diff --git a/docs/input.md b/docs/input.md index 9f2272068c..17297e43c2 100644 --- a/docs/input.md +++ b/docs/input.md @@ -104,21 +104,34 @@ print(result.output) ## User-side download vs. direct file URL -When you provide a URL using any of `ImageUrl`, `AudioUrl`, `VideoUrl` or `DocumentUrl`, Pydantic AI will typically send the URL directly to the model API so that the download happens on their side. +When using one of `ImageUrl`, `AudioUrl`, `VideoUrl` or `DocumentUrl`, Pydantic AI will default to sending the URL to the model provider, so the file is downloaded on their side. -Some model APIs do not support file URLs at all or for specific file types. In the following cases, Pydantic AI will download the file content and send it as part of the API request instead: +Support for file URLs varies depending on type and provider: -- [`OpenAIChatModel`][pydantic_ai.models.openai.OpenAIChatModel]: `AudioUrl` and `DocumentUrl` -- [`OpenAIResponsesModel`][pydantic_ai.models.openai.OpenAIResponsesModel]: All URLs -- [`AnthropicModel`][pydantic_ai.models.anthropic.AnthropicModel]: `DocumentUrl` with media type `text/plain` -- [`GoogleModel`][pydantic_ai.models.google.GoogleModel] using GLA (Gemini Developer API): All URLs except YouTube video URLs and files uploaded to the [Files API](https://ai.google.dev/gemini-api/docs/files). -- [`BedrockConverseModel`][pydantic_ai.models.bedrock.BedrockConverseModel]: All URLs except S3 URLs, specifically starting with `s3://`. +| Model | Send URL directly | Download and send bytes | Unsupported | +|-------|-------------------|-------------------------|-------------| +| [`OpenAIChatModel`][pydantic_ai.models.openai.OpenAIChatModel] | `ImageUrl` | `AudioUrl`, `DocumentUrl` | `VideoUrl` | +| [`OpenAIResponsesModel`][pydantic_ai.models.openai.OpenAIResponsesModel] | `ImageUrl`, `AudioUrl`, `DocumentUrl` | — | `VideoUrl` | +| [`AnthropicModel`][pydantic_ai.models.anthropic.AnthropicModel] | `ImageUrl`, `DocumentUrl` (PDF) | `DocumentUrl` (`text/plain`) | `AudioUrl`, `VideoUrl` | +| [`GoogleModel`][pydantic_ai.models.google.GoogleModel] (Vertex) | All URL types | — | — | +| [`GoogleModel`][pydantic_ai.models.google.GoogleModel] (GLA) | [YouTube](models/google.md#document-image-audio-and-video-input), [Files API](https://ai.google.dev/gemini-api/docs/files) | All other URLs | — | +| [`MistralModel`][pydantic_ai.models.mistral.MistralModel] | `ImageUrl`, `DocumentUrl` (PDF) | — | `AudioUrl`, `VideoUrl` | +| [`BedrockConverseModel`][pydantic_ai.models.bedrock.BedrockConverseModel] | S3 URLs (`s3://`) | `ImageUrl`, `DocumentUrl`, `VideoUrl` | `AudioUrl` | -If the model API supports file URLs but may not be able to download a file because of crawling or access restrictions, you can instruct Pydantic AI to download the file content and send that instead of the URL by enabling the `force_download` flag on the URL object. For example, [`GoogleModel`][pydantic_ai.models.google.GoogleModel] on Vertex AI limits YouTube video URLs to one URL per request. +A model API may be unable to download a file (e.g., because of crawling or access restrictions) even if it supports file URLs. For example, [`GoogleModel`][pydantic_ai.models.google.GoogleModel] on Vertex AI limits YouTube video URLs to one URL per request. In such cases, you can instruct Pydantic AI to download the file content locally and send that instead of the URL by setting `force_download` on the URL object: + +```py {title="force_download.py" test="skip" lint="skip"} +from pydantic_ai import ImageUrl, AudioUrl, VideoUrl, DocumentUrl + +ImageUrl(url='https://example.com/image.png', force_download=True) +AudioUrl(url='https://example.com/audio.mp3', force_download=True) +VideoUrl(url='https://example.com/video.mp4', force_download=True) +DocumentUrl(url='https://example.com/doc.pdf', force_download=True) +``` ## Uploaded Files -Some model providers like Google's Gemini API support [uploading files](https://ai.google.dev/gemini-api/docs/files). You can upload a file to the model API using the client you can get from the provider and use the resulting URL as input: +Some model providers like Google's Gemini API support [uploading files](https://ai.google.dev/gemini-api/docs/files). You can upload a file using the provider's client and passing the resulting URL as input: ```py {title="file_upload.py" test="skip"} from pydantic_ai import Agent, DocumentUrl diff --git a/docs/models/google.md b/docs/models/google.md index 1f3aedb433..a5dea490a3 100644 --- a/docs/models/google.md +++ b/docs/models/google.md @@ -199,7 +199,25 @@ agent = Agent(model) ## Document, Image, Audio, and Video Input -`GoogleModel` supports multi-modal input, including documents, images, audio, and video. See the [input documentation](../input.md) for details and examples. +`GoogleModel` supports multi-modal input, including documents, images, audio, and video. + +YouTube video URLs can be passed directly to Google models: + +```py {title="youtube_input.py" test="skip" lint="skip"} +from pydantic_ai import Agent, VideoUrl +from pydantic_ai.models.google import GoogleModel + +agent = Agent(GoogleModel('gemini-2.5-flash')) +result = agent.run_sync( + [ + 'What is this video about?', + VideoUrl(url='https://www.youtube.com/watch?v=dQw4w9WgXcQ'), + ] +) +print(result.output) +``` + +See the [input