ch79KvXPPoXS0rO5x2wGRcGSnkHuVx/Dmh2sRFj/zFOh1vUt77xF9iP/Rvx8fXwzi3oCliQpAfgYuEmW5QpJkq4Bfgk4gJdkWf5OtGO4GN7bcYq3t1Tg9ikEztgEN1jyTUu0My0/ZQSi0z9v6YZgxwvFgylzMvYVX8VoFwVlelmGUdnMYXYwLWUyTp+Tv5e9xKGmI6Q6UrhHup2pKZOHfP1o1rV/Xyj5AqgeD40vv9iXfAGU4HJRX2MD9f94jolPfBOlvZ2ObR/3XaOqtK59TzcJOKrL0CRJuhTYDEzpOXYATwO3AtOASyRJWjnwO+jDydoOXlp/HKcnPPn2x2CAxTOyuHFRPv/3/vlYzGKlX8DZjufj50Pth/z1x/DueVvjqPTlmrxlWIx990P58RNJtCZgM1nJ+P/t3X2UVPV9x/H3zD4/IOwuK7DALo/+3C0gBRUMKBzFEqNolHCMSTXUqsfW5o+cxOToOWmMTdPT5HjyYHOa9LTaGlBT0VasIOeYiNQKSK08ww9dngREdnZZll32YZaZ/nFnlx32CZZhfndmPq9/lnv3Xs/XC/OZ39z53e+vYCTXjprJt2Y9SmFOIav3r2NHaA9RooRa63lu10rCfSx4mk6Cub3foKLh/gc/rXv30LBuLQR7P33plx7BcPlHwA8DjwG/jW1fD3xsrT0AYIxZASwD1l7mOi7J/mNN/f4uECCuQfyCmWN5YHHvuZqZLNJ0AiJn4/c1HnNUjT9NHjGBv577ODtDeygrKKW69CqCseb00WiUzkhn9yj5UNPhuHNbwmcItdYzpih9Z94UTb+GvMpK2g97/++B/HxG3HIrdS+u6Pec0KuvkDduHMNvWsCpd9d7O4NBSmILefrBZQ1ga+1DAMZ0B1IF0HO9lc+AcRfz3ywrS/7k/TkzKnjx7X1xQXvnTZM4cPQUO2rr44796mJDebk+WvcULZnO4d+P4GxLY/e+ETVzGK7rFKecYZjx8V+wbT++h99sWUHdmQauGV3NN+c+yPQxV3O4x6KcJfnDqamcSHaa3w8+XlhA10p50bY2cltPY773HUIb3iOruJj6jRs523xu9RoiEY7+7BlK515P9fefpPXTI5TMnkVhpX/6jyT7S7ggxHWXDgAX1lYsxkU3tOKcIMtvu5o3/ucg4bMRFs0ex+03TOCXq3o3fD52vInMefD4wuV98du0b1lFtLmB7MlzaK+aR11d75V/5ZxwpJOfv/8vNIe9UNl2fA/PbX6FpVOXEGpqZHtoF1cWlLPsqrs4WZ/eD7x0nm7i9F4bt+/Ee+9TdPvdlE2dBkC0bBR1L6/sdW7Dpg8oWrCIgvk30wK0OPh319+gLNkBfAQY02N7NJASn0VvnFHRa323m66pYNsnoe53lKrRw6gapVFdX7LKxlP4xW+5LiOlNLQ2dIdvl8Onj5CfnccDNfc6qsqNrIJCsoqHcbb5XHjmXBl/y6Vk0a0E8/Opf+N1OutDcb+LWzfOR5J9N3ozYIwxU4wxWcDX8Pn934HMnDqS79z3xyycWcE9N03i8a/OJJDBy9BLYpUXjuzVG+KqksmOqnErkJ3NlX96P8F87+GT7NJSypf1fhMaPv9GxjzyKPT4oi27pJTCGn/2ZEnqCNha22aMWQ68CuQDa4BVyawh0aqrSqiuKnFdhqShYCDIIzMe4JV9qzlxpo4ZI2u4Y1LmPuQy7NrrKZo2nXAoRO6YCgJZve95RyMROo4fp3jmLCKtZ8irrGLELYsI5vlz2SutiHGBQo2tRIHyEVrpOJGibc2EazdBNEr2lLmaGyyX5PMVL3Bq/R+6t0cuuzd+FWVHtCLGELW0hfnJyv/j0zrvXtwVhTk8/rVZjB2pdbkuVbS9hZbXfkC02ZtJ0rFtDYVLn1YIy5BEwmGa3tsQt6/xD2/7IoD7458ZyT61dtPh7vAFaDoT5tev7xzgDLlQ4drN3eELEG05SefHGx1WJKksEAgQyIl/YMOvtx66KIAHcaSPKSvHQi19HCkiLgWysym949xqIgSDlN35ZXcFXQDdghjEtIllbK+NX8k3O0vvW4mQM3kOHVvf7B4FB4pKyJ56g+OqJJWVLr6Nwuoa2g8epMAYckeNdl3SgBTAg1h07XjWxXr7dplbk76PfCZTIK+Iont+2P0lXM6UGzJ6maLzRaNRNn62hd31lrHFY7i58ibysvSYz2DyK6vIr0yN1Wg0C+ICNLV08NqGWg593kzNhBK+PH8iOdnxU2COnGjmna1HaWvvZGx5MbNNOaNKCpNap6SXtw7+njf2r+venj6ymkdn/JnDimSoNAviElxRlMvy26r7/X1dYyt/+9sPaQ93NZz5nFXra3nwS9XMnzGm3/NEBrL5+Idx2ztCe2gJn6EoR2/s6UIBnAAf7Pm8R/ie8+qGWgWwDNmwnGJOcO6R2pxgNrnBwfsGZ4qWXTupX/2fRFpbGb5gISW33Oq6pIumb5MSoLig7xdFa3t692iVy2vO6Nlx2+FIJ8dajjuqxl/CJ09y7Nmf01b7CR3HjlL30kqaP/pw8BN9RgGcAHNrRlM1uvfDAwuuGeugGkkXp8O9pzvuadjnoBL/ad27h2hn/ACnZccOR9UMnW5BJEBebhbff+Badh9qYPeBkzS3djBl3AjdfpBLMra49xSqiiJ/T6tKlrxxvduI5/axz+8UwAkSDAaYNrGMaRO14KQkxrSyahaMm8d/H/WeDpxfMZfpI2scV+UPeeMrKbt7KQ1vvkE0HKZ49nUMv3GB67Iumqahifhca2cbEKUgW42gzhdpbycaDpNV7O/545qGJpKiCrLzXZfgW8G8PPB5v4eB6Es4ERFHFMByWUQaj9N5dDfRs5qKJ9If3YKQhGvb9DLh7W8BECgqpXDJEwSvKHdclYj/aAQsCRVpOkF4+7n+BdGWBjq2vumwIhH/UgBLQkVbm4D4WSqRM41uihHxOQWwJFSwfBKB4fEPC+RM/YKjakT8TfOAJeEiLSfp2LaWaEsD2ZPnkDPpOtcliTjV3zxgBbCIyGXWXwDrFoSIiCMKYBERRxTAIiKOKIBFRBxRAIuIOKIAFhFxRAEsIuKIAlhExBEFsIiII2pHKZJCTrWf5mX7GrWNB6gaPp77zD2U5pe4LkuGSCNgkRTy4t5VbA/toqXzDLvrLS/s/p3rkuQSKIBFUsi+xtq47Y8b9xOJRhxVI5dKASySQqqGjYvbHl9cQTCgl3Gq0t+cSAq57+qlVA4bC0BF0Wjur7nXcUVyKdSOUiQFdZwNk5uV47oMuUBqRymSRhS+6UEBLCLiiAJYRMQRBbCIiCMKYBERRxTAIiKOKIBFRBxRAIuIOKIAFhFxRAEsIuKIAlhExJFUasieBRAM9vlItYiIn00AjgCdPXemUgCPASgpKXJdh4jIxToATAQO9tyZSt3Q8oDrgM+As45rERG5WL1GwKkUwCIiaUVfwomIOKIAFhFxRAEsIuKIAlhExBEFsIiIIwpgERFHFMAiIo4ogEVEHEmlR5GTyhjzK2AekAtMAXbHflUCPG+tfcpRaSnDGDMB2Me5a9dlibX20x7HrQEestYeS2J5vmGM+QrwBN7rMQi8YK396QDHPww0W2tfSlKJvnCx1ykVKID7Ya19DLpDZL21dmZs+ymHZaWiY13Xrj/W2i8lqxi/McaMBZ4BZllr640xxcC7xhhrrV3dz2nzgPXJqtEPhnidfE8BPDTXG2PeB8YSGw0bY5YDC621ywGMMeuBp2LH/wSvm9tOa+03kl6tzxhj/hUow/tk8V3gWbxrd9BhWa6MBHKAQqDeWttsjPkG0GaMWQZ8GyjA64XyYOy4O4GbjTGfWWvXOao72Qa6TgeJ/fsxxiwEnrLWLoy9Bj8AbgTKgW9aa9e6KL4/CuChGQV8ARgGHDLGPDPI8VcBVdbaU5e9Mv+pMMZs7bG9Mvaz3lq7BMAY82zyy/IHa+02Y8zrwH5jzEfAO8CLwH7gN8Ad1tqQMeZB4Alr7RJjzGq8T2WZEr79Xidr7SfGmIFOzbXW3mCMWQL8CFAAp4G11tp2oN0YEwJKBzneZmj4Qh+3IGIj4M1uyvEfa+1fGGN+BPwJsBjYBHwduBtYYryEWUiGdwHs6zoZY74+yGlvxX7uZPDXadIpgIemZ0u5KBDo8bNLTo8/tyajqBSjawIYY24Hiq21vwOeB56Pfcn2GPBjYAWwAdgO/JWzQh0b4Dr9OfGvvZzzTm2L/Tz/9ekLmoaWOCGg2hgTMMZMBGa4LkhSwhng72Jf9mKMCQAzgXa80Pgx3sfte4itCoM3AMi0wVN/1+kjvNfeH8WOu8tJdUOkAE6ct4FPAQv8AnjPbTmSCqy17wA/BP7LGGOBvXi3Gu4Gtsa2dwF1QFXstLeBJ2PTsjLCANfpb4AfAL8wxmwBGt1VefHUkF1ExBGNgEVEHFEAi4g4ogAWEXFEASwi4ogCWETEEQWwZBxjzFdifQJEnFIAi4g4onnAkhGMMU/j9VeoBz7G62T3CPArvKZKY/AefLgXWAr8pbV2XuzcSrz+DBOstR3Jr17SlUbAkvaMMXfhhepMvC52w2O/ehj4N2vtXLzWmBOB24FXgCnGmK7HWx+KHafwlYRSAEsmWAS8Zq09ba3tBJ6L7f8eUGeM+S7wj0AFXsOXDuCfgYeMMVnAcuCfkl+2pLtMa+ghmatnJ6yubnYv4b0G/h14E6jscdyvgS3Au3iN9A8kqU7JIBoBSyZYCywzxowwxgSB+2P7FwNPx1ocAswh1nEstmbdRuBneKNjkYRTAEvas9auwbvt8L94jeC7muM/CfyHMWYH3uoT7+LdC+7yPF4gr0letZJJNAtCpA+xkfI/AIestX/vuh5JTxoBi5zHGDMMb7paJfBLx+VIGtMIWETEEY2ARUQcUQCLiDiiABYRcUQBLCLiiAJYRMSR/wfQ7m/cHuJupAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -605,41 +647,415 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 70, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
total_billtipsexsmokerdaytimesize
7727.204.00MaleNoThurLunch4
7822.763.00MaleNoThurLunch2
7917.292.71MaleNoThurLunch2
8019.443.00MaleYesThurLunch2
8116.663.40MaleNoThurLunch2
........................
20213.002.00FemaleYesThurLunch2
20316.402.50FemaleYesThurLunch2
20420.534.00MaleYesThurLunch4
20516.473.23FemaleYesThurLunch3
24318.783.00FemaleNoThurDinner2
\n", + "

62 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " total_bill tip sex smoker day time size\n", + "77 27.20 4.00 Male No Thur Lunch 4\n", + "78 22.76 3.00 Male No Thur Lunch 2\n", + "79 17.29 2.71 Male No Thur Lunch 2\n", + "80 19.44 3.00 Male Yes Thur Lunch 2\n", + "81 16.66 3.40 Male No Thur Lunch 2\n", + ".. ... ... ... ... ... ... ...\n", + "202 13.00 2.00 Female Yes Thur Lunch 2\n", + "203 16.40 2.50 Female Yes Thur Lunch 2\n", + "204 20.53 4.00 Male Yes Thur Lunch 4\n", + "205 16.47 3.23 Female Yes Thur Lunch 3\n", + "243 18.78 3.00 Female No Thur Dinner 2\n", + "\n", + "[62 rows x 7 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = tips[tips[\"day\"] == \"Thur\"]\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:1: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " \"\"\"Entry point for launching an IPython kernel.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
total_billtipsexsmokerdaytimesizeratio
7727.204.00MaleNoThurLunch46.800000
7822.763.00MaleNoThurLunch27.586667
7917.292.71MaleNoThurLunch26.380074
8019.443.00MaleYesThurLunch26.480000
8116.663.40MaleNoThurLunch24.900000
...........................
20213.002.00FemaleYesThurLunch26.500000
20316.402.50FemaleYesThurLunch26.560000
20420.534.00MaleYesThurLunch45.132500
20516.473.23FemaleYesThurLunch35.099071
24318.783.00FemaleNoThurDinner26.260000
\n", + "

