@@ -102,7 +102,8 @@ bifoldlDefault f g z p =
102102-- | use in combination with `bifoldrDefault`.
103103bifoldMapDefaultR
104104 :: forall p m a b
105- . (Bifoldable p , Monoid m )
105+ . Bifoldable p
106+ => Monoid m
106107 => (a -> m )
107108 -> (b -> m )
108109 -> p a b
@@ -115,7 +116,8 @@ bifoldMapDefaultR f g = bifoldr (append <<< f) (append <<< g) mempty
115116-- | use in combination with `bifoldlDefault`.
116117bifoldMapDefaultL
117118 :: forall p m a b
118- . (Bifoldable p , Monoid m )
119+ . Bifoldable p
120+ => Monoid m
119121 => (a -> m )
120122 -> (b -> m )
121123 -> p a b
@@ -124,14 +126,15 @@ bifoldMapDefaultL f g = bifoldl (\m a -> m <> f a) (\m b -> m <> g b) mempty
124126
125127
126128-- | Fold a data structure, accumulating values in a monoidal type.
127- bifold :: forall t m . ( Bifoldable t , Monoid m ) => t m m -> m
129+ bifold :: forall t m . Bifoldable t => Monoid m => t m m -> m
128130bifold = bifoldMap id id
129131
130132-- | Traverse a data structure, accumulating effects using an `Applicative` functor,
131133-- | ignoring the final result.
132134bitraverse_
133135 :: forall t f a b c d
134- . (Bifoldable t , Applicative f )
136+ . Bifoldable t
137+ => Applicative f
135138 => (a -> f c )
136139 -> (b -> f d )
137140 -> t a b
@@ -141,7 +144,8 @@ bitraverse_ f g = bifoldr (applySecond <<< f) (applySecond <<< g) (pure unit)
141144-- | A version of `bitraverse_` with the data structure as the first argument.
142145bifor_
143146 :: forall t f a b c d
144- . (Bifoldable t , Applicative f )
147+ . Bifoldable t
148+ => Applicative f
145149 => t a b
146150 -> (a -> f c )
147151 -> (b -> f d )
@@ -152,15 +156,17 @@ bifor_ t f g = bitraverse_ f g t
152156-- | ignoring the final result.
153157bisequence_
154158 :: forall t f a b
155- . (Bifoldable t , Applicative f )
159+ . Bifoldable t
160+ => Applicative f
156161 => t (f a ) (f b )
157162 -> f Unit
158163bisequence_ = bitraverse_ id id
159164
160165-- | Test whether a predicate holds at any position in a data structure.
161166biany
162167 :: forall t a b c
163- . (Bifoldable t , BooleanAlgebra c )
168+ . Bifoldable t
169+ => BooleanAlgebra c
164170 => (a -> c )
165171 -> (b -> c )
166172 -> t a b
@@ -170,7 +176,8 @@ biany p q = unwrap <<< bifoldMap (Disj <<< p) (Disj <<< q)
170176-- | Test whether a predicate holds at all positions in a data structure.
171177biall
172178 :: forall t a b c
173- . (Bifoldable t , BooleanAlgebra c )
179+ . Bifoldable t
180+ => BooleanAlgebra c
174181 => (a -> c )
175182 -> (b -> c )
176183 -> t a b
0 commit comments