documentation](../input.md) for more details and examples. ## Model settings diff --git a/pydantic_ai_slim/pydantic_ai/_mcp.py b/pydantic_ai_slim/pydantic_ai/_mcp.py index 1729e4c225..add5c917f3 100644 --- a/pydantic_ai_slim/pydantic_ai/_mcp.py +++ b/pydantic_ai_slim/pydantic_ai/_mcp.py @@ -91,7 +91,7 @@ def add_msg( 'user', mcp_types.ImageContent( type='image', - data=base64.b64encode(chunk.data).decode(), + data=chunk.base64, mimeType=chunk.media_type, ), ) diff --git a/pydantic_ai_slim/pydantic_ai/messages.py b/pydantic_ai_slim/pydantic_ai/messages.py index 1f7fe71e82..43c6a3bb4b 100644 --- a/pydantic_ai_slim/pydantic_ai/messages.py +++ b/pydantic_ai_slim/pydantic_ai/messages.py @@ -474,7 +474,10 @@ class BinaryContent: """Binary content, e.g. an audio or image file.""" data: bytes - """The binary data.""" + """The binary file data. + + Use `.base64` to get the base64-encoded string. + """ _: KW_ONLY @@ -574,7 +577,12 @@ def identifier(self) -> str: @property def data_uri(self) -> str: """Convert the `BinaryContent` to a data URI.""" - return f'data:{self.media_type};base64,{base64.b64encode(self.data).decode()}' + return f'data:{self.media_type};base64,{self.base64}' + + @property + def base64(self) -> str: + """Return the binary data as a base64-encoded string. Default encoding is UTF-8.""" + return base64.b64encode(self.data).decode() @property def is_audio(self) -> bool: @@ -776,7 +784,7 @@ def otel_message_parts(self, settings: InstrumentationSettings) -> list[_otel_me elif isinstance(part, BinaryContent): converted_part = _otel_messages.BinaryDataPart(type='binary', media_type=part.media_type) if settings.include_content and settings.include_binary_content: - converted_part['content'] = base64.b64encode(part.data).decode() + converted_part['content'] = part.base64 parts.append(converted_part) elif isinstance(part, CachePoint): # CachePoint is a marker, not actual content - skip it for otel @@ -1396,7 +1404,7 @@ def new_event_body(): 'kind': 'binary', 'media_type': part.content.media_type, **( - {'binary_content': base64.b64encode(part.content.data).decode()} + {'binary_content': part.content.base64} if settings.include_content and settings.include_binary_content else {} ), @@ -1430,7 +1438,7 @@ def otel_message_parts(self, settings: InstrumentationSettings) -> list[_otel_me elif isinstance(part, FilePart): converted_part = _otel_messages.BinaryDataPart(type='binary', media_type=part.content.media_type) if settings.include_content and settings.include_binary_content: - converted_part['content'] = base64.b64encode(part.content.data).decode() + converted_part['content'] = part.content.base64 parts.append(converted_part) elif isinstance(part, BaseToolCallPart): call_part = _otel_messages.ToolCallPart(type='tool_call', id=part.tool_call_id, name=part.tool_name) diff --git a/pydantic_ai_slim/pydantic_ai/models/__init__.py b/pydantic_ai_slim/pydantic_ai/models/__init__.py index 7fc64ead4a..373ddece88 100644 --- a/pydantic_ai_slim/pydantic_ai/models/__init__.py +++ b/pydantic_ai_slim/pydantic_ai/models/__init__.py @@ -9,7 +9,7 @@ import base64 import warnings from abc import ABC, abstractmethod -from collections.abc import AsyncIterator, Callable, Iterator +from collections.abc import AsyncIterator, Callable, Iterator, Sequence from contextlib import asynccontextmanager, contextmanager from dataclasses import dataclass, field, replace from datetime import datetime @@ -733,7 +733,7 @@ def base_url(self) -> str | None: @staticmethod def _get_instructions( - messages: list[ModelMessage], model_request_parameters: ModelRequestParameters | None = None + messages: Sequence[ModelMessage], model_request_parameters: ModelRequestParameters | None = None ) -> str | None: """Get instructions from the first ModelRequest found when iterating messages in reverse. diff --git a/pydantic_ai_slim/pydantic_ai/models/anthropic.py b/pydantic_ai_slim/pydantic_ai/models/anthropic.py index 2796027508..ee51a880f4 100644 --- a/pydantic_ai_slim/pydantic_ai/models/anthropic.py +++ b/pydantic_ai_slim/pydantic_ai/models/anthropic.py @@ -64,7 +64,6 @@ omit as OMIT, ) from anthropic.types.beta import ( - BetaBase64PDFBlockParam, BetaBase64PDFSourceParam, BetaCacheControlEphemeralParam, BetaCitationsConfigParam, @@ -98,6 +97,7 @@ BetaRawMessageStreamEvent, BetaRedactedThinkingBlock, BetaRedactedThinkingBlockParam, + BetaRequestDocumentBlockParam, BetaRequestMCPServerToolConfigurationParam, BetaRequestMCPServerURLDefinitionParam, BetaServerToolUseBlock, @@ -1035,6 +1035,31 @@ def _add_cache_control_to_last_param( # Add cache_control to the last param last_param['cache_control'] = self._build_cache_control(ttl) + @staticmethod + def _map_binary_data(data: bytes, media_type: str) -> BetaContentBlockParam: + # Anthropic SDK accepts file-like objects (IO[bytes]) and handles base64 encoding internally + if media_type.startswith('image/'): + return BetaImageBlockParam( + source={'data': io.BytesIO(data), 'media_type': media_type, 'type': 'base64'}, # type: ignore + type='image', + ) + elif media_type == 'application/pdf': + return BetaRequestDocumentBlockParam( + source=BetaBase64PDFSourceParam( + data=io.BytesIO(data), + media_type='application/pdf', + type='base64', + ), + type='document', + ) + elif media_type == 'text/plain': + return BetaRequestDocumentBlockParam( + source=BetaPlainTextSourceParam(data=data.decode('utf-8'), media_type=media_type, type='text'), + type='document', + ) + else: + raise RuntimeError(f'Unsupported binary content media type for Anthropic: {media_type}') + @staticmethod async def _map_user_prompt( part: UserPromptPart, @@ -1050,30 +1075,25 @@ async def _map_user_prompt( elif isinstance(item, CachePoint): yield item elif isinstance(item, BinaryContent): - if item.is_image: - yield BetaImageBlockParam( - source={'data': io.BytesIO(item.data), 'media_type': item.media_type, 'type': 'base64'}, # type: ignore - type='image', - ) - elif item.media_type == 'application/pdf': - yield BetaBase64PDFBlockParam( - source=BetaBase64PDFSourceParam( - data=io.BytesIO(item.data), - media_type='application/pdf', - type='base64', - ), - type='document', - ) - else: - raise RuntimeError('Only images and PDFs are supported for binary content') + yield AnthropicModel._map_binary_data(item.data, item.media_type) elif isinstance(item, ImageUrl): - yield BetaImageBlockParam(source={'type': 'url', 'url': item.url}, type='image') + if item.force_download: + downloaded = await download_item(item, data_format='bytes') + yield AnthropicModel._map_binary_data(downloaded['data'], item.media_type) + else: + yield BetaImageBlockParam(source={'type': 'url', 'url': item.url}, type='image') elif isinstance(item, DocumentUrl): if item.media_type == 'application/pdf': - yield BetaBase64PDFBlockParam(source={'url': item.url, 'type': 'url'}, type='document') + if item.force_download: + downloaded = await download_item(item, data_format='bytes') + yield AnthropicModel._map_binary_data(downloaded['data'], item.media_type) + else: + yield BetaRequestDocumentBlockParam( + source={'url': item.url, 'type': 'url'}, type='document' + ) elif item.media_type == 'text/plain': downloaded_item = await download_item(item, data_format='text') - yield BetaBase64PDFBlockParam( + yield BetaRequestDocumentBlockParam( source=BetaPlainTextSourceParam( data=downloaded_item['data'], media_type=item.media_type, type='text' ), diff --git a/pydantic_ai_slim/pydantic_ai/models/bedrock.py b/pydantic_ai_slim/pydantic_ai/models/bedrock.py index 5143158380..9628f90168 100644 --- a/pydantic_ai_slim/pydantic_ai/models/bedrock.py +++ b/pydantic_ai_slim/pydantic_ai/models/bedrock.py @@ -2,7 +2,7 @@ import functools import typing -from collections.abc import AsyncIterator, Iterable, Iterator, Mapping +from collections.abc import AsyncIterator, Iterable, Iterator, Mapping, Sequence from contextlib import asynccontextmanager from dataclasses import dataclass, field from datetime import datetime @@ -548,7 +548,7 @@ def _map_tool_config( async def _map_messages( # noqa: C901 self, - messages: list[ModelMessage], + messages: Sequence[ModelMessage], model_request_parameters: ModelRequestParameters, model_settings: BedrockModelSettings | None, ) -> tuple[list[SystemContentBlockTypeDef], list[MessageUnionTypeDef]]: diff --git a/pydantic_ai_slim/pydantic_ai/models/gemini.py b/pydantic_ai_slim/pydantic_ai/models/gemini.py index 7ab6615a0e..f063ca5798 100644 --- a/pydantic_ai_slim/pydantic_ai/models/gemini.py +++ b/pydantic_ai_slim/pydantic_ai/models/gemini.py @@ -1,6 +1,5 @@ from __future__ import annotations as _annotations -import base64 from collections.abc import AsyncIterator, Sequence from contextlib import asynccontextmanager from dataclasses import dataclass, field @@ -377,9 +376,8 @@ async def _map_user_prompt(self, part: UserPromptPart) -> list[_GeminiPartUnion] if isinstance(item, str): content.append({'text': item}) elif isinstance(item, BinaryContent): - base64_encoded = base64.b64encode(item.data).decode('utf-8') content.append( - _GeminiInlineDataPart(inline_data={'data': base64_encoded, 'mime_type': item.media_type}) + _GeminiInlineDataPart(inline_data={'data': item.base64, 'mime_type': item.media_type}) ) elif isinstance(item, VideoUrl) and item.is_youtube: file_data = _GeminiFileDataPart(file_data={'file_uri': item.url, 'mime_type': item.media_type}) diff --git a/pydantic_ai_slim/pydantic_ai/models/mistral.py b/pydantic_ai_slim/pydantic_ai/models/mistral.py index afda4854ab..1137e5257e 100644 --- a/pydantic_ai_slim/pydantic_ai/models/mistral.py +++ b/pydantic_ai_slim/pydantic_ai/models/mistral.py @@ -1,6 +1,6 @@ from __future__ import annotations as _annotations -from collections.abc import AsyncIterable, AsyncIterator, Iterable +from collections.abc import AsyncIterable, AsyncIterator, Sequence from contextlib import asynccontextmanager from dataclasses import dataclass, field from datetime import datetime @@ -46,6 +46,7 @@ ModelRequestParameters, StreamedResponse, check_allow_model_requests, + download_item, get_user_agent, ) @@ -230,7 +231,7 @@ async def _completions_create( try: response = await self.client.chat.complete_async( model=str(self._model_name), - messages=self._map_messages(messages, model_request_parameters), + messages=await self._map_messages(messages, model_request_parameters), n=1, tools=self._map_function_and_output_tools_definition(model_request_parameters) or UNSET, tool_choice=self._get_tool_choice(model_request_parameters), @@ -259,7 +260,7 @@ async def _stream_completions_create( ) -> MistralEventStreamAsync[MistralCompletionEvent]: """Create a streaming completion request to the Mistral model.""" response: MistralEventStreamAsync[MistralCompletionEvent] | None - mistral_messages = self._map_messages(messages, model_request_parameters) + mistral_messages = await self._map_messages(messages, model_request_parameters) # TODO(Marcelo): We need to replace the current MistralAI client to use the beta client. # See https://docs.mistral.ai/agents/connectors/websearch/ to support web search. @@ -503,12 +504,12 @@ def _get_timeout_ms(timeout: Timeout | float | None) -> int | None: return int(1000 * timeout) raise NotImplementedError('Timeout object is not yet supported for MistralModel.') - def _map_user_message(self, message: ModelRequest) -> Iterable[MistralMessages]: + async def _map_user_message(self, message: ModelRequest) -> AsyncIterable[MistralMessages]: for part in message.parts: if isinstance(part, SystemPromptPart): yield MistralSystemMessage(content=part.content) elif isinstance(part, UserPromptPart): - yield self._map_user_prompt(part) + yield await self._map_user_prompt(part) elif isinstance(part, ToolReturnPart): yield MistralToolMessage( tool_call_id=part.tool_call_id, @@ -525,14 +526,15 @@ def _map_user_message(self, message: ModelRequest) -> Iterable[MistralMessages]: else: assert_never(part) - def _map_messages( - self, messages: list[ModelMessage], model_request_parameters: ModelRequestParameters + async def _map_messages( # noqa: C901 + self, messages: Sequence[ModelMessage], model_request_parameters: ModelRequestParameters ) -> list[MistralMessages]: """Just maps a `pydantic_ai.Message` to a `MistralMessage`.""" mistral_messages: list[MistralMessages] = [] for message in messages: if isinstance(message, ModelRequest): - mistral_messages.extend(self._map_user_message(message)) + async for msg in self._map_user_message(message): + mistral_messages.append(msg) elif isinstance(message, ModelResponse): content_chunks: list[MistralContentChunk] = [] thinking_chunks: list[MistralTextChunk | MistralReferenceChunk] = [] @@ -576,7 +578,7 @@ def _map_messages( return processed_messages - def _map_user_prompt(self, part: UserPromptPart) -> MistralUserMessage: + async def _map_user_prompt(self, part: UserPromptPart) -> MistralUserMessage: content: str | list[MistralContentChunk] if isinstance(part.content, str): content = part.content @@ -586,7 +588,12 @@ def _map_user_prompt(self, part: UserPromptPart) -> MistralUserMessage: if isinstance(item, str): content.append(MistralTextChunk(text=item)) elif isinstance(item, ImageUrl): - content.append(MistralImageURLChunk(image_url=MistralImageURL(url=item.url))) + if item.force_download: + downloaded = await download_item(item, data_format='base64_uri') + image_url = MistralImageURL(url=downloaded['data']) + content.append(MistralImageURLChunk(image_url=image_url, type='image_url')) + else: + content.append(MistralImageURLChunk(image_url=MistralImageURL(url=item.url))) elif isinstance(item, BinaryContent): if item.is_image: image_url = MistralImageURL(url=item.data_uri) @@ -597,7 +604,13 @@ def _map_user_prompt(self, part: UserPromptPart) -> MistralUserMessage: raise RuntimeError('BinaryContent other than image or PDF is not supported in Mistral.') elif isinstance(item, DocumentUrl): if item.media_type == 'application/pdf': - content.append(MistralDocumentURLChunk(document_url=item.url, type='document_url')) + if item.force_download: + downloaded = await download_item(item, data_format='base64_uri') + content.append( + MistralDocumentURLChunk(document_url=downloaded['data'], type='document_url') + ) + else: + content.append(MistralDocumentURLChunk(document_url=item.url, type='document_url')) else: raise RuntimeError('DocumentUrl other than PDF is not supported in Mistral.') elif isinstance(item, VideoUrl): diff --git a/pydantic_ai_slim/pydantic_ai/models/openai.py b/pydantic_ai_slim/pydantic_ai/models/openai.py index 0d3ef00cce..de2702f08a 100644 --- a/pydantic_ai_slim/pydantic_ai/models/openai.py +++ b/pydantic_ai_slim/pydantic_ai/models/openai.py @@ -877,7 +877,7 @@ def _map_finish_reason( return _CHAT_FINISH_REASON_MAP.get(key) async def _map_messages( - self, messages: list[ModelMessage], model_request_parameters: ModelRequestParameters + self, messages: Sequence[ModelMessage], model_request_parameters: ModelRequestParameters ) -> list[chat.ChatCompletionMessageParam]: """Just maps a `pydantic_ai.Message` to a `openai.types.ChatCompletionMessageParam`.""" openai_messages: list[chat.ChatCompletionMessageParam] = [] @@ -992,7 +992,7 @@ async def _map_user_prompt(self, part: UserPromptPart) -> chat.ChatCompletionUse content.append(ChatCompletionContentPartImageParam(image_url=image_url, type='image_url')) elif item.is_audio: assert item.format in ('wav', 'mp3') - audio = InputAudio(data=base64.b64encode(item.data).decode('utf-8'), format=item.format) + audio = InputAudio(data=item.base64, format=item.format) content.append(ChatCompletionContentPartInputAudioParam(input_audio=audio, type='input_audio')) elif item.is_document: content.append( @@ -1887,24 +1887,23 @@ async def _map_user_prompt(part: UserPromptPart) -> responses.EasyInputMessagePa detail=detail, ) ) - elif isinstance(item, AudioUrl): # pragma: no cover - downloaded_item = await download_item(item, data_format='base64_uri', type_format='extension') - content.append( - responses.ResponseInputFileParam( - type='input_file', - file_data=downloaded_item['data'], - filename=f'filename.