@@ -34,7 +34,10 @@ bootstrap.replication <- function(x, n, sensitivity, epsilon, fun, inputObject,
34
34
stat.partitions [[i ]] <- currentPartition * stat.currentPartition + noise.currentPartition
35
35
}
36
36
stat.out <- do.call(rbind , stat.partitions )
37
- return (apply(stat.out , 2 , sum ))
37
+ # return(apply(stat.out, 2, sum))
38
+ # returnedBootstrappedResult = apply(stat.out, 2, sum)
39
+ returnedBootstrappedResult = apply(X = stat.out , MARGIN = 2 , FUN = fun )
40
+ return (returnedBootstrappedResult )
38
41
}
39
42
40
43
# 2: treat it as a partition with a mean of 0 and keep it in the calculation, adding noise and adding it to the final calculation
@@ -52,7 +55,7 @@ bootstrap.replication <- function(x, n, sensitivity, epsilon, fun, inputObject,
52
55
# for (i in 1:max.appearances) {
53
56
# variance.i <- (i * probs[i] * (sensitivity^2)) / (2 * epsilon)
54
57
# if (i %in% validPartitions) {
55
- # stat.i <- fun (x[partition == i] )
58
+ # stat.i <- inputObject$bootStatEval (x[partition == currentPartition], fun, ... )
56
59
# noise.i <- dpNoise(n=length(stat.i), scale=sqrt(variance.i), dist='gaussian')
57
60
# stat.partitions[[i]] <- i * stat.i + noise.i
58
61
# } else {
0 commit comments