62 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " total_bill tip sex smoker day time size ratio\n", + "77 27.20 4.00 Male No Thur Lunch 4 6.800000\n", + "78 22.76 3.00 Male No Thur Lunch 2 7.586667\n", + "79 17.29 2.71 Male No Thur Lunch 2 6.380074\n", + "80 19.44 3.00 Male Yes Thur Lunch 2 6.480000\n", + "81 16.66 3.40 Male No Thur Lunch 2 4.900000\n", + ".. ... ... ... ... ... ... ... ...\n", + "202 13.00 2.00 Female Yes Thur Lunch 2 6.500000\n", + "203 16.40 2.50 Female Yes Thur Lunch 2 6.560000\n", + "204 20.53 4.00 Male Yes Thur Lunch 4 5.132500\n", + "205 16.47 3.23 Female Yes Thur Lunch 3 5.099071\n", + "243 18.78 3.00 Female No Thur Dinner 2 6.260000\n", + "\n", + "[62 rows x 8 columns]" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "df = tips[tips[\"day\"] == \"Thur\"]" + "df[\"ratio\"] = df[\"total_bill\"]/df[\"tip\"]\n", + "df" ] }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 95, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 88, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxU9b3/8dfMZF/IZJlJQkIIIWyGhCioEG0QqwQJKTRii1qj9UprbYulLb0o/LjXK63WS43VWuu1XnvbQgUXiHEJWNRWC1UIyiIBkpBAMkkmkz2TdTJzfn8AUyPLJCHJmcl8no+Hj4cn31neZ0jyzpzvme/RKIqiIIQQwmtp1Q4ghBBCXVIEQgjh5aQIhBDCy0kRCCGEl5MiEEIILydFIIQQXs5nIDcqLCzkueeeo6+vj7vvvps777yz33hJSQnr1q2jo6ODOXPm8Mgjj9Da2sq9997rvE17ezvNzc18+umnw7sHQgghLovG1ecIzGYzt99+O6+//jp+fn6sWLGCJ598kuTkZOdtlixZwsaNG0lPT+fhhx9m5syZ3HHHHc5xh8PB3XffzTe+8Q1ycnJGbm+EEEIMmstDQ3v27GHu3Lno9XqCgoLIysqiqKjIOW4ymeju7iY9PR2A3NzcfuMAr732GoGBgVICQgjhhlwWQX19PQaDwbltNBoxm80XHTcYDP3G7XY7v/vd7/jJT34yXJmFEEIMI5dF4HA40Gg0zm1FUfptuxr/8MMPSUxMZNq0acOVWQghxDByWQQxMTFYLBbntsViwWg0XnS8oaGh3/hf//pXFi9ePFx5hRBCDDOXZw1lZGTwzDPP0NTURGBgILt27eLRRx91jsfFxeHv709xcTGzZ8+moKCAzMxM5/hnn33GypUrhxywubkDh8Mz18WLjAyhsdGqdowh8eTsIPnVJvnVo9VqCA8PHtR9XBZBdHQ0q1evJi8vD5vNxvLly0lLS2PlypWsWrWK1NRUNm3axPr167FaraSkpJCXl+e8f1VVFTExMYPfm7McDsVjiwCQ7CqS/OqS/J7D5emjamtstHrsP4jBEIrF0q52jCHx5Owg+dUm+dWj1WqIjAwZ3H1GKIsQQggPIUUghBBeTopACCG8nBSBEEJ4OSkCIYTwclIEQgjh5aQIhBDCy0kRCCGEl5MiEEIILydFIIQQXk6KQAghvJwUgRBCeDkpAiGE8HJSBEII4eWkCIQQwstJEQghhJeTIhBCCC8nRSCEEF7O5TWLhRgqh+Kgsu00JmstbT3tTAiNY7J+EsG+QWpHE0J8gRSBGBE11jr+cvw1Trae6vd1H60PNyXMJ2viAvx0fiqlE0J8kRSBGHYHLUf4/ZE/E+gTwO3TcrkichohvsGcaqvmo5p/UlS5m311n/L9WfcSHWxUO64QXk+KQAyr8pZKXvp8Cwmh8Xwv7duE+AU7x6aEJzElPInrx8/lxSN/5skDz/HArHuZOG6CiomFEDJZLIZNU3czzx/6A+H++vNK4IumhCfx49kP4K/z55nPXsDcUT/KSYUQXzSgIigsLGTx4sUsXLiQzZs3nzdeUlJCbm4uWVlZrFu3jr6+PgDq6+v5zne+w7Jly1ixYgXV1dXDm164lddKC+l12PjerHsvWgLnGIOi+NFV30Wn0fG7w3+g09Y1SimFEF/msgjMZjP5+fls2bKFHTt2sHXrVsrKyvrdZs2aNWzYsIGdO3eiKArbtm0D4Gc/+xkLFixgx44dLF26lE2bNo3MXgjVlTSe4DPLERYlfhVjUNSA7hMREM7K1Dwau5r5v6N/QVGUEU4phLgQl0WwZ88e5s6di16vJygoiKysLIqKipzjJpOJ7u5u0tPTAcjNzaWoqIimpiaOHTvGihUrALj11lv50Y9+NEK7IdTU5+hjW+kOjIFRfDUhc1D3TdZP4uvJ2RxpPMY/64pHKKEQ4lJcFkF9fT0Gg8G5bTQaMZvNFx03GAyYzWaqqqoYP348jz/+OLfeeiurVq3C19d3mOMLd1BsPkh9ZwO5U5bgqx38+Qfz4zOYHDaJ10oLae1pG4GEQohLcflT63A40Gg0zm1FUfptX2y8r6+Po0eP8sMf/pCHHnqIV155hbVr1/KnP/1pUAEjI0MGdXt3YzCEqh1hyAaSXVEU/n7gH8SPi2XB9Gv6fS8Mxg+vu5s1O3/OG6fe5sfXrRzSY3yZJ7/2IPnV5un5B8NlEcTExLB//37ntsViwWg09hu3WCzO7YaGBoxGIwaDgeDgYBYsWADAkiVL2Lhx46ADNjZacTg889ixwRCKxdKudowhGWj2E81lVLZUc+f05TQ0WIf8fL4EkZWwgDcrdvFx2WGSwhKH/Fjg2a89SH61eXJ+rVYz6D+gXR4aysjIYO/evTQ1NdHV1cWuXbvIzPzXceC4uDj8/f0pLj5zfLegoIDMzEwSEhKIiYnhb3/7GwDvv/8+KSkpgwon3N/u0x8S4hvM1dFXXvZj3ZiQyTi/UHaUvSMTx0KMIpdFEB0dzerVq8nLy2PZsmUsWbKEtLQ0Vq5cyeHDhwHYtGkTjz32GIsWLaKzs5O8vDwAnnnmGX7/+9+zZMkS/vjHP/KLX/xiZPdGjKrGriaONJaQGTcPX93lz//46/xYPOkmylsrONJYMgwJhRADoVHc/E8vOTSkjoFkL6p8j8KTRfzXvIeIDAwflue1O+xs/PhX+On8WHv1g0Oec/Dk1x4kv9o8Of+IHBoS4kIURWGf+VMmhyUOWwkA6LQ6bp64gGprDceaS4ftcYUQFydFIIakpqOOug4zc4ZhbuDLro65knF+oew+/fdhf2whxPmkCMSQ7Kv7FK1Gy1XGtGF/bF+tDzfEX0dJ0wmq22uG/fGFEP1JEYhBcygO9ps/Y0bEVJdrCg3VV+Lm4qfz472qD0fk8YUQ/yJFIAatur2G5p4WrhyBdwPnBPkGcU3MVRyoP0inrXPEnkcIIUUghuBIYwkaNMyMnD6iz3Pd+GuwOfrYZ/5sRJ9HCG8nRSAG7UjjMSaOm0Co38gu/5EQGs+EkPH8o+Zj+YCZECNIikAMSnuvldNt1SP+buCcjPHXYLLWUtVuGpXnE8IbSRGIQfm88RgKCilRo1MEc6KvxFfry57afaPyfEJ4IykCMShHGo8R5hfKhJC4UXm+IN9A0qKu4NP6Q9gd9lF5TiG8jRSBGDC7w86xphOkRE4f8tIPQzE7Oh2rrYPjzWWubyyEGDQpAjFg1dYauvq6mR4xZVSf94rIaQToAiiuPziqzyuEt5AiEAN2orkcgGT95FF9Xl+tD7MMKRy0HMHm6BvV5xbCG0gRiAE70VJOTJCRMP/Rv3LT7Oh0uvq6KWk8PurPLcRYJ0UgBsTusFPeUsHU8NF9N3DO9PBkgn2COFB/WJXnF2IskyIQA3K63USPvZcpKhWBTqtjZtQMjjYek7OHhBhmUgRiQErPzg9M0SepliE16go6+jo52XpKtQxCjEVSBGJATrSUMz44ZsSXlbiUGRFT8NHoONxwVLUMQoxFUgTCJbvDTnlrJckqvhsACPAJYGp4MocbpQiEGE5SBMKlmg4zvfZeJodNVDsKqVFXUN/ZgLmjXu0oQowZUgTCpYrWSgAmuUURzADgkBweEmLYSBEIl062niLML5SIgOG7SP1QhQfoGR8cQ0nTCbWjCDFmSBEIlypaTzEpbOKori90KTMip1LeUkGPvVftKEKMCQMqgsLCQhYvXszChQvZvHnzeeMlJSXk5uaSlZXFunXr6Os7swzA9u3buf7661m6dClLly4lPz9/eNOLEdfW205Dd5NbHBY6Z0bEVPoUO2UtJ9WOIsSY4OPqBmazmfz8fF5//XX8/PxYsWIF1157LcnJyc7brFmzho0bN5Kens7DDz/Mtm3buOOOOzhy5Ahr165lyZIlI7oTYuRUnD1nP8mNiiA5bBK+Wh9KGs+shCqEuDwu3xHs2bOHuXPnotfrCQoKIisri6KiIue4yWSiu7ub9PR0AHJzc53jhw8fZvv27eTk5PDTn/6U1tbWEdoNMVJOtp5Cp9GN2vUHBsJX50uyPknmCYQYJi6LoL6+HoPB4Nw2Go2YzeaLjhsMBue4wWDggQce4I033iA2Npb/+q//Gs7sYhRUtJ4iITQOX52v2lH6mRExlbrOepq7W9SOIoTHc3loyOFw9JskVBSl3/alxp999lnn1++77z5uvvnmQQeMjFTvk6zDwWAY/ZU6h0tEZBBVVhM3JV3vdvtxnd+VvF72JtW200ydMOGCt3G3zIMl+dXl6fkHw2URxMTEsH//fue2xWLBaDT2G7dYLM7thoYGjEYj7e3tvPbaa9xzzz3AmYLQ6XSDDtjYaMXhUAZ9P3dgMIRisbSrHWNIDIZQDp8qp9duw+Ab7Xb74a+EMM4vlP2nj5AamnbeuCe/9iD51ebJ+bVazaD/gHZ5aCgjI4O9e/fS1NREV1cXu3btIjMz0zkeFxeHv78/xcXFABQUFJCZmUlQUBC///3vOXjwzFWl/vznPw/pHYFQz6m2agAmhsarnOR8Go2GKfokSpvLURTP/ENBCHfh8h1BdHQ0q1evJi8vD5vNxvLly0lLS2PlypWsWrWK1NRUNm3axPr167FaraSkpJCXl4dOp+Opp57iP//zP+nu7iYxMZEnnnhiNPZJDJNT7VUE6AIwBEWpHeWCpoZPprj+IPWdFqKDja7vIIS4IJdFAJCTk0NOTk6/r73wwgvO/58+fTqvvvrqefebM2cO27dvv8yIQi2n26pJCI1Dq3HPzx2eu0jOiZZyKQIhLoN7/oQL1dnsNkzWWiaOu/BErDswBEah9w9zXktZCDE0UgTigk631mBX7CSMc7/5gXPOzBNMprT5pMwTCHEZpAjEBZU3nflEsTtOFH/R1PAk2m1W6jplWWohhkqKQFxQedMpgn2D3GLF0Us5N09QKoeHhBgyKQJxQSebT5MQGu82K45eTGRABGF+4yg/e80EIcTgSRGI89gddqrbaokPGa92FJc0Gg2T9YmUt1SqHUUIjyVFIM5j7rRgd9iJC4lVO8qAJIUl0tzTQlN3s9pRhPBIUgTiPCZrLYDHFMFkfSIAJ+VdgRBDIkUgzmOy1qLT6ogOMri+sRuIC47FX+dH+dlrJwghBkeKQJzH1FFL/LhYdNrBLxKoBp1Wx6RxEylvrVA7ihAeSYpAnKfGWsfEMPe5EM1AJOkTqbHW0dXXpXYUITyOFIHox2rroKWnlQS9ZxXB5LBEFBQqWk+rHUUIjyNFIPqpsdYBMNHDiiBx3AS0Gq18nkCIIZAiEP2cO2PI0w4NBfgEEB8SS3mLzBMIMVhSBKKfGmstIb7BhAWMUzvKoCWFJVLZVoXdYVc7ihAeRYpA9GOy1hEXEuv2S0tcyGT9JGwOG1VWk9pRhPAoUgTCyaE4qOmo85gPkn1ZUthEAFluQohBkiIQTpauRmwOG+M9tAj0/mFEBkRwUiaMhRgUKQLh9K+lJWJUTjJ05xagkwvVCDFwUgTCqcZaiwYNsUHRakcZsqSwxDMXqrFa1I4ihMeQIhBOJmsd0UEGfHW+akcZsslhiQAcb5AL1QgxUFIEwslkrfXYieJzYoKNBPoEcKLhpNpRhPAYUgQCgK6+bhq7mzx2ovgcrUZL4rgETjTKB8uEGKgBFUFhYSGLFy9m4cKFbN68+bzxkpIScnNzycrKYt26dfT19fUbP3r0KDNnzhyexGJE1HacWVrCkyeKz5kUNpGq1hpZgE6IAXJZBGazmfz8fLZs2cKOHTvYunUrZWVl/W6zZs0aNmzYwM6dO1EUhW3btjnHurq6ePTRR7HZbMOfXgwbT7sYzaUkjZuIgkJlW5XaUYTwCC6LYM+ePcydOxe9Xk9QUBBZWVkUFRU5x00mE93d3aSnpwOQm5vbb/zxxx/n7rvvHoHoYjiZrHUE+gQQ7q9XO8plSwybgAYNFXKhGiEGxGUR1NfXYzD860pVRqMRs9l80XGDweAc3717N93d3SxatGg4M4sRYLLWMj7YM5eW+LJAn0Diw2I5KUUgxID4uLqBw+Ho98tBUZR+2xcbt1gsPPfcc/zhD3+4rICRkSGXdX+1GQyhakdwSVEUajvqyEy8tl9eT8h+MVMjk9hbVUxkVDBajWeeE+HJrz9Ifk/isghiYmLYv3+/c9tisWA0GvuNWyz/+vBOQ0MDRqORDz74gJaWFu68807n2NKlS9m8eTMhIQP/5d7YaMXh8MxPiRoMoVgs7WrHcKmxq4muvm4idJHOvJ6S/WKmRSWx++RHHK4sZ7wHToB7+usv+dWj1WoG/Qe0yz+VMjIy2Lt3L01NTXR1dbFr1y4yMzOd43Fxcfj7+1NcXAxAQUEBmZmZ3Hbbbfz1r3+loKCAgoIC59hgSkCMjrE0UXzO1MhJAFS0yeEhIVxxWQTR0dGsXr2avLw8li1bxpIlS0hLS2PlypUcPnwYgE2bNvHYY4+xaNEiOjs7ycvLG/HgYviYzl6VLDbY8/5yvpjY0GiCfYLk0pVCDIDLQ0MAOTk55OTk9PvaCy+84Pz/6dOn8+qrr17yMY4fPz6EeGI0mDpqiQqMJMDHX+0ow0aj0TApLEEmjIUYAM+cRRPDqmYMLC1xIZPCEjF31tNh61Q7ihBuTYrAy/Xae6nvbCBuDB0WOicpLAFAPk8ghAtSBF6utsOMgjIm3xEkhJ79YFmbzBMIcSlSBF7u3ESxpy82dyEBPv7Eh8TKOwIhXJAi8HI11lr8tL5EBUaoHWVETAqbSGXbaRyKQ+0oQrgtKQIvZ7LWMj4k1mM/fevKpLCJ9Nh7qTn7zkcIcb6x+dMvBkRRFEwdtWNi6emLSQqbCCCnkQpxCVIEXqy1t40OW+eYnB84JzIgglC/EPmEsRCXIEXgxc5NFMcFj90i0Gg0JI2bKBPGQlyCFIEXq3GuMTR2Dw3BmXkCS1cj7b1WtaMI4ZakCLyYyVpLuL+eIN8gtaOMqEln5wnkXYEQFyZF4MVM1rE9UXxOQmg8Wo1WJoyFuAgpAi/V5+ijrrN+TE8Un+On82VCaJxMGAtxEVIEXsrcacGhOMbk0hIXkjRuIqfaqrE77GpHEcLtSBF4qbF4MZpLSdInYnPYqLKa1I4ihNuRIvBSJmstPhodxsAotaOMislhZ65YVtZSoXISIdyPFIGXMllriQ2ORqfVqR1lVIT5h2IMiqKs5aTaUYRwO1IEXqrm7BpD3iQ5LImylkpZgE6IL5Ei8ELtvVZae9u9Zn7gnGT9JLr6uqjtMKsdRQi3IkXghc6txOl9RZAEQKkcHhKiHykCL2Tq8K4zhs6JDAwn3F9PWbMUgRBfJEXghUzWWkL9Qgj1C1E7yqhL1idR1lKBoihqRxHCbUgReKEaa+2YXnH0UqboJ9Fus1LfaVE7ihBuY0BFUFhYyOLFi1m4cCGbN28+b7ykpITc3FyysrJYt24dfX19AOzfv5/c3FxycnK4//77aW1tHd70YtDsDju1HWavOyx0TrJePk8gxJe5LAKz2Ux+fj5btmxhx44dbN26lbKysn63WbNmDRs2bGDnzp0oisK2bdsAeOihh3jiiScoLCwkOTmZF198cWT2QgyYpasRm6PPa4vAGGQg1C+EUikCIZxcFsGePXuYO3cuer2eoKAgsrKyKCoqco6bTCa6u7tJT08HIDc31zn+9ttvk5ycjM1mw2w2M27cuBHaDTFQ55aW8LbPEJyj0WjOzhPIhLEQ57gsgvr6egwGg3PbaDRiNpsvOm4wGJzjvr6+HD9+nPnz5/Pxxx+TnZ09nNnFENRYa9FqtMQEG9WOoppk/SSae1po7GpWO4oQbsHH1Q0cDgcajca5rShKv21X49OmTWPPnj28/PLLrF69mpdffnlQASMjPfvMFoMhVO0I/ViOWYgLjWZ8dLjL27pb9sG6WP5rfGfyyokC6h21TDckjHKqgRurr7+n8PT8g+GyCGJiYti/f79z22KxYDQa+41bLP86A6OhoQGj0UhPTw8ffvghN910EwBf+9rX+OUvfznogI2NVhwOzzzVz2AIxWJpVztGPxVN1SSFTXSZyx2zD8al8gcooQT6BHLg9FFmBF8xyskGZiy//p7Ak/NrtZpB/wHt8tBQRkYGe/fupampia6uLnbt2kVmZqZzPC4uDn9/f4qLiwEoKCggMzMTHx8fHnnkEY4cOQLAO++8w1VXXTWocGJ4dfV10dTd7LWnjp6j1WhJ1ifKPIEQZ7l8RxAdHc3q1avJy8vDZrOxfPly0tLSWLlyJatWrSI1NZVNmzaxfv16rFYrKSkp5OXlodPpyM/PZ8OGDdjtdqKjo/n5z38+GvskLsJ0dmmJ8V5weUpXkvVJHG4oobm7hfAAvdpxhFCVyyIAyMnJIScnp9/XXnjhBef/T58+nVdfffW8+82ZM4fXX3/9MiOK4VLjZRejuZQZEVPZzlscay5jXuwcteMIoSr5ZLEXMVlrCfIJRO8fpnYU1cUGRxPqG8LxplK1owihOikCL2Ky1hEXEtvvrC5vpdVomRaRzLHmUll3SHg9KQIv4VAc1HR438VoLmV6xFTae63UdNSpHUUIVUkReImm7mZ67L3EyUSx0/TwZACOyeEh4eWkCLyESSaKzxMeoCc6yChFILyeFIGXqLbWokFDbLC8I/iiGRFTKG05Sa/dpnYUIVQjReAlTO01GIMM+Ov81I7iVlIip2Nz2DjRXOb6xkKMUVIEXqLKWkO8HBY6zxR9En46Pz5vPKZ2FCFUI0XgBTptnTR1NxMfOl7tKG7HV+fL9PApHGk8JqeRCq8lReAFqs9OFE8IiVM5iXuaGTmdpu5majvMrm8sxBgkReAFqttNAMSFyqGhC0mJmg7AkcYSlZMIoQ4pAi9Qba0lzC+UcX7es776YOj9w5gQMp4jDVIEwjtJEXiBamsN8aFyWOhSUqOu4GTrKdp6PXMNeiEuhxTBGGdz9FHbYSY+RCaKL+VKYxoKCgctR9SOIsSokyIY42o76nAoDjljyIXY4Giigwx8Wn9Y7ShCjDopgjGuuv3MGUPyjuDSNBoNVxpSKW05ibW3Q+04QowqKYIxrtpag7/Oj6jACLWjuL10YyoOxcGhhs/VjiLEqJIiGOOq203EhYxHq5F/alfiQ8YTFRDBgfpDakcRYlTJb4cxzKE4MFlr5bDQAGk0GmZHp3OsqZSWnla14wgxaqQIxrDGrma67T1MkIniAbs25ioUFPabP1M7ihCjRopgDKu21gAyUTwY0cFGJo1L4OPaYll7SHgNKYIxrLrdhFajJTY4Wu0oHuXa2NnUdNRRZTWpHUWIUSFFMIZVW2uICTLiq/NVO4pHmW2chY/Wh49ri9WOIsSoGFARFBYWsnjxYhYuXMjmzZvPGy8pKSE3N5esrCzWrVtHX18fAMXFxSxfvpylS5dy9913YzLJX1ijqdpaKx8kG4Ig3yBmRaXwcd0Beuy9ascRYsS5LAKz2Ux+fj5btmxhx44dbN26lbKy/ldzWrNmDRs2bGDnzp0oisK2bducX9+4cSMFBQXk5OSwcePGkdkLcZ72XistPa0yPzBEmfEZdPV1sa/ugNpRhBhxLotgz549zJ07F71eT1BQEFlZWRQVFTnHTSYT3d3dpKenA5Cbm0tRURG9vb08+OCDTJ9+ZonfadOmUVtbO0K7Ib5MJoovz+SwROJDxvO36j0yaSzGPJdFUF9fj8FgcG4bjUbMZvNFxw0GA2azGT8/P5YuXQqAw+HgN7/5DTfddNNwZheXcLqtGoAJsurokGg0GubHZ1DTUUdZy0m14wgxonxc3cDhcKDRaJzbiqL023Y13tvby9q1a+nr6+O73/3uoANGRoYM+j7uxGBQ5xoAdcfriA0xMnG8cciPoVb24XK5+ReFf4UdJ9/mo/p/kjE1fZhSDZy3v/5q8/T8g+GyCGJiYti/f79z22KxYDQa+41bLBbndkNDg3O8o6OD733ve+j1ep577jl8fQd/9kpjoxWHwzPfmhsMoVgs6qxvX9pQyWR94pCfX83sw2G48meOz+Cdyr/yWcUJ4kJG7wpv8vqry5Pza7WaQf8B7fLQUEZGBnv37qWpqYmuri527dpFZmamczwuLg5/f3+Ki8+caldQUOAcX7NmDRMnTuSpp57Cz89vUMHE0LX1ttPc08LE0Hi1o3i8BROuJ0DnT1HlbrWjCDFiXL4jiI6OZvXq1eTl5WGz2Vi+fDlpaWmsXLmSVatWkZqayqZNm1i/fj1Wq5WUlBTy8vI4evQou3fvJjk5ma9//evAmfmFF154YcR3ytudaqsCIGHcBJWTeL5g3yDmx1/HrlPvU9dhJkY+nCfGII3i5qdEyKGhwXvr5C7eqdzNr+Y/ir9uaO/EPPmtMQxvfmtvB/9v72OkREzjvtS7huUxXZHXX12enH9EDg0Jz3OqvZrY4Oghl4DoL8QvmJsS5vOp5TBlLRVqxxFi2EkRjDGKonCqrYqEcTI/MJxuTphPuL+eV0vfwKE41I4jxLCSIhhjmntasNo6ZKJ4mPnp/Fg2+Raq2k3srd2ndhwhhpUUwRhTeXaieKJMFA+72dHpJOsnsb3sLZq7W9SOI8SwkSIYYypaT+Gr9RnVc969hUaj4VvTv4HdYWfLsddk6QkxZkgRjDEVradICI3HR+vyzGAxBIagSJYmL+Zo03E+qvmn2nGEGBZSBGOIzdFHVbuJSWET1Y4ypmXGzWNGxFRePfEGlW2n1Y4jxGWTIhhDqtpN9Cl2KYIRptVouSfldsL8x/HC4T/R3mtVO5IQl0WKYAypaD0FwKRxUgQjLcQ3mPtS76LD1sFzh16iu69H7UhCDJkUwRhS0XqKyIBwwvy9Z9VENSWExnNvyp2cbqvm90f+RJ+jT+1IQgyJFMEYUtF2Wg4LjbI0Qwp3TL+VkqYTvHhkMzYpA+GBpAjGiObuFlp6WuWwkAoyxl/DN6Yu41DD5/zPof+jV65zLDyMFMEYUXr2KlpJeikCNcyPz3C+M3jqwPO09rSpHUmIAZMiGCPKWioI9AmQaxSr6Lrx17Iy9S5qO+r47/2/obq9Ru1IQgyIFMEYUdZykslhiWg18k+qplmGmfx49gMoKPzqwG853HBU7UhCuCS/NcaA1p52zJ0WkudQvCAAABNaSURBVPVJakcRwITQONbM+QExQUaeP/R/vF3xrqxYKtyaFMEYUHZ2fkCKwH3o/cNYfdX9zIm+krcq3uW3B/8Xa2+H2rGEuCApgjGgrOUkfjo/EkLj1I4ivsBP58fdV3yT26flUtpczmP7nnJ+6E8IdyJFMAaUtVQwOSwRnVandhTxJRqNhuvj5vKTOd9Hp9GRf+B3vF/1kaxcKtyKFIGHs/Z2UNNRJ4eF3FxCaDxrr17FFZHTeLX0DV78fDOdti61YwkBSBF4vOPNpQBMDZ+schLhSpBvEN9NvZtlkxdz0HKEx/Y9RXlLpdqxhJAi8HQlTaUE+gTKpSk9hEaj4eaJN/CT2Q+gRUP+ged4q+Jd7A672tGEF5Mi8GCKolDSdIJp4ckyP+BhEsclsPaaH3FNzFW8XfEuv/70eRq7mtWOJbzUgIqgsLCQxYsXs3DhQjZv3nzeeElJCbm5uWRlZbFu3Tr6+vovvPXUU0/xzDPPDE9i4VTXWU9LTytXRExVO4oYgkCfAPKu+Cb3XHE7Jmstj+3LZ1/dpzKRLEadyyIwm83k5+ezZcsWduzYwdatWykrK+t3mzVr1rBhwwZ27tyJoihs27YNgPb2dh5++GFeeumlkUnv5UqaTgAwPWKKyknE5bg65koeuuZHxAQZ+cPRv/DswRepba9XO5bwIi6LYM+ePcydOxe9Xk9QUBBZWVkUFRU5x00mE93d3aSnpwOQm5vrHN+9ezeJiYl8+9vfHqH43q2k6QTGoCgiAyPUjiIuU1RgJD+e/QC3TV1KRetpflr0KG+d3IXNblM7mvACLq9wXl9fj8FgcG4bjUYOHTp00XGDwYDZbAZg2bJlAHJYaATY7DZKm0+SMf5qtaOIYaLVaLkh/jquNKTyVlURb1f+lb21+1mUeCNzY+fgo3X54yrEkLj8znI4HGg0Gue2oij9tl2NX67IyJBheyw1GAwjc7WwAzVHsDlsZCRdOWLPMVKPO1o8Nb+BUB6M/ze+mnQdfzn8Bn85/jpFp3eTlTyfGydloA8MUzvigHjq63+Op+cfDJdFEBMTw/79+53bFosFo9HYb9xisTi3Gxoa+o1frsZGKw6HZ06eGQyhWCztI/LYH5bvw1/nR7Q2bkSeYySzj4axkD9aG8eDafdztOkE71d9yMuH32Dr4UKm6JO4KnoWVxpSCfELVjvqBY2F199T82u1mkH/Ae2yCDIyMnjmmWdoamoiMDCQXbt28eijjzrH4+Li8Pf3p7i4mNmzZ1NQUEBmZubg04sBcygODlmOkhI5HV85XDCmaTQaUiKnkRI5jbqOevabP6O4/jNePv46207sIDlsEjOjZpAaNQNjkMH1AwpxAS5/i0RHR7N69Wry8vKw2WwsX76ctLQ0Vq5cyapVq0hNTWXTpk2sX78eq9VKSkoKeXl5o5Hda1W2nabdZmWWYabaUcQoigk2siRpIdmTbqbaWsuB+oMcaSjh9bI3eb3sTYxBUcyMnEFq1BUk6yfJtSnEgGkUNz9pWQ4NnW972Vu8X/URv/zKBgJ9Aof98cGz3xqDd+Vv6GriSGMJRxpKKG0up0+xE+6vZ27sbL4Sl0GY/+gf6/am19/djMihIeFeFEXhkOVzpoZPHrESEJ4lKjCCG+Kv44b46+ju6+bzxmP8s7aYosr3ePf035gbM5tbJt2E3t8zJpnF6JMi8DBV7Sbquxr4aoLMw4jzBfgEMDs6ndnR6dR3NrD79N/4Z+1+Pqk7wM0Tb+DmiQtkXkmcRw4iephP6g7go9FxlTFN7SjCzRmDorh9+q38v7k/JSVqBm9VvMvjn8jFccT5pAg8iN1hZ7/5M2ZGzSDIN0jtOMJDRAVGct/Mb/H9Wf9Gj72XXxX/ll2n3pfrKAsnKQIPUtJ0gnablWtiZqsdRXigKyKnse7aH3OlMZWC8nd4/tD/0WnrVDuWcANSBB7kk7oDBPsGkRI5Te0owkMF+gRwb8qd3DZ1KSVNJ3h836851ValdiyhMikCD2G1dXCo4XNmG2fJmjPismg0Gm6Iv47VV30Ph6Lw5IHn+Gftftd3FGOWFIGH2GP6BJujj6/EzVM7ihgjJoUlsPbqB0kKS+RPJdt45USBXCnNS0kReAC7w87fTHuYFp7M+JAYteOIMSTEL5gfzPo3bpzwFT6o/ge/+ez3tPda1Y4lRpkUgQc42PA5LT2t3BB/ndpRxBik0+q4dUoOeTO+ycm2Uzy+79eUtVSoHUuMIikCN6coCu9XfUhUQAQzo2aoHUeMYdfGzuYnVz2Aj9aHX3/6PG9VvEufo8/1HYXHk1lHN3esuZSTrae4bepSWURMjLiEcfGsvfpBth7fwdsV7/Jp/SFWTMslWT/psh63u6+byrYqqtpNtPS00nH2tFU/nS8RARHEBBlI1ie57bLaY50UgRtTFIU3yosI99dz3fhr1Y4jvESgTwD3pKxgdnQaLx/fTv6B55gRMZWFE28gWZ80oD9IGjubKTYfobz1FCdbKqi21qJwZvHIAJ0/wb7BaIBuew9WW4fzfgmhcVwTM5uro6+UUhhFUgRu7FDD55xur+Zb02+T9WHEqEuNuoKp4cn8vXoP757+gF9/+j+E++tJiZzGxHEJRAToCfQJoNduo8PWgbnTQk1HHSdbT9HU3QyAn9aXxHEJLEq8kaSwRBLHTTjvU/G99l6qrbWcaC7nM8thXi19g4Lyd8gYfw03J8wnPECvxu57FVmGegRdzlK2Nkcfj3/yFAoK6675MTqtbpjTXZonL8MLkn+49dp7OdRwlH11ByhvraSrr/uCtwv315M4bgJpcdOI9oklPmT8oL93TdZa3qv6kE/qDqDT6M4slpcwHz+d33DsyoC42+s/GLIM9Riyq/I96jrreWDWvaNeAkJ8mZ/OjznR6cyJTsehOLB0NdLW0063vRtfrS9BvoEYAiOdS6Nfzi/SuJBY7prxDRYn3syO8rd4u+Jd9tbs4+vJ2VxlTBvWa6KLM6QI3FCNtY6dp97n6ugrSYmcrnYcIfrRarREBxmIHuFLY0YGhvNvM79FZnM5r5S+wf9+vpmPaj7m9mlfl8tyDjM5DcXN9Npt/KlkKwE+/tw6JUftOEKobkr4ZNZe/SDfnLqM023V/PyTfIoq35NTW4eRvCNwI4qisOXYa1S11/DdtLsJ9RvccT4hxiqtRktmfAZphhRePfEGhSeL2G/+lDumLycpbKLa8TyevCNwI++e+oB95gNkT1pIatQVascRwu3o/cO4L/Uu7k+7h+6+Hp4s/i0vH98uy2lfJnlH4CaKKt+j8GQRs42zWJR4o9pxhHBrqVFXMEWfxJsnd/FB9T84YD7IosQb+Up8hpxqPQTyiqmsz9HHjrK3eb/6I66Ovoq7ZtwmZ0UIMQABPgEsn/o15sbOYUf527xW9iYfVP+DryUt4qroWfJJ/EEY0CtVWFjI4sWLWbhwIZs3bz5vvKSkhNzcXLKysli3bh19fWcmcWpqarjzzjtZtGgR3/ve9+jo6Djvvt6srsPMr4qf5f3qj7gh/jryrviGnCoqxCDFh47nB+n38YNZ9xHgE8BLR//Cox9v4iPTP+mx96odzyO4LAKz2Ux+fj5btmxhx44dbN26lbKysn63WbNmDRs2bGDnzp0oisK2bdsAeOSRR7jjjjsoKipi5syZ/Pa3vx2ZvfAwDV1NbDn2Khs/fpKGriZWpubJWkJCXKYZkVNZe/WDfDvlDvx1/vzl+Os8/NGjbDn2GseaSuVaC5fg8tDQnj17mDt3Lnr9mY95Z2VlUVRUxA9+8AMATCYT3d3dpKenA5Cbm8vTTz/Nbbfdxr59+3j22WedX//Wt77FmjVrRmpf3FpjVxNHm07wWf1hjjWXotPomB+fwaLEr8rZQUIME61Gy5zodGYbZ1HeWsmemk/YV3eAf9R8TJBPIJP1iUwOm8RkfSITQuNlPuEsl69CfX09BsO/PrxhNBo5dOjQRccNBgNms5nm5mZCQkLw8fHp9/WxrrT5JHWd9bT1tNFT2U1NSz3V1hrnxT4iAyLInnQz82KvljVUhBghGo2GZP0kkvWTWDHt6xxtPM6RxmOUt1ZwuKEEOFMa4f56ogIjiAqMJNxfT5BvIIE+AcTaIumy2tCgQaPRokFDwrixWxwu98rhcPSbvFQUpd/2xca/fDtgSJOgWq3nTJy29rSx+fiZw2IaNIT4BxPiG8K82DnEhsQwWZ9IVECEx0wGe9JrfyGSX13ukj9A689VMWlcFZMGQIetk1Pt1dRaa2nqaaGpu4XqDhMnWkr/dafK8x8nMz6DmxLmj07oyzCU191lEcTExLB//78ubG2xWDAajf3GLRaLc7uhoQGj0UhERATt7e3Y7XZ0Ot159xuo8HDPWYo2khCeHf9ztWMMm8EuXOVuJL+63DV/JCEkxAz+d9FY5nJ2MiMjg71799LU1ERXVxe7du0iMzPTOR4XF4e/vz/FxcUAFBQUkJmZia+vL3PmzOHtt98GYMeOHf3uJ4QQwj0MaBnqwsJCnn/+eWw2G8uXL2flypWsXLmSVatWkZqayrFjx1i/fj1Wq5WUlBQee+wx/Pz8MJlMrF27lsbGRmJjY3nyyScJCwsbjf0SQggxQG5/PQIhhBAjS05cF0IILydFIIQQXk6KQAghvJwUgRBCeDkpAiGE8HJSBEII4eXctgieeuopnnnmGed2W1sb3/nOd7jlllu48847+32a2d24WrbbXVmtVpYsWUJ1dTVwZsHBnJwcFi5cSH5+vsrpLu43v/kN2dnZZGdn88QTTwCekx3g17/+NYsXLyY7O5uXXnoJ8Kz85/zyl79k7dq1wMWXpndHd911F9nZ2SxdupSlS5dy8OBBj/oZfu+998jNzeWWW25h48aNwBC+fxQ309bWpjz00ENKWlqa8vTTTzu//sgjjyjPP/+8oiiKsn37duXBBx9UK+Il1dXVKQsWLFCam5uVjo4OJScnRyktLVU7lkufffaZsmTJEiUlJUWpqqpSurq6lPnz5yunT59WbDabcu+99yoffPCB2jHP849//EP55je/qfT09Ci9vb1KXl6eUlhY6BHZFUVRPv74Y2XFihWKzWZTurq6lAULFiglJSUek/+cPXv2KNdee63y7//+74qiKEp2drby6aefKoqiKA899JCyefNmNeNdlMPhUK6//nrFZrM5v+ZJP8OnT59Wrr/+eqW2tlbp7e1Vbr/9duWDDz4Y9PeP270j2L17N4mJiXz729/u9/UPPviAnJwcAJYsWcLf//53bDabGhEv6YvLdgcFBTmX7XZ327Zt4z/+4z+c60EdOnSIiRMnMmHCBHx8fMjJyXHL/TAYDKxduxY/Pz98fX2ZPHkylZWVHpEd4JprruGPf/wjPj4+NDY2YrfbaWtr85j8AC0tLeTn53P//fcDF16a3l3znzx5EoB7772Xr33ta/z5z3/2qJ/hd999l8WLFxMTE4Ovry/5+fkEBgYO+vvH7Ypg2bJlfOc730Gn63+lri8ud+3j40NISAhNTU1qRLykCy3b7QnLb//85z9nzpw5zm1P2Y8pU6Y4f+FUVlbyzjvvoNFoPCL7Ob6+vjz99NNkZ2czb948j3ntz9mwYQOrV69m3LhxwMWXpndHbW1tzJs3j2effZY//OEPvPzyy9TU1HjM63/q1Cnsdjv3338/S5cuZcuWLUP6/lGtCN555x0yMzP7/XfPPfcM+P6KoqDVul2PuVy221N42n6UlpZy77338rOf/YwJEyZ4VHaAVatWsXfvXmpra6msrPSY/K+88gqxsbHMmzfP+TVP+t658soreeKJJwgNDSUiIoLly5fz9NNPe0x+u93O3r17+cUvfsHWrVs5dOgQVVVVg86v2lUWbrnlFm655ZYB395oNNLQ0EBMTAx9fX10dHQ4r5rmTlwt2+0pvry8uDvvR3FxMatWreLhhx8mOzubTz75xGOyl5eX09vby4wZMwgMDGThwoUUFRX1e0fszvnffvttLBYLS5cupbW1lc7OTjQazQWXpndH+/fvx2azOYtMURTi4uI85vsnKiqKefPmERERAcBNN900pO8f9/uT+iLmz5/Pjh07gDPffHPmzMHX11flVOdztWy3p5g1axYVFRXOt55vvvmmW+5HbW0t3//+99m0aRPZ2dmA52QHqK6uZv369fT29tLb28vu3btZsWKFx+R/6aWXePPNNykoKGDVqlXceOONPPbYYxdcmt4dtbe388QTT9DT04PVamX79u3893//t8f8DC9YsICPPvqItrY27HY7H374IYsWLRr094/HXHftwQcfZO3atWRnZxMaGsqmTZvUjnRB0dHRrF69mry8POey3WlpaWrHGjR/f38ef/xxfvjDH9LT08P8+fNZtGiR2rHO8+KLL9LT08Pjjz/u/NqKFSs8Ijuc+QPn0KFDLFu2DJ1Ox8KFC8nOziYiIsIj8l/Mpk2b+i1Nn5eXp3akC1qwYAEHDx5k2bJlOBwO7rjjDmbPnu0xP8OzZs3ivvvu44477sBms3Hddddx++23k5SUNKjvH1mGWgghvJzHHBoSQggxMqQIhBDCy0kRCCGEl5MiEEIILydFIIQQXk6KQAghvJwUgRBCeDkpAiGE8HL/H/hmDvyJRhXtAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD7CAYAAABpJS8eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXxc1X3w/8+9s89otI32xbt9bBZjbMxuCJglAZJA2BpoCFlK2yRPtzxN+zxZ2jQ/+svT9mnyarM0bdIsJTQhCyQsBgI2YFbbYMBg+3i3te+7NOu9zx8jGUmWpZE08ow03/cLv9A999w73xnNfHXmnHPPNWzbRgghxMJnZjoAIYQQZ4YkfCGEyBGS8IUQIkdIwhdCiBwhCV8IIXKEM9MBnIYH2Ag0AYkMxyKEEPOFA6gEdgKR8TuzNeFvBLZnOgghhJinNgEvji/M1oTfBNDVNYBlZe91AqFQHh0d/ZkOY1LZHmO2xwfZH2O2xwcSYzqkEp9pGhQVBWA4h46XrQk/AWBZdlYnfCDr44PsjzHb44PsjzHb4wOJMR2mEd+EXeEpJXyl1F3AlwAX8E2t9bfH7b8F+CrJ/qOdwH1a66hS6uPA14GW4aqPa62/mGrEQggh0mfKhK+UqgbuBzaQHAR4WSm1TWu9d3h/APgWsF5r3aKU+hlwL/DvwAXAX2it/3uO4hdCCJGiVKZlXgNs1Vp3aq0HgF8Ct43sHC5bMpzs/UAZ0DW8eyPwcaXUHqXUA0qpojTHL4QQIkWpJPwqxg4ANAE1oytorWNKqQ8AdUAJ8PSoul8D1g7v+9ZsAxZCCDEzqfThm8DokQIDsMZX0lpvAUJKqb8HvgvcpbW+ZWS/UuofgMPTCS4UyptO9YwoLQ1mOoQpZXuM2R4fZH+M2R4fSIzpMNv4Ukn49STndI6oABpHNpRSxcAFWuuRVv1PgZ8rpQqAT2qtvzFcbgDx6QTX0dGf1aPmpaVB2tr6Mh3GpLI9xmyPD7I/xmyPDyTGdEglPtM0Jm0op9Kl8wywWSlVOtxHfyvw5Kj9BvCAUmrR8PbtJCf89wNfUEpdNFz+OeDhFB5PCCHEHJiyha+1blBKfRHYBriB72utdyilngC+orXepZS6D3hMKWUDe4E/0lonlFJ3AN9VSvmAA8A9c/dURDo5ExHscDit5zS8XuIOT9rOl+4Y0x2fENkmpXn4WusHgQfHld0w6udHgEcmOG47sH6WMYoMsMNhOnbtTus5QxecD4H0JdR0x5ju+ITINrJaphBC5AhJ+EIIkSMk4QshRI6QhC+EEDlCEr4QQuQISfhCCJEjJOELIUSOkIQvhBA5QhK+EELkCEn4QgiRIyThCyFEjpCEL4QQOUISvhBC5AhJ+EIIkSMk4QshRI6QhC+EEDlCEr4QQuQISfhCCJEjJOELIUSOkIQvhBA5QhK+EELkCGcqlZRSdwFfAlzAN7XW3x63/xbgq4AD2Ancp7WOKqUWAQ8AZYAG7tZa96cxfiGEECmasoWvlKoG7gcuB9YB9ymlzhq1PwB8C7hWa3024AXuHd79HeA7WuvVwC7gy2mNXuSsxOAgXS+9RKS+DiscznQ4QswLqbTwrwG2aq07AZRSvwRuA/4OQGs9oJRaorWOKaX8JFvzXUopF3AFcPPweX4EPA/8VXqfgsgltm3Tt+NV2h76GYmenmShYRC88CJ8q1ZnNjghslwqffhVQNOo7SagZnSF4WT/AaAOKAGeHv5/r9Y6frrjhJiu7m3P0vwf38NZVMziP/1TCq97P+7KKvp2vEak7kSmwxMiq6XSwjcBe9S2AVjjK2mttwAhpdTfA98F/nLccUx03GRCobzpVM+I0tJgpkOY0kxiDNtDRIOetMbh97vxThBLqvH17ttP+8//m6KNG1jzv/6KSEcHzliYosVVNP7mUXpffIHqj9yMpySU1vimE2OmZHt8IDGmw2zjSyXh1wObRm1XAI0jG0qpYuACrfXTw0U/BX4OtAIFSimH1joBVI4+LhUdHf1Y1vi/GdmjtDRIW1tfpsOY1ExjdAxG6euLpDUW92CUvnGxpBpfvK+X41//R5zFIYo/9knaOwfHxBi84mo6fvsIrS+/RuFVm9MW33RizJRsjw8kxnRIJT7TNCZtKKfSpfMMsFkpVTrcR38r8OSo/QbwwPCMHIDbgRe11jFgO3DncPk9wJYUHk+IU3Q88msSfX1UfeZzOPyBU/abPh/+1WuI1tcR7+rKQIRCZL8pE77WugH4IrANeBN4UGu9Qyn1hFLqAq11B3Af8JhS6i1A8d7A7GdIzurZS/Jbwpfm4kmIhS3SUE/PC89T+L6r8dQuOm093+o1GE4nA+/uOYPRCTF/pDQPX2v9IPDguLIbRv38CPDIBMcdB943uxBFLrNtm7aHfobp8xH64IcnrWt6PHhXKYb27SVx3vk4gtndHyvEmSZX2oqsNrj3XQbffYfQTR/GkTf1IL5/zdkADB08MNehCTHvSMIXWa1zy+M4CgspuOrqlOo7/H5cFZVEThzDtrN3wF+ITJCEL7LW0JHDDO3fR9G112O6XCkf5120mERfH4luGbwVYjRJ+CJrdW15AtPvp/DK903rOE/tIjAMwsePz01gQsxTkvBFVoo2NdL/5hsUXr0Z0+ub1rGmz4errJzIiWNzE5wQ85QkfJGVOp/aguFyUbj52hkd71m8hERPD/Hu7jRHJsT8JQlfZJ1YZye9r7xMweWbcAbzZ3SOkfn6kTrp1hFihCR8kXW6f/cU2DZF171/xudw+P04i4qINjenMTIh5jdJ+CKrJPr76X7hOYIXXoSrpHRW53KVVxJra8VOxKeuLEQOkIQvskr3tmexIxGK33/D1JWn4K6ohESCWFtbGiITYv6ThC+yhhWJ0PXs7wisPQ9PTe2sz+cqLwfDINoi3TpCgCR8kUV6XnwBq7+f4g/clJbzmW43zuIQseamqSsLkQMk4YusYMfjdD39JL6Vq/CtXJm287orKoi1t2PHYmk7pxDzlSR8kRX6drxGvKODojT03Y/mqqgEyyLa1prW8woxH0nCFxlnJxJ0PPZbPLW1BM5dm9Zzu0vLwDCItbSk9bxCzEeS8EXG9b32KrHWFkIfuhnDTO9b0nC5cBYVE2uXmTpCSMIXGfVe634RgXXr5+QxXCWlxDvasS1rTs4vxHwhCV9kVOu2595r3RvGnDyGs6QEOxYj0dMzJ+cXYr6QhC8yxgqHOf7Af+NdtozAuvPn7HFcpckrdqVbR+Q6SfgiYzqffIJYVxeld941Z617AEcwH8PtJtbePmePIcR8IAlfZESss4Oup5+kZNNl+JavmNPHMgwDV0mJtPBFznOmUkkpdRfwJcAFfFNr/e1x+z8MfBUwgKPAJ7TWXUqpjwNfB0bmxD2utf5iuoIX85Nt27T994Ng2yy+5/fpOwOP6SwpJbrnbaxYbFq3SxRiIZmyha+UqgbuBy4H1gH3KaXOGrU/H/gucKPW+jzgbeBvh3dfAPyF1nrd8D9J9oL+13fSv/t1Qh+6BW9Z2Rl5TFdJKdg28Q7p1hG5K5UunWuArVrrTq31APBL4LZR+13AZ7XWDcPbbwOLhn/eCHxcKbVHKfWAUqooXYGL+SnR10frT/8Lz+IlFF13/Rl7XFdJCSADtyK3pZLwq4DRq081ATUjG1rrDq31wwBKKR/w18Ajo+p+DVgL1AHfSkPMYp6yLYvmH/8nicFBKu79FIbDccYe2/R4cQSDxDs6zthjCpFtUunDNwF71LYBnHIFi1KqAHgYeEtr/WMArfUto/b/A3B4OsGFQnnTqZ4RpaXBTIcwpZnEGLaHiAY9aY2j9/ltDLy5m6Wf/gRV60/2Cs74NZxujANlpUTa2gme5hi/3433NLFk++852+MDiTEdZhtfKgm/Htg0arsCaBxdQSlVCTwFbAX+fLisAPik1vobw9UMYFq3Huro6Mey7KkrZkhpaZC2tjMx5DhzM43RMRilry+StjgiDfX0bHuW4EWX4LzoipMxzeY1nHaMwULih4/Q09GL6T416bsHo/RNEEu2/56zPT6QGNMhlfhM05i0oZxKl84zwGalVKlSyg/cCjw5slMp5QAeBR7SWv+Z1nokQ/cDX1BKXTS8/TmS3wBEjkn09dH74gt4Kispv+feOZ1zPxlncTEA8c7OjDy+EJk2ZQtfa92glPoisA1wA9/XWu9QSj0BfAWoBdYDTqXUyGDuLq31p5VSdwDfHe7bPwDcMyfPQmQtOx6n5/ltANR86lOYnvR2E02HqzgEJBO+u6IyY3EIkSkpzcPXWj8IPDiubGTh8l2c5puC1no7yT8GIgfZtk3fa68Q7+qk4OprcJeUkMhgPKbPh+n3E+uUgVuRm+RKWzFnhvR+wkcOEzjvfDzVNVMfcAY4i4qlS0fkLEn4Yk5EW1vo37UDd00t/jTf1GQ2nKEQid4e7Pi05g8IsSBIwhdpZ0Ui9G5/HkdeHvmXXZ6xQdqJuIqKk1fcdkkrX+QeSfgirWzbpu/Vl7HCYfI3XTnh9MdMcoaSA7cx6dYROUgSvkir8KGDRE4cJ2/delyhkkyHcwrTH8Bwe4jLwK3IQZLwRdpYQ0P0v74TV3kFvrPOznQ4EzIMA2dREfGurkyHIsQZJwlfpE3/7texEwmCF12cVf324zmLiol3d8s9bkXOkYQv0iLW1kr48CH8a87CWVCY6XAm5SwqgkScRH/2XkYvxFyQhC9mzbZt+l7fienz4z/3vEyHMyVn0fASC9KtI3KMJHwxa7HmZuJtbfjPXTsv7iblLCwAw5CEL3KOJHwxawPvvI3p8+FbMbf3pk0Xw+HEkV8gc/FFzklpLR0xP8QtiMTGXkFqdw4yGJn+VaWG7SRRtWjKerGGemLNTeRtuADDMX/eTs6iImJtcvcrkVvmzydUTCkSi7NzX8uYsmCel77+8LTPZUaGGDheN2W9it1byfP68K5U036MTHIWFhE5dhQrGsV0uzMdjhBnhHTpiBlzhAfxt9XjWbd+XvTdj3Zybfxu6ccXuUMSvpixYONhDGy8567LdCjT5iwsApB+fJFTJOGLmbFt8hsOMlRUjmP4xiLzien3J5dYkJk6IodIwhcz4u1qwTXUR2/1ykyHMiPvLbEgLXyROyThixnJbzhIwulioHxxpkOZsWTC78a27akrC7EASMIX02YkEgRaTzBQvgR7Hk3FHM9ZVJxcYqFPllgQuUESvpg2X2cjZiJO/zxu3cPwmjrIwK3IHZLwxbQFWk6QcLoYKq7IdCiz4iwoTC6xIFMzRY5I6fu4Uuou4EuAC/im1vrb4/Z/GPgqYABHgU9orbuUUouAB4AyQAN3a6370xi/ONMsi0BbHYOltWA6Mh3NrBhOJ45gvtzUXOSMKVv4Sqlq4H7gcmAdcJ9S6qxR+/OB7wI3aq3PA94G/nZ493eA72itVwO7gC+nNXpxxvm6WnDEIgyUTb3swnzgLCqSFr7IGal06VwDbNVad2qtB4BfAreN2u8CPqu1bhjefhtYpJRyAVcM1wf4EXB7WqIWGRNoPY5lOhgsqc50KGnhLCrG6u/HikYzHYoQcy6VLp0qoGnUdhNw4ciG1roDeBhAKeUD/hr4V6AE6NVax0cdV5OGmEWm2DaB1joGS6rn9eyc0U4O3EorX+SAVD61JjB6orIBnHJvOKVUAcnE/5bW+sfDXUHjJzhP655yoVDedKpnRGlpMNMhnGR3DhLM855SPlHZVGJ2jIR37NvD2deNMzJIrKIW76h9brcDf9CTPM6yOdBpcajb4kiPRW/UZigGpgEldQcoKy1g1eJCzl1ewuKKfGDmr2HYHiI6/Lgz5aupoAdwDvXh97vxniaWbPo9TyTb4wOJMR1mG18qCb8e2DRquwJoHF1BKVUJPAVsBf58uLgVKFBKObTWCaBy/HFT6ejox7Ky96KY0tIgbW3ZM4d7MBI/ZWXMGa+WGY0TDo9dVrmgMbl6Zm9+OfFR+6LRBN0dYV5qsXmlBfpiyVZBVQCK3FDhgYQNQ7bN24faeH53PQBFQQ9XX1DL+ctDVJUEph2jYzBKX19k2seNZttODLeb/qZWBgej9E3w+8y23/N42R4fSIzpkEp8pmlM2lBOJeE/A/ytUqoUGABuBe4b2amUcgCPAg9prf+/kXKtdUwptR24E3gQuAfYksLjiSzl62gk6s8n7n+vlWHbNi8f7uWJPTaRBKwphEsrDJbng9cx9kbmoQsUiUAB7T1D6BPd7NzfysPPH+ZX2w6xdnmIGy5ezKraM3s/3PeWWJAuHbHwTZnwtdYNSqkvAtsAN/B9rfUOpdQTwFeAWmA94FRKjQzm7tJafxr4DPBjpdSXgBPAR+fiSYgzwErg62ymr3r5yaLBuM1rrdB+tJNVBXDLUoNynzHJSZJKCnyUnOvjsnMrcXpdPPzsAX63q56v//QNzl5azJ1XraCm7Mx15zmLigkfOohtTavHUYh5J6WRN631gyRb6aPLbhj+cRenme2jtT4OvG8W8Yks4e1uw7TiDIaqAOiO2LzYDDEL7tgQ4iJXJ4YxdbIfryjo5YOXLeW6Cxfx3O4GHn3pGH/zwx1cua6a265cjt8794PDzsIi7HicWGcnjmDRnD+eEJkiV9qKlPg7GrENg6HiClqHbLY1Jkfkr6qCjUuCM0r2o3lcDq6/cBFf/6NLuHp9Dc+/2cCXvv8quw/M/W0IR26GEm5omKKmEPObJHyREl9HI+GCUjriLl5sBr8TNldDoWd2iX68PJ+Lu69dxZfuuYA8n4t//fUe/vOJfUSiibQ+zmgjSyxEGqc1p0CIeWdhTKYWc8qMRfH0dnJs2QVsbwaPA66oBJ9zesneYQADPWPKwvYQjsFTL3pakQ9fvV3xyI5GHtvVxKETnXzm/ctYXOp/Ly4rPX8EkkssBKWFLxY8SfhiSt7uVsKmi8edyZudXFEx/WQPYEUjdLy1d0xZNOiZdGrlVS6oOcvgpwcjfO2hfdyxzGBDafKxS84767THTZezqFha+GLBky4dMSVPdytPlF/GoOXg8goIutPbjTOVlQUGn19rUBuAnx6y+c0xCyvNNy1xFhUR6+ggMTSU1vMKkU0k4Ysp6SEvBwO1nBsyCHnPbLIfEXQb/PFZBpdXwPNN8CNtE4mlbxqlsyg5cBttqE/bOYXINpLwxaS6BxNsD6xiidXNyvzMxuIwDT6y1OSWJQbvdsHXHz1Kfyw9Lf2RNXUidXVpOZ8Q2UgSvjgty7bZ1ZrAn4hwUXBg1lMv02VTpcG9yuBER5hvv2vTE5190jf9AUyfj0i9JHyxcMmgrTitAz3QZbn4SNuLsPSy09Zz5geJM/X6+L2ml0TV2HqDbgeJ4PRn25xVBX9yboBvPbKXb+138IebKigKzO7t7KyqZqjuBAORsWsI2Z2DDI4r87icOKW5JOYZSfhiQr1DMd7tguXRVhYbfdS7Tr8qZcwy2Ln7+JTnzKuJ0l/fNKbM63Weskhbqi55/0VcVmazvTnON5+p56oq8M9g9tCICm8RvgNvsXNvExjvZfOJFqDbuKYcp0c+PmJ+kTaKOIVt27yquzCxua75JcKF5ZkO6bRCXoMrKyGaSA7mhuMz796JF5dhxqI4ervTGKEQ2UMSvjhFQ9sAjV1hzvMPURDtI1xYmumQJlXkMdhUCUPxZNKPJmaW9OPFZQC42pumqCnE/CQJX4xhWTav6zbyfU7OiSavPI0UZHfCByjxJqds9sfgpRZIzOA+CrHiMmwMnB3NcxChEJknCV+McbC+h56BKBuWFxLobSPh8hDzZ/ddgEaU+Qw2lkF7GHa0JbumpsXpIlEYwtUuCV8sTJLwxUnReIK3DrVTXuRjUYkPb3cb4YISyJLpmKlYlGewthjqB2BP5/SPj5VU4JIWvligJOGLk/Yf7yYcTbBhdSlmLIJroGdedOeMt6oAlgVB98CJ/um18mOhCpw9nRjR2d06UYhsJAlfABCNJdh7rJOasjxKCny42hoxIOsHbCdiGAbnl0CJF3a1QVck9aQfK6kAwNnRMlfhCZExkvAFAPtPdBONWZy3PASAq6UBG4jkl2Q2sBkyDYNLysBtwsstqc/ciYeSCd/VITN1xMIjCV+Mad2HCrwAuFobiAUKsFzuDEc3c16nwaXlyemaO1McxE0EC7HcXhm4FQuSJHxxSuse28bdlrzD1XxX7DU4LwSNg3CwN4UDDCM5cCsJXyxAkvBzXDxhse9YF9WlgZOte0dfN2Z4kEjB/OzOGW9FPlT54e0O6EyhPz9WWoWzvQnSdEctIbJFSglfKXWXUmqvUuqgUuqzk9T7iVLq3lHbH1dKNSml3hz+d38aYhZpdKihh0gswTlLi0+WuVqHL7jKD2UqrLQyDIONpeB1wI7WqS/KipVVY8ZjOLvaz1CEQpwZU67+pJSqBu4HNgAR4GWl1Dat9d5RdaqA7wGbga2jDr8A+Aut9X+nNWqRFpZls/doFyUFXsqKfCfLXa0N2KZJJFiUwejSy+0w2Fhm80ITvN0J50/y5SVWWgUkX4d4KHvXERJiulJp4V8DbNVad2qtB4BfAreNq3M38BvgoXHlG4GPK6X2KKUeUEotnAyyAJxo6aN/KMY5y4rHrHXvbm0gXlwOpiOD0aVfuc9gRT4c6oWWwdO38uOFJVguN642ucetWFhSSfhVwOg5ak1AzegKWut/1Fp/f4Jjm4CvAWuBOuBbM4xTpJlt27x7tJN8v4uasrzRO5IzdEoqMxfcHDq3GIIu2NUO8dN17ZgmsZJK3MNdW0IsFKks6G0Coz8ZBpDSzUS11reM/KyU+gfg8HSCC4Xypq6UYaWl2bPOjN05SDDPe0r5RGWNbf109Ea4cn0NBcH3unOMrnbMaBi7shqvN7X13h0OM6W6p6uX6uOMZxgzO/bSaounjiXY12uyseK9bzFutxPX8GtlVC3C9fZrBP3JaanjX0O/30NpsX9Gcc+FbHofno7EOHuzjS+VT0s9sGnUdgUw5XddpVQB8Emt9TeGiwxgWne66Ojox5rBqodnSmlpkLa2vkyHcdJgJH7KjTomunkHwOv7W3C7TKpDvjH7vUePADBUVE64P5bS4yYSVko3MXFOUG82N0CxbWZ0bL4Jy/Nhf6dFldc6eWN2RzROePi1iBeVUxSLMlRXh2/x4lNew8HBCG2J7JjFk23vw4lIjLOXSnymaUzaUE6lS+cZYLNSqlQp5QduBZ5M4bh+4AtKqYuGtz8HPJzCcWKO9Q/FqGvpZ2VNIU7H2LeAu7UB2+EkXjT/5+BP5txi8DmSSy9YE1yQdXLgVvrxxQIyZcLXWjcAXwS2AW8CD2qtdyilnlBKXTDJcQngDuC7Sql9JGf5fCE9YYvZ0Ce6wAC1qPCUfSf77xfYgO14LtNgfQn0xuBgz6n740UlWE6XJHyxoKTUAaq1fhB4cFzZDRPUu3fc9nZg/SziE2kWi1scrOthUVkeeT7X2J22hautkaHV6zIT3BlWFTCo8tu82wW1eTaB0TtNB/GSSlytDUQzFaAQaSZX2uaYo029ROMWq5ecOkPW0d2BGYsQLauZ4MiFaV0oOSPh7Y5T90XLa5IzdbKkr16I2ZKEn2MO1HVTmOemrNB3yr6RaYixsuozHVbGBFwGqwuhbgCausYOzMbKazASccw2WTlTLAyS8HNIR0+Yzt4Iq2oLx1xoNcLV2oDldBEvWhhr6KRqdQEEnLDjYNeYAdxoeS0AjsYTmQpNiLSShJ9DDtR14zANllXlT7jf1dqQnJ2ywAdsx3OYBucWQ9dAjCMN7y2pmcgvIuEL4Gg8nsHohEgfSfg5Iha3ONrUy5LKIG7XBAndSg7Y5lJ3zmg1ASgJutl9sJ14Yvi6QsMgVl6D2SQtfLEwSMLPEUebeoknbFbVnjoVE8DZ1YYZj+VswjcMg40rChmKxNl7rOtkebS8FkdHK0ZkKIPRCZEekvBzxMhgbUnBqcsswHtLIo9ccJSLygu91Jbl8e6RToYiySt4Y8P9+O6W+kyGJkRaSMLPAVMN1sLwgK3LTbwwtwZsx1u/qpS4ZfH24eQ8zWh58huPq6Uuk2EJkRaS8HPAVIO1kJySmRywze23REGem1W1hRyo66anP4Lt8ZEIleNulha+mP9y+9OdA6KxxOSDtQCJBK72JmKludl/P955K0I4TZM3DiTveJWoXoy7+QTYKS0SK0TWkoS/wB2s6550sBbA2dWKkYgTK5eED+B1OzlnWTF1rf20dA6SqFmKGRmSWx6KeU8S/gL37tGOSQdr4b0rbKM5OkNnImuWFOHzOHjzYDvxmqUAuBuPZTYoIWZJEv4C1tETpq1raNLBWhgesHV7SRQsjJuWp4PTYXLushAtXUPURT0k/HmS8MW8Jwl/ATtQ143TMflgLQxfYVtWnbyFlDhpZW0Bfq+T1/a2EKlcgrtJrrgV85sk/AVq5MraFTWFpx+sBUjEcbU3S3fOBBymydrlIVo6BzlUvAJnXzdmX3emwxJixiThL1AjV9aevWzybhpXRwuGlcjZK2ynsqK6gPyAmx2RQmzAI618MY9Jwl+gDg5fWVs+xY22XTm4JPJ0mKbBBWvKaR+0OJC/TPrxxbwmCX8B6ugJ0zHFlbUjXK31JLx+EsHTT9vMdWpREfl+F9tLzsclK2eKeUwS/gKUypW1I9wyYDsl0zRYu6KEdjPA4agXc7A/0yEJMSOS8BeYKZdBHi0ew9nRKt05KVhSGaTQa/Bi8Xm46g5nOhwhZkQS/gJzchnkmqm7aFztTRi2JQk/BaZhcN6qcjrchRw/IVfcivlJEv4CMzJYW1J4+itrR7jkCttpWVSZT8geZFekEMuypz5AiCzjTKWSUuou4EuAC/im1vrbp6n3E2Cr1vpHw9uLgAeAMkADd2utpQN0jpxo6aOjN8KFa8qmHKyFZP99wp+HFZi6r18kb5Kyodji6a48dr5+mKsvX53pkISYlilb+EqpauB+4HJgHXCfUuqscXWqlFKPAreNO/w7wHe01quBXcCX0xK1mNDLe5pTHqwFucJ2JqpX1lIa6eKpXY3SyhfzTipdOteQbLV3aq0HgF9yamK/G/gN8NBIgVLKBVwxXB/gR8Dtsw1YTGwoEmfX/laWVKQwWItMvtQAACAASURBVAsY0QjOrjbpzpmmRFEplwweoC0MO/a1ZDocIaYllS6dKqBp1HYTcOHoClrrfwRQSl0+qrgE6NVax0cdVzOd4EKhvOlUz4jS0mCmQwDgqVePEYklWKfKCOaN7b8fvw3gqGvEsG2ci5ZOuD9mx0h4U+rxw+Ew8aZQ93T1Ujl2IoYx82Mn4nY7cU3wWsDY17CkIkhpfw+Pv3qcG65YgcPM/DekbHkfTkZinL3ZxpfKp8UERn93NYBU7gQx/jhSPO6kjo7+rP7aXFoapK2tL9NhAPDY9iNUhvz43SZ9/eGT5cE875jtEYHjRwHoDZZiTbDfjMYJh+OnlE8kkbBSquucoJ7X60z5ccazbWZ87EQc0TjhCV6L8a9hrHo5l730Co+4CnjihUNcfHZF2mKYiWx6H56OxDh7qcRnmsakDeVUunTqgcpR2xVAYwrHtQIFSqmR/oXKFI8T03S8uY9jzX1cdm5lSoO1kOy/T+QVYAWyu0WTjSKLVqAG66j0JPjtS8eyulEixGipJPxngM1KqVKllB+4FXhyqoO01jFgO3DncNE9wJaZBipO7/k3G3A5TTauKU/5GHdrA9GyqjmMauGyvX48y1awqX8/zZ2D0pcv5o0pE77WugH4IrANeBN4UGu9Qyn1hFLqgikO/wzJWT17gU0kp3aKNBqKxHllbwsXri7Dn2J/thEJ4+xulwuuxjENMCNDp/yL9fWdUuZdvYalx1+npsjNo9sPY/R14xjoGfPPmYhk+ikJMUZKGUJr/SDw4LiyGyaod++47ePA+2YenpjKa/taiEQTXLku9eTtaq0HIFpeO1dhzUt2PM5AfdMp5YkJxhmM6koM4IrECR7sreCZp3azoXRsd1rogvMh4JnLkIWYFrnSdh6zbZutrzdQU5rH8urUL55yN5/AxiBWNq1JU2IUR2kZpt/PinZNpR+errexbOnLF9lNEv48drC+h/q2fjZvqE55sBbA3VxHvLgU2zP18gtiYoZh4K6uIdbYwHVVFm1h2C1L7IgsJwl/Htv6Rj0+j5OLz5rGtEDbxt1cR7RCunNmy1O7CDseZ1W4SVr5Yl6QhD9PdfdHeF23sWltJR731FfWjnD0dCQHIisWzWF0ucFdUYnhchGrO871NQZtYXhdWvkii0nCn6eef7ORhGVz1fnTm2njbq4DZMA2HQyHA3dNLZG6Os4utKkJwFN1NnGZly+ylCT8eSiesHjuzQbOWVY85T1rx3M3n8Bye4gXl85RdLnFu2gxdjRCorWZGxcZdEbgZZmWL7KUJPx5aPfBdnr6o1y9fvqzbFwtdcTKa8CQX306uKuqweEkcuI4qwpgZT48U28TTkgrX2Qf+dTPQ8++Xk9JgZe1y0LTOs6IRXG1t0h3ThoZTiee6moidSfAtrlxsUF/HJ6XRUREFpKEP8/Ut/ZzoK6bq9ZXY05zlUZXSx2GbRGtlAHbdPIsWYo1NESspZlFeQZri+G5RpveoVimQxNiDEn488zWN+pxOU02rZ3+OjjuxmPYGEQrFs9BZLnLU12D4XIRPnoEgBsWGcQseHRnc4YjE2IsSfjzyGA4zivvtnDRmnLyfK5pH+9pPEastEIuuEozw+nEs2gxkRPHsRNxynwGG8tg65422ruHMh2eECdJwp9HXnirkUgsweYNM1gSIRHH1VxHtHJJ2uMS4F26DDsWI1KfXKfo+hoDw4BHXjya4ciEeI8k/HkinrD43a461iwuYnHF9Newd7U1YsZjRKuWpD84gau8AtPnO9mtU+gxuPa8Ml55p5kTLdl7Uw2RWyThzxM797XS1Rfh+gtnNuDqaTwGIAl/jhimiWfJUqIN9ViR5N2xbrqggoDPxYO/O4AtSy6ILCAJfx6wbZsnd5ygqiTAucuKZ3QOd+MxYoUlWP7sv0/wfOVbvgIsi/CRZCs/4HHykSuXcaC+h537WzMcnRCS8OeFfce7qGvt5/oLa6e1KuZJtoW76bi07ueYs6gYZ6iEoUPvteivWFvFovI8Htp2iEgskeEIRa6ThD8PPPHqcQoC7umtijmKs70ZMxKWhH8G+FasJNHdTbw9uYqaaRrcdc0qOnsjPP7KsYzGJoQk/Cx3uLGHvce6uP7CRbicM/t1eeoOAxCpWZbO0MQEPEuWgsPJ0KGDJ8tW1RZyydkVbHn1BPVt/RmMTuQ6SfhZ7rGXjpHnc/G+82d+w3FP3SFixWVYeQVpjExMxHS78S5ZQuTYERLh8Mny39u8Ap/HyY+37Jc180XGSMLPYseb+3jrcAfXbqzF607tBuWniMfwNB4jUrsivcGJ0/KtVNjxOD07d54sC/rd/N7mFRxu7OW53Q0ZjE7kMkn4WezxV47h8zjZPINVMUc46o9iJOJEapenLzAxKVdpKc5QCV3bt4+ZjnnJ2RWcvaSIXzx3mFa5AldkQEoJXyl1l1Jqr1LqoFLqsxPsX6eU2qWUOqCU+r5Syjlc/nGlVJNS6s3hf/en+wksVHWt/byu29i8oQa/d4ate8Bx9AC26SBatTSN0Ymp+NRqoi0tDO3fd7LMMAzu/cAaTMPg+4/uJWFZGYxQ5KIpE75Sqhq4H7gcWAfcp5Q6a1y1B4DPaa1XAQbwB8PlFwB/obVeN/zvi+kLfWF7+IUj+DxOrr9wdksZO48dIFqxCNvtSVNkIhXeJUtw5OXR9ezvxpSHCrx87LpVHGro4fFXjmcoOpGrUmnhXwNs1Vp3aq0HgF8Ct43sVEotBnxa61eHi34E3D7880bg40qpPUqpB5RSRekLfeE6VN/Dm4fa+cDFiwh4p79I2ghzaABHSwORRdKdc6YZDieFl1zCwFtvEm0be9HVxWdXcPFZ5fz2xWMcqu/JUIQiF6XSV1AFNI3abgIunGJ/zaif/wl4Gfh74FvA3akGFwpl/1WhpaXTX9dmMrZt88+/eIvCPA+/d/0avJ7Uu3PszkGCee+thOk8+g4ADnXOmPJUxOwYiRS7khwOE28KdU9XL5VjJ2IYMz92IpM9j/HlbrcDf3Dyb03+tVfTuW0b4e1bqf7DPxiz70/v2sCff+M5/u237/DPf3YloQLfrGJP9/twLkiMszfb+FL5tJjA6HlkBmClsl9rfctIoVLqH4DD0wmuo6MfK4tvCF1aGqStLb0LY71zpIN3Dndw1zUr6esdYjpnH4zE6et/bypg0b63sIIF9OSVwKjyVJjROOFwPKW6iYSVUl3nBPW8XmfKjzOebTPjYycyUXwwcYzRaIJEX2TS87ndfoIXX0rLM1vxX3sDzmD+mP2f+fA53P9fr/O1H7zKX921HqdjZnMo5uJ9mG4S4+ylEp9pGpM2lFN5h9UDlaO2K4DGqfYrpQqUUn8+qtwA0vfpXIASlsXPtx6itNDLleuqZ3UuIxbFc+Ig8ZXnJJvCIiOKr38/djRK99ZnT9lXU5bHJ29cw+GGXn7ypJYF1sScSyXhPwNsVkqVKqX8wK3AkyM7tdbHgbBS6rLhoo8BW4B+4AtKqYuGyz8HPJy2yBeg53Y30tA+wJ1Xr5zxVbUj3PWHMeMx4qvOSVN0YibclVUE1p1P99ZnsMKnfsvauLqMD166hBf3NPGL5w5PmfTjFgxE4mP+tXYOnlKW7n9xmVC0IEzZpaO1blBKfRHYBriB72utdyilngC+orXeRbJf/j+UUvnAG8C/aK0TSqk7gO8qpXzAAeCeOXsm81z/UIxHth9hzeIizl9ZMuvz+Y7sxXJ7SdQuB7m3akYV33ATdX//Nbq3baX4Azecsv/mTUvpD8d48rUTBLxObrxkyWnPFYnF2bmvZUxZMM87pitvLmxcU45zGuNJIjul9BvUWj8IPDiu7IZRP7/F2IHckfLtwPpZxpgTfvPiUQYjcT66eeXMVsQczUrgObqf8BIFDgcgCT+TfMuW4z/nXLqe2kLhVVdjescOoBuGwd3XrmIoHOdXzx8hGrO4edPS2b8PhBhHrrTNAkcae9n6Rj1XnV9NTdnsZya5G4/jCA8SXrYmDdGJdAh96GYS/X10b31mwv2mYfCpm9Zw+dpKHn35GD/csl8uzBJpJwk/w+IJix9t2UdhnoePXJGe+fJ+vRvL5SGyWKXlfGL2kq38tXQ+tYXE0MTLKjhMk098YDUfumwJL77dxD8+uJuOnrntqhG5RRJ+hj214wT1bQP8/rWrZrWEwggjFsV76B2GVpyD7XKnIUKRLiU334I1MEDXk0+cto5hGNy8aRl/cNNZHG/t52/+cwc79rXIDB6RFpLwM6ixfYDfvHiMC1Qp568qTcs5vUf2YsaiDK0+Py3nE+njXbKU4IUX0/X0k8Q6Oyete8k5FfztJzZSXuzj337zLv/nwd0cbeo9Q5GKhUoSfobE4hbf++27eN0O7r52VdrO69u/m3h+EdGqxWk7p0ifko/cCrZNxyO/nrJueZGf//2xDXzsekVTxwBf+/Euvv2rtznR0pfVFySK7CXzrDLkV88fpq61nz+5bS0FeelZ2CzR1Ymn7jD9G98Hhvwtz0auklIKN19L19NPUnj1ZrxLJl/F1GGaXHV+NRefVc4zu+rYtruB/Se6cbtMqkIBqkoC1FbYOE1wmAtvVo8zEcGe4PqF2TC8XuKO3FxMUBJ+Buw50sHTO+vYvL6GdStmP+d+xMCLzwMwuFpmwmaz4hs/SO+rL9PywE9Y9L+/jGFO/cfZ53HywcuWcuX6Gn6z/QgnmvtoaB/gWHMfvNOMYUDA68LnceBxOTBNA9Mwkv8f9YdgZCxgZEjAtu3kuijD206nidtp4nKauJ0O3C6TgNdFW/cQ7pAfl9OR5ldjcnY4TMeu3Wk9Z+iC8yEgCV+cAS1dg/z7b9+lpjTA7VelbxVLKxKh/4VthJetIVFQnLbzivRz+P2U3vlRmv/93+h5biuFV1+T+rGmQW1ZHrVledi2Tc9AlKGoRVNbPwPhGEORBAPhOLZtY1k2lg0JywZsDAyG/wOSA8QjU/0Nkjk/nrCIxS3iibFdRk/vrAMg3++ipNBHZchPVUmAylCAqpCfkkIfplw3kPUk4Z9BQ5E4//qrPQB87ta1uF3pay31vrQde3CQ/vMvT9s5xdwJbryI3u3baX/4V+St34CzcPorhxuGQWGeh9o8L5XFs1ttczzLsonFLSKxBAPhGOVFfgaGYnT0RmjtGuSdI528tKf5ZH2Py0FteR6Ly4MsGv5/VUlgxgvCibkhCf8MSVgW//HoXpo7Bvn8nedRVpi+D6htWXT97ilcS5cRq5TB2vnAMAzKfv8ejn/1yzT/8AdU/9nns+rKWtM08LgdeNwO8gNuNq4pJzBuaYWBcIymjkEa2weoa+3nREsfL77dRCSWAMDpMKguzWNJRZC1q8ooDbqpCgXGdDGJM0sS/hlg2TY/2rKfNw+1c/e1q1izJL1dLn07dxBra6P4Q7em9bxibrnLyym9/fdo/elP6Nn27LS6drJBwOtiRXUBK6oLTpZZtk1r1xDHm/s40dLH8ZY+du5r5fk3kwvset0Ollbms6wqn2XD/0/XpAUxNUn4c8y2bX727EFe2tPMhy5bwuYNM78h+USsWJT2X/8CT20t3nXrQbel9fxiYs78IHEWTVqnz3ZiRyZfEdx5ySY8u9+g7RcPwdKVuKomXxY7U7MxDdNgYIrnMiIYcHPO8hDnLA8ByT8C/eEE+452cLy5l2NNfWx57cTJqaVFQQ9LKoIsrsxnSUWQ2vI83MODw4btxFFZRaKp8bSPNxXbtrEGB7EGB7CiUQYKgxihMlzlFZiumd9Rbj6ShD+HLNvmoa2HeGZXPddcUMOHL0//jcS7n/kd8Y4OKu79FHYKsz1EesQsg527J78nbaDTwvJM3XVnXnQjpceO0fitf6Htjj/GnuSY89J0gd50RWIJ3jow88ZEMM+LacDSynyWVuYTT1h09oZp7w7T1hPmQF03uw+2A2AaECrwUVHsoyLPwZVLffin+XhWJELk+DEiDfXEWluwo9GT+3pG1jNyOPBU1xBYu5a89RdA6cJfSlwS/hyJJyx++MQ+Xnm3hc0bavi9dKyCOf4xenrofPxRAuetw7/mrJRbYCK7WIF8ut7/UUKP/ICipx+i88aPwQL/4+10mJQV+Skrei+VD0XitHUP0dY9REvnEO8c7WSPDc/ugZoALAvCigKD5fngcUz8WUr09zHw9luEjx4By8LMy8NTuxhXSQlmIIDpdhNcsYxoNE60vp6hQwfpfPwxOh97lM4Vywlsuor8iy7GcC7M1Lgwn1WG9Q/F+N5v3+Xdo53ccsUybrpkcdqTvW3btPzXj7BiMUpvvzOt5xZnXrRqCT2bbqLw+d9S8MKj9Fz5oZy7U5nP42RReZBF5cn7tsbiFu1t3STCUY429rC9GZ5rsnEYsDRoowoNVAFUBcAODzG4522GDh5InmvFKrwrVuAsDp3y2QusXIk3UHByQfdEXx99O1+jb/tztPzw+3Q+9ltCH7qZ4EUXp3SNxHwiCT/Njjb18p2H36FnIMInPrCaTedVzcnj9Dy3lYE3d1N6x0dxV1ROfYDIeoPnXIijr4vgG9ux3F76Lr0+0yFllMtpUl3s4+ziAI7iPqIJm2N9oHtsdDc8fsLmcSBAjMX9zSwdjLF62Roq1p6FIxBI+XEcwSCFV1/Dijtu5tizL9LxyK9o/sG/07nlcUIfvoW89RuyagbVbEjCT5N4wmLLayd49KWjFAQ8/K/f38DSyvypD5yB8InjtD30M/znrKXwmmvn5DFEBhgGfZdcjxmNEHzjBQzbpvfS62SZjGFuh8GqQlhVaHBjVYzWvQfZe6KLo+4yjgVr2Zu3hMeB6sOwutBiTaHB4rzUl5wwDIO889YROHct/a/vov03v6bpu9/Cu3QZJbfejn/1/L+/hCT8NDjU0MNPntTUt/WzcXUZH7tekeebm9H/aHMTDd/4vzjyglR88tML7itnzjMMeq78IBgGebu3Y/b30H3NreCQjyqAnUgwdPAAA3vewgyHWV9TyxXrQpiFHhoHYX837O+y2dYAzzbYeB2wqsBmdaHB6kIo9Eyd/A3TJLjxQvLWb6D3lZfo+M0j1P/T/8F/zlpKb70dT23tGXimc0PeRbNQ19LHDx7Zw+sH2ijIc/O5j5zL+jmcRRFtaab+//4DADWf/0uc+XPzDUJkmGHSc8UHSeQVkv/KU7i6Wum67k7ixWWZjixj7ESC8JHDDOx5C2tgAFd5BXnvW4+r9L3XpCaQ/HdNtcFQ3OZgD+zrTnb/vN2ZnAJa4bM5P1zPOSrBippCXM7TN5gMh4OCy68geOHFdG99hs4nHuP4332F/IsvJXTzLbhC6VsH60yRhD9Ntm2z/3gXv9tVz1uH23G7HNy8aSnXbazF6567l7N/9xs0/+d/gMNB7f/8K+m3X+gMg/4NVxArLqPw2V9R8tB36L/wauylH8p0ZGeUEQ0z9Npuwq+9jDU0hDMUIv/iy3BVVk7ar+5zGqwNwdqQkZzgMAT7umF/t83Tb7WyZXcLbpfJyuoCVi0qQtUWUlg08eRP0+2m+P03ULDpSjq3PE73s7+jb+dr5F96GUXXvX9efRYl4afAtm3qWvvZpVt59d0W2nvCBP0u7rxGcfGaUvL9c3dnqXh3N+2/+TW921/As3gJVX/8WVwlmZmLLc68yNLVtH30f1C47RHyX36KzgNv4DvvCoZWrV3Q3TzO9mb8+97Av3cng7EoropKgpdejruyatoDqIZhUOGHCj9cVWUQWLuWd9st3j3aia7r4uEXjgDg/vmbyesEqpIXgC2tzKekwHvy8RyBAKW33UHh1dfQ+cRj9L60nZ7tL+A/62wKrriSwNp1WX8hV0rvGKXUXcCXABfwTa31t8ftXwd8H8gHXgD+SGsdV0otAh4AygAN3K217k9j/HPCsmyaOgc53NDDwfpu3j3aSXd/FMOAs5YUc/OmpWxcXUZVZSFtbX1zEkOkoZ6e7S/Qs/157HicomuvJ/SRWzHltoU5xwrk03nTPXiOH6Ts9WcoevZX5L/yFIOrzye84lwILMt0iLOXiONqa8R7/ADeI3txdbRgmybhpaupuPwyPFYsbQ/ldTtYt7KYdSuTXTL9QzEO1HVzon2APQfbeGZX3cnVQvN8LhaV51EVClBZklwZtLIkj7K7P0boQzfT89xWera/QNN3v43p8xFYdz55556Hf81ZOILBtMWcLlMmfKVUNXA/sAGIAC8rpbZprfeOqvYA8Gmt9atKqR8AfwB8F/gO8B2t9c+UUl8Gvgz8VbqfxHTFExZ9gzH6BqP0Dkbp7ovS0jVIc8cgzZ2DtHQNEU9YAAS8TtYsKebcpcWsXR5K+7oftm1jDQ0Sa2sj2tjA0JEjDO3bS7S5CRwOghs2EvrwLbjLy9P6uGL+iSxeSdE1l6CffZXAWy+T9+ZLySmcgSDOysXESquJF5UQLywhXlCcnd8ArASOgT4cfd04ertwtTbgbqnD1daEYSWwDYNo5WJ6Nt2U/BZjmtQUm9B4Ys5CyvO5WL+qlOsvW0ZbWx/xhEV9Wz9Hm/o42tRLQ1s/2/c0EYkmTh7jdTsI5XsJFSylePNqguFuXI3Hcew/gPeNX+C3IuQX5ROsqcRXW4undhGuUAmO/HwcwWDGJluk8o64Btiqte4EUEr9ErgN+Lvh7cWAT2v96nD9HwFfVUp9H7gCuHlU+fOklvAdwIxW1esfivHYy8foH4oRS1jEYhbxhEU0niCWsInFLMLRU69IdZgGxfleVtYWcum5lVQU+6gtD1I66ivdRGaz8l/vKy/T+cSj2LH3Wi+Gy4V/xQpCN95IcN16zGnMJ3Y6TPzesV8pfR4nifj0v2aaZgKCqa3o6XI5CaRQ1+9zY4+r5/E4cbhmdoWw02mm9Lipmig+mDjGVJ6z3+fGcqf3K77L6cCxag3hVWuIRIbwnDhEoL0BV8MxnIffOFnPNkwsjx/b48Hy+LA8XmyXG9t0gGliO5ww8rNpcnKV/DFv5/c2Ym0+SruHxpXbGAkLrETyjipW8mfDssC2MKwEZjSCEY3giEcpDA/hGBrAsK2T57UcLuKl5cTOOo9YSQXR8kXY3uTr6gXMaBiXx8D0p+/3bDod2Kf53Jqmgdt0sKyqgGVV7y0KN3LvgdbOIVq6h+jsDdPdH6GrL8Kxln4GwzY4FsGKU9dXctQncNX34LQ6cVlxXHYCl2njMAwMI/lNwjTAXVKCu7AIpyN5l7OK0KljClPlm1H7J1x7PZWEXwU0jdpu4uQ1aqfdXwOUAL1a6/i48lRUAhQVpZ7sRoSAz94x/bXFZyoUypv5sTddx9KbrktjNFBTWTB1pZSdnXLNFWsyM1Vt6T2Zuw4hU895Wc3o9/fCX/8l6awz8iiTfZ5LSmB5hlcfn0a+qQQOjy9MJeGbnLwBGpD8826lsH98OeOOm8xOYBPJPxKJKeoKIYRIcpBM9jsn2plKwq8nmXxHVACN4/ZXTrC/FShQSjm01onhOqmucRoBXkyxrhBCiPec0rIfkcrIwTPAZqVUqVLKD9wKPDmyU2t9HAgrpS4bLvoYsEVrHQO2AyMre90DbJlB8EIIIdJgyoSvtW4AvghsA94EHtRa71BKPaGUumC42t3AN5RS+4E84F+Gyz8D3KeU2kvyW8KX0v0EhBBCpMaw7QzdQkcIIcQZJStvCSFEjpCEL4QQOUISvhBC5AhJ+EIIkSOycLGNqRdryzSl1N8AdwxvPq61/kIm45mMUuqfgBKt9b2ZjmU0pdQHgb8BAsDTWus/zXBIp1BK/T7wv4Y3t2it/2cm4xmhlMoHXgZu0lofU0pdA/wz4AN+rrXO+Gy4CWK8D/gTkhdj7gL+UGsdzaYYR5V/DrhNa/2+DIU2Esf41/AS4BtAEHgb+Ph0X8Osa+GPWqztcmAdyWmdZ+a66hQMf7iuA84nGd8GpdQtmY1qYkqpzcDHMx3HeEqpZcC/kVxnaS2wXin1gcxGNdbwNSf/AlwJnAdsGv7dZ5RS6iKSFyWuGt72Af8JfBhYA2zM9Gs5QYyrgL8ELiX5+zaBz2YsQE6NcVT5WcBfZySosXGMfw3zgV8D92mtR9Y8+dR0z5t1CZ9Ri7VprQeAkcXaskUT8HmtdXT44rJ9wKkrJmWYUqqY5B/Ov890LBO4hWRLtH74NbwTeC3DMY3nIPn5CJD8pukChiY94sz4A5LJcuSq9QuBg1rro8PrVj0A3J6p4IaNjzECfEZr3au1toE9ZP4zMz5GlFIe4HvAVzIV1Cjj47sWeEVr/fbw9v8AHp7uSbOxS2eqxdoySmv97sjPSqmVJLt2Ljv9ERnzPZIXzGXjDThXAFGl1G9JfvAfI7l0dtbQWvcNL+m9HxgkudLry5mNCrTWnwZQSo0UnW7xwowZH+Pw1fjHh8tKgc8B92YovJGYxr+OAP8/yW9LRzMR02gTxLcC6FdK/QxYDbwEfH66583GFv5Ui7VlBaXU2cDvgL/UWh/MdDyjKaU+DdRprZ/NdCyn4ST5Te5TwCXARWRZ15NSai3wSWAxyaSaALKiD3+cefF5gZPdtc8CP9BaP5fhcMZQSl0LLNJa/zDTsZyGE7ie5JjSBpLfPKfd9ZSNCf90i7FljeF1g54F/lpr/eNMxzOBO4HrlFJvkrxvwYeUUt/IcEyjNQPPaK3btNZDJL+aZs23uGHXA8/q/9feHbPEEUVRHP/3QZA0qeyEK6T1A2wrmHrRKkhIbEPs0og2YQs/gc1iIQqBQFItIXW2CCQpgqdOE2xFMIVgcce4wdliA+Y9mfODhW12OQy8y7w7w33SqaTf5HkOvaKJ2lW/XgAiYoncIQ0l7ZbO02INeNysmX1gOSKOCmea9Av43LTuLoFj/mHN1NjS+QhsN1u/c3JY2/OykW5ExALwDuhL+lQ6TxtJf4bER8RToCfpZblEt3wAhhExD5wBK+Q1rck3YBARD8iWzhOmjJwtbAxERCySrYh1si1RjYiYKuaBPgAAALtJREFUA0bAa0kHpfO0kbRx/T0iesC2pP70X/x3I/JgqQVJP4FV4Musf1LdHf60YW1lU/1lizyMZy8ivjafzdKh7hNJY2BAvoXwg+zvVrWVljQCDslF9Z18aPumaKgWki7Ifvhb8lqekC861OQZ8Ah4NbFmdkqHuk+aIv8CeN8MqXxIPnOYiYenmZl1RHV3+GZmdjdc8M3MOsIF38ysI1zwzcw6wgXfzKwjXPDNzDrCBd/MrCNc8M3MOuIK2g8xGrufErwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "sns.distplot(df[\"total_bill\"].tolist(), bins, color = \"g\")" + "sns.distplot(df[df[\"sex\"]==\"Female\"][\"ratio\"].tolist(), color = \"r\")\n", + "sns.distplot(df[df[\"sex\"]==\"Male\"][\"ratio\"].tolist(), color = \"b\")" ] }, { @@ -651,32 +1067,34 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 97, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 89, + "execution_count": 97, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVwAAAFcCAYAAACEFgYsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAefUlEQVR4nO3de3RU5b3G8WcySQQEEwKJIESqwqrWLtF6BCKRAJUQLsMloRRpofUKloa1sEtJ8VYFK6I1CyqUQxdLW/XUgnIJLMziEomGRCmwCkurFi25IBiGwAQiJE5m5vyRMkd6yDhJZt49M/l+/sqemT3vL5vwzDv7ffe7bT6fzycAQNjFWV0AAHQWBC4AGELgAoAhBC4AGELgAoAhBC4AGBL2wC0pKVFubq7GjRunJUuWSJLKy8vlcDiUnZ2twsLCcJcAABEhrIFbU1OjJ598UqtWrVJRUZH+8Y9/qLS0VIsWLdKqVau0bds2ffjhhyotLQ1nGQAQEcIauDt27ND48ePVp08fJSQkqLCwUF27dtWAAQOUnp6u+Ph4ORwOFRcXh7MMAIgI8eF886qqKiUkJGju3Lk6fvy4Ro4cqUGDBik1NdX/mrS0NNXW1oazDACICGENXI/Ho3379unVV19Vt27d9OCDD6pLly6y2Wz+1/h8vou2ASBWhTVwe/furYyMDKWkpEiS7rzzThUXF8tut/tf43Q6lZaWFs4yACAihDVwR40apYULF+rMmTO6/PLL9d577yknJ0dr1qxRVVWV+vfvr61btyovL6/N711X1yCvl3V3AESW1NQerT4X1sAdPHiw7rvvPs2cOVNut1vDhw/XXXfdpWuvvVb5+flqampSVlaWcnJywlkGAEQEW7Quz0gPF0AkCtTD5UozADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUijMt1WkuXPq36epfVpSDECFwgwmzZslGHD3+qoqINVpeCECNwgQjicp1WWVmpfD6fysrepZcbY+LD3cCsWbN06tQpxce3NPX000+rurpaf/jDH9Tc3Kyf/exn+slPfhLuMoCosGXLRnm9PkmS1+tVUdEGzZp1j8VVIVTCGrg+n0+VlZV65513/IFbW1urBQsWaMOGDUpMTNSMGTM0dOhQDRw4MJylAFGhomKPPJ5mSZLH06yKij0EbgwJ6ymFf/3rX5Kke+65R5MmTdJrr72m8vJyDRs2TMnJyerWrZvGjh2r4uLicJYBRI2MjOGy21s6J3Z7vDIyhltcEUIprIF75swZZWRkaOXKlXrllVf0xhtv6NixY0pNTfW/Ji0tTbW1teEsA4gaDsdUxcXZJElxcXGaNCnX4ooQSmEN3FtuuUXLli1Tjx49lJKSomnTpmnFihWy2Wz+1/h8vou2gc4sObmnMjOzZLPZlJk5QklJyVaXhBAK6zncffv2ye12KyMjQ1JLuPbr109Op9P/GqfTqbS0tDa/d69e3UNWJxBJfv7zWTpx4rjuvnu2evbsYXU5CKGwBu7Zs2e1YsUKvfHGG3K73dq4caOef/55Pfzwwzp16pS6du2q7du3a/HixW1+77q6Bv9oLhBbEvSrXz2q5mbJ6TxrdTFoo9TU1j8kwxq4o0aN0sGDBzVlyhR5vV7NnDlTt956qxYsWKDZs2fL7XZr2rRpuummm8JZBgBEBJvP54vKbiI9XACRKFAPlyvNgAhTXV2pefPuVU1NldWlIMQIXCDCrFmzUufPn9d///dLVpcS0aJxkR8CF4gg1dWVOnbsC0nSsWNf0MsNIBoX+SFwgQiyZs3Ki7bp5V5atC7yQ+ACEeRC77a1bbS41CI/0YDABSLIVVf1C7iNFpda5CcaELhABHnggXkXbc+Z80uLKols0brID4ELRJCrr/6Ov1d71VX9lJ4+wOKKIlO0LvJD4AIR5oEH5qlr1670bgOI1kV+uNIMQFRyuU5r9erf68EH50dU4Aa60ozABYAQ4tJeAIgABC4AGELgAoAhBC4AGELgAohKrBYGAIawWhgAGMBqYQBgCKuFAYAhrBYGICSicTDINFYLAxAS0TgYZBqrhQHosGgdDDItWlcLI3CBCBKtg0FWcDimatCg70ZN71ZitTAgovziF/eqsfG8f7tLl65atWqthRWhrVgtDIgS0ToYhOAQuCHAqDJCJVoHgxAcAjcEGFVGqETrYBCCQ+B2EKPKCLVoHAxCcAjcDmJUGaGWnNxTBQVP0LuNQQRuB0XrJYYAzCNwO4hRZQDBInA7iFFlAMEicDuIUWUAwYq3uoBY4HBM1RdfHKV3CyAgergAYAiBGwJc+AAgGARuB3HhA4BgEbgdxIUPAIJF4HYQFz4ACJaRwH3uuedUUFAgSfr444+Vm5ursWPH6tFHH1Vzc7OJEsKGCx+Cx6pq6OzCPi2soqJCGzdu1MiRIyVJDz/8sJYsWaKbb75ZixYt0rp16zRz5sxwlxE2DsdUlZWVyuPhwodv883BxVmz7rG6HESAPXveVVlZabv2vfDB3d6575mZWRo+fES79m2vsPZwXS6XCgsLNXfuXEnSF198ocbGRt18882SpNzcXBUXF4ezhLDjwofgMLiIUKuvr1d9fb3VZbRJWHu4TzzxhBYsWKDjx49Lkk6cOKHU1FT/86mpqaqtrQ1nCUZw4cO3u9TgIr1cDB8+ot29zOeeWyxJWrjw8VCWFFZh6+GuX79effv2VUZGhv8xr9crm83m3/b5fBdtRyuW0/t2DC4CYezhbtu2TU6nU5MnT1Z9fb3OnTsnm80mp9Ppf83JkyeVlpbWrvfv1at7qEqFAaNGjdSOHTvU3Nys+Ph4jR49KuDN9oBvk5BglxT4po2RJmyB+/LLL/t/3rBhg/bu3atnn31WEydO1P79+3Xrrbdq8+bNGjGifV8nuGtvdBkzZqJ27twpSbLZ4jRmzEQ5nWctrgrRzO32SFLE/R0F+gAwvnjNCy+8oMcee0wNDQ268cYbNXv2bNMlwAIXBhd3797VKQYXO9voO4JjJHBzc3OVm9syoHT99dfrzTffNNEsIgyDi8G5MPIe6x9KnRHLM8KYC4OLnUFnG31HcLi0FwAMIXABwBACFwAMIXABwBACFwAMIXABwBACFwAMIXABwBACFwAMIXABwBACFwAMIXABwBACFwAMIXABwBACFwAMIXABwBACNwRcrtNauvRp/61RAOBSCNwQ2LJlow4f/lRFRRusLgVABCNwO8jlOq2yslL5fD6Vlb1LLxdAqwjcDtqyZaM8Hq8kyePx0MsF0CoCt4MqKvbI6/VIkrxejyoq9lhcEYBIReB20A9+8F8BtwHgAgI3xGw2m9UlAIhQBG4HHTiw76Lt/fv/ZlElACIdgdtBGRnDZbfbJUl2u10ZGcMtrghApIoP9OQtt9xyya/IPp9PNptNBw4cCFth0cLhmKqyslJ5PB7Fxdk1aVKu1SUBiFABA3fr1q2m6ohayck9lZmZpd27dykzc4SSkpKtLglAhAoYuB999FHAnfv16xfSYqJVVtZovf/+Ho0c+UOrSwEQwQIG7quvvtrqczabTdnZ2SEvKBqVlpaosbFRu3fv0qxZ91hdDoAI1e7ARYv/vLR30qRcTisAuKSAgfvMM8/o0Ucf1dy5cy/5/OrVq8NSVDTZsmWjvF6fJMnr9aqoaAO9XACXFDBwMzIyJEljx441Ukw0qqjYI4+nWZLk8TSromIPgQvgkgIG7ujRoyVJU6dO1enTp/X3v/9d8fHxGjx4sK644gojBUa6jIzhevfd3fJ4mmW3xzMPF0CrgrrwYffu3crJydHatWu1atUqjR8/Xn/7G1dUSS3zcOPiWuYqx8XFMQ8XQKsC9nAvWL58uV577TUNGjRIUst0sccff1wbNrAUIfNwAQQrqMC12Wz+sJWkG2+8UT6fL2xFRRuHY6q++OIovVsAAQU8peByueRyufT9739fa9eu1VdffaXz58/r9ddf17Bhw0zVGPGSk3uqoOAJercAAgrYwx02bJhsNpu/N/v888/7t202mxYuXGikSACIBQED95NPPvnWN9i6dasmTpwYsoIAIFZ1eHnGtWvXBnx++fLlGj9+vCZMmKCXX35ZklReXi6Hw6Hs7GwVFhZ2tAQAiApBDZoFEmjwbO/evXr//fdVVFSk5uZmjR8/XhkZGVq0aJFeffVV9e3bV3PmzFFpaamysrI6WgoARLQO93AD3VJmyJAh+vOf/6z4+HjV1dXJ4/HozJkzGjBggNLT0xUfHy+Hw6Hi4uKOlgEAES/sd3xISEjQihUrNGHCBGVkZOjEiRNKTU31P5+Wlqba2tpwlwEAljNyi5358+eroqJCx48fV2Vl5UW94gszHgAg1oX1HO7nn3+ur7/+WjfccIO6du2q7OxsFRcX++8BJklOp1NpaWltbrdXr+7tqrc1JSUl2rFjR7v2dblckqTk5LbPwx0zZox/zQpAkhISWv5/pKb2sLiSyBaNx6nDgetwOFp97ujRo1qxYoX+8pe/SJJ27dqlGTNmaNmyZaqqqlL//v21detW5eXltbnduroG/7KIoXDmzHm53Z527VtXd0qSdPnlbf+HP3PmvJzOs+1qF7Hpwt8hfxeBRepxCvQBEDBwA4WpJG3ZskX33ntvq89nZWXp0KFDmjJliux2u7KzszVhwgSlpKQoPz9fTU1NysrKUk5Ozrf8CuE3fPgIDR8+ol37PvfcYknSwoWPh7IkADEmYOA+/njHAyQ/P1/5+fkXPZaRkaGioqIOvzcARJOAgTtkyBD/zy6XS+fPn5fP55PH41F1dXXYi0Pk2bPnXZWVlbZr3/r6lnPd7V1zIjMzq93fQoBIEPTyjGvWrJEk2e12ud1uDRw4UFu2bAlrcYgt9fX1ktofuEC0CypwN2/erHfeeUdLly7VI488ovfff1+lpe3r5SC6ca4baL+g5uGmpKQoLS1N1157rT755BNNmTJF//znP8NdGwDElKACNz4+XtXV1br22mu1b98+NTc3q6mpKdy1AUBMCSpw58yZo8cff1wjR47Ujh07NHLkSBYgB4A2Cuoc7ve+9z396U9/kiRt2rRJVVVVioszclUwAMSMoG6xc//996u+vl4ul0tNTU3q3bu35s+fb6pGAIgJAXu4v/rVr7Rnzx5J0tChQ/9vp/h4jR07NryVAUCMCRi4F+7m8Otf/1rPPvuskYIAIFYFdQ732Wef1cGDB/Xee+/J7XYrMzNTt912W7hrA4CYEtTI16ZNmzR//nzV19frq6++0kMPPaR169aFuzYAiClB9XBfeeUVrV+/3r9u7f333697771X06dPD2txABBLgurher3eixYJv/LKK5kWBgBtFFRqJicna+fOnf7tnTt3KikpKWxFAUAsCuqUQn5+vhYtWqTFi1sWH0lISNDKlSvDWhgAxJqAgXvhXl2LFy/W+vXr9dlnn8lms6lfv376+c9/zu3NAUiS/ud//qyamiqjbVZXt7R3YRU6k9LTB2jmzNlt3i/oCx8yMjIktdw0kgsfAHxTTU2VjvzzE/X+xg1iw+0yr1eSdPbzw8balKSTnvbd+1DiwgcAIdLbbtfkHrG/uPzms6527xvUoBlhCwAdx9wuADAkqFkKQGdkxUCQFJ2DQQgOgQu0oqamSv/816eyJyUabddrbxmU+bzuiNF2PfVfG22vMyJwgQDsSYlKGnGV1WUYUf/uMatLiHmcwwUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQ1hLoRNiFSzAGgRuJ1RTU6XKzz5Rn+5m//m7qeWWKI1ffma03S8bmo22B7SGwO2k+nSP1903pVhdhhEvHzpldQmAJM7hAoAxBC4AGBL2wH3ppZc0YcIETZgwQcuWLZMklZeXy+FwKDs7W4WFheEuAQAiQlgDt7y8XGVlZdq4caM2bdqkjz76SFu3btWiRYu0atUqbdu2TR9++KFKS0vDWQYARISwBm5qaqoKCgqUmJiohIQEXXfddaqsrNSAAQOUnp6u+Ph4ORwOFRcXh7MMAIgIYZ2lMGjQIP/PlZWVevvtt/XTn/5Uqamp/sfT0tJUW1sbkvY62/xS5pYC0cXItLDDhw9rzpw5euSRR2S321VZWel/zufzyWazhaSdmpoqfXr4M9m7JIfk/YLl9dglSZ/VnDTWpqfRZawtAKER9sDdv3+/5s+fr0WLFmnChAnau3evnE6n/3mn06m0tLQ2v2+vXt3/32MJCXbZuySr24AfdqjmaHCuapcSEuxKTe3R5n0TEuxqDENNkaw9xyohwR6maiJXR/6mOpP2HqewBu7x48c1b948FRYWKiMjQ5I0ePBgHTlyRFVVVerfv7+2bt2qvLy8Nr93XV2DvF7fRY+53Z6Q1B0t3G6PnM6z7dqvs2nPseI4Be/kyTqdam7W5rOx/83rZHOzvCfrWj1OgYI4rIG7du1aNTU1aenSpf7HZsyYoaVLlyo/P19NTU3KyspSTk5OOMsAgIgQ1sB97LHH9Nhjj13yuaKionA2DcCgpKRkxZ10anIPs+MnVth81qUeSe37PbnSDAAMIXABwBACFwAMYXlGoBX19S41u5pU/+4xq0sxotnVpPr42J9lYCV6uABgCD1coBVJSck62XxaSSOusroUI+rfPaakdo6+Izj0cAHAEAIXAAwhcAHAEAIXAAwhcAHAEAIXAAwhcAHAkJiah1tf75Kn0aVzVbusLiXsPI0u1dfH1D8fEPPo4QKAITHVRUpKSpbzTHOnucUOVwUB0YUeLgAYElM9XASnvt6l0w3NevnQKatLMeLLhmb1rGcVLFiPHi4AGEIPtxNKSkrWZedP6u6bUqwuxYiXD51SF853h91Jj8foXXvPeb2SpG5xZvuNJz0etf0G6S0IXAAdlp4+wHibp6urJElXXm227R5q/+9L4ALosJkzZxtv87nnFkuSFi583Hjb7cU5XAAwhMAFAEMIXAAwhHO4QACe+q+N37XX2+iRJMV1sRtt11P/tdTLaJOdDoELtMKKkXdJqv736PvVvQy338u637mzIHCBVlgx8i5F5+g7gsM5XAAwhMAFAEMIXAAwhMAFAENibtDMilvseJsbJUlx8V2MtelpdEnqbaw9AB0XU4Fr+TSedJMB2JspPECUianAZRpP8L60YAHyhq9bltPrnmj2TNaXDc36jtEWgUuLqcBFcKzqGZ/49zeB3n3Mtv8dMaEfkYHA7YT4JgBYg1kKAGAIgQsAhhC4AGCIkcBtaGjQxIkTdfToUUlSeXm5HA6HsrOzVVhYaKIEALBc2AP34MGDuuuuu1RZWSlJamxs1KJFi7Rq1Spt27ZNH374oUpLS8NdBgBYLuyBu27dOj355JNKS0uTJB06dEgDBgxQenq64uPj5XA4VFxcHO4yAMByYZ8W9swzz1y0feLECaWmpvq309LSVFtbG+4yAMByxgfNvF6vbDabf9vn8120DQCxyviFD3369JHT6fRvO51O/+mGtujVq3soy+qQhISWe0+lpvawuJLIxnEKDscpONF4nIwH7uDBg3XkyBFVVVWpf//+2rp1q/Ly8tr8PnV1DfJ6fWGosO3c7pab/jmdZy2uJLJxnILDcQpOpB6nQB8AxgP3sssu09KlS5Wfn6+mpiZlZWUpJyfHdBkAYJyxwC0pKfH/nJGRoaKiIlNNA0BE4EozADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcADCEe5r9254976qsrH3LRF64TfqFe3a1RWZmloYPH9GudgFEFwI3BJKSkqwuAYhKVnV0JGs6OwTuvw0fPoKeJhBForGjQ+ACsExn6+gwaAYAhhC4AGAIgQsAhhC4AGAIgQsAhjBLAW3S2eZNAqFE4MKYaJw3CYQSgYs26WzzJoFQ4hwuABhC4AKAIQQuABhC4AKAIQQuABhC4AKAIQQuABhC4AKAIQQuABhC4AKAITafz+ezuoj2qKtrkNcblaWjEwjFIj9XXz2gXfuzyI+1UlN7tPocaykAEYZFfmIXPVwACKFAPVzO4QKAIQQuABhC4AKAIQQuABhC4AKAIQQuABhC4AKAIQQuABhiWeBu2bJF48ePV3Z2tl5//XWrygAAYyy5tLe2tlaFhYXasGGDEhMTNWPGDA0dOlQDBw60ohwAMMKSHm55ebmGDRum5ORkdevWTWPHjlVxcbEVpQCAMZYE7okTJ5SamurfTktLU21trRWlAIAxlpxS8Hq9stls/m2fz3fRdjDi4tr2egCwmiWB26dPH+3bt8+/7XQ6lZaW1qb36Nnz8lCXBQBhZckphdtvv10VFRU6deqUzp8/r+3bt2vECBZMBhDbLOnhXnnllVqwYIFmz54tt9utadOm6aabbrKiFAAwJmoXIAeAaMOVZgBgCIELAIYQuABgCIELAIYQuABgCIELAIZYMg83Wjz11FM6cOCA3G63qqurdd1110mSzpw5o9zcXOXn51tcYeQ6evSocnJy/MfsgtWrV6tv377+7fvvv19LlizRlVdeabpEyxUXF2vNmjVqbm6Wz+fT5MmTdd9997X6+nXr1qlbt26aOHGiwSqt1dZjFPF8+FY1NTW+UaNG+bdXrFjhW7FihYUVRb7/PGa42JdffukbOXKk79SpUz6fz+draGjwTZ061bdz585W91m4cKHvrbfeMlWi5dpzjCIdpxTa6dChQ5oxY4ZGjRql3//+95KkDRs2qKCgwP+aWbNm6YMPPtAHH3ygadOmKTc3VwsXLrSq5IhQUFCguXPnaty4cSopKdHo0aN19OhRq8sy7vTp03K73WpsbJQkXX755Vq6dKkGDhyot99+W9OnT9ekSZOUk5OjAwcOqLy8XCUlJVqxYoXee+89i6s3I9Ax+ubfzQcffKBZs2ZJavk/t2zZMv34xz/WmDFjVFpaaln9l8IphXaqq6vTG2+8oYaGBo0ePVp33313wNdXVlbqnXfeUY8ePQxVaL0TJ05o8uTJ/m2HwyFJSk5O1urVqyVJS5YssaQ2q11//fX64Q9/qDvvvFM33HCDhg4dKofDofT0dD3xxBNavXq1UlJS9Oabb2rNmjVavXq1Ro8erSFDhuiOO+6wunwjWjtGAwYMCLif2+3WX//6V5WUlGj58uXKysoyVPG3I3Db6Y477lBiYqJSUlLUs2dP1dfXB3z9Nddc06nCVmpZ53jz5s0XPVZQUMC6Gf/21FNP6Re/+IXKyspUVlam6dOn64UXXtDKlStVUlKiI0eOaO/evYqL67xfRFs7RoFc+EAaNGiQXC6XiTKDRuC2U3z8/x06m83mX9PX942lKdxut//nLl26GK0vknEspN27d+vcuXMaP3688vLylJeXp3Xr1un111/Xiy++qEmTJum2227Td7/73U57z7/WjtGbb74pSf7/a83NzRftd9lll0lSm9fYNqHzfnSGQc+ePfX555/L5/OppqZGn376qdUlIUJ16dJFv/vd7/znIX0+nz7++GMlJibKZrNp7ty5Gjp0qHbs2CGPxyNJstvt/p87g9aO0Q033KCePXvqs88+kyTt2rXLyjLbhB5uCN1+++166623lJOTo2uuuUa33nqr1SUhQg0bNky//OUvNXfuXP83oTvuuEMrV65UQUGBxo0bJ5vNpszMTO3fv19Sy9/Xiy++qB49eignJ8fK8o1o7RjNmzdPP/jBD7R48WK99NJLyszMtLjS4LE8IwAYwikFADCEwAUAQwhcADCEwAUAQwhcADCEwAUAQwhcdCrFxcX+hU4A0whcADCEwEXMW758ue68805NmzZNO3bskCQdOXJEd999t6ZPn65Ro0bpwQcfVFNTk4qKijRjxgz/vseOHVNmZqa+/vprq8pHDCFwEdN27typ7du3a9OmTf7lNKWWuydMmTJF69at0/bt23X06FHt3r1bOTk5qq6u1uHDhyVJ69ev19SpU5WYmGjlr4EYQeAiplVUVGjMmDHq3r274uPjlZeXJ0l6+OGHlZKSoj/+8Y/6zW9+oxMnTujcuXNKTEzUj370I61fv14ej0cbN27U9OnTLf4tECtYvAYx75vLhdjtdknSQw89JI/Ho3HjxmnkyJE6fvy4/3UzZszQtGnTNGTIEA0aNEjp6emW1I3YQw8XMW3EiBEqLi7WmTNn5PV6/Quil5WVad68eRo/frwk6eDBg/6lD/v27aubb75Zv/3tb3XXXXdZVjtiDz1cxLSsrCx9+umnysvL0xVXXKHrr79ep0+f1oIFCzRv3jx169ZN3bt312233abq6mr/frm5uVq8eHFE3Z4F0Y/lGYH/4PV69fTTT+uqq67SAw88YHU5iCGcUgC+oaGhQUOHDtXx48c1e/Zsq8tBjKGHCwCG0MMFAEMIXAAwhMAFAEMIXAAwhMAFAEMIXAAw5H8BMsum/cfHb6YAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAW20lEQVR4nO3dfZSedX3n8fdkEstDYiaEaYESSFfgS6uF+BAgzZQgoOvDhgdXa8lWRCuwu+hpd1eLHLG1UAuplj6wFqwr0C3VxQr0ENGz1iCJk40PbUWs6HfDnpAECDZGZiRiDpmH/eO+QwecydxD5rp/98P7dU7OzHXd131d3zm55pNffvfv97t6xsfHkSQ135zSBUhStzKAJakQA1iSCjGAJamQdgrgucDS+ldJanvtFGbHAlt3797D2JgjNyS1j/7+BT2T7W+nFrAkdRQDWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADWJIKMYAlqRADuEMNDT3J9ddfw/DwUOlSJE3BAO5Q69bdzZYtyT333FW6FElTMIA70NDQkwwObmB8fJzBwY22gqUWZQB3oHXr7n52waKxsTFbwVKLMoA70ObNmxgdHQFgdHSEzZs3Fa5I0mQM4A60YsVKentrK4329s5lxYqVhSuSNJlK1wOOiC8DPwvsq++6HHgJcDUwD/jTzPxYlTV0o9WrL2RwcAOjozBnzhzOO+9NpUuSNInKWsAR0QOcBJyamcsycxnwKPBhYABYBlwWEb9UVQ3dqq9vEQMDq+jp6WFg4EwWLuwrXZKkSVTZAo761y9GxGLgE8BTwH2Z+UOAiPgs8Gbgmgrr6EqrV1/IY489autXamFVBvAiYD3wHmrdDfcDdwA7JxyzEzhtJiddvHj+LJXX2fr7F/DHf/yR0mVIOoDKAjgzNwOb929HxCeBG4A/mHBYDzA2k/P6TDhJ7aa/f8Gk+6vsAx6IiHMm7OoBHgGOnrDvKODxqmqQpFZWZRdEH3BNRPwKtS6ItwO/AdweEf3Aj4F/D1xWYQ2S1LIqawFn5ueAe4FvAv8I3JKZm4APAF8GHgA+lZlfr6oGSWplPePjbdOfuhTYah+wpHbT37+gZ7L9zoTrUNu3P8IVV/wmO3ZsK12KpCkYwB3qpptu5Cc/+Ql/8Rd/XroUSVMwgDvQ9u2P8P3v14Zbf//7O20FSy3KAO5AN91043O2bQVLrckA7kD7W79TbUtqDQawJBViAHegV73q9OdsL19+RqFKJB2IAdyB1qy5+IDbklqDAdyB+voWPdsKXr78DNcDllpUpU/EUDlr1lzMj340bOtXamFORZakijkVWZJajAEsSYUYwJJUiAEsSYUYwJJUiAEsSYUYwB1qaOhJrr/+GoaHh0qXImkKBnCHWrfubrZsSe65567SpUiaggHcgYaGnmRwcAPj4+MMDm60FSy1KAO4A61bd/ezswXHxsZsBUstygDuQJs3b2J0dASA0dERNm/eVLgiSZMxgDvQihUr6e2trbPU2zuXFStWFq5I0mQM4A60evWFzJlTW/tjzpw5nHfemwpXpE7iCJvZYwB3oL6+RQwMrKKnp4eBgTNdD1izyhE2s8cA7lCrV1/IiSeGrV/NKkfYzC4DuEP19S3i/e//XVu/mlWOsJldBrCkhjnCZnYZwJIa5gib2WUAS2qYI2xmlwEsqWF9fYtYvvwMAJYvP93PGA6SASzpBenpmfQ5k5oBA1hSw4aGnuQb3/gqAF//+lcdhnaQDGBJDXMY2uwygCU1zGFos8sAltQwh6HNLgNYUsMchja7DGBJDXOhp9k1t3QBktrL6tUX8thjj9r6nQU94+PjpWto1FJg6+7de579FFaS2kF//4JJB03bBSFJhRjAHcqnFkitzwDuUD61QGp9BnAH8qkFUnswgDuQ00Wl9mAAdyCni0rtwQDuQE4XldqDAdyBnC4qtQdnwlVo06aNDA5uKHLtuXPnsW/fPg477DBuvvnGpl57YGAVK1ee2dRrSu2o8gCOiI8CR2bmJRGxDPgfwIuBjcB/zMyRqmvoRuPj4/T0zOHII/tLlyJpCpUGcEScA7wduLe+63bgXZn51Yj4JHApcFOVNZS0cuWZxVqCa9deC8CVV36wyPUlTa+yPuCIOAL4MPCH9e3jgUMz86v1Q24D3lLV9SWp1VXZAv448AFgSX37GGDnhNd3AsfO9KSLF88/+Mq6wLx5vQD09y8oXImkqVQSwBHxLmBHZq6PiEvqu+cAE5cx6wHGZnpuV0NrzL59owDs2vVU4UokTdUQqqoF/Fbg6Ih4ADgCmE8tfI+ecMxRwOMVXV+SWl4lfcCZ+ZrMfFlmLgN+F7gnM98B7I2I/bMC3gZ8oYrrS1I7aPZEjP8A/ElEfI9aq/jPm3x9SWoZlY8DzszbqI14IDO/BZxW9TUlqR04FVmSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1jSjAwNPcn111/D8PBQ6VLangEsaUbWrbubLVuSe+65q3Qpbc8AltSwoaEnGRzcwPj4OIODG20FHyQDWFLD1q27+9mnko+NjdkKPkgGsKSGbd68idHREQBGR0fYvHlT4YramwEsqWErVqykp6cHgJ6eHlasWDnNO3QgBrCkhq1adTbj47UuiPHxcc4665zCFbU3A1hSwzZsuO852/ffv75QJZ3BAJbUsE2bvnLAbc2MASypYXPnzj3gtmbGAJbUsKef/vEBtzUzBrCkhh1zzM8fcFszYwBLathll13xnO3LL393oUo6gwEsqWHHHbf02VbvMcf8PEuWHF+4ovZmAEuakcsuu4JDDz3U1u8s8CNMSTNy3HFL+djHPlm6jI5gC1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCqn0mXARcQ3wZmAc+GRm3hAR5wI3AIcCd2Tm1VXWIEmtqrIAjohVwNnAKcA84KGIWA/cAqwCdgD3RsTrM/MLVdUhdapNmzYyOLih6dcdHh4CYOHCvqZfe2BgFStXntn061alsi6IzNwAvDozR4CfpRb2fcCWzNxa33878JaqapA0+4aHhxkeHi5dRkc4YAs4Ip6i1n3wfD3AeGa++EDvz8x9EfH7wHuBvwWOAXZOOGQncOxMCl68eP5MDu9a8+b1AtDfv6BwJarKBRe8kQsueGPTr3vVVVcBcN111zX92p1mui6Ilx3sBTLz9yJiLbAOOInnBnoPMDaT8+3evYexscn+TdBE+/aNArBr11OFK1Gn8d6auakaQtMF8CuneX3bVC9ExMnAIZn5QGY+HRF3UftAbnTCYUcBj09zDUnqSNMF8HsO8No4cNcBXv83wO9HxED92POBjwMfiYgTgK3AGmofyklS1zlgAGfmq1/oiTPz8xFxGvBNaq3eOzPzf0XELuBO4BDg88BnX+g1JKmdTfch3J9m5m9HxDom+TAuM8870Psz80PAh563bz1w6owrlaQOM10XxPr6V1upkjTLpuuCWFf/+lcRsRhYAewDvpaZQ02oT5I6VkMTMSLijUAC7wM+CHw3IjpnOookFdDoVORrgVWZ+R2AiHgF8JfAq6oqTJI6XaNTkcf3hy9AZv7TDN4rSZrEdKMgjqh/+42IeC9wM7WZa5cA91VbmiR1tum6IH5AbfhZT337jyZsj1Nb40GS9AJMNwpi2m6GiLgoMz89eyVJUneYjX7c983COSSp68xGAPdMf4gk6flmI4BdG1KSXgCHkklSIQawJBViH7AkFTIbAfw3s3AOSeo6082E+zYH+JAtM0/JzI/OelWS1AWmmwn37qZUIUldaLqZcBv2f19fF+Jwan2+vcAJ1ZYmSZ2toeUoI+Ia4Kr65gjwIuAh4JcrqkuSOl6jH8JdDBxH7dFEJ1JbDe07B3qDJOnAGg3gf8nMncB3gVMz86+x9StJB6XRAN4XES+h9liiX42IudQeKy9JeoEaDeDrqD2C6HPAm4AduCC7JB2URp8J983MPAcgIpZR6wcerawqSeoCjT6S6PMRcRb/Ou34CWADcHJ1pc2eT33qf7Jjx7bSZTTV9u21n3ft2msLV9I8S5Ycz5o1F5cuQ2rYdC3gTwOvqX+/e8L+EWojItrCjh3byC0P03tIX+lSmmZstBeAh3f8oHAlzTG6d6h0CdKMTTcR498CRMQtmfnO5pRUjd5D+jjs+HNKl6GKPL1tfekSpBlrqA84M98ZEacDrwPmAV/MzI2VViZJHa6hURAR8TZqXQ6LgBcDn46IS6ssTJI6XaOjIP4rcFp9MgYRcT3wReATVRUmSZ2u0XHAc/aHL0BmPo7D0CTpoDQawLsj4vz9GxFxAfBkNSVJUndotAviQ8AtEfHf69vPABdUUpEkdYlGJ2LcCJwGvBQYA7YBX6JNJmJIUiuayUSMXfWvPbTZRAxJakVdMxFDklpNQx/CGb6SNPtm47H0kqQXwACWpEIMYEkqxACWpEIMYEkqpNGZcJIm4dNWukNVT1sxgKWDsGPHNh55+HscNb97fpUOYwyAvU88XLiS5nhiz0hl5+6eu0aqyFHz5/KOU46Y/kC1pVsf/GFl57YPWJIKMYAlqRADWJIKMYAlqZBKP4SLiN8Dfq2+eW9m/k5EnAvcABwK3JGZV1dZgyS1qspawPWgfS3wcmAZ8MqIuAi4BTgf+EVgeUS8vqoaJKmVVdkFsRP4b5n5TGbuA74LnARsycytmTkC3A68pcIaJKllVdYFkZnf2f99RJxIrSviRmrBvN9O4NiZnHfx4vkzrmXevN4Zv0ftZ968Xvr7FzT9mnubekWVUNW9VflEjIh4KXAv8D5qjzI6acLLPVCfVtOg3bv3MDY2PqMa9u0bndHxak/79o2ya9dTTb+mOt/B3ltThXeloyAiYiWwHnh/Zv4V8Chw9IRDjgIer7IGSWpVlbWAI2IJ8HfAWzPzvvrur9VeihOArcAaah/KSVLXqbIL4r3AIcANEbF/383AJcCd9dc+j09XltSlqvwQ7reA35ri5VOruq4ktQtnwklSIQawJBViAEtSIV2xIPvw8BCje4d4etv60qWoIqN7hxge7orbWR3EFrAkFdIVTYaFC/vY9aMRDjv+nNKlqCJPb1vPwoV9pcuQZsQWsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiFdMRFDqsrw8BBP7hnh1gd/WLoUVeSJPSMsGh6q5Ny2gCWpEFvA0kFYuLCPn/nJD3jHKUeULkUVufXBH3JIRdPcbQFLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiFdsxbE6N4hnt62vnQZTTM2sheAOXMPKVxJc4zuHQKOLF2GNCNdEcBLlhxfuoSm2759GwDHLemWUDqyK/+e1d66IoDXrLm4dAlNt3bttQBceeUHC1ciaSr2AUtSIQawJBViAEtSIQawJBXSFR/CSVV6osseyrnnmTEA5r+oO9pvT+wZYWlF5zaApYPQjUPf/qU+xPHIo7rjZ19KdX/PBrB0EBziqIPRHf+HkKQWZABLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVUvlaEBHxYuD/AP8uMx+JiHOBG4BDgTsy8+qqa5CkVlRpCzgiTgcGgZPq24cCtwDnA78ILI+I11dZgyS1qqq7IC4FrgAer2+fBmzJzK2ZOQLcDryl4hokqSVV2gWRme8CiIj9u44Bdk44ZCdw7EzOuXjx/FmprdPNm9cLQH//gsKVqNN4b82eZq8HPAcYn7DdA4zN5AS7d+9hbGx8+gO73L59owDs2vVU4UrUaby3Zm6qf6yaPQriUeDoCdtH8a/dE5LUVZrdAv4aEBFxArAVWEPtQzlJ6jpNbQFn5l7gEuBO4CHge8Bnm1mDJLWKprSAM3PphO/XA6c247qS1MqcCSdJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhRjAklSIASxJhTR7LYiusmnTRgYHNxS59vbt2wBYu/bapl97YGAVK1ee2fTrSu3GAO5QCxcuLF2CpGkYwBVaufJMW4KSpmQfsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQVYgBLUiEGsCQV0jM+Pl66hkYtBbbu3r2HsbG2qVmqzKZNGxkc3ND0627fvg2A4447vunXHhhY1ZZPGu/vX9Az2X4fSy9pRhYuXFi6hI5hC1iSKjZVC9g+YEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqxACWpEIMYEkqpJ0W4+kFmDNn0inVktTKlgKPAiMTd7ZTAB8NsGjR4aXrkKSZ2gr8AvDIxJ3ttBrazwDLgZ3AaOFaJGmmfqoF3E4BLEkdxQ/hJKkQA1iSCjGAJakQA1iSCjGAJakQA1iSCjGAJakQA1iSCmmnqcgCImIptWmNf5mZl0/Yvwz4JvCOzLxtivc+ApyVmY9UXadaU/3++b/AQ897aXVm7qjgWvdn5tLZPG8nMYDb027gdRHRm5n7p2W/FdhVsCa1j8czc1npImQAt6s9wAPAmcCX6/teC3wJICLeDbwNOBx4BrgoM3P/myOiF/gIcBa1VeZuy8w/aVbxaj0R8XPAx4ElwBhwVWZ+KSI+BBwHnAT0Ax8GzgFOB74F/Dq1e+gm4GXAzwEPAhc1cv7Kf7AWZx9w+/oM8GaAiFhO7aZ/BngxcAG1roaXAZ8D3v28914KkJmvAE4Dzo+IX21S3SrvmIh4YMKf9wF/BtySma8EzgM+HhEL6sf/MrV/rC8DbgXWUgvbVwCnAL8CPJOZK4ATgD7gDc+75oHO37VsAbeve4A/iIg51Lof7qDWGvkRsAb49Yg4CXgdtdbyROcCyyLi7Pr2fGq/ZF9pRuEq7qe6ICLiB8DJEXFNfdc84CX17/8+M0ciYhuwMzMfqr/nMWBRZt4fEbsj4grgZOBEavfUROdOcf7n35tdxRZwm8rMPdT+CzgAnE29+4Haf/E2U2uFfAG4DXj+Kva9wO9k5rL6L+IZwC1NKFutqxc4e8I9cTrw7fprz0w4buT5b4yI84C/AZ6m1kLeyOT33FTn71oGcHv7DHA98A+Zuf8X48fAw/U+3W8AF1J/msgE9wGXRsS8iJgPDFILYXWv+4D/DBARvwT8M3BYg+89F/hMZt4KDAGvZvJ77oWev2MZwO1tHbCMWvfDfs8AcyLiIeCfgO9RW4l/opuBLdSGrf0DcGtm3l95tWpl7wHOiIgHqd1Pv5GZTzX43k8AF0XEt4G/BTbx0/fcwZy/Y7kguyQVYgtYkgoxgCWpEANYkgoxgCWpEANYkgoxgCWpEANYkgpxLQh1vPpsv1uprVEwBvwjcDnwRuBq4EXUptG+NzM3R8StwOGZ+WsR8VJqK86tyszvFvkB1LFsAasbXAgsqK9BsLy+7yXAHwJvyMyXU1vp666IOJza6nGnRsTbqc3a+i+Gr6rgTDh1vIj4BWoLxPw/4O+BvwNWAdcAj044tJ9aIH8rIl4OfA3468z8zSaXrC5hC1gdLzO3Ulun9jpq6yV/idpiMev3r841YVW4f66/Lag9eeTlEfGiAmWrCxjA6ngR8Z+o9QF/MTOvBP43cATw2og4uX7MG6gtan9o/Vlmfwa8htpiRmtL1K3OZxeEOl69X/cWak9veBrYDryT2jKKH6C2du0I8NvU1lL+CnBnZn40IhZRW7f28sy8t0D56mAGsCQVYheEJBViAEtSIQawJBViAEtSIQawJBViAEtSIQawJBXy/wE3Rh0MLOhHzAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "sns.catplot(x=\"day\", y=\"total_bill\", kind=\"box\", data=tips)" + "sns.catplot(x=\"sex\", y=\"total_bill\", kind=\"box\", data=tips)" ] }, { @@ -688,82 +1106,88 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 99, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 91, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVwAAAFcCAYAAACEFgYsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5hT1b038O/ayVxymVvmikptRemxPhbtaY9M9XGgtigOiKL2gE+xfQSVHl5xBlov1Ee0xwtSZUCtta28nrZH36otHC+PevSpQi2gvloLbdUDLxUEGWYyl8yQSWaS7L3ePzLJJJlkct/Jnvl+/tFhkr3XSia/rP3ba/2WkFJKEBFR3imFbgAR0VTBgEtEpBMGXCIinTDgEhHphAGXiEgnDLhERDrJe8B1u91YsGABjh49CgB45plnsGDBAixcuBC33347fD5fvptARFQU8hpw9+7di6VLl+LQoUMAgE8++QRbt27Fb3/7W7zwwgvQNA1PP/10PptARFQ08hpwn332Waxfvx4NDQ0AgNLSUqxfvx52ux1CCMycORPHjh3LZxOIiIqGOZ8Hv/fee6N+Pvnkk3HyyScDAPr6+vDUU0/h/vvvz2cTiIiKRkFumnV1deG73/0urrzySpx33nmFaAIRke50D7gHDx7EkiVLcMUVV2DVqlV6n56IqGDymlKI5Xa7sXz5crS1teHyyy/P+Di9vW5omnFr7tTXV8DpPFHoZmTM6O0HjN8Ho7cfMH4f6usr0n6OriPc3/3ud+jp6cGTTz6JRYsWYdGiRdiyZYueTSAiKhhhxPKMHOEWltHbDxi/D0ZvP2D8PhT9CJeIaCpjwCUi0gkDLhGRThhwiYh0woBLRKQTBlwiIp0w4BIR6YQBl4hIJwy4REQ6YcAlItIJAy4RkU4YcImIdMKAS0SkEwZcIiKdMOASEemEAZeISCcMuEREOmHAJSLSCQMuEZFOGHCJiHTCgEtEpBMGXCIinTDgEhHphAGXiEgnDLhERDphwCUi0gkDLhGRThhwiYh0woBLRKQTBlwiIp0w4BIR6YQBl4hIJwy4REQ6YcAlItIJAy4RkU4YcImIdMKAS0SkEwZcIiKdMOASEemEAZeISCd5D7hutxsLFizA0aNHAQC7d+/GwoULMW/ePHR0dOT79ERERSOvAXfv3r1YunQpDh06BAAYHh7GunXr8Nhjj+Hll1/G3/72N+zcuTOfTSAiKhp5DbjPPvss1q9fj4aGBgDAvn37cOqpp2L69Okwm81YuHAhXn311Xw2gYgMQghR6CbknTmfB7/33nujfu7u7kZ9fX3454aGBnR1deWzCURU5BRFgaYIdPV50OCwQpESmqoVull5kdeAG0vTtKhvMSnllPhWI6LENEWgrWMnBod8qLSVYnN7S6GblDe6BtympiY4nc7wz06nM5xuSEdtrT2XzSqI+vqKQjchK0ZvP2D8Phi9/UCwDx990ovBIR8AYHDIhx6XF2d+obbALcsPXQPurFmz8Mknn+Dw4cM45ZRT8NJLL+HKK69M+zi9vW5omsxDC/VRX18Bp/NEoZuRMaO3HzB+H4zefmCsD3XVFlTaSsMj3LpqiyH6lskXnq4Bt6ysDBs2bMBNN92EkZERtLS04JJLLtGzCURUZBQpsbm9Bd2ROdxCNypPdAm4b7zxRvj/m5ub8cILL+hxWiIygNANssaqcsiAOmmDLcCVZkRUJKQ0bpowVQy4REQ6YcAlItIJAy4RkU4YcImIdMKAS0SkEwZcIiKdMOASEemEAZeISCcMuEREOmHAJSLSCQMuEZFOGHCJiHTCgEtEpBMGXCIinTDgEhHphAGXiEgnDLhElBfckXs8BlwiyilFUQCzCV0Dw4DZBMXEMBOi6yaSRDT5aYpAW8fO8C68m9tbCt2kosGvHiLKGSEEuvs8GBzyAQAGh3zo7vMwvTCKAZeIckZKiQaHFZW2UgBApa0UDQ7rlNggMhVMKRBRTilSYnN7C7r7PGhwWKFIOam3Pk8HAy4R5ZSmBsNrY1U5ZEBlsI3AlAIR5QXTCOMx4BIR6YQBl4hIJwy4REQ6YcAlItIJAy4RkU4YcImIdMKAS0SkEwZcIiKdMOASEemEAZeISCcMuEREOmHAJSLSCQMuEZFOGHCJiHTCgEtEpJOCBdznn38era2taG1txQMPPFCoZhAR6aYgAdfr9eLee+/Fb37zGzz//PN47733sHv37kI0hYhINwUJuKqqQtM0eL1eBAIBBAIBlJWVFaIpRES6KcieZna7HTfffDPmz58Pi8WCr33ta/jKV75SiKYQEemmICPcjz/+GL///e/x5ptv4q233oKiKNi6dWshmkJEpBshC7DT2xNPPIHe3l7ceuutAIAdO3bg6aefxi9+8Qu9m0JEpJuCpBT+6Z/+CT/5yU/g8XhgsVjwxhtv4Oyzz075+b29bmiacXcEra+vgNN5otDNyJjR2w8Yvw9Gbz9g/D7U11ek/ZyCBNwLLrgAH374IRYvXoySkhKcffbZuOGGGwrRFCIi3RQk4ALADTfcwCBLRFMKV5oREemEAZeISCcMuEREOmHAJTIIIUShm0BZYsAlKnKKogBmE7oGhgGzCYqJH1ujKtgsBSJKjaYItHXsxOCQD5W2Umxubyl0kyhD/KokKmJCCHT3eTA45AMADA750N3nKXCrKFMMuERFTEqJBocVlbZSAEClrRQNDmuBW0WZYkqBqMgpUmJzewu6+zxocFih6F/+hHKEAZeoyGmqBgBorCqHDKjQCtweyhxTCkQGUYDCfpRjDLhERDphwCUi0gkDLhGRThhwiYh0woBLRKQTBlwiIp0w4BIR6YQBl4hIJwy4REQ6YcAlItIJAy4RkU4YcImIdMKAS0SkEwZcIso5bngZHwMuUY4wyHDDy2RYgJwoS4qiQFMEuiJ2ZAgVDZ9quOHlxBhwibLEIBMkRPBLJ3bDy8aqchZPH8XxPlEWEu2qOxXTC4k2vGSwHcMRLlEWIoNMaITb4LBCBtRCN60g4m14OTWTK/Ex4JLuhBB5HfXk+/ixGGTGcMPLiTGlQLrJ9x3sQt0h11QNCKhorCoHAuqUvWEWiWmE+DjCJd3k++ZSoW9eMchQMhzhki7yfXOJN6/ICBhwSRf5voPNO+RkBEwpkG7yfXOJN6+o2DHgkm7yfQebd8ip2DGlQLrL92U+0whUrBhwiYh0woBLRKSTggXcN954A4sXL8b8+fNxzz33FKoZRES6STngDgwMwO125+SkR44cwfr16/HYY4/hhRdewIcffoidO3fm5NhERMUq6SyFf/zjH/jhD3+Ijz76CEIInHvuudi4cSNOOumkjE/6+uuv49JLL0VTUxMAoKOjA2VlZRkfjyif9K7NQJNX0hHu7bffjquvvhp79+7FBx98gIsvvhg/+tGPsjrp4cOHoaoqVq5ciUWLFuHpp59GVVVVVsckyjXuXkC5lvQvyOv1YsmSJSgpKUFpaSmWLVuGnp6erE6qqir27NmD++67D8888wz27duH7du3Z3VMokQyXd4bqs1w22O70NaxExqXCVOWkqYUTjvtNPz5z3/GV77yFQDA/v37ccopp2R10rq6OjQ3N8PhcAAAvvnNb2Lfvn1YvHhxSs+vrbVndf5iUF9fUegmZMUI7Vc1iYETI+jqG0Kjw4bqijIoyljQTNaHjz7pjarN0OPy4swv1Oa1zekwwnuQzGToQzqSBtxjx45h2bJl+OIXvwiz2YwPP/wQ9fX1WLhwIQDgxRdfTPukc+fOxa233orBwUHYbDa89dZbuOiii1J+fm+vG5pm3JxafX0FnM4ThW5GxvLR/tC+YN253BfMbBpfPWy0MHgqfairtkQVFq+rthTN+2b0vyHA+H3I5MsiacD9wQ9+kFFjJjJr1iysWLEC11xzDfx+P84//3xceeWVOT8PGUeuSyvmYn8t1magXEsYcA8ePIgZM2bAZrPF/f1ZZ52V1YmvuuoqXHXVVVkdgyaHfGw+mIutb1ibgXItYcDduHEjfv7zn+Pqq6/GtGnTov7wvV4v9uzZo0sDafLL175guRqhckoY5UrCgPvAAw/A5XJhxowZ+M1vfgMpJYQQ8Pv9+M53vqNnG2kSip3bmo/Ld45QqdgkDLhr167Frl27IIRAc3Nz+N9NJhMuvvhiXRpHk0/o5lhXzM2xfAZHjlCpWCQMuFu3bgUQXPhw//3369YgmtyS3RzTOzhyFRnpKenCBwZbypVi2ndM1SRXkZHuuOMD6SZfN8cyMXBipKA7/NLUxIBLuiqGua3BaWhDOZ2GRpQKXkeRrjRVAwIqGqvKgYCa/WqyDEgp0eiwcYdf0h1HuFQQhQ5u1RVlBR9p09TDgEtTkqKI8Eibc3RJL0wp0JRW6JE2TS0MuEREOmHAJcqxQswrJmNgwCVDMEIQC23J0+Me4WIKiot/EVkyQiAwsnzsK5a398ysYMDtQ9/gCAbcPoABl2JwlkKGEhVhodzKZWHyyPdMKTFDMSk5e8+EEAioGtb/ck+4rZvaLoSJtRooAgNuhnK9QwGNl+vC5Pl+z3pc3nF7oDVWluf0HGRsvObJQDEVYSkGE/U729ckVHsBiL8iLNXjCyHQ3R/znvWPf88y7Utw9Vp0WxsLsHotlddDj7/TqfpZSIYj3AwUUxGWQpoorZJNyiXyuU11NmxZ04Ku3ugVYekeP/ie2WLeMxukP5CzvghttE5EvwcNDhtcJ4ZRZS/TJd2UShv1SIMx1TYxIQ2YYCqGXXsVkwJNZLbL7GTYrdTpPDHhrrgT/i6ZOM8VqhY9Wkzz+EIIuLx+SAk4XV7UV1sgBFBtKQkeN4d9ESXBxw+4M+h7isb9DaXSxmzek1SlcY7J8DlIF1MKGSqGIiyFNFFaJZuUS6LnpnruRKSUqLKX4e6tb+Onv9uLu7e+jSp7WXjrqFz1RQiBrl5PcJZCmn3PVCpt1CMNxlRbckwpZMmAFwg5kSytkmnKJZV0TaYpHUVKdLQFC9ZMq7NDqsEaCrnsSyHSTfl8zXLdjqmOKYUCmAyXUk7niQnTKtmkXFJ5bjbHF0Kgrs4e9R7ksi/ZtC1VsX9D+X7NUpXOOSbD5yBdHOFSxiba+DGbTSFTeW42x483xshlXwqxW3C+X7NctmMqYw6XsjbRRVK+L6Byffxc9iXffY+XG03lnHpc1BrwwlkXDLhUdPKxnLfQcnnjSFEU9A0MT6rXZ6pgSoGKzmRaxZePeamaItD20JuT4vWZahhwqajkejlvoeX6y2OyvT5TDa9FqKhETi0CjL3BYz7mpU6m12cq4giXik4xbKWeC/mal6pIiUfWzkVnj9vQr89UxIBLRacYphaJHJVVzMeXh6ZqqHfYoPkDnHplMEwpUNEqxGVyrmdI5HMJONMIxsMRLlGEfM2QYHAkgCNcKnJ6Fj5h8RXKNwbcKUav4JHteQqx+IEzACjfmFKYIvQqDJ2r82iKwJ2/2INjTjfsVv0m90+WGRJUnBhwpwi9Vm/l4jwmkwK/lFg2/0zUV1vw+Pa/6ja5vxhmSNDkxYA7BeRydVKyPb9ycR5VCKyJCNp3X9+MKntpzuqqppLuYBqB8oE53CkgF7nJyJxq38Bw3JxqLs4T78bViD8AE3IwJzaFPhDlE0e4U0S2uclUUwXZnifu6qwaK9QcjG4nU1EcMqaCBtwHHngA/f392LBhQyGbMSWkkptMtLpqolQBgPC+YDLiBlk2OdB83Lhi0RcqBgW7ptqzZw+2b99eqNNPWfGCS7IpWPFSBY0OK6RJQdfgMFBihsvrj3puNkEsH6uzOOWLikFBRrgulwsdHR1YuXIlPv7440I0oSBytT4/22OHbhqFHh95qV1lH73UVqOPGTnqnFZnh4RE26Yd4WOuXz4b7Zt3oqNt4sv0dNoZetxEz4nty0TG9UEtzlkI+fw7ocIqyAj3zjvvRHt7OyorKwtxet3FjiBzuQFmOgsEFEWBMJvQNTgMVRFQSs0wmZXwTaqZn6vB+uWz0T84DFFiDo5eR48ZOep0VJWjf2AY65fPxr9dOQvrl8+GZ8QPKZFwZVYmCxkmeo6iKFBKzVAVga7BYYiS5MeM7UOxbW0/GXe6oGi6j3Cfe+45TJs2Dc3Nzdi2bZvepy+I2Js1j6ydm7djT3QjKPaxoelWDQ4rquylWHnF2bh769tYv3w2bt60I+4xQyOvqspytEU8pqOtBYoS3FIccQJZJjesJnqOpggMDI5g/S/3pH0TrFhHj7ypN/npHnBffvllOJ1OLFq0CAMDA/B4PLjvvvuwbt26lI9RW2vPYwtz76NPeqNu1nT1DeHML9Tm5dg9Lm/CY8c+trvfA03TcPr0Gjyydi6Odge3rHa6vEmP2dPvGXesLWvmQBECnS4vGh02VFeUQVFE2u1MpW/7D/ehZ2A47WNGymSb63xK9zUqtvZnYjL0IR26B9wnn3wy/P/btm3Du+++m1awBYDeXndOL8vzra7aEjXNqdFhg9N5Ii/Hrqu2JDx27GMbaoIj295eNwBgWq0NAFCf5Jj19RXjjtXksEJVJW7qiBkZj07nSqedqfStprIciqKkfczIPuTqPciVdF6jYmx/uozeh0y+LIQs4PVVKOCmOy3MaAFXMSnQRif0NzisqK2yhINcro89Ue0CxaRAjtY5qKu2wGxSAFULPz50rAH3CKoqytHdN4SGmvHHrK+vQG/fUNR5TZDo7PPitsd2hR+34d/OD0+7SqedqfRNMSmASUFA1dDj8qLRYYXQUq/bUIwf9nReo2Jsf7qM3odMAm5B5+EuXrwYixcvLmQTdBE7NzV0mZ2PY08UbjRVA1SgsbIc0CQ0NRD3WA5bKVR/AI2ViY8Ze14VmHA7mXTn5wohJnxOsC8aTEIE2+lXc7AWrbBYx2Hy40ozHeXzYiKVY4emGyV6rNlsQkAIfNbjRlOdHSYhEfBNvMIr8lipLFhI1s50q40V6w2wbEzGPlEQA+4UkGoQCwgRNfNg85o5aZ0nFyM0o9+p5xxamggD7hSQShBTFAXHetxRd8mP97hxUo0l7Xx5pgFHCIGu2NkPBll+q1e9YTI2BtxJLtUaApqmoanOHj3zoM4OzR9IdOictlEIAU0R42dS5GBbcT0YfWRO+mDAneTiVt9KEMTMQmLzmjk4PprDNQuJfIbbqFFhrQ0PP/NneIZV3H19M0b8gbEZEnlsQy6wMA6ligF3Ckh0MytyCa6UwRtkQohgGsEfGBdsJ8pPKooCTdPiPi7R82JHhXetmI0fPPxHrN2yEw+sugBC1aAZIGBJKdEY86XWWGuF9Bf/yDwZ5qRziwHXoNL5IMTezMJoHQIpJVRNosflxbRaGzQp0dU7GpRFxJzXmPxkZE43NLPhWI8b0+rsUBSg0zmEBocVZgEEJNAz4EVtlSUqrxk7KnR7fHC5R1BhK4WUQG21xRCphBChCNx9fTO6+z1oqLEG359CNyoLzEnnBwOuwWTzQQgFaGkScJ0YASSw/pd74Pb48NDNLQnrEkxUCyJ2ZsPd1zdj3c92wW4txZY1czDgHkHf4AjMJhNqKsvCdRYiUx1NtTZ8f/GXMeIP4KGbLxxbkJGgH8U26hJC4HjPULjfbo8P933/fEOnFJiTzg8G3CI0UUDJ5oOgKMGVZt39HkAIuAZHwiUZuxPMDgAwLj/Z1TeE+ooyiNGRbWxNBbs1eGl9vG8Ijz67F5853ai0lWJT24UwxSn5qEmJNZv/GN2nOF8ixTrqCn15hPptpJt98TAnnT8MuEUkWUDJ9oMQCtahEW1DTXCEeWLIF/7/eAEj9qZbo8MG1eeHlHLczIaGGivcnuD/11db0NnjDre1x+UNrnILtUfVIIRAz+BwSn0q5lHXZNpePZ0brZQeBtwikiygZPNBiA3WP9u2D7d/76vY1HYhelxeOKrKsGVNy1gONyJgxAaT6ooy9Pb6g/V1FWBT24VwurxoctigKMB93z8/WF/BJKJGfY2O6BtJoZH8RME+UfuLbdQ12ZblTqYvkGLCgFskUg0omX4QYoP18d4hQANMmkRjZTnUkQCEEME0QszsgES1IDRFoO3BHXB7fJhWZ8e/39gMdUQNP05KJdjW0RtJipRQMX4kb1aQ0pJgI4y6iiH458Jk+wIpFgy4RSLVgJLsgzDh1C0po0axQkpoUgZzuyYFrhMjqKpMXCUsdqpXz4AXbo8PmgQ+c7rHfUGEnjut2gIVQGefN1igXBFoe2h8GcdkH26OuvQ3Wb5AigUDbhFJJ6DEfhAmyv+GV3IJge5eT7CUYcTvNUWgffNOrF8+O7qWQoIcqapJSJMCVZN46OYW/GzbPhzvHUo44lRFdKpkU9uFcHvSTw3oPeoqttkQZHwMuEUkm4ASL/8bu5IrXjANpTKA8Ts9xAbC0PF6XF7c9cs9OOZ0w24NBlBFiLhfEPFSJT0uL6bV2cOzF9JNDUS1R8t92C3W2RBkfAy4RSjdUVXC/K/DiraOnRACWHXVrITBtMFhhRAT17MFgkF96wt/w/cWnIVl889EfbUFj2//a3j2QbxVYfFSJY0OK/79xuaMUwORiy3CS5CTlJFM9LqlsgIucqTPUS9lgwHX4MJ3+uMsLe3qDQZhRQB1VeOLwoTmupoFsKltDlyDXmxeMyc6hxtxnq4+D66cewbWbhmbMxvaiHKiEWpsqkRoElLVMk4NZFtGUlEU9A0Mo2tgOG76Jd6X17QaC1TBUS9lhwHXoMKX96PLZkN3+nsHvKirtkBowfX90xvtGPL6sG3HgWAw7R0K5nAVAefACGqrLNAE0L5pBwbcwUUQW9pbIANa1NLU4JxbKw4cGYhajhtQVZggoY3WZYg7YhwNTE3V5dAiAmwmI8VUykgmq+WgKQJtD72ZcFfieCN9FdBtDnBke1MZUXPUbRwMuEZlVjAwOLZs1lFZBkUJbq7oOjECR6UFqqZh1VWzUFdtgckkoAhgmsMCqQj0D45g2BfcluaYcwjrl8/G49v/iv2f9qPvxAhqKsrR1RcMziYAqgSO93ow45QqnDOzDp5hNbwcVxMKXMPDqLCWwmwyRe2TBox9ORzPwehwojKS46abjdZyiByVSk0mnX4XOyIP7deW7znAke1vqrNBRta2iPOaMddsPAy4BiSEQEDVomofbGq7EEPeAO78xW6sXz4bfSeGsf4Xe6Iu/QGg2l4KVdVw1xN7sH75bLTHVOv68f9+G1W2Mtwcc8nevjk4Aq60laKjrQUS0ctx71oxG2u3/BF3rQimGCIlW9CR7ggtURnJceeJaffm9hZAaslz1Wnu15YrsSsBE9W2iH18Ma68o/gYcA2qJ2ZGgdPlhccbLKjoOjGCgKaNq3FgNikIqGNBInZWgmckgH+/4ev45NjguEv2UDwcHPLhcOcgysvM484vJdDd70EgoKKuoiy4W6+i4HiCEWWo6Hi6I7TQDbLIMpLxcq+x7Q6fV0o8snYuOnvcE960y8WCk1RFtn+i2haRbeou4pV3FJ9S6AZQ+iLrrwIIXlY7bHCM1imorihDfU307xtqrHBUlqO2yoK6agsAoH50d4XQY+yWEqzdvAO1VeXRx66zI1Q6t9JWiprKcjTV2aIeU19tCc50qLGittoSrLVrNuG4y4uGWhvOmVk31haHFVLK8Ajttsd2oa1jZzgPnKrIMpGRuddE7Q6fV9XgqCoPrqoLqCkFeU3VwoszUn1OOiLbH1nbIrbtkWL7G+8xVFyENOA71NvrTnufrWJSX18Bp/NEVsdQTEpwIcPoslmzAmgIphpOeHxwVFoQUDU4+z3hHK6ACM9M0ITAwNAIquzBlWWNDisURaCzZwiNtVZAirEcrgjmcLv6gscqLzVB1ST8AS04Jcxhg8sdyuGOllYU4y/vu0cXR4RzqQPDuO2xXeE+bfi37Eoahl+TiCXDAQ3Ro9LR/ufiPci1yPYny+HW11egt28oqr9Gy+EW43uQjvr6irSfw5SCwYTyneE8Y2UwzxjancEkBKrLS6CO+KEIEazOpUlAk+PmyVaXl0D6A8Fj+IO5ysbKcsAfcWz/2LFDx1JV4KaHomsoVJeXBM+hBmsydA/E3GTqHRo3SyHXedHY3Gu43QapBxDZfs0XCP9/oraz3oHxMOAaROQd6cba4FxWTdXGjQYjf042UgzlWCNXa030HCllsNh231A4mH7mdKO73xMMzqEC5wmmVmkxwTRfedGJXhMjSOc9TPUxVBwYcA1CUwQefvYDXDv/SzhwxIXTp9dAATK+hMx0tVb8coo2yJjdfVMJphyh0VTDHG4BpJu7EkKga2AYpSUm3PXE2+FAF1ygkOEleIk5arXWljVzxgXNRG0ZHAlAVSWcLm/4Zlm1pSTuSKtYJ+VPhvyhkdsPGL8PzOEaSDqBSEqJxlorDhxxxWx1k9k0oHirtTp73Dip3gaoE994kVKi2l6O1ZvehJSAEAjOy00Q+Isx2BIVCgOuziZaxz8RoUmcMb0mJ1txx1ut1eiwoa1jJzbdnHzyfHVFGTracpd7zccouFhH1jS1MeDqbKJ1/IkIIaCpGhSTkrOtuM1CYsuaOejscaPRYcPTr30M14nUJs8rikipYHgy+ViayuWuVMwYcHWUbBud2FFZOHj0e9BUa8Xx3iHc8bNdaKqz43iPG/esPD+8sy6Q/PI9XIhc0xDwqVAUBSc12NG2aQdcJ8ZXEUsm2xFkPpamcrlr5nhVkH8MuDpKNF1KjO6gEDsqkxEzE/Z/6sIXP+dAR/scHOsZGl05VgZNk+gaXdwQr3AMgPAWOl19Q8HHlZVAkRoCGvDw//kz7rxuNnoGvDhjeg2EAI73pZnuyOCDmo9NIYt9o8lixasC/TDg6kyJt44/zqhMiODI9tr5X8JdT7wdt6DJljVz0LZ5Z7g4S6g2bSxNia4fe/f1zaiuKEN33xD+sr8H+w78EXZrKdZ972t45Nm94Z0Yko0Os/mg5mNTSKNsNFlseFWgHwZcnWmqhnqHDZo/ENzZNt6qrD4PmqrLUV9jwcGjAwkLmnTGFmeJKRwDIBy4YwvZ+PwBNNWNBScAqKu2oLPHHdWOiUaH2X5Q87HwgRtNpodXBfpiwC2QRKuyquzB2QeaX4XJbMKMk6vHFTSJrAMbVZylxuYSCFQAABXTSURBVDpu94W4CxVqrKiqKANUbWwbc4cNQkjYrdHtSDQLIhcf1HwsfOBiivTwqkBfXPhQALETvkNFSwZitikfK0gj0ePyYFqdLZiz7R0rzhJZVCZcOCY2h2tSIJWIHK7ZBLOQ8A0HFzqIEhPaOnai0WHD9xd/GYBEVUXi7dLD7Tebxo9wDfJBnQyT7nPV/tiiP3rlcCfDe5AujnCLQOiPu7oipvB3ewsQCMAkBJqqLFBHoguaxBaV0dT4K8WkJgEh8ehze3FidHvyjraIXXt7PRhw+zDg9uGHD+/E47d/K6Xt0kOX772j2/zw8t2YeFWgH9bDLRKxl+hujw+9A16YTMEZBsddXsBsCo5W4xRniczZhiiKAqXUDM0k0Nk7hKPd7nBg7e7zjNuAEgCa6uzocY1PFUQed+zEwf+oKV5txD0GFQ0DXuwaDke4RSIy8DXV2sL7hamKgoef+TP+sr9n4tFmvBkDQmBgcCS8nU6iPN24XXUFUsrppXrTjNOOiIIYcItIKPBpcvx+YfsO/HHCG1OxwW/L6KV+3+AIBtw+PL79r7hrxWwM+wKYVmuDiLj8j72kFCYl6Z3+dG6acdoRUVDBUgqPPvooWltb0draio0bNxaqGUVFUzUIVRu3X1nPgBd2a2nCbVTE6A2P2MI2ddWW8AyF/Z/24+6tb2NanS2Yp4szwgwdN5XtZOJtaZNq2xKmKIgmuYKMcHfv3o0//elP2L59O4QQWLFiBV5//XV861vfKkRzikq8aVynT6/Buu9+LeFoM+7UnlobzIpETWUZNrVdiP7BYdRVW4Kr2tJoy0RSmfOa6rQjFrChqaAgAbe+vh633XYbSkuDo6MZM2bg2LFjhWhKTiT6YCf7wCuKEr7hFXqsEAIiIpA1OqwQmoZpNZbgbAOM3XwK1UUIPefhH8zB/sP9OKnWhiGPD0PDfjTWWFFiUmBSxOg5AS3BzK1UAlTUuVO8u61IiS1rWqL354p8DUzBmRKNDmsw1ZFGfjdem9PJGTMok54KklI444wzcM455wAADh06hFdeeQUtLcbL6ymKAphN6BoYDs8gSOXfP/ykF6LEjD6vD6oiYCorgcevAiVmdA0OQxMCZgE01Vrhco9AmEzwA+gc8EKagjMPugaHERCAUlYCT0CFVBQccw5hxsnVEIrAjx7fjdt+ugs3d+yEJoEqezm6+jzwacHnmEtNSfsRt6+Dw+hxeeHy+hPOmoh9nibGAmpk8FMUBZpJwYEjLpSWmLDl2Q+gKUrc86f62gOYcDfgyPcAJeaofhDlW0Fvmh04cAA33ngjbrnlFnz+858vZFMykuhmkKYI3PmLPTjmdMNujf73yMfftWI21m75I+5a0YxKWynaO3ZgwB1c5dXRPgftHTuwfvls9A0OR9VQuPuGZqx7bBfs1uD/V1pLw/N3T2mw439dPSt6CXDvEH763FiNhLuvbw6uNEvSj4n6eteK2WjfvDM8nzfd1wgAZEyNh7tWzMb/O9KPM6ZXA0nWTyQ6brKbeZn2gygXChZw33//faxevRrr1q1Da2trWs+trbXnqVXp+eiT3uibWy4vZp7qQI/Li2Xzz0R9tQWPb/8relxenPmF2nGPd7q8kBLo7vdgxB9A5EDxmDNY08DlHoE/oEU/r98TXoLr7Pdg2BcI//6Y0426aktUzrQ+tkbCaC2FL51Wl7AfZ36hdsK+htoe77HJXqPQ48f9bsCLxhornP0THzPZcZUSc1T/p9XZ4RgtY5lpP4pRJiudis1k6EM6ChJwOzs7sWrVKnR0dKC5uTnt5xfL0t7YwFZXbUHfgBdrNo+NoEIVvJzOE3EDoRAI3ySLvHE/rdYGAKi2l0EIEf28GivcnrH/rxydwTA45IPdWgqzScFd18/G8EgA0+rs8Iz4wwE6spZCaFllvH7ELrlM1PZ4j032GiU674yTq/Ho7z7ATVefm3TJ50THVWKmtUlVTXjOVPtRbIy+LBYwfh8y+bIoSC2Fe+65B7///e/xuc99LvxvS5YswdKlS1N6frEE3Ng16CZIdPZ5cdtju8KP2bDqfEyrsUANaDCXmBCAQFfvEJpqbeh3D6PSWooSswluzwgs5aXB+gUOG37/xv/goq+eCu+IH6c0VsIfUOF0edHksEFRBDp73OG6CEPeEVjKSnG8dwiNNVY8/drHeO+jLmxub4FJAJpQoAY0OF2e8HMUqYV36U1lLX34Mf0eNDpscJ0YRpW9LOkihomOnekxU21z3Btqo8/rcXlRV2PFQBrnLCZGD1aA8ftgmICbrWIJuCFRH+yJCrqYTVj/yz04MeSDUEY3X/Rr4dkJ4eMpIlzMprqqPBigHVYokNBUGU49CAFo2tgMB3OJgoBMENwUEd70MdFrpygKNG3ioCOEQF2dHT097rTu7k80GyByhkYmhcwz+RMOfdiNOkvB6MEKMH4fWLymQKK2xUkwN9VkUuCXEt+5ZCy3e7wneDMnNI0pvLRWSiCgBovZPBRTRCYiIIZOGzp/wJ94mlYoyMaLLaHzH09hGlVkWclMX6NcHTPT5+Ty+UTpYMDNsURzU1UhsKYjOrdbXVEGoWnQRIIdH9LY/yxSukGES2+J9MHJh3kSGfTiLW8d8QfQ1ecGzMq4nRxCS1/jLZ0VQiSdMxt53mS49JZIPxzh6iDe8tYKaylGfCr2H+7HGdNrcM7MOvxlfw/OmVmHhlpb8AZYrRUPr52D4z1DUfuftW/eGT52vPmjkbv9xisgnqxtrPhPlB+8aaaTyDvytVUWeIcDuOPnu6M2hOzqHUJDrW1c8W+hjt1Yc3n8kACcLm94SlO1pSR6RG024ebIymFrWhJulRPVthTLJxr9Zgdg/D4Yvf2A8fvAm2ZFIl5+VVM1KIqCptrgxH6/KqOre/UO4SSHBcd6hyAEoIjoDSWlDI5GqyrLowPymjmQ/kDUuSM3jXR7gosC6uxlCXO7yWoiFNOd/GJqC1G6mMPNocj1/SJOflUqAqsf2olbH/0TKiwlqLSVQhHAKQ12NNba0HvCh4ZaG1ZdNQsPrr5wLL0wmq81mRV09w3F5FuHxuVbQ5P7Z36uBg/d3IKAJgFT8hoF8YrApJovzrdiagtRpjjCzYFQwBt3t3/NnOA3mgSkSaCzJxgsFRGcD3v/989HaakJvQNeuL0+lJQo40avjzz7Z3zwP2O7PcTbgTd2l16zyYS7r2+G3VqCtVv+mPHsg2KavVBMbSHKFANuFoKjLgWB0aLh9dVWNNXaMDjkw+CQL1yIRUqgvWNneJsbIYBjPUOoq7Lg9p/tCgeRh26+EG7P2Oj1mNONg0cHwz9393kwzWFJWoMWqobqitJwgI98fqrbmAsh0DPgjWpP6Pl6y8WW7ETFgAE3C5oS3DMstpLX2s07YbeWoq7Kgq4+D0xC4MSQD7959cPwNjcn1dux/9P+cYVUptXZw1W9ptXawvUVQrMH1NHR7EQ1aDVVA9RgPYZMZh+EZjmomsRDN7fgZ9v24XjvUMFmL3AmBU0WnKWQISEEetwj6Bscwf2/+r/hf9+w6nx4hgOotpfh1698iNXfPheKItA/OILu0Wla9TXlCPhUaEp0CqGjrQVCEeF6Ct5h31h9hSTTu+JJd/ZBWMzy5E1tF0IRIvz8QtxdzrgvCUyGO+RGbj9g/D5wloKOpJSorbLAbDJFjbwaHVYAwXJ/q799LhQZrH0QGgVX2UvxyNo50FQNJgFsaW8J70xggoTqV9FYWQ7pD8BqNkH6A8GfJ9hRIZFUd2SIFO/yvcflRWNlObQCfjdn0heiYsOAmwVFju0Z1uPyotFhhQlAQAJqeDsc4HhvMIDN/FwNVl5xNj5zBquF9Y1WqprmsEANqOGa27G1BfSsFxD38r2meC7fDXhBRhTGgJuFYK5Ug0mI0VGpikCcamENDiuq7KVYecXZuOuJt4t+t4FUNoecqjgPmLLByYw5ELkRZLy6BCYEA1jkzgxROz4UWe2CVLZJn2o4D5hygSPcHEp0Nz00syB21kB4x4cU77jrPbriSG4M5wFTLjDg5thEl+Oh7c8jdxvoaGtJesmezrbflHucB0y5MqUCbj52FIj9/UR300O/O/MLtXA6TwSLzqRwxz3RLsDZYj4yNZwHTLkyJQJuJiPEZM9J9vtUAlkqjwntFBG5C3C2oyuOmNPHG4mUC1Mi4GaSf0v2HL1yevF2iqiyl2Y1umI+Mn2cB0y5MOlvtWayo0Gy5+i1S0KinSJMyDwNwB0essMUDGVj0gfcyPwbMFaTINmmhhM9J5Nj5qztNVaogczHV3q1nYjGmxK1FDJZh5/sOdms7U9nDXmuawjk4phGXwMPGL8PRm8/YPw+sJZCApnk35I9R6+cXj7Ow3wkUWFM+pRCpEwG88meo9cFQj7OY8CLGyJDm1IBl4iokBhwiYh0woBLRKQTBlwiIp0w4BIR6YQBl4hIJwy4REQ6YcAlItIJAy4RkU4YcImIdMKAS0SkEwZcIiKdMOASEemEAZeISCcMuEREOilYwH3xxRdx6aWXYt68eXjqqacK1QwiIt0UZMeHrq4udHR0YNu2bSgtLcWSJUtw3nnn4fTTTy9Ec4iIdFGQEe7u3bsxe/ZsVFdXw2q14uKLL8arr75aiKYQEemmIAG3u7sb9fX14Z8bGhrQ1dVViKYQEemmICkFTdMghAj/LKWM+jkZRUn9scXK6H0wevsB4/fB6O0HJkcf0lGQgNvU1IT33nsv/LPT6URDQ0PKz6+pseWjWbqqrbUXuglZMXr7AeP3wejtByZHH9JRkJTC17/+dezZswd9fX3wer147bXXcOGFFxaiKUREuinICLexsRHt7e249tpr4ff7cdVVV+HLX/5yIZpCRKQbIaWUhW4EEdFUwJVmREQ6YcAlItIJAy4RkU4YcImIdMKAS0SkEwZcIiKdGCrgGrWko9vtxoIFC3D06FEAweI9CxcuxLx589DR0VHg1iX36KOPorW1Fa2trdi4cSMAY/Vhy5YtuPTSS9Ha2oonn3wSgLHaH/LAAw/gtttuAwB89NFHWLx4MS6++GL86Ec/QiAQKHDrJrZs2TK0trZi0aJFWLRoEfbu3Wuoz/Mbb7yBxYsXY/78+bjnnnsAZPg3JA3i+PHjcu7cubK/v18ODQ3JhQsXygMHDhS6WUn95S9/kQsWLJBnnXWWPHLkiPR6vbKlpUV++umn0u/3y+uuu07u2LGj0M1MaNeuXfJf//Vf5cjIiPT5fPLaa6+VL774omH68M4778glS5ZIv98vvV6vnDt3rvzoo48M0/6Q3bt3y/POO0/eeuutUkopW1tb5QcffCCllPL222+XTz31VCGbNyFN0+QFF1wg/X5/+N+M9Hn+9NNP5QUXXCA7Ozulz+eTS5culTt27Mjob8gwI1yjlnR89tlnsX79+nCtiH379uHUU0/F9OnTYTabsXDhwqLuR319PW677TaUlpaipKQEM2bMwKFDhwzTh3/5l3/Br3/9a5jNZvT29kJVVQwODhqm/QDgcrnQ0dGBlStXAgA+++wzDA8P45xzzgEALF68uKjb/49//AMAcN111+Gyyy7Df/7nfxrq8/z666/j0ksvRVNTE0pKStDR0QGLxZLR35BhAq5RSzree++9+OpXvxr+2Wj9OOOMM8If7EOHDuGVV16BEMJQfSgpKcHDDz+M1tZWNDc3G+49uPPOO9He3o7KykoA4/+G6uvri7r9g4ODaG5uxk9/+lP8x3/8B37729/i2LFjhnkPDh8+DFVVsXLlSixatAhPP/10xn9Dhgm42ZZ0LBZG7ceBAwdw3XXX4ZZbbsH06dMN14fVq1djz5496OzsxKFDhwzT/ueeew7Tpk1Dc3Nz+N+M9jd07rnnYuPGjaioqIDD4cBVV12Fhx9+2DB9UFUVe/bswX333YdnnnkG+/btw5EjRzJqf0GK12Qi25KOxaKpqQlOpzP8sxH68f7772P16tVYt24dWltb8e677xqmDwcPHoTP58OZZ54Ji8WCefPm4dVXX4XJZAo/ppjb//LLL8PpdGLRokUYGBiAx+OBECLq9e/p6Sna9gPAe++9B7/fH/7SkFLi5JNPNszfUF1dHZqbm+FwOAAA3/zmNzP+GzLMCHeylHScNWsWPvnkk/BlyksvvVTU/ejs7MSqVavw4IMPorW1FYCx+nD06FHccccd8Pl88Pl8+MMf/oAlS5YYpv1PPvkkXnrpJTz//PNYvXo1vvGNb+D+++9HWVkZ3n//fQDA888/X7TtB4ATJ05g48aNGBkZgdvtxvbt2/GTn/zEMJ/nuXPn4k9/+hMGBwehqireeustXHLJJRn9DRlmhDtZSjqWlZVhw4YNuOmmmzAyMoKWlhZccsklhW5WQlu3bsXIyAg2bNgQ/rclS5YYpg8tLS3Yt28fLr/8cphMJsybNw+tra1wOByGaH8iDz74IO644w643W6cddZZuPbaawvdpITmzp2LvXv34vLLL4emabjmmmvwz//8z4b5PM+aNQsrVqzANddcA7/fj/PPPx9Lly7FaaedlvbfEMszEhHpxDApBSIio2PAJSLSCQMuEZFOGHCJiHTCgEtEpBMGXCIinTDgEhHphAGXit51112Hvr6+rB/zzjvvYMGCBUnP98UvfjHusf7whz+Ea6EuW7YMr776Ko4ePYpzzz036TGJAAOtNKOpa9euXTl5TLYuuugiXHTRRXk/D01eHOFSUbv99tsBAN/97nfx7rvvYtmyZVi4cCEuu+wy/Nd//de4x3R2duLNN9/EkiVLsHjxYsyZMwebN29O+7ybN2/GFVdcgUWLFuHNN98EAGzbtg033nhjjnpGUxFHuFTU7r//fmzbtg2/+tWv8O1vfxu33HIL5s2bh66uLlx99dU49dRTox5TU1ODW265BRs2bMDnP/95dHV1Ye7cuWnXGjjllFPw4x//GPv378eyZcvwyiuv5KmHNJUw4JIhHDx4ECMjI5g3bx6AYDGjefPm4a233orKoQoh8Pjjj2PHjh146aWXcPDgQUgp4fV60zrf0qVLAQAzZ87EjBkz8MEHH+SuMzRlMaVAhiCEGFfgWUo5bvNEj8eDK664An//+9/xpS99CbfccgvMZjPSrdGkKGMfDU3TYDZzbELZY8ClomcymXDyySfDbDbjtddeAwB0dXXhv//7v/H1r389/JhAIIDDhw/D7Xajra0N3/jGN/DOO+/A5/NB07S0zrl9+3YAwN///nd8+umnmDVrVm47RVMSv7ap6F1yySX43ve+h8ceewz33HMPHnnkEaiqilWrVmH27NnhxyxbtgxbtmzBnDlzMH/+fJSWlmLmzJk4/fTTcfjwYZSWlqZ8ziNHjuDyyy+HEAKbNm1CdXV1vrpHUwjr4RIR6YQjXJpynnjiCbz44otxf7d8+XJcdtllOreIpgqOcImIdMKbZkREOmHAJSLSCQMuEZFOGHCJiHTCgEtEpJP/DwavTfAyinFkAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df5RkZX3n8fe9T1V1d/U0UMx0I2aV8Qc+GIU44jQxjJEVZONvibsZZNVpDeAGDOwaYpgheySeZQaNhxzYs6LRhSZxlTE7a47KuovAYsAQBnF0EpVnCcsPf4zTM0PD9Ex1d1Xde/eP6i66qquGruJ23e66n9c5HOlyqu+dPodPP/W93+f7eFEUISIi3ecnfQMiImmlABYRSYgCWEQkIQpgEZGErKYAzgDr5/5XRGTVW01h9i+Axw8dOkIYdt65USjkmZwsxndXItLT4siM4eEhr9nrq2kFHItMxiR9CyKyiixnZqQugEVEVgoFsIhIQhTAIiIJUQCLiCREASwikhAFsIhIQhTAIiIJUQCLiCREASwikpBl3YpsrT0O+Hvgnc65J6y15wE3AAPATufcny7n9UVEVrJlWwFba88C7gdeNff1AHAL8B7g1cBGa+3bluv6IiIvhDE+kfGZmCwSGR9j4o/L5VwBXwJcDvz13NejwKPOuccBrLVfBv4N8O1lvAcRkbYZ4zNZLLN9fDcTk9OMFAbYNjZKIZ8lCMLYrrNsK2Dn3MXOufsWvPRiYN+Cr/dRnXAmIrKiVKAWvgATk9NsH99NJebrdHMcpQ8snCPpAW3/Klm7ds0LvpHh4aEX/D1EpHdNTBZr4fvca9PgebHmRzcD+OfAyQu+fhHwy3a/yQudBzw8PMSBA1Mdv19EUsD4jBQG6kJ4pDAAUdRRfrQK7W62oT0IWGvtK621BrgI1X9FZAXKANvGRquhC7UacNwr1q6tgJ1zM9baMWAX0A/8T+C/d+v6IiJLFQQhhXyWHZedDZ4HUURm7vU4eVHU+cf5LltPDEcSqQQhIu2IIzN0JJGIyAqjABYRSYgCWEQkIQpgEZGEKIBFRBKiABYRSYgCWEQkIQpgEZGEKIBFRBKiABYRSYgCWEQkIQpgEZGEKIBFRBKiABYRSYgCWEQkIQpgEZGEKIBFRBKiABYRSYgCWEQkIQpgEZGEKIBFRBKiABYRSYgCWESkCWN8IuMzMVkkMj7GxB+Xmdi/o4jIKmeMz2SxzPbx3UxMTjNSGGDb2CiFfJYgCGO7jlbAIiINKlALX4CJyWm2j++mEvN1FMAiIg2CMKqF77yJyWmCMIr1OgpgEZEGxvcYKQzUvTZSGMD4XqzXUQCLiDTIANvGRmshPF8DjvuhmRdF8S6pl9F64PFDh44QvoCPAcPDQxw4MBXbTYlIbzLGr9Z8PQ+iiAx0/ABueHio6dJZK2ARkSaCIMQLQkYKebwgjLX7YZ4CWEQkIQpgEZGEKIBFRBKiABYRSYgCWEQkIQpgEZGEKIBFRBKiABYRSYgCWEQkIQpgEZGEKIBFRBKiABYRSYgCWEQkIQpgEZGEKIBFRBKiABYRSYgCWEQkIQpgEZGEKIBFRBKiABYRSYgCWEQkIQpgEZGEKIBFRBKSSeKi1toPAFvnvvy2c+6qJO5DRCRJXV8BW2vzwE3Am4HfAN5krT2v2/chIpK0JEoQZu66g0B27p/pBO5DRCRRXhRFXb+otfYPgc8AReC7wPucc893I+uBx5f51kREloPX7MWu14CttWcAHwFOAZ4FvgxcBfz5Ut5/6NARwrDzXxrDw0McODDV8ftFJF3iyIzh4aGmrydRgvhXwN3OuQnn3CwwDpyTwH2IiCQqiS6IHwGfsdYOUi1BvAt4KIH7EBFJVNdXwM65O4GvAg8De6k+hLu+2/chIpK0RPqAnXOfBj6dxLVFRFYK7YQTEUmIAlhEJCEKYBGRhCiARUQSogAWEWnCGJ/I+ExMFomMjzHxx2UiXRAiIiuZMT6TxTLbx3czMTnNSGGAbWOjFPJZgiCM7TpaAYuINKhALXwBJian2T6+m0rM11EAi4g0CMKoFr7zJianCV7AHJpmFMAiIg2M7zFSGKh7baQwgPGbDjXrmAJYRKRBBtg2NloL4fkacNwPzRKZB9yh9cDjGkcpIt1gjF+t+XoeRBEZ6PgB3PDwUNOls1bAIiJNBEGIF4SMFPJ4QRhr98M8BbCISEIUwCIiCVEAi4gkRAEsIpIQBbCISEIUwCIiCVEAi4gkRAEsIpIQBbCISEIUwCIiCVEAi4gkRAEsIpIQBbCISEIUwCIiCVEAi4gkRAEsIpIQBbCISEIUwCIiCVEAi4g0YYxPZHwmJotExseY+OMy7kM+RURWPWN8jpYD9j9dpD+XYaZU4aQT8wxmTaxnwymARUQaRMZj8ulZbt61l4nJaUYKA1x54Qbyw4MQxHcdlSBERBpUgogbb9/DxOQ0ABOT09x4+x4qQRTrdRTAIiINwjCqhe+8iclpwphPplcAi4g0yPg+I4WButdGCgNkfC/W6yiARUQaGCKuGRuthfBIYYBrxkYxxFuC8KIo3m+4jNYDjx86dIQwbP+ejfGpAHgeRBEZiPVppoj0lmzOUAogCCOM75EzUC519gRueHio6dI5FV0QxvhMFstsH99de6K5bWyUQj6rEBaRRYzxOTRVWvbMSEUJogK1HyRUi+nbx3dXV8QiIg26lRmpCOCgxRPNoINShoj0vm5lRioC2Phe0yeaJuYnmiLSG7qVGakI4AywreGJ5rax0XQUwEWkbd3KDHVBiIg0EWdmtOqCSMUKGKo/OC8IGSnk8YJQ4Ssix9SNzEhNAIuIrDQKYBGRhCiARUQSogAWEUmIAlhEJCEKYBGRhCiARUQSkshmMGvtu4BPAoPAnc65K5O4DxGRVuY3YkxMFsH4y7J5q+sBbK19OfB54CxgP3CPtfZtzrlvd/teRESa6dYI2yRKEBcAO51zP3fOlYHNwIMJ3IeISFPdGkeZRAnilUDJWvsN4KXAt4D/uNQ3r1275gXfwPDw0Av+HiLSuyYmixSG+rn4PaczlM8yVSyz655HwfNizY8kAjgD/DZwDnAE+AawBRhfyps7HcYzb3h4iAMHpjp+v4j0PpMzfOgdr64dTT9SGODKCzdgfDrKj1ahnUQJ4lfAXc65A865aeDrwGgC9yEi0lQYUAtfqJYgbrx9D2FnR8K1lMQK+FvAbdbaE4Ap4G3A3yZwHyIiTQVh2PJEDBPjdbq+AnbOPQh8Brgf+AnwJHBrt+9DRKQV3/ebnojhx3wiRmoGss9TDVhEnk+U8dl3sMhNO5+rAV+xeQMnr8vjVdpvQ0v1sfQiIm2J4Jv3PVbXBfHN+x7j0veeHutlFMAiIg0ywPvPP23RRowMEOdzOJUgRESayOYMpaB6RL3xPXIGyqXO4lclCBGRJTLG59BUqSe3IouIrGjd2oqsABYRaRCGUdM+4DDmg5GXHMDW2oK19rh4Ly8isvJ0qw/4eQPYVj0EHAAOWWu/a619aax3ISKykngRV2zeUAvh+T5gvHibFpbyEG4c+BJwC9XAvhT4r8BbY70TEZGVYgX1Aeedc19Y8PV/ttZeEutdiIisIN3qA15KAD9irf0t59zfA1hrXws8HuM9iIisKEEQUshn2XHZ2eB5EEWJHUl0CvBda+2PqHZnbAB+Za3dC+CcOyPWOxIRWQGCIMTjuc1bMU+iBJYWwH+yDNcVEUm9lgFsrT3NOfcI1Zm9izjnfrBsdyUikgLHWgF/FngnsBt4CljYADcIjCzjfYmI9LxjBfCHrLUnUh2afg7VAI6AHPDd5b81EZHedqwA/irVXt+I6iaMeQHwN8t5U8vBGJ8K1dNOMf6yPNEUEWnH846jtNbe4pz7SJfu51jW0+E4SmN8jpYD9j9dpD+XYaZU4aQT8wxmjUJYRJqaX7TF0YbW8TjKFRK+L0hkPKaP1s8xmi5VyPdn4u2qFpGeYIzPM8Uy1y3YiHHN2CgnaBxl+yJgZjbg5l172fq573Hzrr3MzAasmlH0ItJVAV4tfKE6Ce268d0EdHkYTy8Igogbb99T98O88fY9BFr9ikgTlRbH0ldewGk8zaQigMOQFrM9tQYWkcWM7zUdR2liHkeZiiOJMr7HWa85iXM3nlKbbHT3Q0+S8T3VgEVkEWN8Pn7RmdzwlYdrNeCPX3QmxniEMWZGKg7l7M9n2T85w44FBfWtY6OcVOhnplhelpsVkdUrl8/y7JESEws6p0ZOzHP8mhylDjKjVRdEKgI4Moatn7u/rgwxUhhgx2Wb8FQIFpEGcWdGqwBORQ04aFFQD+I+4ElEekLrzNBDuLaZFuc7GT8Vf30RaVPrzFAbWtv6cz5bx0brznfaOjZKfy4Vf30RaVO+r3lm5PvizYxU1IAB+gayzJRCgjDC+B79OZ/ZaT2AE5HmBvJZirPPZUa+z2e6w4f2qa4BA8xOl/GCgJPXDeIFgcJXRI5pulifGZ2G77GkJoBFRFYaBbCISBPZnCEyhn0HjxIZQzZnYr9GKnbCgeYBi8jSZXOGg1OlRZu31g3lKJfi2zuQiodwxvhMFstsX/DD3DY2SiHm0XIi0hu0ESNGFaiFL1QbqreP76Zy7LeJSEp1a/NWKgI4CKOu7GoRkd7Qrc1bqQjgbo2WE5HekDM03YgR93M41YBVAxaRJrI5QymAIIownkfO0PEDuFRPQ4N4D9gTkd63Ig7l7BVBEOIBw8NDHDgwpTnsItJStz41p6IGLCLSjm51TimARUQadKtzSgEsItKgW51TCmARkQY547VoQ9OpyB3RLAgRWapSEPF3P/gZn7z4jRgfghDu2v0E79z0cuKM4FQEsPqARaQdngdnvvpF/NmXHqhlxhWbN+B5KkG0TbMgRKQdUeRx0849dZlx0849xL1tIhUr4CCMOOOV67jgnFNrHye+fu+jBGGUjh+AiLSl5TCeKN7MSEX+9PcZ3n72y+o+Tly9ZSP9fYbKjNbBIlJvfhhP4zhKoxJE+8rliOtve6ju48T1tz1EubxqtmGLSBd1axhPKlbAx5rtmYofgIi0pVwKGD6+jx2XbaqdityX9SjF/Ik5FSvgbs32FJHeYIzP4WKZp/Yf5tCz0zy1/zCHi2WM0TzgtmWzHldv2Vj3ceLqLRvJZjUPWEQWi4zH5NQsN+/ay9bPfY+bd+1lcmqWKOaNGImNo7TWfhZY55wbW+Jb1tPhOMqK5/Hkvmd5+a8VCMIQ4/v8v19McsrJx5NZPeM4RaRLQuPz9LPTrD0+X8uMQ88WOfH4AfwO9g6sqHGU1tpzgS3AHd24Xr4/w7rCYO2QvfmCer4/Q2m63I1bEJFVJN9nmMpmFmdGn2GmuIrHUVprTwSuA7Z365qzpbB2vDRUH8DtGN/NbEm74ERksenZ5pkxPRtvZiSxAv4CcA3wkk7evHbtmrbfs+/gkZaj5U4eHurkNkSkh3UrM7oawNbai4GfOefuttaOdfI9OjsTzjRvqvY9DhyY6uQ2RKSHxZ0Zwy1Cu9sliM3A+dbaHwKfAt5trf2L5b5oX7b5aLk+dUGISBODfX7TzBjsizcyk+yCGAPO6UYXBECuP8NsOVrWpmoR6Q2R8QkIMZhaF0RAgMHHi7ELIhV9wAClmQpeEHDyukG8IFD4ikhLGYDIY7YcEIYRs+UAIi/2mq2OpRcRaZDNGQ5OlWqdEPMliHVDOcql9s9Ub7UCTkUAayC7iLQjMqbWAzxvpDDAjss24QXxBXAqZtG0Gsi+47KzYz1eRER6QxCGFIb6ufg9pzOUzzJVLLPrnvhniKcigI91xHQqfgAi0pZc1vChd7yaG2/fU/vUfOWFG8hlfcIYN3Cl4iFct46YFpHeEIZRLXyhumC78fY9HT1/OpZUBHC3jpgWkd5wrE/NcUrFJ/BSEHH7nY/U1XNuv/MRLn3v6aoBi8givuc13Qnnx3wkUSq6IDSOUkTa4ecMR6crTEwW6c9lmClVGCnkGRzIEMbYhpaKFfCagQwvHhniqf2Haz/MF48MsWYgw0xR4yhFpJ7neUwVy9y8a2/tIdzHLzqTNflsrNdJRQ24VIl4pmG6/TNTs5QqWv2KyGKVSsQNX3m47iHcDV95mErMmZGKFXAlCJs+0dx+2aZ0/AYSkbYEYdSVPuBU5E8Y0vSJZtwtJSLSG3JZn0t/97VkM9XSbTbjcenvvpZcNt7ITMUKOJtp/kQzm/GIVAIWkQYeMDMb1NWAr7xwQ+xdU6lYAWc8uObD9X3A13x4lIx60ESkiXKLsmU5UA24beVSwIlrcuy4bBNBFGE8j5yho6lGItL7jlW2jHPVmooVcB2VfUXkeWRM8/EFmZh3z6YigLM5w+GZCk/tP8yhZ6d5av9hDs9UyOZM0rcmIiuQ73t84oNvqCtbfuKDb8CPeX5MKkoQAV6tD3hhQX2wP96mahHpDWEUkcsZrr3kjfgehBFUwpAw5p2zqVgBt+oDrmgYu4g04XseM7MVrv3iA/y7T9/DtV98gJnZSuyzIFKxAm5dUE/JbyARaUsYRuy659FFGzE+esEZsV4nFQGcMR5nveYkzt14Su2HefdDT1YL6jqbU0QaRMC73vQKbtr53ED2KzZvIIJYe4FTMQ3NzxkmD5fYcduCA/a2jFI4LtfRZCMR6W3dOhMuFZ/Ag4Ba+EK1/LDjtt108HMUkRQIo+YD2eN+CJeKEkQYRZzxynVccM6pGB+CEL5+76OEUYQa0USkke97fOZjZ7P2+HxthvihZ4vVNrQYn92nIoD7+wxvP/tl/NmXHqiVIK7espH+PkN5Wp0QIlJvMOdzOJuplSHmjzEbzPkUK/F9dE5FCaJUDrn+tofqShDX3/YQpbLCV0QWO1oK2THeULYc383RGE9EhpQEcBCEzQ/Yi3mwhoj0hm5lRioCOGP8ruzrFpHeYPzmmWFi3oqcigA2vseVF26o29d95YUbYv9hikhvGOzz2TpWP8J269gog33xRmYq+oAD3+ezX36Y973l1LpdLVd94ExMqDqwiCyWz2c5OhsShBHG9xjs8yl2eIhvqk9F9j2PyakZto/vrr02UhiIfV+3iPSOYrGMB5w8PMSBA1MUi/FvHEhFCSJj4OotG+s+Tly9ZaNqwCLSUjZniIxh38GjRMYsy/jaVKyAKwHs/I6rG6yx8zuOS997RuxnPInI6pfNGQ5OlWqtaPM14HVDuVhP0klFAAdhyIM/3s+DP95f9/rvvyfeI6ZFpDeUApr2Ae+4bFOsi7ZUlCBatpSoBiwiTQRhiz7gNhsAnk8qFoA5A9de8pvsf7pIfy7DTKnCSSfmqwdzaiCPiDSYX7Q1TkMzvgcxZkYqVsBQ3Y588669bP3c97h5115tQxaRlrLZ5n3A2az6gNvuA457tqeI9LZMf4YjxfKiT81r8lkqM+2f4pDqPuAgDHnr6Es558yXEEURnudx78M/I4j0EE5EFiuXI6794j80X7TFeJ1U5E++P8Mbfv1FXHPz9+paSvJ9hpLGUYpIg2MNZI+zGzgVNeDZcvPRcrOqA4tIE77nNe2cinv3bCoCWOMoRaQtXsQVm+sHeF2xeUO8J3KSkhKEMS1aSnQqsog05fHN+x6r2z37zfse49KYj6VPRRdEXz7LxOTMom2FI4V+ZjucbiQivas/n2V/k8w4qdDPTAeZ0aoLIhUB7OcMnu9RKUe1A/YyWY8ojHQsvYgsYoxPps8wMxvWMqO/z6cyGxAE7T87SnUbmgEOPTvL9gW/zbaNjbJ2KBfnAaci0iO8rM/+p6drZ0nOT1Bcd0J/9Vj1mKQigEtBxFfvfKSunvPVOx/h0veermloIrJIuRx1ZYJiKkoQZHx+ebDITTv31H6bXbF5Ay9eN1idVSkiskCU8ZmcmmXqaKm2E25oMEfhuH68DgbItCpBpKINLcKrhS9UW9Bu2rmHVfOrR0S6yvg+s6Wgbn7MbCmIfYJiKgI4CFvsaol5tJyI9IYgiLjx9vpF242379Gx9J3wPZruavE0D1hEmmi1aIt7HnAqAjhr/KbH0md1JpyINGFM863IJubMSMVDOGN8jpaDRaPlBrOmo54+EeltJpdh/2SRz3754dqD+6s+cCYnFfIEpfjGUSYSwNbaTwK/N/flHc65TyzhbevptAsCyOezHF3QVD3Y51PULjgRaSI3kKUShQRlaplhspDxfErT8e2E63ofsLX2POB8YAMQAf/LWnuBc+7ry3XNfD7LvibbCk8u9CuERWQRz4PJZxafijxS6I/1OknUgPcBf+ScKznnysBPgZcu5wWPzjYfR3l0VuUHEVlspkVmzMScGV1fATvnfjz/79baU6mWIs5e6vvXrl3T9jX3HTzS8onmycNDbX8/Eelt3cqMxLYiW2tfA9wB/LFz7tGlvq+zh3Cm5QmnBw5MtfW9RKT3mUyLzDCdZcZwi9BOpA3NWns2cDdwtXPutuW+3mBf8xNOB/tS0YUnIm3qy/pcvWVjXWZcvWUjfav9VGRr7UuAHwCbnXP3tPHW9cTSBRFhfE9dECLSUuD77PyO44JzTsX41QFoX7/3UTa/1WLC1T2O8iqgH7jBWjv/2uedc59frgsa4/P0kZL6gEVkSYznsfefD3LXQz+rvTZSGOCi80+L9Tqp2Ijh5wy/OHC0trd7fifcrw0PaiC7iCxijM/RSsD+QwsWbWvzDGY6W7SlehpapcVgjYoO5RSRJnzjUSqFddPQSqUQP+atyKkYyB6GEYWh/rrhyrvueZQwTMlvIBFpSzmkdoIOVBdt28d3c/3lm2K9TioCuC9r+NA7Xr2oBNGX9QlKqgGLSL1KEDbtA64EUayhmYoADsKI7//kV3zy4jfWnmjetfsJTn7TK5K+NRFZgYzvt9w7QIyPjVLzEO7pw7OLDtg78bh+wg4mG4lIb/NzGX51qMgNX3luGtrHLzqTF63Nd5QZK2oaWofW02EAR8aw9XP3L/pttuOyTXiBuiBEpJ6fMxyZLnNgcrrWBTFcGGBNPkc4G18Ap6QE0byeE4Tx1nNEpDcEIXzqSw8uXrRdvinWU5FT0QQwX89ZqFbPERFpEHbpHMlULADzc7MgGmd75vt8posqQYhIvYzxOOs1J3HuxlNqrat3P/QkGeMRxdg4lZoa8Lfuf4zzRtfXdUG8c9MrVAMWkUUy/VkOPjPD9bftXvDgfpR1J/RTmYnvRIxUBHDF87h0x92LXv/LreeSWT1/fxHpkihj2Ppfmjy4v3wTXqX9RVuqH8IZ32/6ccL4PmgFLCINgqDFsfTaiNG+gT6fC88/bVENeKDPZ0Y1YBFp4PteVzZipKILYno2aHq+0/SswldEFssYjysv3FA3kP3KCzdgNIynfUGLlhL1AYtIM74P604Y4NpL3ojvQRiBMR6+D3FOj0lF/mRa7OvOqAYsIk2EYURxprKobBn3kUSpKEH4hqYfJ3yT8I2JyIoUBDQtW8a9XkvFCrhUDvmrO35aNw/4r+74KX/0b1+fjh+AiLQlCMOmM8TjLlumIn+M7zE5NcP28d211557oqk+YBGpl2sxQzyX9QljnCGeio0YxvgcLQc6lFNEliZjuLrJRozrL98E2ojRvnK5er7T/G+za8ZGIasisIgs1vpEjDDW0EzFQ7gKcF1DQf268d1oFLuINGPmNmIstBwTFFMRwMfqAxYRaZQBrhkbreucumZsNPaSQSpKENlM8z7gbMYnKqsPWEQWy2Z9/uB9Z9SeG2Vj7gGGlASw51W3FTY+0fQ8D62BRaRRBbj2i//Q5Bizs2M9ESMVAVwqB+oDFpEl69b4glTkj/H9Fn3A2oosIouZY05Di+9zcyoewvXnqkcSLSyobx0bpT+Xir++iLQpA2xryIxty/AQLhUbMQD6BrLMlEKCMML4Hv05n9np9o8WEZF0MMavtqp6HkTV0kOnG7dabcRIzRJwdrqMFwScvG4QLwgUviJyTEEQ4gUhI4U8XhAuy67Z1ASwiMhKowAWEUmIAlhEJCEKYBGRhCiARUQSogAWEUmIAlhEJCEKYBGRhKymWRAGwI9hIHIc30NE0iOGzFgP/Bzqz4FYTVuRNwH3JX0TIiIdehnwxMIXVlMA9wEbgX2ARpiJyGqzqlfAIiI9RQ/hREQSogAWEUmIAlhEJCEKYBGRhCiARUQSogAWEUmIAlhEJCEKYBGRhKyaWRDW2vXA/wV+0vB/vcs597NluNa9zrn1cX5fEVkZ5v4bfxz4S+fcRxe8/jpgD/Bh59x4i/c+AZzjnHvihd7HqgngOb90zr0u6ZsQkZ5wCPgda61xzs2PN9gMHOjWDay2AF7EWnsS8AXgJUAIbHXO3WWtvRZ4KfAqYBi4DjgXOAv4EXAh1QlrNwOvBU4C9gLvX8r3X/a/mIgstyPAD4HfBv7P3GvnA3cBWGs/BnwQGARKwPudc27+zdZaA/w5cA7VLBl3zv1FOzew2mrAL7bW/nDBP38M3Ajc4pw7E3g38AVr7dDcnz+d6g/nUuBW4NNUw/b1wBnAbwEl59wbgVcCJwBvb7jmsb6/iKxuXwP+NYC1diPVRVgJOA54L9VSw2uBbwEfa3jvJQDOudcDo8B7rLVvaufiq20FvKgEYa09CJxmrf3U3EtZ4BVz//4d51zFWvsksM8595O59/wCKDjn7rXWHrLWXg6cBpwKrGm45nktvv8P4/7LiUjXfQP4T9Zan2r5YSfVT8eHgYuAC621rwJ+h8X/zZ8HvM5a+5a5r9dQXfQteWzualsBN2OAtzjnXjcXzmcB/zj3/5UW/LlK4xutte8G/htQpLpC/jugcfLysb6/iKxizrkjVEuSm4C3MFd+oFpyfIDqp+JvA+M0z4ZPLMiG3wRuaef6vRDA9wCXAVhrfx34JyC/xPeeB3zNOXcr8AzwL5k7eSOm7y8iK9/XgOuB7zvn5hdqR4F/nqvpPgRcQPNsuMRam7XWrgHupxrCS9YLAfyHwG9aa/dS/fjwAefc1BLf+0Xg/dbafwT+Bvge1an1cX1/EVn5vgm8jup/3/NKgG+t/QnwA+ARFmfD54FHqbatfR+41Tl3bzsX1kB2EZGE9MIKWERkVVIAi4gkRAEsIpIQBbCISEIUwCIiCVEAi4gkRAEsIpKQ1TYLQiQyrFoAAAFUSURBVKRtc7uUbqU66yMEHgY+CrwD+FMgR3U7+lXOuQestbcCg86537PWvobqpKw3O+d+mshfQHqWVsCSBhcAQ3P79TfOvfYKYDvwdufcBqoT8/6HtXaQ6tSr37DWbqG6O+o/KHxlOWgnnPQ8a+3LqA5aegz4DvC3wJuBTwE/X/BHh6kG8o+stRuAB4G/ds79fpdvWVJCK2Dpec65x6nOe95Bdc7rXVQHq9w9P8lqwTSrf5p7m6V6YsIGa20ugduWFFAAS8+z1v4B1Rrwnc65PwH+N3AicL619rS5P/N2qsO4B+bOC7sReCvVISyfTuK+pfepBCE9b66uewvVU1CKwFPAR6iOI72G6pzXCvDvqc6AvQ/Y5Zz7rLW2QHX+80edc3ckcPvSwxTAIiIJUQlCRCQhCmARkYQogEVEEqIAFhFJiAJYRCQhCmARkYQogEVEEvL/AYtclzZoxNm/AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "sns.relplot(x=\"total_bill\", y=\"tip\", data=tips)" + "sns.relplot(x=\"sex\", y=\"tip\", data=tips)" ] }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 101, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAFcCAYAAABoT6F/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdZ4BU1dnA8f+5Zfo2ttJVEFAEBBsoopTEWFCB2BKNSXyNJnljLIklGvWNJZYkRk1MYoIpRmPFxJ4YEQslBgs2ROmdbWyZ3Zm5c+8974eBpS5s31l4fp+4y8y950x77mnPUVprjRBCCJEFjO4ugBBCCLGVBCUhhBBZQ4KSEEKIrCFBSQghRNaQoCSEECJrSFASQgiRNTo9KMXjcU477TTWrl0LwOOPP85pp53G1KlTue6663Acp7OLIIQQoofo1KC0aNEizjvvPFauXAnAihUrmDlzJo899hjPPvssvu/z6KOPdmYRhBBC9CCdGpSeeOIJbrrpJkpKSgAIBALcdNNNxGIxlFIMGTKE9evXd2YRhBBC9CBWZ578tttu2+G4b9++9O3bF4Dq6moeeeQRfvrTn3ZmEYQQQvQg3TLRYdOmTVx44YXMmDGDY445pjuKIIQQIgt1eVBatmwZ5557LtOmTeO73/1uV19eCCFEFuvU7rudxeNxLrroIi6//HLOPPPMNp+nqiqO7/fsPLLFxTlUVNR3dzHaReqQHaQO2aG4OKe7i7BP6NKW0lNPPUVlZSV//OMfOeOMMzjjjDO49957u7IIQgghspjqiVtXSEspO0gdsoPUITtIS6ljSEYHIYQQWUOCkhBCiKwhQUkIIUTWkKAkhBAia0hQEkIIkTUkKAkhhMgaEpSEEEJkDQlKQgghsoYEJSGEEFlDgpIQQoisIUFJCCFE1pCgJIQQImtIUBJCCJE1JCgJIYTIGhKUhBBCZA0JSkIIIbKGBCUhhBBZQ4KSEEKIrCFBSQghRNaQoCSEECJrSFASQgiRNSQoCSGEyBoSlIQQQmQNCUpCCCGyhgQlIYQQWUOCkhBCiKwhQUkIIUTWkKAkhBAia0hQEkIIkTUkKAkhhMgaEpSEEEJkDQlKQgghsoYEJSGEEFlDgpIQQoisIUFJCCFE1pCgJIQQImtIUBJCCJE1JCgJIYTIGhKUhBBCZA0JSkIIIbJGpweleDzOaaedxtq1awGYN28eU6dO5Ytf/CL33HNPZ19eCCFED9KpQWnRokWcd955rFy5EoBkMsmPfvQjHnjgAV588UU++ugjXn/99c4sghBCiB6kU4PSE088wU033URJSQkAH3zwAQMHDqR///5YlsXUqVN5+eWXO7MIQogexDANsEx8w0CZMrqwP7I68+S33XbbDsfl5eUUFxc3HZeUlLBp06bOLIIQoocwTYOaRJrrHphLY9LlotOHM35Eb7Tnd3fRRBfq0lsR3/dRSjUda613OBZC7L+UoXhy9uc0Jl0A/vLiYnQ3l0l0vU5tKe2srKyMioqKpuOKioqmrr3WKCyMdWSxuk1xcU53F6HdpA7ZYV+oQ35emIP65PPW++sB6Fscw7Yt8nsFu7lkoit1aVAaNWoUK1asYNWqVfTr14/nn3+eGTNmtPo8VVVxfL9n30MVF+dQUVHf3cVoF6lDdthX6lBZGWfSEX3JiwWorEkw5agBeE6aigqnu4vXIvvCjUE26NKgFAwGueOOO/je975HKpXihBNO4Etf+lJXFkEIkcX8tMfRQ4tRCtJpjx5+7ynaoEuC0uzZs5v+PW7cOJ599tmuuKwQogdKp73uLoLoRjLnUgghRNaQoCSEECJrSFASQgiRNSQoCSGEyBoSlIQQQmQNCUpCCCGyhgQlIYQQWUOCkhBCiKwhQUkIIUTWkKAkhBAia0hQEkIIkTUkKAkhhMgaEpSEEEJkDQlKQgghsoYEJSGEEFlDgpIQQoisIUFJCCFE1ujS7dCFEPsXpcC2LUDjOLKjrNg7aSkJITqFUoqcQBp30bP4H75EbtBFqe4ulch20lISQnSKsJlm88u/o/HzhQCkq9cTnvA1kmm5FxbNk0+HEKJTKO2Rrt7QdJyuWofhu91YItETSFASQnQKhwAFky8Ew0JZAQomXoBDsLuLJbKcdN8JITpF2lMYRQfT99u/BhRJHcB1dXcXS2Q5CUpCiE6TchUpaR2JVpDuOyGEEFlDgpIQQoisIUFJCCFE1pCgJIQQImtIUBJCCJE1JCgJIYTIGhKUhBBCZA0JSkIIIbKGBCUhhBBZQ4KSEEKIrCFBSQghRNaQoCSEECJrSFASQgiRNSQoCSGEyBoSlIQQQmQNCUpCCCGyRrcFpX/84x+ceuqpnHrqqdx5553dVQwhhBBZpFuCUiKR4LbbbuPhhx/mH//4BwsXLmTevHndURQhhBBZpFuCkud5+L5PIpHAdV1c1yUYlC2ThRBif2d1x0VjsRjf//73OfnkkwmHwxx11FGMGTOmO4oihBAii3RLS+nTTz/l6aef5rXXXuPNN9/EMAxmzpzZHUURQgiRRZTWWnf1Rf/whz9QVVXFNddcA8CcOXN49NFHefDBB7u6KEIIIbJIt3TfDRs2jLvvvpvGxkbC4TCzZ89mxIgRLX5+VVUc3+/yWNqhiotzqKio7+5itIvUITtIHbJDcXFOdxdhn9AtQWn8+PF88sknTJ8+Hdu2GTFiBN/61re6oyhCCCGySLcEJYBvfetbEoiEEELsQDI6CCGEyBoSlIQQQmQNCUpCCCGyRreNKQkhWk8pCJo+hvZIEcDzevYsVCF2Ji0lIXoIpSDHTtP4+h+pee7nhBMbseW2UuxjJCgJ0UPYtkn9f5+j4eM3Sa39lE1/+z9CyunuYgnRoSQoCdFDKAV4btOx9j1U9xVHiE4hjX8hegjH8cgdeybpyrW4dZX0+tK3SOoAkl9f7EskKAnRQ2gN9W6Q3FMuQ2kPhyBpd+/PE6InkaAkRA/i+5pG30K+umJfJWNKQgghsoYEJSGEEFlDgpIQQoisIUFJCCFE1pCgJIQQImtIUBJCCJE1JCgJIYTIGhKUhBBCZA0JSkIIIbKGBCUhhBBZQ4KSEEKIrCFBSQghRNaQoCSEECJrSFASQgiRNST/vRCi04QsD1u5+Nog4Qfwfd3dRRJZToKSEB0kZHkESIHWuCpIo7t/f70ilofzyWwq5z1NoORAis68kjrH7u5iiSwn3XdCdICABXrtB6x74Dus+813SX8+j6C1f7cKLJ1i85xH0E6S1NrFJD7/L7ZtdnexRJaToCREB7C0Q/3CF5qO6995CUs73ViiLGCYKCvQdGhG89B6/w7UYu8kKAnRAXzDJjhwRNNxcMBwfLV/d98ldYDSr9xEZOjRFEy8AKvPUFzX7+5iiSy3f39rRLdRCjrzprmzz7+zZFqRc8SphAYMR/sedukg6p39u6vKcRV+rD/RKd/GxyLueN1dJNEDSFASXUqZBj5QWZukuCCM8vwOn5GlLJPN9SmCAZNIwER7XXN3Xu9YmL0OBhRJR1oEAK7r46IACUiiZSQoiS5jGIoGx+Pye14n7foMKM3h5ovHgt9xP1jKNHhy9ue8OG8lAJedfThHDCnC66JuI8/TgIybCNFWMqYkuoxpGny4rJL0lgCxelM9Trpj76B9DfM+2NB0/Pp765ClMUL0HBKURJfxPJ8RBxVhmZmPXf/SHAIdPEXYUDBuRO+m4+MP74OpOvQSQohOJN13osv4viYaMPntNZOoqElQVhjJjCl14DW053PO5IOZclR/ggGLaNCUGV9C9CASlESX8n0fAyjLC6HTXqeMvviuR6+ojdZ02SQHIUTHkO470S06exGlrNEUomeSoCSEECJrSFASQgiRNSQoCSGEyBrdFpRmz57N9OnTOfnkk7n11lu7qxhCCCFa4P777+f+++/v9Ou0OCjV1tYSj8c75KJr1qzhpptu4oEHHuDZZ5/lk08+4fXXX++QcwshhOi59jolfPny5fzwhz9k8eLFKKUYPXo0d911F3369GnzRV955RVOOeUUysrKALjnnnsIBoNtPp8QnS1iuVjKRWPQ6IfwZKq5yHIbN27kBz/4AY2NjRiGwQ033MCVV17Jqaeeyty5c7Esi+985zs89NBDrFq1imuuuYZTTjmFyspKrr/+etavX49lWVxxxRVMmDCh6bye53HFFVfQr18/rr76at544w3uu+8+XNelX79+3HLLLRQUFDBp0iRGjhzJ4sWLefTRRyksLGxRuffaUrruuus466yzWLRoEe+99x4nnXQS119/fdtfKWDVqlV4nsell17KGWecwaOPPkpeXl67zilEZ4nYLo1vP826X19K+V+vJ2o0oiRLhMhyTz31FCeeeCKzZs3isssu45133gGgqKiIWbNmMWjQIB588EEeeugh7r77bh588EEAbrnlFsaOHctzzz3Hfffdx49+9CMqKyuBzFKOG264gbKyMq6++mqqq6v5+c9/zsyZM/n73//O+PHj+dnPftZUhgkTJvDPf/6zxQEJWtBSSiQSnHvuuU3HF1xwAU888USLL7A7nuexcOFCHn74YSKRCN/+9rd55plnmD59ervOK8Tu2BaEVWab8jQ2Cbd1qY0s36F+4UsAuLUVNC6ei3XIF0l3cN4+ITrSuHHj+N73vsfixYs54YQTOP/883nkkUeaWj19+vShpKQEy7Lo06cPdXV1ACxYsKBpnL9///6MGjWKRYsWAfDYY49RX1/Pq6++CsCiRYvYsGEDX/va14DM4vjtGxijRo1qdbn3GpQOOugg3n33XcaMGQPAZ599Rr9+/Vp9oe0VFRUxbtw4evXqBcCUKVP44IMPWhyUCgtj7bp+tiguzunuIrRbT6hDauMK1j98A9pJUviFb1I4ahJGMNz0/3urg1ufxgjF8JOZMdVgUX8i+ZFOLXNr9YT3YW/2hTpkkyOOOIIXXniBOXPm8OKLL/LMM88AYNt202Msa9cQsPPCdq01npe5ARs9ejSHHnoot956K/fddx+e5zFmzBh++9vfApBKpWhoaGh6bluGZfYalNavX88FF1zA0KFDsSyLTz75hOLiYqZOnQrAc8891+qLTpw4kWuuuYa6ujqi0ShvvvkmkydPbvHzq6riHb4HT1crLs6hoqK+u4vRLp1Rh5ygi1exGhUIQU4JDen2ZcIK2dDw1pNoJwlA9ZxHCQ45hvo6F2hZHSwzQNnXbif+/isE+xyMLj4oq947+Sxlh2wLqnfddRelpaVceOGFHHPMMUybNo1oNLrX540dO5annnqKb3zjG6xZs4Z3332Xm2++mSVLljBs2DAuvvhizjjjDGbPns2oUaO44YYbWLFiBQceeCAPPPAAmzZt4o477mhzuff6jf/BD37Q5pM3Z9SoUfzP//wPX/nKV0in0xx33HHMmDGjw68jepaI5VL72l9o+OgNAHpN+QaBoSfipNt+A+Irk0DpgTQu+Q8AgaK+aN26ASHX0zQYeQSOOQfP1ySl2070ABdccAFXXXUVs2bNwjRN7rzzTn7yk5/s9XnXX389N954I7NmzQLg1ltvpaSkpOn/A4EAN998M9deey3PP/88t99+O5dffjm+71NaWsrdd9/drnIr3UwSsmXLljFo0CA+/vjj3T5x+PDh7bpwe0hLKTt0dB1iVoryP1+N11ALQPiAkeScchkJt32tpZyAS2rFe3jxGmIjTqDeDTZ9fuR9yA77Sh1E+zX7bb/rrrv43e9+x1lnnUXv3r136GdMJBLMnz+/Swoo9h8uFtERE6lb8HdAERv9BVxs2ruTa71jYR8wFlNBXdrr9GSwQoi2azYo3XnnndTU1DBo0CAefvhhtNYopUin05x//vldWUaxDzJNA6XYYa+jpGsSPeI0YiMnoiwbhyBpt2MCiMyUE6JnaDYoXXXVVcydOxelFOPGjWv6u2manHTSSV1SOLFvMiyTJWtrqI07HHlIKbjbWi+ZiQ154HZvGYUQ3aPZoDRz5kwgs3j2pz/9aZcVSOzbbNtk9nvr+OPznwBw2EGFXHneaPC6p0vNa6wjR9di2EFSBEi2cg2TEKJj7XUEWQKS6Eg+sHhlddPxsnW1aKA7EiSELZfqN56i/p2XQRmUfPka7JJDpatPiG4kW1eILqW05swJg7CtzEdvxsTB3fYhtJRH/IM5mQPtE1/0b0zpNxSiW0lQEl3KdX3KCsL89prJPHjdZCYf0Q/dTclNPW0QPnBk03F48FF4SPed2Df85Cc/4bLLLtvhb2+99RaTJ0/usB0fOkP7FoAI0Qa+56PIfPh0N40lASQ8m+JTLiUx+iTMcAw/UkhjWrJ/i33DVVddxdSpU3n11VeZPHkyjY2N3Hzzzdx+++3EYtmbqk1aSmK/pTWY0TxSBYNpCJbR2M5FukK0VW08xWerN1MbT3XYOaPRKLfeeiu33HILjY2N3HfffUyaNIljjjmGRYsWce655zJt2jQuuugi1q1bB8Af/vAHpk6dyrRp07j55ps7rCytId9Csd/r6dlBRM/2+rtrue+J97FMhetpLjv7cE4Y076k11sde+yxjB8/nuuuu47ly5fz5JNP4jgON9xwA7///e8pKytjzpw53HjjjfzmN7/hoYce4o033sAwDK677joqKiooLi7ukLK0lAQlIYToJrXxFPc98T5O2sNJZ/523xPvc/iQYvJiHbPx6bXXXsuJJ57Ir3/9a0KhEIsXL2bt2rVccsklQCYLeCqVIhAIcNhhh/HlL3+ZyZMnc/HFF3d5QAIJSkII0W02VTdimaopIAFYpmJTdWOHBaVYLEZubi59+/YFMvvZHXDAAU1bWXieR1VVFQC/+93veO+993jjjTf45je/yS9+8QuOPPLIDilHS8mYkhCdQCmFZRko2aJW7EFprwjuTpN9XE9T2qvz9usaPHgwFRUVvPvuuwA8/vjjXH311ZSXl3PqqacybNgwLr/8csaOHctnn33WaeVojrSURI+gVCbFldY+XjfO2GsJ24SImcCrrcTMLSLhB3E8CU5iV3mxIJedffguY0od1UranVAoxC9/+Utuu+02HMchNzeXO+64g5KSEmbMmMH06dOJRCIcdNBBTJs2rdPK0Zxmt67IZtmwdYUyDTwNac8nZJtot3VZAPaVVP1dUQfTNEgD7yzexMDeuZTmh9u1tsk0DSJGEgXY0RhVNU6HlRUgP+iQWvsp9YtmE+wzmJzDv0CN03k/MvJZyg7t2bqiNp5iU3Ujpb0inRqQegJpKbWBZRks2xjnlpkL8DVMO3EwU489AHxZ49IZPBTX/fotKmoSANxyyTgGFEXx2hCYDEMR1XVs+utP8BpqKD7tuwT7jCDldmBPtudS/o97wfdILH+fYNkg7NLDJH2RaFZeLLjfB6OtZEypDXzgxbkr2NpY+9eClbRyM1PRCp7vNwUkgCWrNmOabXvBbUtR+9aTuLXlaNeh4vlfE1Qdm1pIaw3+tgDkOwnZw0mIFpKg1AamUowZtm174MMGFXVLQtFsYdsmgYDJ7sb0DUMRCFhYVus/ak3PNQ2OHdkbgFjY5rhRfZr2YTJNg0DAwjBa9g5oFFZeUdOxGc3HUDu2uPZUnz3931auEaLgxK9gRHIJDz6C4AGj6MqUs0pBIGBi23tOmWRZrXvt2qIlr5cQ25MxpTZSpsGmzQnqEw4H9ytAuy6teSX3lT70RO1mnOXv4tVXER05ibgXanpvTFMR1XHiH84mUHogZtkwGlqYNcE0DZKe5tX/rubgAQUM7puH4/rYloGpNZ7nEzJdjNp1JFcuInroeJJ2AekWTCjIDySpW/gSXnwzuUechO95JGID8X2d2Tp9+Tt48c1ER0zcoT6GbTHvw/UkUi6TjuwPrt9sCyhkedjKxUAT/+h17ILemH0P3bJfVMfa/rNkGIocK0X8g9kYkVxCg4+m3tn1mso0WLahjs9WbWbikf2JWEabukP3JBZwcVa+j1dTTnTUJBr8cLOTVPaV74NoPxlTaiPt+ZTlh+hdEMJL75+ZpbXWJD+ew+bX/gpA45IFFH75euJ+AICokWLjn67Ha6gBoHj6D7HKRuyw22xzPKW4+ldvUBvPTEK4/htHM7RvLq7r4ZGZcm2nalj/6E0A1L39PH0vuZ9ab+/98hoDL9WIsoNUPP8AJedcj+9qAgGTxg9epuaNxzL1+ew/FE6/jrgfwLRMnnrtc557awUAHy6t4rKzRzW7D1TSNbFtjw1/uQ6vPrNVR9EZl2P3O6JTx5bChkPFMz8ntW4JAHnHVhEcczopZ1s5TdNgVUUDtz70NgAvzV/JvVee2KHlCAQsUkveoPqVhwBoWDyXonNvIu4FOvQ6Yt8j3Xft4Ps666cndybtuzibVjQdp6vWs0NPkPaaAhJAumJVi7uKPE83BSSAVRvqdniuYSjSmzduu5Tr4Kdbljcs7gXJP/bLhA8+mrLzfkxChzPnxCddvnJbeSvXNXU7eVqzauO2O/m1FfXsrbGutN8UkACcTSs7fd2SgU+6el3Tcbp8JcrfMQgahmL1pm11qW9Mt+hGoTWU0jgbl28rR/UG+bERLSKfE9FmhmmTN246RjCz0K9g4vk4/rZxDBebnCNPBsCMFRA97ATSLczCbRpw8rgDAOiVG2LC6L47PNfzfAJ9h2AXZlaphwcdAXa4Ref2PE1tOkiq1xDsvOKmLr+0p8g79suoQOY8BZMuwNGZ+pgKvnrSMIK2iaHgwlMOZW9zLVwsco85PfP8aD45h0/BbeXSgdZysCk48XxAoewQeePPxt2pQ8R1PcYOL6O4IFPPKUf1x2rjxJHmuK5P7tgzMEJRAApOOK/ptRRiT2RMqZvsK33omzfHiagUaJ80NomdthOPWGksXFAmDX6wdS1L08DXYCiFid5lzMMwFFEzhdIevrJocO1WjettrcP274NtQVilQOtd6mOYBh6KTAcgLVorFbFcLNJtq38b6xCyPAIqDSgSOsjuepdN08BTCt/XmdZtJ+xpZZmKiLH1s2GR2MN44r7yfcg2a9euZfLkyTz00EMcd9xxTX+fNGkSf/nLX+jXr2MSv3YkGVMS7eK6mjqaHydodG3A3nLUyh9kz29qyu+ufeH7mnq/Y8co0i6k2f241NZ9oKDlNclsh7H1a9Y1N1JJ1yS5l80Ktwb4zuwqcT1NnYwhtYjXUEu6tgI7rxgzmteh57Ztmx//+Mc8++yzWb2P0lbSfSeymmUZnTpluaczTIPquiTaMDBN+Tr3RPUfvcnqX13Khkf/j9W/upT6j9/s0POXlJRw7LHHcuedd+7yf7/97W855ZRTmDp1KnfccQee1/0LvOVTLLKSYSjyAg7G6v8SblxL2Or5MxwzSVrNDguyhmmwuqKB7/98Djf9YQFJT0sA72G8hloqX3gA7TroVCPadah8/gG8htoOvc61117LW2+9xdy5c5v+9sYbbzB79myefvppnnnmGVatWsVjjz3WoddtCwlKIitFTYdNf/s/qp6/n41/uR4qlrZpAW62sE3IoQ61/C2iXjUBs/1jOJ6Gnz3yDjXxFGvL4/z5xU8wpLXUo6RrK8DcaRTFNDN/70CxWIxbbrmFH//4x8TjcQAWLFjAqaeeSjgcxrIsZsyYwfz58zv0um0hY0oiKyk80lXbpjYnV31EoOywDp+63FUiZop1M3+IdpJgmPT91n04RNt93ljYpq4hM3U+LxaUzAk9jJ1XDN5OvQCel/l7Bxs/fvwO3Xj+bnJ1um7390jIbZXISh4m0eHjAVB2iNiIiT06oamXiGcCEoDvkd68od1dbZaCGy8ay7gRvfnS2IGcM3kIbg9+jfZHZjSPotO+g7ICqGAYZQUoOu07HT7ZYaut3Xjl5eWMHTuWF154gWQyieu6PP3004wdO7ZTrtsa0lISWakhbZN74oXkjT8HZQVI6CC+2/XLAJSi1dPMd8cI5xIoPRBn0wqs/FICxQNIOO07cSbVkuKqr4wh0ejgtjLVlcgOOcOPJ3LAyE6bfbe9rd14F110ESeeeCJ1dXXMmDED13UZP348559/fqddu6VknVI32VfWZeyrdQiYmrCRwmuowYgVEncD7frMbV1TheegzAANfqjDcs3ty+9DT5KN65R6ImkpCbETw1AE09Ws/ePV4LkEeg+iaPo17VoTtW1NVSCz9wk9c2xMiM4mY0pC7MQ0DRJL320agHY2LEP53T8ALMT+QIKSyHpKqS5df+N5PqGDRoGRyYoQKBmINqRTQYiuIN+0/YxpGvi+3+kD4oahUIp253qL2i7EK9BOErOw/273Bupovq9JBwvpe8n9uHWVWAW9ibsBuipNkBD7M2kp7SdMU4Fl8unaWhpdDZ3Y8ojYLuHGdQQql5AbcNu0dsY0FcoyqUn41NXWU/HMz6md83CXZXZIeQZ1XoRkzkDqHLvHT6wRoqeQltJ+wlMG1/9mHhuqGjAU3P294ymMtW9G2e4EbIP00rep/ueDAESGHE3OlIu3JGZtGaUgrRVX3/8m1XVJRh1cyP+efDnJf/2K3AlfoSs/thKMhOha0lLaT7iuz4aqBgB8DR8ur2pTAk/TNDBtEzuw+yzUBh7J5e82HSdWfoipWjfTzDQNPlhaSXVdZrHpos+rSIeLiI44cZe9gdrCtiDHShGzUs1uZy6E6B4SlPYTlqkYfmAvAEIBk6MPKW31OhnTNGhwPH7zzIc89upSaup33enV1Sax0V8Elflo5YyagtvKzd18X3Ngn9ym45yITSS/gMgRp5F027dRnG1CoG41G//0QyoevZF09QbJri1EFpHFs92kqxcLKqXANGhMuYSDFobW+K1dvGka/PBXb1FVm2nBzJg4mGnHH4Tj7DjOE7R8QqTw3TS+HaEh3YbWjWlQXZ/is9WbOWJYKSFTdchi05iZouKRG3DrMgkvw4NGk3PS/+6yOWFPsq8sPN0X6iDar1vHlO688042b97MHXfc0Z3F2C9orcH1CJsKXG+3Szcjlotl+Hi+otEL7LZrK55IN/27Jp7KLDQNWth+EgOftDZIuBYpwkAY0rucomU8n6JYgNIRvXFdv8OyH2ilMCI5sCUomeFctJKWkhDZotu+jfPnz+eZZ57prsuLneTYaeJzHmLdry6h5sV7yQnsGk0U8F2/nBIAACAASURBVMOvHkFuNMABvXM574tDWbx6M7PfXUt9Q4JNj9yI8+ErRDpohpzva9Jpr0PHfZI6SPH0HxA95FhyDp9Cr8lfI+VKam0hskW3tJRqamq45557uPTSS/n000+7owhdzzTQZNbumLpjU8wo08BvOrfeY6vCMA38LXO0DQXa12jPh2Q9DZ/Mw+7Vh7yjp6I8B9O2cX2FApTvoz2fwX1yuef7EzAMxdJ1Nfg+DO5fwMcbEgw78SJq/n4bfUecSHMfLcM08LZsKm7Ssi7EkOURUC6gaNRB3O0Ss9qWQqvM3kJKKbSr9xjEPE8TN6JEJn0LrRRWLIZOZFe3kVIQsdKY+PgYNHodP0tSiGzVLUHpxhtv5IorrmDDhg3dcfmuZxo8OXspL81fSZ+iKLdecmyHnVqZBnM/2sDMZz8mLxrkp985jrCldvsjZpqK5Zvi3PbHtzFNxdXnHwlac1CfXAw7jArFKD79e5Q/+yvCp1zB7bM+ZenaGsYOL+OSaSMy3X6ejwJsy6KsV5S7H3mH1RvrmTC6L4edNAgjGAHVzMw802BtVSM/+cMCAG78n7H0K4zsMTCFLA9v2XzW/XMmRiSHsvNvocHIx/c1pmmg8bn3iQ94Z0klwwYWcN2FR+I5e96+wfc1SR+ydTFszEqz+Z+/I7F0IcE+B1M0/WrqnJZPqReiJ+vy7rsnn3yS3r17M27cuK6+dLdJe5qX5q8EYH1lA28v3thh59YoHnruE7TOjPHMmrMUy9p9UEj78Id/fITr+aQcjydnf8a6ygZ8FEk/SO+v3kxi1UegfZaVOyxdWwPAgo830pDctUtu2bpaVm/MtDLeeG8djgdlF9yKNkxyrQQ5dnqH9ECur3nouY9xXB/H9Zn57Ee4e2kBBJRH9St/AjR+Yx1182ZhW5lz2qZP9eZ63llSCcCnqzazZlN9z98SPFVPYunCzD/Xf066YlXPr5MQLdTlLaUXX3yRiooKzjjjDGpra2lsbOT222/nRz/6UYvPUVgY68QSdryq2gThoEUilflh77tllk5HzNbZXJ+kOD/MpupGAAaU5ZCXF97tY+ONDmWFEdZVZLZDLuuV2fk0YBvk5uQBefjxzdSmGijpFWl6nmUaRMM2Rfk7nrdP0badU4MBk1A4hG1bbHr6bpKrPyZQdhBl516PFc0HoCGRpqwwyvJ1tQD0LooRiwaJhptvBbgNNVh5xbibM61qu2QAuXmZ62rfpzHlYhoKz9coBYV54VZ/PrJt1pRblwLDgi1JYAN5RcT2Uqdsq0Nb7At1EO3XrVPCZ82axdtvv93q2Xc9bUq4YRrUp1xenr+KQw/sxSEDCyjuFe2QKbCmaeBoeO7N5fQuijJ2eBna3X33lVIKLIOX5q3CNBTHjepDJGhiopty1EUtF3fdR6SMCGtUX95eXM7EI/pRGAugd3rNw9EgHy6rZNHnlXzh6AHkRywiqXI2PPTDpseUnncTybyD8LcEDWVZvDx/JQBfGncAei8b05mmQVQ1UL/wBaz8UkJDxu2Q/y4c0KypbOT19zcybkQf+hVH8VuxZXo2TkUOmhq7cSPxj14ncvDR+AUDSHrN3z9mYx1aa1+pg2g/STPUBXzPJydg8pUpBzfNKOsonudjG4pzJg1Ga42zh/EUrTXK9Tj9uAOwLAPP83EcD2+7qNDgWtj9jiBoKAZpzeC+ec1OyY5FAgzrl8/wgQW4rofnacxwzra7fGVg5RU33UBoDTrtctqxBwDssr6pufrVqwiBY85Fa039TvVLOIp+JXl87eReOI7bo7dM3yrlKdxIX4LHno/j+bitCLJC9HSyeLabZOudYcjWBHDQvodnBEm4ZrMtmd3VIWD6BJKVNC75D+HBR+BGS0l5rVuYqpQibKYx8XCwSbmdN/SZre9Da0gdsoO0lDqGtJT2I2HLxVIenjZpdHd9623bwKxdybq//QQ8l+hx5xAZfRJJp+VBwfEMvFAp1phpJL22LXrNsR2qX/w1qY3LyRs3jfDQCT0644IQouVkKft+IhZwScx/gg1/uIL4nD+SE9y168w2fOr+82zTjquJhc9h+a1PyeB5Gsdx2xSQLMsgufw9Esvfx2+sY/Orf8bWu+bYy2qWQUoDlolhyqw5IVpDgtJ+QiXqqH/vX+hUIw2fzMWrXrfLNGMfk0C/YU3HdtkgdDNrjjqLYSiMUHS7P1hNO8D2CKbBQ899wrfvnM2375pNbcKT6dxCtIJ03+0nVCC4w7EZiu6S+SCZ8ogNn4jVqx/phlpiBx9BoxeA3WbK66ByKYjZaUg1YAbDeIk4qqCU/OPPIbVuCbljzyTlBzrt+h3N1/DWovUApByPOe+uYcaEQS2a1CGEkKC033BUiOLpP6Dhg9cIDx2LF8xH7+Z3Mu6Y2GXDsQ2DeieN7uCUSDuLWmmqn7+P5MoPUVaAsnOup/yFBwgPHkPhKd+hwQ/1qNlnhlL0L81hzabMoP3IwUX4fs8pvxDdTYJSD6UUe1zfs7Oka2L3Hkm07FA8ZZHyNWHTwTRNFB5oTVIH8DFwPB9T73h+0zSIGEkUmrQ2SWw3UUIpMC0D7XsEbQPtuqB9HAKZaeKmImi4oDUpbTetiQIwfJfkyg8B0K5D44pFBEoPoH7hS+QeeRpuD2olAZgGXPO1I/ng80r6lsQYUBLDbWbdWE9iWCae72MZCq8H3SSInkeCUg9jmApfGVTWJinKD2H4e07Aur102ieNgWVpIk4V6fLlmGWDqF34Is7G5cS+cAmf10Z4/N+fMbh/PudMHoKfdlFKEVUNbPrrjbi1FeSNP4vIyJMAtiyINXnw2Y+o2JzkW2cMp9fq2aSWv0fhSReTjpaS9jVryuvplRsiFtIktwQrAG2Y2IV9SVdvoOiUSwiWHoTvpoiNOAHfDHRmz2GnSKZ9rrzndfqWxIg3pjl7yhCOGVbco1p7OzNsiyde/YzP19Rw9pQhDO6Tm0niK0QnkKDUw7govv+z12hIuhQXhLnru+NbfY4QSape+i1Fp1xCYvXH1L/3CgCmb3P7n/+L72s+X1PD0AEFjBlciGEYxN97Fbc2swdR7VtPEhs5GQDbNnlqznLeWpRJA3Tj7xfwy2+MJPXmY2x68nZKv3YH1/1+Eas21hOwDO757lEU5Sgatnz0GrwgJefdhN9QTWLpu1S+8BsAek2+EL/0kGbrEAiYKKVwnI7d2qK9LNNAGYoV6+sAKCkIt6pFm20sy+Ddzyt4cd5KAH765//y4LWTZYaU6DTy2coiSilidnpLMlNnl1lbppn5sduaHLVic2KHTfdaImD6WHjkjT0DIxCG7cY7NOzwA59pzSi01ti9+jT93YjkNm13jlJ4253D83Wm+QTgZwLGqi1JWx3X54Nl1ajtth/3fU2dE4BwLxo+mdv09/jHb2I2Mx3dsE3mLFrPU3OW4RkKM4umXZv43Pnd8Uw5egCXnzua/iWxDtugsLtsv1A9m24AxL5JWkpZJMd2qHr2HpKrPyFQMpDis2/YYcsCz9Mc0Du3Kblrr9wQsbDdbK67nSmlCHr1rJl5FXguRVO/R+jAkUQPHY+zaQVhUlx53hge//dnDOqXxxHDSnDTmQAYGzCSwlO+jbNxBblHnUqDHyQIGH6aL08cxPqKBipqElw67TCMNa9hFw+g6JRvkzLC9CuJsbY8jmUajBzWh6RnAzuW2cUiMvQYaufNAiA6bBye2jVRayBg8sKC1fztX0sAeGdJOTdfdAzZsg2F72kKIjZfP3kYuoNTSnUH1/UZM7SEE8f0ZenaWs6ePARTZcurLfZFkmaom+wurUrMq2TDzB80HZec+2NS+YN3qKthKjwMNlY10KcoiqH9HSYO7IllGRjL51L18u+2/EXR/7u/wVcG2vdJEcTVJq6vMQ0Fvr9D15NtmxiGIp328H1NYUGQ+KdvZxa4HjWdwEGjiUSjaDeN0j4pQvgatGmyoTJOSUEY2zTwtvxQRywXSztgmCT8YGYyREMVKAMdKaAhves9k2WbPPjcx7z1fmbaddA2+c3Vk8Br24//vpLepjProBRgGHi+xjJUizZmbK195X0Q7SctpSxihnJQpo320qAM7LwSkjvdM/ieRuHRt1cY3/VozU+x52kiAw9D2UF0OoVd3A8Pg3onQMRyCekEGCZuIIzvadKoHQLeznf9frKRmjcew4tX4732B/RnQwid/kMS3tYWzpbn+i59CsKZoKh9MA1slSb10atseuNvmang5/+ERLgPfrA088xmeiW1rzlnyhAWfVZBPJHmf844DIWWO/dOpDXg+RhkPn9CdCYJSlkk4QfofeFPafzsP4QOGk3KiKCbiTq7aykGTU3QSIHv4RpBGndqaRiGol7lE/rGbwkamqjtE0/bhCyX1IevsGnuU5SdfS2ptZ+Rrl5P3nFnkbALdth+fHvaDhIdO4PGt58hXbWOQMmBaLX7j1TESpP8eA7JjcvJGzcdI5pP5dynMudxHeoW/IPIlEtI7iXKep5PbtDi3itPRGuNATITTIh9iASlLOJ4CjdQjHX46SS9lk/1BrAsE7N2Oev+dgv4LvkTziV02BdIuiamaaAUuFpxza/eoqImweB++Vz/9aPQvodtelQu+DuRQaNJrV9KzVtPApBY+SFl3/gZ9WxbKxSwNEEcEkaYv76ynI1VUb469SaK6pcR7HMwdaldJx3Ytkl65UI2v/ZXABqXvUe/b91DoHQgqfVLM+ftOwQfk53HmnZn6+ui6NyxDdNSpH2FAixFj5+wIERPIEEpy/j+nvdEao6lXOrffq5pt9K6/zxL2WETSZk2qyoaaExmtiavqEkAsHRtDY0pl7Cp8LUiUHoQyg7hNdRsK0sijtruZz9ggVW9nFRtOVa/kZxyWJSlFTY3PbSQu//3eFKp5jYXBLe+qulYOwl8H4qnX0PjZ//BjBVg9R5KvBX1Vgq0YWQ2LtSg2zim1BzTMqiqd7j1j28D8ONvHkOvqC2BSYhOJlPC9xG+Mgn2P7TpONhnMFhB3vu8khsfnM/9Ty6iV26oaZp5JGQRDmbuSRJ+gKIzryQybCy5R5+OXdQPZQUoPPlSHL3tviVIitr/PIudW0TFzMtoeOQqDix/jRnH9d3jWpx02iM2YiKB0gNRpk3B5AtJY1Pr2HDwCbhlI4jvZlLDnhiWxe//8REX//RV/vzyJ5h265O2WpZBPJHGsnb9GqQ9za+fWkR1XZLquiQPPL0IV2uUaeCbBkk/s2hYCNGxpKXUg9mmJmw4gCLhBwgdMoGSon74jfUEDxxFUlt8uKwSgIZEmpfmr+TeK07g05XVjBpSRMyrwwxYNHoB4m6AhoLhLPm8mnFn3YhtgKMtktttsKdRhPofQv0Hr4GfaZkkP3iVCRdPw9nDZAOtod4NUvjl6zAAR5tN+yO1Zcq0UooNVXHmf7QRgDnvrGPahIPIDdktXqiqTIOPV9fw4tyVjB5azMQx/XaYWm8Yitzotm7L3GgA2zZZtbGem36/AN/XnDzuAM6aNBik9SREh5Gg1ENZliJQt4bKN/6GGckjd+yZONHeBEsOxDAUvrIxUZz3xWGU9IpQXZticL88csM2E0cUUv38vVTFq7F69aFg0tdIBvL42Z/msWJ9Hb8yFL+5ehKxoEnA0Pi+xnV90maE3KNOpXHxXBoWz0NZAXKP/BLBUBgnqQmFbJSCVMrdZSKG72uSRqal5no+7RsN0uREtq1hUgrCgcx0dc/TKJUZx/J9cF2v6VjrbUHQ1XDXwwvRGj5cVsnQAQWZGY1bym1ozffOOpyHX16MUorzvzQMpTUvz1/V9JhX3l7NWZMPbkc9mmdZxpbp95nXavv67I5SCts2mt4rIXoq8+abb765uwvRWomE06NTtwBEo0EaG502Pz+kHPyK5QRLDwTfI1jcn0AwQPzdlzHtAEkVosE1eeP9dRQXhDlhdB8OsCuJ5YTBS+E31BA99FjI602FWcarC9cy6cj+hIIWS9fUcPzI3pSGkqQ+/DeW20CooIjXPihnyeoaBgwbRsHwceQfMxU3vhm3cg2R0j68+PY6kokUJXkWlmHg6W2THiKWi1G1DHfpfGLFZXhmZg1Tm1+/kMGg3hGUYXPBFw6gX3GUtJvJeuEpg38vXEt9Ik1ZcQytDF5ZuIbahjRlRTHwNa6vef6tFU3nO3ZEbwpzg02fK60zEynGDC3h8IOL0J6fyRyhFP/5ONNCG3VwEcccWtq6zLgtoEyDJWtrWbiknAP75aGV4pX/rqHRcSkpjLLzCxeNBqlrdHhl4RrSPhTmhzu8TJ2tvd+HbBCNBvf+ILFX0lLqoQzLxjctKv7+SwDiH75OnwtvIzr0KDZ/OJfaof25528LWF/ZAMDXTzuUY4eWUvfm4+Qdfw6h/oey8fHbiF54H1fdOxfX8zEU3Pm/x/P56hoO6gUbHrmpKd9d7pe+w38+DrPo8wqWrK7hf79QQtVrj9D46XwAwhuW41rHc/tfl3DtuYdw9LBiHC/z8TJNA2rWUf74rQDULXyR3t/8OXVe5kucucs30brlGRDSacXYQ0o4ckgRlqmIOybg46G46fcLWFseB+CSaSNYXxnnuTdXNL0OU8b0Rfmar540jJfmr2TE4CIG98vHS++4l4fWGne78jiOx+GDi7j7e8dTE09xcL98tOt26AxAyzL4eFUNdz68EIDB/fP5/d8/YsOW9/E7M0Zy7PDSHSbDbK5Lcu0Dc6mqTQJw9QVHcNjAXvtEdnKx/5GJDj2Uo23c6o1Nx15DDVprvLoq/HA+yjDYUNXQ9P9rNsWpb3RwG2ozXTzxapRlUxtPbelOy9yAJ1Nprp/eFxo3NwUkAK98OfmxzBjL6k0NaCBdsbrp//2q1RTlZILQ8o0J/HRmC/NAwCQYtEjXbCurn4g3bblumgY5ZiPphU/C0jfJCbRsMzytNbUJRYNjUpswts2KU4r1FfGmxy1dW4OT3tadtWxtLVqDdn2mHNmPX15xAl8/eRh+uoXX9XyKcwIM6ZODn3Y7vEFiGAbL19U2HYcDFhu3ex+Xrq3dlltwC8/XTQEJYPm6OtntVvRYEpR6qHTaIzJ8AmYsH4DY6C+izQB2yUDs+g2EDI9zpgwBIBq2+cLRAyiMKnIOn0zSDxAcOBIzmk++leLQAwoAOLBPLn3DCeJ/+xG+kyRv7BkAGOEcco44mc/WbMY0FF+dNAADRa+J52cSsxoWkePOYe6nNeTnBJk8uhSsIIaVSZz6yL+WkBowltABIzPlGX58ZlsKIGIk2fS3/6NuwT+o/ueDJBa/SSDQjga8rznvpGFN9T5zwiCG9M+8RpGQxZcnbkvbpD2fgtxQqxff+r5ucWqn1nJdjylHDyA/lmlFxhvTnDtlKACxsM3pxx+0Q+sNIBgwmTr+QADyY0GmHD1AWkmix5Lcd92kI3J9maYiaqRAe7jYNLoWgYBFiAQeikYdxPUyeewCBoRUgpRnkXKN7Tbt82kgjOMqLBNyTAfDT2+5G1do30crk4QKk/ZA4RM2PUw8DDcBykCZFgnCJN3MJndR08MhwCsL1/KnFz4BoLRXhLu+M44ojXhYNLiZiQq5tsO6By6FLTvcxkZOJDThm6TasFZrK2UaeDozg87Ex9dq27HecVFyNuZcM00DD4WnNVsToHsazN2UH7bUoboh8xilMGndwutskI3vQ2tJ7ruOIWNKPYxhKJRSeF4mEWudt+POrI7j4rB1ZpqHCeCDAzjbZWbwPJ/6pudqTDTahTrXYvcfC2/LI8E1TNJL51P9z98DED1sArEJX0P5Fr4P9a5BIJDZ2G+ripoEHgZ1bnjH8mqTXpMvpPrff8SI5JI79kwa2jl7TG/J04a/rdQ7Hme3rQFl+1VQW9/HZsvv+U2P7wl1FKI5EpR6kIjlYqRqwPcw80qpS6h27W9jmYqImQLXwTeDNLgtW+djapf6z95uOk4sf5+8CV9l+4+T6/p8eeLBvLO4nNqGFBefcRhK77qWKemahIeMp+/QsbCldec3k2tPCLHvk6DUQwQCJrr8c7Bt6t55GbuwD7ljTqY2teueQy2hlCKi69kw81r8RJzIkKPJ/8LF1Kf3fj5tBYmNPJHEikUAxA4dj9ppYN33NRHb4BeXT0BrMNDNjt0kXJNE032+BCQh9mcSlHoIQ/tYsTw2PnIzfqoRADNWiD14QpuyIliWQeMnCzIz4YDGz96mcMqFKLX31pL2NQpFn6//FO06uDUVu31cVyVOFULsOyQodQOlFL6TJGT5OL7ZokkbrlYEgxH8VGLb3+KbsVRbp/5qgr0HNR2ZOYVAZuJBXTq4x25B19OE8kpY//CNoH1iwydgDBjVxnIIIcQ2MvuuiymlyLFS1Mz+E9p1KJjyTRqItWi2VCzg4iz9D9Wv/gW7V29KzrwCx8ohkW7bzP68QIp0xWrS5asIHzgys/bn7eeInngRifSeg13A9IlaLq6TRFth4i3o9muOZWWyfbuu16HrfkzLwPPB3MO2E/vKrC+pQ/eT2XcdQ9YpdbGg6bL53zNpWDyPxs8XUvn3nxMi2ezjTVMRsdKEbB+HIFZuEaUzfkjeMaez8fHbsXVmkWpLG0zbPy7uhQmUHkB40Bi8ZCPls36e6c7Tew+Qjmdg5RZSr3PbFZBitou18QP0p6+Sa6U6bNGnYVs89upSfvH4e5TXpTJZJYQQWU++qV1ModHOti4430kCGmVktkSoTXooy8yk3rEg4lRiNlRg1a4hohKkeh3MWreAxl5DMPsegmEY5KQ3kWclyAulaW43BdM0ULZJdaMLlokdsNBa4ztJvPoqKp67H2XZFH7hmwQsiKXLyQuksM3Oa5EGAiappQuomPUzNr/6J8qfvJ2IkeqQ8855dw0vzV/JR8uq+PHv5uG1uZtz/6IMA08Z1KU82ZpDdAsZU+pijg7Q64sXUz7rLnTaoej0y3CMMJvrHK7+1Zu4nuawQYVcee5owkYKt7acmnmzSK3/nMj0G/nZv2pZsnoztmXwi8vOp/adF6ib/wzKDtH7KzcSzSmk1ts1MaSL4vs/m0M8kaakIMyNF40lL2LRsOgtUuuWUDjlQrTnogIhNj1+C86mlSgrQO9v3o1n5DfbXWqZaksg0Vu2umj5D5lCk1r32bbXpmINHdNQUiS223Aw7fporZGwtGeWZbJ8Yz3/N3MBWsOEw/vy9VMPka05RJeSllIX8zyfBiOP3l+9meKv/IRkqAyUwfwPN+BuSV3z0bIqfJ350TbCMVLrPwfAD+WzZPVmIPND+9/F5aQ3ZRKN6nSS5NpPcWvKM9mst2OaipUbaokn0gCUb05Q25DC8zxCBx1OYsUHlD/zC2rmPwPax9m0MnNO1yG58sM9dn2F09VsmHkl6359Kd6yBQStls8EdD3IPfp0VCAEQN5xM0jr9n8k02mXL40byKiDiygpCHPNBUci9/x7pwx4deGapnG9tz5Y3/J+YSE6iLSUuoHn+VjRfDY31pPJpuBz5KGlPP3a5/gaBvXLw1DgqBCBaD528QDSFasxnHoGluWwamM9hqEYPbQEvXFLIlHTIth3CEZOIV5a73Q9zcDeuYQCJknHIz8nmNm0Tnm4kRL6XPxL3NpyAsUD8ZXC7tWbdPUGMCxCA4bT0Mydsu+lqZ33FH4yM61887//RJ/BR5FqYQjwPJ9ksIg+F98Lvo+rMqmS2ktrMDyf7599OL4GS4Evd/t7p+G4kX148/11AIwZWtzjtsAQPZ/Mvusmu8w2MhSOp6muTzKwLAc8TSrlkhPUWNrBqVqH1as39cRYUx6npCBCyDKIGQnc6rVYucVgBWn0Auxu2ZJhGnjA2vJ6+hbHCDi1BMMRGtIWSkEs4OPXbkCZNlYsH6dyHYHi/qQJkEzvfvZaUVGUzXNnUfP63wCwi/pTdPaPibuBXR6brfaVWV8dVgfDoMFxqYs79C2Oojt4RmRz9pX3QbSftJSyha8JmYqhRYraNx/GCITJPeIU6h0bCGLkD8ZL+4BH/8JIJlO161FLACM3s97Id5r/9fj/9u48Our6XPz4+7vMTGYmE7JCAkJQWSoo4FIFRBHQiERAuS7A76K91GO911turS2up+31aqXWilKrvW2tu7X2KlKsIFRBWRQEEUQQwxoCIRASkkxm+y6f3x8DY5GwNcHMwPM6x3OcZL6Zz4d8M898tudxHZegx6FvoYPdsBFvYVcaLQ+g8BmK5k/+RsOS1wHIGTSO0PmjiGxcSXz7ekLfLieeVcTXqztomk7gnBHoWUHshlpyzh9J2PUhR2UzmOuS7dEJ5ftx/4lD2UK0lgSlNJKlJ6id9Tix7euBZI0k/yU3EbO05O45PZm1++tlE440atQ0DZ9Xw6s72Lu2sGN/oT1fSQ/yx91F2PWgK4toxYrUNXbdDuzdm9j79tMANH/xEZ1vfQKLQzdQNCVMgj0H41c2ljJOWEkH8c1RilblVBSiNWSjQxrRlIvduBcAM6cI1fNS4q6O7jWYtWQLv5+9jmZLHXbjgdeEkBkn20xgGDq6rpHjieON1RJZPZ9IxVdJVOPVG9FJTsk5mofsfsNT3wueNRiroTb1WFkxcFsugpfttQkveZXqZ39E84d/JvsIRfo0LXlQVgrQCSEOR4JSGkngpWDkrRjZeWRdez+/mFvP9x/7gI/X7SZhOSz6dAf3Pb0Ep4XNzV4TzLrN1Dw/ldrXHiBIE37Tpunj2UQqVhBeu4hgz2+DnhwcB3p9G2f/Tre4reHpfTFdvjeDzrfOwOjcl0DPb+PtWApo5Fw0Bls7dJQEQHgv4VXzcCONhFfNg/DeFjdsGYZGyIiib1tO0N6Lz5CpISHEoWT6Lo1YjoZWcCadb3mMV9+vomL7PgCefn01D/37xcz6YDNNkUSL13qJUzNrOm60Cae5gX0LXiL3iltwmhswczth1W4nvPYDunzn52B4UN5swvZXmRgilgnkJB/YybpNBdffhw5YSj/srjjNhFPIMAAAHPFJREFU4zvkcUszP0EjTvUf78KNNIKm0/m7j2KZBRm/YUUI0bbaLSg9+eSTzJkzB4ChQ4cyderU9mpKWknYGugGOdlfvdln+Ux0XcPnNbj9X/ons0IccqWGnpWNG03uYNIDHbB0L6ELynEjDXQYOJbE7m04iRhWTkcS1pHb4bqKsHv0XXSOJ5uC8tuJrFtMoM8QHE8IWpjBU1Y8GZAAlEt81xb0boUSlIQQB2mXoLR06VIWL17MzJkz0TSNW265hfnz53PFFVe0R3PSTiLhMKRfCfVNMSp3NTGx7Fvkhbw89eNh6NBiXaIYWXS68T7qF7yI5s8hetYo/u+dCiaW9cafU4in0+kolXxeohWlxr8uYpt4ul9EqPS85Dkj6zDngcwsfF2+RXzHF+iBHLK69aHpH/ph/EMJc9duffs0DbJNC+JhdJ+fmOsj7shalhDprl3OKVVUVNDc3MyAAQMAeOCBBygtLeXmm28+puvT5ZySrmsEjAQ6LrYyDpriCpgWpubiohNxvKn2GoaOq2kowNA1XDc56vF7dEwnktzsoHQitodglobruqDrRKzkNbqmoWuKA1WKsg0bzbWJKg+2MgDFyvW7WbVxL1cN7s76LXWc26uIwg5eglocHQWahu1qNNve1C4rXdf2t0tDQx02tUzAtDE1J7luZCdQ6Fh6FtGjpBfSDT3ZZFyCpkvESu7U0zQNDB3LUWytbuCzjbXcMPxMDNcmZh99ydMwdRy1/98TlTokGzQtGv/+eyJfLgfdpPhfHyAWPO2rUuOGhoOObmio/b8DTR2+EGE6O1nO+JwMfRCtZ/zsZz/72Tf9ogUFBRQXFwOwdetWpk2bxp133klubu4xXR+NJtLioHnIY1H7+s/Zt+BFiO4jdMbZJFyDbI9N08Ln2Pv2UySq1pF/9iDijoFhaOxttvjRjEW8+f4mSks6ULUnzK69EfI7ZBF5ezr185+B5nryep5N5NO5NK+axzqnFN308quXP+H5t9cTjtq4Ch567mO+3TMX3YrwygfVPPrKKj75spYJZb3o0TWf+55ewqov9/D35ZVccWEp4dfuY9+i1/B0KMLavZnskq7Enf1v/KbJQ88u57m/raOhOcGA3h3ha4E/6LFpXvoqe2fPILplDYHT+1H9/D0ESk5H61By2A8KuqGzdls99zy1lPnLq7ioXzeyPAZKKXSPya/+9AnP/PVzmqM2Q887jdXrd9AruwE9kIPjHn50Yxg6e5ri/OjXi/jros2c07OQglByTctv2NTN/d/kE5WLZph4uw/AcVx0XSPmwF2/Wcyr8zfQIdvH2k17CccsOhdlZ1wWg2DQR+Qwa42Z4mTpg2i9dt19V1FRweTJk5k6dSrdu3dvz6YcN8PQiVd9QWJXMvdc89oP0OxkCYqYq+GeO47A9Q+gEjHiOyv2T09pPP+39URiNrajeHHOOnxeg85FQd5dXoluJtdwmtctRtkJ9i36CxT3ZO32ZjZU1rO1Orkm8/ePK+mUH6ApYvHK+zuxfR2Y+1ElAJW7mli1bgcaioSd/NTvKti1qy55plW51C14CV/Hbjj1O9G05Bmo9Vv3smlHAwALP6ki1sIUn+7ECH/6dwCsPZXEqjbgLepKeM17mBx+kcpW8LuZn+G4inDU4sW561FacnS2Y0+YtZuS2+A/2bAbXdewFTStmo/3CD8TwFHwx9mfE43bWLbL72au5cDsoYuOr3Ov1HP9PS9IjZJMj8HMhRupa4yhFLw4Zz0XnNWJ377xGZK2VYj21W4bHVauXMmUKVO49957KS8vP65rCwqyT1Crjk8s1jH1/5rhwfT68Bk+npn1Ge+trKKkIMj/TPoxXq9NKD9IPOHQuTDI6opk+fCOeQHi+9/8OxcFcXY3J3+YYaLpOnogB23vNr7VZQBZwUDqtXweA9NMfp7onO/DY4DPa6R+VqeCIDlGnL6n5/P5ljq6dgpxekmIxsbk2SOzQ0fcWARfSQmF+cl/y+Lmrz6lekydLJ9JYa7/oP7aTVZyd52VLC/hye2IE4sQGnA5wQ4hsvWWp/AawnE65gVo3P8aXYqy6RDyY5o6MSe5/qP2rycV5GTR9awcrAW1eLweivIOPyUSjduUFAZZt6Vuf78DBPxeQsFkcO90w10kdm3BzCnACBWQnRVMXdu101f3UEGun1jCpmOeH49HJzc/QKY5GaaOToY+iNZrlzWl6upqrr32WqZPn86gQYOO+/p0WVPymzaq5ktimz8lu/8IEv6ONDs635v2buo5/zGuL0PP6UhzPPkJXPeazPtoG+GoRdnAUmzbpaYuQmGOl9zGL9GqPiPUfxjRynVkdelFeO0HGP1GEvMVsrFqH2s21jJyYCkVVfsIh+MM7xvCb7jsimcxZ9kOzj69A/1Py2Lfq/eTVfafaJ16JrNBJCJQsQgVriN07uW48Sh2sJiYsz+QGDobdzTwyRe7ueLCbhSEfIckMfUYCl+8lvCq+WSV9sXXqTuOlcDNyjtiIlVd13A0nTc/2ERutpcRF3RNpbDRdJ3ttWGWrKnmsvNOoyRgwYYFZA+4grDjP0q2CtBMk7kfbSVuOYwZcgaa6x50ja5rKKUOmZHTTYPFn+2kuraZkYNO5+N1u7hkQBe8R6hSm65OlvWYk6EPovXaJSg9+OCDvP7663Tr1i31tfHjxzNhwoRjuj5dghKAx2Mkp5xsN/lmZhj8568WEIkl90X//N8H0yXfj+OoZBVZu57m1e+SdUZ/vJ17YSmThKOIJZzkCEgD13XxE8Vuqseb1xHXdUCB8mXvP5iqsG2FpukodeBNWEPXwdBcrO3riG35lOA5w0j4i7AcjUDAg2HoKKVwHEUiYWPbB7/5mmZy3SvVlxYYho5p6riuIjc3QG1t0zEtwWiahtdroBQkEgfvGTdNPTm96bjouo6mJXcgHuut6fWa+6+xj2s5yOs1yMnx09QUQymFbbtpc18dj5PlDf1k6INoPckS3sZ0QyMcd3lvxXb6nJ7PGZ1zUjvZAkaC8MLniG5ZjRtrJqtrHzqMvoOI7QFDx3ZU8g1aKRzHJcdrUfvmY8Sr1mPmlVD8//6bhsTRzw4deJO3beeYc9GZpo6PGJpSxMhK1XY6kpPljUT60P5Olj6I1pOMDm3MdRTZXp1xl56B67qp0YhpgEez8Xc/hw4XlrPvo1moRDxZWc3QeX7OF7z/SRXZfg+/nHIJfkNDxZuJVyWTs9r11cR3bcIo6nPUQGPb7iGjoCMxDB2/s489rz+Csi2Krv0hsaziYwpMQgjRliQonQCuqw6ZogoaCXb+4ce4sWY0w0Pn7zyM7vWjsHCVh/c/qQIgHLV4/5Mqrh5Uim4G0DxZyYSomo4nvzO2lkyyquw4mFk0/8MZqH+WV0tQP+8PWLXJNtT+dQYFN/wEu4Ws4EIIcSJJUPqGONEm3Fhyd51yLKx9uwmvX0Kw90C8nQdQlOdnT30UgIv7FpKlorhA51t+ReSLj8gqPZuEESKoR6l+4T6cxlq8nbpTdP29NLYwpacZOpabPJxqai1ngThAoaF5v9pxpnuzQLZGCyHagQSlb4juz8FT0AVr7w6MUD56fmcS597Aik319Muz+MXtQ/hobTXnnplLTv16dv7pacxQPh1vvB+975VE7GRu8MSuL/F07YMnrxvs+gIVawb94KCkGzofrqvhf2d+hqbBHePPo/+Z+TiHmdKLOyb5V0xGM0yUHSdvxL/RTBaQWbvQhBCZT4LSNyRse+k44adoVhTN9NLg+vnhb98nbjmY72zhqanDueScEvxE2fnCk8nRVN1OGpb+H1mX/Buuq9A0sDv2ZlllgBXr9lF23tmcl5ULXzsIb7uK2Ys2A8nzP7MXb+bsM/IP2zalFI2Wj8Cw7wKKsGMk0xsJIcQ3TOoptTGvBwKGhc9z8NeVAqw4O569i6rf3UH93n3E95/VsR3F7roIHhI4hgffiFvxnXUJAGaoAI9uk+VJTsVV77P449yNrNlYy6OvraPZOvRX6DF1zjmjAIDB/UqYeGUvsjyHPO1r7VPELI2YpR+0RqVpkOVxCRgWppEeU3pZHpVW7RFCtB0ZKbWBA0Xt/IaNvXEZ+z5bSKD3ReSePZRGK7kRwes1iG5YjUokUxHl+TUG9CziXwZ3olOujw4hnebdVby31eDj9SaXnz+KC86+nOyiQva8+Uu8BV3IGTKByq+l/7EcF+NrlVwNTWPipZ248sLObNsT49V5FQzoVcjIgd1Rx5mBO+S1afjgFazaHeQN+1f0nK4kDl9c9oTL8dk0LHoVa892ci+biN6hW7LchxDipCAjpVbQdY2cLAfNgNqmODHNS9PaRcR3VlC/4CWsvVUEzQRZhoOnYTtZJWckt4ADQTfM/Tf2oPDjp4m++F80vvtHfHlFvPTOl2yorOc3M9eTyCtlxzM/Jl65jqZV84l+uZTS4hDDL+hKXsjH9SN64vce+rnCth2CHkW2F57486dsqKznz3+voGp3+LhKkXu9BpG17xNe/R7xHRuoefV/yNLaL2mmx2MQWb+Y8Kd/J75jA7tffbBd2yOEaHsyUmqFoBGnsSnOnb9bQ31TnFDAw+O3/SeJF34Aro2yE2hOAo8VZ+cL9xDqP5zOk/4HJ9qImdeJ6MaVqYSukQ3LyLlkfCoPHCTT3Sj7q6SkyrbQlWLSlb2ZWNYbQ6PFkY/rKiJGB/AdvFXcctwWS5Uf0T9coFwHWigv+E3RNA7+93ClpLoQJxsZKbWGY1HXGKe+KZmgtClisbPBwde5BznnjwTXBcODVV8DQGTjSnb/7SnMwm4YgWy8nUpTP+pAQtfyQaUUFwSYUNabpuY4HUbdjplXQqDXhQTOGoJlOSjHRXfdI27zth2FR9f5t6v7UFIQpOyibpzROeeYMzwETRtvpIasLr0omfQAnsJudBz3I+LqKItTJ1Ai4RA4+zICPS/AzCuh6No727U9Qoi2J2mGWiHHk6AxkuCH/7uafeE4Qb+HJ++8jByacONRdH+IsOMjaCSwdqxD82SBUniLz8STk09kXz1qz2Yimz4h1G8YBPKJ4iVhg2f/OSO/oTDdGEoziDrmcZf60Q0dW5EcVR1jolGvR0NtXEzdO78HILv/CDoMuZGY8h60ntQeqWE0Lbl2pykHS/O2ej3pZElvI31of5JmqG3I9F0rhB0foZDB4/91MbvqY3TKD6Ipl6iRgxHIJmEnp+ASuhenoZa6915E94fIu/xmsnsPxNJ8mCV9yCruS8RycCwXUOiAYzvoQNyFeCsyK7iOmyyhfhzXGMqmccNHqcfRjSsJXXxDu25wOEAp9mckl1tXiJORTN+1gusqmmIGytXo1MGPsh0CuoXa8B7N7/4Of2wXHhN0N0GkYgVGKJ/iG+8lsf0L6ha8hN+qI7L4JbxWQ3t35SC2ZpJ9zrDU40CfITgSBIQQ3wB5p2kDB2ZATVPH3vkFdfP/CECkYgWdb32CGD6C/Yajok3UL/wT0a1rAHDCdXiLStn92kMU3vhTwhw9A/g3wbIU/q796XLbr1GWhcrKIWy1XMDvVGMYOmjJMiFWC9V5hRCtIyOlNqRpGnbT3tRjZcXAdUjYYJSeR+BbA7Gb61Pfd5rq0b1+7HA9WjvuamtJ1DZodEM0GfmELfnsAmCYOuGEw29nreX19zejeyRQC9HWJCi1Idt2CH5rEN7i00E3yL3kBmw9uR4UtQ2aCVIw8nvovkBybemyiTRXrKCw/D9IHGWUpBs6av9/hmQyaBeO0rjv6aV8+Fk1b76/ibkfVeLzScAWoi3JX1QbUgqabB8F/3IPOmApg8g/THvZtkILnUbxLdMxTQPHhYIxPyChPMSPsItMN3Q27mzk0ZdXEgp4+e9bBxH0aMe8vVu0nXD0q3NS+5pix70bUghxZKfMSEnXk+W4DePYu6xpGh6PgWm2fI1pGng8xkEHUl1XEba8NFpeovah0zuWDU2WDzM7j8a4SZPlPWJASjZe4/1VVWQHPOzZF+WFt9enMkP8s3Rdw286+E37uLI8nMp0FD+ceB5Bv4fS4hDXDe+JfZxpm4QQR3ZKjJQOlCj/6JMd9OtRSFFOFuooWbANQ8dS8N7KKrp1CtGjc85B53xCXpvEtpU4kUZyzhpCk936YnstN0Snpj5KcUGQUYNP5//eq6CgQxa6Dv/s26Fh6AQJUzf3d6DpFFx5K0340+LsVzpzHZc+3XKZccdQ0MBEyWhViDZ2SgQlV9O5c8ZC4gkHTYNf3zmMoEfnSOeGHTTueWoxe/YlC+9NnXQ+Z5fmY9sOPq9O86fzaFj8GgCRDcvJG/NDmt22zS6gaRpNUZu7f7M4WYJi0WYe+8FQAj4TqxWHhnzEqP3rE8R3bABg75ynCV31faLuKXE7tIrruKnyhzJGEqLtnRLTd9G4TXz/9l2lYGft0ROTukqlAhLAxqqG1DWasrFqNqe+Z9VWop+Agni6rrFjT1Nq3SKWSBb6c63Wn2JVzsE59TRZHBFCpIFTIigFfCb9ehQC0KUom56n5eIcJeWOrkH5xacDkBP0csWF3VLrB7Yy6TD4OjQzuWMu99LxJGj7HGyO49K7NJ+SwiAAA3oW4fO2fhtyHB+Fo7+Pt2Mp3k6nUzDq31uVNUIIIdrKKZH7TtNA6TqOqzB0HV25x3a9sf8aQ8dAHVRO3GMo/HoClItFy5sajuRYc30ZhoaDjuMm6yZprtsmO74MQyOLZG2nGP6jBumWnCz5yqQP7e9k6YNovVNiEUEpwHExABzn2CfaDlxjO4esH1iOhuWc+NFFciHd2d921WZHbB1H0ZwaHUnpcyFEejglpu+EEEJkBglKQggh0oYEJSGEEGlDgpIQQoi0IUFJCCFE2pCgJIQQIm1IUBJCCJE2JCgJIYRIGxKUhBBCpA0JSkIIIdKGBCUhhBBpQ4KSEEKItCFBSQghRNqQoCSEECJtSFASQgiRNiQoCSGESBvtFpRmz57NqFGjKCsr4+WXX26vZgghhEgj7VJ5tqamhunTp/PGG2/g9XoZP348F110ET169GiP5gghhEgT7TJSWrp0KQMHDiQ3N5dAIMCVV17J3Llz26MpQggh0ki7BKXdu3dTVFSUetyxY0dqamraoylCCCHSSLtM37mui6ZpqcdKqYMeH42uH/tz09nJ0A/pQ3qQPoiTRbsEpeLiYlasWJF6vGfPHjp27HjM1+flBU9Es75xBQXZ7d2EVpM+pAfpgzhZtMv03eDBg/nwww+pq6sjGo0yb948Lr300vZoihBCiDTSLiOlTp06cccdd3DTTTdhWRbXXXcd/fr1a4+mCCGESCOaUkq1dyOEEEIIkIwOQggh0ogEJSGEEGlDgpIQQoi0IUFJCCFE2pCgJIQQIm1IUBJCCJE2MiooZXK5i3A4zNVXX01VVRWQTEo7evRoysrKmD59eju37uiefPJJysvLKS8v55FHHgEyrw9PPPEEo0aNory8nGeffRbIvD4c8Itf/IK7774bgPXr1zNu3DiuvPJK7rvvPmzbbufWHd2kSZMoLy9n7NixjB07ltWrV2fc3/d7773HuHHjuOqqq3jwwQeBzL2f0orKELt27VLDhg1T9fX1qrm5WY0ePVpVVFS0d7OOyaeffqquvvpq1bdvX7V9+3YVjUbV0KFDVWVlpbIsS02ePFktXLiwvZt5WEuWLFE33nijisfjKpFIqJtuuknNnj07o/qwbNkyNX78eGVZlopGo2rYsGFq/fr1GdWHA5YuXaouuugidddddymllCovL1erVq1SSil1zz33qJdffrk9m3dUruuqIUOGKMuyUl/LtL/vyspKNWTIEFVdXa0SiYSaMGGCWrhwYUbeT+kmY0ZKmVzu4rXXXuOnP/1pKr/fmjVrKC0tpWvXrpimyejRo9O6L0VFRdx99914vV48Hg9nnnkmW7duzag+XHjhhbzwwguYpsnevXtxHIfGxsaM6gPAvn37mD59OrfddhsAO3bsIBaLMWDAAADGjRuX9n3YvHkzAJMnT2bMmDG89NJLGff3PX/+fEaNGkVxcTEej4fp06fj9/sz7n5KRxkTlDK53MVDDz3EBRdckHqcaX3p2bNn6k1v69atzJkzB03TMqoPAB6PhxkzZlBeXs6gQYMy7vcA8JOf/IQ77riDnJwc4NB7qaioKO370NjYyKBBg/jNb37Dc889x6uvvsrOnTsz6nexbds2HMfhtttuY+zYsbzyyisZeT+lo4wJSq0td5FOMrUvFRUVTJ48malTp9K1a9eM7MOUKVP48MMPqa6uZuvWrRnVh7/85S+UlJQwaNCg1Ncy8V4699xzeeSRRwiFQuTn53PdddcxY8aMjOqH4zh8+OGH/PznP+fPf/4za9asYfv27RnVh3TVLglZ/xmtLXeRToqLi9mzZ0/qcSb0ZeXKlUyZMoV7772X8vJyli9fnlF92LRpE4lEgrPOOgu/309ZWRlz587FMIzUc9K9D2+//TZ79uxh7NixNDQ0EIlE0DTtoN9DbW1tWvcBYMWKFViWlQquSim6dOmSUfdTYWEhgwYNIj8/H4DLL7884+6ndJUxI6WTqdxF//792bJlS2oK4K233krrvlRXV3P77bfz6KOPUl5eDmReH6qqqrj//vtJJBIkEgneffddxo8fn1F9ePbZZ3nrrbeYNWsWU6ZMYfjw4Tz88MP4fD5WrlwJwKxZs9K6DwBNTU088sgjxONxwuEwM2fO5Je//GVG/X0PGzaMxYsX09jYiOM4LFq0iJEjR2bU/ZSuMmakdDKVu/D5fEybNo3vf//7xONxhg4dysiRI9u7WYf1zDPPEI/HmTZtWupr48ePz6g+DB06lDVr1nDNNddgGAZlZWWUl5eTn5+fMX04nEcffZT777+fcDhM3759uemmm9q7SUc0bNgwVq9ezTXXXIPrukycOJHzzz8/o/6++/fvzy233MLEiROxLIuLL76YCRMmcMYZZ2T8/dTepHSFEEKItJEx03dCCCFOfhKUhBBCpA0JSkIIIdKGBCUhhBBpQ4KSEEKItCFBSQghRNqQoCSEECJtSFASGWPy5MnU1dW1+jnLli3j6quvPurr9e7du8Wf9e6776bq50yaNIm5c+dSVVXFueeee9SfKYQ4sozJ6CDEkiVL2uQ5rTVixAhGjBhxwl9HiFORjJRERrjnnnsAuPnmm1m+fDmTJk1i9OjRjBkzhjfffPOQ51RXV7NgwQLGjx/PuHHjuOyyy3j88ceP+3Uff/xxrr32WsaOHcuCBQsAeOONN/je977XRj0TQvwjGSmJjPDwww/zxhtv8Pzzz3PDDTcwdepUysrKqKmp4frrr6e0tPSg5+Tl5TF16lSmTZtG9+7dqampYdiwYcedF+60007jgQce4Msvv2TSpEnMmTPnBPVQCAESlESG2bRpE/F4nLKyMiCZqLesrIxFixYdtKajaRq//e1vWbhwIW+99RabNm1CKUU0Gj2u15swYQIAvXr14swzz2TVqlVt1xkhxCFk+k5kFE3TDimcppTCtu2DvhaJRLj22mv5/PPP6dOnD1OnTsU0TY43/7Cuf/Un4roupimf44Q4kSQoiYxhGAZdunTBNE3mzZsHQE1NDe+88w6DBw9OPce2bbZt20Y4HOYHP/gBw4cPZ9myZSQSCVzXPa7XnDlzJgCff/45lZWV9O/fv207JYQ4iHzsExlj5MiRfOc73+Gpp57iwQcf5Ne//jWO43D77bczcODA1HMmTZrEE088wWWXXcZVV12F1+ulV69e9OjRg23btuH1eo/5Nbdv384111yDpmk89thj5ObmnqjuCSGQekpCCCHSiIyUxCnrD3/4A7Nnz27xe9/97ncZM2bMN9wiIYSMlIQQQqQN2egghBAibUhQEkIIkTYkKAkhhEgbEpSEEEKkDQlKQggh0sb/ByHrUIh7JWQKAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAFgCAYAAADuCe0ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5xdZZ348c9zyi0zd/pMekjPSSehIwFC7x1EbLAqdva3rO6ubVfXtexaVlFRJNJWpSkiRRSQ3klIISHJSUiD9CmZeuspvz/uMORClJnMuXPvnHzfr5evZL7kznnm8cz5nqcr3/cRQgghyo1W6gIIIYQQ+yMJSgghRFmSBCWEEKIsSYISQghRloZTgjKAib1/CiGECLnh9LAfB2xube3G8wY+87CuroK9e5PBl0oUkHoeGlLPxTeYOm5qqlIBF+egNJxaUINiGHqpi3BQkHoeGlLPxSd1XHoHTYISQggxvEiCEkIIUZYkQQkhhChLkqCEEEKUJUlQQgghypIkKCGEEGVJEpQQQoiyJAlKCCFEWZIEJYQQoiwVdasjy7KqgeeBc23b3mJZ1qnA/wJx4C7btr9WzOuLoaFpCk8pUIr2rjSGoeE4XqmLJYQY5orWgrIs62jgWWB679dx4GbgAmAmcKRlWWcV6/piaGiawkHxwzuW87FvPcqXf/4cLd1ZNF22IhNCDE4xu/iuBj4H7Oj9+ihgg23bm23bdoDfAJcV8fpiCHhKcd1dK3htUysA2/Z0843FL+JJ77EQYpCK1sVn2/YnACzLeis0Bti5zz/ZSX6HcjGcKcXqTS0Foc6eLJmcS1RylBBiEIbyuA0N2PecDAUMeKCioSFxwAVoaqo64M+K/evozjBxdDWbd3T2xaIRnXjMoKEmXsKShZ/cz8UndVxaQ5mgtgGj9/l6FG93//XbgZ4H1dRURXNz14A/J/4+Xde49orD+MbiF2nrTBOPGlx7xQJwPanvIpL7ufgGU8eS2IIxlAnqJcCyLGsqsBn4IPlJE2IYc12PmpjBD645nozjUhE18F0Pz5VZfEKIwRmyUQLbttPAVcA9wBpgHfD7obq+KB7X9cB1iSqor4lLchJCBKLoLSjbtifu8/fHgEOLfU0hhBDDn8yzEkIIUZYkQQkhhChLkqCEEEKUJUlQQgghypIkKCGEEGVJEpQQQoiyJAlKCCFEWZIEJYQQoixJghJCCFGWJEEJIYQoS5KghBBClCVJUEIIIcqSJCghhBBlSRKUEEKIsiQJSgghRFmSBCWEEKIsSYISQghRliRBCSGEKEuSoIQQQpQlSVBCCCHKkiQoIYQQZUkSlAiMUqUugRAiTIxSF0AMf0rX8JWirSuD357Kf+16pS6WEGKYkwQlBsUwNHbuTfMfN75AJueiKfjkRXM5euZISVJCiEGRLj4xKDkPrrtrOZmcC4Dnw6/uW42kJiHEYEmCEoOiaYpdrT0FMcf1yTqSooQQgyMJSgyO73PU7NEFoaa6OFFDL1GBhBBhIWNQYnA8n09dOIeKmMGydXuYNKaaT100Fx0Pt9RlE0IMa5KgxKD4vo9yXT56psUHT7eoiJtkU1lc1y910YQQw5x08YlB833wHA/N86iqiOB5kpyEEIMnCUoIIURZkgQlhBCiLEmCEkIIUZYkQQkhhChLkqCEEEKUJUlQQgghypIkKCGEEGVJEpQQQoiyJAlKCCFEWZIEJYQQoixJghJCCFGWJEEJIYQoS5KghBBClCVJUEIIIcqSJCghhBBlSRKUEEKIsiQJSgghRFmSBCWEEKIsSYISQghRliRBCSGEKEuSoIQQQpQlSVBCCCHKkiQoIYQQZckoxUUty/ow8OXeL/9s2/YXS1EOIYQQ5WvIW1CWZVUAPwFOBA4Fjrcs69ShLocQQojyVoouPr33upWA2fu/VAnKIYQQoowp3/eH/KKWZV0DfA9IAk8Bl9i2/V4FmQhsLnLRhBAiCKrUBQiDIR+DsixrHvAxYALQAfwG+CLw/f58vrW1G88beFJtaqqiublrwJ8TAyP1PDSknotvMHXc1FQVcGkOTqXo4jsDeMy27T22bWeAW4FFJSiHEEKIMlaKWXwrge9ZllVJvovvPGBJCcohhBCijA15C8q27UeAO4BXgFfJT5L476EuhxBCiPJWknVQtm3/D/A/pbi2EEKI4UF2khBCCFGWJEEJIYQoS5KghBBClKWSjEGJ8DEMDZSiFAu/hRDhJAlKDJoydF7bupfnXt3BzEn1HDd3DL7jSrISQgyKJCgxKLqh86cXtnL3Y+sBeHblDl54dSf/fMUCcCVBCSEOnIxBiUFxfbj/mY0FsdWbWnEOYDsqIYTYlyQoMWim8e7bSCnZK1MIMTiSoMSgGMrnQ2fOKIgdP38suuQnIcQgyRiUGBTH8Th65kim/WMtS9buZsbEeiaMrMJ33FIXTQgxzEmCEoPmux4NiQjnHjuBmpoKOQZCCBEI6eITgfA8n2xWWk1CiOBIghJCCFGWJEEJIYQoS5KghBBClCVJUEIIIcqSJCghhBBlSRKUEEKIsiQJSgghRFmSBCWEEKIsSYISQghRliRBCSGEKEuSoIQQQpQlSVBCCCHKkiQoIYQQZUkSlBBCiLIkCUoIIURZkgQlhBCiLEmCEkIIUZbkyHcRCE1TGIa87wghgiMJSgya0jVaOjMsWbubGRPrmTiqCt+R49+LwTA0dF1eBMTBQRKUGBTD0Hjutd388t5VfbGFh47h4+fOwne9EpYsfJShs+7Ndl5as4v505uYM7kBHBffL3XJhCgOSVBiUBwfbn94XUHs2ZU7uPKcWeglKlMYaYbOvU9v5L6nNwHw2JI3OX7+GP7hnFkgLwIipKSvQAySwnHf/Qrvy2t9oDwf/vTcloLYsyt34Ek1ixCTBCUGRVc+5x8/uSA2d2oDhqZKVKJw8oH9VamSahYhJl18YlBcx+OsYyYwaUwNz766ndmTGjh2zmh8x0Ve7oOjK58LT5zC3Y9t6IudfMR4NJB6FqEV+gSlFOi6jIYUk+e4zJ5Qw7zJ9SQSUVpauktdpNDxHI+zjpnI3CmNLFm7m0OnNTJ5TI3MlhShFu4EpWukch6v2ruYMKqaUfUV8gtdBHHDwch2k976GpnRk0gkmujOmaUuVuj4rsshTZVMHj2V6uo4zc1dpS6SEEUV2gRlGBrrt3fy7Vtf7puGu/DQMXzsXJn1FKSIqfDeeJUdD/ykL5ZYcDqVx76fpBPa26tkXNfDlftXHCRCO0ki58HND7xWsEbk2ZU7cGTaU6Cifoa9j99WEOte/igGTolKJIQIi9AmKBQk0+9+SOYcefsMklLgZVLviPrgSVeqEGJwQpugTKU457hJBbFxIxLEI9LtFKQsJlULTi+IRUdPwdMjJSqRECIsQvu0dhyX044cT2NtnKdXbGPymBrOOW4SmuchbajgpHOKqqMvxGgYS8p+kejY6STmn06XE0EmQAshBkMNoxX/E4HNra3deAMYRzJNHcfzqa2Os3dvT9EKd7AzTQ3Dz1FZk6Cl9Z1dfiJoTU1VMouvyAZTx01NVbKEOgChbUG9JZfLj4XIURDFlct55NBJaKG/pYQQQ0Se2kIIIcqSJCghhBBlSRKUEEKIsiQJSgghRFmSBCWEEKIsSYISQghRliRBCSGEKEslWbRiWdZ5wNeBSuAR27b/XzGuo+saLuB6Pm2daXRDw5W9+IQQYlgY8gRlWdZk4AbgaGA38LhlWWfZtv3nIK+jaYqsD9++5WW27OwkETf5pw8sYOqYajw5rkAIIcpeKbr4LgLusm17m23bOeBy4KWgL+Irxc9/v5ItOzsB6E7l+J9fL8VTsgNJMRiGhmnqDKOts4QQZa4UXXxTgaxlWfcDhwAPAv/e3w83NCT69e/aOtPYb+wtiOUcj2TaYcLo6v6XVrynzp4Mr21q5ZkVO5g1qZ6Fh46ltipa6mKFXlNTVamLEHpSx6VVigRlACcAi4Bu4H7gSuDW/ny4v5vFKl1j5qR6Xlm7py8WMTQqYoZsshkg3dB46MU3uOuv6wF4ZsV2nl+1g2svXyAnFxeBpil0XaO2tkLu4yIb5GaxAZfm4FSKLr5dwF9t2262bTsF3AscFfRFlO/zmYvmMXVcLQC1iShfueoolCcPzSC5vuL+ZzYVxFa93ionFxeDrtHWk+Px5dtZu6UNJRsgi5ArRQvqQeA2y7JqgS7gLOCPQV/E83wMDb585RF4PkRMHVxXZvEFzsfQ3z2up5QCGY8KjGZoPLViB7c8uKYvdv4Jk7no+Mn40lIVITXkr2C2bb8EfA94FlgDbAVuKca1PM9HuR6651FfHZPkVASGgg+eMaMgtvDQMewnZ4lBcH2489H1BbEHn90sh2+KUCvJOijbtm8Gbi7FtUWwHMfjmFkjmTa+liVrdjNzUj0TRlbhO26pixYyimyusE49z8f3Qd4FRFhJJ7YYNN/1aExEOO99Ezh8xkhJTkWgK5+TjxhfEDt8xgg0yU4ixA6K4081+S0uOs/zyWYlMRWL53h86IwZTB9fx8trdzFvaiPHHzoW33GQkT4RVqFOUFrvVkdb93STdvPTzGXqsxiuvJzDMbOaOHLmCGpr4rS1dpe6SEIUVWgTlGFo7GxP87UbnifXOzniwhOncP7CSZKkxLCVy+XvXV16BcRBILRjUDkPfnHPq33JCeCPT21ElucIIcTwENoEpZSitSP1rnhaxkmEEGJY6HeCsiyrzrKsYbOJnabBcfPGFMTqq2PEonqJSiSEEGIg3nMMyrIsC/gNsADwLct6HviIbdtvFLtwg+G6PicdMZ54zGDJmt2MG5Hg4pOmoWsKXxpRQghR9vrTgroV+BUQBxLA74GbilimQJga4Pt09WS54IQpHDKqmqVrdyGDUEIIMTz0ZxZfhW3bv9zn659alnV1sQoUFMfxGFET4wOnW7yxs4vZkxuImZrsWyaEOOhYljUO+C35U8w94B8BF/gRUAG0AJ/q/XMV8HHbth+zLOth4D7btn9einL3pwW1zrKs9731hWVZc4DNxStScHzPR3M9Jo9KMH5klUwvF0IcrD4OPGjb9hHAf5A/8uhXwAdt2z4M+CGw2LbtLuBjwM8ty/oc4JUqOUH/WlATgKcsy1oJOOTHonZZlvUqgG3b84pYvkD05/woIYQIsb8Cf7AsawHwJ+Ah8onq/vw0AwCqAWzbftyyrMeB7wAz9vO9hkx/EtS/Fb0UQgghisa27ecsy5oFnAtcDnwC2GTb9nwAy7J0YGTv3xVgAcneP3eWpND8nS4+y7Leypxd+/ufbdtP2bb9VPGLKIQQYjAsy/oe8GHbtm8DPg/MB+otyzq+9598DLi99++fJX/a+QXAYsuyEkNd3rf8vRbUD8hn25eBNyjc1b8SGFHEcgkhhAjOT4HbLcv6B/KTIz4MtAHXWZYVAzqBKy3LmgR8DTjKtu03eydJfI980hpyfy9BfdSyrHryhwouIp+gfCACDJuWk1IK0wzthhlCCPGebNt+Ezh+P//pqP3ERu/zuc8XrVD98PcS1B3AaeSTUvM+cRf4XTELFZS44aBnOkitXULPqElUjZhMd86Uk8iLRMn+pUWn6xqGIS9c4uDwNxOUbdtnAFiWdbNt2x8buiIFwzQ02LWeznQWfeoJ9CQ70F5+gIojzqPHMUtdvFDRdA1PKVo60vh6Mr/PlCdT+oOWMB3cPRtJrX+Z7snzqBo7m65saA8kEALlD5/mxERgc2trd7+mjSfMLEnX4Po/ruWVtbsZ05Tg2ssPZXydTrf8UgfGMDR2tKX4jxtfIOt4KAWfuGAO75s9ShZFByhm+mSW/pHOl+7ri1XOWkhi0VUkHbmfi6GpqYrm5q4D/az0JwQgtH0FjhblVw/aLFmzG8+HbXu6+dqNL5H0IqUuWqjkfLju7hVke4818X245YHX8JDfzyBFyNG19KGCWM+a5zBwSlQiIYovtAkq68Ly9c0FsVTGoSuZLVGJwkkpxe62ZEHMcX2yjuzIGyxfBvnEQSe0CUrDZ8LoanRNMbqxksqYga4pEhXSggqS8n2OmT2qIDaiLk5UBvIDlSVC9ZHnoidqScw7Cb1mBJVzT8RBxlNFeIV2DCoSM0hlHDqTDlt2djKiroLKmM6IapNsruhlPWgopVCGxm8fXscr65qZOLqKT100l5iucN1hc28NC9XRHMrJkN29hUjTeHwzTmdWXriKJWxjUJZlTSS/j+qNtm1/ap/4fGA58A+2bd/6Nz67BVhk2/aWYpdzX6EdXVWaxp72NF+/8QWc3gfl2e+byCUnT0Uhg/dBiUY1/F02lzWs5dKLZ0DHDiIbHiMy6yRSrrSigpKIa2Q3v0rz/T8jv/ID6k76MIm5J9OdlnoW/dYKnGlZlm7b9lv98JdTuJSobIQ2QaUzLjfeu6ovOQE89PwWLlo0FTlTNziGm2LPX27A7Wzpi6WVRtWs40gRK2HJwsVwU+x+9BbeSk4A7U/fxbjZC0HqOTTO+8J9HyS/Sesh5Hfw+coDP7zg9r//qQHpBlaQ3838id7Y6eQ3k8WyrM8DHyG/W1AWuMK2bfutD/fu2fd98ps36MCttm3/KMDyFQjvq5eCvV2Zd4XTGZn1FCRNKdzu9sKg7+G7Us/B8vFSPYURN4fvymSUsOhNTovJnyChev9c3BsP0t3ApQCWZR0JvEo+GVUDF5LvypsDPEh+3759XQ3Qe0THUcAF++znF7jQJqiYoXHCgrEFsabaOJVxGVQOkoNBxayFBTGzYSy+LmMjQfKUTsW0wwti0TFTQQ9tJ8jB6DvkDw/cV0VvPEj3A2dZlqWR7967qzfeCXwQ+IBlWd8FziN/ivq+TgXOtyxrBfASMA6YG3D5+oT27s6kc1x28jSqKyK8sHon40Yk+MhZs6iI6CRlCnRg0o6i7qQPo1XVk934CsbIydSdcHlv956M9QUl6Zo0nvkp2utGkd6yiuiYqdQufD9JKkHWQoXFIQOMHxDbtrt7z/dbCJwMfAn4ADAeeAH4GfBnYBf58//2pQP/atv2HwAsy2ok321YFKFNUABu1uH8hZM4+YjxxCI6nuOSlHVQgfI86MwYVBx5IRXzzyRSUUFXj4MnWx0FynFgr2NSdexlJI44By1aSXfGw3EkOYXIG+S79fYXD9rdwH8DS23bdnoPLewBXrdt+0eWZcWBbwJvvuNzjwNXW5b1ABAFngU+DTxZhDKGt4vvLclkFs3zqKmK4Tjy0CyWVNoj5UaIxOKyDV8RdaV8upw4kYpKJDeFzlfIHxK4r2RvPGgPkD8T6q59YllAsyxrDbAMWAdMesfnbgA2kJ+WvhS4xbbtJ4tQPiDE66DeohTouk5dXcUBr2kQ/TeYtSOi/6Sei0fXNRzya/x838fAH/CavgNdBzUEs/iGlXAnKF0jk/NY+XozE0fXMLIuji/jT0UlD86hIfVcHLqusTeZ47u3LWF3W5JRDRV85cqjqInrA0pS5bhQdzgK7RiUYWis397Jt299ue/8p4WHjuFj584C2WU7UKYOcS2Ln03idGWJGQZpJ/S9xyKEHODbt75M894UALtak3z3tiV869PHohg2L/OhEdoElfPg5gdeKzic8NmVO/jo2TPD+0OXgGFoRFM72Xn7f+JlkqAZNJz1KaITDicjSUoMM67n9yWnt+xs7cHzfFngXwLhfYIoSKbfPYqck4kSgYqSpuWBn+aTE4Dn0PaXG4kq2fBQDD+6pmisLdyZY2R9BZomPXalENoEZSrFOccVTkAZNyJBPCLtpyDpGuRadxTEfDeH78h0fjH8GMBXrjqqL0mNqIvzlSuPlF6XEgltvTuOy2lHjqexNs7TK7YxeUwN5xw3Cd33kGkSwXE8jfjk+aQ2LuuL6Yk6MKIgjSgxzLiuR0Miwv98biH53YZ8jN64GHqhnsWnaQp0Dc/Pz85RritroQKmlKLazND26E2kNq0kMuIQGs7+LEmjTo7bKCKZxVd8YTtuYzgKbQtKKYWnaVx35wpWbmhmZH0F115xGKNqo3jy4AyM7/t05qIkTvkktac6mJEIHWld3jiFKDO950GtB9a84z+dZ9v2O3eMCOJaT9q2PXEw3ye0CQpNsfiPq1m5IX/Mye62JN9Y/AI//9eTQTr5AuX7PilHB3Saaqtwe+TNXogDsenbl7xroe7kr94T5ELdHbZtzw/w+xVVaBOUB6x8vfAMrnTWpTuZIxEJ7dwQIcQw1ZucFvP2juYTgMWbvn0JASepApZljQR+SX6zWA/4sm3bf7Us6xvkE+V0oAn4NnAKcDSwkvwGszrwC2AOMJL80R1X9Of796dsoU1QCpg8pobVm1r7Yoau8sdtyBk6Qojy8/eO2wgqQY3pPSrjLb8FDgdutm37fsuyRgPP9h4DD/mjNI4FjiO/Uexc8t2Ea4F5QA2QtW372N7jOx4HzgZe2eca1+3v+9u2/Z5dLaFNUJrv87nLDuUbi19kd1uSqKnz2UvnoeHLenAhRDkaiuM23tXFZ1lWCzDDsqxv9oZMYErv3x/t3e18K7DTtu01vZ/ZDtTZtv2kZVmtlmV9DpgBTGP/Z0jt7/uv4D2ENkEBRE2dz192KIauoWkKQxbbFYVSYJg6aIpUOoemqQFt6CtEOVFKEdUdnO69xEyNjKMzRLOdh/K4jX3pwMm2bbcB9LZy9pA/XXffBY3v2vnAsqzzyR/LcR1wC9BIvgOrP9//PYU2QflK8bPfrWCZ/fY4lGlo/PJLp5SwVOGjFGAYbNzZydK1u5kyrpZDpzaiK19m8olhR9MUCT1F+xO/pm2bTWz8LGoXfYhuNzYUL11foXAMCop33Ma+Hgc+C3zLsqxZwDPkl/X0x6nA3bZt32JZ1mTgJOCd40t/6/sfvF18HrBu696CWM7x6EpmqYrIrlpB0U2Dx5a+yW0Pre2LHTV7FJ++qGinQAtRNHEtS8sfvk9m50YAel57GqdjD3Xnf4EezyzqtSd/9Z7bN337EijuLL79uQa40bKsV8m3fj5s23ZX7yGG72UxcLtlWVeQb209x7vPkNrv9+/PNw/tQl2la/zsnld5Zd3bLcmIoXHDl04BOXIjOIbONT98kp5U4bYRN375VAxfWlBBi0UUhnKJxuO0dWQYPr++w0O1kWL7zz/zrvjYz95ApxPbzyf2TxbqBiO0862V7/OZi+cxZVwNADWJCF++6iiUHPcauP2/MMiTM0hKQU0ki9HxBqmVD5N+cw01ZkY2MQ2a0lDRwol0WjyBr6SeSyG8XXyej6HBV688EteHiKmD6+LKVkeBMnW46MQp3P6I3RebP70JQ9ekpRqgRMSlZ9WT7H3y7d6e6iPOouqYi+nMFrfr6WCS9qM0nPlJWu7/CfgeKI2Gsz5Nxo+WumgHpdB28b2T7F1WPJqps2lHJ8+s2MHsSfUcMWskfs6R7qcA1UbSbLvxn/Cz6beDSmP8Z6+nPRcvXcFCKKq7RFUOv7sVraqBtBch4w6ss0m6+IIR2haUGDo6PnPHx5k/cTo+PumcR0aSU+B85x3bw/se8hYQvIyrk0GnafwMeaktsdCOQYmhYZo6ysuxfU8X9z+zibUbm3GyaaKmvEAGyVEREnNOKIjFJ8/HVfKOKcIr9F18iUQUfB/D1GlvT733B8SAVMZ8nl25i0de2YU1vprtrSnqKnWuOnsmWTkPKlA10RxeqpOsimC6GYzKGjqypjSiisA0dSoro/T0ZMjlBj6WKl18wSjZ65dlWT8AGm3bvqpY1zAjGqte38MTK3YydXSCk46cgKE0Mhl5cgYl5eqMqjP5wkIfbetjeNYUsuOPIOvlD3sTweny4yzb2sWydduZOamB4+bFMQyHnNzOgVEKlGHw8rrdLLObOXzGCA6zmvAOIEmJwStJC8qyrFOAO4E/DSBBTWQALahEpcnDL23lpgfX9cWmjK3hPz52BG5OHpxBiUcVXS//kdRL9/bFIuNnUXf+tSRzMrssKEbU4PaHbf7y4ta+2NGzR/Gpi+bKbMkAKV3jlofW8vTy7X2xU448hA+fPh1/ADujSAsqGEM+BmVZVj35bdu/U8zrJNM57n16S0Fs4/YOkhn5ZQ6S6WdJL/tzQSz75hoMT17rg+S4Pn9dUrgl20uv7ZI9DwPmAc+s2F4Qe+KVN/Hetb2cGAql6OL7JfBV8meDDFhDwzs3yt2/1r1dmMa786+mKZqaqg7k0mI/nO69KMPAf0c+0nWNpnqp56Ds2ZtE1zWcfY6K0RSg5H4OUmtHCk0p3H16lnRNoeuKBrmfh9yQJijLsj4BvGnb9mOWZV11IN+jv118VVVRPnLGNH5wx8q+2ILpjcRNTaaOBihiGNSecAVtDy/ui1XOOo6Mp7NX6jkwkZjBxSdO5Y5H314QfdpRE9A1JfdzgDRD47zjJ/HHpzb1xS48YQp4/oDqWV4agjGkY1CWZT0KjCa/bXs9+XNDbrNt+9p+fHwiAxiD8nUNQ7m0dzu8uHoHk8fUYE2sJ5VxMJXMrg9SheGgJVtJvb6U2DgLrWECXTL+FDhl6uxqTbLM3sPsyQ1MGFWFL4P3gVOGzo6WHlZvbGXetEZG1VXgD/CQUxmDCkbJppn3tqAWFWuShNI1bnpwDdGIzoUnTGHT9nZuuHc11//LSTKoXASapjAMjZqaCnmjL6JYzCQWMzBNQ+q5iDRN0dCQ6HePzTtJggpGeFf5eT4fP382GzbtxE910BBz+N7nF6L5PrIbX7B0U8f1YVd7mrQLuq4P+I1T9E86nSOdzkkXUpG9lZRkEkpplSxB2bZ9K3Br8a7gU63STNp0D8kNS6lvGEvjuZ8jw0hJUAGKRHS2tab4+uIXyGRdNAWfuGAO75szGk9aqkKIQQjtYEzM8Nj75K/xjRjRUz+LPvUYmu/7MXE9+94fFv2WcX1+ctdyMtl8MvJ8uPmBNbjy4imEGKTQdvEZOGjzzuavryV5/slWxjdN5KPnLMTPZYBIqYsXGpqmsau1pyDmuB6ZnEsstK8/QoihENpHSE6LcO/ybu58Ygtv7OriuVW7+Optq0nq1aUuWsj4HDFrVEGkqTZONKKXqDxCiLAIbQsq5eg8uXxnQaylPU1X2qViPwt4xYFRrsdnLp5HPKKzfH0zE8dU85mL5z0UhNAAACAASURBVBFRPrKXhBBiMEKboHQNGmridCULH5OxqAED2FNL/H2aptjW3M3xC8Zy6SnT6erJsHZLGwumNpa6aEKIYS60CapSy/Lpi+bwtV++yIi6OC2dac446hBiyiEb3p7NIZfz4Ud3Lad579tHmWiaYvGXT5Hdy4pEScWKg0RoE5Tra9TEFXd/9Vjcrlb0yhoymGTQkWMggqOUYm9nmlmT6pl1SBXbWtMsWbOHnOMRkQdpoCK6R0zL4XXvxenMEDUMMo6M9QVNaRq6qbOnuR0zGsV1XHyZlloSoT2wMF4ZxWh/g52//QZ+Nv92X3v8+4kfehrdWdmGJyiaodHd0UFkz1rUG0vxGqfAlPcRSdTiyzqowJiGwmzdwO7f/ze4DiiNxnM/D+MXkHHkTSAouq5h+Cl61r6I2vka/ti5VFpH4ag4rhy3MeRC29dl5jpp+cuNfckJoP2Z32H4TglLFT4R5ZLY9ATZF+/Edx3cdU/jP349lSpd6qKFSkylafnTz/LJCcD3aP3LjUSVrOsLUkTL0f3EraSeuoXk+pdJPXETPU//hoguz41SCG0Xn/J9nL273hH18TJJ0OIlKVMYRcjRXTUa/ZLv0uUoTM2nKrMHzcsB0lINigLc7vaCmJ9Lg+cA0ZKUKYxMHNL2iwWx1NrnqD/pw6SknodcaFtQnh6lYvpRBTGtohot1r/zpET/eEYEb8KR3P74Fv7zppf51YM2e6OjyRqVpS5aqHhKJzZhTkHMbByPr8mi88BpheN6SjdkZkqJhDZBZXyDukUfpGr+qeiJWmKHzGb0h/6TrCEJKkg9js7ND67hmRXb6ezJ8urrLXz31iWk3NDeWiXR40XRF32K2Izj0CtriU05nOjZX6CHWKmLFio5IlQffV5BrPrYC8n50htQCqGdJAGgGTpxw0F30nhKxzWrSKcyDJ8fufwp0+Dj33qEd/5f8ot/O5movHQGxtc1rv3x05x/zFissRVsbU7xh+d28N3PHocps1IDlTAd/M5dpN9ck2+1JkbQkxvYaIhMkghGaMegDEPj9Z2d/PjO5UwZV0NLe5pJo6u56pyZslA3QL7vM7oxwfbm7r6YoWtEDB3kyI3AKGB0QyUvrGtjZ6fL9uYuIqaGoStkZ95gdecMIjUTqD9kJu3tSXJyKGTJhDZB5Tz43WMbuGjRVKxD6mjrTPPAs5twPD+8P3QJRE2df7x8Pl+/8QXSvcdtXH3hHHQNPPm9Dozm+/zXPxyK19OGocBxq9GrG0nmfKSag1UVcchtW8Wep5cTn3o4sdEWXQNsQYlghLeLz9DY25Xl94+vZ29XBkPXuOSkaYxtqsQYPj9z+TN0Vm1sYfbkRtq70tQkouxq6WFMUwIlLajAxKMKM91Ky59vJLNtHZFRk2g881N4iRH0ZGW8LyhxwyX53G/pXvl4X6zqsDOIH3s5qVz/61m6+IIR2jtbU4pNO9q58MSpHD17NOctnEw662Doof2RS8IwNAxD4y8vbKYrmeOl1TtZu7WNYfTiMyxE/BQtD15PZts6ALK7NrPn3h9i+rIOKkimytH96pMFsa4Vf8WUrY9LIrTtVk0pYhGDL13/LIm4SSrjcNTsUUwZWxPeH7oEXNdj+rha7C17WfzHVUweW8NHz56JaWi4WRnrC4ryfTI7NxbEnI5mfE8WkAZrfw0faQyVSmibEznXY/XGVv7n88dzzfsX8N3PLmTK2NpSFyt0DE3x67+sZcvOTk6Y2wS+xzdvegnPk+QUJA8No2ZEQUyLJUCT160g5XyDqgWnFcSqDz+TrEwzL4nQjkEZUYMtO7v4zq0vk+49jvzik6Zy1jET0IfPz1z2NFNj545mGjrXo7YuxW+agjtlIUZlNbpUc2AMQxHv2cGuu7+Nl+pGRWKMvPiLZOumkHPlDT9ICTOHu2cT6c0riU1egN40iW6ZZl4SoU1QGDrfvvVlNm7r6AspBYu/ciqaTDMPTDwK3S/cQ3LpA32x6Njp1F34L/Tk5K0zSKYOcT0LuQx6NEaPY5CVjWKLQtc16usraWvrGdAmsW+RBBWMUPcPdPVkueSkqcyYWE9rR5qHnttMKuNSaci9ExSTHO7ujVR/7Gd4kSpws/gv/hbdyyJ78QXLVzoOBroBGU9D6SY4MgYVtEjEIEqKbHuSSsMgrcfIZqWeSyG0LSgzatDek+X3j7/O0rW7GdeU4MpzZjF2RCVuRm62oFTHXTpzEW66fzUr1jczYXQ1n7v0UEYkFF2p9/686J9IxCDm99D6yGKyb6whMnoK9Wd+GjdWSzIpM8yCEo8bRHMdtPxlMent64mNs2g882rSejXpdP+fG9KCCkZoE1Q0qnHTn9bx+NJtfbGqCpOffmERnqwMD4wWMbj+dytZsnZ3X6yhJsb3rzke5DyowFRGHNrv+yHpN9f2xcyGsTR+4Bt0S1dqYGoiGfbc/R2ye7b2xaKjp9B0yb/Rke3/xrySoIIR2ll8WcfnpdWFx210JXN09WRKVKJw8n14Zd3uglhrR7pvYooIhu67BckJINe6HeXKOqhAeU5BcgLy0/tlOn9JhDZBaQrGjqh6V6wyLscTBMnzfMY0Fe4QbxoaUVOOIg+UUuhV9YWhSBzNCPUw8pBTmv6uI3n0yhqUCu2jsqyFttZjUZPPXzqXRDzf/aEpuOpsC1PmPgeqvjrCP75/PvFo/kGpaYpPnD+HiDw3A6U0ncbTP44yel+wNIOGU68ELbS/wiWR0+I0nvMZ0PM3sDIiNJ79WXJyvllJhHYMCiAW08m6Pl09WSrjEUzdJ5cdNj/vsFBpZOm2l6CmHUdn0iFRYcLOddSOm0hnTk4gDUq1mcFLtqNHorjJLvR4Fb7nQrSSzpycCRWkyoiHSQ4v1YkWryKnIvRkBvYiIGNQwQj1e246nR8HqYwYNNVX0tzcVeIShY+uQffjN8Fji1FGlB4nP8ZX86mfIkeRB8fXdLqWPkT3qqdAj4CbJT7pUOrP/lypixY6+c13ozSNmizPjBILdYJSCpSu43o+Hd0ZdF07oEV34m9zPI345PmkNi6D3uSkJ+rAiCL7awZHeS5eLsOYj34b382hzCidyx4BXyajiPAKbYJSCjB0bnlwDS+v2c24EQk+f+mh1FQYeHLAW2ByKkrDmZ+k7dGbSW1eSWTEBBrO+jSOJlOfg6Q0nao5J7Dzjv/Cz6VBN2g665Mo3QCZYCZCKrQjrErXuO2htTy1fDupjMOGN9v56g3P48lsnEDFtBwbdqV5qe4ccud/h/XTPsrTr2fluI2g+S4tD9+UT04ArkPLo7eCLz0CIrxC24JyPVjyWuE6qO5Uju5UjoQpSSooSVfnR/esY3dbsi+ma4oFM0cDkqSC4vvgdrUWxjJJPNdBxvpEWIU2QSkF08bXMXdCgvmTqtndnub3z+2kMmbks5cIhK8Uze2Fexq5nk/O9WUnvgA56ETHWWS22X0xs340nmYiZ76LsAptU8JQ8NUrZrAw9Rjm/V9l0pqb+dblhxCVdVCBUmi8b87ogtiohgpMQxbqBilFlMipnyM+/Wgio6cRn3I4sXP+hZSKl7poQhRNaNdBJaIenU/cSs/qp/tiWizB2E/8kPasdIkERZk6e/ameGzJm6zckN8s9tKTp1FfFUWTQwsDo+saKccj53hs3dnBuBFVRCI6FaaOJz0CRdHUVHXA08xlHVQwQtuC0r0sqQ1L0asbqZxxDNEx0/DS3Xjp7lIXLVQ8z+fn96xk/MgEX/zQ4Zy4YCzf//XS/CxKERilYN3Wvfz3/y3lhdW7+fFdK3hx9S4Z5SuSSCTfA2DKll0lFdoWVJWZo2PzGvbGx/H82nYmj4wya6RObWM9HdKCCoxhaERJQccukutfJjp2GubYmSS9uKw5C5Khs3nzDsZHOlDbXsUbZdFijGb0mJHgyiBUkGqiWXK7NpHa8irxyfMxmyYOaCdzkBZUUEI7SSJnVrIqO47rfrOyLzZ3SgNf+OBYQB6cQYmZkFn1LG2P/zofWAIV046k7oyr6XRlY96gxHWX8W0vkXrpD72RB2mcs4j4uI+QcuUtPyhVEYeO535P17JHAOhc8hDVR55D4piL6c5IPQ+10HbxpTIudzy6viC2amMrKdmLL1CGm6L9+T8UxJIblqB5so1EkCJ+hvQrDxbE0q89TUS26wiUjkPX8r8WxDqXPYzhSz2XQmgTFOSnO7/TMOrSHDb8/U2GkGoOlAL8dy7K9X2UVHSw9vd8kGdGyYQ2QVVEdC46cUpBbNr4WmIRaaYHSjeoOercglB84jzQpZ6DlFVRqg87oyBWOfNYckq6UYPkKpPE7IUFsaq5i3DDOxpS1kI7SQJAmQZv7OrkqeXbmTSmmoXzx6J7Po4cRR6YqqiL5qTJNW+lx36J6JhpVEw7Al/T6UjLUt0gVUVdctvXkdrwMtEJc4lNnk931kBm8werNpojveXV/CSJSfOJTZhDe2Zg97JMkghGqBMUQDRqEIkYxGKmbJ1fBJGIjuln8DM9KCeNr5noFVVkVYRMZtjcW2VPKYibHspJ43bvRa+sAbOCZE6XbusiiEYNEokI3d1ZMpmB78YrCSoYoW+35nL51lIsJm/zxeD4itsfe4Otuzo5Zs4YNrzZzI7mLXz5yiNRsgdPYKIRjdT6l+h8+Bd9scrjLqdiwZmks/IsDFom41BdHT+g5CSCE+oEpXSNPR1pnl25g2nja5kzpQEcT944A+T5PsfMbOIji8bg9HRw6uzxtKc1XM8L9801xEwvTetT/1cQ63nxHmrnn0xaNosVIRXaZ4hhaiy1W/jJ3Sv6YnOmNPDPH1gAch5UYKIRnWmVnTTf/F/42TQojbrTr8aYdizpbKlLFx5K+XiZwk15cR05bqMIlKbh+D4r1u9hVH0lhga+LDovidAmqJwLdzxqF8RWb2wl63hEpEckMBGnm+aHrs8nJwDfY+9fb2LctMPkzT5ALiaV1jH0rHu+LxYdNwNPhfZXuCQ0Q2PZ+hZ++rsV+H5+7O+frziMeZPqZWeUEgjtNHPY/5onaTsFS8cnt7fw3C1cB3KZ0hQopFKegTr2Q8SPuZTo2OnEDjuXyGnXkPRjpS5aqLg+LL5vdd/SJ9+HG+5dhYu81ZZCaBOUqcGlJ08riM04pI6oHAMRLKWomHpYQUivakAZMiklSK6v+MxPlnLHzimsPORD/KFzLp/56VJy0l0dKM+D1DsmRvSkcngybl0Soe0fcByPo2aOZPynq3hy2Tamja/lqFmj8B1XWlEByhKhbtEHUUaE1JZXiTRNoP6kD+HpEWQXnuAowNAVTyzfyRPL8zFDV2gacmBhgHQNrAl12Fv39sXmTmlEkwZUSYR6HZRm6qzZ3MautiQVMYOjZo1C9z1ceesMjDI0VC5FRLnomo/nQw4T36zAzcoU3aDohs7L63azszXJ7EkNbNzejgaccsR4GcAPkKYpPE3j9odt1mxuZe6UBj5wmoXyvAGtv5R1UMEoSYKyLOvrwPt7v/yTbdv/2o+PTWQACUo3dJQBjgPprEs0oqNrCs/15XiCAOkRA993wX+rng0UPo6n5MDCAJmmRlzPoTkZvEwPKloBRoweN4KTk/s5SBEDYloWcmkwY6Q9k6wzsHwjCSoYQ97FZ1nWqcDpwALycxb+YlnWRbZt3xvkdSorDXa3pfn3X75AW2caQ9e4+oI5HD1nJJ78PgcmFjXY1ZLmPxa/SEd3loih8U+XH8qhUxvIyDyJwMSjCm/3Nnbe8328dDfKjNF0/jVUjJtFZ06ehUExDTD2bmbHPd/Dz6ZQ0QpGXvYlvOoJOI70vAy1UkyS2Al8wbbtrG3bOWAtcEjQF+nscbj+9ytp68xPf3Zcjxv/uEoaTwFLpzL86M4VdHTnFz1lHY/r7n6VrNRzoLRsD80PXt93IrSfS9Pyp5+jufIWEKSYytB834/ws/k1Z34mSfN9PyaupJ5LYchbULZtv/bW3y3Lmka+q++4/n6+oSHRr3+3py3Jlp2dBTHX8+lOZZk8tra/lxPvoa29h627Cus5k3PJZB3GjqwpUanCJ9eRwunYUxDz0j34To6mpqYSlSp8ch1pvOQ7nhtdbRjKo6mpqkSlOniVbBafZVmzgT8B/2Lb9ob+fq6/Y1BGVGfB9Caee3VnXyweNaiqiMimsQEyTMX8aY0sX9/SF6tNRIlFdKnnANVEdKJjppLZ8XpfzKgZAYbcz0FKmBpmw1hyrdv7YpERE8j5OnsHUM+SzIJRknVQlmUdBzwGfMm27duKcY2I5vOJC+Zy5KyRaArGjUjwn588lpgR2qVfJWFGda65bD4LpjeiFEwcXc03rz6aiCn1HCQ/lqDpwmuJHTILUERGT2Hk5V/BjVSWumihkiRO9Kx/Jjomv4YyOs4icsb/I4ksiC6FIZ/FZ1nWeGAZcLlt248P4KMTGcgsPl1DGeB6+TNHfc8nUWGSTOZkWm6AlFJE4jpuzsVH4fsesViUbDorg8oB0jRFVcLEyyTR8PDQ0GKVdHdnZdlEgHxd45s3vcRlC8cwYUQlm3d184cXdvLvHzsGNYABbJnFF4xSdPF9EYgB/2tZ1luxG2zbviHIi7iuh46GD6RzLhUxg5Qkp8D5vk825WBEDTQUmmaSSeXkoRmwCsPFa9lB859+Qa75DYy6UTSd/Wkq68fT6cruKEHRFZx42Dh+8Pu1fbGPnz8bXfnIk2PohXqh7luUgsbGKumrLwKlAMNgV2sPy+w9TBlXy/Txtei+L5trBqjGTNPywE9h/DzUiKn4rW/gbXiWkRd/kfZcvNTFCxddoyuVY+P2DqaNqyURMwb8YistqGCEOkFpuoanFHs709RWxdDwpQUVMDNq8PSKHSy+b3VfbOH8MXz83Nn4jsw1D0ptJENbZ4pbHtvB6s1tTB1XwyfPOITG6igdORkfCZpSisbGBC0tXRzII1ISVDBCO5Kt6xpdaZcNr2+jwuumbfduXtvcgtJD+yOXRNb1ueuv6wtiz67YgTPAVq74+3q8KD9+YCvPrdpFR3eWV9Y1860719Mtu5kXxVsv7sPn/T2cQrtZrIciQTcTXruFzPb1xBN1zDz1MxhaA7IzTHAUkN1PhQ6jlvmwkENn9cbWgtibu7vIugpdtj8WIRXa5kRMz5F9+lYy2/Nv9273Xnoe/AEx0iUuWbhEDMW5CycVxGZPqseUlmqgNDzqqwtbS/GogalLT5IIr9C2oAwcMtvWEh0zDW3sbOjaQ2rDy/iZHtDkpNegeB6ce8xYJtYbPG93YI2Jc8KCcUQ1T14FAlRlOPy/S2byrV+vJOd46JriM+dPJ67n6HFkFl+QlK7hobC37qWuKtI7di2t1FII7SSJCtMl2byDdW06T69pZ9KIGKfNq6emJkFHJrR5ecglzBwtd38TLVqBPsrCa99BZutqRn/yOrpy8iIQlBozzZ4n7sQ84kLaexxqK02cVY/QdMzZdLiyWDcouq7x2hvt/PC3r+B6Prqm+LePHoE1tmZAs1JlkkQwQtsP4xoxntlm8MrmHg6fMRJfj3Ddg2/Q5UVKXbRQ0RQ47c1ojRNxG6dA02S0SBQc2VwzSB4KZ8syev7vn4jc/zV6/u+fyK56FF+Tl60gOcD1v1uB2/sS7Ho+P/vdSuRks9II7d2dzrpMP6Sets4s9z29kbFNCT501kyyjh/eH7oEXHSqP/ID1je7REyTjDmJqe9fhBaNIn18wclpcRrP/CR77v1f/Fy+YutP+SiuFgOZJBEYz4eedGE66uzJ4vv5CUFiaIX2Wa3riqeWbeMvL24FYNuebja82c73rzleDiwMkKMMulUlz65cz/L1e5gwupqPnTubiGeCrL0PTNTPkM6lqP/kL3B9DYWHtmsNhp8GpCs1KLqmmDKuho3bOvpiMybWoWlKbucSCG0Xn+fBc6/uKIi1daZJZaSxHiTHV/z6obU8vWI7Xckcqze28p3bXibryftmkJQG3bUW371zLVf99zN889eraUtMlsZTEXz64nkcM2cUdVVR3jd3NB8/f06pi3TQCm2C8j2fhpp3bwETi8iMpyB5vmLJml0FsZb29H7XRokD1+Oa/OAPr7NmcxsAG7d38M3frqHbl9ZTkHzgh79dxsQxNXzigjmMG1nF/96+TN4DSiS0CcrU4LOXzMPc53iNC0+cgiwbCZbn+4xuLDxE0tC1gnoXg5fzdTa82V4Q27M3RdaVGzpIpgaXnDSVux61+f5vXuF3j63n8lOnE5HbuSRCO80cQDc0HBRv7upiRH1FvvUk+8MFyogabN7RyXdvW0I666JpiqvOmcXx88fgSysqMMrQ+NLPn2d3W7Ivloib/PQLJ+I7MjgSKEPHcT22N/cwrimBrgMDrGOZZh6M0CYow9Bo7sry7zc8R0XcpCuZ4+ITp3L6UeNlw9gAGYZOT9alO5WjJ50jETfxfRhRG8XNST0HpTrqsHlnF9/8zWq6kjniUYN/ff9MZk+upzsj3dbF0NR04CcgSIIKRmhn8eU8+Pk9K0lmXJKZ/Jv8nX+1OeXI8eHt1ywBx3GpqjCIRHSqKiKYpoapKZysTEYJlOeSWPYbfvQPl5FVUUwc3FfuRZvwUUASlAin0CYoFOxuTRaEfB9SGYdKOY48MJGIzt7uHP/5qxdoaU9TETO49gOHMW18NZ60oALjqAixuiY67/gSADmgYvpReLJQV4RYaO9uXSmOO3QMD/eugwKoTUSpjJsyDhWgrOfz4zuWMaYpwYkLxrGrNcl1dy3nui8skoWNAdK8HBXTj8RsHEf6jTVER08hOmYqmizOESEW2gTluy5XnGYRMTReXL2LcSMSXH3hHHR8JD0FSGlccYbFrpYkKzY0M3F0NRecOAXH8TBLXbYQ0fDYfsd/ER03g+jICaQ2raTt8d8w9tM/BWT7LhFO4U1QPvg5h0sXTeWCE6ZQGTfJpLK4MuMpULqCletbeODZTQAsXbubVa+38G8fPUJaqgHy0IiMnEhm2zoy29YBoFc14Oum7HAgQiv0gzGu46J5HomKSL+np4v+8zyfR17eWhCz39iLIzMlA5XyYzRd9EUioyYDYDaOY+T7v0rSkxN1RXiFtgUlhopPLKKTyRa2lnRNgZyhExjX9ejRq6m/+Evoykc3DbqypvQIiFALfQsqYmpU6Fm8bAYlo/aBqzQcrjxtckHs1MPHENVkmnnQXNejx4nQmYtiVNbiSHIqGk3LPyyUPDRKKtQtqKqoQ+q1p2lf9zzJpkOoOe79dPsVAzp4TPx9ynWYNxquu/YElq9vZtr4WkZXQcxLkUUO0hPDT4XhoCVb6ViynsqxM/DitSQdmfJTCqFNUDETupc8SOeLfwQgs+N1UltWM+LD36LLlVlPQfHNOKubDW5+6EUmjKrmzy9sZf7UOj5ypoVMlxTDTczwyax6hPZn7u6L1Z30YWIzTyHtSGtqqIW2i8/0M3S/+nhBzOnYA9nk3/iEOBCprMetf95AZ0+WVRtb2N2W5JEl22UTUzEsRVSW9uf/UBBrf+ZuIipbohId3EKboHwUekXNu+LKkNZToJR61xlbvg+uTJAQw5IP7jvuZydXorKI0CaoNHHqT/84aG/vU5aYfyqOkgQVpIjuc+bR4wpi08bXEpUuezEMOb5BxbQjC2KVM47F8UM7GlLWQrubOUBU94iqDJmdrxNtGIMbraYnJ0/OoJkRjRdX7+D515qZMa6as46bjPIhJ8dtFM1gdtoWf5tSUBVxSK5+ivTWVcQmzadi1kK6sgYDeVTKbubBCHWCeouua9TXV8ovdBFVVJi4To54PEp7R6bUxQk9SVDFZZoaVXGNrpRH7gA2PZYEFYzQdvHtS6aVF18ymSOTBTMiXahi+MvlPPRo/ICSkwjOQZGghBBCDD+SoIQQQpQlSVBCCCHKkiQoIYQQZUkSlBBCiLIkCUoIIURZkgQlhBCiLEmCEkIIUZaG0wZTOrx9kNiBGMxnRf9JPQ8NqefiG0QdTwS2AXJy5yAMp62OFgLPlLoQQgjRT5OALaUuxHA2nBJUFDgS2IkchSeEKH/Sghqk4ZSghBBCHERkkoQQQoiyJAlKCCFEWZIEJYQQoixJghJCCFGWJEEJIYQoS5KghBBClCVJUEIIIcqSJCghhBBlaTjtxfc3WZZ1KfBl8j+PBvyfbdvfL22pwmug9W1Z1tVAt23bdwxREYcdy7KuB44DIsBUYE3vf6oDbrFt+xslKtpBwbKsicB63q73t5xn2/ab+/y7h4BP2La9YwiLd9Aa9gnKsqyxwA+Bw2zbbrUsKwE8ZVmWbdv2/SUuXugcYH0fBzw5VGUcjmzb/hz0PSiftG17fu/X3yhhsQ42O96q97/Ftu2zh6owIgQJCmgETKACaLVtu9uyrCuBtGVZW4BFtm1vsSxrEfAN27YXWZb1JPAycDzQBFxj2/afS1H4Yejv1fdl8P/bu7dQqao4juNfi4IgKeohUjgmRD8iCJ+6vohEPthJ7EIPEh3Mgi5vgpEvlYpREGEWXYhOQRcqKIrSAkGM6IKBVgb9KAzxoQePUATVkaAe1hoYTnlOyHH2nj2/z8swM2vDn8Vi/+e/957/YgNwFqV34ro67kZghaSfbX/cUNzD7ApJnwGLqdWUpAnK2p4AqGv64Tr+cUr3/4O27xh4tB0i6WXgfEpVuxHYQT2nNBjWyBj6BGX7a0nvAYck7Qf2AK/b/lHSbIeeaftqSePAViAJ6n840XwDh4DngRtsT0laBzxoe1zS+5SqIMnp5FwAXAMsBA5LemKO8ZcAS2z/esoj65ZFkg70vX+tvh6zPQ4gacfgwxpdQ5+gAGzfI2krcD2wEvhC0to5Dvuovh4EzjuV8XXNf803sBZYA4yr/DJYTrrOz5ddtqeBaUlTzL1eneR0Uv51ia9WUF82E04MfYKStAo42/abwCQwWW/K3wn8DfR2HDtjxqF/1tf+MTGHWeb7PmAb8CrwCfANcH9j0MlJWAAAAhhJREFUgXZL/5YNvfU6c932r+8/BhHUCMl8NqQLj5n/Djxaby4jaQGwDNgPTAGX1XGrG4mue04039OUk+Y2ymW/m6i7IFNOsEP/Y6hlpoBLJS2QtBS4vOmAIubb0Cco23uAR4APJBn4nnJpaQvwELBd0j7gl+ai7I5Z5nsNcKC+/w44Ciyph+0GNtXH02N+7AaOAAa2A582G07E/MuGhRER0UpDX0FFREQ3JUFFREQrJUFFREQrJUFFREQrJUFFREQrJUHFyJB0S+1ZFxFDIAkqIiJaKf+Dik6TtJnSJ/AY8AOlI/jdwDOU5qsXUv5gfBtwM3Cv7WvrsWOUPoMX2T4++OgjRlsqqOgsSaspSWcZpRv4OfWru4BXbF9F2UZhKbAKeBu4WFKvPdb6Oi7JKaIBSVDRZdcB79j+zfZfwEv18weAo5I2As8CiygNcI8DLwLrJZ0OTAAvDD7siIA08Izu6+/43esK/gZl7b8FfAiM9Y17DtgH7KVs+PfTgOKMiBlSQUWX7QJulXSupNOA2+vnK4HNdcsQgCupnddtHwE+B56kVFcR0ZAkqOgs2zspl/W+omw619vEbxPwrqRvKbsA76Xci+qZpCSsnYOLNiJmylN8EX1qpfU0cNj2Y03HEzHKUkFFVJIWUh5HHwOeajiciJGXCioiIlopFVRERLRSElRERLRSElRERLRSElRERLRSElRERLTSPxi8Ao6D5IRfAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "sns.relplot(x=\"total_bill\", y=\"tip\", hue=\"smoker\", data=tips);" + "sns.relplot(x=\"day\", y=\"tip\", hue=\"smoker\", data=tips);" ] }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 103, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 93, + "execution_count": 103, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAFcCAYAAADri5hEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hUZdr48e9zzpmZVNJIoUOQXkW6ICgIiCKKunZZ176ubvNdG4rrvq7o7urPV9eyu6y6rNgbdhGULr0oEHoJLaRC6syc8vtjSCSkTZJJQsL9uS6vS+acOec5k5lzn6fdj3Icx0EIIYQIEa2pCyCEEKJlkcAihBAipCSwCCGECCkJLEIIIUJKAosQQoiQksAihBAipBo8sBQUFHDJJZdw4MABAN5++20uueQSpkyZwoMPPojP52voIgghhGhEDRpYNm7cyLXXXsvevXsB2LNnD7Nnz+att95i3rx52LbN3LlzG7IIQgghGlmDBpZ33nmHmTNnkpSUBIDb7WbmzJlERUWhlKJ79+4cOnSoIYsghBCikRkNefAnnnii3L/btWtHu3btAMjJyeGNN97gySefbMgiCCGEaGRN0nmfkZHB9OnTueKKKxg2bFhTFEEIIUQDafTAsmvXLq655houv/xy7r777sY+vRBCiAbWoE1hpyooKOCWW27hN7/5DZdddlmdj5OdXYBtN+/cmYmJ0WRm5jd1MeqtJVxHS7gGaBnX0RKuAQLXcSZr1BrLe++9R1ZWFq+++ipTp05l6tSpPPfcc41ZBCGEEA1MNce0+VJjOX20hOtoCdcALeM6WsI1gNRYZOa9EEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpo6kLIIQQlXG7dZRSmKaNZdlNXRxRCw1eYykoKOCSSy7hwIEDACxfvpwpU6YwYcIEnn322YY+vRCiudE1fCi+WJXOWwt2sO3gMTB0dF0aWJqLBq2xbNy4kRkzZrB3714ASkpKeOihh5gzZw5t2rThjjvuYNGiRYwZM6YhiyGEaCbyC318tHg385bsLnvtk6V7iI3y8L93jiTao0vtpRlo0EeAd955h5kzZ5KUlATApk2b6NSpEx06dMAwDKZMmcKXX37ZkEUQQjQThqGxemtGuaBSKq/Ay4yXl2Mp1QQlE7XVoDWWJ554oty/jx49SmJiYtm/k5KSyMjIaMgiCCGaCb8Nb83fVuX2vAIvuw4eo3vbVlJrOc01aqOlbduok544HMcp928hxJnLAQ5nFVa7z4+7sqSvpRlo1FFhKSkpZGZmlv07MzOzrJmsNhISokJZrCaTmBjd1EUIiZZwHS3hGqB5X0fOsRIMXcOspjYSE+UhJia8EUsl6qJRA8uAAQPYs2cP+/bto3379nz66adcccUVtT5OdnYBtu00QAkbT2JiNJmZ+U1djHprCdfREq4Bmv91aIbGmLPbsWBNepX7nNu/bbO4xuYc4EOhUeuUHo+HWbNmcc899zB58mRSU1OZNGlSYxZBCHGaciyb6yb1pFWku9Ltl4/pikuXpvPmQDmO0+we/aXGcvpoCdfREq4BWsZ1JCREcTS3iLfnb2fR+gP4TZt2iVFcc2F3+qUmYJtWUxcxKGd6jUVm3gshThuapjAcmxsm9uC6CT1wcMABt67w+5tHUBESWIQQpxnHAedEzaS04csvo4ubFRm3J4QQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJIklEKIBqXrChtFaR5JDVCO0+yXvhBVk8AihGgwytA5kF3IO/O3s3VvDkop+qTGc/X4HiTFhuFUswyxaL4ksAghGoTm0pnzZRoLVpdfanjdtkzWbctkyuhUrhjbFVvWWWlxpI9FCBFyhktn5eaMCkHlZJ8s2c3m3Tm4XHojlkw0BgksQoiQM22H9xbuqHG/t77Zjl/6WlocCSxCiJDz+m0y84pr3C89Ix+/JYGlpZHAIoQIOdsJPljUZl/RPEhgEUKEXJjbQNNUjfu5DQ23IX0sLY0EFiFEyGk4DO+bUuN+55/THkNJjaWlkcAihAg55ThMn9ybyLCqZzS0inRz1fju2DKXpcWRwCKECDnbdgjT4S/3jKZru5gK23t0jOMv94zGBUgXS8sjEySFEA3Cshwi3ToP/XwIxV6TnQeOoRR0ax9LmFtHcxwsqa20SBJYhBANxrJsFBDp0hh0VkLZa45lIyGl5ZLAIoRocI4Dpimh5EwhfSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqQksAghhAipJgssH3/8MRdffDEXX3wxTz31VFMVQwghRIg1SWApLi7miSeeYM6cOXz88cesWbOG5cuXN0VRhBBChFiTBBbLsrBtm+LiYkzTxDRNPB5PUxRFCCFEiDXJeixRUVH8+te/5qKLLiI8PJwhQ4YwaNCgpiiKEEKIEGuSGktaWhrvv/8+3377LUuWLEHTNGbPnt0URRFCCBFiynEcp7FP+q9//Yvs7Gzuv/9+AL777jvmzp3LP/7xj8YuihBCiBBrkqawnj178pe//IWioiLCw8NZuHAh/fr1C/r92dkF2Hajx8OQSkyMJjMzv6mLUW8t4TpawjVAy7iOlnANELiOM1mTBJZRo0axZcsWpk2bhsvlol+/ftx+++1NURQhhBAh1iSBBeD222+XYCKEEC1QkwUWIUTd6IaG6YDftFFKYegKl2rqUgnxEwksQjQTuq5hoXjvu518szqdYq8JQNvWkfxsfHeG9HY1cQmFCJDAIkQzoGkKvwMPvLiErLySctsOZRXy/95az7ghHbhhYk8c02qiUgoRIEkohWgGHKV4+cNNFYLKyRasTmfvkXx0XX7WomnJN1CIZsC0YW3a0Rr3e2v+NszmPRJftAASWIQ4zWmaIv1oPsFMZd62LxeU9OSLpiWBRYhmwKnFhGAJK6KpSWAR4jRn2w7tk4ObyZ3aLoYmyNIkRDkSWIRoBly6om/XhBr3+9m47rjkVy2amHwFhWgGNMfhnqsG0irSXeU+Q/uk0KNjLKZpN2LJhKhIAosQzYBtO4Tpir/dO5rRA9uiaz/1pMRGeZh+cW/u/dlAsGQOi2h6MkFSiGbCsmwMpbjl4t78/OI+FHtNNE0R5tYxFMREecgs9jV1MYWQwCJEc+I4Do7loIAI40StxbQwm7RUQpQnTWFCCCFCSgKLEEKIkJLAIoQQIqQksAghhAgpCSxCCCFCSgKLEEKIkJLAIoQQIqRkHosQIaLrCpvAf47joGkK5Tgox8GuRXbilkrTAp+L5Mhs+SSwCFFPSinQNQ5mF/L2N9vZuCMLAE3BkN4pXHVBN+JjPCjLPuNuqoah4XfA67fIzi0mwuMirpUHQzmYfslp1lJJYBGiHkqDytP/XcPWvbnlttkOrNx8hJWbjzC0TzK/nDYATPOMCS5K0zicW8JLH2xi7+HjZa9Hhbu4fGxXxg3ugO2X3GYtkfSxCFEfusaTr6+uEFROtWpzBi+8twF0vZEK1rQ0XeNAViEPvri0XFABKCj2M+eLNF7/fCvocgtqieSvKkQdGYbGlj05bE/PC2r/NVuPciSnCE1r+Ws82krxt7nrqK5r6du1B8jJ954Rn8fp6LbbbiMjI6NBji2BRYg68tvw7sIdtXrPO99sx27ha9LruuLA0QLyCrw17vvegh04LfzzOF3985//JDk5uUGOLX0sotHpuobSFLbtoGsKfzNtZ7ccp0IzT0027MjEoWWvS6/rGmn7coLad9fBY1iOI0+4DezIkSPcd999FBUVoWkaM2bM4He/+x3/+c9/eOutt1iyZAkA+fn55Obmsn79ejZt2sSTTz5JSUkJcXFx/PGPf6RDhw5BnU8Ci2g0uq5hodifVcBXK/dRXGLSMSWaicM64TY0sEI3Sshw6fhPjMJy6xqmGfrgZdahvI4DluW06B+e44AryL4TTVNwhgxmaErvvfceY8eO5dZbb2Xx4sWsXbu2bNt9993Hfffdh8/n48Ybbyz7/xkzZvDyyy/Ttm1blixZwiOPPMJrr70W1Pla8vdbnEZ0XaPEcnj0H8vJyCkqe31t2lE+/G4Xk4Z34poLu9d7lJCua9hKsezHI3y79gCWZTOkdzLjh3bEAOwQBi+tjk04SlNU2/nQzJmmzaCeSYHO+RoM65OCS1dYZsv9PE4HI0aM4J577mHr1q2MGTOGG264gTfeeKPcPjNmzGDIkCFMnjyZ7du3k56ezl133VW2vaCgIOjzSWARjcJWigdfXErO8ZJKt3/5/T7Cw1xMHdUZu45rtmuawufAQ39fSmZecdnruw4e4+PFu5n1y3OJjTCwrNDcxFyGTnyrsCqvqTKd27Rq8c0+juMQFe6ic5tW1TYVagomj+yMVce/twjeOeecw2effcZ3333H559/zocfflhu++zZs8nOzmbWrFkA2LZN+/bt+fjjjwGwLIusrKygz9fSv+PiNOByaaxJO1rjDfiTJbuxnbr3PjhK8dL7G8sFlVLFXpM/v74aM4S9G24NLhvTtVbv+dm4brjOgF+dgcMD04cQG+2pdLtScO/VZ+MxzoAP4zTw9NNPM2/ePC6//HIeffRRtmzZUrZt8eLFvPvuuzzzzDNoWuDvkZqayrFjx1izZg0A77//Pvfdd1/Q55Mai2hwPgs+Xbq7xv1My+bH3VkM7JqAWYenWMuB9dszq9yekVPEsQIfcREunBDMUvT7LUYPaMtHi3YFVWtplxhFr87xDdLfc7qxLIdwXfHMr8/ji+V7+XzFXgqL/WgKzumVzHUTehAb6cYJYdOkqNqNN97I73//ez744AN0Xeepp57i8ccfB+CJJ57ANE1+/vOfY9uBv8fzzz/Pc889xxNPPIHX6yUqKoqnnnoq6PNJYBENzgFy82seegqQmVccmM1eB16/VeOs9szcIhKiYkPWHKY5Dk/cOZKHX15ebXBp0zqSP942HGXbZ0xfdeAztpgyshOTRnTCdgLNXxoE8qdJUGk0bdq0Ye7cueVeGzt2LABfffVVpe/p2LEj7733Xp3OJ4FFNAKH2GgPxwt9Ne7ZOja8zrUJj1tHKaoNLolxESFNCGlZNhEuxV/vHc2C1fv5ZOmecteZEBPGZWO6MmpAWzTbDllAa05M00YBpTkHHGQgWEsngUU0OI+uuPjcLrz0/qZq9zN0Rd/U1nVuKtKAgd0Sq2wOS4oLJyYq9M0vpU/mE4d2ZNyQjpR4Tbx+G49bx+PScJ+Yq9PyG8CECJCeM9Hg/H6bob2SiW8VVu1+l4zqgl6PZ1nNcfjllQNIiKl4nnCPwYPTh9KQmbpMvwWmRZiuiAnTCdNAWXaznQAqRF1JjUU0Ch2HP981kkf+sYLM3Iqjti4c1pHLzutar3kstu3g1gPNUss3HebbtQcwLZthfVKYMCwwj8WSdn0hGpwEFtEoTNMm3NB46u5RpGfk89XKfZR4LTokRzFpeGc8Li0kKdQtywYLRvdrw/A+KTiOg9tQmH5bmqKEaCQSWESjKa0tdE6K4o5L+2I7gVxhlmmFvN/DNC0UgZxcpj80XcVKBWb2Q+BazpR1VYSoLQksotGd3BzVHKZ0aJrCVopiv832Pdk4jkO3DrFEeAx0pHlNiFM1WWBZuHAhL7zwAsXFxZx77rnMmDGjqYoiRJV0XVFiwTNvrmXbvvKLeaW2i+F31w4iyqNhn4HDiEXz8sknn/DSSy9hmibTp0/n+uuvb7BzBT0q7NixY7VKQlad9PR0Zs6cyYsvvsi8efPYsmULixYtCsmxhaiK263j8RgYQaYRUQr8KP7wwpIKQQVg98Fj/OGFJZSYyGJV4rSWkZHBs88+y9y5c/noo494++232blzZ4Odr8Zf2O7du7niiisYMWIEw4YN44YbbuDQoUP1Oun8+fOZPHkyKSkpuFwunn32WQYMGFCvYwpRFaVrmErx1ep0/vv1djbsygFDR6shtbuma7y3cAfHCqqe2FlUYvLaZ1tksSoREtnZ2dx2222cd9553HbbbWRnZ4fkuMuXL2f48OHExsYSERHBxIkT+fLLL0Ny7MrUGFgefPBBrrrqKjZu3Mj69euZOHEiDz/8cL1Oum/fPizL4s4772Tq1KnMnTuXmJiYeh1TiMooQ2f+mnRuf3IBc75I44sVe3nmzXXc/Zdvycr3lnXGV8Z04Ns1B2o8x6otR5BeFhEKDzzwAJs2baKoqIhNmzbxwAMPhOS4R48eJTExsezfSUlJDbYsMQQRWIqLi7nmmmtwuVy43W5uvPHGWqVProxlWaxYsYI///nPvP3222zatKlCGmdx5jIMHXQNpWvV3vhrPo7GviP5zP1qW4VtxV6TR15ZgVVNTcNv2niDGAJt2w5FXrPO5RSi1LZt27CswHfOsiy2bav43a0L27bL5eBzHKfOOfmCUWPnfWpqKuvWrWPQoEEAbN++nfbt29frpK1bt2bEiBHEx8cDMH78eDZt2sS0adOCen9CQlS9zn+6SEyMbuoihEQor+N4oZeNO7L4YvleDEMxbexZnNU+lqgId52ONffrqn+YxV6TNVszuGhkl0qvISOnMOhzuQ2dxMSm/162hO9US7iGuurRowebNm3Csix0XadHjx4hOW5KSkpZCnyAzMxMkpKSQnLsytQYWA4dOsSNN95Ijx49MAyDLVu2kJiYyJQpU4DASIPaOv/887n//vs5fvw4kZGRLFmyhHHjxgX9/uzsgpAmEmwKiYnRZGbmN3Ux6i2U16F0jXcW7uSLFXvLXlu/LZNbLu3Def3bYtV2bLKhs+tAXrW7bNqVxfhhncirJIhoukbHlGj2H6n++hJiwnDpWpP/PVvCd6olXAPUPTjOmjWLBx54gG3bttGjR4+yhbfqa+TIkTz//PPk5OQQHh7O119/zZ/+9KeQHLsyNQaW2izuEqwBAwZw6623ct111+H3+zn33HO54oorQn4e0bxYwFff763w+tyvtjGyX5taL9HlOA5REa5qO99jIt3oVTQJGEpx7YU9eGrOmkq3l7rygsDiXZISTNRXQkIC//znP0N+3OTkZH77299y00034ff7ufLKK+nfv3/Iz1OqysCya9cuunbtSmRkZKXb+/TpU68TX3nllVx55ZX1OoZoWQqK/JUuBV/sNTEtB1ctj+dSMGFoJ95duKPKfSYO64ymKTweA8cJBKPSpJGmadGzUxyXndeVjxbvqvT955/TnhF9UyTRpDjtTZkypaylqaFVGViefvppXnnlFa666iratGlTbo2M4uJiVqxY0SgFFC2TYWj4bAcccBsapt+iVYQbQ1eYp0w2jIkKvE4tJyGaps3kkZ1ZvOEgGTlFFbaPG9yBqEgX67cdZdG6QMLKvqmtOadXEspxcCwbx7S4dHQXRvZvwzsLtvPDrmwc26Fnp3h+dmF32rWODEmOMyFaEuVUsapSXl6gbfrGG29kzpw5ZaMI/H4/N9xwQ5WrjjUG6WM5fdTlOjRDZ8POLD5evAuvz+KCwR0YP6QjODYL1x3kP59vLdtXKfjDDYPp3SkWqw7LFeu6hqUUHy3axfxV+yn2mqQkRHDVBd0Y2D2JB19cytFTsi27DI27rxzAgK4JZTnMNE3hKFU2rDiwcJVzWi3c1RK+Uy3hGuDMHoAA1QSWW265hWXLllUYkqbrOhMnTuRvf/tboxSwMhJYTh+1vQ7d0Ph6zQHe+DKt3OtDeiVz17R+KCD7uJevVu7D7dK5aEQnIj1GvZNU6oaGhSqreeu6xi+fXkhRSdXDhB+5eSjd2rXCrENAawot4TvVEq4BJLBU2RQ2e/ZsIDBB8sknn2y0AomWzXTgg28rppJYvTWDW62+uHBoHe1m+qSeoMDvC03m49LajgJ0Q+ftb7ZXG1QA/vXJZp64Y0S9zy3EmabG2WcSVEQoWbZDcRWTCY8VeFEqMOHQ5zPxeU2qqFDXi+nAgjXpNe53OKuQwhqCjxCiIlmaWDQqXVO0Sag40tDQNVrHhDfKGie24+D1BdfhnlfglQSTQtSSBBbRqFwKfn31QIxTUrXcNrUPqh7r3deGplRglFkQoiPcDVJrEqKxvfDCC1x88cVcfPHFPP300w16LlnoSzQq07RJiQvn5fsvYNWWIxR5TUb2bUO4Ww/5KpJV0ZXDuQPasmjdwWr3i28VRqsIN44lw4lF48jOzubjjz9m7969dO7cmalTp5KQkFDv4y5fvpylS5fy4YcfopTi1ltvZf78+Vx44YUhKHVFElhEo7MtG43AuvRKgd8f+qWJq+NYDleP78GyjYcqzJk52XUTe8iMetFovvvuOx5++GEcx8Hn8+HxeJg9ezZPPPEEY8eOrdexExMTeeCBB3C7Azn3unbtWu/lT6ojTWGiyfj9Fj6f1ehrxzuOQ4RL49FbhuOuYtGvq8d3Z3CPpDrPqFcqMF/HVoFljXVDQ5ZsEVXJzs7m4Ycfxuv14vMFUhB5vV68Xi8PP/xwvddl6datGwMHDgRg7969fPHFF4wZM6be5a6K1FhEs1A6QdGyHVDg1gOz9evCMDRMB9q0juT/7jsf23bYti+XVVuOkBwfzkUjuuDSFXZtk16eoHQNC8jMKcLQNRxAU4GmNRwHGrF2JpqHjz/+uNq+vHnz5nHzzTfX+zw7duzgjjvu4A9/+AOdO3eu9/GqIoFFnNaUAkfTycgr5r1vd7D/SD5ul87ogW25YHAHDAJNa0Efz9DZfvAYb3+znR3pgewSmoJBPZO4enwPkmLDsPxWrdPHnHz8Y4U+0vbl8vmyPezPCEz2ax0bxsThnTm3f1si3Hqdg5Zomfbu3VtWUzmV1+tl79699T7H2rVruffee3nooYe4+OKL63286khgqQeXS0fTFJZlN5vZ2c2NMgxe/mAjKzeXX+1u7lfbeOebHTx6yzA6JUeCHWjiqi4jg+YyeOWjH1jxw+Fyr9sOrNl6lDVbj3LDpJ6MG9wBpw43fpdLp8Bn8c4321l+yjmy8kp448s0Vv54hPtvGozH0M6o74ymKZRS2LYjo+wq0blzZzweD16vt8I2j8dT79rF4cOHufvuu3n22WcZMaLhJ/1KH0sd6LqGMnSWb87g1c/T+HFvLsrQz9j5Di6XjmZoaIaGy6WH7LiaofP+tzsrBJVSpmXz+OyVFHptth04xr7MQhw9UJZTUxFphs5Hi3dVCCqn+u+XaWxPz6vbdWiKjTuyKgSVk+08kMeHi3Ziaw3709M0hculo3QNw6XXayXOutJ1DXQNnwO7DueTlp5HdqEPdB3DJbeek02dOrXa7Zdeemm9jj979my8Xi+zZs1i6tSpTJ06lTfffLNex6xOlbnCTmdNnitM1/mfF5aQfayk7KWu7WOYcfNQnCDb/VtCTiSlaziaxndr09myJwfHcejZKY7zz+mArqj/SC9D545ZC/DX8GQ/YVgnXIbGZ8v2YOiKUQPacu2Ennh09VMzmaFz56wF+IKoJbRPiuLx24bXui/E1jVm/uN7DmYWVLtfuMfg7/9zPoS4OSwxMZqcnEIsFDn5JXy+bC+5BSWEewwuHNqRTsmt0LCxTzTzKaVQusK0A6lulApdYk2laxzKKeI/n29l277cctvioj1MPa8rYwe1xzGtcjWYlvC7gLrlCisdFQaB5i+PxwMQklFhjU2awmpJN3Q+WrqnXFAB2HXgGJt359C/S9wZ0cShuQw++G4Hny7dU24NlbVpR3nz621MHN6Zq8d3x/bXLSWKrit2HjpWY1ABWLrxIP9zw2A+W7YH03L4bt1BVm7O4Im7RpIQ6UIpxbqdWUEFFYADRwsoKDGJDAv8PFyKoP6mluXUGFQgsL7M8UIfMWF6SEfE2bZDkd/mf19dVaEcyzcdJibKzQM3DSElNhwU5BebvP/dDtalHcWyHbq2i+Vn47vRPjGqTk2BpZSuseyHw/xr3uZKt+fme3ntsy2s+OEwD0wfjDIbf2Tg6Wjs2LHMmzePefPmlc1jufTSS0Myj6WxSWCpJdO2+XFXVqXb1qYdZeBZCdDCA4vSNf77ZRrfrN5f6XbbgS9W7KWw2M/Nl/QGxwmkm3fApQV3k1ZKUVgcXFAq9pp4Tmm6KvaaPPLycv7v9+fj0RR7Dx8P6lil9h/J540v0yj2mUw9ryvnD2qPY5rouobfBlTgKV87uV+nFi2hlu2gDANMMyQ3VaUUWXnF3P/3pRwvrLwT+FiBjxkvL+eF/zmf1Vsy+Pcn5W/8P+zK4oddWYzs14bbL+tXp4cCw9DYfaSgyqBysm37c3np/U3ceXk/GSl3QkJCQkhGfzU1aeisJUNTdEyuvJp7VocYnGaezr8mSimOFfmrDConW7zhIFnHSvjv19v41V+/439fW8XujAJUUO39iuSEiKDKlBQXQV5BxU7PwhKThWv2oxtahRQyNQn3GJi2TV6+l9c/28Kzb61HGTqHcoqZNWcNv/rrd/zfOxvJ91loJ45taBqx0Z4aj61rinCPwRtfpQX5WdRM6YpXP91cZVAp1aZ1JAczCyoElZMt/+Ew81fvr1M/iN+B1z7bEvT+q7Zk4DNtmePTwkhgqSXbcrhqXLcKT8hx0R5G9G3T4peoVZri/W+rXur3VO8s2E5KQiTFXpM9h47z2D+/53BOcY2dySbgN+3A3I8aTBjWiYVVZCv+ZOkevH6LQT2Sgi6zUoF+ltzjPzV3HsosICffy0MvLWNHeh7FXpMNOzK57/+WYNywTzIAACAASURBVJ54lnDrMGVUao3HH96vDSs3H+HbtenYtanmVMNyqHFgAsBFIzrz0aLKl1k+2bzFuzDt2pVNqUAwr23t8NNle8qCs2gZ5K9ZS47jEGYonvvdGC4Y3J6u7WOYel4qf713NLrT8qvzFrAu7WjQ+2/Ynkn3jnHlXpv7VRrVhV9NUxw8WsBHi3Zxw0U9qz1+cnwE/c5qzbq0ykeOHS/0UeKzSEmIICGm5iAFMKhHEl6/VS7dy3lnt+PdBTs4tULq9VksXJuO223g91mMG9yBzm1aVXns2GgPV43rxseLdmFaDrsPHkMPMiFmVTRNceBoQWDyaA26to/lx101z+LOL/JzrIbaz6l0XWPbvpxavQfgx13Z+E+jlThF/UkfSx3YloNHU9w0qReWZePSNUzTqvZm2VIowOsPPoCaJz6fk+UcL8G2nSqfajRNkXWsmDVbM+jeMZa7rujP659tqbAwV7cOsdx+eT+ee2t9hRv+yRwHDBx+deUAHv/3ymr7NMLcOtdP6sXi9QfKvR4V4SbneOU35MNZRT815VgWj906nDfnb+PbNellAwY0TTG0dzJXj+/B8+9sKGu6K/GaBD7Vut9YlQJvkDXl2gwC9fktVHjwAwyUUkEvR3DqeUTgb7N582a+/vprcnNziYuLY8KECfTp06fC8PnTnQSWOnIcB8e0UIB5Bs2idhxIjAvncFZhUPu3jgmv0O4/tE9yICVLFZ+badr07BwPBCZCjh7Yjkd+MYy8Ai9pe3NwGToDuyeSmVvMX+asqbBm/alcJyYjdmnbit9fdw7Pvb2+0tFmrSLd/M8N5+A2ND5Zuqfctu37cxncK7nC0FkI1GZKByTYtgPKJiEmjCfvHkVRiYntOLSKcLNqyxEen/09ufk/9Qe1TYyq19B5w9AwCXzOwfCbNlHhLgqK/TXuG9fKU6tAZNsOrWODK8fJYqM9aEpxJg8N27lzJ/fffz8ZGRl4vV4cx0EpxQcffEBycjJPPfUUZ511VlMXM2gSWEStuHTFpaNTeeXDH4Laf+LwTiw66em/XWIUl47uWmMwDnPpXHthD96cv40lGw6yZMNBfnvt2bSK9LBlTzZffb+X/KKab459UxMonbdq+y36do3n2d+MYU1aBt//eJjiEpOYaA9jB7UnJT4SQ1e8/vmWCk/ea9MyuP2yfnz/w2F2HTxW9vrwvil0TonGOul6DAVx0WH8/rnFhLkDE2eLvRVHfyXHRxAT5a7zfB+la2w/eJzZn2zm1kv7khgbTmZe9UH2u3UHGDekAx8v3l3tfj07x2FoqlapbSzLpnvHONyGFvTQboBLzu2CobX4wZRV2rlzJ7/4xS8oLi4uF8gdx6GkpIT9+/fzi1/8gn//+98hCS5PPfUUubm5zJo1q97HqooEFlErpt9iWJ8U5nyxtcY148PcOuef04GhfVIY0K017VpH0T4pCmXbVHcP0Vw6r3++hfZJrXjyl+eSti+X2CgPbVtHERPlYc4XW4Mu79Xju6NDWTOl7bOI8OiMHtCWjklRFPssfH6b6AgXKQkR7Dt8nLWn9CG5DY2Hfz4UzXGYcfNQjuQUse/Icbp3iCMu2gOnrNdimjaDeyXRMTm6LFcYBGpE44d2pG9qAkopWseE4dZUndLyK11j/Y4s/u+dDQB8uWIvU0anVjvaC2DphoM885sxLN14qMJcrFKGrnHn5f3LfW7B0oAxg9ozf1XNowYBIsIMenaOP6Nq/SdzHIf777+/QlA5dZ/i4mLuv/9+3nvvvXo1i61YsYIPP/ywwSdc6o899thjDXqGBlBc7Gv2tebISA9FRbXrHD1d6BoM79eOxesPVLmeicel8/gdI2gVZuDWFJ2So2kVbuBYdrV/O93Q+HzFfj5btpdNO7NYvukwBcU+Nu3M4r2FO+iTmkBUuCuokUfn9m/L2EHtKyapdBw0HBJiw0lo5SG1fSxxkS5s0yKuVRiXjE4lJSGCNq0jmTS8M7dO7UtchDtwHNuhVbiLjknReAwNx648RGrAmMEdOHC0gCPZhQzrk8Kd0/qzcUcW7y7YwdKNB8nN99K9Uzxul177ZiBN49F/fo994n2HswsZP6QjYW6DPYeq/my6d4zlwiEdGXtOB3am55F1Sg2nTUIkj94yjPhIN3YV11Ytx6HPWYms+OFwjQ8eSsEDNw0hIeqnVTqb8+/iZJGRNQ87B9i8eTNvv/02plnznCGv18uwYcNISgp+hOPJ8vLyePjhh7n22mvJyspi/PjxdTpOMCSlSxNp7qkrdEOjxHR4d8EOFq0/UNZnYegaowa25ZrxPQg3Agk6a8XQufsv31LsrfyHZuiKB6YPYW3aUb5YvrfKw1wwuD03XdQ7qEl+lf0tShOM2rZTjzVZFJxI9599rIQZLy+v0Mlu6Io/3T6StvHhQX9WLpfOkh+O8I+PyjdHGrrGvT8biN+y+XTp7nIBJjEunGljz2JE3zaBvkEFNgqvabN5TzaW5dCtQywxUW4MqP3f7ST6ifxgj89eSXpG5d9xt6HxhxsH07Vtq3JNgc39d1Eq2JQuzzzzDG+++WZQfVlKKa699lp+97vf1alM9957L9deey2HDx9m1apV0hQmTj+WaeNWcPvl/bh2Qg9KfIEbeJjbQFcOjuXU+uakaYr0owVVBhUA03J48rXV3DS5F688OI4vV+xj6YaDFJb4CfcYDO/bhktGdcFjaHVOJwOBRciUAsOloxk6uha45to80DiOE+ij0DWef2dDpSO3TMvhb2+u5em7RwV/XGDz7ooj1EzL5pk319G9YxxTz+tK28QoHMehVaQbj6FhaArzxGcSuI85hOkwtEciEHgIcCy73qMbLcvGpSn+eNtwMnOLeWfhdnam52FaDgkxYVw6KpVBPZMCWQvO8Bn3ubm5QQ+QcByH3NyKg0eC8e6779KmTRtGjBjBBx98UKdj1IYEFlFnjhOYoV5wvJjw0rkYllVt/0l1lFJBjVaybIdXP93C6AHtuGxUFy4e2blswK5LU9hWCJY61jWK/TZfLdvN4exCosJdTBreidYx4WhO7QKMz7TL9bWcKiuvhGOFfmKDHNqrFNXOfdm+P5ft+wM3oLN7JHLvlQNwLLvSnJeOE1yKndqybQdsi+QYD7+a1h/LKR1U7eDWFKZZ9+9JSxIXF4dSKugaS1xcXI37Vebzzz8nMzOTqVOncuzYMYqKivjzn//MQw89VKfj1UQCizht2LZDUlxwaVzioj04OFimXTYfRhGalFOay+Dfn25m8fqD5V5fuCadTinRPHLLMAyNoINLdTWwUvlFPuIiIoK6wTi2w+gBbSuUrzIj+rbB0KjTAIFQCHxGTrm/kdnMm7FDacKECXzwwQeUlFQ+kOJkHo+HCRMm1Ok8r776atn/f/DBB6xatarBggrIzHtxGnEch7hoN61ja54hP2V0Kq4GmDMWSLC5tcqb9r4j+cz8x/c4tVhPJTrSXWMurKS48KADlWnadG0fS6tId7X7eVw6g3sl46/FhFbRuPr06UNycnKNI72UUiQnJ9OnT59GKln9SGARpxVDwe2X9Sv7t1JwTs8krp/Yk5sm92L80I60SYhk7KD2DdKEY9qwoIq8Y6UOZhaw6+CxoBfP0oEhvZOr3N6rczzuWubK0hybmbcMw+OufEEyQ1c8cktgiLQ4fSmleOqppwgPD68yuCilCA8P5+mnnw7JDPxp06Y1aMc9yHDjJtOShlWG8jps2yEhJpyuHWLRNcU9Vw0EpVi//SgHjhaQGBvObZf1xW1oIcskXXoNbrfO4o2HWL89s8b35BV4GdY3JahhwgoY3DuFDdszOVZQ/rNKSYhgxs1D0XFq9Z12HIgMczFxRGe8Pov0jHws28HQFaPPbsf/3DCYhChPs+scb0m/i2DFx8czevRoVq9ejdfrxToxL0opRVhYGO3atePvf/87Xbt2bajihpwMN24iLWlYZUNch+HSSc8s5PHZKysdTXXVBd2YPLJznRakUiqwVLF54qYbHRVGUUEJLpfOf+dvr3YYc6n2SVE8dsuwoGsEmqZwNI39GfksXJOO5TiMObs9Z7WLQXPsOq/aqFSg+c5GcWKgV9movGb4025Rv4vaqixX2MSJE5tN89fJpPP+DBJYilbDsh1cOpgN2PZuGFognbxDIF1HLZqtlIJCn8XMf35Px5RoEmLCOJBRwOHsn/KTvbtwB63jwhnRKynoYyulcLTA3I3PF+1i295cLNshMS6cqeel0j4xiqQgc13FRnnQapHypHSUVOekKG6d0hucwI2kvslLHQecE9efdOKm3LzqKKKUUoq+ffvSt2/fpi5KvUlgOUNoukaRz+LtL9M4lFXIwO6JXDSiM3o9nparogydrel5fLp0D47jcNHIzvTuHB907ULpGvNX7OWPtw/ncFYhBzMLuOCcDmia4vl3NpQNSX7z620M6Vl138XJSmsML7y7gXXbyjd17TyQx4ofDtM+MZIZtwzn9c9rThkzZXQqhgqsG1MblmWfmgFGiHJM06SkpITw8HB0vfI+tNOdBJYzgKYp8r0mv312cVnzz470PBavP8isX55L7TNCVXMuQ+PLlft4a/72std+3J3NZWNSuWxUalBt/rajGNm/DX+bu65cFuV+XVvz22sH8ad/rwQgL99LXoGXuAijxv4JR9eY+c/v2X+k6maWA5mFrNlyhPMGtmXxhkNV7pccH0H3DrFnbH4rEXo+n49vvvmG119/nd27d6PrOpZlkZqayvTp0xk/fjxud/WjAE8nMirsDOAoxRtfppUFlVIZOUVs3p2DYQT/NTAMDUfXsJTC0bUK6ectR/H+tzsrvO+TJXuwglwtUdcVSzceqpCa/4ddWeQX+cotpHW80FfjSBnd0Png253VBpVS//0yjcnndmFYn8prQm1bR/K/d4xEOwMWdRON48cff2TSpEnMmjWLXbt2nWgiNXEch127djFr1iwmTZrE5s3VJxg9nUiN5QxgOQ7pGQWVbtt5MI+BZyVAEC3zmq5xOK+E59/ZwIGjBUSGGfzswh6cN6BtWTOXz29VutaJZTt4fSZhQayWaFpOlasc/rAri67tY8uSUMZG17xmiAVBZ9st8Vn88V8reeY353HDpF58unQPh3MCM+8nj+xC24RIdELffCjOTJs3b+bOO++sdoJkUVERAHfccQevvPJKnTvzFy5cyAsvvEBxcTHnnnsuM2bMqNNxgiE1ljOAoWn07hJf6bYB3RLL5fRSSlWZLsQEZry8nANHA0GqsMTkP59tYc/h44SFGei6RrhHJyq84vOKx60T5gnuOcbQITm+8k705PgI8vJLyv4/OsKF4wQSHxqGVqH2ousaO9LzKKnFyobFXpN/z9tMdITB9RO689ufDeSOS/vSISEcLEuCiggJn8/HPffcE9Sse4CSkhLuuecefL7aD8dOT09n5syZvPjii8ybN48tW7awaNGiWh8nWBJYzgCOZfGzcd0rzNTu1TkusEiVZQdGOBk62YU+th08jqU0lK7hcum43Toej8HKHw+X1UYiw11cN7EHs341itzjXlalZZKZ76XIa/Hc78/nwqEdy53rF5f0Lhuaq5TC7Q4ct9JWLMvmmgk90bWfNibEhDF6YFtGDWhXlgfrtql9cekKRw8MFli7I4usAh+cCDIQ6F8KdrXLkx3NLcK0HEx/IO+YZTZ+QFGKss9f0xogzYBoUt98801Q6fJPZpomCxYsqPW55s+fz+TJk0lJScHlcvHss88yYMCAWh8nWE3aFNYYK5mdTkpnatcnJXlVNE2haScy1J5y/3MccOvw/347hqUbD3LwaCGjz25Hp5QobL+NrcDWNP74r+/ZdyQfXVPcfnk/+qYmsG7bUQqL/fQ/qzV9UlvTITmawmI/D0wfwseLdvHW/O3l5hQlx0dw69S+jB/Skd5dEtiRnsvEYZ1oFeEKTGjUNfIK/axedwRNUwzrnUJkmIGyfyq3ZTm0Ctf5673n8fHinZx3dnsMXWPLnmwWrz/AwzcPxePSiWsVxmufb2HRuoO4XTptW0eSV+BFU4q7rxxAp+SoE5977W/Kuq6h6rkWfX0oXaPEtFm57iBen8XZPRJpHRuOZtcuAaY4fb3++utlzVzBKioq4rXXXuOiiy6q1fv27duHy+Xizjvv5PDhw4wdO5bf/OY3tTpGbTRZYGmslcxOB5quYSvFjoPH8JkWPTrG4/XVPaX7yZRSoGtkHSvhYFYBXdvFEuHRK2RjLA1mYwa2o8hnsX1/LkpBQkw44W4XC9fsY9+RfM7unshdVw7g40U7een9TWXvf2v+dlISIvj9dedg2Q6vfLCp3BK9pTJyinjytVU8MH0og3smMrRnIj6fBSeCytNz1pB20rrx//0ijXN6JnHPVQNxTkpzb/ltWrfycNPk3jw+e2W5hb3emr+d0QPbccmoLizbeJibJveiR6d4dh7IIykuApeh8dIHG7nj8v50a9uKbu1ja/25dmsfg6GpkCS1rC3NZfD651v4du1PSzq/OX8bHVOimXnLcHRNgktzZ1kWu3dXvzx0VXbv3o1lWbUaimxZFmvWrGHOnDlERERw11138eGHHzJt2rQ6laEmTRJY8vLyePbZZ7nzzjtJS0triiI0GsPQyC7w8fDLy8tW1DN0jUd+MZROSVH1TrmhDJ0/v7aK7el5Za9dMLgDN0zqUWERcaVrvPvtTj5duqfstU4p0dx79dn06dqa4X1SuGZCD1ZsOsRny/ZWONeR7CI+Wbqbgd0TKw0qpWwH/v3Jj8y8dTgRhobjOChd48UPNpULKqXWph1l7tfbuO7Cbtgnldlv2Tz137WVrha5ZMNB4luF8dDNQ1m5+Qivfrq0bFvH5Gjuu34wz8xdxxN3jiQxLpyEmLAql+KtzJTRXbGbYMKJYWh8uWpfuaBSav+RfJ58fTUPTh9cOs9eNFPFxcXoul7rpjAAXdcpLi4mKioq6Pe0bt2aESNGEB8f6GsdP348mzZtarDA0iR9LI8++ii//e1vadWqVc07N3N+B/7y37Xllmk1LZun56zBrmdCOcPQWLAmvVxQgUB69yPZReXa5TVNkVvgKxdUIJCt97u1B/hhZzbXTOjBsUIfnyyt+klqUI8kPvpuV41lO5JdRGGxn+NeE3Qd03ZYvSWjyv0XrknHPmk4slJQ5LXYVkkgKvX1yn2kJETw+bLy11SaNmVAt9YcySnCoyuuHt+9xjKX6t0lnghPcGujhJrfUXy8uOrPf+eBPApLzBqzJYvTW3h4eFlOsNqyLIvw8OAyRJQ6//zzWbp0KcePH8eyLJYsWdKgqWIaPbCcvJLZmcCyHA5V0nlcWGJSUFTzolbV8dkOy3+ofCLfovUHcbl+qiobhs73Px6udN81aRnERnuICHPhNjSy8qp+sm8dG86Bo8Hlctqfkc+zb67nrW+2cbCGDnTTsjle+NNoF03T2Hf4GNERrio7rou9ZpXrqq/bdpSenePZe/gYjgNDeyczfkjHSvc9WZuESH5/3TlNlhXYb1oU1rDY2c70vKAzK4vTk67rpKam1um9qamptZ6RP2DAAG699Vauu+46Jk+eTNu2bbniiivqdP5gNHpTWChWMktICL4K2NSyjxWjawqrkjbxiDCDxITIOh+7sNhPbFTlWVST4yNo1ar8U01iFYtoxUZ58PpMNC1Qs1Gq6qS9pmXjcul4gxi+6zjgN22+//EI55/Tocb9wzwGiYlRWCeCTLukaO752dnERLk5nFXIJ0t3s+tA+SY4o4obbEyUh6ISk3CPi9jYwHXfPKUPZ3WI5e3528jN95bb32VojB3Unhsu6kV8q5rXg2koR3Nr7syNinARF1f596YuyQ9PNy3hGoIxffp0Zs2aVasO/IiICH7+85/X6XxXXnklV155ZZ3eW1uNHlhCsZJZc8purOkaFwzuUGGCXt+uCWiKemVy1XXF1Rd2Z23a0XKve9w65w1sV+HY5/RIIiLMqPCUf8moLhSV+HHpGscKfAzqkVThmKV+3JXNiL4pfLeu+tULNU3RKaUVhzILsGyHMLdBdISL/CpqaSkJEbh0RXZeEau2ZPDW/O3kHP+p5pTaLobrJ/Zk7bajZU1fXdvF4NIVkeGuCk/5l4zqwmfL9vD76waV+xxG9kliSK8kjmQXsW1/Ln7Tpl1iFL27xKMBts9PZmb9apKl128YgeHUlmUHnyhT0+jeMa5sSPWpXIbGWe1jK/3etITMwC3hGiC44Dh+/Hj++te/1uq4hmEwbty4uhar0Uh9uoHZls31E3ty1QXdiAp3EebWmTS8E3+4YTCqnsHRshxaR4cx85ZhdEiORtMUvbvE8/SvRmGo8sfWdA1dV8y6exQDurVG1xRtW0dy79UDiY32MKRXCn94YQntkyK5eUofwqpYQCrco3PFBd1rbOMf2a8Na9Iyympqh7LyuWta/0r31RT88ooBuHTFh4t28eL7m8oFFYDdB4/xxKsr6d0lniG9kzF0xY0X9eL9b3cy4+ahDOyeiK4p2iREcveVA8g5XkJUuAvXKc1opt9GWTbt4sO58Jz2XDy8I2MGtQfTwjatever6LoWGKVX4OP9xbt4Y/52NuzOAUNHBdF8pSu4a1r/Kmti0yf3QjXDdPiiIrfbzfPPP09YWHA15LCwMJ5//vlmkTNM1mNpJLqhYzqBRZ905RAfFxmyJzOXS8dnOSgt0IalU36ujDI0lv1whP98toWEmHCmjulK7y7xuAyNyDADXVO89+1ObBsiww3S9uZy9YXdeW/BDtamZWA7gRrFZWPOCuTQsh027szmuXfWV3oj7to+htsv68fjs1dSWOzH49b5+33noys4mFXEq59uLhtV1qtzPLdM6UPrVh7yS0zu+dt31V5rVLiLx24bjkvXKPZZPPTSMhJjw7n43C6ktoshr8DLglX7yT5ewmO3DkdZdo0pX0L1lKzrihIL/vTvlWXZCUp53Dq/nNaf/l0TcGoYCajpGvklJv/+ZDMbdmTiONAhOZobJvWke4fYKrNEt4Sn/ZZwDVC75rzNmzdzzz33YJpmpc1iERERGIbB888/32zWZpHA0kQa6wfkculs3pfLrP+sqXR7arsYZtw8lHv+9i2P3TaC+19Yim07tI4NY+LwzvRNTTiRqsVg9rwfuf2yvoRpgXVdCr0WH3y3k+WbDuEzbTokRXHlBd3o2Tmel97fxNa9OfToGMctU/sQ7TGwLbtsnRbrRJDVVGDpXt2l89pnW/lmdc05vWbcPJSeHWIwLYciv81H3+1kycZDeH0mbROjmDb2LM7ukYiygpvvEbK/haHz++cWV+i/OdkDNw2hd8eaMyNrmsJWCgeF7ThoCtyawl/JomelWsJNuSVcA9S+n8jn87FgwQJee+21CtmNf/7znzNu3LhmUVMpJUkoWzif5TDni6rnCu0+eAy/aePSdbLyistuxFl5Jbzx5U/ve/KX57Jheya5x720jQvHsWwiXRp3TuvP9RN7Bjr8bedE05PD3Vf0B3UieDhO2Xyd0r6G0oY2pWv4HDh6JJ9tVfQrnOqHnVn06hiLbVmE63DdhO5cfWH3wEJetoNbD9yAG/PRw3DpfL06vdqgAvCveT/w9N2jajxe4O/gBGq4J16rJqaIZs7tdnPRRRdx0UUXYVkWxcXFzXo9FuljaeFsx+FgZuWZjZWCcI+B37Ip8f40wkzTFOEeo6wfJTLche9EQAj3GJSmOXEcJ7CfZYFpoWwblIPfCUxuDOQVU2ha5V8zTdfYf7SAu55awP6MfIJNh6UbWlkTnOOAbQb6TUrLUN1TfUPx206FOUKVycorITe/5lT/4syl6zpRUVHNNqiA1FhavMpuYAkxYVw+5ix6do7neKEXj6HRr1six4t8PHLLMKIj3BQU+WgV6WHbvhwAvlt7gFaRbmKjPWiOU64Px3DrmDbkF/kpKfChKcWCNel8vXIfUeEuLh7ZhYnDO4FllWuaspXif19dhWk5bN+fx9k9EmnTOpJenQOzg7fsyWH11owKzVnD+6SchotsKfIKqq+tlMrMK6J1dGyzypJc2oRZ5LXw+i3ioj1oOOUyJQhRSgJLM6RpCu3EqCG7hn4ETUHf1AR+3B1Y36R9UhS/vuZs5nyxlTlfbuWGST1pmxjFXdP6U1ji5/+9ub5cupZ+XVtz1xX9+WrlPq68oBt5+V6O5hbRrUMcmuNQUORjxeYM/vvF1rKhxGFunYvP7cIfbhjM0/9dw5vzt/H95sM8estwdBdYpo1b11i++UhZtuSjOYVcP2kQC1ans2xTYCLn4F5JXDWuO698uIkdJ7ILJMdHkBATVu9UOKGmAI9LxxtEbSkqwlXjgILTidI1dh7O58X3N5ZNnjV0xfnndOD6iT1xTLNJshSI05f+2GOPPdbUhait4mJfs/8iR0Z6KCqq/boKStfIOFbC29/sYP2OTNomRxMV7qpyRqOuQe+urflm9X5sBx6cPoRn5q5j/5F8Hr9jBB2To/nHRz/Qo1M8D7+0jIzc4nLvP5pbxOotR3hg+hCUUjz6ynKWbDzE58v3MvrsdmzckcWL72/C5//pRm9aDlv35pAQE0bPTvGk7cslL9+L4ziBOS0eFx63ztq0o2zdm0P7pChuv7wfj7yynDVbj5J9rITsYyX8sCubVZuP8OtrzmbL7mxsB/50x0giXBqOCqxhbyuF0hQuQ6vzgI66/i3Kfc66Ir/YX20ONQg0JV5zYY8aR4bVRSiu41SGoXE4t5iZ/1xRbv6T7QT65w5lFTC4d0rVM2prqSGuoSlERlY+cflMIX0spyHD0CpdLljTNRZvOsQDf1/G4g0HWbT+IPe/sJRlPx5Gq2J5YctyiAl3MevuUYwf0rEsLf69Vw/Eshz++fGPJMVF8O3adAqrSI9yNLeYHel5fLp0N6X3btOyKfKazPlia5XX8dmyvZw7oG1ZX803q/cTHx3GjJeXkVvgY1jfNsjrPgAAIABJREFUFACmnX8W//joB44VVLyh5BV4+dfHP3LntP789d7RxEW5KDYd/vXJFm5/8htu+/M3PPTSclalHUVzNV2btG3ZXD62W5XzT0pddl5qs2om8Dswe97mKuPGqi0ZFPssyV0mypHAchpRJxatWrcjm9XbMrF1rdykOgvF3C+3VXjfnC/SsJyqf9mObZMY7eH6ST2IiXIz/eLeJMSE4XHrbNqZRZ/UhGoTRAIs3XCwrO8DAk1smlLl8nudyrRsMrKLaB0TSC1T+sSbX+Tn82W7SY6LwG1otEuMqpCq5WQ70vOIifIQ7tYpLLH43XOLWbbpUNnky4ycIl54dyPvfbszUEVrAo4DYYZi5q3DcVcR5McN7sDE4Z1Ow/6hqtlOIPFlddZszcAwmm9Hswi95vTw1KLphuJAdjEz//E95olmEl1TPHzzULqeWOXR6zcrbcP3+ix8fgtPNfdUy7IxdIOMnCJe+3QLD04fQnyrwM1AKVVjm7/twKmPpU4QA3pt58SElVPsPngcv2Vz5xX9yT1ec6f38UIfsZEu5ny5tcokjZ8u3cOUUam4ajxaw7Atm47JkTzzm8CCamu2HsVvWnRMacWkEZ1omxCJ3dzGDAfRxNXcm6VF6EmN5TRhOoq/vbGuLKgAWLbDs2+uwzpxQ/e4jEqfhj0uHU8QzUCm7bB43UEuGtGZkhNJJ3t1jidtbw6DeiZX+95hfVJI25tT9m/bCZw3Krzq27ihK9q2jiI7L9Bvc/IQ5s5tW+E2NPqltqZDcs1JRRPjwjFtWL6p8gzNpZZtOoS7inQ0jcHyWUSFGyTHRzBuSAcmn9uFQT0Tads6MjAcu5nRlKJzm+qXtzinZ1KzqoWJhieB5TThM+0K+bHgxBBeb6AJScfh6gsrrityzYQeaCdyg2mawu02yqXMhxO1EuCq8d0o8pqs2pzBwcxC7rv+HHx+i/FDOlaZHyy+VRgj+rXhrPaxRIa78Lh0LhzakfAwF/+/vfMOkKo6+/Bzy8xs741lGwtL77B0pIrIUpQYBBUL0WiiEmPsmmZiL1iIRj/9LB+aRKNo1IiN3ntvy8L23vuUe8/3xywjw+5SdGVZOM9fO3fuvXPOzN373vOW33vF+K6tzmnysEQ27SvwxGXGDY5j1Y48/Hx0rp7cnX3HSrnliW/JLqo55c3ruNjk8eD/qaipd9DiEukcYjoNBqdEMLxPDKm9ohnULdKtRdYB1SIsKtw0o3er7/fvFoG/jy5XLRIvpCvsPMGqq24Zj5NuPoqC+wncMDENk4lD4uieEMoX644BCtPHdKFzhD+my0DRVYorG9m0r5DoMD+G9opGEwLTNEHXeOqkTpPrducTFuTD478ajc2q8fivR/Pskm1e/WO6xYVwz3VD0IRgxqgkpo1MQlGgut5BaUU9EwbHoyoKH3x7mMYmKX1dU5kyPIGhvaJ5/O0tgDvN+fKRSazYlsNfbh3Fp6uOMHZQHD0SQvnHV4f41c/689hbm6k9yc0V6Gfhd9cMRgdcQGyEf4v9bY4zoFukV41NW3Em7sITMU6o7+h465TvcblMEiIDuPe6Iby2dI8npqYqMKp/LL+Y2Qdc51blQHL+I7XC2omTNZFUXWPJV4eaaWWN6t+JW2b08UpP1TT1+3jH8WJFTWXJV4dYvjXHs1+Ar4VnFo4lwEfn3S8PNpPuP058dCB3/nwgFTUN+NgsaKq72C88yIf80joOZZUzd3J3MEx0i4aBwr6jZaza4W6fO3NsMrERAZRUNlDf6CTI38q63QV8tiYDi+5e3Uwfk8zGPQVkFVWzblc+jQ6D4AArD1yfyoOvrKNPcjgLZvRhw54Cth5wJxKMGRDLxKHxaAgMl1tnbOfRcp5/f3uL8wgP9uGZO8einVTA2Rq6RcVpunUEhCnQVAVdUTxuHUVREKpCvd2gqtZOTLgfKvwkqcJtwU+ps6XpKgYK5dWNNNoNosP90BXANNt0tXKxaoVdaMgVy3mC6TK4bmpPYsL9WLYxE9OES4clcPnIJMRJfbFPvmkqikJ1g9PLqIC7tsLuMDBM0WIP9ePkFNXQ6HARGerH3S+sxseq4edjobbe4ZFymTOpO7pFo9Zu8Oc3NlJU/r0K65b9RUSH+fHwTcPQNQW702BUv05MTo3Hx6qhaSr3LV5Dcbl3jUxVrYOSygY6hfuz72gZ9y9ew+TUBB65aRgKYNEUXE6D4957l8ukf3I4V01M4aMV6V43tIgQH/548wgWf7iTay7rSadQX5xNle2agpfMi6YpmKrKFxuy+O/6Y57CzoSYQOZO7kHvLqGYTgNF13hmyVb2H3PHljRV4Rcz+zKyTzS6qnhWmO0hIXOuOb4CC/e3oARYMU1TrlIkrSINy3mE6XQxJTWe8YPjUABdBcPZcm3JiVgsGulHSpttv2VWP17/ZA/zL+/llRTQEpW1diJD3GnBjQ7D49Y6jmG6s7sWf7jTY1QSogO5dHgCMeH+uAyTPUdKGdIrij++uJHnFo7FR1PcygCKQnlVy5lf9Y0ubE2xHZchSOwUhLXJoLSkFmIKQUJMIIvvmcjm/QVU1TroFh9CoJ+VrzZksWBGX+xOg6+25HAwqwIFdw/7MQNi3QFFU2Cg8vAr6yko83apZRfW8PSSrUwZkcg1l/bgs7VHPUbl+Hfw6eoMRvSNYevhEvZklNE7KYwhPaNQhdmmEi2apmLgzrgSgI9Fxe403eEj4Y59nGnzsLZECDqUaoCkfZCG5TzD5TQ8GRWn9bhoKo1Ok/Sscrp2DuHueYP5n0/3EBxgw2pRCQvyoXtCKJGhvvz9/okIoKHRxbdbslmxLZcG+/dGKyTAhq65jzk5iaBThD+6ptJgd7H/WDl+PjoL5wzCZZgs25BJZkE1uq4ytFc0g3pE8fLvxqMKE7PpRqsKwah+nVi907vr5HG5mU9WHSGpUxBXTUyhT5cwXKdYAbhMwXvLDnDLFf3YebgUm1Vjy/4iSirqefDGYXyx7hhfbczkRE/ppn2FvPvfA8wcm8wV47ry2tK9zYzKiXy9MYsRfWM4mu9dW6MqcPc1g/nD6xs8/VaWb80hJtyPJ341GvjxKxdFATSNrOJaPvjuMP4+Oldf2oNv9xWyYlsutfUOIkJ8mXVJVwZ1j2xzgyaRtAUyxtJO/Ghfsq7y7+VHABiQEondaZBbVMOUEUnkFdcQG+mPoqhkFVYjTEFOcS17MkoZ1a8TMWH++Nh0XvpgB9mFNQT4Wnjx7vHkl9YS5G/jiXc2U1hWT0y4HzPGJDOkZxTFFQ1EhvqSW1RDfEwQr328mx2HS5oNS1HgN1cPYnCPSEynOxNKURRMVeFPb2wip8g9Z11TuHPOQAZ0iwDcqwFVcbuWNBWEIZo9GVssGuv2FXIoqxKLrvL1pizPewuvHsi2A8Ws253f6lemqgov3j2O3zy/6rTXT4+EUKaP7cJz730fzxnSM4reXcJbVBu4flovJg/pjMv541YRqkVj8b93sfVAMf26RjBncneeeGdzs3bS4G6+9tdbR6EjME3hvqbK6hC4jaAiRIf7P5ExlgsDuWLpgGiaSn55A+OHxLN8SzavfrQbX5vOlBGJ1DU40TQFRVHILa7ho+XpZBfW0C0+hJ9PSuGTlRl0jgogNNDGwjmD+P1r61h49UA+XpnO6h15DOoRxaO/HElNnRNNV3jn8/384+tDng6GdqfBZ2uOtmhUwO0qefFfO3j+N+MIDrCiKe5Auq6qPHhDKmVVDVTVOkjsFIS/rw4oHMyq4MPlh8kqqMGiqwzvE83PJqQQ4KN7BcoVBWrrndidLkIC/TzbI0J8CAmwndKoAIQF2cgsqD6jm+2h7Aru6jzIa1t8dGCrPWP2HCllwqDOpz3vqdB0jaWrj7L1QDEA86f14s9vbGzRqAAUltXz2Nub+f1Nw1A0hYNZ5bz5n73kFtXSIzGUBdP7EGDTfpIsOYnkVMg6lg6I3tSP5H8+2cOyjVlU1topKKvjnS/2s353PnFRgVRU23n0zU3sP1ZObYOTnYdLePTNTVx9aQ++3JBJ7y7hrNuVx6K7xrEzvZQv1mVSU+9k9Y48/vzGRgL8LNy/eC07DpdQ2+DkQGY5v399AwkxQWw9jfyLEPDBd4epa3QiNBWLReNgdiW/fno5T767lbe/2Mf9L6+mtLKRp5ds5cl3t5CRW4XLMGmwu1i5PY+Fz69k2+ESb0kbQxAXFcD2g8WM7BeLrrkz4y4bkcSXGzJP+70pisLZ1ChaLRo3pvXC31MEKujSSr1NYqegH60mY4BnHgNSIjmYWd6qysBxjuVXU13vpM7u4v6X13Aws4LaBifbDhZzz8trOPXREslPgzQsHRAhBFaL5pGSP5HP1h4FAf9Zc7TZk7ndYbB2Vx6pvaLZcbiYgrJ6Kmrs/Hedd4OqLrHBfLM5G/tJAXzTFHy0PJ0R/WJOO8ZN+wpxOk3qGpw4BQQFWJk9oRsK7mZXl43swlcbs7yC495zhMUf7qKq3ona1AHMMEy6x4cC8OX6TO6/PpW4qAB6JIay41DLK6gTqai20ynC/7T7gbvuBgQTB8Xx8t3jeOOhycwck8xlIxIJ9PNWG/D30Zk+usuPcoOpqkJBWZ3nOx/YPZKNe0+tMnCcFdtz2HGohJMXYg12Fyu25WK1SseE5NwiDUsHxOUyaXS07B6pb3ThMluu4gcoq2ok0M9KXYPT3U64hX0C/awUV9S38A6UNh1/OnRVISjAyqodeSx8biV/fG0DZVWN/PHmEUSE+DCqXydWbW89Bfo4H3x3GHGCRpmK4Ia03qzYlsO/l6cz99IedGrKSjsdLsPkcHYF/bpGnHbfOZO6Y1WbaloME9U0wTDRhGDRXeNIG9WFlPgQpo5I5IXfjsei/PhYRqP9e0Nu1VWv5IpTUd/gapbFd5yC0rr2FiKQXIRIw9IBMU1BbIS/xxV0Im75E5WBKZEtHjuweyTpOZUkdw5BVWjx5pWeU8mo/rEtHj+8T4xX9X5rzJ6QwqerMvjg28PUNjhxuExWbc/l9U/2cMsV/SgorTsjY7Bpb6GXYTENkxF9YvjlFf3ILKjm2fe2kZFbRXiwz2nPBfDZmqPckNbrlBpn/btF0K9beIv1KYZhogmTORO7cv/8Icyb3B2dH5+ZJYQgOszX87q0qpHOkafXUAP3bx7Tykps7IBYLxUAieRcIA1LB0PXNUxVQQXumusdXPa16dwxZyD5pXWMGRhL17hgr/cHdo8kNNBGWVUD4cE+jBscR0J0IGFB3jfl/ikRdI4MYGB3b+PUNS6Y4X1jKCitPe04xwyIZdnGrGbb03MqCQ2weTpHng7DFM2WVcJlMKpPNK/eN5F7rh2C02UwdWTSGZ2vqLye3OJanlk4lhF9YlBPsM3+vhbmTErh7nmD4RSiikK4CwZVU2C4jDapPBfC/fslRLuziVZtz2VSasJpj9M1hdTeMfRLDm+mtzasdzRJnYJk8F5yzpHO1w6CqioITWVfZjkhge5eKinxobz9h0vZuLcQfx8LfZLDsWgKTsPtqvrV7P6UVDaQW1xLcmwwjQ4Xb3y6l/vmDyWrsJogfxtPvrOFe68bQn5pHRXVjfTtGkF4sC8ZeRXc8fMBlFfb2X+sjMSYIOKjA8gsqObXPxvAw6+ua+bTP05MuB82q9aq8XCZgu4JIWc07+gwPwSimTfneGvi/l1CUVUVuyH49/L0ZnGhk/Hz0enfLQINuPWKvtxyRV9qG5woikKAr8WtSXYGRak/BRYFbr9qAA++uo7y6kaqau2k9opmy4HWkyXmTemJigDD5C+3jiKroIqswhp6JoYSGmgD48JXBZCcf8jWxO3EWbdg1TSO5FVxrKCGNz7dy+drj3HgWDn9ukXQOzGMqGAfTJdbqBJToKsKvj4WggNs1NQ7OJZfRbC/jZljuxISaKW8ys6if2ynvNrOd1tyKCqro7zazn/WHOVQdjmDukfxxid7WbE1l4oaO8Xl9QxKiSQm1AdFU+mbHMGBzPJmrrR+XSN4+MZhaIrC7oxSKmu8K+59rBpzL+2ORVPZdqj4lI3CAK6/vCeJ0QGtpgibpjudWVPdT+6rd+S1qoBss2r89dZR+Fs19/ckBIoQxMUE42p0gtm+dR+mKQjws5DaO4bdR0pYv7uAW67oh64pZBVUe13zvjadG9N6MW5QZ4Th1usKD/XD0pS55mNRER2shgVka+ILBVkg2U6cTSGYpimU1Dg4mFnBG//Z6/Wer01n8b0TUFpx3SgKWCw6mvZ9ZlWjS3DLE9+e0jj//YFJZBVUUV3roH9KJBZNQW0quBO6xuIPdjBjbFecLpPsohp0TaVPcjgRwT6opomiKFQ1unjolXUexWJNVXjg+lS6dQ5EUxQKKxt54JV1rf6W8dGBPPrLEYgz1OJSNZUGp8n7Xx9k/e4Cj4HRNZUxA2OZd2kPbE0yMydyvhXlHZdzKa5sJLOgisSYICJDfdl/tJzqOjsx4f4kdw72iHMe53ybxw/hQpgDyAJJ6QprBzRdo7yqAScKuqZgUU6t+6Sq7rqVZRszm73XYHex50gpg7uFt3gOIcBxQgaZokBlnfO0K77M/CpS4kPxtajY7U6EITzy78IUdIsP5dE3NxEZ4kt0mB9OwyTY3+p2v5gCEAT76Lz0u/FkFVTT6DDonhCCikAYAheCyGAbj982ihf+tYPCsu+z0BQFUntHc9uV/VGMMxc7NA0TH03hF2m9uTGtN/V2Fwrga7OgKe7PPdmonI8cj4nEBNvoHBbj7kNjmAzsGtZUi+OO7Ugnl+R8RRqWc4yiqWw7XMLbX+ynus5BcICVm2f2pW+XsFbl2A3DJMDP0moFdm2DE1VVOZPOH0K44wynI9DPyr+XH6Z/t0gSOwXiY9E84mWqAlGhfjyyYBjrdxdg0VUmDInjWH41mqp4hnH8BpkcEwAoGCcZCWEIYsN8efxXo6mosZNVWI1V1+iRGOqWZDdMd2vjs0AItwFRgEAfHUO404zR3EbccHWcla5pCkzze/NxLkUndYvmUYc+rjItkZwpMivsHKKqCqXVdl76YKcntlBV6+C597dTVefEatXQLRoWq+Zpt6LqKkJVCfC1cMmgllOAeyaFYQA2H93dq6UVFEXB5mMhKMDGTTN642tr2cBEhfrS4HCxakceNqvGr59ewZuf7Ue1uPfXFLdx+nR1BpOHJTDrkmSyCt3usPpGF0JTvcZhGK33RzFQ2Hu0jLc+28v63fmUVjWgqwqKaK4VdjYousbKHfnc8exKbn3yO3734hoO5lR5VfJLmqNpCugaa/cU8Oz723n2/e2s2V0AuuZxp0okp0OuWM4hiqby6aqMZtv9fXRcpsmezArW7MwjKtSPaSOTsFo0dqaXEBvhz9pd+Vw+KokDxyo8elWaqrBgRh92HCpmaK9ocotqSEkIxaZriJNiLoqmUtvo4vPlR6i3uxg3qDMv3D2O95cd8jTsAnf66h0/H8i/vj2M02V6DMS63fmoqsJNab0wXCZ9k8NI7hzMon/s4PBJ+lld44L53bzB+FlVj8JxS+gWjbV7Cnn9kz2ebVsPFLNmRx6P3DiMH6oWrOsq6fnVvP3Ffs+2ylo7T767hcX3TMBPVzp88sdPgaoqNBrwwN9WU3FC0sWBzHI+XJ7Ok78eja+uSDVlyWmRhuUcIoTA3kKQ/VdXDeC9ZQe9hB3zS2uZMDiekAAbD726jtiIAEb07cTMS5IJDrBRWWsnOsyPIzmVdAr3p67ByXPvb2dE3ximjepCXKS/x3Wl6yqH8qp5/O3Nnhvqmp15XD4yiTmTUygoqyWrsIbUXtH8fFJ3lq48wr6jZQzpGcWRE4oh1+zM47qpPbEq4HAJ7l+8tsWsrozcKu59eQ3P3zUO6yla+jpNwb++PdT8+LwqKuschPhqP8gAuAR8uqa5ARcCvt6UxZwJ3bCfYVX7xYSpKDz3/jYvo3Kcyho7z72/nQevH0rLeg0SyfdIw3IOUYGpIxLZcoKIY1iQD342vZlacGqvGAxT8N5XB3EZgqmjkliy7AD7j5Xja9PxtelU1toxTcETvx7N1oNuRdyNewuZPiYZlyk8P65TwN8/3t3sJr1sYyZTRiRy73VDqay1sy+jlD/+zwYqa+yoCswa15WXP9jpdcyKbTmkjUpiyRcHTpkqXNfoYsmyA/xiem/EKeIaVbUtn6OiupFQv4Af5g4TrccjHLIKvVWchmi2+jyR9JxKHC6BVXrEJKdBGpZziMtlkhwbzIyxXfhi7TFM4S4mzCtpXsmuqgoRIb5k5LmbTcVG+JOR6/67we7yqh/JLqrhwLEyr9cWTSE62McdABZujbCTEQKKy+sJjAvm3pfWeLb7+1r4zdWDUIB7rh2CaQqq6xz8d30mhWX1OA3RrGlXS6zfXcCNaX1alapSgO4Joc1uZqribhNsno0U8QlYNIUpwxNbFLicMizhomglfLYoClRWt9zl80QqahqJCfaRXSQlp0QalnOMcBnMvqQrs8enUF7dSFiQzasX/ICUSKaOSCQuOoCGRheJMYEcy6+muLyehJjAFhWNI0J8vdJ1O0cGEBxg89SHqIpCSKCtWbEiQGSoL4YpePSXI8krqSU4wEZcVABWXWXRP3Z44jmdwv2ZPaEbsZH+OJzGGUmyGKbA7nDh00rQVwPu+PkAHvjbWq+Mt+un9UZrRSDzTHA6DQZ2i+CyEQl8vSkbIdy1LPOn9STE39ohUo7PNUJAkP/pxUWDA6zSqEhOizQs7YAwTCLD/BFOF8JpEBXqS8/EUAakRNIpwp+3v9hPSWUDi+4ax/zLe/HX/93Eso1ZXHtZTx57e7NXQWHvLmE4nd+rGQ9IiURV3Oq4x2MsFk1hwfQ+PP+P7V7jGD84DptFQ1MUvtqYRaCfhUE9o9BVlTueW+nlTiooq+Nv/97Fghl9iOnvx8loqoKPVaPe7vJyualq634TwzAJ8tFZfM8EdqWXUl3nljDxtWqtpl6fKabLYO6k7syZ1J3aBieBflZ3gac0Kq1itah0iQ3iWH51i+8ndQrySjuXSFpDVt63EydWGCuKgmbVyS2u4aFX13v28bVpPHhDKtGhfhSU1RMZ6osp4OMV6ZRVNzKmfyxDekXz4XeHKSitZ3ifGAb3iMTXpmE0aWZpVp0lXx7k8tFJOF0mn6zKoNHh4pJBcfTpEkZBaR2lVQ2kxIey50gpsZH+vPX5frILW65+tuoqf39gEn94bQO5JbX42nSun9aLbnEhVNXZCQnwYdX2XD5be5ToMD+e+NUorySCE1uWWDVwOr9/T1HcMvXn+oq8kKq9f8w8NE2lxm7wwN/WetQSjuPva+Gp28cQ+BN3pLyQfouLGbliOQ8Qwl1JvXTl95lMk1ITmDoikZp6Bw5DYArB71/bgI9N45ZZfUmKCUJvavt7zeTuGMKdKmwIyC+tIyLEF4um8MG36Xy3LYcpIxJZ9I/tXDm+G1GhvuQW1XLf4rW4XCb3zR/K429v5p5r3Rk/rRkVcAe/j+VXc8P03jzxzhYevmkYn67O4LWl7pRhXVOYe2kPrpvak5AAG7rqFgpWdI192RX8+7t08kvrCA/2YebYZIb1jka4jHNa/CdpGcMwCbRpvHj3eL7ZnMX63QUIYFS/TkwZnohO6/VIEsmJSMNynmAKQXWT+N600V1Iignk4VfXebKYUuJDePCGVP74Pxv48xub+PXP+jOidzSmaWKaBoqu8X/LDvH1JrdUvaLAtFFd6NUllBXbc6iqs1NYVs+rH+1u9tkWXaWwrJ5nlmzlkQXDTzvWBruLAd3CuW12P/YdLfPKcnMZgiXLDvLMnWOJCvXB5TBAU/m/ZQdYvvX7epnc4lpe+Wg3q3aEcc81Q04pUy85dxiGiQJMG5HI5KEJgMCquyvv5S8kOVNkGfJ5gkVTuWRgZ3TNLY/y9493e6XGpudU8tWmLE+PjqUrMzySG7qucjin0mNUwB2M/aKp5XBkiC/BATZUVUFTFeKiAkjqFESgn4WwIB9PhllReT3VdfbTSr6kxIcgDJMhPaJYvzu/xX227C9EQ0FVFcqq7V5G5UT2HS1nT0YZNptbNUBVFbSmyn2lDdJadYsKmoqiqVgsWvP3dY3KGjsuFOwmGKp7/1MpGFwMuJwGqjBRhfhRLZclFydyxXKe4HIajO4fS25xLYcyK1rsdbJhdz6/u3YIn605Sl2jE4E7ZdcEvtmc3eJ51+8p4KqJKew4WMyjvxxBWJAvhWV1lFQ2EBPuT3iwD9+dcOzKbblcPjKJj1Yc8TqPqsDkYQlMHZFEUXk9VbV2unQOxtrCzRpokosRKKrSYrHi8XNOSk0gNjKAjIIaKmvshAf7EB7sQ0WNHX9fCwE+OvppRDpbQtMUTEVlw75C1u4qQFFhwuA4BqZENqk0myiaxrHCGjbuK+RgVrknaN0zKZRrLu1BfHRgMwUDiURyetrNsCxevJgvv/wSgHHjxnHfffe111B+NJqmIkTzXh7up17RTALj+JO4zaZhmt/3FBEuF9de1p29R5vXXwDYrLonzXfsgM74WFQQCqgK8dEB2B0uAvysHDhWRmWtg/4pEVw2IonOEf707xZBVlENy7fmYLNqDEiJZM+RUt74NJdbr+xHdZ2D77bmsO9oGXfMGUhlTSPfNa0yNFXhnuuGkFVQzcN/X+9Z4fTuEsaU4YnNUqB1TWH0gFgcDgNU1ZPmrGsKsZEBNNpdlFY1cu+1Q8gqrOYPr6/3SjcO9LNw9eQe+PvqfLoqg9/MHUSIv/WUmWKqqqAobqFLTVNpcJk88MpqrxTr3emlRIW6RS8tFp3KWgd5pXX4+ehMG9WF+OhAPvzuMNsOFvOH/9nIjLHJ/GxcV0xpXCSSs6JdssLWr1/PSy+9xLvvvouiKNx8881cd911XHrppWd0/HmTFaapOA1Bek4lkSG+RIb4ogoTFAUDhYzcSjTNncKpCoEwTVA1qhucZBdVExuTy2IgAAAgAElEQVQRgJ+PjqKAzeKWLzmcXUFyXAi/fX4ldSepGc+d0oPc4hoKSup4ZMFw8kpqCPC1YrNoWK0ahWV1VFTb6RYfghCCPUdK+XzdMWrqHKT2iubSEYk8u2QbReXumpfLRiQyqHsUz723lWd+cwk2i0ZWQQ2NDhd9ksNRFNh6oIjEmCDW7c7n87XHmn0Fd80dRGFZHf9Zc5T6RhfRYX7cOWcgceF+mIaJrmt8uCoD0xSMHxLH0bwq/H0tJHUKYtPeAv7vy4Otfr3XXtYTu9Pg09UZPLtwLCG+lmbBY01TMBSVvOJaahocdI8PRVMVHv3fTa2mzT76yxFU1Tp4+YOdXu5GPx+du68ZzPKtOazfXQDAwjkDGdojskOo+14IGVUXwhxAZoW1i2FJT0+nrq6OgQMHAvDoo4+SmJjIDTfccEbHnxeGRVP5dmsO73/1vdZVXFQAj/5yJIVldfzxfzZ6Vhd+PjqP3TaK0EAfFv97J1sPFHuOGdormlmXJONr08kqrCY9p4qq2kauntyDF/+1g2P51disGtPHdGHS0ARKqxqoa3Dyj68OcdvP+vP60j0kdgpk7IDO/PWtzQCM6BvDwO5R/P1j70B9QnQgN6T15i//u8mz7fppvSitbGTCkDgee2szlbXuJ3xVVfjdNYPplxxGvd3gtqeWt/g1KApMTk3gkkFxRIX5YlEVL9eVooChqGw+UMQbn+zxuPjCgnx44IZUnnvve0N3MqoCL9w9nrtfWEVy5xAeuG4InFCNr6ruuMiDr6zz1PGoCtw5ZxCHsyv4ckNms3OGBFp59JejuOv5lS26G626ymO/Hs2Df1uHyzCJDPXlqV+P6RAtfi+Em/KFMAeQhqVdIpQpKSkeo5KZmcmXX37JuHHj2mMoPwhFgQaH4WVUwJ3p9K9vD7PjULFXZXp9o4uPVx5hT0apl1EB94qgoLSOrQeLyS+pY3JqAgkxQazYnsO8KT34270TePl34zEMwZ/f2MCT72zhqXe3kl1Uw+tL9zB7fDdWbc+j0WGQEO2+mCcOTeCDbw83G3d2UQ0CQUjg921TP197jMtHJfLmZ3s9RgXc7rkX/rkDlwlfrM9s9bsQwh3f+f1r61m1PRerRfOKhwjhrtN589O9Xjfy8upGliw7wPQxXVo9tylgy/4ihvSM5nB2BY6TViumovDKv3d5jMrxYxZ/uJNJqQktFmdeNbE7Hy1Pb9GogDudev3uAkb17wRASUUDlbV2lLbIJJBILhLaNfUlPT2dBQsWcN9995GUlNSeQzkrdF1rJhp5nE17C+mRFMbcKT2YN6WHu6MiEB3mz8rtLWdGbT1YjGkKeiaFkVtcw4BuESzbkMWanfl8tTGLvJI6PlmVQVF5g1csIrOgmshQX/c5DhTRq0sYAAG+Fq+b7YmUVTUS6Pe9dEd5dSNWi8bBzObig06XSX5JHaUVDc3ea4nMgupm/eZVVSGrsPl2cMc8usWFnPKcR3IriQpzV/oXVzR4GQuBwq4jpc2OMUxBbnENkSG+zd7rHBnAwazWhRYBDmWVe4w0QFF53SkVBCQSiTftFrzftm0bCxcu5KGHHiItLe2sjg0PD/iJRnUWYwjyaXF7ZKgv8VGBfLMpG1MIHrppGH96fQP1jU7CWjkm2N8KQtDQ6CLI30ptg4tgfyvFFfX0SQ5rtSGXfkJKbHCAlfImEcGjeVX07RrO3owyr/0VBZJjgykqq/PeDvhYNRodzd09gf5WxBmqdtksGjarhn+w9w29rM7Z4v7+vhbsp4ldWHXVs/qzWTWv3768uhF/Xwt1Dc3PHxxg8xLqPI7TZeBjbTmT7Ti+Nt0r9mKz6oSF+Z/ymPOFC8EFcyHM4WKnXQxLQUEBt99+O4sWLWLkyJFnffz5EGPpkRhKkL+1mXT8DWm9Wbc7n037CgHo0imYnknulcSscV35bmuO19hVVWFSagI5RTXsPlLCqP6xfLslm7TRXXjr8/3cmNabqlp7iyrAE4fGseVAEbqmMmZAZ37/mlsO5ot1x7hr3iD+8uYmL2mOn01IYdvBIq+bZv9uEeSX1nLZiEQ+XX0UH6uGyzBxGYKE6ECC/CyM6hfLxr2Fp/1OJgyJx2l3UVLrLXYZGmijU4Q/BaXeBm3aqCTW7Gy5DuY4w/rE8M9vDmOzakSG+Hr533Vd44pLuvLeV94JAJ0i/ImLCsDRgtHafrCIS4cn8sane1v9zLEDO/NJU0M2RXHHpjqC3/9CiE9cCHMAaRzbxbC8+eab2O12nnzySc+2uXPnMm/evPYYzg9CQ/DUHWN4fekedqWXEBbswzVTepIQFYCmKiiKO77QpbO7EHHswM5oiuCx20bx2tI9ZBVWk9QpiOum9qKuwUlEiC89Ervy7JJtlNc08rMJ3bh1dj/e/e8Bbpvdj7vmDuKDbw+zbnc+Vl3lshFJDOweyT+/OcRjvxpFRU0jfj4WHE6D2Eh/woJ8eOqOMWTkVVFW1UDPxDD2HytnybIDnjnYLBpzL+3BK//exf03DGXK8ERKKxuwWXVchknnCH8U06Rf1/BWVwbHiQzxJS4qoEVJek2Y/OWXI/nfz/exaW8h/r4WrhzfjfioAJ54Z0ur5wwP9iHAz0pOUQ0zxiSj4d1T0uUyuHRYPLqmsHRVBnUNTob3jWHB9D5YNYWX75nA52uPsnFvIaqiMGZALFNHJqGqCv9dd4z8kwwdQI8E9wNDZoE7o2xwz6gfpbQskVyMSBHKH4GqKpiKAk1dEi1NIoqKpuI0BUK45VI0BEJR2HG4lH3HyhjdP5b4qAAUVUHXVFRFIb+0FpdhEhXqh2EILBaVpSvT6d8tCn9fHbvDIDrMD1+bOz1Z01QMw90XXtPc52m0G6iqQn2DkyVfHWB3eilXT+7OpGEJbD1QxD++PkRhWT2KAgO7RzJnUneWrsogKTqQXsnhPP1/Wz3uo5T4EB66IRUM9znL6pw8/Or6Ft1LQf5Wnvj1aAJtWquFjIrirrcRTRbXqqmUVtt58NV1rZ7zwRtSeeM/e/GzWfjdNYMxnS13fdR1DZc7SwAVt3r08cta01WPQoFVV3E5DaxWjQaX4INvD7N6Rx52p4G/j86k1ARG9Y/liXc2U1XrwNem8/xvLsFXV86L6+10XAhP+xfCHECuWKRhOQcomsoHy480S3/9+cQUJqXG8+K/duB0CSy6SkZuJQ6XybN3juGJd7dSUWP3muuV47sxKTWeNTvyUBQYNygOH4vqVTyo6xrOJlFKt86TCapKg8OgtsGB02Wy/1g5u9NLmDAknr5dw/nlE9/hOinravyQOG6c2hOzqejQKeDLDZl8vSmLmnonIYE2po/uwsSh8Wji7AUKVU3FBSzbkMnXm7KprnMQEmhj0tB4RvWP5Yt1x0jtHU3PxFBoY9VjVVepbnB5VmFOw2TV9jzW7MjF4TIJC/LhTzePIMhX7zBS+xfCTflCmANIwyINyzlAaCq3PP6tV4qrqiqM7BvDjdP7sONQMZv2FbL9UDHBATZuntWX+KhAcopqiAn3Z+2uPD5ZlcHYgZ3p1zWcV09oM6wocO+1Q+iTFIrhqR1RQFM5klfF9oPFJHcOZmjPKDTAxN1REkVBmAIfi8q+rAoef7u5S0rXVF5/YJJXDYfWtDpQmlZpYcG+VJQ3dymdDbrXOd3aZ66mVYflB8i5nClqk+zL4Wy3zlq93Umwv43pY7rQOSIAlY7Vv+VCuClfCHMAaVikVtg5oMFueBkVm0XjwRtTOZJTyV/e3ISqKkwYEsflI7sQ6G/hf/+zz9O5UVUV5k3pwTWX9aBPcjivfrSbX8zsS0q8O033cHYF//j6EH++5YQkCE3l6SVbOXBCCnFYkA/P3DkG1TQ9AQMFcDoFtlb0viy6ikB4tRY2XIbntYJ3ZtoPxdUkmXL8K3I1GTIFaNn51TaYhgAMRg+IpUd8MKYQ7viYAMMw6DgmRSI5v7i4JVzPEX4+utfNe87k7qzYlsuSZQfJLqohs6Catz7fz87DxVRU2z1GBdyFiu8tO8iAlEhCAqzcNXcwm/cVcv/itdy/eC1bDxSzcO4gjxtL01Qy8qq8jAq4U3M/XX0U9SRDYJqC+OhAAv0szcZ9+agk9IukfEMYJoopMF2m7DkikfxI5IqlDdE0FQNwme4nX01V3N0TheCmGX08Eiv9UyI82Vm6phAXFYjdabAno4zpY5J56o4xKIpCenYF/16eTkWNnQOZ5YwbFMdL/9riZXh2pZfgdBn87lp3TxNdV9l6wN0fxceqccX4bgzqHolpCpwuE9FCoZ8mBI//ajTPvb+dzIJqdE1l8rB4Zo5JRhjufiqGCQKBripN6sDt54pUdQ1DuGtSLLqKruBxA0okkvZHGpYfiaYp6BYNgYLTMHl2yTb2HytHUWBIz2huv6o/GoJB3SN59NaRbNxbiKa6YwmXj0xiYmo8GblVBPha6JEYyvtfHWTFNneFfv+UCB66aRiPvbUZVVFosLu8jMpx9h8rxzSFO4ZiCpI7B2PRVR5ZMJxvN2fz4LeHMU1BVKgv9143lMgga5MbyM3x3vO/XzAM0xTunigKYBgYisLz/9jBvqPuYsuU+BDuvW4INk1tlyd71aLxn7XH+GzNUZwuk5AAG3fOGUByp6BTqh9LJJJzh/anP/3pT+09iLOlocFxzvuit4SiadgNwd5jFXy04giHsiuYM7k7PlaNQ1kV5JfWUVbVSN+ukew7VsarH+0mPMiHgd2jPAbgiXe2sGV/Eev3FLBqey43pvXmUFYF1XUOisrrKatsZFJqAj2TwrA7DL5tpe/K9NFd0HC3OY6JDEQIQX5JHV9tzPJ8V3WNLlbvzCNtTDIni2UJIVCEQAUUIUAIVIvOoZxKokJ9URWFwjL3fHallzJucBwIgb+/jfp6R7Px/BTousq2w6W8/cV+z4qp0WGwdlc+l49yz/+HcC7n8FNyIczjQpgDuOdxMSNjLD8QRVPJL6vj/a8P8dx729i4t4BvN2dzz0ur6Z0cTv9uEYC70VZNg4MuscFU1TpYtSOP6jo7sy7pymtL93i5lKrrHLz9xX5mjk32bNtxuJjU3tH88+tDVFTb6RTRXFokLioAXXO7uIQAi6owbXQXVmzLabav3WFwOLvilB0SVU3FIRQ++C6dJV8e4JvN2fRIDOXJO8YSHx1IdlENDte5t+xO8/uumCdimoK1u/KxnkaqRSKRnBukYfmBCBR0XWXVScKSQsBbn+3j8lFJng0ul4lFVz2ZXPWNLk9B5Mkcyqog/gQBRCGgtt7JtoPFfPDdYRbOGeglrhgZ6stDN6R6+TRN08TpNFsUfgR3X/rWUDWV/PIGbn9mBV+sO0ZucS1H86pYsuwgzy7ZysKrBxIccOb6YW2JQJxiTiZwkWQaSCTnOTLG8gNpdLooLGu5j0hReT0hAe6l8JCe0eSV1NErKYyFVw9k095Csotq6N2kH3Yyvjbd68bfJzncoxF2NK+Ktz/fz5N3jKG+wYmiKPjZNDS8ixOFYRLkZ2HikDg+O6k5l66p9EoKbTU+YioKT7yzuUWjV1zRwNKVR/jZhBSsuupOTDiHWDWVKcMTef2TPc3eGzswFmcrlfkSieTcIlcsPxCbRSe6Sc79ZKLD/Kiuc5ASH8L8ab3oEhvEc+9v4zfPrwIEA1MiCQ/25cEbUpvJxk8dmcj63W5hxqROQdxyRV+WrnT3nw/0s3Dt1B6opom/RcVPd2edndz6GMDlcPGzCSkM7hHp2RboZ+H3C4ahtrLYUFWF3OJaaupb1wTbtLeQUf07obfDisXlNBjVL4ZJQ+M97Z19rBp3XT0IH107L+JuEolErlh+MGrTKmHMwFjWnqDQqyhw86y+dAr3Z+YlXTmWX0VCdBDpOZXckNYbX5vOo29uory6kaROQfxiZh++3ZLNzsMlzBybzKTUBBoaXVwxriu6pqIo8NivRuNwGvjadHeq7xmuFITLxR1XDcAUYD+D41VVoeg0VfSG6XbttVd7EtNpcN1lPZh3WQ8a7QZ+Pmf3nUgkkp8eaVh+IMIwiY3wZ/7UXgzpGc36XfkE+FqYNqYL63cX8FhTm2CA384dxMShccSE+fHU/231bM8sqObPb2xi8b0TuGRQZ2LC/FEMA5sKIDxSKhrgqyngOrtqcCEAw0Q9w+NNUxAbcepeN7qmYmkHN9iJiKY5+eln/520BaquYrgT51AV2r2uRyI535CG5UcgXAY+mkpqjyiG9IiksKyeJ97e0qx742drj3HzrD68//WhZudwGSbfbs4mp6gG0xT8enY/TiXSrqo/ndKuaQo6hfsTEmijssbe4j5u+X8uWrkT1aLz4fJ0vtmUhcNl0ispjN9cPRBfXWnRJSmRXIzIGMuPxDBMHHYnqhDsTC9psSVwXYMTq0VrtZ9JXYMTH5tObYMTs4VAgaIAmkqDIcgsrsWFgtIGGl0toWLy+5uGtdhlMS4qgPmX97xoCxE1XWPp6gy+WHfM0yztQGY5D/99PYb8V5JIPMgVSxvhdJqM7NuJ979qvioZM7Az0WG+jO4fS0ZuVbP3U3tH8+pHu7lqUgoWTcVlejfLUnSdxR/uZNvBYs+2mZckc+XY5Da/yZuGIDzQxt/uncC3m3PYdqgYq0XlsuGJ9O0ajmKYJ9dWXjQYQrBsQ2az7WVVjZRUNhAVZKMDioVLJG2OfMw6BbquYaoqpqqit6IAfBwhBP4+OtdN7enJWAJ3R8K0UUnY651MGhrPgKbCyeOkje5CWVUjCTGBDO8dg+ukDoy6RSOrsJpJqQncfc1gRvbrhKoq/Gf1UYorG1F/YBRd11WEpuIQbll/Vf/+UjANE8UwuXx4AvdfN5i75w5iQHI4wmlc5LEEpcUOmQCNDpfX7y6RXMzIFUsrqBaNr7bk8PWmLBRg6sgkJg6Jb7WLIQCGycTBcYwbHEdOUQ3hwT4E+loRTbLwptPFb64eRF2jk9KqBmIjAmh0uNBUlSE9IhEu73MrCpgo7DhcwpqdeVh0lcmpCUxKjefJd7bw3dZsbpjaE3sLHRhPhaKpZJfUseifOyirakTXVKaNTmL2uK6YJ9w4XR6JfPGTytd3FBQEQ3pFs2V/kdd2q64SHx2I6WrZ6EgkFxsXjWFRdI0Ghwsfq44qTC8Rxmb7aipvfbGfVdvzPNve/e8B8kvquHZKd3dWkqogVJUGuwtfmw5GU4dD00QDkqMDEEIgDMMTindnaRkEWFWSesVQUlKDzUdv2s9sFrIXqtrMBbZk2UGmje5C2uhkrBb1B9VuGAL+9MZGTyGmyzD5z+qjdAr3Z3SfGE9/FIk3ihDcekU/CkrryC2uBcBm1Xjg+lQUs/nvJ5FcrFwUhkXRVZauzuA/q48SHGBl0V3jgNZvngawekdes+3Lt+Uwb0oPFMBUVH7/2gbySmpJ7RXNr2b380rBPZXL6ERjcKr9XKbwMirH+WZTFn+5dSShgT44HGe3lrBYNNbuLWxR1uWLdcdI7RUl/aOtYJoCiwaP3jKCmgYn9Y0uosP8ZB2NRHISF4VhMQzBvgy37HtVrYNGh4HPKe6eDqfZ4krANAUOp7vOxBCCvBL3U+v+Y2UI2l6pqr6xZaPhdJkE+9uwacopV16t0ZJcy6m2S77HnVIsCLJpBNl0RDvU0Ugk5zsXxcOpRYXbZvena+dgZl6SjO9pVHB9rFqLHRVDAm2eTpCaAjfN6ENSpyDumjf4B0u2n4ogfyu2FsYaHeaHzar9oKdkp9NgWO+YFgPNlw5LxPoTpTFfaLg7C0jnl0TSEhfFXcQwBFFBVh66YShXXpLsCaa3hioEv5032N0BsgldU7h73iC04550w2Rc/048cmMqKbFBP4krRBGCO38+0MsIWHWVu+cN/lFaXVZN4Z5rh7hjQ02M7h/LpKHxzbLSJBKJ5GxRRAd87Corq/3J014VTcEQCtsPFaMoCoN6RKJDmxmQyMhASkpqTr+jpuIyBdsPFmO1aAxIiUTjx/v0VU3FVBTqGp342nT3ists2QV4Ks54HucxF8Ic4MKYx4UwB3DP42Lmooix/BCEIVARjOwdjRDu1Nt28aUbJjowum8MQog2G8dxw+TfpPvV4Z4uJBLJeYs0LKehtYK4c835Mg6JRCI5HRdFjEUikUgk5w5pWCQSiUTSpkjDIpFIJJI2RRoWiUQikbQp0rBIJBKJpE2RhkUikUgkbYo0LBKJRCJpU6RhkUgkEkmbIg2LRCKRSNoUaVgkEolE0qZIwyKRSCSSNkUaFolEIpG0KdKwSCQSiaRNkYZFIpFIJG1KuxmWzz77jGnTpjFlyhTee++99hqGRCKRSNqYdunHUlRUxKJFi/j444+xWq3MnTuX4cOH061bt/YYjkQikUjakHZZsaxfv54RI0YQEhKCn58fl112GcuWLWuPoUgkEomkjWkXw1JcXExkZKTndVRUFEVFRe0xFIlEIpG0Me3iCjNNE0VRPK+FEF6vT4eqnvm+5zNyHucPF8Ic4MKYx4Uwh4uddjEsMTExbN261fO6pKSEqKioMz4+NNT/pxjWOSc8PKC9h9AmXAjzuBDmABfGPC6EOVzstIsrbNSoUWzYsIHy8nIaGhr4+uuvueSSS9pjKBKJRCJpY9plxRIdHc1vf/tbrr/+epxOJ1dddRX9+/dvj6FIJBKJpI1RhBCivQchkUgkkgsHWXkvkUgkkjZFGhaJRCKRtCnSsEgkEomkTZGGRSKRSCRtijQsEolEImlTpGGRSCQSSZvSoQxLR5bar62tZfr06eTm5gJuIc4ZM2YwZcoUFi1a1M6jOzMWL15MWloaaWlpPP3000DHm8eLL77ItGnTSEtL46233gI63hxO5KmnnuKBBx4A4MCBA8yePZvLLruMhx9+GJfL1c6jOz3z588nLS2NWbNmMWvWLHbt2tXh/s+XL1/O7Nmzufzyy/nrX/8KdOxrqk0QHYTCwkIxYcIEUVFRIerq6sSMGTNEenp6ew/rjNi5c6eYPn266NOnj8jJyRENDQ1i3LhxIjs7WzidTrFgwQKxcuXK9h7mKVm3bp24+uqrhd1uFw6HQ1x//fXis88+61Dz2LRpk5g7d65wOp2ioaFBTJgwQRw4cKBDzeFE1q9fL4YPHy7uv/9+IYQQaWlpYseOHUIIIR588EHx3nvvtefwTotpmmLMmDHC6XR6tnW0//Ps7GwxZswYUVBQIBwOh5g3b55YuXJlh72m2ooOs2LpyFL7H3zwAX/84x89emi7d+8mMTGR+Ph4dF1nxowZ5/1cIiMjeeCBB7BarVgsFrp27UpmZmaHmsewYcN499130XWdsrIyDMOgurq6Q83hOJWVlSxatIjbbrsNgLy8PBobGxk4cCAAs2fPPu/ncfToUQAWLFjAzJkzWbJkSYf7P//mm2+YNm0aMTExWCwWFi1ahK+vb4e8ptqSDmNYOrLU/mOPPcbQoUM9rzviXFJSUjw3rczMTL788ksURelw87BYLLz00kukpaUxcuTIDvlbAPzhD3/gt7/9LUFBQUDzayoyMvK8n0d1dTUjR47kb3/7G2+//Tb//Oc/yc/P71C/R1ZWFoZhcNtttzFr1izef//9DntNtSUdxrD8WKn984mOPJf09HQWLFjAfffdR3x8fIecx8KFC9mwYQMFBQVkZmZ2uDl8+OGHdOrUiZEjR3q2dcRratCgQTz99NMEBgYSFhbGVVddxUsvvdSh5mEYBhs2bODxxx/nX//6F7t37yYnJ6dDzeGnoF1EKH8IP1Zq/3wiJiaGkpISz+uOMpdt27axcOFCHnroIdLS0ti8eXOHmkdGRgYOh4NevXrh6+vLlClTWLZsGZqmefY53+cA8N///peSkhJmzZpFVVUV9fX1KIri9VuUlpae9/PYunUrTqfTYyCFEHTu3LlDXVMRERGMHDmSsLAwACZPntwhr6m2psOsWC4kqf0BAwZw7NgxzzL6888/P+/nUlBQwO23386zzz5LWloa0PHmkZubyyOPPILD4cDhcPDdd98xd+7cDjUHgLfeeovPP/+cTz/9lIULFzJx4kSeeOIJbDYb27ZtA+DTTz897+dRU1PD008/jd1up7a2lqVLl/LMM890qP/zCRMmsHbtWqqrqzEMgzVr1jB16tQOd021NR1mxXIhSe3bbDaefPJJ7rzzTux2O+PGjWPq1KntPaxT8uabb2K323nyySc92+bOnduh5jFu3Dh2797NFVdcgaZpTJkyhbS0NMLCwjrMHE7Fs88+yyOPPEJtbS19+vTh+uuvb+8hnZIJEyawa9currjiCkzT5JprrmHIkCEd6v98wIAB3HzzzVxzzTU4nU5Gjx7NvHnzSE5OviCuqR+KlM2XSCQSSZvSYVxhEolEIukYSMMikUgkkjZFGhaJRCKRtCnSsEgkEomkTZGGRSKRSCRtijQsEolEImlTpGGRSCQSSZsiDYukw7FgwQLKy8t/9D6bNm1i+vTpp/28Hj16tHiu7777ztN/Y/78+Sxbtozc3FwGDRp02nNKJBcyHabyXiI5zrp169pknx/LpEmTmDRp0k/+ORJJR0OuWCQdigcffBCAG264gc2bNzN//nxmzJjBzJkz+eSTT5rtU1BQwIoVK5g7dy6zZ89m/PjxvPDCC2f9uS+88AJXXnkls2bNYsWKFQB8/PHH3HrrrW00M4nkwkGuWCQdiieeeIKPP/6Yd955hzlz5nDfffcxZcoUioqK+PnPf05iYqLXPqGhodx33308+eSTJCUlUVRUxIQJE85aRysuLo5HH32Uw4cPM3/+fL788sufaIYSScdHGhZJhyQjIwO73c6UKVMAt0jplClTWLNmjVeMQ1EU/v73v7Ny5Uo+//xzMjIyEELQ0NBwVp83b948ALp3707Xrl3ZsWNH201GIrnAkK4wSYdEUZRmzZOEELhcLq9t9fX1XHnllezbt4/evXtz3333oes6Z6u9qqrf/6uYpomuy2cyiaQ1pPWrLRwAAAEPSURBVGGRdDg0TaNz587ous7XX38NQFFREV999RWjRo3y7ONyucjKyqK2tpa77rqLiRMnsmnTJhwOB6ZpntVnLl26FIB9+/aRnZ3NgAED2nZSEskFhHzsknQ4pk6dyo033sgrr7zCX//6V15++WUMw+D2229nxIgRnn3mz5/Piy++yPjx47n88suxWq10796dbt26kZWVhdVqPePPzMnJ4YorrkBRFJ5//nlCQkJ+qulJJB0e2Y9FIpFIJG2KXLFILnreeOMNPvvssxbf+8UvfsHMmTPP8Ygkko6NXLFIJBKJpE2RwXuJRCKRtCnSsEgkEomkTZGGRSKRSCRtijQsEolEImlTpGGRSCQSSZvy/7CsVmKJt0lTAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAFgCAYAAADuCe0ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3gc1bn48e+ZskWrYlmSK9gGY48xGGxjQzA19BpCaGlAQiAh7Sb3plfSe/ml3ZsKISEQWhIwvZhubCwXbDAMxrj3Jmn7Tvv9sbIsobYqK63k9/M8PGZnzs6clVb77mnvUUEQIIQQQpQabbArIIQQQnREApQQQoiSJAFKCCFESZIAJYQQoiQNpQBlAJOa/xVCCDHMDaUP+0OAdXv2JPD94TPzsLq6jH37UoNdjaKS1zg8yGssXF1dheqH6hz0hlILalgyDH2wq1B08hqHB3mNYqBJgBJCCFGSJEAJIYQoSRKghBBClCQJUEIIIUqSBCghhBAlSQKUEEKIkiQBSgghREkaSgt1hRBiwBiGhqZp+H6A63qDXZ2DkgQoIYRoRdM1fKV4+a09bNgeZ1xtjGOn1KET4Hv+YFfvoCIBSgghmuUcj027k3zvlpfI5g60mgxd43Pvn820CSMIJEgNmKKOQVmWVWlZ1iuWZU1qfnyWZVkrLctaY1nW94p5byGE6Kl98Szf/vOiNsEJwPV8fnpbPcmsh1KSZm+gFC1AWZZ1AvA8MLX5cRS4GbgEOBKYa1nW+cW6vxBC9IRhaDzy4npcr+Nk1H4A9zy1BqVLgBooxWxB3QB8Etja/Ph4YI1t2+ts23aB24Arinh/IYQomOMHrFq7u8sy9vp9nQYw0f+KNgZl2/b1AJZl7T80DtjWqsg28lto9EhNTXmf61Zq6uoqBrsKRSevcXgYzq8xmXYoi3T9kVgWMYhETKrKwwNUq4PbQE6S0IDWXz0U0OPRxuG2H1RdXQW7dsUHuxpFJa9xeBjur1HXNS4++XCW27s6LXPeiZPwHZddu3JdXms4B/KBNJALdTcDY1s9HsOB7j8hhBhUnuczZUI10yZVd3h+wugK5hw5CteVWXwDZSBbUIsBy7KsI4B1wPvJT5oQQoiSMKI8zJevnsvDL67nwRfWkUg7RMMG55wwgXefNhnl+Qyf/pvSN2AByrbtjGVZHwLuBSLAQ8A9A3V/IYQohO+4XHjiBM45YQJ+AJoCQ4HneBKcBljRA5Rt25Na/f+TwLHFvqcQQvSF6/goYP8G8JLoaHBIslghhBAlSQKUEEKIkiQBSgghREmSACWEEKIkSYASQghRkiRACSGEKEkSoIQQQpQkCVBCCCFKkgQoIYQQJUkClBBCiJIkAUoIIURJkgAlhBCiJEmAEkIIUZIkQAkhhChJEqCEEEKUJAlQQgghSpIEKCGEECVJApQQQoiSVPQt34UQYrDouiKk+eB7BJpBzlP4fjDY1RIFkgAlhBh2NE0R07N4+7YSX/oQfjqBUVlHxdwLoayapGsSSJwqeRKghBDDiqYpyrUUO//5PZw9W9qcS7zyDJGJR1Nz8WeIOxKkSp2MQQkhhpWYkWPnP7/TLjjtl9nwCnsf/j1lhjPANRM9JQFKCDFs6LqGu3M9zt5tXZZLr12K5qRRaoAqJnpFApQQYtgIKYd4/YMFlU2uehrTlFGOUiYBSggxbKjAw0s1FVTWi+9BKRmEKmUSoIQQw0agGRjl1QWV1atHEwTSx1fKJEAJIYaNnK9TcfzFBZUtP+pUcjm3yDUSfSEBSggxbHhegF49ntDoSV2Wix11Cq4WGZhKiV6TACWEGFaSXohRV3yV8LipHZ6PTZ/HiHdeS8qVCRKlTn5DQohhxfcD4m6YkZd+AVINJJY/hpduwhgxmoqZZ+PqUZpy8tE3FMhvSQgx7Ph+QMI30cKjCJ98DSpw8ZVB3PEIZNhpyJAAJYQYtnw/IJvzAAV4g10d0UMyBiWEEKIkSYASQghRkiRACSGEKEkSoIQQQpQkCVBCCCFKkgQoIYQQJUkClBBCiJIkAUoIIURJkgAlhBCiJEmAEkIIUZIkQAkhhChJEqCEEEKUJAlQQgghSpIEKCGEECVJApQQQoiSJAFKCCFESZIAJYQQoiRJgBJCCFGSJEAJIYQoSRKghBBClCRjMG5qWdYHga80P3zYtu3PD0Y9hBBClK4Bb0FZllUG/Bo4DTgWOMWyrLMGuh5CCCFK22B08enN940BZvN/6UGohxBCiBKmgiAY8JtalvVp4CdACngGuMy27e4qMglYV+SqCSFEf1CDXYHhYMDHoCzLOga4DpgINAK3AZ8HflrI8/fsSeD7Ax9Ui6WuroJdu+KDXY2iktc4PMhr7Nl1RN8NRhffucCTtm3vtG07C/wVOH0Q6iGEEKKEDcYsvpeBn1iWFSPfxXcxsGQQ6iGEEKKEDXgLyrbtx4A7gKXASvKTJH400PUQQghR2gZlHZRt2z8GfjwY9xZCCDE0SCYJIYQQJWlQWlBCiNKkFISNgBA58BzQdDwMMkF4sKsmDkISoIQQABi6oowkjc/dw+5XnyPwHADC46cy4rQP4JUdNsg1FAcb6eITQqDriqi7j203f57EygUtwQkgu+UNdtx+E4mVTxM1vEGspTjYSIASQhBVWXbd+2P8bKrTMnsevxnDTaIkR4IYIBKghDjIaZqC1D6cvdu6LRuvf4CwPnwyuYjSJgFKiIOcYWik31pRUNn0Wy+jB7ki10iIPAlQQgigwFZR4Be3GkK0IgFKiIOc6/qEJxxVUNnwIRaeMotcIyHyJEAJcZDz/QC9ajR6xchuy1a+491kPX0AaiWEBCghBJD2w9Rd+nnQO18aWXXCxfjhEQzGHnLi4CQBSgiB6wU4sbGM+9CPiUw8us05o6qOmgs+wYh5l5FyZW2/GDjybhNCAJDzFF6olqoLP0MtLl42hWaECIwwGSLoZTFIDu8NC0VpkQAlhGjheQEpTMAEPZqf3OcAyOw9MfCki08IIURJkgAlhBCiJEmAEkIIUZIkQAkhhChJEqCEEEKUJAlQQgghSpIEKCGEECVJApQQQoiSJAFKCCFESZIAJYQQoiRJgBJCCFGSJEAJIYQoSZIsVogSppTCNHWUgiAAx/FkPyZx0JAAJUQJMgyNCBnINJF6ZRF+sgEtVkXMOhEilWSI4LqSYbwrhqERJouufAgCfDSyKorjeINdNVEgCVBClJiI4aM3bWL3I3/E2b2pzbnGF+7FrD2EmvM+il55CFlXeuk7Uh5y8XasZd/zd5HdthYAc+Q4qua9h8rDZhLPGUhDtPTJu1uIEhLWA9TON9j+j5vaBaf9nN2b2f6Pb6F2vE7YkFbU25WHXOLP3cHOu3/YEpwAnL1b2f3Ab9lz3y+oCLmDWMOhz7Ksb1mW9a1i30cClBAlJEyKnf/6GQTdBJ7AZ9e/f07YTw1MxYYIw9BxN68m8fKTnZbJbFxNov4hwuYAVkz0inTxCVEiwibE6x8Fv8Bv975H09KHCc+9nKyrilu5ISJCmt3P391tufiyRxg7+zyyhAagVoPPsqxDgH8AMfLbI/8X8E/gDuBswAW+C3wOmAJ8zrbtuyzLGg38BZjQXOartm0/0uq6OnAn8JZt21+0LOs84DuACawDbrBte49lWeuBxcBM4BTbtncWUm9pQQlRIsJkia94okfPSbz8JGGVK1KNhh4tcDvtGm3Nz6YIMokBqFHJ+AjwgG3bc4BvAic3H9/efOw14MvAOcAHga80n/8NsMC27WOAy4Gbm4MWgAL+BGxqDk51wI+Ac23bngU8Cvy4VR0etm3bKjQ4gbSghCgdnkuQ7VmXXZDLEHgOEC5OnYacwmc+BL4HehGrUlqeAP5lWdYs4EHgt8CngIebz28Atti27VqWtQGobj5+BnADgG3bb1mWtRg4ofncjUAVcFjz4xPIt7SesiwL8j/dva3qsLinlZYWlChpmqZQugaGDoZOoGsYxnB92/ZyWplMR2sRaAZatKL7gkpDLyug3DBh2/YLwHTyrZqrgPnNp1o3vzvqW377H5viQMNmIfB94NfNj3Xgedu2Z9q2PROYC1zW6rnpntZ7uP6li2FA6Rq74jl+96+V3PCDJ/jI9x/nB39dwuqNDSgjv3i1GAxTI9A1XKUIdB2tiPdqQzdReg9H7nUDZRwc4yiFyBKh8rjzuy1XNmUOueDgmSVhWdZPgA/atn0r+ZbT7AKfuoB89yCWZR0OnAS82HzuZfJdeEdblnUx+RbSiZZlTW0+/w3gZ32pt3TxiZKkDJ1HF2/gn4+/0eb42i2N/Ohv9cycUsdn3zuLwOm/6cJKgTIMHli4jocWrieRdjANjdNmHcL7zpmKAXhe8aZ15wgRO+oUEisXFPyc2JHzDqoP2u7knICqmWeTXP08zt6tHZbRouVUn3ktCd+g163Woec3wO2WZX0Y8IBrgN8V8Lz/Av7Y/LwAuN627W3NXXjYtp2zLOvjwK3AUcB1wF3Nkyc2kx/P6jU1hNKmTALW7dmTwPeHTJ27VVdXwa5d8cGuRlH19DXqusam3Sm+/oeFXZZ7zzuP4JKTJuH1U0YFZej84o7lrFq7u925UdVRfvzJkwncjrMQ9MfvUSko9xvY+qfPFvyccdf/goReMyDpj4bKe1XTFBVGln1P3krSXgT+gd9ZdNIxjDzvo6RUBa7X/mfWX6+xrq5CplX2A2lBiZLjAbc/9nq35R5euJ6LTjqs23KF0HXFpt3JDoMTwM59aRYs3czZx40vWoqhIADXrGDkWdex94mbuy1ffea1uKEqAnf4fGHrD74f0OSEiZ3xEUaccTXuvu3g+xjVY3BViIRv4ncQnETpkTEoUXL8AFav29ttuXTWZW9Tpn/Gh5TGQwvXdVnk8Zc2kCty4oa0q2NaJ1Fz0afRIrEOy2jhMmou+AThaaeSdg+eaWg9EQQBaUejyYmQqTyMzIjJNHllpFxjWPXADHfSghIlpyfdVTnHJz+xqG8fOn4QkM52PZ6VyQ5MktGUoxOacBxjPzKD3PY3Sa56Cj+bRgtHiR19OqGxU8gEIZLOgFRnyJOANHRJgBIlR9MUVeUhGhPdL0CtHRHpl/EXQ1PMnFLHcntXp2WmTRqJrgZmWD3n5idNGKOPJjbmSFTgESgdN9DJOJJ/TxwcpItPlBxTU1x88uHdlpt+2EgMrX/Goh3H4+RjxxEJddxlphS89+ypqAGeVOS6PhlHkXYNMo6SLTbEQUUClCg5ruNx5txDGVvT8RgMQNjU+fhlx6D3Y3vGUPC9G+dRHm07bds0NP77fbOpKjOlu0iIASRdfKIkab7P926cx+//vZL613a0SZZw2LhKPvveWVSEdbx+nI3luT61FSF+/bnTeWtLI+u2NjKquowZk2tRBARFXAMlhGhPApQoSZ4XoCmfj186A+/dM3hrcwOuHzBxTCVlYR2d4iyazU8/9pgyrpJph1bh+wGu6x08yznFsGRZ1m+BMbZtX97q2DnA74FjbdsuyQVuEqBEyQqCALwAHZh26AgAfN8n8HyKPZ/O83w82RlcDLCLP3ff+4EfkE+6uhH46vyfX3J7P1z6y8Aqy7LeZdv2/ZZlxYD/A64r1eAEEqDEEFHMFENClILm4PQnoKz50ETgTxd/7j76GqRs205YlnUD+e0yniS/Z9P9tm0/bVnWCcAvgCiwC/iobdsbLMv6AnA1+SSyi2zb/kRf6tAbMklCCCFKww84EJz2K2s+3me2bT9BPpv5LeT3ffqqZVlh8kHxKtu2Z5PPTP4Hy7JCwOfJJ5WdA8QsyxrTH/XoCWlBCTEIQiEDjfzaJsfxZHaggHy3Xk+O98bnyHcdvtu27bRlWTOBw4EHmhPAKiDanAS2HlgC3Af82Lbt7f1Yj4JIC0qIARQ1XCqNNN6qh0gt+CPZ5/9GWXob5WYOrZ/WdIkha2MPj/eYbdtNQAOwvvmQDrzRag+n2cBpzecuAj7ZXOYxy7JOZoBJC0qIAVIeckkuuZ+di+fTOh9FfPljmHUTGHXFV0iqsn6dOi+GlK/SdgwKINV8vFhWA2Msy5pn2/ZC4KPAZZZlXQ08Ccy1bXuhZVkTgRnA80WsSzuD0oKyLOtiy7LqLct6zbKsXw1GHYTojd4mpo0YPukVj9K0+H46Spbk7NrIjtu/RUzvPr2TGJ6aJ0LcQH779aD53xv6aRZfh2zbTgNXAr+yLGsl8D7gBtu2twE3A0sty1pKPlbcWqx6dGbA94Nq3pXxOfL71+8gv2PjD2zbfribp05C9oMakob6a9R1RUTl0P0sXiqOXlaJp4XIBKGW1k53r7HKzLLl958i8LrO8Fr7rs/gHzoHxym9Oe5D/fdYCNkPqrQMRhffpcCdtm1vBrAs6yogMwj1EKJbuq6I+U3svv//kd22tuV4eNwUai/+L5J6Zbddcoahkdm0utvgBND00nyqxx+Fg2zjLsRgdPEdAeiWZd1vWdYK4BPAvkGohxDdKtczbPv719oEJ4Ds1jVsv+3rlOvZbq+haQq3YWdB9/Pie9HU8OkhEKIvBqMFZQCnAqcDCeB+4Frgr4U8uaamvFj1GjR1dRWDXYWiK/Zr9DJJAicLKLRIGZoZ7vM1A9+jcfGT+Kmmju+ZbCT1+kJq514AdP0amyqqC7qnVlaBGTKpqy7N94S8V8VAGowAtR14wrbzG+9YlvVv4HgKDFAyBjX0FPM1apqiXE+z77E/k3pzGUo3KJ95FpUnvoembN/e3mV6jsTqrictJV99DnPKPGIja7oeg5p0DCgNgq4zYlTMPo+EY+CU4HtC3qs9u47ou8Ho4nsAONeyrBGWZenA+cDSQaiHGAbK9Cw77/w+qTX1EPgEbo54/UM0PX8XEbMfvsh0c4lC75ALTMqPPaPLMlpZJWVT5uLIhoRCAIMQoGzbXgz8hPx8+tXkp1LeMtD1EMODyiZxdm9qdzy+cgEh+jZl29XClFnv6LJMbNqJuFqk22ulXZ2qU95LmXVCh+f12AjGfPC7JLzuryXEwWJQFuratn0z+Tn2QvSaUuA7nUwA9dxuu9O6k3MCqmacTtNL8/EziXbntWgFsaNOpTFX2H2asgaVZ11P1clXEn9pPs7ebWihCOUzzyY0fipJLyxJcUXRWJY1CVgHnGPb9uOtjq8HTrdte/2gVKwLkklCDFlBAHpFDSoUIci1DVThcVPw+uHtnfQjjLn6e+y+75fkdm5oOR4aNZHad/8PST/M/o6+/amKgiCgs+WFScdEGbVET72WmO8SKA0Hk0zOp/AOQzFcvfX9y9ptt3H41+7tz4W6DvAny7JmlPI2G/tJgBJDgmFq7F+7auoKt/lBxg8x6j1fZOc9PyJw8116esXI/BqlIERfP/RdLyBljKTm8q+h3DReshE9VkVgREkFETzXJ2KCG99LJLGdIJvGqKojCMXIEMF127eIgiAg4yhg/9by0moSLcGp3XYbb33/MvoxSG0FHgd+Tj6tUQvLsr4KfBDwgMeAL9q2PagrxiVAiZKnmQZPr9jMwws34AcBZx8/gbPmTiBwXXIuUH0Y42/8Lc6eLSgzhF5RR9IP91tOO8/zSRACQqjyEfmNFF0An8qwS3zJA+xe+ghBq+5Gs/YQas77GHrFeLKe5GQWBelqu43+bEV9jvzmhWe36uo7H3gX+a01csC9wI3A7/rxvj0mfzmipGm6xp1P2Nw8fzXb9iTZsTfFbY+8zl/mvwJa/u2b8xSNuRCZqsNJRQ+hyQkVLeFq69Rg5abD3kf+QNOi/7QJTgDO7s1s/8dN6A0bMAzJeiMKMhDbbezPaH4D+a6+/fPhzwTusG07Zdu2S36OwJn9ed/ekAAlSpoHPLa4/W4Dz7+8lbfHIN8PGKjckrqu8Bu2kl6zpPNCgc/u+b8mqrrPNiEEA7Ddxn62bT/Gga4+aB8LFCXQwyYBSpQ0x/XxOliYHQSQHcSEqmHl0PTCvd2W8xL78Bq2y15PohBfJb+9RmvF3G7jc8C5wFjySbvfZ1lW1LIsA/gw8FSR7luwggOUZVnVlmVVFrMyQrydaWhUV7RPWxSLGETDg/cFT8Mju3N9QWVz295E1+W7oOha80SIdttt9PMsvhatuvpC5BMoPADUA6+Sb7X9phj37Ylut9uw8vsA3wbMIv9DWwhcbdt2vzc7uzEJ2W5jSOrLa9QNjQ07k3znL4twm/v0NAVfvnYuU8dX4Q/SuqFyI8vOv38FL76327Ijz/4ITD29JLfQ6Al5r/boOtJk7geFfAX9K/Bn8oNmGvmpiX8Bzi5etYTI81yfQ+ti/P7LZ7L0tZ14vs/cI0djaGrQghOAq0KUTZlLfNmj3ZaNHHYsCXdoBychBkMhAarMtu0/tHr8G8uybihWhYR4u8Dz0YB5R40GwHE8gkHeFj3rKirnXkR82WN0tdYqPN7CN6IE7sDVTYjhopCO8dcty5q3/4FlWUeTT5chxIByHK9kusmCALJ6jNqLP0V+wlN7RmUdtZd8lrQvmw8K0RuFtKAmAs9YlvUy+eWJs4DtzfvXY9v2MUWsnxAlK+tqRA6dxbiP/JSG5+8h9cZLEPjosRFUzr2Q2NGnk/DC+L5kihCiNwoJUF8qei2EGKIyrkbOrGPUxZ/EyVyX3/IDjSxhGnMBksZIiN7rNEBZljXNtu3XgQ6ntNi2vaxotRJiCPH9AC1cRlNT6+7H/h0j0zRFWHMxlQu+D5pGjhBZV3WamFaIoa6rFtTPgIuAl8jPiW/d0R4DRhWxXkL0C13X8MgHEaUUIZ1+2RBQ1zXCKouh8tHBTezDNEI4HSSH7auw4RPykjhb1xFU1hD4HkrX0dJJKkdNIumHcV2JUmL46SpAXWNZ1kjymwqeTj5ABeQXdT1T/KoJ0Xuapgg0jTe3NvLvp9eyqyFNedTk3HdMZO6Ro9GCoFd7LykF5YaDt3sjDS/cTXazDQQYlXVUHH8RldaJpPxwy5qtvgoZAWZqJ4GTJbHqadJrl7O/dRaddAxV895NrHIUCb2iaPkHxfBkWdZDwPW2bW8d7Lp0ptOFupZlPUp+rdPbC3jA3bZtf6DIdXu7SZTYQl3D0NA0Dc/ze73RnCx+7H9KKQJd4zt/Wcz6bU3tzlfGQvzg4ydREdZ79HtTCipDDrv+8wuym17rsIwWLWfM+79NOlTbL0FqRDhHdssb7PzPL8HvYAaj0qi7+FOEJsygKWe2P9+P5L3ao+vIQt1+UEgmiZtt275ugOrTlUmUSIDa/+38jY0NrNncwNGH1zBxTAV4fo+TlcoffRHoGj+/fRmvrus8y0NlLMT/++/T0AMfUAUlmo2ZDo0P/Y70uhVdltMiMcZ95Oc0On3bvj1kakTdfWy55UvtNmRsQzc49GO/Ih6UF7UVNRTfq5qm8l9YgqCgz43hGqAsyzoE+Af54Rkf+C/gn+R7x24EzmsuWgXU2bZdblnWXOCX5Lf82A18zLbtAV1i1O06qBIJTiUl0DW+8ccX+eHflnDPgjV868+L+PHf60HyrXUpZGpEDJ+I4RMyi/OzUgpSWa/L4ATQlMyx6s1dRBKbMba9TFl6M5VmlpDZ8eeKUgotG+82OAH4mSTx5Y8R7uRahTI1j/SGV7sOTgCeS9JeTHiAcxMqBeGQRtTwiJgBpqkP6P07o5QiYvhUmlnC+97E2Lqc8L43qTSzRAwfpUoqdgyUjwAP2LY9B/gmcPL+E7Ztf9m27ZnACcB24DrLskLkMwi937bt2eSznv9poCs96OnUhxrD0HisfhObdybaHH99wz5Wr9vLjMOqO9xF9WDmZZJUGmmSK58mtcUGpQiPn0bl0afiECLt9t8Hm2kaPPNSYV/yHlm0Eeu4ONmn/gKAVlZJ5ZwLqDzmTBJuqM037rDh0/Ti/ILrEV/2KGNnnUuW9oluC6Xhk1m/sqCy6bdeJjz9dAZigwJNU5RpOVQuQfylh3EbtqOMEGXWO6icOIOsHyLrtQ0CpqmT84KWkWxDy6ex6m+GoSgLkjQ8dye7Vr8AXqsUHrpB7Mh5jDjlKlIqhntwZfd4AviXZVmzgAeB3wKfeluZPwHP2LZ9V3NChsnA/fl0rAAMeLJwCVA95Pqw7PWdHZ5b9Op2jpk8coBrVNoqQi57n7q7XUqg9NrlNDx3JxWzz6HixMuJ5/rnrahUvnVUiFTGATPa8thPNdHw7D9Jvf4idVd+jbgTbun20/wcuR2F9274mSTKd6k0gSDAR+t0C/hOr6H0HsxWD9D6eWp7RzRNUa5n2P2fX5DdYrc5l1pTjzLD1Jz3MaKHHkPaNfLd4brGsjd38++n17JtT5Jo2OD02eO5YN5hhPoxp6KhK6LZ3Wy77Rv42bfvWkG+pfnKs6TW1DPmA98mEx7Vb5NZSp1t2y9YljWd/Mzsq4APtT5vWdbnyc/M3n9cB95qbllhWZYOjB6o+u4nfVI9pGuKsbWxDs9NGFPRSdKbg1PMdGhc8NfmhKodfBAEPvGlj9D49N+IGU5z14xHhZGl3Mhi9qIb0PeD/HhgAUaPLEMl97Q7ntu5gT0P/Joyo3WgU3SW0qgzgZtly+8/yZb/vZHd/7wJffNSykMHvrYbhkagaQS6htK1dntGOb5O5PBjC7pXZOIMMm+1vX4xlBs5dt7x7XbBab/AybJ7/q/xN60kYoCvadz0x0X88o7lrN/WRDbn0RDP8p9n3uITP3mKjbuSaP3UNR7TM2y//aaOg1PrOmZT7Lj928S0brpOhxHLsn4CfNC27VvJt5xmtzp3HnA98D7btvd/W3gdGGlZ1inNj6+jf7edL4gEqB7yPZ/L3zkF421/VLGIwRnHHUouVxq54gabpilUcg/J1c93Wzb5yrOoTAMVRobU07ew7c+fZdcd30JtWELM7NnP0wNmTh2FXsAGgZe+YxTuqws6PJdZ/wpaNsH+4QpfCxEeP7XgemhllfmY3NzF5Ozdxu77f0Wyfj5Rw0XpGq9saOCmPy/iUz97mj/Nf5VckN+pd79czqNs8myU0U0uP6VRdsRs9jz8B9zNr2EYxRkLCnyP5KoFOHu7n5W855E/4Cn41Z3L2bij40kHrufz3ZsX0w/L0jBNjeTqF/DTie4LA34mQXL1c0UbCy1BvwEutyxrBfBv4JpW535NfvnQk5ZlrayibSUAACAASURBVGgucwhwBfDz5rR215IfxxpQ0sXXQ0EQEDU0fvnfp/K3h15j0444UydU84Fzp2HgI+EpL6y5NC78V8Hlm178F+FxU1oCmptLs+eB31Bz4ScxJ51Q0OJaw9B5aNEGHNfnopMP575n13Za9ujDqqlVDaQadnRep5fmEz35ajKuIutC5dwLC9peA6By5lm48d3tr7noPirnXsSKdQ385O/1LccXrtzGa+v28ovPnAqt3kUpz6TuXZ9h579+Rmf9fbXnXU/TskfB92h4/i5qr7RI0P8Jar1UE/H6hworrBSpjMPLa9r/DFpzXJ8nlmzkwhMn4PYhUkXIsOOlwscIAZqWPMDo6aeQ68M44VBh2/Ym4JS3HX6w+d/OvnmtBY4vWqUKcNB8fehPvu9TEdL5xKUz+N5HT+S6C44kpJCFkq0YyiX9Vvcz3vZLrV2BWTO+3fHG5+8mHBTWFeMGAfc9+xb/fvpNpkwYwaWnH9GupQvwjqNG8z8XH0Lm4V91eb3MptXoQb6bLwjAN8somzavy+cA6LERlB91Cum3Op7g0NgQ55+Pte8i2xfPsmZzQ5vdd3OeRjDmSMZe/R3C445oUz40ehKjLvsCbmJf8xgfOLs3oflOt3XsjSCXwUs2FlQ2PPYI6ldvL6jss8u3kOtjJgzlOXiJfT16jpdoQHkH10yJoUZaUL2Un+EVoAG+BKZ2lFIEbuEflIHrdNiV5SX2UeisYD+AdDb/gfOLfyzl4lMm88NPnsQbG/extyFFZRhOsKrRtr1C4u7fEXQ3VuHm2ow6JXIGNWd/GNwsqTeXdvgcvWIkoy/9H3wnR2LV0x1fF4198WyH53Y3pDny0BF4rZriGVejsryGiplnUXPOR/L10kM4e7bQ+OK/yW59s+31g+LMIu3JdZVhks4W1p+Qdbz87JY+JBUMejlBpFg/K9E/JECJovB9MKpqcRt3FVTeqKrFSza0Ox6dPAs3KGxMRSk44pARvLm5AT+A+55dy/zn1nLyseP51FkjaXjq72SWv07gFjbLzyivxn/bxIika1B9xtVUHnceTcsfJ7PpNQLfw6weQ+WsszBrDyW18VU03cTPdDweEjEDZk8bxdNLN7c7d8wRdbgd7b6raex++I8Q+KC0/L8d/Qx0Mx/oi9CI0szCu8Lcpt0cNq2wySrj68opYMiwS0o3OZCNreBn5Z8njaiSJV18oiiyKkLFnAsLLl859yKCtwUDvbya6jM/RNYv7HuUAXzmqpnEIgfKB8Asqw6trIrMljcKDk4AFcedj6NF2xxzPEVWr0BFYkQnzaDughsZdclnqJx5Fsk1S8nt3ETsiLnsXXBbh9fUy0cQLivng+dOo6667bUve+cRxMJ6hw0JhxBlU5uHA7r41h876hRyRRh/Mk2dwAgTmVTY9m/Ork1MnlhDLNp9+qXLzziCvk7rcAOd6OSZPXpO9LBjceU7ekmT344oCsfxqZx2Ig3P3UmQS3dZVoXLKJt6PDlfY/yNvyGz4VX08pGYoyeR8iMFr5PxPJ+qMoPffeGdvLFxH8m0w4wjajF1jazvUn7smcSXPNj9hQBlhglPOoamDmZlZj0dL3YIkSNq0bwsbrKB8KGjCE2eQ5YIvnKomHsh8bcN2uvlIxj9/m+T9EKYCn78yZPZuD3OroYURx1WQySkE3TyWrOeTvU7P0h6/cpOuya1aDlVJ19O3O2/xQ6arvCVxkv2LjZsa+Kyd1xR0OLh8LgpRPWAGy+dwc9v73xnnqMPr2HC6Aq8jlqNPZDxTarmXd6cTLcwVSddRto36e+tUUT/6TYXXwmZRInk4utPQzG/WaFMA8LJ7Wy//SYCp+MxF2VG8osmy8bgugFK5beyCAJ6nIC3zPRQ8e00PncXXrIRZZh4mQSVcy4kOvUEFLD9H9/A3df94H3de76AP3o6Oa/7D3ulFLW15W1+j2WGi+FnSL62ED8dJzJxBmbz1hitJ9Poej5XnOf53Q7BGAZEnQZ23/dLcjs3tDkXGnM4dZd8lpRe1W9bbyhdw97cyC9vX5YfJwI+fO7hzIutJ/X0XzuvZ/UYRr//WyS8KIFSrN6wjz/+ZxWNiQOtV01TnDZzPNdeOJ3AdftlT6uY6RJ/9jaSnYz9tSl79KlUnnYNCaftd/ThmotvqJIANciGc4CCfJCKkWLf83eTfPV5Ai8/OKJ0k9jRp1A17zLSKobTx3GAMsMl++oCGp7peC2hWTeB0e/7JngeO+/5UadZIZRuUvuuz8DYI8n0IAVTZ7/HUEgHVJ8y3rem6xoRlUHLJshuXQOaIjpxBiiFj8ILdDK+2ee/EcPQ2LI3zVf/74V2wePD5x7OSZMU7kv3kN2wquX4/lRR5cecScILtQRi3dDwUGzbnWTzzgSxqMGRk0aiK0Xgef264WJFyCW+8B7iyx7ptEz5rHOoPPlK4tn2HUjDOUBZlvV+4OuACfw/27Z/N8hV6pYEqEE23AMU5F9jvKGREA6Bk58yrsxIv+0Iq2mKaHob22/9cpflYkeeRPkZH0HDg8QeGl/8F9mtbxC4LnpFNRXHXUDZ5NmkfZOc17Ph2YHfUiQ/LhQlTWLlAhIrnsTPpQmPn8qIU67CK6vtU47DQNP4wd+WsHZzx9PKx9XGeM9J4zh+6giiej4jvDIjZAiTczr+hWqaQtM0IChqvsp86zVLfPmjpF57ET+XQguVUTbtHVTMPhdXi5ByOx7dGK4ByrKs8cDzwHFAFlhIPnPE6kGtWDdkDEoMiIyjkSEM+xdF9uMss4jm0PjCXd2WS77+IiPOuJomJ4IWHUv5WR+jKnBRKj9FPadFaeyPtAYDJBKk2P73r+M2HZgpmV67jPTaZdRc8AnCE+eQ7WGg3c8Lgk6DE8DW3Ul+e98aNE3xp6+cifL85t9p5982fD/A72hPq36WDz4G4TnvoWz2hS0z2F0tTJNDfrOJEjVnzpzRwN3ATGAFcEV9fX3nq8kLdxawwLbtvQCWZd0DXA58px+uXTQyi08MeYbySa8tYFFw4OPs3ICm5fd/Srs6CS9M3A2T9ML9shX8QAnrAY3P390mOLW255E/EtZ6/y0glSmsz9X3g6Jsc98fsg4kvTCJ5t9vtjjrl/vb3cCJQEXzv3f303XHAdtaPd5GPp1RSZMAJYY+RZdTr1sLPHdQ9gMyTZ1w2CAUMtolhe2NkMqRfOWZzgv4Lpl1K3qdly8SKqxzRan8eJXoNzM50LNlND/uD/m+1QMUJd2WzJN3lhjyPJ8O0yR1xKwZh+8P3N9l2PCpMrOodS+Sff5vOPV3U5bdSbmZ61ug8v2WCSedcRt3o/XyL9zUFYeMKu+23KypdX1ewyTaWMGBpcNu8+P+sBkY2+rxGKD7rL+DTMagxJCXU1Gq5r2H3fN/02W50OhJBGaMYIAyB8QMl9ybL7Llyb+1CSZNi+4jNGoidZd9iaRe3qvZfYGmoZVV4qeaOi0TGnM4Ti/TcIV0xYcvms53b36p0zKagqvPn44KeptoSHTgCt42BtVP130C+JZlWXVAErgM+Gg/XbtopAUlhjzH8QhPPIbwuM63w1BGiJoLP0k6iAxInUKmwlm/jL2P/aXDlk5u5wZ2/OMmYnrH68O6kyVC5ZwLOj2vRcoJjZ3c66ntjuNx+NhKbrx0Roe5EA1d8ZVrj2dErO9T2sUB9fX1O+rr60+tr6+vbP63PyZIYNv2FuBrwFPkA9/ttm13/u2jREgLSgwLcSdE7WVfoPG5O0mueqZNUAiNnUzt+R8nG6ktyjbjHYmQZdtTf+uyjNu0i/QbizGnnNrjCRo5J6DymLPIbnqd9Lq2vUDKjDD6vV8n5fct5VHg+ZwwfTTHHTmaBfWbWLV2N5pSzJ0+mnkzxqERdJr5QpQe27ZvZxA2HewLCVBiWAiCgHjOJDrvA4w46Qqchu1ooSh6WSWBbpL2QjjOwOzWpWkKd++WgjbPa1ryAHVHzMXpxZ5EccdgxAWfpKppB/Glj+DnUkQmHkNs2omk/DBuP3RlBp6PDpx/wgTedepkMukchqZwHE+69UTRSYASw0YQQMZVKEPHrKwjsXIBzs71KDNC+bFnEhk5npQf6ZeMDl3RNIXbuLOgsm5jvlXSG0EACcdEix1K2RnXg+/jKaMoa7lcx6N6RBnpRIYBivNCSIASw0t5yCW55H52Lp5P61m1ydXPY1TVMfq93ySpVxZ1c8kgAC1a2FYTejRGX7O5+H5AJgf5IWXpchPDh0ySEC10XRuUNS3719Loet/WB0XMgPTKJ2hafD8dZTRwG3ex/bZvUN7LiQmt6bpG1HCJ6VliehY/l2lZX+V5PuExk5v3KOpa7JgzyamBmbghxFAjLSiBpmv4SvHaxn1kch5HH16DrhiQAfCo4WJ6aTLrV6NX1GDWTSDp9a4bLkSOpg2vEn3PN/Ej1ehagL92Edkl/2nZB8pLNpCyF2FOPb1XmSMMXRHVMnh7ttC0+L58V56mExp9OJUnvAuilaS8MFlCVMw+l6YlD3R6LWWGqZh1Nk2d5K4T4mAnAeogZxga+5IOX/m/F1rS22gKPv+B45g+sbrgvZh6I2q45FY9zs7n7mw5plfUMObq7xFXZT3q+tJ1jWzjHhqP+zC/+Ncb7Ni7HkNXnHXcEVzxnm+QuOfb4OdfX3zpw9RMOaHHExNCekAos4Mdd/8QL9F2919n92aSrz5LaOxk6i79Akm/jIoT3o0b30Pq9RfbXUuZEUa/75ukibY7J4TIky6+g5wTwC/uWNYm95ofwK/uXIFfxJRASoHppWloFZwAvPgeGp76OxGjZyPxmqbIlo3im7euYsfe/IZ+rhfwyEubWbDGJTrtxJaybmJfj9/4uq4IZXax/W9fbxecWsttW8uO275BTEsTdwwqz7yOsR/+KbHpJxMaNZHwuCmMPOd6xn30V+Ri4/q8zYgQw5m0oA5yvg8btrffXiDreOxuSFNXEerxdhhKKdDy+xMBJNMOSqk2LSJd18is7zjTf2rtMqrOcKAHLRylFKs3NLZsrNfaw0u2cdrlp8Hq5/L3Lqvq8RTpMi3Ljnt/0m16Icivb2p45h+Unfohko6JFh5F2enXoQUOoHC0CE1DKDGtGDjN2cyvA6YBrwM399diXcuybgKubH74oG3bX+yP6xaTtKAOcpqmCJsdZ1MrLzN7HJw0TRHoGv/3n1Xc8IPHueGHT/Dru1aArrVJ0hoEAXpFTYfX0GPVBEHPWm++7+N28hzX80E78BorjjuPrCq8a03TFH7jDrym3QU/J7l6ISHlNNctIONqpLwwKS80pLKmi4EzZ86cS4C3gG8C1wDfAN5qPt4nlmWdBZwDzCKfRuk4y7Iu7et1i00C1EHOUAEXnDSp3fFpE6uJdBK4uuIrxU9vW8pLr+7AD/IfzgtXbuXXd60gaJUc1fMCzLqJHQapESdfQbaHM9tc12fG5NoOE7CeMWs0vJUfB9LKKokdeVKPgkRI92la8mCP6oPvktmwSjJ9i4I0t5xuB8qA/W/+aPPj25vP98U24HO2beds23aA14AJfbxm0clfz0HOc30uOWUy115wJCMrI8QiBuefOJEvXTMH7W3NJ6UU4ZAiYvqdfvC6fsBr6/e2O778jV34QX7sKWwqIoZPhihjPvhdyqadiDIjGNVjqb340xgTjulVK0Mn4KvXziUWOdBzfZxVy7tmjyDzytPo5SMY84HvkPB6NjlC8x28TvZd6oq7b0e/bK0hDgrX0fnnsQI+3JeL27b9qm3biwAsy5pCvqvvob5ccyDIGJTAd1zOPO4QTp05HhQYCnzXo3UO0LDuE/LiND03Hz/VQNn0U4geOp2EY7aMLwUB7RbAhgyNU2YdwhlzDiHjeARBQAxQm5Zj6sDEY6g48wZGnOkQBJBVUZIdBCdNO3CPTl+HF3DEuEp+9/nTSaQdwpqHtm8T2E9Rd9kXMWsnkPTDLXUMmxAmR5BLAwEqFO14G3qlQO/5n4rSjT5vZ19M+4OnJHstCdM40HJ6u2jz+T6zLOso4EHgC7Ztr+mPaxaTBCgB5FPZ7P+u//ZpBoahYcQ3s/W2b7ZsDJjd9ibRcz6FV3sEW3cnKY+YjKyMEA1BXXWUXfvSVJWH+PI1c1n0yjZ+cMtLJJtnCpqGxumzxnPVSaPILLiVqndeS9zZ36o5EJw0TeErheMFbNvVfI+qCDpBp0lf90+Lr4gYlOk+Sq/FNWejxUa0TIxQSlFh5ogvfYi9yx7Fz6ZAaSjdIHbUqVSdfAVJP9qyFstTIcKHTCO72e7RzzR86DQyJZhMNWL4hJSDuy+/wapZPZZsECLjSmtvEL0OpKHDdQfp5vN9YlnWScC9wGdt2/5nX683ECRADSBNz89sS+c8TEPDKGL3z/7Ft6mMSySso9P9wtv9z0lmHKLh/FtDAREtx57H/gyBjxaJMfKsa8kdejy/vGslK9csaHn+iPIwn77yWL770RP50u+e54tXz+GWB1bzxsZ9be7juD6PL9nEijd388Nrr8Br3IFWfmibb/KapvA1jV/fuYIVa3a1vccVx3L4uMpOX4+uK2JBnF33/Jzc9nUtx42qUdS9+3/Qq+rYdc9PyG59k8jcS9CnnU7KCSgLabhrXmDHP77J6A98h7gfzrfqnIDKWefQtOi+Qn/86OXV6CPG4pfYItyKkEvipfvZtfQh8PJfGJRuUnnCu6iYfT7xnHwkDJKbga93ci4AbunLxS3LOhT4D3CVbdsLuitfKlRf84D1lmVZPwNqbdv+UIFPmQSs27MnMSS7JDRdY0djhh/+dQkNiXyqnemHjeRL18zFzzn92hWkdI1Vb+3lf+99mUzOQyk4bdYhfOjC6fidLLxRusaiV3dwywOvknN9NAVnHT+Bk44dx/jaGNk7v4wX38OY932DuB/hu/dsYP229pvlKQU//fQpjK2J8WT9Jm6e/2qXdT191liuO7EMVXN422zjhs53/rK4y3vUVYQ6zKlXGcqx/a9fwkvsa/9cI8T4637Mllu/RvS0D/P0rlrufHoDrueja4pLTjqU8w/LoG2sJ3rKNWSc/LBAmeEQf/yPpNYs6fL17DfyvI/C5JNLasZexAjILv0PTYs7DrRVp1yFOeM8sp20pOrqKti1q/2ShOGkv15jXV1Fj799Ns/Wu53898Io+ZZTALyvvr7+/r7Ux7KsX5Ef51rb6vDvbdv+fV+uW2yDMknCsqwzgWsH496DxVeKb/1pUUtwAli9bi9/uW8V6P33a1AKsq7PL/+5jEwu/4EfBPD0ss089/IWzA5m5mmaoiHl8If/rCLX3HXmB/DY4o1s3ZXkriffJHTahyg/+hTS619hR4IOA8f+e9364Gtkci73Pbu2wzKtPb9yB96ICYTItdRN0xQ79qa6vMdfH1zNgU7JAwxDI7NuRYfBCSBwczQufoCq4y9id3QS/3hyXX4aOuD5Af96biMbvVqcXZsIcWDNU9ozqT73o4TGHNbtayqfdQ7hI04oqeAEEFY54vWdj4s3LbqPsNb9Oi9RHPX19fcBhwPfAW5t/vfwvgYnANu2P2PbdoVt2zNb/VfSwQkGoYvPsqyRwPeBHwDHDvT9B4OmKTbtSpDOtm+9vLByGx+66Kh+u5dp6jy5ZFOHLbLHF2/kxKPHtPtWYpo6TzzTcTB5bsUW5k4fgxo1ijLdI7VuBS/sbOyyDqvW7sbzA/Y0Zrqtr+v5NCZz5J77LeUzTqdi4rHkVISFK7d2+bxX1u4hQLULUSYO8dcWdvnc1FvLqbvkv3nkuT0dnn9k2R6uP/w4/EwC9PzYWBBAwg1Rd/lXiS99iMT+satWjKpRVJ18JaHDZpHI9XyKfjEppXAad3W50DhwMvjJBjBHDWDNRGvNi3J/NNj1KBWD0eH8B/JbDx/amyfX1JT3b20GyPbGjjNoa5pC1zVGVpf1271MveMPR01TRMImVeXtp1kbnTxH1zR8P0DTDUKjJ5Fa9zJaNw2+/NBa4T0cfiZJdrNNZv0qKmaeRc3ZH0brplW5PwP6yJFtf25eNk28uxRNSoMg36XXEV1XKN9D1xR1de23zTBPvYoRx19IbucGnL3bULpBaPRhGJW16LEqlFIlmWEvk+m+pa7peoeveb+uzg0XB8NrHCoGNEBZlnU9sMm27Scty/pQb64xVMegRlVHqYyFaErm2hw/47hDCDy/X/v2T5wxhlsfWt3u53TRSYcRuC67drWtg1Jw9vETuP+5te1aXmfMORR7wz4IIK2XY4wcx6mVI5j/wsZO7z972igMTTGmpozte1KdlgMImzpVEUWiOdt4fMWTVJ18JaceO477OmnV7b+H73rtfm6RiEHVSZdDEJDZuLoli3lrsalzSb25jAuPO40FS7e0O3/xnDq8xXcRzD23i9+LgT7iCLSRU/GDgEh1LF+2gF10B0tleS3KjBA4HbdstUgMwp2PwcgYVM+uI/puoMegrgLOsSxrBfn+1XdZlvXLAa7DoNCDgO99bB7j6/ItQE3BvBnj+OD50wm8/t2iNKQpvnHdCVRX5FtKpqFx6emTmXPkqA7HRYIAYmGdL3zgOCpjIQDCIZ0rzpxCZSzElWdOQSPA9SB65EnUlAUcOWlEh/c2dMU1F0wnpMPl75zSbV3fOWsM3mtPta4NXjrOyMoI0w8b2ek9rr1gOqpVNI0aHpVGGnf1k6ReW0h4/FTGfuBbjDzjGpR5YHmJFi6jcs75xJc9QvnOFXzqkqktC3ujYYPrzz+CutRawodMIxd0vZ+T5wU4jofbyZT3UpMNTEacdFmn50ecchVZQgNYIyG6Npiz+D4EnH6wzOKDfJeUG4DjBei6QgdqR8aK8q1UNzS8QJFzPUxDR29efNuVUMjA8QOyro+pa/nFsb6PFgQopdgVz/K9WxbzyXcfydRJddzy4Os8t2ILXvPvY3xdOf911UxGVUUIPB/N1PnN3S+z9PWOtz+fMLqCm947meSdX2teLAvoBuNv/F/ibhgMjVsffK3dPT595bGMHhFtmWZeEXKJL7yb+PLHW9Zp5Sli095B5Zzz2H7XjzBrxlF70adQ0Sr2zv816XUriBx1Gtox5+OqMCYu3iuP4m17g1FXfZ24U3ii3IFoXWiayk+/94Ne/w2Umy6Z15+j8YV78DPJ/HWj5Yw45b2EpryDpNN5p4q0oHp0nd7M4lPA8eSzPIwCdgJ3Akvq6+uH5odeH0mAGmSD/UevFER1F8NPk9lko3SN8CFH4hAi7R4Ylwp0nc/+8hm++r4jqdm7Cu+N5zGOPB1t8gk0ZcDxIZtzmTimArd5MohSoAydRa/u4N6n1rBrXz4IVZSZXHjSYZw3dyzJ27+M2yqNUPWZ12JYp5FxNZQCdI0gUDSlckRCOqahYSpaWi1lhkvyhTtIvPxkp68xesRx1J73URxfIxOE8X2fCtMl/caLNC66ryUJrBatoPK484nNPJuEG+rR+6yYv0fd0PGALTsT7GnKUFMZYfyocnTA6+ZLR0daMmhkE4BChWNkghC5brb+GOz36kAYrAA1Z86co4G7yY/NR8n3bvnkp5pvAq6or69/pc8VG2IGLUD1wiQkQPUrpaDCdNj7yB9Iv1nf6oRGxayzqZh3BfGcgWFoPLl8C7l0mneqJaSXP9zmOpHpp/Fy9Vn87/w1/OHLZ2K+bTOLmppy9jSkcLyAIAgIGTqGBkaQw3QTJF5+gsB1KD/2TPxINSm38KHRSi3Blt9/qttyYz/yM5JGXZstP0xTI0IG5TkEBKCbZImQ68Xi2mL9HjVD59mXt3Ln43ZLJg6AWMTgyrOmctrM8d22jPuLBKgeXafgANUcnBYC5XQ8uygAEsC8/ghSvViDOmgkWexBLKq77Hvi5rbBCSDwiS97lOTyRwibkPPgySWbOO2okaRXPt7uOpnVzzJ7ciUA9a/taLfWStMUeD4mASEFeB6u45FxdRKqitDxVxGe90FSoVE9Ck6hkE5iZWGL4uNLHiRstA08juMTd0I0+THifjlxJ9yr4FQ0msaDC9dz8/xX2wQngGTG5ZYHVvPAwvWoflxHJwZWc7fe3XQenGg+Xg7c3Vy+14baGlR5Zx/EjCBH6vVFnZ5vWvIAYbKgIJVx0QK3JT1OWwG4WZSCRNqhJxvxBgFksy7ZrFtwy1jTFGWGR0zP4u7per3Ufu6+HSh/aC1CdYOAe57qOp/nvU+twRlGPQoHoePJd+t191ejmsvN7e2N3rYGdUiQAHWQ0jSFs3sTdLG3bJDLEOTSaArG1JTRlFXo5e1n76lQlCz5CQUTRlcUtQvW1CHmNxJ//Pfse/oOtEhh68e0SBmBVlqLZ7vS1YLr1oIAnnhpI0Yv9u4SJeFKOk4Q25Eo+ZnQvbV/DWrHaVZKkASog5gyup9SrLR8otnL3nkEdzy7hehZH2+zOy0oomfcwL0vbCUS0rEmVhc87dowNMr0HOVGlpiexTS7fjtqmiLiNbLtli+SWrOE1FvLiU17R0H3qph9Po4/dBKhekHAm5sbCiq7dktjyyxHMeSMovDPYa25fI+1XoPam+cPlqHzFyv6le8HGDXjUWaYwGmb5SI0ehKVs88hNGoimhnCDDwOH1dFPOXy0u5ajr/hT+A5BG4O0zB4YNFmFizfxMcunYEWBHQWnvLbKhn4+CjATzWSeOlOMutXoUXKKZ95FpXT5pHyI7gdJIGNaA77Hr25ZaGpF9+L7+QIj5uCn0kSeA5uY/uNBY2qURh1E0jlhsZ6JQCFIlRgq8g0dDTVfpuUoc4w9f/P3nnHSVWf+/992pSdsr3SpSy9LiCiiGjs2GKJGsu9ltxETe5Pk+iNSUxRc801iSYmMcVYYu81xgIIgoJU6UOH3YXtZfqc9v39Mcsuw8zSRFhw3q+XZU/5njIz5znfp3weDFt09hvTZAnTON6ukgaS2XoHYqTsju0PhSuA8o4a1ALAW1lZ+btAIPD/DnG8I0LWQH2FSdgaedO+QeusJzuXmpkjEQAAIABJREFUFZx+Laq/iPZFb2G07MRXdR7eYSfhcrr48X9MZPayWu768yIa22IU+F2cObkvE0b1pay0gPGVJbhIoKoGWCZCdRK1k8XCiiJjCHjuvfXMXV5LwrCo7JvP1addSFlJJbE5j9E660naF7xM2dW/QLjzwDYxpa4Ggiomsa0rO89VzvFjJ6IUz7yNeM16ZNWBmltE6PPZhD5PJk8o/iJKr7qHiOWEbk1nz0NCMKOqD5+u2rXfbU+f2OcghKV6PrIsIRSZD5bU8Nb8LbSFEpTku7lk+iBOHFmOMM0e3QjyIHkR+BbgOYBtYyTrog6aQCDwtd3/v0eJT482TpA1UMcFkiIjJIm2UAK/x4Ei7b/3E0DClPAMPYVCt4+2ec/jGTIJYZk0vPZbtMJelH3zl0jYtM1/EUaexSOz21ixsUtgtSUY5/kPNrBiQyN3XTsRrxSl5Z0/Etv6OQBqbjHFX/8hwnKTsAS3PzyPcKwrUSGwo5WfPtnKzecNYvz4mSSWvYUdj1D3zD2U/eeDNAYNXCKIvyCPiOkAYbE7ZqZ4cim99Ie0znuRpnf+1HUvNBf50y6n+MLvIhJxXANGE1P8WPqx9eZtmjYDe+WS53PSFsqs4wjJ/lgDe+ViHqFU8yOBUBTue/yzFBdnQ2uMR19bxdL1DXzn66Ph+Lnez0jWOVWy70QJ0bHdgfV7OU7IxqCOcSRF5qMVO7n5Vx9y+8PzuOlXH/LP9wLIB+geihgqou8kSq+5n9zJM2mdl3xBKzzrRrB06p77JXpTDTvCzhTjtCfrt7eyZksTkRUfdBonALO9kfpnf044HOWxt1anGKc9+ce/N6OOPCMp4grY8TAt65fy6Ltb+OUr22kLJchRDYSkdiZpFMy4luZZT6UcD5KK3C2znkKSFBKNOxDI6B3GSZKkpDFXZKKmwJJlUGQUpWfOPxQh+MXNU/C6M0suedwav/zWFJTjaDqhqjLLAw3dxt8Wr6untinSYz+zg6VDIeIyknVO3X2Qu+ugLj0cihKBQOCJY6EGCrIGqsejqjKapiBlyN2WZYnWsM6T76ztjNkIAbOXVLMs0Jix91MmDNMmJlxEt63G1buS4vNuQVI0EtXrsSLtKJWn8NaS9NjOnry1YCtxR7p2nh0PEzcFi9fWd7uvaQlWbQviLB/YuUwE5nHy0Dy27gzy139vIx6Loys55J54MXKOH8Wbv88W7K3zXsAzZBKmlEwEkWUJIcv85Y013HT/h9z64Bxuuv9DHnh6KWHdRu6BDzzLssnL0bj/O1O5ePog8jpU6PO8Ti6ePogHv3sKhT5HZ2v64wHDhncWbN3nNm99vAVxMLUMPZyO4tuTgAAQocsXbXf8HQCmLFmyZN/dP49Dsi6+HoqiSHiUBInqtZhtDXgGjkO484gYXW/TmqbwweLMit8ffLaDMYMKDzg2IUkSztJ+YJ5EvGY9brcXM5icMQmHh3B03zVE4aiBcGRO+bYswf6SzNqjJrKjK9tWGHHcHVl9S9Y1YMysRLUE7qFTyQXiNev2OZ7RshM1r5SQrQECIcv89K+fUtOQqjYe2N7KD//wMQ/fPh15Hyn3RwthC2Jxg5ZgnFsuG4PHpRGJGyxavQtNlYnH96NPdIwhBISi6Qr0exKK6li2OK7ibkuWLFldVVU1nGSd0xV0afE9v2TJkq+UW29PsgaqByJJEh7C1D3+I6xIsjlg29xn8Y47E8+Uy1PUFlyOzLMkTZM7Zl0H9tBVMYmsX0j7J68iO3PwjT0dqd9w2j97C7m1mkEVY9lY3X3a8wkVuTjVOHtHS2SXF4emZGw1sieDKzwYG+s6/1byyqhrTxpFRZGRVQ3LsgmZKt7hp6Kvm7ffaxKSjG0JVFVmXXVbmnHaTSRu8vaCrVxyygk9LpZjWTYleW6mja3g8bfXsrMpwrD+BXzr4lFox2HmniLDCb3yaOjQbczEkL55aLKMaR9fV9/hvvus458sZF18PRKXYtI65+lO47Sb8PL3UfRgp7tP102+NqkfmfruXTRtIOpBvGJq6AQXvQWAnYiSqN2A7MzBM/RE4mvnMnNSWcbj7ObrMwbhGzAC94CxncvU3GLKrvopbF3IBVN6dbtvcb6bEmcCs70rg1YafS7vL026BWeM78Vub6Vbs5GtBO6B4/Z5Pc6KwVgd7182MGtJ9T63n/95LXoPrSUSls2QXrn8/MYT+fuPzuCOK8eR61KwjpE2HweDJASXn959mxZZljhnyoAe9yJxOKmqqlKrqqpyq6qqvvLV19kZVA9EwSS+bVXGdfEda1EHn4phWAgBbk3mR9dP4k+vrKQlGCfHpXLlmZUMKPcdVJ8iYRk4ew2GihFICMLrP8WrauSfehX+iecRizXxg6vG8X/PrUhRipAl+M6lY/C7NUK6wH/OrRTQlWZOIkTbe39lxmU/Z0tdCZ+sTi3jyPc5+dk3R2B80NUWzDlgLDVRF83BONPH9+aqs4dimDY+Tadt1hNEAgspnHEtnuFTiaxdkH4xkkz+Gf9BXCRTywXsN06Tqe6qJ2EYVtKl1XEZx+vj2bYF+V4H/3XJKP7y2qqUdHJVkbjzmiqcioTdwz+vg6WqqspJMlniTmAEYABaVVXVGuAB4KUlS5Z0n855nJJVMz/KZFJP9ig6La/ej16/LW37ksvvRi+sTHngKh19pkxLoCoSqiSltWHQNAVZljBNO+1hrSgyyLBs9Q7mr2tDliROG5nHkBIVc/6TlF76fYRpEdy2FrNoMJ8G2tlaF6ZPiYdpY3uhylLGt3mHQ8Fc8Sbt819C0py4zvg2UV9f5qxpJxI3mTDAw+BSDWPWo+h1m0GS8YycRt70b9JuOpAQODFwShbIEq3vP0Z0wyIgqYJReukPiW5ZQWj5h53Fu1pBBQXnfAvL34eElXQQqKrM4g1N/OHFFd1+DmdM7Ms3z6o8ZGXwrNL34UVSZEwb5q2oobYxwgm9/EwZWYEsBML+8maOR0nNfBLwLqABmVrxhkgarLO/avGorIE6ymT6QaiqjNa0noYXUzUd1dxiSq+5n6C+706vKfsoEh4lTmTdp5jN1bgHT0YtHUDY0BAimYyRsOCuPy2gJZjaCry8yMN9N1aRqxnUPHorssNN2RU/IrJ+IWY0hIgFSTTuoOTi7xN3l2DuFa93OBTEho+IWgpK6SDsWBh54zwQFu4TxuIs7U+iNoAVDSPn5OIaMBoDBzYSSvMWGt98CDuW7FmUM/REcqvOpu65exFWR8KGouIfezq5Uy7G0hNIsoItO4jjTnMBSarC/3t4XsaaIlWR+cP3p+OSOeQC0KyB+nJwOBSQJISd7F78ZXOkDVRVVdVEYA4HVqgbAU77KhmprIE6ynT3g3CrFlLLNtrmPY8ZasY9cAK5U79OxM454LRiSZLwyWF2PXFnx4M+iWvAaPLPvY2woSGpCvc+8Rmba9ozjjFhaAm3THUQeu1+8k6+DKOpmsheCuiyy0P5jb8jqDs6jpuMFWmSibAswu3tWIqLjbtimMhUKjVE//0HALxjv4Z/2tXETKXTqORqcWr+fAvsFQTPnTwTKxoivOqjlOW9vvUHgiLTi2cXiiIRMwX3P7mYHXVd97vA7+KH3xxPnyI3hskhf7eKi300NYW6NXC7Z7m2SLpFNRlM49iKIWWN8EGNs18D1eHW20lSeuhAaQEqDsXdV1lZORO4h6QxfD8QCHzvYMc40mRjUD2UmKmgFgwm76IfIgsbU3YQMiWEOPCHmlOxaJv7XIpxAohvXYmItiK5ywnFjG6NE8CyQAP2eUlBVnf/UbQteCVtGzsewWyrR/b2RQjwOy1EpIWmD58gvr2rv9qAPsNQT72R7W396NV/NPEda/CPP4uoIWFZSWOkqjKxbavSjBNAeM18Cs+8IcVAKb7CZKxrP500LEvgVmV+eeMkguEYdY1B8nK9FHgUpA1ziK7YQf70q4iq3rSZYHfIsoSQJCwB67e1IMsS+T4nCiLF5SkpMtvqw/zplZXUt0TJ9zn5j/NHMOqEggNS/Mhy3HIZSbfeweAALgWeOZidKisrTwAeBSYD9cDsysrKcwKBwLv73vPokjVQPRjTtDF3f38PwbuhCINEdXoxq5pbTCu5/PrxRVw4bdA+xxACwjrIqgMQyelRhlmCJMnJpA3FQETbqHvxfqxQS8o28ep1KK/9gv6X34c57gLKpn0D3VmItXfAu7siTElC2kNJXXZ7Kbn0TmK2kwNJp3fJCcIfP4e792g0pTfPzdpCU1uMaaMqmTFhPHXP/ZzSy+8mqhZgWXanSGkmZEUmqlv85bVVfL6pqXO526ly9pR+XHjKQESHpYvpFj//+8LOWrDWUILfPreMB26ZSkWBG8NO3mdJItnGPWu0vircSeaY077wAndxkAYKuBh4IRAI1ABUVlZeAcT3vcvRJ2ugjlMURUJIClphBWYwVQVCnXAhf35zA/XNUfJ8zv2O5fG48F7wPYxQK55hU4msSa1Bkt0+FH8xwhBoKkTWLtvLOEk4ew1B8eYi9DjmpoXkjD2ThEVapqFp2uT2GwWKmtYc0TfuTLSKIZRd9yuwbRR/MVHbcUAZeLIsIdp2YZkmi1sK+Nu/ukRnn64PsWpbAbdMvYbgqo9Qxl9CSLeIxAy8bgcet4Ymi06XnKLIhBIWP/jDx8QSqecYS5i89tFmNlW3c/uV49BkiVc/3pixUHnV5mbcrjIee3M1m2ra6Vfm44aZIyn0ObC/ZCOlqjKyLCNEMraz+28QnRmiWb48OlLIRxzi7iOqqqqUJUuWHMxr6yBAr6ysfBPoC7wN/OQQj3/EyBqo44wc1UQxoxgNNSj55RSeczO1j9+J2MPNp/Yazro3VjJhWCkFfgd3XDmOzTUtbKgJsXZr6qxnUO885NZqEu5iPq0WjJ9wGa5oiPjW5cmx8kopueQOkOVkrZKpE924u4W8hH/iuXiHTyVRuwEz2ITszME9aCSSiBOyMvejitkOSr/xE5re+B1WuA0kGe/IaXjGnEF7XEFyVQAgDqI9u0s2CH7yCtLEy3j+qXQpnW11YdR+pzC7zsfbD31MW7jLxZ/vc3LRqQM5dVxvhGliCfj9iyvSjNOerNrcxJqtLUwYUpxRg9DlUKgaXsoPfv8xiY7g/9qtLfzwkY/5/R3TyVHlbmdvXwRZkbEliWWbmqhpCDO0Xz4DeuWyensrW2rbyXGpTB5RhtuhJFunHEfx3h6Gl6Rjev9N2dIxO/bv3jefjgpMA6aT1PV7k2Tr9ycO4fhHjKyBOo7wagbBec8Q27gYV59hCFMH1UnvG3+LFWoGJBRPLiG8/N9t09heF+SjpTtRsDhnYgXnj2pDVwbw8BubCexoI8el8r1LhpJj1bM65GbR2m28NDvE1addwuiTr0PGxudxEl78FlYignf06VBQjqt3JbLmwjtmBnrDdnY+/dOU2VDrxy+SM2QShWffTMRyYOyVLKBbEnZuf0qv+zWSlUBSHOhCJZhIuvcO5cGtSBbxmgCuKS5Ce8k2OR0Kd107kV8/vYz129ObjbaGEjz+9lqWrm/gjqvGE42bbNix/6akL83awPD++ZwxqS9zltakrJs8spy5S2s6jdNuLFvw6kebuPasoWmlAl8USVWYtbSG5z8IYJg2158/nLrmKA8+s5T4HmrvT/1rHcMHFHDHVeNR5PTEkaQ2JNmZ1hcjzMHHn3ajdux/MNQBHwYCgUaAysrK10i2m3/iEM/hiJBVkjhOUBQZu2kHjvwySi/9IVpRH1x9hpM/9RKMhu3oLbsQlklQlwjGDGobw2yqaaekwM24YeX88ulVLN5hoNau4K6L+nD92YN5+NvjyGnbTLOzD+t3tDLihEJ+dP0klm+LcNPDy/jnR7sACTWvBNVXiOzMIWrKvG9MpHX8degtO2n/9LU0Vx1AdMNnNLz6IC7ieF12mjq1AwMRbSe8ai7RzcvQJBO143VKliVyVBO/lsCvRPFrCZz7+6kLks0MQo30LvGmrDr7xH7MWVqT0TjtycpNTcxaUk11w4FleW2vC4EkUVHg4cJpA1NCa6MGFlHfGs24X2NrDPswP/llVWbW0mr++e46DNNm6ugKnJrC399cnWKcdrN2aws//etChNL1iNANC0uW+ejznfxr0Q6ipkBSso+QQ6HDPXeo4q9rDtK9B0mX3lmVlZV5lZWVCnAOsPQQj3/EyM6gjhM0RSRnSbLMrqfv6VzetuAVSi+7E0dRb9p21UC/vvztlRWs3COwX1qQww++WcXdf17AsBtG4/zwEc49+yba1s/lE3sUjz3VFXN68cMN/M91E8lxqlwxTqXub9/rrEtq//R13NOuxdD7UuDJpf31V/d5zoma9bTt3EHCU0Z5noOg7UCIpJsytuQNgp+91bmt5Myh/Nr7sJ25EKqnfe5zyWw/BLIzB++4M8mdcA5h25WedAGYKLj6Dsde+gq3XfAdfvzESgzTRpLg5DG9uPvPGRQpMjBveS1Xnz30gLbdbZCEZXHRyQM4f+oAGlqjFOa6yHGq5DgVPlmZ3pBwyqhyFFk6rC2PbCSef39D59/nnNSfB57adzlNbWOYFRsaqRpSjOhoQX/3nz/B7IiPPftegJsuGslJI8qy2YiHxgPAnzi4RIkQ8L8He6BAILCosrLy18B8kjO3D4DHD3acI0329ec4QSDj6j2E1nkvpi63DJrf/wfYNmrf0WyqbksxTgD1LVHmLqvh5LG9ePXTXSj9xmKHmlGHTeeJ97ekbGuYNv94aw1XnVpBYtZfu4pmO4jNf4bzJpVhV38O9v7zte3P32HLzhBtDfU4laRhUa1YinECEIkoiR1rMDYtpO7J/yG2bSW7M/fsRJTgwtfZ9eSdeEQ4Y6+ghK2Re9KlJHZuInftq/zp1vH8x1kncNPMShpaIugHKAtVXR+iT6lvn7qEuxk9qKiz8lfYNoqwqch345DA1E2G9S9gzODilH0G98ljysiyw9raXNMUlm9o7DQsZYU5tIUSaa7OTLw2dzO6JTAEPPT88s4xdvP4W2uOq9YXR5iX2G+BRBoG8PKhHCwQCPwjEAiMDAQClYFA4NZAINDj3yqyBuo4wTBtrFgoo1EwWnaCJJGwZJZvyNzXafWWJgb2ymVrXQQrrxd6Uw3BmIWVIUhe0xDGrXWMuze2hQg3oUQzNzfcG6u9AU2yEE4PmmKDIhPUwT1iWjKTrwPZ5cFR0o/mf/+1+7HCbTS+/htcUnoNo20LhK8E36SZJNbPJ/rM7Uxpfp2p0goam/YfT+o8hi1oaosxaUTZfre94owhKHulv6fEzyyL/75iLP932yncdOFIfvWdqfzouomIwywCK8tSWnFyfUtm9+Le1LdEQUpe966mSNp600rej6yNOng6im3PJqkQcSBESModfWU0+bIG6jjBtgWyJy/jOtmZgzASKJKgoiizokppgYfWUJxcjwM5EUbJ8eNxdd/JVVYUZGfm/k9yTi62uv/09eS5ubGRkN0+Fm8Oc9+Ti7n7ybXMUk/Fd+WvkN1J74d31HRCn8/e73h63RZkPZLxgRk1VLyTLqT4otvR8suIbVlBbMvn5GgH9zOoa45wxdcqu72XAJdMH0h5oSeju3E3QoAwLYp9DqaNLqc8z4UwrcOevSeEwO/pShaL6xY5rgPz7uc41aQklix1u4/f68wmSxwiHbJFp5FUiOguuBnqWP+VkjmCrIE6rrBkF+4TxqYtzz3pEhL1W1FjLUwZVZ7ysILkw2fmKQOYs7SamROLERvn4yjpCw0bGTe4MG28y6f3I7b1c3InnZ+2ztl/DIFdCeT+Ew/onKWh0ykvK+DTdS38+umlbK5pZ1dThBfmbOe3b9fgnHEzAK6KwWnt3bsjtm0lqpq5U0FYV7F6jaPoip/S69t/pPD87zJmZL8DGheScaV+5X7emLuJ+749lW+eM7Sz0y3AkL753HPjZGaefALiAINIdofO3JeV0m0YFieNKu/8e9uuIIP75KMcgJ9yRlUfHHJSgPiy04ekrZ8wtARHD+xGfCzRYXQqgG8Dq0n6ro2O/67qWF7xVTNOkE2SOK6IWhoF591KZOUsIqvnIWlO/JMuwNlvJDKC6KYlyLml/OLmKbw+dzPrtrXQq9jLxdMHMXtJNb0KcxiYq+MadSrB5R+S2LaK7136Mz5cmc9HK+pwOVQuPnUAQ12NRD59j6Jzv4WaX0b7Z28jjASeEacgVZ7KS8+s45rT+1Dab2SK1NHeyG4vuUMmoEk5PP/BkrT1q7e0op9XhavfSLTS/nCgKtb7aWRnGBYGDnaXoGiKzPABBWk1YJkYN6SEWNzk+vNGIEyLM6v6cNr43p2CpvJuNYge1K9ICHBqMmOHFLNiQyO2LVi8to5p43ozZ2n3fbIcqszZU/p3aiSeNbkfRbkuXp+7mYRhcdqEPpxe1Qdhmj2wF/GxRYfb7hngmY4iXi8QPoRsveOKrFjsUeaLilOqqoxTxAGBIbvQDYFDk9DsOAIJQ3Z3qkA7NBnNjqOrbmoao7SGEtQ1R1ixoZGTKnOZPNiHRzZQfAWYTdXImpPwuk+RfIVYZSPQcovwECdRtwnVm4/Q4+gtO5FUJ5IsY9s2ziEnEtJlHLLAQ5T6lx/I2DZEdnspu/oX4CmgPSFz4/0fZry+e781hcHFGsgS7f/+I7FNy/Z7T8q+eS8xb58D/p7IskTMEtzx8Dyi+2ih7svRePC708hxKBh66nY9XUhVkiRQZO59/DM217bjdCjcc8OJPP9hgJUbm9K2d2oKP7vpRMrz3Z2qFsXFPtraouiWQAhwqNJhTeboCRyNdhtZuidroI4yX+QH4XWYGNVrsSMtOEr6IWsu5LwygnFpvzEBVZUxBMiShCQsPJqNZdokhIZTNtHXzqF1ztN77SVRdP4tuPqNJLjkX8Q2LkHYFs7ygfinXIxw5xMxkpNyp1PFWPoa7r5DsaIhQitmYbY3Irs8eEecjGf4yYRtF6YpELLMz/+xKCWQD0nD8bf/OR3JspFlCXekhrp/3r3P61J8hZRe+ytCxsEV6CuKRES3+d9/Lkk7D4ABFX7uvKYKtypn1Mrr6QYKOuSeZJltdSFenbOJUFTnuvOGocgyb8zbTE1DGKdDYfr43kwb1wuNVF3AY+EavyhZA9WzyBqoo8yh/iCcGojNn+Is60/7oreIbl6G4vaTO+l83EOn0J44tCJ1WZZwx3ZR9+Rd3WwhUXHzQ+iOXFQrmUxkSRq6raR8Lg6HirXiddrmv4yjpB/ekdNQPLnYehyjvYmcCTOJGMk4karKNAYT/M+fFqSke19/3nBOHVvRWWPj1UyCHz2VpgXYdfIKZVf9jISv7yF1yFWUZEuMUMxg9pJq2iM6eT4Hp1f1xeNUUSXRbdLDsfTwVhQZS4AtBJKUnC0Zpt2RsSnhUNI1EuHYusZDJWugehZZA3WUOdQfhF9LYLXW0vSvv2C21aesKzzrRhg0Df0Q+g25VYvwB3/eQ08vHd/4M8k56SqievfjKIqM126l5m+3p8WESi65A6XXcMKJPZTJFRkL+GxtPaGozpRR5XicKuw1W/E5TGJrPqJ94RvYsa775qwYRMGZN2G4S0hYX+zZIEkSDoeCLQSyJKHr+8+syz68jw+yBqpnkU2SOFYRApGIpRkn6FCPGDQJ/RB0KGVhojd2HzgH0Ou34Tfa0NQ8jG5CNrIsoTfXUXrx7TTPfhqzdRdyjp+8KRdhxcKolkkynSCJbdlIwMkjy7p03jK40kK6imP41ygffgp2LIitx1G9+Viyk5hwHpZWFUIIEvsQgs2SJcuRIWugjiIOFcxQKz4riORwYUkaUctxQHUwQtawosGM66xI+yEXTgpklBx/RsO3G8WTS2TNJ3jGnI5B5non07Rx+gppff8xCk67CiUnF2EmCH0+BwQoJ0zOuN+BtPXWDYGOE9RiJC2ZPYcNHf/KkiXLcULWQB0lnKpAbtpI9RsPIRLJqn5X/5EUzvweIV3bb5JD1NLw9h9JUgE1dWP3gNGHbKB0yYl/8gU0vvabbrfxjz+Lpvf+juLJJXfIJCxLEMeVErcQQiCceaj55TS82jWW4sml7Nr7CVtK2nkfDA5NQhEGtqSROFixmANEURV2h5wkBFK2/cSXiiSRLfjNkkLWQB0lnFKC2pcfSInPxLetJvjJK7hOvIK4kdnCKIqMQzKQhA5aDvmnXUXrnK7mmoonj/yTL0Ov345aVJkx2L0vTNPG3Wsorm5qmHKGTsHW45itdcSr12I07SC2Yx35p16Js3RIZ+IDQMRU8Z5yJblVZxPZuARnRSWOsv4khIZsStj7qVfq7vq9Spzw57OI7FiDo3QAuRPPI2K7Dqu4qqypvDp3E/9euB3dsBg/tIRvXzwaTZGyHW8PI4oiYwK6aRMM6eT5nGiKlO1FlQXIJkkcFVRVRqldTtMbv0tbJzlzKLvpD4QtjYRpoykyigTYNk7FQo00YLbuwlHUG0nVELIKAmLVa1E9eaj5ZTS/+yhafhn5p14FtomQNWKWit5NWEVRZSwkEoaFqshJWRvVxtywgOBnb2MGm1Dzy8g78ULUvFLqnv8lwkjgn3AWth4nvGouAHmnXoljxOnEzNT3nsJ8F2YkSHz7amKbkskX7kFVOPuNJGZpGAeR1JDr0Nn11I+wgl21O7LLQ/l/PkjIch+WN3BFlXnpo828PT+1sWFFkYd7vzUlLXEDsgkEh8LuzsS/eXYpW3d2uasr++Zz+1XjcSnsUyrqyyCbJNGzyM6gjgJCgKRkvvWOgVXsaLX41VOLaG6PAzB5RBm3XjYGuWEjKBrRDYtpfPMPOIefQuPgC3nkjY34PQ7iiXYGVFhcf/K1qLtW0fTOH0nUbaHorJvQPHnIvgriVqoEkKzINIV0/vfJxTS2xYCkfM0NF4zE22cshfllKDl+rHiY9kVvEdvU1ULGM3QK9Xu479rmPkfFkMlIcl6noXAqNvHtq6l/5UHvqUOMAAAgAElEQVSEEe/cNrLuEySHi5JLfoBcMICEuX/VLU1TiAYWpRgnADseIbjoTZwnXnFY3H2mkHh/4fa05TubIgSjBrkuJeuKOgyYSNz5x/lE9uo4HNjRyl1/nM9vvzcNOL4KgbMcHFktvqOAZdk4KwYjOVxp6xxTr+Ynf13YaZwAFq2po6WhkfiOdUQ3LiWy/lOQJJSqr/Pzp1ZR3xJlY3Ub1Q1h5q2o4721MVyVU4htXYkdDdLwxsPIqorDjqbFpoQk8ZO/fNJpnACWrm/g5dkbadEdhFZ9RO1j36fumZ+lGCfv6NPQm2pSUr0Bgp+9hVNJzjAURUaLN1H3wv0pxqnz2Hqc+hfuQ4s3Z2yRsTeyJEjUBjKu0+u3oNiHJxglhOi2/UYsbpKM+2X5IqiazPuLtqcZp920hhIsXFOHqmXWVMzy1SBroI4SUctB2dU/RyvoEPGUVfKmXsr2JoNYhhRnCYGrYjDhjiJVZ9kAVm8LpvXnAXh/yS7a24IgOtbZJvEd64hXr0XT9mhhIUvUNIYzyvt8vKIW04KcadfirzoHqUO5XCsop/Csm8itOpvmD59I2y++fTWKSD50nJJO66wnus4jE8KmdfY/cUr7Ny62kHD2G5lxnbOiEks+1A7aqcgSjDghXSTXqSmUFuYcdrXxryK6KfhkVXqzxj1Jfgez9/qrTNbFd5QwLLBd5ZRfcy9WIg6KiiE5sWsyt4bZWhehtMLV9XCU0rP39kToe89YDu6HvvswtqEjTIPSi+9AUjWscCuKv4iG1x8Cy0TNLUH1F2HFQxh71U+pGMR3rN3vseLbVlKIyf6+joZh4R84Aa2gHKOl6+GmeHLxTzyX9sOUzScLwXcvH8uPH+2aWTpUmTuvrUoG7w/PYbIcAEltiyxfVbIG6ihiWTaqN4/WWKizhGdAhR+XQyGuJ33vsixRlOuiOSaj5pXgGzmN9s/eJlG3lZFn5KEqUtpb5tcmlCE27dHCXE62O5ecHkJ7VNbatqBXsRe3U02btZ0ytgLZ1slxqYSbagi9cB9aQTl5J19KbNMSZLePsm/cgK3HMJp3onjzcRRWEK/bhiUlC4SFeeAWQ1g6kO7y3Juw6aDkql8Q27CI+PZVOMoG4h11KmHLxRdJW98T2xa4VZkHbjmZ5mCcWNykd6kXWdidwqlZvhgOVWLKyHKq67tPSDh5TAWaInGY+zdmOYbIGqgehixsfnHzFP73qSXMGFPM2RNKkNp34SvUkNRkjZIZbCKyfhHm0lf5yTUz+e3L62gP60gSnDKmgnMnlBD8Z9JAyTl+is68Ads0sHI8iL28eYoQ3PutKdz/5OLOuNe4ymIumzGYHL2RyLo1eEecTPHMW9HrtxJc/C7IMgXTr6Lhzd9jhbpaVEiai+ILbkN0vPd2lwiSCUnR4ADEG2xbENQ1tMHT8AyeioVCu25zuIzTbnan5xd5HUg+B7ZpZWdOhxHTsDnrxH68s2ALkQwu5jyfkxNHlh93aulZDo5smvlRJlNaq6LIaLKJtWkhLe//vTOG4yjpR8nlP0aSJbAMhGlgOz2ETQcx3cKhysgS5Eg6mmSAqSOpjo40cwXdlNKO45biSKpCxFSJ6RaKIqPYJlqwBm9xOTV/+29EIoazYjD5p15J/Su/pvyqe6h77pfYiQxtwyWZihseJKIW4pZ1Wl9/gMTOTfu8B87eleRf8H0i5uGJIR0NsmnmB4+iSIQSNv/39BK276EgP7hPHndcNR63KmXTzL/iZGdQPRDLsvEQo/a9v6Ys1xu20zb/RdxTr8IQTgxJIOngUAQumc6GflFUkh+tO9mXMwOKIuGx22h8/XcUnXMzoQwGRzrjetz9RhLdsJjEzo0El/yL8mvvI75lRWbjBCBs2ua/hHfGjcSFk/wZ11H39E+SSSBTLiRn0ASEZYIkEVr+IeHV88g/7VriwkkmqSJVlZEkCdO0sqndxxmWJfA5Fe65YTJxw6I9rJPvc6GpEirdK8dn+eqQNVA9EFWViW9dlbLM1Xc4jJkJeaXEhcrspdW8M38r3hwHX58+kDGDi7ttMe5URVJ9AtCFhm5L+JQ4tU/cjeovQq/fmtHgBJe8S8GpVxLdkOw0Hd24BGfFEOI16/Z5/vEda8jFxLIUbH8FxRd+D1l1Et2ynJ3//AnYFpLDRcH0q/FNOBvTU4q1V6DBrVpo6MS3rUSYBt4+wxEuH1HLcVzNoL/q7FblcMkS7tyOJCBLZKufsgBZA9UjESLZcXY3rimXU5NfxePvbqO2cRdD+uZz9dlD2dSvnYWrd/HQCyu4+aJRnDyqLMVnL0nJ9hShz96kefkHYFt4Rk4j/5QriKxdgB0LIRVUYMczz4bsRARJSxWDtWMhZDWzQOxuZNXZGRKKmQqFlScSWfcJoeUfdF2jHqf5/cfoddNDJKzUagefwyT06Ss0LP03e8aWnL2GUnzx7QQNZzbV+zgk+5lm2ZtsHVQPxLJsHBVDkF1etIJy2son88unV1PTEEYICGxv5d7HFvH1GYNwqMmP8IUPAxh7zSxcikXbnKcILnoToccQpk54xYc0vvkwqr8IAL1+K66+wzKeh2fYScR3bUxZFt28DM+wKfs8f8+o6ehyV0aeMBIEl/4747ahVXNwOLrekxyaRGzNR4SWvsveiQ+J2vU0vfEQOeo+GlFlyZLluCFroHooUctJ2TX34pj0dV6an17QqJs2i1bXMX5oKQDt4fSHtiYZRNbMT1se374aLb8MAGHqRAKfUXD6dSB3Ve07ygaQd9LXyRl6EpLWZWyM5lokzYmzYnDG81a8efjGfQ3d2OttuBt5dUlKbU/vIk77wtczbgsQr16LbKQrYnxZyLKEpimo6v5/Kg6HitOZ/EeWszHyLFm+KFkXXw/FtARRNR9tQBXtHy/LuE17OEGOK/kRDu2fn17QaFndqjgIRUPrNQSjdgPtC9/AP3kmvW76LRgJUDQkRSUuubEcTipu/A3t818ivHY+WCaN7/yZ8it/TOjzOYQ+n52UMZJkcoZMIn/GtUSFC7dqIHfktMvOfHwTziFRu2Gvs5DwjDqN8B61WcLUsWPhfd4bo2EHSu+xyY7BEuQ4JBQjWVBryU4S5hdv26AoEjlyAjvcTKImgOzy4O8/Cl1oxM09OgHLErYksaspwuwlO6hvieFxq0wb24vCXBcqZNXPs2Q5RLIGqgdjWQJVkzl5TAUbq9vS1k8YWsqT/1qLx6Vyy6VjUEiV1rRlDTW/DLO1LmU/2e2lOaHhPud25PcfoeDUK1G8uYhEBKOtIZkUIcn4J12A7PQTsjy4p11L7rQrwTJBUTCFhuvEy/FNvhAsI6mEgQMh2TjadxBc+Dp6Uw2y5sQ74hQ8I6eRe+KFtC9+BywT2eWh4KybMVRvSm2WJO9jpiIruGfcRJN/CK++s47A9lYUWaJqWDHnTKxA3jQfJdKIb8K5mKqHmHloOm6KIuMhTMPz92E01+55cuRNuwLPyDOIGAqKIiGpCtt3BQGJAr+Lpesb2Fjdxtvzt1JWmMMPrp5AodeJbWeNVJYsB0u2DuoLomkyDjuOAAzZndIRVtMUNBFDEgJDdqW4vSQpqSQuKXKy3bmUfDibpo0CyDI47BhIEnE5h189uZj121s79z99Yh/OmzqAmoYwI08oxOuUiCUsBBJu1UK2reR4NsSiMeREEH3pGxhNO3Fd8lM27IrRFoozemAhHqOFyL8ewmytR80vxT/2DLTCCupf+y2+8WfhmTCTsKGiqjJGx3PWoUhp3W/9DpOWd/9EbHP6jE9yuKm47n4kZw62kUBSncSFM60FiFfVaX75PoQQKCO/hnD5kXetJb5mHjnn3Mbr6xXeXlibNr4swfeuGMtwYzXROf8g//TrcQw9haixbyOlaQp6RzqzJicLdH2aTsOzP00z7Lspvuh27N7jMQS8t3A7sxbvoD2coE+Zj/OmDkCVZR5+YTmWLVCVpCJFkc9xzM+ksrVeBzVO1sd7GDgqBqqysvIe4PKOP98JBAI/PIDd+tODDJQkgU8zia77mPDK2UiKhn/i+Wh9RxM2VLyaiVm7huCiN7ENHe+o6eSMPJWQnoxP6ELi5VkbWLm5mYoiD5ecNphwVCff70KWBMVWA9FZf0vOZE68CLvPWBpbItQ2hunfuwjdtIklDOYuq2X9thamjK5gyshyHntzNRMG53HaqAJsLYcXZm1h5ZYWKgo9XHfOELxeF3f/+VN2NXdp/p07uRcXDQgRe/+RzmXuQePxjTqNhtd+Q+G5t2CdMIWl6xt4Z8FWTMvmzMn9mDq6ArvDPefSbOKfPE9o+fvd3zPVQa8bHyQhe4l3015DVWVkI8yOxijPzq2lpT3OxMoCLpzSm5Xb2njo5e5T3CUJHrztZFxv/wSzrZ7Sb/wEvWBwt00bZU3lk1U7eW/hdhRF5vypAxhfWYyrbQv1z9zT7XG0oj54vnE/9/xtEdt2BdPWn3ViP/qU+Pj7m8mGj+WFHu77r8x9pI4lsgbqoMbJGqjDgPKzn/3siB6wsrLyDOBGYArwKPDDRx55JHTbbbet38+uecB/x2J6jyjYzFEN2mc9Tmjx29jRIFa4leiGRSguFzm9B5NYM4fmf/8FK9yKHQ0S37YSs2UnviHj0NG44/cfs2ZLC+Gowa6mCB8tq+GsE/uxYOVOQlETzeHAXbsYvX4bztL+GBsWYC98lj5Tz+GZD7egKjK//udSttS2E4zorNnSzOaadi6ePohHXlnNzjYLVdN49v0NyWM0R1BUhdWbm1m+oTHlWjbWhphx8jDUbQsRRgIAs2UXnqEnojdWI/xl/GujwuPvrKU1lKA9rLMs0EB7JMHYIcUgBDmKTtPbf9y3cnlHB11PnyEkrMzeZVmW2Nqs8+O/L6WhNUYoahCoDrJ4QyvTq/oze0l1xv1209gWY8pJozE2fIrRVINv2BQMO8MsSpF56t11vDJnE+1hndZQgkVr6lAUmUF+nfi6j7s9hqP3cD5u78VHy2oyrt9c084lpw1i8do6dMMmHDM4ZVwvPE61R3x3DxWPx0k0enxnUB6ua/R4nD8/DKfzledoZPHtAu4IBAJ6IBAwgHVA36NwHl8IVRhE13+Stjy48A00Eaftk1fS1sU2LUGVBEvWN9AWSqSss23BG/M243VrjBpYxD/nVCOPOhsA9wljCK+ci5ZbzNINTUwd04uXZ29MG39TTRtOTcHvcfDZ2np6lXhR9sgmq+yXz+J19RmvZ+nGNhxlJ6QsC62ai2f4SYh+43nj4y1p+3y0rAaLZMxG37kR7P2L6UXWfYIdaUtJLd8Tw4Yn3kmfJe1sitAaTlBe5Nnn+Cs2NCIVDwRAr9vS2fpjb+yO89+bNz/egpW/76+jNOJrvLNg6z63mf/5TiaNKO/8++PltWjZ3kZZshwURzxJIhAIrNn9/5WVlYNJuvqmHuj+hYXe/W90BEjUNWVcLoxEMpEAyKmaiUAisXo2drwjM83S2VGX7hYCqG+OUjW0lLhuUt8SBU9JckzTSM5MJBnLEvg9jpQGg3vS0BrF73EQjOgEIzouh9IpxhmOGuT7XDS1pTcPLM51YNenZs9Z0XZkpwdTSBgZ3GRCQEK3KC3zE9yeuU3I3tjxKJKskJvrzri+JRinrjnzWPXNUfJ9TnY1dX8sIcA0uwyljE1xsS9tu+r6UMbZjGHamLJjn9eg+IsIhjPPnnbTHk5QnNd1jeG4gc/nwu8/tj0/me7l8cZX4RqPFY5aFl9lZeUI4B3gB4FAIH060A09JQaV6/YlhVjNVHeA4i9CKCq+K+7j2QWNWLbgm5dNJ/zCjxCmCaqLqmGlvDU//Q18xAmFVNeH6F/hZ9SAfGjouC2ShOTMQd+1mbGn5bOiJkRlv3wCeyRN7KZ/RS6NrTFURSLP5yS6RxuNOUtruHTGYH715OKUffweByP7eAh/lPoxOIr6YLbVoxYkDUPrXrM+l0PB7VRpbg7jyis9oPum5pUgOdw0NWU2EJIiM+KEQhavTZ/pDembzxvzNu9zfKdDQbY6DLAkY8taxpiCy6GktDXZTb7PiUNVUMacQfjzD9PPT3Oiub30LfNlzKzcTd9SX0p8qqzAQzAYR987K+QYIhuDOrhxsnxxjkqhbmVl5VRgFnBXIBB48micwxclbmsUnPEfqQtlhaLzvoOh+li0TeeDxTXMXlrLnDXtuPoMp2DGNcQtmb6lPsYOLk7ZtTjPzekT+9Kn3Me85TVcPb03xsr3AAgufY+iM29AWCb2qncp8ytce84wXI5Ul9H5Jw9g1aYmEobF9ecNY+P2lhQj0BKMMaSPn7uvHk3fUh9up8rk4SU8cMMo9Fl/TrtG35jTCK/5GHnrIr57+di04tP/unh0soGfLVDzK5Dd+/9R+qvOwVQ93cZiJCH4z5kj8LpTlc1nVPUhFE3OCvfFGePLEevnApBTORlDdBPrEoL/unh06jJZ4rbLxiIB/lO+Qf7p16F4cnefGe7+oym//gFUVeOKM4Z0ew6qIlE1vJQle7hTp43rdUwbpyxZjgZHPIuvsrKyD7AMuCIQCMw+iF3704Oy+ADcqolqRoiuXYCkOckZOoWE5MIUKjuaIvzkL58CcPc1YxnX14UhOYiZalIFQVGobQqzLNBIr2IvQ/vlA9AWSpDvd+K2QliB+TgcKjkDx6E378RR3IfI+oVI+b2h7zh0S/DZmjpaggmmjqlANyxWBOqZOqIInx1E8pdQ3RBh2cZm+pV4GDO4CHvxS+j1W2HkOTj7j0Zq20norf9L6esEEoVnXIcZaad90ZuUX3c/MXcFcdNmwcqdGKbNKWMrcKlKp4K6Q5WQqpfS9Nbvu71fan4ZZVf/gnZ9Py40RcaSJJaub6CuOcKJI8spznPR2Bbjzj8u6Pbz97o1fvetMcSevxOETcV/PkhY8nf/fZFlEqbNx5/XoioyU0dX4FAkREe2nUOTcBJHskyQFUxU4raGbQtkTeXlORt5e6+ZsKpI/L8rx/PZ2nrmdsS4xg0p5rbLxmSz+I4Bsll8PYujYaAeBv4T2NNX82ggEHh0P7v2p4cZKEimNmuaCgj0PdxFkiITjpvYAvI8DmzT7Jw1SJKE1wVmzWqi21bjHzUdpbA3cSNZaBtLWNhCIGwbj0vDKeIoVozIqrnoDdtACGLb1yAQlH/zF6jF/TAMGyGSMRhJSv7XsmxkWUJRJDTJJLJ6LpHV85DdPnJP+jq2rwxZBtWMEFr2AWZ7I2peCZ6hk4ms+5TQ6nmUXHwHZm4fbBRcUhzJMpBUDV1oxIzUCXiOamJuW0rLB48n1SX2wFkxmKKL7yBiuw+4jYKmKZ2tNmxbICky1Y0RHnxmadpMqrzIw4+uGIo6/y9YbfWUXHYXCVcxxn4mLcnPLzkT1fWD09CWNIWmtjizl1TTHk7Qt8zHhGGlvD1/a6dxKi/ycN+3TkKy7WNeDDVroA5qnKyBOgxkC3W/RHbrxe15i3NUEyURJLJ+AbKi4T5hDO2fvkHB165HV7w0hQzu/ON8IrGu7LObLhzJ2WNyqfnTdzpTtXcjO3Mov/F3BI19K4xDsqhYsxMISUYXaqehUBQJr8NGxEMk6rZgNNXg6jMMpbAPMeFAETZy0waa3vkTdjQIiop/wjl4J11ISE91oTlVgVM2SNSsQ9+1Bdnpxjv0xKSyg/3FW2Xsnl1trwuyZnMziiIxaVgx+WocbecqHKX9kXNLidrOI9JPSHEoVNdHWLO1mc217SxdV49lC9xOlTMn9+WiaQORhX1c9DbKGqiDGidroA4DWQN1BHGpFsaaD2mb+1znMkl1UHr5/wCCqOTh12/tYt22lpT9NEXimTvGsOvvt2cct/ctj2IJGVkS2AISkhvDOHh3kixLqGpyNmFZdqfygV+OUPuX29JqnArP/TZ2/ykZC2FVVUaWZUCQm5tz2B9siiKjKMnxhRBIUnI2t3u2dSRRNRkUhfaOGjGXU6HA70JBpPW5OpbJGqiDGidroA4DWS2+I4gTg8Z5L6QsE6ZOy4dPkHvSxVgef5pxgqRKtuTOxVF2Anpdaj2Sd8wM7HALze/+Bb1hO2puMfkzrkUtH96tFp2iKhi2jSpLYIvOB7pti7RAvsOhEF39ScYC3NDSd8nvNw6T9JhS0mh9eQ/nPQ1okqNnCEzDpjjPgxk38BW6EUIgTCvbdC9Lli9Itt3GEUKWJYyWnRkf9HYihl08GOHyc925wyjMdXXu852Zg3j4hkpi6xeQO+l8Kq69F2d5shBV0pzkTb6AnU//FL1hOwBmeyONr/0GObSrY4bRhaLIoCq8MX8rv3pyCY+9vZaIYSMr+37ZE3bmR62wbSSOzdnsl4Vti2NaLSJLlp5EdgZ1hLBtgeIrSFvuqJyKMf5yHnpzK9t3hRjYO5cfXlPF8x8EmDTIzxh9OZFnX2N3aariyaXsih8T/HwW/onnE179EVpuMcq4mciF/bBDjYjP36H9k1fwnXUrMbpmUbYscdcj82loTRb5bq5t59NVu/jdf5+Kz6lkdI0ZhoVv2FTa5r3A3g0EfeO+hi67j/nstCxZsvRMsjOoI4hweHD1G9n5t+z2wsQruOMvy1myroHGthgLV9dxz18/5bpzhzN5sI/44tdSxrAi7bR+/CK+KZehO/IQrlzMM+/kkWVebn1sE/87x6Sx6mbkfuORRNfMR1VlVm1u7jROuzEtwdP/Xo/opgOgEKArORRd8F0kR4cygiTjHT0DV+VJhxTrypIlS5YDITuD+hKQJAlVlbFtkRIniZgOii74HuEVHxBZ9wmukTN4YVFDmoxQXLdYsHInlwwT6BWDkDQXiV2bEXrSuMS2fk4+FrpuYQ08mR/8Zh6JjhTprTuD/PTJVfzm1im4VXeyaSEgyzJbalOVD0oLcigtzCGeMBH7cNXFTQVH77FU3PQQQo8jOZwYQiWU6JqdSRKoqoIQolv18J5AMu1exraPj8y6LFmOZ7IG6jCTo5rIiXbim1biyCvBUT6IGB503UwGzy0To6mW3EnnY+b1ZdfKLk2/wX3yKCv0sKspgiJLxHP7sn7wdYRiJuOn5qNsX0xiwTMovkJEpA2/N59XFzV0GqfdCAEvzN7Kf13cNVuzLJtxQ4p5fe4W/B4Ht142FiEEW3e2M7hPHoosYdt0W6ujmxI6TpCcsJf+arJgOUossBwlx4+n73AilguzBxkASQKPaiBCjSRq1uMs6Y9S1IeI+cVT37NkyfLlkDVQX5DdhZ6aKiEJQfzz92n96NnO9YqvgPJv/gJFy8GSHOjV64msW0Bk3QJcgyYysfIi6poj3H3lMFytm5EbliONqMQ3oITv/20R1R0Cro+xlRvOHsLESZfgLSikde6zKJ586mOZdXZbgvFkcWvH35ZlM6DUw/AB+Vx55jCefW99SsbgkD55/Oj6SYj9VbbuhUu1MNbPo2H2U53LZGcOZdfeR1Qt7DFN+ryaQeu//kRsy/LOZVpxX0qu+AlBXdvHnlmyZDlaZGNQXwCHYpOj6ESjUZ7/cCN/eG0tG/2T8Fx6D5KWzMSzQi20zn0OzQjiMlNdbIltK5k2rhf3XT8K7cPfEH/vD0SX/5vIuw/T/NK93HVZJXuGhh5/bzPa2HNB2MS2rCCxcwMnD/VnPLeTRpej7ZWdlyMnuPPCPjS2RtLS2TdUt/HZ2jo07eC+Eg502he+DlLXfnYiSvO7j+KUEvvY88ihKDJG3eYU4wRgNO4gsuojHFq2ZCVLlp5I1kAdIqoq49RbqWmMcMtDn/LavK18vKKWXz6xjP/f3r2HV1HeCRz/zsy55p6QBIhkwXB5UVQCykVFRdG2uCpdixbRCu7jpV1ttVtb19XWW/XZWm+PdlddrW19rNW2y9Zq9bGu9wvqIlAF5V0EQYMYLiEhl3Odmf1jTm6QmEBCzuTw+/zDOXOGM+/7JJnfvO+88/s9/GYb0dP+qWPf2KYPsJt3Et+wkmBxRUdS1UDRCCJNmwjXrSC1o3shvtT2TwlsWc20SZ1JZR0XNtc10PT2094+O7dQZe3ihKlV3f7vhDHFnDy9mvQeCxiSThBadvLO2p5rQi1fs5X+3j4KBAwKg0lItFIx/zKqltxK2SkXdiRXTdRpAoY/Rk+BgEFs3fIeP4utfxfL8UcgFUJ0J1N8+ylMnMZt9fznK4m9Fjm8vbaeRSdMw4oW4sSaCRSNwG5pxMwrZOdLjzFy4Y9oePFRUo31mOF84pv+1uMxzC3vM7HqdFbqzm2lBQGcRGc9pNizd3HpxfezcN5E1n/aSPXIQipKOxdHdBVPmxRUT2aU3rv4IHglISzDoK9JvrDlEtj9Gdue+QXpxvZgZxAdX8vIhddQv+xOcNJ0TjBml+saBMpG9/hZoLgC1wwgT9UK4T8SoPaTZYKRX8qGup4r1X9S38rk4gqSsWaKZ51Falc9bqIVM5KHk4xTfsbl4LpY0XyCpaPoqfygW3II23d0rkgYf0gxBamdtMU7A1RoZA1h06YoHGLm5Aocx8VJ273mVWiNu/z9nBqeW76ZZJfAGrBMFpxYg91DYOvKNA1C6UY+f/ymPSrousQ2rMJubqB8/qWkGreTIMyez05lQzKZpviIuTS9/VTHSkgADJPi4xfSalv4oZ1CiO5kim8/2Q64sd1Uj+y5BtKYinzMaAEVC67Ebm2iYMocgiPGkDd+Ojuff5gtD19Nw0uPYifiFM88EyMU6fb/jVCUoqO/yuZtrZQWhpl/3DiuvfAYAvEmgmVVWIVlFM06i/Kv/zOt6VDH8u6+VqS5LoRMgzuvPJFpkyooLggxdWI5d3zvBCIBs88sCGEzTeOrj/da3j25bTOGaRFWx5FM+eek30aE0Uv/jeiEozHziohUH87oJbeRDJbIKj4hfEqSxe6nQMAi0lrH+sYgP/71+3Rt0pRDy7jm/Fry0k2AC+ECjECA+Pp32fHMfwBg5hVReORJBMuriU48BjcRY9drT5Ks30hoVKwSjQgAAA0iSURBVA2lc87BDRewOxnAdV2CAZNU2iEYMIi6MVzXJWWESaR6bl9fTNPAMQwcF0wDL7FpP5aFFwWTbLn/O3tlVe+qcOo8wideRCJTzdcvSUZN0yBsprFI42CScMODtsrQL308kKSP+/Q9/pjfHuZkim8/pdM26fxKDo0kueeKWfzx9c9oaE5wYu0hzJ5Sib1iGds+fo9g2WhKTjwPN1LQsbghMu5Iyk46j6YVz9K2YRWxzR9QMvNM8iYdQ9GM0zELy9mdDOLGXMDGANJJJ/MvNPeQnHVfeUHe7RhCD+YtGO+h3+xfROzJcVxijgUd6Z/8sYhDCNEzCVADEE9bmGYeFaUul501mZRjURBM8cUj38du3glAasdntH28kkP+8XawLIxgmLK5i9n6u1twE22Zfepo+78VjF78E7b+9kYKjjqZ6KyFvWYjz6aUa5E3fjpt6/+3133yjziJhI+zSfiNYRgYBr6YGRDCT+Qe1AA5jkssCYkkWAbE16/oCE6dO6XZ9doTlBx3NvlqFi1r3+gITu3cZIyWNa+RP3k2zSufJ2js59zdAZZwApTMXQxmz9c2wYq/wyoZLWmE+qE9u/yOliSfbm+DgIVhysyQEO1kBDWITNMgsW1Tj5+lGrYSHj2R9K56Er2s/Es1bCU86lBwHdxUEoj0uF82OY5LMlDCqMU/YcfTvyDdtC3ziUF0/DRGzP82zWl/rN7zM9M0iNsu1z/wJtsbvZWFoYDJvyyZwaGjCnAlwAshAWowpdMO0ZppNK94dq/PIuOOIGlGyZs6DyMYpu3j9/bep3oyiS3rMUJRjODeOe+6ai99Hk+kCYcsTMAdorRCCdvALhpL5QU/hUQrTqINq6CUtBFidyrYaz4/0ckxDO77/aqO4ASQTDv87NEV3H/NKciDWUJIgBpUtu0QqBhHZOwU4pvXdmy3CssonrWA3SmIJU2KJx9L86oXumWPCJaPITr2SHa99nvKz7iCuBvu9TiGZbJ6404eWPYBsUQa0zT42uyxnDtvIk5qaE5s6bTrLdYwQxh5ZV2u+CU49YfrwpqNO/fankjZfLGzlarSqNyTEgc9CVCDrCUdpOyMq0jv2Exsw0pCleOI1NTSYkdwM9V0m1MhKhf9hGTdOhJ1HxEeowhVVNO2YRVVl9xNKlBAopd0DoYBsZTN3b/rzCvnOC7PvrWJ8YcUM0NVDFq5i0Dmuai+lmLLiGk/GAbhoEWihwuKvIiMQoUACVA9siwTG0g7LqZhYBmA4/brpOG60JwKYpVNIlw5Gcdx2Z206bqk2dsWJFA1lfIpx9HY2ErcMDEP/yotqTTul+QaCoeD1G9v5WdXzMEwDNZtamDZyx/T2JLgueWbqZ1YPuAEQ+GAQ5gEiU8/xAiGKKiaRJsTZogGZweFgOHylVljefqN7mmnqsrzKcoL4faR0UOIg0FOByjDIFOczu33dIllGcTSDrc/9h4btzRhGHC0quTyhVMxbKdbkDIMr/idbdt7ZWCwbafPkUf7SMerStv3qMeyTJrjaR566gM21DUBMF1Vct1FM/npr97JZD43GMg0WyjgYnyxji3/fQdkRnxGKMKo82/GjY7ydTHC4cROO3zj5AmYlsHzyzeRSNlMn1zJd/7hKO+h6Ww3UAgfyNkAZZoGjmny9kf1HDaujIJIoF+LCGwMbnhoOfUN3jJw14UV67bx4J8+4LIFR0DmXkvAMshzdhPbuIbCmlpa3fwDXvvIBm54aDlf7Oxcor5Sb8MyDRacOJ6yogghy2AgVdgjZorPn763IzgBuMk4O566h/JFN9IyCA8JC4+TSnP2CTUsOKEGXDBwMdz+ZfQQ4mCQswHKxuD2R1egP91FKGBy/zXz+jX11RJLdwSnrt5d+wWXLDii4zvyzARbH7kGJ9FGoGQkleffQrN9YE/ebQm7W3Bqt2JdPd86/TCK8oKkBjgP57Q24abie21PNXyO6aZAAtSgstOdPy9/5t8QInty+kHd9hvQ6X7ePzIMsHuZCnTcPU8eXvl2ADc1NPWEepumdF3IiwQGZQWfGY72uN2wgr0+nCuEEAdCzp5xAgZcu2QGzy3fxIzDRmIZfV+dui4UF4QoKQjT2NI96Bw1obxbNI+7YUZdcAutH75OwdRTiTkH/uHUgmiQ0sIwu5q7t21KzYhBu9KwzTCR6sOJf/Zh92NPO42kjJ6EEEMoZ0dQtu0QNuGcueOpLs/r90Osputw48WzKSvqzOIwbnQR3zu3FrPLKCyZhlh0NKFZi2i1SkkPwX0DC5cbL57NiOLOto0dVchVi6Z1a9tAtNkhRiz4PoVHz8eMFGAVlFJy0mIKZ59NPCVpeIQQQ0fKbfTAW2ZuEEumsUyTYMDAcvu/EnBf7Gt6f8sySWMQT6axTINQwOx3qYz+MgwIByBIAteFpBEZUG0nKdOQG6SP+/Q9cjU3CHJ2im8g2lfjRa3Mkm3b9U1hBtv2ym54bQNsZ9CXJLsuxFMQpz2bxbC5iBFC5JCcneITQggxvEmAEkII4UsSoIQQQviSBCghhBC+JAFKCCGEL0mAEkII4UsSoIQQQviSBCghhBC+NJwe1LXAK6ORa3KxT3uSPuYG6WO/jQPqgC8pPyr6MpxSHc0BXs92I4QQop8OBTZluxHD2XAKUGFgBrAVpOCoEML3ZAQ1QMMpQAkhhDiIyCIJIYQQviQBSgghhC9JgBJCCOFLEqCEEEL4kgQoIYQQviQBSgghhC9JgBJCCOFLEqCEEEL40nDKxZcTlFJFwFvAGVrrTUqpU4G7gCjwpNb6+qw2cICUUjcA52be/kVr/aMc7OPNwELABX6ptb4r1/rYTil1B1CutV6qlKoFHgaKgNeAb2uth22mBKXUy0AlkMpsugwYD1wPBIF7tNb/nqXmCWQENaSUUrOAN4BJmfdR4BFgAXAYMEMpNT97LRyYzEn6K8A0oBY4Wil1HrnVx5OAU4CjgGOA7yqlppJDfWynlJoHLOmy6THgCq31JMAALslKwwaBUsrA+zucqrWu1VrX4qUmuhUv72ctcKlS6vAsNvOgJwFqaF0CXA58nnk/E1ivtf4kcyX6GHBOtho3CLYCP9BaJ7XWKeAjvJNAzvRRa/0qcHKmL5V4sxAl5FAfAZRSZXgn69sy78cCUa3125ldfs3w7qPK/PtXpdTflFJXAKcCL2mtG7TWrcAf8UbKIktkim8Iaa0vBlCq/W+DKryTerutwJghbtag0VqvbX+tlJqIN9V3HznURwCtdUopdRNwNfAHcuznmPEgcB1QnXmfa30sBV4Evos3nfcK8CR793HmkLdMdJARVHaZePcx2hmAk6W2DBql1BTgBeCHwEZysI9a6xuACrwT+CRyqI9KqYuBz7TWL3bZnFO/q1rr5VrrC7XWTVrrHcAvgZvJoT7mAhlBZVcdMLrL+1F0Tv8NS0qp44H/Aq7SWj+RuWeTM31USk0GIlrr1VrrNqXUMrxpoK4lYIZ1H4FvAqOVUquBMqAA78SdSz/HOUC4SxA28Go35Uwfc4EEqOx6B1BKqQnAJ8BivJvtw5JSqhr4E/BNrfVLmc051UegBrgpc4Jz8RZGPAj8PFf6qLU+rf21UmopMFdrfZFSao1S6nit9ZvAt4DnstXGQVAC3KyUOg5vim8JcAHwmFKqAmgFvgFcmr0mCpniyyKtdRxYijfi+BBYh3djdri6GogAdymlVmeuwJeSQ33UWj8L/AVYBbwHvKW1foIc6uOXOB+4Wym1Dm9UdW+W27PftNbP0P3n+Egm8F4HvAysBh7XWr+bvVYKKVgohBDCl2QEJYQQwpckQAkhhPAlCVBCCCF8SQKUEEIIX5IAJYQQwpckQAkhhPAlCVBiWFFK/VUpVT4I+8xVSq3px/Hcnr5LKXWWUurezOtXlFILlVLjlFItfX2nEKJ/JJOEGG5O63uXfu0zIFrrPwN/PtDHEeJgJgFKDBtKqV9lXr6cKY9wIzACL+XQnVrrR/fY53RgKvCvQAivPMZvtNY/3sdD36qUmoE343C91vqZTAqghVrrMwbUKSFEr2SKTwwbWuuLMi9Pxst1d5/W+ihgPnCbUurYPfapA34ALNFaHwPMBq7ta/qvBxu11tPxcrX9JpOrTQhxgEmAEsPR4XgZxZcBaK0/x8uD97WuO2mtXeBMvMq+N+CVZDeA/H083gOZ71uDl2vv2AG1XgjRLxKgxHDk0r1uD3i/y8GuG5RS+XjJQKcDK/HqU6XwgtS+6FpKw8x8hxDiAJMAJYYbG69uT0opdTaAUqoKrzTCC132CQITgSK8+0ZPA3OBMGDt4zGXZo4zHZiAV0JECHGASYASw80f8Ep1fx24Uin1PvA/wM1a65e77PMqXjXUZ4B1SqmP8Kb7PsQLMvuiRim1CngYWKS1bhh4N4QQfZFyG0IIIXxJlpmLg5pS6od4hfh68nOt9W+Hsj1CiE4yghJCCOFLcg9KCCGEL0mAEkII4UsSoIQQQviSBCghhBC+9P/Y63gr1pNsqQAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "sns.relplot(x=\"total_bill\", y=\"tip\", size=\"size\", sizes=(15, 200), data=tips)" + "sns.relplot(x=\"total_bill\", y=\"tip\", size=\"size\", hue=\"smoker\", sizes=(15, 200), data=tips)" ] }, { @@ -776,22 +1200,24 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 107, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEVCAYAAAD6u3K7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXQc1Zk//O+tqq5epNbSLck2tvEiGbPZggQCBhJwcMwijI2BGZuJybzAm0mGE0LOL0NYckJ+c0IAT844yQSfmfeEYQYGxsAcOywBJyyBAexAIEQ23pBkyauspVtS77Xe949St9RSS+pudasXP59zcois7qp7W1I9Vfc+97mMc85BCCGEjCEUugGEEEKKEwUIQgghKVGAIIQQkhIFCEIIISlRgCCEEJISBQhCCCEp5T1AhEIh3HDDDTh+/DgA4Pnnn8cNN9yANWvW4IEHHoCqqvluAiGEkCzkNUC0trZi48aN6OrqAgB0dnbiySefxLZt2/Dyyy/DNE0899xz+WwCIYSQLOU1QLzwwgt4+OGH0dDQAACQZRkPP/wwKisrwRjDWWedhZMnT+azCYQQQrIk5fPgjzzySNLXc+fOxdy5cwEAfr8fzz77LB599NF8NoEQQkiWCjJJ3dPTg2984xu4+eabcckllxSiCYQQQqYw4wGio6MDGzZswE033YS77757pk9PCCEkTXkdYhorFArhzjvvxL333ot169ZlfZyBgTBMszxrDHq9lfD5QoVuRt5Q/0pbOfevnPsmCAy1tRUZv29GA8T//M//oL+/H0899RSeeuopAMBXv/pVfPe7383oOKbJyzZAACjrvgHUv1JXzv0r575lg5ViuW+fL1S2P8j6ejf6+oKFbkbeUP9KWzn3r5z7JggMXm9l5u/LQ1sIIYSUAQoQhBBCUqIAQQghJCUKEIQQQlKiAEEIISQlChCEEEJSogBBCCEkJQoQhBBCUqIAQQghJCUKEIQQQlKiAEEIISQlChCEEEJSogBBCCEkJQoQhBBCUqIAQQghJCUKEIQQQlKiAEEIISQlChCEEEJSogBBCCEkJQoQhBBCUqIAQQghJCUKEIQQQlKiAEEIISQlChCEEEJSogBBCCEkJQoQhBBCUqIAQQghJCUKEIQQQlLKe4AIhUK44YYbcPz4cQDArl27sGbNGqxevRpbtmzJ9+kJIYRkKa8BorW1FRs3bkRXVxcAIBaL4cEHH8TWrVvx2muv4bPPPsO7776bzyYQQgjJUl4DxAsvvICHH34YDQ0NAIA9e/ZgwYIFmD9/PiRJwpo1a7Bz5858NoEQQkiWpHwe/JFHHkn6ure3F/X19YmvGxoa0NPTk88mEEJIxvzBGLa92YZQVEelU8KGVUvgcTsK3awZN6OT1KZpgjGW+JpznvQ1IYQUg21vtqF3MIqoqqN3MIrn32ordJMKIq9PEGPNnj0bfX19ia/7+voSw0+Z8Horc9msolNf7y50E/KK+lfayrl/8b6pBodsExP/rui8rPs9kRkNEM3Nzejs7MSRI0cwb948vPrqq7j55pszPo7PF4Jp8jy0sPDq693o6wsWuhl5Q/0rbeXcv9F9k0WGQc0AYwycc9RUyCXdb0FgWd1Yz+gQk91ux2OPPYbvfOc7uP7667F48WJce+21M9kEQgiZ0oZVSzCr1gmnLKGhxokNq5YUukkFwTjnJXcrTk8QpYv6V9rKuX/l3LeSeIIghBBSOihAEEIISYkCBCGEkJQoQBBCCEmJAgQhhJCUKEAQQghJiQIEIYSQlChAEEIISYkCBCGEkJQoQBBCCEmJAgQhhJCUKEAQQghJaUbLfRNCyEyineGmh54gCCFli3aGmx4KEISQshWK6oltjRljCEb0AreotFCAIISUrUqnhPiWN5xzVDppVD0TFCAIIWWLdoabHgqnhJCy5XE78O11ywrdjJJFTxCEEEJSogBBCCEkJQoQhBBCUqIAQQghJCUKEIQQQlKiAEEIISQlChCEEEJSogBBCCEkJQoQhBBCUqIAQQghJCUKEIQQQlIqWIB46aWX0NLSgpaWFjz++OOFagYhhJS94YrnGStIgIhGo3jkkUfwzDPP4KWXXsLHH3+MXbt2FaIphBBStjgARTMwGFKzen9BqrkahgHTNBGNRuFyuaDrOux2eyGaQgghZcfkHDHVQCSmQTc4bFJ2zwIFCRCVlZX47ne/i+uuuw5OpxMXX3wxvvCFLxSiKYQQUhYYAzSdI6rqiCo6TJNP/5g8vt3SDDp48CDuv/9+PPnkk3C73fj+97+P5cuX46677prpphBCSEkzTY6ooiESM6DpBlJd0EWBYba3IuNjF+QJ4v3338eKFSvg9XoBAOvXr8dzzz2XdoDw+UI5iY7FqL7ejb6+YKGbkTfUv9JWzv0rtb4lhpEUDbo++fXQJglZBYiCTFKfffbZ2LVrFyKRCDjnePvtt7FsGe36RAghk2EM0A2OYFRD/1AMgbA6ZXCYjoI8QVxxxRXYv38/1q9fD5vNhmXLluGb3/xmIZpCCCFFjwPQNAORmA5FNzBTEwMF25P6m9/8JgUFQgiZRCbDSPlQsABBCCFkvHxkI2WLAgQhZBx/MIZtb7YhFNVR6ZSwYdUSeNyOQjerrBVqGGkyVIuJEDLOtjfb0DsYRVTV0TsYxfNvtRW6SWXL5BwRRYcvEIU/qCCmFUdwAOgJghCSQiiqgw0X8GGMIRjRC9yi8mINI5mIqkbBh5EmQwGCEDJOpVNCRNHAGAPnHJVOulTkQjEOI02GhpgIIeNsWLUEs2qdcMoSGmqc2LBqSaGbVNJMzhFRi3MYaTJ0W0AIGcfjduDb62jx6nSUyjDSZChAEEJIDpXaMNJkKEAQQkgOFHpR20QCYRWd3UGc3Vif8XspQBBCSJbii9oiioaYahTNMFJU0fFZpx+t7f3oPBlAfa0TX285N+PjUIAghJAMcQDq8DCSWiTDSKpu4OCRAbS2+/D5sUEYo4KVQxazOiYFCEIISZPJuTXpPLxTW6EZpom240PY0+7D/i4/VN1MfM8mCThnQS0uaKrDuYs8WR2fAgQhhEyCMUDVTUQVvSiGkUzOceRUEK3t/fjssB8RZWQRo8AYzppfjeamOpyzoBayzXpyEAWW1bkoQBBCyARiw8NIWoGHkTjn6PZF0Nrejz0dPgyF1cT3GICFc9xobqrD+Ys8cDlsOTsvBQhCCBnFMDliqo5oTIde4KcF31AMrR39aG3vR99gLOl7Z9RV4IKmOixr9KK6Qs7L+SlAEEIIrH2dAxEVMcWAWcDHhUBExd4OH1rb+3G8L5z0vbpqB5qb6tDc6EVdjTPvbaEAQQg5bXFwKJppZSNBQCRWmKKEUUXHvk4//jKcljo6PFVVyFje6EVzoxdn1FUkiijOBAoQhJQA2p8hO6k+N2+VA7phlcCIFXAYyUpLHURre/+4tFSnXcKyxR4sb6zDwjluCDMYFEajAEFICYjvz8AYQ0TR8PxbbVQrKQ3xz00UBAAcr+/uwg2XLYaiFWYYyTBNtB8fQmu7D/uP+KFqyWmp5y6sRXNjHZrmVUMSC19LlQIEISWA9mfITkw1UVUhwyYJiMQMHO0NI6rO7GcXT0vd0+HD3g5fWmmpxYICBCElgPZnyAxjgGaY8FbLON4XxkDAemLwVtln5PyFSkvNNfotIyVlpsfii2Xsf8OqJXj+rTYEIyPtIOONraR66Xmz8druLnATcDlEtFy2MK/nH0lL9aFvMJr0vbl1FWjOc1pqrjHOi6GKSGZ8vlDBVzPmS329G319wUI3I2+m27+tO/YmxuI555hV68zrWHym56OfX2HkopKqx1MBvz889QvHmCotdXmjFxc01c1IWupEbJJA1VxJ+ZvpsXga+y9ehSyBkZSW2h1IWmVdVSFj+WIvmpfU4Qyva0bTUnONAgQpKTM9Fk9j/8WHcytFdKYrqU6eliri/EVeNDcVNi011+i3nZSUmR6Lp7H/4lGIEhhTpaWes6AWzU11WFIkaam5RgGClJSZ3iuZ9mYuvPgwkqLOzNqFqdJSl8yvxgVFmpaaaxQgCCFFh2N40jmmQzfMvA8jcc5xrCeI9/58DK3tpZuWmmtpB4ihoSGIoojKysqcnPjtt9/Gr371K0SjUVx++eX44Q9/mJPjEkJKU3ztQlQxEFX0GZl0niwt9Yy6CjQ3ebF8sRfVlTOzfiIfGAMkMU/7QRw+fBj/8A//gAMHDoAxhgsvvBCbN2/GGWeckdUJAeDYsWN4+OGH8eKLL8Lr9eIb3/gG3n33XVx55ZVZH5MQUprGrl3I99NCOmmpzU11qC9gWup0CQKDLAqQ7aL13yyHwqYMEA888ABuvfVW3HzzzeCc4/nnn8dDDz2Ep556KqsTAsAbb7yB66+/HrNnzwYAbNmyBXZ76UZoQrJRLIvwCiWxdmEGtu+Mp6W2dvTj8MkxaakuG5Y31uHLX5yHSptQkmmp8acEuyxBFkXYbAwCY9MOtlMGiGg0ig0bNiS+3rRpE1544YVpnfTIkSOw2Wz41re+he7ublx11VW49957p3VMQkrN6VmAj0PVrWykfK9d0HQTB48OoLW9H4eOTpSW6sXC2VUQBJb1QrlCYMyaMLfbRMiyCJvIIIlCUkDIxZPYlAFi8eLF+POf/4wvfOELAIDPP/8c8+bNm9ZJDcPAxx9/jGeeeQYulwvf/va3sWPHDqxfvz6t93u9uZkHKVb19e5CNyGvSrl//YNRPPnSZwhEVFS5ZNy59vxxK2TT7Z9q8KRHf0XnJfHZZNNGwzARUawUVcCEQxLhcOW+bYZh4kCXH3/a34O/tPVBUY3E92SbgOVN9fjSubNw7mJvyrRUj6ci943KEcYASRBgl0UrMNhECFnuNZ2uKQPEyZMnsWnTJixduhSSJGH//v2or6/HmjVrAACvvPJKxietq6vDihUr4PF4AACrVq3Cnj170g4QVGqjdOW7f/kethldemMwGMPWFz9NuuvPpH+yyDCoGYlFeDUVctH/7DPpH2OYkX0XTM5xtCeI1nYf9h72JW36E09LjVdLtQ8H5MBQdNxxiu0JgjFAFBnsNgl2mwBRFCCAQ40aUMc3f1KCwLK6sZ4yQHz/+9/P+KBTWblyJX7wgx8gEAigoqIC7733Hq6++uqcn4ecfvI9bJPL0hvlvAhP1UxEFA2qZuZl7QLnHKf8I9VSB0PJaakL5rjR3FiHZYtLJy2VAWACgyxZTwk2SYAkJD/lzHTlvAkDREdHBxobG1FRkfqR67zzzsv6pM3Nzbjrrrtw2223QdM0XH755bj55puzPh4hcfmunZTL0hvltghvZO2CVTAvH9cyXyCG1vbySUsVGIMoMjhkETZJhE3KzeRyrkz4271582b827/9G2699VbMmTMHo4u+RqNR7N69e1onvuWWW3DLLbdM6xiEjJXv2knlfNefjfgwUiSPaxcmS0v1VjvQXEJpqYwBImOQE5PLAiSR5XxyOVcm/Ot5/PHHMTg4iMbGRjzzzDPgnIMxBk3T8PWvf30m20hIksnmGfJ9AS+3u/7pUHUTkZgGRcv92oWp0lKXDQeFuXUVRZ+WKggMNlGALIuQJQGSKGB0i4spIIw1YYD4P//n/+CDDz4AYwwrVqxI/LsoirjmmmtmpHGEpDLZPEOhL+D9g1Fs3bG3bNc2GIaJqKpbJTB0M6fDSPFqqXs6UqelnrfIiwtGpaUWK8YAUbDWJNglAZIkQBSKZ9goExMGiCeffBKAtVDu0UcfnbEGETKVYt6j4cmXPiu7tQ2jS2BoAxEMjZoQni7DNNFxIoDW9n7s6yrNaqnFOLmcK1MO0FJwIMWmmPdoCETUog1embJKYFjZSPFhJLtz+ltlmpzjWE8If2nvx2eHfQinkZZabATGIEkC7DYBNskaOmKsdAPBRIrnL4uQNBXzRHGVS8ZgMFaUwStdJueIaVY2kpGjbKSRtFQf9nT0J6WlAsPVUos4LXX0sJFss54QinlyOVdK77eXnPYKPc8wmTvXno+tL35alMFrMowBms4RVfWcZiPF01L3dPjQO5AiLbXRi2WNXtQUWVrq6GGjxORymQwbZYICBCE5VFfjLNrglQoHoGq53b4zGFGx97APre0+HOsNJX3PW+Ww1io01aGhyNJSGbPmPYp1TUIhUIAg5DRkmNYwUjRHlVSjio79XX60tvvQcXIodVpqYx3m1hdPWmp82Ei2ibDLIuprnJDBy37YKBMUIAgpMdnXm8ptJdXJqqU6ZBHnL/aiudGLRXOKIy11qmEjmySe9gFhLAoQOXS61/cvdvn6+Yw+bl2NE+u+vDCvP/enXz+IthNDME0OQWB4eudB3HvrBZO+JzY8jKRNcxjJME18fmwQre392N81AEUbqZZqEwWcvaAWzU1enDW/pijSUgXGIEoMDhsNG2WDAkQOnZ71/UtHvn4+295sQ7cvjIGgiq5TAezr7MdDt1+UtyDR2R2ErptgjEHXTXSeHF9dNZeVVEenpe7v8iMY0RLfExjDknnDaakLC5+WOnbY6HTJNsoXChA5VMwLuEj+fj6hqI6BoArdsC7akZie35sDhqR+YMzoTS4qqaablnr+Yg8qCpiWStlG+UUBIoeKeQFXsUlnuCcXQ0Kjj9EzEIbLLkGSxKSfz3TPU+mUYJjWCmDOOSRRSAo+Ux0/0/MvmlOFtuODME0OTTfhEiT8x84DuPaSBbCJbFqVVP2BGFrbfWjt6B+flup14dLlZ6BpjjuRljoUVvDcG4cQiRlwOUS0XLYQ1RWpU1aHwgp+u6srrddOJt1FajTkO33ij3/84x8XuhGZikbVorwraJxXja7uAEwTqHXbsWHVEjjtmQWJigo7IpHclTIoNvH+PfXaAfQORqGbHOGYhq7uAC4+e1bSa9N5zVRGH0NgQFQ1UFPpSPr5TPc8jfOq8cd9p6AbJmSbgOoKG7zVDlx8zqy0+pHp+c86swZ9A1HENBM1bjvqqx3wB1R8ftSPcxd6M/p8ACst9ZNDvXh11xHs/PAoDp8MJFY3e6scWHHeLKz98mKs/MI8nL+kHtwYKYex/d0O+AIKDJMjoug40RfCssV1Kc+TyWtHi++37HTYUOmyodJpQ6VTgk0SIU4y+Z3p51rOf3uMMbhcma+Cp1vcHCrmBVzFJp3hnlwMCY0+hs0moarCgftuuzCn5/G4HXjo9ovw/FttUHQOWWRJC+SmOn6m5691O3Bny7n415f3YSCoYCA0PCeQwU1TWmmpaVRLjcSMpLaHo8a0X8uGh9CmW9uIhnynjwIEKYh0huNyMWQ3U+eJ3xyk2pJzquOne/6xaxd03YA6astSl2PyCeK00lKbvFiUQbVUl0NEVNXTasNkrxUEBklMHjaaLhrynT4aYioy5fyYC4z0L53huFwM2c3Uecb2L5PjT/59a+1COKYhGNGgqAbi1/UzZ7txoi8EbgLVFTa0XLYQDjm53YbJ0X58CG//+Ti2/+9h/KW9H32DMXBupaWet8iD1RfPx7ovL8Z5izzwuB2TPjE4nTKi0ZEspnTakOq1ddV23HjFItS4HXA7raGjCsfUw0aZyPTnWs5/e9kOMTHOS+9S6/OF8rJzVTHIZFP4UjTT/Zvpicpc9i/btQvxtNTW9n7sTVUtdV41ljd5ce4CD+xy+mmpQ2EFb358AgOBWMaTzIxZ55YlEbIsQBYFiEWwTmK0cv7bEwQGr7cy4/fRMxcpa6W2NsUwTcRUA9EM1y4MhmLY/m4H+gYVRBQdmm4mfX/hbDeWN3mxbLE367TU3+7qwlBYhWECUVXHa7u7sHHV0glfP3onNZsowCZa2UakdFCAIGWtNCYqrWGkqKIPDyGlHxjiaan/23oCipYcFOZ4XWhuqsPyHFVLHZlk5iknmRkDRJHBbiv9ndSIhQIEKWvFPFHJwRFTrWEk3TDTvpBOVi1VFBicdgk1FTL+fn1un5RcDhFDYSsocM5RVSFBGl61LMsibAKDKDKMXrlHwaG0Fc9fCyF5UEybC/mDMWx/9zB0g8NpF3D58jmodKQ3cThZWqrbZbOyfhggS9acQo17+ju/jXXDZQvxv3tOIRLTUFtpx3UrFsBb5Ri7kJuUEQoQpKwVy9oUDuC3u49gMGTNESiqAX8gNukYfibVUoNRFa/t7kI4OrJKORcExiCKgF2W4HE7cEnzPAwOhOnJ4DRBAYKQPDL58DCSouF4TwhhxZoDmWihmGFydJwYwp6OfuzrTL9aanWFfdJgky7GAJGNGjYSrfUJ8YAw+v+T8kcBgpS9mU51ZQxQdRNRJXnfBbssIBTj4xaKcc5xNJ201IWevFRLjWcbJVYti0LSsBEFhNMXBQiSUqEKneXyvPFjHTo2CN0w4XHb857qGoqq8AWUlGsXWi5bmDQM9KVzZuF3Hx3Fng4fBoJK0msXznajuSk/1VIp24ikiwIESalQ6wdyed74sTTdhGGYGAiqqK915jzV1TCtXdqiMR1VYFC11DWGqivsuOZLC7Cnw4e/tPfj3187mPT9XKelxo1epGa3U7YRSR8FCJJSLtcPZLLjWi7PGz+WwBhMxmCYZg5TXUe27+wdiODl9zsRiRmorXJg1UVzk1YYW2mpfrS2949LS/VWObC8ydqvuaHWmYN2WRK1jWiRGpmGggaIxx9/HAMDA3jssccK2QySQi7XD4x+Kuj2hSZ9KsjleePH8lTZ4QvEIAkCGmqc00p15eBQNDOpBMbL73fCF1DAGEPvQBiv7e7CTV9pxL7OidNSlzdaQWFu/eTVUtMV30nNLkuQbVZAoGEjMl0FCxC7d+/Gjh07cNVVVxWqCWQSU60fyGSuYOxTwUBQwdYdezEYUuALxOBxj+zPkMt1C6OPNdvjyno+Y6rtO+MrjDnniComfIEgfvrMJ9CNidNS062WOmGbMLKT2nRKYhMymYIU6xscHMQ3v/lNXH/99Th48GDGTxDlVKxv7IX27r+6EFzLfTmIbCZ//cEYnt55CJ3dAYADi+a4cft1Z8PjdmDrjr3oHYzCMEz4gwokUcCi2W6AMaiamXSO+GsZY5BEhr6BCDSDQ1GtO3C7TUCDx4VZtc5J5xumM4Gdzq5uT79+EJ3dQYABjWdUYdO1S1HhkBGJTbx9p2Fy/PqVfegdjCKmJk9MSyLDOQtq0dxUNy4tNRvWmgQGhyxOupNaurL5PMu5oF059y3bYn0FKaf4ox/9CN/73vdQVVVViNMXlfjwS1TV0TsYxZMvfzYj53n+rba03tN2bBCKaiCm6mg7MZR4X/ypYCCoQtdNaLqJthNDaDs+OO4cG1YtwaxaJ5yyhDneShgmoOsmOKwFZKpupjXfkE0f0n3vtjfb0HZiCKZpwimLGAwrePEPHRgIxKxU1VFXYc45jpwK4uUPOvHYs3/GkZ4QospIcFh8RhVuXdmIhzZdhI2rzsK5Cz1ZBQfGAElgcDkk1Ljt8FY7UFftQIXDltgvYTq3d9P5PMnpYcaHmF588UXMmTMHK1aswPbt27M6RjaRsFipBoc8Krc9EFZRX+/O+3kUnU95HtXgAGOJHb74qPfV1TjR7QvBBE9MiOqmCQYG2/DFK/7a+no3frS4PnHcr//odeiGCWYC8W3QJJGhslLGv792EIGIiiqXjDvXno+6GmdSezLtQ7rvZaIAT7UD4EAoqiHgi8Jus6HWU5F4zYneED7afwofH+iBbyiWdPymedW4+NzZ+MLZDXBnUXc/0Q4G2EQRDtnaOMcuizmZo0gl288zH7+fxaKc+5aNGQ8Qr732Gvr6+rB27VoMDQ0hEongpz/9KR588MG0j1FOQ0yyyDA4alew2Z6KvDzmjj1PTYU85Xlk0Rq/4MP/kwQBssjQ1xfEui8vxPNvtaHXH4XOTdRUyvAFYgDn0HRzwnPU17uxYLYbbccHYZMATedw2iXUVtqhxjT0hsNgjGEwGMPWFz9NGnLKpg9TvZcD0DQDNoEhEFIRjVkT5NbiMaC9y5dIS+0diCYdc47XhebGOixvGklLdbtk+P3htNoEJJeykEURko2BGRyxCBADkM8Bj2w+z3IehinnvmU7xFTQDYO2b9+Ojz766LSfgxg9KZvPOYixk7/pzEE8s/MQDqeYg0h1XFliYIxBGTMHMVp9vRuHDvelbMvm5z5FVB3pu1OWkvaPzqYPqd5b65Zx81WNcMgSIsPbdw6FFfzmfw/jeG8YHByVThmSxHCyP5J0HE+VHc1NdROmpXo8FZMGiHFrEsaUsphJ2Xye5XwRLee+0YZBJWpsMbm6GmdefkmzKVrncTvw3Vubp3ydopk40R9KBJG71pwz6YVmorZMleKaSR9STcD+/U3LkkpgBMIj20vabVaWkWECHSeHEFFGnhbcTistdXlTHeZlkZY61ZqEQt2iFUshQ1K8aMvRIlMMdzGZZLds3bEX+zr9MMzhYShJwPmLPBNeeCbr33SeEFK1q3cwao3j2wTM8bpw3aULk0pgaLqJQ0cH0Nruw6FjA+PTUhd5sLypDoszSEv1eCowMBAeKWVhs2ob5WpNQqFKoMQVw+9nvpRz3+gJguRMJuUuQlEd8eseYwymybNe/ZzLO1rN4KhxW/MCkZiOru4gVM2AYXIcPjmE1vbx1VKzTUsdPWxUVSFDNIy8lbIotS1USWmjAEHGyaTcRaVTSlwGOecQRWHGd22L31VHYjoqXTbYbQL8QzEMhRU47RIYA1x2CS9/0Im9h/0IR7XEewUGNM2rQXOTF+cu8MAup1ctVWAMkjR+2MjtkhELK1MfIEulsYUqKRcUIMg4mZS72LBqybiJ7Jnete1//tCBmKbDbhfRdSqAcFRDhdOGqKojqugAYzilR3G4e2T4YMFsN5qbvDh/kReVzqmrpSb2SZCt1FNJECCJM1/KQrYJOHIqAg7r+WTJ/JqZbQA5rVCAKEPTHaceW+7i2kvPxNYdezEQVNA3GIFpWmUeFs2pwo1XLIRNEjC3rnLcuVK1Y3Se+eiV2qbJIQpAQ60LNZX2xHEOdw/hie17oagm7LKAu9cvw+I51cNH4NAMDt3giCgGwgNR9A5Y6xMiMQOjlrYBSJ2WOpnRTwlyseyTwDnAAG5yMIEBKM+5uLhCz7mc7ihAlKHpjlOPnQuIT/j2D8asOyzWB/sAACAASURBVHIANklA2/FBPLF9L9wuOeW5UrVj9IK5+Eptw7TWTgCAbkag6mbiOE9s34tQxHqa0SIG/r+X9+Gn31wBRTMQienQDROhqIL+gSiCo4aO4pdNWRJw+bI5WN7kxaxaV1I/h8IKfrurC5GYtT/DDZctRI3bAXsiBbUwTwmTUXWOhlH9ULUialwe0JxLYVGAKCHp3k3lapw6fr79XQMArIJ11kGt/3AOKKqJqorU55qsHf5gDIeODSZNEgOAafKk1yqqVYbDaZdQ4ZAgigL6h2KIxDTs6/RjT4cP7SeGxl3EBQGQJRH33LIMNZWp7zh/u6sLwYgGuyyBCQwfHezF33ztLLAi3ichl9VuSwHNuRRWef92lZl076ZydRGJnw8ANN1AIrN4+L8M1jaanPOU55qsHdvebINumIkLcHxMXRjzWk+1DHBrxfVgMAbOGJ753SEcOpqclioIDG6nbTi91Jpo9lbZxwWHeNkQuySi0mWHIArQNAORmIGTfZGk4FCMclntthScbgGx2NCnXULSvZvK1UUkfj5PlR3+oALTMCE7RJimdUGXBAFOm4huXxiiIMBpF3H7tUvTakcoqsPjtsPPFSiaAQbrYtBQ60JdtRO3rGxERNGx/suL8etXDyKijPR1X6d/+DOwFrg57dZ6g+oKGbJNSGzp2XLZQgCjFqrZhEQVVADQdQODQSVx8amtzL6G0kw53Ra3nW4BsdhQgCgh6d5NTXURSWeoyh+MoWcgjEhMhygIqKm04Yy6Svz9TdZxR89LgA/fwbtk/O7Do4lzp2pH/2AUW3fsxYn+kLVPdJUdoihgVq0zsdI5EtPw+bEhfNrWh72H/UnBIf45XHfJAvzpQC/U+LAXrKeMb1y3NO3Nc+jiU/xOt4BYbChAlJBcXdAmGqoaHTh6BsKw20QomrWfc1Q1xj0BsOFtPOML5CZ6qokfdyCoJLbcFAUGk5uIqQbOX1yN6y5dgM86/fjkYC9aO3wYCCavJZAlAU67BIddQoVdwoVn1ePAET98AQWiKECWBMz2uFBVKUMWhXGL3FLNJXjcDvz11UsSfd72Zlves2QoK4eUEgoQJSRXd1MTDVUlBY6YDkUzUT9cbtspS0kXsvjTjCgI0HQDAhMmfKqJH7d/MAZVNyGJDBWyCHeFE9UuOxyyDVueb0VPimqpyxu96Dw5hOBwmznncDlEMAas+8pivNd6EorGIdsY1l2xGC45s1/pp3ceQtuxwcQcyDM7D6VVfyoVfzCGf3/tIPoHoxNe/NMJzhQ4SLGgAFHmUl14JhqqGh04REGAMTx8o+sGesIKNj/3aeIY1156Jp7YvhemaQIMaKh1oq7akfKpJn5cm8RQ53CACQyRqIbjvSEc5SHs7fQlXutxW9VSR6elXrCkDjv/2AVNB2rcdqy5YiG8VQ7MqnWNWhORnc7uAIxRdb0OdweyPta2N9swEFKG12WkTiJIKzhTOicpEhQgyty2N9twsj+EwZAGwzTR8fQQNl2zFM/87hCiMR2aYaLXH8H/u/ltGKY18QsOiIK1GE4SGAKKDpvIcLQnCE3X0drRD1kSRy6sHDjSE8TJviBaO/oxt64SddUOXHvpmXht9xH0DkRgkwToJhAKKkkXZMAabrJ2TxNQV2XHl85tQHWF3ZpLEBkqnTZ4ql0Ihq11DjZx/P7LWeNIysIau+5sbIC99tIzsfOPR1Pe6Y9c/CcebksnOM9UOmcmfZvsffS0U74KsuUomTmhqI7BkJaoYhqJ6Xjmd4fgdskQBAGmCcQ0E/G53vg1koOhocYJT5Uds2orEIoa0HQDumlNBkdVA4pqQNFNaAYH54BqWN870R9GMKrhuTc/x9FTQQQjKnoGoghHtaTg4JCt/RAMkw8nl5roDyr4YG83atx21FU5UFflwKu7utBxYgh9Q1Ec7wuN2xrTH4xh64692Pzcp9i6Yy/8weTd3iazaI4b0vDezpIkYNGc5B3Fxm7L+cT2vRNu01nplBAvjjzRcNvo7VcbapyJJ6503ptrmfRtsvfRVqXli54gylylU0pMJAPW0FF8cZthminfw2BVNpUkMTEhnjgG50hUeBhT6cFpl+CQRTAA3b5I0n4LcW6XDS67BEGwNhcKRFQ4mbWGgTFA0QwEwhoiMS1xl3qiL4SqChskSUx5dz2d4Znbrzt70on/sXf2ky0M3LBqCX7zfhf6B6ITJhFMNI9UiIyqTPo22fto8Vr5ogBR5jasWoKOp4cS6aq1bhkRRbcqrwoCgNRBQhRGJp1HH0MYHg6yiQIUzYBsE2CXJYiiNbE9NvsIsOIIY1bQWTzHjVMDUZimCafDhmqXDYGwhoGgAk03IElWRtLoi75umPAHFTTUulLeXU/ngjXVxP/YIaHJFgZ63A784PaLs9pToBDpnJn0bbL30eK18iX++Mc//nGhG5GpaFQtuhIIuVJRYUckMv7OO1tOu4SLz2lA/2AUTrsN3ioHbvvaWTjli0ASBeiGAYFZwxoCY3DKEpx2AbM8rsSks8ftSBzDbrMyiBbMrsQZ9ZXgAAaCCsIxPWlls8su4dLzZkEWBeiGiSqXjHMWeVBd7YSuaQhFDQwGYzBMYG5dBUIxDZIooPGMKvzNNUvxx3290IeHoxyyCE034XE7UOu2Cvk57SMXpdb2foRjIxesWrcdF58zKyefX+O8anR1B2CaQK3bnvjs4l+PbUuuf375lGnfAKt/c2odSe9L9bpSVEo/u0wxxuByZb4QlHaUKzLT3dXKH4zh6dcPorM7CDBg0Zwq3H7t0pxMIh7pCeDff3sAwYiGcFSDZiT/DOJpqcsb66wFcMOL1eySCNlmTXf907ZPcaQ7CHM4IJ1R58KDmy4ad674Qrz4Rb+hxplYpJeqz7naiW66ynlXMqC8+1fOfaMd5QiA4QqpJ4ag69acQdvxwWmlTDIG+AMx/PFAL1567zBULXlIyuO2Y3lTHZobvZjtdUESGRx2G+zS+MVqANA7EIWmG9YiO27CF0g9oZzJmDyttiUkPyhAFJl4KYpsUwhDUR2Gwa09osGhGyzlvMBkGAOCERUfHezFnw70ou3YICZ6YJvf4MKXl89Gg6diOCgkb7U5Vn2NE9GYDsM0IYnihH2jiz4hhUcBosg8+dJn01owVemUoJsmTGtfGZjgE96lj8YYEFU0/LnNh4/292B/lz9pTsEhizBME4ZhZTG5nDJcDgmcCXjn0xP4f64/N6321VU7ERkzXzAdM5GTT3n/5HRFAaLIBCJqyoyciS5Sh7uH8MsXWxGOWRVRF85xQxIAdbjiqsAAlyzi5y+2onPUtqC3X3c2vFUOxDQdnx0ewIf7e7D3sA+Kmrw/gygwzKp14ravLYGim3j1gy5EFANRRUcwFIM0vCo63aeeO9eej60vfpqzdM6ZWIFMq5zzj4JwcaKFckWmyiWnXDA10eKkJ7bvRTCiwzCtYaXDJwPgYLCJDLJkVTHtHYpZO7cZHJII+IIxPPdmG3796n78wxO78cT2vfj4YC8U1cpoqnRKEEUruDjtEnST46P9vbiwqR6zal0IhBVEYxo0A/AFYvAFYmkvnKqrceLb65bhrjXnAAB+/cqBjBe3jTYTOfmU959/tPiuOFGAKDJ3rj0/5UrbiS5SimpNGo8e9RcFATabCEFgqHDaUFNpR12NA5VOG2KqiZP9Efz5UB8+2HsKoeFtOhfMcmPN5Qtx/9e/iPkNbtS6HWjwuCCKDEMhFZ+29wMABkMqPG47bJKYKI/hcTsyvoDm6oIwEyuQC7HK+XRDQbg40W96kYnfYY810eIkuywgqowsbGYMqHXL8FQ5INskhKIqTvki6B+KjVs7MtvjQnOTF8sbvfBUOWCTRDjsIhpqnThyKoiooieOG99kJ94OT5UdviHrrt8fjMFllyBJYtoX0FxdEGZiBTLtG5F/tPiuONFPoUTEL1L+gAJ/UIEsCdi6Y69VeG/nQRimNZHcOLcaF5zlxW93HUGvP4DYmD2fGazFTeu+sghL5tZAFBkcdgkOmwibJIBzYM3lC/HnQ72JKhocwNw6V1I7Dh4dBBhQVWED5xwRRYdHlpLaNtk4cq4uCDOR7UQZVflHQbg40UK5IjPVYp34AjLZJkISGeZ4K7D+ykYc7wli21ufo3cwhqiSHBQqnTYsW+zFBUu8mFdfCVEU4JBFOGwSbDYBDMmb+viDMSiqgZhqwCYJEBjDWfNrkvZJ2Pzcp4iqI3f9TllCpVNKWtw2q3b801C8f4e7h/DE9r1QVBN2WcDd65dNu3R3MSjnxVZAefevnPtGC+VOA9aIDENdtRMxVUOvP4oj3UF8crAXwYiWVKlaYMAFS+pxQVMdFp1RZRXfEwU4HRJiio7n32rDQFBN3K2N3tRH0w0YJockChBFAfU1TihjFsilegLIZNho5x+Pwu2SUVVhvX/0VqWpUJYLITOvYJPUv/rVr9DS0oKWlhZs3ry5UM0oCdaWnzoGAgpMbuDIqSAOHRlCf0BBVDUQGBUcHLKIWrcdZ85y45arGnHWmTWoqpBR63bAW2WHS5aw7c02nOgPJ00Qj91CFLAmZE2TpxwCSlW2OpPJ3EznICjLhZCZV5AniF27duH999/Hjh07wBjDXXfdhTfeeANf+9rXCtGcomOYHLppQlVNKLoOXTdxtCeE1nYfDh0dQjiWfDG120RwcNRW2iGKwvDQkws1bjvk4SGi0UJRHabJ4Q/EYHKOgaCCRbPdiCg8sYWoLAnWhkGikJRNFZdqXD6TceRM5yAoy4WQmVeQAFFfX4/7778fsmxVF2xsbMTJkycL0ZSioeomVN2A6QvDN2RduHv8EbR2+NDa3j+uXIbLLkKSBDjtNmsxnENEOKZDFBhkm4DVl8yHwyamPFelU8KRU9ZWm5xzcG7iSE8IJrfKc5icQ2TWPEUmcwNTTeaO3rNZlhhqK+1QNDOtScmpAkq+h6BoiIucjgo+Sd3V1YWNGzfiv//7v7Fw4cK03lPMk9STXUj8wRheeLsdms5RVWHDdZeeCYdNQkwzwE2OwbCCF9/pQOeJwNidLwEAggC4nTbMqnXikvNmY8e7ndB0AxUum3UcVUcoqkHVR+YLHLIAXefQzeESGXYJJgciysgduDC8V0NDrQsn+sPj0mFdDhFNc2uSqsJmcsGMv/bQsUGYJkdNpQxRFFJOYk/0/qd3Hhq3EtzjdiQdW9NNgHNwAC6HhIduvyjti/hU/RlbXXZs2+PvDys6TvnCSaXJyymQlPNEbjn3LdtJ6oIulGtra8Mdd9yB++67L+3gUOwmGisfCMXwby99hm5fGCd9IXSeHMRzbxxCRNERCKvYte8U/uV/9uBwiuAQL38nAFA0E6GYjjc+PobaKhmeajtU3cQpfxj+oJIUHAAgppqJfRVMDoRielL20fAmcTBMwB9QUu6zEVWMRFXYqfo52Wei6SY03cRAUM1omGjbm20YDCnwVDlQW2WHXR4p8jf62PEtUONbq2YyTzFVf6Ya4oq//1hPCKGIhm5fhOZKSMkrWBbTJ598gnvuuQcPPvggWlpaMnpvNpFwpqgGh8thg01i1sIzhw3MJmH7u5040R+GpnOAc0gig6oDz77ZhgOdfpiTPMhJkgBNN2GXJVRWyJjbUInjPSEMhVUoqjU0lelzYDwwANbdhSSylE8to94BReeor3cn+imPGsIa/b1Un4mVlitA4wZMWP2vq3FO+J5U7091rtHHVthIeq9NEiZtUybnAKwFjN2+UOIJYmzb4+83TG7t9Q3r60zaUCrKrT+jlXPfslGQANHd3Y27774bW7ZswYoVKzJ+fzEOMTEGmJzDW2VH/1AUimoiEFahqjq6ewLo7g/D0DlM04RpAprBEfVHcMofAWBNNNtlcdw+zowBTlmAt8oOxgBNN9HriyCm6tB0E4ZpZre73nC1V6csoabShqhqQB+u1Jryo+UcssgSj+CyyDCoGYkLZk2FPOHjefy1NZUyBoIKBGbNP6z78sK0HuknO9foY0diVtkQSRRQ5bIltXc65wCAdV9emDQBP7bt8feLAoOuG7AJIlTNmPRzKUXlPAxTzn3LdoipIFuO/uIXv8DevXuxd+9ebNu2Ddu2bQMALFuW3mrVYtlylDHAME0omoFQVEMwoqGuyo62Y4NQVGvy9bpLF+BEXxh/butDRNGTLr6SyHDuQg++dvF8rPvyYnSdHEIwqsIwhy9yFTKWzK8GA0MwqmIoaKWzzqmrwKZrlqJ/MIq+gZhVtVVAys/EIQsAty76AgMqHBJsw/s+O2Rra9GGWhf+/qZluOrCuej2hRGMqIly4YLA4LCLWDKvBn+z+qzE1pLeGgfe39ONQFiDYZq47WtnoXaCsfb41pYAQ+PcGnxr3Xn4SvPctLepHLs15ugtLkcfe05dBRpqnah0yvAOb5eai3MAw1u3nj0Lly+bg4vPmTXuuPH3Ox0SVN1AQ40zsWVrOWzHGVfO23KWc99oy9EZwmHdxWuGiZiqW08FYz5CzjmO9YbQ2uHDZx0+BIcL4sVVOiVcecEZ+OLSBjhkCUNhBb/d1YX249YFxmUXIYgCNM3A9zdemFRueuwEaaoVzffddmHeP4epJm0nUs53aQD1r5SVc99oJXWeMAbohgnN4FBVA4pmWOmgKeJTPC11T3s//GPSUs+cVYnmxjqcv9gD95hIvvOPR6DoJmZ7XQhENPgCCmLD+zI8+cp+cLCkCVJ/QEnsv9AzEIZTFmGzSYn0z2wyjDJN36R1CYSUPwoQY8TnEjSdQ9UNKKoBwxj/lBA3EIxhT4cPre2+xHxC3GyPC8sbvWhu8qYcfhEYg90mwumQoRoKFNWAf8zubweODqLWLScFAX9QgWZYK55ddgkRRUdVhSNxgX/69YNoOzEE0+QQBIandx7EvbdekLL92W6GQ9U3CSl/9FcNa9jIMEyohglVMaAa5qRDWKGohr2HfdjT7sORnuRH0lq3fTgo1GG2xzXuvQyAKDE47TY4hgvu6bqBQEjBQDD1+OfYICBLArTh7UAlScQslz1pWKmzOwhdtwKIrpvoPDnxY3OqVdX+YGzKpwiqvklI+TstA4Q1ucyhGVbuvKoaMCYYNoqLqTr2dw1gT0c/2o8PJU02VzhtWLbYgwua6jC/oTIx9BI3FFbw+h+PYjCkQBIF1FfbcetXl6DCLoFz62L7yNMfwzBNpHLSF4HAGNxOFT0DYaiaCcO00mXN4YVhP33mY9RUWpOrYEga/gFLeVgAI6uqrQJ9gKIZeOTpj6dcZDbZqulSWHVcCm0kpNBOmwDBYc0lqMMLqvQpnhIAazL682ODaG3vx8GjA9CNkdfbbSLOW+RBc5MXi8+ohiiMXIWHwgp+8+5hdPsjqHDa4HLYEI4oib2cu31hmNwayolfqBTVhCgImFPnRK8/YgWAeNs5YHCOE/0Ra9WzJEAd3ueBDS9oOOmLQNVNPP9WGxbNqULb8UHw4UykRXOqJuzjhlVL8H///U9Qho8niUJikVm2eyCUwh7OpdBGQgqtbAPE2MllVZv6KQHA8L7OQ9jT7sO+Ln9ishiw0lLPPrMWy5vqsHR+DWxS6oXob/zpGIKKBrfLhqhioG8gCpNb5bMZYzBNnpjUjV+oAEDTDQTDKubWV6B/KIqYYoADiQu9ya1iepwDsk0cVTnVOmZ8sviuNeekPfzjcTuw9Mwa7D3sS3w2oiBMa9K5FCawS6GNhBRa2QSI+LCRrnMougFF02EamHSFchznHMf7QvhLuw97O3yJfZoBa+1A49xqNDfV4dyFtXDIE39kksDgdEiQRBHhiJbYuMcERnZn4xyiKCQmdUNRHYZhwjStYaOooqOmsgo1lXa0HR+ErlulMjgHxOEJYYEJ4JyDCQwMDJpuJP6t0illvAPahlVL0PH0ECIxHaIgoNYtZzXpHH8aOtEfgm6Y8LjtSX0tJjTJTsjUSv6vQjetYaN0JpfH6hmIYE+7VS01k7TU0RgDbJIIl0NKVE81h9vEuXVXL0sMdpvNClbDxebid/WVTglHegKJDXpskgC7TcBfX70ET+88iM6TwcTTR3WFDcGoBm+VAy6HDQBHOKrDH4zBW+UYmYPIkMftwEO3XzTtSef401B1hQxfIIZAWMPSM2uKcgKbJtkJmVpJLpQ71RNARNGhaDoMY+pho9EGQ4oVFDr60e1LnZa6vNELT9XkE5aCwKxtO2UJshQvp2exqo9aF3cwaw7gxisWYucfj46bFPUHY/i/T/0pUYlUEAWYJofTLpZcRdB0Fu2V82IkgPpXysq5b6fVQrlgVEVszL7LkwlFNXx22IfWDh+OnMosLXUsSWBwOq0U1dET06N53I5x6w5GrzwePSnqcTuwdH5NYrtPfTibyDBMKKq1YrtUJlBp2CZ7lFVFilFp/gWn8cSgqAb2d/nROkFa6vLF1gK2VGmpY40eRrJLIqZ4eUqTTYrGhzv6B2OQbRK04eqs8e0/05lALYYLDA3bZI+yqkgxKs0AMQHdsNJS/9Lej4NH0k9LnYjArEJ1qYaRMjXZ3XV8Unnrjr0YCCno7o9A0w1Iopj2nXgxXGAynRwnIyirihSjkg8Qpslx+GQArR392Nc5Pi116Zm1aB6VljoUVvD8W58jEjPgcohouWwhqivsSceMZyM5ZCkpkEx1lz7Z99O5u96wagl+834XGABfIJY0BzEZfzCGQ0cHoepGIgsplxeYYng6KXc0PEeKUUlOUn9+uA/tJ4bQOpyWGswgLfW5Nw7BF1BGNn6ptmPjqqUps5HGmqqCabYVTkfLZqJs64692NfpT+wxLUkCzlvowd/flJu7+Vz0K66cJwKB7PvnD8bG3UAUYxAu559fOffttJqk/reX9+PzY4NJ/5ZuWmokZiQ9yuu6VevfaZ96GGmqYYBCDROEojq81Q74gwrM4XTZXI7/0/BH/tHwHClGJRkgBkPWmoVZtU40N9WllZYa53KIiGk6XA4bKhwSaivtqKmU00qVnWoYoFDDBPHz1tc4wTlHQ40zp3efNPxByOmpIDvKTVefL4xrvnQmVl00HwvnVKW9YxdjQNO8GsQUHQyALAm46crFcE6yOnq0qXYdm+r76chmV6tcnHemjl/Ou3YB1L9SVs59O612lGvr7E+ajJ6KwBhkmwCXwzbtbKR8K+dxUID6V+rKuX/l3LfTag4iXeJwNpJTFiGJQlHsY00IIaWi7AIEAyBJDC6HDQ5ZBBt+WqDgQAghmSmbAMGYtRjOZbdBtqUuw00IISR9JR8gBIENp6mKsNEwEiGE5ExJBgjG2Mgwkk2EwGgYiRBCcq0kA0Sl0wZBkIs4F4kQQkpfSQ7W2ySBggMhhORZSQYIQggh+UcBghBCSEoUIAghhKRUsADxyiuv4Prrr8fq1avx7LPPFqoZhBBCJlCQLKaenh5s2bIF27dvhyzL2LBhAy655BI0NTUVojmEEEJSKMgTxK5du3DppZeipqYGLpcL11xzDXbu3FmIphBCCJlAQQJEb28v6uvrE183NDSgp6enEE0hhBAygYIMMZmmmdihDAA450lfT0UQynsVBPWvtFH/Sle59i3bfhUkQMyePRsff/xx4uu+vj40NDSk/f7a2op8NKtoZFO3vZRQ/0pbOfevnPuWjYIMMV122WXYvXs3/H4/otEofv/73+MrX/lKIZpCCCFkAgV5gpg1axa+973v4fbbb4emabjllluwfPnyQjSFEELIBEpyy1FCCCH5RyupCSGEpEQBghBCSEoUIAghhKREAYIQQkhKFCAIIYSkRAGCEEJISiUVIMqxRHgoFMINN9yA48ePA7AKGa5ZswarV6/Gli1bCty66fnVr36FlpYWtLS0YPPmzQDKq3+/+MUvcP3116OlpQVPPfUUgPLqX9zjjz+O+++/HwBw4MABrF+/Htdccw0eeugh6Lpe4NZlb9OmTWhpacHatWuxdu1atLa2ltU15u2338b69etx3XXX4Sc/+QmALH4/eYk4deoUX7lyJR8YGODhcJivWbOGt7W1FbpZ0/KXv/yF33DDDfy8887jx44d49FolF955ZX86NGjXNM0fscdd/B33nmn0M3MygcffMD/+q//miuKwlVV5bfffjt/5ZVXyqZ/H374Id+wYQPXNI1Ho1G+cuVKfuDAgbLpX9yuXbv4JZdcwn/wgx9wzjlvaWnhn376Keec8wceeIA/++yzhWxe1kzT5FdccQXXNC3xb+V0jTl69Ci/4ooreHd3N1dVlW/cuJG/8847Gf9+lswTRDmWCH/hhRfw8MMPJ+pQ7dmzBwsWLMD8+fMhSRLWrFlTsn2sr6/H/fffD1mWYbPZ0NjYiK6urrLp35e+9CU8/fTTkCQJPp8PhmEgEAiUTf8AYHBwEFu2bMG3vvUtAMCJEycQi8VwwQUXAADWr19fsv07fPgwAOCOO+7AjTfeiP/6r/8qq2vMG2+8geuvvx6zZ8+GzWbDli1b4HQ6M/79LJkAUY4lwh955BFcdNFFia/LqY9LlixJXEi6urrw+uuvgzFWNv0DAJvNhl/+8pdoaWnBihUryurnBwA/+tGP8L3vfQ9VVVUAxv9+1tfXl2z/AoEAVqxYgSeeeAL/8R//gW3btuHkyZNl8/M7cuQIDMPAt771LaxduxbPPfdcVr+fJRMgplsivBSUYx/b2tpwxx134L777sP8+fPLrn/33HMPdu/eje7ubnR1dZVN/1588UXMmTMHK1asSPxbOf1+Xnjhhdi8eTPcbjc8Hg9uueUW/PKXvyyb/hmGgd27d+OnP/0pnn/+eezZswfHjh3LuH8FKdaXjemWCC8Fs2fPRl9fX+LrUu/jJ598gnvuuQcPPvggWlpa8NFHH5VN/zo6OqCqKs455xw4nU6sXr0aO3fuhCiKideUcv9ee+019PX1Ye3atRgaGkIkEgFjLOnn19/fX7L9+/jjj6FpWiIAcs4xd+7csvn9rKurw4oVoDYfvQAABB9JREFUK+DxeAAAq1atyur3s2SeIE6HEuHNzc3o7OxMPB6++uqrJdvH7u5u3H333fjZz36GlpYWAOXVv+PHj+OHP/whVFWFqqp46623sGHDhrLp31NPPYVXX30VL730Eu655x589atfxaOPPgq73Y5PPvkEAPDSSy+VbP+CwSA2b94MRVEQCoWwY8cO/NM//VPZXGNWrlyJ999/H4FAAIZh4L333sO1116b8e9nyTxBnA4lwu12Ox577DF85zvfgaIouPLKK3HttdcWullZefLJJ6EoCh577LHEv23YsKFs+nfllVdiz549WLduHURRxOrVq9HS0gKPx1MW/ZvIz372M/zwhz9EKBTCeeedh9tvv73QTcrKypUr0drainXr1sE0Tdx222344he/WDbXmObmZtx111247bbboGkaLr/8cmzcuBGLFy/O6PeTyn0TQghJqWSGmAghhMwsChCEEEJSogBBCCEkJQoQhBBCUqIAQQghJCUKEIQQQlKiAEEIISQlChDktHXHHXfA7/dP+zUffvghbrjhhinPt3Tp0pTHeuuttxL1+jdt2oSdO3fi+PHjuPDCC6c8JiH5VDIrqQnJtQ8++CAnr5muq6++GldffXXez0NIpugJgpyWHnjgAQDAN77xDXz00UfYtGkT1qxZgxtvvBG/+c1vxr2mu7sbf/jDH7BhwwasX78eV111FX7+859nfN6f//znuOmmm7B27Vr84Q9/AABs374df/d3f5ejnhGSO/QEQU5Ljz76KLZv347//M//xF/91V/hvvvuw+rVq9HT04Nbb70VCxYsSHpNbW0t7rvvPjz22GNYuHAhenp6sHLlyoxrEc2bNw//+I//iM8//xybNm3C66+/nqceEjJ9FCDIaa2jowOKomD16tUArKKQq1evxnvvvZc0B8AYw7/+67/inXfewauvvoqOjg5wzhGNRjM638aNGwEAZ511FhobG/Hpp5/mrjOE5BgNMZHTGmNs3KYpnHPoup70b5FIBDfddBP27duHc889F/fddx8kSUKmtS4FYeRPzjRNSBLdo5HiRQGCnLZEUcTcuXMhSRJ+//vfAwB6enrwu9/9DpdddlniNbqu48iRIwiFQrj33nvx1a9+FR9++CFUVYVpmhmdc8eOHQCAffv24ejRo2hubs5tpwjJIbp9Iaeta6+9Fn/7t3+LrVu34ic/+Qn+5V/+BYZh4O6778all16aeM2mTZvwi1/8AldddRWuu+46yLKMs846C01NTThy5AhkWU77nMeOHcO6devAGMM///M/o6amJl/dI2TaaD8IQgghKdETBCE58utf/xqvvPJKyu/deeeduPHGG2e4RYRMDz1BEEIISYkmqQkhhKREAYIQQkhKFCAIIYSkRAGCEEJIShQgCCGEpPT/AwXyoJ+c2YS8AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEJCAYAAACaFuz/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3hc93nY+e+5zQyuJECAgG7QhZJ+okBT1o0kHDtW7FihHVddN27cJu1jx3V2+zTtdvfJZdNt8jh2n6TrbdbdTbrPunXixnmi3bTNpVUth7Hq2I4sg9TFkmiC5I8SRRmSSIAAARCY+5lzzv5xZoa4YwDMwZwZvJ9/SJyZOeedQ/CdM7/z+72vEQQBQgghWpfZ6ACEEEJESxK9EEK0OEn0QgjR4iTRCyFEi5NEL4QQLc5udACrSAKPAlcAr8GxCCFEs7CAm4AXgMLiB+KY6B8Fnm10EEII0aTeB3x38YY4JvorALOzGXw/PnP89+3r5Nq1dKPD2FCzxAkSaxSaJU6QWOvNNA16ejqgnEMXi2Oi9wB8P4hVogdiF89amiVOkFij0CxxgsQakRVD3nIzVgghWpwkeiGEaHGS6IUQosVJohdCiBYniV4IIVqcJHohhGhxkuiFEKLFSaIXQogmZxjgev6aj8dxwZQQQogaeX5AJu/i+wGDazwn0kSvlPobwGeBDuAbWut/GuXxhBBiN8kUSmRyYZJPOGsP0ESW6JVSdwFfAo4Ck8BfKaU+rLX+i6iOKUQcnb44zYlT40xfz9O3J8Xxo0McPtAXyf5v6u/kgw/eXNf91yOuKN737hVQcH0WckVKpdrKMkR5Rf8x4D9ord8GUEp9AshHeDwhYuf0xWmefOYClmXSnrKZyxR58pkLAHVJesv3Pzufq+v+6xVXvd/3blXyAtLZIgXXYzOVd6K8GXs3YCmlnlJKvQL8I2A2wuMJETsnTo1jWSZJx8IwDJKOhWWZnDg1Hsn+Uwm7rvuvV1z1ft+7jR8ELORcrs3nyG8yyUO0V/Q28KPAY0AaeAr4JPAHtbx4377OqOLasv7+rkaHUJNmiRNaP9aZdJGuNhvDMKrbbMtgNl2sy3tfbf8dKbtu+69nXKu971b/998u3w/I5Iqkcy7JtgTJtsSaz7VNY+3HogiubAL4b1rrKQCl1J8DR6gx0V+7lo5VWdD+/i6mphYaHcaGmiVO2B2x9nYmmMsUSTpWdVvB9ejpTNTlvS/fv2ObZPKluu2/XnHByve9G/79t8owoFAMx+Hd0trTJhdLOCYD+zpWfSzKoZuvAT+hlNqrlLKADwMvRXg8IWLn+NEhPM8Px1SDgILr4Xk+x48ORbL/fLFU1/3XK656v+9W5vk+s+kCs+l8zUl+I5Fd0WutTyml/nfCllYO8Azw76M6nhBxVLnxGNXsk+X7j8usm6jfdyvyg4BsoUQ2V8IP6juaEek8eq31V4CvRHkMIeLu8IG+SBPc4v3HaTgk6vfdKgIgXyyRybqUIhqulpWxQgjRAIYBBdcnnXMpuiu6/9WVJHohhNhhvu+zkCuRL5ao8yjNqiTRCyHEDgkIyOZLZPKlHZ1VKIleCCEiF5B3fdLZIiVv56eNS6IXQogIuZ5POutSiHgcfj2S6IUQIgKV8sG5ws6Mw69HEr0QQtRREECuWCJdLh8cB5LohRCiLgKKbqVsQTwSfIUkeiGE2KaSXy4fXNx8ZcmdIIleCCG2yA8CMvkSuXz9yxbUkyR6IYTYpJ0oW1BPkuiFEKJGlfLB6VyRYp0qS+4ESfRCCFEDz/dJ72DZgnqSRC+EEOsICJhbKHDteiHW4/DrkUQvhBBryLse6UyR7r1m0yZ5kEQvhBBL7GT54J0iiV4IIcriVLagniTRCyEEkCmUyMSobEE9SaIXQuxiAYVy2YJSzMoW1JMkeiHErhT3sgX1JIleCLGrNEvZgnqSRC+E2DUq0yWboWxBPUmiF0K0vDh0eWokSfRCiJblBwHpXOtNl9wsSfRCiJYTEHZ5ymRdvF02TLMaSfRCiJZRqS4ZdnlqnuqSUZNEL4RoCb7vs9Ck1SWjJoleCNH0MnmXTL7Ukqta60ESvRCiSe2OVa31EGmiV0p9C9gPuOVN/4PW+lSUxxRCtL7dtKq1HiJL9EopA7gXuF1rXYrqOEKI3SOuq1r1+CzPvnqZ2YUCPV1J3vfAzaihnh07vucHXJ7OoO7qX/XxKK/oVfnPbyil9gFf1lr/mwiPJ4RoYXFd1arHZ3nquUtYlkkqaTOfc3nquUs8AZEn+0ze5cXzVzk5NkkyYfFjR+5Y9XlRJvoe4JvAPwEc4NtKKa21fibCYwohWkzcV7U+++plLMskYVsAJGyLYnl7VIn+nekMJ89M8OrFaUpe+ME3kGhb8/mRJXqt9SgwWvlZKfX7wEeAmhL9vn2dEUW2df39XY0OoSbNEidIrFFoljhh/Vjdks9CtohbKNHRZdGxg3Gtprd39Qjmsi4dSQvDMKrbLNPietZd8zVb4Xk+39dX+dZLb/PGO9er29uSNu85fBOPHxla87VRjtG/F0hqrb9Z3mRw46bshq5dS8dqqlR/fxdTUwuNDmNDzRInSKxRaJY4Ye1Y47iqtbe3g5mZzKqP7W13mM+51St6gGLJY0+7s+ZrNmMhW+T5c1d5/twkC9kbKXR/Txsjw4O8+54+ko6Ftc5t6SiHbvYCn1dKvYdw6OaTwD+M8HhCiCbWrKta3/fAzTz13CWKgGOZuJ6P5/m874Gbt7zPIAh462qa0bEJzrwxU/3AMww4eHsPI4cGueum7iXfItYT5dDN15RSR4GXAQv4v8vDOUIIsUQzr2pVQz08AXWZdeOWfH7wxjVGxyZ4Z+rGt4H2pM2jB/dz9P4B9nYmN73fSOfRa61/Hfj1KI8hhGhurdCrVQ31bOvG6/V0gVNnJ3n+/FWy+Ruz0W/e187IoUEOH+jDsc0t719WxgohGiAgkysyPZ/btatagyDg0pUFRscmOPfmDJXPOdMwGL6zl/ccGmRooLPm4Zn1SKIXQuyokh9Olyxi7sokX3Q9Xn19mtGxSSZmstXtnW0ORw7u58jBAbo7EnU9piR6IcSOCAhXtWZz4arW9kYHtMNm5vOcPDvJi+evki/eWBNw2/5ORg4NcujOXmxr68Mz65FEL4SIWEDe9WO5qjVqQRDw+jvXGT0ziR6frU6AtC2Dwwf2cWx4kFv7o18zJIleCBGZkhewkC3GdlVrVApFj+9fmGJ0bILp6/nq9j0dCY7eP8Aj9+2ns83ZsXgk0Qsh6q5SfCybd5tuuuR2TM/lGB2b5PsXppZ8uN15Uxcjw4McvKMXy9z+zdXNkkQvhKibAMiXV7XulmEaPwi4MD7H6NgEr719ozSBY5m8+54+jg0PcNO+xhZwkEQvhNg2w4CC65POuRR3yTBNrlDiJT3FybEJZhYK1e09XUmO3T/Aw2o/7al4pNh4RCGEaFqeH5DJu+QKzbeqdSsmZrKMnpngldenl5RquPuWPYwcGkTdthezAcMz65FEL4TYkiAIi4+lm3xVay083+fMpRlGz0xw6cp8dXvCMXnonn6OHRpk/961ywQ3miR6IcSmhMXHvHLxsdZO8JXGHs+fv8rs/I3hmb49KY4ND/LQvX2kEvFPo/GPUAgRG5VVrQXXa+lhmnemM4yemeD0osYeBnDv0F5Ghge5+9Y9mHUoTbBTJNELITbkBwHZwo1Vra2o5PmMXZphdGyC8cl0dXsqYfHeB27hgQO97OtONTDCrZNEL4RYV1x7tdbLfLbI82cneeHcVRZyKxt7PHhPH4MD3XVpItIokuiFEKuKe6/W7ag09vjembCxR+VbimHA/bf3cuzQwKYae8SdJHohxBJ+EJDOteZ0Sbfkc/piWDny8vSixh4pm0fv23pjj7iTRC+EAOLZq7Ve5sqNPV5Y3tijr4OR4YFtN/aIO0n0QuxyzdqrdSPrNfY4dFfY2OO2/fVp7BF3kuiF2MWauVfrWoquxyuvT3NyWWOPrjaHRw/u58j9A3S317exR9xJohdil8rkXTL5Ususal2rscfQQCfHhqNt7BF3kuiF2FUCCm44TNMKbfz8IODiO9cZPTOBHp9b0dhjZHiQW3agsUfcSaIXYpco+QHpbJFC0aPZU3y+WOLlC9OxaewRd5LohWhxlSYguXzzr2qdmssxOjbByxemY9XYI+4k0QvRwlphVavvB1x4K96NPeJOEr0QLagVVrWu29hjeIBH1H7akpLCaiFnSYgW4pZ85rPFpl7VulZjj3tu3cOx4Xg29og7SfRCtIDKqtbSXHbJys9m4fkBZ9+c4eTYBJeuLFS3N0tjj7iTRC9EE6v0al3IhqtaexPNNdMknQsbe5w6O8n1TLG6vdkae8SdnEEhmlQzr2p9ZyrNU9/7IS+em1jS2EMN7WXk0CAHbmmuxh5xJ4leiCbUjKtaS17Yd/XkKo09HrlvP8fuH6C3SRt7xF3kiV4p9dtAn9b6U1EfSzSv0xenOXFqnOnrefr2pDh+dIjDB/pa5rj1OU5zrmpdq7FHwjF5+N5+fuLIEAnHamCEjafHZ3n21cvMLhTo6UryvgduRg311G3/kSZ6pdQHgU8CT0d5HNHcTl+c5slnLmBZJu0pm7lMkSefuQAQabLfqePW4zjNtqp1rcYeECb4zjYH2zI4Pz7LvbftrWtSazZ6fJannruEZZmkkjbzOZennrvEE1C38xJZoldK9QK/CfwW8EBUxxHN78SpcSzLJFm+qks6FoXy9igT/U4ddzvHabZVres19khYJoZl0Fa+uWpbBn5Q4tlXL+/qRP/sq5exLJOEHf5+JGyLYnl77BM98G+Bfw7ctpUX79sXv0JE/f1djQ6hJs0SJ4SxzqSLdLXZS+qC25bBbLoY6XvZ7HG3GstW3l9Q7vKUzhZJtiVIttVeVre3d+dXic5cz/PXr7zNd1+5THrR8MzQQBePPXwrj94/wGe/fJKOpLXkPLQlLK5n3YbEvFlRxTiXdVecF8vc/Hmx11lbEEmiV0p9BnhLa/1NpdSntrKPa9fSsbrR1N/fxdTUwsZPbLBmiRNuxNrbmWAuU6xe8QIUXI+ezkSk72Uzx93Oed3s+9vOqtbe3o4da2IdNvaYZ/TMJGd/OFOd+bNaY4+F+Tx72x3mc271ytW2DHJFjz3tTuwbb0d5XpefF4BiafPnJeGYDKxRCiKq4syfAB5XSr0CfB54Qin1ryM6lmhyx48O4Xk+BdcjCAIKrofn+Rw/OtQSx631OH4QMJ8tMjOfj3XpgqLr8fy5SX73T3/A733tHGNvhkm+q83hAw/dwq/87IP8nQ/ew9BA15Kr1Pc9cDOe51MsLT0P73vg5ga+m8Zbfl6Kpfqfl0iu6LXWH6r8vXxF/5jW+n+O4lii+VXGqXd61s1OHXej4zRLr9Zr83lOjU3yol7Z2GNkeJDhDRp7qKEenoDq7JL+3g5G7t+/q8fnYeV5abpZN0LU6vCBvh2ZTtmo4652nGbo1eoHAa+/fZ3RsQku1KGxhxrqqSawnRxmirvF5yUKkSd6rfUfAH8Q9XGEaCZxX9WaL5b4/oVpTkpjj5YgV/RC7KCAgGy+FNtVrVfncpw8M8H3X5ui6N74lnHnTd2MDA9IY48mJYleiB0RkHd90tlitbZLXPh+gH5rjtEzE7z+zqLGHrbJu+/uY+TQIIO97Q2MUKzHMMAyjXWLv0miFyJiJT8gnSmGs24aHcwiuUKJF89f5eTZSWYXNfbo7UpybHiQh1W/NPaIoUpiTzgWCcfCMQ0sy1y3Rn9N/4pKqU7gC8B9wN8G/iXwi1rr9LovFGIXi+uq1ivXMpwcm+SV16ZxvaWNPUaGB7lXGnvEimGAZRkkbRvHMXEsA8vc3Mz4Wj+ufwe4AgwAeaAb+HfAz2zqaELsEnHr1bpWY4+kY/HQvf0cGx6gXxp7xIJpGJgWJB0bx95aYl+u1kT/oNb600qpj2its0qpnwXObOvIQrSguPVqXa+xx8jwIA/d208ysbsrRzba4sSecExs08C2zLrOxqo10S//rbWAeE78FaIB/HJtmrj0an17Ks3JsQlOX7y2rLFHDyOHBqSxRwOZhoFlQaKa2E1sy1jye1Pv36FaE/1fK6W+ALQppX4C+MfAt+sbihDNJ06rWkuez/NjEzxz6oe8dVUae8RFmNjDm6dJx8TagcS+XK2J/n8BfhW4Tlh6+C8Ja9gIsSst79XaSPOZIs+fm+T5c1eXVI4c7G3n2PAA7767b9c39thJpmlgmQbJhEXCMrFtE8vc2cS+XK2Jfkhr/S+Af1HZoJT6KPC1SKISIsbisKo1CALGJ9OMji1t7GEaBvff0cOx4UHuvGlpUTERDbM8pp5wTBKWhW0bDU/sy9Wa6LVS6le11r+9aNvnkUQvdplMoUQm5zZsVet6jT2O3Lefx99zJ5TicSO4VTVDYl+u1kR/CfioUuou4Be01gHhvR0hdoGATK7I9HyuYb1a59IFTpX7rmYLper2W/o6GDk0yLvu2odjm/R2p6RQWB0ZgGEaOJZJV7uD0ySJfblaE/0C8DjwJPCUUuoTyKwbsQuU/HC6ZBFzx5N8EAS8cWWe0TMTnPvhbDWZWGbY2GNk+EZjD1EfixN7wjFxbAvbMtjf286Ud+ObUtwT+3I1r2/WWheVUj9NuHjq24Dcvhcta/mq1p2s9FJ0PV5+bZrRsQmuzuaq27vaHY4cHODRg/vpbq+9taBYn1lJ7AkLxzJxbAPTMJouma+n1kR/FaA8ZPNPlFK/Sjj7RoiWEhCW6M1k3R1f1XptPs/JsQle0lNbauwhalMZY08uumJvtqGYzaop0Wutjy/7+X9TSn01mpCE2HmV6ZLpnEtxB1e1rtfY44EDfRw7NMgtffFvnB1nS6c7NucY+3atm+iVUv9Ra/3TSqkfwKqF9w5HE5YQO6cR0yXDxh5TnBybXNHY49hw2NijIyWNPbZiyQIlOx7z2Bttoyv6L5T//B+Bu4DXgS7gIeDVCOMSInKNaAKybmOPQ4McvL1HGnts0spaMTu/8jTu1k30WuuXyn/9u4RX9KPA/wt8A3gA+C+RRidEJIJwVWuuuCMzaXw/QI/PMjo2uaKxx4P39HFsWBp7bEa1bO86RcB2e2JfrtabsQ8BRwjLIPyh1vqfKaVeiC4sIaJR8gPS2SKFYvRNQKSxR32saLRRvnm6eCmPJPb11fpbZmqtfaXUh4DfKm+TO0SiaQQEpHM70wTkyrUMo2OTvLpaY49D5cYeMvd9TYYBllFO7IkbHZTE1tWa6F9XSn2dcJz+20qpJ5ExetEUyr1aI24C4vk+Z9+cZXRsgjelscemVBK7Y1skEiaOHY6zi/qpNdH/HPAx4Ltaa1cp9Szwh9GFJcT27UQTkHTO5YVzVzl1bpL5RY09+vemODY8yEP3SGOP5QwjvIGadCy6OxMkLBPLMqWmSoRqnUefAf5o0c9fiiwiIbapsqo1m3cjG7t9eyrN6JmwsUelDr0B3Hd7DyPDgxy4pVtKE5QZBhiGQcK+sfrUtkz69rYRuKWNdyC2Te4EiZYRdROQkudz5o0ZRscmljT2aEtaPKL2c1QaewCLEnulrIBt4lgmhiE3TRtFEr1oelGvap3PFHlubJLvfP/tFY09Rg4N8sDd+0jYu3d4plIILGGZOOvUi5Ek3ziS6EVTi2pVa6Wxx/fOTDB2aXFjD7j/jl5GDg1yx+DubeyxvF6MJPZ4k0QvmlJUq1qrjT3OTHD5Wra6vavd4WG1n6MH97OnM1m34zWLJYl9l9aLaWaS6EVTiaq65OxC2NjjxfOrN/Z4/yO3sTCfX2cPraVSL2Y3FwJrJZEmeqXU54GPE/7//H2t9RejPJ5oXVGMwwdBwBuX5xkdW72xx3sODXJrf9jYw2nxMfgwsUPCsUk6JpbUi2kpkSV6pdT7gQ8QVrh0gLNKqae11jqqY4rNOX1xmhOnxpm+nqdvT4rjR4c4fKBvS/v5k2+9zuRsHggY6G3n448d2NK+VuMHAemsS65Q2zi8Hp/l2VcvM7tQoKcryfseuBk11FN9fKPGHkcO7qerxRt7SGLfXSJL9Frr7yilfkxrXVJK3VI+ljSzjInTF6d58pkLWJZJe8pmLlPkyWcuAGwqQZ++OM1Xnj5HJl+qTp+7ci3DV75+nk9/5L5tJfuAgGzB21Qzbj0+y1PPXcKyTFJJm/mcy1PPXeIJoG9PGyfPrmzscftAF8eGB1q6sUe1EJht4zgmjiWFwHaTSIduyqtoPwf8EvCfgHeiPJ6o3YlT41iWSdIJhySSjkWhvH0zyfnEqXHyRa+62hED/MAgXyhtel8V2xmHf/bVy1iWWZ3u6FgmRdfjP37rdfIFb9c09qgWArPXrhcjiX33iPxmrNb6s0qpLwD/Ffh54N/V8rp9+zojjWsr+vu7Gh1CTWqJcyZdpKvNXjI90LYMZtPFTb3PmXQRPwgwDaO6L8sIKHlBTfta/HgQBGQLJdKZIlbCoTux+cYbc1mXjqRFEEAm77KQdSl5NzJab3eK9z90Cz9y+GY6Nzk809sb7w8E0wDHtrjj1r04jkXSsWI//bNZ/k9Bc8W6XJRj9PcBKa31K1rrrFLqz9hER6pr19I71gyiFv39XUxNLWz8xAarNc7ezgRzmWL1ih6g4Hr0dCY29T57OxPMzefDZF/e5gfh1eRG+6rEahhQLPlkynVptvOv3u6YTM3lw/0s2lEqYfFT7z/AfeXGHsW8y0zeXXtHy/T2djAzE5+Rx8rq06Rt4STMar2Yvr1tTE0tkAfi/tvaLP+noDliNU1jzQvkKAck7wK+rJRKKqUSwN8Evhvh8cQmHD86hOf55YQYUHA9PM/n+NGhTe8nlQivoP0gwPMDgsAnlbRr2lfJD5hLF5mZz5PfYpL3/YBzb87wlafP8fZ0lnwxTPIGYYLvbrf5xAfuZvjO3qbu3mSaYSGwro4EPV0p+ve0saczQXvCxpaiYGIdUd6M/bpS6gjwMuABf6q1/uOojic2pzJ2vt1ZN4cP9PHpnzxYnXVjGAEDvR0bzrrxfJ9r1/Ncu57b8lhxNl/iRX2VU8sae3S2OSRsE8/32dedWjHrpllUxtmTibCTkmOt7H0qRC2ivhn7G8BvRHkMsXWHD/TVZQrkZvbj+eE4fC5fYq9pbSlpXbmWYfTMBK+8Pr1k/L0VGnuY5ZoxiaRFYpW67JLkxVbIylixI/zyjdbsFksWVBt7nJngzYlljT1UP8fub87GHstXoDrOypoxQmyXJHoRqSAolw7Oba10cKs19jANA9NiUWNrWagkoieJXkQkoOD6LOSKlEqbz1xvX00zOtb8jT1WJnZZqCR2niR6UVeVmjSZck2azeSwjRp7HBseoKcr3o09JLGLOJJEL+rG8wMy+dpr0lTMZ4qcOjfJC+euNl1jD0nsohlIohd1kSmUNlWTJggCXn9rjr8cfXNlY487exkZjmdjD0nsohlJohfbknc90tnikmmO63FLPq++HlaOvLKosUdHyubRgwOxa+xRSeztSZugOymJXTQlSfRi0wwDCkWfdL722vBz6QInx1Y29ri1v4OR4UEO3bUPx2585ci1ZsX0dKcoFcJhJUnsotlIoheb4vk+CzmXQtHbMOGt19jjXXft4yfecwd7Uo39FaxWeXQsEk7Y2FqmO4pWI4le1KS64ClXqo6nr6XgeryyRmOPo/cP8Oh9YWOPRhUKW7L61DJX1KCXxC5ajSR6saFssUS2htrw09dznBqb5KULKxt7jBwaKBcV2/nhmWrTDccOqz3K6lOxy0iiF2vKux7pDRY8+UHAa2/NMTo2yYW35qrbbcvggbv7ODa88409FpfwTVRL+BqwqL6jJHmxm0iiF8sEFN1gwxut+WKJl/QUJ89Ocu16vrp9b2eiOjzTntp845CtMsuzYZKOiWOHBcGEECFJ9AK4saI1m3MplNa+0To5m+Xk2CQvX5iiWPKr2++6uZuR4cFqY4+oLUnsloVtG1LCV4g1SKLf5ardnXLuiq5MFb4fcH58ltGxCS6+M1/d7tgmD97Tx8jwIAO97ZHGaBjhDVRnncQuSV6I1Umi36WqCT6/9lTJbN7lxfNTnDw7wVz6RuXI3u4kI8ODPHRvP23J+v8KhaV7w/6njh3OinEsE8NAErsQWyCJfpcxDHBLYU2afHH1mjSXpzOcHFvZ2OPe2/YwMjzIPXVu7FFJ7AnHJmmb2PbqnZQksQuxNZLod4mNErzn+4xdCodnfrisscfDqp9jwwP07alPY4/KIqW2hE1Pd1JqsgsRMUn0LW6jBL+QLfLC+as8f+7qssYebYwMD/Dgvf0kne1VjjQMsIzy6tOEhWMaWJZJ754UXlHKCggRNUn0LaoyBp/Nl1ZN8G9dTTN6ZoIfvLGosYcB9w31MHJokAM3b6+xh2kY2LYZtsgrj7PHqw6lELuHJPoW5Hqrz6IpeT4/eOMao2cmeHvqRumBejX2ME2DhG2SStqr1owRQjSGJPoWUZkHPz2bY2Y+vyTBXs8Uef7cJM+fu0pmUWOPm/a1c2x46409Fg/JJJNhQbDFN1ElyQsRD5Lom15AsRRUFzr12BZBEFaO/OHkAqNnJhi7NFu3xh6Vq/Zkojz10ZSCYELEnST6JhUAruuRzpdwF61kLboeL56/umpjjyMHBzhy/wB7OhKbOpZpGqQSVpjcrdWnPgoh4ksSfZPxg4C865HNu0uKjc0u5Dl1dpKX9BSZ/MrGHu86sG9FOd61VIdkEhapcgOOxSTJC9FcJNE3CT8IyBVKZPOl6iyZjRp7jBwa4Lb9XTXtf/EsmaRtYsksGSFahiT6mPP8sOFHrlCqNt4uuB4vvzbFybHJJY09utsd3v/wbRy6fS9d7esPzxiAYRqkKnPbZZaMEC1LEn1M+b5PpuAtSfBrNvYY7GJkeJDhO3vo7+tas2tTpQFHKmGTWKWUryR5IVqTJPoYqSxyyhVK5AsefhCs29jj3eXGHjev09jDMMLiYKmEVW12LYTYXSJN9EqpzwI/Xf7xaa31r0R5vGYVBFAseWTzJYrlGTTVxh5jk1yb31xjD8MA2zJpS94oEiZX60LsXpEleqXUjwOPAw8SzgY8oZT6mGl29I4AABNuSURBVNb6z6M43umL0/zJt15ncjYPBAz0tvPxxw5w+EAfpy9Oc+LUOOOTC+SLPn4Q0J60efzRW3nivXetub8Tp8aZvp6nb0+Kwb4Onh+bJF8s4dgmnSkbwzTp25Pi+NEhAP7k2xeZnMkCBt0dDm0Ji+tZF88LsC2D7o4EuUKJ65kiCduivc2mLWGxkCkyn7sxRLOawd52Dt6+l7FLM3zzxbd45oW3sMxwsdJATxs/+u6buf/2XjpSDmZ3G/qtGf7i5DhXZ3P07Ulx39Benj19hZn5AgFgm9CeckjnXCqHTTomHz46xBPvvWvd8wnw1Hff4BsvvE2+WCKVCM/lHTd1c+LUOJenM5S8AMsywqmcQUDe9Uk5JhgG+aJH354UDx0c4PvnJqvn+PjRoer+V/s3WP74er8LW3ndeq//YH9tN7XrYbvxt3o8YvOMIKJLPaXUMNCltT5Z/vnfAK9prf+vDV56B3Dp2rX0uolvsdMXp/nK0+fI5EuLapYHdLQl+MCDN/PcmQlyhRLp3I1ph+HNSHjiPXesSPanL07z5DMXsCyThG1y7XqeTL6EaYRXy165sVJXu01HW4JszqXkBRTcUnnPQfU5Zrlphh8EJB2LVNKmLWFTcMPx91yhxEYMwiqSAQFuyQ8XRJUfSyUsBnrbaUta/OTI7Tz26B188+SlJfEvZF1mFwo1nUvDgGMH9zP25uyq5/PTH7mPN6/M89T33sTAwDTAD8Kbxu1Jm2TCYj5TAAwCAgI/nIffnrLI5j0goLc7RckLmM8U6Wp36O5IUCz5eJ7Pz37o3uqH8+L3sPzxtWz1dRu9/h99/N3c3hddc5V6xd/f38XU1MKGz9upeNZT71ij1AyxmqbBvn2dAHcCby55LKqDaq3HFiX5ewiHcL4exbFOnBonX/QwjHJtc9PAMEzyhRLfeOFtLMskW55bXp0yaICBwTdeeHvV/VmWSdKxMAyjmowDYPFnTzpXIulY5Ith0jaMcDHR4ueYpsnezgT7e9rpak/guh6TMxlm5vM1JflwHwZ516Pg+hhGWPmxuyPB4L52Otsd5jNF5tJFnv7eD9eNf8n7X0MQwKlzU2uezxOnxvnGC29jUNluVFsHVj64queh/GFnGOG5CjtFhR88uUIJDMgVvbCRt2NhWSYnTo2v+h6WP76Wrb5uo9f/2bdfr+n127Xd+Fs9HrE1kd+MLV/ZPw38stb6tVpfV/5kqslMuogfBJiGUV3SbxkBJS+g5HvclLLxg3KSCy+4CQKwLMi7Hv3LvpbPpIt0tdnVfVUSd+XLT+UqNwjCdnp+EBAA4XokA9MwaEvZtKVsTMOgVPK5dj23pInHZphm+C2iLWnT05XA88OkOj0X7tO2THq7k8yWu0Atj3/Jccvvfz3hTWBWPZ+z6SJ518M2WVE+ISgfq3IeKttMw6BU/fe5EY9lgOf5OOXZP7ZlMJsu0t/fteI9LH98LVt93UavvzqTren127Xd+IG6xlmPeNazE+e0Xpop1uWivhn7I8CfAv+T1vqPN/PazQzd9HYmmJvPh8m+vM0PwoVDtmVWh138AIxFydrzIeVYK76S9XYmmMsUq3XYq68t/64vTvhuyQ+veo2AZMKmI2UTAPmCx/WFAsWSj2MZW0/yBnSkHFJJm6Lrcz3tki24N2Ig/I+XyZfo6UysGr9tGZQqszFrCMM0wg+r1c5nT2eChUyRguthmUt3Voml5AWY5RNtEH5wGEb4J4GBbYUn0i1/SLnlJuMF16OnM8HU1MKK97D88bVs9XUbvX5/b/uOfHXfbvz1HmLYbjzraYbhkIpmiHXR0M3Kx6I6qFLqNuA/Az+z2SS/WcePDpFKhMW8/CDA8wOCwCdVvuHqeT7tqfAzrZqaAggIePzRW1fdn+f55TK/QbUvqkGYeCu62m0wYKC3jdsGu3Asg7l0gaszWebSYZIHtpTkbctgb2eSwd4ODMMgk3PJFVzyRXfF8Etb0sbz/OpN4bXiX/L+12AYcPRg/5rn8/jRIR5/9FYCKtuD6krdtqRNW9ImCHw8P6AykzMIoLPNLn8L8ulqd8KYAmhLWARBQMH11n0Pyx9fy1Zft9Hr/9Zjd9f0+u3abvytHo/Ymiiv6H8JSAFfVEpVtn1Ja/2leh/o8IE+Pv2TB6uzRAwjYKC3ozpLpDIbZPGsm7Z1Zt1UbjJVZhrctr+zOuum6JbY25mgtytBIuHQnrR58N4+SiWfE6fGcV0P0zBoT5qU/IB80V+SXG3LwPOC6jbHNvC9gMpngV2eqdKWtFnIuly7nqW/J5zxAjdm9hjlK+xUIpx1s3gmxPL4B3raeP8DN2151s3y81nZ/1qzbjzPX3XWzZ72RHXWzUBPGx9+zx1rzrpZ/h5qne2x1ddt9PpHDg7syBXdduNv9XjE1kQ262Yb7mCTs252Qn9/FxOT1ymWfAoFj6Lnr4iv5Pn84OI1RseWN/awefS+fo7ev35jj4Rj0ZmqFBHbWqWZZviKWSGx1l+zxAkSa72tN+tGVsZuwPV8iiWfYCbDteuFal33xa6nC5w6d5UXzk0uqRx50752RoYHeeDuvuoNx+UqK1fbUzapbfZmFUKI1UiiX6Ryw9B1fQoln0KxVB6HBifpLEnyQRDw5sQCo2MTnL00Ux3+MA0YvrOXkUOD3D6wdmMPw4CkbdGeckg4Blu9ghdCiI3s+kRvGFAq+RQ9n0LRo1haOSSzmFvyefX16ZWNPdocjhzcz5GD6zf2MAxIJWw6Ug6OLdUihRDR23WJvjKPu+T7FF2folui5AUbJtzpuRx/efKHvKinlixAurW/g5FDg7zrrvUbe5iGQSoZDtE4llmdhy+EEFHbFYk+XMjjU3Q98q6HVwpWHWtf8bog4OLleUbPTHB+fGljj8MH9nFseJDb9q+/sKuS4DtSNlZ5vqEkeCHETmrJRB8uhgoolcpj7YUSXrDxVXtFwfV4+cIUo2OTTM0tbexx5P4BjhwcoLNt9cqRFasleCGEaISWSPTVm6ilIJwlU/RwV5n+uJHp6zlOjoV9VwvujcYedwx28eNHb+f2/vYNk7YkeCFE3DRloq9esXsBbsmj6Pq4nk/gB7Ws8F/iRmOPCS68db26fXljj97ejjU7N1ViSiVsOtskwQsh4qUpEv2NoZgA1wurOJa2mNgr1mvscWx4kEfU/mrZhI1iS9oWHe0OCWnwIYSIodgm+oCAYsnHLd1I7PVYKTs5m2X0zASvvDZdrUUDcPctezg2PMB9Qz2YZm1z2h3bpKvNqa5klSQvhIij2Cb6mfkCxaK35Sv2xXw/4Pz4LN87M8Ebl+er2xO2yYP39nNseICBntqbStiWQWd7IqzRXYf4hBAiSrFN9P42hmUqsnmXF89PcfLsBHPlWu0A+7pTHBse4GHVTypR+ykwTYOONof2pIUhKV4I0SRim+i34/J0htGxCV59fXpJieB7b9vLyPAA99y2F3ON0gSrMQxoT9rYe1Kbep0QQsRByyR6z/cZuzTD6NgkP5y4UWUu6Vg8ovo5NjzIvj1rV45cS8Kx6Gxz6OlOMVVw6xmyEELsiKZP9AvZIi+cv8rzZyeZz95IxPt72jg2PMCD9/Qv6Y5TK9M06GwLG2TINbwQopk1baJ/6+oCo2cm+cEb16odjgwDDt7ew8jwIHfd3L1m5ciNpBIW3R0OpiHz4YUQza+pEn3J8zl98RonV23ssb/c2CO55f2bphG2uUtYSNlgIUSraIpEv53GHrUwDYO2VNjYW262CiFaTWwTfQBcujK/SmMPo9zYY2Ddxh61MIzw24DUpRFCtLLYJvo/PHGeM2/MVH+utbFHLaRsgRBiN4ltor86G5YHrrWxR63CBtwOyYQ0/xBC7A6xTfTDd/by8ff3cOsGjT1qZdsGnW2JagNuSfBCiN0iton+I8dux11UdGyrbNOgvd2hzbGR+6xCiN0otol+u0zToD1l056UmTRCiN2t5RJ9ZSZNZ8rGlJk0QgjRWok+6Vh0tDkkHZlJI4QQFS2R6J3yjdakNAARQogVmjrR26ZBR7tDKiGFx4QQYi1NmehN06AjZdOesqUBiBBCbKCpEr1pGKSSFh0pB6vGvq5CCLHbRZ7olVLdwPeAj2qt39zKPgwDUgmbjjYbe4dn0py+OM2JU+PMpIv0diY4fnSIwwf6djQGIYTYjkgTvVLqKPBl4N6tvN4wwpk0nW0JHHvnb7KevjjNk89cwLJMutps5jJFnnzmAoAkeyFE04j68vjngV8ALm/2hY5t0tOZoqcriW01ZibNiVPjWJZJ0rEwDIOkY2FZJidOje98MEIIsUWRXtFrrT8DoJTa9GvvvK0Xs8Hj8DPpIl1tdrUUsmOb2JbBbLpIf39XQ2NbT5xjW05irb9miRMk1p0S25uxs7MZfL+xE+J7OxPMZYokHQvHNnFLPgXXo6czwdTUwsY7aID+/q7YxracxFp/zRInSKz1ZpoG+/atXgRSagSs4/jRITwvTO5BEFBwPTzP5/jRoUaHJoQQNYvtFX0cVG64njg1zmy6SI/MuhFCNCFJ9Bs4fKCPwwf6muKrmxBCrGZHEr3W+o6dOI4QQoiVZIxeCCFanCR6IYRocZLohRCixcXxZqwFNHyx1GriGNNqmiVOkFij0CxxgsRaT4vis5Y/ZgTx69LxXuDZRgchhBBN6n3AdxdviGOiTwKPAlcAr8GxCCFEs7CAm4AXgMLiB+KY6IUQQtSR3IwVQogWJ4leCCFanCR6IYRocZLohRCixUmiF0KIFieJXgghWpwkeiGEaHFxLIEQC0qpbuB7wEe11m8qpX4c+CLQBvwHrfWvNTTAslXi/PeEq4sz5ad8Tmv95w0LsEwp9Vngp8s/Pq21/pUYn9PVYo3ref088HEgAH5fa/3FGJ/X1WKN5XkFUEr9NtCntf6UUurdwO8B3cBfA/9Qa11qaICbIIl+FUqpo8CXgXvLP7cBXwHeD7wFPK2U+rDW+i8aF+XKOMseAX5Ua32lMVGtVE48jwMPEv4nP6GU+rvAF4jfOV0t1o8Rz/P6fuADwGHAAc4qpb5JPH9XV4v1aWJ4XgGUUh8EPgk8Xd70R8BntNYnlVK/D/w88P80Kr7NkqGb1f088AvA5fLPR4DXtNaXyp/ifwT87UYFt8iSOJVS7cAQ8BWl1Gml1OeUUnH4N74C/KLWuqi1doFzhB9OcTynq8U6RAzPq9b6O8CPlc/ffsILt73E8LyuEWuOGJ5XpVQv8JvAb5V/vh1o01qfLD/lD4jBOd2Mhp/UONJaf0Zrvbiw2s2ECaDiCnDrzka10ipxDgJ/BXwaOEZY3OgfNCK2xbTWY5X/JEqpewiHRXzieU5Xi/UEMTyvAFprVyn1OeAs8E1i+rsKq8bqEM/z+m+Bfw7Mln+O7TmtlST62piEX+MrDMJEFSta6ze01h/TWl/RWmeB3wU+0ui4KpRSw8AzwC8DbxDjc7o4Vh2K7XnVWn8W6AduI/ymFNvzuizWD8btvCqlPgO8pbX+5qLNTfH/fz2S6GvzNmFVuIpBbgzrxIZS6l1KqZ9atMkA3EbFs5hS6kcIr+J+VWv9VWJ8TpfHGtfzqpS6r3yTkHKi/DPgMWJ4XteI9RMxPK+fAB5XSr0CfB54AvgMMTynmyE3Y2tzClBKqbuBS8DPEN7wihsD+D+VUn8FpIH/HvhqY0MCpdRtwH8GPqG1/qvy5lie0zVijeV5Be4CPqeUei/hFeffJBx2+FdxO6+sHut3iNl51Vp/qPJ3pdSngMe01j+nlDqjlPoRrfVzwN8HGnpze7Pkir4GWus88CngTwnHF88Df9LImFajtT4N/EvgOcI4X9Fa/3+NjQqAXwJSwBeVUq+Ur5Y+RTzP6WqxvocYnlet9dcJZ4W8DLwEfE9r/cfE8LyuEevnieF5XcPPAv9aKXUe6AR+p8HxbIrUoxdCiBYnV/RCCNHiJNELIUSLk0QvhBAtThK9EEK0OEn0QgjR4iTRCyFEi5NEL1qaUuobSqm+OjznMaXUmRqOF6y2L6XUE0qp3yn//dtKqY8rpe5QSqU32qcQ2yUrY0Wr+9DGT6npOduitX4KeCrq4wixGkn0omWVm1oAfEsp9Y+B3wD2ES7B/z+01n+47DkfAR4A/lcgQVhO96ta61/f5KF/Uyn1KOE35l/TWn+tvJz+41rrj27rTQmxBTJ0I1qW1vrnyn/9McJ6L7+rtT4MfBj4LaXUyLLnvA38IvBJrfUjhKVz/9lGwzqreENr/RDw94CvKqX6t/tehNgOSfRiN7gfSGmt/wxAa32ZsBbM8cVP0loHwN8AHi63E/wiYUGzjk0e70vl/Z0hrOEysq3ohdgmSfRiNwhYWk8cwt99Z/EGpVQHYdGth4DvE9bNdwmT/WZ4y47T6NK7YpeTRC9anQe8CbhKqb8FoJS6GfgpwsYilec4wD2EzZ9/TWv9XwlruycBa5PH/FT5OA8BdxOWZBaiYSTRi1b3nwibiPx3wD9VSp0G/hvwea31txY95zuEXYO+BpxXSp0jHMY5S5isN+MupdTLwO8Bf0drPbP9tyHE1kmZYiGEaHEyvVKITVBK/TJhE4rV/Cut9ZM7GY8QtZAreiGEaHEyRi+EEC1OEr0QQrQ4SfRCCNHiJNELIUSLk0QvhBAt7v8Hx0fxeWi9st0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "sns.regplot(x=\"total_bill\", y=\"tip\", data=tips);" + "sns.regplot(x=\"total_bill\", y=\"size\", data=df);" ] }, { @@ -804,47 +1230,61 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 111, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAGkCAYAAACYZZpxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3Rc93Xo+++ZOWc6eiMIkAQ7KYpNEiWxSLJsxpIsUVQo25GUyPaz9Pzsp5Vn+8b3Jk6y4nitp7jk3ueX3Fh3JXmKEzuRVRzJoixalVZhUaFEsReQBNhAogPTyynvjwGGAAmQGHBmzgDYn7W4KBCYc/ZAwOz5/X77t3+KZVkWQgghhA0cdgcghBBi6pIkJIQQwjaShIQQQthGkpAQQgjbSBISQghhG0lCQgghbKPaHcB46LpBb2/U7jAuUVHhK7q4ijEmkLiyJXFlp1jjqqkpsTuEojMhR0Kq6rQ7hBEVY1zFGBNIXNmSuLJTrHGJS03IkZDIL92ERErP6jFuTUWdkG9phBB2kiQkLpFI6Xx4qD2rx6xaXIfqlh8nIUR25FVDjElSN+jpTxCOpUjqBk6HA4/LSWWpm4BXszs8IcQEJUlokgtFk0QS2U2tmQPdBHXDpKUtyPG2IJ19MUbrMuh1q5zuiHD7ygZm1AauMmIhxFQiSWiSi8Wzn1pbMreKgy097D3RTTJlUh5wce3sSuoqfZT4NNyaE92wiCZS9PQnONsVYdveNt7afZaV86u575Y5koyEEGMiSUgM09kX478/tZvO3hjTq30snVNFbYUXRVGGfZ1LA59HpbrMy4KZ5Vwzu5L39p3ntQ9P8/2ffcj6Gxq575bZeFzyIyaEGJ28QggALMti/4kePjnWRXnAzaevb6CxZuyjGb9H4951s/nMDY386q3jvPbhaT451sXXNy6haVppHiMXQkxkUlQrMEyTd/eeY3dzFzPrSviTh1ZmlYCG8ns0vnznIv70oZWkdJPHf/4Rv9t9NscRCyEmC0lCU1xKN3njwzO0nguxckE1ty6vx5uDUuuFMyv4/ldvZMnsSn7x6hF++UYzpinnJwohhpPpuCkspZu8sesMXf0x1i2rZ8708U+bKQ7lkio8xaHwyD3X8MI7J3h912nO9UT4yl2LcbucWD1RDBPZ4CrEFCdJaIrSDZOtH6UT0C3Lp9M07ep6WiVSBnuOdo74uZl1AW68ppYPD3bw+M938ZnrG6irLmHRjDLZ4CrEFCfvQ6cgy7LYvu887b0x1i2tv+oENBaLZlbw6esbCUdT/Pa9U/SG4nm/pxCi+EkSmoI+PtrJyfMhrl9Yw+yrmILLVkONn8/eOAPDtHj+d8c4dT5UsHsLIYqTJKEp5kRbPwdaelk4s5xrmioKfv+qMg933jQTTXXy97/ay4HWnoLHIIQoHpKEppCeYJyd+9upq/CyalHtJRtQC6XU7+L+2+dRVebh/312Dx9k2dFBCDF5SBKaIpIpg7d2t+HWnNy6YjoOhz0JaJDfq/HNLyxn7vRS/vHFA2z9+Iyt8Qgh7CFJaAqwLIv3DrQTiae4dcX0nOwDygWfR+W//MEKls+r5t9fO8qv3z2BNVqXVCHEpCRJaAo4draf1vMhVsyrprbCa3c4w7g0J49tupZ1S+vZvL2Vf3/9qGxqFWIKKY63xCJvOnujfHiog2mVPpbMqbQ7nBE5HQ7+t88tosSv8dv3ThGOpnj0nmvQZCerEJOeJKFJzLQsfvabgyiKwtql03DYVIgwmou7LHxudRNul8qv3zlBfyTJI/csxucZfmCeHCMuxOQiSWgSe3PXGY6c6mXNtdPwF+HppyN1WSj1aaxdOo2d+8/zf//bLm5f2UB5iTvzeTlGXIjJRd5TTlLne6L859vHWTavmrkNE+sohbkNZXz2xpnohsmW905yUja1CjFpSRKahEzT4smXD6KpDr70ucW27Qe6GrUVXu5ePYvygJu3P2lj99FOKVgQYhKSJDQJvfrhKY6fDfLQ7y2gosRjdzjj5vNo3HHjDOY1lLHvRA+vfnCKrv6Y3WEJIXJIktAkc7YrwgvvtHDdghpuvqbO7nCumtPpYM3SadyyrJ6+cJIf/fvH7Dxw3u6whBA5Iiu8k4hhmvzLywfxuJw8fMdCFEVhskxgzZ5eSk25l0+OdfHPLx1kz7EuHly/gDK/y+7QhBBXQUZCk8iW907Rci7Ew3csnJQvzgGfxv/1heX8/q1z+PhoJ3/5z+/xzp426bIgxAQmSWiSONUeYvO2Fm5cXMuqRbV2h5M3TofChjVNfP+rN9JQ7edff3uYHz+1m7auiN2hCSHGQZLQJKAbJv/y8iH8Xo0/+uxCu8PJq8ENrqUBN499fhkPrp/PqY4wf/Xk+/zrK4dp74sRSejD/uim3VELIUYja0KTwObtrZzqCPPHm5YSKMJNqbl08QZXTXWwYe0sPmnu5t1P2nhv/3mWza1i4axynI70eyzZ4CpE8ZLfzAnu6Ok+Xt7Zytql01i5oMbucGzhcancvKSORTPL+ehIJ7uOdHLwZC9L51Qxr7HM7vCEEJchSWgCi8ZT/PNLB6gp8/LQ+gV2h2O78hI3n7mhkbauCHuOdfH+wXb2n+jGMCxuX9kgDVGFKEKShCYoy7L4xWtH6Q0l+e7D1xXNGUHFYHq1n/oqH21dUfYc6+LpN5v57fsnWX99I59a2YDfM7mnLIWYSOSVa4J670A77x9s5/dvncPc6TLldDFFUWio8TO92keJ38XbH5/lP98+wW92nOSWZfXcfl0D9VV+u8MUYsqTJDQBdfTF+MVrR1jQWMbdN8+yO5yipigKi2dVcsOCWk61h3j1g9P8bvdZ3vjoDAtmlHPbiuncsLAGTXXaHaoQU5IkoQkmkTL46fP7cCgKj264Bodj4jUnLbTBsu6qci8PfXYB96xt4v2D7ezYd45/fukg//G6yo2L61hz7TQsp5NoQpdzi4QoEElCE0jKsHjy5UOc6Qjzf9x3LV6PNuxQuJE4ZfljxHOLygMu7rp5Jud7ohw93c87n5zlrd1nqSrzMLMuwMZ1c5hZG7ApYiGmDklCE8jLO1vZdbiDFfOricZTfHio/YqPuWFJff4Dm6AURaG+yk99lZ9YQqf1fIjT7WF2H+1i99Eu5k4v5cZr6rhhYS0VQw7WE0LkjiShCeL9g+1s3tZC07QSls6ptDucScfrVlk8q4Ibl9RzriNEyjD5pLmLX77RzC/faGZ2fSkr51ezcn4106v9E/KMJiGKkSShCeBAaw9PvnyQOdNLWb2kTl4A8yzg01i1uI7fv2UObV0RPjraySfNnTz/zgmef+cEteVeVgwkpHmNZZnODEKI7EkSKnKHTvbyP3+1l2mVPr527xIOtvbYHdKUMr3az/RqPxvWNNEbSvDJsS52N3ey9eMzvPbhaQJejWtnV7JkdiXXNFXKtJ0QWZIkVMT2Hu/iiV/vp6bcy3ceXInTKe+4C2Wwom4ol8vJjdfUceM1dcSTOodae9l3vJsDrT28dzC9PtdQ42dJUyXXzq5k/oxy3JqUfgtxOZKEitQ7e9r4+StHaKz18+0vrqDU57piJZzInZEq6kayuKmCRbPKmV4T4MTZfg609LD147O89uFpVKeD+Y1lzG8sY15DGXOml+KTbg1CDCNJqMikdINfvtHMW5+0ce3sSr5x37XSkqfIKYrCjLoSGmsC3LqigWTK4PjZfg6d7KX5dB8v7WjFskABplX5mF1fyqxpJcyaVsqMGr/8/xVTmvz0F5GWc0F+tuUwZzrD3HXzTH7/ljmoMgU3IYw0cppRG2BGbYCUbtLVH6OzL05nX4xdRzrYsf985usqS90DpeI+ait8VJd5qCrzUB5wZzYjWz1R2UQrJiVJQkUgGEny0o5Wtn58hlK/i29+fhnL51XbHZbIEU11ZPYjQbr5bDiWorzUwydHOukLJ2jrinCotRdzyFHligIBr0bAq1FR6sGtOlg6t4ppFT4qSt1UBNy4ZM1JTHCShGzU1Rfjd7vPsvXjsyR1g0+taOD+2+bi88j/lslMURRKfC6unVOFMeTYV9O0iMRThGMpwtEUoYG/w7EULW1BYgmd3c1dw67l96hUlHioKHFn/pQHXPg9Gn6Pit+r4fOo+D0aHpdzzOX9ugmJ1JXXIAdHaICM0sS4yKtdgQUjSfYc7+LDwx0cONEDCqxaVMvGdbOlq/MU53Ckk1OJzwVVwz9XEvDQ0xdlbkMZ8YRObyiR/hNO0BtM/32yPUQoksQa+fJAelSmOR3pvwf/DPnYrTlxaU4cDoW+cALVqeB0XPicx+XE43bi0VQ8bicVZT5C4TggJ9iK8ZGfmDyKxnU6+qKcbg/TfKaf5rP9tPdEAagu83D3mll8akUDlaUemyMVE4GmOqir9OG/zAu9bpgEI0kicZ1oPEUkrhOJpf+OJ3VShkkqZab/1of+MUjqJn3hJImUQSJlEI3r6IaJYY6e1lSnA6/bic+jcrC1h+pSL+UBF+UlbsoDbspL3FQEXNKlXIxqyiahlG5iWhaWZWFZ6Xl602Lg37jo3y10wxr2C5vSTRIpk0g8RSSWnjLRLejqjRKMJGnvjRGOpTL383tU5jeWc+uyehbNqqCxtoSkbgCMufT6Mq8FYooYaf/SxdxuFbdbpbIs/eZGU1VSenbl/aYFHx1O732yBn7+40mdeNIY8kfHMKE/nCCW0GlpC/FJcze6YV5yPb9HvZCYAi4CXg2vS8XrHvzjxONW0ZwOVKcjPQIb+FtzOnA6HTgdCoqSrjIcnFZ0DPyDQ0knROkmMvFM2CR0NUcY7DnWxX+8fjSH0YDTqVDideFxO6mr9LG4qZLqcg/VpV5qK71Ul3nSvzADYkmDAy3ZdT9YPLsy630mqlMZx2MceX+M160W5D7ZPsbrVjF0Lev7FCouw7Q4NI6fm/E85uLYyri0G0TA7yYcSQCwfF41Hs1BLGEQjCYJhpP0RxMEI6n0x5H0n46+OK3tIVKpS5PV1fj0dY3cedPMzMdyzMnEoFiWJe+vhRBC2EJqWYQQQthGkpAQQgjbSBISQghhG0lCQgghbCNJSAghhG0KkoTC4TD33HMPZ86cAeCZZ57hnnvuYcOGDXz3u98lmUwWIgwhhBBFJu9JaM+ePTz44IO0trYC0NLSwpNPPsnTTz/N5s2bMU2Tp556Kt9hCCGEKEJ5T0LPPvss3/ve96itrQXA5XLxve99j0AggKIoLFiwgLa2tnyHIYQQogjlvWPC448/PuzjhoYGGhoaAOjp6eE//uM/+MEPfpDvMIQQQhQh2woT2tvb+fKXv8z999/PTTfdZFcYQgghbGRL77jjx4/z6KOP8vDDD/PVr351XNfo7g5jFllHz5qaEjo7Q3aHMUwxxgQSV7YkruwUc1xjVYyvceN1uedd8CQUDod55JFH+Na3vsV9991X6NsLIYQoIgWfjvvVr35FV1cXP/vZz9i4cSMbN27k7/7u7wodhhBCiCJQsJHQ1q1bAfjKV77CV77ylULdVgghRBGTjglCCCFsI0lICCGEbSQJCSGEsI0kISGEELaRJCSEEMI2koSEEELYRpKQEEII20gSEkIIYRtJQkIIIWwjSUgIIYRtJAkJIYSwjSQhIYQQtpEkJIQQwjaShIQQQthGkpAQQgjbSBISQghhG0lCQgghbCNJSAghhG0kCQkhhLCNJCEhhBC2kSQkhBDCNpKEhBBC2EaSkBBCCNtIEhJCCGEbSUJCCCFsI0lICCGEbSQJCSFEETJN0+4QCkKSkBBCFCF9auQgSUJCCFGMDGNqZCFJQkIIUYQM07I7hIKQJCSEEEVIl5GQEEIIu8h0nBBCCNsYU2M2TpKQEEIUI0uSkBBCCJFfBUlC4XCYe+65hzNnzgCwY8cONmzYwGc/+1l+8pOfFCIEIYSYWKbIUCjvSWjPnj08+OCDtLa2AhCPx/nzP/9znnjiCbZs2cL+/ft5++238x2GEEJMKFMkB+U/CT377LN873vfo7a2FoC9e/cya9YsZsyYgaqqbNiwgVdeeSXfYQgh8qQnFOeJF/bx46d288QL++gJxe0OaVKYIjko/0no8ccf54Ybbsh83NHRQU1NTebj2tpa2tvb8x2GECJPnn6jmY6+GLGkTkdfjGfebLY7pEnBmiJDIbXQNzRNE0VRMh9bljXs47GqqgrkMqycqakpsTuESxRjTCBxZatY40oaFi7Nmfk4oVtFEWsxxHA1NLc64Z/DWBQ8CU2bNo3Ozs7Mx52dnZmpumx0d4cxi6ytRU1NCZ2dIbvDGKYYYwKJK1vFHJfLqdCXMlAUBcuyKPe7bI+1mL9fYxUMxYvyOYzH5Z53wUu0ly9fTktLCydPnsQwDH7zm99w6623FjoMIUSOPLB+PnUVXrwuldpyLw+sn293SJPCFJmNK/xIyO1288Mf/pA//uM/JpFIcNttt3HnnXcWOgwhRI5Ulnj4xn1L7Q5j0pkiOahwSWjr1q2Z/169ejWbN28u1K2FEGICmhppSDomCCFEEZoq03GShIQQohhJEhJCCGGXKZKDJAkJIUQxkuk4IYQQtpkiOUiSkBBCFEJSNzGy2GBvTZE0JElICCHyLBJPEYwks5pjcypT4+W54JtVhRBiqjAti2AkSTxp4HBk1yNTN808RVVcJAkJIUQeJFMmwUgCfZw9LqWLthBCiKxZQDSeIhxLXV2F29TIQZKEhBAiVwzTIhRJEk8ZdocyYUgSEkKIHEimDIKR5Lin3y4m03FCCCGuyAIisRSR+FVOv41w3alAkpAQQoyTaZr0R1Ik8jD9NkUGQpKEhBAiW4oC8WR6+i2bDajZkOk4IcSU1xOK8/QbzYRjOgGvygPr51NZ4rE7LFtZFoRiKaI5nn4b6T5TwdTYkiuEGJen32imoy9GLKnT0RfjmTeb7Q7JVoZp0htOELna8usxyHZz60QlIyEhxKjCMR1FSb8YKopCKKrbHJE9FAViSYNQHqffLubWnAW5j91kJCSEGFXAq2bWJizLIuCdmu9b+yNJ+sOJgiUgANU5NUZCkoSEEKN6YP186iq8eF0qteVeHlg/3+6QCko3LXpCCaJxveBrNE6ZjhNCTHWVJR6+cd9Su8MouMHpt2AkiVnA0c9QkoSEEGIKsrAIRlLE4rqtG0YH1+ImO0lCQggxQDcs+iMJUrr9xyjISEgIIaYMa6D6LYVZJBt0JAkJIcQUYGERito//XYx2SckhBCTXHr6LU5KL6b0kzZFcpAkISHEVGQRTRqEi2j67WJOx9TYQSNJSAgxpZjWwPRbori7PyhTZCgkSUgIMWWkDJP+SAK9CKffLjZFcpAkISHEVGARTRiEo8U7/XYxh+wTEkKIic+0LILRJPFE7g+eyyepjhNCiAluIk2/XWyqdEyYGuUXQogpxbIsokmd3qD9CcgwLbbvO8dPnv0kq8fJSEgIISYgC4ueYIJgOGl3KJxqD/HithbOdUezfuwUyUGShIQQk4duWvSHE5SU2jvJE42neOWD0+w63AGAAqxaXJvVNUxraiQi25LQiy++yD/90z8BcOutt/Knf/qndoUihJjgiuHoBUgXQXx8pJNX3j9FdGAf0vQqHxtvmc2saaVZXcswTFTH5D9d1ZYkFIvFePzxx3nllVcoLS3lwQcfZMeOHaxZs8aOcIQQE1x/JGl777dz3RFe3NbCqfYwkD6e+7OrZnDTNXXjWt8p5CmudrIlCRmGgWmaxGIxfD4fuq7jdrvtCEUIMYEZpkl/JEUyZV/5dTyp8+ZHZ9i5/zyDeWPFvGruunkmJT7XuK+rG/YfJ1EItiShQCDAN7/5Te666y68Xi+rVq3iuuuusyMUIcQENDj9FookbRsxWJbFvhPdvLzzJKFoCoCaci8b1zUxZ3rZVV9/qoyEFMsq/Pbhw4cP82d/9mc8+eSTlJSU8J3vfIdly5bx6KOPFjoUIcQEY5gWwXAis+Zih/aeKL987QiHW3sA0FQHd6+dzfobZ6I6Ry6KUBSoq/DhHOXzFzt+po+5jeU5i7lY2TIS2rZtG6tXr6aqqgqATZs28dRTT2WVhLq7w7YuQI6kpqaEzs6Q3WEMU4wxgcSVLYkrzRyYfktcYfqtstJPT08k5/dP6SZv7T7LO3vaMiOVxbMquGdNExUlboL9sVEf63Ao1FX4xnyv3v4one7JUZhQU1My6udsSUKLFi3ib//2b4lGo3i9XrZu3crSpUvtCEUIMUEkUwb9Nk6/HT7Vy0vbW+kNJQCoKHFzz5omFs+qyMv9psp0nC1JaN26dRw8eJBNmzahaRpLly7la1/7mh2hCCGKnAVE4ikisRR29B7tDSV4eWcrB1t7gfSx27csn86nVk7HpeZvpGIakoTy6mtf+5okHiHEZRmmRSiaJJ4sfPWbbphs33eOrR+fJaWnK9XmTC9l47rZ1JR7839/GQkJIYR9krpJMJyw5cX4RFs/L25rpbMvvcZT4tX43OpZLJtbVbDGolKiLYQQtrCIJAzC0WTBp99C0SS/fe8UnxzrAtIVbauXTGP9DY14XIV9uRwcfU12koSEKEI9oThPv9FMOKYT8Ko89sWVdodUEHad/WOaFu8fbOf1XaczU38zagNsXDeb6dX+gsYySJKQEMI2T7/RTEdfDEVRiCZSPLl5P1+9a5HdYeVVUjcJRhLoBV6QP90R5sVtLbR1pUu6vW6Vu26ayXULa2w93VSm44QQtgnH9Mzag6IoBCP2H0uQP+mjt0MFnn6LJXRe/eAUHx7qyPScu2FRLXfcOAO/RytcIKOQkZAQwjYBr0o0kUJRFCzLovQqepAVMzum3yzLYndzF7997ySReLrrQn2Vj43rZjOzbvRNlYUmIyEhhG0eWD+fZ95sJhRNrwk9svFarJR9bWrywY7pt/M9UTZva6H1fLrLg0tz8Hs3zODmJdNwFtnhPVOkQluSkBDFqLLEwzfuu9BFpLrcW5Rte8YrktALWv2WSBls/egM2/edy7y4L5tbxedunkWpvzhHmYaMhIQQIrdMyyIYKdzmU8uy2N/Sw8s7T2bW1arLPNy7djbzGq++03U+yZqQEELkUKE3n3b3x9m8vYXmM/0AqE6F21c2csvy+lE7XReTKzVpnSwkCQkh8i4STxEuUO+3lG7y0rsnePW91sx608KZ5WxY00RlqSf/AeRIND651gBHI0lICJE3ha5+O3q6j83bW+gJpjtdlwdcmU7XhWq3kyuDB+VNdpKEhBB5Ucjqt75wgpd3nuRAS/qQOYdD4ZZl9dy+sgGXNjHP5AlHJ/PesAskCQkhcqxwvd8M02THvvO8+dEZkgML+bPrS3n47sV4iqzkOlvheArLsibcCC5bkoSEEDlTyOm3lnNBNm9rob033ek64NX43M2zWD6viqqqQF5OVi2klG4STxp43ZP7ZXpyPzshRMGkDJP+SAJdz+/wJxxL8cr7J/n46IVO1zdfk+50Xawv2Kqq4PdoOLIcnQWjyaJ9TrkyuZ+dEKIALKJJg3AkhZnH+TfTtPjwcAevfnAqs8+oscbPxlvm0GBTp+sr0VQFv9eFW3OiQNZTa8FIkroKX36CKxKShIQQ42YYJv2RFLFEfsuJz3amO12f6RzsdO3kjhtncsOiWls7XY9EATTNid+j4hpIPuPV0Rdneo2OW1NRi39r07hIEhJCjItuWHT1xfKagGIJndc/PM37B9szna6vW1DDnTfNJOC1v9P1UIoCmuokMJB8cmH/iS5SusGqxXWok3RabnI+KyFEHl2YfivP01SRZVl8cqyLLe+dIhJL75epq/By77rZzK4vzcs9x0tRwKU68Xs0XJoCVzX2Ga5Q7Y3sJElICDFmFhahaCqvu/nbe9OdrlvODXS6Vh185oZG1lw7DaejeOakFAXcqhOfV8OtOXJeju7SnMQKfMKsHSQJCSFGNPSI8bKAxv23z0OxLFJ5qn5Lpgy2fnyWbXvPZQoclsyu5J7VsygLuPNyz/FQFHC7BkY+ajr55KMew605iScnf+seSUJC5MDQF+yAV+WB9fOpLJk4fcpGMnjEuNetEk+ZPPPGEe6/bX7O72NZFodO9vLS9lb6BzpdV5V62LC2iQUzynN+v/FyKAoetxOfW0NTlbwln0Ful2OSn6ibJklIiBwYfMFWFIVoIsUzbzYPOw9oIorEdcoCbiwsuvvjuPLQebonGOelHa0cOdUHpDtd37aigVuXT0crknKwTPLxqKgD04GFaMTq1lQSMhISQoxFOKZn9oAoikIoOvFfPOqrvJzujBCJ6ViWhc+fu2o03TB5Z08bb+0+m+ktt2BGGRvWzqaqSDpdOxwKXreK3+3EYcNalEtzZFoRTWaShITIgYBXJZpIoSgKlmUR8E7kX61077eblkyjc3sLhu7E53Fy95qmnFy9+Uwfm7e30t0fB6DM7+LuNU0saSqOTtcOh4LPo+J1qbYe+a05HSRSBlahjp+1yUT+TRFTQC7XWvK5bvPA+vk882YzoeiFa09EQ3u/lXhdPLh+Yc6u3R9JsmVnK/tODHS6VhTWLp3Gp69vxF0Ena4dDgW/R8XrVotiA+xg0UMhupDbSZKQKGq5XGvJ57pNZYlnwq8B5evkU8O02Ln/PG98dJpkKj291DSthHvXzWZapf0taVSHgter4XU5iyL5DNIGEnNSn9xl2pKERFHL5VrLZFy3yQULiObp5NOT50O8uK2F8z1RAPwelbtunsXK+dW2T72pDgWfV8PrdqLkcINprsxrLOPV92HBjArc2uR9qZ68z0xMCrlca5lc6za5YZgWoWgy5zvzI/EUr75/il1HOoF0D4FVi2u548aZtneFVp0Kfq+G11Xc//8H4zMNc9L2jQNJQqLI5XKtZbKs2+RKMmUQjCRzOv1mWhYfHenklfdPZXrKNVT7uXfdbGbUBnJ2n/HIdLRWnRTRrNuoPO70dFw+u1MUA0lCoqjlcq1lMqzb5IJFeqQSyfH0W1tXhBe3tXC6IwyAx+Xks6tmcOPiuqzP0cklTXXg92qZ4xQmisERY0SSkBBisjDN9NELiVTupt/iSZ3Xd53hvQPnM0lt5fxq7rxpJiU+V87uky3XwHEKxVB5Nx6D03HReMrmSPJLkpAQU4CipDsyByNJjBxNv+ToDNAAACAASURBVFmWxYcHz/Ps60cJDXS6rin3snFdE3Oml+XkHtka7GhdUeLGhUkuO1oXmtuVnjYMy0hICDHRBaMpovHcTb919MXYvK2FE21BID3l9ZnrGlmzdBpqHtr7XMnQjtYuVcHn0YiE4gWPI5ccSvpI8IiMhPJj69at/MM//AOxWIy1a9fyl3/5l3aFIsSkZQxMvyVzNP2W1A3e+vgs7+49lxlRXdNUwT1rmii3odO1oqS7Tfs8+TlOwW5+j5o5T2mysiUJnT59mu9973s899xzVFVV8eUvf5m3336b2267zY5whJh0FAViA9NvZo6m3w619vDSjlb6wunOzhUlbh66YxENld6cXD8bigIel4rfU5iO1nbxeTSpjsuH119/nc997nNMmzYNgJ/85Ce43cVzXogQI5lIxzXkcvqtNxTnpe0nOXyqFwCnQ+G2FdO5bUUDdbUl9PRErv4mY3Sho7WG5py8yWdQqU+jO5iwO4y8siUJnTx5Ek3T+PrXv865c+f41Kc+xbe+9S07QhFizCbCcQ25nH7TDZNte8/xu4/PkjLS7XbmNZRx77omqssKO/qx6zgFu9WUezl8ug/LsmzvMJEvtiQhwzDYtWsXv/jFL/D5fHzjG9/ghRdeYNOmTWO+RlWVvRvfRlNTU2J3CJcoxpjA/ri6+mI8+eJ+gtEkpT4Xj2y89rJxJQ0L15By34RuFfQ5XOlekViSYCRJoOTqS5IPt/bwy9eO0D7Qbqcs4OaL6+dz3cLaS14MKyv9V32/0ShKulTZN7DPJxt2/3xdLc2lUlPlJ5E0SKLQOMGfz2hsSULV1dWsXr2ayspKANavX8/evXuzSkLd3eGczXXnSk1NCZ2dIbvDGKYYY4KrjysXU2NPvLAvM7LpC8V54rnd/NX/vmbUuFxOhb6UkWn7U+53Fex7e7nvlwVEYikiOZh+C0aTbNl5kr3HuwFwKLD62mmsv34GbpeT3t7osK+vrPTnZTpu8Cwfn9uJnrAIJrJbnC/mn/ux2nXwPO1d6Y2/za09uCfwQOhyz9uWjkS3334727ZtIxgMYhgG7777LkuWLLEjFDFBDU6NxZI6HX0xnnmzOetrZNvQ9IH186mr8OJ1qdSWe4ui7Y9hWvSHElfdfNQwLXbsP89PntmTSUAz6wI8tmkpd69uwu0qzIZPhyPd162q1EOJV8Npw2FyxaQskN7se3YgGU1GtoyEli9fzqOPPspDDz1EKpVi7dq13H///XaEIiaoXHTEzrahabG1/cnV0QunO0K8+G4Lbd3pUY7PrXLnTTO5bmFNwY42KJaD5IpNwKvhcTkz+7EmI9v2CX3+85/n85//vF23FxNcLjpiT9yGpumTT8PR5FWNfqLxFK9+cJpdhzsYvMyqRbXcceMMfJ7cHeV9Oc7B5FMkB8kVG0VRqK3w0iJJSIjikosEUmwjm7EYevLp1Vxj99FOfvv+qcwelPoqHxvXzWZmXWEWv4v1ILliVFvuZdeRTvrCCVs2BOebJCFR9EYrQphoCeRqpQyT/kgCXR//8Odcd4TN21o52Z5etHdrTn5v1QxuuqauINNgqnPgIDlXcR4kV4zqqtKnz+493s2ty6fbHE3uSRISRa+Q+3O6+mI88cK+ItuQahGKJOgNJjDHOf+WSBq88dFpdu4/z+AS0vJ5Vdx18yxKC9DpeqKd5VNMKkvcVJd5+OBQuyQhIexQyGO5n3xxf1FtSLWwCEVTJHGMKwFZlsW+Ez1s2dlKMJouc64u87Bx3WzmNuS307UCaAPHKbgm2Fk+xURRFK5fWMNrH54mGElS6rfveIx8kCQkil4hj+UORpMFS3hXopsWwXCCpG7i8WW/FtDVF2Pz9laOne0HQHM6uP26BtYtq89rp+vB4xT8Hg2XpjCRj1MoFtctrE0XkRzp4NPXNdodTk5JEhJFr5BVbKU+F32heEES3miutvloSjd565OzvPNJW6bT9aKZFWxYO4uKPE4tXnycgiSf3Kmv8tFY4+fdPee4fWXDpGrhI0lIFL1CFiE8svFannhut21l25YFodj4m48eOdXL5u2t9IbSTS/LAy42rGlicVNljiO9YLCjtc+j4lIn33EKdlk8uxJ9oGefw+lgzdJ6nt16jIMne2mqLx31cW5NRZ1Ae3wlCQkxRHW517Y1oKtpPtoXTvCbHa0cbL3Q6Xrdsnpuv64Bl5qfbgcORcGjqVSVeif1cQp2OdTSM+xob6dDQXUqvPDOCdYtqx/1casW16G6J85L+8SJVIhJanD6LTSOo7cN02T73vO8+fEZUnr6XfOc6aXcu242teX56XQ9tKN1VbmHzs7cndgqRqepDuY2lNF8pp8bFtXgcU2Ol+/J8SyEmMD6I0liCT3rF/KWc0Fe3NZCR28MgBKvxudWz2LZ3Kq8rBkMNhX1u504pnhPN7ssmFHOkVN9tLSFWNxUYXc4OSFJSAibDK1+y0YomuSV90+xu7kLSI+kbl4yjd+7oTEv746lr1vxqChxU1XmoflMH4tmlU+KAgVJQkLk0Ilz/fz0+X0kkiZul4PHNi1lTv3w/TiKAtGETiiayqr6zTQtPjjUzmsfniaeTK8bzagNsHHdbKZX5/5MH4dDwS993YrOvIYy3j/YTk8wQVWZ3Rupr54koQlmIh0xXWhX870ZfGzSsHA5lXF/X3/6/D7C0fSeplTU4KfP7+N/PLYu83kLi2AkRSyuk83sW+u5IL94+SBnu9Jn93jdTu68cSbXL6rNeYKQpqLFbXZ9CbsOd3DsbP+kSEJjntjt7+8nHJ68Z1pMFLk4R2eyuprvzeBjo/HUVX1fE0lz2GbXRPLCVFvKMOkJxolmkYBiCZ0Xt7Xwo3/7MJOArl9Yw7e/uIJVi+tymiScDoUSv4uqMg9+jyYJqEi5NCeNtQFOtYewJkFFyBVHQidOnOC//tf/yqFDh1AUhZUrV/LjH/+Y6dMnXw+jiaCQLWwmmqv53vSFE3T1xbFIb7F0jXOjhdvlIBW9cPqq2+UALKJJg3AkNebWO5Zlsbu5i9++d5LIQKfraZXpTtezpuW207V0tJ54Gmv8nDwfoieUoKp0Yo+GrpiEvvvd7/KFL3yB+++/H8uyeOaZZ/iLv/gLfvaznxUiPnGRQrawybfRps+ymVYb+rXtvRF8bhVVdWJZFi7NMeZmpN3BOCndwOFwYJom3cH4iHEAl43tsU1L+enz+4glDCzLoqHaz79sOcy6pdMo9Y+t9c75niibt7XQej7d6dqlObj3lrksn1OJ06HQH0nw8o5WonEDn8fJ3WuaKBu49uU+d7ErJR+Z+i1e0wY6a3f0xiZ8Erri271YLMYDDzyApmm4XC4efvhhurq6ChGbGEExHjE9XqNNn2UzrTb0a70uJ9GEnvneYFljvk5liQdNdaI4QFOdVJZ4RozjSrHNqS/jfzy2jhXzqlk8q4qkbnH8bD8v72y94vcjkTL47Xsn+Yf/3JtJQEvnVPLtL65g/Y0zM5VpL+9opTuYIJ4y6A4m2DLk2pf73CDVoVDqd1FV7sF/mXUfmfotXn6PhtftpKsvZncoV+2Kb6PnzJnDxx9/zHXXXQfA0aNHaWycXA30JpLJdI7OaNNn2UyrDf1aTVMp9Xv4bw+tBODHT+0e83UqStykDBOX5iSZMqgocY8ax1iuaQF9kQTJVHqNKBIbvQuCZVkcaOnh5Z0n6Y8kAagq83Dv2ibmN5Zf8vXRuDEshqHXvtznVMfAWT7usZ3lI1O/9hratkd1OLi4Ov6Dg+1EEwarFtcN+3e3NrFmR64YbVtbGw8//DALFy5EVVUOHjxITU0NGzZsAOCll17Ke5BichptajGbKcfLfW021xlskprQLcr9Lh5YP5+n32ge8fGXu+bgyaexeJJE8sLakM8zcuuc7mCcl7a3cPR0utO16lT41MoGbl0+fdRO1z6Pk1hSH/HaF3/O73FmnXzG8/0TuTe0bc+qxXX4L2rFU1vh5ZNj3Zf8+0Rzxei/853vFCIOMQWN1h07m67Zl/vabK4zOMKsqSmhszN02cePds2kbhKMJNANi7tWN7FlZyuR2IW1maFSusk7e9p4+5Oz6Ea6WGHhjHI2rG2i8gpz/HevGf3ag5+Lxgyqyt3cd+tcqso94zrFtJDdy0X2Kks9BCNJUrqBlqf+gIWgWKPU+B0/fpy5c+dy4MCBER+4ZMmSvAZ2Jd3d4XG1uc+noS9gxaIYY4LJFpdFJGEQjibH1Hrn6Ok+Nm9voSeY7nRd5nexYW0Ti2dVjLoDvrLST09PZEzRFPII7cn1/zH/amrGXtn48rvHLzsS2r7vHE++fIi/+drNTKv05TTOXLvc8x51JPTjH/+Yf/zHf+QLX/gC9fX1w+rRY7EYO3fuzG2UQoyD3RVcg9Nv8cSVO1/3hxO8vPMk+1t6gHQj0HXL6vn0dQ24tNHfyfZHEvzn2yfoDcYvW/Gmqkp6wXqSNLYUlzdYFdcTjBd9ErqcUX9af/SjH9HX18fcuXP5xS9+gWVZ6V3gqRR/9Ed/VMgYhRjVYAWXHcdxpwyT/kgCXR99+NMfSfCb7S2c647RF04wOHifXV/CvetmU1dx5RePl3e00h9JYpgQS+ps2dnKg+sXZj6vqQ78Xg23HKE9pVQOdEvoDsZtjuTqjJqE/uRP/oTt27ejKAqrV6/O/LvT6eSOO+4oSHBCXIldFVzRhE44euXNp89uPcbpjnBm3Ud1Kmy6dS7L54290/WFijcrU/GmAJrmxO9RcUnymZIqAm4UyEzrTlSjJqEnn3wSSG9W/cEPflCwgITIRqEruAzTIhRNZhqIjiYcS/HK+6doOXdhXcLnUakp87JifnVW9/R5nPRH0vdTnQrTqnxUlHhwaXKE9lSmqQ5KAy66+yfpSGiQJCBRzApZwZVMGQQjSfTLFMSYlsWHhzp47cNTxAbWiTSng7ISF5rTQYkv+yR595om3tlzjmTKpNSvsWFtEy5NzvMRML3Kz6mO4ivAyIasYIoJrRCbd3vDcTZva+FcVwyXpoxaGHC2K8KL757gTGe6is3jcnLr8nrausJE4+aIpdpX4nAoTK8O8Cd/dAPBvmguno6YROY2lPHyzlZiCR3vBN0vNDGjFqJATMvkP986Qeu5ICgKVsy6pDAgltB5fddp3j/YninRvm5BNXfeNIuAVxvXfQdPMfW50wfJuS9TPSemriVNFfxmRyv7TnRz40WdEyYKSUJCjCIxMP12vjuaPomO4a1wLMtiz7Futrx3knAsvZ+jtsLLxnWzmV1fOq57OhQFr+dC8hFT19C2PYpDIZK4tOhmek2AUp+LHfvPs2RO1ajXcmsq42wMn3eShIS4iGVBOJ4iGk9hWSO3yenojfHithZazgWB9NEPn7m+kTVLp+F0ZP/bPjjy8budOMbxeDH5DG3bczkz6gLsO97N7z46Q8A38sh71eI61CKdrivOqETRy8cm0fFeM5exJFMGfeEEidSF6rehbXI8LgcBr4u//9XeTHn2ktmV3L16FuWBsR3VMNSFaTfnuJKXEItmlXOwtYcDrT3cdM3Em5KTn3oxLvlo8z+ea/aE4jz+813sO9HNqfYQbV3hccWiKOnpt+7+2LAEBFDmd/PAZxawZuk02rqjvHewHdOyqCxx8+U7F/KHv7cg6wTkcCgEfBpVpR5KvJokIDFufo/GvIYymk/3ERzowj6RyEhIjEs+NomO55pPv9GcPi7bgpRu0BeGUn/2sQSj6em3iopLfyV6gnFe2tHKkVN9QHqvzm0r0p2utSwn2p0OBZ9HxXuZc3yEyNaK+dW0nAuy60gnt6+cPuaN0MVAkpAYl/FuEh2cOksaFi6nMmzqbDzXDMd0nA4HupE+t8cwzaw2rOqGxenOEL9++ziRuEFFqYf1NzRQ5nejG+lO12/tvtDpen5jGfeunU1VWXbTfYPHKXjkCG2RB163yrK5VXx8tItT7eGcHwGfTzIHIMZlvCe8Dk65ReOpS6bcxnPNgFelosSFqjpQlHRXgrHFYhFN6vQE47zw9nG6Bk4j7eiNsGVnK8fO9PP3v9rLG7vOoBsWpX4XD62fz1fuWpRVAlKdCqWB9CmmPhn9iDy6pqmSylI37x9sJzZCJV2xsn0k9KMf/Yje3l5++MMf2h2KyMJom0SvVCRw8ZRbbyjBEy/sG3dRwWDHhBKfe8yPt7AIRlKZX9Shp5EapsWJthD7TvQC4FBgzdJ6PnN9Y1Z7daSjtSg0h0Nh7dJ6tuw8yba951h/Q+OEmJaz9Tdk586dvPDCC3zqU5+yMwyRQ1fqaj045aYbFh09UVKGiaZGqCxxj6sLdrYdE3TDoj+SIKWbmX/zeZxEEymiCYPQkDOBZk0rYeO62Vm1yddUBb/XJR2thS0qStysWlTLewfbOdDSw7WX2TtULGxLQn19ffzkJz/h61//OocPH7YrjElp6GikutzLfbc0jatk+Uqjmp5QnJ+/ciS9V8ZKH08QiadHOrpu0N0f52xnhG/+/bvMri/lS3cuzIxcDp3sJaEbWCYYhkG3Gaeuyn9JMcJYy69H+7oT5/r56fP7cCgOKkvd3HHTDKZXBYY9dsX8Gn711vFMU1KvW+VzN8/kugU1Y34n6bqKjtZ2n4kkJpf5M8o41xNld3MXdRU+aiq8dod0WbatCf3VX/0V3/72tyktHd/OcjG6oaXO57rHV7J88XVGKpl++o1mmk/3kUgaxJM6zWf76QnFsSyL3lCSRMrENC0SSYPmM30882ZzZuTidDpwKgqKAhbpo7FHKkYYa9n2aF/3xAv7UB0Kbs3B6fYgP3/lSOYx0XiK5985wb+/dpR4Mn08wq0rG/iTP1jB9Qtrx5SAXJqTihI3lSXucY9+8lHuLqYuRVFYvaQOv0fjnT1txJPFvT5ky0joueeeo76+ntWrV/P888+P6xpVF72bLRbZHN+bL0nDGnZSZ0K3xhXXla6TNCwYSCSKomAB06r8VJV56e6PoygKqqoMHDGtDH+8lZ7DVhwKum6CohCJ64TjOv+y5TCPbLyW6nLvmJ/LaF9X4nMRjet09scBhVTKpLzCx469bbzw1nEiA+12ZtSV8NAdC5k9vWxM3xvN6cDvVfF5tKuedx/rcyyGn62RSFz5sWxBTaYqczwa68v4u6d388mxbu65ZR4VpcU5urYlCW3ZsoXOzk42btxIf38/0WiUv/mbv+HP//zPx3yN7u4w5mVa6tuhWM61dzkV+lLpxXbVqeByKuOKa+h1LMui3O8adh2XUwHLwhr4ozoc+N0qX71rEU/EUxxo7RlIMIDFsDjmz6rgwPEuLAvcmhOXmp7OiiV0TrUHeeK53XzjvqVXjGG0WKdVeDl5ppdoQqc3GM/8u0NV+cHPPuB0RxhI3/uzN87gpsV1OAZ6tfX0REb9nmiqg4BXQ8FJNGwQDV/9gWJjeY7F8rN1MYkrO9kkxr1HO8fUtudyHvq9Bfzbbw/zL5v386U7Fl75AXlyueft/Ou//uu/Llwoaffddx8PPfQQDz74IKWlpbhcLr7//e9ndY1Y7MICcrHw+91Eo/bvWJ7bWEbruSCmCXWVfj5/+9xxtXkfep2KEjcPrJ8/7DpzG8s42xkhFEuhOh3MnV7KH96xEK9bZW5jGWc6woSjOqrqYG5DGX/42QWZx9947XROtvXjc2s01vhxONIjKUiPqkwT1i6tv2IMF8eKBY21AT59fSO6YdFY4+fwqT5MI30qaSJp0D+wq3zFvGq+dOdC5jaUZUYzXq+LWOzSX3xNdVDmdxHwuVCduZ3FHstzLJafrYtJXNnxj3AEyGiaT/UOK6AZj1WL6wCLN3adodTvGndj3at1uect9aOT0NCKsat5R3ilyrPKEg/f/MLyET/XF05wuiOMYVq4XQ7uXTe8OKK63Dvs2k+8sC9TVTd0bWis1W+DX5dMmQQjiczBc401Ae66aRZb3jtJKJpOLjXlXjaua2LOFabehh6hnc+jFApxJpKYuu6/dS5nOyM89fpRaiu8LGmqtDukYWxPQps2bWLTpk12hyGydKWKrp8+v49wNN39IBU1+Onz+/gfj60b9XrjOSF1aAy15R7uuGlmekQ1MKTq7IuxeXsLx8+mO11rqoNPX9fA2qX1lx3NKApoqpPAQLWbEBOZw6HwtQ1L+OF/fMRPn9/Hn/3hdcysK571MtuTkJiYrrQfKJE0h21KTSQvP60wntHA02800x2MUxpwp6vKth7lgc8sJKkbvLW7jXf3tGEMjIiuaargnjVNl200qijpgoOKgAeXli6myJaUW4ti5POofOsLy3n8Fx/xk+f28JcP35B166l8kbY9Ylyu1GzU7XJgDQxJLCs9JZdrKcOkrMRNKJokGE0RjhocPtnL3z23l7d2n8UwLSpK3HzpzoX80WcXjpqAFAU8mpOKEg+1lT5cmoPxJCCQcmtRvCpLPXz7i8tJpkz+n2c/IXKVRQ+5IklIjEvAqw5LMhfv73ls01ICPg3V6SDg03hsU27WPHpCcf7Xr/fxP/9zDx29UY60dtPWESGR1Onsj/HzV4/QG0rgdCjcvrKBb35hGYtmVox4LUVJb0ytKvVSUerGlYOjJ/PRXVyIXGmsCfDHm5bS2Rfjf/5qLynduPKD8kym48S4XGkNZ0592WXXgMbrV787Tkq3aOuO0tUbwwIUh0E8eOGXaV5DGfeubaK6fOSd4oPJx+dR0ZwOLIucVVq6NAcnz0fTcQHzZ5Tn5sJC5MiiWRU8cvc1/OPmA/zzbw7x9Y1LbG2sK0lIZGSznjF0DacnFOfnvz3MsbP9JHUTzang0lRqyj2UB9yZBDX02o99cSVApq1OLGFgmCbTq3yUBTwkUwZnuyKZdkBfumsRFSUeLKArGKNzIAEBWAPLTSU+jbtXN7F0TuWIG0gVBTwuFb9XQ3MqOU0+GZYFClimheIY2CBVRGTNSgDcdE0dvaEEz/7uGM+VuvmDT4+tC34+SBISGVcqNrjc45rP9hNPGFikm4TGkklShklSN3nmzWYsi2HXfnLzfr5616JMFZ1hWpgWnOmM0tEbJ5EyUJ3pdaUT54Ns2dnKPatnE40n6eiJXvLSXlXq5rFNS/GM0LVaUdKbUgNeF5qap+QzIKlb1FZcaHiaTBVXEhrv/2Mx+dxx4wy6+mO8+sFpplX6uG1Fgy1xSBKagkZ7Nzye9YyeUJwjp/qIJ43MFJRF+oXfNK1h1xl67cFjiAer6CwsFMC0LCwujB8CXo2AT6O9J040oVNX6c8cs8DA/dwuJ49uuCaTgPojCV7e0UoyZVFT4WHjLXOoKHHnNfkMGu9hf4Uia1YTx+LZlejG1W1WVRwKkcucLXTvLXM41xPlF68dJeBzsWjWyOun2XBrKtksrxbXb4goiNHeDY/nBfTpN5qH/aJkpsgscFx0naHXLvW56AnFSRkGKf1CZnAq6U5zmlOhqsyDaZp098fRnA6eeGEfbd1RIJ3kSv0uvC4n1WUeyobsyH71/ZOYFvi8Kp19MZ7bWrh3++PZ71RIxZ4kxQWHWnquum3PWCyfV8W5rgj/tPkAd90887LbGMZi1eI61Cw6tMhP4BQ02rvh8byAhmM6VWUeuvpjxAf2AnldjhHXhIZe+5GN1/LTZ3dTWeKmqz+R7gOoQGONj9oKH06HwrGzQaKxFJrm5MS5C10fyvwaNWXedKLxOLl7TdPAc0lPu7ndLmLJOL2hdF+3Qr7bL/buB8WeJEXhuVQnn76+kS07T/K7j89yz5omtBxUio6VJKEpaLR3w+N5AR28Vl2lP918M5AudR5p4XvotavLvYRjOh63RmOtBoDfrfJfHlhBKJoiGk/x8dFOfvv+qUyvN9WpUB5wo6kOvB4nD65PN2QcLDjweVRcqgNDN4gldHm3P4JiT5LCHgGvxm0rpvPqB6f58FAHa5ZOK9i95bdzCsr23fBoa0g9oThJ3UyPOAaq2LAsOvpiGIbJyfYg3//ZhyycUT4sGfWE4vzLlsOc7QqjGyaVJW58Ho26Kh89/XHOdEV4cVsLJ8+nRz+KAprDQVmJhqam2+hEYsaopdbybl+I7NVV+lg6p5J9J3qYNa2Ehhp/Qe4rSWgKyvbd8NA1pGAkzuM/30VdhZ/23gg+t0plqWegK4KTUDQ9AukNJdF1M1MVN7ju1BNKPz6WSCeR9DEQML3ax8r51Wze3sqO/ecYPKXD43JSFnDRF0oQjKSoKlPRnArTa9LnFqkDxy8MLTjI9bt9KWsWU8WyedW0ng+x60gH9VVNmeNN8kmSkLiioWtIfeEUhmkSS+pE4zqJlElNuTeztjQ4PWeY6ao3h6IMW3d6+o1mwtEkhglOh0JlmYeKEjfTqwP8fy8dJDjQ6bq6zIPmdAzstYHygJukblBf5afUr3HPmqZMAhrJ4P6jRNLE7XLw2KalzKkf24F1F5OyZjFVOB0K1y+s4a3dbbScCzK3YXy/M9mQJCSuaOgakmGaOB3pRUunw4FhmBhGuoJNdTpoqPHTH06iG+mD7qrKPMPWZcIxHdNScA8Z4XT1xznQmi67Vp0Kn76ukXXL6nl2azPdwcTAEdouait8fOmOhWMqs862izdcmCbs6otdtnS9J5jgiRf2ychITEozagOU+jSOnu6TJCTscfH00503z+TV908Riur4PCq+gfLL8oBGbPCQOAVK/Ron29PrONMqvfSEEoRjqcyaEECJT6WqLL1np70nOiyhLJpZwT1rZlE5cAzxhrWzeXdvG7oODgfcvXrWmPf5ZNvFG9Ijnt5wAt2wLlu63hNKkDJMGRmJSUlRFObNKOfjI52EoklKfK683k+SkLjE028009YVzky9NZ/pp77SS+v5IPGURW8oXa2mAAtnlhONp+jqT9DRGyVlpP/9XDI6sK5j8MmxLs73RNENC7emEI7qRC/aQKepCqfbQ7y0rYXf/9Qcast9qKoH00wfkJdthZvb5SAVvXBkttvlGJZcXZoDrysHnAAAIABJREFULIukbmVGMxdGPNZlS9ddqoOUkc6GudjwORhXbyhBTyhOVemF0vbBEVZXX0xGX6JgGqp9fHwEOnpjeU9C0kVbXCIc0+kLp0jpBpYFwWiSo2f7iV/UgsYCTraHONcTJaUbDJ5EbEGmsICB/44mDJKGwamOyCUJCCClW5iWSTCe4sOD7VSUuHn2zWbOdIbHdSzCSF28hx6z0Hy6j+az/cOuPVpn8MFCh//20Er+z99fSnnAfdkO4tkajOtcd5RwNEVbd/SS5/vki/vliAhRMGUBN6pTobs/nvd7yUhIXCLgVTOFBQAKSuZF92KmaeF0OHA4FPSEPlDxduHzPo9KiU+jL5QgkRo+Jaap6aIF07Qo9bvxuZ1E4inOdsWwrJE31Y61Um2kLt5Dr2eRbjI69NqPbljMr7e10tUbu2xpd65LwAfjGvyeX9zuCNJvBKTdztSSi7Y9o1EdDq5U+Pb6h6fxuFVWLa7L6tpuLbu0IklIXOKB9fM5/vN+onE9nWAUk6Rhjbge43AoeFxOSnwuuvripHQjMwoqL3GjGybtPbHhjxlIVKrTQanfNfCimiIUSeBwQHtvhB8/tZv23ghelxNNUzMjjqupVBu6tqNApvJu8NqVJR7+9Eur6OwMXfY6uS4BH4zL6XCQ0g0ciuOSEVapz0VfKC4bcKeQfLbtWbW4Dv8VWuuU+VzE4voVv+5qyXScuERliYe/+NINLJtbxcy6EhbMrGBBYxkebfhbJ6/LwfyGMh7btJS6Ci/1VT4CPo35jWU01vrpDyfoDyczX685Hbg1BbfmoLbCS31lutt0NJbEskw8LhWPpuFzq8SS+sDfBl6XSm2596J1m+xHBA+sn09dhRevS2X+jHLmN5YNu7ZdBuMa/P5Nr/ZdEtMjG6/NxG53vGJqcDodGPnu+IuMhMSAkaa5snm3P/i1Kd3gtV2neXnHSfSBxfvGGj8bb5lDQ7Ufh0Phpe2ttJzrp703hmlaLJhRzje/sByAHz+1m1gynVhU1Umdz81/e2hl5j5X04CzWFvWjCWu6nJvUcYuJi/HwGbyfJMkJIBLK+KO/7yfv/jSDWOuwDrZHuTJlw9xriuKMTAf53U7uePGmdywqBanQ8HrVgl4VA6d7CESS2Wm906cC2auc6UkIy15hCgMxaHk/egTkCQkBgytiFMUhWhcH+N6S3rfzH//5SdE4hemxjRV4dtfXEHAq+HSnAS8Gm4t3d8tlTIzP9yWZQ07fPRKSaZYRzNCTDZORclbYcRQkoQEcGlFnNPhuOJ6S8oweGt3Gy9tbx2WgAAM00JR0sUJHi3ddHQw8cyuL+F4WxDdMHE6HenGpwMkyQhRHHwelbNdkbzfR5LQJDfWTY4PrJ9P87/2E4wkURwKDoeZ3tA5AtOyOHa2n2febKbl3KWVZF63SlnAxfa9bXzpzsWXfP5Ldy0aUym0EMI+JT4XwUgS07JwKPlrZCpJaJIb3OR4pZLmyhIPs+oCNJ/tz+xTGTZPBlikuyVs3tbCtr3nMAeGNkvnVLJifjXPvHmMsoFTGcPhOGc6R/7xGmsp9MVy0c1aOmILMTYN1X6Suklnb4y6gUrWfJAkNMldvMnx4uaba5ZO41+3HCISNzBMC4eS3r+DBc2n+/jm37+L360yt7GU+ko/r+86kzlkTlPTG95a2oK4VAcz6vx09cWJJQxMy+Jke4gfP7U7Zy/2uehmPdU6YkvSFeM1a1p6mvzY2X5JQmL8Lt7keHHzzf/16/3oupUZ85gW6IZJUk/PCZf5XURjKXYeaMccWKNUnQqVJW56w3GcTpWA38WJthAJXQdLSXdNMEHBSh/5MMqLfbYvkFezRyiX15hIplrSFbkzozZAZambj450snZpfd7uI0lokntk47U88dzuUZtvGoP/zYXJN69bpcTnIqkbtPdEM18PsGBGORvWNvH/t3fv4VHVd+LH32fuk/uFXLiHO4KCFC+AVASUWwhBl1bUH9hSH7V1F+s+z7LY7dPV1l1d12fxtt3tdrtat3Zp3UoRFdRS2YpQblWhchEwIQFCINdJJnM/398fhwwEEpIJyZyZ5PN6Hv7IcOacz2Qm5zPf2+f71vYylKaBgtoGvzHJwGJsNqdpGmdqvVgt1uh12rvZx3qDvJo1Qj15jmTS35JuX9KbZXs0i4a3nRqOl5o8egAffXaaqroWMlJjL2TqtNuwdVISoW//BYrLFjn+eMOB6I1fKYXVqkVbQk6HlYxUB06bhVqP0a12sWH5qdy/YBx2m4Uh+Wmc+rwaXyCMwkhiLoeV7DQnX1Z5jOSmIkQiOhaL1u7NPtYbZE+sEepv64z6W9LtS3qzbE9XZaY6CEcU63/3BVPG5sX8/BuvKcDWSdkf+UT2M8tvH8NrWw5TdroJNBhekEZdUwCbxWLsuxMK423R2yQgu1WjqCCdv5gzilS3nTS3neLpw9l7qDraelIYlRHsNgvZ6U4yUuzUNPo4U9eC22kjK81JXZO/TXdbrDfInpi+3d+mgPe3pCt6Vkaqg2EFaRypbODakbnYO2vWdIMkoX4mJ92Fw2YlO8OJw24lxWllcF4a824azsf7q/jdvkqC56tdFw1Mp/SWERTkpGCzaEYryWFFKeM8IwZlcvRkA0oZLSGnwxZt3dhs1vPdcTo5GS4amgOXdbfJDbL39bekK3rexKIcKqqbOXaqkWuGZ/f4+SUJ9UP+oE5WmhM0aG4Jcaa2hV0Hz+IPGq2fFJeNRdOGM2XMADRNw+W0kpHiwKJp1Hr8vLb5MGVVTXgDYZx2CwMyXVitFgIhvcOtwDvqbotHWRAhRPflZbvJy3JxqLyecUOzsHS2B0SMJAn1MxFdkZvpoKK6maaWIHWeQJsN6FKcNooKUvnK2DwsFqOb7DcfHqPWEyTNbSMYinD0VCPhsI5SCl8gQl1TgAGZrmhrprV1c/FW4O11t3U2MUGmFwuRGCaOyGHbJ6epONtMUWF650+IgWlJ6OWXX2bz5s0AzJo1izVr1pgVSr8Q0RUtgTC+QJibJxRw7GQjNY2BNsc4rBay0p0EQ+CyW8lItfMfmw5ypq4lmijqPYHoYlarptABFNHtBS7u/qlr8l+xu62ziQkyvViIxDAkP400t52jlQ19Iwnt2LGD7du3s2HDBjRN44EHHuCDDz7gjjvuMCOcPi0U1mn2h2jxh9F1xakaL29tL+NUTQsAmmYUKgSF0hROu4WhBWlkpRuVDzzeELquqPP40ZUiHNaxWo1uNIvFgt2iMaEom+/c2X4VhquZci3Ti4VIDBZNY1hBGodPNBAK6z06QcGUJJSXl8fatWtxOIx556NGjeL06dNmhNJnRXRjoWiooYXmlhD+YJgP9pzkjwfPRMdhstIcOOxWNMDjDZCb4WZ4YQaLZwyPnifNbePEGQ8RXaGUwmazYLNq+AMRIkrhdtpYMG1Yt2LsbGJCe0lKSvcIYY6BuSkcLK+nzuPv0QoKpiShMWMu3GzKy8vZvHkz//M//2NGKEmpvZsowG+2HSeig8thYeakgUR0xYaPyjha0dCmCpymQV6mizSXjbONAUCRkebC4wux7ZNTbPvkVIfXtlgUXn8kmsgavUGe+vk+xg/L4oGSCQAd3uBb425oDlDfHCQr1UF2upMHSq65LAnUNfkJhnXqmwKgjMrby28fw2ubD0fr24XCOgfL65hQlNNhImnvd9VeN9/dc43HvYEwZ2q95KS7yE53SoIS4jynw0gXwXDPLqA1dWLC0aNHeeihh1izZg1FRUVmhpJULr2J/mbbcVwOK02+EF5/GH8gTH2TH38gwtFTnsuer5SRPM41+ElPdeB22qn3+Lv04QqE2j/mi5MN/GrrUZSiw3Gc1rhrGvyEIxF8/jChiN7uWE9rssrJcKGUwumwkpPuoqyqiXBYJ6IrdAX+YISzDb4Ox4vaSzjtdfO1HlfnCRAIhgkE9Q5jE6I/0vXeqd5gWhLat28fq1ev5nvf+x7FxcUxPz83N60Xorp6eXk9O2jXnmBE4bBbsVstuF02wjocKKvD4w0a63nSHJyq8VHn8Xd4DqVgQLabcFjnXH1Lmxly3aEUBMLGSRzn9w8C47HW30lr3ArQNAs6xs8XH3Ppa7z0PBaLhsWiEdYVrRNFOzpHR+cZkOWmqrY52s03IMuNpyWIw241irharhybWRIljktJXL1j0tg8wpHeX8Ngs1pwXvQ30pF3d5QBsOTW0V0u4eN2GSXArnj9Lp2ph1VVVfHII4+wbt06pk+f3q1z1NY2o1/tnbOH5eWlx7w9QXekOKwoZRQhbWgKUNPoIxCMoHSFP6zTUuu74vNT3XYyUu00NgWjZXe66vINHi487rAaaaEhFIne4LNSHdHficOqGf8HKKVjxUowFGlzTKvosZecZ3hhOkdPNqBpGrpSOO0dn6Oj8yz9alGbsailXy0yWl6hCFaLRjgcwW658nnjLV6frVhJXLGJJTHu/+JcXMr23HhNAVon8wzCEZ3tn55iWEEamS4rRCJXfsJ5fm8EvzdwxddtfeKJJ56IId4e8cILL3DgwAEOHDjA+vXrWb9+PQDXXdf1bg+fL5hwCx1TU520tAR79Rq6rjNwQCrHTjbQ2BwixWVMLLBoGi2BcLRFY7VoTB2bR6M3SOh8N5vFolGQ4yIjxY6nOUQoEsFqtRDpJJlbNLBYwGYBu92KpsHFLXOrxShsunLheK4dmUt5lQddJzqm4j6/VmjUkEzKqzzYbRZ0NPIyXQzIdLU5plXrsZeeZ+ywLM7V+3A7rCgUBdkpHZ6jo/PkpLu4cXwBt1w3kBuvKcDttEWPc7tsBMMR8rPcVzxvvMXjs9UdEldsUlOdXT72aEV99G+3Nw3OS8PRyWy39/ZUsPvQWVYVX0NBduyTEq70ujWlEu1W3jX9qSWkaRAKK1oCIfzn9+ppFY7ovPzmfs7WX+h6S3PbeHDJRN7fXUGjN0hEB6fdwpC8NJRS1DQGcNg0NE3jy/PbbOdmuowkle1udwykvTU/XZ0I0N5xifxNVeLqOokrNrG0hN756HjcWkKpV/ii9XlZHc+/8RnXjcxl9bJJ3brGlV63+V/xRIc0zZiJ0uIP4w+GL2v5HTvVyFvby6hpNBKQ1aIxaEAK99w+xkgwpzwEQhGy0l1oKPYfryUzzXF+kF5RkO1mcF4avuCF9TcdrcXpag0yWWAqRN9RVuXh5Q0HGJibygOLJ/TKNSQJJSBNM2ahtfhCBMKRy5KPpyXIuztPsP94LWB0l824diBzpw7B6TAGGH/5wREiCgZkp+ALhKmtMRJVistmrA06Pyvs4rU4oVAYjzdwVbuhygJTIfqGT46e4ydvfU5GioPHvj6ZFFfvpAtJQgmks+QT0RW7Dp7hgz0nCYSMgcHhBeksmVnEwNzUS85lIT/bxdl6f/RYgOq6FoYWpEcTTjjioqklSE66C08wQorT1uFuqF3papP9a4RIbkop3ttdyRsfHmN4YTqrl00yCh73ErlDJARFMKTw+kME20k+ABXVTWzcXkZVrVFuJ8VlY+HNw5gyNg+LdqGqraYZO6PmZDg5fqqhTQICY/tum0WLJpxQRJGe4iAnw/iQVdW2RKtf261tBytf23KEo5UN0U3s/nvLER792uQ2x8j2DEIkL09LkP965xD7j9cydVweDyye0KXp21dDkpCJFBAMRfD6w4Q6SD4t/hBbdley9/BZwLj53zA+n/k3DSXFZW9zrNWiGYtPHVa+Onkgnx6tgUt2R7VokJPhxG6zRseCWrvN6pr8hMLGdOZQOEJdU9t1RmVVnjYz6b6sunwhrOxfI0RyOvBlLf/1ziG8/jD33j6GuVOHRLvWe5MkIZP4QxG8viChcPsz/HSl+NORc2zZVUHL+b3gB+WmsGTmCIYVXJhp0ugNsPGjMpr9IayaRna6k/83fxxb/lhBZpqD9FQHJ882X3Re2Hfk3IXtvS0Q0Y0tHBRgs1mM4qSahdyMS8aDFEQierRytq6ry3ZLbU973Xi9uZBQasMJ0XXNvhC/fP8IOz+vZtCAVP767usZmh+/YgCShOJIVwp/MEKLP3TFldBVtV42bi+jotpIHk67lTtuHMrNEwqwWjQavQF++39fcvKcF10pMtOc+ANhvP4QZxt8/PeWI3xZ5SEU1rFZL5//ryvQlEIBesRoXYV1PfqtpyAnxVjYeUk/8IiB6fy5vA6lG91+NqvWpdlv7c2Y+8HI2Per7yqZoSdE55RSlFV5+M224/iDEZbcUkTx9KJe2cL7SiQJxYGuFL5AGO/57RQ64g+G2br3JDs/PxNddHr96AEsnDasTemLd3aUU17dRIrTisPhoL45QDAUwW61oOuKL6uMtT+RiLHxXLs0omVvjLEfjZx0Jx5vCLfD1u54zsqF43nylT2EwjoWTSMnw9ml2W/xnjEnM/REX3DNiBzCke4tVrVZLFxpA9SaRh+/3nqMQyfqGTkog28uHM/gPHNKoUkS6kWt2ym0dJJ8lFIc+LKWd3aeoKnFWJyWl+ViycwRjBqUednx/oBOdoYTlPFhCkfU+VI4CqvVAgpy0p3UNwXRzxfZsdssRleauvi6xjiSUgqLZsFqtTBuWFa7ewOBMd4zbmhWtJXR2ey31m6xUzXNhCM6OelOrFZLr8+Ykxl6oi84VFbX7cWqHS1Ajeg6v9t7kg0ffYmmadx3x1hmTxnc41t2x0L+OnvBxbuYdlbVoabBx1sfl3PsVCNgtErmTB3MLdcNbLcrTdNgSEEqfy7z09gURNM0LJrCYtFwOWyMGJhOMBThxFmjooTNaiHdbSOsG4kmeL4V43JYsVktZKbaafKFyM1wkZXm7HQ2Wyyz31q7xTJTHdR6/Hi8IcYNy+r1GXMyQ0+Iy1VUN/Hq5sOUn2li8qhcVswfR86l474mkCTUg0LhCE2+UJeSTyiss+3TU/zh09PRGWcTirIpnl5Ednr7c/JtFo2MVCcltxRR5/ETCOigwZC8DOxWC8GwUfm5dUsGdb4bEIzacg6HheuG5bJywbhuD9THMvuttVvMatXIz07B7bB12MrqSTJDT4gLQuEIb31czuY/VpDmtvFw6URuHJ8fl5lvXSFJqAe0tnxCmg+vr/Pm8+GKejZ9XG5s2IZRWLNkRhHjh2d3+ByX3Up6qgOrRcNhd/Hdr10f/b8fbzjQZiC+3hMgPzuFc/U+QuGwMf6jGd1vTrslbjPFpFtMCHOVVXn42TuHOF3jZeZ1A/n6nNGkue2dPzGO5K5wFS7tdnO6r7xvRkNzgLd3lHOwvB4wxmO+OnkQt00ZhMPW/oIwTYM0t50Ul52OvrdcOhCPZrSCIroenYCgaRq6ruI6SN9Xu8VkCrhIdKGwzv/uPM7mXSfISnPy11+fzLUjc80Oq12ShLpB13W8gUiXut3AqHT98YEqfv+nU9HS7CMHZVA6cwR5We4On2ezaWSkODsts35pi2PEwAycdgv1ngChiFH9oHXSQjxbI321W0ymgItEVtPo49nX/8SZuha+Omkgd88Z02t133pC4kaWYDQNQpHzFa0v2U7hSr483cjG7eWcazA2mkt321k0fTiTRuV22Cer0bojoR2tw/bPBe21OHLSXcb2Cx8e53B5HShjnU97rRH5Zh8bmQIuEpGuKz47VsOfy+rITDWKjl6XoK2fi0kS6kRrUVFfoP3tFDrS1BJk8x8r+PRYTfQ80yYWcscNQ3A5Ov61Wywa6Sl2o4JBF6/VUYsjJ93FD741rdN9VeSbfWxkrEskGq8vxB8+q+Jcg49RgzN4qPRaBiTAzLeukL+eDnRW0bojuq7YdaiaD/ZU4g8adduG5qdROnMEgwak0ugN8Ob/HafFHyHFZaV4RhGZ53cddNitZKQ6sFk0aj3tt056utVS1+TnSEUDwXAEq8VCdroj5m/2/a0l1VfHukRyOl3j5aPPqojoOl+dNJARgzISYjfgrkqeSOOku8kHoLzKw2vvHOR0jRcwqlkvuGkoU8fnRytdv7OjnFpPAE3T8AXDvLuznHtvH4fbZSPjoqoIHbVOerrVsv53RwlHdJTifNHSwGXbQnTlHP2pJdVXx7pEclFKcfhEA3sPnyUr3cms6weRkXrlyVGJSJLQedHk4w8RCMWWfHyBMO/trmDPobO0Pq210nXqJZWuW/yRNuMJ4QhkpjtxO6xtrtnRuENPj0c0+8LkZrqoawpEF7fG+s1exkiE6HmTRw/osGyPrit+/ftj7Dl8lkmjc1k5f3x0Q0sApz15bu3JE2kvuZrko5Tik6M1bP7jCbx+48Y7MDeFJbeMYHhh+1WiU1zGFgoWzRj7KcxNwWW3XnbdjsYdeno8ovV8eVlulFLkZ7lj7kqTMRIhep7bYUXXL58ZG47o/Memg+w9fJbi6cO589aRbfYUSzbxLZeaQDQNgmGd+qYA9U1+/MHYEtCZuhb+Y9NB/nfbcbz+ME67la/NHcN37ryuwwQEUDyjiMIcF4MGpJGf7aZ4+vB2j1t++xgKst24HTbys9zR1klHj3dXT5yvp2MSQrQvHNF5+c0D7D18lrvnjOYvZo1K6gQEoKkOyywnttra5i6t0bmcsYtpiz/2MR+AQDDC1j+dZMeBqmgx0Emjclk0bThFQ7Opq/Ne8flG6R0HTsflrZ/ekJeX3unsODNIXLGRuGKTyHF11aX3OF0pfrrpILsOVrNi/jhmTxncGyH2iiu97n7Ub6IIhnSa/WFCoQix3v+VUnxeVsfbO0/g8QYBGJDpYsktIxg95PJK1+1xOaykpzjOV66OMQAhRL/2vx8eZ9fBav5i1sikSkCd6QdJ6OqSD0Bto59NO8r4otKodG2zatw2ZTC3Th7UbqXrS2kapKU42i2tLoQQndl7+Cxbdlcw+yuDWTSt/S78ZNWH74pXn3xCYZ0/fHaa//v0VHQn1HHDsiiZUdTlEuhdLb0jhBDtqWnw8crmQ4wYmME9c8ckTPXrntInk1AgFMF7FckH4IvKBt76uIw6j1HpOjPVweIZRUwoyu7yh8DtNErvJPvAoRDCHEopfvHBF+gKvl06sUs9L8mmzyQhxfnk4wtFi4R2R2NzgHd2nuDPZXWAsQ/PzEkDmfOVwTjs7Ve6vpRF00hLtZPisEIXar8JIUR7Pj1Ww/7jtdw9ZzQDrlDsOJn1iSTkC4bx+kOEw90f7Y/oOjsOnGHrvpPRTeFGDMxgycwiCrJTunweu83YeM7eB7+xCCHiRynFbz8qoyAnhblTh5gdTq9J2iSkK4U3EMbnCxHu1lTtC8qqPGzcXsbZeqPSdZrbzqJpw5k8uuNK1+1x2q3Y0l3S/SaEuGpHKhupPNvMqkXX9MluuFZJm4TqmwIEzhcI7a5mX4gtu07wpy8uVLq+eUIBd9wwNKYCgK2z33IzXdTUSMkaIcTV23OwmowUO9MmFpgdSq9K2iTUvYWqF5675/BZ3ttdEa10PSQvldKZIxiclxbTuS6e/dbXZq0IIcxzsKKOmyYU9OlWECRxEuquU+ea2bi9jJPnWitdW5l34zBuvCY/pm40DXDJ7DchRC+JRBQ3js83O4xe12+SkC8Q5v09lew+WB2dtv2VsXksuHkYaW77FZ97qdaN59wy+00I0UucdisjBmaYHUav6/NJSCnFp8dqePePFXh9IQAKst0smTmiW2+ww24lM9WO1dK3m8hCCHMNK0jr811x0MeTUHV9C29tL6esygOAw25h7tQhzLi2MOYkommQ4rKT5rIjvW9CiN42aEBs49PJyrQktGnTJv7t3/6NcDjM/fffz3333ddj5w6GIvz+T6fYvr8K/Xyl0GtH5lA8bTiZac6Yz9da+bqri1WFEOJqDciMbV+vZGVKEqqurmbdunW8+eabOBwOli9fzs0338zo0aOv6rxKKQ6dqOftHeU0NBuVrnMzXJTcUsTYoVndOqfLbiU91ah8LYQQ8ZKZlnxbdXeHKUlox44dTJs2jawsIzHMnz+fLVu28Jd/+ZfdPmedx8+mHeUcqWgAjErXs643Kl3bu1E8VNOMRaspLrtMPRBCxF1GiiShXnP27Fny8vKiP+fn57N///5unSscMSpdb/vkQqXrsUMzKZkxgtxuNmdtVqP0jlS+FkKYJSNVklCv0XW9zcJOpVS3FnoeO9nIxo/LqG30A8abtnj6cCaOyOn2wlGX00pGikPW/gghTOV29o8xaFOSUGFhIXv37o3+fO7cOfLzY1uUtWVPJVv3VALGup25Nw6l+JYRuBzde0kaRvdbeqrjqiofxLJ9b7wkYkwgccVK4opNosbVVXkD0vtFFRZTktCMGTN46aWXqKurw+128/777/OjH/0opnMcOGbUeysqTGfJzBEU5qTQ0hyghUDM8bRWvg74FAFfMObnt0rEfe0TMSaQuGIlccUmkePqqro671WVJ0skV3rdpiShgoICHnvsMVauXEkoFGLZsmVMmjQppnOkOG0su20UU8YMuKpvC7LxnBBCmMe0dUIlJSWUlJR0+/nfWjzhqqZNy8ZzQghhvqStmOByWLu9g6rDZiEjzYlN1v4IIYSpkjYJdYemGd1v/WX+vRBCJLp+k4Ss50vvuBxWVN8Y6xNCiKTXL5KQy24lI9WOxWKRBCSEEAmkTychKb0jhBCJrc8moYu33RZCCJGY+lwSkm23hRAiefSpJCTbbgshRHLpM0nIYbeSkeqQtT9CCJFEkj4JtW67ne62mx2KEEKIGCV1EpJtt4UQIrklbRJyOqy4HTbZdlsIIZJY0iah9BQHqo+UORdCiP4qaRfRSPtHCCGSX9ImISGEEMlPkpAQQgjTSBISQghhGklCQgghTCNJSAghhGkkCQkhhDCNJCEhhBCmkSQkhBDCNJKEhBBCmEaSkBBCCNNIEhJCCGEaSUJCCCFMI0lICCGEaSQJCSGEMI0kISGEEKaRJCSEEMI0koSEEEKYRpKQEEII00gSEkIIYRpJQkIIIUwjSUgIIYRpTEmiBz/0AAAKUUlEQVRC+/btY9myZZSWlnL//fdz6tQpM8IQQghhMlOS0N/8zd/w1FNPsXHjRkpKSnjqqafMCEMIIYTJ4p6EgsEgjz76KOPHjwdg3LhxVFVVxTsMIYQQCSDuScjhcFBaWgqAruu8/PLL3H777fEOQwghRAKw9ebJN2/ezNNPP93msZEjR/Lqq68SDAZZu3Yt4XCYhx56KOZzWyxaT4XZoxIxrkSMCSSuWElcsUnUuERbmlJKxfuiXq+Xb3/722RlZfHcc8/hcDjiHYIQQogEYEoS+s53vkNubi5PPvkkFovMEhdCiP4q7kno4MGD3HnnnYwePRqbzegNzM/P56c//Wk8wxBCCJEATGkJCSGEECAVE4QQQphIkpAQQgjTSBISQghhGklCQgghTCNJSAghhGkkCQkhhDBN0iWh559/npdeein6s8fj4cEHH2ThwoXcd999nDt3Lu4xbdq0iUWLFjFv3jxef/31uF//Us3NzSxevJiTJ08CsGPHDkpKSpg3bx7r1q0zJaaXX36Z4uJiiouLefbZZxMmrhdeeIFFixZRXFzMK6+8kjBxAfzTP/0Ta9euBeDQoUPcddddzJ8/n7/7u78jHA7HPZ4VK1ZQXFxMaWkppaWlfPbZZwnx2f/973/PXXfdxcKFC6MV+c1+D994443o76m0tJSpU6fywx/+0PS4EpJKEh6PRz3++ONq0qRJ6sUXX4w+/uSTT6qf/OQnSimlNmzYoB599NG4xnXmzBk1e/ZsVV9fr7xeryopKVFHjx6NawwX+/TTT9XixYvVxIkTVWVlpfL5fGrWrFmqoqJChUIhtWrVKrVt27a4xvTxxx+ru+++WwUCARUMBtXKlSvVpk2bTI9r165davny5SoUCimfz6dmz56tDh06ZHpcSim1Y8cOdfPNN6u//du/VUopVVxcrD755BOllFKPP/64ev311+Maj67raubMmSoUCkUfS4TPfkVFhZo5c6aqqqpSwWBQ3XPPPWrbtm0J8R62+uKLL9Qdd9yhTp8+nVBxJYqkaQlt3bqVoqIivvnNb7Z5fNu2bZSUlACwePFi/vCHPxAKheIW144dO5g2bRpZWVmkpKQwf/58tmzZErfrX+rXv/41f//3f09+fj4A+/fvZ/jw4QwdOhSbzUZJSUnc48vLy2Pt2rU4HA7sdjujRo2ivLzc9LhuuukmXnvtNWw2G7W1tUQiETwej+lxNTQ0sG7dOh5++GEATp06hd/v5/rrrwfgrrvuintMX375JQCrVq1iyZIl/OIXv0iIz/4HH3zAokWLKCwsxG63s27dOtxut+nv4cWeeOIJHnvsMSorKxMqrkSRNElo6dKlPPjgg1it1jaPnz17lry8PABsNhtpaWnU1dXFLa6Lrw9GCaLq6uq4Xf9S//AP/8ANN9wQ/TkR4hszZkz0BlpeXs7mzZvRNM30uADsdjsvvvgixcXFTJ8+PSF+Xz/4wQ947LHHyMjIAC5/D/Py8uIek8fjYfr06fzrv/4rr776KuvXr+f06dOm/65OnDhBJBLh4YcfprS0lF/+8pcJ8R622rFjB36/n4ULFyZUXIkk4ZLQ5s2bufXWW9v8+8Y3vtHl5yul4loUVdd1NO1CyXilVJufzZZI8R09epRVq1axZs0ahg4dmjBxrV69mp07d1JVVUV5ebmpcb3xxhsMHDiQ6dOnRx9LhPdwypQpPPvss6Snp5OTk8OyZct48cUXTY8rEomwc+dO/vEf/5Ff/epX7N+/n8rKStPjarV+/fpo700ivI+JqFf3E+qOhQsXsnDhwi4fn5+fT01NDYWFhYTDYbxeL1lZWb0YYVuFhYXs3bs3+vO5c+eiXWGJoLCwsM1kDbPi27dvH6tXr+Z73/sexcXF7N692/S4jh8/TjAY5JprrsHtdjNv3jy2bNnSprUd77jeffddzp07R2lpKY2NjbS0tKBpWpvfVU1NTdx/V3v37iUUCkWTo1KKwYMHm/4eDhgwgOnTp5OTkwPA7bffbvp72CoYDLJnzx6eeeYZIHH+FhNNwrWEYjVr1ix++9vfAsYf8A033IDdbo/b9WfMmMHOnTupq6vD5/Px/vvvc+utt8bt+p2ZPHkyZWVl0W6Lt99+O+7xVVVV8cgjj/Dcc89RXFycMHGdPHmS73//+wSDQYLBIFu3bmX58uWmxvXKK6/w9ttvs3HjRlavXs2cOXN4+umncTqd7Nu3D4CNGzfG/XfV1NTEs88+SyAQoLm5mQ0bNvDP//zPpn/2Z8+ezfbt2/F4PEQiET766CMWLFhg+mcL4MiRIxQVFZGSkgIkxmc+ESVcSyhWjz76KGvXrqW4uJj09HSee+65uF6/oKCAxx57jJUrVxIKhVi2bBmTJk2KawxX4nQ6eeaZZ/irv/orAoEAs2bNYsGCBXGN4Wc/+xmBQCD6jRBg+fLlpsc1a9Ys9u/fz9KlS7FarcybN4/i4mJycnJMjas9zz33HN///vdpbm5m4sSJrFy5Mq7Xnz17Np999hlLly5F13Xuvfdepk6davpnf/LkyTzwwAPce++9hEIhbrnlFu655x5Gjhxp+ntYWVlJYWFh9OdE+FtMRLKVgxBCCNMkfXecEEKI5CVJSAghhGkkCQkhhDCNJCEhhBCmkSQkhBDCNJKEhBBCmEaSkBBCCNNIEhJJbdWqVZ0WrO3KMbt27WLx4sWdXm/cuHHtnmvr1q3RvWxWrFjBli1bOHnyJFOmTOn0nEL0Z0lfMUH0bx9//HGPHHO15s6dy9y5c3v9OkL0NdISEknr8ccfB+D+++9n9+7drFixgpKSEpYsWRKtJ3jxMVVVVXz44YcsX76cu+66i9tuu43nn38+5us+//zz3HnnnZSWlvLhhx8C8Oabb/LQQw/10CsTov+QlpBIWk8//TRvvvkmP//5z/n617/OmjVrmDdvHtXV1Xzta19j+PDhbY7Jzs5mzZo1PPPMMxQVFVFdXc3s2bNjrsM2ZMgQfvjDH/LFF1+wYsUKNm/e3EuvUIi+T5KQSHrHjx8nEAgwb948wCgqO2/ePD766KM2YzKapvHv//7vbNu2jbfffpvjx4+jlMLn88V0vXvuuQeAsWPHMmrUKD755JOeezFC9DPSHSeSnqZpl20OppQiHA63eaylpYU777yTzz//nAkTJrBmzRpsNhux1vC9eNNEXdex2eS7nBDdJUlIJDWr1crgwYOx2Wy8//77AFRXV/Pee+8xY8aM6DHhcJgTJ07Q3NzMd7/7XebMmcOuXbsIBoPouh7TNTds2ADA559/TkVFBZMnT+7ZFyVEPyJf4URSW7BgAd/4xjf48Y9/zFNPPcVLL71EJBLhkUceYdq0adFjVqxYwQsvvMBtt93GwoULcTgcjB07ltGjR3PixAkcDkeXr1lZWcnSpUvRNI1/+Zd/ietOvkL0NbKfkBBCCNNIS0iIi/znf/4nmzZtavf/vvWtb7FkyZI4RyRE3yYtISGEEKaRiQlCCCFMI0lICCGEaSQJCSGEMI0kISGEEKaRJCSEEMI0/x+2UVSoA/l84gAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "" ] }, + "execution_count": 111, "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAGoCAYAAACZneiBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXCc953f+fdz9N2N+yIIgjebpCSSkixRF3VQtizJtuyxRtJkPZPMTK6qzWamskllk91KJdnUpjbHJlU72WSmasbxJKOMKVkeHbYsWxIliqJkSrIkHiLVJECQIAgeuPo+nn6O/aMBmAdANIC+8X1VsShS3f38HhDoTz+/5/v7/hTHcRBCCCEqSa32AIQQQqw8Ej5CCCEqTsJHCCFExUn4CCGEqDgJHyGEEBWnV3sAcxkbSyyrBK+11c/UVLpUw6kpjXpucl71p1HPrdTn1dkZUkr2Yg2kIa98dF2r9hDKplHPTc6r/jTquTXqedWahgwfIYQQta0mp93E4pk25PJmSV7L49LR5WOJEKKMJHwaRC5v8vHJyyV5rbu2daN75FtDCFE+8vlWCCFExUn4CCGEqDgJHyGEEBUn4SOEEKLiJHyEEEJUnISPEEKIipN62hXMMC1yhoVlOzgO6JqCS1exZYNBIUSZSfisEJmcyYWxFOOxDBOxLPF0nrxpz/nYl949Q0vQQ0+bj96OIGt7gmxa3Uxniw9FkTZVQojlk/BpYHnT5uzFOAMXYoxFswC4dJX2Zi8ben0EfC68Lg1NU1AUBcuyMUyblqCHRNrg4kSaA0cuYHxSCKmWoJtb17ezY2M7t21sx+OSHlhCiKWR8GlAubzFiaFJvhyOkjdtWoJudm1qp68rSGvIs+DVy13buglMdziwbYfR8RQDF2KcPDfFp6fGeP/YRdwulV2bOtizs5dta1tR5YpICLEIEj4NxLYdTp6b4tjgBIZps7Y7yNZ1rXQtY7pMVRX6uoL0dQV5+PbVWLbN6fMxPvryCh+fvMxHJ6/Q1erjq3f2sWdnr1wNCSGKIuHTIM5dSvDTD88xlcixuiPA7Vs6aGvylvw4mqqydW0rW9e28tce3cQnkTH2fzrC/3jrNK8eOsvju/t59M4+CSEhxE1J+NQ523Z4/ZfnePngGTxunYd29dLfHaxIYYBL17j3lh7uvaWHU+ej/PTDc/zo3UHe+uQ839mzgQd2rJLpOCHEnCR86lg8bfAnr3zByXNT3LGlky1rmnFX6Ypjy5oWtqxp4dT5KC++O8APfvYl7x0Z5XceC7O2J1SVMQkhapcsMq1Tw5cT/KsffMLAhRi/98RWfvfJrVULnqttWdPC//7bd/K3vrmN8WiGf/Xnn/DywTOY1txl3UKIlUmufOrQ0cFx/vPLxwl4XfyT793B+lVNpHKl2UiuFBRF4b5bV7FrU8fsvaBjZyb4W9/czqr2QLWHJ4SoARI+debApyP80UvH6OsM8ofP7KAl6Cn5MRRVKU2YKQp//YntbF3byg/fPs2/+K8f850HN7Bnx6ob7kk5k2nSRRxTdlkVojFI+NSR/Z+O8Pybp9jS18If/OYOfGXabTSXtzhyaqwkr7VzSyemZfPkPWv54PglXtw/wOEvLnHfbT249V9PE4aCXhLJ7IKvJ7usCtEY5DNkHXAch9cODfEXvzjFXdt6+AfP7ixb8JSL36vz6J2r+crWTs5fSfL6h8NEk7lqD0sIUSX19Q7WQEwbcvmFp5kcx+HV94d465MR7trWxd986haMXJ78dVNUdh30AlUUhe3r2mhr8vLe56O8/uE57r9tlVTDCbECSfhUSS5v8vHJyws+7rPT4xwbnCDc38LW/haODozPOT21c0tnOYZZFj1tfr5x31oOfDbKgc9HuXV9G3vu6Kv2sIQQFSTTbjXs2OAExwYn2NTXzN3buhqqo3TA6+Lru9ewua+Z40OT/PTQEEbeqvawhBAVIuFTo06cneSz0+Ns6G3inlu6Gyp4Zmiqyr239rB7ezcjlxO8/uE5uQ8kxAoh4VODIsNTfPLlGGu7g9x3a0/Dt6gJ97fw7Qc3Ypg2P/twmPNXktUekhCizCR8aszASIzDJ67Q1xnggZ29qGpjB8+M3s4gT967llDAxTufXuDo4ASO7KgqRMOS8KkhQxfjfHj8Eqva/Ty0qxdthQTPjKDPxeO7+1m/KsTnp8d57/PReXdbFULUNwmfGjF8OcH7Ry/S1erjkTtWo2kr859G11Qe2LGKO8OdDF9O8sbhYRJpo9rDEkKU2Mp8h6sxI2NJ3vt8lPYmL3vv7ENfocEzQ1EUblnfxt47+0hl8rz+4TCj46lqD0sIUUIr+12uBlycSPHuZ6O0hDx89St9uKRx2azVnQGevHctXo/GW5+M8KvIFemOLUSDkHe6Kro0kWb/ry7Q5Hfx1a+sqYktEWpNU8DNN+5dy5Y1zXwxNMX/88PPuTghV0FC1DsJnyoZGImy/9MRgn4XX7trDV63BM98dE3lnlt6ePj2XqbiWf7lf/2Ydz4dkWo4IeqYhE8VnB6J8l+m9+N57K41ddcktFr6u0P809+5k81rWvjvvzjFv/kfn8m9ICHqlIRPhQ1ciPEfXjhCS9DD1yR4Fq056OEfPLuT331iKxfGkvzz73/Evv2nSWfz1R6aEGIR5J2vgk6em+KPXjpKc8DN3//NHZw+H632kOqSqig8uLOXXZs6+NGBQX7x0XkOHbvEk/es5ZHbV+ORKUwhap6ET4V8emqMP37lOF2tfv7hc7twyxvksjUF3Pz+k9v46p19vPDOAC+8M8DPDp/jsbvW8NCu1QR9rmoPUQgxDwmfCjh4dJQf/OxLNqxq4g+f2UnQ5yrNNtUCKNwL+ke/dTunR6K8dugsLx04w6uHzrJ7Wzf33NLN1v7WFdOmSIh6IeFTZm8cHuaFdwa4ZX0b/8tv3CZTQmW0ua+F//W5XYyMJXnrkxEOn7zM+8cu0hxwc9fWLu7e3s2GVU0SRELUAAmfMrFsmx++PcDbvxrhrq1d/O1vbV/xnQtKQVGVBa8aW5u8PLN3E99+cD1fnJnkV5Ex3v38Am/9agSfR2dTXzNb+lq4ZX07/d2Bhu8aLkQtkvApg2Qmzx+/cpwTZ6d47K41PPvIJvm0XSK5vMWRU2OLes7OTe1sW9vChbEUFyfTDI3GOTY4wUsHBvG6NdZ0BenvDtHfHaS/K0R3mw+vW340hCgn+QkrsTOjcf7Ly8eJJnP83pNb2bOjt9pDEoDbpbG+t4n1vU1A4QOC36MzOp5i+HKS949eJHfVTqqtIQ/drT562vx0T//qafPT0eyVK1ghSkDCp0Rs2+EXH5/npQODtAQ9/JPfvoONvc3VHpaYR9Dn4u5benDsQpcE23EYj2a4MJZiLJrhylTh1yeRMZKZX68hUhVoa/LS0eylvdlLe7OP9iYvq9oD9LT5CHj1kuw6a9qQy5emKMXj0pGWgaLWSPiUwOXJNH/2+kkGRmLcsaWT33tyKwGvlPnWuvmm8FpDHlpDHsL9LYXHGRbxtEE8ZRBP50mkDMZjWYYuJq65WgLweTQ6mn10tvjoaPaydnUzmuPQHHDTHPTQHHDjdWsLBlQub/LxycslOc+7tnWjy2JmUWPkO3IZcobFT395jjcOD+PWVf72N7dzzy3dJfnkK2qHx63R6S4EyvXypk0yY9DTHiCRNBiLZRmLZrg0mebYmQnyH5+/4TluXaUp4Cbkd+H3ugh4dQK+6d+9LvxeHV1XuTyZxu3S8Lg03C5VpvtEQ5HwWQLTsnn/2EVeO3SWqUSOe7Z388wjm2gNeao9NFFhLl2lNeRlx8YOAtddXTiOg8fv4czwJLGUQTxpEEsZxFI5YimDVMYklc0zHs2Qyhb++2a9UjVVwe1Sp8Oo8Mvr0gj6dIL+QpgFfa6irqyW6urpQGcyTXoZ69VkOnBlk/BZhHTW5NCxi7z5yXnGY1nWr2ri7z51C1vWtFR7aKIGKYpCc9BDX2eQvs6FH287DtmcRTqbZzye5bPTY+TyNoZhkTMtjLxV+HPeIpe3SGXyTMQyZHLXTv3pmkLI7ybocxHyu8gaFn2dAbpa/bQ3edDUpb/jXz0dGAp6SSSzS34tmQ5c2eRffgG27RAZnuKXJy7z0ZdXyBkWG1c38duPbeG2De0yxSZKRlUU/F4dv1fH53NxaTJd1PNMyyaZyZNM50mk8yQzeRLT96gujKc4cXZq9rGaqtDe5KWz1UdXi4+WkIfQdEiF/G78Xh2XVpji0zUFTVOxbIe8aWFaDolMnvFYFsu2iabyJFI5LMvGtBwse+Z3Z/bvHMdBURQUpRDGqlK4WnTphauzloCbkN9NS9BNU8AtU4sriITPdWzb4eJkmrMX43xxdpLjZyZJZvJ43BpfCXey944+1q9qqvYwRY2Zb/HrUqem7EVsVaRrKi1BDy3BG6d9Hcdh85pWUmmjUMEXzTAWzXB5KsPQaHxZ02Y3oyigqyqKCo5TGIfjFK7uZqYWD5+4tqBCAUJ+V+FcQoXijNaQh7YmL23TRSCtIS8+T/mmFUXlrMjwcRyHVNZkMp5lIp5lMp7j8lSac5cSDF9OzlYwBX0ubt3Qxq5NHezc1IFHdhoV85ivcm6pU1M7txQxT1cERVFoDXno6wgQ7m+94f/nTYtkxiSRNkik86RzJqZlY5o2pu1gWjaaqhSuhvTCVdDQxTiaqhAKeMgZJrqqoGkKuqYWflfVeRdVO44zfSVlF8bjQDxtEE3miCULv0cTOaJJg7OXEiRSBtfnsMetXRVGhUBqnb6CmyneCPpcBLwu3C5VgqpG1WL46EvpBnB6JMqxwQlM20HXNVKZPPbMNIBlkzUsMoZJJmeRM0ys6z5aunSV3o4At65vp68rwOrOIF0tvrJ1JtA1Ff8SyrF9Hh3LvPF5S329uVTjteY7r6W+XjEq8VrFnlexr7cUujZ/GHjcOh63Tnuzt6jXyhjW7HbvwYCHZCq35HGt7gziW6DXoWXbxFPThRpJg+hM0UayULRxJZpl4EJs3kINTVPxuTVcuorbpeHSVFwuFZem4tY1FFVBUwvTgaoCKAp+nxvDMFGnpwqhcBX3wM5VNAfcSznVdcAIIN2Er6LU4FbE64Chag9CCCFKaD1wttqDqCW1GD460FftQQghRAnJlc91ajF8hBBCNDipaxRCCFFxEj5CCCEqTsJHCCFExUn4CCGEqDgJHyGEEBUn4SOEEKLiJHyEEEJUXC2Gj06hy0Ettv4RQohyWHHve7V4on3A0MREEnsxrX2v0trqZ2qquHb09aZRz03Oq/406rmV+rw6O0PFNIhc9vteLbrZudfilc+y6Xrjdp9u1HOT86o/jXpujXpetaYhw0cIIURtk/ARQghRcRI+QgghKk7CRwghRMVJ+AghhKg4CR8hhBAVJ+EjhBCi4iR8hBBCVJyEjxBCiIqT8BFCCFFxEj5CCCEqTsJHCCFExUn4CCFEmSgKpLP51mqPoxZJ+AghRFk4JDN5Lo6nmqs9klok4SOEECXmAPF0nlTWrPZQalYtbiYnhBB1LZbKkc1ZqEox+8itTBI+QghRIrbjEEsa5PJWtYdS8yR8hBCiBGzbIZrMYZh2tYdSFyR8hBBimUzbIZrIYlpOtYdSNyR8hBBiGQzTJpbMYdkSPIsh4SOEEEtk5C2iSQPbkeBZLAkfIYRYgoxhEk8ZSO4sjYSPEEIsgqJAMmuSTEvwLIeEjxBCFM0hnjZJZ/JI7iyPhI8QQhTBcSCRyZOWrgUlIeEjhBALcHCIpQyyhiweLRUJHyGEuAnbcYgmDQzpWlBSEj5CCDEP27GZShjkpWtByUn4CCHEHEzLIZrIYcri0bKQ8BFCiOtI14Lyk/ARQoirJDMG0UROuhaUmYSPEEJQWDyaypkYSUWCpwLKGj7hcPi3gX86/cefRSKRf1TO4wkhxNI4JDMmyUyeVreraqNIZ028bq1qx6+ksm2jHQ6H/cD/CzwE7AT2hMPhr5breEIIsRQOkMiYJNL5qrfLseyVU1VXtvABtOnXDwCu6V+ZMh5PCCEWLZ4ySGXy1R7GilO28IlEIgngnwFfAiPAWeCDch1PCCEWo7B4NEcmJ+1yqkFxynSdGQ6HdwB/DnwdiAF/AXwUiUT+3QJPXQcMlWVQQggB5E2LqXiOvFXeaS4FyOTM9Rv7Ws4u8NB1wFA0kaMl5CnrmCpMme9/lLPg4OvA25FI5ApAOBz+AfA/AwuFDwATE0nsJdbYd3aGGBtLLOm5ta5Rz03Oq/7U67lZts1UModpzv3+0tYWYHIyVZJjqYqC1+8u+vETk0nyWaMkx64FnZ2hef9fOcPnCPBvw+FwAEgD3wI+LuPxhBDipvKWTayGuxaUayaqFpXzns8vgL8EfgUcpVBw8H+X63hCCHEzRt5mqoaDB6CGh1ZyZV3nE4lE/g3wb8p5DCGEWEg2bxFL5qpeSr0QZwWlj3Q4EEI0rHrb8tqqgzGWioSPEKJBOSTSJqk62vJ6Jd3zkfARQjQcB0ik62/L66VW+NYjCR8hREOZ3fI6V387j66gCx8JHyFE47Adh1jSIFenW16vpG7aEj5CiIZg2zbRpIFRx1tem2XuuFBLJHyEEHXPtKe3vK7zcrF8XsJHCCHqQiNteV2v04VLIeEjhKhbubxFLGk0zL0Sw5TwEUKImpYxTOKp+lg8WqycTLsJIUStckhlC1teN1LwAOSM+lqXtBwSPkKIupLImA2782iujiv1Fquc22gLIUTJOA7E6mzL6+wid0ldSQUHEj5CiJpX6FpQP1te502b1z44y7/8weK2MMsZKyd8ZNpNCFHTbMcpLB6tk6uCy5Np9u0f4NJketHPNaTgQAghqs+ybaLJHPl5tryuJY7j8NHJK7z+4Tnylo2qwN47+xb1GlJqLYQQVWZa010L6mDxaCqb58cHznDy3BQArSEPzz6yifWrmhb1Oivpno+EjxCi5tRT14KBCzFefGeARLpQCLFjYzvf2bMer3vxb69yz0cIIaokm7eI10HXAtOyeeuTEQ4eGcUB3C6Vb9+/nl2bO1AUZUmvWS/3tUpBwkcIURMUBVI5k0QddC0Yj2XYt3+AC2MpAPo6Azz36Gbam7zLet2VtM5HwkcIUQOc2cWjtRw8juPw6akxXjt0FsO0UYAHd/Xy1a/0oanLX7liyLSbEEJURr1seZ3Jmbx8cIhjZyYAaAq4eeaRjWzsbS7ZMYy8heM4S562qycSPkKIqoqnjJpfPHr2UpwX9g8QTRoAbF/Xyncf3IDf6yrpcRwKa308bq2kr1uLJHyEEFVhOw7xpEG2hm+yW7bDO5+O8M5nF3AccGkq37hvLXdt7Srb1Uk2b0n4CCFEOVi2QyxV210LphJZ9u0fYPhyEoBV7X6ee3QzXS2+sh43Z5gQcJf1GLVAwkcIUVGm7RBNZjFruGvB0cFxXj44RHa6AOCB21bx2N1r0LXyt8PMrpCiAwkfIUTF5C2baKJ2F4/mDIsf/OQEvzx+EYCgz8VvPryRLWtaKjYGCR8hhCghI28TTeWwazR4zl9Jsm//aSbjOQDCa1p4+uGNBH2lLSpYyEppsSPhI4Qou2zeIpbM1eQaHtt2OHh0lDc/HsF2HHRN5fHd/dx7S3dVSp5XSosdCR8hRNkoCiSzJsl0bXYtiKUMXnxngDOjcQC6Wn38nd+4Db9eva3OZNpNCCGWxSGeNkln8tRg7nDi7CQvHTgzu8Zo9/Zunrinn56uEJOTqaqNK2+tjBY7Ej5C1KGjg+O8cXiY8ViWjmYvj+/uZ8fGjmoPa1Ytdy0wTIvXPzzHRyevAOD36Dz90Aa2rWur8sgK8iukv5uEjxB15ujgOM+/eQpNU/F7daIpg+ffPAVQMwFUq10LLk6k+OHbA4xFMwBsXN3EMw9voqmG1tXkV8iGchI+QtSZNw4Po2kqHldhFbzHpZGb/vtqh4+DQyxp1Nx9C8dx+OD4Jd44PIxlO6iKwmN3r+GBHatQa6yPmlz5CCFq0ngsi9977Y+uW1cZj2WrNKIC23GIJmuva0EibfDSgUFOnY8B0N7s5bm9m+jrDFZ5ZDfSNZVcXsJHCFGDOpq9RFPG7JUPFHb+7Ghe3l4yy2E7NlOJHPka61oQGZ7iRwfOkMoUdhm9M9zJN+9bd83XrpYoCmSN2puuLAcJHyHqzOO7+3n+zVPkKFzxGKaNZdk8vru/KuMxLYdoIodZQ4tH86bNzz8a5oPjlwDwujW+s2cDOza2V3lkN6epiky7CSFq08x9nVqodjNMm1iyttrlXJ5Ks+/tAS5NpgFY2xPi2Uc20RryVHlkC1NVVUqthRC1a8fGjqoXFyQzBtFEDrtGVo86jsPhk5d5/cNzmJaDqsDeO/t4aNdqNLW2igrmI1c+QggxD0WBVNbEQKmZ4Eln87x04Awnz00B0Bry8Owjm1jbE6ryyBZHUxVMCR8hhLieQyJjksrkafVUtuHmfAYvxHjxnQHi6UJRwY6N7Xxnz3q87vp7e1PVwlTmSlB//zpCiKqZCZ5aYFo2b30ywsEjoziA26Xy1P3ruX1zR1UagpaCpqoYeal2E0IIABwHEhmjZtrljMcy7Ns/wIWxQg+2vs4Az+3dTHsVy81LQdPkno8QQgDTXQvSBtlc9RePOo7Dp6fGeO3QWQzTRgEe3NXLV7/Sh6ZWrxN1qWiKhI8QQmA7hXY5tbDBWSZn8vLBIY6dmQCgKeDm2Uc2sqG3ucojm5uigNejEfK708U+R9NUDOntJoRYySzbIZaqjXY5Zy/FeWH/ANGkAcD2da1898EN+L21UfRwPY9LI+h34dJUOtv8V4p9nky7CSFWNMu2mUrmMKvcLseyHd75dIR3PruA44BLU3ny3rXcva2rJosKdFUhGHDjXWL7Hl1VMKS3mxBiJaqVdjlTiSz79g8wfDkJwKp2P8/t3UxXq6+q45qLqij4fToBr47C0kNRVRUM08JxnJoM11KS8BFCzKqVdjlHBsZ5+eDQ7L2m+2/t4eu7+9G12ioqUBTwuDVCPldJCh50TcVxCh8AXLqEjxBiBTDyFtGkUdWuBTnD4rUPhvj01DgAAZ+LZx7eyJY1LVUb03xcukLI58bj1ijVl0ydbgNkmBYuvbaCttQkfIQQZPMWsWSuZG+iS3H+SpJ9+08zGc8BsGVNC08/tIGQv3Z2GYVCQAR9LnxuHUWhpF+zmSu7nGERqNFiilKR8BFiBVMUSOVMEimjasFj2w7vHRnlrU9GsB0HTVV44p5+7r2lp6bueygK+Dw6Aa+rbI1Kda3wuumcSVtZjlA7yho+4XD4W8A/BwLALyKRyB+W83hCiMVwSGZMkpl81YInlszx4ruDnBmNA9DV6uO5vZtY1R6ozoDm4XZpBH0uPC61rF8rj7tQJZdM10YLo3IqW/iEw+ENwB8Du4HLwP5wOPxEJBL5WbmOKYQollP1Pm1fDE3y4/fOkMkVWvbcva2LJ+9di1uvnV1Gry+dLndIz+ywmqiR/nnlVM4rn98A9kUikRGAcDj8HFDdTeaFEDhAIp2vWp82w7R4/cNzfHSysPbS59F5+qENbF9XOxNNqqLg8xZKp9UKTv3NBG8ibVTsmNVSzvDZBBjhcPhVoB/4CfDPyng8IUQRYqlc1fq0XZxI8cO3BxiLZgDY0NvEM49sojlQG0UFigIeXaOt2YNehV5xu7Z08Oc/K3w4aHTlDB8deBB4GEgCrwJ/A/hBMU9ubw8u6+CdnfW1idRiNOq5yXmVl2XZTMZz+AMK/hLdUmlrK+6FHMdh/yfn+at3Bwq7jKoK335wI1/b3V/RK4ubmZliK1SZVWch64XxDH6vjunUzvdNuZQzfC4Bb0UikTGAcDj8V8DdFBk+ExNJ7CUudOvsDDE2lljSc2tdo55buc/r6OA4bxweZjyWpaPZy+O7+yuyDXWt/HvZjkM0Wdo+bW1tASYnUws+LpE2eOnAIKfOxwBob/by3N5N9HUGiU4V3XOzbFRVIeBz4fbopBNZAl5XSf/NFhMiyVSO5oCb0SuJmvi+Wa6bnXs5w+cnwJ+Hw+EWIAE8AbxcxuMJMaejg+M8/+YpNE3F79WJpgyef/MUQEUCqNps22YqaVSlYWVkeIofHTgzW9hw55ZOvnn/utkb69VUidLppWhr8jIea/zb42ULn0gkcjgcDv9b4H3ABbwJ/NdyHU+I+bxxeBhNU2ff8Dwujdz03zd6+Jj2dJ82q7K11HnT5ucfDfPB8UsAeN0a39mzvma+3pUqnV6K9mbvbOl5IyvrOp9IJPJ94PvlPIYQCxmPZfF7r/1Wd+tqw3+6zFs20UTl+7Rdnkqz7+0BLk0WptTWdod4du8mWkOeio5jLrqqEPC78Lp1FMpfOr0UbU1eMjmTVDbf0F0OpMOBaHgdzV6iKeOaqR7DtOmo8y2Xb8bI20RTuSXfN10Kx3H46OQVfvrh2UJRgQKP3NHHw7evrvq0VrVKp5eiq6VQ7HBpIs3G1bW5UV4pSPiIhvf47n6ef/MUOQpXPIZpY1k2j+/ur/bQyiKbt4hXuEFoKpvnxwfOcPLcFAAtQTfP7d3M2p7qVmwpFLoGBP1u9Bq6r3MzPe1+AC6MpyR8hKhnM/cZqlHtVmlpo/J92gYuxPjROwPEp9em7NjYznf2rMfrru7biz7TddqlwjL22Km09iYvbl1ldHzhSsJ6JuEjVoQdGzsaMmxmKAoksybJdOWCx7Rs3jg8zMEjoziA26Xy1P3ruX1zR1Ubgs6UTgc89fn2pqoKPe1+Lowlqz2UsqrPfx0hxFUc4mmTdCZPpS54xmMZ/uTVLzh3qbAWpa8zwHN7N9NexftoM6XTQa+OWoXuBKXU3x3i89PjDb2jqYSPEHWs0n3aHMfhs9PjvPr+EIZpowAP7urlq1/pK8lOnktVy6XTS7FhVRPvH73IWDRDV6u/2sMpCwkfIepYPGXMdoUut0zO5OWDQxw7MwFAS8jD0w9tYGNv9W6K10Pp9FKsX9UEwJmLcQkfIUTtcHCIJQ2yRmUahJ69FOeF/QNEk4Vuy9vXtfL7374NI1Od7suKAn6vqy5Kp5didWcAt65yZjTOPdt7qj2cspDwEaLOlKNP23ws2+GdT0d457MLOA64NJVv3LeWuyVqnNgAACAASURBVLZ2EfS5mKxw+CgUOlQE/e7ZXT8bka6p9PeEGLrYuJ0OJHyEqCOV7NM2lcjxwv4Bzl0uFBWsavfz3N7NdLVWp+NzvZZOL9WGVU3s//QCpmWja/VdQDEXCR8h6kQl+7QdGRjnlfeHZqf17r+th6/f3V+VN0FVVQh49YZuNTOXDb1N/OLj84yMJVnX01Tt4ZSchI8QdaBSfdpyhsVrH5zl01NjAAR8Lp55eCNb1rSU9bhzURTwunVCvvovnV6KmaKDodG4hI8QovIM0yaaLH+ftpErSfbtH2AiXmi4umVNC08/tIGQv/K7jDZa6fRSdDR7CfldnBmN88gd1R5N6Un4CFHDcnmLWJn7tNmOw8Ejo7z58Qi246CpCk/c08+9t/RUfIGjNl067Wuw0umlUBSF9auaONOgRQcSPkLUqIxhEi9zn7ZYyuDFdwZm94/pavXx3N5NrGov0T7bRWr00umlWtcT4tjgBFnDrHqvvFJrrLMRogFUqk/bibOTvHTgzOwi1d3bu3ninn7cemV3GfWugNLpYm1b34aiKqSm/0162gM4wOmRGBuu6nDtcenodX4bTMJHiJrikMiYpNLl69NmmBavf3iOj05eAQr90J5+aAPb17WV6Yhz0zWFoN+Nd4WUThfj5NAk6Wx+9s8zbZPeP3px9l4cwF3butHrtHHqjPoevRANZKl92iLDUxw8MspUIkdryMOenb2E+1vnfOzFiRQ/fHuAsWgGKJTzPvPIJpoDlSsqmCmd9nt1FAmdm/J5NLxujcl44+26K+EjRI1YSp+2yPAUrx4aQtNUvB6deCbPq4eGeAquCSDHcfjg+CXeODyMZTuoisJjd63hgZ2rKnaPZaWXTi+Foii0N3uvueppFBI+QlTZcvq0HTwyiqaps/dp3LqGMf33M+GTSBu8dOAMp85HgcJmZc/t3URfV7Bk57AQl64WuhO4V27p9FK1NXkZHU81XKcDCR8hqmi5fdqmEjm81839uzSVqUQOKFwZ/ejAGVKZwn2EO7Z08q371+FxVaaoQEqnl68l6MZxClOyrSFPtYdTMhI+QlSJ7dhMJZbXp6015CGeyV9ToZa3bJqDbn7ywVk+OH4JAK9b4zt71ldsN9fZjd18LimdXqam6UW+8ZQh4SNEozs6OM4bh4cZj2XpaPby+O7+kr5xG6ZNPJnDnKNrwWIKCPbs7OXVQ0MYFK548paNYVjELIezlwrBs7YnxLOPbCr7G1dkeIpDxy5iOQ7dLX7uv62HW9a33/C4cn9tG03TdDFIIl2d7SvKRcJHiOscHRzn+TdPoWkqfq9ONGXw/JunAEryJpnNW8Tn6VpQbAHBjHB/K09RuMczGc+iayqprIllOygK7L2jj4dvX42mlvfqIzI8xTufjRAKeDBNi7OXEwyOxvje17Zc8zUr99e2Ebl0FZ9HI57KL/zgOtI4d6+EKJE3Dg+jaSoel4aiKHhcGpqm8sbh4WW+skMqmyeWzM3bLufqAgJFUXDrhWMfPDI676uG+1v5a1/bwqqOIOPxQvPRlqCbv/OtW3j0zr6yB4+qKHw5PIXXo5POmGQNe96vWfm+to3N73WRzjVW+MiVjxDXGY9l8Xuv/dFw6yrjsaWXuzoOJDILr+FZqIBgLoMXYrz4zgDxdOHNacfGdr79wHp8FViE6PVohHwuhi8ncenqNb3g5vqaleNruxL43BqpRa7/qnUSPkJcp6PZSzRlXFMRZpg2Hc3eJb2e7TjEU8WVUs9XQDDX/RrTsnnrkxEOHhnFofAm/tQD67l9c0fZG4K6dJXWkAeP4uA40BxwF/U1K/XXdqXwefSGC2iZdhPiOo/v7seybHJ5C8dxyOUtLMvm8d39i36tXN5iKpEreg3Pnp29WJaNYRaObZiFY+/Z2XvN48ZjGf7k1S94bzp4+joD/P2nd3DHls6yBo+mKjQF3LQ1efF7XbOl08V+zUr5tV1JfB6drGGVfVuNSpIrHyGuM3Pje7kVWYZpMxnLLKqU+uoCgrmq3RzH4bPT47z6/hCGaaMAD+7q5atf6UMrY9eAhUqni/2alepru9LMTKFmDeuGact61RhnIUSJ7djYsaw3xJmKtpZW/6KfG+5vnbOyLZMzeeX9IY4OTgCFEtxnHtnIxt7mGx5bSh6XRtDvwrXA6vpiv2bL/dquRD5PYZoykzMlfIQQN1IUSGVNEiXeDuHcpQT79p8mmiys9di+rpXvPrgBv9dVuoNcR1cVggE33gp1QxDzm7nyyRiNU3Qg4SNEyZR+OwTLdnj3swvs/3QExylUvn3jvrXctbWrbPd2VEXB79MJSNfpmjEbPotsPFvLJHyEKIGlbodwM1OJHC/sH+Dc5QQAq9r9PLt3E91LmMorhqKAx60R9LnQpet0TfG5Z6bdltYDsBZJ+AhRAkvZDuFmjgyM88r7Q7NVcvff2sNjd/fjKtP2lS5dme46rUnzzxpUWHisypWPEKJgOdshzCVnWLz2wVk+PTUGQMDn4jcf2jBvb7flUlWFoG+667QiXadrmd+rN9RCUwkfIZZoudshXG/kSpJ9+wdmNw7bsqaZpx/aSMhf+l1GZ0qnA15X2dvviNII+FyzW2M0AgkfIZbAtm2mksvbDmH2tRyHg0dGefPjEWzHQVMVHt/dz7239pRlOwK3q3Bfx+OSjd1qzbb1bZjW3N9TAxdifH56nJ1bOlFUhdR1U3Ael06ZZmXLQsJHiEUybYdoIodpLf+dO5YyePGdAc6MxgHobPHxW49uYlV7YNmvfT1NVQj6XXhlY7eadXJoknR27qubTM4knTX55MTlOe/93bWtG70C/fxKpX5GKkQNyFs20UShc/RynTg7yUsHzszeRN69vZsn7um/pq9bKcjGbo0hML2mK53N0xys/03lJHyEKJJh2sSSyw8ew7R4/cNzfHTyClAIhqcf2sD2dW2lGOY1ZqbY3PU0HyPmFJjubJDMmBI+QqwURt4mmsotu7HjxYkUP3x7gLFoBoANvU0888gmmgOlLSq4fopN1L/mYOF7JJrMsbqz9NOylSbhI8QCcnmL2Dw7jxbLcRw+OH6JNw4PY9kOqqLwtbv62LOzt6RTYTLF1ri8bh2fRyN6k72d6omEjxA3kTFM4qnl9WlLpA1eOnCGU+ejALQ3eXnu0U30dQZLNMoCqWJrfC1BD1NJCR8hGpaiQDJrklxmg9Avzkzw/de+mF2fcceWTr51/7prNlNbLk1VCPinF4oiVWyNrDXkITIcxXacur+ylfAR4gYOibRJKrP0BqGmZfPzw8McOn4JAK9b49sPrGfnptJtJSBTbCtPS9CDZTskUvnZe0D1SsJHiKuUokHo5ak0L+wf4OJEGoC13SGe3btpzq2wl0qm2Famme+haDIn4SNEo3AciKeX3iDUcRw+OnmF1z88R96yURT45v3ruXtrV8la2MgU28rWHHSjUOh4vrYnVO3hLIuEj6iao4Pjs9spr+oM8ujtvVXd4TKWzpFdYsv6dDbPj987w4mzUwDomoLPrREZjtIWdC+7MahMsQkAXVMJBdxEG6DooOjwCYfDrYAViUTiZRyPWCGODo7z/Jun0DQVv1dnKp7h+TdPAVQlgKKppQfP4GiMF/cPEE8XigpcukrI78Lj0ogls7x6aIinYMkBVOw21mJlaA26mWyAcusFv5vDBR8DY8BEOBw+EA6H+8s/NNHI3jg8jKapeFwaiqLgdetomsobh4crPpalBo9l2/z8o2G+/5OTxNN53LpKZ7OXpsD04k5FwePS0DSVg0dGF/36uqbQEvLQGnJL8IhZLSEPiXS+JE1tq6mY7+gfAH8K+IAg8CPgz8o4JrECjMeyN7R8cesq47Fsxcbg4BBNLi14JmJZ/uSVLzjw+SgOsLozwN9/egemZd/Qm82lqUwt4pOqqiqE/C7am714XRpIjwJxlZmig1iqvq9+ipl280cikT+56s9/FA6H/3a5BiRWho5mL9GUcc16F8O06Wj2VuT4tlPYBC63yL14HMfhs9PjvPr+EIZpowAP7url0Tv70DWV1pCHeCZ/TQDlLbuoSjdFKaxiD/l0VNnGWsyjZbqv21TCoKPZV+XRLF0x3+FfhsPh+2b+EA6HbwWGyjcksRI8vrsfy7LJ5S0cxyFrmFiWzeO7yz+jO7MJ3GKDJ5Mz2bd/gB+9O4hh2jQF3Pz+N7bx9bv70aenxfbs7MWybAyzcF65vIVl2ezZ2XvT13a7NFpDXlqCbgkecVNBvwtVVYivgCuftcCBcDh8BDCB24FL4XD4KEAkEtlxsyeHw+F/D3REIpHfXeZYRY24ukqto9nL47v75ywSmHnchfEUluWgawq9HYFrHn91tdvGniBvHB7mL35x6qavuxy2YzOVyJE3F65RjgxPcfDIKFOJHD6PRiyVn93GePu6Vr774Ab8023uZ4T7W3kKZp/X2Rbg3u1d8xYb6NOl07LHjiiWqig0+V3EUvW9q2kx4fO/LfXFw+Hwo8DfAH661NcQteX6KrVoypizSm3mcXnTJp0zwYFc3uHy1LVVbTPPOTee5j//6PMFX3c5TGt6E7giOlNHhqd49dAQqqqQtxymJgpdqDVV4Vv3r+OurV0o85Q8h/tbZ8OmrS3A5GTqhseoioLPqxPw6lI6LRatKeAmmjSqPYxlmff6PhwOb53+z8RcvyKRyIFIJHLgJs9vA/4v4F+Xbrii2q6vUpup5rq+Sm3mcRnDQqHwpq0oKpmcOefjf/zuQFGvu1RG3mYqkS0qeKBw5YKikEjlSU73ZdNUhVVtPu7e1j1v8CxEodBqp63JS0jW7Iglag64SaSNZW/xUU03u/L598A3gY+AYa4tuQkAXQu89p8A/wewZikDa29fXsffzs76Xv17M9U8t8mkQcinX/Pmq2sKU0njmnHNPG48mkFVFBRFQVMcTMsh4NVvePzlyXRRr7sUibRBPmXQ3OIv+jmXo1nS2fzsNFjI76I54CJj2LS1LW4vlZnHayqE/G78XteSw6vWNOrPWbXOKxjwoBWxk21XewDnzCS2otAcLBTp+P0eOtuK/x6vtpuFz1+fvno5ATxMIXwcwA3Me8UDEA6H/xZwPhKJvB0Oh393KQObmEguOdU7O0OMjSWW9NxaV+1zawu6b6hSy+UtWoPua8Y18zhNU7EsGxWwnUKgpLLmDY/vbvMzNpVe8HUXxyGVNUlm8kXfS8kZFq99cHa2C7WqFNZVeN062bxFs9815zTafNraAkSjaQI+F26PTjqZI90Aq9Oh+t+L5VLq81pMkK3pCmBav16/o6sqc3Vm8roU3v74PEGPztY1zQBYeavm/j1udu43K6v5S2AcuIXCAtMr078PA58scMzngMfC4fDnwP8JPBUOh//jIsYsatT1VWoz1VzXV6nNPM7n1nAAy3ZwHBufR5/z8d99eFNRr1ssB0hkTBLp4oNn5EqS//TjY3x6agz49SJPj0vDMIurWrvaTOl0e5OXgEc6WYmFnRya5MipsdlfqgIBj37Dr/XdTQBMxbOzf1dvO6XP+xMRiUS+DhAOh78fiUR+fzEvGolEvjbz39NXPg9HIpF/sNRBitpxfZXafFVpVz/OuqrarbvVN+fjv7Ktm+99bUtRVXTFiKeKbxBqOw4Hj4zy5scj2I6Dpio8cU8/bSEP7x+9yFQiR2vIw56dvUW3yJnpOt3e7GXMqO+qJFF7/F6dpoCbi5Ppag9lyRb8OLbY4BGN7+oqtVI8bqmPn8tiF4/GUgYvvjPAmdFCy8KuVh/P7d3EqvbCfZqta9sWdfzru04LUS49bX4uN3L4LFckEvkBhRY9QpSVbdtEkwZGkT2vTpyd5McHzhRKwYHd27t54p7+G9rjFEO6TotK62nz8fnp8WoPY8lkIlo0BNOeXsNjLXyDxzAtXv/wHB+dvAIUQuPphzawfd3irnJmzEyxXd+rTohy6m7zE0/nSWfzNyx2rgcSPqLuGaZNLJnDKqI68uJEin37B7gyVVg0uqG3iWce2URzYPG7QsoUm6imntZCWfXlqQzrV0n4CFFRubxFLGlgL1DS5jgOHxy/VCiAsB1UReGxu9bwwM5Vi54mkyk2UQt62gvhc2kyzfpVTVUezeJJ+Ii6pCiQypkkUsaCpdSJtMFLB85w6nwUgPYmL8/t3URf1+IXMs9MsXlcqvRhE1XV2eJDVRRGx4tfd1ZLJHxEHXJIZExSRSwePXU+yovvDs4uGr1zSyffvH/dNYtZi6GpCkFpACpqiK6p9HYEOHe5thaWFkvCR9QVB0ik86SzN1/DY1o2Pz88zKHjl4BCP7Xv7Fm/6FJumWITtWxdT4gjg+M4jlN3LZskfERJFLvNwnIVs3j0ylSGfftPc3GisAZibXeIZ/duKmpDt6tJFZuodWt7Qrx/7CKT8RztFdqIsVQkfMSyFbvNwnLYjkM8aZC9yeJRx3H46OQVXv/wHHnLRlFg7x19PHz7arS5GmTN4/o9doSoVTOFBoOjMQkfsfJcvc0CgMelkZv++1KEj2U7xFIGxk2CJ53N8+P3znDi7BQALUE3z+7dxLqe4quAVFXB79Xxe2SPHVEf1vYE8Xk0Tpyd4u5t3dUezqJI+IgluXqaLZbM0RLywFU38d26yngsu+zjWLbNVDKHeZOdRwcvxHjx3UHiqcLmWrdtaOc7e9bjK7KZ50wD0JBPly2sRV3RVJWt/a18MTRZd/d9JHzEol0/zRZPGUzGsyiKMvuGb5g2HcucBlho51HLtnnrkxHe+3y0sNeHrvKt+9dxx5bOon8IpXRa1Ltb1rfx2elxrkxl6G6Q/XyEmNP102zNQTeT8RzRRA6vW8Mw7WVthwALdy2YiGXZt/80I2OFNQ6rOwP81t7NRc97S+m0aBS3rC+0hToyMM5jdy/9Z67SJHzEoo3Hsvi9v/7W8XtdOI5DLFkogV5utdvNuhY4jsNnp8d59dAQRt5GAR7c1cujd/ahawtPmUnptGg03a1++ruCHD55RcJHNLaOZu8Nu5nqusbG1T7+8f90x5Jfd6GuBZmcySvvD3F0cAKAJr+LZx7ZxMbVzUW9vpROi0a1+5ZuXnxnkCtTabpa62PqTcJHLNrW/hZ++stCjzSXpuLzaLh09YZptsWs/XEcp9ChN5Nnrhmwc5cS7Nt/mmiyUFSwfV0r331wQ1HdfGem2Hxu+XYXjenurYXwOXziMt+6f321h1MU+WkUi3J0cJxDxy8R9LlIZ/OYlkUq4/CNe68NlsWu/ZmIZ2db4FzNsh3e/ewC+z8dwXHApak8ee9a7t7WtWBRwUwVW9DnWtQ6HyGqZdv6Nkzr1/tRKapCqogdeb1enY2rm3j/2EUevrPvmillj6s2t9iW8BGLMlNs4PdqNE1vQ5DLW3w5HOWpOR630Nof23GIpwz8wRvDYSqR44X9A7O9q3ra/Dz36Ca6i5hW0HWFJp8bj1uTYgJRN04OTZLOLm3b9VXtAQYvxHn14BCrOwOzf3/Xtm70IpcdVFLtjUjUtOuLDWDuNT3FPM52nMLOo3mL6+Pk6OA4Lx8cImsUFpbef2sPj93dj2uBj3CqohDw6QSmp+MkeMRKsbYnyCdfakSGp64Jn1ol4SMWZa5ig7nW9Cz0ONuxmUrkyF+3eDRnWLz2wVk+PTUGQMDn4jcf2kC4v3XBsXldGqGAC00WiooVSFNVNq9p4djgBIm0Qci/+A0SK0l+SsWiPL67H8uyyeUtHMchl7fmXNMz3+OeuKcf03KYjN0YPCNjSf7Tj4/NBs+WNc38wdO3LRg8mqrQHHTTEnJL8IgVbcuaZhQFvjwXrfZQFiRXPmJRZu7XLFTFNtfjnrxnLVvWtDKZyGJftXjUdhx+/stzvHJgENtx0FSFx3f3c++tPTddiyMFBUJcK+B1saG3iVPno9y6oa3oFlPVULsjEzVrx8aOohaQzjzu6OA4+z8d4fVfnuP1X56lrzPImdE4U4kcIb8Lw3S4NFnY/qCzxctzezeTSBt8/ycnmErkaA152LOz95orIJeucnEyxdufjHBhLFXWbRyEqCe3bWhn8EKck2enuCPcWe3hzEvCR5TV0cFxXjowSCjgIZU1iaVyRM7HCPpc6JrC+bHUbFHA3du6ePLetQyNxnn10BCapuL16MQzeV49NMRTwPZ1bQR8LoYuxviLn0dQ1fJt4yBEPWoKuFnXEyIyHOWWDW3VHs68ZIJclNV7R0YJ+FzEUwaW7RSq1xxIZfNMJQqdDBQFejsCfGfPBty6xsEjo2iailvXUBQFt67h87o4cXaK9mYvfo/OTz84h6oWSrkVRcHj0tA0lTcOD1f7lIWouts2tpO3bL4Ymqz2UOYlVz6ibGzHIZoyyOZMmN6WzTRtHMCZXkfndqm0BNzkrtqrZyqRwzs9V60qhe4EHpfKhfHU7D2ghUq5K7WzqhC1qDXkYf2qECfPThFN5gjU4L0fufIRZWHbdqEVju1gmDaO45DM5Lm6SXXI76K9yYsNtDf7Zv++NeQhb9n4PDodrV4UBS5PZWjy/7qVTkezF8O0udpMKfdMd4VoyrhmSu7o4Hi5T1uImrFrcweOA69/eK7aQ5mThI8oOdNymEzkMPIWe3b2ks9bjMeys5u9Afg9hSafeauw/cJjV5VqP3z7alpDHly6QjyZYyqRu6Gc+2Yl31d3V5ApObFShfxuwv0t/PKLS1wYS1Z7ODeQ8BEllctbTCaymFbhEkdRFHJ5m/z0VUrQp/PwrlX0tPnJ5kyafC7u3NLJLw4P8x9++BkvvHOa1iYPT923DhyIp/K0BNx872tbrpk227Gxg+99bQstATfprHnNY8Zj2Rs6V5dqZ1Uh6sltG9vwujX+8u3TODXW7qP2JgJFnXJI5SyS6UIRgWnZ/PzwMIeOXwLA69b49gPr2bnp2vsukeEpXj00RGuTl9XdIeJpg//2RoTvfW3LgtszzFfyXWwXBiEandet84371vGjdwb5+Msr3L2tu9pDmiXhs4KU6ya8AyTShY3kAK5MZdi3/zQXJwprd/q7gzy3dxOtoRvf/A+fuExPRxCvSyWaKGwgNzNFttSxPb67n+ffPEWOwhVPKXZWFaJe7dnRy0cnLvPDt09z24b2mll4WhujEGW32C0OimU7Dp+eGuPnh88xEcuiaypTyUJZtaLAI7ev5pE7+m7oQKAAHreG7ThYhkk+r8zuXLrcKbJiuzAIsRKoqsLvfD3Mv/5vv+KV94f4rUc3V3tIgITPilHsFgeLYdk2n0Su8ML+ARRFIZO3yaUK7eADXp3vPbaFdT1NNzzPpSuEfG7cLhVVUYhn8wR9v65kK8UUWbFdGIRYCTb2NvPgrl7e/OQ8d23rYmNvcbv/lpMUHKwQpb4Jb5g2k/Ecb350HssubI2Qm97+wO1S6Wj23hA8qqrQFHDTFvLhdmmAMlu1ljXMmzYqFUIszzMPb6I15OHPfnIS46p1ddUi4bNC3GxdzOI4pHMmU4kshmkxOp4inspj2w4K0BJ00xbyXFNWrQBej0Z7U6E7wdW9Qmeq1lqbfDdUrQkhSsfv1fm9J7dxaTLNj987U+3hyLTbSlGqm/Dx6cKCiViWfftPk80XAs2lq7SGPOiaimFatIY8AOiqQjDgxutSmelycL0dGzt49J71jI0llnOKQogF3LKujUduX82bH5/n9s0dRe2TVS4SPivEcm/Cm3Zhu+ucYfLZ6XFePTSEMR08XrdKYHpbA8MsTJs9uKsXn0cn5HfddFuEeiXte0S9euaRjXwxNMmf/uQE/+L3757d9bfSJHwa2FxvkAutnbmeokDGsIinDFKZPK+8P8TRwQkAmvwunnlkE6Zlc/DI6Oz2B4/c2ccdWzrxuQv3dRpNuSoHhdi2vg3Tshd+4CIoqkIqZ17zd7/zRJj/uO8If/qTk/zNb25DKfEHRI9LZ4Ed7yV8GtVi3iDn+xTv4BBP5cnkTM5eTLBv/+lCvzbApSm0hjyYlk24v3X28t3r0mgKuFAbeEfRclQOCgFwcmiSdDZfkWPdvrmDX0XGeP4XkZJPv921rRt9gfVEEj4Nqtg3yLlCat/+AXRNpbvNT9awePezC+z/dGR2352ATyfkc5HKmbP77Gxb10bQ78LfoFc7V1uoo7YQ9WD7ulYuTqT5+Msxulp9cy4CL6fG/Xi6whVbWn19E87mgJu2Zi8/+eAsV6Yy/OlPTvD2rwrB49ZVWkJumgMeVLWw347bpXH0zAQdTR78bp1GDx4oZeWgENWjKAr339aDx6Xy3ucXZ/svVoqET4Mq9g1yJqQUpbADosulEkvkOH85wR+9dJRzlwoVaPff2oPfo+Fz//oTv9+r09MeYDyaaehptuvdrKO2EPXE59F5YMcqYimDj09eqeixV847xgpT7BtkR7MXB2gJesgaFuPRLGOxLKmcRdawCPhc/I3Hw3zjvnW0NXnJWzaaqtDW7MHv0RmPZqpWLVMtN+uoLUS9WdUe4LYNbQxciM1+2KwEuefTQK4vHLj/1h6+HI7etBz4G/et5acfnONKNEPOMJlKGNjTO75tWdPM0w9tJOR3A7BnZy9v/eo8TUE3hmERT+cLgfbwxoqfa7VJ+x7RSHZu6mB0Is2HX1yio8VbkQ+UEj4NYq7CgUPHL930E7ntOKzuDLJ7exevHTrLZKJQyaYqCk/c08+9t/bMrtFRgF2bO+ls8fLCO4NcHE8BCt2tcp9DiHqnqgp7dqziJx+c5dCxS3ztK30lL7++4ZhlfXVRMYvZvVNRpjd9i2W5Mpnh/WOXZoOns8XH3/vurdx/26rZ4NFVhZaQh5agG9NyyORM2lt8rOrwYzrIFtVCNICmgJuvbO3i0kSak2enyn48ufJpEMWW/1q2QzKTJ5szOXF2kpcOnCE9vQDt7m1dPHnvWtx6oTxbUQo3JIO+QpcCx5E1LkI0ss19zYyMpfjs9DhruoOzU+7lIOHTIBbevdMhm7dJpAyyhsXrkdN+5wAAHa5JREFUvzzH4ROXgULAPP3QBrava5t9rq4qhAJuvG6Nq3ffraU1LtLiRojSUhSF3du7eOXgEIdPXOHRO1eXbfpNpt0axHzVbU/c04/tOMRSeWKJHCNjSf6/vzo2Gzwbepv4g9/cMRs8CoUwamv24nFdGzxQO2tcZu5xRVPGNR0cZPpPiOUJeF3s2tzB6HhqdjficpDwaRBzlf/+9cfDbF7TymQsSzqb59Dxi/yXl49zZSqDqih8/e41/P6T22gOFC6tNVWhefreznzNQGtljcti7nEJIRYn3N9CwKvz2akxnOs/gZaITLs1kKvLf23HIZEuXO0kMnleeneQyPkoAG1NHp7bu5k1XcHZ53rdGk3+Qk+2m32v1coW1bU0/SdEo9FUlR2b2vnw+GUuT2boafeX/BgSPg2ncG8nmTIwbYdT56P86N1BkplCs8I7tnTwrfvW43H/uqgg4HMR8LqKboxTC2tcFr7HJYRYjvWrmvjVl2OcOh+V8BE3Z9kOiYxBLmeRt2x+/tEwh45dAgpVad/Zs56dm34dGrqq0BTw4HbNPft69Q19r1sDpxBstXBzv1Sb4wkh5qZrKutWNXFmNIZlO2hqaQsPyho+4XD4nwPPTv/xp5FI5B+X83j1YLkVWn/5iy95+d1BsoaJ163z2F19bOxr5tDRi5y/ksTj0rhtYzvvHbnIVCIHFLY/cByLffsH2Ld/AFWB3s4APrdOzrCwbZt4Oo9pOWiawuqOAFv7Wzh0/BKaVuj7NjKWmh3DRDzLuUtx/u63b61aANXK9J8Qjay3w8+p81HGYxm6W0t79VO28AmHw18FHgNuBxzgjXA4/BuRSOSvynXMWrfcTcheff8Mr31wDigUB+Qtm/eOXuLjL69g2g4KcCWa4ZX3z84+x+tSZ7e6hsJVQmuTl3gqz5XJNJbt4DjgOIVVzphwaTLN4GicoM+F36sxMpW5ZhyOAxnD5r+/8SX/7u89sPwvzBLVwvSfEI2so9kHwFQiV/LwKWe120XgH0YiESMSieSBk8CKnhNZboXWLz4eAaUQPH6v6/9v786D47juA49/e+7BzOAiQVIEL0Egn6iLIilRpo6lSFGxZFuyYkmmJe/GSpXtTWq962zZym423rLjKqcqyVrOJusqJxV7V15ZFeqKVocPxSaogzpt8RBJ8YkEL5HgiYPAYDBXd+8fPQABXhgAc3Xj9/lHBNgz3Q+g+jf93u/9fsxuipI3LY6eTmFg0JfMkhw627FwRkMEc9Tr49EgzQ0R+pIZ+gezZPM2huGjUMoNv8/AwOlcalr2SFMr0xqbgTD88D1cFUEI4U2RwtpwJmuOc+TEle3JR2u9a/jPSqnFONNvtxT7+hkz4uMfdAktLYkpvb4cepJZEtHAmE1bAb9BbzJb1PWmcyahgEFDLEzA76NnIEMq7QSbU31DI0Fi+N1jkQB9A2kMA5oSEfw+g5O9QyOFQwH8PsibzqOpYRj4ANO0CAV85PIWwQv1wjUA23lNKX/Otfg7KwWvjgu8O7ZqjSseC+MP+Mc/sEJs28ZngN/vJxEvPpmnri5MS/Oln5TKnnCglLoaeBl4VGu9t9jXdXcnx9wkJ6KlJcGpU5UrDV6s5njovAytTM6kKR4q6nqb4mHCYR/ptElPf3pM/r1ZmHZriIdIprIYhkHetAmF/NTXhUln8/T0n/+kMtwu3sD5h2bZNn6/j0jIj2naI1lyow2fNhz0leznXKu/s6ny6rjAu2Mr9bgmEsiSg5mKtdEuRjqbx7LBb8BAsvhtDKlUhlOmecmxlzvh4BbgWeBPtNb/XM5zucFUMrR2H+qmMR7k0IlB8qY1/PAxIuA3aEqEsYFwKODkUBuwcFaCQyeSDGXy571nKGBgWhY+wwkopmWDAdGQn2DAx6dXL2DP4T76kxlSmbGP3YYBd0tmmRAltfTyZvJm5TqKBnw+LpXEtueQU2B05ZWzuPry5osfeI5wcPzQUs6Eg/nA88AGrfWmcp3HTSaToWUY8MH+bp7q2Ec6axIJGSSHxgaeay5vZnAoS18yS1MizKc/sZBgwMe7H56k80gfmax5XrBK1AUJB/0jKdSjs93mNNeNXNe9heNfeGM/r7x3ZEyW3b23tpX6RyTEtPbhgZ6KPvncuHQ2sfDFw8Dej/sI+A2Wtc0Y2RtYKuV88vkmEAEeU0oNf+9HWusflfGcNW8iGVqWbZNM5XhxywHSWZOAz4dln/2Y4vcZfOnuK2lvbRjzumDAx4meFCd7UyTiYWaMesqabMfNe29tk2AjxDSSyZm8ufM411xe+sAD5U04+Drw9XK9v9dlcxb9qQx506brdIp0zsQ0zz67OE8tvvMCTyTsp74uxE9e2g2FjLrh46X1gRCiWK9u6yI5lOPuT5Rnel0qHNQYG5vkUJ5UOodtw4cHexjK5Bmde2EYEAwYzKiPjPlePBokFgkABqek9pkQYpJ6BzL8vzcOsHRhE4vnNZblHBJ8akg2bzGQypDLO5GmdyDD0x2dYwJPwA+WBemsyW3L5gLO5tCGWGhMFt3Fap9Fgj7++sn3pSqAEOKCbNvmp7/cg2la/MFdavwXTJIEnxpg2U5K81AmP5LGvKOzm+df308652SZhUN+LMvCssDvh1DAj1rQRCBg0BiLEPAbhdc55Xu6Tg8ylDWJRQLUx0Jk8xapoRwYBnmbSVVYEEJ430tvHmR7ZzcPrV9c8qoGo0nwqaqxFajBWeR7actBfvfRKcBJKohFA8SjTs+dgN8glcnTEHWy1RpG9d4ZXb6nMRHGn8qRTOUwLZvWmTECPoO8Zcs6kBDign675yT/8voBVl89h/Ur55X1XNJMrkosy6ZvMMuZgcxI4DlyKsn/eu6DkcCzZH4D969pw+8zyObPNm8Dm0/dvJDGeHhM07dzy/fUx0LMaIzQOjPGnz68gnTWJHROxQJZBxJCgDPb8g8v7OKK1noeuVuVrX32MHnyqTAbGMrmSaZyIxUcLNvmje3HeOW9j50KAz6DT65awM3XzsFnGETDAV7f3kXvQIa5sxLcuXIey9pnnNf0bbwGa9IDRwhxIbsO9PDDf/mA1pYY//nBZQQrUOJHgk+FGAZkchbJVJZs/uwO5jODWR7/xR6O9zi90oN+H3fdNJ/V11w2coxa0IRa0ITPZ7BofhPvbj/KX/3MSRqIBH1gGKSzJql0HtOyqS+0xYaxwaXaPXCm2k5CCFF6v91zkn98cRdzmuv4xobrqYsEK3JeCT4VYFkWA0N50tn8mKeV3Qd7eLqjszCVBj4D8qbFL94+zFAmz7qV80eODfgMGhJh9hzo4f++ovH7fYDNsZ4hwKa5PkIo6OPMoNPDJ1EXPC+4VLMHzlTbSQghSu+N7V081bGPtrn1/MmDy4hVKPCABJ+yG8zkGRw6O8WmD/fy6rajHDudIlN4AjIolGIzDPw+p8ba5m1dtLbEUQuaCAZ8NCVC+Awfz27eN7Ku0zuQwZmW9TGQyjG7UEU2kzXx+4wLBpdq9cAZvR4FkuwgRDVZls17e06iD/dx3RUz+OPPXlOWKgaXIsGnDAwDMlmLgaGze3bACTzPvdZJKm2O6ZHjBB9jpMCfz3AC0Ovbu7juipljMtpO9KScqTYgn3eKghqFJyaA+liIVDrPX//xzZUZbJHGW48SQlRGOpvn1W1dnOgZ4o6V83jojsVOI8kKk+BTYqZlM5geu2cHnI1bL715kIHU2erSibogQ+kceQuCo373Nk59NsNn0JgIYXD2L2c313GqN0U46CcQ8GGaFrbt9FuH2kwg2NF5mlQ6T89AhmDAR31dkLpIsCavVQgv6x3I0PH+UVKZPLdcO4f7/k1bVQIPSKp1ydhAKpunpz9NKj028CSHcvz0l5rufmc9ZnhKLFEXIlFIDnDaWTv9dAyfwbyZMRpjYwMPwOdub8c0LTI5k0Q0UGiBbZGoC5LJmRVNICjG8FpPOOTHwCaft+gZyHAmmam5axXCyw6fGOAXbx/CtCzuWjWfK86pC1lp8uQzRWen2LLk8uf34fjo4z6e2dw50pQtHPTRlIiMfNrw+300xUMMDDmbQSMhP3NnxMib1kj5nNFuWDqbL965ZCRp4LLm6Ei2W2MsVHMZZMNrPXURp0dQ/2CWXN4km7N45O4ra+pahfAi27bZ0dnN9n3dzGyIcPvy1vOmwKuh+lfgYqbllMU5N4sNnDWYX71zmC07jwPOAvuqpbPYeaCbvGURNHzkTCcb7d5bLwfg7V3HMQyDcMjP2uWtF70xVytpYDJGr/VEwwGi4QC2bZNK510zBiHcKpe32PLBMQ6fSNI2t57VV88uZMpWnwSfSbEZypojpWvOdbJ3iI2b9nKs29m7s2B2nA3r2mlKRGibWz+yYbQpEea2ZXNRC5rYd7SPpkSYwyeS1BM67z3dSja2ClEdyaEcHe8fpW8gw0rVwlWLmspetWAiJPhMkGlZDKRypLPmeX9n2zbvfniSn791iJxpYRiwdnkra1fMw1+YZhveMDpaZ9cZ3tx5nORQjkDA56k9MNXe2CrEdHSiJ8XmrV1Yts26lfNobYlV+5LOI8GnSDaQOmfPzmipdJ7nXutk90Gn53ljPMTn17WzaE79Jd834DfYtb+HgVRuJGPNS3tgqrmxVYjpSB/u490PT5CoC7F2eSsN8dqcSZHgM46RsjhDObK58592wHlyebqjk/7BLADXtjVz321tRC/RGx0Y2Tza2XXmvGO9tAfGTWtUQlTTsvaZI3v2Jsq0bJ7d3Mk7u0+wdFETj9y9dNzEgnCweiFAgs8lXGzPztm/t/j1b4/w2rYubJyAcc8ti1ixpGXcudVQ0E9jYfPojHpZFxFCQDTkx7ImnhCQyZr8+OXdbNt3mk+ums+Dt7dXbf9OsST4XIANDGXyJC8yxQbQfSbNxk17OXJqEIDWlhgb1rUzsyE67vtHgn7qR1UtkHURIcRk9Q9m+Z/P7ODg8X6+eOcS7ihzH55SkeAzynh7dsBJKti69zQvbDlANmdhALctm8v6G+aNrNlcSjQcoCE2dg5W1kWEEJNxoifFD57aTl8yw9d+/1qWL2mp9iUVTYJPwaX27AxLZ/M8//oBdnR2A1BfF+SBte20F7lTOBYNEo9euGqsrIsIISbi4PF+Htu4HYBHH1pe9YoFEzXtg8+FmrtdyKHjAzzVsY/eAadEztKFTXxuTVtRJcgNA+LRILEa2FUshHC//V39fH/jNurCAb75hetHKtq7ybS9GxaTxQaF9gZbj9Lx/hEs20mN/vTqRaxaOquoDVuGAQ3xMJFgZcuVCyG8yQk8W4lHgzz60PKi1plr0bQMPuNlsQ3rHcjwVMc+Dh0fAGBOcx0b7mhndlNxnzL8PoOGWJhQsDbKWQgh3K3r9CA/eGobsUiQ//LwCprr3ZsRO62Cj41TU2wwnb/kFBvAjs5unn99/0glg5uvmcMnVy0gGCgukAT8Bo3xCAF/bac7CiHcoXcgw/c3bsPv9/HNL1zv6sAD0yb42KRzFslUlrx56aCTyZm8uOUg7390CnCSBB5Y03ZeSZxLCQV8NMbDNZ9nL4Rwh2zO5O+f3UEqk+fPvriCWUXOvtQyTwef4XWdwaEcmUus6ww7cirJxk376C5UFlgyv4H711xBoq748hSRkJ/62Nk9PEIIMRW2bfP4L/dw6PgAX7v/WhbMTlT7kkrCs8Gn2HUdAMu2eWP7MV5572Ms28bvM7jrpgWsvmbOhILIhfbwCCHEVLy58zhv7TrBfbdezvLF7tnHMx7PBR8b6E9m6O5Pj7uuA87u4Kc376PzaD8ALY0RNqxbzNyZE6sCWxcJTOgJSQghxnOyb4gnXvkINb+Rz9y8qNqXU1KeCT7DU2wDqSwJjKICz4cHe3j21f2kMnkAVi2dxadWLyQUmFhadCwaJBH1zI9SCFEDbNvmiV9pDAO+cs9VnltD9sQdcyJTbOB09/v524d4Z/cJwJkuu39NG1ctap7QecduHvXWPwwhRHX9Tp9i54EeHlq/2PWZbRfi6uAzXJ1g8CIdRS/kWPcgGzft42TvEABtc+t5cG37hNdqDAMSdSFikUBRAU8IIYqVNy2eebWTeS0x7ljhjkKhE+Xa4JPNj1+dYDTbtnlr13F++c5h8qaNzzC488Z53Hbd3Ak/zhoG1MdCREMSeIQQpffmzuOc7B3iP91/neem24a5LvhYtlMAtNgpNnB6mT+7uRP9cR8AM+ojbFjXzrxZ8Qmf32cY1MdDUi5HCFEWlm3zq3cPs3B2gmXtM6p9OWXjquAzXAC02Ck2gI8+7uOZzZ0kh3IArFjSwj03LyIcmnjw8PkMGqVcjhCijHYf6OFYd4qv3HNVUfUj3coVwSdv2QwMZovaKDryGtPiV+8eZssHxwEIB/3cd9vlLGufXNsCv8+gIR4mVGR5HSGEmIw3PjhGPBrkxitnVftSyqrmg89gOsfgUB5rAosrx04P8o/P7+RYdwqABbPjbFjXTlNichkjAZ9BY0LqtAkhyiudNdm69zS3XndZUc0p3axmg0/OtOgbyFy0o+iF2LbNe3tO8vJbh8jlLQwD1i5vZe2KefgnuWgX8Bs0JSKTfr0QQhRr39Ez5PIWNyhvP/VADQefM8mJBZ5UOsdzr+1n98FeABrjIT6/rp1Fc+onfQ3BgI+meMiz2SZCiNqiD/cSDftZPM9dXUkno2aDz0RSmDu7zvB0Ryf9g1kAVl45i0/dtIBoePLDCwX9NMalQKgQonIOnRigvbXR81NuUMPBpximZfGb3x7h1W1d2DitDO65ZRHrP7GI3t7UpN83HPTTIIFHCFFhJ3pS3LR0drUvoyJcG3y6+9Ns/M1ejpwaBKC1JcaGde3MbIhOKT0xEnICjyHlcoQQFWbbTGmpwE1cF3xs22br3tO8sOUA2ZyFAdy2bC7rb5g35UdVaYkghKi2hXO80a9nPK4KPulsnudfP8COzm4A6uuCPLC2nfbWqS/OSUsEIUS1RUIBmhLhal9GRbgm+Bw6PsBTHfvoHcgAsHRhE59b00YsEpzye9dFAtRL4BFCVFljYvrch2o++JiWzeatR+l4/wiW7ey7+fTqRaxaOmvKpScMIFYXJB6p+R+DEGIaaIxPj6ceqPHg05fMsHHTPg4dHwBgTnMdG9a1M7u5bsrvbRgQrwsRl5YIQoga0STBp/r2HO7jZ69o0lmnntvN18zhk6sWECxBbTVpiSCEqEWxadQRuWZH+uKWA6SzJrFokAfWtKEWNJXkfaUlghCiVtWFp76G7RY1G3wAlsxv4P41V5QsC01aIgghalk0PH0+FNds8Fm3Yh7XtDWXrMqAtEQQQtS6SKhmb8klV9aRKqUeBr4FBIG/1Vr/sNjXrlQtEyoseinSEkEI4QbT6cNx2UaqlGoFvgfcClwPfFUpdVW5zncxgYBBU31YAo8Qoub5p9F9qpxhdj2wSWvdo7UeBJ4BHijj+c4TDPhojofx+6bPpwkhhHv5p0E162HlnHabCxwb9fUxYFWxL25srMO0Jp8HPbslQVN9pCSp2bWmpcWbtZ9kXO7j1bFVa1zNjTHP/kzPVc7g4wNGRw8DKHoRp68vNek1n9mzEti5PH29g5N6fS1raUlw6tRAtS+j5GRc7uPVsZV6XBMJJoPJNKdOeWfq7VJjL+djwRHgslFfzwG6yng+ACJhPzMaotKLRwjhOr5ptOZTziefXwPfUUq1AIPA/cBXy3i+kcrUfml7LYRwocA0uneV7clHa30U+HOgA9gGPKm1frcc53LqtAWprwtKCzghhGt5cY36Ysq6z0dr/STwZDnPYRiQiIWIhaVOmxDC3RJ1IawpJFq5iau3046u0yaBRwgh3MO1wcfnM2iUcjlCCOFKrgw+AZ9BQyJMcBptyBJCCC9xXfAJBAya4hHJaBNCCBdzVfAJBnw0xcP4JPAIIYSruSb4hIN+GuIh2TwqhBAe4IrgEwk5gceQXTxCCOEJNR98ouEADbHSdDIVQghRG2o6+AyXyxFCCOEtNRt8YtEgkaCkUgshhBfV7N09FgmArPEIIYQn1WzwkXI5QgjhXTUbfIQQQniXBB8hhBAVJ8FHCCFExUnwEUIIUXESfIQQQlScBB8hhBAVJ8FHCCFExUnwEUIIUXESfIQQQlScBB8hhBAVJ8FHCCFExdViVWs/MOVW2V5ute3Vscm43MerYyvxuBYBR4B8Kd/U7Qy79ip43gq8Xu2LEEKIErocOHiJv18EHCjiOM+oxeATBm4EjgFmla9FCCFKYbwnnwAwr4jjPKMWg48QQgiPk4QDIYQQFSfBRwghRMVJ8BFCCFFxEnyEEEJUnAQfIYQQFSfBRwghRMVJ8BFCCFFxEnyEEEJUXC3WdpsSpdTDwLeAIPC3WusfVvmSpkQpVQ+8CXxGa31QKbUeeAyIAhu11t+q6gVOglLq28DnC1++rLX+Uy+MC0Ap9V3gAcAGfqy1fswrYwNQSv0PYKbW+hGl1PXAPwH1wGvAH2mtXbU7XynVAcwCcoVv/XvgCjx0D6lVnnryUUq1At/DqQ93PfBVpdRV1b2qyVNK3QS8ASwpfB0FfgJ8FlgK3KiUurt6VzhxhRvx7wHLcX5HK5VSD+HycQEopdYA64DrgBuA/6iUWoYHxgaglLoD+NKobz0BfE1rvQQwgK9U5cImSSll4Py/tUxrfb3W+nqc8jaeuYfUMk8FH2A9sElr3aO1HgSewfkU6lZfAf4D0FX4ehWwV2t9oPAJ8wngwWpd3CQdA76htc5qrXPAhzg3ALePC631q8Dawhhm4cwsNOKBsSmlmnFuyn9Z+HohENVav1045P/gvnGpwn9fUUptV0p9De/dQ2qW14LPXJyb27BjOMX6XElr/WWt9egK364fn9Z61/ANSym1GGf6zcLl4xqmtc4ppf4C2A38Bg/8zgr+AfhzoLfwtRfG1YTzO/p94A7gj4AFuH9cruC14OPDmWsfZuDc2LzCM+NTSl0N/CvwKLAfj4wLQGv9baAFmI/zVOfqsSmlvgx8rLX+zahvu/7fotb6La31H2itz2itTwM/Br6Ly8flFl4LPkeAy0Z9PYezU1Ze4InxKaVuwfnE+V+11o/jnXFdWViER2udAp4Dbsf9Y9sA/J5SahvOzfle4Mu4fFxKqVsL61jDDJxeOq4el1t4Ldvt18B3lFItwCBwP/DV6l5SSb0DKKVUO07jqYdxFrNdQyk1H3ge2KC13lT4tuvHVdAG/IVS6lacT8+fxZmu+hs3j01rfefwn5VSjwC3a63/UCm1Uyl1i9Z6C/DvgF9U6xonqRH4rlLqZpzMti8B/xZ4wsP3kJrhqScfrfVRnHnpDmAb8KTW+t3qXlXpaK3TwCPAszhrCntwFkTd5JtABHhMKbWt8Gn6Edw/LrTWPwdeBrYCvwPe1Fr/Mx4Y20V8EfiBUmoPEAf+rsrXMyFa65cY+/v6SSGQevYeUkukmZwQQoiK89STjxBCCHeQ4COEEKLiJPgIIYSoOAk+QgghKk6CjxBCiIqT4COEEKLiJPgIV1BKvaKUmlmCY25XSu0s4nz2hd5LKXWvUurvCn/erJR6QCm1SCmVHO89hRBnea3CgfCuO8c/pKhjpkRr/QLwQrnPI4TXSfARNU8p9b8Lf+wolL3/DjADp4TN97XWPz3nmE8By4D/BoRw2hs8rrX+7xM89feUUjfizBB8S2v9UqG8zANa689MaVBCTHMy7SZqntb6Dwt/XItTF+3vtdbXAXcDf6mUWn3OMUeAbwBf0lrfAHwC+LPxpuQuYL/WegVOva/HC/W+hBAlIMFHuMlVQERr/RyA1roLp2baXaMP0lrbwD04XVK/jdPC2gBiEzzfjwrvtxOnLtvqKV29EGKEBB/hJjZje62A8284OPobSqkYTrHIFcD7OD2DcjgBaCLMc86Tm+DrhRAXIcFHuIWJ02slp5T6HIBSai5Oyft/HXVMEFgM1OOs07yI01MnDPgneM5HCudZAbTjtH4QQpSABB/hFk/jNKC7D/i6UmoHTv+m72qtO0Yd8ypO58mXgD1KqQ9xpuB24wSQiWhTSm0F/gn4gta6Z+rDEEKAtFQQQghRBZJqLaYlpdSjOM3QLuRvtNY/q+T1CDHdyJOPEEKIipM1HyGEEBUnwUcIIUTFSfARQghRcRJ8hBBCVNz/B0io24cYBjoZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "sns.jointplot(x=\"total_bill\", y=\"tip\", data=tips, kind=\"reg\")" + "sns.jointplot(x=\"total_bill\", y=\"tip\", data=df, kind=\"reg\")" ] }, { "cell_type": "code", - "execution_count": 100, + "execution_count": 112, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 100, + "execution_count": 112, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEVCAYAAADtmeJyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxU5b348c/sWWayzyQh7DtGQhBUoBbEJQFCBFNsUa/RekvXWyz3d/Fi8UWv1V6t5VWs1G62v/beX6FCrZDGBWhR6xKqBpE17CRAlpnJPpNlMsv5/REZiRAm+8xkvu/XKy9y5jnnzPeEM/M953nO8zwqRVEUhBBCRCx1sAMQQggRXJIIhBAiwkkiEEKICCeJQAghIpwkAiGEiHCSCIQQIsL1KBEUFxezZMkScnJy2LJlyxXlZWVlFBQUkJuby/r16/F4PADYbDa+/vWvs3z5clauXMnFixcHNnohhBD9FjARWK1WNm3axNatW9m5cyfbtm3j9OnTXdZZu3YtGzZsYPfu3SiKwvbt2wF49NFHWbhwITt37mTZsmVs3LhxcI5CCCFEnwVMBCUlJcyZM4eEhARiYmLIzc1l165d/vLKykra29vJzs4GoKCggF27dlFfX8/x48dZuXIlAF/60pf43ve+N0iHIYQQoq8CJgKbzYbZbPYvWywWrFZrt+Vmsxmr1cqFCxcYMWIEzzzzDF/60pdYvXo1Op1ugMMXQgjRXwETgc/nQ6VS+ZcVRemy3F25x+Ph2LFjzJkzh7/85S/cfvvtrFu3boDDF0II0V8BE0FaWhp2u92/bLfbsVgs3ZbX1tZisVgwm83ExsaycOFCAJYuXcqhQ4cGMnYhhBADQBtohXnz5rF582bq6+uJjo5mz549PPnkk/7yjIwMDAYD+/fvZ9asWRQVFTF//nxGjx5NWloa//jHP1iwYAFvvfUWmZmZvQ6woaEFny88x8VLTjZSV+cMdhh9Es6xg8QfbBJ/8KjVKhITY3u1TcBEkJqaypo1aygsLMTtdrNixQqysrJYtWoVq1evZvr06WzcuJHHH38cp9NJZmYmhYWFAGzevJkf/OAH/OQnP8FoNPLMM8/0+qB8PiVsEwEgsQeRxB9cEn/4UIX6MNR1dc6w/Q8xm03Y7Y5gh9En4Rw7SPzBJvEHj1qtIjnZ2LttBikWIYQQYUISgRBCRDhJBEIIEeEkEQghRIQL+NSQEH3h8YHL7enXPgw6LVq5VBFi0EkiEIPC5fbwUZk18IrXcOO0VLQGOUWFGGxyvSWEEBFOEoEQQkQ4SQRCCBHhJBEIIUSEk0QghBARThKBEEJEOEkEQggR4SQRCCFEhJNEIIQQEU4SgRBCRDhJBEIIEeEkEQghRISTEb3EVTlaO2hx9X300ECziyqKgrW+jXPVzajVKozROswJ0VgSo/v8nkKIvpFEIK6qrb1/o4fOmGzutqzS3sKHZVYcrW50GjWowO3xATBhRByzp1ow6DV9fm8hRO9IIhBD6mxVM+8friY+Vs8XpqcxJs2EVqPG1eHlWHk9R87VU1nbwm2zMoIdqhARQ9oIxJApq2jgvUPVpCbGsGjOaCZkxKPVdJ6CBr2GmZPN5M0dg1aj5s39ldQ1tQc5YiEigyQCMSRq6lv5qMzGKIuR22dloNdeveonKS6K22Zl4PMp/GrnEVrb3UMcqRCRRxKBGHQdbi/vH6rGFKPjlqx0NJprn3YJRgO3zszA1tjGb4qPoSgBWp6FEP0iiUAMug+OWWl1efhiVjq6Hk5CnJYcw7IvjuPQmTr2n7APcoRCRDZJBGJQXbA5OVftYMaEZFISevdo6ILsDEZbjPxp7yna+vEoqxDi2iQRiEHjUxQOnLQTF6vn+vHJvd5eo1bxQO4UGhwuit47NwgRCiFAEoEYROXVDhqdHcyYmIxarerTPiZkxDN/xgj+XnqRqtqWAY5QCAE9TATFxcUsWbKEnJwctmzZckV5WVkZBQUF5Obmsn79ejyeztv4HTt2cMstt7Bs2TKWLVvGpk2bBjZ6EbK8Xh8HT9eSaDIwNs3Ur30VLBiPVqvitX0VAxSdEOJyAROB1Wpl06ZNbN26lZ07d7Jt2zZOnz7dZZ21a9eyYcMGdu/ejaIobN++HYAjR46wbt06ioqKKCoqYs2aNYNzFCLkfFRmw9HqJntSCipV3+4GLomL0XNrdgYfHLNia2gdoAiFEJcETAQlJSXMmTOHhIQEYmJiyM3NZdeuXf7yyspK2tvbyc7OBqCgoMBffvjwYXbs2EF+fj7/8R//QVNT0yAdhggliqLwZulFUuKjGGmOHZB95t40GrVaxev/PD8g+xNCfCZgIrDZbJjNn40bY7FYsFqt3ZabzWZ/udls5tvf/jZ//etfSU9P54c//OFAxi5CVFVtK3XN7Uwbm9jvu4FLEk0GvpiVzvuHq6lvlh7HQgykgInA5/N1+TAritJl+VrlL7zwArNmzUKlUvG1r32Nd999dyBjFyHqxPkGjNE6Rqf2r23g8xbfPBqA3R9eGND9ChHpAg46l5aWRmlpqX/ZbrdjsVi6lNvtn3X4qa2txWKx4HA4+Mtf/sJDDz0EdCYIjab3I0omJxt7vU0oMZsH9stwqNjqWzEZo3q9XXNLB5X2Fu68eTQJcf0bUjomxoA5Kca/bDabuGVGBiVHqvl6QRZRhmufvuH6t79E4g+ucI+/NwImgnnz5rF582bq6+uJjo5mz549PPnkk/7yjIwMDAYD+/fvZ9asWRQVFTF//nxiYmL47W9/y8yZM5kxYwZ//OMfufPOO3sdYF2dE1+gwe1DlNlswm53BDuMvtFocDh7XwXzycnOi4Ibp1m4UNO/Y29tdWH3eru8Nvc6C/84cJHX3j3D/Bkjut02rP/2SPzBFs7xq9WqXl9AB6waSk1NZc2aNRQWFrJ8+XKWLl1KVlYWq1at4vDhwwBs3LiRp59+mkWLFtHa2kphYSEajYbnnnuO//qv/2Lx4sUcPXqUtWvX9u3IRFjw+nycuthEhjmWpLje3030xKSR8WSkxPLWgcpB2b8QkahH8xHk5+eTn5/f5bUXX3zR//vUqVN5+eWXr9hu9uzZ7Nixo58hinBRaW+hvcPL5NEJg/YeKpWKW2dmsOVvJzlX3cy49LhBey8hIoX0LBYDprzagUGnYUTywDwy2p1516dh0GnkrkCIASKJQAwIt8fHRbuTMWmmPg8n0VPRBi03X5fKh8estLbLYHRC9JckAjEgLtqdeLwK49KH5kmL+TNG0OHxUXrCNiTvJ8RwJolADIjyagfRBi2WxP49MtpT49JNpCXFUHKkZkjeT4jhTBKB6LcOt5dKewtj00wD1pM4EJVKxdzr0zh5oZHaxrYheU8hhitJBKLfzlud+JShqxa6ZG5mKgD7jspdgRD9IYlA9FuF1YExWkdy/OD0HehOSnw0U0cnUHKkRuY1FqIfJBGIfvF4fdTUtTLSEjvg1UIqtYoWl+eaPzdMsWBtaONoRUOX1231rXh8AxqOEMNWjzqUCdGdmrpWvD6FkeaBHxPK5fZy8OS1J673KT40ahWvlZRz83Wp/tdNxiimjopHG2A8IiGE3BGIfrpod6LVqEhNGpqnhT5Pr9WQYY7lvNUh1UNC9JEkAtFniqJw0d7CiJRYNOrgnUpjUk20ubzYGuTpISH6QhKB6LMGh4vWdg8Zg1At1BsjLUbUahUV/RztVIhIJYlA9NlFewvAgE1H2Vc6rZqMlFgqrE6pHhKiDyQRiD67aHOSHB9FdAg0yI5JM9Hm8mCTzmVC9JokAtEn7R0eapvag343cMkoqR4Sos8kEYg+qalrBWBESmgkAn/1UI1UDwnRW5IIRJ9U17Wi06pJHqSZyPriUvWQXaqHhOgVSQSiT2rqW0lNjB70uQd647PqIWewQxEirEgiEL3mbHPjaHWTPsgzkfXWZ9VD0rlMiN6QRCB6rfrT9oG05JggR3KlMWkmWl0efxuGECIwSQSi12rqWojSa0gw6oMdyhVGWmJRq1WcvtgY7FCECBuSCESvKIpCTX0rackxQzYJTW/otRpGpMRyprIJn1QPCdEjkghErzQ5O2hzeUkPwWqhS8amGWlpc1Ne3RzsUIQIC5IIRK9U13fWvacnhVZD8eUujT30yanaYIciRFiQRCB6xVrfijFahzFGF+xQuqXXahhlMXLwdK08PSRED0giED2mKAq2hjYsicGZe6A3JoxMoL7ZRbkMOSFEQJIIRI85Wt20d3jDIhGMS49DrYL9J649w5kQQhKB6AXrpxO/hEMiiDJomTQqgf0nbFI9JEQAkghEj9kaWjHoNMTHhl7/gavJnpiCtaGNyk/nTRBCXF2PEkFxcTFLliwhJyeHLVu2XFFeVlZGQUEBubm5rF+/Ho/H06X82LFjXH/99QMTsQiaS+0Dodh/4GqyJqagAkpP2IIdihAhLWAisFqtbNq0ia1bt7Jz5062bdvG6dOnu6yzdu1aNmzYwO7du1EUhe3bt/vL2traePLJJ3G73QMfvRgybS4PjlZ3WFQLXRIXq2fSyHj2n5R2AiGuJWAiKCkpYc6cOSQkJBATE0Nubi67du3yl1dWVtLe3k52djYABQUFXcqfeeYZHnzwwUEIXQylS+0DqWGUCABmTbFQaW+hpl7GHhKiOwETgc1mw2w2+5ctFgtWq7XbcrPZ7C/fu3cv7e3tLFq0aCBjFkFgq29Fq1GRFELzD/TErCmd5+Z+qR4SolsBJ5v1+Xxd6oQVRemy3F253W7nl7/8JX/4wx/6FWBysrFf2web2WwKdgh9YqtvxWT87Eu/ttlFalIs8XE9uyPQ6bRdtu+L/u4jJsbA2JGJTB6dwMEzdTx01/R+xTPUwvXcuUTiDx8BE0FaWhqlpaX+ZbvdjsVi6VJut39WB1tbW4vFYuHtt9+msbGR+++/31+2bNkytmzZgtHY8y/3ujonPl94Pv5nNpuw28O0Q5NGg8PZDoDb46OusY3pE5L9rwXidnt6vO5g7MNkjKK11YXd62XGhGT+/NYZyk7ZSEkIj6qtsD53kPiDSa1W9foCOmDV0Lx589i3bx/19fW0tbWxZ88e5s+f7y/PyMjAYDCwf/9+AIqKipg/fz733HMPf//73ykqKqKoqMhf1pskIEJDXVM7CmAOky/Rz5s1pfPCRRqNhbi6gIkgNTWVNWvWUFhYyPLly1m6dClZWVmsWrWKw4cPA7Bx40aefvppFi1aRGtrK4WFhYMeuBg6l+YATokPr/aBSywJ0Yy2GKWXsRDdCFg1BJCfn09+fn6X11588UX/71OnTuXll1++5j5OnDjRh/BEKLA3tRMXq8eg1wQ7lD6bNcXMjnfP0eBwkWgyBDscIUKK9CwW16QoCrWNbZgTwvNu4JJL1UMfS/WQEFeQRCCuydnWOdCcOT482wcuGZESS3pyjDxGKsRVSCIQ12Rv7HxqJyXM7wig867gxIVGmls7gh2KECFFEoG4ptrGNrQaFQnG8K9Xnz3FjKLAAakeEqILSQTimuyN7aTER6NWh8dAc9cyymLEnBAlTw8J8TmSCES3PF4f9Y72YVEtBKBSqZg1xUJZRQMt7TIIohCXSCIQ3apvbkdRwrcj2dXMmmLG61NkYnshLiOJQHSr9lJDcZh2JLua8elxJMUZpHpIiMtIIhDdqm1qJzZKS7ShR/0Ow4JKpWL2FAuHz9ZJ9ZAQn5JEILpV29Q+rO4GLrn5ulS8PoWP5a5ACKCHQ0yIyONs7cDZ5mbyqPhgh9JnKrWKFpfnitfNidGkxEex72gNN0y1XGXLTgadFq1cKokIIIlAXNW56mYAUsK4R7HL7eVgN30G0pNjOHK2nnc+qey26uvGaaloh1G1mBDdkesdcVXlVZ2JICk+/DuSXc3Y9DgUoMIanmPOCzGQJBGIqzpX3UR8rB69NnxHHL2WRJOBBKOe8mpJBEJIIhBXUBSFc1XNJA/DhuLLjU2Pw9bQhrNNnh4SkU0SgbhCg8NFc0vHsHxi6HLj0jvnpL3UHiJEpJJEIK7wWUPx8E4Ephg95oRozlY1oyjhOS+2EANBEoG4wtnqZjRqFYlxw7Oh+HITRsTR5Oyg3uEKdihCBI0kAnGF8moHIy1GNOrhf3qMSTOhVqk4WynVQyJyDf9PuugVRVEor3EwNj0u2KEMCYNew0hLLOeqm/H5pHpIRCZJBKILW2MbbS5PxCQCgHHpcbR3eKmuaw12KEIEhSQC0UVFTedz9WMiKBGMtMSi16k5U9kU7FCECApJBKKL8moHWo2KDLMx2KEMGY1azbj0OM7bnLjc3mCHI8SQk0QguiivaWaUxYhWE1mnxsSR8fh8ivQpEBEpsj7t4pp8ikKF1cmYtMipFrokOS6KRJOBMxelekhEHkkEws/e8GlDcZop2KEExcSR8dQ1u6hvbg92KEIMKUkEwq/8UkNxamQmgnHpcahVKk5Lo7GIMJIIhF9FjQOtRk2GOTbYoQRFlF7D6FQjZ6ua8Xp9wQ5HiCHTo0RQXFzMkiVLyMnJYcuWLVeUl5WVUVBQQG5uLuvXr8fj6ZwVqrS0lIKCAvLz8/nmN79JU5NcaYWyzobi2IhrKL7cpFHxdLh9VFidwQ5FiCET8BNvtVrZtGkTW7duZefOnWzbto3Tp093WWft2rVs2LCB3bt3oygK27dvB+Cxxx7j2Wefpbi4mIkTJ/K73/1ucI5C9FtnQ7EjIhuKL5eWFIMpRsfJC43BDkWIIRMwEZSUlDBnzhwSEhKIiYkhNzeXXbt2+csrKytpb28nOzsbgIKCAn/566+/zsSJE3G73VitVuLiIvtLJpR1NhR7I7ah+BKVSsXkUQnYGtqoqm0JdjhCDImAicBms2E2m/3LFosFq9XabbnZbPaX63Q6Tpw4wYIFC/jggw/Iy8sbyNjFALrUUBzpiQBgQkYcarWK9w5VBzsUIYZEwJm5fT4fKpXKv6woSpflQOVTpkyhpKSEl156iTVr1vDSSy/1KsDk5PDu4Wo2h8cXq7WpAp1WzYxpaWg1amz1rZiMfZ+PQKfT9mv7gdhHX7c3ARNHJvBRmZXvfmVmt5PbD7ZwOXe6I/GHj4BneFpaGqWlpf5lu92OxWLpUm632/3LtbW1WCwWXC4X7777LnfccQcAd911Fz/+8Y97HWBdnTNsR4U0m03Y7eExJ+7xc3WMNMfSUP9pdYhGg8PZ9+fp3W5Pv7bv7z5Mxqh+bT8+3cjJ8w28+s5pbs3O6NM++iOczp2rkfiDR61W9foCOmDV0Lx589i3bx/19fW0tbWxZ88e5s+f7y/PyMjAYDCwf/9+AIqKipg/fz5arZYnnniCI0eOAPDGG29www039Co4MTSkofhK5oRoRppj2Vt6UWYvE8NewDuC1NRU1qxZQ2FhIW63mxUrVpCVlcWqVatYvXo106dPZ+PGjTz++OM4nU4yMzMpLCxEo9GwadMmNmzYgNfrJTU1lR/96EdDcUyil6Sh+EoqlYoFMzPYsuckZRUNXDc2KdghCTFoelT5mZ+fT35+fpfXXnzxRf/vU6dO5eWXX75iu9mzZ/PKK6/0M0Qx2M7VdA60Jomgq1lTLPz1vXP8vfSiJAIxrEVuzyHhd6lH8YiUyOxR3B2dVs2t2RkcPF2LrUEmrRHDlyQCQUWNI+J7FHdn4Q0ZqNUq/r7/YrBDEWLQyCc/wvkuzVEsDcVXlWA0cNM0C+8eqqa13R3scIQYFJIIIpytoY32Di9jpH2gW7k3jcbV4eWtA5XBDkWIQSGJIMKVS0NxQKNTTVw/Lom/lV7E7ZGpLMXwI4kgwklDcc8svnk0zS0dlBypCXYoQgw4SQQRrrxaGop7YuqYRMakmdj14YWw7ekuRHfk0x/BfIpCudXB2HRpKA5EpVKx+ObRWOtb+fikPfAGQoQRSQQRrKauFVeHl3HyxFCPzJ5iITUphldLymXYCTGsSCKIYP6G4nRpKO4JtVrF0rljOG9zcvB0XbDDEWLASCKIYOXVDvQ6NSOSpaG4p26+LpWU+CiKS87JXYEYNiQRRLBzNc2MSTWhVqsCrywA0GrU5M0dw7lqB0fO1Qc7HCEGhCSCCOX1+ThvdUqP4j74wvR0kuIM/PU9uSsQw0Nwpl4SQVdpb8Ht8TFO2ge6pVKraHF5rlqWc+NoXtp7ig+P27h+fHK3+zDotGjlckuEOEkEEco/R7E8Ototl9vLwW4eFdVqVBijdfz5rdO0tru7TM96uRunpaIN0lSXQvSUXKtEqPIaB9EGLZbE6GCHEpbUahUzJiZT3+zivNUZ7HCE6BdJBBHqXHUzY9NMqLu5khWBjRsRR3ysnk9O1eKTtgIRxiQRRCC3x8dFm1MGmusntUpF9qQUmlo6OFvZHOxwhOgzSQQR6KLdidenME7aB/ptdKqRlPgoPjlVi8frC3Y4QvSJJIIIVF4tQ08PFJVKxawpZlpdHsrKG4IdjhB9IokgAp2rcWCM1pEcHxXsUIaF1KQYRlmMHDlbT3vH1R83FSKUSSKIQOXVzYxNN3X7yKPovRsmp+Dx+WQMIhGWJBFEGJfbS2Vti/QoHmDxRgOTRyVw8kIjjQ5XsMMRolckEUSY81YHioL0KB4EMyamoNOq+ei4TYaeEGFFEkGEKa/+tEex3BEMuCi9hhkTU6iua+WCTTqZifAhiSDClNc0E2/Uk2gyBDuUYWnKqATijXpKj9vxyuOkIkxIIogw56odMiPZIFKrVdw0zYKzzc3hszJMtQgPkggiSJvLQ019q8xINsjSk2MZPyKOI2frqK5rCXY4QgTUo0RQXFzMkiVLyMnJYcuWLVeUl5WVUVBQQG5uLuvXr8fj6XyWev/+/axYsYJly5bx4IMPUllZObDRi16p+HTEUelRPPhmTzWj1ap56e+nZBwiEfICJgKr1cqmTZvYunUrO3fuZNu2bZw+fbrLOmvXrmXDhg3s3r0bRVHYvn27//WnnnqKoqIi8vPzeeqppwbnKESPnPt0juIx0qN40EXptcyaYuFsVTPvHaoOdjhCXFPARFBSUsKcOXNISEggJiaG3Nxcdu3a5S+vrKykvb2d7OxsAAoKCti1axcdHR088sgjTJ06FYApU6ZQXS0fiGA6V9VMSnwUcTH6YIcSESZmxDExI57tb56mqaUj2OEI0a2AicBms2E2m/3LFosFq9XabbnZbMZqtaLX61m2bBkAPp+Pn//859xxxx0DGbvopTNVzUzIiA92GBFDpVLxlTsm0eHxsm3vqWCHI0S3Ak6d5PP5ugxFoChKl+VA5R0dHaxbtw6Px8M3vvGNXgeYnGzs9TahxGwOjWqY2sY2GhwusiabexSTrb4Vk7HvYxHpdNp+bT8Q+wj29gDjRyZyz+2T+dOeEyy+ZTw3TLH0eNtQOXf6SuIPHwETQVpaGqWlpf5lu92OxWLpUm63fzadX21trb+8paWFb33rWyQkJPDLX/4SnU7X6wDr6pz4fOHZ2GY2m7DbHcEOA4DS4zYAUuOiehaTRoPD2d7n93O7Pf3avr/7MBmj+h3DQBxDa6uLW7PSeLP0Apu3HeCJh28iugdTV4bSudMXEn/wqNWqXl9AB6wamjdvHvv27aO+vp62tjb27NnD/Pnz/eUZGRkYDAb2798PQFFRkb987dq1jBkzhueeew69Xuqlg+lMVRNajZrRqeF9hxWOdFoNDy+ZSl1zOy9JFZEIQQEvTVJTU1mzZg2FhYW43W5WrFhBVlYWq1atYvXq1UyfPp2NGzfy+OOP43Q6yczMpLCwkGPHjrF3714mTpzI3XffDXS2L7z44ouDflDiSmeqOqem1Gqk60gwTBqZwJI5Y3htXwUzJqZww2Rz4I2EGCKB71GB/Px88vPzu7x2+Rf61KlTefnll7uUX3fddZw4cWIAQhT95fH6qKhxsHBmRrBDiWjLbhnHkbP1/OGN40wYEUe8UYb5EKFBLg8jwAWbE7fHJ08MBZlWo+Zr+dfhcnv5/RvHZYRSETIkEUSAM5VNAEwYIT2Kgy0jJZYVt07g0Jk6/vFJVbDDEQKQRBARzlY1k2gykBQnU1OGgttnjSRzbCIvvXmKmvrWYIcjhCSCSHCmqonxcjcQFCq1ihaXp8tPW4eXlXdORqtW88udR2hs6bhiHVt9Ky0uDx4ZyVoMgR41Fovw1eR0YW9sZ+HMkcEOJSK53F4OnrRfteym6yy8faCKX+08zJzMtC5lJmMUDmc7N05LRduDfgdC9IfcEQxzJy92tg9MHpUQ5EjE541ONZE5LomTF5r87ThCBIMkgmHu5IVG9DrpSBaqZk5KITUpmn8etdLg6F8vZiH6ShLBMOXxQYvLw4kLjYxNi8Pl8V1RD32tH5fbG+xDiAhqtYr5M0ag16l5+0AVHfJ3F0EglY/DlMvt4f3DVVTanEyfkMxHZdbAG11mdmb6IEUmPi/aoGVB9gh2f3iB9w/XcOvMEcEOSUQYuSMYxuwN7SiAJTE62KGIACyJMcyaYuaCzckRmetYDDG5IxjGbA2tqFRgTpBEEA6mjUmktrGdA6dqSUsxYo6XISjE0JA7gmHM1tBGUlwUOq38N4cDlUrFvOlppMRH8bcPK6hrksZjMTTkG2KYcnt82JvaSZVqobCi1ahZeEMG0QYtb358kQaHK9ghiQggiWCYumB14PMp0j4QhqINWvK+MA6PR+E3RUdo7/AEOyQxzEkiGKZOfdpBSRJBeEqOj2Z+9ggqa1v4zV+Phe0sfSI8SCIYpk6ebyTBqCdKL88DhKsMcyxfunUCn5yu5aW9p2TYajFo5FtiGHJ7vJytamLSSBlWItwtyM6g2dnBno8uEBerZ+m8scEOSQxDkgiGodMXm/B4FdKTY4IdihgAX75tIo7WDl555yzGGB23ZstMc2JgSSIYho5VNKBWgSVJ2geGA7VKxVeXTMPZ5uH/7T6BMUrH7KmWYIclhhFpIxiGyioaGJMWh16rCXYoYoBoNWq+vfx6xo+I4zfFRymraAh2SGIYkUQwzLS2ezhX3czk0dI+MNwY9BoeWTGD1MQYNv/lEOeqm4MdkhgmJBEMMycuNKAoMEXmHxiWjNE6/v0r2Rijdfx02yectzqCHZIYBiQRDDNl5Q3otWrGpsvUlMNVosnA2ntnYtBr2IQ7dzoAABfwSURBVPjSJ1y0O4MdkghzkgiGmWMVDUwaGS/jCw1z5oRo1t47E41GxcaXPqG6riXYIYkwJt8Ww0htYxtVtS1cPz452KGIIZCaGMOj984EReHZPx3A2tAa7JBEmJJEMIwcPFMHwIyJKUGORAyV9ORY/uPemXi9Cj/50wFsjW3BDkmEIUkEw8ihM3VYEqNJS5KOZJFkpNnIf6zMxtXh5cdbPqamXu4MRO9IIhgmXB1eyioamDFB7gYi0ehUE4/edwMer48fb/mYylppMxA916NEUFxczJIlS8jJyWHLli1XlJeVlVFQUEBubi7r16/H4+k6bO5zzz3H5s2bByZicVVlFQ14vD6yJkr7QKQaZTHy6H03APDs1o+5YJOniUTPBEwEVquVTZs2sXXrVnbu3Mm2bds4ffp0l3XWrl3Lhg0b2L17N4qisH37dgAcDgff//73+f3vfz840Qu/Q2dqMeg10n8gwmWkxPKf99+AVqPm2a0fU1Ej/QxEYAETQUlJCXPmzCEhIYGYmBhyc3PZtWuXv7yyspL29nays7MBKCgo8Jfv3buXsWPH8tWvfnWQwhcAiqJw8Ewd149NQquR2r7hRKVW0eLy9OrHFKtn9YosDHoNz/7pAKcuNgb7MESICzjonM1mw2w2+5ctFguHDh3qttxsNmO1WgFYvnw5gFQLDbILNicNDhdZt0i10HDjcns5eNLep21vnZnBe4eq2fjSJ3xr+fVky9NkohsBLx99Ph8qlcq/rChKl+VA5WLwlZ6wo1JBlnzQxWWM0Tq+9+UZZKTE8vO/HOb9w9XBDkmEqIB3BGlpaZSWlvqX7XY7FoulS7nd/tkVS21tbZfy/kpONg7YvoLBbDYN6v4VReHjk3ayJqYwcexndwRKfSsmY1S/9t2f7XU6bb/fv7/7CPb2/d2HyRjV7xhSU0z8+Ltf5Ok/fMTvXitDUau5+9aJfd5fbwz2uT/Ywj3+3giYCObNm8fmzZupr68nOjqaPXv28OSTT/rLMzIyMBgM7N+/n1mzZlFUVMT8+fMHLMC6OmfYztdqNpuw2we3sa6ixkFVbQt3zB7Z5b1aXR4czvZ+7bs/27vd/X///uzDZIzqdwzBPAaTMQqHs73fMbS2ulB5vXxrWSa/ffUY/7f4KFU2BytunYB6EO/ch+LcH0zhHL9arer1BXTARJCamsqaNWsoLCzE7XazYsUKsrKyWLVqFatXr2b69Ols3LiRxx9/HKfTSWZmJoWFhX0+CNE7Hx63olapmDXZHHhlEbF0WjXfuCsTU4yOXR+cx9bQxteWTpM5rQXQwxnK8vPzyc/P7/Laiy++6P996tSpvPzyy91u/93vfreP4YlrURSFj8psXDc2EVOMPtjhiBCnVqu4/87JpCbG8NKbp3j6j22s/lIWyfH9q/4S4U+eNQxj5TUOapvauXGaTFsoekalUnHnjaP43j0zqG1q48n/LeV0ZVOwwxJBJokgjH1YZkWjVnGDVAuJXpo+Ppn1D8wmSqfh2a0fyxNFEU4SQZjyeH3sO2pl+vhkYqN0wQ5HhKhrdUiLNxn495XZjBsRx+9eK+O3rx6jocXVZR2PL9hHIIaCtBSFqYOna2lu6WB+9ohghyJCWE86pN08LRWDVkPJkRrKKhr44ox0EowGAG6clorWIF8Tw53cEYSpf3xSRaLJwPTxScEORYQ5tVrFDVPM3D4rg9Z2D6+WVHCsvB5FCc/HtkXvSSIIQ7WNbRw9V88Xs9LRqOW/UAyMDLORu24Zy4jkGEqP29nz4QWZ2yBCyD1fGHrnUDWo4ItZUi0kBla0QcvCGzI4XdnM/uM2nvl/+7nzxlHceeMo9DpNj/ej1LfS6uocjt6g0yJTaIc2SQRhxuvz8e6hKqaPT5bnv8WgUKlUTBoZz0hzLGeqmtn1wXneOVjFDZPNjEs39WgssUs9o0HaGcKB5Okw81GZjSZnB7dmZwQ7FDHMRRu03J87hZybRhGl1/DeoWpeLangvNUh7QfDjCSCMOJTFF77ZwUjUmJlJjIxZNKSYsibO4YvTE/D4/Xx9oEqit8vp7xGEsJwIfdrYeTg6Voq7S2sWnrdoA4YJsTnqVQqJmTEMy49jvKaZg6dqeedT6qIN+rJHJvEuHQTGpkUKWxJIggTiqLw2r4KUuKjuOk6GVJCBIdarWL8iHjGpsdRUePg8Jk6So7UsP+Encmj4pkyOoEY6eAYdiQRhInj5xs5W9XMA7lT5JFREXRqlYpx6XGMTTNRU9/K8YpGDp+t58i5esakmsiebMEUrZFJqsKEJIIw4FMUXvnHGeKNem6ZnhbscITwU6lUpCfHkp4ci6O1gxPnGzl1sYnymjOYYnRMGpXA1DGJxMpTQyFN/nfCwD+P1nCmqpmHl0xDp+35s9xCDCVTjJ7ZUy1kT0rB2tjO4dO1fHzCzsFTtcyclML87BFcNzZJ2rdCkCSCENfe4eHPb59hXLqJeXI3IMKAVqNm6pgkMpJjaHS6cLS6+ajMRukJOynxUcy7Po25mWmkJsUMSTweH7jcnl5tc3mHOBj+neIkEYS41/ZV0OTs4Dt3T5crKRF2EowG7rxxNCtvm8SBU3beOdj56Olf3y9nbJqJOZlp3DTN4h/kbjC43B4+KrP2apvLO8TB8O8UN3yPbBi4YHOy+8PzzM1MZWJGfLDDEaLPdFo1N01L5aZpqTQ4XHxYZuWfx6y8tPcU2948xYSMeLLGJ5M1IZlRFqM0Mg8xSQQhyuX28uu/HiU2WsdXbp8U7HCEGDCJJgO5N40m96bRVNe18MExKwfP1PHKO2d55Z2zxBv1TB+fzKRP+y2kp8TIk3KDTBJBiNr+5mmqalv4PyuziZP5iMUwlZ4cy/Ivjmf5F8fT5HRx+Gw9h8/W8fEJO+8d6pw1Ta9VMzrVxJhUE5akaFLio0iJ7/w3ehhX1wwl+SuGoNLjNt46UMmim0aTOVbmGxCRId5o4JasdG7JSsenKNga2iivbqa8xsG56mbeO1KNq8PbZZvYKC1xsXriY/XEGw3Ex+o/W/70d51Og09RpI3tGiQRhJgT5xv4TfExJmTEUbBgfLDDESIo1CoVaUkxpCXFMCez82k5RVFwtLmpa2rH3thGXVM7tc3tNLd00NTSwbmqZppaOnC5vVfsT6NWERerJ8GoJ8FoIMFkIDnOIL2gPyWJIIRctDl5/i+HMSdE8ciKGWhl7BYh/FQqFXExeuJi9IxLj+t2vfYOjz85NDk7sDe3c/RsHY3ODqwNbZyrdvjXjYvVk54c4086Bn1k9tORRBAizlU387OXD2HQqfn3L2djjJYrFSH6IkqvJUqvxZLY2U+hxeUh+rIv+A6PlyZHB7bGNmrqWjlT2cSJ840AmBOiGZtuInN8SlBiDxZJBCHgk9O1/KroCKZoPf/+lRnEm6JocfWuA8zn+WR0YBEiVGpVv85nnVaL29P37T//WdBrNZgTozEnRpM5LgmvT6GuqY3qulYqahx8VGbjozIbqUnRjE0zMSbN1Of3DheSCILI4/Xx2r4K/vr+OUanmvjeiizijQZaXL3vAPN5MyabByhKIfrH5fZy8KS9z9vPmGzu9/bXolGrsCTGYEmMYcbEFBqdLqrr2jh5voEPjtn4sMxGWXkjX8xKZ8bE5GE5zIskgiC5aHfyu9fKqKhxMCczlcLcKUTp5b9DiGBLMBoYlRbP1NHxNDhcnK1qpsLq4PDOOqINWm6camZuZhqTRiUMmyeR5JtniNU1tVP0/jneP1xNbJSOby+/ntlTZX4BIUKNSqUiKS6KpLgovrHMwvkaByVHavjgmI13DlaTEh/FnMxU5mamkZ4cG+xw+6VHiaC4uJhf/vKXeDweHnzwQe6///4u5WVlZaxfv56WlhZmz57NE088gVarpaqqirVr11JXV8e4cePYuHEjsbHh/QfrC0VROF3ZxFsHKik9bgPgztmjyJs7BpN0FhMi5KnVKjLHJZE5Lon2Dg8HTtZScrSG1/ZV8GpJBWPTTMyclELWhBRGp4bfEBkBE4HVamXTpk288sor6PV6Vq5cyc0338zEiRP966xdu5annnqK7Oxsvv/977N9+3buu+8+nnjiCe677z7y8vJ44YUX+MUvfsHatWsH9YBChcfr43h5PW9+VMHHJ+xYG9qINmhYMCODRTePJjk+KtghCiH6IEqvZe71acy9Po0Gh4sPjln5sMzKjnfPsePdc8Qb9WSNT2b6+GQmZMSTaBq8AfUGSsBEUFJSwpw5c0hISAAgNzeXXbt28W//9m8AVFZW0t7eTnZ2NgAFBQU8//zz3HPPPXz00Ue88MIL/tf/5V/+ZVgmApfbS01dK1W1LVTWtlBhdXD6YhMutxeNWsXUMYksnjOGm6ZZpB1AiGEk0WRg0c2jWXTzaJpaOjh8po5DZ+soPWHj3U+HyEgwdvZ7GD8ijtGpJiyJ0STHRYVUP6GA30o2mw2z+bNWd4vFwqFDh7otN5vNWK1WGhoaMBqNaLXaLq+HAkVR8PoUfL5P/1U6f/cvf/qvy+2lvePSj4f2Di9NLR3+zirNLR3UN7dT19TOpSfUNGoV6ckxfGF6GrMz0xmVHE2s9F4UYtiLj9X7h8jweH1U1Dg4W93MuepmzlU1c+BUrX9dlQqS46IwJ0STFGfAFK3HGKPDGN35E63XoNNq0GnVaLVq9Fo1uk9/tGo1anVnG4ZapUKlot9VUQETgc/n6/ImiqJ0We6u/PPrdR5874NVqwe2ru2lvaf4uB+PokHnraEpRkdinIExaSZSE6NJTYzBkhRDSrzBP1JicrKRujpnr/ev1aj73fW9v/vQalT93D64xxBt0A7A3yB4xxBt0OL16IJ+DP2NP5gx9Gf7y+O/tI/efBfp1RomjUpg0qgE/2ut7R5q6luob3ZR29xOQ7OLuuZ2bI3tnKtx4PH4ehXj5WZONnPvp6MU9+U7M2AiSEtLo7S01L9st9uxWCxdyu32z75Ya2trsVgsJCUl4XA48Hq9aDSaK7brqcTEgW1c/s6XZw7o/gJJTjb2abuR6f2ff2D8yMR+bT8qtftu/EPx/gOxj2BvHwoxBHv7UIhhII6hv5KBURkJAdcLhoCVVPPmzWPfvn3U19fT1tbGnj17mD9/vr88IyMDg8HA/v37ASgqKmL+/PnodDpmz57N66+/DsDOnTu7bCeEECI0qBRFCTgYQXFxMb/+9a9xu92sWLGCVatWsWrVKlavXs306dM5fvw4jz/+OE6nk8zMTJ5++mn0ej2VlZWsW7eOuro60tPT+elPf0p8vMy0JYQQoaRHiUAIIcTwFTrPLwkhhAgKSQRCCBHhJBEIIUSEk0QghBARThKBEEJEOEkEQggR4UI2ETz33HNs3rzZv9zc3MzXv/51Fi9ezP3339+lN3OoKS4uZsmSJeTk5LBly5Zgh9NjTqeTpUuXcvHiRaBzwMH8/HxycnLYtGlTkKPr3s9//nPy8vLIy8vj2WefBcIndoCf/exnLFmyhLy8PH7/+98D4RX/JT/+8Y9Zt24d0Dk0fUFBAbm5uaxfvx5PP6aaHGwPPPAAeXl5LFu2jGXLlnHw4MGw+gy/+eabFBQUsHjxYp566imgD+ePEmKam5uVxx57TMnKylKef/55/+tPPPGE8utf/1pRFEXZsWOH8sgjjwQrxGuqqalRFi5cqDQ0NCgtLS1Kfn6+curUqWCHFdAnn3yiLF26VMnMzFQuXLigtLW1KQsWLFDOnz+vuN1u5eGHH1befvvtYId5hffff1/5yle+orhcLqWjo0MpLCxUiouLwyJ2RVGUDz74QFm5cqXidruVtrY2ZeHChUpZWVnYxH9JSUmJcvPNNyv/+Z//qSiKouTl5SkHDhxQFEVRHnvsMWXLli3BDK9bPp9PueWWWxS32+1/LZw+w+fPn1duueUWpbq6Wuno6FDuvfde5e233+71+RNydwR79+5l7NixfPWrX+3y+ttvv01+fj4AS5cu5Z133sHtdgcjxGu6fNjumJgY/7DdoW779u384Ac/8I8HdejQIcaMGcOoUaPQarXk5+eH5HGYzWbWrVuHXq9Hp9MxYcIEysvLwyJ2gJtuuon//d//RavVUldXh9frpbm5OWziB2hsbGTTpk1885vfBK4+NH2oxn/27FkAHn74Ye666y7++Mc/htVn+G9/+xtLliwhLS0NnU7Hpk2biI6O7vX5E3KJYPny5Xz9619Ho+k6QfTlw11rtVqMRiP19fXBCPGarjZsd6gMv30tP/rRj5g9e7Z/OVyOY9KkSf4vnPLyct544w1UKlVYxH6JTqfj+eefJy8vj7lz54bN3/6SDRs2sGbNGuLiOgcp7G5o+lDU3NzM3LlzeeGFF/jDH/7ASy+9RFVVVdj8/SsqKvB6vXzzm99k2bJlbN26tU/nT9ASwRtvvMH8+fO7/Dz00EM93l5RFNTqkMtjAYftDhfhdhynTp3i4Ycf5tFHH2XUqFFhFTvA6tWr2bdvH9XV1ZSXl4dN/H/+859JT09n7ty5/tfC6dyZOXMmzz77LCaTiaSkJFasWMHzzz8fNvF7vV727dvHf//3f7Nt2zYOHTrEhQsXeh1/0KbLWrx4MYsXL+7x+haLhdraWtLS0vB4PLS0tPhnTQslgYbtDhefH148lI9j//79rF69mu9///vk5eXx4Ycfhk3sZ86coaOjg2nTphEdHU1OTg67du3qckccyvG//vrr2O12li1bRlNTE62trahUqqsOTR+KSktLcbvd/kSmKAoZGRlhc/6kpKQwd+5ckpKSALjjjjv6dP6E3iV1NxYsWMDOnTuBzpNv9uzZ6HShN/NXoGG7w8WMGTM4d+6c/9bz1VdfDcnjqK6u5jvf+Q4bN24kLy8PCJ/YAS5evMjjjz9OR0cHHR0d7N27l5UrV4ZN/L///e959dVXKSoqYvXq1dx22208/fTTVx2aPhQ5HA6effZZXC4XTqeTHTt28JOf/CRsPsMLFy7kvffeo7m5Ga/Xy7vvvsuiRYt6ff6EzQS6jzzyCOvWrSMvLw+TycTGjRuDHdJVpaamsmbNGgoLC/3DdmdlZQU7rF4zGAw888wzfPe738XlcrFgwQIWLVoU7LCu8Lvf/Q6Xy8Uzzzzjf23lypVhETt0XuAcOnSI5cuXo9FoyMnJIS8vj6SkpLCIvzsbN27sMjR9YWFhsEO6qoULF3Lw4EGWL1+Oz+fjvvvuY9asWWHzGZ4xYwZf+9rXuO+++3C73XzhC1/g3nvvZfz48b06f2QYaiGEiHBhUzUkhBBicEgiEEKICCeJQAghIpwkAiGEiHCSCIQQIsJJIhBCiAgniUAIISKcJAIRER5++OGAgxT2ZJ0PPviApUuXBny/KVOmXHVfe/fu9Y8Z/8ADD7Br1y4uXrzIzJkzA+5TiMESNj2LheiP999/f0DW6a/bb7+d22+/fdDfR4jekDsCMew99thjADz44IN8+OGHPPDAA+Tn53PXXXf5x6+6fJ3q6mreeustVq5cSUFBAbfeeivPPfdcr9/3ueee4+6772bZsmW89dZbALzyyit84xvfGKAjE2JgyB2BGPaefvppXnnlFf7nf/6HL3/5yzz66KPk5ORgtVq55557GDNmTJd1EhMTefTRR3nmmWcYO3YsVquVhQsX9nq8nJEjR/LDH/6QkydP8sADD/DGG28M0hEK0T+SCETEOHPmDC6Xi5ycHKBzgMCcnBzefffdLnX0KpWKX/3qV7z99tu8+uqrnDlzBkVRaGtr69X73XvvvQBMnjyZCRMmcODAgYE7GCEGkFQNiYihUqmumKBDUZQrJlZvbW3l7rvv5ujRo1x33XU8+uijaLVaejs+4+UTJ/l8PrRaue4SoUkSgYgIGo2GjIwMtFote/bsAcBqtbJ7927mzZvnX8fj8VBRUYHT6eR73/set912Gx988AEdHR34fL5eveeOHTsAOHr0KOfPn2fGjBkDe1BCDBC5RBERYdGiRTz00EP84he/4KmnnmLz5s14vV6+853vMGfOHP86DzzwAD/72c+49dZbWbx4MXq9nsmTJzNx4kQqKirQ6/U9fs8LFy6wfPlyVCoVP/3pT0NyRj0hQOYjEEKIiCd3BEL0wW9/+1uKi4uvWvav//qv3HXXXUMckRB9J3cEQggR4aSxWAghIpwkAiGEiHCSCIQQIsJJIhBCiAgniUAIISLc/we5WiXGyC4iZQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAELCAYAAADawD2zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXRcV53g8e+rRSpJVdpLu7XZ1rUdL7JjJyR2SELSTAg7CQSSCdDdCXB60sNM093MDOkDTZ/0TC+QTHpomplAh2njgcZD05lsQBIHk8ULdmTH2/UmyVpK+66SSrXNH1VKZFm2SlJJr5bf59jHVW+p+kl+9dPVfff+rhEOhxFCCJH6LGYHIIQQYmVIwhdCiDQhCV8IIdKEJHwhhEgTkvCFECJNSMIXQog0YYvlIKXU/cCjgB14Qmv9nVn7G4GngFxgP/AlrXVAKVUe3V4BeIEHtNYt8QtfCCFErOZN+EqpSuAx4HrAB7yhlNqntT4147DdwENa6wNKqe8DDwPfBf4J2Ku1/gel1JeAvwLuiyGuTGAH4AGCC/mChBAijVmBcuAwkXx9mVha+HcCr2itBwCUUnuBe4FvRp/XAFla6wPR458G/lwp9VNgC/A70e3/CLwcY9A7gN/EeKwQQojL3QK8NntjLAm/gkhLe5oHuGGe/VXAauAS8C2l1C1AF/BIjMF6AAYHxwmFEncmcFGRk/7+MbPDWBSJ3RwSuznSJXaLxaCgIAcuz8nviCXhW4CZWdcAQjHstwFbga9rrf9IKfUQ8EPgthjeMwhMB57QioqcZoewaBK7OSR2c6RZ7HN2hceS8NuJ/HowrQzonLW/fI79XcCo1vrZ6PY9wJOxRgvQ3z+W0C18t9tFb++o2WEsisRuDondHOkSu8ViXPOHQyzDMl8C7lBKuZVS2cA9wIvTO7XWrcCkUmpndNODwAta6wtAu1LqA9HtHwaOxBS1EEKIuJs34WutO4CvAfuAJmCP1vqQUup5pdT26GEPAI8rpc4ATt5tyX8C+KpS6gTwZeD34v0FCCGEiE1M4/C11nuIdMnM3Hb3jMfHuPxG7vR2TWx99kIIIZaZzLQVQog0IQlfCCHShCR8IYRIEzH14QsxWyAEPn9g0edn2m3YpLkhxIqShC8WxecPcPh096LP37G+FFumXH5CrCRpYwkhRJqQhC+EEGlCEr4QQqQJSfhCCJEmJOELIUSakIQvhBBpQhK+EEKkCUn4QgiRJiThCyFEmpCEL4QQaUISvhBCpAkpZpKGAiHoGfDi9S2++FksSw1PRF/fkWHFMIxFv5cQIj4k4achnz/AmYv9jI5NLvo1tjS459weCodp7RrlfPswnn4vAFaLQVGegx3rSijKcyz6PYUQSyMJX8RNIBjiN8c8tPWMkeOwsXl1EY4MK2MTfpo9Izx/oJUNtQU0ri02O1Qh0pIkfBEXk1NB9h1tp3dokh3rSlhXk39ZN86m1UUc1b2cbB5kbCLADRvKTIxWiPQkN23FkgVDYV4+0k7/iI9bGytYX1twRZ99pt3KTRvLuF65ae0a5ef7L5oUrRDpSxK+WLKmc330D09yy+Zyaspc1zx2Q20B66rz2Xe0g5ePtK9QhEIIkIQvlsjTP87J5gHWVuXNm+wBDMNg+/oSrqsr5J/3nadn0LsCUQohQBK+WIIpf5DXj3eRm5PB9nUlMZ9nMQw+fedarBaDf/rlWcLhGMZ4CiGWTBK+WLSTLYN4fQF2bS7DvsAVyfOdmXzivfWcbB7g0OmeZYpQCDGTJHyxKKPeKU63DFBT5qI4L2tRr/G+bVXUlrn4Py+fe2eSlhBi+UjCF4vy8uE2gqEwW5cwpt5iMfi371eMjE/JDVwhVkBM4/CVUvcDjwJ24Amt9Xdm7W8EngJygf3Al7TWAaXU54D/BnRHD31Oa/21eAUvzDHm9fPG212sqcwjNydjSa9VX5HL5tVF/OLQJe64voqsTJkaIsRymbeFr5SqBB4DdgGNwBeUUhtmHbYbeERr3QAYwMPR7duBP9JaN0b/SrJPASea+zEM2LymKC6v9+GdtYxPBnj1rY64vJ4QYm6xdOncCbyitR7QWo8De4F7p3cqpWqALK31geimp4FPRh/vAD6nlHpbKbVbKVUQv9CFGab8QS52jrBNlZDjsMflNVdX5LGxrpAXD13CNxWMy2sKIa4US8KvADwznnuAqhj3e4C/ADYDbcD/WHSkIiFc6BghEAyzc3N5XF/3IzvrGPX6+XWTtPKFWC6xdJhagJkDpQ0gFMt+rfXHpzcqpf4auLCQ4IqKnAs53BRu9/yTjRJNeCAy2cnlXFjlynA4zNn2IcqKsqmrzGcqsPjx89nZmbgLs9957na72PB6M78+5uEzH9iAxXLtcsrJ+H2fJrGbQ2KPLeG3A7fMeF4GdM7aXz57v1IqD/g9rfXj0e0GsKCxd/39Y4RiKbxuErfbRW/vqNlhLNh0HfyFlkfu6B1neGyKTfVF+P2BJZVX9np99AYv7765ZVM533vmJPsOtbJ59dXvDyTr9x0kdrOkS+wWi3HNhnIsXTovAXcopdxKqWzgHuDF6Z1a61ZgUim1M7rpQeAFYAz4U6XUjdHtjwD/ElPUIiHpS4M4MqwxlVBYjOuVm9ycDF45KkM0hVgO8yZ8rXUH8DVgH9AE7NFaH1JKPa+U2h497AHgcaXUGcAJPKm1DgKfAr6rlDoNXA/86XJ8EWL5TfgCdPSOs7YqD+s83S2LZbNauHVLBW9f6Kd3aGJZ3kOIdBbToGet9R5gz6xtd894fAy4YY7zfgNsW2KMIgG0eEYJA3UVucv6PrdtreS5N1vZ91YHn7p9zbK+lxDpRmbaipg0e0YocGWS78xc1vcpcGWytaGY14578AdC858ghIiZJHwxr1HvFH3Dk8veup/23i0VjE34OX6hb0XeT4h0IQlfzKvZExkhULtMN2tnu662kDxnBq+/3bUi7ydEupCEL64pHA7T3DlCSUEWzqz4zKydj8VicPN1ZRy/0M/w+NSKvKcQ6UASvrimwVEfw+NT1JWvTHfOtJs3lRMKhzl4Ulr5QsSLJHxxTZe6xzCAmrKVnfVcWZxDXbmL109IwhciXqQWrbim9t4xivOzcGTE91IxLAbj8yx6sn1dKT/ddx7dNkRVybs/cMIDXoIhWOAiW0KkPUn44qrGJ/0MjPjY1rD4RU6uxucPcuxs7zWPMYzI32ffaOF65X5nu8vpYN2qPGxSO1+IBZE2kriq9p5xgMta1yvJkWGlvCiH1q5RWehciDiQhC+uqr1nDFe2nbwlrmq1FLVlLsYm/PQPL75QmxAiQhK+mJM/EMIz4KXK7cQwlqd2TiyqS51YDGjpSs5Kh0IkEkn4Yk6e/nFCoTCrTOrOmZZht1JRnEOLdOsIsWSS8MWc2nrGyLBZKCnIMjsUastdeCcD9A5Jt44QSyEJX1whHA7T2eelvDhn3pWnVkJViROLxaCla8TsUIRIapLwxRWGx6eY8AWoKMqe/+AVkGGzUuWOjNYJSbeOEIsmCV9cwdMXWfO2vCjH5EjeVVPmYsIXpGdQFkYRYrEk4YsrePrHcWXbcWavTLG0WFS5nVgtBq0yWkeIRZOELy4TCoXpHpigPEG6c6bZbRaqSpyRbp0EXtheiEQmCV9cpm94An8wlFDdOdNqy1xMTgXp6B0zOxQhkpIkfHEZT3+k/74swVr4AJXuHGxWg/PtQ2aHIkRSkoQvLtPZ56Uoz0Gm3Wp2KFewWSPdOhc7hgkGZb1bIRZKEr54hz8Qom848frvZ5ru1jkrrXwhFkwSvnhHz+AE4TCUFSZuwq8ozsFus/DWWVngXIiFkoQv3tEz6MUwwJ1vfjmFq7FZLdSW53L8fB/BkHTrCLEQkvDFO7oHJyjKdWBP8KWk1lTlMz4Z4Mwl6dYRYiES+5MtVkwgGKJvaJLSwsRt3U+rLnORYbfw2zM9ZociRFKRhC8A6BueJBQOU1qQuP3302xWCxvrijiie6VbR4gFiGlRUKXU/cCjgB14Qmv9nVn7G4GngFxgP/AlrXVgxv6twAGtdWa8Ahfx1TMQGX/vToByyLHY2lDM0bO9nL00xPraQrPDESIpzNvCV0pVAo8Bu4BG4AtKqQ2zDtsNPKK1bgAM4OEZ52cDfweYt06emFf34AQFrsyEHH8/lw21hWTYLRzW114IXQjxrli6dO4EXtFaD2itx4G9wL3TO5VSNUCW1vpAdNPTwCdnnP8t4In4hCuWQygUpndogtIkad1DZCWsLauLOap7pLaOEDGKJeFXAJ4Zzz1AVSz7lVIfAbK11nuXGKdYRv0jkwSCYUoTePz9XLavK2HE60e3yWgdIWIRSx++BZjZhDKA0Hz7lVJlRPr971xscEVF5q6nGgu322V2CAsWjvbXu5wOAM51RFaSqq/KJ9sRW0lku932zvmLsdTzs7Mzed8NNXz/udOcbB3kvdurF/1aKy0Zr5lpErs54hV7LAm/HbhlxvMyoHPW/vI59n8IKAL2K6UAUEo1AbdorWMqat7fP5bQv6673S56e5OvPrvXF7mfPjoWWSO2vXsUV7adYCDI6Fgwptfw+wPvnL8YSznf5XTg9fowgkE21xfy2rFOPrGrLiGWY5xPsl4zILGbZSGxWyzGNRvKsXTpvATcoZRyR2/A3gO8OL1Ta90KTCqldkY3PQi8oLV+Smu9WmvdqLVujB7bGGuyFysjHI703yfy7Npr2b6uhJHxKc5JbR0h5jVvwtdadwBfA/YBTcAerfUhpdTzSqnt0cMeAB5XSp0BnMCTyxWwiK+xCT+TU8GkTfibVxdht1k4LJOwhJhXTOPwtdZ7gD2ztt094/Ex4IZ5XiPxf99OQ71DkW4Vd/7i+9PN5Miwsbk+Mgnr/t9pwGLIZSbE1chM2zTXOzSBzWqQ70reOXHb15UwPD7F+fZhs0MRIqFJwk9zvUMTFOdnJXXLWLp1hIiNJPw05g+EGBz1JW3//bSsTBsb6wo5onsIhRN3VJcQZpOEn8b6hycJh6EkSfvvZ9qxroShsSkudEi3jhBXIwk/jfUOTQBQnOQtfIAta4qxWaVbR4hrkYSfxnqGJsjLyUiagmnXkpVpY1N9IUd0r3TrCHEVkvDTVDgcpm9oMun772farkoYHPVxMVoqQghxOUn4aWpkfAqfP0hxCvTfT2tcW0yGzcKBU11mhyJEQpKEn6a6owXUivNSJ+FnZdpoXFvModM9BIKyEpYQs8U001aknu4BL1aLQb4zOSdcGRaDcV/giu1bG9wcOt3Db3Uvm1YXXfX8TLuNBF+rXYi4k4SfpnoGvBTlOZKiwuRcfP4gx85eudpVKBQm027lF4cuMTl15Q+EaTvWl2LLlMtfpBdp46ShYDAUmWGbQt050ywWg9pyF+09Y0z5Yyv1LES6kISfhjr6xgmGwimZ8AHqK3IJhsJc6h4zOxQhEook/DTU2hVZkqA4L3WGZM5UnOfAlW3nYqcMzxRiJkn4aai1a5SsTBs5WanZh20YBvUVuXQNeBmf9JsdjhAJQxJ+GmrtGqW0MBsjiStkzqe+IheAZo8ssCbENEn4acY7GaB7wEtJQbbZoSwrV3YG7nwHF6WYmhDvkISfZlq7RggDpYWp2X8/U11FLkNjUwyOLn6xdSFSiST8NNMcvWFbUpjaLXyA2jIXhoHcvBUiShJ+mmnxjFCc58CRkZo3bGdyZNiodDu52DkqFTSFQBJ+2mn2jLKq1GV2GCtmdUUuE74Anj6v2aEIYTpJ+GlkxDtF/8gkNaVOs0NZMVUlOWTarZxvHzI7FCFMJwk/jUxPuKpOoxa+1WJhdWUubT1jTMxRbE2IdCIJP400e0YwgKqS9GnhA6ypyiMUlpu3QkjCTyMtnlHKirLJSrMqkfnOTNz5Ds63DxOWm7cijUnCTyMtXSPUlqVPd85Ma6vyGR6foie6cLsQ6UgSfpoYHPUxNDZFbVmu2aGYoqbMhd1q4VybzLwV6Sum3+2VUvcDjwJ24Amt9Xdm7W8EngJygf3Al7TWAaXULcATQAbQDHxOaz0Yx/hFjFq6Iv3XdeXpmfDtNgv1lbmcaxtm+zq32eEIYYp5W/hKqUrgMWAX0Ah8QSm1YdZhu4FHtNYNgAE8HN3+j8CDWutNwCngT+IVuFiYFs8ohgGr0mhI5myqOp9QOMy5dmnli/QUS5fOncArWusBrfU4sBe4d3qnUqoGyNJaH4huehr4ZPTxeq31KaWUHagEpHVvkpauUSqLI2PS01W+M5OywmzOXhoiFJKbtyL9xJLwKwDPjOceoCqW/Vprv1JqE9AO3A78eEnRikUJh8M0e0bStv9+JlWdz/hkgJPNA2aHIsSKi6UP3wLMbA4ZQCjW/Vrrt4FSpdQXgZ8AN8caXFFR4nc/uN2JP+qlZ8DL2ISfTQ1u3G4X4YFImQGXc/FLHNrttqQ8f319Jr8908MbJ7r48K1rFv3+S5EM18zVSOzmiFfssST8duCWGc/LgM5Z+8tn71dKOYC7tNY/j27fDXxrIcH1948l9K/ebreL3t7EX2DjyJkeAIqdGfT2juKNzjgdHVt82WC/P2Da+S6nY0nnr6nK49j5fo6f6aK8KGdRr7FYyXLNzEViN8dCYrdYjGs2lGPp0nkJuEMp5VZKZQP3AC9O79RatwKTSqmd0U0PAi8AfuA7Sqnro9s/BbwWU9Qirpq7RrBaDKrcif8b00poWJWPzWrwq8NtZocixIqaN+FrrTuArwH7gCZgj9b6kFLqeaXU9uhhDwCPK6XOAE7gSa11ELgP+J9KqSYiN3ofWo4vQlxbi2eUqhIndptMuwDIyrSxY30pb5zoYmxC1rwV6SOmcfha6z3Anlnb7p7x+BhwwxznvQZcP3u7WDnhcJiWrlFuXF9idigJ5fatlbx5ootX3+rgQzfXmh2OECtCmnwprmdogglfgNo0nXB1NeXFOVxXV8jLR9sJBEPznyBECpCEn+KaPZEZtulaQ+da/s2OVQyPTXHgZLfZoQixIiThp7gWzyh2m4WK4pUdjZIMrqsrpMrt5IWDrbIEokgLkvBTXEvXKNUlTmxW+a+ezTAM7r6pGk+/l6ZzfWaHI8SykyyQwkKhMK1do9J/fw071pXgznfw3JutUitfpDxJ+CnMM+DF5w9K//01WC0W7rqxhmbPCGcuybq3IrVJwk9hzZ3pXRI5Vrs2lZGbk8Gzb7SYHYoQy0oSfgpr7hrBkWGlrCjb7FASmt1m5a4bqjndOsi5dmnli9QlCT+FNXdGljS0GIbZoSS827dW4sq288xrzWaHIsSykYSfovyBEG09Y9RVSHdOLDIzrHzgxhpOtgxyXhZIESlKEn6KausZIxgKUyc18GM23cr/19ellS9SkyT8FDU9w7ZeWvgxe6eV3zzA2TbpyxepRxJ+imr2jJCbk0GBK9PsUBKSYTEY9wWu+HvjdaXk5mTwz/vOMzbpn/OYcV+AgJTfEUkopmqZIvk0e0aoK3NhyA3bOfn8QY6d7Z1z3/qaAg6e6ubn+y9SVTL3GgI71pdiy5SPj0gu0sJPQRO+AF39Xrlhu0hrq/JwZdt561yfzL4VKUUSfgpq6RoljEy4WiyLxaBxTTGDoz6aPcm5LJ4Qc5GEn4JaPDLDdqlqy10U5mZy9Gyv1MsXKUMSfgq66BnBne/AmWU3O5SkZRgGO9aV4J0McLJ5wOxwhIgLSfgpqMUzIq37OCgtzKamzMWJiwOMy9q3IgVIwk8xw+NT9I/4JOHHyfUNbsLA0auM6BEimUjCTzHN0n8fV85sO9fVFtDsGaV3aMLscIRYEkn4Kaa5cwTDgJpSqYEfLxvri8jKtHL4dI8M0xRJTRJ+imnuGqGy2ElmhtXsUFKG3WZhW4ObvuFJLkbXGBAiGUnCTyHhcJjmzhHqyqV1H2/1FbkU5zk4erYPv9RVEElKEn4K6R2eZHwyIDNsl8H0MM0JX4Bj52XBc5GcJOGnkHeWNJSSyMvCXZBFw6o8TrcMcqlLZuCK5CMJP4U0e0aw2yxUunPMDiVlbWtw48i0seelszIDVySdmMr9KaXuBx4F7MATWuvvzNrfCDwF5AL7gS9prQNKqZ3A40AG0A/8nta6NY7xixlaPCNUlzqxWeXn+HLJsFu5cUMJr77VyS8OXeKDN9WaHZIQMZs3MyilKoHHgF1AI/AFpdSGWYftBh7RWjcABvBwdPuPgIe01o3Rx0/GK3BxuUAwREv3qIy/XwHVpS4a1xTzzOstdA94zQ5HiJjF0hS8E3hFaz2gtR4H9gL3Tu9UStUAWVrrA9FNTwOfVEplAo9qrY9Htx8HquMWubhMe+8YU/4QayrzzA4lLdx7+2psVgs/fPGMjM0XSSOWhF8BeGY89wBV8+3XWvu01rsBlFIW4BvAz5cUrbiqCx2RG7arKyThr4Q8Zyafun01Zy4N8ZvjnvlPECIBxNKHbwFmNmEMIBTrfqVUBvDD6Hv95UKCKyqae7WhROJ2J8aY97a+cYryHKjVxfOuchWOdkO4nI5Fv5/dbkvr87OzM/nEHYoj5/r46asXuHV7NcX5WTGdmyjXzGJI7OaIV+yxJPx24JYZz8uAzln7y+far5RyAs8QuWH7Ua31gkoO9vePEQol7q/LbreL3t7EGJ536mI/dWUu+vrG5j3W6wsAMDo2uej38/sDpp3vcjpMfX8Ar9dHfzDIA3eu5Rs/OMxf/fAQf/yZrVjm+WGbSNfMQkns5lhI7BaLcc2GcixdOi8Bdyil3EqpbOAe4MXpndFRN5PRETkADwIvRB/vBs4D92mtfTFFLBZsaMxH3/Ck9N+boLQgm/vvXMuZS0P84uAls8MR4prmTfha6w7ga8A+oAnYo7U+pJR6Xim1PXrYA8DjSqkzgBN4Uim1FfgosBM4qpRqUko9vyxfRZq70DEMwGpJ+KbYtbmc65Wbn+2/SEuX1NoRiSumcfha6z3Anlnb7p7x+Bhww6zT3iLSny+W2YWOEWxWg2qpkGkKwzD43F3ruNh5iO89c4pvfH6HFK8TCUlm6KSA8x3D1JblYrfJf6dZnFl2HvrQBnoGvPz4lXNmhyPEnCRDJLlAMERL1yirK2XCldnW1xRw143V/LqpU1bIEgkppi4dkbhau0cJBEMy/n6FGRaD8ehop5nef2M1J5oH+MFzpynKc1wxVDM84MXrC5BptyG/kImVJgk/yZ1ri9ywXVslCX8l+fxBjl2lFb99nZvn3mjlyb3H+cB7qi+rbeRyOhgdm2TH+lJsmfLxEytL2hhJ7mzbEKUFWeQ5M80ORUS5sjO4ZUs5g6M+DpzsltILImFIwk9ioXCYs21DNKzKNzsUMUul20njmiIudo6gLw2ZHY4QgHTpJKVACHz+AB29Y3h9AWrKc+fsT76aBJ68nFI2rS6ib3iSw2d6KMjNpLQg2+yQRJqThJ+EfP4Ah093c6Z1EADvhJ/Dp7tjPn9Lg3u5QhMzGIbBrs3lPPdmK/ubOvngTbW4Er88lEhh0qWTxLoHJ8h22MjJkp/biSrDbuW2rZX4AyH2vdUhC6ALU0nCT1LhcJjuAS+lBVnzVscU5ipwZbJrczn9w5O8dOgSIbmJK0wiCT9JjXr9TE4FKS2UfuFkUF3qYvs6Nxc7hzmqZVKWMIck/CQ1vbReaUFsNdiF+dbXFLBpTTGnWgbZ39Q5/wlCxJkk/CTVPTiBI8NKbk6G2aGIGBmGwa4tFVS5c9j76nmazveZHZJIM5Lwk1A4HMbT76W0MFv675OMxTC4ZUsFVW4n3/vXk1JOWawoSfhJqHtggglfgPIi6b9PRnabhS9+9DqcWXa+/ZNjePrHzQ5JpAlJ+ElIX4qMv5eEn7zynJn88acbsRjwtz9uom94wuyQRBqQhJ+EzlwaxJllx5Ut/ffJrLQwmz+6r5HJqSDf+nETw+NTZockUpwk/CQTCIY43z5MRbG07lNBdamL//jJLQyO+Xj8J014J/1mhyRSmCT8JNPiGWVyKkh5UY7ZoYg4WVOVxyMf30RH3zhP7D2ObypodkgiRUnCTzInWwYwQCZcpZiN9UV88SPXcaFjmP++9xg+vyR9EX+S8JPMqZYBqkqcOGSR7JSzfV0JD39oA7ptiCf3HpekL+JOEn4SmfAFuNg5wrqaArNDEcvkPdeV8dAHN3Dm0iBP7j3OlCR9EUeS8JPIyeYBgqEw62sl4aeymzaW8fsfXM+Z1kH+7v9K0hfxIwk/iRw730eOw0a9LFie8m7eWM7vfXA9p1oiSV+6d0Q8SMJPEqFQmGMX+tlUX4TVIuUU0sHOTe8m/Sf++RgTC1jVTIi5SMJPEhc7Rxib8LNlTbHZoYgVtHNTOV/4yHWc7xjmb3/cxLiM0xdLIAk/STSd78NqMdhUX2h2KGKF3bihlD/4+Ebaekb56z1vMSIzcsUixbQ2nlLqfuBRwA48obX+zqz9jcBTQC6wH/iS1jowY/9fAEGt9TfiFHfaOXa+j7VVeWQ77AtasFwkJsNiLOj/saG6gC9+dCP/85mT/OXuI3zl09tw52UuY4QiFc2b8JVSlcBjwPWAD3hDKbVPa31qxmG7gYe01geUUt8HHga+q5TKA74NfAb467hHnyZ6hybo6Bvn0+9bY3YoIk58/iDHzi585av3bavklSMd/NWPfstX7muUGddiQWLp0rkTeEVrPaC1Hgf2AvdO71RK1QBZWusD0U1PA5+MPv4ocA74VtwiTkNN5yILZWxZK/336a60MJv337AKfyDEf919lAsdw2aHJJJILF06FYBnxnMPcMM8+6sAtNb/G0Ap9Y3FBFdU5FzMaSvK7XYt+3s0XeintjyXjQ2lAIQHvLicjkW/nt0e+W9f6mvI+Ys73+V0LPn8XVurePInTfzNj5v46me3c8OGskW91kKtxPW+XCT22BK+BQjPeG4AoQXsX7T+/jFCofD8B5rE7XbR2zu6rO/RNzzB6ZYB7rm1/p338voCjI5NLvo1/f5I3/FSX8Os811Oh6nvv5TzXU4Ho2OTS35/56o8vnr/Vp746TEe+8EhPnuX4r1bKhb9erFYiet9uaRL7BaLcc2GcixdOu1A+YznZUDnAvaLJTh8ugeAG9aXmhyJSDS5ORn86f1b2VBbwNMvnOHnv9nsYIkAABDeSURBVLlIKJy4DSRhvlgS/kvAHUopt1IqG7gHeHF6p9a6FZhUSu2MbnoQeCHukaapg6e6qa/IxZ2fZXYoIgE5Mmz8+3s3s2tTOc+83sLf/8sJJqdkFJeY27wJX2vdAXwN2Ac0AXu01oeUUs8rpbZHD3sAeFwpdQZwAk8uV8DpxNM/zqWeMW6U1r24BpvVwu/evY5P37GWt8718tg/HaFnSJZMFFeKaRy+1noPsGfWtrtnPD7G5TdyZ5//jUXGl9YOnurGIFI2V4hrMQyD9+9YRWVxDv/wryf4i6cP8wcf28j6WpmoJ94lM20TVDgc5uCpblR1PgUumWAjLjc9cWv239qKXL7yma24sjP41k+aeOb1ZkYn/VccF4jLsAqRbGJq4YuVd+bSEN2DE3zo5lqzQxEJaL6JW7dvq+T1tz38/DfNHD7dw87NZTgy3v2471hfii1TPv7pRlr4CerVtzrIcdjYId05YhHsNgu3NlZw44YSPANennmthbaeMbPDEiaThJ+AhsenOHq2l52bysmwy1KGYnEMw0BVF/DBm6rJyrSx72gHrx/3MCmLpKct+Z0uAb12vJNgKMytjcs7kUakhwKXg7tvquHtC/28fbGf9t5x7HYrN64vwTBiX1shPODFGy34lmm3YZPmYtKRhJ9gQuEwv27qZF11vhTGEnFjtRg0ri2mpszJgZPd/OgXml8caGVrQ3HM19n0LGGQewDJSn5GJ5jj5/vpG57ktq2VZociUlCBy8FdN1Zz351r8foC/OpwO7863Ebf8OLLPIjkIT+iE0g4HObZN1soznOwrcFtdjgiRRmGwQ0bSrAZoNuGePvCAM+/2UpNqZNNq4sozF18UTmR2CThJ5BTLYNc7Bzhs3cpbFb55UssL6vVwobaQtZU5XGqeZBTLQO0do9RVpTNhtoCKotzFtTHLxKfJPwE8v/eaKHAlcnOjeXzHyxEnGTYrDSuLWZ9bQHn2oY40zrEK0c6yMvJYH1tAXXludjlDm1KkISfIPSlQc62DfGZO9fKh0uYItNuZWN9EetrC2ntGuVUywAHTnZz5EwvdRW5NKoSHDZp8SczSfgJIBwO8y/7L5KbbefWZa5pLsR8rBaD+opc6spd9AxNcK5tmPMdw5xtG6Ioz0HDqjw2ry4mR0bpJB35H0sAB093c7Z9mM/dpWSilUgYhmFQWpBNaUE2O9aV0NHv5e0Lfbx5opu3zvbxnuvK2LWpnLpyl/T1JwlJ+Cab8AX451fOU1Pm4pbN0roXiSkzw8qWtW7qypz0Dk0yMOrj9bc9vPpWB2WF2dy8sYybriujKG9lRvgEQuDzx173f+akMUjfiWOS8E327BstDI1N8e8+vgmLRVpJIrEZhkFJQRYfvLmWz75f8VvdwxsnuvjZ/ov8bP9F1lXnc70qYVuDe1mrvPr8AQ6f7o75+JmTxiB9J46l31ecQFq7Rvnl4TZ2bipjdWWe2eEIsSDZDhvv3VLBe7dU0Ds0wZsnuzh4qpsf/eosP/rVWeorctnW4Gbr2mLKCrOl2ycBSMI3yYQvwHf/9QS5ORnc9761ZocjxJK487P4yM46PrKzjs6+cY6e7eXI2V72vnqBva9eIDcng4ZV+ahV+TSsyqfSnYNFfgCsOEn4JgiHw/zTLzW9QxN89f5tOLPsZockRNxUFOdQUZzDh26upX94kreb+znXNoRuG+K3Z3oAyLBZKCvMprw4h/Lov0W5DvKdGeTmZMjEw2UiCd8ErzZ1cuBkNx/bVUfDqnyzwxFi2RTlObitsZLbGiO1ofqGJ9CXhmjrGcPT7+VCxzAHT13ZF+/MspPvzCAvJ4PcnMzovxnkRbfZ7Vb8gZDMWVkgSfgr7IjuYfcvNZvqi2Q1K5F2ivOyKN6Uddk2nz9I94CXgREfQ+M+hsemGB6fYnjMx/D4FF0DQwyPTxEIXrkuozPLTp4zI/rDIZOSgixc2Xa5X3AVkvBX0OmWAb73zEnqK3L5g49tlFE5QhCZ4Vtd6qK61HXVY8LhMBO+IMPjPkbGp+gemqDpbC9D0R8Onj4voXAYiNxMLivMjvwtypYu0xkk4a+Q357p4X89e4rSgmy+fO8WMjNkgpUQsTIMg2yHjWyHjfKiHKpKXYRC4Xf2h0JhRrxTdA9M0DXgpaN3nIudIwAU5TpoqCmgrMCBKzvDrC8hIUjCX2bhcJgXD17ip69eYHVlLn/4ic04Mu2M+2KfNDLbjOtcCFMYFmNJ17DdZsMfiN9nwGIxyHdmku/MRFXnEw6HGRqboqNvnNauUd582wNEkn9NuYs1VXnkZDoX/f7JShL+Mhoc9fHDF89w/EI/N6wv4fc/uB67zcq4b2GTRmbbIrXyhcl8/iDHzvYu+vwtDe4ln38thmFQ4MqkwJXJxrpCwobByYv9tHaNclT38pbuRVXn857rytiu3GQ70qPbRxL+MggEQ/zmuIe9r14gGAzxmTvWcsf2Khl3LIRJcnMiiX9jXSEj41NMBUIc0b08/cIZdv9Ss3l1Me/ZUMqWNUXYbanb3SoJP478gRCHTnfzzOvN9A5N0rAqn9/9wDpKC7PNDk0IEZWbk8GO9aXc8956WrpGOXCym4Onuzl6tpesTBvXKzc3bShFVRek3MAKSfhLFA6HaesZ48Cpbl477mFswk91iZMv37uZzauLZHiYEAnKMAzqynOpK8/lU+9bzenWQQ6c7ObwmR5eO+4hx2HjurpCNtUXsbG+iLyc5L/hG1PCV0rdDzwK2IEntNbfmbW/EXgKyAX2A1/SWgeUUtXAbqAE0MADWuuxOMa/4qZvBp1rH+LS/oscPNFF/8gkFsOgcW0xtzVWsKGuULpvhEgiVouFjXVFbKwr4kF/kOMX+jl+vo+3mwc4dDoyO7im1MWayjxqy13UledSVpSddJ/zeRO+UqoSeAy4HvABbyil9mmtT804bDfwkNb6gFLq+8DDwHeBvwf+Xmv9Y6XUnwF/Bnw13l9EvAWCIUa9foajk0C6B7x09o/T2e/F0zfO+GRkdIEjw4palc+Hd9bSuKaY3BRoAQiR7jLtVnasK2HHuhJC4TBt3WMcv9jPqeYBXnvbw8tH24HI57+61EVJQRbu/Czc+Q7ceVkU5jpwZtkTchZwLC38O4FXtNYDAEqpvcC9wDejz2uALK31gejxTwN/rpR6Cngv8LEZ239NbAnfCiyq/ywYCnHwVA+j3inCYQiGwoTCYUIz/g2GwhAO4w+G8fmDTPmD+KZC+AJBvBP+y+pmT8t22CktyGJ9TQGlBdnUlLnY1FDC0JB3wTHarJYljQqIx/lZmTaCAXNjWOz5WZm2hPgeLub86e97MsY/85pJtvhnX+82qyWm/GLBoK4il7qKXD66q45QKEzv0ARtPWO09Y5FGoEDXs62DV1xbobdSk6mjWyHHUeGBavNgt1qwWa1YLcZ2KxWbFYLNosRiSXyB4vFYMuaYkry352RHGsunHHcnHeeY0n4FYBnxnMPcMM8+6uAYmBEax2YtT0W5QAFBTkxHn65D9+au6jzFqOoaHFjeavKl1YOub6qwNTzEyEGOV/ON4Pb7WLD2pIVfc9F5Jly4MLsjbEkfAswc5qDAYRi2D97O7POu5bDwC1EfkgEYzxHCCHSnZVIsj88185YEn47keQ7rQzonLW/fI79PUCeUsqqtQ5Gj5l53rX4gNdiPFYIIcS7rmjZT4vlrsJLwB1KKbdSKhu4B3hxeqfWuhWYVErtjG56EHhBa+0HfgPcF93+WeCFRQQvhBAiDuZN+FrrDuBrwD6gCdijtT6klHpeKbU9etgDwONKqTOAE3gyuv0PgC8opU4R+S3h0Xh/AUIIIWJjhMNSiUsIIdJB4g0UFUIIsSwk4QshRJqQhC+EEGlCEr4QQqQJqZa5CPMVk0tESqlc4A3gQ1rrFqXUncC3gSzgJ1rrhBxBpZT6OvCp6NPntNZ/mkSxf5NIGZIw8H2t9beTJfZpSqm/BYq11p+/WpFEUwO8CqXUPiJFG/3RTV8EVpMEn1ul1IeBrwM5wC+11l+O13UjLfwFmlFMbhfQSGTY6QZzo7o2pdSNRCayNUSfZwE/AD4KrAd2KKU+YF6Ec4te5O8HthL5Xl+vlPoMyRH7rcD7gM3AduAPlVJbSILYpyml7gA+N2PTbuARrXUDkRn1D5sS2DyUUgaRa32L1rpRa91IZIJown9ulVL1wD8QqUG2GdgWvUbict1Iwl+4d4rJaa3HgeliconsYeDf8e5M5xuAc1rr5mgLbTfwSbOCuwYP8BWt9VR0It9pIh/khI9da/1r4PZojCVEfpvOJwliB1BKFRJJkH8ZfT5XkcSEjB1Q0X9/qZQ6ppR6hOT53H6cSAu+PXrN3wd4idN1I106CzdfMbmEo7V+CECp6c/BVQveJRSt9cnpx0qptUS6dv6OJIgdQGvtV0r9OfDHwE9Jku971PeITLhcFX2eTLEXAC8Df0ik++ZV4Cckx+d2DTCllHoGqAaeBU4Sp++9tPAXbr5icskgqb4GpdR1wK+APwEukkSxa62/DriJJM4GkiB2pdRDQJvW+uUZm5PmmtFav6m1/qzWelhr3Qd8n0g592SI30bkt5HfB24CbgTqiVPs0sJfuPmKySWDqxW8SzjRGk3/F/gP0YV0biUJYldKrQMcWusmrbVXKfUzIl0IM6u/JmTsRLoRypVSTUAhkXIpYZLg+w6glNoFZM74gWUALSRH/F3AS1rrXgCl1L8Q6b6Jy3UjCX/hXgK+oZRyA+NEisl9wdyQFuwgoJRSa4Bm4H4iN4USilJqFfBz4D6t9SvRzUkRO5FW2Z9Hk0+YyA237wF/k+ixa61/Z/qxUurzwG1a699VSp1QSu3UWr9OtEiiWTHOIx/4plLqZiJdOp8D/i2wOwk+t88CP1RK5QOjwAeI3G/4T/G4bqRLZ4GuVkzO3KgWRms9CXyeSMv5FHCGyEWVaP4YcADfVko1RVucnycJYtdaPw88B7wFHAHe0Fr/mCSI/RquViQxoWitn+Xy7/0Poj+kEv5zq7U+CPw1kVF1p4BWIsvFfp44XDdSPE0IIdKEtPCFECJNSMIXQog0IQlfCCHShCR8IYRIE5LwhRAiTUjCF0KINCEJX6Q8pdQvlVLFcTjmNqXUiRjeLzzXaymlPqKUejL6+FWl1L1KqVql1Nh8rylEPMhMW5EOfmf+Q2I6Zkm01s8Azyz3+whxNZLwRUpTSv1j9OG+aJncbwBFRModfEtr/b9nHXM3sAX4L0AGkdLGP9Ra/9kC3/oxpdQOIr9FP6q1fjZapuBerfWHlvRFCbFI0qUjUprW+nejD28nUn/k77TWm4nUKPlLpdRNs45pB74CfE5rvR14D/Cf5+vumcNFrfU2IjVcfhit4SKEqSThi3SxgUj1yp8BaK07idQmuWvmQVrrMPBhIqtrfZ3IsnIGkeXmFuIfoq93gkj9k5uWFL0QcSAJX6SLMJfXFIfI9W+fuUEplUOk6NY24CiRGvx+Ikl/IWaWs7Xw7tqqQphGEr5IB0Ei9dD9SqlPACilKoiUyP3VjGPswFoii3Q/qrX+f8BtQCZgXeB7fj76PtuIrGJ0cClfgBDxIAlfpIOfElny7mPAl5VSx4msa/BNrfW+Gcf8mshKQs8CZ5RSp4l075wikrQXol4p9RbwFPBprfXA0r8MIZZGyiMLIUSakGGZQiyQUupPiCwGMpe/0Vr/aCXjESJW0sIXQog0IX34QgiRJiThCyFEmpCEL4QQaUISvhBCpAlJ+EIIkSb+P0w6JCzz4t34AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -854,27 +1294,29 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 114, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 101, + "execution_count": 114, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEVCAYAAADtmeJyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXiU9b3//+esSSb7MpONHWQnuOAhUgpqhUAgjSL9VvGIHgVF2oPN9xIPtZ6yWFv1Zw09Fr2O2p89rXAOthAwamP0WG0VqoRWFgEh7JAwmSwkk5nJZJb7+0d0JLLMTEi4ZzLvx3VxwX3fn/vOO8Mkr7nv+3N/PhpFURSEEELELK3aBQghhFCXBIEQQsQ4CQIhhIhxEgRCCBHjJAiEECLGSRAIIUSMCykIKisrKS4uZubMmaxfv/6i7T744ANuvvnmwPKnn37K5MmTKS0tpbS0lB//+MeXX7EQQohepQ/WwGq1Ul5ezubNmzEajdxxxx1MnjyZESNGdGvX2NjI008/3W3d3r17ue+++3jwwQd7t2ohhBC9JugZwbZt2ygsLCQtLQ2TyURRURFVVVXntXv88cf54Q9/2G3dnj17+OijjygpKWHJkiXU19f3XuVCCCF6RdAgaGhowGw2B5YtFgtWq7Vbm9/97neMHTuWiRMndlufnJzM3XffTWVlJdOnT6esrKyXyhZCCNFbggaB3+9Ho9EElhVF6bZ88OBBqqurWbp06Xn7rlmzhpkzZwJw5513Ultbi91u7426hRBC9JKgQZCTk4PNZgss22w2LBZLYLmqqgqbzcbtt9/OAw88QENDAwsWLMDv9/Piiy/i8/m6HU+n0/Vi+UIIIS5X0JvFU6ZM4fnnn6e5uZmEhASqq6t54oknAtuXLVvGsmXLADh16hQLFy5kw4YNALz77rsMHjyY4uJitmzZwsSJEzGZTGEV2NLiwO+PznHxMjOTaGpqV7uMHonm2kHqV5vUrx6tVkN6emJY+wQNguzsbMrKyli4cCEej4f58+dTUFDA4sWLWbZsGRMmTLjovk8//TT//u//zrp168jIyOCZZ54JqzgAv1+J2iAApHYVSf3qkvqjhybSh6FuamqP2v8QszkZmy0674lEc+0g9atN6lePVqshMzMpvH36qBYhhBBRQoJACCFinASBEELEuKA3i0Vssjs7cbi9IbePM+jRy8cKIaKSBIG4IFeHlx37rcEbfun6Mdno4+TtJEQ0ks9wQggR4yQIhBAixkkQCCFEjJMgEEKIGCdBIIQQMU6CQAghYpwEgRBCxDgJAiGEiHESBEIIEeMkCIQQIsZJEAghRIwLKQgqKyspLi5m5syZrF+//qLtPvjgA26++ebAcltbGw888ACzZ8/mrrvu6jb3sRBCiMgQNAisVivl5eVs2LCBLVu2sHHjRmpra89r19jYyNNPP91t3dq1a5k0aRJ/+tOf+N73vseTTz7Ze5ULIYToFUGDYNu2bRQWFpKWlobJZKKoqIiqqqrz2j3++OP88Ic/7Lbugw8+oKSkBIC5c+fyl7/8BY/H00ulCyGE6A1Bg6ChoQGz2RxYtlgsWK3dhyf+3e9+x9ixY5k4ceJF99Xr9SQlJdHc3NwbdQshhOglQQeQ9/v9aDSawLKiKN2WDx48SHV1Nb/97W85c+bMJY+lKApabXj3p8OdhDnSmM3JapfQIw3NTpKT4kNubzLFYc4whdze7uzE1RH6xDcJ8XqSTcaQ20P0vvZfkfrVFe31hyNoEOTk5FBTUxNYttlsWCyWwHJVVRU2m43bb78dj8dDQ0MDCxYsYMOGDVgsFhobG8nJycHr9eJwOEhLSwurwKamdvx+Jax9IoXZnIzNZle7jJ7R6bC3d4Tc3Ol0Y/P5Qm7vcIc/8U2Hwx1y+6h+7ZH61RbN9Wu1mrA/QAf9eD5lyhS2b99Oc3MzLpeL6upqpk2bFti+bNky3nnnHbZu3cpLL72ExWJhw4YNAEyfPp0tW7YA8PbbbzNp0iQMBkNYBQohhOhbQYMgOzubsrIyFi5cyK233srcuXMpKChg8eLF7Nmz55L7Pvzww3z22WfMmTOHDRs28NOf/rTXChdCCNE7NIqiRPR1F7k0pA5Fp+PDnSdCbn/9mGwSw5izuCeXhsI5fjS/9iD1qy2a6++TS0NCCCH6NwkCIYSIcRIEQggR4yQIhBAixkkQCCFEjJMgEEKIGCdBIIQQMU6CQAghYpwEgRBCxDgJAiGEiHESBEIIEeMkCIQQIsZJEAghRIyTIBBCiBgnQSCEEDFOgkAIIWJcSEFQWVlJcXExM2fOZP369edtf/fddykpKWHOnDmsWLGCzs5OACoqKpg6dSqlpaWUlpZSXl7eu9ULIYS4bEGnfLJarZSXl7N582aMRiN33HEHkydPZsSIEQA4nU7WrFlDRUUFWVlZlJWVUVFRwfe//3327t3LihUrmDt3bp9/I0IIIXom6BnBtm3bKCwsJC0tDZPJRFFREVVVVYHtJpOJ999/n6ysLFwuF01NTaSkpACwZ88eKioqKCkp4ZFHHqG1tbXvvhMhhBA9EjQIGhoaMJvNgWWLxYLV2n2uWYPBwIcffsiNN95IS0sLU6dOBcBsNrN06VLeeOMNcnNzWbNmTS+XL4QQ4nIFvTTk9/vRaDSBZUVRui1/Zfr06XzyySc899xzrFq1il/+8pesW7cusH3RokXMmDEj7ALDnYQ50pjNyWqX0CMNzU6Sk+JDbm8yxWHOMIXcXunj40P0vvZfkfrVFe31hyNoEOTk5FBTUxNYttlsWCyWwPLZs2fZu3dv4CygpKSEsrIy7HY7mzZt4t577wW6AkSn04VdYFNTO36/EvZ+kcBsTsZms6tdRs/odNjbO0Ju7nS6sfl8obd3e/v0+FH92iP1qy2a69dqNWF/gA56aWjKlCls376d5uZmXC4X1dXVTJs2LbBdURSWL19OXV0dAFVVVVx77bWYTCZeeeUVdu3aBcBrr73WozMCIYQQfSvoGUF2djZlZWUsXLgQj8fD/PnzKSgoYPHixSxbtowJEybwxBNP8OCDD6LRaBgxYgSrV69Gp9Oxdu1aVq1aRUdHB0OGDOGZZ565Et+TEEKIMGgURYno6y5yaUgdik7HhztPhNz++jHZJMYF/VwR4HB72bHfGrxhD48fza89SP1qi+b6++TSkBBCiP5NgkAIIWKcBIEQQsQ4CQJxQTv2W/nrrjr2HW2mxR56N08hRPQJ/e6biBkf/OM0v3vnCwx6LUfr7fAFTL86j8E5sfOAjRCxRIJAdPPBZ10hMHFEFuOHpuP2+PngH6f5aHc9ifF6stIS1C5RCNHL5NKQCOjo9PLHPx9mzOB0ls6fiE6nxRSv56Zr80mI0/P+30/j7PCqXaYQopdJEIiAj/ecwen2ctu0Yeh1X781EuL03HxdPp0eP38/aFOxQiFEX5AgEAD4FYX3ak4yLC+FEfmp521PS4pj7JB0jtS1YTvrUqFCIURfkSAQAOw+3IS1xcWMSQMv2mbC8EwS4nTs2N9AhD+QLoQIgwSBAODdHSdJT47julHmi7Yx6LVcO9JMY2sHR+vbrmB1Qoi+JEEgaHd5OHC8hW8X5Ha7N3Ahw/JSSE+O47NDTfiidAwoIUR3EgSCvUebUICC4VlB22o0Gq4ZmUW7y0PtqbN9X5wQos9JEAj2HmkmKcHAkBAfGMvPSsSSnsDuw014ff4+rk4I0dckCGKcX1HYe6SJ8UMz0GrPn4L0QjQaDddclYXL7WP/8ZY+rlAI0dckCGLcSWs7bU4P44dlhLVfdoaJAeZE9hxukofMhIhyIQVBZWUlxcXFzJw5k/Xr15+3/d1336WkpIQ5c+awYsUKOjs7Aairq+Ouu+5i1qxZPPTQQzgcjt6tXly23UeaABg3NDPsfSeNtuD3Iw+ZCRHlggaB1WqlvLycDRs2sGXLFjZu3EhtbW1gu9PpZM2aNbz66qu89dZbuN1uKioqAFi9ejULFiygqqqK8ePH88ILL/TddyJ6ZM+RJgbnJJOaaAx735REY+AhM+lOKkT0ChoE27Zto7CwkLS0NEwmE0VFRVRVVQW2m0wm3n//fbKysnC5XDQ1NZGSkoLH42HHjh0UFRUBMG/evG77CfW53F6OnG5j/NDwLgudq+shMz0bqg/S0SmXiISIRkGDoKGhAbP564eMLBYLVmv3uWYNBgMffvghN954Iy0tLUydOpWWlhaSkpLQ67sGODWbzeftJ9R1tL4Nv6IwamBaj49h0Gv51oQcrC1OXn37gDxxLEQUCjoMtd/vR6P5ujeJoijdlr8yffp0PvnkE5577jlWrVrFo48+el67C+0XTLiTMEcaszlyx/C37qoH4PoJeSSZul8aamh2kpwUH9JxRiXFk5ocz6Y/1zJ2eBbzb74q6D5KGMcHMJniMGeYQm4Pkf3ah0LqV1e01x+OoEGQk5NDTU1NYNlms2GxWALLZ8+eZe/evUydOhWAkpISysrKyMjIwG634/P50Ol05+0XqqamdvxR+gSr2ZyMzWZXu4yL2nPIRk6GCZfDjcvh7r5Rp8PeHvrMZNMn5nK8rpX/emsfh0+2cNctI4kz6i7a3un2hnV8p9ONzecLuX2kv/bBSP3qiub6tVpN2B+gg14amjJlCtu3b6e5uRmXy0V1dTXTpk0LbFcUheXLl1NXVwdAVVUV1157LQaDgUmTJvH2228DsGXLlm77CXUpisKRulaG56X0yvE0Gg0Plo5j7pQhfLy7nn//zSe8/n4tuw83cvh0Kyesds40O2lu68Avl4+EiChBzwiys7MpKytj4cKFeDwe5s+fT0FBAYsXL2bZsmVMmDCBJ554ggcffBCNRsOIESNYvXo1ACtXrmTFihW8+OKL5Obm8txzz/X5NyRC09jaQZvTw7BeCgIAnVbLvGnDGD0ojbe2H+fdmpNUfXrivHaZKfFcO8pMislAYoKh176+EKJnNEqE392TS0N942/7zvDSG/tYee/1F5yLWNHp+HDn+b/EL+b6MdkkxnX/XNHR6eWEtZ2OTh8er49Orx9nh5ddtY3sO9aM0aDj5usGkJUa/F7BhY5/KZH82odC6ldXNNffk0tDMmdxjDpS14ZRr2WAJbHPvka8Uc/IC/RI+s51Azhc38avXt9F9acnuPGafPKy+q4OIcSlyRATMepIXRtDcpLRadV5C+RkmJg1eRDJJiMfflaHs8OjSh1CCAmCmOTx+jlhtTMs7/wpKa8kU7ye6Vfn4fcrfLJPZj0TQi0SBDHolK0dr0/p1RvFPZWSaGTiiExONrRzwtqudjlCxCQJghh0wtp1E2xQiPMP9LWxQzLISInj0/1WfDK/gRBXnARBDDrZ0E68URdSb50rQavVcN0oMy63jyMyeJ0QV5wEQQw60dDOAEsS2h4M+dFXcjJMpCfHse9oi9wrEOIKkyCIMX5F4VRDOwMtkTWGk0ajYeyQdFodnZxulHkrhLiSJAhiTGNrBx2dvogLAoAhuSkkxOnZd1SmvxTiSpIgiDEnv+yZE4lBoNNqGDM4jTPNTs62u4PvIIToFRIEMeZkgx0NMCAr8oIAYHh+KhrgaJ3cNBbiSpEgiDEnG9qxZJguOUS0mhLi9ORkmjhab5ebxkJcIRIEMeZkBN4o/qZheSm0uzzYzrrULkWImCBBEENcbi+NrR0RHwSDspPRaTUcqYvO0R+FiDYSBDHkZEPk3ig+l0GvZaAliWNn2vBF6RDkQkSTkIKgsrKS4uJiZs6cyfr168/b/t5771FaWsp3v/tdli5dSmtrKwAVFRVMnTqV0tJSSktLKS8v793qRVhO274MAnNkBwF0XR7q9Pipb5JnCoToa0HnI7BarZSXl7N582aMRiN33HEHkydPZsSIEQC0t7ezatUqNm3aRHZ2Nr/61a94/vnnefzxx9m7dy8rVqxg7ty5ff6NiODqGp3EGXVkpMSpXUpQuVkm9DoNJ63tDIiC4BIimgU9I9i2bRuFhYWkpaVhMpkoKiqiqqoqsN3j8bBy5Uqys7MBGDVqFPX19QDs2bOHiooKSkpKeOSRRwJnCkIddU0O8jIT0UTQ0BIXo9NqyTcncbKhXXoPCdHHggZBQ0MDZrM5sGyxWLBarYHl9PR0ZsyYAUBHRwcvvfQSt9xyCwBms5mlS5fyxhtvkJuby5o1a3q7fhGGukYHeVkmtcsI2UBLEh2dPhrPdqhdihD9WtBLQ36/v9snSEVRLviJ0m6384Mf/IDRo0dz2223AbBu3brA9kWLFgUCQ1x57S4PrY7OqJoScoA5EY2ma5A8IUTfCRoEOTk51NTUBJZtNhsWi6Vbm4aGBu6//34KCwt57LHHgK5g2LRpE/feey/QFSA6XfgPMYU7CXOkMZsjY8x/29EmAMYMywqppoZmJ8lJoQ9TbTLFYc4I/WxDCfH4+eYk6hodYR8fIue17ympX13RXn84ggbBlClTeP7552lubiYhIYHq6mqeeOKJwHafz8eSJUuYPXs2S5cuDaw3mUy88sorXHPNNUycOJHXXnutR2cETU3t+KO0C6HZnIzNFhl94ffV2gBINGhDq0mnw94e+iUZp9ONzecLvb3bG9Lx8zJNfLq/gaOnWtCEcfxIeu17QupXVzTXr9Vqwv4AHTQIsrOzKSsrY+HChXg8HubPn09BQQGLFy9m2bJlnDlzhn379uHz+XjnnXcAGD9+PE8++SRr165l1apVdHR0MGTIEJ555pmefWfistU1OjHqtWRGyGQ0oRpoSeLT/Q3sOdLEsFz1p9YUoj8KGgQAJSUllJSUdFv38ssvAzBhwgQOHDhwwf0mTZpERUXFZZYoekNdk4PczMSImowmFIkJBtKT4/j8aDOl3xqqdjlC9EvyZHGMiLYeQ+fKNydy5HQrzg6v2qUI0S9JEMQAl9tLi90dVT2GzjXAnIhfgc+PNatdihD9kgRBDKj7cpiGvMzoDIKstARM8Xp21zaqXYoQ/ZIEQQyo+3IO4Gg9I9BqNIwZnM6eI0345SljIXqdBEEMqG90otdpyUqLrh5D5xo3NIM2p4fjZ6KzS58QkUyCIAbUNTnIyTCh00bvf/eYIRlogF1yeUiIXhdS91ER3eoaHQzLS8HrB7cntJ43OkMfFxWmpAQDw/JT2HOkiVu/PUztcoToVyQI+jl3p4/G1g6mFuTi9njZsd8afCdg0rjcPq4sfAXDs6j4yxFaHZ2kJhrVLkeIfiN6rxWIkNQ3R3ePoXMVDMsEYO+RJpUrEaJ/kSDo56K9x9C5BmUnkZZkZNdhCQIhepMEQT9X3+REp9VgSU9Qu5TLptFoKBieyedHm/D6/GqXI0S/IUHQz9U1OsjOMKHX9Y//6gnDsnC5fRw+LbPdCdFb+sdvB3FRdY0O8jKjc4yhCxk7JB2dViOXh4ToRRIE/ZjH66PhrKtf3B/4SkKcnpED09gtQSBEr5Eg6MfONLtQlP5xo/hcE4dnUtfooPGsS+1ShOgXJAj6sUCPoX7QdfRcBSOyANgt3UiF6BUhBUFlZSXFxcXMnDmT9evXn7f9vffeo7S0lO9+97ssXbqU1tauG3l1dXXcddddzJo1i4ceegiHw9G71YtLqmt0oNFAdphz/Ua67PQELGkJcnlIiF4SNAisVivl5eVs2LCBLVu2sHHjRmprawPb29vbWbVqFS+99BJvvPEGo0aN4vnnnwdg9erVLFiwgKqqKsaPH88LL7zQd9+JOE9dkwNLWgIGff868fuqG+n+4y10ekKfx1gIcWFBf0Ns27aNwsJC0tLSMJlMFBUVUVVVFdju8XhYuXIl2dnZAIwaNYr6+no8Hg87duygqKgIgHnz5nXbT/S9rlnJrsxlIY1Wg8PtDfmP/zJHky4YkYnH6+fAiZbe+QaEiGFBxxpqaGjAbDYHli0WC7t37w4sp6enM2PGDAA6Ojp46aWXuPvuu2lpaSEpKQm9vutLmM1mrNbQxrkRl8/r89PQ4uLakebgjXuB2+Nj10FbyO0nXmZdowamYTRo2XW4iYLhWZd1LCFiXdAzAr/fj+acCc8VRem2/BW73c4DDzzA6NGjue222y7Y7kL7ib7R0OLC51f63Y3irxj0OsYOzmDP4SYUmaxGiMsS9IwgJyeHmpqawLLNZsNisXRr09DQwP33309hYSGPPfYYABkZGdjtdnw+Hzqd7oL7hSIzMynsfSKJ2Zysytc9WN81gcvYq8yBGpRmJ8lJoU9OE05bg0Hfp+1NpjjM37jpPeXqfF744y46/DAo5/zXWa3XvrdI/eqK9vrDETQIpkyZwvPPP09zczMJCQlUV1fzxBNPBLb7fD6WLFnC7NmzWbp0aWC9wWBg0qRJvP3225SUlLBlyxamTZsWdoFNTe34L/eCskrM5mRsNnVm1DpwpGsCl3gNgRqcbi/29o6QjxFOW48nvGOH297pdGPzdb8xPMzSdbbzYc1JZk0e1G2bmq99b5D61RXN9Wu1mrA/QAcNguzsbMrKyli4cCEej4f58+dTUFDA4sWLWbZsGWfOnGHfvn34fD7eeecdAMaPH8+TTz7JypUrWbFiBS+++CK5ubk899xzPfvORNjqm5xkpcYTZ9SpXUqfyUiJZ4A5id2HG88LAiFE6EKamKakpISSkpJu615++WUAJkyYwIEDBy64X35+Pr///e8vs0TRE1eyx5CaCoZn8s6nJ3B2eDHFyzxLQvRE/+pgLgDw+xXqm5zk9qPB5i6mYHgmPr/CvmPNapciRNSSIOiHGltdeH3+fttj6FzD81NIjNez67BMai9ET0kQ9EN1jU6g/w02dyE6rZZxQ7u6kfqlG6kQPSJB0A/VNXWN6ZQbA2cEABOHZ9Hm9HD8THT28hBCbRIE/VB9o4O0JGPM3DwdNywDDcggdEL0kARBP1TXFBs9hr6SYjIyLC+F3XKfQIgekSDoZxRFoa7JGTOXhb5SMDyTo/V2Wh2dapciRNSRIOhnWuxu3J2+mDojAAIDz+2VyWqECJsEQT/z9axk/f8ZgnMNyk4iNckok9oL0QOxcTcxhnwVBLkxdkag0WgoGJZJzRc2vD4/dmcnDrc35P3jDHr62fw9QoRMgqCfqWtykJRgIMVkVLuUK65geBZ/3V3PoZNnGT3cwI79oc9/cf2YbPRx8uMgYpN8Bupn6pqcMXd/4Cvjh2Zg1GupCWOCHCGEBEG/oigK9Y2OmLs/8JU4o44JwzP5+xc2ecpYiDBIEPQjbY5OHB3emLs/cK7rRplpdXRy+NRZtUsRImpIEPQjdU2xM8bQxUwcnoVep2XngQa1SxEiakgQ9CNfdx2N3SBIiNMzfmgGOw80yFzGQoQopCCorKykuLiYmTNnsn79+ou2e/TRR9m8eXNguaKigqlTp1JaWkppaSnl5eWXX7G4qLomBwlxOtKSYq/H0LmuG2Wmua2DptbQp8IUIpYF7S9ntVopLy9n8+bNGI1G7rjjDiZPnsyIESO6tVm5ciXbt2+nsLAwsH7v3r2sWLGCuXPn9k31opuuG8WJaDQatUtR1dVXZaHTajhubScrLUHtcoSIeEHPCLZt20ZhYSFpaWmYTCaKioqoqqrq1qayspLvfOc7zJ49u9v6PXv2UFFRQUlJCY888gitra29W73opj+PMaTRanC4vSH9QaNh1OB0jp+xy+UhIUIQ9IygoaEBs9kcWLZYLOzevbtbm0WLFgGwc+fObuvNZjP33Xcf1157Lc899xxr1qzhl7/8ZW/ULb7B7uykzdHZb28Uuz0+doXxfEDBiCz2HW2mxe4mIyW+DysTIvoFDQK/39/tUoOiKCFfeli3bl3g34sWLWLGjBlhF5iZmRT2PpHEbE6+Il+nvrbrl+S4EeaLfk2l2UlyUui/FMNpazDoI6p9vjmRje8dpL7ZxeC8tKDtTaY4zBmR9fzFlXrv9BWpP3oEDYKcnBxqamoCyzabDYvFEvTAdrudTZs2ce+99wJdAaLT6cIusKmpHb8/Ok/vzeZkbLYrM2vW54e6giDJqL3o13S6vdjbQ7+BGk5bjye8Y/d1+6TB6WSnmzh08ixjB6cF/fDidLqx+XwhH7+vXcn3Tl+Q+tWj1WrC/gAd9B7BlClT2L59O83NzbhcLqqrq5k2bVrQA5tMJl555RV27doFwGuvvdajMwIRmlM2B4nx+pjvMXSuwTlJtDk6aW2XOQqEuJSgQZCdnU1ZWRkLFy7k1ltvZe7cuRQUFLB48WL27Nlz0f10Oh1r165l1apVzJ49m88//5zly5f3avHia6dt7QwwJ8V8j6FzDcruOrU/JnMZC3FJIQ23WFJSQklJSbd1L7/88nntnnrqqW7LkyZNoqKi4jLKE6HwKwqnGh1MHZ+rdikRJSFOT06GiaP1bUwckSkhKcRFyJPF/UBTawfuTh/5lv7ZY+hyDM1Lxu700NQmD5cJcTESBFHM6weH28vhujYAslITLtm/PkrvuV+WwdnJaDUajtbJ5SEhLkZm4ohibo+XHfut7P5yesb6JgeNra6Ltp840nzRbf2V0aBjgCWRo/VtXDfKjFYrl4eE+CY5I+gHztrdJCUYMMhcixc0LC+Fjk4f9V+OziqE6E5+c/QDLe1u6TZ6CfnmRIx6LUfqZIgTIS5ELg1FOZ/fT5ujk4GW6H4Cuy/ptFqG5KZw+HQrbo+POEP4DzZ+k9ffdWkuVHEGPXLCJiKVBEGUa23vRFEgPSlO7VIi2lUDUzl48ixH69oYPTj9so/31f2ZUF0/Jht9nPy4icgkn1GiXHObG4CMFAmCS8lMiSczJY5Dp1plRFIhvkGCIMq12N3odRqSE+UeQTBXDUijxe6WCWuE+AYJgijX3NZBWlIcWnlqNqghecnodRoOnpKbxkKcS4IgivkVhWYZbz9kRr2OIbkpHK1ro6Mz9Bu9QvR3EgRRrKm1A4/XL/cHwjB2SDo+v8IXJ86qXYoQEUOCIIqdtrUDcqM4HGlJceSbE/nixFm8Pr/a5QgRESQIotiphnY0Guk6Gq5xQzPo6PRx+HSb2qUIEREkCKLYSZuD1EQjOp38N4YjOz2BzNR49h1rjtrZ74ToTfIbJIqdbmiXG8U9oNFoKBieid3p4eBJuVcgREhBUFlZSXFxMTNnzmT9+vUXbffoo4+yeaOMw8gAABjPSURBVPPmwHJdXR133XUXs2bN4qGHHsLhcFx+xQKgawpGRycZyXJZqCcGmBPJyTDxWW0jbk/kzFUshBqCBoHVaqW8vJwNGzawZcsWNm7cSG1t7XltlixZwjvvvNNt/erVq1mwYAFVVVWMHz+eF154oXerj2EnrF3j66fLjeIe0Wg0TBptptPjZ3dtk9rlCKGqoEGwbds2CgsLSUtLw2QyUVRURFVVVbc2lZWVfOc732H27NmBdR6Phx07dlBUVATAvHnzzttP9NzR+q4bnZlyaajHMlLiuWpAKgdOtASCVYhYFDQIGhoaMJu/ntDEYrFgtXYfbGvRokV873vf67aupaWFpKQk9PqugbbMZvN5+4meO1pvJzsjAWMvjKQZy64ZmUVCnJ7//839ODo8apcjhCqCDofo9/u7TfqtKEpIk4BfqF1PJg/PzIzu4ZXN5uReP6aiKByz2hk7JIPkpNDPCAwGfVjt+/LYfd0eQqs/GZh9wxC2fHiY31cf4if/8k8hzWKmNDvDqsdkisOcYQq5PfTNe+dKkvqjR9AgyMnJoaamJrBss9mwWCxBD5yRkYHdbsfn86HT6ULe75uamtqjtouf2ZyMzdb7lxwaW12ctbvJz0rE3h76AGoejzes9n157L5uD6HXnxin47Zpw/jjB4d56ref8i/Fo9EH6ZLrdIdXj9PpxuYL/aZ0X713rhSpXz1arSbsD9BBLw1NmTKF7du309zcjMvlorq6mmnTpgU9sMFgYNKkSbz99tsAbNmyJaT9RHBH67veoENyYucTS1+bdnUet317KNs/P8NzGz/D7uxUuyQhrpigQZCdnU1ZWRkLFy7k1ltvZe7cuRQUFLB48WL27NlzyX1XrlzJ66+/TnFxMTU1NfzoRz/qtcJj2dG6NvQ6DXnmRLVL6Tc0Gg0l3xrK4rljOXSqlRX/uZ23th/D3SldS0X/F9KUSSUlJZSUlHRb9/LLL5/X7qmnnuq2nJ+fz+9///vLKE9cyJH6NgZlJwe9fCHCd8P4HAblJLPpg8Ns+vAIb20/zj+NsTB1Qh7D81N6dJ9LiEgnc+dFGZ/fz7EzbXy7IE/tUvqt/KxEls0voPZUKx9+dpq/7bPyl131ZGeYmD4xj5uvzVe7RCF6lQRBlKlvdNLp8TMsN0XtUvq9EQNSGTEglQUzRrLzCxsf7a7j9T/X8m7NSeZOGQKE1oNOiEgnQRBljnz5INnQPAmCKyUhTs/UglymFuTyxYkWXv9zLb9/5wuG56dQOC4bnVYu0YnoJu/gKHPo1FmSEgxkpyeoXUpMGjUonZ8snMSsyYM4fLqN6k9P0SljFYkoJ0EQZQ6ePMtVA1LlkoSKtBoNc6YM4dsTc2lqdfHnf5zG55dJbkT0kiCIIs1tHdjOdjBqYJrapQhgaG4KUybkYG12sW3PGRQlOh98FELuEUSRg6e6xs4fOUiCIFIMy0vF4fLyj0ONpCfHMX5YptolCRE2OSOIIodOthJv1DHQEt3jL/U344dlMDg7ic8ONdLUGt4wGEJEAgmCKHLw5FlGDEiVXioRRqPRUDguhzijno921+P1yf0CEV3kN0qUsDs7Od3oYOQAuSwUieKMOr41IYdWRyf/ONiodjlChEWCIEocOtUKwEi5URyx8rISGTkwjQPHW+QSkYgqEgRR4uDJs+h1WobKE8UR7dqRWcQZdfztcyt+6UUkooQEQZT4/GgzVw1IxaCX/7JIZjTouH60haa2Dg6eOKt2OUKERH6rRIHmtg5ONzqYIF0To8KQ3GRyM03841Ajzg6v2uUIEZQEQRTYe7QZ6OqmKCKfRqNh8thsfH6FmgMNapcjRFASBFFg75Em0pPjyM+SiWiiRUqikQnDMjh2xs5pm0PtcoS4pJCCoLKykuLiYmbOnMn69evP275//37mzZtHUVERP/nJT/B6u06HKyoqmDp1KqWlpZSWllJeXt671ccAn9/P58daGD80Q8YXijLjh2WQYjLwyT4rnV4ZmE5ErqBBYLVaKS8vZ8OGDWzZsoWNGzdSW1vbrc3y5cv56U9/yjvvvIOiKLz++usA7N27lxUrVrB161a2bt1KWVlZ33wX/diRujZcbq/cH4hCOq2WwnE5tLs8VH96Uu1yhLiooEGwbds2CgsLSUtLw2QyUVRURFVVVWD76dOn6ejo4OqrrwZg3rx5ge179uyhoqKCkpISHnnkEVpbW/vo2+i/9hxpRqvRMHZIutqliB7IyTQxLC+F93acpK5RLhGJyBQ0CBoaGjCbzYFli8WC1Wq96Haz2RzYbjabWbp0KW+88Qa5ubmsWbOmN2uPCbtrGxmWn4Ip3qB2KaKHrhtlJs6g4/fvfCHPFoiIFHT0Ub/f3+3atKJ0n57vUtvXrVsXWL9o0SJmzJgRdoGZmdE9wJrZnNzjfets7ZxoaOf+746/4HGUZifJSfEhH89g0IfVvi+P3dftIbz6TaY4zBmmkNuH89onJ8H/uWUkv31rH59+0UjJt4eFtN/lvHcigdQfPYIGQU5ODjU1NYFlm82GxWLptt1mswWWGxsbsVgs2O12Nm3axL333gt0BYROpwu7wKamdvz+6PwUZTYnY7PZe7x/1bZjAIwZkHLB4zjdXuztoQ9l4PGE174vj93X7SG8+p1ONzZf6Dd0w33tJ4228Pfhmbz65ucMyjKRF6QH2OW+d9Qm9atHq9WE/QE66KWhKVOmsH37dpqbm3G5XFRXVzNt2rTA9vz8fOLi4ti5cycAW7duZdq0aZhMJl555RV27doFwGuvvdajM4JYtmO/lREDUslICe+TsIg8Go2Gf5k9mjiDjpcr98kIpSKiBA2C7OxsysrKWLhwIbfeeitz586loKCAxYsXs2fPHgCeffZZfvGLXzBr1iycTicLFy5Ep9Oxdu1aVq1axezZs/n8889Zvnx5n39D/UVdo4NTNgfXj7YEbyyiQmpSHPfOHs1xq50N7x5UuxwhAkKaoaykpISSkpJu615++eXAv0ePHs0f//jH8/abNGkSFRUVl1libNpxoAENMGmUBEF/cu1IM7MLB/Gnv51gYHYyN12Tr3ZJQsiTxZFIURQ+3W/lqoFppCfHqV2O6GW3TxvOhGGZbHj3IJ9/OXyIEGqSIIhAh061Ut/kZMr4HLVLEX1Aq9Xw4HfHkpuZyH9s2s2+YxIGQl0SBBHo/b+fwhSnZ/LYbLVLEX3EFG/gkTuvxpKewH/8cTe7DzepXZKIYSHdIxBXTmu7m51f2PjOdQOIM4Tf3Vb0jEarweEOfcjocHs0X+j4Op2WH8ybwLrNe/jVH3Yx91tDmHH9QDQaDfHOzrCO7/WD2xN6/XEGPTK1hfiKBEGE+XBXHT6/IjcRrzC3x8eug7bgDb80caQ5eKMQjz9tYh7b956h8uNj7PzCxuSxFuZ+ewThDDHo9njZsd8avOGXrh+TjT5OfvxFF3knRBCvz8+Hn9UxfmgG2WE85Sqim0Gv5dsTc7GkJ/D3gzbe+OgYnT6YcV0+KSaj2uWJGCBBEEH+urueFrube2aNVrsUcYVpNBpGD05nUHYSNQdsvPXxUao/Oc4N43K4YVw2Vw1IQ6uVYchF35AgiBBuj483PjrKVQNSmSAzkcUsU7yBaVfncf/gDKq3H+Nv+87wl111pCQaGTkwjZEDUrlqQBoDLUkSDKLXSBBEiPdqTtLq6OShW8fLBDSCvKwk/qV4DAtuGcmuw418dqiRg6fOBqa+TIjTMTQ3hWF5qQzLSyEnUy4lip6TIIgA7S4Pb//tBBOHZzJyYJra5YgIEmfU8U9jsvmnMV1diZtaOzh46iyHTrVy5HQrb20/xlcjW6ckGsnLNJFvTiI30yRnDCJkEgQqUxSF31UdoNPj4/Ybh6tdjohwmanx3JCaww3juh42dHf6OHamjQMnzrLjQAOHTrVy4MRZ4o06BuckMyw3hay0eDnLFJckQaCybXvPUPOFjfk3DmeAObrnXhBXXpxRx6hB6QzITiY1yYjP5+d0o4Oj9XZqT7XyxYmzJCUYuGpAKiMGpJIgXUbFBci7QkUNLU7Wv3uQkQPTmPVPg9QuR/QDOp2WQdnJDMpOptPr46S1ndrTrfzjUCO7ahsZmJ3MqIFpKDJTmjiHBIFKmts6ePZ/PkOn1bBo7hi5nit6nVGvY3h+KsPzU2ltd3PwZCuH61o5fsbOZ7WN3HxNPjeMzyFZnlWIeRIEKmhtd/P//c9ntLs8LL/zGrJSE9QuSfRzqUlxXD/GwjUjszh+xk5do5P/eb+WP3xwmDFD0pk0ysKEYZky2m2MCikIKisrefHFF/F6vdxzzz3cdddd3bbv37+fn/zkJzgcDiZNmsTq1avR6/XU1dWxfPlympqaGDp0KM8++yyJiZeeoq+/23+smZfe3IfL7eX//p+rGZqbonZJIobodVqG56dyxy0jaW7t4G/7zvDpvgZ+e+QAAPlZiQzJTWZITgqDc5IZaEmSMa9iQNAgsFqtlJeXs3nzZoxGI3fccQeTJ09mxIgRgTbLly/nZz/7GVdffTWPPfYYr7/+OgsWLGD16tUsWLCAOXPmsG7dOl544YWYnaWstd3NW9uP8787T5GdYaLsexMZlB07k2OL8Hh9fjr7cBA8gIGWJAZaRjB/+nBO2RzsOdLEFyfOsudwEx/vOQOABkhPiSMrNYH05DiyUuPJ/OpPSjzJiUa0F+iRFO6geaFSFAWP14/L48fZ4UGn06DXatFqNeh0mgvWAmDQ6/F4g7+eiqKgAHp7B35Fuejx+pugQbBt2zYKCwtJS+vq315UVERVVRU//OEPATh9+jQdHR1cffXVAMybN4//+I//4Hvf+x47duxg3bp1gfX//M//HFNB4PX52XesmZoDDXy89wxen59pV+dxx81XEWeUT1ni4tweHzVhDCIX7iB459JoNF+GQhLFhYNRFIUWu5tjZ+ycsNqxnXVhbXGx+3AjLrev275aTdfT0InxehITvv67cEIemYkGEhMMJBj1GA3aC3Zh9fr82J0e7M5O7C4PdkcnbY5OWi/wt9PtxeO99FzPGg1oNRq0Wk3g3xqNBqNeS6fXh6Lw5R+l62+Ubyx3P1ZivIGkBANJJgPJCQbSkuJIS44jPSmO9OSv/50Qp4vqLrpBg6ChoQGz+es3mcViYffu3RfdbjabsVqttLS0kJSUhF6v77a+v1EUhbpGB+0uD+0uD81tbmytLk5a2znR0I7L7cWo1zJ5TDZzpgwmO12eABWRTaPRkJEST0ZKPNd+GTAOd9fopl6fH4fLg93lweHy4HB5cXR4cHR4sTY7cbq9KAr87fPuP+tajSbwy9LnV/D5/F1/X+RURqfVkJpkJDXRSEZKPENykzHFGzDqtRj0WkDDSZsdxQ9+RcHvVwJ/+/xdv9T9ioKiKPgVyEiJp6WtA42m6/vTfPl9di2DBs3X2zQwND8Nr8dLu8vb9bPt7KThrIuDJ8/i6Dj/zCLOoPsyFIxdAfFlYKQmGokz6DDqtRgNOgx6LXFf/v3NDiJJCQb0OnXGBg8aBH6/v1vSKYrSbfli27/ZDuhRYkZ6b5p/HGrkv9871G2dQa8lNzORkm8PZZA5iZED0zD2weDvep0WU7yhT9rrdZo+O/aVaS/1B2sfzs/WucdPSYwj9yLt/H4Fd6eXIfnptLa5cHX6cHd66fD4cLt9XZdbtF2Xc3Q6DXq9hsR4I0nxehIT9CQmGEkxGYg3XvoTtqvTx67axpDrHzM0g/1hTAs6eUIeGp/vgts6vX7sDjetgTMWz9f/dnbSbHdzzGrH5wvvet24oRm9MuBkT35nBg2CnJwcampqAss2mw2LxdJtu8329TjrjY2NWCwWMjIysNvt+Hw+dDrdefuFKj09sm8u35KZxC2FQ1X7+gNyU8NqP2xAeshtB2aHdyM7nGNfifZSf+8K973W1/ryvR/MxYIwWgX9mDplyhS2b99Oc3MzLpeL6upqpk2bFtien59PXFwcO3fuBGDr1q1MmzYNg8HApEmTePvttwHYsmVLt/2EEEJEBo0SwiOGlZWV/Od//icej4f58+ezePFiFi9ezLJly5gwYQIHDhzg8ccfp729nXHjxvGLX/wCo9HI6dOnWbFiBU1NTeTm5vLcc8+RmhpZnyqEECLWhRQEQggh+i+ZvloIIWKcBIEQQsQ4CQIhhIhxEgRCCBHjJAiEECLGSRAIIUSMi+gg2LlzJ/Pnz6e0tJR77rmH06dPq11SSCorKykuLmbmzJmsX79e7XLC9utf/5o5c+YwZ84cnnnmGbXL6ZGnn36aFStWqF1G2N5//33mzZvH7Nmz+dnPfqZ2OWHbunVr4L3z9NNPq11OyNrb25k7dy6nTp0CugbbLCkpYebMmZSXl6tcXXDfrH/jxo3MnTuXkpISfvzjH9PZGWQ0WCWC3XTTTcr+/fsVRVGUP/zhD8qSJUtUrii4M2fOKDfddJPS0tKiOBwOpaSkRDl06JDaZYXs448/Vr7//e8rbrdb6ezsVBYuXKhUV1erXVZYtm3bpkyePFn5t3/7N7VLCcuJEyeUqVOnKvX19UpnZ6dy5513Kh988IHaZYXM6XQq119/vdLU1KR4PB5l/vz5yscff6x2WUF99tlnyty5c5Vx48YpJ0+eVFwulzJ9+nTlxIkTisfjUe67776I/n/4Zv1HjhxRZsyYodjtdsXv9yuPPvqo8uqrr17yGBF7RtDZ2cnDDz/M6NFdgzCNGjWK+vp6lasK7txhu00mU2DY7mhhNptZsWIFRqMRg8HA8OHDqaurU7uskJ09e5by8nKWLFmidilhe/fddykuLiYnJweDwUB5eTkTJ05Uu6yQ+Xw+/H4/LpcLr9eL1+slLi7yZzx7/fXXWblyZWAstN27dzN48GAGDhyIXq+npKQkon+Gv1m/0Whk5cqVJCUlodFoGDlyZNCf4YidqtJoNFJaWgp0jXD661//mltuuUXlqoILNmx3pLvqqqsC/z527Bh/+tOf+O///m8VKwrPT3/6U8rKyqLiQ8M3HT9+HIPBwJIlS6ivr+fGG2/kRz/6kdplhSwpKYmHH36Y2bNnk5CQwPXXX8+1116rdllBPfnkk92WL/QzHMlD6H+z/vz8fPLz8wFobm5m/fr1/OIXv7jkMSLijOBPf/oT06ZN6/bn3nvvBbrODB555BG8Xi8PPviguoWGINiw3dHi0KFD3HfffTz66KMMGTJE7XJC8oc//IHc3FxuuOEGtUvpEZ/Px/bt2/n5z3/Oxo0b2b17NxUVFWqXFbIDBw6wadMm/vznP/PXv/4VrVbLb37zG7XLClt/+Rm2Wq3cc8893H777UyePPmSbSPijGD27NnMnj37vPUOh4OHHnqItLQ0XnzxRQyG0MdbV0uwYbujwc6dO1m2bBmPPfYYc+bMUbuckL399tvYbDZKS0tpbW3F6XTy85//nMcee0zt0kKSlZXFDTfcQEZGBgC33HILu3fvZt68eSpXFpqPPvqIG264gczMTKBrVsINGzawaNEilSsLzzeH1o/Gn+HDhw+zaNEi7r77bu67776g7SPijOBili9fzuDBg1m7di1Go1HtckISbNjuSFdfX88PfvADnn322agKAYBXX32VN998k61bt7Js2TJuvvnmqAkBgJtuuomPPvqItrY2fD4ff/3rXxk3bpzaZYVs9OjRbNu2DafTiaIovP/++0yYMEHtssI2ceJEjh49yvHjx/H5fLz55ptR9TPc3t7O/fffz8MPPxxSCECEnBFcyL59+/jf//1fRowYwW233QZ0Xat7+eWXVa7s0rKzsykrK2PhwoWBYbsLCgrULitkv/nNb3C73Tz11FOBdXfccQd33nmnilXFhokTJ7Jo0SIWLFiAx+PhW9/6FrfffrvaZYVs6tSp7Nu3j3nz5mEwGJgwYQIPPPCA2mWFLS4ujqeeeop//dd/xe12M336dGbNmqV2WSH74x//SGNjI6+++iqvvvoqADfffDMPP/zwRfeRYaiFECLGRfSlISGEEH1PgkAIIWKcBIEQQsQ4CQIhhIhxEgRCCBHjJAiEECLGSRAIEcR9991Hc3Mzixcvpra2Vu1yhOh18hyBEEGMGjWK7du3B4Z+EKK/idgni4WIBD/+8Y8BuOeee6itreX111/H6XTy7LPPkpeXx5EjR4iPj+epp55i+PDhKlcrRM/IpSEhLuGr4Xv/67/+i9zc3MD6vXv3cvfdd1NZWcm8efNYvny5WiUKcdkkCITogdGjRzNp0iQAbr/9dvbv309LS4vKVQnRMxIEQvSATqcLaZ0Q0UCCQIggdDodXq+327oDBw5w4MABoGui8GuuuYaUlBQ1yhPissnNYiGCmDVrFnfffTcOhyOwLisri7Vr13L69GkyMjJ45plnVKxQiMsj3UeFCNMnn3zCE088wZtvvql2KUL0Crk0JIQQMU7OCIQQIsbJGYEQQsQ4CQIhhIhxEgRCCBHjJAiEECLGSRAIIUSMkyAQQogY9/8Ahif5Yh0N/EUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEJCAYAAACXCJy4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXScV5nn8e9bm6RSlUpSqbQv3q+XJHYcOwtZmyQsgYZOJyRD0hCWdODQ6QVoaGYSaGgO3Rx6pmFoktAz6WloMgYyaRKakAQwNsRZSOIk3u1rx7as1VJpX0oq1TZ/VMnIspaSVKW3ludzjs/Ru+qnsurRW/e9771GLBZDCCFE7rOYHUAIIcTykIIvhBB5Qgq+EELkCSn4QgiRJ6TgCyFEnrCZHWAWBcB2oBOImJxFCCGyhRWoAV4DgtM3ZmrB3w7sMTuEEEJkqWuBF6avTKrgK6XuAh4E7MC3tNYPTdt+K/AV4n9dXgPu01pPKKUagceASkADd2utR5L4lp0A/f2jRKOpf07A63XR25tMDPNJ1vSQrOkhWdMj2awWi0FZWTEkauh08xZ8pVQd8DXgMuIfEV5SSu3WWh9JbC8GvgNs1Vp3KaV+BHwE+F/Aw8DDWusfKaW+CHwR+Jv5f7x4M040GktLwZ88d7aQrOkhWdNDsqbHArPO2BSezE3bm4BdWus+rfUo8ARw++TGxLoViWLvJH4136+UsgPXJfYH+B7wgYUkFkIIkTrJNOnUcv7Hg07g8qk7aK1DSql3E2++aQd+CVQAQ1rr8JTj6hcSzut1LWT3BfH53Gk7d6pJ1vSQrOkhWdMjFVmTKfgWYOpnCQOITt9Ja/0s4FVK/T3wCPC5accx03Fz6e0dSctHLp/Pjd8/nPLzpoNkTQ/Jmh6SNT2SzWqxGHNeKCfTpNNGvJvPpGqgY3JBKVWulHrHlO3/F7gE6AY8SilrYn3N1OOEEEIsr2QK/k7gRqWUL9FGfxvw3JTtBvBYokcOxNvpX9Bah4h3rbwzsf7DwLOpiS2EEGKh5i34Wut24AFgN7AP2KG1flUp9YxSapvWuhe4D3haKbUfUPy+J86ngPuUUkeI9wt9MB0/hBBCiPkl1Q9fa70D2DFt3S1Tvn4KeGqG484ANywtohBCiFTI1CdtRYqEoxAMheffcQEK7DZsMgqTEFlHCn6OC4bCvHa0K6Xn3L6hCluB/OoIkW3kOk0IIfKEFHwhhMgTUvCFECJPSMEXQog8IQVfCCHyhBR8IYTIE1LwhRAiT0jBF0KIPCEFXwgh8oQUfCGEyBNS8IUQIk9IwRdCiDwhBV8IIfKEFHwhhMgTUvCFECJPSMEXQog8IQVfCCHyhBR8IYTIE1LwhRAiT0jBF0KIPCEFXwgh8oQUfCGEyBNS8IUQIk9IwRdCiDxhS2YnpdRdwIOAHfiW1vqhadvfD3wFMIDTwEe11v1KqXuArwNdiV1/rrV+IFXhhRBCJG/egq+UqgO+BlwGBIGXlFK7tdZHEttLgEeA7VrrdqXU3wFfBv4S2AZ8Rmv9wzTlF0IIkaRkmnRuAnZprfu01qPAE8DtU7bbgT/TWrcnlg8AjYmvtwP3KKUOKqUeU0qVpSq4EEKIhUmm4NcCnVOWO4H6yQWtda/W+kkApVQR8AXgqSn7fhW4BGgFvpOCzEIIIRYhmTZ8CxCbsmwA0ek7KaU8wJPAfq319wG01rdO2f4N4ORCwnm9roXsviA+nztt5061pWSN9QVwuwpTmAaczgJ85c4Zt+XL67rcJGt65FvWZAp+G3DtlOVqoGPqDkqpGuAXwC7g04l1HuBjWutvJnYzgPBCwvX2jhCNxubfcYF8Pjd+/3DKz5sOS80aCIYZHhlPYSIIBIL4I5EL1ufT67qcJGt65GJWi8WY80I5mSadncCNSimfUsoJ3AY8N7lRKWUFfgY8rrX+K631ZIUeAT6vlLoisXw/8U8AQgghTDDvFX6i580DwG7AATyqtX5VKfUM8CWgAdgK2JRSkzdz92qt71VK3QE8kmjbPw58OC0/hRBCiHkl1Q9fa70D2DFt3S2JL/cyyycFrfUe4n8MhBBCmCypgi/EcghHIRha0G2eeRXYbdjkeXIhACn4YhmFI1EOnerj4KlejjT3MTIWwmq1UOJ08LaLqrlU+Tja3JfS77l9QxW2Avk1FwKk4ItlEApHefFQJ8+8fIaewXEK7FY2NJVRXlJAJBqj3T/K47vf4ifPn2TL2go2NJVhGIbZsYXIOVLwRVrtf6uHHTuP4x8YZ1VtCR+8cS0Xr/Zis57fztLmH+H/7T7J3mN+BkcmuGJjFRaLFH0hUkkKvkiLnoExfvjrE7x5oocar5PP3LGZTSvLZ71yr/e5uPd9G/nfPz3ModN9jE1E+INLa+VKX4gUkoIvUioUjvDcKy08/fIZLIbBB25Yzc3bGy64op+JxTDYqnwUFdh47Vg3h071cfFq7zKkFiI/SMEXKfP6sS4efmI/3f1jbFtfyX95+xrKSxY+rMP6plL8A2PsO9FDZVkRVbMM4yCEWBgp+GLJ2ntG+clvT/LmiR6qyp189s4tbFpZvujzGYbBlRdV0Ts0zvP7O3jf1SspcFhTmFiI/CQFXyxaz8AYP33hNC8dPkuB3cqHb9nA1RursKeg47vDZuW6LbU889IZDpzsZfuGyhQkFiK/ScEXCzY0OsFTz5/iN2+2YxgG79jewC1XNrGqyZvSwai8JYWsrvegW/pZ31SK2+lI2bmFyEdS8EXSJkIRDp/u40e/PkE4HOOaS2p439UrFtVOn6wtaypo7hzizeM9XLelNm3fR4h8IAVfzCsWi/FW+yCvaz8ToShb1/m4/YbVVC/DzVRnoY2NK8o5cLKXjQNjVJQWpf17CpGrpOCLOQ2NTvDSobN0949RWVbE9g2VvOuKJoqXcbiCTSvLOd46wP63erlxW/38BwghZiQFX8yq3T/Knv0dYMBVF1Wzpq7ElAeh7DYLqrGU/W/1MjgygcclbflCLIaMIyhmdKS5j1+/3kZxkZ33XNXE2nqPqU+9rmsoxWIYHGvpNy2DENlOCr64gG7pZ+8xP41VLt51RWNG9I4pKrCxstbNyfZBgqELp1cUQsxPCr44T/PZYV450k29r5jrNtempE99qmxoKiMciXGibdDsKEJkpcx5NwvT9QyO8cL+TnylRVy3pTbjRqssLymkutzJsTP9RGOpn9xeiFwnBV8A8clJXjxwlsICK2/fWpfUYGdmUI2lBMbDnO0NmB1FiKyTme9qsez2nehhcHSCt11UndHj1tRXFuOwWzjZLs06QiyUFHxBV1+AI839rGsopbai2Ow4c7JaLKyoLqGla4SJsNy8FWIhpODnuVgsxqtHu3EV2blM+cyOk5TVdSVEojHOnB0xO4oQWUUKfp5rPjtM/3CQLWsrMqpHzlwqPIWUOO2ckmYdIRYkO97hIi2i0Rj7T/RQ6nKwssZtdpykGYbBqjoPXf1jDAcmzI4jRNaQgp/HTnYMMRQIsWVtRdbNHbuqtgSA5s7UDccsRK6Tgp+notEYB97qwesppKHSZXacBXMV2anwFHKmSwq+EMmSgp+nWrpHGB0Pc8lqb9Zd3U9qqnbTNxSUZh0hkpTUaJlKqbuABwE78C2t9UPTtr8f+ApgAKeBj2qt+5VSjcBjQCWggbu11tK1IgPoln5cRXbqfJndDXMujVUuXtd+WrpGljSHrhD5Yt4rfKVUHfA14BpgC3CfUmrjlO0lwCPAe7TWm4EDwJcTmx8GHtZarwf2Al9MaXqxKAPDQbr6xljX4MGSpVf3AG6ng/KSAs6clWYdIZKRTJPOTcAurXWf1noUeAK4fcp2O/BnWuv2xPIBoFEpZQeuS+wP8D3gAylJLZZEtw5gsRisqfeYHWXJmqrc9AyOMzoeMjuKEBkvmSadWqBzynIncPnkgta6F3gSQClVBHwB+GegAhjSWoenHLeg6Yq83vTdTPT5sqcb4lKyxvoCuF2/n3N2IhThVMcQaxtK8ZUv7vV1OgvwzTK9YSqzJmPjqgrePNFDV/84m9de+L3TlXW5Sdb0yLesyRR8CzB1aEIDiE7fSSnlIV7492utv59oCpo+pOEFx82lt3eEaDT1oyL6fG78/uxoBlhq1kAwzPDI+Lnl4y0DhMJRVtW4z1u/oHMGgvgjFw5rkOqsybAaUOpycKKln1UzPEuQrqzLSbKmRy5mtViMOS+Uk2nSaQNqpixXAx1Td1BK1QB7iDfn3JtY3Q14lFKTI3HVTD9OLL/TnUN4ih1UeBZ2JZ3JGqrcdA+MEZyQsXWEmEsyBX8ncKNSyqeUcgK3Ac9NbkwU9J8Bj2ut/0prHQPQWoeI/xG4M7Hrh4FnUxleLMzoeIiu/jFW1riztivmTOp9xcRi0NEzanYUITLavE06Wut2pdQDwG7AATyqtX5VKfUM8CWgAdgK2JRSkzdz92qt7wU+BXxfKfUg0AJ8MB0/hEjO5FOpK2pKlnQew2IwGgxfsD7WFyAww/pkLbb1rsJTSKHDSpt/hJW1S/vZhMhlSfXD11rvAHZMW3dL4su9zPJJQWt9BrhhCflECjV3DuEtKaCkeGlz1AZDEfYf91+w3u0qXPR9AYDN6xY3WqdhGNT5imntjt/zybSZuoTIFPKkbZ4YGp2gdyi45Kv7TFXvczERiuIfGDM7ihAZSwp+nmjuHAJgRRaNirkQNRVOLAa0+aUdX4jZSMHPE81nh6ksK6K40G52lLRw2KxUlTtp88vIHULMRgp+HhgOTDAwMkFjVfaNirkQ9T4XgyMTMpiaELOQgp8H2rrjzRz1vtwu+JMDwXX0BExOIkRmkoKfB9r8I3iKHUvunZPp3E47xYU2OnulHV+ImUjBz3FjwTBdfQHqK7N3GORkGYZBbUUxnb2BtAzJIUS2k4Kf446d6Scay/3mnEm1FcWEwlF6Bhf/PIAQuUoKfo47dKoXh92Cr7TI7CjLorrciQHSrCPEDKTg57BoNMaR5n7qfa68efq0wGHF6ymUcXWEmIEU/Bx2qnOIkbFQVk9juBg1FcX0DI4zEZLRM4WYSgp+Djt8ug8DqPXmV8Gv9TqJxeBsn3TPFGIqKfg57HBzHw1Vbgoc1vl3ziG+0iJsVkOadYSYRgp+jhoLhjnVPsT6plKzoyw7i8Wg2lssD2AJMY0U/Bx1rKWfaCzG+sYys6OYotbrZGQsJKNnCjGFFPwcdfh0Hw67JWeHQ55PbUX8vsWxM/0mJxEic0jBz1GHm/tRDWXYbfn5Xzw5zMKxFin4QkzKz2qQ43oHx+nqC7BpRX4258Dvh1k43jJAJBo1O44QGUEKfg463NwHwMaV5SYnMVdtRTHjExFOdwybHUWIjCAFPwcdae7DU+ygriK/+t9PV13uxDDg0Oles6MIkRGk4OeYWCyGbhlgfVMZhpEfwynMpsBhpanKfe4TjxD5Tgp+jjnbF2BwdALVmH/972eimso41TFEYDxsdhQhTCcFP8folgEANuRp//vpVEMpsRjoVumtI4QU/BxzrKWfUpeDyrL8GA55PitqSnDYLBxploIvhBT8HHKu/b5R2u8n2W0W1jaUclQewBJCCn4ukfb7mW1sKqOjZ5SBkaDZUYQwlS2ZnZRSdwEPAnbgW1rrh2bZ79+BXVrr7yWW7wG+DnQldvm51vqBpYYWM5tsv8/X8XNmsyHxANrRM/1ctana5DRCmGfegq+UqgO+BlwGBIGXlFK7tdZHpuxTC/wLcCOwa8rh24DPaK1/mNLUYkbSfj+zxko3xYU2jjT3ScEXeS2ZJp2biF+192mtR4EngNun7XM38FPg8WnrtwP3KKUOKqUeU0rJpWeaSP/72VksBuubyjh6pp9YLGZ2HCFMk0zBrwU6pyx3AvVTd9Ba/6PW+tEZju0EvgpcArQC31lkTjGPrv4xBkcnWNcg7fcz2dhURt9QkO5+GS5Z5K9k2vAtwNTLIgNIajQqrfWtk18rpb4BnFxIOK/XtZDdF8Tnc6ft3KmWTNY3T8WfJr3ykrrz9o/1BXC7ClOax263zXrOpXyvuc67WE5nAb5yJ1dvbeAHvzxOa2+Ai1QVkHu/A5lCsqZHKrImU/DbgGunLFcDHfMdpJTyAB/TWn8zscoAFvS4Y2/vCNFo6j+C+3xu/P7sGFAr2axvHDmLq8hOgRE7b/9AMMzwyHhKM4VCM5/T7Spc0vea7bxLEQgE8Uci2GMxyksKeOVQJ9vWVuTk70AmkKzpkWxWi8WY80I5mSadncCNSimfUsoJ3AY8l8RxI8DnlVJXJJbvB55M4jixCMfbBlhb75H2+1kYhsGGpjKOnYnPBCZEPpq34Gut24EHgN3APmCH1vpVpdQzSqltcxwXAe4AHlFKHSXey+fzqYktpuofDuIfGJf2+3lsbCpndDxMa9eI2VGEMEVS/fC11juAHdPW3TLDfh+ZtrwH2LqEfCIJJ9ri/e+l4M9tfVO8k9iRM31su7jW5DRCLD950jYHHG8doMBupbEqfTe5c0GZu4Aar1PG1RF5Swp+DjjeOsjquhKsFvnvnM/GFeWcaB0gFI6YHUWIZScVIssFxkO0+0dYVy/NOcnY2FTGRDjKMRlMTeQhKfhZ7kTbIDFgrbTfJ0U1lmIYsP+E3+woQiw7KfhZ7njbAFaLwaraErOjZAVnoZ0V1SXsPy4FX+QfKfhZ7kTrICuq3RTYrWZHyRobV5RxvHWAsaBMeyjyixT8LDYRinC6c0iacxZoY1MZ0WgM3TpgdhQhlpUU/Cx2unOISDQmN2wXaE29B4fNwlHpninyjBT8LHY8cYW6pt5jcpLsYrdZ2bCynKNn+syOIsSykoKfxU60DVLnK8ZVZDc7StbZvNZHm3+UwdEJs6MIsWyk4GepaDTGW+2D0pyzSJvX+gDkKl/kFSn4Waq1e4TxiQhrG6Q5ZzFW15fiLLBJO77IK1Lws9Rk+71c4S+O1WKgGks50izTHor8IQU/Sx1vG6DCU0h5SWpniMonG1eU0zs0jn9Apj0U+UEKfhaKxWKcaB1grVzdL8nGFZPDJUuzjsgPUvCz0Nm+AEOBEKpRCv5SVJc7KXU5pB1f5A0p+Flo8glRJU/YLkl82sNyjsq0hyJPSMHPQsdbB/AUO6gsKzI7StbbuKKMkbEQbd0y7aHIfVLws0wsFkO3DLCuoVQmLE+BDZPTHkqzjsgDUvCzTM/gOP3DQZm/NkXKSwqpLndyVG7cijwgBT/LHJf2+5TbkBguORyJmh1FiLSymR1ALIxuHaC40Eatr9jsKFnBsBiMzjDufawvQCCxflWth91vtHO4uT/pgegK7DZscrkksowU/CxzvDXefm+R9vukBEORGWe3crsKGR4ZP7cPwO432ugfHk/qvNs3VGErkLePyC5yjZJF+oeDdPePSft9ihXYrXhLCjnbFzA7ihBpJQU/i5wbP0cKfspVe534B8YIhaUdX+QuKfhZ5HjrAAUOK41VLrOj5Jwar5NYDLr65Spf5C4p+FnkeOsAa+s8WC3y35ZqlWVFWCwGZ3ul4IvcldRdJ6XUXcCDgB34ltb6oVn2+3dgl9b6e4nlRuAxoBLQwN1aa3mkcRGGAxO094xy5aYqs6PkJJvVQmVpEZ1S8EUOm/dSUSlVB3wNuAbYAtynlNo4bZ9apdTPgNunHf4w8LDWej2wF/hiSlLnoRNtg4C036dTtddJ/3CQ8YkLu3EKkQuSaRu4ifhVe5/WehR4ggsL+93AT4HHJ1copezAdYn9Ab4HfGCpgfOVbhnAbrOworrE7Cg5q8brBJBmHZGzkmnSqQU6pyx3ApdP3UFr/Y8ASqlrpqyuAIa01uEpx9UvJJzXm76bkz6fO23nTjWfz82ps0OsbyqntmZhUxrG+gK4XamdJMVut816zqV8r7nOm45zTl9f7CzAYWujZyjIxWvnzuF0FuArd6Ys53yy7fc1W+Rb1mQKvgWYOnasASTTd236cSR53Dm9vSNEo6kfttbnc+P3D6f8vOng87k509rPqfZB/vBtKxacOxAMn3vAKFVCoZnPOfVhplSedykWmrWy3EnL2eF5cwQCQfyRSMpyziXbfl8la+olm9ViMea8UE6m4LcB105ZrgY6kjiuG/Aopaxa6whQk+RxeSschWDo/PbjWF+AQ819xGLQWO2ecZiAuaTh72VOq/U6aeseYWh0gpJih9lxhEipZAr+TuDLSikfMArcBtw330Fa65BSag9wJ7AD+DDw7BKy5rxgKMxrR7vOW+d2FbJnfweGAX1D4xdsn8/mdb5URsx5tRXxMYo6ekal4IucM+9NW611O/AAsBvYB+zQWr+qlHpGKbVtnsM/RbxXzxHinxIeXGrgfNTVF6DCU4jNKv3v062k2IHbaae9Z9TsKEKkXFL98LXWO4hfpU9dd8sM+31k2vIZ4IbFxxPBiQi9g+NcvNprdpS8UVtRzMn2QSKRKFb5IytyiPw2Z7j2nhFixPuIi+VRV1FMOBKjq3/M7ChCpJQU/AzX1j2C1WLgK01td0Uxu6pyJxbDoEOadUSOkYKf4dq6h6ksK5Lxc5aR3WahqrxICr7IOVJFMthYMEz/UPDcE6Bi+dRWFDMwMsHoWMjsKEKkjBT8DDY5kFeNV6YzXG51ie6Z7X65yhe5Qwp+BjvbG6DAbqWspMDsKHnH43LgKrLT5pfBXUXukIKfoWKxGJ29o9RVumT+WhMYhkGdr5jO3gDhiMyCJXKDFPwMNRwIMToepqFSZrcyS0Oli0g0JqNnipwhBT9DTT7p2VCVPaP55Zqq8iJsVkOadUTOkIKfoTr8o5Q47Xhc0n5vFqvFQm1FMW3+UWIxGYVOZD8p+BkoHIlyti9ArU9655it3uciMB6mfzhodhQhlkwKfgbq7h8jEo2d6xoozFOX+KPbJt0zRQ6Qgp+B2v2jWCwGVcs4o5KYWVGBjQpPIa3d0o4vsp8U/AzU0TNKVVmRDIecIRqqXPQOjstTtyLrSUXJMCNjIQZHJ841JQjzNVbGe0q1yFW+yHJS8DPM5KP8tdJ+nzE8Lgcel4PWLin4IrtJwc8wbd0juIrseGR6vYzSWOWmqy/A+MTC5hQWIpNIwc8g4xNhOnsDNFS6MGQ4hYzSWOUiBrR2S28dkb2k4GeQo839RGMxGqpkOIVMU+4uoLjQRmvXsNlRhFg0KfgZ5MDJXhx2C5WlRWZHEdMYhkFjlZuOngAT4YjZcYRYFCn4GSIciXL4dB8NPhcWizTnZKKmajfRWIw26a0jspQU/AxxonWAsWBYmnMymK+0kOJCG6c7pVlHZCcp+BnizRM92K0Wmd0qgxmGwYqaEjp6RhmRh7BEFpKCnwGisRhvnPCjmkqx2+S/JJOtrHETi8G+436zowixYFJdMsDJ9kH6hoJsXeczO4qYR5m7AE+xg9e1FHyRfaTgZ4BXj3Rjt1m4eLXX7ChiHvFmHXfij/S42XGEWBBbMjsppe4CHgTswLe01g9N274FeBQoAZ4HPqm1Diul7gG+DnQldv251vqBVIXPBZFolNeOdbF5tZdCR1L/HcJkK2tK2P9WL68e7eZdVzSaHUeIpM17ha+UqgO+BlwDbAHuU0ptnLbbY8D9Wut1gAH8aWL9NuAzWustiX9S7KfRLQMMBUJcvqHK7CgiSSXFDlZUu3nxYKfMhCWySjJNOjcBu7TWfVrrUeAJ4PbJjUqpJqBIa/27xKrvAR9IfL0duEcpdVAp9ZhSqix10XPDq0e7KHBYuUSac7LKlZuqae8Z5VTnkNlRhEhaMgW/FuicstwJ1Ce5vRP4KnAJ0Ap8Z9FJc1A4EuV17Wfr2gocdqvZccQCbFU+HHYLe/Z3zr+zEBkimUZjCzD1c6sBRJPZrrW+dXKlUuobwMmFhPN60/cQks/nTtu5k/XywU5Gx8PcfOUKfD43sb4AblfhBfvNtC5ZdrttSccv9Jz5ktVbVsw1m+t4+WAnf37npRQWpPf+Syb8viZLsqZHKrIm81vaBlw7Zbka6Ji2vWb6dqWUB/iY1vqbifUGsKCxZXt7R4hGU99G6vO58fvNf1ry6T0n8bgcNHiL8PuHCQTDDI+c3/PD7Sq8YN1ChEIXnnOpZjtnPmUNBIJcrnzs2tvKsy+c4ppLauY/aJEy5fc1GZI1PZLNarEYc14oJ9OksxO4USnlU0o5gduA5yY3aq3PAONKqasTqz4EPAuMAJ9XSl2RWH8/8GQS3y8v9A8HOXiql2sursFqkd6x2WhtvYeqcid7DnTMv7MQGWDeSqO1bgceAHYD+4AdWutXlVLPKKW2JXa7G/imUuoY4AK+rbWOAHcAjyiljgKXAZ9Pxw+RjV442EksBtem8cpQpJdhGFy/uZYTbYO0yLDJIgsk1fCotd4B7Ji27pYpX+8HLp/huD3A1iVmzDnRWIw9+ztY31hKZZnT7DhiCa7dXMNTL5ziV3tb+fh7pvdWFiKzSFuCCY6d6adncJzrNteaHUUsUXGhnWsuruGVI10Mjk6YHUeIOUnBN8Fv3mynuNAmY+fkiJu2NRCOxNj9RpvZUYSYkxT8ZeYfGOP1436u21Irfe9zRHW5k82rvfzmzXZCMhuWyGBS8JfZr/a2YjEMbrqswewoIoVu3t7AUCDEiwfPmh1FiFlJwV9GgfEQew50cvmGSsrcBWbHESm0oamM1bUlPP1yM6FwdN79hTCDFPxl9Nt9HQQnIrzzchlhMdcYhsEfXbeKvqEgz++XfvkiM0nBXyahcJSdr7exoamMxqrseZxbJG9jUxnrGkp5+uVmJkLSli8yjxT8ZfKbfe30Dwe55coms6OINDEMg1uvXcngyAS732w3O07WCUdhNBhO6T9pXTufzLixDIITEX7+UjPrG0vZuEJGiM5lqrGMTSvK+NmLzVy5qRpPscPsSFkjGArz2tGu+XdcgO0bqrCleWC7bCJX+Mtg5+utDAVC/PF1qzEMw+w4Is3uunkdwVCEx3edMDuKEOeRgp9mgfEQz73SwiWrvayp95gdRyyDGm8x776ykZcPd3H0TL/ZcYQ4Rwp+mv3ni82Mjoe59dpVZkcRy+i9V63AV1rID36h5WEskTGk4KdRS9cwO/e2cf2WWpqqpWdOPnHYrXzonYqzfQF27JSmHZEZpFTGMB8AAA61SURBVOCnSTQW4we/0BQX2bjt+tVmxxEmuGill1uubOK3+zp48aBMhSjMJwU/TZ7f38HJjiHufPsaXEV2s+MIk9x63UpUQyk/+IWmtXvE7Dgiz0nBT4Ou/gA/3vUW6xtLuWpTtdlxhImsFguffP8mnIU2/seP99HeM2p2JJHHpOCnWCgc5btPHcZmMfj4ezZKN0yBx1XA5z54KQD/+MM3pegL00jBT7EnfnOSM13DfOw9G/B6Cs2OIzJEjbeYv7nrUgzg64+9zpvH/Wn7XuFIFP/AGCfaBjh4qpe9x7rZe6ybAyd70C39dPUFCMrQD3lJHkFLoZcOdfKrva3cdFk9l66VyU3E+Wq8xXzhT7byyFOH+OefHOSGS+u4/fpVOAsXf49nfCJMS9cIpzuHaD47zOnOIfz9Y8SSONZbUkBjlTvxz0VTlZsyd4F8Ks1hUvBT5NCpXv7tmWNsaCrjA3+wxuw4IkNVlTl54EPbePL5Uzz3agsvHz7LDVtquX5LHV5PERMz9NmP9QUIBMOEwlHae0ZoOTtCS9cwLV3DnO0LEEtU9zJ3AQ1VLi5TPsrchXhcDtxFBRiW+A7hcJTxiQiDI0H6R4J09gRo84+w70TPuT8QpS4HK2s9rKotYXVtCbU+F1bLhX8ACuw2bGloH4jFYgSCYYZHQ4yOhwiGIoTCUSZCUULhKOFIFMOIj1tksxrYbVYK7BachTachXZKXQ4KHVLWZiOvTAqc6hjioScPUVtRzP1/fDH2dLwTRM6w2yzc8fY1XLmpiudeaeFXr7Xxi1dbKXU58BQ7KCywUWC3Eo3GmAhHmAjH6BsaZzgwca64FzqseD2FXLzKS4WnEK+nkKJpY8aMjoVY01DK/mnNRxaLgbekEG9JIRetKicUjtI/HKR3aBx//xi6pf9ck5PNalBRWkRlaRGVZUX4Souw2yxLGqMmEo3SOxSkuz9Ad//YuX9n+wL4B8aIRC/8fGKzGjhsVqzW+B+fWCzedDURihKNnb9/UYGVUlfBuTknNq+ukPknEqTgL9Hh5j6+85ODuJ12Pn3H5gvedELMprHKzX3v28Rt16/mwKleDjf3caJ1gGBfgIlQFIsRf4Br8sq1qcpFeUm8uBcX2lLW9GK3Wagsixf0DU3xwf1Gx0J0D/y+GB882UsMMACPy8H+t3qpqyimzF2Ap9iBs9CGw2ZlYDxMT+8o4XCUkbEQAyNBBkcnGByZYGAkSPfAGL2D4+cVdYfNgi/x/ctLCnA7HbiddtxOOw67FbvNgmWOnzUUjhIYDzM6HmJgOP7pZWA4iG4Z4EhzP6CpLneyoaks/m9FGcVLaEbLZlKdluCVI108+vQRqr1OPnPHFkpdchUhFs7rKeQPLq3j8o1V50aLjCWuWg3DwO0qZHhkfFkzFRfZWVlkZ2VNCQAT4Qg9A+N094/RNxyks3eUQ6d6Z7wan85iGJQU2/G44vcMtq+vPPeJobLMSanLgWEYjAYXN1qm3WbB43LgcTmorSg+tz4ai1FX4aK5c4ijZ/p56fBZdr/ZjsUwWN9UyvWXNbC2xp1X71sp+IswEYrw+O632PVGO+vqPfzF7Zcs6cabENNl2o1Th81KbUXxuYK6fUMVRXYrw2MhBkeCjCXuMRS7ChkdGcdqteAuslPicuAqss95hZ4uFsOgvtKFaijlnZc3Eo5Eae4cZt9bPbyuu3nkPw5gAKvrPFymfGxd58NXWrTsOZeTFPwFOtUxxL89e5R2/yjv2N7AbdevljZ7kZcsFgNPseO8Mf99Pjd+/7CJqWZns1pYU+9hTb2H265fxVgUdv6umTe0nx/veosf73qLxioXl63zsVVVUjfl00KukIKfpN7BcX7y/ElePtyFp9jBp+/YzMWrvGbHEkIsgmEYNFW7ed/VK3nf1SvpHhjjDe3n9ePdPLnnNE/uOU2N18nWdT4uXetjRbUbywy9lbKNFPw5xGIxTnYMsXNvK3uP+bFYDN5zVRO3XNkkN2eFyCGVpUW864pG3nVFI/3DQd484ed17efZ37Xw85fPUFxoY+OKci5aWc5Fq7xZ2+snqaqllLoLeBCwA9/SWj80bfsW4FGgBHge+KTWOqyUagQeAyoBDdyttc7oEaRC4QinOoY4cLKX14510zM4TlGBlZu313PTZQ3y9KwQOa7MXcDbt9bz9q31jIyFOHS6l8On+jjU3Mdrx7qB+B+IlbUlrKwpYVVNCY1VLhx2q8nJ5zdvwVdK1QFfAy4DgsBLSqndWusjU3Z7DLhXa/07pdS/An8KPAI8DDystf6RUuqLwBeBv0n1D7FQsViM4ESEgZEg/sF4t7M2/yht3SM0nx0iHIlhtRhsWFHGe9+2gu3rK+WKXog85Cqyc+XGaq7cWE0sFqPdP8qh032c7BjkeOsArxyJ9yqyGAYVpYVUlTmpLCuiKtHN1FNckOhi6siIe33JVLGbgF1a6z4ApdQTwO3A3yWWm4AirfXvEvt/D/iKUupR4Drgj6as/y3JFXwrsKg2s8B4mJ2vtxEYDxGJxghHooQj8QdYxoJhRsfDjAXDhKdNZ1/osFHtdbJlbQWraj2srHEve5G3WS0X9PYpKrARCS++B9BM51yq2c6Zb1lT3aabjqzpeE0nzzvbz7/Y1yVd//9z5VlYVoPGajeNUyYzGhydoK17hFb/CP6BcXoHx9Ct8TGMpit02HAWWnHYbRTYLRTYLNjtVmxWC1aLgcUS/8Nhs1q4+uKaC3oMJZN1yj4zftxIpqLVAlNnb+gELp9nez1QAQxprcPT1iejBqCsbOF3yb3AR+tKF3xcpqivSf28t6vqy7LinOk6b7qypkO2/P/Pxet1LfrYdPz8c1lK1vjxsKqxPEVp5vteC8paA5ycvjKZgm+B88ZiMoBoEtunr2facXN5DbiW+B8JGdZPCCGSYyVe7F+baWMyBb+NePGdVA10TNteM8P2bsCjlLJqrSOJfaYeN5cg8EKS+wohhPi9C67sJyVzF2EncKNSyqeUcgK3Ac9NbtRanwHGlVJXJ1Z9CHhWax0C9gB3JtZ/GHh2EeGFEEKkwLwFX2vdDjwA7Ab2ATu01q8qpZ5RSm1L7HY38E2l1DHABXw7sf5TwH1KqSPEPyU8mOofQAghRHKMWCyZqRKEEEJkO/M7hgohhFgWUvCFECJPSMEXQog8IQVfCCHyRF4NEKOU+lvgjsTiz7XWnzczTzKUUv8dqNBaf8TsLLNRSv0h8LdAMfBLrfVfmhxpVkqpPwH+a2LxWa31X5uZZyZKqRLgJeC9WutmpdRNwD8BRcCPtdYZ09tthqz3AX9B/KHLvcAntNYTZmacND3rlPX3A7drrW8wKdoFZnhdrwK+CbiBA8A9i3ld8+YKP/GmeQdwKbAFuEwpdau5qeamlLoRuMfsHHNRSq0Cvkt8zKRLgK1KqXebm2pmiedIvg1cD2wGrk38XmQMpdQVxB86XJdYLgL+D/B+YAOwPVNe3xmyrgM+B7yN+O+CBfgz0wJOMT3rlPUbgS+YEmoWM7yuJcBPgPu01psSu318MefOm4JPfJiGz2qtJxIPhR0FGk3ONCulVDnxUUr/3uws87iV+FVnW+J1vRN4xeRMs7ES/50vJj7Utx0YMzXRhf6UeJGcfCr9cuCE1vp0Ylyqx4APmBVumulZg8CntNZDWusYcJDMeY9Nz4pSqgD4F+BLZoWaxfSsNwMva60PJJb/HHhyMSfOmyYdrfXhya+VUmuJN+1cPfsRpvsX4g+8NZgdZB5rgAml1H8Sf3M/TXwY7IyjtR5ODNN9DAgQH731JXNTnU9rfS+AUmpy1WyDE5puetbEU/dnEut8wP3AR0yKd54ZXleAfyD+6em0GZlmM0PWNcCIUupHwHrgReCzizl3Pl3hA6CU2gT8Cvic1vqE2XlmopS6F2jVWv/a7CxJsBEfQvvjwFXAFWRoM5RS6hLgY0AT8UIaATKuDX+a+QYvzDiJOTR+Dfyr1vo3JseZkVLqZqBRa/1vZmdJgg14J/F7T5cR/4S6qGaovCr4ifF+fg18QWv9fbPzzOFO4B1KqX3E5x14n1LqmyZnms1ZYKfW2q+1HiP+UfPyeY4xyzuBX2utu7XWQeJzNNxgaqL5zTY4YUZSSq0n/qnp+1rrr5qdZw4fBDYl3mOPAtuUUj82OdNszgK/SzTrRYDHWeR7LG+adJRSDcBTwJ1a611m55mL1vrmya+VUh8BbtBaf9q8RHN6Gvi+UqoUGAbeTfx1zkT7gW8opYqJN+n8IbMMI5tBXgGUUmoN8aaHu4g3Q2QcpZQb+CXwgNb6B2bnmYvW+mOTXyulbgC+rLW+c/YjTPVL4pNKNWitW4H3Aq8v5kT5dIX/10Ah8E9KqX2Jf580O1S201q/AnyDeK+CI8TbcDPyY7LW+pfAD4m/WQ4Qv2n7dVNDzUNrPU68Hfw/iL++x4AnzMw0h3uBKuCzU95jf2d2qGyXKPKfAH6WGKCynPj9hwWTwdOEECJP5NMVvhBC5DUp+EIIkSek4AshRJ6Qgi+EEHlCCr4QQuQJKfhCLJBSartS6ruJr7cppTK1m6QQ58mbB6+ESKFNJMaz0VrvBW43N44QyZF++EIkJJ64/J/AKOAiPkjVVuJjkBvEHyxqSaz3EB+y9vvAd7TWFymlPMBDxIffjgHPAv8tMcqlEKaTJh0hzncR8XFWPgFUAFdprTcSL+xfSDz1+CVgj9b6o9OO/TbQC1wMbCM+5n6mD84m8og06QhxvtbJYX6VUg8Cn1BKrSY+yNrwPMe+G7g6MRZ8MNHO/1dk+PANIn/IFb4Q5xsBUEq9B/h5Yt1Pic/qZcxz7PShjC3Ex+sRIiNIwRdiZjcDP9NaP0J8btY/Ij5jFkCYmQv5L4D7lVJGYjal+4jPvSBERpCCL8TMvgvcoJQ6CLwBnARWKqUswO+AVUqpn0w75i+ASuJT+x0ENPFpKoXICNJLRwgh8oRc4QshRJ6Qgi+EEHlCCr4QQuQJKfhCCJEnpOALIUSekIIvhBB5Qgq+EELkCSn4QgiRJ/4/B1j3TaSIqQAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -891,52 +1333,91 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 115, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEVCAYAAADtmeJyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXiU9b3//+esSSb7MpONHWQnuOAhUgpqhUAgjSL9VvGIHgVF2oPN9xIPtZ6yWFv1Zw09Fr2O2p89rXAOthAwamP0WG0VqoRWFgEh7JAwmSwkk5nJZJb7+0d0JLLMTEi4ZzLvx3VxwX3fn/vOO8Mkr7nv+3N/PhpFURSEEELELK3aBQghhFCXBIEQQsQ4CQIhhIhxEgRCCBHjJAiEECLGSRAIIUSMCykIKisrKS4uZubMmaxfv/6i7T744ANuvvnmwPKnn37K5MmTKS0tpbS0lB//+MeXX7EQQohepQ/WwGq1Ul5ezubNmzEajdxxxx1MnjyZESNGdGvX2NjI008/3W3d3r17ue+++3jwwQd7t2ohhBC9JugZwbZt2ygsLCQtLQ2TyURRURFVVVXntXv88cf54Q9/2G3dnj17+OijjygpKWHJkiXU19f3XuVCCCF6RdAgaGhowGw2B5YtFgtWq7Vbm9/97neMHTuWiRMndlufnJzM3XffTWVlJdOnT6esrKyXyhZCCNFbggaB3+9Ho9EElhVF6bZ88OBBqqurWbp06Xn7rlmzhpkzZwJw5513Ultbi91u7426hRBC9JKgQZCTk4PNZgss22w2LBZLYLmqqgqbzcbtt9/OAw88QENDAwsWLMDv9/Piiy/i8/m6HU+n0/Vi+UIIIS5X0JvFU6ZM4fnnn6e5uZmEhASqq6t54oknAtuXLVvGsmXLADh16hQLFy5kw4YNALz77rsMHjyY4uJitmzZwsSJEzGZTGEV2NLiwO+PznHxMjOTaGpqV7uMHonm2kHqV5vUrx6tVkN6emJY+wQNguzsbMrKyli4cCEej4f58+dTUFDA4sWLWbZsGRMmTLjovk8//TT//u//zrp168jIyOCZZ54JqzgAv1+J2iAApHYVSf3qkvqjhybSh6FuamqP2v8QszkZmy0674lEc+0g9atN6lePVqshMzMpvH36qBYhhBBRQoJACCFinASBEELEuKA3i0Vssjs7cbi9IbePM+jRy8cKIaKSBIG4IFeHlx37rcEbfun6Mdno4+TtJEQ0ks9wQggR4yQIhBAixkkQCCFEjJMgEEKIGCdBIIQQMU6CQAghYpwEgRBCxDgJAiGEiHESBEIIEeMkCIQQIsZJEAghRIwLKQgqKyspLi5m5syZrF+//qLtPvjgA26++ebAcltbGw888ACzZ8/mrrvu6jb3sRBCiMgQNAisVivl5eVs2LCBLVu2sHHjRmpra89r19jYyNNPP91t3dq1a5k0aRJ/+tOf+N73vseTTz7Ze5ULIYToFUGDYNu2bRQWFpKWlobJZKKoqIiqqqrz2j3++OP88Ic/7Lbugw8+oKSkBIC5c+fyl7/8BY/H00ulCyGE6A1Bg6ChoQGz2RxYtlgsWK3dhyf+3e9+x9ixY5k4ceJF99Xr9SQlJdHc3NwbdQshhOglQQeQ9/v9aDSawLKiKN2WDx48SHV1Nb/97W85c+bMJY+lKApabXj3p8OdhDnSmM3JapfQIw3NTpKT4kNubzLFYc4whdze7uzE1RH6xDcJ8XqSTcaQ20P0vvZfkfrVFe31hyNoEOTk5FBTUxNYttlsWCyWwHJVVRU2m43bb78dj8dDQ0MDCxYsYMOGDVgsFhobG8nJycHr9eJwOEhLSwurwKamdvx+Jax9IoXZnIzNZle7jJ7R6bC3d4Tc3Ol0Y/P5Qm7vcIc/8U2Hwx1y+6h+7ZH61RbN9Wu1mrA/QAf9eD5lyhS2b99Oc3MzLpeL6upqpk2bFti+bNky3nnnHbZu3cpLL72ExWJhw4YNAEyfPp0tW7YA8PbbbzNp0iQMBkNYBQohhOhbQYMgOzubsrIyFi5cyK233srcuXMpKChg8eLF7Nmz55L7Pvzww3z22WfMmTOHDRs28NOf/rTXChdCCNE7NIqiRPR1F7k0pA5Fp+PDnSdCbn/9mGwSw5izuCeXhsI5fjS/9iD1qy2a6++TS0NCCCH6NwkCIYSIcRIEQggR4yQIhBAixkkQCCFEjJMgEEKIGCdBIIQQMU6CQAghYpwEgRBCxDgJAiGEiHESBEIIEeMkCIQQIsZJEAghRIyTIBBCiBgnQSCEEDFOgkAIIWJcSEFQWVlJcXExM2fOZP369edtf/fddykpKWHOnDmsWLGCzs5OACoqKpg6dSqlpaWUlpZSXl7eu9ULIYS4bEGnfLJarZSXl7N582aMRiN33HEHkydPZsSIEQA4nU7WrFlDRUUFWVlZlJWVUVFRwfe//3327t3LihUrmDt3bp9/I0IIIXom6BnBtm3bKCwsJC0tDZPJRFFREVVVVYHtJpOJ999/n6ysLFwuF01NTaSkpACwZ88eKioqKCkp4ZFHHqG1tbXvvhMhhBA9EjQIGhoaMJvNgWWLxYLV2n2uWYPBwIcffsiNN95IS0sLU6dOBcBsNrN06VLeeOMNcnNzWbNmTS+XL4QQ4nIFvTTk9/vRaDSBZUVRui1/Zfr06XzyySc899xzrFq1il/+8pesW7cusH3RokXMmDEj7ALDnYQ50pjNyWqX0CMNzU6Sk+JDbm8yxWHOMIXcXunj40P0vvZfkfrVFe31hyNoEOTk5FBTUxNYttlsWCyWwPLZs2fZu3dv4CygpKSEsrIy7HY7mzZt4t577wW6AkSn04VdYFNTO36/EvZ+kcBsTsZms6tdRs/odNjbO0Ju7nS6sfl8obd3e/v0+FH92iP1qy2a69dqNWF/gA56aWjKlCls376d5uZmXC4X1dXVTJs2LbBdURSWL19OXV0dAFVVVVx77bWYTCZeeeUVdu3aBcBrr73WozMCIYQQfSvoGUF2djZlZWUsXLgQj8fD/PnzKSgoYPHixSxbtowJEybwxBNP8OCDD6LRaBgxYgSrV69Gp9Oxdu1aVq1aRUdHB0OGDOGZZ565Et+TEEKIMGgURYno6y5yaUgdik7HhztPhNz++jHZJMYF/VwR4HB72bHfGrxhD48fza89SP1qi+b6++TSkBBCiP5NgkAIIWKcBIEQQsQ4CQJxQTv2W/nrrjr2HW2mxR56N08hRPQJ/e6biBkf/OM0v3vnCwx6LUfr7fAFTL86j8E5sfOAjRCxRIJAdPPBZ10hMHFEFuOHpuP2+PngH6f5aHc9ifF6stIS1C5RCNHL5NKQCOjo9PLHPx9mzOB0ls6fiE6nxRSv56Zr80mI0/P+30/j7PCqXaYQopdJEIiAj/ecwen2ctu0Yeh1X781EuL03HxdPp0eP38/aFOxQiFEX5AgEAD4FYX3ak4yLC+FEfmp521PS4pj7JB0jtS1YTvrUqFCIURfkSAQAOw+3IS1xcWMSQMv2mbC8EwS4nTs2N9AhD+QLoQIgwSBAODdHSdJT47julHmi7Yx6LVcO9JMY2sHR+vbrmB1Qoi+JEEgaHd5OHC8hW8X5Ha7N3Ahw/JSSE+O47NDTfiidAwoIUR3EgSCvUebUICC4VlB22o0Gq4ZmUW7y0PtqbN9X5wQos9JEAj2HmkmKcHAkBAfGMvPSsSSnsDuw014ff4+rk4I0dckCGKcX1HYe6SJ8UMz0GrPn4L0QjQaDddclYXL7WP/8ZY+rlAI0dckCGLcSWs7bU4P44dlhLVfdoaJAeZE9hxukofMhIhyIQVBZWUlxcXFzJw5k/Xr15+3/d1336WkpIQ5c+awYsUKOjs7Aairq+Ouu+5i1qxZPPTQQzgcjt6tXly23UeaABg3NDPsfSeNtuD3Iw+ZCRHlggaB1WqlvLycDRs2sGXLFjZu3EhtbW1gu9PpZM2aNbz66qu89dZbuN1uKioqAFi9ejULFiygqqqK8ePH88ILL/TddyJ6ZM+RJgbnJJOaaAx735REY+AhM+lOKkT0ChoE27Zto7CwkLS0NEwmE0VFRVRVVQW2m0wm3n//fbKysnC5XDQ1NZGSkoLH42HHjh0UFRUBMG/evG77CfW53F6OnG5j/NDwLgudq+shMz0bqg/S0SmXiISIRkGDoKGhAbP564eMLBYLVmv3uWYNBgMffvghN954Iy0tLUydOpWWlhaSkpLQ67sGODWbzeftJ9R1tL4Nv6IwamBaj49h0Gv51oQcrC1OXn37gDxxLEQUCjoMtd/vR6P5ujeJoijdlr8yffp0PvnkE5577jlWrVrFo48+el67C+0XTLiTMEcaszlyx/C37qoH4PoJeSSZul8aamh2kpwUH9JxRiXFk5ocz6Y/1zJ2eBbzb74q6D5KGMcHMJniMGeYQm4Pkf3ah0LqV1e01x+OoEGQk5NDTU1NYNlms2GxWALLZ8+eZe/evUydOhWAkpISysrKyMjIwG634/P50Ol05+0XqqamdvxR+gSr2ZyMzWZXu4yL2nPIRk6GCZfDjcvh7r5Rp8PeHvrMZNMn5nK8rpX/emsfh0+2cNctI4kz6i7a3un2hnV8p9ONzecLuX2kv/bBSP3qiub6tVpN2B+gg14amjJlCtu3b6e5uRmXy0V1dTXTpk0LbFcUheXLl1NXVwdAVVUV1157LQaDgUmTJvH2228DsGXLlm77CXUpisKRulaG56X0yvE0Gg0Plo5j7pQhfLy7nn//zSe8/n4tuw83cvh0Kyesds40O2lu68Avl4+EiChBzwiys7MpKytj4cKFeDwe5s+fT0FBAYsXL2bZsmVMmDCBJ554ggcffBCNRsOIESNYvXo1ACtXrmTFihW8+OKL5Obm8txzz/X5NyRC09jaQZvTw7BeCgIAnVbLvGnDGD0ojbe2H+fdmpNUfXrivHaZKfFcO8pMislAYoKh176+EKJnNEqE392TS0N942/7zvDSG/tYee/1F5yLWNHp+HDn+b/EL+b6MdkkxnX/XNHR6eWEtZ2OTh8er49Orx9nh5ddtY3sO9aM0aDj5usGkJUa/F7BhY5/KZH82odC6ldXNNffk0tDMmdxjDpS14ZRr2WAJbHPvka8Uc/IC/RI+s51Azhc38avXt9F9acnuPGafPKy+q4OIcSlyRATMepIXRtDcpLRadV5C+RkmJg1eRDJJiMfflaHs8OjSh1CCAmCmOTx+jlhtTMs7/wpKa8kU7ye6Vfn4fcrfLJPZj0TQi0SBDHolK0dr0/p1RvFPZWSaGTiiExONrRzwtqudjlCxCQJghh0wtp1E2xQiPMP9LWxQzLISInj0/1WfDK/gRBXnARBDDrZ0E68URdSb50rQavVcN0oMy63jyMyeJ0QV5wEQQw60dDOAEsS2h4M+dFXcjJMpCfHse9oi9wrEOIKkyCIMX5F4VRDOwMtkTWGk0ajYeyQdFodnZxulHkrhLiSJAhiTGNrBx2dvogLAoAhuSkkxOnZd1SmvxTiSpIgiDEnv+yZE4lBoNNqGDM4jTPNTs62u4PvIIToFRIEMeZkgx0NMCAr8oIAYHh+KhrgaJ3cNBbiSpEgiDEnG9qxZJguOUS0mhLi9ORkmjhab5ebxkJcIRIEMeZkBN4o/qZheSm0uzzYzrrULkWImCBBEENcbi+NrR0RHwSDspPRaTUcqYvO0R+FiDYSBDHkZEPk3ig+l0GvZaAliWNn2vBF6RDkQkSTkIKgsrKS4uJiZs6cyfr168/b/t5771FaWsp3v/tdli5dSmtrKwAVFRVMnTqV0tJSSktLKS8v793qRVhO274MAnNkBwF0XR7q9Pipb5JnCoToa0HnI7BarZSXl7N582aMRiN33HEHkydPZsSIEQC0t7ezatUqNm3aRHZ2Nr/61a94/vnnefzxx9m7dy8rVqxg7ty5ff6NiODqGp3EGXVkpMSpXUpQuVkm9DoNJ63tDIiC4BIimgU9I9i2bRuFhYWkpaVhMpkoKiqiqqoqsN3j8bBy5Uqys7MBGDVqFPX19QDs2bOHiooKSkpKeOSRRwJnCkIddU0O8jIT0UTQ0BIXo9NqyTcncbKhXXoPCdHHggZBQ0MDZrM5sGyxWLBarYHl9PR0ZsyYAUBHRwcvvfQSt9xyCwBms5mlS5fyxhtvkJuby5o1a3q7fhGGukYHeVkmtcsI2UBLEh2dPhrPdqhdihD9WtBLQ36/v9snSEVRLviJ0m6384Mf/IDRo0dz2223AbBu3brA9kWLFgUCQ1x57S4PrY7OqJoScoA5EY2ma5A8IUTfCRoEOTk51NTUBJZtNhsWi6Vbm4aGBu6//34KCwt57LHHgK5g2LRpE/feey/QFSA6XfgPMYU7CXOkMZsjY8x/29EmAMYMywqppoZmJ8lJoQ9TbTLFYc4I/WxDCfH4+eYk6hodYR8fIue17ympX13RXn84ggbBlClTeP7552lubiYhIYHq6mqeeOKJwHafz8eSJUuYPXs2S5cuDaw3mUy88sorXHPNNUycOJHXXnutR2cETU3t+KO0C6HZnIzNFhl94ffV2gBINGhDq0mnw94e+iUZp9ONzecLvb3bG9Lx8zJNfLq/gaOnWtCEcfxIeu17QupXVzTXr9Vqwv4AHTQIsrOzKSsrY+HChXg8HubPn09BQQGLFy9m2bJlnDlzhn379uHz+XjnnXcAGD9+PE8++SRr165l1apVdHR0MGTIEJ555pmefWfistU1OjHqtWRGyGQ0oRpoSeLT/Q3sOdLEsFz1p9YUoj8KGgQAJSUllJSUdFv38ssvAzBhwgQOHDhwwf0mTZpERUXFZZYoekNdk4PczMSImowmFIkJBtKT4/j8aDOl3xqqdjlC9EvyZHGMiLYeQ+fKNydy5HQrzg6v2qUI0S9JEMQAl9tLi90dVT2GzjXAnIhfgc+PNatdihD9kgRBDKj7cpiGvMzoDIKstARM8Xp21zaqXYoQ/ZIEQQyo+3IO4Gg9I9BqNIwZnM6eI0345SljIXqdBEEMqG90otdpyUqLrh5D5xo3NIM2p4fjZ6KzS58QkUyCIAbUNTnIyTCh00bvf/eYIRlogF1yeUiIXhdS91ER3eoaHQzLS8HrB7cntJ43OkMfFxWmpAQDw/JT2HOkiVu/PUztcoToVyQI+jl3p4/G1g6mFuTi9njZsd8afCdg0rjcPq4sfAXDs6j4yxFaHZ2kJhrVLkeIfiN6rxWIkNQ3R3ePoXMVDMsEYO+RJpUrEaJ/kSDo56K9x9C5BmUnkZZkZNdhCQIhepMEQT9X3+REp9VgSU9Qu5TLptFoKBieyedHm/D6/GqXI0S/IUHQz9U1OsjOMKHX9Y//6gnDsnC5fRw+LbPdCdFb+sdvB3FRdY0O8jKjc4yhCxk7JB2dViOXh4ToRRIE/ZjH66PhrKtf3B/4SkKcnpED09gtQSBEr5Eg6MfONLtQlP5xo/hcE4dnUtfooPGsS+1ShOgXJAj6sUCPoX7QdfRcBSOyANgt3UiF6BUhBUFlZSXFxcXMnDmT9evXn7f9vffeo7S0lO9+97ssXbqU1tauG3l1dXXcddddzJo1i4ceegiHw9G71YtLqmt0oNFAdphz/Ua67PQELGkJcnlIiF4SNAisVivl5eVs2LCBLVu2sHHjRmprawPb29vbWbVqFS+99BJvvPEGo0aN4vnnnwdg9erVLFiwgKqqKsaPH88LL7zQd9+JOE9dkwNLWgIGff868fuqG+n+4y10ekKfx1gIcWFBf0Ns27aNwsJC0tLSMJlMFBUVUVVVFdju8XhYuXIl2dnZAIwaNYr6+no8Hg87duygqKgIgHnz5nXbT/S9rlnJrsxlIY1Wg8PtDfmP/zJHky4YkYnH6+fAiZbe+QaEiGFBxxpqaGjAbDYHli0WC7t37w4sp6enM2PGDAA6Ojp46aWXuPvuu2lpaSEpKQm9vutLmM1mrNbQxrkRl8/r89PQ4uLakebgjXuB2+Nj10FbyO0nXmZdowamYTRo2XW4iYLhWZd1LCFiXdAzAr/fj+acCc8VRem2/BW73c4DDzzA6NGjue222y7Y7kL7ib7R0OLC51f63Y3irxj0OsYOzmDP4SYUmaxGiMsS9IwgJyeHmpqawLLNZsNisXRr09DQwP33309hYSGPPfYYABkZGdjtdnw+Hzqd7oL7hSIzMynsfSKJ2Zysytc9WN81gcvYq8yBGpRmJ8lJoU9OE05bg0Hfp+1NpjjM37jpPeXqfF744y46/DAo5/zXWa3XvrdI/eqK9vrDETQIpkyZwvPPP09zczMJCQlUV1fzxBNPBLb7fD6WLFnC7NmzWbp0aWC9wWBg0qRJvP3225SUlLBlyxamTZsWdoFNTe34L/eCskrM5mRsNnVm1DpwpGsCl3gNgRqcbi/29o6QjxFOW48nvGOH297pdGPzdb8xPMzSdbbzYc1JZk0e1G2bmq99b5D61RXN9Wu1mrA/QAcNguzsbMrKyli4cCEej4f58+dTUFDA4sWLWbZsGWfOnGHfvn34fD7eeecdAMaPH8+TTz7JypUrWbFiBS+++CK5ubk899xzPfvORNjqm5xkpcYTZ9SpXUqfyUiJZ4A5id2HG88LAiFE6EKamKakpISSkpJu615++WUAJkyYwIEDBy64X35+Pr///e8vs0TRE1eyx5CaCoZn8s6nJ3B2eDHFyzxLQvRE/+pgLgDw+xXqm5zk9qPB5i6mYHgmPr/CvmPNapciRNSSIOiHGltdeH3+fttj6FzD81NIjNez67BMai9ET0kQ9EN1jU6g/w02dyE6rZZxQ7u6kfqlG6kQPSJB0A/VNXWN6ZQbA2cEABOHZ9Hm9HD8THT28hBCbRIE/VB9o4O0JGPM3DwdNywDDcggdEL0kARBP1TXFBs9hr6SYjIyLC+F3XKfQIgekSDoZxRFoa7JGTOXhb5SMDyTo/V2Wh2dapciRNSRIOhnWuxu3J2+mDojAAIDz+2VyWqECJsEQT/z9axk/f8ZgnMNyk4iNckok9oL0QOxcTcxhnwVBLkxdkag0WgoGJZJzRc2vD4/dmcnDrc35P3jDHr62fw9QoRMgqCfqWtykJRgIMVkVLuUK65geBZ/3V3PoZNnGT3cwI79oc9/cf2YbPRx8uMgYpN8Bupn6pqcMXd/4Cvjh2Zg1GupCWOCHCGEBEG/oigK9Y2OmLs/8JU4o44JwzP5+xc2ecpYiDBIEPQjbY5OHB3emLs/cK7rRplpdXRy+NRZtUsRImpIEPQjdU2xM8bQxUwcnoVep2XngQa1SxEiakgQ9CNfdx2N3SBIiNMzfmgGOw80yFzGQoQopCCorKykuLiYmTNnsn79+ou2e/TRR9m8eXNguaKigqlTp1JaWkppaSnl5eWXX7G4qLomBwlxOtKSYq/H0LmuG2Wmua2DptbQp8IUIpYF7S9ntVopLy9n8+bNGI1G7rjjDiZPnsyIESO6tVm5ciXbt2+nsLAwsH7v3r2sWLGCuXPn9k31opuuG8WJaDQatUtR1dVXZaHTajhubScrLUHtcoSIeEHPCLZt20ZhYSFpaWmYTCaKioqoqqrq1qayspLvfOc7zJ49u9v6PXv2UFFRQUlJCY888gitra29W73opj+PMaTRanC4vSH9QaNh1OB0jp+xy+UhIUIQ9IygoaEBs9kcWLZYLOzevbtbm0WLFgGwc+fObuvNZjP33Xcf1157Lc899xxr1qzhl7/8ZW/ULb7B7uykzdHZb28Uuz0+doXxfEDBiCz2HW2mxe4mIyW+DysTIvoFDQK/39/tUoOiKCFfeli3bl3g34sWLWLGjBlhF5iZmRT2PpHEbE6+Il+nvrbrl+S4EeaLfk2l2UlyUui/FMNpazDoI6p9vjmRje8dpL7ZxeC8tKDtTaY4zBmR9fzFlXrv9BWpP3oEDYKcnBxqamoCyzabDYvFEvTAdrudTZs2ce+99wJdAaLT6cIusKmpHb8/Ok/vzeZkbLYrM2vW54e6giDJqL3o13S6vdjbQ7+BGk5bjye8Y/d1+6TB6WSnmzh08ixjB6cF/fDidLqx+XwhH7+vXcn3Tl+Q+tWj1WrC/gAd9B7BlClT2L59O83NzbhcLqqrq5k2bVrQA5tMJl555RV27doFwGuvvdajMwIRmlM2B4nx+pjvMXSuwTlJtDk6aW2XOQqEuJSgQZCdnU1ZWRkLFy7k1ltvZe7cuRQUFLB48WL27Nlz0f10Oh1r165l1apVzJ49m88//5zly5f3avHia6dt7QwwJ8V8j6FzDcruOrU/JnMZC3FJIQ23WFJSQklJSbd1L7/88nntnnrqqW7LkyZNoqKi4jLKE6HwKwqnGh1MHZ+rdikRJSFOT06GiaP1bUwckSkhKcRFyJPF/UBTawfuTh/5lv7ZY+hyDM1Lxu700NQmD5cJcTESBFHM6weH28vhujYAslITLtm/PkrvuV+WwdnJaDUajtbJ5SEhLkZm4ohibo+XHfut7P5yesb6JgeNra6Ltp840nzRbf2V0aBjgCWRo/VtXDfKjFYrl4eE+CY5I+gHztrdJCUYMMhcixc0LC+Fjk4f9V+OziqE6E5+c/QDLe1u6TZ6CfnmRIx6LUfqZIgTIS5ELg1FOZ/fT5ujk4GW6H4Cuy/ptFqG5KZw+HQrbo+POEP4DzZ+k9ffdWkuVHEGPXLCJiKVBEGUa23vRFEgPSlO7VIi2lUDUzl48ixH69oYPTj9so/31f2ZUF0/Jht9nPy4icgkn1GiXHObG4CMFAmCS8lMiSczJY5Dp1plRFIhvkGCIMq12N3odRqSE+UeQTBXDUijxe6WCWuE+AYJgijX3NZBWlIcWnlqNqghecnodRoOnpKbxkKcS4IgivkVhWYZbz9kRr2OIbkpHK1ro6Mz9Bu9QvR3EgRRrKm1A4/XL/cHwjB2SDo+v8IXJ86qXYoQEUOCIIqdtrUDcqM4HGlJceSbE/nixFm8Pr/a5QgRESQIotiphnY0Guk6Gq5xQzPo6PRx+HSb2qUIEREkCKLYSZuD1EQjOp38N4YjOz2BzNR49h1rjtrZ74ToTfIbJIqdbmiXG8U9oNFoKBieid3p4eBJuVcgREhBUFlZSXFxMTNnzmT9+vUXbffoo4+yeaOMw8gAABjPSURBVPPmwHJdXR133XUXs2bN4qGHHsLhcFx+xQKgawpGRycZyXJZqCcGmBPJyTDxWW0jbk/kzFUshBqCBoHVaqW8vJwNGzawZcsWNm7cSG1t7XltlixZwjvvvNNt/erVq1mwYAFVVVWMHz+eF154oXerj2EnrF3j66fLjeIe0Wg0TBptptPjZ3dtk9rlCKGqoEGwbds2CgsLSUtLw2QyUVRURFVVVbc2lZWVfOc732H27NmBdR6Phx07dlBUVATAvHnzzttP9NzR+q4bnZlyaajHMlLiuWpAKgdOtASCVYhYFDQIGhoaMJu/ntDEYrFgtXYfbGvRokV873vf67aupaWFpKQk9PqugbbMZvN5+4meO1pvJzsjAWMvjKQZy64ZmUVCnJ7//839ODo8apcjhCqCDofo9/u7TfqtKEpIk4BfqF1PJg/PzIzu4ZXN5uReP6aiKByz2hk7JIPkpNDPCAwGfVjt+/LYfd0eQqs/GZh9wxC2fHiY31cf4if/8k8hzWKmNDvDqsdkisOcYQq5PfTNe+dKkvqjR9AgyMnJoaamJrBss9mwWCxBD5yRkYHdbsfn86HT6ULe75uamtqjtouf2ZyMzdb7lxwaW12ctbvJz0rE3h76AGoejzes9n157L5uD6HXnxin47Zpw/jjB4d56ref8i/Fo9EH6ZLrdIdXj9PpxuYL/aZ0X713rhSpXz1arSbsD9BBLw1NmTKF7du309zcjMvlorq6mmnTpgU9sMFgYNKkSbz99tsAbNmyJaT9RHBH67veoENyYucTS1+bdnUet317KNs/P8NzGz/D7uxUuyQhrpigQZCdnU1ZWRkLFy7k1ltvZe7cuRQUFLB48WL27NlzyX1XrlzJ66+/TnFxMTU1NfzoRz/qtcJj2dG6NvQ6DXnmRLVL6Tc0Gg0l3xrK4rljOXSqlRX/uZ23th/D3SldS0X/F9KUSSUlJZSUlHRb9/LLL5/X7qmnnuq2nJ+fz+9///vLKE9cyJH6NgZlJwe9fCHCd8P4HAblJLPpg8Ns+vAIb20/zj+NsTB1Qh7D81N6dJ9LiEgnc+dFGZ/fz7EzbXy7IE/tUvqt/KxEls0voPZUKx9+dpq/7bPyl131ZGeYmD4xj5uvzVe7RCF6lQRBlKlvdNLp8TMsN0XtUvq9EQNSGTEglQUzRrLzCxsf7a7j9T/X8m7NSeZOGQKE1oNOiEgnQRBljnz5INnQPAmCKyUhTs/UglymFuTyxYkWXv9zLb9/5wuG56dQOC4bnVYu0YnoJu/gKHPo1FmSEgxkpyeoXUpMGjUonZ8snMSsyYM4fLqN6k9P0SljFYkoJ0EQZQ6ePMtVA1LlkoSKtBoNc6YM4dsTc2lqdfHnf5zG55dJbkT0kiCIIs1tHdjOdjBqYJrapQhgaG4KUybkYG12sW3PGRQlOh98FELuEUSRg6e6xs4fOUiCIFIMy0vF4fLyj0ONpCfHMX5YptolCRE2OSOIIodOthJv1DHQEt3jL/U344dlMDg7ic8ONdLUGt4wGEJEAgmCKHLw5FlGDEiVXioRRqPRUDguhzijno921+P1yf0CEV3kN0qUsDs7Od3oYOQAuSwUieKMOr41IYdWRyf/ONiodjlChEWCIEocOtUKwEi5URyx8rISGTkwjQPHW+QSkYgqEgRR4uDJs+h1WobKE8UR7dqRWcQZdfztcyt+6UUkooQEQZT4/GgzVw1IxaCX/7JIZjTouH60haa2Dg6eOKt2OUKERH6rRIHmtg5ONzqYIF0To8KQ3GRyM03841Ajzg6v2uUIEZQEQRTYe7QZ6OqmKCKfRqNh8thsfH6FmgMNapcjRFASBFFg75Em0pPjyM+SiWiiRUqikQnDMjh2xs5pm0PtcoS4pJCCoLKykuLiYmbOnMn69evP275//37mzZtHUVERP/nJT/B6u06HKyoqmDp1KqWlpZSWllJeXt671ccAn9/P58daGD80Q8YXijLjh2WQYjLwyT4rnV4ZmE5ErqBBYLVaKS8vZ8OGDWzZsoWNGzdSW1vbrc3y5cv56U9/yjvvvIOiKLz++usA7N27lxUrVrB161a2bt1KWVlZ33wX/diRujZcbq/cH4hCOq2WwnE5tLs8VH96Uu1yhLiooEGwbds2CgsLSUtLw2QyUVRURFVVVWD76dOn6ejo4OqrrwZg3rx5ge179uyhoqKCkpISHnnkEVpbW/vo2+i/9hxpRqvRMHZIutqliB7IyTQxLC+F93acpK5RLhGJyBQ0CBoaGjCbzYFli8WC1Wq96Haz2RzYbjabWbp0KW+88Qa5ubmsWbOmN2uPCbtrGxmWn4Ip3qB2KaKHrhtlJs6g4/fvfCHPFoiIFHT0Ub/f3+3atKJ0n57vUtvXrVsXWL9o0SJmzJgRdoGZmdE9wJrZnNzjfets7ZxoaOf+746/4HGUZifJSfEhH89g0IfVvi+P3dftIbz6TaY4zBmmkNuH89onJ8H/uWUkv31rH59+0UjJt4eFtN/lvHcigdQfPYIGQU5ODjU1NYFlm82GxWLptt1mswWWGxsbsVgs2O12Nm3axL333gt0BYROpwu7wKamdvz+6PwUZTYnY7PZe7x/1bZjAIwZkHLB4zjdXuztoQ9l4PGE174vj93X7SG8+p1ONzZf6Dd0w33tJ4228Pfhmbz65ucMyjKRF6QH2OW+d9Qm9atHq9WE/QE66KWhKVOmsH37dpqbm3G5XFRXVzNt2rTA9vz8fOLi4ti5cycAW7duZdq0aZhMJl555RV27doFwGuvvdajM4JYtmO/lREDUslICe+TsIg8Go2Gf5k9mjiDjpcr98kIpSKiBA2C7OxsysrKWLhwIbfeeitz586loKCAxYsXs2fPHgCeffZZfvGLXzBr1iycTicLFy5Ep9Oxdu1aVq1axezZs/n8889Zvnx5n39D/UVdo4NTNgfXj7YEbyyiQmpSHPfOHs1xq50N7x5UuxwhAkKaoaykpISSkpJu615++eXAv0ePHs0f//jH8/abNGkSFRUVl1libNpxoAENMGmUBEF/cu1IM7MLB/Gnv51gYHYyN12Tr3ZJQsiTxZFIURQ+3W/lqoFppCfHqV2O6GW3TxvOhGGZbHj3IJ9/OXyIEGqSIIhAh061Ut/kZMr4HLVLEX1Aq9Xw4HfHkpuZyH9s2s2+YxIGQl0SBBHo/b+fwhSnZ/LYbLVLEX3EFG/gkTuvxpKewH/8cTe7DzepXZKIYSHdIxBXTmu7m51f2PjOdQOIM4Tf3Vb0jEarweEOfcjocHs0X+j4Op2WH8ybwLrNe/jVH3Yx91tDmHH9QDQaDfHOzrCO7/WD2xN6/XEGPTK1hfiKBEGE+XBXHT6/IjcRrzC3x8eug7bgDb80caQ5eKMQjz9tYh7b956h8uNj7PzCxuSxFuZ+ewThDDHo9njZsd8avOGXrh+TjT5OfvxFF3knRBCvz8+Hn9UxfmgG2WE85Sqim0Gv5dsTc7GkJ/D3gzbe+OgYnT6YcV0+KSaj2uWJGCBBEEH+urueFrube2aNVrsUcYVpNBpGD05nUHYSNQdsvPXxUao/Oc4N43K4YVw2Vw1IQ6uVYchF35AgiBBuj483PjrKVQNSmSAzkcUsU7yBaVfncf/gDKq3H+Nv+87wl111pCQaGTkwjZEDUrlqQBoDLUkSDKLXSBBEiPdqTtLq6OShW8fLBDSCvKwk/qV4DAtuGcmuw418dqiRg6fOBqa+TIjTMTQ3hWF5qQzLSyEnUy4lip6TIIgA7S4Pb//tBBOHZzJyYJra5YgIEmfU8U9jsvmnMV1diZtaOzh46iyHTrVy5HQrb20/xlcjW6ckGsnLNJFvTiI30yRnDCJkEgQqUxSF31UdoNPj4/Ybh6tdjohwmanx3JCaww3juh42dHf6OHamjQMnzrLjQAOHTrVy4MRZ4o06BuckMyw3hay0eDnLFJckQaCybXvPUPOFjfk3DmeAObrnXhBXXpxRx6hB6QzITiY1yYjP5+d0o4Oj9XZqT7XyxYmzJCUYuGpAKiMGpJIgXUbFBci7QkUNLU7Wv3uQkQPTmPVPg9QuR/QDOp2WQdnJDMpOptPr46S1ndrTrfzjUCO7ahsZmJ3MqIFpKDJTmjiHBIFKmts6ePZ/PkOn1bBo7hi5nit6nVGvY3h+KsPzU2ltd3PwZCuH61o5fsbOZ7WN3HxNPjeMzyFZnlWIeRIEKmhtd/P//c9ntLs8LL/zGrJSE9QuSfRzqUlxXD/GwjUjszh+xk5do5P/eb+WP3xwmDFD0pk0ysKEYZky2m2MCikIKisrefHFF/F6vdxzzz3cdddd3bbv37+fn/zkJzgcDiZNmsTq1avR6/XU1dWxfPlympqaGDp0KM8++yyJiZeeoq+/23+smZfe3IfL7eX//p+rGZqbonZJIobodVqG56dyxy0jaW7t4G/7zvDpvgZ+e+QAAPlZiQzJTWZITgqDc5IZaEmSMa9iQNAgsFqtlJeXs3nzZoxGI3fccQeTJ09mxIgRgTbLly/nZz/7GVdffTWPPfYYr7/+OgsWLGD16tUsWLCAOXPmsG7dOl544YWYnaWstd3NW9uP8787T5GdYaLsexMZlB07k2OL8Hh9fjr7cBA8gIGWJAZaRjB/+nBO2RzsOdLEFyfOsudwEx/vOQOABkhPiSMrNYH05DiyUuPJ/OpPSjzJiUa0F+iRFO6geaFSFAWP14/L48fZ4UGn06DXatFqNeh0mgvWAmDQ6/F4g7+eiqKgAHp7B35Fuejx+pugQbBt2zYKCwtJS+vq315UVERVVRU//OEPATh9+jQdHR1cffXVAMybN4//+I//4Hvf+x47duxg3bp1gfX//M//HFNB4PX52XesmZoDDXy89wxen59pV+dxx81XEWeUT1ni4tweHzVhDCIX7iB459JoNF+GQhLFhYNRFIUWu5tjZ+ycsNqxnXVhbXGx+3AjLrev275aTdfT0InxehITvv67cEIemYkGEhMMJBj1GA3aC3Zh9fr82J0e7M5O7C4PdkcnbY5OWi/wt9PtxeO99FzPGg1oNRq0Wk3g3xqNBqNeS6fXh6Lw5R+l62+Ubyx3P1ZivIGkBANJJgPJCQbSkuJIS44jPSmO9OSv/50Qp4vqLrpBg6ChoQGz+es3mcViYffu3RfdbjabsVqttLS0kJSUhF6v77a+v1EUhbpGB+0uD+0uD81tbmytLk5a2znR0I7L7cWo1zJ5TDZzpgwmO12eABWRTaPRkJEST0ZKPNd+GTAOd9fopl6fH4fLg93lweHy4HB5cXR4cHR4sTY7cbq9KAr87fPuP+tajSbwy9LnV/D5/F1/X+RURqfVkJpkJDXRSEZKPENykzHFGzDqtRj0WkDDSZsdxQ9+RcHvVwJ/+/xdv9T9ioKiKPgVyEiJp6WtA42m6/vTfPl9di2DBs3X2zQwND8Nr8dLu8vb9bPt7KThrIuDJ8/i6Dj/zCLOoPsyFIxdAfFlYKQmGokz6DDqtRgNOgx6LXFf/v3NDiJJCQb0OnXGBg8aBH6/v1vSKYrSbfli27/ZDuhRYkZ6b5p/HGrkv9871G2dQa8lNzORkm8PZZA5iZED0zD2weDvep0WU7yhT9rrdZo+O/aVaS/1B2sfzs/WucdPSYwj9yLt/H4Fd6eXIfnptLa5cHX6cHd66fD4cLt9XZdbtF2Xc3Q6DXq9hsR4I0nxehIT9CQmGEkxGYg3XvoTtqvTx67axpDrHzM0g/1hTAs6eUIeGp/vgts6vX7sDjetgTMWz9f/dnbSbHdzzGrH5wvvet24oRm9MuBkT35nBg2CnJwcampqAss2mw2LxdJtu8329TjrjY2NWCwWMjIysNvt+Hw+dDrdefuFKj09sm8u35KZxC2FQ1X7+gNyU8NqP2xAeshtB2aHdyM7nGNfifZSf+8K973W1/ryvR/MxYIwWgX9mDplyhS2b99Oc3MzLpeL6upqpk2bFtien59PXFwcO3fuBGDr1q1MmzYNg8HApEmTePvttwHYsmVLt/2EEEJEBo0SwiOGlZWV/Od//icej4f58+ezePFiFi9ezLJly5gwYQIHDhzg8ccfp729nXHjxvGLX/wCo9HI6dOnWbFiBU1NTeTm5vLcc8+RmhpZnyqEECLWhRQEQggh+i+ZvloIIWKcBIEQQsQ4CQIhhIhxEgRCCBHjJAiEECLGSRAIIUSMi+gg2LlzJ/Pnz6e0tJR77rmH06dPq11SSCorKykuLmbmzJmsX79e7XLC9utf/5o5c+YwZ84cnnnmGbXL6ZGnn36aFStWqF1G2N5//33mzZvH7Nmz+dnPfqZ2OWHbunVr4L3z9NNPq11OyNrb25k7dy6nTp0CugbbLCkpYebMmZSXl6tcXXDfrH/jxo3MnTuXkpISfvzjH9PZGWQ0WCWC3XTTTcr+/fsVRVGUP/zhD8qSJUtUrii4M2fOKDfddJPS0tKiOBwOpaSkRDl06JDaZYXs448/Vr7//e8rbrdb6ezsVBYuXKhUV1erXVZYtm3bpkyePFn5t3/7N7VLCcuJEyeUqVOnKvX19UpnZ6dy5513Kh988IHaZYXM6XQq119/vdLU1KR4PB5l/vz5yscff6x2WUF99tlnyty5c5Vx48YpJ0+eVFwulzJ9+nTlxIkTisfjUe67776I/n/4Zv1HjhxRZsyYodjtdsXv9yuPPvqo8uqrr17yGBF7RtDZ2cnDDz/M6NFdgzCNGjWK+vp6lasK7txhu00mU2DY7mhhNptZsWIFRqMRg8HA8OHDqaurU7uskJ09e5by8nKWLFmidilhe/fddykuLiYnJweDwUB5eTkTJ05Uu6yQ+Xw+/H4/LpcLr9eL1+slLi7yZzx7/fXXWblyZWAstN27dzN48GAGDhyIXq+npKQkon+Gv1m/0Whk5cqVJCUlodFoGDlyZNCf4YidqtJoNFJaWgp0jXD661//mltuuUXlqoILNmx3pLvqqqsC/z527Bh/+tOf+O///m8VKwrPT3/6U8rKyqLiQ8M3HT9+HIPBwJIlS6ivr+fGG2/kRz/6kdplhSwpKYmHH36Y2bNnk5CQwPXXX8+1116rdllBPfnkk92WL/QzHMlD6H+z/vz8fPLz8wFobm5m/fr1/OIXv7jkMSLijOBPf/oT06ZN6/bn3nvvBbrODB555BG8Xi8PPviguoWGINiw3dHi0KFD3HfffTz66KMMGTJE7XJC8oc//IHc3FxuuOEGtUvpEZ/Px/bt2/n5z3/Oxo0b2b17NxUVFWqXFbIDBw6wadMm/vznP/PXv/4VrVbLb37zG7XLClt/+Rm2Wq3cc8893H777UyePPmSbSPijGD27NnMnj37vPUOh4OHHnqItLQ0XnzxRQyG0MdbV0uwYbujwc6dO1m2bBmPPfYYc+bMUbuckL399tvYbDZKS0tpbW3F6XTy85//nMcee0zt0kKSlZXFDTfcQEZGBgC33HILu3fvZt68eSpXFpqPPvqIG264gczMTKBrVsINGzawaNEilSsLzzeH1o/Gn+HDhw+zaNEi7r77bu67776g7SPijOBili9fzuDBg1m7di1Go1HtckISbNjuSFdfX88PfvADnn322agKAYBXX32VN998k61bt7Js2TJuvvnmqAkBgJtuuomPPvqItrY2fD4ff/3rXxk3bpzaZYVs9OjRbNu2DafTiaIovP/++0yYMEHtssI2ceJEjh49yvHjx/H5fLz55ptR9TPc3t7O/fffz8MPPxxSCECEnBFcyL59+/jf//1fRowYwW233QZ0Xat7+eWXVa7s0rKzsykrK2PhwoWBYbsLCgrULitkv/nNb3C73Tz11FOBdXfccQd33nmnilXFhokTJ7Jo0SIWLFiAx+PhW9/6FrfffrvaZYVs6tSp7Nu3j3nz5mEwGJgwYQIPPPCA2mWFLS4ujqeeeop//dd/xe12M336dGbNmqV2WSH74x//SGNjI6+++iqvvvoqADfffDMPP/zwRfeRYaiFECLGRfSlISGEEH1PgkAIIWKcBIEQQsQ4CQIhhIhxEgRCCBHjJAiEECLGSRAIEcR9991Hc3Mzixcvpra2Vu1yhOh18hyBEEGMGjWK7du3B4Z+EKK/idgni4WIBD/+8Y8BuOeee6itreX111/H6XTy7LPPkpeXx5EjR4iPj+epp55i+PDhKlcrRM/IpSEhLuGr4Xv/67/+i9zc3MD6vXv3cvfdd1NZWcm8efNYvny5WiUKcdkkCITogdGjRzNp0iQAbr/9dvbv309LS4vKVQnRMxIEQvSATqcLaZ0Q0UCCQIggdDodXq+327oDBw5w4MABoGui8GuuuYaUlBQ1yhPissnNYiGCmDVrFnfffTcOhyOwLisri7Vr13L69GkyMjJ45plnVKxQiMsj3UeFCNMnn3zCE088wZtvvql2KUL0Crk0JIQQMU7OCIQQIsbJGYEQQsQ4CQIhhIhxEgRCCBHjJAiEECLGSRAIIUSMkyAQQogY9/8Ahif5Yh0N/EUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAGoCAYAAACZneiBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXRcd5bY9+9baq9CYQcXECRIkEVSEimJYlMbtZDdarW6W909rZY6mRnPjD2Oj5PYPo59HDuOj5P4OCdjO8k5nmRmnMzSjqc9UkvqVqtbao0WaqUkSmpJXCSqSIAgQBAEiK325VW99/JHARBIgkQBqB33cw4Pt1fv/R4I1q33+93fvYpt2wghhBCVpFZ7AEIIIdYeCT5CCCEqToKPEEKIipPgI4QQouIk+AghhKg4vdoDWMzERHxVKXgtLV5mZlKlGk5NadR7k/uqP416b6W+r46OgFKykzWQhnzy0XWt2kMom0a9N7mv+tOo99ao91VrGjL4CCGEqG01Oe0mli9vQTaXL8m5XA4dXT6WCCHKSIJPg8jm8nx4erwk59q/qwvdJd8aQojykc+3QgghKk6CjxBCiIqT4COEEKLiJPgIIYSoOAk+QgghKk6CjxBCiIqTfNo1zMibZA0T07KxbdA1BYeuYkmDQSFEmUnwWSPS2TwXJ5JMRtNMRTPEUjlyeWvRY5994xzNfhfrWj1saPezeZ2fvo1BOpo9KIqUqRJCrJ4EnwaWy1ucvxSj/2KUiUgGAIeu0hZ0s3WDB5/HgduhoWkKiqJgmhZG3qLZ7yKeMrg0leLN4xcxPioEqWa/k5t729izrY1btrXhckgNLCHEykjwaUDZnMnng9N8MRwhl7do9ju5ta+N7k4/LQHXkk8v+3d14ZutcGBZNqOTSfovRjk9NMPHZyZ45+QlnA6VW/vaObh3A7s2t6DKE5EQYhkk+DQQy7I5PTTDyYEpjLzF5i4/O7e00LmK6TJVVeju9NPd6eeB2zZiWhZnL0T54IvLfHh6nA9OX6azxcNX93VzcO8GeRoSQhRFgk+DGBqL88J7Q8zEs2xs93HbjnZam9wlv46mquzc3MLOzS38F4f7+Cg8wZGPR/jPr57l+aPnefhAD4f3dUsQEkLckASfOmdZNi++P8Rzb5/D5dS5/9YN9HT5K5IY4NA17rppHXfdtI4zFyK88N4Qz7wxwKsfXeC7B7dy7571Mh0nhFiUBJ86FksZ/Ieff8bpoRlu39HBjk1BnFV64tixqZkdm5o5cyHC02/086NffcFbx0f57YdCbF4XqMqYhBC1SzaZ1qnh8Tj/6kcf0X8xyu99Yye/+8jOqgWehXZsauZ/+K19/P63djEZSfOv/uNHPPf2OfLm4mndQoi1SZ586tCJgUn+6LlT+NwO/ulv3k7v+iaS2dI0kisFRVG4++b13NrXPr8WdPLcFL//rd2sb/NVe3hCiBogwafOvPnxCH/47Em6O/z8gx/sodnvKvk1FFUpTTBTFP7GN3azc3MLT752lv/pLz7ku/dt5eCe9desSdnTKVJFXFO6rArRGCT41JEjH4/w41fOsKO7mb//2B48Zeo2ms2ZHD8zUZJz7d3RQd60eOTOzbx7aoynj/Rz7LMx7r5lHU79y2nCgN9NPJFZ8nzSZVWIxiCfIeuAbdv84uggf/nyGfbvWsc/fHxv2QJPuXjdOof3beSOnR1cuJzgxfeGiSSy1R6WEKJK6usdrIHkLcjmlp5msm2b598Z5NWPRti/q5O/9ehNGNkcuaumqKw6qAWqKAq7t7TS2uTmrU9HefG9Ie65Zb1kwwmxBknwqZJsLs+Hp8eXPO6Ts5OcHJgi1NPMzp5mTvRPLjo9tXdHRzmGWRbrWr188+7NvPnJKG9+OsrNva0cvL272sMSQlSQTLvVsJMDU5wcmKKvO8hXdnU2VEVpn9vB1w9sYnt3kFOD07xwdBAjZ1Z7WEKICpHgU6M+Pz/NJ2cn2bqhiTtv6mqowDNHU1XuunkdB3Z3MTIe58X3hmQdSIg1QoJPDQoPz/DRFxNs7vJz983rGr5ETainme/ctw0jb/Gr94a5cDlR7SEJIcpMgk+N6R+Jcuzzy3R3+Lh37wZUtbEDz5wNHX4euWszAZ+D1z++yImBKWzpqCpEw5LgU0MGL8V479QY69u83H/rBrQ1Enjm+D0OHj7QQ+/6AJ+eneStT0ev221VCFHfJPjUiOHxOO+cuERni4cHb9+Ipq3NfxpdU7l3z3r2hToYHk/w0rFh4imj2sMSQpTY2nyHqzEjEwne+nSUtiY3h/Z1o6/RwDNHURRu6m3l0L5ukukcL743zOhkstrDEkKU0Np+l6sBl6aSvPHJKM0BF1+9oxuHFC6bt7HDxyN3bcbt0nj1oxF+Hb4s1bGFaBDyTldFY1Mpjvz6Ik1eB1+9Y1NNtESoNU0+J9+8azM7NgX5bHCG//3JT7k0JU9BQtQ7CT5V0j8S4cjHI/i9Dr62fxNupwSe69E1lTtvWscDt21gJpbhf/6LD3n94xHJhhOijknwqYKzIxH+eLYfz0P7N9VdkdBq6ekK8M9+ex/bNzXzn14+wx/8509kLUiIOiXBp8L6L0b5P35ynGa/i69J4Fm2oN/FP3x8L7/7jZ1cnEjwL//8A546cpZUJlftoQkhlkHe+Sro9NAMf/jsCYI+J3/vsT2cvRCp9pDqkqoo3Ld3A7f2tfPMmwO8/MEFjp4c45E7N/PgbRtxyRSmEDVPgk+FfHxmgj/5+Sk6W7z8oyduxSlvkKvW5HPyNx/ZxVf3dfOT1/v5yev9/OrYEA/t38T9t27E73FUe4hCiOuQ4FMBb58Y5Ue/+oKt65v4Bz/Yi9/jKE2bagEU1oL+8Q9v4+xIhF8cPc+zb57j+aPnObCriztv6mJnT8uaKVMkRL2Q4FNmLx0b5iev93NTbyv/7fdukSmhMtre3cx/98StjEwkePWjEY6dHuedk5cI+pzs39nJV3Z3sXV9kwQiIWqABJ8yMS2LJ1/r57Vfj7B/Zyd/+9u713zlglJQVGXJp8aWJjc/ONTHd+7r5bNz0/w6PMEbn17k1V+P4HHp9HUH2dHdzE29bfR0+Rq+argQtUiCTxkk0jn+5Oen+Pz8DA/t38TjD/bJp+0SyeZMjp+ZWNZr9va1sWtzMxcnklyaTjE4GuPkwBTPvjmA26mxqdNPT1eAni4/PZ0Bulo9uJ3yX0OIcpL/YSV2bjTGHz93ikgiy+89spODezZUe0gCcDo0ejc00buhCSh8QPC6dEYnkwyPJ3jnxCWyCzqptgRcdLV4WNfqpWv2x7pWL+1BtzzBClECEnxKxLJsXv7wAs++OUCz38U//a3b2bYhWO1hievwexx85aZ12FahSoJl20xG0lycSDIRSXN5pvDjo/AEifSXe4hUBVqb3LQH3bQF3bQFPbQ1uVnf5mNdqwefWy9J19m8BdlcaZJSXA4dKRkoao0EnxIYn07xZy+epn8kyu07Ovi9R3bic0uab6273hReS8BFS8BFqKe5cJxhEksZxJIGsVSOeNJgMpph8FL8iqclAI9Loz3ooaPZQ3vQzeaNQTTbJuhzEvS7CPqcuJ3akgEqm8vz4enxktzn/l1d6LKZWdQY+Y5chaxh8sL7Q7x0bBinrvK3v7WbO2/qKsknX1E7XE6NDmchoFwtl7dIpA3WtfmIJwwmohkmImnGplOcPDdF7sML17zGqas0+ZwEvA68bgc+t47PM/uz24HXraPrKuPTKZwODZdDw+lQZbpPNBQJPiuQNy3eOXmJXxw9z0w8y527u/jBg320BFzVHpqoMIeu0hJws2dbO76rni5s28bldXFueJpo0iCWMIgmDaLJLNGkQTKdJ5nJMRlJk8wUfn2jWqmaquB0qLPBqPDD7dDwe3T83kIw83scRT1ZrdTC6UB7OkVqFfvVZDpwbZPgswypTJ6jJy/xykcXmIxm6F3fxN959CZ2bGqu9tBEDVIUhaDfRXeHn+6OpY+3bJtM1iSVyTEZy/DJ2QmyOQvDMMnmTYycWfh9ziSbM0mmc0xF06SzV0796ZpCwOvE73EQ8DrIGCbdHT46W7y0NbnQ1JW/4y+cDgz43cQTmRWfS6YD1zb5l1+CZdmEh2d4//NxPvjiMlnDZNvGJn7roR3csrVNpthEyaiKgtet43XreDwOxqZTRb0ub1ok0jkSqRzxVI5EOkd8do3q4mSSz8/PzB+rqQptTW46Wjx0NntoDrgIzAapgNeJ163j0ApTfLqmoGkqpmWTy5vkTZt4OsdkNINpWUSSOeLJLKZpkTdtTGvuZ3v+z2zbRlEUFKUQjFWl8LTo0AtPZ80+JwGvk2a/kyafU6YW1xAJPlexLJtL0ynOX4rx2flpTp2bJpHO4XJq3BHq4NDt3fSub6r2MEWNud7m15VOTVnLaFWkayrNfhfN/munfW3bZvumFpIpo5DBF0kzEUkzPpNmcDS2qmmzG1EU0FUVRQXbLozDtgtPd3NTi8c+vzKhQgECXkfhXgKF5IyWgIvWJjets0kgLQE3Hlf5phVF5azJ4GPbNslMnulYhqlYhulYlvGZFENjcYbHE/MZTH6Pg5u3tnJrXzt7+9pxSadRcR3Xy5xb6dTU3h1FzNMVQVEUWgIuutt9hHparvn7XN4kkc4TTxnEUzlS2Tx50yKft8hbNnnTQlOVwtOQXngKGrwUQ1MVAj4XWSOPripomoKuqYWfVfW6m6pt2559krIK47EhljKIJLJEE4WfI/EskYTB+bE48aTB1XHY5dQWBKNCQGqZfYKbS97wexz43A6cDlUCVY2qxeCjr6QawNmRCCcHpshbNrqukUznsOamAUyLjGGSNvKksyZZI4951UdLh66yod3Hzb1tdHf62Njhp7PZU7bKBLqm4l1BOrbHpWPmr33dSs+3mGqc63r3tdLzFaMS5yr2voo930ro2vWDgcup43LqtAXdRZ0rbZjz7d79PheJZHbF49rY4cezRK1D07KIJWcTNRIGkbmkjUQhaeNyJEP/xeh1EzU0TcXj1HDoKk6HhkNTcThUHJqKU9dQVAVNLUwHqgqgKHg9Tgwjjzo7VQiFp7h7964n6HOu5Fa3ACOAVBNeQKnBVsRbgMFqD0IIIUqoFzhf7UHUkloMPjrQXe1BCCFECcmTz1VqMfgIIYRocJLXKIQQouIk+AghhKg4CT5CCCEqToKPEEKIipPgI4QQouIk+AghhKg4CT5CCCEqrhaDj06hykEtlv4RQohyWHPve7V4o93A4NRUAms5pX0XaGnxMjNTXDn6etOo9yb3VX8a9d5KfV8dHYFiCkSu+n2vFt3o3mvxyWfVdL1xq0836r3JfdWfRr23Rr2vWtOQwUcIIURtk+AjhBCi4iT4CCGEqDgJPkIIISpOgo8QQoiKk+AjhBCi4iT4CCGEqDgJPkIIISpOgo8QQoiKk+AjhBCi4iT4CCGEqDgJPkIIISpOgo8QQpSJokAqk2up9jhqkQQfIYQoC5tEOselyWSw2iOpRRJ8hBCixGwgns6TzOSrPZSaVYvN5IQQom7ZNsRSBulsHlUppo/c2iTBRwghSsTGJpo0yBhmtYdS8yT4CCFECVi2TSRhYOQk8BRDgo8QQqySZVnMJAxyeavaQ6kbEnyEEGIV8pZNJJ4lb9rVHkpdkeAjhBArZOQtookspiWBZ7kk+AghxAoYOYtIMoslgWdFJPgIIcQyZXIm0UQWW+LOiknwEUKIIikKJDN54ilDAs8qSfARQoii2IWqBemcBJ4SkOAjhBBFmAs8ojQk+AghxA0sLJcjSkeCjxBCXIeUyykfCT5CCLEIy7aJJgyyUi6nLCT4CCHEVSzLZiaRlXI5ZSTBRwghFsgaeabjGSmXU2ZlDT6hUOi3gH82+9tfhcPhf1zO6wkhxGrkTIvpWPUCTzqbx+XQqnLtSitbJ9NQKOQF/j1wP7AXOBgKhb5arusJIcRqGDmLmXiWalbLyZtrZ5qvnG20tdnz+wDH7I90Ga8nhBArksmZzCQyUqetgsoWfMLhcBz4F8AXwAhwHni3XNcTQojlUhRIGXmp01YFil2mr3goFNoD/Efg60AU+Evgg3A4/G+XeOkWYLAsgxJCiFm2bRNLGCQy5ataoADpbL53W3fz+SUO3QIMRuJZmgOuso2nCpTr/UU5Ew6+DrwWDocvA4RCoR8B/zWwVPABYGoqseJH4I6OABMT8RW9ttY16r3JfdWfer+3eDq3aLmc1lYf09PJklxDVRTcXmfRx0/PJMlljJJcuxZ0dASu+3flDD7HgX8TCoV8QAr4NvBhGa8nhBBLsm2Ipw1Smdorl2OvoTWncq75vAz8FfBr4ASFhIP/rVzXE0KIpdjYRFPZmgw8AOYaWngq6z6fcDj8B8AflPMaQghRjHool7OWnnykwoEQouFZlk0kkcWo8XI5tT260pLgI4RoaHnLJpLIkM/X/lOFPPkIIUQDyJkWkXgWs07e1OtkmCUhwUcI0ZCMnEUkma2rqgX1NNbVkuAjhGg4mZxJLGFg1Vn2WL2NdzUk+AghGkrKyBNPGnVZLkeefIQQou7YJDN5EulcXQYeACNfu2ngpSbBRwjRAGzi6fyi5XLqSTa3dpKtJfgIIeqaDcRTuZqtWrAcRg1vgC01CT5CiLplYxNNGmSyjfGmnTUa4z6KIcFHCFGX6qFcznJlZc1HCCFql2nZROugXM5yybSbEELUKNOymElk66JcznKtpYSDsrVUEEKIUsuZFjOx+gg8Zy5E+JOfn1rWa+TJRwghaoyRt4gkar9cTt60ePmDC7xz8tKyX2usoScfCT5CiJqXzZlE66BczmQkzZNH+hmdLLTh3tx1/TbSi2mk5ImlSPARQtS0eiiXY9s2H5+Z4BdHz2PkLRQFHrxtI4f3bVrWebJG/e9VKpYEHyFETVIUSKRzNV8uJ2Pkee7tQU4MTAEQ9Dl5/FAfveubUBVlWedqtOy9G5HgI4SoQTaxVJ5UOkcNxx2Gx+M8daSfmXgWgN1bWviN+7bhda/srVWm3YQQokrqoVyOZdm8dXyUVz+6gGWDrik8ctdmDuzqQlnm085CknAghBBVEk1ma7pcTjRp8PTr/ZwbjQHQ1eLhicPbWdfqXfW5JdVaCCEqrB7K5ZwemuHZNwZIZQtPZQd2d/HInZtx6KXZMlnL915qEnyEEFVnWoUCobX6yT+Xt3jp2DDvfTYGgMel8f37t7F7S2tJr2NaNnnTQtcaf/+/BB8hRFXVermcyzNpnnztLGPTKQB61wd4/ME+gn5XWa6XMUz8Hgk+QghRNnnTJhLPkq/BqgW2bfPRF5f55btD5EwLVYFD+7p54NaNqOrKkwqWkjHy+D2Osp2/VkjwEUJUhZG3iCaymDUYeNLZPD996xyfDU4D0Ox38sSh7Wxet7yKBSuxVnr6SPARQlRcLZfL6b8Q4f997iTRpAHAzVtb+d7BrXhclXm7zNToulepSfARQlRU2sgTq8FyOaZl88YnFzny8Qi2DQ5d5dt3b2FfqGNVe3eWS558hBCihBQFEpk8iVTtBZ5IIstPjvRzfiwOwPo2L08c3k5ns6fiY5HgI4QQJVO75XJODU7zs7cGSM9ubD10xybu37O+ZHt3lisjwUcIIVavVsvlGHmTF98b4oPTlwHwunUeu38bd9/WzfR0smrjyplro8SOBB8hRFnVYrmcsekUT752lsszaQC2bWziBw/00eRzVnlkhQ2ta4EEHyHq0ImBSV46NsxkNEN70M3DB3rYs6292sO6gmXbxBJGTWVv2bbNsc/HefH9IfKmjaoofG1/Nwf3blh2+4NykeAjhKhJJwYm+fErZ9A0Fa9bJ5I0+PErZwBqJgDVYrmcVCbHT986x+fnZwBoDbh44vB2NnX6qzyyKxn52vmalZMEHyHqzEvHhtE0FZdDA8Dl0MjO/nktBB/TsogksuRqqFzOudEoP3l9gNjs3p29fW18595e3M7aegvUVEWefIQQtWkymrmmWZlTV5mMZqo0oi/VWrkc07I58usR3vjkIjaFr9Oj9/Zy2/b2iu7dKZamqWump48EHyHqTHvQTSRpzD/5QKFUTXvQXcVR1V65nJl4hqeO9DM8ngBgY7uPJw730R6s/N6dYikUNuGuBRJ8hKgzDx/o4cevnCFL4ZO8kbcwTYuHD/RUbUy1Vi7nxMAkz709OL9n5uCe9Xxt/6aab1Wgqgp5SbUWQtSiuXWdWsl2q6VyOUbO5BfvnufX4QkA/B4HP3hwG9u7m6s8suKosuYjhKhle7a110RyQTJbO+VyRieTPPna2fm1rx2bgjz2QF9dtSeQhAMhhLghm5lYhkTSqHq5HNu2effUGC8dG8a0bDRV4etf6eHuW9bVzN6dYmmqIhUOhBBiMXPlctyoVQ88iXSOZ98YIHwhAkBb0M0PD29nY7uvyiNbGXnyEUKI64glDdLZPG5vedpIF6t/JMrTr/cTT+cAuH1HO9++uxeXU1vilbVL1nyEEOIqlm0TSxpVr7psWhavfDjC28dHsSlssv3OwV5u7av+GthqqWohe3EtkOAjhFiSZdtEEtUvlzMVy/DUa2cZmShUnd7U6eeJQ320NlV3j1Op6PLkI4QQBZZtMROvfrmcT89O8vN3BsnmTBTgvls38NU7utHUGt67s8x8B01TyUltNyHEWlcL5XKyhsnzRwf55OwkAAGvgx882EffxmDVxlQMl0PD73WwYV3wcrGv0VSkvI4QYm2rhXI5IxMJnnqtn6lYYe/Ozp5mvv/ANnzu2t27o2sKfq8Tt0Nl9tEnVfxrVZl2E0KsXUbOJFLFcjmWbfPOiUu8/MEFLLuwd+eROzdz501dNVkQFAqZaj63jtetoyx3vm3BOXKmhWXbdbdHabkk+AghrpDJmUQT2apVLYinDJ55Y4CzI1EAOpoLe3fWt9Xm3h1FAbdTJ+DRUVe5/qSrhYCTy1l1nTJeDAk+Qgig8CaayFS3XE54eIZn3hggmSlUdt6/s5Nv3r0Zp16bb8ROh4bf48DlUEvyNdNmC59m86YEHyHEWmATT+dJpnJVqVqQNy3++oNhjp4cA8Dt1PjefVu5ZWtbFUazNF1V8PucuGfbWpQqWGta4ckna5jgLc05a5UEHyHWuLlyOalMdfrITEbSPPnaWUanCuvym7sCPH6oj5ZAdSsoLEZVFLweHd8q1nVuxKkXnnySmRwd1G7foVIoa/AJhULfBv4l4ANeDofD/6Cc1xNCLN9cuZxKs22bj89M8Iuj5zHyFooCD9y2kUO3d6OptbXYPreu4/foZd1XNNcgMJ7Kle0ataJswScUCm0F/gQ4AIwDR0Kh0DfC4fCvynVNIUTxbGyiieqUy8kYeZ57e5ATA1MABH1OHj/UR+/6poqPZSmlXte5kbl1noQEn1X5HvBUOBweAQiFQk8A1W8yL4Soarmc4fE4Tx3pZyaeBWD3lhZ+475teN21tQqgqwo+rwO3U0ehdOs6N+Kcf/Ixyn+xKivnv3YfYIRCoeeBHuCXwL8o9sVtbf5VXbyjI7Cq19eyRr03ua/KMHImM7EM/sDq66G1thaf/mxZNn/9/hC/ePsclm3j0FV+cHg7B2/dWFN7dxSge32QgM9Z8bbbt+9ax49e+AJTUWru+6bUyhl8dOA+4AEgATwP/A7wo2JePDWVwFrhzuqOjgATE/EVvbbWNeq9yX1VRt6yicQz5M3Vf4xvbfUxPZ0s6tho0uDp1/s5NxoDoKvFww8Pb6er1cvMTNEFAMpKUQrTXps2NBOPppnJlmbqazlB5NTZCfweB+OTiZr6vlmpG917OYPPGPBqOFxoph4KhX4GfIUig48QpXRiYJKXjg0zGc3QHnTz8IGemmhDXUnVKpdzemiGZ98YIDWb1HBgdxeP3LkZh147BUEdukLA48Tl1HA7dar5tt8ccDEVy1ZxBJVRzuDzS+A/hkKhZiAOfAN4rozXE2JRJwYm+fErZ9A0Fa9bJ5I0+PErZwDWTACqRrmcXN7ipWPDvPdZYe+Ox6Xz/fu3sntLa8XGsBRVVfB5HHidOopSmXWdpbQ1uebTzhtZ2T56hMPhY8C/Ad4BPgeGgL8o1/WEuJ6Xjg2jaSouh4aiKLgcGpqm8tKx4WoPrSIyOZOZRLaigWd8JsUfP3dqPvD0rg/w979/S80EHkUpBMP2Jhc+VyHw1IrWJjdT0UzV6upVSlnTS8Lh8J8Df17OawixlMlo5ppMKqeuMhlt7ORLRYFkJk+8guVybNvmoy8u88t3h8iZFqoCh/Z188CtG1FrZO+OQ1dnp9jKnzq9Em1BN3nTIpowanKjbanUVm6jEGXQHnQTSRrzG/igsP7RHmyM7peLq3y5nHQ2z0/fOsdng9MANPudPHFoO5vX1UbWVi1OsS2ms6VQ2WB0KtnQwad2VvyEKJOHD/RgmhbZnIlt22RzJqZp8fCBnmoPrSxsIJbKkahg4Dk/FuPfP3NiPvDcsrWVv/f9PTUReOam2NpqcIptMXPVu0cni8skrFfy5CMa3lxSwVrJdqtkuRzTsnnjk4sc+XgE2y5MaX377i3sC3XUxN6dWp9iW0zA68Dn1iX4CNEI9mxrb9hgM6fS5XKmoxn+7Jefc36skJi8vs3LDw9vp6O5+gUxVVXB73HgqfEptsUoisKGdh8XJyT4CCFqXKXL5ZwanOa5t8/NV8K+++Z1PHygp+IVAa42N8XmcztqrjjpcmxeF+CtT0cxLaushUyrSYKPEHXOsixmEga5vFX2axl5kxffG+KD05cB8Lp1HntgGzt7Wsp+7aU4dJWA11mRAqDltnV9E69+NMLFiSQ9XdVfNysHCT5C1LFCuZxsScrlLGVsOsWTr53l8kwagJ1bWvnuvVto8jrLfu0b0WYLgHoqWAC03Ho3FKp7D16KSfARQtSWSpXLsW2b9z8f51fvD5E3bVRF4Wv7u/nOg9uJVLEu29wUm9/jQK2B5IZS6mz24HPrDF6Kcf+tG6s9nLKQ4CNEHTJyJpGkseLiu8VKZnL89M1znB6aAaC1ycUTh7azqdNftTd8hULTNb/Xia41VtCZoygKW9Y3MXip/ouLXo8EHyHqTCZnEk1kyz69NDAa5ekj/cRmG5vd2tfOoy+Yuf8AACAASURBVPduwe2s3tuGQ1fwewrrOpShjXUt6V3fxIvvDZE1zPkmc41Ego8QdaJS5XJMy+K1X1/kzU8uYgNOh8p37unlth0d5bvoErTZ6gRzqdNrwdb1TVi2zdB4nB2bmqs9nJKT4CNEXZgtl5POlTXwzMQzPHWkn+HxBAAb2308cbiP9mB19u4oCnjdhU2Xjbaus5Te9YVEg8FLMQk+QojqmAs85XRiYJLn3h6c36R6cM96vrZ/U1X27igUGrv5PY27rrOUoN9FW5OLwUuxag+lLCT4CFHDbBtiqfKWyzFyJr989zwfFfo+4vc4eOyBbVX7tD3X2M25BtZ1ltK7vmm++2ujkeAjRI2ysYkmy1suZ3QyyZOvnZ1vL7FjU5DHHujD73GU7ZrXc3XVaVGodPBReIJkJofPXfl/k3KS4CNEDbLsQp22bJnK5di2zbunxnjp2DCmZaOpCl//Sg9337Ku4msrigJup07Ao6M2aCmZYu3qbUVRFZKzT7pdbV4AwhcihBZUkXA5dGqoC/mKSPARosZYlk0kkcUoU7mcRDrHs28MEL4QAQrNy354eDsb231lud6N6LpCk8eJy6k1RGWC1To9OE0q8+XaXsYoBKH3To0RSxrzf75/Vxe6q77fvut79EI0GNOymUlkyOeLfycOD8/w9vFRZuJZWgIuDu7dcMWn5IXOjkR45vUB4rPJC7fv6ODb92y5otFeJaiKgs+jz08lSeBZnNup43XrTMcar+uuBB8hakTOtIjGs+SXUbUgPDzD80cH0TQVt0snls7x/NFBHoUrAlDetHj1owu8dfwSUKgQ8N2Dveztq2ybifksNq8DfY1PsRWrrcnNdCxb7WGUnAQfIWrASuu0vX18FE1TceqFJxenrmHM/vlc8JmKZXjqtbOMzPaH2dTp54lDfbQ2VbaNuK4q+H1O3JLFtiytTS4uXE6Qy1s46n2hZwEJPkJUmZGziCSzK6rTNhPP4r5q7t+hqczEC5+UPzk7wc/fGcTIWSjAfbdu4Kt3dFe0R8xa3ihaCkG/C4B4yqj4B4ZykuAjRBUZOZNIwsBa4aJHS8BFLJ2bf/KBwvRd0Ofk6df7+eTsJABNXgc/eLCPbRuDJRl3sQoFQB04qtxkrp41eQvrYrFUToKPEI3uxMAkLx0bZjKaoT3o5uEDPSVvw53NmUQWKRC6nASCg3s38PzRQQwKTzw50yJr5MkaJudnS+Ts7Gnh+w9sLfs+kYXj3tDu46Gv9HDL1rZrjqvE17aRBGb7JcUXZLs1Avk4IsRVTgxM8uNXzhBJGnjdOpGkwY9fOcOJgcmSXSNzg8Dz/NFBYuncFQkE4eGZRc8T6mnh0Xt6afI4SGdyWKZNIp0nnsqhawrfunsLv/31HRUJPM8fHSSdM9nY6ce0bf7q1Wu/ZpX42jYah67icenEUhJ8hGhoLx0bRtNUXA4NRVFwOTQ0TeWlY8MlOX/ayF+3JcLCBAJFUXDqhWu/fXz0uucL9bTwxOHtdLR4mY4XztvR7Obvfvdm7r55HUoF1lneOTFKS5ObrhYvRs4inTVBUa75mpX7a9uofG6dVKZ8JZaqQabdhLjKZDSD133lfw2nrs6XoFkpRYFkNk88ef2WCEslECwmPDzDM28MkJx9c9q/s5Nv3rUZZ4X27qiqgkPXUBSIxLPM3dpiX7NyfW0bncelkyhzYdlKk+AjxFXag24iSeOKjZdG3qI9uPLFXkWBRCZPYolePNdLIGgJuK45Nm9a/PUHwxw9OQaA26nxvfu2LrrOUi4eV6EsjqYpTMWyS37NyvG1XQs8Lo2JSLrawygpmXYT4ioPH+jBNC2yORPbtsnmTEzT4uEDPSs8o008nSNxgyeeOQf3bsA0LYx84dpGvnDtg3s3XHHcRCTNnzx3aj7wbO4K8Pe+v6digUfXFZoDLpr9TlRV5Wt3bCrqa1b6r+3a4HbqZAyz7G3TK0mefIS4ylzmVSkysizLJpbKFT1fH+pp4VG4brabbdt8fGaC54+eJ5e3UBR48LaNPHh7N5pa/rWducrTPlehNE4qXpguK/ZrVsqv7VrimZ2KzRjmNdOW9aox7kKIEtuzrX3Vb4g2NtOxzLIXikM9LYumVmeMPM+9PciJgSkAgj4njx/qo3d906rGWYxiKk8X+zUrxdd2rfG4CtOU6Wxego8Q4vpMq9CLxx8ozcz28Hicp470zyce3LSlle/dt7Uib0ROXcXvdeJyqFIAtErmnnzSRuNkvEnwEaLE8pZNZJmVqa/HsmzeOj7Kqx9dwLJB1xS+edcWvrKrs+wp1Jqq4PM68Dh1FKTydDXNB59s+RoLVpoEHyFKaKUFQhcTTRo8/Xr/fBvlda1enjjUR1erd9XnvhGpxVZ7PM4vp90ahQQfIUokkzOJraJO20Knh2Z49o0BUrNvNnfu7uIbd24ua1VjhblabE50TYJOLSlsPFYl+AghFrJJZs0l9/AUI5e3+NWxId7/bBwoTLd8//6t7N7SWoJxXp+uKwQ8hXUdaXdQm7wNVuVAgo8Qq2ADiXSeZAl2n4/PpHjqtX7GplMA9K4P8PiDffMl9cthYeq0qG0+t4NkpnGqHMh3nBArZFPIaMuschHYtm0+/OIyL7w7RM60UBU4tK+bB27diFqmvTuKUniq8rkdFdkfJIqzq7eVvGkt+ndnR6Kc6J9k744OFFUhedUUnMuhU0+95iT4CLEClm0TTRhkc6sLPOlsnp++dY7PBqcBaPY7eeLQdjavC5RimIty6CoBSZ2uSacHp0ld5+kmnc2TzOT59elx9EX6I+3f1YVeR0+w9TNSIWqEaVlEEllyq0ylHrwU4ydH+onO9mm5ZWsr3z24dT6tttTmpti8Th1FkdTpeuOb3dOVyuRp8jmrPJrVk+AjxDLkTZtIPEt+FanUpmXz+scjvP7JRWy78CTy7bu3sC/UUZa9OwrgcmoEvI6Kts8WpeXzFHoyJdI5CT5CrCWl2MMTSWT5yZF+zo/FAVjf5uWHh7fT0ewp1TCvoGvK/BSbZLHVt+BswIkmDDa0+6o8mtWT4CNEEYycRSSZXVVV4VPnpvjpW+fIGIV1ortvXsfDB3oWnb9fLVVR8Hp0fG4dRYJOQ3A7NVwOjZnE9Xs71RMJPkIsIZszia5i86iRN3nh3SE+/OIyUNiv8dgD29i5SPHQ1ZrfKOpzoksWW0NRFIXmgJPIDRoL1hMJPkLcQCZnXrfldTFGLsf5f352isszhUZgfRuDPPbgNpq8pZ+zlym2xtfid9F/MYpt2xVpj15OEnyEWEQxLa9vxLZt3v98nF+9P0zetFAVha/t7+bg3g0lr5emqgo+t45XptgaXnPARd60SaRzBMrwAaaSJPgIcRVFKWQUJdK5FQWeVCbHs2+e4/TQDACtARdPHN7Opk5/yce5VI8d0VhaZqtdRBKGBB8hGotNLJUnlc6xkpm2c6NRfvL6ALHZvTsHblrH1/d343aW9r+a9NhZm4KBQsCJxLMl/zBTaRJ8RNWcGJicb6e8vsPP4ds2VLXDpQ3El9HyeiHTsnjtoxHe/HQUm9nyNU6NmXiWobH4op1JV0J67KxtTl3D59bnmwrWs6KDTygUagHMcDgcK+N4xBpxYmCSH79yBk1T8bp1ZmJpfvzKGYCqBaBY0lhRyfrpWIanjvRz4XICKASIJp8Dt1Mnmsjw/NFBHoVVBSDpsSPmtARcRBog3XrJieJQwYfABDAVCoXeDIVCPeUfmmhkLx0bRtNUXA4NRVFwO3U0TeWlY8MVH4tl28zEsysKPCcGJvnDZ0/OB56gz0FzwInH5UBRFFwODU1Tefv46IrGpgBuh0Zbk4eAxyGBR9AccBFNGiVpWFhNxaxS/gj4U8AD+IFngD8r45jEGjAZzeC8qgSvU1eZjGYqOg7LsojEs8suEGrkTJ59c4AnX+snmzPxexz83iM7URUFp65dcaxDU1c0TeLQVVoCLpoD0txNfKnZ78K2mV9XrFfFTLt5w+Hwf1jw+z8MhUJ/u1wDEmtDe9BNJGngcnz5Rm3kLdqD7oqNIW/N1mkzl/cJcnQyyZOvnZ0PlDs2BXnsgT78HgctARexdO6KAJQzLVoCxffk0VUF74J1HSEWmvtemolnl/V9VWuKefL5IhQK3T33m1AodDMwWL4hibXg4QM9mKZFNmdi2zYZI49pWjx8oDIzukbeYiaWWVbgsW2boycv8cfPnWIymkFTFR65czN/4+Gd+GeLPh7cuwHTtDDyhfvK5kxM0+Lg3g1Lnl9VFPxeB61Bd6Hy9IrvTjSyJp8DhbXx5LMZeDMUCh0H8sBtwFgoFDoBEA6H99zoxaFQ6N8B7eFw+HdXOVZRIxZmqbUH3Tx8oGfRJIG54y5OJjFNG11T2NDuu+L4hdlu29b5eenYMH/58pkbnne1iq3TFh6e4e3jo8zEszR5HeQtuDiZBApPbj88vP2aAo+hnhYehfnXdbT6uGt35w2TDeb26/g9ulSdFkvSVBWfxzHfiqNeFRN8/vuVnjwUCh0Gfgd4YaXnELXl6iy1SNJYNEtt7rhc3iKVzYMN2ZzN+MyVWW1zrxmaTPFHz3y65HlXK23kiRVRtSA8PMPzRwfRNBVFURieSM6/Zt+ODr51z5YrpgwXCvW0zAeb1lYf09PJ617H5dDweRyyX0csS9DnrPsnn+t+zAqFQjtnfxlf7Ec4HH4zHA6/eYPXtwL/GvhfSzdcUW1XZ6nNZXNdnaU2d1zaMFEopB8riko6m1/0+J++0V/UeVdqrlxOMYEHCk8uqqqQyZpMxwu13RSgs9nN9x/Ydt3AUyxdV2gOuGgJOHHqEnjE8jT5nMRTBnYdf+Pc6Mnn3wHfAj4AhrmyUqEP6Fzi3P8B+OfAppUMrK1tdbt3OzrK14a42qp5b9MJg4BHv6Kooa4pzCSMK8Y1d9xkJI2qKCiKgqbY5E27sEnuquPHp1NFnXclbLuQWOCwFVpcjqJeMxXPks7kMfIWAE6HSluTCyNv09q6vF4qC49XFPC7Hfi8TrQGqDrdqP/PqnVffp8LTV/6g01nm4/TQzMomjZfZsfrddHR6i33EEvmRsHnb8w+vXwOPEAh+NiAE7juEw9AKBT6feBCOBx+LRQK/e5KBjY1lVhx75SOjgATE/EVvbbWVfveWv3Oa7LUsjmTFr/zinHNHadpKqZpoQKWXQgoyUz+muO7Wr1MzKSWPO9yFaoWGMuqWvDJ2YkrnpD8HgcBr4OcaRH0Om44jXa1uWk3RQGPS8fvcZBNG2TT9T1lAtX/XiyXUt/XcgLZpk4fedOa/72uqiz2GUXD5s2PRwi4dXZuCgJg5sya+/e40b3faHXzr4BJ4CYKG0wvz/48DHy0xDWfAB4KhUKfAv8L8GgoFPo/lzFmUaOuzlKby+a6Oktt7jiPU8Om0Drati08Ln3R43/jgb6izrscNjbRZLbowJM1TJ5+vZ+nXx8oTLMphcyiucBTbNba1eY2iTZ5nbJJVNzQ6cFpjp+ZmP+hKuBz6df82LKu8KYeiWfn/0yvs1yV6z75hMPhrwOEQqE/D4fDf3M5Jw2Hw1+b+/Xsk88D4XD4H650kKJ2XJ2ldr2stIXHmQuy3bpaPIsef8euLn7zazuKyqIrhmXbRBNG0ZtHRy4nePLIWaZjhc2gO3ta2NvXyoenL8/vpzi4d8OySuTomkLQ78SJhfTXEaUU9DlxOzXGplPVHsqKLZntttzAIxrfwiy1Uhy30uOvx7ItZuIGubxVxLE275y4xMsfXMCyCwHyGwc2c+dNXSiKwt6+jmVff2ELa7/HSboB6nCJ2qIoCl2tXsYbOfisVjgc/hGFEj1ClF3OtIjGs+SLWC+Mpwyefn2A/otRADqaPfzwcB/r25aXUDBHAVxODb9XWliL8lvX6mVg9nu3HklLBdEwMjmTWNIoKlElPDzDM28MkJxdD9q/s5Nv3r35mrpsxdI1Bb/XiVtaWIsK6Wrx8MHn4+TyFo56W/BBgo9oCDbJTL6ozqN50+Kvjw1z9NQYAG6nxvfu28otW9tWdOWFU2zSwlpU0rpWLzZwOZJmY/vKntarSYKPqHuxIhvATUTSPPXaWUanCvPkm9cFeOJQH83+5RdnlCk2UW1ds3t6Lk+nJPgIUUmmZRNNGhhLZLTZts3HZyZ4/uh5cnkLRYEHb9vIg7d3r2ijp64pBGZbWMsUm6iWrpZC8KnXjDcJPqIu5UyLaGLpdggZI89zbw9yYmAKKKSoPn6oj971Tcu+pkyxiVrideu0NrkYnm1kWG8k+Ii6Y+RMIkUkFgyPx3nqSP98I7ebtrTyvfu24nUv79v+yyk2B7pUnRY1ZHNXgPNjtVXVoFgSfERJFNtmYTXmioPGlygOalk2bx0f5dWPLsyX9PnmXVv4yq7OK2rHFUNXFfw+yWITtWnzugCfnJ0knc3jcdXX23l9jVbUpGLbLKyOTTydJ7lERls0afD06/2cG40BhYygJw71zS/OFktRwOt24HPrUhJH1Ky5MjtDY3F2bi6++kYtkOAjVm1hmwUo9KjJzv55qYJPMRltp89P88yb50hnC8fdubuLb9y5edl7IJwODb/HgbMO906ItWXbxiCKAl8Mz0jwEWvPZDRzzTqKU1eZjGZWfe5iqlLn8ha/en+I9z8fBwrVo79//1Z2b2ld1rU0tdDG2i0trEWd8LkdbFnXxOfnZ/juwWqPZnkk+IgVWbjGk8rkMS2bJp9z/u+NvEV70L3q68SSxvyTzGLGZ1I89Vr/fLpp7/omHj/UR3DBWJaysN2BTLGJerN7Swu/en+YVCa/7GSaaqqfkYqacfUaT960iCYLGWUBrwMjb5WmHULCIGMsvofHtm0+OH2ZF98bImdaqAp89Y5N3Ld3A+oy9u7IFJuodzdtaeWF94Y4PTTDvtDyC+FWiwQfsWxXr/EEZysEZA0TTVVK0g4hkrj+5tFUJs/P3jrHZ+enAWj2O/nh4e30dBXftEtVFfweBx6XTLGJ+tbXHcTn1vl1+LIEH9HYFlvjafI5SWXy/Ju/e/eqzm1ZFjOJ67dDGLwU4ydH+okmC51Ab9naxncP9hadZjq3Z6fJ60CVPTuiAeiayr5QJ8c+HyebM6/oBlzLJPiIZWsPuq9ppb3YGs9y9/7kTZvIdaoWmJbN6x+P8PonF7FtcOgq3757C/tCHUXv3ZE9O6JRHdjdxVvHRzkxMMX+nZ3VHk5RJPiIZdvZ08wL7w9jWjYOTcXj0nDo6hVrPMvd+5PO5piJZzAXqVoQSWT5yZH++Z3c69u8PHF4O53NnqLGKwkFotGFNjUT9Dl5/7MxCT6iMZ0YmOToqTH8HgepTI68aZJM23zzriufapaz9yebM8nFs4sGnlPnpvjpW+fmEw/uuXkdXz/Qg64VN2UmCQWinuzqbSVvfjnlrKgKyRtkey50x85OXv94hItTySsqtbscOrX47S/BRyzLXFDxurX51OpszuSL4QiPLjiumL0/igLJTJ54yqCl5cpjjbzJC+8O8eEXlwHwuXUee2AboZ7iNtJpqoJPEgpEnTk9OE0qk1vRa5t8Diwbnj7Sz63bv/yAt39XF3oNlt6pvRGJmlbshtJi1oViqRypdI6rn3cuTSV58rV+JiJpAPo2BnnswW00eZfeuyNTbGKtCnidbOzwcXYkwi3b2lbULqSSavBhTNSy9qAb46pMtMWSDR4+0INpWmRzJrZtk82ZV+z9iSaNQp22Ba+xbZv3Phvjj587xUQkjaoofP0rm/jdR3YWFXhcDo3WJjdNXqcEHrEmhXqaSWdNhsdrv9K1PPmIZXn4QA8/fuUMWQpPPNfbUDq3rnN1ttvNW9uIJLLXbB5NpAz+8uUznB6aAaC1ycUTh7azqdO/5Jgki02Igo3tPpp8Tk6dm2bLusCyq7hXkgQfsSzXCyqLZbDt2dZ+xZ+b1uKbRwdGozzzxjmiiUKVhFv72nn03i24nTf+9pTK00JcSVEUbu5t5d1TY1ycTNLdsfSHt2qR4COW7eqgspST5yZ599Q4lyaT6JrC1g1NnBuNMR3LAAqR2Q2jTofKd+7t5bbtHYSHZ3j7+Cgz8SwtARcH9264ItnA5dAYnUrw8itnuDSVKlsPISHqzdYNTRzvn+TkwBQb233VHs51SfARZXXy3CS/OjZMMpMnb1pEkjkGx+J4XTpG3pqvZNDZ4uG3HwrRFnQTHp7h+aODaJqK26UTS+d4/uggjwK7t7Ti9zoYHI3y/70ULnMPISHqj6oq3NTbygenLzM+na72cK5Lgo8oq/dOjRFPFRrAKYpSWOuxCynWczwujaDfRdts0sLbx0fRNBWnXsiUc+oatq7y2eA0B/duQFUUfvnu0A33EVWis6oQtaqvO8ipc9N8fGaCb92zpdrDWZRku4kysUlkcpwbjWHNbh61bJtczprPcFMVhdYmF81+1+wUXMFMPItjdhOpohTqxnU1exmbTs2v7UxGM9dsHJ1L+Z6rrhBJGlc8FZ0YmCz/bQtRA3RNZe/2NiajGY73T1V7OIuS4CNKzsYmmsyRSOXwexzkTItc3mQikp4PPIoCHS0e3E6dnGnRFvyyVE5LwEXOtHC7NDqaPahKoW+P3+OYP+ZGKd8LqysoioLLoaFpKi8dG67E7QtRE7ZtCBL0OfnF0UFMa/FCvdUkwUeUlGVZzMS/bAB37571JNM5JiIZzAUFQwsZaoVKBulMnmTa4N/+54/50198Rl93kGa/C5dDI5bMMh3Pkr8qnftG+4hu9FQkxFqhqgq37Wjn8kyat45fqvZwriHBR5RMzrSYjmXnU6kT6Rzvf36ZdLbwe1WBje1evrpvI53NHjLZPJoCKAp508Lt0jGB4csJbutrw7ZsYskczT4nv/m1HVes2ezZ1s5vfm0HzbOtHBYeU+xGWCEa3aZOP30bg/z0zQES6ZWV7SkXSTgQJZHJmcQSBpZdeLo5OxLhmdcHiM9+w+/b0cG37tkynyBwaF/hdX/6i88wbfB7HPg8DmzbZiqa5eS5af7Jf3n7Da95vZTvYjfCCtHoFEXhB4f6+IO//Jhn3xzgdx7eWe0hzZPgs4aUJwPMJpnJk0gXMtrypsUrH17g7ROFx3yXQ+O7B3vZ27f4daJJg45mD36vk2gyi5Gz0DVlVVNky9kIK0Sj29Du46t3dPPKhxc4uGcDWzc0VXtIgASfNWO5/XWKYQPxVI5Pz07w1qejTEYzZHMm2VxhymtTp58nDvXR2rT4dJeqKvR1B5mMZogmsvNTZaWYIlvuRlghGtl37u3l2Olx/tNfh/kff2cfWg108a3+CERFlDoDzLJtooksn5yZ4OfvDHI5miGeys0Hnlu2tvJfPbp70cAzV3m6rcnN3TevI5Y0SBv5RQuQCiFWz+PS+c2v7mBoPF4zWZ8SfNaIUmaAWZZFJF4oDvrmJxdJZfIkUoUK1aqq0ORzkEznFv10pesKLX4XzX4nmqpwy9ZC4kBLk+eaxAEhROncsbOTO3Z28tzbg4xMJKo9HJl2WyuK6a9TjLxpE4lnyVs2I5cTDF9OMNeA1O0sVCpQlcJG0YXmioD6PToKCvaCXgp7trVz+M5eJiZqvwy8EPXstx7aQXh4hj974TT//Lf3Fd0RuBwk+KwRq80AUxRIGyaxpEHetHjn+CVe/vDCfOAJ+px43TqKomDkTVoCX7bxdegqAa+zoVpZS/keUY+avE5++6EQf/TcKV58b4hH7+2t2lgk+KwRq8kAm0ssSGVyRJMGz7w+QP/FKABBvxPLsnA4CoHFyBfWbOZqsPk8Oj634wZnrz/lSN4QolLu2NnJnbu7eP7oeXZvaaWvO1iVcUjwaWCLfTpfbO/MjT7Fm5ZNLGmQzZmEh2d46kj/fCO4gNfBt+7ajK6pV7Q/uP/WjdzS10bA46iJrJpSW5i8AdcWNRVipXb1tpI3S1sKR1EVktn8FX/2Gw9s4+xIlD/++Sn+6W/tw+subShwOXSWmuiQ4NOgiv10fr3jVEVhR08LsWQhseCvPxjm6MkxoDAFF/Q50XWVF98f4tF7evn9b98EzE6xeZy4nOoV6zqNZDKaueY/q5TvEaVwenCaVKYylQi+sruTl44N80c/O8l9e9eXtOvp/l1d6K4bh5fG+1gqgOJTqxc7zudxcPTUJSLxLJemUvzJc6fmA4+uKXQ0e/C6HTj1wjnfPj6KqioEfE5aA26cjsYNPHDjoqZC1IuOZg+3bW9naCxO/0i04teX4NOgik2tXnicQqHMTcDrYGAkygenx/m/fnqS0akUilLIZmsPuq/IkHE7NFAV2ptc+Fw6a6Gb9Y2KmgpRT27qbWV9m5cPTl8mksgu/YISkuDToIr9dD53nK4pBAMuTMtmdCJJ2jD56VvnyOUtgj4nv/+t3Wxo85K3vnyk8bh0ggEXTR4HagOu7VzPjYqaClFPFEXhnlvWz67bXsIs8XrTjciaT4MqNrX64QM9PPvmQKFddaLQviCeNOZTqG/a0sr37tuK161zcO8Gnj86iKkqtAfdWDZMRdL88PD2yt9glUn5HtEovG6de25Zx5GPL/LJ2Unu2NlZketK8GkgV2et3XPzOr4YjtwwtfrmrW3kTIuX3h/i0lRqPpPNoal88+7N7N/ZOb8QGepp4fu6ygenLzM0FiOVMelqkXUOIepdd6efHZuCfH5+ho0dPta3+cp+TQk+DWKxrLWjp8ZuOB1k5C1iySx+jxPLVuYDz7pWL08c7qOrxXvF8W6XRrPfyeWZFB63g6DfhZG3ZI+LEA1gX6iTS1Mpjp4c49sL2p+Uy9qZqG9wyykcagOJTI6ZeIYTA1P8+2dOMHgpBsCdN3Xxd7978xWBR1MVgn4nzT4nv3x3CGbPLy2qhWgcDl3l4N71pLN5Pvh8vOzXkyefBlHs3hPTsogmcyTTOV58f4hjs99kHpfOY/dvZdeW1iuOdzs1mrxfJhTIHhchGld70MMtW9s4MTDFpwn2jwAAHaZJREFUto1JNrSXb/pNgk+DWLpwqE3aMImnclyaTPLka2cZn0kD0Lu+iccP9RH0OedfqyoKfq8Dr0ujkIRd7HUqR+qrCVF6t2xtZfBSjGOfj/Povb1oann2T8i0W4O43t6TbxzoKfTeSeaIxLO8d2qM//tnJxmfSaMq8ND+Tfytb+66IvA4HRqtQTdel87CwHOj61R6j8vcGlckaVxRmeHEwGRFxyFEo9E0lf27OomncvSPRMp2HXnyaRCLFQ795l2b2d7dwnQsQyyZ42dvneOz89MAtARcPHGoj56uwPw5FAV8Hgc+t4PrfdaplRbVUl9NiPLZ2O6js8XDiYEp+jYG0crQekGCTwNZuPfExiaRzjOTyHBuNMZPjvQTTRoA3LK1je/d14vb+eU/v64rNHldRbU9qIU9LrL2JET5KIrCnm1tvPrRCMPjCXo3NJX8GhJ8GpCRt4insmQMizc+uciRj0ew7UI2y6P3bOH2HR3ze3cUwOPWCXgdKNd93qk9tbT2JEQjWt/mxe9xcHYkWn/BJxQK/Uvg8dnfvhAOh/9JOa+31tlAKpMjkc4xE8/y1JF+hsYK3UGduorbqfHJmQn8HgehnpbZltdOPE5t0UKgCxf03U4NbJtMzqqJxf3VNscTQtyYoij0rg9wanCaXN7CUeJmkGULPqFQ6KvAQ8BtFN4XXwqFQt8Lh8M/K9c168FqM7T+6uUveO6NATJGHrdT56H93WzdEOToqTHGZ1JoCmzqDPDuqbH52m4KYJoWsZRFLJVjcCxMR7ObZr+LrGHO/l2OvGmjaQob233s7Gnm6KkxNE1FUWBkIjk/hqlYhqGxGH/nOzdXLQDVytqTEI1sXZuXk+emuTyTYmOHv6TnLueTzyXgH4XDYQMgFAqdBtb0x9LVdsB8/p1z/OLdIaCw8TObMznyySifnJ3AtCGft4gkDAZGC087ilJImTYtG3P2yUbXFFqbCsVEz1+KYVo2tg22DaqqQB7GplMMjMbwexx43RojsynZc2wb0obFf3rpC/7tf3NvCb9Cy1MLa09CNLKWgAuAWDLHxo7SnrtswSccDn829+tQKLSdwvTbPeW6Xj1YbYbWyx+OgAKaoqBrKs0BJxnD4sLlJG1BDzPxDPnZKKMAnS0eJhYEDo9LJ+h3EksapDKFzoa6pmJaFgqFgGbZ/397dx4kR3kefvzbc8/O7Cmt7vvgRRLo4hIgYx34wNg4YEAYJzFJOfzyS5xyKrGd/BKn7LjK+cOOnZRTqXKqbMdOHIpLPjAYDEYSiMNCsQ6EQC/SSmIl7Qqtdld7zOyc3b8/ema1q2tndufq3ufzD9qlp/t9Z6R+pt/jeez9QFnTIp5I0xAJkDVHj8kZ2I+yPQOpErwrQohaZWcygUQqM/bBRSr7ggOl1ArgGeBLWuvDhb5uypSJPeK1ttaPfVCF9QymqA/7RlUM9HkNegdTBbU3kc7i80C0zl4OfW4wyUDcrnrYde58kDFy0SHo9+L3eUimTXtuJ+jj7LnEqDK9Xg9ksnYwMQwDD/YQXcDnufw4b+78FqV9n2vxMysFt/YL3Nu3avUrGgni9ZU3p1oxTMv+hx4M+qmPFr6Yp64uSGtL3RWPKfeCg1uBrcBfaq0fLea13d2DmOb4ymG2ttbT1TUwrteWU0s0cNEKrWQ6S3M0UFB768N+QkEvWHCmN35R7Q2vx6C5PkhfrihUJmsRrfNTbxiYJnT1xrnwLc2fwgAsy8K0LLxee3FCNmsxOHRxSd/84oSg31Oy97lWP7OJcmu/wL19K3W/iglkg7FkxcpoFyKeyGABHsNiYLDwbQzxeJKubPaKfS/ngoO5wM+BLVrrbeW6jpNMZIXW2+/1ML05xImuOEPJzPDQV17Q76EpVwwu4PeCYWBhMac1ynud/ZyLXfwXOuAzyJomHsMOKFnTAgPCAfuJ6c6b53Go/Rz9g0niyeyo1xoG3CEry4QoqWULW0aNTJSbz+PhStlz9h+xM4asWzGDpXOaCj5v0D92aCnnk88XgRDwHaVU/nff01p/r4zXrGnjWaFlGHDgWDdbd7QRT2TweuyQkw88Xo/BzSum03E2Ru9Akub6IHeum48/V3en7WQfybRJ0G8HO8uyzxkN+wn6vcNLqEeudpvRUjfcrrty13nqlaM8v/vkqFV2d61fVMZ3S4jJ551jPRV98rlh2XQiwcuHgXfbewkFvFyzoAVfibMclHPBwReAL5Tr/E5VzAqtrGkPez39ynFiiQwewyCVOf+8E/R7+Pw9K5lywcbKgM/D6d44Z3rjRCMBWkY8ZY233PNd6xdJsBFiEhkcSrPr7TNcp1pLHnhAEovWJAuIJzN09ycYSmY4dTZGb3+SM71DpNL2I3kk5CMc8F4UeMJBH80NQZ559bjU3RFCjNsLu0+QTGfLtnFb0uvUEMOAZNpkIJ4indsg+tbR7uFJv5HHeTz2fp2Rv4uG/URCdibqLsl9JoQYp87uGM/uaueGq6cxp8SbS/Mk+NQI07IYjKcZSmaGV5OdOhvjie1HRgUenxdME4aSGT6wahbAcJqc0IhVdJfLfRbye/jmI3skK4AQ4pIyWZMf/uodgn4PD96+tGzXkeBTdXa+tMFYikxuHbRpWbx24DS/fqN9eINnXdBLOmtimuD1QsDnRc1rxuczaIqE8HntJSv59D0dZ2MMpbJEQj4aIgFSGZP4UBoMg4zFuDIsCCHc79EXD9N2qp+H71pOYzRYtutI8KmijGkyGE+TSJ1fxjw4lObJHW28e8Iu4uT3GkTCfupCfsDelBpPZmjMrVZrjAbwGOcDTz59T1N9EG88zWA8Tda0mD01gs9jkDEtqYEjhLik7XtOsm3PKT5y41zWLZ9R1mvJgoMqiSXS9PQlRwWewyfP8d0n3xwOPNdd1cp9G5dgGJDKnK8cimXxsVvm0xQNDgceGJ2+xzDsobgpTSFmT43w5QfXkkhlL6rXI/NAQgiA3x48zU+ef5eVi6dw74bFZb+ePPlUWL7WTnrEkulM1uSF3SfY+WYnYD+R3H3bwuGnEb/Pw879HfQOJJk1rZ4PXTeHlYtbLjr3WAXWpAaOEOJS/vfQGb7/9DuoeU382e9dg9dT/ucSCT4Vkq8sGk+kR9XOOds3xI+f1XT32wEi6LczC4wcBlPzmofr7yyY08QbBzr45iN77To7fg8YBolUlngiQ9a0aIgEhl87MrhUuwbORMtJCCFKb+f+Dn703CEWz27kLz610s6QUgESfMrMMCCZMhkYGv20A7D33S5+tvPocCZqjwGptMlTrxynP5Zi03Vzh4/1eQwa64McOt7Lf/9a52qqW3T2DAEWLQ0hAn4PfTE7r1t9nf+i4FLNGjgTLSchhCgty7L4ze4T/OKVY1yzsIU/v/tagoHKJTWV4FNG+QwFidT55dO6vZeX9p6iozt+vtibYSf2NAwDr8d+3Y59HcxujaLmNeP3eWiOBvB4PGzdcWR4Xqd3IGlnsMbDQDzN9FwW2WQqi9djXDK4VKsGzkTLSQghSiebNXn94Psc7ejnxmXT+NzHl5cli8GVSPApAwt7H87gUHpUZm7d3stPX24jlsiO+r1hgeExhhP8eQw7AO3c38G1i6fSNGJF2/s9cXuoDbt4nMewg1c+GWFDJEA8keGb//eWynS2QGPNRwkhKmMomWH7nlOc7Utw5y3zuecDi0aVeakUCT4llM9QMDiUJpUenQXatCx++eoxBuLnizI1RgLEhlJkTPCP+Owt7CJvGIwKPADTW+ro6o0T9Hvx+Txks3ay0Py3llpcQPBm21niiQw9A0n8Pg8NdfbS8VpsqxBu1t2XYPveU6TSWT64ehYfvWl+VQIPyFLrkjEti75Yit6BxEWBpz+e4ke/OjRc+dPnNWhtChMJ+6nPLQ6wy1nb9XQwYNbUCC31oVGBB+CeDUvIZk2S6Sz1YV+uBLZJfZ2fZDpb0QUEhcjP9QQDXgwsMhmTnoEkfYPJmmurEG52vLOf53a1Y2AvPpo/o7qFAOXJZ4IsYCiVIZbbzHkh3d7LkzvaiOXKVocCXprqz+/P8Xrt+ZyBIfv1Qb+XWVMjWJbF+pUzLzrf9cum85kPXTW8aGBmS3h4tVtTJFBzK8jycz11IbtGUH8sRTqTJZU2eeiOq2uqrUK4kWVZ7D/SzZtt3bQ2hdmwZhbhK5RRqJTqt8ChrjTEBvYczHO72nntrdMAhINeblo2nf1tZ8lkTfxeD+msvRrtrvULAXuTF4ZBKOBl45rZl70xV2vRwHiMnOsJB32Egz4syyKeyDimD0I4VTpj8uqBTtrfH2Tx7AbWrZhekT08hZDgMw6XSgI60plzQzz24mE6u+MALJhRz/2bltAUDTJ/Rv3whtHm+iAfWDULNa+ZI6fO0VwfpP1MjOqMwJaHbGwVojoGh9Js33OKcwNJrr+6lWXzm6s2v3MpEnyKMNYQm2VZ/E538cvXjpPOmBgGbFo7hw1rZuPNLWXLbxgdqa2jj9feOs3gUBqf13DVHphqb2wVYjI60xtnx94OsqbFpuvmMLs1Uu0mXUSCTwHGGmIDe/niz3ce48DRbsBeyXb/piUsnNlwxXP7vAYHj/YwEE8Pr1hz0x6Yam5sFWIyOnyyj10HTxMJ+/nI2tllzUw9ERJ8xpA1LWKJyw+xAbS/P8Bj247QO2BnF1ixsIV7bls05qSe32fQXB+kraPvomPdtAfGSXNUQlTTqiVTh/fsFcu0LH6x8xivv3UaNa+JP75z2XA2/MsJ+qsXAiT4XMZYQ2wApmnx0r4OXvzdCUwL/F4Pd94ynxuunjbm2GrA56Exl5V6SoPMiwghIBzwYprFLwhIZ0y+//Tb7D50hk1rZ/Pp25fWzMKCy5Hgc4HhIbZ4ajj9zaX0DSZ5fHsbxzr7AZjRUseWzUuY3lw35jUurMMj8yJCiPGKJ9L829YD6BPnuH/jEj5y49yaWlhwORJ8RihkiA3g7eM9bH3pKENJe+/OuhXTueOm+fh9Y3/TCAW9NEYCGCPWtMm8iBBiPHr6E/zL4/s53RPn4U8sZ92K8haAKyUJPlw+F9uF0hmTZ3/7Hr99+30A6oI+PrVhMcvmN1/2NSPVhXzU1wUuuZRa5kWEEMXoOBvj24/tI5HK8Ff3r2LZgotrfNWySR188kNsA/EU6SsMsYGd0PPRFw/zfu8QAItmNXDfxiU0jqidc9nrAJE6P9HQpH67hRAlcupsjG89sgcMg7/9zHXMnRatdpOKNmnvhpcqd3AplmXxxjtneOb142SyFh4Dbr9+LretmoXHM/a4qmFAfV2ASMh3xesIIUQhOs7G+OYje/B4DL786TXMnFJ7e3gKMemCj4VFPJklNsYQG0A8keFnLx/l4PEeAJrrg2zZtIR50wtLyGcY0BgNEvJ7JfAIISaspz/Btx/bh2E4O/DApAo+FoncKrZ85dArOdbZz+PbjtAXszNRX7toCnfftpBQoLC3zOMxaIoEKlaSVgjhbrFEeniO528eXOvowAOTIPgUkp1gpKxpsX3PSbbvPYVl2UufP3HrAtZe1Vrw8sV8yWt/hSsDCiHcKWuafO8XBznTO8QXH1hd8OhLLXN18DFNk4GhzJjzOnm9A0ke33aE994fAGDWlDq2bF5Ka1O44Gv6fQZN0WDNb/ASQjjH1peOcvBYDw/dcfVFuSGdypXBJ2taxJKZguZ18g4c7eZnLx8lkbKfjm69dgYfuXFeUXXNA37vRZVHhRBiIg4c7ea5Xe1sXDOb21bNqnZzSsZVwccwIJkyOdsbZyA3VzOWVCbLM6+9x+5DZwCIhHzcu2Fx0d8uLrV5VAghJqI/nuIHz7zD7NYID2xeUu3mlJRrgs/IpdPN/sIm4jq7Yzz64hG6ztl7d5bMbuS+jYuprxt7785IV9o8KoQQ4/XEtiPEhtJ8cctq/D53LV5yfPDJJwAdjBc+xGZZFq8ffJ/ndr2X27tj8OEb57J+5cyihswMA6JhPxHZPCqEKDHd3surb53mzpvnM8eBm0jH4ui7ZjprMhAvbBVbXiyRZuuOoxxq7wWgpSHIA5uWFv3hGgY0RAKEC1x6LYQQhbIsi8e3t9HSEOTjtyyodnPKwpF3TtOyiCUyxBPpojZvtp3q4/HtRxiIpwFYvWQqn1y/kGCguMdZ2cMjhCinfUfOcqyzn4fuuHpUqRU3cVjwyW0UjaXIFDjEBvYa+d/870le3teBBQT8Hj5560LWXNVadAu8HoPGaJBAARmshRBiPJ7d1c7UxhC3XuucLNXFckzwyZr2EFsylaWYTDU9/Qke23aEE2cGAZjTGmHLpqVMGUehNp/HoKk+hM8rSwuEEOVxrLOfIyf7eGBz7ReEmwhHBJ9YIk1sKINZZIK0/UfO8vOdx0jm5oRuWzWT26+fW9TenTyf16C5PoS3gGSiQggxXq+82Ynf52H9tTOr3ZSyqtngYxiQSmcZGEqRzhQXdBKpDFt3tPG7d7sAqA/7uXfjYpbOaRpXW/w+D83RQEFZrIUQYryypsnuQ2dYs3QqdS5fRVuzveuLp4jFi1tQAHadiyee2M+ZXN2dq+Y2ce+GxUTD/nG1Q7IWCCEq5XjnAINDaW64enq1m1J2NRt8kslsUYHHtCxeO3CaX7/RTta08HoMPnrTPG65Zsa465mH/F4aJPAIISrkUPs5vB6D5Qvckb/tSmo2+BRjIJ5i60ttvHuiD4DpLXXct2Exs6aOP+V4OOgrqEqpEEKUyvHOfhbNaiAcdMWt+Yoc38PDJ8/xxPY2BofsvTvXq1b+4M4VxAYT4z5nPl2OEEJU0qnuGNcsaKl2MyrCscEnkzV5YfcJdr7ZCUDQ7+Xu2xaycvFUggEvsXGc0zAgEvYTdflEnxCiNmUyJgtmOL9WTyEceZft7kvw6LbDnOqyQ8zcaVG2bFpCS0Pxe3fyDAPqIwEiQZ+UvBZCVM2CmQ3VbkJFOC747H23i1+8eoxU2sQAPrhmNpuvmz2hzVgew6AxGiDo90rgEUJUjdfrYVpz4cUrncwxwSeRyvDUK8fZd+QsAA11fu7btITFsxondF5JlyOEqBXNk2h1rSOCz4kzgzz24mF6BpIALJvfzD0fXEQkNL69O3k+by5djmweFULUgKZosNpNqJiaDj6mZfHK/k6e330C07LweQ3uWDefdcunj3vvTp5kLRBC1Jqmegk+VTeYSPM/v36XI6fsvTvTmsM8sHkpM1rqJnzuoN9L4yR6vBVCOEPDJNriUbPB50e/OsR7pwcAuHHZND5283wCJSgjGwp6aYpMnm8XQgjnmAybS/NqtqdDyQzhoJe7b1vMNQtLs+lKNo8KIWpZOOjOwnGXUrPBZ05rlNuvn1OSCTjZPCqEcIJwYPLco8raU6XUg8BXAD/wr1rrfy/0tVs2LyWbNSfcBtk8KoRwioBLS2ZfStk2tyilZgPfANYDq4GHlVLLC25YCdYCeAyDpmiQuoAEHiFE7fNOoirJ5dxZeTuwTWvdo7WOAU8C95bxeqPYJa+DBCfRNwkhhLP5JlHwKeew2yygc8TPncCNhb64qamOrDm+xxWfx2DRgimuDTytre5MPCj9ch639q1a/Wpuirj2Pb1QOYOPBxgZPQyg4Emcc+fipDPFz/kE/V4WzmvhXO948lrXvtbWerq6BqrdjJKTfjmPW/tW6n4VE0xigwm6utyT6utKfS9nL08CM0f8PAPoKOP1CAd9NNcH8UueNiGEA3m9k+feVc4nn98AX1NKtQIx4FPAw+W6WCTsJxqeWK43IYSopsn0vblsXdVanwL+HtgO7AMe0Vq/UerrGEC0zk992MfkmaoTQrjRRErDOE1Z9/lorR8BHinX+Q0DonUBoiFZSi2EcL5o3eQZvXFsmJXNo0IIt/HJnE9tMwxojAYJuXQptRBCuJ3jgo+dtSAwqdJQCCGE2zgq+EjJayGEcAfHBB+f16ApGppU6SeEEMKtHBF8pOS1EEK4S80HHyl5LYQQ7lPTwScc9NEYkcqjQgjhNjUbfOpCfkIBWdEmhBBuVLPLxqKSLkcIIVyrZoOPZC0QQgj3qtngI4QQwr0k+AghhKg4CT5CCCEqToKPEEKIipPgI4QQouIk+AghhKg4CT5CCCEqToKPEEKIipPgI4QQouIk+AghhKg4CT5CCCEqrhazWnuBCReOc3PhObf2TfrlPG7tW4n7tQA4CWRKeVKnM6zay+C5HthZ7UYIIUQJLQSOX+H/LwCOFXCca9Ri8AkCNwCdQLbKbRFCiFIY68nHB8wp4DjXqMXgI4QQwuVkwYEQQoiKk+AjhBCi4iT4CCGEqDgJPkIIISpOgo8QQoiKk+AjhBCi4iT4CCGEqDgJPkIIISquFnO7TYhS6kHgK4Af+Fet9b9XuUkTopRqAF4DPq61Pq6Uuh34DhAGHtNaf6WqDRwHpdRXgftzPz6jtf6yG/oFoJT6OnAvYAE/0Fp/xy19A1BK/TMwVWv9kFJqNfB9oAF4GfhTrbWjducrpbYD04B07lf/B1iMi+4htcpVTz5KqdnAN7Dzw60GHlZKLa9uq8ZPKXUT8ApwVe7nMPBD4JPAMuAGpdQd1Wth8XI34g8Da7A/o+uUUp/G4f0CUEp9ENgErASuB/5CKbUKF/QNQCm1GfjsiF/9BPi81voqwAD+pCoNGyellIH9b2uV1nq11no1dnob19xDapmrgg9wO7BNa92jtY4BT2J/C3WqPwH+HOjI/XwjcFhrfSz3DfMnwH3Vatw4dQJ/rbVOaa3TwDvYNwCn9wut9UvAxlwfpmGPLDThgr4ppVqwb8r/lPt5PhDWWv82d8iPcF6/VO6/zyul9iulPo/77iE1y23BZxb2zS2vEztZnyNprT+ntR6Z4dvx/dNaH8zfsJRSS7GH30wc3q88rXVaKfWPwNvAi7jgM8v5D+Dvgd7cz27oVzP2Z3Q3sBn4U2Aezu+XI7gt+Hiwx9rzDOwbm1u4pn9KqRXAC8CXgKO4pF8AWuuvAq3AXOynOkf3TSn1OeCE1vrFEb92/N9FrfXrWus/1Fr3aa3PAj8Avo7D++UUbgs+J4GZI36ewfkhKzdwRf+UUrdif+P8W631j3FPv67OTcKjtY4DPwU24Py+bQE+rJTah31zvgv4HA7vl1JqfW4eK8/ArqXj6H45hdtWu/0G+JpSqhWIAZ8CHq5uk0pqF6CUUkuwC089iD2Z7RhKqbnAz4EtWuttuV87vl85i4B/VEqtx/72/Ens4apvOblvWusP5f+slHoI2KC1/iOl1FtKqVu11q8CfwA8W602jlMT8HWl1C3YK9s+C/w+8BMX30NqhquefLTWp7DHpbcD+4BHtNZvVLdVpaO1TgAPAVux5xQOYU+IOskXgRDwHaXUvty36Ydwfr/QWv8KeAbYC/wOeE1r/Sgu6NtlfAb4F6XUISAKfLfK7SmK1vppRn9eP8wFUtfeQ2qJFJMTQghRca568hFCCOEMEnyEEEJUnAQfIYQQFSfBRwghRMVJ8BFCCFFxEnyEEEJUnAQf4QhKqeeVUlNLcMwGpdRbBVzPutS5lFJ3KaW+m/vzDqXUvUqpBUqpwbHOKYQ4z20ZDoR7fWjsQwo6ZkK01k8BT5X7OkK4nQQfUfOUUv+Z++P2XNr7rwFTsFPYfFtr/V8XHPMxYBXwd0AAu7zBj7XW/1Dkpb+hlLoBe4TgK1rrp3PpZe7VWn98Qp0SYpKTYTdR87TWf5T740bsvGj/prVeCdwB/JNS6uYLjjkJ/DXwWa319cA64P+NNSR3CUe11mux8339OJfvSwhRAhJ8hJMsB0Ja658CaK07sHOmfXTkQVprC/gEdpXUr2KXsDaASJHX+17ufG9h52W7eUKtF0IMk+AjnMRidK0VsP8O+0f+QikVwU4WuRbYg10zKI0dgIqRveA66SJfL4S4DAk+wimy2LVW0kqpewCUUrOwU96/MOIYP7AUaMCep/kldk2dIOAt8poP5a6zFliCXfpBCFECEnyEUzyBXYDu94AvKKXexK7f9HWt9fYRx7yEXXnyaeCQUuod7CG4t7EDSDEWKaX2At8HHtBa90y8G0IIkJIKQgghqkCWWotJSSn1JexiaJfyLa31/1SyPUJMNvLkI4QQouJkzkcIIUTFSfARQghRcRJ8hBBCVJwEHyGEEBX3/wGrrtskvruHwgAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "fig = sns.distplot(tips[\"tip\"])" + "fig = sns.jointplot(x=\"total_bill\", y=\"tip\", data=df, kind=\"reg\")" ] }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 117, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "matplotlib.axes._subplots.AxesSubplot" + "['__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__',\n", + " 'annotate',\n", + " 'ax_joint',\n", + " 'ax_marg_x',\n", + " 'ax_marg_y',\n", + " 'fig',\n", + " 'plot',\n", + " 'plot_joint',\n", + " 'plot_marginals',\n", + " 'savefig',\n", + " 'set_axis_labels',\n", + " 'x',\n", + " 'y']" ] }, - "execution_count": 104, + "execution_count": 117, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "type(fig)" + "type(fig)\n", + "dir(fig)" ] }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 118, "metadata": {}, "outputs": [], "source": [ - "fig1 = fig.get_figure() \n", - "fig1.savefig(\"test.png\")" + "fig.savefig(\"test.png\")" ] }, { @@ -1404,10 +1885,314 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 120, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "import pandas as pd\n", + "sns.set()\n", + "\n", + "# Load the brain networks example dataset\n", + "df = sns.load_dataset(\"brain_networks\", header=[0, 1, 2], index_col=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
network12345...1617
node11111...341234
hemilhrhlhrhlhrhlhrhlhrh...rhlhrhlhrhlhrhlhrhlh
915-7.429513-4.813219-3.6705371.442261-19.680431-29.109356-3.376562-8.7648930.017912-25.305094...58.28579368.55741122.83304876.17948951.934669-6.614513-6.69076222.89303048.27438076.228455
916-33.554138-38.605621-25.664803-30.2523525.56278520.18218617.91124724.653582-32.935612-21.783203...59.86481923.0045787.65746350.96239913.69692263.50361657.40117624.97454851.97215364.538788
917-78.539566-74.197189-54.041595-39.970291-14.277059-30.60646160.62852162.027023-32.800556-37.021500...68.76786849.66401764.55149843.8007478.14448047.28146070.49964966.99440081.53924664.969772
918-103.235825-98.744286-40.109543-44.90773412.1091481.62134033.76556055.356071-14.330512-17.224781...103.155251106.4548499.04682746.67441940.9547960.87718037.57715220.5177463.12443456.718388
919-36.288868-10.762070-30.356262-23.31950414.252188-27.55986017.279512-19.06015226.55877721.377319...102.08630480.051140-2.642610-12.229620-6.59672617.66516316.1531738.30039933.68753117.960655
\n", + "