{downloaded_item["data_type"]}', + elif isinstance(item, AudioUrl | DocumentUrl): + if item.force_download: + downloaded_item = await download_item(item, data_format='base64_uri', type_format='extension') + content.append( + responses.ResponseInputFileParam( + type='input_file', + file_data=downloaded_item['data'], + filename=f'filename.{downloaded_item["data_type"]}', + ) ) - ) - elif isinstance(item, DocumentUrl): - downloaded_item = await download_item(item, data_format='base64_uri', type_format='extension') - content.append( - responses.ResponseInputFileParam( - type='input_file', - file_data=downloaded_item['data'], - filename=f'filename.{downloaded_item["data_type"]}', + else: + content.append( + responses.ResponseInputFileParam( + type='input_file', + file_url=item.url, + ) ) - ) elif isinstance(item, VideoUrl): # pragma: no cover raise NotImplementedError('VideoUrl is not supported for OpenAI.') elif isinstance(item, CachePoint): diff --git a/pydantic_ai_slim/pydantic_ai/providers/groq.py b/pydantic_ai_slim/pydantic_ai/providers/groq.py index f0e5c5b53b..6b0fb2ac37 100644 --- a/pydantic_ai_slim/pydantic_ai/providers/groq.py +++ b/pydantic_ai_slim/pydantic_ai/providers/groq.py @@ -107,7 +107,7 @@ def __init__( groq_client: An existing [`AsyncGroq`](https://github.com/groq/groq-python?tab=readme-ov-file#async-usage) client to use. If provided, `api_key` and `http_client` must be `None`. - http_client: An existing `AsyncHTTPClient` to use for making HTTP requests. + http_client: An existing `AsyncClient` to use for making HTTP requests. """ if groq_client is not None: assert http_client is None, 'Cannot provide both `groq_client` and `http_client`' diff --git a/tests/models/cassettes/test_anthropic/test_image_url_input_force_download.yaml b/tests/models/cassettes/test_anthropic/test_image_url_input_force_download.yaml new file mode 100644 index 0000000000..8fcc60c1d5 --- /dev/null +++ b/tests/models/cassettes/test_anthropic/test_image_url_input_force_download.yaml @@ -0,0 +1,672 @@ +interactions: +- request: + body: '' + headers: + accept: + - '*/*' + accept-encoding: + - gzip, deflate + connection: + - keep-alive + host: + - t3.ftcdn.net + method: GET + uri: https://t3.ftcdn.net/jpg/00/85/79/92/360_F_85799278_0BBGV9OAdQDTLnKwAPBCcg1J7QtiieJY.jpg + response: + body: + string: !!binary | + /9j/4AAQSkZJRgABAQEBLAEsAAD/4QBWRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA + AAABAAAARgEoAAMAAAABAAIAAAITAAMAAAABAAEAAAAAAAAAAAEsAAAAAQAAASwAAAAB/+0ALFBo + b3Rvc2hvcCAzLjAAOEJJTQQEAAAAAAAPHAFaAAMbJUccAQAAAgAEAP/hDIFodHRwOi8vbnMuYWRv + YmUuY29tL3hhcC8xLjAvADw/eHBhY2tldCBiZWdpbj0n77u/JyBpZD0nVzVNME1wQ2VoaUh6cmVT + ek5UY3prYzlkJz8+Cjx4OnhtcG1ldGEgeG1sbnM6eD0nYWRvYmU6bnM6bWV0YS8nIHg6eG1wdGs9 + J0ltYWdlOjpFeGlmVG9vbCAxMC4xMCc+CjxyZGY6UkRGIHhtbG5zOnJkZj0naHR0cDovL3d3dy53 + My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyc+CgogPHJkZjpEZXNjcmlwdGlvbiByZGY6 + YWJvdXQ9JycKICB4bWxuczp0aWZmPSdodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyc+CiAg + PHRpZmY6UmVzb2x1dGlvblVuaXQ+MjwvdGlmZjpSZXNvbHV0aW9uVW5pdD4KICA8dGlmZjpYUmVz + b2x1dGlvbj4zMDAvMTwvdGlmZjpYUmVzb2x1dGlvbj4KICA8dGlmZjpZUmVzb2x1dGlvbj4zMDAv + MTwvdGlmZjpZUmVzb2x1dGlvbj4KIDwvcmRmOkRlc2NyaXB0aW9uPgoKIDxyZGY6RGVzY3JpcHRp + b24gcmRmOmFib3V0PScnCiAgeG1sbnM6eG1wTU09J2h0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEu + MC9tbS8nPgogIDx4bXBNTTpEb2N1bWVudElEPmFkb2JlOmRvY2lkOnN0b2NrOmVmNTcyZTAyLTA4 + NTUtNGFmMS1iMDA1LTVjNTMzOTllMTkyZTwveG1wTU06RG9jdW1lbnRJRD4KICA8eG1wTU06SW5z + dGFuY2VJRD54bXAuaWlkOjE3ODBmZTgxLWI1OTQtNDdlZS04ZmJiLTNhODRiM2FjYzcyODwveG1w + TU06SW5zdGFuY2VJRD4KIDwvcmRmOkRlc2NyaXB0aW9uPgo8L3JkZjpSREY+CjwveDp4bXBtZXRh + PgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg + ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAo8P3hwYWNrZXQgZW5kPSd3Jz8+/9sAQwAF + AwQEBAMFBAQEBQUFBgcMCAcHBwcPCwsJDBEPEhIRDxERExYcFxMUGhURERghGBodHR8fHxMXIiQi + HiQcHh8e/9sAQwEFBQUHBgcOCAgOHhQRFB4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4e + Hh4eHh4eHh4eHh4eHh4eHh4e/8AAEQgBaAIcAwERAAIRAQMRAf/EABwAAQADAQEBAQEAAAAAAAAA + AAACAwQBBQYHCP/EAEcQAAEEAQMCBAMFBgMGBAUFAAEAAgMRIQQSMQVBEyJRYQZxgQcykaHBFCNC + YrHRFVJyCDNDkuHwFjSCshdEwtLxJFNjc6L/xAAbAQEAAwEBAQEAAAAAAAAAAAAAAQIDBAUGB//E + AC4RAAICAgICAgICAQQDAQEBAAABAhEDIRIxBEEFURMiMmEVFEJSkXGBodEjsf/aAAwDAQACEQMR + AD8A/stAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQ + BAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQB + AEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBA + EAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBALCWCqTUQR/7 + yaNn+p4Co8kY9ssoyfSMs3WukxGn9Q09+geCfyWMvMwR7mjSPj5ZdRZlk+JujsJA1D3n+WJx/RYy + +S8Zf7jReHmfopd8WdLHDdU75Rf9Vm/lvHX3/wBFl4OX+io/F+jum6TVG+LDR+qz/wAxh9Jl/wDH + 5PtFf/jLShxDtFqQPXClfL4vpj/Hz+0aG/FeiIBdp9SAe9NP6qf8vh9plf8AQ5PtFrPifpbuXTM/ + 1R/2Wsfk/Hfuij8PKvRs0/WOmTkCPWRWezjt/qumHlYZ/wAZIylhyR7RuDgRuBBB7hb2ZHUAQBAE + AQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBALQAkAWT + QQGTUdT6fB/vtbAw+heL/BYz8jFD+UkaRwzl0jDN8TdIjONS6T/RGSuafyXjx/3GsfDzP0Y5fjHp + 7f8AdwamT/0gfqsJfMYF0mzVfH5H20UP+MmnEWhdf88n9gsX83j9RNF8dL2yiT4w1d+TRwN/1OJW + UvnfqP8A9NF8avbKX/FnVCfLHpwP9B/usn87P0kWXxsPbZUfirq57xjPAjWb+cy+ki6+Oxh3xD1p + wxO0fJg/ss3815L6olfH4UZNT1zrB3N/xCRr9u7aKBr14XPP5fy3rkbR8HB/xPIm6r1aeNzZeqaq + KM0A8yn8vVWx+dnkuU5Mu/GxR1GKOt0koIcdTM+m53vJs+qxyZ5yVWSoxXoubAAAaaXD1FrDkywf + ADtpzmUb8hq/+ilSFl7Q457e6sm2UdIs2hxzWPdWSsi6JxRGhVUDeeylIq5E/D3WD2UWLIGJpoVV + KrmySt2wP8PeNx7Kjlvssk6si5gGKtU/I0yasnp9Xq9Kb02pli9mux+C3xefmxfwkyk8GOf8kevo + /izXQkN1McWob6/dd/b8l6eH56a1kVnLP46D/i6Pb0PxR0zUU2R79O/0kGPxC9bD8v42Xt0/7OLJ + 4OWHSs9mGaKZgfDKyRvq02F6UZxmri7OSUXF0yasQEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBA + EAQBAEAQBAEAQBAEAQBAEAQBAEAQBAYtb1Xp+j/8xq4mH/Ldu/AZXPl8rDi/nJI1hgyZP4o8bWfF + +lZY0mnkmI/iedjf7rzcvzWKP8Ff/wAOuHx83/J0eJq/ijquoJEcjNO30jb+pXmZfm80v4ujsh8f + ij3s8ubV6nUk+NqZJj/M8lebk87Jkf7OzqjgjDpURiHsMrH87L8SwigB5Qb/ABUub9ijhaC2/XIA + 5Ucr6FbKHwyukHhyuYALqlVtl01Wybi7xQDD5Dy7dwq37Y19k7j3bA4EgcXlOSZFM6Q0FSmDhe4Y + aW2toNeyrMmojhfqRJNNUmNrN2Vn+OKlzfZdTlxpEtDozE1zQNpLtxLvMSp5ykyJNHoeG7G0gVzh + XMrLGRAiyiiuyHIl4efu4U7siyzZTBYq/VaLopeyFNbmgCVVuidsBziPqq8m0TQLicXapKbsJECS + PmcYVbZajgHmDnNBITlT2T/QkcCMt5VJTtXRKVGejdbRfuVQsUysdmue1KvFlkzHO6WMDn1KhylH + Rokmd0vUZtO4Phlkjd2c1xFfgtsXlTxbi6KTwxn2j6Hp3xd1KEATFmqb6OFO/EL2fH+dzR/n+xwZ + fjscutHvaL4z6RLQ1T3aJ/8A/KLb/wAwXteP8z4+XUnxf9nDk+Pyw62fQabUQamIS6eaOaM8OY4O + B+oXqRnGauLtHFKLi6aLVYqEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQ + EXvYxhe9wa0ckmgobS2Ks8zWfEHS9MCP2gSuH8MQ3fnwuTJ5+DH3L/o3h42SfSPD13xhIfLpNI1n + 80pv8gvMz/NpL9F/2dmP46/5M8LX9a6hqgRPrJS08tadrfwC8jP8pkyfylo7sfhwj0jy45Hl28uG + 08NA/qV5kvJvZ2fjSJh1H/qsZZdk0drmyVTlY6LIm0iXshsvDmhoxdrTkkilMmGx7g1wNHgrROPR + G+0de3NWNozkcqbphHXNOC0fIAZUte0EQ1MPiwPZuLScEjsprRMZUzFD0+PTzeID5uAfT+6zn9Gv + 5OSLXl4cBW6ya+apbIpE9PC4kvlsE8AcLVR9spKS6QZ0+Eaw6rYPGd3OVrbZXm6o1+H70e6cf7KW + XCM91dQfspyJaJmocXCZjGi/LRvC1xwfTK5JR9Gh0dAXVqzhRmpFTiSDbc/Psq/+i9GPVNO8ebAy + Oy5si2bQejjXhrNp5GQq8qVMNWdLiRd1hVk72EYuo6ySCNohaHOcaG66J9Meqon6RrCCfZc2V3ht + LwA4gEtB4VZuiKR2WdpABI+Sq8mqCh7Ki+nYJNmqWfOnRbjob80e3KtGTFGfWh72kRjJ5KSm2y0E + l2ZodI6F2wuLmu5vspaJcrL2tEYzwqp0Q3ZlifFqpHwlpDhdtd3C6FfZLXHY0Olk6XqzqunavUaR + 3cRvIafmOF04fMzYv4ujKcIZFUlZ9n0P4xnYwR9UjE1f8WJtO+o4P0pe743ztazL/wBr/wDDzM/x + y7xn13T+oaPXx79LOyT1AwR8xyveweTizq8bs8zJinjdSRqW5mEAQBAEAQBAEAQBAEAQBAEAQBAE + AQBAEAQBAEAQBAEAQBACQBZOEB5HUfiPpOiDg/VNle3+CLzH+wXJl83Di1KWzfH42WfSPn+ofGOo + kxo4WQNP8T/M7+y8fP8AOV/BUd+P43/kz57X66fVv8XV6iWes052B9F42f5HJle3Z6GPxowVJFPi + OcLvn2XFLO37NVBIqa3VeI573MDD90AZ+qzyTaSLpRObXCy526+AuVttl9GCePWO6hDNHqxHBHe+ + MN++fcrSPFQarZa0enC4XZo+uEUd2zNljXlxBoADKs0Vol4jawQPdQ3aFEXOc1hc9zWtGSTiglMs + q9FsT3HJdYrFOwiZDijQ0Nc07lsqrZlf0TY1t2LvgUrIhst2+1BXp/RWypjGSAhjwdp/BVjj5dFn + KuyswbyHMmc0NdRAHKusSSsnnWqNLYxYx+Sso20ZOQ1csWkjEuolbFHdbyaC34NFY/tpF2na0x7r + DgeDzYSMdbIk9l4bkXlaKJnZaGhtlbKNGbdlctAZ59b5USVItE8jqHUvA6lBpf2eR0UxoyMyGel+ + y5pS/al0dMMdw5XsslNU6rJwRyAspfZK+incHnccbcLKX2XWiBeQD6dgsJOi1IrJO7ncsm2nRZIO + cDi6JSU7VEpUUTbQ4ZJIqlhKWy6JBwxZuu6WiKOtLd1AlQmrpD0dwD2VyCEjgXcgFW57JSPK1mp1 + cDwWnc2/uhvZaR4tdmiimW6XqehJaHzMjmPLXGiFMbq0VlBnrR051+q0jfsxZN8QBugPda1RSzkZ + fHIHxvex7ctLTRH1V8eaWN3F0yJRUlTPo+i/FckREPUwZG8eM0eYfMd/mvofD+a/25v+zzc/gLvH + /wBH1+l1EOqhbNp5WyRu4c02F9DjyRyR5Rdo8yUXF0y1XKhAEAQBAEAQBAEAQBAEAQBAEAQBAEAQ + BAEAQBAEBk1/UtDoG7tXqY4vRpPmPyHKyyZseJXN0XhjlP8Aij5XqnxywF0fS9I6UjHiS4b+AXl+ + R8tGH8V/2d2L49v+TPlZ+rdY6mXf4nqw8B52xxjbGB2x3K8Xyvkp5dJuj0cPiwx9IobZOTxwBgLy + smdvSOpRosZGLs5oevCxUW+yXIm1oJvhQ4iyYaKpZSJsi62Ns2s9pFlsol3vYQbziwqrkyyohCxs + beMVXqVtBU7ZEnZc124bGhaXeitVskC6tjaA4PyUf0P7IxsNk0XkqqRLY6p01nUtKNPLI9jQbtvK + 6ITUXZRSo26PSxw6eOGIHawUAeVRwcnaKub9mlsYJyaV1Dk6ZRyoz9WZ1EMYOmmAPJ8xkFgD1rut + 1j4rQjKL/keixjnQtEgDnV5qC24trZi3T0WxxtbdNFnJwrwil0VlJvsp1ksOjg8aZryLApjC4kni + gkqStkxTk6RpiY17ARYvPotIRjJaM5NpkdZptPqIy3UNa9vNPyFecItbEJyi9GjTRDwWhjcAYAWm + OFxVIpOW9knx85OM+imUKKqRF5DBZvIVZPiSlZRO8AVwDxhZZJJGkUefPRO0msWCPVckpejeJBr7 + YDZojsVCaLVsyTFodff19VzZGjSKK3zecVn2pZORZRIunDQboHhZymkWUbISSNDfvZKxk0kWRSZG + l5AGR6rJlqOmQ1d9spy0EjrZqrIKKZHEsY8VdjH5q0ZINEQXH1u1O/RBXqoRKwtddfNaxk0SnR83 + r+jSOnf4UUUoloEuiDiK+a6sXkNOjRtNWfU9FgfptDHDIRbbAo3Q9FpKak7Oafej0mAGrdhSjJmb + Vxl/3XuaRxSJxT2XiQiDyypCC75KG43oM09N1+r6bOJNJK5h/iactd8wurxPOyePK4MxzYIZVUkf + b9B+JtH1DbDMW6fU/wCVx8rvkf0X1vh/JYvI10zxs/iTxbW0e8vSOQIAgCAIAgCAIAgCAIAgCAIA + gCAIAgCAIAgPG658SdM6VuZLL4s4/wCFHkj5+i4/I83Fg/k9/R0YfFyZulo+F6t8c9Q1u5umkGli + 9Ixk/wDqP6LwvI+Xyz1DSPWxfHQhuWz52TWl8m+aWyckuNkrypZ5N22dqxJKkiqDUROcZA7PAs4A + WMp2acWlRdJqJXuEUNCxl226UaaCiltmuBu1jQXbndzwsZRVkNlwDqOa9CoSIbLGNaxznBxJOTnH + 4dlf9UV2zsr2wxPlJJDQTQFk/RZ/iTdkp3ojpJZpYnmZrQd1N2ggEfVROK6RLST0dlBqgOFTjRKZ + 5utZr3ahkemc1kVDe40c32WihGtmkXH2elp4ywE15ji75VEqM5Mm2F98iuwClRbIckXhgibtOScq + 00oKit8iUTHEgg8+yzindhtE3Oe1tNDS4HK0U2lRWky7T22EySjbgkn0C6MadWyk3bpFOj6hDqi7 + w2vG0i9zaOQinTomWJo1RXuojnjNq0bumUfRujadmQaK7YRbW0c8ns65ji39Sr8ZUQmrDW1QHPt2 + UKFBys6IC+43ttvcdirrC3pkOdbRpi2tYNre30pdMKitGTtvZVNIBnk/5VnOfsso+jyOsdWdptRH + C2NobW5xvO3vXyXJ5HkOLpLR1YcCkrZKV2/a7kUCM4XPkbdMmKrRRqBuaLKxnG0aRZkcdt5oXhYu + VI0SMk7wBk+65pzNEZ3zEE5rtaylNl6PJ6pLMRUcr2U4XtFlw7gehUY5rlxezVR1Zq8Z/gnxK3XQ + o8jt9VWfWiEtnWTbgCfWqWdCjrpKwDdqjjZKOMeL5NeirVEmmNxIzwrx2UZfG68BbRKMm4HcCKIH + 5K39kIm2Mb/dbRuyG9F7DRrg/wBVrEoyfibWgjjurOVFasi6QOcSSKVeafZNEbtu7uob2DnPooiw + yl8bC6yM+q2x5aeiH0fRfDXxTLoS3S9Qe6XTcNecuj/uPzX0ngfMcahm6+zzfJ8FS/bH2fewyRzR + Nlie17HC2uBsEL6aMlJWjyGmnTJqSAgCAIAgCAIAgCAIAgCAIAgCAIAgMXVuqaHpem8fXahsLOwP + Lj6Ad1llzQxR5TdGmPFLI6ij87+IPjjV6/fF07dpdNxuB/eP+vb6L5/y/lpTVY9L/wCnr+P8fGG5 + 7Z8lqNS3YTI7BPfv814rk2eko10ZGTDBaB6C8rNs0oqEMs5t+1luOLtZy0yUz0tJpWsWfIhs3MA5 + vHspsqzkkkoH7jIB85IwM/1WkcbkrIVeyIk1UjWtc5rHbjbmGsdgspR3RNJGrTtDI/vOdnBJVHoh + 