5 rows × 62 columns

\n", + "
" + ], + "text/plain": [ + "network 1 2 3 \\\n", + "node 1 1 1 \n", + "hemi lh rh lh rh lh rh \n", + "915 -7.429513 -4.813219 -3.670537 1.442261 -19.680431 -29.109356 \n", + "916 -33.554138 -38.605621 -25.664803 -30.252352 5.562785 20.182186 \n", + "917 -78.539566 -74.197189 -54.041595 -39.970291 -14.277059 -30.606461 \n", + "918 -103.235825 -98.744286 -40.109543 -44.907734 12.109148 1.621340 \n", + "919 -36.288868 -10.762070 -30.356262 -23.319504 14.252188 -27.559860 \n", + "\n", + "network 4 5 ... 16 \\\n", + "node 1 1 ... 3 \n", + "hemi lh rh lh rh ... rh \n", + "915 -3.376562 -8.764893 0.017912 -25.305094 ... 58.285793 \n", + "916 17.911247 24.653582 -32.935612 -21.783203 ... 59.864819 \n", + "917 60.628521 62.027023 -32.800556 -37.021500 ... 68.767868 \n", + "918 33.765560 55.356071 -14.330512 -17.224781 ... 103.155251 \n", + "919 17.279512 -19.060152 26.558777 21.377319 ... 102.086304 \n", + "\n", + "network 17 \\\n", + "node 4 1 2 \n", + "hemi lh rh lh rh lh rh \n", + "915 68.557411 22.833048 76.179489 51.934669 -6.614513 -6.690762 \n", + "916 23.004578 7.657463 50.962399 13.696922 63.503616 57.401176 \n", + "917 49.664017 64.551498 43.800747 8.144480 47.281460 70.499649 \n", + "918 106.454849 9.046827 46.674419 40.954796 0.877180 37.577152 \n", + "919 80.051140 -2.642610 -12.229620 -6.596726 17.665163 16.153173 \n", + "\n", + "network \n", + "node 3 4 \n", + "hemi lh rh lh \n", + "915 22.893030 48.274380 76.228455 \n", + "916 24.974548 51.972153 64.538788 \n", + "917 66.994400 81.539246 64.969772 \n", + "918 20.517746 3.124434 56.718388 \n", + "919 8.300399 33.687531 17.960655 \n", + "\n", + "[5 rows x 62 columns]" + ] + }, + "execution_count": 121, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAMQCAYAAABG8thwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdfVxUZf7/8fcEiCCMloGk7mre5E1p6qqIa1reRIpmzFqJpVRb2m6A9TWNTTerza+mkZtibbXuI9LSpQTNfobdYG6uaVmrZipZhl9vEu8bEESQ+f3BOokD6DnD3Civ5+PBQ86Z8z7nOuMw8JlzruuyOBwOhwAAAADAw67wdQMAAAAA1A8UHwAAAAC8guIDAAAAgFdQfAAAAADwCooPAAAAAF5B8QEAAADAKy6J4qOoqEjDhw/Xvn37XB7bsWOHbDabYmNjNXXqVJWXl0uSDhw4oHvuuUe33Xab/vCHP+jkyZPebjYAAACAc/h98bFlyxYlJCQoPz+/2scnT56sp556SqtXr5bD4VBmZqYk6ZlnntGYMWOUk5OjG264QS+//LIXWw0AAADgfH5ffGRmZmr69OmKjIx0eWz//v06deqUunXrJkmy2WzKyclRWVmZvvzyS8XGxlZZDwAAAMB3An1xULvdLrvd7rLearXKarVWWTdjxowa93Po0CFFREQ4lyMiIlRQUKDjx48rLCxMgYGBVdYDAAAA8J1ai4/MPv08ctCCe+5Wenq6y/qkpCQlJydf9H4qKipksVicyw6HQxaLxfnvuc5fBgAAAOBdtRYfloAAjxw0MTFR8fHxLuvPv+pxIVFRUTp8+LBz+ciRI4qMjNRVV12lwsJCnTlzRgEBATp8+HC1t20BAAAA8J5ai48rAj3TJaS626vMaNGihYKDg/XVV1/pN7/5jVasWKH+/fsrKChIPXv21KpVqzRixAgtX75c/fv3r4OWAwAAADCr1urCEhDgkS93PfTQQ/rmm28kSS+88IJmzpyp2267TcXFxRo3bpwkafr06crMzNSwYcO0adMmPfroo24fFwAAAIB5FofD4ajpweVDYj1y0Ds+Wu2R/QIAAADwXxfo8+H3I/EChqWnp6u0tNTXzQDgAcHBwUpKSvJ1MwAANai9z0eQT0biBTyqtLRUkyZN8nUzAHhAWlqar5sAAKhF7cWHh0a7AgAAAFD/+GSoXQAAAAD1D1c+AAAAAHgFHc4BAAAAeMUFOpwHeasdNVq5cqVeeeUVlZeXKzExUffcc4/zsR07dig1NdW5fOzYMTVu3Fjvv/++srOzlZaWpqZNm0qSbr75Zj322GNebz8AAACAShe47cq3Vz4KCgo0d+5cZWVlqUGDBho9erSio6PVrl07SVKnTp20YsUKSVJJSYnuvPNOPf3005Kkbdu2KTU1VcOHD/dV8wEAAACcw69nOF+/fr369OmjJk2aKDQ0VLGxscrJyal221dffVW9evVSz549JUnffPONsrOzNWLECD3++OP6+eefDTwtAAAAAOqaT0a7stvtstvtLuutVqusVqtz+dChQ4qIiHAuR0ZGauvWrS65wsJCZWZmauXKlc51EREReuCBB9SjRw+9+OKLevbZZxn/HQAAAPAhn4x2lZGRofT0dJf1SUlJSk5Odi5XVFTIYrE4lx0OR5Xls9577z0NHjzY2b9DkhYsWOD8/sEHH9SQIUPqqvkAAAAATKj9ykegZ2Y4T0xMVHx8vMv6c696SFJUVJQ2bdrkXD58+LAiIyNdch9//LEmTJjgXC4sLNSyZct03333SaosWgIYNhgAAADwKZ9c+Tj/9qqa9O3bV/Pnz9exY8cUEhKiDz/8UH/5y1+qbONwOPTtt9+qe/fuznWhoaH6+9//ru7du+vGG2/U4sWLufIBAAAA+Jhfz3DerFkzPfbYYxo3bpzKyso0atQode3aVQ899JBSUlLUpUsXHTt2TEFBQQoODnbmAgIC9Ne//lVPP/20Tp06pdatW2v27Nk+PBMAAAAAfl18SNKIESM0YsSIKutef/115/dNmzbVv//9b5dcz549lZ2d7fH2AQAAALg4PrntCgD8RXp6ukpLS33dDNSRvXv3MrLhZSY4OFhJSUm+bgaAOuL3Vz4AwJNKS0s1adIkXzcDQA0oJoHLS+1XPoI8M9oVAAAAgPqHKx8AAAAAvILiAwAAAIBX1F58XEHxAQAAAKBuXFHrgwEBHvkyYuXKlRo2bJhuvfVWvfXWWy6Pp6en65ZbbtHIkSM1cuRI5zY7duyQzWZTbGyspk6dqvLyckPHBQAAAFC3/LrDeUFBgebOnausrCw1aNBAo0ePVnR0tNq1a+fcZtu2bXrxxRerzHAuSZMnT9Zzzz2nbt266cknn1RmZqbGjBnj7VMAAAAA8F+1XvmwBAR45Mtut2vfvn0uX3a7vcrx169frz59+qhJkyYKDQ1VbGyscnJyqmyzbds2vfrqqxoxYoSeffZZlZaWav/+/Tp16pS6desmSbLZbC45AAAAAN7lkw7nGRkZSk9Pd1mflJSk5ORk5/KhQ4cUERHhXI6MjNTWrVudyydPnlSnTp00efJktWrVSqmpqXr55Zd18803V8lFRESooKDAI+cCAAAA4OL4pPhIHDNW8fHxLuutVmuV5YqKClksFueyw+GostyoUSO9/vrrzuUHHnhATz75pPr3719rDgAAAID3+aT4sFqtLoVGdaKiorRp0ybn8uHDhxUZGelcPnDggNavX69Ro0ZJqiwyAgMDFRUVpcOHDzu3O3LkSJUcAAAAAO+rfbSroCCPfF2svn376vPPP9exY8dUUlKiDz/8UP3793c+3rBhQ82ZM0d79+6Vw+HQW2+9pSFDhqhFixYKDg7WV199JUlasWJFlRwAAAAA76t9tCsfTzLYrFkzPfbYYxo3bpzKyso0atQode3aVQ899JBSUlLUpUsXPfvss/rDH/6gsrIy9ejRQ/fff78k6YUXXtC0adNUVFSk66+/XuPGjfPpuQAAAAD1Xe1j6VpqvTDiFSNGjNCIESOqrDu3n0dsbKxiY2Ndch07dtS7777r8fYBAAAAuDg+6fMBAAAAoP7x60kGAQAAAFw+/LrPBwAAAIDLxwVuu+LKBwAAAIC6QZ8PAAD8THp6ukpLS33dDL+wd+9epaWl+boZfiE4OFhJSUm+bgbgFooPAAD8TGlpqSZNmuTrZsDPUIThcuD3fT5WrlypV155ReXl5UpMTNQ999xT5fGPP/5Y8+fPl8PhUMuWLTVz5kw1btxY2dnZSktLU9OmTSVJN998sx577DFfnAIAAAAAXXC0q4ufjdwTCgoKNHfuXGVlZalBgwYaPXq0oqOj1a5dO0lSUVGRnn76aS1btkzNmjXTSy+9pPnz52vatGnatm2bUlNTNXz4cJ+eA+BPuJXDFbd0VMVtHQAAT/LJbVd2u112u91lvdVqldVqdS6vX79effr0UZMmTSRVTiiYk5Pj/MVYVlam6dOnq1mzZpKkDh06aOXKlZKkb775Rvn5+Xr11VfVoUMH/fnPf1bjxo09cj7ApYJbOXAhFGIAAE+qdQpzS0CAR74yMjI0aNAgl6+MjIwqxz906JAiIiKcy5GRkSooKHAuX3nllRoyZIgk6dSpU3rttdc0ePBgSVJERIT++Mc/6r333tM111yjZ599ts6eNAAAAADG+aTPR2JiouLj413Wn3vVQ5IqKipksVicyw6Ho8ryWYWFhXrkkUfUsWNH534XLFjgfPzBBx90FikAAAAAfKP2264CPTPPx/m3V9UkKipKmzZtci4fPnxYkZGRVbY5dOiQfv/736tPnz568sknJVUWI8uWLdN9990nqbJoCfCDzvMAAABAfVbrbVdXBAZ55Oti9e3bV59//rmOHTumkpISffjhh+rfv7/z8TNnzujhhx/W0KFDNXXqVOdVkdDQUP3973/Xli1bJEmLFy/mygcAAADgY7XfdhXo26sFzZo102OPPaZx48aprKxMo0aNUteuXfXQQw8pJSVFBw8e1Pbt23XmzBmtXr1aknTDDTdoxowZ+utf/6qnn35ap06dUuvWrTV79myfngsAAABQ3/n9JIMjRozQiBEjqqx7/fXXJUldunTRzp07q8317NlT2dnZHm8fAADwL5frsOKX49DgDO9d//j9JIMAAABGMKz4peNyK6ZwYRe48uGZDucAAAAA6p9aq4sAH89wDgAAAODy4fd9PgAAAABcHig+AMBLLoVOsJdKh1Y6qQLApcnvO5yvXLlSr7zyisrLy5WYmKh77rmnyuM7duzQ1KlTdfLkSfXs2VPPPPOMAgMDdeDAAU2ePFlHjx7VtddeqxdeeEGNGjXy0VkAAJ1g69KlUCABAFzVOsmg5YorPPJ1sQoKCjR37ly9/fbbWr58uf75z3/q+++/r7LN5MmT9dRTT2n16tVyOBzKzMyUJD3zzDMaM2aMcnJydMMNN+jll1828fQAAAAAqCu1VwIBgZ75ukjr169Xnz591KRJE4WGhio2NlY5OTnOx/fv369Tp06pW7dukiSbzaacnByVlZXpyy+/VGxsbJX1AAAAAHyn9krgCotHDmq322W3213WW61WWa1W5/KhQ4cUERHhXI6MjNTWrVtrfDwiIkIFBQU6fvy4wsLCFBgYWGU9AACeUpd9euqy7w39YwD4kwtchvBM8ZGRkaH09HSX9UlJSUpOTnYuV1RUyGL5pQ0Oh6PKck2Pn7+dJJdlAADqkr/26aF/DAB/Umvx4fDQQRMTExUfH++y/tyrHpIUFRWlTZs2OZcPHz6syMjIKo8fPnzYuXzkyBFFRkbqqquuUmFhoc6cOaOAgACXHAAAAADvq7XPh8PhmS+r1aqWLVu6fJ1ffPTt21eff/65jh07ppKSEn344Yfq37+/8/EWLVooODhYX331lSRpxYoV6t+/v4KCgtSzZ0+tWrVKkrR8+fIqOQAAAADeV+uVjwqHp659XJxmzZrpscce07hx41RWVqZRo0apa9eueuihh5SSkqIuXbrohRde0LRp01RUVKTrr79e48aNkyRNnz5dqampeuWVV3TNNdfoxRdf9Om5AAAA+Dtvz0fk7bmF6APle7UWH+VnKrzVjhqNGDFCI0aMqLLu9ddfd37fsWNHvfvuuy65Fi1aaNGiRR5vHwAAwOXCX/su1RX6QPlercXHmQrfXvkAAACXJ09+wu7pT9P59Bwwr/biww+ufADVceeXlju/lPiFAwB141L+hJ1PzwHzLnDlg+ID/slXv7T4hQPAF/jABcDl4gJXPrjtCgAAX+MDFwCXi1qLj7LyM95qBwAAAHBBvroSKHE1sC7UPtoVt10BAADAj/iyvxBXA913SXY4P3DggCZPnqyjR4/q2muv1QsvvKBGjRpV2ebQoUP605/+pCNHjuiKK67QlClTFBMTo7KyMkVHR+tXv/qVc9usrCwFBAR4+zQAoF6jHwMA1D+XZJ+PZ555RmPGjFFcXJwWLFigl19+WZMnT66yzezZszVw4EDdc8892r17t8aOHat//etfysvLU/fu3bVw4UIftR4wrq6GpKyr4Sf54w11gX4M/qG295cLvWfwXgDAqEtutKuysjJ9+eWXWrBggSTJZrPp3nvvdSk+hgwZoj59+kiSWrVqpdLSUhUXF+ubb77RsWPHZLPZFBgYqMcff1y9e/f2+nkARvjbkJT88QZcPtx5f+G9AIBRF+hw7pniw263y263u6y3Wq2yWq21Zo8fP66wsDAFBlY2PSIiQgUFBS7bxcbGOr9fuHChOnXqpPDwcFksFg0aNEgTJkzQrl279NBDD2nlypW66qqr3DwrAAAAALWpvcO5h/p8ZGRkKD093WV9UlKSkpOTncsffPCBZs6cWWWbVq1ayWKxVFl3/vK53njjDf3zn//U4sWLJUmjR492Pta5c2d17dpVX3/9tQYPHmzqXIBLnZlbuszcvsXtGQB8wRMzqXtiBnXeI1FfXOC2K8/0+UhMTFR8fLzL+vOvegwdOlRDhw6tsu5sh/EzZ84oICBAhw8fVmRkZLXHmT17ttauXau33npLUVFRkqTly5erR48e+vWvfy1JcjgcCgoKqovTAi5J3rqli9szAPiCv922WhPeI1Ff+KTPx8XcXlWToKAg9ezZU6tWrdKIESO0fPly9e/f32W7N954Qxs3btSSJUuqHCsvL0+bN2/W008/rd27d2vHjh36zW9+Y/pcAFxePPEp6Vme+LRU4hPTy8GFXnd0/Aa8w52fRX4OL84lOdrV9OnTlZqaqldeeUXXXHONXnzxRUnSkiVLdOjQIaWkpGjBggUKCwvT2LFjnbnXXntNjzzyiJ588kkNHz5cFotFzz//vMLCwnx1KgD8zKXyKem5+MT00ufu647XAGpi9AMVIx+SXI5/bDMAg+ddcqNdSVKLFi20aNEil/UJCQnO77/88ssa8/PmzfNIuwAAvscnl8AvPPmBCn9sw4wLdDj3zysfAADUhE8ugUsf889cvi7JKx8AAACXEq7IGcOHCJevS7LPBwD/YOReYqOdrevbL1t3Orq705G9vj3PgK9cqn9McwUCdc0nQ+0CuDxwL3Hd8VVH9/r2PAMw5lItmuC/ap/h3EOTDAIAAACof7jtCgAAAIBX0OEcgE/Q+RKAWfQ3Ay5dtRYfo4d291Y7ANQz3EfsPXQYxeXGnfePCxUu33//PR98AB5Ua/EBAKg7vioCfFXocXUL/ogPPgDfovgA/ASfTl/+6tsfPfXtfAEAF0bxAfgJ/lDzDj6NBwDAdyg+ANQrFHkAAPjOFb5uAAAAAID6geIDAAAAgFdQfAAAAADwCooPAAAAAF5Bh3PgPAx5CwAA4BkUH8B5GA0JAADAMyg+4JeYiwEAAODyQ/EBv8TVBwAAgMsPHc4BAAAAeAXFBwAAAACvoPgAAAAA4BUUHwAAAAC8guIDAAAAgFdQfAAAAADwCooPAAAAAF5B8QEAAADAKyg+AAAAAHgFxQcAAAAAr7A4HA6HrxsBAAAA4PLHlQ8AAAAAXkHxAQAAAMArAn3dANRvW55PN5y58Ykkt7MfvvK44eytf3jB7Wzq2xmGs7PGJJrOns1filnJvedr8j+fM5ydc/c0sgbzr2UY/3mQpPGJL/gsK8lU/mx26ps5hrMzxt1WL7NvvPyF4awk3ffH3pdkVjJ3znWR3fS/uYazPZ8cWK+yZ/O+yqISVz4AAAAAeAXFBwAAAACvoPgAAAAA4BUUHwAAAAC8guIDAAAAgFdQfAAAAADwCooPAAAAAF5B8QEAAADAKyg+AAAAAHgFxQcAAAAAr6D4AAAAAOAVFB8AAAAAvILiAwAAALhE/elPf9L+/fvrdJ8dOnSo0/2di+IDAAAAuERt3LhRDofD1824aBQfAAAAgIfZ7Xbt27fP5ctut1fZbuPGjXrggQf0xz/+UbGxsUpJSdHp06e1fPlyxcfHa+TIkXryySdVWlqq1157TYcOHdL48eP1j3/8Q3PmzJEkrVu3Tj169FB5ebkkaejQoTpy5Ig2b96sO++8U7fffrsSExO1Z88eSdLYsWOVlJSk2NhY7dixw9mWr7/+Wrfeeqtzu7oQWGd7AgAAAFCtjIwMpaenu6xPSkpScnJylXX/+c9/9MEHHygyMlJ33XWXlixZotWrV2vp0qUKDg5WWlqaFi5cqD/+8Y9aunSpXnvtNZWWlmry5MmSpA0bNqhhw4bavn27rrzySoWHh8tqtep//ud/9Ne//lVdu3bVBx98oP/5n//RsmXLJFXeanVu+3bu3KmpU6fqb3/7m1q1alVnzwPFBwAAAOBhiYmJio+Pd1lvtVpd1rVv315RUVGSpLZt26qwsFB79uzRXXfdJUkqKytT586dq2Tatm2roqIi/fzzz9q0aZPGjBmjL774QiEhIRowYIDy8/NltVrVtWtXSZVXQ5566ikVFhZKknP9Wb///e912223qU2bNu6f/DkoPgAAAAAPs1qt1RYa1QkODnZ+b7FYFB4erqFDh2ratGmSpJMnT+rMmTMuuZtuukkfffSRLBaLBg4cqJdeekkWi0UpKSmqqKhw2d7hcDj307BhwyqPvfDCC5oyZYruvPNOdezY8aLP80Lo8wEAAAD4uY8++khHjx6Vw+HQ008/rYyMDElSQECAs4AYMGCAXn31Vf3mN79Rp06d9MMPP+jHH39U586d1aZNG504cUJbt26VJK1atUrNmzdXkyZNqj1eTEyMJk2apGnTplVbuJhF8QEAAAD4sfDwcCUlJSkxMVFxcXGqqKjQ+PHjJUk333yzxo8fr7179yo6OlqHDx9W7969ZbFY1KlTJ0VHR0uSGjRooLlz5+ovf/mLhg8frrfeektz586t9bh33HGHQkNDtWjRojo7F267AgAAAPxEdHS0s2CQpFmzZjm/v/POO122nzp1qqZOnepc3rx5s/P7+fPnV9m2e/fueuedd1z2cX5xkZeX5/z+zTffNND6C+PKBwAAAACvoPgAAAAA4BUUHwAAAAC8guIDAAAAgFdQfAAAAADwCooPAAAAAF5B8QEAAADAKyg+AAAAAHgFxQcAAAAAr6D4AAAAAOAVFB8AAACAHykqKtLw4cO1b9++GrcpKChQv379anx8/vz5mj9/viSpQ4cOdd5GsywOh8Ph60YAAAAAkLZs2aJp06bpxx9/VE5Ojlq2bOmyzdq1a/W///u/ys/PV15eXrX7OVt4JCcnq0OHDjVu521c+QAAAAA8zG63a9++fS5fdru9ynaZmZmaPn26IiMja9zXu+++6ywuLtZTTz2l22+/Xbfffrv27Nlj6hzqQqDPjgxIyuxT8+XCmty1YZ0k6f3bRxrODn9vhSTpu7cXGc5eN2asJGnXP982nG1/9xhJ0up12w1nY/t1liStWvut4awkDRtwvT769w5T2SG/7eRW1p02S9LKNdsMZ0fccoMk6bsfDhjOXte2uSRp/4EjhrMtml8tScr9fKfh7MCYjpKkTzca/1Tq5ujKS+kb/vOD4Wyf7m0luffaOnHcfuENq9HkSqtKTxabygY3ClXhz4WmsuGNwyXJ1LGDG4VKksqKigxng8LCJLn32nInW1J00nA2JKyRJKn4wH7D2dDmLSRJR4+cMJyVpKZXN9HGzbtNZaO7tTH1syRV/jy5k5WkTVt/NJzt2fVaSeZ+Fs++X/7f3kOGs7/+VeUft8eP/Ww4e+VVjSVJ3+btNZy9vsOvJEk7dxl/bXVsX/naMvPzIFX+TGz/ruZbmWrT+bqWptosVbY7IyND6enpLo8lJSUpOTnZuTxjxowL7s9o4SFJffv21bPPPqvnn39eS5cu1RNPPGF4H3WB4qOe2PK864vdF258IsnXTQAAAPC6xMRExcfHu6y3Wq1eOf7gwYMlSe3atdOmTZu8cszqUHwAAAAAHma1Wk0VGkuWLNHSpUslSaNHj1ZCQkK127300kvKzc2VJKWkpLg8HhhY+We/xWKRL7t8U3wAAAAAfiohIaHGguNcEydO1MSJE53L27cbv9XbG+hwDgAAAMAruPIBAAAA+Jmzt1DVprbhc8/txH7udjabTTabzb3GuYErHwAAAAC8gkkG6wlGuwIAAICvcdvVJSQ9PV2lpaUXvf2kSZM82BoAAADAGIqPS0hpaellV1C4M1GgOxMUujPJ4DcL5hnOdnmkcsi7z77cZTh7U6/2kuTWZH9rv/jOVHZA7+vcOm7OZ+ZG2rjtpsqJFbM+3mo4axvcVZJ7E7KZmcDu7OR17kz2Z2ZStehubSRJm781Plttt+tbSZJb/0/uTBRYVmRuosCgsHBTk+ZJv0ycV1ZsvN1BoZWTDLozQaE7r8tdu41PnNm+TeXEmUcOHzecvTriSknSqSOHDWcbXh0hydzEd1Ll5HdmJuyUKiftNPPeIVW+f6zI/cZUduTALpLcmyz0/U+NT6w6/ObKiVXdmdzQzKR7na9rKcm99y13srv3HDSclaQ2raL05RZzE1j2urGNqUkVpV8mVgR9PgAAAAB4CcUHAAAAAK+g+AAAAAD8SFFRkYYPH659+2q+Ja6goED9+l38Lehjx47Vxo0b66J5bqH4AAAAAPzEli1blJCQoPz8/Bq3Wbt2rcaNG6fDh433yfI1OpzXEwxxCwAA4P8yMzM1ffp0TZkypcZt3n33Xc2fP18jRoyocZv58+dr8+bN+umnn3Tvvfc6c7NmzZLdbtfUqVM1cODAOm//hVB8XCSjw9x6wt695kZYAAAAgG/Z7XbZ7XaX9VarVVar1bk8Y8aMC+5r/vz5F3XM06dPa9WqVZKkDz74QOHh4crOztaaNWuUnp5O8eHP/GGY27S0NNNZJhkEAADwnYyMDKWnu/49lpSUpOTkZI8cs2vXrlWWBw8eLElq166djh83PgR3XaD4AAAAADwsMTFR8fHxLuvPvepRnSVLlmjp0qWSpNGjRyshIaHa7V566SXl5uZKklJSKucXa9iwYZVtAgICJEkWi8VY4+sQxQcAAADgYeffXnWxEhISaiw4zjVx4kRNnDjRubx9u7kJZD2N0a4AAAAAeAVXPgAAAAA/c/YWqtrk5eXV+Nj5/UgWLVrk/L5ly5YXtX9P4MoHAAAAAK+wOBwOh68bcSlIS0vzi9GuzLaB0a4AAADga9x2dQkJDg42NNyur4slAAAA4FwUH5eQpKTL76rBd28vuvBG57luzFi3s5l9+hnO3rVhnSTpw3vGGM7e+tbbkqTN3+4xnO12fSvT2bP59z/dZio7/OYbtPaL70xlB/S+TqvWfmsqO2zA9ZKk3M93Gs4OjOkoSSorLjacDQoNrcz+fMJ4tnETSdK3ecYnA72+w68kSd/9cMBw9rq2zSVJ9hOFhrPWJuGSpN17DhrOSlKbVlE68NlaU9nmNw3Qj+9lm8pee3u8jm77xlS26Q1dJEkFX240nG3WK1qSdHDDesPZqD59JUnFB/YbzoY2byFJKtyTbzgb3qq1JMm++3vDWWubdpKk/FXvG862HjZcknTq5EnDWUlq2KiRqZ9/qfI9YMN/fjCV7dO9rVtZSabeb4fffIMk6aN/7zCcHfLbTpLc+/1i5j2gTasoSTL1fJ19rnI+Mz4a0203dZbk3u/EdZt2mXqgAJwAACAASURBVMr269len31pLntTr/amcpcj+nwAAAAA8AqKDwAAAABeQfEBAAAA+JGxY8cqLi5OI0eO1MiRI7Vly5Zqt8vLy1NcXFyN+0lNTVVWVpb27dungQMHeqq5htDnAwAAAPATDodD+fn5WrNmjQIDa/5Tffny5UpLS1NQUJAXW+c+io96giFuAQAA/N/u3bslSQ888IBOnDihu+66S/fee2+VbQoLC/XJJ5/oxRdf1BNPPHFR+z116pQee+wx7dq1S1arVQsWLNCVV15Z5+2/EFPFR3p6ukpLS+u6LX5t717jI9gAAAAAkmS322W3213WW61WWa3WKtvFxMToz3/+s8rKyjRu3Dhde+21+u1vf+vcJjw8XPPnz9e+ffsu+vjHjh3T/fffr65duyolJUWrVq3SPffc495JmWCq+CgtLa13c0gYmV/DH334yuO+boIk6dY/vODrJgAAAHhdRkaG0tNdJ31OSkpScnKyc7l79+7q3r27c3nUqFFau3ZtleLDjMjISHXt2lWS1K5dOx0/ftyt/ZnFbVcAAACAhyUmJio+Pt5l/blXPSRp06ZNKisrU0xMjKTKPiCBgYEaOXKkJCklJUWDBg2q9hhTp07Vtm2Vc80899xzVR47t/+IxWKRw+EwfzJuoPgAAAAAPOz826tqUlhYqHnz5mnp0qUqKytTdna2nnnmGU2ZMuWC2RkzZtRFUz2K4gMAAADwE7fccou2bNmiO+64QxUVFRozZkyV27AudRQfAAAAgB959NFH9eijj15wu5YtWyo3N7fGx2fNmuX8/tztzu1j4m1MMggAAADAKywOE71N0tLS6uVoV746Z7NDG5/bXka7AgAAgK9x29UloD4ObQwAAIDLD8UHfGrXP982nGl/9xhJ0jcL5hnOdnkkRZL04T1jDGdvfauyrZl9+hnO3rVhnSRpw39+MJzt072tJGnT1h8NZyWpZ9drtSL3G1PZkQO76NONeaayN0d30Mo120xlR9xygySZOvbN0R0kSaUniw1ngxuFSpJKCg4azoY0i5Ikbf52j+Fst+tbSZJ27zF+3DatKo9rP1FoOGttEi5J+jbP3CSq13f4lQ5/vclUNqJHT3339iJT2evGjFXhnnxT2fBWrSVJP61fZzh7Td/Kn/0D6/5lONu8X39JUlmx8ddlUGjl67L44AHD2dCo5pKk0yaO2+C/xz26zfj7R9Mbukgy97qUKl+b739q7v1j+M03uPW+9fH6naayg/t2lCQt/n9fG87eG9dDkvTO6i2Gs3fG3ijJvfee734w/tq6rm3la8ud32tmfjeNHFj52vrsy12Gs5J0U6/2WrfJXLZfz/amzlf65ZxBnw8AAAAAXkLxAQAAAMArKD4AAAAAPzJ27FjFxcVp5MiRGjlypLZsqf6WvLy8PMXFxV30fgcOHKh9+/bVVTNNoc8HAAAA4CccDofy8/O1Zs0aBQbW/Kf68uXLlZaWpqCgIC+2zn0UH/UEQ9wCAAD4v927d0uSHnjgAZ04cUJ33XWX7r333irbFBYW6pNPPtGLL76oJ554osZ9paam6sSJE9qzZ48mT54sSVqwYIF27NihkpISzZ49WzfeeKPnTqYaFB8XKTg4WGlpaT459t695kaiORfzfAAAAPiO3W6X3W53WW+1WmW1WqtsFxMToz//+c8qKyvTuHHjdO211+q3v/2tc5vw8HDNnz//om6hatKkif72t79Jkp577jm1a9dOM2fO1OLFi7Vw4ULNm2d89FB3UHxcpKSkJJ8d21dFDwAAAOpGRkaG0tPTXdYnJSUpOTnZudy9e3d1797duTxq1CitXbu2SvFhRNeuXassDx48WJLUrl07rV692tQ+3UHxAQAAAHhYYmKi4uPjXdafe9VDkjZt2qSysjLFxMRIquwDEhgYqJEjR0qSUlJSNGjQoGqPMXXqVG3bVjlHznPPPSdJatiwYZVtAgICJEkWi8WNszGP4gMAAADwsPNvr6pJYWGh5s2bp6VLl6qsrEzZ2dl65plnNGXKlAtmZ8yYURdN9SiKDwAAAMBP3HLLLdqyZYvuuOMOVVRUaMyYMVVuw7rUUXwAAAAAfuTRRx/Vo48+esHtWrZsqdzc3BofnzVrVpXlc7eNjo5WdHS0+UaaxCSDAAAAALzC4nA4HEZDaWlpmjRpkifag2qkp6ertLTUcO7c/yOG2gUAAICvcdvVJcCXw/wCAAAAdYXiAz61et12w5nYfp0lSZ99uctw9qZe7SVJm7/dYzjb7fpWkqQN//nBcLZP97aSpMw+/Qxn79qwrvK40/5kOCtJfZ6bqR+y3zWVbRs/Sj++l20qe+3t8cpf9b6pbOthwyVJ+9euMZxtMeAWSdLBDesNZ6P69JUkHf1mi+Fs0y6VM8Runmv86l63xyqvTO5c9IbhbMex90mS9uV+bDjbcmDlWO97clYZzkpSq9uGqayo0FQ2KCxcZcUnzWVDG6ns5xPmso2bSJJOnTR+7IaNGkmS7CeMn7O1SbgkqayoyHA2KCxMklR6sthwNrhRaGX22BHj2auudvu4ZcXGs5IUFBqq4gP7TWVDm7cwdb5S5TkXHzxg7rhRzSVJhXvyDWfDW7WWJJUUHDScDWkWJUnatdt4u9u3qWzzDz/+ZDjb9tprJEn7Dxh/rls0r3xtmXmuzz7PZt7jpcr3eXf+j838fpB++R0B+nwAAAAA8BKKDwAAAABeQfEBAAAA+JEVK1YoLi5OcXFxev7556vdJj093bnN7Nmzq90mKytLqampkqSBAwdq3759HmvzxaLPRz3BKFMAAAD+r6SkRDNmzFBOTo6sVqsSEhK0fv169e3b17nN+vXrtW7dOmVnZ8tisejBBx/URx99pCFDhviw5ReHKx8AAACAnzhz5owqKipUUlKi8vJylZeXKzg4uMo2ERERSk1NVYMGDRQUFKS2bdvqwIELd6RfsGCB7rjjDsXGxmrLFnOd593FlY96IvXtDF83QZI0a0yir5sAAADgdXa7XXa73WW91WqV1Wp1LoeFhWnixIkaOnSoQkJC1KtXL/Xo0aNKpn379s7v8/Pz9cEHH2jJkiUXbEO7du00c+ZMLV68WAsXLtS8efPcOCNzuPIBAAAAeFhGRoYGDRrk8pWRUfUD4p07d2rZsmVas2aNPvvsM11xxRVauHBhtfvctWuXHnjgAU2ZMkWtW7e+YBsGD64cYr1du3Y6fvy42+dkBlc+AAAAAA9LTExUfHy8y/pzr3pI0rp16xQTE6OmTZtKkmw2myZMmKCVK1dKquw4PnHiRH311VdKSUnRk08+qbi4OEnSkiVLtHTpUknS6NGjXW7XCggIkCRZLJa6PTkDKD4AAAAADzv/9qqadOzYUXPmzFFxcbFCQkKUm5urpKQkJScnO7f56aef9Mgjj2ju3LmKiYlxrk9ISFBCQoJzOSsrq25Pog5QfAAAAAB+ol+/ftq+fbtsNpuCgoLUpUsXjR8/vso2CxcuVGlpqWbNmuVcN3r06CqFh7+i+AAAAAD8yPjx410KjnNNmzZN06ZNu+B+bDabbDabJCk3N9e5Pjo6WtHR0e431AQ6nAMAAADwCq58+IH09HSVlpbW+X4nTZpU5/sEAAAAzLI4HA6H0VBaWhp/2NYhbzyfzPMBAAAAX+PKB3xq1dpvDWeGDbhekvTRv3cYzg75bSdJ0uZv9xjOdru+lSRp09YfDWd7dr1WkrRh2p8MZ/s8N1OSlNmnn+GsJN21YZ1+yH7XVLZt/CjlLTZXuHa4N1H5q943lW09bLgkaeeiNwxnO469T5J0YN2/DGeb9+tfmf1srfHsTQMkudfm795eZDh73ZixkqT/+2i14eyvh8RKkvblfmw4K0ktBw7WqcMFprINI5qprPikqWxQaCOVFRWZy4aFSZJKiowfOySskSSZOvbZ47qTLSk4aDgb0ixKknTqpPHzbdio8nyPH/vZcPbKqxpLklv/x4e/3mQqG9Gjp45+Y27m5qZdbtShTV+Yykb27C1JOrlvr+Fso5a/kiSdOnLYcLbh1RGSpCOHjc/ZcHXElZKkb/OMt/n6DpVt3rvPeJt/1bKyzWZeH0Ghla/LwvzdhrOSFN66jU7kGf/7QZKadOhk6veD9MvvCNDnAwAAAICXUHwAAAAA8AqKDwAAAMCPrFixQnFxcYqLi9Pzzz9f7Tbp6enObWbPnn1R+01NTfX5xIP0+agn6OgNAADg/0pKSjRjxgzl5OTIarUqISFB69evV9++fZ3brF+/XuvWrVN2drYsFosefPBBffTRRxoyZIgPW35xKD7qgLtD5e7da7yjFwAAAC4/Z86cUUVFhUpKShQaGqry8nIFBwdX2SYiIkKpqalq0KCBJKlt27Y6cOCAy76ysrKUnZ2tEydO6JZbbpEkffrpp3r77bd19OhRPfzww7r77rs9f1LnoPioA6WlpW4NlZuWllaHrakeQ+0CAAD4jt1ul91ud1lvtVpltVqdy2FhYZo4caKGDh2qkJAQ9erVSz169KiSad++vfP7/Px8ffDBB1qyZEm1xy0oKNCqVasUGBio1NRUnT59Wu+884527dqlcePGeb34oM8HAAAA4GEZGRkaNGiQy1dGRtUPiHfu3Klly5ZpzZo1+uyzz3TFFVdo4cKF1e5z165deuCBBzRlyhS1bt262m06d+6swMBfrjcMGjRIFotF7du31/HjxododhdXPgAAAAAPS0xMVHx8vMv6c696SNK6desUExOjpk2bSpJsNpsmTJiglStXSpIGDhyoiRMn6quvvlJKSoqefPJJxcXFSZKWLFmipUuXSpJGjx6t4OBgNWzYsMr+AwICJEkWi6VuT/AiUXwAAAAAHnb+7VU16dixo+bMmaPi4mKFhIQoNzdXSUlJSk5Odm7z008/6ZFHHtHcuXMVExPjXJ+QkKCEhATnsq9HtqoOxQcAAADgJ/r166ft27fLZrMpKChIXbp00fjx46tss3DhQpWWlmrWrFnOdaNHj65SePgrig8AAADAj4wfP96l4DjXtGnTNG3atAvux2azyWazOZfPLVYkKS8vz3wjTaL48APBwcEeGfHKnRG4AAAAgLpG8eEHkpKSfN0EAAAAwOMsDofDYTSUlpbGp+rnuBSeD+b5AAAAgK9x5QM+9dG/dxjODPltJ0nS2i++M5wd0Ps6SdL7n24znB1+8w2SpBW53xjOjhzYRZL0Q/a7hrNt40eZzp7NZ/bpZyp714Z12rnoDVPZjmPv03dvLzKVvW7MWElS/qr3DWdbDxsuSbLv/t5w1tqmnSTp9Anj4543aHKlJOnH97INZ6+9vXLoxYMbPzecjYquHOWk4MuNhrPNekWbPu7ZYx86dMxUNjLyKn33g+tsvBfjurbNVVboOlHXxQgKrxxp5vixnw1nr7yqsdvZ08XFhrMNQkMlydRzHRl5lSSprKjIcDYoLEyStHvPQcPZNq2iJEknjpv7f2pypVXFB829PkKjmqv4wH5z2eYtVFZ80lQ2KLSRJKlo7x7D2bBftZIklf18wvhxGzeRJBUXGm93aHhlm+0nCg1nrU3CJUmlJ42/poMbVb6m3TnfU4cLDGclqWFEM7f+j0sKjP88SFJIsyhTucsRkwwCAAAA8AqKDwAAAABeQfEBAAAAwCvo81FP0NEbAADg0rBixQq99tprkqT+/fvriSeecNnmpZde0urVq2WxWDRq1Cjdf//9LttkZWXpiy++0KxZszRw4EC9+eabatmypcfbXxuKDwAAAMBPlJSUaMaMGcrJyZHValVCQoLWr1+vvn37Orf54osvtGHDBr333nsqLy/XsGHDNGDAALVp08aHLb84FB/1BEPtAgAA+I7dbpfd7joCnNVqldVqdS6fOXNGFRUVKikpUWhoqMrLyxUcHFwl07t3b7355psKDAxUQUGBzpw5o9D/joxXmwULFmjHjh0qKSnR7NmzdeONN7p/YgZdVsVHenq6SktLvX7cvXv3ev2YAAAAuHRkZGQoPT3dZX1SUpKSk5Ody2FhYZo4caKGDh2qkJAQ9erVSz169HDJBQUFad68efrHP/6h2267Tc2aNbtgG9q1a6eZM2dq8eLFWrhwoebNm+feSZlwWRUfpaWlPpnsLy0tzevHBAAAwKUjMTFR8fHxLuvPveohSTt37tSyZcu0Zs0ahYeH6/HHH9fChQv14IMPumRTUlL00EMP6eGHH1ZmZqbuvvvuWtswePBgSZVFyOrVq904G/Muq+IDAAAA8Efn315Vk3Xr1ikmJkZNmzaVJNlsNk2YMEErV66UJA0cOFDDhw/X6dOn1alTJ4WEhOjWW29VXl6elixZoqVLl0qSRo8e7XK7VkBAgCTJYrHU5akZQvEBAAAA+ImOHTtqzpw5Ki4uVkhIiHJzc11uzVq7dq3mzZunJUuWSJI++eQT/e53v1NcXJwSEhKc22VlZXm9/RdC8QEAAAD4iX79+mn79u2y2WwKCgpSly5dNH78+CrbDBgwQFu3btUdd9yhgIAA3XrrrYqLi/NRi42h+Khjvur0Xh1f9H8BAACAe8aPH+9ScJwvOTm5ytWQ6thsNtlsNklSbm6uc310dLSio6Pdb6gJFB91zFed3gEAAAB/Z3E4HA6jobS0NL/8A9tX7Tr3uP763DDPBwAAAHztCl83AAAAAED9wG1X8KmP/r3DcGbIbzu5nV37xXeGswN6XydJ+nRjnuHszdEdJEk/vpdtOHvt7ZVjguctNnf1qsO9idq56A1T2Y5j71Nmn36msndtWOfWcSVpc9ocw9lukyZLkg5v/tpwNqJb5SROJ/KMv7aadKh8beWvet9wtvWw4ZKkgi83Gs4261V5z+6+3I8NZ1sOHGz6uGePbT9RaCprbRKuInuRqWyYNUwlBQdNZUOaRUmSyoqLDWeD/jt7cOHPxs85vHF45XGLjJ9zUFjYf7PGjxsUVnlcd9ps5v8pzFrZ5tKTxp9nSQpuFKrCPfmmsuGtWpv6eZAqfyZO7DL+Hi9JTdpXvs+XHjtiOBt81dWSpOID+w1nQ5u3kOTea3rX7gOGs+3bNJfk3mvr+LGfDWevvKqx6eOePXbZzydMZYMaN9HP3+8ylW3crr2p3OWIKx8AAAAAvILiAwAAAIBXcNtVPUFHbwAAgEvDihUr9Nprr0mS+vfvryeeeMJlm5deekmrV6+WxWLRqFGjdP/9919wv6mpqerdu7dz+F1foPioJxjtCgAAwP+VlJRoxowZysnJkdVqVUJCgtavX6++ffs6t/niiy+0YcMGvffeeyovL9ewYcM0YMAAtWnTxoctvzgUHwAAAICH2e122e12l/VWq1VWq9W5fObMGVVUVKikpEShoaEqLy9XcHBwlUzv3r315ptvKjAwUAUFBTpz5oxC/zuAwLmysrKUnZ2tEydO6JZbbpEkffrpp3r77bd19OhRPfzww7r77rvr+ExrR/EBAAAAeFhGRobS09Nd1iclJVWZqTwsLEwTJ07U0KFDFRISol69eqlHjx4uuaCgIM2bN0//+Mc/dNttt6lZs2bVHregoECrVq1SYGCgUlNTdfr0ab3zzjvatWuXxo0b5/Xigw7nAAAAgIclJibqk08+cflKTKx6S/rOnTu1bNkyrVmzRp999pmuuOIKLVy4sNp9pqSk6PPPP9dPP/2kzMzMarfp3LmzAgN/ud4waNAgWSwWtW/fXsePH6+7E7xIXPkAAAAAPOz826tqsm7dOsXExKhp06aSJJvNpgkTJmjlypWSpIEDB2r48OE6ffq0OnXqpJCQEN16663Ky8vTkiVLtHTpUknS6NGjFRwcrIYNG1bZf0BAgCTJYrHU5eldNIqPOhAcHKy0tDRJ0t69e33cGgAAAFyqOnbsqDlz5qi4uFghISHKzc11uTVr7dq1mjdvnpYsWSJJ+uSTT/S73/1OcXFxSkhIcG6XlZXl9fZfCMVHHUhKSnJ+f7YIAQAAAIzq16+ftm/fLpvNpqCgIHXp0kXjx4+vss2AAQO0detW3XHHHQoICNCtt96quLg4H7XYGIoPL0lPT1dpaalXjzlp0iSvHg8AAADuGz9+vEvBcb7k5OQqV0OqY7PZqszpMWvWrCqP5+XlmW+kSRQfXlJaWkoxAAAAgHrN4nA4HEZDaWlpfvmHtD+0q6Y2+LptTDIIAAAAX2OoXQAAAABewW1X8KlVa781nBk24HpJUs5n2w1nb7ups9vHXblmm+HsiFtukCTlr3rfcLb1sOGms2fz3729yFT2ujFjtXPRG6ayHcfep8w+/Uxl79qwTpK0YdqfDGf7PDdTknRw4+eGs1HRMZKkn7/fZTjbuF17SdL+tWsMZ1sMqJx11p02H9r0heFsZM/epo979tilJ4tNZYMbhaqk6KSpbEhYI5UVm8sGhTaSJBX+XGg4G944XJK0e89Bw9k2raIkSWUniwxngxqFVWaLjT/XQf+d8djM83X2uTp06JjhbGTkVZLMPc9S5XN9YN2/TGWb9+uvo9u+MZVtekMXUz//0i/vAf/30WrD2V8PiZUkncjbYTjbpEMnSe79Hx89csJwtunVTSRJp028Lhv893VZfGC/4Wxo8xaSzP0sSZU/TyUFxn+GJSmkWZSKDx4wlQ2Nam4qdzniygcAAAAAr+DKRz1BXwsAAAD4Glc+AAAAAD+yYsUKxcXFKS4uTs8//3yN2xUVFWn48OHat29ftY9nZWUpNTVVUuXM6DVt501c+agnGO0KAADA/5WUlGjGjBnKycmR1WpVQkKC1q9fr759+1bZbsuWLZo2bZry8/N901CTuPIBAAAAeJjdbte+fftcvux2e5Xtzpw5o4qKCpWUlKi8vFzl5eUKDg522V9mZqamT5+uyMjIi27DggULdMcddyg2NlZbtmxx+5zM4MoHAAAA4GEZGRlKT093WZ+UlFRlpvKwsDBNnDhRQ4cOVUhIiHr16qUePXq45GbMmGG4De3atdPMmTO1ePFiLVy4UPPmzTO8D3dRfNSx4OBgpaWluazfu3evD1oDAAAAf5CYmKj4+HiX9Vartcryzp07tWzZMq1Zs0bh4eF6/PHHtXDhQj344INut2Hw4MGSKouQ1auNDwtdFyg+6lhSUlK166srSAAAAFA/WK1Wl0KjOuvWrVNMTIyaNm0qSbLZbJowYYJWrlwpqbLj+MSJE6vNLlmyREuXLpUkjR492uV2rYCAAEmSxWIxfR7uovgAAAAA/ETHjh01Z84cFRcXKyQkRLm5uS63ZtUkISFBCQkJzuWsrCxPNtUUig8fSU9PV2lpqUePMWnSJI/uHwAAAHWrX79+2r59u2w2m4KCgtSlSxeNHz/e182qMxQfPlJaWkpxAAAAABfjx4+/6IIjNze3xsdsNptsNpvLdtHR0YqOjnavkSYx1C4AAAAAr7A4HA6H0VBaWppffmrvr+2SXNvm7bYyySAAAAB8jSsfAAAAALyCPh/wqZVrthnOjLjlBklS1sdbDWdtg7tKknI/32k4OzCmoyTp0415hrM3R3eQJO1fu8ZwtsWAWyRJOxe9YTgrSR3H3qf8Ve+byrYeNlyb0+aYynabNFkbpv3JVLbPczMlSZl9+hnO3rVhnSTpwGdrDWeb3zRAknRo0xeGs5E9e0uS9n1a8723NWl580C3s+6c78GNnxvOSlJUdIxKTxabygY3CnUrW1Z80lQ2KLSRJJk6dnCjUEnSqZPGj92wUeVxT584bjjboMmVkqSfv99lONu4XXtJUnGh8TaHhle2uaTIeDYkrDLrzv/TD9nvmsq2jR+l79/9p6lsu1F368eVK0xlrx0xUpJU8OVGw9lmvSrvvT+8+WvD2YhulZPPlRUVGs4GhYVLkjZ/u8dwttv1rSRJP/101HD2mmsqh5A9fuxnw9krr2osSTp06JjhrCRFRl6lor3Gz1eSwn7VSsUHD5jKhkY1N5W7HHHlAwAAAIBXcOWjnqCvBQAAAHyN4sNLgoODq8xyvnfvXh+2BgAAAP5qxYoVeu211yRJ/fv31xNPPFHtdkVFRRo9erT+9re/qWXLlhfcb2pqqnr37u0cftcXKD68JCkpqcryuYWINzDaFQAAgP8rKSnRjBkzlJOTI6vVqoSEBK1fv159+/atst2WLVs0bdo05efn+6ahJlF8AAAAAB5mt9tlt9td1lutVlmtVufymTNnVFFRoZKSEoWGhqq8vFzBwcEuuczMTE2fPl1Tpkyp8ZhZWVnKzs7WiRMndMstlQPYfPrpp3r77bd19OhRPfzww7r77rvr4OwuHsUHAAAA4GEZGRlKT093WZ+UlKTk5GTnclhYmCZOnKihQ4cqJCREvXr1Uo8ePVxyM2bMuKjjFhQUaNWqVQoMDFRqaqpOnz6td955R7t27dK4ceMoPgAAAIDLTWJiouLj413Wn3vVQ5J27typZcuWac2aNQoPD9fjjz+uhQsX6sEHHzR13M6dOysw8Jc/+QcNGiSLxaL27dvr+HHjw3+7i+IDAAAA8LDzb6+qybp16xQTE6OmTSvnQ7HZbJowYYJWrlwpSRo4cKAmTpxYbXbJkiVaunSpJGn06NEKDg5Ww4YNq2wTEBAgSbJYLKbPxR0UHwAAAICf6Nixo+bMmaPi4mKFhIQoNzfX5dasmiQkJCghIcG5nJWV5cmmmkLx4SPnD73rCZMmTfLo/gEAAFC3+vXrp+3bt8tmsykoKEhdunTR+PHjfd2sOkPx4SPnD70LAAAASNL48eMvuuDIzc2t8TGbzVZlTo9Zs2ZVeTwvL89cA91whdePCAAAAKBesjgcDofRUFpaml/e0uOv7fIHTDIIAAAAX+PKBwAAAACvoM8HfOq7Hw4YzlzXtrkkaf+BI4azLZpfLUkqKy42nA0KDZUklZ40ng1uVJk9uGG94WxUn76SpAPr/mU4K0nN+/WXfff3prLWNu10ePPXprIR3Xro4MbPTWWjomMkSQc+W2s42/ymAZKkuE4V1gAAIABJREFUzD79DGfv2rBOkrR+ivErqH1nVw4g8fXsWRfY0lWPKamSpK3z5hrOdk15rDI7/yXj2eTKoRp3ZvzDcFaSOiY+oB/fyzaVvfb2eP2Q/a6pbNv4Ucpf9b6pbOthwyVJBV9uNJxt1itaknTksPFx8a+OuFKSVFZ80nA2KLSRJOm0ifetBv993zp10vhxGzaqPK47bd609UfDWUnq2fVa5f9fgals618309EjJ0xlm17dRIU/F5rKhjcOlyTt3nPQcLZNqyhJ7v1u2rX7/7N371FV1fn/x5+oiHE5Kt5INElBHZ3SmrzbrxSnGUkzUAyaDE2nsRFBZyY1NTHNdJwYR6Hpu/oucxhveBks6qulReNXv2bjZdSSIlIxSMQrHlC5jPL74+RJPCBn7wNy0tdjLdfi7LNfe3/2OYd9eLv35/Mx/n0a0tH2fbrn4FHD2V49OgKuHa8rWTPfxWD7Pjbz9wPY/oawFpr7fFia+ZnK3Y505UNERERERG4JXfm4Q6ivhYiIiIjUNxUfd4gX171a300A4E9Pza7vJoiIiIi4rQ0bNrBq1Sr747y8PEaMGMGcOXPsy65cucIrr7zC/v378fDw4Pnnn2f48OEO20pKSgJg8uTJdOnSpV6G1r2Rig8RERERETcRGRlJZGQkANnZ2UyaNMlhfrj09HSKi4t5//33OXfuHEOHDmXQoEH4+vrWR5MNUfEhIiIiIuKG5s6dy9SpU/H396+0PDw83H6l49SpU3h6euLp6Vnj9ubMmcOBAwcA21WRDh061H6ja6AO5yIiIiIidcxqtZKXl+fwz2q1Vrn+rl27KCkpYejQoVU+36hRI2bNmsWoUaMYPXo0Xl5eNbahf//+pKenM2DAAFJTU106HrNUfIiIiIiI1LGUlBRCQ0Md/qWkVD0RdGpqKuPGjbvpNhcsWMCOHTvYunUrO3furLENQ4YMASA4OJjCQnNDUrtKt12JiIiIiNSxmJgYwsPDHZZbLBaHZWVlZezZs4dFi2xzR61du9Z+pSIqKor77rsPX19fgoKCaN68OQ8//DBZWVns27ePjIwMAOLi4hy226iR7U9/Dw8PKioqau3YjFDxISIiIiJSxywWS5WFRlWysrIICgrC+/tJJKOjo4mOjrY/v3r1anbt2kVSUhKXLl1i586dzJs3jwceeID4+Hj7epmZmbV7ELVAxYebSE5OprS0tFa3+fvfG5+lWURERETqV25uLgEBAdU+HxUVRVZWFsOHD6dBgwb86le/4oEHHriFLTRPxYebKC0tVbEgIiIiIoSFhREWFlbt8w0bNmTevHk1bmfy5Mn2n6+f4yMiIoKIiAjXGmmSOpyLiIiIiMgt4VFhordJYmKi6f+lr4vbi67Jzc3lL3/5S51su6658po6QzOci4iIiEh9u+W3XdXl7UWJiYl1sl0REREREXGd+nxIvfruxBnDmcC2LQEoulBkOOvX1A+A8gvGx7b2bNoMgMsFJw1n72pj6zR29vODhrMt7usBwIkd2w1nAdo+/AhlhedNZRs3a05h1pemss26/IQL32SbyjYNDgHg1N5/Gc62fqg3ALumGf9Pjv6Lbf+Bsb7vQMPZ0btt46tnvv3fhrPdnvs1AAcS/2Q42/P3LwJwaNkSw9n746YCkL3e3ERTIaOjOPKPDaaynUZGmmoz2Nr97bYPTWXv+fkvAMjL+Mhwtt1g2/j4xdZiw1lfiy8A1kLj5y1LM9t5q+TiRcPZJj4+AHybe8pw9p72rQE4e8b4+bJFS9v5ctf+bwxnAfo/GMxX2d+ZynYNCSTn2wJT2aB72ph6reCH1+vA4eOGsz2722aZPnIs33C20713A5h6vbqGBAKwc6/xc/XAh2zn6cNZuYaz3bu0ByD76AnD2ZCObQHIzz9rOAtw990tTP3tAba/Py4XG/89BLjL18dU7nak4uMOodudRERERKS+qfioI0b7tuTmGv+fAxERERGRHxMVH3XEaN+Wuu6vog7nIiIiIu5vw4YNrFq1yv44Ly+PESNGMGfOHPuyK1eu8Morr7B//348PDx4/vnnGT58eI3bHjNmDLGxsfTp06dO2u4MFR8iIiIiIm4iMjKSyMhIALKzs5k0aRKxsbGV1klPT6e4uJj333+fc+fOMXToUAYNGoSvr299NNkQFR8iIiIiIm5o7ty5TJ06FX9//0rLw8PD7Vc6Tp06haenJ56eng75pKQkDhw4QH5+Ps888wwAGzduZNGiRVitVmbNmsXgwYPr/kCuo+JDRERERKSOWa1WrFarw3KLxYLFYnFYvmvXLkpKShg6dGiV22vUqBGzZs3i3Xff5fnnn8fLy6vK9crKyti8eTMAW7Zswc/Pj02bNvHJJ5+QnJx8y4sPzXAuIiIiIlLHUlJSCA0NdfiXkpJS5fqpqamMGzfupttcsGABO3bsYOvWrezcubPKde6///5Kj4cMsQ0bHhwczPnz5obid4WufIiIiIiI1LGYmBjCw8Mdlld11aOsrIw9e/awaNEiANauXUtqqm1OpqioKO677z58fX0JCgqiefPmPPzww2RlZbFv3z4yMjIAiIuLA6BJkyaVtt2wYUMAPDw8au/gDFDxISIiIiJSx6q7vaoqWVlZBAUF4e3tDUB0dDTR0dH251evXs2uXbtISkri0qVL7Ny5k3nz5vHAAw8QHx9vXy8zM7N2D6IWqPhwE15eXrU+3K6RoX5FRERExD3k5uYSEBBQ7fNRUVFkZWUxfPhwGjRowK9+9SseeOCBW9hC81R8uIkbh1ATERERkTtTWFgYYWFh1T7fsGFD5s2bV+N2Jk+eXOnxypUr7T+3a9fOfovWraQO5yIiIiIickt4VFRUVBgNJSYmmr6lx5VsfW7bKHdqC2iGcxERERGpf7ryISIiIiIit4T6fEi9yvj0K8OZwf26ArD730cMZ/s+0AmAw1m5hrPdu7QH4MDh44azPbt3sGWXvG48O/UPAHy18m+GswBdx4zlWPomU9l7nwgnZ/P7prJBYcP4bvsnprKBjwwCIO+fxu9FbfeobbKk/YsXGc4+OG0GAJlv/7fhbLfnfg3A+r4DDWdH77aNzf7Zy7MMZ/vMXwDA528sM5y9b5JtGMbP/5psOAtw329jOX1gv6lsq54PUpRz1FTWL6gjp/fvNbffBx8C4MI32YazTYNDAPg295Th7D3tWwNQfumS4azn96PdFF0oMpz1a+pn2+/FYuP79fG1ZV1oc/bRE4azACEd23LmtLn5B1q2au5S1lpo/HUGsDSzvdaXiy8azt7l6wNA+SXjWU9vW3b7v742nH2kd2cAduwx/vvwcC/b74Mr36dm3qeWrZoDUF5s/DMN4Onry9kzhaayLVo2o6zQ3GercbPmpnK3IxUfdwjd7iQiIiIi9U23XYmIiIiIyC2hKx93CHU4FxEREXF/GzZsYNWqVfbHeXl5jBgxgjlz5jisW1BQwMiRI9m5c2eV20pKSgJsQ+526dKFrKysumm0ASo+RERERETcRGRkJJGRkQBkZ2czadKkKueD2759O6+99hqnT5++1U10iW67EhERERFxQ3PnzmXq1Kn4+/s7PLdx40b7lQ1nzZkzhyeeeIInnniC48eND6BTG1R8iIiIiIjUMavVSl5ensM/q9Va5fq7du2ipKSEoUOHVvl8UlISnTt3NtSG/v37k56ezoABA0hNTTV8DLVBt12JiIiIiNSxlJQUkpMdhzaPjY1l8uTJDstTU1MZN25crbZhyJAhAAQHB7N3r7khy12l4kNEREREpI7FxMQQHh7usNxisTgsKysrY8+ePSxaZJuzau3atfYrFVFRUURHR1e5j6VLl5KRYZsjKy4uzuH5Ro1sf/p7eHhQUVFh7kBcdEcXH8nJyZSWltbJtnNznZ90p67a8fvf/77WtykiIiIixlkslioLjapkZWURFBSE9/cTdkZHR1dbcFwvPj6e+Ph4++PMzExzja1Dd3TxUVpaWmd/oCcmJrpFO0RERETkxyU3N5eAgID6bkaduKOLDxERERERdxMWFkZYWJhT695s7o7r+5Jcv15ERAQRERHmG+gCjXYlIiIiIiK3hEeFid4miYmJpm8TciVb29t2l7bUZTuu0QznIiIiIlLfdOVDRERERERuCfX5kHr1z8+qv0+xOo/26QLAZweOGs726dkRgK+PnDCc7dypLQBHj580nO3YwdZp7KuVfzOc7TpmLABfr1lpOAvQ+ekxnPzsU1PZgD79KNjzmalsm159XNovQN4/Mwxn2z06GIBDy5YYzt4fNxWAA4l/Mpzt+fsXAfjs5VmGs33mLwBgfd+BhrOjd+8EYP8fXzOcfXD6TAAyl79lOAvQbfzzLn0+zLy/YHuPz2V+YSrr3+2nAJw+sN9wtlXPBwE4efKs4WxAQAsAzp+7YDjb3L8pAKUXLxnOevnYRspx5bx15vR5w9mWrZoDkPl1nuEsQLfO7Uy9VmB7vXLzTpvKtm/XisvFF01l7/L1AVz7fFgLiwxnLc38APgq+zvD2a4hgQDs/vcRw9m+D3RyOevK5/JSkbn3ydvPh8LzVU/qV5NmzS2UnjtjKuvl39JU7nak4uMOodudRERERKS+qfi4RW42l4eROUFERERERH6sVHzcIjeby8PInCBmqcO5iIiIiPvbsGEDq1atsj/Oy8tjxIgRzJkzx77sypUrzJs3j3379lFRUUFkZCRjx46tcdtjxowhNjaWPn361EXTnaLiQ0RERETETURGRhIZGQlAdnY2kyZNIjY2ttI6aWlpFBYWkp6eTklJCaNGjaJXr1507969PppsiIoPERERERE3NHfuXKZOnYq/v3+l5SEhIfTo0YMGDRrg7e1N+/btyc/Pdyg+kpKSOHDgAPn5+TzzzDMAbNy4kUWLFmG1Wpk1axaDBw++ZccDKj5EREREROqc1WrFanUcactisWCxWByW79q1i5KSEoYOHerwXM+ePe0/79+/n0OHDrF48eIq91tWVsbmzZsB2LJlC35+fmzatIlPPvmE5ORkFR8iIiIiIreblJQUkpOTHZbHxsYyefJkh+WpqamMGzfuptvcs2cPU6dO5fXXX6dp06ZVrnP//fdXejxkyBAAgoODOX/e+FDarlLxISIiIiJSx2JiYggPD3dYXtVVj7KyMvbs2cOiRYsAWLt2LampqQBERUURHR3N1q1bmTt3LkuWLLF3IF+6dCkZGbY5lOLi4gBo0qRJpW03bNgQAA8Pj1o6MmNUfLgBLy+vOhnxqrrRtURERETk1qru9qqqZGVlERQUhLe3baLQ6OhooqOj7c8fOnSIuXPn8vbbb9O1a1f78vj4eOLj4+2PMzMza6n1tUfFhxu4cQQDEREREblz5ebmEhAQUO3zb775JleuXGH69On2ZXFxcYSGht6K5rlExYeIiIiIiBsJCwsjLCys2ufffPNNp7ZzY1+SlStX2n9u166d/RatW6nBLd+jiIiIiIjckVR8iIiIiIjILeFRUVFRYTSUmJhoujOzK9na3vatbEtd7ssZL657td72fb0/PTW7vpsgIiIiIvVEfT6kXu3+9xHDmb4PdALgwOHjhrM9u3cAwFpYZDhraebncjYv4yPD2XaDbeNxf7vtQ8NZgHt+/gsK9nxmKtumVx9TbQZbu0/t/ZepbOuHegNwYsd2w9m2Dz8CwKGkpYaz90+2jRByaNkS49m4qQB8/sYyw9n7JtmGQ9z/x9cMZx+cPhOA9X0HGs6O3r0TgE9fmmY4C9Bv4WKXPls5m983lQ0KG8a3W7eYyt7zmG2yrmPvvWs4e+/wEQCcPHnWcDYgoAUA+fnGs3ff7Xr27JlCw9kWLZsBcOa08XkAWrZqDpg7x4PtPJ/5dZ6pbLfO7ThyLN9UttO9d3Mw0/h3C0CPbrbvl+yjJwxnQzq2BSDn2wLD2aB72gCYave1Nn924KjhbJ+eHQHXvse/PmL8tercyfZamflcgu2z+d2JM6aygW1bUnTB+N8AAH5N/UzlbkcqPurIjcPn5ubm1mNrdMVBREREROqfio86cuPwuXUxj4cRuu1KREREROqbOpyLiIiIiLiJDRs2MGLECPu/n/3sZ8ybN6/KdQsKChg40PnbbseMGcNnn5m7Xba26MqHiIiIiIibiIyMJDIyEoDs7GwmTZpU5YTU27dv57XXXuP06dO3uoku0ZUPERERERE3NHfuXKZOnYq/v7/Dcxs3biQpKemm+aSkJMaPH09YWBhr1qyx58LDwwkNDa2XSQZ15UNEREREpI5ZrVasVqvDcovFgsVicVi+a9cuSkpKGDp0aJXbq6nwuKasrIzNmzcDsGXLFvz8/Ni0aROffPIJycnJDB482MBRuE7Fh4iIiIhIHUtJSSE5OdlheWxsLJMnT3ZYnpqayrhx41ze7/3331/p8ZAhtiH8g4ODOX/e3JDFrlDxISIiIiJSx2JiYggPD3dYXtVVj7KyMvbs2cOiRYsAWLt2LampqQBERUURHR1d5T6WLl1qv5UqLs42h1STJk0qrdOwYUMAPDw8TB6Ja1R81LPk5GRKS0vrZNv1OaO6iIiIiPyguturqpKVlUVQUBDe3t4AREdHV1twXC8+Pp74+Hj748zMTHONrUMqPupZaWmpigQRERERscvNzSUgIKC+m1EnVHyIiIiIiLiRsLAwwsLCnFo3Kyur2udu7EuycuVK+8/t2rWrl9GuNNSuiIiIiIjcEio+RERERETklvCoqKioMBpKTEw03U/BlWxtb7su2+Lsvm5VG15c92qd78MZf3pqdn03QURERETqifp83CHc9Y/+zdsPG86EPdIdgA92GB/B4ZcPdwPg6PGThrMdO9g6fh3OyjWc7d6lPQDHP9hsONvhl7Z7PvMyPjKcBWg3eAgnP/vUVDagTz8K9nxmKtumVx+X9guYyl/LfpXytuFs15jnAMhen2o4GzI6CoDP/+o4hntN7vttLACZy98ynO02/nkAPn1pmuFsv4WLAVjfd6DhLMDo3Ts5fWC/qWyrng9y9vODprIt7uvByd27TGUD+vYH4NTefxnOtn6oN+Da+aPoQpHhrF9TPwDOnik0nG3RshkApRcvGc56+dhG2Tl/7oLhbHP/pgB8feSE4SxA505tOXnyrKlsQEALU68z2F7rM6fNzXvQslVzAKyFxvdtaWZ7j115n3LzThvOtm/XCoAjx/INZzvdezdQf78P5cXFhrMAnr6+XCq6aCrr7efj0n7FRsXHLeLl5UViYqLD8txc43/IioiIiIj8GKn4uEViY2OrXF5VQVIXdNuViIiIiNQ3dTgXEREREZFbQlc+RERERETcxIYNG1i1apX9cV5eHiNGjGDOnDn2ZVeuXGHevHns27ePiooKIiMjGTt2rMO2kpKSANt8H126dLnpnCC3ym1VfFTXr6I66m8hIiIiIu4kMjKSyMhIALKzs5k0aZLD7ftpaWkUFhaSnp5OSUkJo0aNolevXnTv3r0+mmzIbVV8VNevojq3qr+FiIiIiNzZrFYrVqvVYbnFYsFisVSZmTt3LlOnTsXf37/S8pCQEHr06EGDBg3w9vamffv25Ofn11h8zJkzhwMHDgC2qyIdOnQweTTmqc+HiIiIiEgdS0lJITQ01OFfSkpKlevv2rWLkpIShg4d6vBcz5496dy5MwD79+/n0KFD9OrVq8Y29O/fn/T0dAYMGEBqqvFh5WvDbXXl48fI6K1iRtyqCRRFRERE5OZiYmIIDw93WF7dVY/U1FTGjRt3023u2bOHqVOn8vrrr9O0adMa2zBkyBAAgoOD2bt3rxOtrn0qPuqZ0VvFREREROTH52a3V92orKyMPXv2sGjRIgDWrl1rv1IRFRVFdHQ0W7duZe7cuSxZsoQ+ffoAsHTpUjIyMgCIi4tz2G6jRrY//T08PKioqHD5mMxQ8SEiIiIi4kaysrIICgrC29s2g310dDTR0dH25w8dOsTcuXN5++236dq1q315fHw88fHx9seZmZm3rtFOUvEhIiIiIuJGcnNzCQgIqPb5N998kytXrjB9+nT7sri4OEJDQ29F81yi4kNERERExI2EhYURFhZW7fNvvvmmU9uZPHmy/efr5/iIiIggIiLCcLvi4+NZunQpw4cPr/L59957r8ZtqPgQEREREZEa/frXvwbg5ZdfNr0NjwoTvU0SExNNj6TkSra2uVNb6tqL616t7yYA8KenZtd3E0RERETERadPn+bChQuVlgUHB9eY05WPO4S7/tFfeN5xsp2aNGtuGymi9OIlw1kvH1vHrRM7thvOtn34EQBO7zc+NF2rBx8CoLy4yHDW09cPgJLTBYazAE1ateHUqXOmsq1b+2MtNN5mAEszP1PvEfzwPrnyHh9L32Q4e+8TtiEQj/xjg+Fsp5G22WhPH9hvONuq54MAFOz5zHC2Ta8+LmfNtBls7V7fd6Cp7OjdO/m/P/zOVHbA63/mu+2fmMoGPjIIgLyMjwxn2w22DVF5/tyFGtZ01NzfNgRmce5xw1nf9rZJwFz5bBVbi43v1+ILQPkl47+Hnt93kv0295ThLMA97VuTffSEqWxIx7YcPX7SVLZjhwBy806byrZv1wowd8z3tG8NwJnT5w1nW7ZqDsBnB44azvbp2RGA/V/kGM4++NMgAL47ccZwNrBtSwBT3y+WZn6ms9fyRRfMZf2a+pn6fYAffiduFwsXLmT16tX4+vral3l4ePDpp5/WmFXxISIiIiIiTtu2bRs7duygefPmhrMqPu4Qb6X8ob6bAMDzMa/XdxNERERExAVBQUFOz1lyIxUfIiIiIiLitDFjxvDMM8/Qp08f+8SF4Nzk2Q3qsmEiIiIiIuK8jIwMIiIiGDp0KK++Wv2AQQUFBQwcWH2/u6SkJJKSkgDo0qVLrbbxrbfewtfXl6KiIs6fP2//5wxd+RARERERcQO5ubkkJCSwYcMGWrRoQUxMDNu3b+eRRx6ptN727dt57bXXOH3a3AAJrrp8+TJr1641lVXxISIiIiJSx6xWK1ar4yifFovF3n9i27ZthIWF2Wc3X7JkCV5eXg6ZjRs3kpSUVO1kf1WZM2cOBw4cAGxXRTp06GDmMAC49957+eqrr+jatavhrIoPEREREZE6lpKSQnJyssPy2NhY+0zkx48fx9PTk4kTJ5Kfn8+jjz7KlClTHDLXbqcyon///sybN48//vGPpKamMn36dOMH8b38/HxGjRpFYGAgjRs3ti/XDOc/EsnJyZSWltb6du+UCRRFRERE3F1MTAzh4eEOy68fNerKlSvs3buXlStX4u3tzQsvvMCmTZuIiIhwef9DhtjmKgoODmbvXuNzll3vd78zN08TqPhwC6WlpSoURERERG5j199eVZ2WLVvSr18//P39AVvBMHPmTFJSUgCIiooiOjq6yuzSpUvJyMgAIC4uzuH5a6NSeXh4UFFRYfo4AHr37s2hQ4fIzMwkIiKCw4cP88ADDziVVfEhIiIiIuIGBg0axPTp07Farfj4+LBjxw7mz59PZGRkjdn4+Hji4+PtjzMzM+usnWlpaSxfvpzS0lJ+/vOf89vf/papU6cyevToGrMaaldERERExA306NGDCRMm8PTTTxMWFkbbtm0ZOXJkfTfLwcqVK1m3bh2+vr60aNGCtLQ0+9WZmujKh4iIiIiImxg1ahSjRo1yat2srKxqn7vWif3G9SIiIlzuQ9KgQQN8fX3tj++++24aNmzoXNalPYuIiIiIyB2lWbNmfPnll3h4eACQnp5O06ZNncp6VJjocZKYmGi6g7Qr2drmLm25Fe14K+UPdbp9Zz0f83p9N0FEREREXHDkyBHi4+P59ttvsVgseHl58de//tWpmdR129UdQn/0i4iIiEht6NSpE++++y45OTlcuXKFe++9F09PT6eyKj5cVBtzdOTm5tZSa6rnrlc+Si9eMrwNLx9vAMqLiwxnPX39ADiWvslw9t4nbGNzf71mpeFs56fHAFB+6aLhrKe3j+nstfzXR06Yynbu1JZia7GprK/Fl8vF5tp8l6/tmF35fBzZtNFwtlO47R7bQ8uWGM7eHzcVgKKco4azfkEdAcj7Z4bhbLtHBwOQs/l9w9mgsGEAnP38oOEsQIv7evB/fzA31vuA1//M+r4DTWVH795p6njhh2P+8m/LDWd/MnY8AGWXjH8uG3u7ft66mGf8u8KnXXsAzpw+bzjbslVzwLXz1tHjJw1nATp2CGD3v4+YyvZ9oBN7Dx0zlX3o/nv5Kvs7U9muIYEA7NybbTg78KEQAA5mHjec7dHNNkv1jj3G9/twL9t+d+3/xnC2/4PBAHz+1beGs/d1vQeA7KPGv5tCOrYFcOl9cuVzaeZ3CX74fbpdlJSUsHXrVs6dO0dFRQX/93//B8C4ceNqzKr4cFFtzNGRmJhYS60REREREalbv/vd7zh58iSdO3e29/twlooPERERERFxWnZ2Nh9++CENGhgfu0qjXYmIiIiIuImMjAwiIiIYOnQor776arXrFRQUMHCg87evjhkzhs8++6w2mkiLFi34z3/+YyqrKx8iIiIiIm4gNzeXhIQENmzYQIsWLYiJiWH79u088sgjldbbvn07r732GqdPn76l7VuxYgUArVq1YsyYMYSGhlbqaK4+HyIiIiIibsBqtWK1Wh2WWywWLBYLANu2bSMsLIyAgAAAlixZgpeXl0Nm48aNJCUlMXz48Gr3l5SUxIEDB8jPz+eZZ56x5xYtWoTVamXWrFkMHjzY0DF8/fXXAPj6+uLr68uxY8YHd1DxISIiIiJSx1JSUkhOTnZYHhsba5+N/Pjx43h6ejJx4kTy8/N59NFHmTJlikMmKSnJqX2WlZWxefNmALZs2YKfnx+bNm3ik08+ITk52XDxsXDhQodlhw8fpnv37k5vQ8WHG/Dy8qqTEa/cYQJFEREREYGYmBjCw8Mdll+76gFw5coV9u7dy8qVK/H5DLt3AAAgAElEQVT29uaFF15g06ZNREREmNrn/fffX+nxkCFDAAgODub8eXPDBt9o9uzZbNrk/BQGKj7cQGxsbH03QURERETq0PW3V1WnZcuW9OvXD39/f8BWLMycOZOUlBQAoqKiiI6OrjK7dOlSMjJs80XFxcUB0KRJk0rrNGzYEMDw8Li1ScWHiIiIiIgbGDRoENOnT8dqteLj48OOHTuYP38+kZGRNWbj4+OJj4+3P87MzKzLptpVVFQYWl/Fh4iIiIiIG+jRowcTJkzg6aefpry8nAEDBjBy5Mj6bla1rFYr77zzjqGMig8RERERETcxatQoRo0a5dS6WVlZ1T53rRP7NStXrrT/3K5dO/stWmYcPXqU2NhYioqK2LhxI2PHjiU5OZlOnTrVmNUkgyIiIiIi4rRXX32VWbNm0aJFC9q0acMzzzzDnDlznMp6VBi9UQtITEw0PZKSK9naVhttcafjERERERGpaxEREaSlpfHkk0/ab7saMWIE7777bo3ZO/q2q9oY4jY3N7eWWiMiIiIi8uNQWlpqHzXr9OnTXL161ancHV181MYQt3UxP0ddeCvlD/XdBACej3m90uOiC0WGt+HX1A+Ay8UXDWfv8vUB4OwXnxvOtvjpfQAUHc8xnPXrEARA+YVCw1nPps1s2eJiw1kAT19fyoscZ1R1Kutn4XLBSVPZu9oEUH7J+HsE4Olte5/M5K9lcza/bzgbFDYMgG+3fWg4e8/PfwHA6f17DWdbPfgQAOcyvzCc9e/2UwC+3brFcPaex4YCcHL3LsNZgIC+/flu+yemsoGPDDL1HoHtfVrfd6Cp7OjdOwH48m/LDWd/MnY8AGWFxsfGb9ysOeDaZ7rYavwc4GvxBaAo56jhrF9QRwBKz50xnPXybwnA4Sxz/0HXvUt79n+RYyr74E+DTL1WYHu99h4yPmMzwEP33wvAt7mnDGfvad8agLNnjH9HtGhp+444efKs4WxAQAuXs2WXLhnONvb2dnm/l4rMfb94+/mQffSEqWxIx7acOnXOVLZ1a39TOXf19NNPM378eM6ePUtiYiL/8z//w4QJE5zK3tHFh4iIiIiIGDNq1Cjuuecetm/fzn/+8x/mz5/PgAEDnMqq+BAREREREUN69+5N7969DedUfIiIiIiIuImMjAySk5O5fPkyAwYMYPbs2ZWev3LlCvPmzWPfvn1UVFQQGRnJ2LFjHbaTlJQE2Ibc7dKly02H5XVW165dbzo7+pdfflnjNlR8iIiIiIi4gdzcXBISEtiwYQMtWrQgJiaG7du388gjj9jXSUtLo7CwkPT0dEpKShg1ahS9evWie/fudd6+Tz/9lIqKCpYuXUpgYCBPPfUUDRs2JC0tjRMnnOtLo+JDRERERKSOWa1WrFbHAWAsFgsWiwWAbdu2ERYWRkBAAABLlizBy8ur0vohISH06NGDBg0a4O3tTfv27cnPz6+x+JgzZw4HDhwAbFdFOnToYPgYmje3DZ7xxRdf8Morr9iXP/vss0RERDi1DVPFhytD1GpoWhERERG506SkpJCcnOywPDY21j4b+fHjx/H09GTixInk5+fz6KOPMmXKlErr9+zZ0/7z/v37OXToEIsXL65x//3792fevHn88Y9/JDU1lenTp5s+lsuXL3P06FE6drSNipeVlUV5eblTWVPFhytD1P5YhqatLcnJyZSWltbLvjX5oYiIiIh7iImJITw83GH5taseYOvPsXfvXlauXIm3tzcvvPACmzZtqvKqwp49e5g6dSqvv/46TZs2rXH/Q4YMASA4OJi9e40PC3+9KVOm8NRTT9GlSxeuXr3KkSNHeP3112sOotuu6lxpaamKABEREZE73PW3V1WnZcuW9OvXD39/27wgQ4YMYebMmaSkpAAQFRVFdHQ0W7duZe7cuSxZsoQ+ffoAsHTpUjIyMgCIi4tz2HajRrY/+z08PKioqHDpWB577DF+9rOfsW/fPjw8PPjZz35mb3NNVHyIiIiIiLiBQYMGMX36dKxWKz4+PuzYsYP58+cTGRlpX+fQoUPMnTuXt99+m65du9qXx8fHEx8fb3+cmZlZZ+28evUqaWlp/O///i//+c9/yMrKYuLEifYC52ZUfIiIiIiIuIEePXowYcIEnn76acrLyxkwYAAjR46stM6bb77JlStXKvXZiIuLIzQ09Ja1MzExka+++oqYmBiuXr3KunXrWLx4MTNnzqwxq+JDRERERMRNjBo1ilGjRlX7/JtvvunUdq51YgcqzfERERHh9MhU1dmxYwf/+Mc/8PT0BODRRx/liSeecKr4aODSnkVERERE5I5SUVFhLzwAGjduXOnxzXhUuNrjxKDExMTbqgN2Tcdzux2viIiIiNzZXnzxRZo3b84zzzyDh4cHq1at4syZM06NaqvbrlxU05wnmtdERERERG4nCQkJzJ8/n6ioKK5evcrAgQN5+eWXncqq+HBRTXOeuMu8Jm+l/KG+mwDA8zGVx4AuvXjJ8Da8fLwBKL9kPOvpbcsW7PnMcLZNL9tQdvm7dhrO3t1/IAAlFy8azjbx8QHgcrHxLMBdvj6cP3fBVLa5f1NTrzPYXuuiC0Wmsn5N/QDXPh+uvMd5GR8ZzrYbbBs//cI32YazTYNDADh9YL/hbKueDwJw7L13DWfvHT4CgFN7/2U4C9D6od6mXiuwvV5f/m25qexPxo53KQuwvu9Aw9nRu22/+6XnzhjOevm3BODM6fOGsy1b2WYUduX3wbVzrfFzj6e37by1Y4/x3weAh3uFsPvfR0xl+z7Qia+PnDCV7dypLfu/yDGVffCnQQDsOXjUcLZXD9tEbQcOHzec7dndNkt1fv5Zw9m7724BwLe5pwxn72nfGoCjx08aznbsYJu928x73PeBTgAczjL3n7vdu7Qn8+s8U9lunduZep3hh9f6duHr68sf//hHU1kVHyIiIiIi4rR///vf/PnPf+bChQuV5gx57733asyq+BAREREREafNmTOHiIgIunXrhoeHh6Gsig8RERERETeRkZFBcnIyly9fZsCAAcyePbvS81euXGHevHns27ePiooKIiMjGTt2bI3bHTNmDLGxsfYZ0V3RqFEjxo0bZyqroXZFRERERNxAbm4uCQkJ/PWvfyU9PZ3MzEy2b99eaZ20tDQKCwtJT09nw4YNrF+/nsOHD9/SdoaEhFSaO8QIXfkQEREREaljVqsVq9XqsNxisWCxWADYtm0bYWFhBATYOuUvWbIELy+vSuuHhITQo0cPGjRogLe3N+3btyc/P5/u3btXWi8pKYkDBw6Qn5/PM888A8DGjRtZtGgRVquVWbNmMXjwYFPHkpuby8iRI2nbtm2l9qnPhxuoaSjeuqT5RURERETcQ0pKCsnJyQ7LY2Nj7bORHz9+HE9PTyZOnEh+fj6PPvooU6ZMqbR+z5497T/v37+fQ4cOsXjx4ir3WVZWxubNmwHYsmULfn5+bNq0iU8++YTk5GTTxcfUqVNN5UDFR52raSheEREREbn9xcTEEB4e7rD82lUPsPXn2Lt3LytXrsTb25sXXniBTZs2ERER4ZDbs2cPU6dO5fXXX6dp06ZV7vP++++v9HjIENuw8MHBwZw/b3zo72t69+5t/zkpKclePDlDxYeIiIiISB27/vaq6rRs2ZJ+/frh7+8P2IqFmTNnkpKSAkBUVBTR0dFs3bqVuXPnsmTJEnsH8qVLl5KRkQFAXFwcAE2aNKm0/YYNGwIYHqHqZjIyMlR8iIiIiIj82AwaNIjp06djtVrx8fFhx44dzJ8/n8jISPs6hw4dYu7cubz99tt07drVvjw+Pp74+Hj748zMzFvS5uvn+XCGig8RERERETfQo0cPJkyYwNNPP015eTkDBgxg5MiRldZ58803uXLlCtOnT7cvi4uLIzQ09FY3F8BwvxEVHyIiIiIibmLUqFGMGjWq2ufffPNNp7Zz461QK1eutP/crl07+y1aZhw4cMDe8T0uLo7S0lIWLVpEQkJCjVnN8yEiIiIiIk6bOnUq2dnZgO02sCeeeIKCggKnsh4VRm/UclFiYqKGgBURERER+ZHau3cvM2fOZMiQIWzatInp06fz5JNPOpXVbVciIiIiIuK0hx56iPnz5zNx4kRWrFhRae6Rmqj4uEPM+vsH9d0EABY8+8tKj8uLiw1vw9PXF4DSi5cMZ718vAE4uXuX4WxA3/4AnNj5v4azbQf+PwCshUWGs5ZmfoC51wpsr9f5cxdMZZv7N6XogvE2A/g19ePo8ZOmsh072GZ2Lbl40XC2iY8PAGdOGx+/vGWr5gAUW42/1r4W2+fy29xThrP3tG8NwMmTZw1nAwJauJx15X1y5bNVdsn47zBAY29vygrNjU/fuJntPS49d8Zw1su/JQDr+w40nB29eycAxbnHDWd923cAXDv35Gx+33A2KGwY4Fqbyy8UGs4CeDZt5lK26HiOqaxfhyDKi82d8zx9vz9Xm/hce3rbvpvM/D4197fN73Dhm2zD2abBIQAU5Rw1nPUL6ghA+UUT3+M+tvOlme8Xv6bfv85FjjOFO7VvPwvll4x/twB4evu49Lm8HQwfPrzS40aNGvHCCy/QsqXt/KgZzkVEREREpFa8/PLLgG3m9MaNG5vahooPERERERGp0bWZzUeMGMG7775rahsa7UpERERExI0UFxczbNgw8vLyAFi3bh3Dhg1j+PDhvPTSS5SVlTmdrcmMGTNIS0sz1L677rqLkyfN3bKr4kNERERExE0cPHiQ6OhocnJyADh27BjLly8nNTWV9PR0rl69ypo1a5zK1pXLly8TGhpKaGgow4cPt/9zhm67EhERERFxE+vXrychIYFp06YB0LhxYxISEvD9fsCdzp07c+LECaeyVUlLS2PTpk0UFhYyaNAgAP75z3+yZs0azp49y8SJE3nqqadu2sZZs2aZOTRAxUclycnJlJaW1nczao3mUxERERFxD1arFavVcZQui8WCxWKxP16wYEGl5wMDAwkMDATg3LlzrF69moULF1a5jxuz1SkoKGDz5s00atSIGTNmUFZWxoYNG8jOzubZZ5+tsfjo3bs3Bw8eZMeOHZSXlzNgwAB7f5CaqPi4Tmlpqf5gFxEREZFal5KSQnJyssPy2NhYJk+eXGO+oKCACRMmMHLkSPr06eNSW7p160ajRj+UAaGhoXh4eBASEsL58zUPZf7OO++wZMkSHnvsMSoqKvj973/P5MmTGT16dI1ZFR8iIiIiInUsJiaG8PBwh+XXX/WozpEjR5gwYQJjxozhueeeA+Djjz9m2bJlAAwePJj4+Pgqs2vXriU1NRWAqKgovLy8aNKkSaV1GjZsCICHh4dTx/K3v/2NDRs20Lq1bZ6qX//614wfP17Fh4iIiIiIO7jx9ipnFRcXM378eKZMmcKTTz5pX36tw3dNoqOjiY6Otj82OrJVVa5evWovPADatGlDgwbOjWOl0a5ERERERNzUxo0bOXPmDCtWrGDEiBGMGDGCpUuX1mubmjVrxkcffWR//NFHH9G0aVOnsrryISIiIiLiZjIyMgAYO3YsY8eONZWtSkREBBEREfbHixYtqvR8VlZWjdufM2cOL7zwAvPnz8fDw4NGjRrxxhtvONU2FR93iAXP/rK+myAiIiIit4EGDRrwwQcfkJOTw5UrV+jYsWOlDuw341FRUVFRx+2rJDEx0W1HlHLntomIiIiIuINf/OIXeHp68thjj/GLX/yCLl26OJ3VlY87xKy/f1DfTQB0BUZERETkx+7DDz/km2++ISMjg4SEBAoLC3nsscf43e9+V2NWxYfUq+9OnDGcCWzb0uXspRPfGc56t7VN8FN+6ZLhrKe3ty1bXGw8+/2Mpmay1/JlJtoM0Njb26X9ll80mfWxHXNZYc1jjd+ocbPmAJRfumh8v94+AFgLiwxnLc38vt+v+c/H+XMXDGeb+9s6+OXnnzWcvfvuFgAUXTB+vAB+Tf0ozj1uKuvbvgPlxeb26+nrZ+r9hR/e4zOnjX+2WrayfbbMHLNv+w4ArO870HB29O6dAHz+xjLD2fsmxQGQ+fZ/G852e+7Xtv3+1XFeghr3+9tYAPL+Wf195zfT7tHBFB3PMZX16xDEqb3/MpVt/VBvcv7nPVPZoMeHA/Dttg8NZ+/5+S8A2DN/ruFsr5dtma+yjX+vdQ2xfa+dOnXOcLZ1a38AyoscJ82riaefbcSn0ovGz5dePte+T82fP44cyzeV7XTv3abOHfDD+eN2EhgYSJcuXTh9+jRbt27lww8/VPEhIiIiIiK1a8yYMRw7dowHH3yQAQMGEBMTQ7t27ZzKaqhdERERERFx2r333ouvry8XLlzgwoULWK3OXwFT8SEiIiIi4kaKi4sZNmwYeXl5AKxbt45hw4YxfPhwXnrpJcrKyqrMJScn8/jjj/P444+zePHiKtdJS0tjxowZgG1m9Gv7MGLevHl88MEHzJkzhyZNmvDiiy/Sr18/p7IqPkRERERE3MTBgweJjo4mJycHgGPHjrF8+XJSU1NJT0/n6tWrrFmzxiG3a9cudu7cyaZNm3jnnXc4fPgw27Ztq5M2lpSUsH37dtasWcPf//53vL29GTdunFNZ9fkQEREREXET69evJyEhgWnTpgHQuHFjEhIS8P1+AJrOnTtz4sQJh1yrVq2YMWMGjRs3BqBTp05VrnejN954gy+//JLLly+zePFievToUWOmX79+9OjRgyFDhvD888/Tpk0bp49PxUcdSE5OprS0tL6boTlLRERERNyE1Wqtsm+ExWLBYrHYHy9YsKDS84GBgQQG2kYmO3fuHKtXr2bhwoUO2wkJCbH/nJOTw5YtW1i7dm2N7QoODmbhwoWsWrWK5cuXs2xZzSPr/eY3v2HixImVlr311ls8//zzNWZVfNSB0tJS/eEvIiIiInYpKSkkJzsOXR0bG8vkyZNrzBcUFDBhwgRGjhxJnz59ql0vOzub3/zmN0ybNo2goKAatztkyBDAVoR8+OHNh4peu3YtJSUlrF27Fi8vL/vy8vJyUlNTVXyIiIiIiLiDmJgYwsPDHZZff9WjOkeOHGHChAmMGTOG5557DoCPP/7YfpVi8ODBxMfHs2/fPuLi4pg5cyaPP/44YCsYUlNTAYiKiqpUNAA0bNgQAA8Pjxrb0ahRI77++mtKSkr4+uuvK23jWif2Grfh1FpuqrZvb8rNza21bYmIiIiIXHPj7VXOKi4uZvz48UyZMoUnn3zSvjw0NJTQ0FD74/z8fCZNmsSSJUsqjTwVHR1NdHS0/XFaWprJI4DIyEgiIyP56KOP7FdMjPpRFx+1fXtTYmJirW1LRERERMRVGzdu5MyZM6xYsYIVK1YAP1zpuN7y5cspLS1l0aJF9mVRUVGVCo/a0rdvX1555RWOHj3K0qVL+fOf/8z06dPx8fGpMfujLj5ERERERG5HGRkZAIwdO5axY8fWuP7s2bOZPXt2jetFREQQERFRaR8Affr0uWlfkustWLCA1q1bc/bsWby8vCguLmbOnDlO/Ue+io87xIJnf1nfTRARERGR28CXX37JwoUL2b59O3fddRevv/46w4YNcyqr4sMAZ/uYqO+I8wLbtqyXrHfbQNNZT29v89nvx+i+1dnG9dVmH/NZgMbNmpvft3fNl36rY2nm58J+zb/Wzf2bms7efXcL01m/puaP17d9B9NZT19XXmfz7y9Ay1bmP1uuHPPo3TtNZ++bFGc62+25X5vf729jTWfbPTrYdNavQ5DpbOuHepvOBj0+3HQW4J6f/8J0ttfLc01nu4aY/15r3drfdNbTz3gfhmu8fFz5bjJ//uh0792ms66cO24nDRpUnqf8ypUrDsuqo+LDAGf7mLhj35FZf/+gvpsA6AqMiIiIyI9dr169+NOf/kRJSQk7duxg1apV9O7tXNGv4kPq1XcnzhjOXLvikX205lk7bxTSsS0ARcdzDGev/S/cpZPG9+sdYNtv6cVLhrPX/mfocsFJw1mAu9oEcOrUOVPZ1q39KS8uMpX19PWj/JLx44Ufrh5c+CbbcLZpsG2SpTIT+752hajk4kXD2Sbfd7IrumD89bp25cGVz0d+/lnD2WtXS86eKTScBWjRshmnD+w3lW3V80Eu5pm7SuzTrj3F1mJTWV+L7WqcK6/1iZ3/azjbduD/A+DzN2qevOtG1654rO870HD22pUWM+ePu9oEAK4db17GR4azAO0GD3Hps5X78VZT2fahj/HVyr+ZynYdMxaAktMFhrNNWtlmhzbzerUbbBtx6HKx8fPWXb6285a10Ph569oVYld+l06eNH7eCgiwnbfMnPPAdt5z5bvJ1e+128Uf/vAH3nrrLfz8/PjLX/7CwIEDmTRpklNZ566PiIiIiIiIAF988QW7d++mpKSEsrIyMjIyGDlypFNZXfkQERERERGnzZkzh4iICLp16+bU5ITXU/EhIiIiIuJGiouLiYqK4r/+679o164d69atY+XKlXh4ePDTn/6UV155hcaNGzvkkpOT2bJlCwCPPPII06ZNq3FfM2bMoHfv3vbhd53RqFEjxo0b5/wBXUe3XYmIiIiIuImDBw8SHR1NTk4OAMeOHWP58uWkpqaSnp7O1atXWbNmjUNu165d7Ny5k02bNvHOO+9w+PBhtm3bVidtDAkJISsry1RWVz7qgJeXl1uMeFWbs7+LiIiISN1bv349CQkJ9qsWjRs3JiEhAd/vh77v3LkzJ044Dn7TqlUrZsyYYb8i0qlTpyrXS0tLY9OmTRQWFjJo0CAA/vnPf7JmzRrOnj3LxIkTeeqpp27axtzcXEaOHEnbtm3x8vKyL3/vvfdqPD4VH3UgNtb8mOgiIiIicvuxWq1YrVaH5RaLBYvlh/lSFixYUOn5wMBAAgNt87icO3eO1atXs3DhQofthISE2H/Oyclhy5YtrF27tsq2FBQUsHnzZho1asSMGTMoKytjw4YNZGdn8+yzz9ZYfEydOvWmz9+Mig8RERERkTqWkpJCcnKyw/LY2FgmT55cY76goIAJEyYwcuRI+vTpU+162dnZ/OY3v2HatGkEBQVVuU63bt1o1OiHMiA0NBQPDw9CQkI4f/58jW1xdk6Pqqj4EBERERGpYzExMYSHhzssv/6qR3WOHDnChAkTGDNmDM899xwAH3/8McuW2eYOGjx4MPHx8ezbt4+4uDhmzpzJ448/DsDatWtJTU0FICoqCi8vL5o0aVJp+w0bNgQwPHKVGSo+RERERETq2I23VzmruLiY8ePHM2XKFJ588kn78tDQUEJDQ+2P8/PzmTRpEkuWLKFfv3725dHR0URHR9sfp6WlmTyC2qHiQ0RERETETW3cuJEzZ86wYsUKVqxYAfxwpeN6y5cvp7S0lEWLFtmXRUVFVSo83IGKDxERERERN5ORkQHA2LFjGTt2bI3rz549m9mzZ9e4XkRERKU5Pa4vVgDTQ+g6S8XHHWLBs7+s7yaIiIiIyB3Oo6KiouJW7jAxMbHW5p+ozW2BbVbI0tLSap/Pzc3lL3/5S63tT0RERETkTqIrH9epaX4Od5g40KxZf/+gvpsA6AqMiIiIyJ1MxYfUq8vFFw1n7vL1AeDM6ZrHob5Ry1bNAbAe/cZw1tIxGICyS5cMZxt7ewNQeu6M4ayXf0sASi4af60Amvj4UF5cbCrr6etL0YUiU1m/pn6UXzLXZk9v23t8qch43tvPljXzejXxsWW/zT1lOHtP+9YAlF80/lp7+thmrT16/KThbMcOAQCcPVNoONuiZTMASi8a/0wDePl4U2w199nytfia+h0G2+9xUc5RU1m/oI6AuWP28rH9Hudsft9wNihsGACZb/+34Wy3534NwOUC45+Pu9rYPh/r+w40nB29eycAWatSDGe7PBMDwNkvPjecBWjx0/soOV1gKtukVRtT51qwnW9dOV8CHP9gs+Fsh1+GAZC/a6fh7N39be+tK+eAC99kG842DbZNaFd+wfh+PZva9lty5rThbJOWrQBzv4dg+100c44H23n+1KlzprKtW/ubyt2OGtR3A0RERERE5M6g4kNERERERG4JFR8iIiIiIm6kuLiYYcOGkZeXB8C6desYNmwYw4cP56WXXqKsrMzp7I3S0tKYMWMGYJsvpLr16oqKDxERERERN3Hw4EGio6PJyckB4NixYyxfvpzU1FTS09O5evUqa9ascSrrjtTh3EU1Dc9bn2pzGGIRERERqXvr168nISGBadOmAdC4cWMSEhLw/X5Qg86dO3PixAmnss544403+PLLL7l8+TKLFy+mR48erh/ETaj4cFFpaan+yBcRERGRm7JarVitVoflFosFi8Vif7xgwYJKzwcGBhIYGAjAuXPnWL16NQsXLqxyHzdmnREcHMzChQtZtWoVy5cvZ9myZYa3YYSKDxERERGROpaSkkJycrLD8tjYWCZPnlxjvqCggAkTJjBy5Ej69OlTa+0aMmQIYCtCPvzww1rbbnVUfIiIiIiI1LGYmBjCw8Mdll9/1aM6R44cYcKECYwZM4bnnnsOgI8//th+lWLw4MHEx8dXmV27di2pqakAREVF4eXlVen5hg0bAuDh4eH8wbhAxYeIiIiISB278fYqZxUXFzN+/HimTJnCk08+aV8eGhpKaGhojfno6Giio6Ptj9PS0gy3oTZptCsRERERETe1ceNGzpw5w4oVKxgxYgQjRoxg6dKl9d0s03TlQ0RERETEzWRkZAAwduxYxo4daypblYiICCIiIhzW69OnT632JamOig8DvLy8SExMrLQsNze3nlpjzIJnf1nfTRARERGRO5yKDwNiY2Mdlt1YjLirWX//oL6bAKgIEhEREbmTeVRUVFTcyh0mJibW2rwYtbmtH3MbnKHiQ0RERETqm658SL26dOI7wxnvtraJdkrOnDacbdKyFQA5m983nA0KGwbA2S8+N5xt8dP7ACi9eD8Q14oAACAASURBVMlw1svHG4Dz5y4YzgI092/K0eMnTWU7dgig2FpsKutr8eXUqXOmsq1b+wNwufii4exdvj4AlF8ynvX0tmXPnik0nG3Rstn3+zX+Hnt6297jM6fPG862bNXc5awrny0zxwu2YzbzHtmyPpSeO2Mq6+XfEnDt81Gce9xw1rd9BwA+/6vjGP81ue+3tqvuJ3b+r+Fs24H/D4CsVSmGs12eiQFgfd+BhrOjd+8E4OTuXYazAAF9+7v0+Si/aO685enjS1HOUVNZv6COgGufj7yMjwxn2w22zdHw+VffGs7e1/UeAFPn6mvn6aILRYazfk39AEx9N3XsEABAmclzT2Nvb/YeOmYq+9D993I4y9zt9t27tDeVux1ptCsREREREbklVHyIiIiIiMgtoeJDRERERMSNFBcXM2zYMPLy8gBYt24dw4YNY/jw4bz00kuUlZVVmVu6dClhYWE8/vjjrFixosp10tLSmDFjBmCbGf3aPm4VFR8iIiIiIm7i4MGDREdHk5OTA8CxY8dYvnw5qamppKenc/XqVdasWeOQ+9e//sXu3btJT0/nH//4BytXruToUXN9mOqSOpy7qKq5P9zFj2EULhERERH5wfr160lISGDatGkANG7cmISEBHx9fQHo3LkzJ06ccMj17t2bv//97zRq1IiCggKuXLmC9/cDmtzMG2+8wZdffsnly5dZvHgxPXr0qN0DuoGKDxdVNfeHiIiIiMj1rFYrVqvVYbnFYsFisdgfL1iwoNLzgYGBBAbaRvo8d+4cq1evZuHChVXuw9PTk2XLlvH222/zy1/+kjZt2tTYruDgYBYuXMiqVatYvnw5y5YtM3JYhum2KxERERGROpaSkkJoaKjDv5QU54bCLigoICYmhpEjR9KnT59q14uLi+PTTz8lPz+f9evX17jdIUNswzUHBwdz/rzxYduN0pUPEREREZE6FhMTQ3h4uMPy6696VOfIkSNMmDCBMWPG8NxzzwHw8ccf269SDB48mGHDhlFWVsZPfvIT7rrrLh577DGysrJYu3YtqampAERFReHl5VVp2w0bNgTAw8PDpeNzlooPEREREZE6duPtVc4qLi5m/PjxTJkyhSeffNK+/NqVk2u2b9/OsmXLWLt2LWArTkaOHMnjjz9OdHS0fb20tDQXjuL/s3f/YVHVef/HnywgijL+CIxMEn+gZq22aoKt3SRj1ordKtvqYCnVt013Q92tKxdd9nbva9dS7yVbor1tvzetWAmOLdJu6noXpN81U/qxYb800qYgkPAHApHo1nz/mJXCQeCcgTkYr8d1eV3OmfOaz+cczgzz5pzz+fhOxYeIiIiISBf13HPPcfz4cf70pz81DZ+bkJDAsmXLmq0XHx/PwYMHmT17NoGBgUyfPp3ExEQrutwqFR/dxOqFt1rdBRERERFpp6KiIgDuuusu7rrrrnZllixZwpIlS1pdJykpiaSkpGZtAMTGxrZ6L0lH0Q3nIiIiIiLiFzrz0U1s/EOx1V0A4K6fTrK6CyIiIiJikQC32+32Z4MZGRkdNvldR77Wt52KDxERERGxms58iKVOHK8xnLksvB8An5R9Zjh7VdRAAM58/rnhbM/evQGorakznLX1CwPgXEOD4Wzwv2YnPddgvM+efG9qTnlPatQe/frbaPzceJ8BQnqHUnfa+L4CCOt7fn8Z3+bgUM/P6fWDHxnOThw7FIB9b35oOHvD+BEAlB71nnW2LTHDBgHw3gflhrNjRg4GYP8/jhjOxn1vOAAfHDHeZ4CRwweZeh+C57149ONjprLDhkTy7uEyU9lrRkUB8PfXSg1nb7w+BoBzp41/bgX39Xxule8uamNNb4NvSvBki14ynk3wjN9/4p23DWcvu/a7ABzbv89wNjLuBgCccVMMZwHm7t9LqTPPVDZmrsPUvgLP/nr3/24wlb3mx4sB+HTPy4azV8ZPBeBogfFRiIbN9ly731DxqeFs6CDPxHVnqqsMZ3tGeCavO3O82ng2PALwrc+1R41/TgPYho3wKdt48ripbMiAcFO5byPd8yEiIiIiIn6h4kNERERERPxCxYeIiIiIiPiFig8RERERkS6kvr6emTNnUl7uuRdw8+bNJCYmMmPGDNauXUtb40WtXbuWtLS0drX1+OOP8/jjj/vc5/bSDeftlJWVRWNjo9XdMEQjgYmIiIhcWkpKSkhPT8flcgFQVlbGxo0bKSgoICQkhDvuuINXXnmFKVNaHtDh1VdfZdu2bdx0003+67QBKj7aqbGxUV/mRURERMSU2tpaamu9R5+02WzYbLamx06nk1WrVrF8+XIAoqKi2L59O8HBwZw6dYr6+vpm639TTU0N69evZ/HixRw6dKjFdQ4cOMB//dd/8dVXXxETE8PgwYM5ePAgDoeDqqoqkpKS2pwl3RcqPkREREREOllOTg5ZWVley1NTU5t92V+9erXXOsHBwTidTtauXcvYsWMZPXp0i238x3/8Bz//+c+prKxstS8ul4uXX36ZsLAwHn/8cU6cOEFeXh719fUkJCRw991306dPH4Nb2D6650NEREREpJOlpKRQWFjo9S8lJaVd+blz53LgwAHCw8NbLGK2bt3KFVdcweTJk9t8raFDhxIWFtb0+MYbb6RHjx4MGDCA/v37c/r06fZvmEE68yEiIiIi0skuvLyqvSorK6moqGDChAkEBQWRmJhIbm4uhYWFZGZmApCQkMBbb71FdXU1s2bN4vTp0zQ0NPDwww8TGxvbbL24uDh69uzZrI2goK9LgoCAgDZvaPeFig8RERERkS6qrq6Ohx56iIKCAsLCwti1axcTJkzAbrdjt9tbzOTn51NcXMzKlSsBmq134MABv/T7YlR8dBN3/XSS1V0QEREREYNGjhzJfffdh8PhIDAwkIkTJ3L33Xdb3S3TVHyIiIiIiHQxRUVFTf93OBw4HI52Z5OSkkhKSmrxudjYWGJjY5seXziy1Tfb7QwqPrqJjX8otroLgM7AiIiIiHRnAe7OvKOkBR05WV9ZWRmPPfZYh7xWWzIyMi7peT5UfIiIiIiI1fx+5iM1NbXDXisjI6PDXktERERERDqXLrsSSx1466jhTOx1wwAoerXlmTtbkzB5tM/ZF3a/Yzg786ZrAWio+NRwNnTQlQBUv/m64SxAxPiJNByrMJUNjRxE3ccuU9mwIdFU7P1/prKDpvwbAEe2PWc4O3zO7QC4PqkynI2+6nIADpUa/zmNjvH8nI5XnzKcDY/oD8Cpk8bHVe8/oC8A731Qbjg7ZuRgAI4dO2E4CxAZeRmlR80dWzHDBrH/H0dMZeO+N5w333GZyo6/NhrAVNtx3xsOwLnTNYazwX37AZh6P4UNiQag+q03DWcjrhsPwJlq4++HnhGe98O5hs8NZ4NDewNQ6swznAWImevAGTfFVHbu/r28uW6Nqez45WnsX5lmKhv3sKfN137za8PZ63/lyRx+JsdwdtSdnjkiKv6+x3B20I3xAJw9ddJwtkf/AQCcfM/478QBYzy/E838jjj/+8HM71Pw/E715bj05XexeGiSQRERERER8QsVHyIiIiIi4he67MpCHXnzfUsu5RvkRURERLqr+vp6HA4HGzZsYPDgwWzevJlnn30Wt9tNfHw8y5cvJyAgoF3ZtqSlpTFp0qSLDs3b0VR8WKixsVEFgoiIiIg0KSkpIT09HZfLBXhGd924cSMFBQWEhIRwxx138MorrzBlivd9URdmuyJddiUiIiIi0slqa2spLy/3+ldbW9tsPafTyapVqxg4cCAAUVFRbN++ndDQUGpra6mvr8dms7XYxoXZluTn57NgwQJuu+02Hn30UQB2797N7bffztSpU9myZUsHbXHLdOZDRERERKST5eTkkJWV5bU8NTW12Szjq1ev9lonODgYp9PJ2rVrGTt2LKNHj26xjZayLamqqmLHjh0EBQWRlpbG2bNn2bp1K6WlpSxcuJB58+a1c6uMU/EhIiIiItLJUlJSmDNnjtfyi53FuNDcuXNJSkpixYoVZGVl8cADD5juy5gxYwgK+roMsNvtBAQEEBMTw6lTxoeMN0LFh4iIiIhIJ7PZbO0uNL6psrKSiooKJkyYQFBQEImJieTm5lJYWEhmZiYACQkJLFu2rMV8bm4ueXmeuU0cDgchISH07Nmz2TqBgYEAF72JvSOp+BARERER6aLq6up46KGHKCgoICwsjF27djFhwgTsdjt2u73NfHJyMsnJyU2P8/PzO7O7bVLx0U3c9dNJVndBRERERAwaOXIk9913Hw6Hg8DAQCZOnMjdd99tdbdMU/HRTWz8Q7HVXQBUBImIiIi0R1FRUdP/HQ4HDofDVPZCSUlJzeb0WLNmTbPnDx8+bKCXxnWb4sPXCf3Kyso6sDciIiIiIt1PgNvtdlvdCbMyMjLaPUmfkXU7I++v17wYnfkQEREREat1mzMf/mLkDIvOpoiIiIhId6Lio4M1NjYaOhvT3e0+YPy6wptiRwGQ/9JBw9mkaWMB2P+PI4azcd8bDvjW58aTxw1nQwaEA3Di7RLDWYDLvjuOhopPTWVDB11JedFLprKDE6Zx4p23TWUvu/a7AHz4nPFZVkfc7pkY6cTxGuPthvcDwPVJleFs9FWXA3C82vj46OER/QEoK682nI0aHAHAkY8qDWeHD70CgLrTdYazAGF9wzj68TFT2WFDInn94EemshPHDqW+tt5Uto+tDwAfHKkwnB05fBAAdR+7DGfDhkQD8Nnrxs9CD5zoOWNcVvi/hrNR9umAb5895z43vq+De3v2sy+fH2+uW9P2ii0YvzwNZ9wUU9m5+/dyYFW6qWzsf/4WgFJnnuFszFzPtfzvZf/RcHbM/7kPsO74OLZ/n+FsZNwNgG/vh3OnjX/GAwT37Wfqdwt4fr/48rtYPL5jdQdERERERKR7UPEhIiIiIiJ+ocuuLObrKFyt8dfN7CIiIiLScerr63E4HGzYsIHBgwezefNmnn32WdxuN/Hx8SxfvrzF2cizsrLYuXMnQNN6bUlLS2PSpEnNht/tTCo+LGbkHhERERER+XYrKSkhPT0dl8sFeAYo2rhxIwUFBYSEhHDHHXfwyiuvMGVK83ub9u3bx969e9m2bRsBAQHce++9vPjii9x8880WbMXFqfgQEREREelktbW11NbWei232WzYbLamx06nk1WrVjWdtYiKimL79u0EBwdz6tQp6uvrm61/XkREBGlpafTo0QOA4cOHU1HhPbhGfn4+27Zto6amhqlTpwKwe/duNm/ezIkTJ1i8eDHz5s3rkG1uiYoPEREREZFOlpOTQ1ZWltfy1NRUlixZ0vR49erVXusEBwfjdDpZu3YtY8eOZfTo0V7rxMTENP3f5XKxc+dOcnNzW+xLVVUVO3bsICgoiLS0NM6ePcvWrVspLS1l4cKFKj5ERERERC5lKSkpzJkzx2t5S2cxWjJ37lySkpJYsWIFWVlZPPDAAy2uV1payqJFi1i+fDnR0dEtrjNmzBiCgr4uA+x2OwEBAcTExHDqlPEh441Q8SEiIiIi0skuvLyqvSorK6moqGDChAkEBQWRmJhIbm4uhYWFZGZmApCQkMCyZct44403WLp0KStXriQxMRGA3Nxc8vI88884HA5CQkLo2bNnszYCAwMBWryJvaOp+Ogm7vrpJKu7ICIiIiIG1dXV8dBDD1FQUEBYWBi7du1iwoQJ2O127HZ703qVlZXcf//9rF+/nsmTJzctT05OJjk5uelxfn6+X/t/IRUfFgoJCeHDDz+0uhsiIiIi0kWNHDmS++67D4fDQWBgIBMnTuTuu+/2Wi87O5vGxkbWrFnTtMzhcDQrPLoCFR8WSk1NJSMjwy9tbfxDsV/aaYvOwIiIiIi0raioqOn/DocDh8PR6vrp6emkp6e3+bpJSUnN5vT4ZrECcPjwYYM9NUYznIuIiIiIiF8EuN1ut9WdMCsjI6PdE/QZWdeXvNF2fO1Xe+nMh4iIiIhYTWc+RERERETEL3TPh1hq9wHj1xXeFDsKgOeL3jacnZXwXQD2/+OI4Wzc94YD8NK+Q4az027wTAbUcMx7ptG2hEYOAuCz182dvRo4cRLnGj43lQ0O7U1NqblrP/vFjOL0h6Wmsn1HeCZK+uivzxvODr1tFgB1p+sMZ8P6hgHwSdlnhrNXRQ0EoLbGeLu2fp52v6g3/nPq1ac3ACXvfWw4O27MEACOV5sb0z08oj9l5dWmslGDIzhU+qmp7OiYK3n94EemshPHDgXgzXdchrPjr40G4Fy98Z9xcB/Pz9i1/a+Gs9GJtwFw6OmNhrOjF9wFwLn6esPZ4D59AKhzHTWcDYseBsC7/3eD4SzANT9ezP6VaaaycQ+v4cCqtq97b0nsf/4WZ9wUU9m5+/cCULpls+FszLz5AKb6HfufvwXg2IFXDWcjYz0jIvlyTFe/9abhbMR14wGoOfy+4Wy/UVcD5o5p8BzXrh0vmMpGz5hpqs/wdb9FZz5ERERERMRPVHyIiIiIiIhf6LIri4WEhHTacLv+uJFdRERERDpWfX09DoeDDRs2MHjwYDZv3syzzz6L2+0mPj6e5cuXtzgb+e9//3t27dpFQEAAt99+e4vzgVwoLS2NSZMmNRt+tzOp+LBYamqq1V0QERERkS6ipKSE9PR0XC4XAGVlZWzcuJGCggJCQkK44447eOWVV5gypfn9ScXFxezfv5+//OUv/POf/2TGjBnEx8czbNgwC7bi4lR8tFN7z1CUlZX5oTciIiIicimpra2ltrbWa7nNZsNmszU9djqdrFq1iuXLlwMQFRXF9u3bCQ4O5tSpU9TX1zdb/7xJkyaxadMmgoKCqKqq4ssvvyQ0NNRrvfz8fLZt20ZNTQ1Tp04FYPfu3WzevJkTJ06wePFi5s2b11Gb7UXFRzu19wyFv2YsFxEREZFLR05ODllZWV7LU1NTWbJkSdPj1atXe60THByM0+lk7dq1jB07ltGjR7fYRnBwMJmZmTz11FPceuutXH755S2uV1VVxY4dOwgKCiItLY2zZ8+ydetWSktLWbhwYacWH7rhXERERESkk6WkpFBYWOj1LyUlpV35uXPncuDAAcLDw1ssYs5bunQpr776KpWVlTidzhbXGTNmDEFBX5+DsNvtBAQEEBMTw6lT5oZfby+d+RARERER6WQXXl7VXpWVlVRUVDBhwgSCgoJITEwkNzeXwsJCMjMzAUhISGDmzJmcPXuWq6++ml69ejF9+nQOHz5Mbm4ueXl5ADgcDkJCQujZs2ezNgIDAwFavIm9o6n46Cbu+ukkq7sgIiIiIgbV1dXx0EMPUVBQQFhYGLt27WLChAnY7XbsdnvTenv27CEzM5Pc3FwACgsL+eEPf0hiYiLJyclN6+Xn5/t9G75JxYeIiIiISBc1cuRI7rvvPhwOB4GBgUycOLHFIXTj4+M5ePAgs2fPJjAwkOnTp5OYmGhBj1un4qOb2PiHYqu7AOgMjIiIiEh7FBUVNf3f4XDgcDjazCxZsqTZzestSUpKajanx5o1a5o9f/jwYYM9NUY3nIuIiIiIiF8EuN1ut9WdMCsjI6Pds3gbWdcX/mrHKJ35EBERERGr6cyHiIiIiIj4he75EEu9fvAjw5mJY4cCsPuA8WsSb4odBcALu98xnJ1507UAPLP9TcPZOxPHA1D3sctwNmxINACfl5cZzgL0HhxFfdnHprJ9oobQePK4qWzIgHA+eXGXqexVN98CQNVrBwxnL78+FoCjHx8znB02JBKAt941vr+uu2YIAF/Uf24426tPbwCOHTthOBsZeRkApUcrDGdjhg0CoLamznAWwNYvjE/KPjOVvSpqIHtfLzWVnTIxxqd2AV4rOWo4e/24YQCca2gwnA3+1yzDZt4T598PZ6qrDGd7RngmGPv4bzsMZ4fcOgPA1OdHnyjP++HTPS8bzgJcGT+V137za1PZ63/1a0qdeaayMXMdlG7ZbC47bz4AzrgphrNz9+8F4M21DxvOjv/FSgAaKj41nA0ddCUANaXGf5/2i/H8Pj124FXD2cjYyQB89NfnDWeH3jYLgPKilwxnAQYnTOPUofdMZfuPHkPN4fdNZfuNutpU7ttIZz5ERERERMQvdObDT7KysmhsbPRrm13x3hMRERER6b5UfPhJY2OjigERERERaVN9fT0Oh4MNGzYwePBgNm/ezLPPPovb7SY+Pp7ly5dfdDbyC7MXys/Pp7i4mDVr1pCQkMCmTZtaXK+z6LIrEREREZEuoqSkhOTkZFwuFwBlZWVs3LiRrVu38te//pV//OMfvPLKK+3KdkUqPkREREREugin08mqVasYONAzQEZUVBTbt28nNDSU2tpa6uvrsdls7cq2xxNPPMHs2bO55ZZbKCkp6ZBtaI2KDxERERGRTlZbW0t5ebnXv9ra2mbrrV69mokTJzZbFhwcjNPpZNq0aURERDB69OgW22gp25YRI0ZQUFDAggULyM7ONrZRJqj4EBERERHpZDk5Odjtdq9/OTk57crPnTuXAwcOEB4eTlZWVof1a9q0aYCnCDl16lSHve7F6IZzEREREZFOlpKSwpw5c7yWX+wSqvMqKyupqKhgwoQJBAUFkZiYSG5uLoWFhWRmZgKQkJDAsmXLWszn5uaSl+eZ+8bhcBASEtLs+cDAQICL3sDe0VR8dBN3/XSS1V0QERER6bZsNlubhUZL6urqeOihhygoKCAsLIxdu3YxYcKEpjMnbUlOTiY5ObnpcX5+vuE+dCQVHx0sJCSEjIwMr+VlZeZmpxYRERGR7mvkyJHcd999OBwOAgMDmThxInfffbfV3TJNxUcHS01NbXF5SwWJP238Q7Gl7Z+nMzAiIiIibSsqKmr6v8PhwOFwmMpeKCkpiaSkJK/1YmNjiY2NNdFTY3TDuYiIiIiI+EWA2+12W90JszIyMto9a7iRdTuD1e3rzIeIiIiIWE1nPkRERERExC90z4dYaseedw1nZsRfA8ALu98xnJ1507UAvPjK+4azN3//agC27jI+++ePbhkHwBdVxwxne10eCcCZ49WGswA9wyM4d7rGVDa4bz8aKj41lQ0ddCU1h43vZ4B+ozz7uvqtNw1nI64bD8C5hgbD2eDQUACOfFRpODt86BX/avdzE+32BqC2ps5w1tYvDADXJ1WGs9FXXQ5A4+fG9xVASO9QjlebGxM+PKI/Je99bCo7bswQThw3d0xfFt4PgLfeNd72ddcMAeDUydOGs/0H9AXgtd/82nD2+l95MuVFLxnODk7wjN9fuW+v4ewVN0zxud2jBeZG1Rk2O4nDz7Rv7oMLjbozhfey/2gqO+b/3MeBVemmsrH/+VsA3lz7sOHs+F+sBMAZN8Vwdu5+z8+28eRxw9mQAeGAud8vPcMjAPjor88bzg69bRYAxw68ajgbGTsZgJPvGf8OADBgzLWmfheD5/exL79PxUNnPkRERERExC905sNPLjYEb2ey8h4TEREREZELXdLFh5Ev9FbPs3GxIXhFRERERL6pvr4eh8PBhg0bGDx4MJs3b+bZZ5/F7XYTHx/P8uXLW5yRPCsri507dwI0rXeh/Px8iouLWbNmDQkJCWzatInBgwd3+jadd0kXH0a+0Fs9z4aIiIiISFtKSkpIT0/H5XIBnj+gb9y4kYKCAkJCQrjjjjt45ZVXmDKl+T1C+/btY+/evWzbto2AgADuvfdeXnzxRW6++WYLtuLidM+HiIiIiEgX4XQ6WbVqFQMHDgQgKiqK7du3ExoaSm1tLfX19dhsNq9cREQEaWlp9OjRg+DgYIYPH05FRUWb7T3xxBPMnj2bW265hZIS44PqGKXiQ0RERESkk9XW1lJeXu71r7a2ttl6q1evZuLEic2WBQcH43Q6mTZtGhEREYwePdrr9WNiYrjuuusAcLlc7Ny5k/j4+Db7NWLECAoKCliwYAHZ2dk+bGH7qPgQEREREelkOTk52O12r385Oe0bVnru3LkcOHCA8PBwsrKyLrpeaWkp99xzD8uXLyc6OrrN1502zTM09ogRIzh1ytzw6UZc0vd8iIiIiIhcClJSUpgzZ47X8pYuofqmyspKKioqmDBhAkFBQSQmJpKbm0thYSGZmZkAJCQksGzZMt544w2WLl3KypUrSUxMBCA3N5e8vDwAHA4HISEhzV4/MDAQoMUb2DuDio9u4q6fTrK6CyIiIiLdls1ma7PQaEldXR0PPfQQBQUFhIWFsWvXLiZMmNB05uS8yspK7r//ftavX8/kyZOblicnJ5OcnNz0OD/f3OSfHUXFRzfx+sNFVncBgIkrE6zugoiIiMglY+TIkdx33304HA4CAwOZOHEid999t9d62dnZNDY2smbNmqZlDoejWeHRFaj4EBERERHpYoqKvv7DscPhwOFwtLp+eno66enpbb5uUlISSUlJXm3ExsYSGxtrsrftpxvORURERETELwLcbrfb6k74Q0ZGBg8++KDV3bCMLrsSEREREavpzIeIiIiIiPiF7vkQS31S9pnhzFVRnhk/Xz/4keHsxLFDAXjr3Y8NZ6+7ZojP2dKjbc80eqGYYYMAOF5tbuzt8Ij+NNR9biobGtabcw0NprLBoaGcazDXbnBobwDO1dcZz/YJA3zb14dKPzWcHR1zJQB7ij8wnI2fNNLndkveM35cjhvjOS7LyqsNZwGiBkdw4K2jprKx1w3j76+VmsreeH0Mx46dMJWNjLwMgMpK4/krrvBkT39ovN99R8QAvv2Mv6g3/n7q1cfzXjpxvMZw9rLwfgC8fegTw9nvjr4KgIYK49sLEDroSir+vsdUdtCN8ZQV/q+pbJR9OscOvGoqGxnrGV3IzDaHDvL8jBtPHjecDRkQDoAzborh7Nz9ewF4Y81qw9kJab8E4NDTGw1nRy+4C4BPXtxlOHvVzbcAcPK9dwxnAQaMuZbDz7RvXo0Ljbozheq3HmwJIQAAIABJREFU3jSVjbhuvKnct5HOfIiIiIiIiF/ozEcnycrKorGx0dI+dOd7XERERESk61Hx0UkaGxv15V9EREREDKuvr8fhcLBhwwaOHDnCo48+2vRcVVUV48aN48knn2wzO3jw4DbbSktLY9KkSU3D73Y2FR8iIiIiIl1ESUkJ6enpuFwuAOLj44mPjwegurqa5ORkVqxY0a5sV6R7PkREREREugin08mqVasYOHCg13Pr1q3D4XAQHR1tOHtefn4+CxYs4Lbbbms6o7J7925uv/12pk6dypYtWzpkOy5GZz5ERERERDpZbW0ttbW1XsttNhs2m63p8erVLY8+5nK5KC4uvujzrWUvVFVVxY4dOwgKCiItLY2zZ8+ydetWSktLWbhwIfPmzWvX65ih4kNEREREpJPl5OSQlZXltTw1NZUlS5a0md+yZQvz58+nR48ePvdlzJgxBAV9XQbY7XYCAgKIiYnh1ClzQ/u3l4qPbkIzi4uIiIhYJyUlhTlz5ngt/+ZZj9YUFhaSnZ3d7HFmZiYACQkJLFu2rMVcbm4ueXl5ADgcDkJCQujZs2ezdQIDAwEICAhoV198oeJDRERERKSTXXh5lREnT57kzJkzREVFNS2z2+3Y7fY2s8nJySQnJzc9zs/PN9WHjqLio5t4/eEiq7sA6AyMiIiIiFHl5eVERkZa3Y0OoeJDRERERKSLKSr6+g/HY8eOxel0mspeKCkpqdmcHmvWrGn2/OHDhw300jgNtSsiIiIiIn4R4Ha73VZ3wh8yMjIMzzielZVFY2OjqfbKysp47LHHTGU7gy67EhERERGr6bKrVjQ2NhouWM7LyMjo4N6IiIiIiFzaVHyIpU6dPG04039AXwDe+6DccHbMyMEAHP34mOHssCGeG70+OFJhODty+CAAjnxUaTg7fOgVALx7uMxwFuCaUVHU1tSZytr6hVF61Pj2AsQMG8SJ4zWmspeF9wPgrXc/Npy97pohALxWctRw9vpxwwDY+3qp4eyUiTEA/P0149kbr/dk9//jiOFs3PeGA3DgLePbG3udZ3vNHJfgOTbffMdlKjv+2mj2vfmhqewN40dw7NgJU9nIyMsA+KTsM8PZq6I8MwbXuYzv67Boz77+7LOThrMDBw4AMPU+tvULA+D0h8aPy74jPMelL30+U11lOAvQM+Jyzp4y3i5Aj/4DaDx53FQ2ZEA45+rNfV4G9/Hs65pS49fL94sZBcCZ49WGsz3DIwB4Y037Jpf7pglpvwTAGTfFcHbu/r0+t/vuk/9tOHvNop8AcOjpjYazAKMX3EXlvr2mslfcMMWnY1o8dM+HiIiIiIj4hc58+Ikv94+YZfaSMRERERGRzqDiw098uX9ERERERLqP+vp6HA4HGzZs4MiRIzz66KNNz1VVVTFu3DiefPLJNrODBw/2ej4/P5/i4mLWrFlDQkICmzZtanG9zqLiQ0RERESkiygpKSE9PR2XywVAfHw88fHxAFRXV5OcnMyKFSvale2KdM+HiIiIiEgX4XQ6WbVqFQMHDvR6bt26dTgcDqKjow1nL+aJJ55g9uzZ3HLLLZSUlJjtdrvpzIeIiIiISCerra2ltrbWa7nNZsNmszU9Xr265RHEXC4XxcXFF32+tWxrRowYwSOPPMIzzzxDdnY2mZmZhl/DCBUfIiIiIiKdLCcnh6ysLK/lqampLFmypM38li1bmD9/Pj169OjQfk2bNg3wFCG7du3q0NduiYqPbkIzi4uIiIhYJyUlhTlz5ngt/+ZZj9YUFhaSnZ3d7PH5sxQJCQksW7asxVxubi55eXkAOBwOQkJCmj0fGBgIQEBAQLv64SsVH50kJCSk2SznZWXmJogTERERkUvfhZdXGXHy5EnOnDlDVFRU0zK73Y7dbm8zm5ycTHJyctPj/Px8U33oKCo+Oklqamqzx98sRKzw+sNFlrZ/ns7AiIiIiBhTXl5OZGSk1d3oECo+RERERES6mKKir/9wPHbsWJxOp6nshZKSkkhKSvJaLzY2ltjYWBM9NUZD7YqIiIiIiF+o+BAREREREb8IcLvdbqs74Q8ZGRk8+OCDnZ7xx2uZoXs+RERERMRquudDLPXuYeOjgF0zyjPSw4G3jhrOxl43DID9/zhiOBv3veE+Zz+tOG44e+WgcADKyqsNZwGiBkfQ+HmDqWxI71DqTteZyob1DeNsg7l2e4SGAlBZecJw9oorLgPg6MfHDGeHDfHczOfLcelL1qrj0sy+As/+MnNMg+e4fvvQJ6ay3x19lc/Hli/Hx7nP6w1ng3v38WTrvCcYazMb5hkdx8z7OKS3Z3vPna4x3m7ffgCmPgPC+oYBcOa4uc+tnuERnHzvHVPZAWOu5dj+faaykXE3UP3Wm6ayEdeNB+DYgVeNtxs7GYCP/vq84ezQ22YBcOjpjYazoxfcBcAba4xPTDch7ZcAOOOmGM7O3b8XgLf/4D3nRVu++1PPgD6+/Ix9yZ6prjKV7Rlxuanct5GKDz+5cOhdf7DyTIuIiIiIyIVUfPjJhUPvioiIiIh0N7rhXERERESkC6mvr2fmzJmUl5ezZ88eZs2a1fQvLi6ORYsWtZpfu3YtaWlpLT534MABFixYAMCCBQs4cOBAh/e/NSo+RERERES6iJKSEpKTk3G5XADEx8fz/PPP8/zzz/M///M/9OnThxUrVlw0/+qrr7Jt2zY/9dY4FR8iIiIiIl2E0+lk1apVDBw40Ou5devW4XA4iI6ObjFbU1PD+vXrWbx4cbvbe+6555gzZw52u73VyQk7iu75EBERERHpZLW1tdTWeo94Z7PZsNlsTY9Xr2559DGXy0VxcfFFnwf4j//4D37+859TWVnZ7n6FhYWxbds2Xn75ZbKyskhI6NxpEVR8iIiIiIh0spycHLKyvIcXTk1NZcmSJW3mt2zZwvz58+nRo0eLz2/dupUrrriCyZMnk5+f3+5+TZs2DYARI0Zw6tSpdufMUvHRTWhyPxERERHrpKSkMGfOHK/l3zzr0ZrCwkKys7ObPc7MzAQgISGBt956i+rqambNmsXp06dpaGjg4YcfJjY2ttl6cXFxzV43MDAQgICAAFPbZZSKj25CM5yLiIiIWOfCy6uMOHnyJGfOnCEqKqppmd1ux263t7h+fn4+xcXFrFy5smnd8/w9utWFuk3xYWaSv7Iy4zMVi4iIiIh0pPLyciIjI63uRofoNsWHmUn+/D0juYiIiIgI0GzkqbFjx+J0OtudTUpKIikpqcXnYmNjiY2NBeDpp59uWj548GC/jHaloXZFRERERMQvVHyIiIiIiIhfBLjdbrfVneiqMjIyePDBB63uRofQDeciIiIiYrVuc8+HdE2HSj81nBkdcyUAB946ajgbe90wAP729/cMZ2+9cQwAzxe9bTg7K+G7ADQcqzCcDY0cBMC5hs8NZwGCQ3tz7nSNuWzffpw6edpUtv+AvjRUGP/5AoQO8vyMzbTdf0BfAI5+fMxwdtgQz818pUeN/5xihnl+TserjY+RHh7RH/Ctzx8cMd7nkcM9fa47XWc4CxDWN4zaGnNZW78wU/sZPPv62LETprKRkZcBsP8fRwxn4743HDC3v8L6hgHQ+HmD4WxI71AAU9t8fnvPHK82nO0ZHgH4dlz68hlQsff/mcoOmvJvfPZ6sanswImTqDn8vqlsv1FXA/DRX583nB162ywAjh141XA2MnYyAJ+8uMtw9qqbbwHg3Sf/23D2mkU/AeDtP3jPW9GW7/7Ucx+uM26K4ezc/XsBeOPh3xjOAkxY+Sufsmb2M3y9r0XFh19kZWXR2Njo93a/LWdtREREROTbQcWHHzQ2NqoQEBEREZFuTzeci4iIiIiIX6j4EBERERHpQurr65k5cybl5eXs2bOHWbNmNf2Li4tj0aJFLeaysrJITEwkMTGRdevWtbhOfn4+aWlpACQkJFBeXt5p29ESXXYlIiIiItJFlJSUkJ6ejsvlAiA+Pp74+HgAqqurSU5OZsWKFV65ffv2sXfvXrZt20ZAQAD33nsvL774IjfffLM/u98mFR8iIiIiIp2straW2tpar+U2mw2bzdb02Ol0smrVKpYvX+617rp163A4HERHR3s9FxERQVpaGj169ABg+PDhVFS0PargE088wfvvv88XX3zBunXrGDdunIGtMk7FRzeh+TVERERErJOTk0NWlvfQxKmpqSxZsqTp8erVq1vMu1wuiouLL/p8TExMs3V37txJbm5um/0aMWIEjzzyCM888wzZ2dlkZma2mfGFig+TjAyfW1ZW1sm9EREREZGuLCUlhTlz5ngt/+ZZj9Zs2bKF+fPnN53ZuJjS0lIWLVrE8uXLWzxDcqFp06YBniJk1y5z85gYoeLDJCPD52ZkZHRyb9qmGc5FRERErHPh5VVGFRYWkp2d3ezx+bMUCQkJLFu2jDfeeIOlS5eycuVKEhMTAcjNzSUvLw8Ah8NBSEhIs9cNDAwEICAgwHTfjFDxISIiIiLShZ08eZIzZ84QFRXVtMxut2O325seV1ZWcv/997N+/XomT57ctDw5OZnk5OSmx/n5+f7p9EWo+BARERER6cLKy8uJjIxsdZ3s7GwaGxtZs2ZN0zKHw9Gs8OgKVHyIiIiIiHQxRUVfXzI/duxYnE5nq+unp6eTnp7e5usmJSWRlJTk1UZsbCyxsbEme9t+mmRQRERERET8IsDtdrut7kRXlZGRcdGbylt7zpd1O4tuOBcRERERq+nMh4iIiIiI+IXu+fCDkJAQS4bbtfpsS3t8WnHccObKQeEAHP34mOHssCGem7Xeevdjw9nrrhkCwN9fKzWcvfF6z8Q/x/bvM5yNjLsBgDrXUcNZgLDoYZyprjKV7RlxOXWn68y12zeMc5/Xm8oG9+4DwGefnTScHThwAACNnzcYzob0DgWgsvKE4ewVV1wGwLl649sc3MezvQ11nxvOhob1BuB49SnD2fCI/oC5PoOn37U15o4PW78wDpV+aio7OuZKU/sKvt5f7x42Pv/SNaM8o8ycq/OeobgtwWGe4TXP1RvfX8F9wgDfjkvXjhcMZ6NnzATgbIPx91KPUM97qfboh4azALZhI2ioMHd8hA66knOna0xlg/v28+n9AFBe9JLh7OAEzzwLJ997x3B2wJhrfc4eenqj4ezoBXcBvv1ee+Ph3xjOTlj5KwCccVMMZwHm7t9r6v0AnvfE0QJzI0UNm51kKvdtpOLDD1JTU63ugoiIiIiI5XTZlYiIiIiI+IWKDxERERGRLqS+vp6ZM2dSXl7Onj17mDVrVtO/uLg4Fi1a1GLu97//PTNmzCAxMZE//elPLa6Tn59PWloa4JkZvby8vNO2oyW67EpEREREpIsoKSkhPT0dl8sFQHx8PPHx8QBUV1eTnJzMihUrvHLFxcXs37+fv/zlL/zzn/9kxowZxMfHM2zYMH92v0068yEiIiIi0slqa2spLy/3+ldb23wQC6fTyapVqxg4cKDXa6xbtw6Hw0F0dLTXc5MmTWLTpk0EBQVx4sQJvvzyS0L/NfhDa5544glmz57NLbfcQklJientay+d+egmNL+GiIiIiHVycnLIysryWp6amsqSJUuaHq9evbrFvMvlori4+KLPAwQHB5OZmclTTz3FrbfeyuWXX95mv0aMGMEjjzzCM888Q3Z2NpmZme3YGvNUfLSitSFyy8qMD9MoIiIiIt1TSkoKc+bM8Vpus9nald+yZQvz58+nR48era63dOlSfvzjH7N48WKcTifz5s1rdf1p0zxDPY8YMYJdu3a1qy++UPHRitaGyLVi3g5faIZzEREREevYbLZ2FxotKSwsJDs7u9nj82cpEhISmDlzJmfPnuXqq6+mV69eTJ8+ncOHD5Obm0teXh4ADoeDkJCQZq8bGBgIQEBAgOm+GaHiQ0RERESkCzt58iRnzpwhKiqqaZndbsdutzc93rNnD5mZmeTm5gKe4uSHP/whiYmJJCcnN62Xn29uosSOouJDRERERKQLKy8vJzIystV14uPjOXjwILNnzyYwMJDp06eTmJjopx62n4oPEREREZEupqjo60vmx44di9PpbDOzZMmSZjevtyQpKYmkpCSvNmJjY4mNjTXZ2/bTULsiIiIiIuIXAW632211Jy5FGRkZPPjgg1Z3o910w7mIiIiIWE2XXXWCrKwsGhsbre7GJVUciYiIiMi3n4qPTtDY2Kgv/u303gflhjNjRg4G4LWSo4az148bBsDe10sNZ6dMjPE523CswnA2NHIQADWH3zecBeg36mrONXxuKhsc2ptzp2vMZfv244uqY6ayvS733FRXX/ax4WyfqCEAfFpx3HD2ykHhPmdPHDe+vy4L7wdAzanaNtb01q+/Z9hGX/rcUGfu+AgN603d6TpT2bC+YRz92NzxMWxIJKVHjb+XAGKGed5Pvnz2mHk/BYf2BuDIR5WGs8OHXvGvdhtMtOuZ3fiTss8MZ6+K8syu/PrBjwxnJ44dCkDt0Q8NZwFsw0ZQ6swzlY2Z6+DD57aYyo64fR6uHS+YykbPmAnAqUPvGc72Hz0GwNRn5vnPy8PP5BjOjrozBYDKfXsNZ6+4YQoAx/bvM5yNjLsBgDce/o3h7ISVvwLw6efkjJtiKjt3/14O5TxlKjs65R5TuW8j3fMhIiIiIiJ+oeJDRERERET8QpddiYiIiIh0IfX19TgcDjZs2MCRI0d49NFHm56rqqpi3LhxPPnkk165rKwsdu7cCXjm/Vi+fHmbbaWlpTFp0qSm4Xc7m4oPEREREZEuoqSkhPT0dFwuF+ApIuLj4wGorq4mOTmZFStWeOX27dvH3r172bZtGwEBAdx77728+OKL3Hzzzf7sfptUfIiIiIiIdLLa2lpqa70HFrHZbNhstqbHTqeTVatWtXjWYt26dTgcDqKjo72ei4iIIC0tjR49egAwfPhwKiq8B+fIz89n27Zt1NTUMHXqVAB2797N5s2bOXHiBIsXL2bevHlmN7NNKj66Cc2vISIiImKdnJwcsrKyvJanpqY2m5V89erVLeZdLhfFxcUXfT4mJqbZujt37iQ3N7fFdauqqtixYwdBQUGkpaVx9uxZtm7dSmlpKQsXLlTx0RWFhISQkZHR4nNlZWV+7o2IiIiIdGUpKSnMmTPHa/k3z3q0ZsuWLcyfP7/pzMbFlJaWsmjRIpYvX97iGRKAMWPGEBT0dRlgt9sJCAggJiaGU6dOtas/Zqn4MCk1NfWiz12sKLGSZjgXERERsc6Fl1cZVVhYSHZ2drPHmZmZACQkJLBs2TLeeOMNli5dysqVK0lMTAQgNzeXvDzPvDkOh4OQkBB69uzZ7LUDAwMBCAgIMN2/9lLxISIiIiLShZ08eZIzZ84QFRXVtMxut2O325seV1ZWcv/997N+/XomT57ctDw5OZnk5OSmx/n5+f7p9EWo+BARERER6cLKy8uJjIxsdZ3s7GwaGxtZs2ZN0zKHw9Gs8OgKVHyIiIiIiHQxRUVfXzI/duxYnE5nq+unp6eTnp7e5usmJSU1m9Pjm8UKwOHDhw321BjNcC4iIiIiIn4R4Ha73VZ34tsmIyODBx980OpuNKMbzkVERETEarrsqhO0NgyvP3W1AkhEREREujcVH52gtWF4pblDpZ8azoyOuRKAdw8bn0/lmlGeUSL+/lqp4eyN13sm79n/jyOGs3HfGw7AibdLDGcv++44ACr+vsdwFmDQjfF8UXXMVLbX5ZGc/tD4vgLoOyKGhmPeM6u2R2jkIABT+fPZ2po6w1lbvzAAvqj/3HC2V5/eAJytMT4+eo9+/QFoPHnccDZkQDgAdaeNb29YX8/2nquvN5wFCO7Th3MNDeayoaEcrzY3lnx4RH8+++ykqezAgQMAqKw8YTh7xRWXAXDudI3hbHDffgCmtjk8wnN8mNnXwaGhAKb21/l95ctnrZljGjzHdfWbr5vKRoyfaOqzFjyftzWH3zeV7TfqagBT+fNZX46t6rfeNJyNuG48AGeqqwxne0Zc7nP2kxd3Gc5edfMtABwtMDdi07DZSRzKecpUdnTKPTjjppjKzt2/11Tu20j3fIiIiIiIiF+o+BAREREREb9Q8SEiIiIi0oXU19czc+ZMysvL2bNnD7NmzWr6FxcXx6JFi1rM/f73v2fGjBkkJibypz/9qV1tpaWl+XXiQd3zISIiIiLSRZSUlJCeno7L5QIgPj6e+Ph4AKqrq0lOTmbFihVeueLiYvbv389f/vIX/vnPfzJjxgzi4+MZNmyYP7vfJhUfIiIiIiKdrLa2ltraWq/lNpsNm83W9NjpdLJq1SqWL1/ute66detwOBxER0d7PTdp0iQ2bdpEUFAQVVVVfPnll4T+a9CJb8rPz2fbtm3U1NQwdepUAHbv3s3mzZs5ceIEixcvZt68eT5saes0z4eIiIiISCd7/PHHycrK8lqemprKkiVLvJYnJCSwadMmBg8eDIDL5SIlJYUXX3yRHj16XLSdzMxMnnrqKW699VYeeeQRAgICmj2fn5/Phg0b2LFjB0FBQaSlpVFTU8N///d/U1paysKFC9m/f7+PW3txOvMhIiIiItLJUlJSmDNnjtfyb571aM2WLVuYP39+q4UHwNKlS/nxj3/M4sWLcTqdLZ7FGDNmDEFBX5cBdrudgIAAYmJiOHXK3DDo7aXiQ0RERESkk114eZVRhYWFZGdnN3ucmZkJeM6SzJw5k7Nnz3L11VfTq1cvpk+fzuHDh8nNzSUvLw8Ah8NBSEgIPXv2bPbagYGBAF5nSTqDig8RERERkS7s5MmTnDlzhqioqKZldrsdu93e9HjPnj1kZmaSm5sLeIqTH/7whyQmJpKcnNy0nj9HtmqJig8RERERkS6svLycyMjIVteJj4/n4MGDzJ49m8DAQKZPn05iYqKfeth+uuFcRERERET8QpMMioiIiIiIX6j4EBERERERv1DxISIiIiIifqHiQ0RERERE/ELFh4iIiIiI+IWKDxERERER8QsVH9KqsrIyr2VPP/20BT0RERERkUud5vmQVt1yyy388Y9/ZMiQIRw+fJj09HR69+7Nxo0bre5ahzl9+jTbt2/n1KlTfPPtkJqa2mb24MGDPPXUU17ZTZs2dWrW6XSyfv16ampqAHC73QQEBPD+++93artWtu1Lu2VlZeTl5Xm1+8gjj7SZ3b17N1lZWdTU1OB2u5vaLSws7LLtWtVnq7bX6rbFmIaGBk6fPt3s5zRo0CALeyQi/qQZzqVVjzzyCD/5yU+44YYb+N///V8eeOABZs+e3WntWfEF4v7772fAgAHExMQQEBBgqL+/+MUvuPPOOxkxYoRfsxs2bGDTpk3ExMQYyvnarpVt+9LukiVLmDx5MhMnTjTc7urVq/nlL39pqs9WtWtVn63aXqvbvhQLcqv+cJKVlUV2djb9+/dvWtbeQs+X7bUq6+sfey7F48OXYv5S/IOeL9nuSsWHtGr8+PE8+uij3HvvvWRkZBAbG9up7VnxBeL06dM888wzRrsKQM+ePbnjjjv8nr3ssstMfQn3tV0r2/alXbfbzS9+8QtT2bCwMG666aZLql2r+mzV9lrd9qVYkFv1h5P8/HyKioqaFR/t5cv2WpX19Y89l+Lx4Usxfyn+Qc+XbHel4kNaNHr06GZvXrfbzV133dXpFb0VXyBGjhzJO++8w7XXXtvuTEVFBQBXX301GzduxG63ExgY2PR8a5cQ+JItKChoWucnP/kJdrudoKCv38atnZXypV0r2/al3fO+973v8eKLL2K32/nOd9p3q9trr70GwIgRI/jtb3/r1e7111/f5dq1qs++ZDuiz1a3fSkW5Fb94WTgwIGEhYWZyvqyvVZlff1jz6V4fPhSzF+Kf9DzJdtd6Z4PadWhQ4cYPXq039r79a9/zfe//31TXyC2bt2KzWZr9xeIhIQEAgICOHPmDCdPnuTyyy8nMDCwXaeIz2dbevu0J3sxbWVXrFhx0eeg9cvTfGnXyrZ9afd8EX2xn1NrRfSCBQsu+lxAQECrp/KtateqPlu1vVa3fb4wfvnllzl79qypgjwrK4uRI0eaKsj93a4v2aysLMBzacyJEyf4t3/7t2bZ1u6x82V7rcr6sq98zVvVb7O/i31t16p95Uu2u1PxIa36wQ9+wM6dOzu9HSu+QHz66aet9unKK69s9XnwfOhMnTq1zfU62vr16/n5z3/u93atbNuqdvPy8nA4HJdUu1b12RdW9tls25diQe5Lu75kzxcfF9Na8eHL9lqV9fWPPZfi8eFLMW/VcWnV8dHdqfiQVi1ZsoRRo0Yxbtw4evbs2bS8vZcj+JPRLxDn/2pxMe35q0ViYiLbt29vd5vQMR9Y//7v/87zzz9v6LrWjvqgtKptM+368oXnvJkzZ/LCCy+0u00r2/Ul60ufrdxeq/c1dL+C3BcrVqww/aXMl+21KmulS7XfVuiOx4eVdM+HtKqmpoYDBw5w4MCBpmXtuRzBqI74AvHMM88YKj6+uU0taU/xERUVxYoVK7yKs9aykyZNancfL6Zfv37ceuutXHPNNYSEhDQtb+2Xeke0a2XbZtrtCJGRkSxcuJBx48Y1a7c9x6RV7VrVZ19Y2Wdf23755Zf52c9+5veC3N/tdkSfP/jgAz7//HN69+7d5roXMrO9VmV93VeX4vGxYMGCVttq7XuD1celVcdWd6XiQ1p1fkLB+vp6vvrqK2w2m8U9ujijXyBa+kB69913ueaaa9rd5vkRW0pKSpotb634mDNnjteyLVu2MG/evHa329JrmMkYbdfKts2029LP3uilctddd90l064vWV/6bOX2Wr2v4dIqyH1ptyP6/J3vfIepU6cydOjQZn1uzx+0fPkDhL+zvu6rS/H4WLJkiems1celVcdWd6XLrqRVZWVl/PznP6esrAy3282gQYN47LHHiI6O7vS2jX6BuNjZEyN/OZ3BH+W4AAAatklEQVQzZw7btm1r9/rfZLRw6ah2zRQQHdGulW1b1a4v9/hY1a5VfbZqe61o+2JtGS2YjR7XVrXrS7a4uLjF5e35AunL9lqV/SZf9rOZfFfo9+OPP266KPHncdkVjo9uxS3Sirvuusu9c+fOpsfbt29333nnnX5pe/bs2aazRUVFpnKzZs0y3aYv/b0U27WybbXrn6wvfbZqe61uOy8vz5K2rWrXl2xmZqbprC/ba1XW12Orux0fVmWtOj66E2ODuEu3c+rUKW699damxzNmzGiaxbOzuX04KZeZmWkqZ2Sujwv50l9fRvmxql0r2/al3dZGRvk2tmtVn63aXqvbzsvLs6Rtq9r1JVtUVGQ668v2WpX19djqbseHVVmrjo/uRMWHtKpHjx68++67TY/feecdevXq5Ze2rfgC8dvf/tZ0m0YKl5deeomnn36aTz75BPj6i/iWLVsMt2vkS7zL5aKqqgrwjMX+4YcfsmPHDsNtmmnbqmxDQwNnz54FYN++fYSFhXndo9NevhyTS5cuNZ31VxHw/vvvU1RURF1dHfB1n19++WXD7fpzezuy377sa7g0C3Kr3seX4hdTK//YcykeH758DnS347I7Cfz1r3/9a6s7IV1XTEwMP/vZz3j++efJy8ujoKCA1atXExkZ2eltx8bGms5+9tlnPuXNaO+Xlt/97ne89NJLfOc732Ht2rWEh4c3TeT4q1/9qs0PzZdeeolXXnmF/v3707dv36aiZ8uWLa0WQBs3buQ3v/kNW7du5fDhw7z55ptMmDCBHTt2UF5e3q5rrl0uF42NjfTp04etW7dSWlpKfX19m7O7VlRUUFdXd9F/Rmc8bm+h98ILL3DPPffw7LPP0tDQwMaNGwkPDycnJ4egoKA279FpaGjA7XYTGBjIvn37qKur4zvf+U6nH//vv/8+b7/9NuHh4YSEhDQdyy+//DJDhw419FrtfR/k5OSwfv16ysvLefTRRxkzZgxRUVEAPPDAA36dg8PIe9fXfnfkvj6vvcen2feyr+36kjP7GdCSgQMHmt7H4NuZaiuyRnOX4vFxoS1btjBlypR2revL9nbkcQnWHVvdhW44l1adPHmSsLAwXC4XX331FUOHDqVHjx5Wd6tDzJw5ky+++MJrubsdM5z74rbbbmPbtm0EBQXhcrm45557eOihh/jBD37A7NmzW51/5He/+x3vvPMOw4cP529/+xvLly9n1qxZQNs32d52220899xzHD9+nJkzZ7J//35CQkI4e/Yst99+O3/5y19a7ffGjRt5+umn+eqrr4iLi6OyspKbb76ZoqIixo8fz/33399q2y6Xi4EDB3r9ZaitfX1+9tqLaW322n//938nJyeHqqoqfvSjH7F371769u1LfX09d9xxB88///xFsy+88AK/+c1v6NGjB/PmzWPXrl3ceOON7N27lwULFvCjH/3ootkpU6Zw4sQJr+Xnj63WJs3MycnB6XQSFRXF22+/ze9+9zsmT54M+D5AQGtuu+02nE4nvXr14s0332Tp0qU89thjTJw4sc3j0pfttbLfVu1r8O29DJ4vapWVlcTHx3PVVVc1LW/rRltf3k++fAa0ZM2aNaSlpRnKmGF2X4HnS22vXr24/PLLm/5wM378eGbMmNFqzpf9DL4fH2b50u+WhrwtKipq+sNca6M/+bK9vh6XVhwf3Z2G2pVW3XnnndhsNuLj45k6dWqnFR5WfHnJyMjgxz/+MY8++ihXXHGFoawvhcv5dQCio6N58sknufvuuxkwYECb44Tv2bOnqXBZsGAB99xzDz169OAHP/hBm6d7v/rqK3r06MGVV17JPffc02xIwC+//LLVLMCf//xnduzY4VW8/OhHP+L2229v9QM+NzeX+fPns2rVKiZMmNBmW9+0aNEi04WL2+2mf//+9O/fn1mzZtG3b18Aevfu3eY2//GPf+Rvf/ubV+Hy05/+lDvuuKPV4uPPf/4zCxcu5IknnmDEiBEGthaee+45nnvuuRa/TLf1M/b1fXT+ksrx48ezfv16fvazn/HUU0+1eVz6sr0d8d43229f9jX49kXNl/fyN7+obdiwodkXtby8vFa/MPnyfvLlM+BiX0xPnz4NtP7F1Jf97Mu+utiX2j//+c989NFHrW6vL/sZfDs+fNlfvvS7X79+FBQUsHjx4qZh+ffv39+us+q+bK8vx6VVx0e317H3r8u3UVlZmfvZZ591L1682H3rrbe6V61a1eFtHDt2zD19+nR3aWmp4ez3v/999+jRo73+jRo1yj169OhWs9u2bXMvWbLEcJuHDh1y33jjje7XXnvNXV5e7vWvNY8//rg7OTnZXVJS0rTs9ddfd8fFxbnHjx/fajYxMdH9z3/+s+nxBx984P7+97/v3r9/f5ujezz22GPu+fPnN8u///777h/+8Ifuxx9/vNWs2+12z5gxw/3VV1+53e7mo9Q0Nja6Z8yY0Wa+pKTEnZ6e3uZ6F6qrq3Pfdttt7tdff91w9le/+pX7gQcecH/55ZdNy1wul/v+++9v8zieOXNm0/9/+ctfNv3/q6+++v/t3X1QlNUXB/AvpQzaWJrle/UzlUyzHBlTEVJMNnBBwVBRMxVLLAubkpdMZBQwfEPLzDBJUxhMTSSzwinDVyQrCy01Lc1ISZPIRd4W9vv7w2FHEndhL/Cw7vnMMAPLnuecfby73sOzey/1er3V3FlZWTaNrevzkuQ333zDwYMH8+TJk1b/jVWeRzExMXzllVeqxWZmZtLd3Z0DBgywGm/r41WpmVSrW+VcV8U/8sgjHDZsGL28vKp9DRs2zGKsynPZz8+PRqORJHnmzBl6eXnxs88+I2l9pS+V55PKa0BCQgIHDhzI9evXc9u2bdy2bRuHDh1q/t4SlfOscq78/PxYWlrKvLw89u3bl6WlpebH6+/vbzFW5TyT6uPD1vOlWvfBgwc5duxYHjp0iGTtV55Tebwq41Kr8eHopPkQFlVWVjI3N5dr165laGgohw8fbtMEoza0mrwYDAab4mxtXMhrL9CnT5+udtv58+cZFxdnMU6lcSGvTa6u9+uvvzIrK6tWNas2LypsbVwqKyuZnp5e7bZjx44xNTW1WkNSE5XGRYVWTUBlZSU3b95cbWyR1879Cy+8UOfj1YWtNZNqdauea5WJmlZ/hCBtfz6pvgbYOjFVOc9aTWpJ288zqTY+VBsIlbpJ8p9//mFYWBgTEhJuaPBvRuXxqoxLLceHI5PmQ1jUr18/Dh48mKtWreLx48e1LuemVCYv16vr/iC2Ni7/VZf17m1tXFTzkmrNi2ru+lLbddhVGhfVvFo1Af9lr+vdN+a5VpmoafVHCBWqrwG2TExJ28+zVpPa+qDyWq/aQNSHzZs3MyQkpNb3V3m8to5Lex4f9kyaD2HRvn37uGTJEgYHB3PChAlMTEzk/v37GyW3FpMXLTY2VM2rMolX3fRKq9xa5bXHDeTscXMx1ee+lrlV2MsfIeojtq4TUxVaTGprovoHF63+YKPF+GjM2KYyPhyJ7PMhLPLw8MDs2bORlJSE0aNH4/PPP8dLL73UKLlVNuuxZb8MQJuNDVWpbNRlr7lV8qr8G9vjBnJabopmKy036lLNvXLlSptj6zKuBw0ahG7dulXL27FjR7zxxhsNmre+YseMGYO+ffvanLcu51nlXPXv37/azzt37sSQIUNqX+h1VF8vVeIba1zaY2xTGR+ORJoPYdHSpUsRFBSEMWPG4Pjx44iOjkZOTk6j5G7oyVpubq75++zsbCQkJMDDw8PmDejqUm92djaOHDkCAEhOTsbx48exatUq82Z4DUWrvFrljouLM6+mU6UxNp/SKq9KrGrN+/btw5UrVwAA6enpOHHiBLZt21b7QhVomfu/tGqMtcqrVc32GKvazDva+HC0celIpPkQFrVt2xaLFy9GZmYm5s6dC09PT1y6dKlRcjf0ZC0mJgYAkJqaioULF6JDhw645557MG/ePKSkpFiMVWlcFi9ejOXLlyM2NhZhYWHIzc1FUlISLl68iAULFliNt3USr5pXy9y25t2+fTvGjh2LXbt2mW+r7bhSmYxrlVermuPj45GUlISysjKsWLECO3bsQHR0NHbt2oW4uDir8SrNg5a5a6Iy6VHZDVqrvFrVbI+xKudKNd4ex4ejjUuH0jjv7hL25vz58/zzzz+p1+vN3//55588d+4cn3rqqXrPV3X8m33VVVpamtX7VL0vfOTIkSwoKDDfbjAYrD7GqtiUlBT6+flx3bp1XLduHUeOHMmNGzdajPXz82NlZSVLSko4YMAAlpeXk7y2hKu15fkWLVrEMWPGMDAwkC+//DLDwsKYlZXFefPmVVsOtr7zaplbJe+oUaN46tQpTpw4kUFBQdy5cydLSkqsPlaSdHNzo06nY2ZmZq3u3xTyalXziBEjzB+6DAgIYFlZGUmyoqKCPj4+FmPj4uI4ceJEXrx4kcuXL+fUqVOZmprK0NBQxsbGNuncNfnqq69qdT+j0cj169fzzTff5OHDh6v9zpb3ujdGXq1qttfYAwcOMDc3l0ajkYmJiQwNDeWaNWuqfUC5IeNtqTs0NJTnzp2r8/HtNbYmWo0tRyLNh6hRVFQUvby82Lt372prhHt7ezM+Pr7e89W0LnnV99bWJbe1camaED/77LMsKioy315WVkZfX1+LOVUaF71ez8LCQp4/f56PPvqoOb64uNjqZEllEq+SV8vcKnmv/+DxgQMHGBYWxkGDBnHChAl89dVXLcaqTMa1yqtVzaNHj+Zff/1FkpwxYwb/+ecfkteeD9ZWNFJpHrTOrTIZf/311xkZGcnk5GR6eXlx9erV5t9Z+8C8VnlVYkm1ybS9xS5evJjBwcH08/NjSEgIw8PDmZWVxaioKC5YsMBqXpV4lcn4wIED6e3tzeTkZPNr7a0c25SaHkciO5yLGlXtNrtmzRpMnz69wfPV9w7YTk5OVncbb926NYYOHQoAiI2NRUJCArKzs7FkyRL4+PhYzFlRUQGTyYTWrVtX2/Xd2dkZt91m+d2Mzz//PHQ6HUgiPDwcISEhGDRoELKzs/H0009bjCUJg8GA4uJilJSUoKioCG3atEFpaSmMRmOD5dUyt0peXncJ3N3dHe7u7jAajTh58iT++OMPi7FOTk7o3r07UlJScPDgQXz00UeIi4tD165d0aFDByxbtqzJ5dWq5pkzZyIoKAh6vR5dunTBpEmTMGjQIOzfvx/PPfecxVgXFxdcvnwZ7dq1Q4cOHVBcXAxnZ2eUlJSgWTPr/0VpmXvevHkwmUxwdXVFREQExo4dixkzZgC49t7vl19++aaxx44dwyeffAIACAgIwJQpU+Di4oIpU6ZYfeuGVnlVYpcsWYLvv/8eRUVFaNeuHdq2bYvx48fjiy++wMKFCxEdHX1Lxe7Zswc7duxAYWEhvL298c033+C2227DE088gYCAAIvnSjX+xx9/xLRp0xAcHIxJkyahefPmVvNVad++PdauXYvFixdDp9Nh/Pjx0Ov16Ny58y0Zq3KuVGIdnhYdj7AfZWVlXL16NSMiImgwGLhy5UrzXwfrmxY7YJPXlsY7cuQIyWvre3/99ddWY5555hl6enrS09OTkZGRJK8t1xcYGMi33nrLanxJSYn5asuJEye4du3aWi1hvH37dj7++OPs378/N27cyICAAC5atIgBAQF8//33GyyvlrlV8m7evLlWj60mNW2AVl5ezqNHj5p3wG1qebWqmSTPnTvHDz74gDExMZw7dy5XrFhxw/4ZNfnqq6/o6enJhIQExsXF0c/Pj/Hx8fT19eXHH3/cpHNff+Xt8uXL9Pf357p160jWbnfkq1evmn/Oz8+nl5cXMzIyrF5F0CqvSqxer6fJZGJBQQHd3NzMe+WYTCaOHDnyloyt2vH6+ueWwWCo1QZ0KvGjRo3ipUuXGB4ezqFDhzIpKYl5eXlWc5LVr2CdOXOGixYtok6n45AhQzhu3LhbLlblXKnEOjppPoRFb7zxBpctW0a9Xs/i4mKGh4fztdde07qsG2i1oZItjYsqlQbCXnNrkVd1Mq5FXq1qVmVr86B1bpXJ+KZNm6jT6Xjw4EHzbadPn+bQoUPZp0+fJplXJVZlMm2PsampqdTpdNXenvXdd9/Ry8uLH330kcVY1XjVyXhNCgoKrD4v7DFWq6bH0UnzISyqenJVPblNJhP1er2WJQkhRJOgMhknr01Y/vu5NIPBYL6K0dTyqsSqTKbtMZYk//jjj2o/X7hwgb/88ovVONV4lcm4ygZ59hirVdPj6JxIWRdM3Nzo0aOxadMmjBs3Dunp6SgoKMDkyZOxY8cOrUsTQgjNnT17Fs7OzujUqZP5tqKiImzduhVTpky5adz58+ctHvf64zWVvKo15+XloUuXLuaf8/PzYTAY0KNHD4tx9hireq5U4vfs2WPzRndajQ+tYlXOlUqso5PmQ1i0fft2bNmyBb///jt8fX3x5Zdfmj/gKYQQjkxl0uPv73/DQhlVLC2UoWVerWq2x1iVc6Uab4/jw9HGpaOT5kNYZDQakZaWhitXruCuu+4CSdx55521Wq1DCCFuZSqTnqKiIptX+NMqr1Y122OsyrlSjbfH8eFo49LhNdobvIRdCgsLY1BQECMjIxkVFWX+EkIIR6e60p5WK/ypLNChRc32GEuqL4TiSONDq1gtx4cjkysfwiIfHx988cUXWpchhBBNUm5uLrZs2YLY2FiHyKtCpWZ7jNWSvdatBUccH1qT5kNYNHPmTMTExKBdu3ZalyKEEEIIIeyc7HAuLCotLYWPjw9cXV2r7eS9YcMGDasSQgghhBD2SJoPYVFoaKjWJQghhBBCiFvEbVoXIJq2xx9/vMYvIYSwZsuWLUhNTa334+bk5MDPz6/ej1uTgoICPPTQQ3WOi4qKQnJycgNUBBw9ehRhYWENcmwhhGho0nwIIYRoEN999x1KS0u1LuOW06dPH7z99ttalyGEEDaRt10JIYSwKicnB8uXL8d9992HU6dOoaKiAvPnz0efPn2wdOlSHD58GJWVlejVqxfmzp2L7Oxs7N69GwcOHEB5eTnWrFmDAwcOoGXLlpg3bx5+++03pKSkAAB0Oh1Wr14Nk8mEBQsWoLCwEE5OTggJCUFAQABycnIQHx+Pli1b4urVq4iIiDDX9e2332L27NlITExEv379alWzm5sbDAYD5s+fjxMnTsDJyQmenp549dVX0axZM+zatQvLly9HixYt8Mgjj1Q75pYtW5CWlgaTyYTWrVsjOjoa3bp1q/GcHTlyBMHBwfj777/Ro0cPLFu2DC1btsSvv/6K+Ph4FBYWorKyEpMmTUJQUBBycnKQmJiIjh074syZM2jRogWmT5+OjRs34syZM9DpdJgzZw5ycnIQGxuLTz/9tJ7/lYUQohFou9KvEEIIe3Do0CE+/PDD/Pnnn0mSycnJnDhxIleuXMmEhASaTCaS5LJlyxgTE0OSjIyM5Nq1a0mSkyZN4u7du0mSOp2O7u7uLCoq4qlTp+jr60uj0cgnn3ySmZmZJMn8/Hx6enry+++/56FDh9izZ0/m5eWZa9Hr9czOzubw4cN5/PjxOtVMkhEREYyNjaXJZGJZWRlDQkKYlJTES5cu0c3NjadOnSJJvvfee3R1dSVJ5uTkcMKECSwuLiZJ7tu3jz4+PjXmjoyMZFBQEIuLi1lRUcHAwECmp6fTaDRyxIgRPHbsGEnyypUr9PX15ZEjR8z1/vTTTyTJadOmcdy4cSwrK+Ply5fZu3dv5ufnmx+/EELYI7nyIYQQolY6deqEhx9+GADQq1cvpKenIysrCwaDAQcPHgQAGI1GtG3b9oZYb29v7N27F/fffz/at28PV1dXHD58GCdPnoROp8PZs2dRVlYGnU4HAGjfvj10Oh327duHAQMGoGPHjujcubP5ePn5+ZgxYwbGjx+Pnj171qlmANi7dy/S0tLg5OQEZ2dnBAcH48MPP8QDDzwAV1dXdO/eHQAwbtw4JCYmAgCysrLw+++/Izg42Hz8K1euoLCwEK1bt74h9/Dhw9GiRQsAQI8ePVBQUICzZ8/i3LlzmDNnjvl+paWl+Pnnn9GtWzd06dIFvXr1AgDcf//9aNWqFZydnXH33XfjjjvuwL///mvx30gIIZo6aT6EEELUiouLi/l7JycnkITJZMKcOXMwZMgQAMDVq1dRVlZ2Q6y3tzcmTpyI//3vfxg8eDDuvPNO7N+/H0ePHsX8+fNRWVkJJyenajEkUVFRAQBo2bJltd/dfvvtWLNmDV588UX4+Pjgsccew1tvvYXdu3cDAIYNG4aBAwfWWDMAmEymavlMJpM5F6/b/qpZs2bV7jNq1CiEh4ebf7548SLuuusujBo1yny/uLi4G2KrcldWVqJVq1bIyMgw/+7vv/9Gq1at8MMPP1Rb0vy/xxBCiFuBfOBcCCGEzTw8PJCamory8nKYTCZER0ebrxTcfvvt5gl9hw4d0KZNG2zatAmDBw+Gh4cHdu3ahcLCQvTs2RMPPvig+fMWAPDXX38hMzMT7u7uNea999570a9fP0RGRiIiIgIlJSWYNWsWMjIykJGRgVmzZlmtOyUlBSRRXl6OzZs3w93dHf3798fp06dx4sQJAMC2bduqxezcuRMXL14EAKSlpWHy5MkAYM6bkZGBPn363DRv165d4eLiYm4+Lly4AD8/Pxw7dszquRZCiFuBNB9CCCFs9uKLL6Jz584IDAzEiBEjQBJRUVEAgCeeeAKbNm1CUlISgGtXPwoKCtCrVy/cd999cHFxwfDhwwEAzZs3x7vvvosNGzbA398fU6dOxcyZMzFw4ECL+QMDA9G1a1ckJCTUqe65c+eioKAA/v7+8Pf3R9euXTFjxgzcfffdWLp0KWbPno3AwEDk5eWZYzw8PPD8888jJCQE/v7++PTTT/HOO+/ccMXGEmdnZ7z77rvYunUr/P39ERISglmzZsHNza1O9QshhL1y4vXXl4UQQgghhBCigciVDyGEEEIIIUSjkOZDCCGEEEII0Sik+RBCCCGEEEI0Cmk+hBBCCCGEEI1Cmg8hhBBCCCFEo5DmQwghhBBCCNEopPkQQgghhBBCNAppPoQQQgghhBCN4v/xQVTx1hqILwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Select a subset of the networks\n", + "used_networks = [1, 5, 6, 7, 8, 12, 13, 17]\n", + "used_columns = (df.columns.get_level_values(\"network\")\n", + " .astype(int)\n", + " .isin(used_networks))\n", + "df = df.loc[:, used_columns]\n", + "\n", + "# Create a categorical palette to identify the networks\n", + "network_pal = sns.husl_palette(8, s=.45)\n", + "network_lut = dict(zip(map(str, used_networks), network_pal))\n", + "\n", + "# Convert the palette to vectors that will be drawn on the side of the matrix\n", + "networks = df.columns.get_level_values(\"network\")\n", + "network_colors = pd.Series(networks, index=df.columns).map(network_lut)\n", + "\n", + "# Draw the full plot\n", + "sns.clustermap(df.corr(), center=0, cmap=\"vlag\",\n", + " row_colors=network_colors, col_colors=network_colors,\n", + " linewidths=.75, figsize=(13, 13))" + ] } ], "metadata": { diff --git a/lectures/Lecture 6 - Saving Object.ipynb b/lectures/Lecture 6 - Saving Object.ipynb new file mode 100644 index 0000000..f32c9bb --- /dev/null +++ b/lectures/Lecture 6 - Saving Object.ipynb @@ -0,0 +1,277 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Saving Objects in Python\n", + "* serialization, marshaling, and flattening. \n", + "* same—to save an object to a file for later retrieval\n", + "* accomplishes this by writing the object as one long stream of bytes. \n", + "* pickling also used to save models in sklearn\n", + "* https://docs.python.org/3/library/pickle.html\n", + "* https://scikit-learn.org/stable/modules/model_persistence.html" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "class Dog:\n", + " \n", + " def __init__(self, name):\n", + " self.name = name\n", + " \n", + "d = Dog(\"Brian\")\n", + "\n", + "assert hasattr(d, \"name\"), \"this object doesn't have attribuet namee\"" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "metadata": {}, + "outputs": [], + "source": [ + "import pickle" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "metadata": {}, + "outputs": [], + "source": [ + "test = [\"a\", \"b\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": {}, + "outputs": [], + "source": [ + "file = open('test_pickle', 'wb') \n", + "pickle.dump(test, file)\n", + "file.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['a', 'b']" + ] + }, + "execution_count": 141, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "metadata": {}, + "outputs": [], + "source": [ + "# delete from memory\n", + "del test" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'test' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtest\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'test' is not defined" + ] + } + ], + "source": [ + "test" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\"/Users/conagrabrands/Desktop\"" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "metadata": {}, + "outputs": [], + "source": [ + "file = open('test_pickle', 'rb') \n", + "test = pickle.load(file)\n", + "file.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['a', 'b']" + ] + }, + "execution_count": 145, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### using with" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": {}, + "outputs": [], + "source": [ + "item = \"some string I made\"" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"test_pickle.pkl\", \"wb\") as file:\n", + " pickle.dump(item, file)" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'item' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0mitem\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mitem\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'item' is not defined" + ] + } + ], + "source": [ + "del item\n", + "item" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"test_pickle.pkl\", \"rb\") as file:\n", + " item = pickle.load(file)" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'some string I made'" + ] + }, + "execution_count": 156, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "item" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

make a python object

\n", + "

- save the object

\n", + "

- delete the object from memory

\n", + "

- reload it

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lectures/Lecture 6 - Saving objects.ipynb b/lectures/Lecture 6 - Saving objects.ipynb new file mode 100644 index 0000000..9b65ea3 --- /dev/null +++ b/lectures/Lecture 6 - Saving objects.ipynb @@ -0,0 +1,374 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Saving Objects in Python\n", + "* serialization, marshaling, and flattening. \n", + "* same—to save an object to a file for later retrieval\n", + "* accomplishes this by writing the object as one long stream of bytes. \n", + "* pickling also used to save models in sklearn\n", + "* https://docs.python.org/3/library/pickle.html\n", + "* https://scikit-learn.org/stable/modules/model_persistence.html" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "class Dog:\n", + " def __init__(self, name):\n", + " self.name = name\n", + " \n", + "d = Dog(\"Rex\")\n", + "\n", + "assert hasattr(d, \"name\"), \"this object doesn't have attribuet name!\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import pickle" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "file = open('test_pickle_dog.pkl', 'wb') \n", + "pickle.dump(d, file)\n", + "file.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "del file" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "file = open('test_pickle_dog.pkl', 'rb') \n", + "test = pickle.load(file)\n", + "file.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'Rex'" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test.name" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "test = [\"a\", \"b\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "file = open('test_pickle', 'wb') \n", + "pickle.dump(test, file)\n", + "file.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['a', 'b']" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# delete from memory\n", + "del test" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'test' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mtest\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mNameError\u001b[0m: name 'test' is not defined" + ] + } + ], + "source": [ + "test" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "file = open('test_pickle', 'rb') \n", + "test = pickle.load(file)\n", + "file.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['a', 'b']" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### using with" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "item = \"some string I made\"" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"test_pickle.pkl\", \"wb\") as file:\n", + " pickle.dump(item, file)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'item' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mdel\u001b[0m \u001b[0mitem\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mitem\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mNameError\u001b[0m: name 'item' is not defined" + ] + } + ], + "source": [ + "del item\n", + "item" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"test_pickle.pkl\", \"rb\") as file:\n", + " item = pickle.load(file)\n", + " file.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'some string I made'" + ] + }, + "execution_count": 156, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "item" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

make a python graph object

\n", + "

- save the object

\n", + "

- delete the object from memory

\n", + "

- reload it

\n", + "

- plot it

" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# http://hr.gs/msca37014\n", + "# password = msca37014" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n", + "0\n", + "0\n", + "2\n", + "10\n", + "4\n", + "40\n", + "92\n", + "352\n", + "724\n", + "2680\n", + "14200\n", + "73712\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m15\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mb\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmsca\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnqueens\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mraf_nq\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mb\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msolutions\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\raves\\documents\\github\\python_for_analytics\\msca\\nqueens.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, size, show)\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msize\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msize\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msolutions\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 5\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msolve\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 6\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 7\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0msolve\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\raves\\documents\\github\\python_for_analytics\\msca\\nqueens.py\u001b[0m in \u001b[0;36msolve\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 7\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0msolve\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[0mpositions\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m*\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msize\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 9\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mput_queen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 10\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msolutions\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 11\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\raves\\documents\\github\\python_for_analytics\\msca\\nqueens.py\u001b[0m in \u001b[0;36mput_queen\u001b[1;34m(self, positions, target_row)\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mtarget_row\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 19\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mput_queen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 20\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mocuppied_rows\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\raves\\documents\\github\\python_for_analytics\\msca\\nqueens.py\u001b[0m in \u001b[0;36mput_queen\u001b[1;34m(self, positions, target_row)\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mtarget_row\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 19\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mput_queen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 20\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mocuppied_rows\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\raves\\documents\\github\\python_for_analytics\\msca\\nqueens.py\u001b[0m in \u001b[0;36mput_queen\u001b[1;34m(self, positions, target_row)\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mtarget_row\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 19\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mput_queen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 20\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mocuppied_rows\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\raves\\documents\\github\\python_for_analytics\\msca\\nqueens.py\u001b[0m in \u001b[0;36mput_queen\u001b[1;34m(self, positions, target_row)\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mtarget_row\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 19\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mput_queen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 20\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mocuppied_rows\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\raves\\documents\\github\\python_for_analytics\\msca\\nqueens.py\u001b[0m in \u001b[0;36mput_queen\u001b[1;34m(self, positions, target_row)\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mtarget_row\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 19\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mput_queen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 20\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mocuppied_rows\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\raves\\documents\\github\\python_for_analytics\\msca\\nqueens.py\u001b[0m in \u001b[0;36mput_queen\u001b[1;34m(self, positions, target_row)\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mtarget_row\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 19\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mput_queen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 20\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mocuppied_rows\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\raves\\documents\\github\\python_for_analytics\\msca\\nqueens.py\u001b[0m in \u001b[0;36mput_queen\u001b[1;34m(self, positions, target_row)\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mtarget_row\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 19\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mput_queen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 20\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mocuppied_rows\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\raves\\documents\\github\\python_for_analytics\\msca\\nqueens.py\u001b[0m in \u001b[0;36mput_queen\u001b[1;34m(self, positions, target_row)\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mtarget_row\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 19\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mput_queen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 20\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mocuppied_rows\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\raves\\documents\\github\\python_for_analytics\\msca\\nqueens.py\u001b[0m in \u001b[0;36mput_queen\u001b[1;34m(self, positions, target_row)\u001b[0m\n\u001b[0;32m 15\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 16\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mcolumn\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msize\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 17\u001b[1;33m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcheck_place\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 18\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mtarget_row\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcolumn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mput_queen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpositions\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget_row\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\users\\raves\\documents\\github\\python_for_analytics\\msca\\nqueens.py\u001b[0m in \u001b[0;36mcheck_place\u001b[1;34m(self, positions, ocuppied_rows, column)\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mocuppied_rows\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 23\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mcolumn\u001b[0m \u001b[1;32mor\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 24\u001b[1;33m \u001b[0mpositions\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0mi\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mcolumn\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0mocuppied_rows\u001b[0m \u001b[1;32mor\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 25\u001b[0m \u001b[0mpositions\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mi\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mcolumn\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mocuppied_rows\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 26\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "for a in range(1,15):\n", + " b = msca.nqueens.raf_nq(a)\n", + " print(b, b.solutions)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lectures/Lecture 7 - Logistic Regression, Feature Extraction and Transformation.ipynb b/lectures/Lecture 7 - Logistic Regression, Feature Extraction and Transformation.ipynb index 7ce8cb5..0d7cc31 100644 --- a/lectures/Lecture 7 - Logistic Regression, Feature Extraction and Transformation.ipynb +++ b/lectures/Lecture 7 - Logistic Regression, Feature Extraction and Transformation.ipynb @@ -51,28 +51,49 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "from sklearn.linear_model import LogisticRegression\n", - "from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix, classification_report" + "from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix, classification_report\n", + "import msca" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "msca" + ] + }, + { + "cell_type": "code", + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ - "df = pd.read_csv(\"data/iris.csv\")" + "df = pd.read_csv(\"../data/iris.csv\")" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -105,50 +126,86 @@ " \n", " \n", " \n", - " 0\n", + " 145\n", + " 6.7\n", + " 3.0\n", + " 5.2\n", + " 2.3\n", + " Virginica\n", + " \n", + " \n", + " 146\n", + " 6.3\n", + " 2.5\n", + " 5.0\n", + " 1.9\n", + " Virginica\n", + " \n", + " \n", + " 147\n", + " 6.5\n", + " 3.0\n", + " 5.2\n", + " 2.0\n", + " Virginica\n", + " \n", + " \n", + " 148\n", + " 6.2\n", + " 3.4\n", + " 5.4\n", + " 2.3\n", + " Virginica\n", + " \n", + " \n", + " 149\n", + " 5.9\n", + " 3.0\n", " 5.1\n", - " 3.5\n", - " 1.4\n", - " 0.2\n", - " Setosa\n", + " 1.8\n", + " Virginica\n", " \n", " \n", "\n", "" ], "text/plain": [ - " sepal.length sepal.width petal.length petal.width variety\n", - "0 5.1 3.5 1.4 0.2 Setosa" + " sepal.length sepal.width petal.length petal.width variety\n", + "145 6.7 3.0 5.2 2.3 Virginica\n", + "146 6.3 2.5 5.0 1.9 Virginica\n", + "147 6.5 3.0 5.2 2.0 Virginica\n", + "148 6.2 3.4 5.4 2.3 Virginica\n", + "149 5.9 3.0 5.1 1.8 Virginica" ] }, - "execution_count": 4, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.head(1)" + "df.tail(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### we will make a binary classificaiton, where 1 is the Setosa class and 0 is all other classes" + "#### we will make a binary classification, where 1 is the Setosa class and 0 is all other classes" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 61, "metadata": {}, "outputs": [], "source": [ - "df[\"classification\"] = np.where(df[\"variety\"] == \"Setosa\",1, 0)" + "df[\"classification\"] = np.where(df[\"variety\"] == \"Setosa\",0, 1)" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 62, "metadata": {}, "outputs": [ { @@ -182,49 +239,49 @@ " \n", " \n", " \n", - " 125\n", - " 7.2\n", - " 3.2\n", - " 6.0\n", - " 1.8\n", - " Virginica\n", - " 0\n", + " 91\n", + " 6.1\n", + " 3.0\n", + " 4.6\n", + " 1.4\n", + " Versicolor\n", + " 1\n", " \n", " \n", - " 105\n", - " 7.6\n", - " 3.0\n", - " 6.6\n", - " 2.1\n", + " 120\n", + " 6.9\n", + " 3.2\n", + " 5.7\n", + " 2.3\n", " Virginica\n", - " 0\n", + " 1\n", " \n", " \n", - " 102\n", - " 7.1\n", - " 3.0\n", - " 5.9\n", - " 2.1\n", - " Virginica\n", + " 7\n", + " 5.0\n", + " 3.4\n", + " 1.5\n", + " 0.2\n", + " Setosa\n", " 0\n", " \n", " \n", - " 66\n", - " 5.6\n", - " 3.0\n", - " 4.5\n", + " 72\n", + " 6.3\n", + " 2.5\n", + " 4.9\n", " 1.5\n", " Versicolor\n", - " 0\n", + " 1\n", " \n", " \n", - " 28\n", - " 5.2\n", - " 3.4\n", - " 1.4\n", + " 25\n", + " 5.0\n", + " 3.0\n", + " 1.6\n", " 0.2\n", " Setosa\n", - " 1\n", + " 0\n", " \n", " \n", "\n", @@ -232,21 +289,21 @@ ], "text/plain": [ " sepal.length sepal.width petal.length petal.width variety \\\n", - "125 7.2 3.2 6.0 1.8 Virginica \n", - "105 7.6 3.0 6.6 2.1 Virginica \n", - "102 7.1 3.0 5.9 2.1 Virginica \n", - "66 5.6 3.0 4.5 1.5 Versicolor \n", - "28 5.2 3.4 1.4 0.2 Setosa \n", + "91 6.1 3.0 4.6 1.4 Versicolor \n", + "120 6.9 3.2 5.7 2.3 Virginica \n", + "7 5.0 3.4 1.5 0.2 Setosa \n", + "72 6.3 2.5 4.9 1.5 Versicolor \n", + "25 5.0 3.0 1.6 0.2 Setosa \n", "\n", " classification \n", - "125 0 \n", - "105 0 \n", - "102 0 \n", - "66 0 \n", - "28 1 " + "91 1 \n", + "120 1 \n", + "7 0 \n", + "72 1 \n", + "25 0 " ] }, - "execution_count": 6, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -264,7 +321,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 63, "metadata": {}, "outputs": [], "source": [ @@ -273,13 +330,56 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 64, "metadata": {}, "outputs": [], "source": [ "y = df[\"classification\"]" ] }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " sepal.length sepal.width petal.length petal.width\n", + "0 5.1 3.5 1.4 0.2\n", + "1 4.9 3.0 1.4 0.2\n", + "2 4.7 3.2 1.3 0.2\n", + "3 4.6 3.1 1.5 0.2\n", + "4 5.0 3.6 1.4 0.2\n", + ".. ... ... ... ...\n", + "145 6.7 3.0 5.2 2.3\n", + "146 6.3 2.5 5.0 1.9\n", + "147 6.5 3.0 5.2 2.0\n", + "148 6.2 3.4 5.4 2.3\n", + "149 5.9 3.0 5.1 1.8\n", + "\n", + "[150 rows x 4 columns]\n", + "0 0\n", + "1 0\n", + "2 0\n", + "3 0\n", + "4 0\n", + " ..\n", + "145 1\n", + "146 1\n", + "147 1\n", + "148 1\n", + "149 1\n", + "Name: classification, Length: 150, dtype: int32\n" + ] + } + ], + "source": [ + "print(x)\n", + "print(y)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -289,11 +389,28 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 66, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", + " intercept_scaling=1, l1_ratio=None, max_iter=100,\n", + " multi_class='warn', n_jobs=None, penalty='l2',\n", + " random_state=None, solver='warn', tol=0.0001, verbose=0,\n", + " warm_start=False)\n", + "\n" + ] + } + ], "source": [ - "reg = LogisticRegression()" + "reg = LogisticRegression()\n", + "rafsum = np.sum\n", + "\n", + "print(reg)\n", + "print(rafsum)" ] }, { @@ -305,14 +422,14 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 67, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/conagrabrands/opt/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", " FutureWarning)\n" ] }, @@ -326,7 +443,7 @@ " warm_start=False)" ] }, - "execution_count": 10, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } @@ -345,7 +462,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 68, "metadata": {}, "outputs": [], "source": [ @@ -354,22 +471,22 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 69, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" + " 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])" ] }, - "execution_count": 15, + "execution_count": 69, "metadata": {}, "output_type": "execute_result" } @@ -380,22 +497,22 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 70, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" + " 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])" ] }, - "execution_count": 17, + "execution_count": 70, "metadata": {}, "output_type": "execute_result" } @@ -413,7 +530,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 71, "metadata": {}, "outputs": [ { @@ -422,7 +539,7 @@ "1.0" ] }, - "execution_count": 18, + "execution_count": 71, "metadata": {}, "output_type": "execute_result" } @@ -440,16 +557,16 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 72, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[ 0.41021713, 1.46416217, -2.26003266, -1.02103509]])" + "array([[-0.41021713, -1.46416217, 2.26003266, 1.02103509]])" ] }, - "execution_count": 19, + "execution_count": 72, "metadata": {}, "output_type": "execute_result" } @@ -468,17 +585,17 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "('sepal.length', 0.41021712519841536)\n", + "('sepal.length', 0.410217125198415)\n", "('sepal.width', 1.4641621652467662)\n", - "('petal.length', -2.260032661311069)\n", - "('petal.width', -1.0210350909174157)\n" + "('petal.length', -2.260032661311068)\n", + "('petal.width', -1.0210350909174162)\n" ] } ], @@ -496,16 +613,16 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.2478905])" + "array([0.26421853])" ] }, - "execution_count": 25, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -524,7 +641,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -569,23 +686,98 @@ " 1.4\n", " 0.2\n", " \n", + " \n", + " 2\n", + " 4.7\n", + " 3.2\n", + " 1.3\n", + " 0.2\n", + " \n", + " \n", + " 3\n", + " 4.6\n", + " 3.1\n", + " 1.5\n", + " 0.2\n", + " \n", + " \n", + " 4\n", + " 5.0\n", + " 3.6\n", + " 1.4\n", + " 0.2\n", + " \n", + " \n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " \n", + " \n", + " 145\n", + " 6.7\n", + " 3.0\n", + " 5.2\n", + " 2.3\n", + " \n", + " \n", + " 146\n", + " 6.3\n", + " 2.5\n", + " 5.0\n", + " 1.9\n", + " \n", + " \n", + " 147\n", + " 6.5\n", + " 3.0\n", + " 5.2\n", + " 2.0\n", + " \n", + " \n", + " 148\n", + " 6.2\n", + " 3.4\n", + " 5.4\n", + " 2.3\n", + " \n", + " \n", + " 149\n", + " 5.9\n", + " 3.0\n", + " 5.1\n", + " 1.8\n", + " \n", " \n", "\n", + "

150 rows × 4 columns

\n", "" ], "text/plain": [ - " sepal.length sepal.width petal.length petal.width\n", - "0 5.1 3.5 1.4 0.2\n", - "1 4.9 3.0 1.4 0.2" + " sepal.length sepal.width petal.length petal.width\n", + "0 5.1 3.5 1.4 0.2\n", + "1 4.9 3.0 1.4 0.2\n", + "2 4.7 3.2 1.3 0.2\n", + "3 4.6 3.1 1.5 0.2\n", + "4 5.0 3.6 1.4 0.2\n", + ".. ... ... ... ...\n", + "145 6.7 3.0 5.2 2.3\n", + "146 6.3 2.5 5.0 1.9\n", + "147 6.5 3.0 5.2 2.0\n", + "148 6.2 3.4 5.4 2.3\n", + "149 5.9 3.0 5.1 1.8\n", + "\n", + "[150 rows x 4 columns]" ] }, - "execution_count": 22, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "x.head(2)" + "x.head(150)" ] }, { @@ -597,7 +789,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ @@ -607,28 +799,28 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4.079999999999999" + "-6.315999999999999" ] }, - "execution_count": 28, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "pred = custom_predict(5.1, 3.5, 1.4, .2)\n", + "pred = custom_predict(5.9, 3, 5.1, 1.8)\n", "pred" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -637,7 +829,7 @@ "3.9979999999999998" ] }, - "execution_count": 29, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -649,7 +841,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -657,10 +849,10 @@ "text/plain": [ "0 1\n", "1 1\n", - "Name: classification, dtype: int64" + "Name: classification, dtype: int32" ] }, - "execution_count": 30, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -678,27 +870,27 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4.112640702773946" + "-433.2630461266474" ] }, - "execution_count": 44, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "reg.intercept_[0] + np.sum(np.multiply(reg.coef_[0], np.array(x.head(1))))" + "reg.intercept_[0] + np.sum(np.multiply(reg.coef_[0], np.array(x.iloc[2:])))" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -707,7 +899,7 @@ "array([[5.1, 3.5, 1.4, 0.2]])" ] }, - "execution_count": 33, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -718,32 +910,33 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "def pred(features, coefs, intercept):\n", - " return intercept + np.sum(np.multiply(features, coefs))" + " a = intercept + np.sum(np.multiply(features, coefs))\n", + " return a > 0 " ] }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4.112640702773946" + "True" ] }, - "execution_count": 48, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "p = pred(np.array(x.head(1)), reg.coef_[0], reg.intercept_[0])\n", + "p = pred(np.array(x.iloc[2,:]), reg.coef_[0], reg.intercept_[0])\n", "p" ] }, @@ -760,17 +953,17 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 75, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.01610102, 0.98389898],\n", - " [0.03562213, 0.96437787]])" + "array([[0.98389898, 0.01610102],\n", + " [0.96437787, 0.03562213]])" ] }, - "execution_count": 49, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } @@ -788,7 +981,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 76, "metadata": {}, "outputs": [ { @@ -821,38 +1014,38 @@ " \n", " \n", " 0\n", - " 2.092107\n", - " 5.124568\n", - " -3.164046\n", - " -0.204207\n", + " -2.092107\n", + " -5.124568\n", + " 3.164046\n", + " 0.204207\n", " \n", " \n", " 1\n", - " 2.010064\n", - " 4.392486\n", - " -3.164046\n", - " -0.204207\n", + " -2.010064\n", + " -4.392486\n", + " 3.164046\n", + " 0.204207\n", " \n", " \n", " 2\n", - " 1.928020\n", - " 4.685319\n", - " -2.938042\n", - " -0.204207\n", + " -1.928020\n", + " -4.685319\n", + " 2.938042\n", + " 0.204207\n", " \n", " \n", " 3\n", - " 1.886999\n", - " 4.538903\n", - " -3.390049\n", - " -0.204207\n", + " -1.886999\n", + " -4.538903\n", + " 3.390049\n", + " 0.204207\n", " \n", " \n", " 4\n", - " 2.051086\n", - " 5.270984\n", - " -3.164046\n", - " -0.204207\n", + " -2.051086\n", + " -5.270984\n", + " 3.164046\n", + " 0.204207\n", " \n", " \n", "\n", @@ -860,14 +1053,14 @@ ], "text/plain": [ " sepal.length sepal.width petal.length petal.width\n", - "0 2.092107 5.124568 -3.164046 -0.204207\n", - "1 2.010064 4.392486 -3.164046 -0.204207\n", - "2 1.928020 4.685319 -2.938042 -0.204207\n", - "3 1.886999 4.538903 -3.390049 -0.204207\n", - "4 2.051086 5.270984 -3.164046 -0.204207" + "0 -2.092107 -5.124568 3.164046 0.204207\n", + "1 -2.010064 -4.392486 3.164046 0.204207\n", + "2 -1.928020 -4.685319 2.938042 0.204207\n", + "3 -1.886999 -4.538903 3.390049 0.204207\n", + "4 -2.051086 -5.270984 3.164046 0.204207" ] }, - "execution_count": 50, + "execution_count": 76, "metadata": {}, "output_type": "execute_result" } @@ -880,21 +1073,21 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 77, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0 3.848422\n", - "1 3.034298\n", - "2 3.471090\n", - "3 2.831645\n", - "4 3.953817\n", + "0 -3.848422\n", + "1 -3.034298\n", + "2 -3.471090\n", + "3 -2.831645\n", + "4 -3.953817\n", "dtype: float64" ] }, - "execution_count": 51, + "execution_count": 77, "metadata": {}, "output_type": "execute_result" } @@ -905,27 +1098,34 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 78, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0 4.112641\n", - "1 3.298516\n", - "2 3.735308\n", - "3 3.095864\n", - "4 4.218035\n", + "0 -4.112641\n", + "1 -3.298516\n", + "2 -3.735308\n", + "3 -3.095864\n", + "4 -4.218035\n", " ... \n", - "145 -6.695391\n", - "146 -6.731138\n", - "147 -6.471124\n", - "148 -6.766841\n", - "149 -6.287044\n", + "145 6.695391\n", + "146 6.731138\n", + "147 6.471124\n", + "148 6.766841\n", + "149 6.287044\n", "Length: 150, dtype: float64" ] }, - "execution_count": 52, + "execution_count": 78, "metadata": {}, "output_type": "execute_result" } @@ -936,7 +1136,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 79, "metadata": {}, "outputs": [], "source": [ @@ -946,7 +1146,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 80, "metadata": {}, "outputs": [ { @@ -955,7 +1155,7 @@ "0.008149369173106819" ] }, - "execution_count": 54, + "execution_count": 80, "metadata": {}, "output_type": "execute_result" } @@ -967,7 +1167,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -976,7 +1176,7 @@ "0.9918506308268932" ] }, - "execution_count": 55, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } @@ -987,7 +1187,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 82, "metadata": {}, "outputs": [], "source": [ @@ -997,7 +1197,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 83, "metadata": { "scrolled": true }, @@ -1030,53 +1230,53 @@ " \n", " \n", " 0\n", - " 0.983899\n", " 0.016101\n", + " 0.983899\n", " \n", " \n", " 1\n", - " 0.964378\n", " 0.035622\n", + " 0.964378\n", " \n", " \n", " 2\n", - " 0.976690\n", " 0.023310\n", + " 0.976690\n", " \n", " \n", " 3\n", - " 0.956722\n", " 0.043278\n", + " 0.956722\n", " \n", " \n", " 4\n", - " 0.985486\n", " 0.014514\n", + " 0.985486\n", " \n", " \n", " 5\n", - " 0.980907\n", " 0.019093\n", + " 0.980907\n", " \n", " \n", " 6\n", - " 0.974889\n", " 0.025111\n", + " 0.974889\n", " \n", " \n", " 7\n", - " 0.975854\n", " 0.024146\n", + " 0.975854\n", " \n", " \n", " 8\n", - " 0.950121\n", " 0.049879\n", + " 0.950121\n", " \n", " \n", " 9\n", - " 0.965143\n", " 0.034857\n", + " 0.965143\n", " \n", " \n", "\n", @@ -1084,19 +1284,19 @@ ], "text/plain": [ " positive negative\n", - "0 0.983899 0.016101\n", - "1 0.964378 0.035622\n", - "2 0.976690 0.023310\n", - "3 0.956722 0.043278\n", - "4 0.985486 0.014514\n", - "5 0.980907 0.019093\n", - "6 0.974889 0.025111\n", - "7 0.975854 0.024146\n", - "8 0.950121 0.049879\n", - "9 0.965143 0.034857" + "0 0.016101 0.983899\n", + "1 0.035622 0.964378\n", + "2 0.023310 0.976690\n", + "3 0.043278 0.956722\n", + "4 0.014514 0.985486\n", + "5 0.019093 0.980907\n", + "6 0.025111 0.974889\n", + "7 0.024146 0.975854\n", + "8 0.049879 0.950121\n", + "9 0.034857 0.965143" ] }, - "execution_count": 57, + "execution_count": 83, "metadata": {}, "output_type": "execute_result" } @@ -1148,7 +1348,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -1197,128 +1397,39 @@ "0 5.1 3.5 1.4 0.2 Setosa" ] }, - "execution_count": 59, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df = pd.read_csv(\"data/iris.csv\")\n", + "df = pd.read_csv(\"../data/iris.csv\")\n", "df.head(1)" ] }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 86, "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal.lengthsepal.widthpetal.lengthpetal.width
count150.000000150.000000150.000000150.000000
mean5.8433333.0573333.7580001.199333
std0.8280660.4358661.7652980.762238
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000
\n", - "
" - ], "text/plain": [ - " sepal.length sepal.width petal.length petal.width\n", - "count 150.000000 150.000000 150.000000 150.000000\n", - "mean 5.843333 3.057333 3.758000 1.199333\n", - "std 0.828066 0.435866 1.765298 0.762238\n", - "min 4.300000 2.000000 1.000000 0.100000\n", - "25% 5.100000 2.800000 1.600000 0.300000\n", - "50% 5.800000 3.000000 4.350000 1.300000\n", - "75% 6.400000 3.300000 5.100000 1.800000\n", - "max 7.900000 4.400000 6.900000 2.500000" + "sepal.length 6.3\n", + "sepal.width 3.3\n", + "petal.length 4.7\n", + "petal.width 1.4\n", + "dtype: float64" ] }, - "execution_count": 60, + "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.describe()" + "a = df.groupby('variety').first()\n", + "a.median()" ] }, { @@ -1331,7 +1442,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 87, "metadata": {}, "outputs": [], "source": [ @@ -1340,7 +1451,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 88, "metadata": {}, "outputs": [], "source": [ @@ -1349,7 +1460,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 90, "metadata": {}, "outputs": [ { @@ -1396,7 +1507,7 @@ "0 5.1 3.5 1.4 0.2" ] }, - "execution_count": 63, + "execution_count": 90, "metadata": {}, "output_type": "execute_result" } @@ -1407,7 +1518,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 92, "metadata": {}, "outputs": [ { @@ -1416,7 +1527,7 @@ "StandardScaler(copy=True, with_mean=True, with_std=True)" ] }, - "execution_count": 64, + "execution_count": 92, "metadata": {}, "output_type": "execute_result" } @@ -1428,124 +1539,20 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 94, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sepal.lengthsepal.widthpetal.lengthpetal.width
count1.500000e+021.500000e+021.500000e+021.500000e+02
mean-2.775558e-16-9.695948e-16-8.652338e-16-4.662937e-16
std1.003350e+001.003350e+001.003350e+001.003350e+00
min-1.870024e+00-2.433947e+00-1.567576e+00-1.447076e+00
25%-9.006812e-01-5.923730e-01-1.226552e+00-1.183812e+00
50%-5.250608e-02-1.319795e-013.364776e-011.325097e-01
75%6.745011e-015.586108e-017.627583e-017.906707e-01
max2.492019e+003.090775e+001.785832e+001.712096e+00
\n", - "
" - ], - "text/plain": [ - " sepal.length sepal.width petal.length petal.width\n", - "count 1.500000e+02 1.500000e+02 1.500000e+02 1.500000e+02\n", - "mean -2.775558e-16 -9.695948e-16 -8.652338e-16 -4.662937e-16\n", - "std 1.003350e+00 1.003350e+00 1.003350e+00 1.003350e+00\n", - "min -1.870024e+00 -2.433947e+00 -1.567576e+00 -1.447076e+00\n", - "25% -9.006812e-01 -5.923730e-01 -1.226552e+00 -1.183812e+00\n", - "50% -5.250608e-02 -1.319795e-01 3.364776e-01 1.325097e-01\n", - "75% 6.745011e-01 5.586108e-01 7.627583e-01 7.906707e-01\n", - "max 2.492019e+00 3.090775e+00 1.785832e+00 1.712096e+00" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# note the transform returns a numpy array\n", "x_scaler = scaler.transform(x)\n", "x_scale_df = pd.DataFrame(x_scaler, columns = x.columns)\n", - "x_scale_df.describe()" + "x_scale_df.describe()\n", + "path = '.'" ] }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 95, "metadata": {}, "outputs": [ { @@ -1675,7 +1682,7 @@ "[150 rows x 4 columns]" ] }, - "execution_count": 68, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" } @@ -1694,7 +1701,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 96, "metadata": {}, "outputs": [], "source": [ @@ -1703,7 +1710,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 97, "metadata": {}, "outputs": [ { @@ -1806,7 +1813,7 @@ "max 1.000000 1.000000 1.000000 1.000000" ] }, - "execution_count": 72, + "execution_count": 97, "metadata": {}, "output_type": "execute_result" } @@ -1837,7 +1844,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 71, "metadata": {}, "outputs": [], "source": [ @@ -1846,7 +1853,7 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 72, "metadata": {}, "outputs": [ { @@ -1859,7 +1866,7 @@ "dtype: float64" ] }, - "execution_count": 95, + "execution_count": 72, "metadata": {}, "output_type": "execute_result" } @@ -1880,7 +1887,7 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 100, "metadata": {}, "outputs": [], "source": [ @@ -1889,7 +1896,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 101, "metadata": {}, "outputs": [], "source": [ @@ -1903,7 +1910,7 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 102, "metadata": {}, "outputs": [], "source": [ @@ -1912,7 +1919,7 @@ }, { "cell_type": "code", - "execution_count": 100, + "execution_count": 103, "metadata": {}, "outputs": [ { @@ -1922,7 +1929,7 @@ "\twith 21 stored elements in Compressed Sparse Row format>" ] }, - "execution_count": 100, + "execution_count": 103, "metadata": {}, "output_type": "execute_result" } @@ -1934,7 +1941,28 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<4x9 sparse matrix of type ''\n", + "\twith 21 stored elements in Compressed Sparse Row format>" + ] + }, + "execution_count": 104, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 105, "metadata": {}, "outputs": [ { @@ -1943,10 +1971,10 @@ "array([[0, 1, 1, 1, 0, 0, 1, 0, 1],\n", " [0, 2, 0, 1, 0, 1, 1, 0, 1],\n", " [1, 0, 0, 1, 1, 0, 1, 1, 1],\n", - " [0, 1, 1, 1, 0, 0, 1, 0, 1]])" + " [0, 1, 1, 1, 0, 0, 1, 0, 1]], dtype=int64)" ] }, - "execution_count": 101, + "execution_count": 105, "metadata": {}, "output_type": "execute_result" } @@ -1957,7 +1985,7 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 107, "metadata": {}, "outputs": [], "source": [ @@ -1966,7 +1994,7 @@ }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 108, "metadata": {}, "outputs": [ { @@ -2062,7 +2090,7 @@ "3 0 1 1 1 0 0 1 0 1" ] }, - "execution_count": 103, + "execution_count": 108, "metadata": {}, "output_type": "execute_result" } @@ -2073,7 +2101,7 @@ }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 109, "metadata": {}, "outputs": [], "source": [ @@ -2082,7 +2110,7 @@ }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 110, "metadata": {}, "outputs": [ { @@ -2184,7 +2212,7 @@ "3 0.000000 0.384085 " ] }, - "execution_count": 105, + "execution_count": 110, "metadata": {}, "output_type": "execute_result" } @@ -2206,7 +2234,7 @@ }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 111, "metadata": {}, "outputs": [], "source": [ @@ -2215,7 +2243,7 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 112, "metadata": {}, "outputs": [ { @@ -2278,7 +2306,7 @@ "2 0 1 1 3" ] }, - "execution_count": 108, + "execution_count": 112, "metadata": {}, "output_type": "execute_result" } @@ -2291,7 +2319,7 @@ }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 113, "metadata": {}, "outputs": [ { @@ -2394,7 +2422,7 @@ "max 0.0 2.000000 4.000000 3.0" ] }, - "execution_count": 109, + "execution_count": 113, "metadata": {}, "output_type": "execute_result" } @@ -2405,7 +2433,7 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 114, "metadata": {}, "outputs": [ { @@ -2413,10 +2441,10 @@ "text/plain": [ "array([[2, 0],\n", " [1, 4],\n", - " [1, 1]])" + " [1, 1]], dtype=int64)" ] }, - "execution_count": 112, + "execution_count": 114, "metadata": {}, "output_type": "execute_result" } @@ -2429,7 +2457,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 115, "metadata": {}, "outputs": [ { @@ -2438,7 +2466,7 @@ "array([0. , 0.22222222, 2.88888889, 0. ])" ] }, - "execution_count": 114, + "execution_count": 115, "metadata": {}, "output_type": "execute_result" } @@ -2449,7 +2477,7 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 117, "metadata": {}, "outputs": [ { @@ -2458,7 +2486,7 @@ "Int64Index([1, 2], dtype='int64')" ] }, - "execution_count": 116, + "execution_count": 117, "metadata": {}, "output_type": "execute_result" } @@ -2467,6 +2495,292 @@ "df.columns[selector.get_support()]" ] }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [], + "source": [ + "new_df = pd.DataFrame(tst, columns = df.columns[selector.get_support()])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12
020
114
211
\n", + "
" + ], + "text/plain": [ + " 1 2\n", + "0 2 0\n", + "1 1 4\n", + "2 1 1" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"../data/iris.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [], + "source": [ + "corr_matrix = df.corr().abs()" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal.lengthsepal.widthpetal.lengthpetal.width
sepal.length1.0000000.1175700.8717540.817941
sepal.width0.1175701.0000000.4284400.366126
petal.length0.8717540.4284401.0000000.962865
petal.width0.8179410.3661260.9628651.000000
\n", + "
" + ], + "text/plain": [ + " sepal.length sepal.width petal.length petal.width\n", + "sepal.length 1.000000 0.117570 0.871754 0.817941\n", + "sepal.width 0.117570 1.000000 0.428440 0.366126\n", + "petal.length 0.871754 0.428440 1.000000 0.962865\n", + "petal.width 0.817941 0.366126 0.962865 1.000000" + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "corr_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.87175378, 0.4284401 , 0.96286543, 0.96286543])" + ] + }, + "execution_count": 130, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sort(corr_matrix)[:,-2]" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [], + "source": [ + "max_df = pd.DataFrame({\n", + " \"val\":corr_matrix.columns,\n", + " \"max_val\": np.sort(corr_matrix)[:,-2]\n", + "})" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valmax_val
0sepal.length0.871754
1sepal.width0.428440
2petal.length0.962865
3petal.width0.962865
\n", + "
" + ], + "text/plain": [ + " val max_val\n", + "0 sepal.length 0.871754\n", + "1 sepal.width 0.428440\n", + "2 petal.length 0.962865\n", + "3 petal.width 0.962865" + ] + }, + "execution_count": 132, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "max_df" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/lectures/Lecture 8 - Decision Tree, Regression, Model Evaluation.ipynb b/lectures/Lecture 8 - Decision Tree, Regression, Model Evaluation.ipynb index 827351f..6fb6c72 100644 --- a/lectures/Lecture 8 - Decision Tree, Regression, Model Evaluation.ipynb +++ b/lectures/Lecture 8 - Decision Tree, Regression, Model Evaluation.ipynb @@ -13,13 +13,150 @@ "* integreates with pandas and numpy" ] }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import copy\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import load_iris\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "iris = load_iris()\n", + "data = iris[\"data\"]\n", + "labels = iris[\"target_names\"]\n", + "feature_columns = iris[\"feature_names\"]\n", + "\n", + "df = pd.DataFrame(data, columns = feature_columns)\n", + "df[\"label\"] = np.array([labels[x] for x in iris[\"target\"]])\n", + "x = df.drop(\"label\", 1)\n", + "y = df[\"label\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)label
05.13.51.40.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \\\n", + "0 5.1 3.5 1.4 0.2 \n", + "\n", + " label \n", + "0 setosa " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "x = df.drop(\"label\", 1)\n", + "y = df[\"label\"]\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n", + " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n", + " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Clustering\n", + "* https://scikit-learn.org/stable/modules/clustering.html\n", + "* https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html" + ] + }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ - "from sklearn.preprocessing import StandardScaler" + "from sklearn.cluster import KMeans" ] }, { @@ -28,33 +165,203 @@ "metadata": {}, "outputs": [], "source": [ - "x = df.drop(\"variety\", 1)" + "kmeans = KMeans(3).fit(x)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + " 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 2 2 0 2 2 2 2\n", + " 2 2 0 0 2 2 2 2 0 2 0 2 0 2 2 0 0 2 2 2 2 2 0 2 2 2 2 0 2 2 2 0 2 2 2 0 2\n", + " 2 0]\n", + "0 setosa\n", + "1 setosa\n", + "2 setosa\n", + "3 setosa\n", + "4 setosa\n", + " ... \n", + "145 virginica\n", + "146 virginica\n", + "147 virginica\n", + "148 virginica\n", + "149 virginica\n", + "Name: label, Length: 150, dtype: object\n" + ] + } + ], + "source": [ + "result = kmeans.labels_\n", + "print(result)\n", + "print(y)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n", + " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n", + " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]])" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = iris.target\n", + "a.reshape(1,-1)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[5.9016129 , 2.7483871 , 4.39354839, 1.43387097],\n", + " [5.006 , 3.428 , 1.462 , 0.246 ],\n", + " [6.85 , 3.07368421, 5.74210526, 2.07105263]])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "kmeans.cluster_centers_" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import silhouette_score, f1_score, precision_score, accuracy_score" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "score = silhouette_score(a.reshape(-1,1),kmeans.labels_)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "StandardScaler(copy=True, with_mean=True, with_std=True)" + "0.7017242160053677" ] }, - "execution_count": 7, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "scaler = StandardScaler()\n", - "scaler.fit(x)" + "score" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "ks = [2,3,4,5,6,7,8,9,10]\n", + "scores = []\n", + "for k in ks:\n", + " kmeans = KMeans(k).fit(x)\n", + " scores.append(silhouette_score(x,kmeans.labels_))" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(2, 0.681046169211746)\n", + "(3, 0.5528190123564091)\n", + "(4, 0.4980505049972867)\n", + "(5, 0.4887488870931048)\n", + "(6, 0.3648340039670018)\n", + "(7, 0.3563317372720714)\n", + "(8, 0.36179003359737993)\n", + "(9, 0.34161854494888316)\n", + "(10, 0.32859135923081095)\n" + ] + } + ], + "source": [ + "for i in zip(ks, scores):\n", + " print(i)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "kmeans = KMeans(3).fit(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "assign_dct = dict(x for x in zip(x.index, kmeans.labels_))" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "assign_df = pd.DataFrame({\n", + " \"observation\": x.index,\n", + " \"label\": kmeans.labels_\n", + "})" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -78,117 +385,2674 @@ " \n", " \n", " \n", - " sepal.length\n", - " sepal.width\n", - " petal.length\n", - " petal.width\n", + " observation\n", + " label\n", " \n", " \n", " \n", " \n", - " count\n", - " 1.500000e+02\n", - " 1.500000e+02\n", - " 1.500000e+02\n", - " 1.500000e+02\n", + " 0\n", + " 0\n", + " 1\n", + " \n", + " \n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 2\n", + " 2\n", + " 1\n", + " \n", + " \n", + " 3\n", + " 3\n", + " 1\n", + " \n", + " \n", + " 4\n", + " 4\n", + " 1\n", + " \n", + " \n", + " 5\n", + " 5\n", + " 1\n", + " \n", + " \n", + " 6\n", + " 6\n", + " 1\n", + " \n", + " \n", + " 7\n", + " 7\n", + " 1\n", " \n", " \n", - " mean\n", - " -2.775558e-16\n", - " -9.695948e-16\n", - " -8.652338e-16\n", - " -4.662937e-16\n", + " 8\n", + " 8\n", + " 1\n", " \n", " \n", - " std\n", - " 1.003350e+00\n", - " 1.003350e+00\n", - " 1.003350e+00\n", - " 1.003350e+00\n", + " 9\n", + " 9\n", + " 1\n", " \n", " \n", - " min\n", - " -1.870024e+00\n", - " -2.433947e+00\n", - " -1.567576e+00\n", - " -1.447076e+00\n", + " 10\n", + " 10\n", + " 1\n", " \n", " \n", - " 25%\n", - " -9.006812e-01\n", - " -5.923730e-01\n", - " -1.226552e+00\n", - " -1.183812e+00\n", + " 11\n", + " 11\n", + " 1\n", " \n", " \n", - " 50%\n", - " -5.250608e-02\n", - " -1.319795e-01\n", - " 3.364776e-01\n", - " 1.325097e-01\n", + " 12\n", + " 12\n", + " 1\n", " \n", " \n", - " 75%\n", - " 6.745011e-01\n", - " 5.586108e-01\n", - " 7.627583e-01\n", - " 7.906707e-01\n", + " 13\n", + " 13\n", + " 1\n", " \n", " \n", - " max\n", - " 2.492019e+00\n", - " 3.090775e+00\n", - " 1.785832e+00\n", - " 1.712096e+00\n", + " 14\n", + " 14\n", + " 1\n", + " \n", + " \n", + " 15\n", + " 15\n", + " 1\n", + " \n", + " \n", + " 16\n", + " 16\n", + " 1\n", + " \n", + " \n", + " 17\n", + " 17\n", + " 1\n", + " \n", + " \n", + " 18\n", + " 18\n", + " 1\n", + " \n", + " \n", + " 19\n", + " 19\n", + " 1\n", " \n", " \n", "\n", "" ], "text/plain": [ - " sepal.length sepal.width petal.length petal.width\n", - "count 1.500000e+02 1.500000e+02 1.500000e+02 1.500000e+02\n", - "mean -2.775558e-16 -9.695948e-16 -8.652338e-16 -4.662937e-16\n", - "std 1.003350e+00 1.003350e+00 1.003350e+00 1.003350e+00\n", - "min -1.870024e+00 -2.433947e+00 -1.567576e+00 -1.447076e+00\n", - "25% -9.006812e-01 -5.923730e-01 -1.226552e+00 -1.183812e+00\n", - "50% -5.250608e-02 -1.319795e-01 3.364776e-01 1.325097e-01\n", - "75% 6.745011e-01 5.586108e-01 7.627583e-01 7.906707e-01\n", - "max 2.492019e+00 3.090775e+00 1.785832e+00 1.712096e+00" + " observation label\n", + "0 0 1\n", + "1 1 1\n", + "2 2 1\n", + "3 3 1\n", + "4 4 1\n", + "5 5 1\n", + "6 6 1\n", + "7 7 1\n", + "8 8 1\n", + "9 9 1\n", + "10 10 1\n", + "11 11 1\n", + "12 12 1\n", + "13 13 1\n", + "14 14 1\n", + "15 15 1\n", + "16 16 1\n", + "17 17 1\n", + "18 18 1\n", + "19 19 1" ] }, - "execution_count": 11, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "x_scaler = scaler.transform(x)\n", - "x_scale_df = pd.DataFrame(x_scaler, columns = x.columns)\n", - "x_scale_df.describe()" + "assign_df.head(20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### Simple Decision Tree\n", - "https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html" + "* https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.cluster import AgglomerativeClustering" + ] + }, + { + "cell_type": "code", + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ - "from sklearn.tree import DecisionTreeClassifier\n", - "import pandas as pd" + "agglom = AgglomerativeClustering(n_clusters = 3).fit(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2,\n", + " 2, 2, 2, 0, 0, 2, 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 0, 0, 2, 2, 2, 2,\n", + " 2, 0, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 0], dtype=int64)" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "agglom.labels_" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "assign_df[\"agglom_labels\"] = agglom.labels_" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "assign_df[\"diff\"] = [True if i[0] == i[1] else False for i in \n", + " zip(assign_df[\"label\"].tolist(), assign_df[\"agglom_labels\"].tolist())]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "assign_df[\"diff1\"] = np.where(assign_df[\"label\"] == assign_df[\"agglom_labels\"], True, False)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
observationlabelagglom_labelsdiffdiff1
0011TrueTrue
1111TrueTrue
2211TrueTrue
3311TrueTrue
4411TrueTrue
..................
14514522TrueTrue
14614600TrueTrue
14714722TrueTrue
14814822TrueTrue
14914900TrueTrue
\n", + "

150 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " observation label agglom_labels diff diff1\n", + "0 0 1 1 True True\n", + "1 1 1 1 True True\n", + "2 2 1 1 True True\n", + "3 3 1 1 True True\n", + "4 4 1 1 True True\n", + ".. ... ... ... ... ...\n", + "145 145 2 2 True True\n", + "146 146 0 0 True True\n", + "147 147 2 2 True True\n", + "148 148 2 2 True True\n", + "149 149 0 0 True True\n", + "\n", + "[150 rows x 5 columns]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "assign_df" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.feature_extraction.text import CountVectorizer" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "corpus = [\n", + " 'This is the first document.',\n", + " 'This document is the second document.',\n", + " 'And this is the third one.',\n", + " 'Is this the first document?',\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "vectorizer = CountVectorizer()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "x = vectorizer.fit_transform(corpus)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.DataFrame(x.toarray(), columns = vectorizer.get_feature_names())" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
anddocumentfirstisonesecondthethirdthis
0011100101
1020101101
2100110111
3011100101
\n", + "
" + ], + "text/plain": [ + " and document first is one second the third this\n", + "0 0 1 1 1 0 0 1 0 1\n", + "1 0 2 0 1 0 1 1 0 1\n", + "2 1 0 0 1 1 0 1 1 1\n", + "3 0 1 1 1 0 0 1 0 1" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "kmeans = KMeans(2).fit(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('This is the first document.', 0)\n", + "('This document is the second document.', 0)\n", + "('And this is the third one.', 1)\n", + "('Is this the first document?', 0)\n" + ] + } + ], + "source": [ + "for i in zip(corpus, kmeans.labels_):\n", + " print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* consider grouping articles\n", + "* corpus is a bunch of documents of articles\n", + "* we could cluster them based on the words in them\n", + "* and classify new articles as they come in" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN\n", + "* density based clustering\n", + "* dbscan labels noise (items that don't fit into clusters well) as -1." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.cluster import DBSCAN" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "iris = load_iris()\n", + "data = iris[\"data\"]\n", + "labels = iris[\"target_names\"]\n", + "feature_columns = iris[\"feature_names\"]\n", + "\n", + "df = pd.DataFrame(data, columns = feature_columns)\n", + "\n", + "scan = DBSCAN().fit(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1,\n", + " 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1,\n", + " -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1,\n", + " 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1,\n", + " 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n", + " dtype=int64)" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scan.labels_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* in this case, with iris, we have actual labels, ground truth\n", + "* say had a sample of data with labels\n", + "* we could cluster the items we have labels for and feed that into a classificaiton model\n", + "* if that classification model performs well, we could feel more comfortable applying that to unlabeled data" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "iris = load_iris()\n", + "data = iris[\"data\"]\n", + "labels = iris[\"target_names\"]\n", + "feature_columns = iris[\"feature_names\"]\n", + "\n", + "df = pd.DataFrame(data, columns = feature_columns)\n", + "df[\"label\"] = np.array([labels[x] for x in iris[\"target\"]])\n", + "x = df.drop(\"label\", 1)\n", + "y = df[\"label\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeClassifier" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "dt = DecisionTreeClassifier().fit(x,y)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "yhat = dt.predict([[1,2,3,4]])" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['versicolor'], dtype=object)" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yhat" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [], + "source": [ + "# if our decision tree is good we could save it here and apply it to new, unlabeled data\n", + "# many times you will run into cases where you have portions of data that's been labeled\n", + "# but you'd like to label the entire sample" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)label
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \\\n", + "0 5.1 3.5 1.4 0.2 \n", + "1 4.9 3.0 1.4 0.2 \n", + "2 4.7 3.2 1.3 0.2 \n", + "3 4.6 3.1 1.5 0.2 \n", + "4 5.0 3.6 1.4 0.2 \n", + "\n", + " label \n", + "0 setosa \n", + "1 setosa \n", + "2 setosa \n", + "3 setosa \n", + "4 setosa " + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "x_sample = copy.copy(x)\n", + "x_sample[\"label\"] = \"?\"" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "concat_df = pd.concat([df, x_sample])" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)label
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
\n", + "
" + ], + "text/plain": [ + " sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \\\n", + "0 5.1 3.5 1.4 0.2 \n", + "1 4.9 3.0 1.4 0.2 \n", + "2 4.7 3.2 1.3 0.2 \n", + "\n", + " label \n", + "0 setosa \n", + "1 setosa \n", + "2 setosa " + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "concat_df.head(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)label
1476.53.05.22.0?
1486.23.45.42.3?
1495.93.05.11.8?
\n", + "
" + ], + "text/plain": [ + " sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \\\n", + "147 6.5 3.0 5.2 2.0 \n", + "148 6.2 3.4 5.4 2.3 \n", + "149 5.9 3.0 5.1 1.8 \n", + "\n", + " label \n", + "147 ? \n", + "148 ? \n", + "149 ? " + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "concat_df.tail(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Classification" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "dt = DecisionTreeClassifier()" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n", + " max_features=None, max_leaf_nodes=None,\n", + " min_impurity_decrease=0.0, min_impurity_split=None,\n", + " min_samples_leaf=1, min_samples_split=2,\n", + " min_weight_fraction_leaf=0.0, presort=False,\n", + " random_state=None, splitter='best')" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dt" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "ename": "NotFittedError", + "evalue": "This DecisionTreeClassifier instance is not fitted yet. Call 'fit' with appropriate arguments before using this method.", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNotFittedError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0myhat\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\sklearn\\tree\\tree.py\u001b[0m in \u001b[0;36mpredict\u001b[1;34m(self, X, check_input)\u001b[0m\n\u001b[0;32m 427\u001b[0m \u001b[0mThe\u001b[0m \u001b[0mpredicted\u001b[0m \u001b[0mclasses\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mpredict\u001b[0m \u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 428\u001b[0m \"\"\"\n\u001b[1;32m--> 429\u001b[1;33m \u001b[0mcheck_is_fitted\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'tree_'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 430\u001b[0m \u001b[0mX\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_validate_X_predict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcheck_input\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 431\u001b[0m \u001b[0mproba\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtree_\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\sklearn\\utils\\validation.py\u001b[0m in \u001b[0;36mcheck_is_fitted\u001b[1;34m(estimator, attributes, msg, all_or_any)\u001b[0m\n\u001b[0;32m 912\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 913\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mall_or_any\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mhasattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mestimator\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mattr\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mattr\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mattributes\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 914\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mNotFittedError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmsg\u001b[0m \u001b[1;33m%\u001b[0m \u001b[1;33m{\u001b[0m\u001b[1;34m'name'\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mtype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mestimator\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 915\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 916\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mNotFittedError\u001b[0m: This DecisionTreeClassifier instance is not fitted yet. Call 'fit' with appropriate arguments before using this method." + ] + } + ], + "source": [ + "yhat = dt.predict(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [], + "source": [ + "# predict wants a list of lists\n", + "# or a 2d numpy array\n", + "# so you have to wrap single observations\n", + "#dt.predict([1,2,3,4])" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['virginica'], dtype=object)" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dt.predict([[1,2,3,4]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* https://scikit-learn.org/stable/modules/model_persistence.html\n", + "* in the specific case of scikit-learn, it may be better to use joblib’s replacement of pickle (dump & load), which is more efficient on objects that carry large numpy arrays internally as is often the case for fitted scikit-learn estimators\n", + "* pickle is standard library in C while joblib is pure python, so it we aren't saving items with large numpy arrays behind them, pickle can be much faster (dicts, str objects, lists)" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": {}, + "outputs": [], + "source": [ + "import pickle\n", + "from joblib import dump, load" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [], + "source": [ + "with open('dt.pkl', 'wb') as f:\n", + " pickle.dump(dt, f)" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['dt.joblib']" + ] + }, + "execution_count": 106, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dump(dt,'dt.joblib') " + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n", + " max_features=None, max_leaf_nodes=None,\n", + " min_impurity_decrease=0.0, min_impurity_split=None,\n", + " min_samples_leaf=1, min_samples_split=2,\n", + " min_weight_fraction_leaf=0.0, presort=False,\n", + " random_state=None, splitter='best')" + ] + }, + "execution_count": 107, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dt" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "del dt" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'dt' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'dt' is not defined" + ] + } + ], + "source": [ + "dt" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [], + "source": [ + "dt = load('dt.joblib')" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n", + " max_features=None, max_leaf_nodes=None,\n", + " min_impurity_decrease=0.0, min_impurity_split=None,\n", + " min_samples_leaf=1, min_samples_split=2,\n", + " min_weight_fraction_leaf=0.0, presort=False,\n", + " random_state=None, splitter='best')" + ] + }, + "execution_count": 111, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dt" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['virginica'], dtype=object)" + ] + }, + "execution_count": 112, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dt.predict([[1,2,3,4]])" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [], + "source": [ + "del dt" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [], + "source": [ + "with open('dt.pkl', 'rb') as f:\n", + " dt = pickle.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n", + " max_features=None, max_leaf_nodes=None,\n", + " min_impurity_decrease=0.0, min_impurity_split=None,\n", + " min_samples_leaf=1, min_samples_split=2,\n", + " min_weight_fraction_leaf=0.0, presort=False,\n", + " random_state=None, splitter='best')" + ] + }, + "execution_count": 115, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dt" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['virginica'], dtype=object)" + ] + }, + "execution_count": 116, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dt.predict([[1,2,3,4]])" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'det' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mdel\u001b[0m \u001b[0mdet\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'det' is not defined" + ] + } + ], + "source": [ + "del det" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [], + "source": [ + "def score(vect):\n", + " dt = load('dt.joblib')\n", + " return dt.predict(vect)" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n", + " max_features=None, max_leaf_nodes=None,\n", + " min_impurity_decrease=0.0, min_impurity_split=None,\n", + " min_samples_leaf=1, min_samples_split=2,\n", + " min_weight_fraction_leaf=0.0, presort=False,\n", + " random_state=None, splitter='best')" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dt" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [], + "source": [ + "del dt" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "'numpy.float64' object is not callable", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mpred\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mscore\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m4\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m: 'numpy.float64' object is not callable" + ] + } + ], + "source": [ + "pred = score([[1,2,3,4]])" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'pred' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mpred\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mNameError\u001b[0m: name 'pred' is not defined" + ] + } + ], + "source": [ + "pred" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* persisting models is very important in practice\n", + "* the whole idea of training models is using them to make predictions later on\n", + "* or in the case of something like neural networks, load them and incrementally continue training\n", + "* we are training with toy datasets, but in industry models may take a very long time to train\n", + "* and have complicated data transformations and feature engineering prior to actual training\n", + "* be sure to think about how you will organize code going forward so it's reusable and easy to run again if neeeded, or train on new data easily" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [], + "source": [ + "def train(x,y,path):\n", + " dt = DecisionTreeClassifier().fit(x,y)\n", + " dump(dt,path)\n", + " \n", + "def score(vect,path):\n", + " mod = load(path)\n", + " return mod.predict(vect)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### what if we wanted to add in PCA" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* we can save our transformations as well, reload them and reapply them\n", + "* remember whatever we do to our training data we must do to new data to score of predict" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "metadata": {}, + "outputs": [], + "source": [ + "def decompose(x, path = \"pca.joblib\"):\n", + " pca = PCA(n_components=2).fit(x)\n", + " dump(pca, path) \n", + " return pca.transform(x)\n", + "\n", + "def train(x,y,path = \"model.joblib\"):\n", + " dt = DecisionTreeClassifier().fit(x,y)\n", + " dump(dt,path)\n", + " return dt\n", + " \n", + "def score(vect, pca_path = \"pca.joblib\", mod_path = \"model.joblib\"):\n", + " pca = load(pca_path)\n", + " mod = load(mod_path)\n", + " return mod.predict(pca.transform(vect))" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [], + "source": [ + "pca_x = decompose(x)\n", + "model = train(pca_x, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "metadata": {}, + "outputs": [], + "source": [ + "pred = score([[1,2,3,4]])" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['versicolor'], dtype=object)" + ] + }, + "execution_count": 145, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### What if we have 100M datapoints to score\n", + "* we definatly could do them all at once by feeding in one large matrix\n", + "* but maybe that won't fit in memory\n", + "* we could make a generator that feeds in one row at a time and runs the score function\n", + "* maybe multiprocessing would be faster? depends on the problem\n", + "* if multiprocessing, remember the score function loads 2 models, that is a lot of IO. You'd likly be better off packing the data and models into tuples to save IO" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#def score(item):\n", + "# pca = item[1]\n", + "# mod = item[2]\n", + "# return mod.predict(pca.transform(item[0]))\n", + "\n", + "#data = [\n", + "# [1,2,3,4], mod_object_1, mod_object2],\n", + "# [1,2,3,4], mod_object_1, mod_object2],\n", + "# [1,2,3,4], mod_object_1, mod_object2]\n", + "#]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = [\n", + " [1,2,3,4],\n", + " [1,2,3,4],\n", + " [1,2,3,4],\n", + " [1,2,3,4],\n", + " [1,2,3,4],\n", + " [1,2,3,4],\n", + " [1,2,3,4]\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": {}, + "outputs": [], + "source": [ + "# we could mape the score function above to the data\n", + "# pool.map(score, data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* the best approach will depend on the problem, but there is a lot of options to efficiently score and predict new data?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* once a model is saved what can we do with it?\n", + "* embed in a dashboard\n", + "* deploy as an API that can be pinged to get results\n", + "* share it with co workers...if you're nice of course :)\n", + "* use it to batch score overnight (lots of data points, think song recommendations for every spotify user)\n", + "* flow could be something like\n", + " * parse your data across multiple executors/servers with your score function and model objects\n", + " * make predictions and send them to a database or storeage somewhere\n", + " * backend engineers make some API that pings with data, loads your model, spits back predictions\n", + "* something abstract is happening like this with most seaech querys performed\n", + "* the strings get sent to an API\n", + "* the api takes the string and runs some model/grabs results and sends the results back to be displayed" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### KNN Classifier\n", + "* https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html\n", + "* https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "knn = KNeighborsClassifier(n_neighbors=5).fit(x,y)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [], + "source": [ + "yhat = knn.predict(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['setosa', 'versicolor', 'virginica'], dtype=object)" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "knn.classes_" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9666666666666667\n", + "0.9667867146858743\n", + "0.9666666666666667\n" + ] + } + ], + "source": [ + "acc = accuracy_score(y,yhat)\n", + "prec = precision_score(y, yhat, labels = knn.classes_, average=\"weighted\")\n", + "rec = recall_score(y, yhat, labels = knn.classes_, average=\"weighted\")\n", + "print(acc)\n", + "print(prec)\n", + "print(rec)" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "K:1\n", + "Accuracy:1.0\n", + "Precision:1.0\n", + "Recall:1.0\n", + "\n", + "\n", + "K:2\n", + "Accuracy:0.98\n", + "Precision:0.9811320754716981\n", + "Recall:0.98\n", + "\n", + "\n", + "K:3\n", + "Accuracy:0.96\n", + "Precision:0.96\n", + "Recall:0.96\n", + "\n", + "\n", + "K:4\n", + "Accuracy:0.96\n", + "Precision:0.96\n", + "Recall:0.96\n", + "\n", + "\n", + "K:5\n", + "Accuracy:0.9666666666666667\n", + "Precision:0.9667867146858743\n", + "Recall:0.9666666666666667\n", + "\n", + "\n", + "K:6\n", + "Accuracy:0.9733333333333334\n", + "Precision:0.9733333333333334\n", + "Recall:0.9733333333333334\n", + "\n", + "\n", + "K:7\n", + "Accuracy:0.9733333333333334\n", + "Precision:0.9738247863247864\n", + "Recall:0.9733333333333334\n", + "\n", + "\n", + "K:8\n", + "Accuracy:0.98\n", + "Precision:0.980125383486728\n", + "Recall:0.98\n", + "\n", + "\n", + "K:9\n", + "Accuracy:0.98\n", + "Precision:0.980125383486728\n", + "Recall:0.98\n", + "\n", + "\n", + "K:10\n", + "Accuracy:0.98\n", + "Precision:0.980125383486728\n", + "Recall:0.98\n", + "\n", + "\n" + ] + } + ], + "source": [ + "precs = []\n", + "recs = []\n", + "accs = []\n", + "for k in [1,2,3,4,5,6,7,8,9,10]:\n", + " knn = KNeighborsClassifier(n_neighbors=k).fit(x,y)\n", + " yhat = knn.predict(x)\n", + " acc = accuracy_score(y,yhat)\n", + " prec = precision_score(y, yhat, labels = knn.classes_, average=\"weighted\")\n", + " rec = recall_score(y, yhat, labels = knn.classes_, average=\"weighted\")\n", + " precs.append(prec)\n", + " recs.append(rec)\n", + " accs.append(acc)\n", + " print(\"K:{}\".format(k))\n", + " print(\"Accuracy:{}\".format(acc))\n", + " print(\"Precision:{}\".format(prec))\n", + " print(\"Recall:{}\".format(rec))\n", + " print(\"\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### SVM Classifier\n", + "* https://scikit-learn.org/stable/modules/svm.html/" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.svm import SVC" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [], + "source": [ + "kernels = [\"linear\", \"poly\", \"rbf\", \"sigmoid\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Kernel:linear\n", + "Accuracy:0.9933333333333333\n", + "Precision:0.9934640522875816\n", + "Recall:0.9933333333333333\n", + "\n", + "\n", + "Kernel:poly\n", + "Accuracy:0.98\n", + "Precision:0.980125383486728\n", + "Recall:0.98\n", + "\n", + "\n", + "Kernel:rbf\n", + "Accuracy:0.9866666666666667\n", + "Precision:0.9871794871794873\n", + "Recall:0.9866666666666667\n", + "\n", + "\n", + "Kernel:sigmoid\n", + "Accuracy:0.04\n", + "Precision:0.023604465709728868\n", + "Recall:0.04\n", + "\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\sklearn\\svm\\base.py:193: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.\n", + " \"avoid this warning.\", FutureWarning)\n", + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\sklearn\\svm\\base.py:193: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.\n", + " \"avoid this warning.\", FutureWarning)\n", + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\sklearn\\svm\\base.py:193: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.\n", + " \"avoid this warning.\", FutureWarning)\n", + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1437: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n" + ] + } + ], + "source": [ + "for k in kernels:\n", + " svm = SVC(kernel = k).fit(x,y)\n", + " yhat = svm.predict(x)\n", + " acc = accuracy_score(y,yhat)\n", + " prec = precision_score(y, yhat, labels = knn.classes_, average=\"weighted\")\n", + " rec = recall_score(y, yhat, labels = knn.classes_, average=\"weighted\")\n", + " precs.append(prec)\n", + " recs.append(rec)\n", + " accs.append(acc)\n", + " print(\"Kernel:{}\".format(k))\n", + " print(\"Accuracy:{}\".format(acc))\n", + " print(\"Precision:{}\".format(prec))\n", + " print(\"Recall:{}\".format(rec))\n", + " print(\"\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prediction" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.tree import DecisionTreeRegressor\n", + "from sklearn.neighbors import KNeighborsRegressor\n", + "from sklearn.svm import SVR\n", + "from sklearn.metrics import mean_squared_error" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [], + "source": [ + "x1 = x.drop(\"sepal length (cm)\", 1)\n", + "y1 = x[\"sepal length (cm)\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [], + "source": [ + "lr = LinearRegression()\n", + "dt = DecisionTreeRegressor()\n", + "knn = KNeighborsRegressor()\n", + "svr = SVR()\n", + "\n", + "models = [lr, dt, knn, svr]" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model:LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)\n", + "MSE:0.09630269942460723\n", + "\n", + "\n", + "Model:DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=None,\n", + " max_leaf_nodes=None, min_impurity_decrease=0.0,\n", + " min_impurity_split=None, min_samples_leaf=1,\n", + " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", + " presort=False, random_state=None, splitter='best')\n", + "MSE:0.0009333333333333338\n", + "\n", + "\n", + "Model:KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',\n", + " metric_params=None, n_jobs=None, n_neighbors=5, p=2,\n", + " weights='uniform')\n", + "MSE:0.08234400000000003\n", + "\n", + "\n", + "Model:SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1,\n", + " gamma='auto_deprecated', kernel='rbf', max_iter=-1, shrinking=True,\n", + " tol=0.001, verbose=False)\n", + "MSE:0.0893454354409234\n", + "\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\sklearn\\svm\\base.py:193: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.\n", + " \"avoid this warning.\", FutureWarning)\n" + ] + } + ], + "source": [ + "for mod in models:\n", + " mod.fit(x1,y1)\n", + " yhat = mod.predict(x1)\n", + " mse = mean_squared_error(y1,yhat)\n", + " print(\"Model:{}\".format(mod))\n", + " print(\"MSE:{}\".format(mse))\n", + " print(\"\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# What is some stuff we could start doing to make this model better" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train and Test Split" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'Series' object has no attribute 'aslist'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodel_selection\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mtrain_test_split\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maslist\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pandas\\core\\generic.py\u001b[0m in \u001b[0;36m__getattr__\u001b[1;34m(self, name)\u001b[0m\n\u001b[0;32m 5177\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5178\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 5179\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 5180\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5181\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m__setattr__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mAttributeError\u001b[0m: 'Series' object has no attribute 'aslist'" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": {}, + "outputs": [], + "source": [ + "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n", + " max_features=None, max_leaf_nodes=None,\n", + " min_impurity_decrease=0.0, min_impurity_split=None,\n", + " min_samples_leaf=1, min_samples_split=2,\n", + " min_weight_fraction_leaf=0.0, presort=False,\n", + " random_state=None, splitter='best')" + ] + }, + "execution_count": 128, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clf = DecisionTreeClassifier()\n", + "clf.fit(x_train,y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['versicolor', 'setosa', 'virginica', 'versicolor', 'versicolor',\n", + " 'setosa', 'versicolor', 'virginica', 'versicolor', 'versicolor',\n", + " 'virginica', 'setosa', 'setosa', 'setosa', 'setosa', 'versicolor',\n", + " 'virginica', 'versicolor', 'versicolor', 'virginica', 'setosa',\n", + " 'virginica', 'setosa', 'virginica', 'virginica', 'virginica',\n", + " 'virginica', 'virginica', 'setosa', 'setosa'], dtype=object)" + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clf.predict(x_test)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simple Validation" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix, classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [], + "source": [ + "yhat_test = clf.predict(x_test)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.3333333333333333" + ] + }, + "execution_count": 139, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "accuracy_score(yhat_test, y[0:30])" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\raves\\Anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1437: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n" + ] + }, + { + "data": { + "text/plain": [ + "0.1111111111111111" + ] + }, + "execution_count": 141, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "precision_score(yhat_test, y[0:30], average = \"weighted\")" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.3333333333333333" + ] + }, + "execution_count": 142, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "recall_score(yhat_test, y[0:30], average = \"weighted\")" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[10, 0, 0],\n", + " [ 0, 9, 0],\n", + " [ 0, 0, 11]], dtype=int64)" + ] + }, + "execution_count": 145, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "con_matr = confusion_matrix(yhat_test, y_test)\n", + "con_matr" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
setosaversicolorvirginica
setosa1000
versicolor090
virginica0011
\n", + "
" + ], + "text/plain": [ + " setosa versicolor virginica\n", + "setosa 10 0 0\n", + "versicolor 0 9 0\n", + "virginica 0 0 11" + ] + }, + "execution_count": 146, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.DataFrame(con_matr, index = clf.classes_, columns = clf.classes_)" + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " setosa 0.20 0.20 0.20 10\n", + " versicolor 0.15 0.33 0.21 9\n", + " virginica 0.00 0.00 0.00 11\n", + "\n", + " accuracy 0.17 30\n", + " macro avg 0.12 0.18 0.14 30\n", + "weighted avg 0.11 0.17 0.13 30\n", + "\n" + ] + } + ], + "source": [ + "print(classification_report(yhat_test, y[40:70]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simple Collaborative Filtering\n", + "* java library for rec systems, super comprehensive\n", + "* https://www.librec.net/" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### User Based" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "metadata": {}, + "outputs": [], + "source": [ + "# user item rating will be common\n", + "data = [\n", + " [\"A\", \"Avengers\", 5],\n", + " [\"A\", \"Star Wars\", 5],\n", + " [\"A\", \"Mean Girls\", 1],\n", + " [\"A\", \"Mean Girls 2\", 1],\n", + " [\"B\", \"Avengers\", 2],\n", + " [\"B\", \"Star Wars\", 5],\n", + " [\"B\", \"Mean Girls\", 1],\n", + " [\"B\", \"Mean Girls 2\", 1],\n", + " [\"C\", \"Avengers\", 5],\n", + " [\"C\", \"Star Wars\", 3],\n", + " [\"C\", \"Mean Girls\", 1],\n", + " [\"C\", \"Mean Girls 2\", 1]\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": {}, + "outputs": [], + "source": [ + "# get a ratings matrix\n", + "ui_df = pd.DataFrame(data, columns = [\"user\", \"movie\", \"rating\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [], + "source": [ + "ratings_matrix = ui_df.pivot(index = \"user\", columns = \"movie\", values = \"rating\")" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
movieAvengersMean GirlsMean Girls 2Star Wars
user
A5115
B2115
C5113
\n", + "
" + ], + "text/plain": [ + "movie Avengers Mean Girls Mean Girls 2 Star Wars\n", + "user \n", + "A 5 1 1 5\n", + "B 2 1 1 5\n", + "C 5 1 1 3" + ] + }, + "execution_count": 154, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# rows are users columns are items (movies)\n", + "# could just as easily be products from Amazon\n", + "# or any website\n", + "# cells don't have to be ratings, could be purchase frequency\n", + "ratings_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.spatial.distance import cdist" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0. , 3. , 2. ],\n", + " [3. , 0. , 3.60555128],\n", + " [2. , 3.60555128, 0. ]])" + ] + }, + "execution_count": 156, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cdist(ratings_matrix, ratings_matrix)" + ] + }, + { + "cell_type": "code", + "execution_count": 157, + "metadata": {}, + "outputs": [], + "source": [ + "user_user_sim = pd.DataFrame(cdist(ratings_matrix, ratings_matrix), index = ratings_matrix.index, \n", + " columns = ratings_matrix.index)" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
userABC
user
A0.03.0000002.000000
B3.00.0000003.605551
C2.03.6055510.000000
\n", + "
" + ], + "text/plain": [ + "user A B C\n", + "user \n", + "A 0.0 3.000000 2.000000\n", + "B 3.0 0.000000 3.605551\n", + "C 2.0 3.605551 0.000000" + ] + }, + "execution_count": 158, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_user_sim" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### what are we building essentially?" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
userABC
user
A021
B102
C201
\n", + "
" + ], + "text/plain": [ + "user A B C\n", + "user \n", + "A 0 2 1\n", + "B 1 0 2\n", + "C 2 0 1" + ] + }, + "execution_count": 160, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.argsort(user_user_sim)" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 161, "metadata": {}, "outputs": [ { @@ -211,55 +3075,61 @@ "\n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
userABC
usersepal.lengthsepal.widthpetal.lengthpetal.widthvariety
05.13.51.40.2SetosaAACB
BBAC
CCAB
\n", "" ], "text/plain": [ - " sepal.length sepal.width petal.length petal.width variety\n", - "0 5.1 3.5 1.4 0.2 Setosa" + "user A B C\n", + "user \n", + "A A C B\n", + "B B A C\n", + "C C A B" ] }, - "execution_count": 2, + "execution_count": 161, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df = pd.read_csv(\"data/iris.csv\")\n", - "df.head(1)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "y = df[\"variety\"]\n", - "x = df.drop(\"variety\", axis = 1)" + "np.argsort(user_user_sim).applymap(lambda x: user_user_sim.columns[x])" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 74, "metadata": {}, "outputs": [ { @@ -282,373 +3152,390 @@ "\n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
userB
usersepal.lengthsepal.widthpetal.lengthpetal.width
05.13.51.40.2AC
BA
CA
\n", "" ], "text/plain": [ - " sepal.length sepal.width petal.length petal.width\n", - "0 5.1 3.5 1.4 0.2" + "user B\n", + "user \n", + "A C\n", + "B A\n", + "C A" ] }, - "execution_count": 4, + "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "x.head(1)" + "# drop last row because we can't be most similar to ourselves\n", + "np.argsort(user_user_sim).applymap(lambda x: user_user_sim.columns[x]).iloc[:,1:2]" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 185, + "metadata": {}, + "outputs": [], + "source": [ + "# drop last row because we can't be most similar to ourselves\n", + "nearest_neighbor_df = np.argsort(user_user_sim).applymap(lambda x: user_user_sim.columns[x]).iloc[:,1:2]" + ] + }, + { + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 Setosa\n", - "Name: variety, dtype: object" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "y.head(1)" + "* https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_dict.html" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 186, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n", - " max_features=None, max_leaf_nodes=None,\n", - " min_impurity_decrease=0.0, min_impurity_split=None,\n", - " min_samples_leaf=1, min_samples_split=2,\n", - " min_weight_fraction_leaf=0.0, presort=False,\n", - " random_state=None, splitter='best')" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "clf = DecisionTreeClassifier()\n", - "clf.fit(x,y)" + "nearest_neighbor_df.columns = [\"nearest_neighbor\"]" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 187, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array(['Setosa'], dtype=object)" + "{'A': {'nearest_neighbor': 'C'},\n", + " 'B': {'nearest_neighbor': 'A'},\n", + " 'C': {'nearest_neighbor': 'A'}}" ] }, - "execution_count": 8, + "execution_count": 187, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "clf.predict([[5.1,3.5,1.4,.2]])" + "nearest_neighbor_df.to_dict(\"index\")" ] }, { "cell_type": "code", - "execution_count": 9, - "metadata": { - "scrolled": true - }, + "execution_count": 83, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array(['Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa',\n", - " 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa',\n", - " 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa',\n", - " 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa',\n", - " 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa',\n", - " 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa',\n", - " 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa',\n", - " 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Setosa',\n", - " 'Setosa', 'Setosa', 'Versicolor', 'Versicolor', 'Versicolor',\n", - " 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor',\n", - " 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor',\n", - " 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor',\n", - " 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor',\n", - " 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor',\n", - " 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor',\n", - " 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor',\n", - " 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor',\n", - " 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor',\n", - " 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor',\n", - " 'Versicolor', 'Versicolor', 'Versicolor', 'Versicolor',\n", - " 'Versicolor', 'Versicolor', 'Versicolor', 'Virginica', 'Virginica',\n", - " 'Virginica', 'Virginica', 'Virginica', 'Virginica', 'Virginica',\n", - " 'Virginica', 'Virginica', 'Virginica', 'Virginica', 'Virginica',\n", - " 'Virginica', 'Virginica', 'Virginica', 'Virginica', 'Virginica',\n", - " 'Virginica', 'Virginica', 'Virginica', 'Virginica', 'Virginica',\n", - " 'Virginica', 'Virginica', 'Virginica', 'Virginica', 'Virginica',\n", - " 'Virginica', 'Virginica', 'Virginica', 'Virginica', 'Virginica',\n", - " 'Virginica', 'Virginica', 'Virginica', 'Virginica', 'Virginica',\n", - " 'Virginica', 'Virginica', 'Virginica', 'Virginica', 'Virginica',\n", - " 'Virginica', 'Virginica', 'Virginica', 'Virginica', 'Virginica',\n", - " 'Virginica', 'Virginica', 'Virginica'], dtype=object)" + "{'A': {'Avengers': 5, 'Mean Girls': 1, 'Mean Girls 2': 1, 'Star Wars': 5},\n", + " 'B': {'Avengers': 2, 'Mean Girls': 1, 'Mean Girls 2': 1, 'Star Wars': 5},\n", + " 'C': {'Avengers': 5, 'Mean Girls': 1, 'Mean Girls 2': 1, 'Star Wars': 3}}" ] }, - "execution_count": 9, + "execution_count": 83, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "clf.predict(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# What is some stuff we could start doing to make this model better" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Train and Test Split" + "ratings_matrix.to_dict(\"index\")" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 188, "metadata": {}, "outputs": [], "source": [ - "from sklearn.model_selection import train_test_split" + "# once we have this data, we could go through and ad some sort of script that says\n", + "# recommend movies nearest neighbors like, but user hasn't seen" ] }, { - "cell_type": "code", - "execution_count": 11, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)" + "#### this was a high level example of a user-user collaborative filtering" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 189, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
userABC
user
A0.03.0000002.000000
B3.00.0000003.605551
C2.03.6055510.000000
\n", + "
" + ], "text/plain": [ - "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n", - " max_features=None, max_leaf_nodes=None,\n", - " min_impurity_decrease=0.0, min_impurity_split=None,\n", - " min_samples_leaf=1, min_samples_split=2,\n", - " min_weight_fraction_leaf=0.0, presort=False,\n", - " random_state=None, splitter='best')" + "user A B C\n", + "user \n", + "A 0.0 3.000000 2.000000\n", + "B 3.0 0.000000 3.605551\n", + "C 2.0 3.605551 0.000000" ] }, - "execution_count": 12, + "execution_count": 189, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "clf = DecisionTreeClassifier()\n", - "clf.fit(x_train,y_train)" + "user_user_sim" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### What if we did item-item" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 190, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array(['Versicolor', 'Setosa', 'Virginica', 'Versicolor', 'Versicolor',\n", - " 'Setosa', 'Versicolor', 'Virginica', 'Versicolor', 'Versicolor',\n", - " 'Virginica', 'Setosa', 'Setosa', 'Setosa', 'Setosa', 'Versicolor',\n", - " 'Virginica', 'Versicolor', 'Versicolor', 'Virginica', 'Setosa',\n", - " 'Virginica', 'Setosa', 'Virginica', 'Virginica', 'Virginica',\n", - " 'Virginica', 'Virginica', 'Setosa', 'Setosa'], dtype=object)" + "array([[0. , 5.74456265, 5.74456265, 3.60555128],\n", + " [5.74456265, 0. , 0. , 6. ],\n", + " [5.74456265, 0. , 0. , 6. ],\n", + " [3.60555128, 6. , 6. , 0. ]])" ] }, - "execution_count": 13, + "execution_count": 190, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "clf.predict(x_test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Simple Validation" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix, classification_report" + "cdist(ratings_matrix.T, ratings_matrix.T)" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 191, "metadata": {}, "outputs": [], "source": [ - "yhat_test = clf.predict(x_test)" + "item_item_sim = pd.DataFrame(cdist(ratings_matrix.T, ratings_matrix.T), index = ratings_matrix.T.index, \n", + " columns = ratings_matrix.T.index)" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 192, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
movieAvengersMean GirlsMean Girls 2Star Wars
movie
Avengers0.0000005.7445635.7445633.605551
Mean Girls5.7445630.0000000.0000006.000000
Mean Girls 25.7445630.0000000.0000006.000000
Star Wars3.6055516.0000006.0000000.000000
\n", + "
" + ], "text/plain": [ - "1.0" + "movie Avengers Mean Girls Mean Girls 2 Star Wars\n", + "movie \n", + "Avengers 0.000000 5.744563 5.744563 3.605551\n", + "Mean Girls 5.744563 0.000000 0.000000 6.000000\n", + "Mean Girls 2 5.744563 0.000000 0.000000 6.000000\n", + "Star Wars 3.605551 6.000000 6.000000 0.000000" ] }, - "execution_count": 17, + "execution_count": 192, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "accuracy_score(yhat_test, y_test)" + "item_item_sim" ] }, { - "cell_type": "code", - "execution_count": 19, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.0" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "precision_score(yhat_test, y_test, average = \"weighted\")" + "* would be quite similar, if user saw Avengers and rated it high, we could recommend movies similar to the avengers\n", + "* this example has it backwards, but in reality we would have more users then items (how many users does Netflix have vs. movies?) thus a user-user matrix is pretty huge.\n", + "* remember, simple rec systems are just some linear algebra, the concepts are pretty simple\n", + " * get some sort of vector representation for your observations\n", + " * find a way to quantify the similarity" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 162, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.0" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "recall_score(yhat_test, y_test, average = \"weighted\")" + "\n", + "\n", + "import re" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 171, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[10, 0, 0],\n", - " [ 0, 9, 0],\n", - " [ 0, 0, 11]])" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "con_matr = confusion_matrix(yhat_test, y_test, labels=[\"Setosa\", \"Versicolor\", \"Virginica\"])\n", - "con_matr" + "a = 'aaaaabbbbbbcccccccdddddd'" ] }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 172, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " precision recall f1-score support\n", - "\n", - " Setosa 1.00 1.00 1.00 10\n", - " Versicolor 1.00 1.00 1.00 9\n", - " Virginica 1.00 1.00 1.00 11\n", - "\n", - " accuracy 1.00 30\n", - " macro avg 1.00 1.00 1.00 30\n", - "weighted avg 1.00 1.00 1.00 30\n", - "\n" + "true\n" ] } ], "source": [ - "print(classification_report(yhat_test, y_test))" + "\n", + "print(str(bool(re.search(Regex_Pattern, a))).lower())" ] }, { diff --git a/follow_up_questions/week 2.ipynb b/lectures/Lecture 9 - Multiprocess and Threads.ipynb similarity index 56% rename from follow_up_questions/week 2.ipynb rename to lectures/Lecture 9 - Multiprocess and Threads.ipynb index 4b6d2eb..5699e3e 100644 --- a/follow_up_questions/week 2.ipynb +++ b/lectures/Lecture 9 - Multiprocess and Threads.ipynb @@ -5,7 +5,23 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "import multiprocessing as mp\n", + "import time\n", + "\n", + "def run(x):\n", + " return x**2\n", + "\n", + "start = time.time()\n", + "\n", + "vect = list(range(2))\n", + "print(vect)\n", + "pool = mp.Pool(processes=1)\n", + "results = pool.map(run, vect)\n", + "print(results)\n", + "end = time.time()\n", + "print(\"Seconds:{}\".format(end - start))\n" + ] } ], "metadata": { diff --git a/lectures/Sample Lecture - Objects.ipynb b/lectures/Sample Lecture - Objects.ipynb new file mode 100644 index 0000000..28aacf5 --- /dev/null +++ b/lectures/Sample Lecture - Objects.ipynb @@ -0,0 +1,1056 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### OOO\n", + "* simple OOO example\n", + "* classes - template of objects\n", + "* objects - member or instance of class\n", + "* classes can have\n", + " * characteristics/attribuets\n", + " * methods" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "# simple framework for a dog\n", + "class dog:\n", + " \n", + " # these are params here, things we set when\n", + " # we initialize our instance of our class\n", + " def __init__(self, color, breed, name):\n", + " self.color = color\n", + " self.breed = breed\n", + " self.name = name" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(dog)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "my_dog = dog(color = \"brown\", breed = \"Corgi\", name = \"Mr. Bacon\")" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'brown'" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_dog.color" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'Corgi'" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_dog.breed" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__',\n", + " 'breed',\n", + " 'color',\n", + " 'name']" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dir(my_dog)" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "__main__.dog" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(my_dog)" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [], + "source": [ + "# simple framework for a dog\n", + "class dog:\n", + " \n", + " def __init__(self, color, breed, name):\n", + " self.color = color\n", + " self.breed = breed\n", + " self.name = name\n", + " \n", + " def speak(self,xxx=None):\n", + " print('My name is ' + self.name + ' and I am a '+ self.color +' ' + self.breed)\n", + " if xxx==None: \n", + " xxx = \"You dont like me!\"\n", + " print(xxx)\n", + " \n", + " def bark(self):\n", + " print(\"Woof!Woof!\") \n", + " \n", + " def paintmydog(self, newcolor):\n", + " self.color = newcolor" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [], + "source": [ + "my_dog = dog(color = \"brown\", breed = \"Corgi\", name = \"Mr. Bacon\")" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "brown Mr. Bacon\n" + ] + } + ], + "source": [ + "print(my_dog.color, my_dog.name)" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + ">" + ] + }, + "execution_count": 108, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_dog.speak" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "My name is Mr. Bacon and I am a brown Corgi\n", + "I love you!\n" + ] + } + ], + "source": [ + "my_dog.speak(xxx='I love you!')" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__',\n", + " 'bark',\n", + " 'breed',\n", + " 'color',\n", + " 'name',\n", + " 'paintmydog',\n", + " 'speak']" + ] + }, + "execution_count": 111, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dir(my_dog)" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'red'" + ] + }, + "execution_count": 112, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_dog.paintmydog(\"red\")\n", + "my_dog.color\n" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "My name is Mr. Bacon and I am a red Corgi\n", + "You dont like me!\n" + ] + } + ], + "source": [ + "my_dog.speak()" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [], + "source": [ + "# simple framework for a dog\n", + "class dog:\n", + " \n", + " def __init__(self, color, breed, name, distance=0):\n", + " self.color = color\n", + " self.breed = breed\n", + " self.name = name\n", + " self.distance = 0\n", + " \n", + " def walk(self, distance):\n", + " self.distance += distance" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 115, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_dog = dog(color = \"brown\", breed = \"Corgi\", name = \"Mr. Bacon\")\n", + "my_dog.distance" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 116, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_dog.walk(5)\n", + "my_dog.distance" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "18" + ] + }, + "execution_count": 117, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_dog.walk(13)\n", + "my_dog.distance" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "36" + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_dog.walk(18)\n", + "my_dog.distance" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inheritence\n", + "* Inherit properties and functions from other objects" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [], + "source": [ + "class Dog:\n", + " \n", + " def __init__(self, color, breed, name):\n", + " self.color = color\n", + " self.breed = breed\n", + " self.name = name\n", + " self.distance = 0\n", + " \n", + " def walk(self, distance):\n", + " self.distance += distance\n", + " \n", + "class Retreiver(Dog):\n", + " pass" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [], + "source": [ + "my_dog = Retreiver(color = \"brown\", breed = \"Retriever\", name = \"Mr. Bacon\")" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'brown'" + ] + }, + "execution_count": 122, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_dog.color" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__',\n", + " 'walk']" + ] + }, + "execution_count": 124, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dir(dog)" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [], + "source": [ + "class Dog:\n", + " \n", + " def __init__(self, color, breed, name):\n", + " self.color = color\n", + " self.breed = breed\n", + " self.name = name\n", + " self.distance = 0\n", + " \n", + " def walk(self, distance):\n", + " self.distance += distance\n", + " \n", + "class Retreiver(Dog):\n", + "\n", + " def speak(self):\n", + " print(\"My name is {}\".format(self.name))\n", + " \n", + " def blink182(self):\n", + " print(\"What is my age again?\")" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__',\n", + " 'blink182',\n", + " 'breed',\n", + " 'color',\n", + " 'distance',\n", + " 'name',\n", + " 'speak',\n", + " 'walk']" + ] + }, + "execution_count": 131, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_dog = Retreiver(color = \"brown\", breed = \"Retriever\", name = \"Mr. PinK\")\n", + "dir(my_dog)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [], + "source": [ + "class Dog:\n", + " \n", + " def __init__(self, color, breed, name):\n", + " self.color = color\n", + " self.breed = breed\n", + " self.name = name\n", + " \n", + " def __repr__(self):\n", + " return 'My name is ' + self.name + ' and I am a '+ self.color +' ' + self.breed " + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "My name is Mr. Bacon and I am a brown Corgi\n" + ] + } + ], + "source": [ + "my_dog = Dog(color = \"brown\", breed = \"Corgi\", name = \"Mr. Bacon\")\n", + "print(my_dog) #What will this return?\n" + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__',\n", + " 'breed',\n", + " 'color',\n", + " 'name']" + ] + }, + "execution_count": 137, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dir(my_dog)" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "metadata": {}, + "outputs": [], + "source": [ + "class Dog:\n", + " def __init__(self, color, breed, name):\n", + " self.color = color\n", + " self.breed = breed\n", + " self.name = name\n", + " self.__total_distance = 0\n", + " \n", + " def walk(self, distance):\n", + " self.__total_distance += distance\n", + " def get_dist(self): \n", + " print(self.__total_distance)\n", + " return self.__total_distance\n" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "10\n" + ] + }, + { + "data": { + "text/plain": [ + "10" + ] + }, + "execution_count": 146, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "newdog = Dog('red','corgi','mr raf')\n", + "newdog.get_dist()\n", + "newdog.walk(10)\n", + "newdog.get_dist()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Class Methods\n", + "* takes cls as the first input\n", + "* bound to the class, not the instance of the object\n", + "* can access class variables though not instance variables" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "class Dog:\n", + " \n", + " class_atr = 10\n", + " \n", + " @classmethod\n", + " def speak(cls, speak):\n", + " print(speak)\n", + " \n", + " @classmethod\n", + " def add(cls,x,y):\n", + " return x+y\n", + " \n", + " @classmethod\n", + " def printer(cls):\n", + " print(cls.class_atr)\n", + " \n", + " @classmethod\n", + " def class_add(cls):\n", + " cls.class_atr = cls.class_atr + 10\n", + " \n", + " def __init__(self, color, breed, name):\n", + " self.color = color\n", + " self.breed = breed\n", + " self.name = name\n", + " self.distance = 0\n", + " \n", + " def walk(self, distance):\n", + " self.distance = Dog.add(self.distance, distance)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "rex = Dog(color = \"blue\", breed = \"retreiver\", name = \"Rex\")\n", + "thor = Dog(color = \"blue\", breed = \"retreiver\", name = \"thor\")" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10\n" + ] + } + ], + "source": [ + "rex.printer()\n", + "thor.class_add()" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "30\n" + ] + } + ], + "source": [ + "rex.class_add()\n", + "rex.printer()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "say something\n" + ] + } + ], + "source": [ + "rex.speak(\"say something\")" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "say something\n" + ] + } + ], + "source": [ + "thor.speak(\"say something\")" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "30" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "r.walk(5)\n", + "r.walk(10)\n", + "r.distance" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Static Method\n", + "* neither bound to the instance or class\n", + "* no access to the instance or class attribuets\n", + "* could be a standalone function but we want to keep it in the class\n", + "* for instance, distance measures inside a KNN class. then we can reference the functions when we have a fit method\n", + "* aren't super useful due to limited access of information\n", + "* utility type funciton" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "class Distance:\n", + " \n", + " @staticmethod\n", + " def add(a,b):\n", + " print(a+b)\n", + " \n", + " @staticmethod\n", + " def sub(a,b):\n", + " print(a-b)\n", + " \n", + " def __init__(self,x,y):\n", + " self.x = x\n", + " self.y = y\n", + " \n", + " def operate(self, how):\n", + " if how == \"add\":\n", + " Distance.add(self.x, self.y)\n", + " else:\n", + " Distance.sub(self.x, self.y)\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [], + "source": [ + "d = Distance(10,5)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "15\n" + ] + } + ], + "source": [ + "d.operate(\"add\")" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5\n" + ] + } + ], + "source": [ + "d.operate(\"sub\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Characteristics/Properties/Attributes\n", + "* accessed using dot notation\n", + "* methods are used using dot notation and parentheses ()\n", + "* we can now read the sklearn documentation that much better\n", + "* https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html\n", + "* since sklearn documentation is consistent, we can easily look at any if the page and disect how the data structure works\n", + " * what methods we can use\n", + " * what characteristics we can access\n", + " * what params we can pass\n", + "* https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lectures/test_pickle b/lectures/test_pickle deleted file mode 100644 index e17a93b..0000000 Binary files a/lectures/test_pickle and /dev/null differ diff --git a/lectures/test_pickle.pkl b/lectures/test_pickle.pkl deleted file mode 100644 index eab9232..0000000 Binary files a/lectures/test_pickle.pkl and /dev/null differ diff --git a/msca/README.md b/msca/README.md new file mode 100644 index 0000000..e3a1836 --- /dev/null +++ b/msca/README.md @@ -0,0 +1,3 @@ +# The MSCA challenge library + +Lets learn how to build and operate a python module and its libraries. diff --git a/msca/__init__.py b/msca/__init__.py new file mode 100644 index 0000000..cbdcccb --- /dev/null +++ b/msca/__init__.py @@ -0,0 +1,4 @@ +from . import base +from . import face_det +from . import nqueens +from . import imagenet diff --git a/msca/base.py b/msca/base.py new file mode 100644 index 0000000..e69de29 diff --git a/msca/face_det.py b/msca/face_det.py new file mode 100644 index 0000000..1a43ec9 --- /dev/null +++ b/msca/face_det.py @@ -0,0 +1,27 @@ +import cv2 + +def face_detect(imgPath, cascPath=None): + + if cascPath==None: + print('No cascadades.. No cool') + return + + faceCascade = cv2.CascadeClassifier(cascPath) + + image = cv2.imread(imgPath,0) + gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) + + faces = faceCascade.detectMultiScale( + gray, + scaleFactor=1.1, + minNeighbors=5, + minSize=(30, 30) + ) + + + return image, faces + +def draw_squares(image, faces): + for (x, y, w, h) in faces: + cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2) + return image diff --git a/msca/imagenet.py b/msca/imagenet.py new file mode 100644 index 0000000..e69de29 diff --git a/msca/nqueens.py b/msca/nqueens.py new file mode 100644 index 0000000..6ef119b --- /dev/null +++ b/msca/nqueens.py @@ -0,0 +1,27 @@ +class raf_nq: + def __init__(self, size, show=False): + self.size = size + self.solutions = 0 + self.solve() + + def solve(self): + positions = [-1] * self.size + self.put_queen(positions, 0) + return self.solutions + + def put_queen(self, positions, target_row): + if target_row == self.size: + self.solutions += 1 + else: + for column in range(self.size): + if self.check_place(positions, target_row, column): + positions[target_row] = column + self.put_queen(positions, target_row + 1) + + def check_place(self, positions, ocuppied_rows, column): + for i in range(ocuppied_rows): + if positions[i] == column or \ + positions[i] - i == column - ocuppied_rows or \ + positions[i] + i == column + ocuppied_rows: + return False + return True diff --git a/other_topics/multiprocessing_run.py b/other_topics/multiprocessing_run.py deleted file mode 100644 index 9c7b7e9..0000000 --- a/other_topics/multiprocessing_run.py +++ /dev/null @@ -1,39 +0,0 @@ -import multiprocessing -import time - -def square(x): - return x**2 - -# python doens't have a main() that is executed automatically -# like some other languages, when a python script is executed from the shell -# it sets some variables, in this case the __name__ which is the name of the current -# module if we are running are module as the main program, for instance "python run.py" -# __name__ get's assigned __main__ -# simply, we use this if the file is to be executed as a script -# decent rule of thumb, if we intend our code/classes/function from a script to be -# imported, we can forgo this piece of the code -if __name__ == '__main__': - - start = time.time() - - vect = list(range(100000000)) - - # Runtime: 104 seconds - #a = [] - #for i in vect: - # a.append(square(i)) - - - # Runtime Square: 30 seconds - #vect = [square(i) for i in vect] - - # Runtime Square: 32 seconds - #vect = list(map(square, vect)) - - # Runtime Square: 18 seconds - pool = multiprocessing.Pool(processes=multiprocessing.cpu_count()) - results = pool.map(square, vect) - - end = time.time() - print("Seconds:{}".format(end - start)) - diff --git a/presentation/MSCA_37014_v1.pptx b/presentation/MSCA_37014_v1.pptx new file mode 100644 index 0000000..4606251 Binary files /dev/null and b/presentation/MSCA_37014_v1.pptx differ diff --git a/setup.py b/setup.py new file mode 100644 index 0000000..feae445 --- /dev/null +++ b/setup.py @@ -0,0 +1,20 @@ +from setuptools import setup, find_packages + + +setup( + name="msca", + version="0.0.1", + author="Rafael Vescovi", + author_email="ravescovi@gmail.com", + description="MSCA Class Package", + long_description_content_type="text/markdown", + url="https://github.com/ravescovi/python_for_analitycs", + packages=find_packages(exclude=["*test*"]), + include_package_data=True, + classifiers=[ + "Programming Language :: Python :: 3", + "License :: OSI Approved :: MIT License", + "Operating System :: OS Independent", + ], + python_requires='>=3.6', +)