7Lt2E5aIo611CweVFirJAgiiociaIjLsg1fCrzHov2vIHhi891em+iuvZshZQxyV0Y410YyZ3ZZs + CnFUkrdk3QDQLDaoKij9Cy5sIbEZHYo491vHEow5SKOVukTcwPaY9ocHjN+i3S9L2VutlLII9O7Z + s2BvFDGVk4qEqkX5OSs0QMvyN/zcjC3xwb0vszm/bNTXOY17dj3CsG/6LrTlGLVWYum7L9OC2Onl + 3tldGKLjGmZTdvQlIDSQL9aCmdU2FdnGSHbbmECvkqqdraJcd9lOqkBa7z7cGgPdZZZqnui8E7Mh + 1Bosa2vQhcf5ntJG3D2ZtS2J8e6aFr3A+Xc28qryJRtovG70w+S2juayB2WUslkqJle85+S5nI1S + Mk8hq6XPkmzSMTHO80RtyfQrBytGiRklcbs5PCo2XSKARZ3d/ZZ3TsuRLy4WK+vKlz0KIeKQ4N5K + o5E0cLnHsolJ+iaJiWhbhfe1C32KM+j6w6bWxQiFxhlxHKB5b9D6Feg/GcIcrKtI99hAcSCaWTpb + MibX/kpjIii7OO9rUoTLw0njAWl0RRSZQ4W0ghZymiyjR1j6N8KIOmGjPrp5YQ0x/d5PlJx9FvCP + J7YSRfpZQ/Tsk2uaTmiKPKiap6KNUxO92w+HW6sWohoUYZ/En0w8X908n+E8LXklLXRKR7vwj8Sa + jpUjY5Jf2jROPmaOW+7ff27r3vj/AD5+O+MtxODy/Fjl2tM/UNJqYdXpmajTyNkikFtc3gr6uE4z + ipRdpnhyi4umWq5UIAgCAIAgCAIAgCAIAgCAIAgPjvjv450fw+DpNM0avqLhiP8Agi93n9OT7Lg8 + vzo4FS2zs8bw5Znb0j8i6h1bqHUZ5Nd1HUPnldwXYx6AcAD0C+Y8jyZ5ZXJ2z38eGOOPGK0YNb1M + 6dxLHkMDACGi3c8gLGSvSNFrssY6NrHaiaUljfM5zjhoWX9Es9TRxB8bJGHDhbbbRpYZZ8XSJXRs + ZCABbBfPCxc7BcLDTbiPphLIG5waABdm/kpUgZP3p1BuR5jr7jQM/VW/K+iaPR0w3tFNLa7FZXbK + s0AAGyKs8BVciCQIrCjkTRyN2SAq/k3SJosYDu4UXshk3DzAg1SmSd6IXRY19AU6wRYytOTiivGy + 5jnCnX7UtIzZRovjdv8AM0Z4K05ctoq1RMGneUH3RPeiP/JoLfIGkDJsf99l1uGqMb3ZFoJaDQJ4 + 9KVYptWWZ1waXAkH7ytSb2RbSNcbWCiB3uweD7rtiorZg2yZdE+TxQcgUdoolatwcuZX9kqOlxa4 + Fwce4FYTlT2KtHJdVAGEg3XOEn5EEiFjlZnGsbZcXBcy8pdmrxPoyzzOe6xWOKXJlyuTs2jCiIft + GcWqc+K2TVlE03lLt3yFLGeV1bZeMTKZyTeBfusPyts14lMklEZu+FlKVFkjLK+87sLKW0XRidOH + yviaHF7AHF1YN+6rGL42WoqcTgHk8rFtl0VOxgHKzvdFkVlwaMVyp6JKXWT7+qzlL0WRdG8gUQpj + P0GhIzA9VdVeyCvR9OhGojnpzTESWNDiG2eSRxa7Hnk48PRVntMqqAWX9GZojAAIWkaWijJucKND + IV71ZFFTjnOQfRU5FiJkaCG4GPL8lLbe2KAk9bUKZNE4jdWMAXlb45FJIkXkWBx2W3ZSitxAIvHz + WT0SZpyS1zW0FRyd6LRR5cbJoZbLrBOTf6Luh5Ta4sSguz6r4Q+Jn9D1zYJy52hmPnAztP8AmH6+ + q9r43z3gfGX8TzfL8ZZVa7P1mCWOeFk0L2vje0Oa5psEHuvrIyUlaPDaadMmpICAIAgCAIAgCAIA + gCAIAgPz77Qfjlui3dN6RKHag22Sdudns339+3zXked8isVwg9npeJ4X5P2n0fkmsd4jy+WWrNlz + nZcV8zKbm9HuRjxMWu1kY2xAl1hUxQcp2/RZ6Qh0b5xuLA2hg1mrtMmVRJSo9jQwNbHsewFo5B4/ + PlcjzPuyWj1IbPYBcs5XsmjQBgZq1VNkFhOaJWzZU61wsiyL4UckKObWtaSAM91VyJITax2nY7wm + tc4NJt7qGFrii5bQ432aHT7o2PqiWgkei5c2SmIxo7vsAAmxyqc7RNFkbtpJ5tIyp2Q0Wh7Qdw7r + S1dkNASguJyAe1qzkmRR1juANoVLfoksZNbK7nkBSp1Eq1s1aeUgcnj0WsMjM5RNYoR7iTXJ25XX + D+NsxfdFj3OcNzRgZv1XQ3KStFEkuzLPqnskawENLji1jLJJOujaME1ZZotQZfMT5PWsrbDKT2ym + SCRuM7WgtLmtArjJXb+RJUc/Arn1OwYc1u4491XJm4rstHHZlGp8hdvc1o4oXj1/6rKE+Su6NHCm + Z3ucInR7wScmzn2WE4S4uP2XVXZnfNUwh3APIGCeVwy5J8TaK1ZqikG2ic/LlbwlqmZyR2R3mvv3 + UZNMJGSVxdQJtcs3ZotGSVzvEqjS57dmtaK3S54RsUZ5DuJIKyZZGdwPiFQrRYOaS3cApa9kJmd+ + HZ4XPJ8XZouiuSt3zUTkSiLKBs/TCrFpbZJJh9+yRZLL2MLqrK2Ssq9GmGMUCW0AtUijZuiZ2AHr + ZW6gZNlrWgWSL+iKNEWda1u6/b8VeK2RZVKQBTW84Chq9IsihzZTbQG362jxTqi3KPZywDtuz3WV + cSey1nrYpaxKMSuG0uHZdCeitbKoj4j7vybSS4+3Zaxx8tFW6MX7S2R7ttj2PZc84uLs1qirUSNa + 7jylU5bLJaIRvEgvd2pdeKdGM4n2X2Y/ErtJqh0XXPP7PK7/APTPJ+44/wAPyP8AX5r6f4nzqf4p + dPr/APDyfO8a1+SPfs/UV9GeQEAQBAEAQBAEAQBAEAQH5r9pfxsYBJ0jpEpMgts8rDn/AENP9SvF + +R+Q4Xjg9+z1PC8Pn+8+j8sp7R42odbhZr9F81kycj3Ix9H5/wDF3W36rq0eghla2RzC18buGg/x + H0Py9V3YcHGFvpmc5fslF7PoPhLTaieMS6gvzW0jsB3XN5Tjh/VGnez7CKNrGbSTjK8WczRIsobh + k5rv6LKWQskSfrINLs8d7gHuoU21MISmGjc6UB3lcHDsqykk9EJfZOJxec5/qibZDVEhdg9/RU5O + wdJ2DAHqp5UR2Zjp/H1BfvIaBRA7ha4s0kmkS9GgE1zVei5WwibD/wB2rIMtY4EEckKe0VJh4r+6 + t6IIuLmluRXf1R2idMpZ1TRN1o0UmpY3USC2xu5KmOObi5VoOJuY4duSqaKs1QmqbWeV0wj6M39m + 2F9x7S5rb7c2V6GK+NdGEu7Iaqbwg5sLnEVgDsVabS1FiEeW2fN9J6lrNTqptPqtpYGb9xBDmFxN + D8FSUaSOuUYraPV6bI/SzPjL8PaAS68AY/VW8eUsba+zHKlNJnpO1JaWMbGC7gurgLf8lUkjDhe7 + KdVM9udzAGig3391TJNotGKZgh1AdqHWS9tgOBxdfosceZqW9o2lDRZNq2iZ73HigPVy6ZZouVsy + WN1RjYIZeoftDawRQ3XZAIuvkVySyRc3RvtRojLq9U3UPdG9rYYnN3AtNubWVmo+0yyjGtntaiTa + 0AmiR6LTNLitnNFWzFI+6rAHdcUpfRskY5389zePkuecjSKMcjpBm8FZcmma6Ade0HhW90QURakT + BwAcAHnkKW/Q40c1Rd4L2sJJcMUa/wDwtYSSdkIrH+7Hldkn7xshY+SoydoumRIXFxLBjNwJHote + GhZNkarxFmyJlMFcroitFGzS2M7G44W6haKXs1Ri69O62Rm2XNYNxHorqFuirlosdHQrBdVLX8fr + 2U5GTwnySE20bcNF4VsOLk7ZdzUUWQ6U0GNbnmucrsjgbVIyeT2Z9VC5jWVe8fev0XH5GCl/Ztjn + ZRG8ZBI9aXBjbs1kiMp2t2k5vgLoi30ypRJuOn1DWnbtaM+668XtFX2jwGzPZMLeWuKplVRZv2bJ + iJIiWkh39VxJU9hGXfMG2004EA4x7reM6IcUzRHqY3PEe6pB5qGF14ZuuSMJw9H7X8A9b/xvobJJ + XXqoP3c/qT2d9R+dr7f4/wAr/UYVJ9rs+c8vB+HJXo+hXccoQBAEAQBAEAQBAEB8H9qnxY7pOlPS + tA+tbMy5HjmJh/U/kPovM+Q8z8MeEe3/APD0PC8X8r5S6PyCCTdJvJvuLXyOWd7PfjGjy/iTVSN0 + M3gAl4aSADWVHjLlkVl3qNn5z0/omuf8SSzTwtdJO4OMkbhgdwP6L2FOPG70jmhFSfJH6r0hhh0z + IrsgL5zy8rnN0dcUbzqPDAsEkmqr+q5scHMvRa59nGFzt2yaK3RyPkG57gwjLOxWqyyjCl7Bsa6h + 3wsbshmfTukOuZKfEG0ncTw4ey655YLHxXZDVnqiSzdhcl7srR3eCCOfUpaqhR0lzW3wHdlNtIjt + kWkb9vFjkqkVssTbTO9lXVIh7LWjkqyiVs6XlvAFnNI79AlKbq3dvRWkrIR4kGk0k3Wv2/8A+YDS + G8YrBWryzWPh6NHo9yM2ObXMlZQ1xvGQXZ9b4XRFb2ZNFxkG3eLGO5yPkutS1aKV6Kn3QdIA0UTQ + 4v1/BWSrsm/SMZe9zXiJ8Zf/AAb8A+lqYNN9l2qJauEaiN10OHADix6qzpuyIyou0Gqf+xsj8QiQ + A2HC3DOFo5cFSZWUbd0Q8YDDt7nXYBGVyue9luJAvJ3cjNVShyJozlgJNO5+870/6rLlT0XJQMc0 + gg7WgX7kKFFvZDZqiLA9r3C3g20nNLSGTiUlb0Xu1FkAiwOVSea2VUDPLINzQRhc05bNEjNMasj8 + Fk3bNEZnnziwq1st6I+LHI0hjtzmHzUtZppWyKaZEMa2y0jKySXom2+zriNoN36LROlsrRRIS1th + 3zWU0WR5TdeZI5XNcy43eYNGQO62/wBPwr+y6KdNqp3xifUOLIDZZTtoHuV34/Ghx6sSdM+l6e1s + 8bXNc14AGWmwvPeH9mjOUqPUg05qg2u9rWGIxcy7wCCMkAC6pdMcdFOVnkdK1PUD1mWPUsjEBB2b + QRXpZ72tvxwUE72XnVaPejie5+1v3hya4URxybpGLlS2WStc121gs83a2lGnUSqd9mLT7WSAyB20 + 4Pp81GCou5dGk7a0am6qCCV2yiweUD55wu9Zow2ujneNy7PM1ZDZ4iQa3FxJdkg+3ouTyMl060dO + OOjz9Xo2yyO/dtkacgOJFH1wuODUfRupaNUYcwMJqQtyb7lFKnZR7Ms7JXODrBJux2pTGTuydI8T + Xwls/iFhczb90E0z3Hqt4Pndl70QmL2xNouaQebXDW6ZcyN1UrJgPC3Nc4A+g91uoR4hnpCGPxvG + aPNVX7KsJPozZ9j9lnUH6T4obpXO/d6phjI/mA3N/ofxX0Xwmfhl4P2eX8jj5Y+X0fr44X1p4IQB + AEAQBAEAQBAeZ8UdY0/Quh6rqeoy2Fltbf33HDW/UrLNlWKDmzTFjeSaij+bup9S1HUtfNrtXMXT + zuLz6knsPQBfH+TllkblLs+nw41CKiicbSyAm7c78gvNmzdHg9di1E2nMcOzzupxeaFfNaePNRbs + tJWVMjdpXwxxsY2Z2HFra+ZWn5G4t+hxrR9Jpydl444Xjzds0osNOIJcSLuvUqrm0qQNrDaxJLY/ + vKrZBZG+N2o8Enz1ur2WkYOuTIZNg8xogBVTbDLm8VZpEipZuDff1UdEEHE9lSTLIi1xFi8qE6Be + zzDbeBlXjsq9FoO365Wl0VMnUtfF0+B2qkugPK28uPoFbFjlkmlEmtbMuh6nJ1TRNkaw6aXfRa9t + 4B4WvkYvxzqTslJLZsjNP3Y/RcyZLNMEzDIIt/mN0Ftji3spJas1Ne4guJoNofK1qk6soRn1O0iP + a+/8wPf3WyaS2QolGp1bnsqMlvAJ7co8ql0WjCuzXp/2eWPczG30GD/ZaR4tGcnJMtIDmlgoAmiD + WVr3pFTPG39na8k2SSLvJP8AZZ1RdvkYenQakdQlmm1L5GkEBpAq7xQ7KKhWuy8nqjZO4gOsEY9O + CsZOiEUgta4C3bb7rK0WJF24HbZHy4Ch20KLY3Zs9vyRdlWQM5dqZABTd2MYWU53kddFuNRRF73H + dZ5ws23uyUUyyANDBao39FkjM9/sePxRf2WohoY26djwCS52C480uiebmqIZY544qvX3WNaFHAWh + vGfdWjohnSA9pBItRLaIWmed/hTPGe8NsvFOA4IUPPlbSk+jRSSMEfwvKYpozJLIJi4kvefLfcD2 + 7L0sfnNdR0Vlxfs+x+HtCYdLpmuDPKwBxGLA7/NZRXOfJ9MwySpUfRRRxNbgC+RZXowhCtHG5SOS + tsnIoBRJEp0YzC1ri4tB2+o4XM41s2UjZHEWsBB55XXGDSVGLkmyT2sa115NZNLWkkyqbbRjmc1z + wCBdZWEpW0apUZJNwBlj4B+8QqqUl+yNNPTMr4zLqGCRxIcbs5pZSvJNJl0+K0da1r3lodIWg3Y7 + hXWONleTQdDtldja0kEBRlx7tImMtFUu3blY8lVFjyNYwEkuAcBwDwojJ2XR58xiO5hdkdlScWnZ + ojkUUbojQFj81Rtk3TJxvDXt59wrYnsrJaPa+GdQNL8R9P1LuG6lm75E1+q9bwMnDNBv7Rx+TDlj + kv6P3kcL70+XCAIAgCAIAgCAID8W+3jr/j9Uh6HFJ+50gEswB+9I4YH0b/7l4fyuff416PX+Nw6c + 2fm2mG+Sz+C+dySs9qJvstYAaq1xyNEhLHE5hL2tdWQCLyqxdAyRaUHUumke3e4W1t8BMkmo0iUb + IzYq1xUWLW4OSLWctEmiN1cLNuiS4SDFHPunZFFkThu3BrQ4jla9oqy9khbzVfNVTpCiQe3byofR + AbKN4YSCfS1W90GW2eDi88KP6ZBAYIGCVWixfGRVdyVrFVooyZNn5cKWrZBh6vpItfpxBKXVusFp + yDxa1w5nilaJqyvpmkbooWwQ7i1vq6z81XNklklykW1RsMe54ceDyqRjfZFnXxuE8czQHFjt2eQO + 66sdrplbTVF7pNkzyXG3YouNY9B65/JRKVFUrRbK8NiLw3JwWtx8yr6asquzJLsB2g4JOAPyKjSL + 7LY3MiDntbtB+9nOFqnRV7IP6nNBU0hJi45491pGcifxxZpM+9pccF2cBVc/srxog1/AG6gR/wB2 + spSsmg+Uh7g2jYqgVSUqWiUrKZHyWPNgnzCs8Yr81VyVf2TRJ0mALq8kk8qjlolIkHmiL96tR6Io + b2i+KBWb0TRB8g3cc91nJlkionxbIND+qqkT0QIJcK7cJTbJBbR2tbQGAojt0R6IuG7laA4WA422 + BgK12QXgN7gAcKWippg21YKrp7Ks3aeRgNdvdaYsiT2UkjUS0NBYcHHC6HJVcTNL7LS5/hW1xBAw + VtGTqytKzZAHPbbiCDmwuyCckYydF3hNcKs0tlBPRTk0WbRHwLrOQt+Kgil2Z53MAqsDn3WU3FIv + FM86aRpaC5oNckLjlNVbOhLZHTTeLpnOe0NaLptrfDk5x30RONS0VTTRxlk2wuLiW4OAKS43yXZK + TaohpNQ1wcWjyh2OKITHliRODGonuK2soDgkrPLltaJhHezy5J2W4WDRzXIXn3TOijFqJGuHlsdy + SVbRY82W9xIpxJz7KsmaIq2bWue3B4OVk0y1iMjcN+TznstIlWbfFO1rwQHNIIH9F2KVU0YtXo/o + Po+rbr+laXWNIInhbJ+ItfoeDIsmOM17R8nkhwm4/RqWpQIAgCAIAgCAp1uoj0mjm1Ux2xwxukef + QAWVDdKyUrdH8qdZ183VOranXz5fqZnSuJ7WbA/T6L5Dy8jnJy+z6fx4cIpHNK114x2XmNnXRqe4 + cEg+65pyosiqSQDvzznlVi7aRJn0WpdOS4FwY1xouaBnigtc+opII2sftsg2eFyTdIskTZLZ9+65 + 5fsW6NMcny+ShxIJulANDj0tVqmDHr9dNGAyB4id97cQO3YWeV2ePiUlciD1mTmVjXvAa4gWB2XP + OmyEqLDIsXdWCELN2pD3UXDjHFqsG7oSNri44JP07K7RREA63V3HKrVFy5jqujQ7FaJ0UZbuJIOC + PS0u3bIK33vFi/ZUd2WROKwcNBA7+ivFshlhvbmwQfRapOitnN742Oe4HymsdvdaxUmtEOitj/Ek + Ie2xeCeff5KeLb2OujQ0gtMVguHcYsK/G9IrZlkbMzcBtEgva8NJbfYlQotPZe00GeI9jWz7Wnhz + QQc9yCr1vsg5bGt2Gg4i6/75UN0StlkLtrALBJ57/gqN0QyEkrGMJ4a3JWLkWSKdBrYdVCZoC8tJ + I87S04NWrSThpktFpe15smyO1rHkuxQc+6rCOVkpUcDwPKbHrhZttaFWc/aKbRI2juUUm9DiVOn3 + yeG0mhyb5S0Wok+Q7gatvol9EUd8SrAPyVLV0TRIPx95SkQzm7t7q3QOtzVWoaBKxznPBVZScUQW + skoiqruq3fRFGgOI+fos5Sp0RRs05LhySunE7M5JI3xgVThY+a9OFVswf9FsUnhB9tLhdAdqXVh0 + tmcldDVzmXp/7mVsUpHkJaTRXTKKlFIrFVIu0+rA0sbZJzJIPvcVahZ0o1eyJY/2tIz6icEEOJIK + 58mS9M0jGjFqKMb6JGMUVzSSaNYvZ4ulj1TNV+9k3QEGwTye3/5U8oKFI2k7NGrc6VoBwORRXNKc + mRFJFbdQY4gwVtA4pT+RqNBxt2ZNZrpAwBoBt4FXwPVFK3TeiygjzD1Brn7IgHvINnAvP9V0ShCr + FHXzDaQckrnapEoyiXc/IH3qUcdWWJv1LWxuoWQMD3RRUmLMzZRJTTgnJHotoRXKkG/ZqhkIYdwP + NBdLgjM/Zfsg6kNZ8NO0bnXJopCz/wBDvM39R9F9f8Nm5+Pw/wCJ8/8AI4uOXl9n2i9Y88IAgCAI + AgCA+M+2bqX+HfAWtANP1JbA3Prk/kCuXzJ8cTOnxIcsqP5ygkLwHON918nnZ9JA2QyUePzXnyez + YucWuJq691yZNsutGNjvFDsmgashWxXHbDLWzMhZ5gS3vt5r2VlLeyTNDLp26l37I+UxEZMgolyt + 5DjNJIR0Xt1sLZQx7yPUgGh9VhHBJq6JbNvijfXb2WElsEi8FtH52qcaJsiAHUXgGuDVrRNpEM1w + vrvRWD7Bra/LSbNKsrYL9O8b8Ak83fBUxiuykiOunk8YaaCQRSSXTjzddl1ePiU5vl0iOkR6ZJM+ + E+OHCVhLCSK3Ed1TNiUJtIs2b25AzlczVkEtwDtp7KaBMt7i1DQs6HBtd7GVaOiGSY+2u7V3tbwe + irRi6rLqH6VkcL5Y2PsGSL7zfT/r7Lrw/wBhJWc6eZPDj8d5MrRchaMWjW9dCRsAaC5rppGtczLg + QHDnINe6Jq99Fd0YtS7UnqkMkWpI07GVICfvH3V248HRZdbL5HhoL2BpaATf91irb0P/ACUM1One + 4MbqojJjF5PyVf8A2W4v6L9uobHvcWtF93DP0UShOrITVlD37jW6hecrlk/RdIhut5kslxFEuJJp + TzbVMmie4XdeyzYDnHi/xVaBNso9CW1kArVNV0RRVIQBwSD2qwqpNO0SQjLsknzE8Km/fZJbvBoH + lS3ZBK69M8qtbJBPPBV02Qzm4XknlVuuySTD5jbgQeB6KeSfRVlm80CVD62KOxO3eajQ5Wd7smjb + AWnNEm8IkntlGboSA0ALbGq6MmWtmoltrphP0UcSxsor71Arohk/sq0Zp3NLwd5oZGUlO32XWkSj + e2NtAD1J4UqXEq1ZGTUbiSSColksKBQ+cFoHvws+dluJmmlF4JIBwqubLpGabVc1Z+qz52WUShzy + +81SOL9k9HjdS6gdNqGxyYY5tl3otMcOUX9lkr2R0joTHujGHeYEe/dW5NumGiM0rQeCPdaKmjMx + umcJ2sI+95leGPki39kRI7eWSSNe+81+ql46YsGxI1wFFp/JRHTJvRdp9W6WNzJm4ZbarsutyTSM + 6Pvfsb6qNF8TjSvfTNcwxV/MMt/UfVex8Nl4ZuL9nm/JY+WO/o/bgvqjwQgCAIAgCAID8m/2lJnM + 6B0yFv8AxJ3k/Ro/uvP+R/gkd3gfzbPw6BxaavIHdfN5j3oGiKYk82vNnFnQmamTgD3I7rmcWi9k + HytA9lb0QyoP3iyA0+l2qtElbntZjIF3jlTjjshspdPpWvfpNJpvI4jxJng7jS7smRKNJlEtm6CY + Boz+K8ucPo0s1sfnP5FQoXoWUP1WobNEHRgQyOpoIzj+K11SwKOO72RezeyTFj6BefJFi9kuc4Pc + LJrYNEeodE6tu5wPlF8krTFDlOirRzqZkkeyaCOLx2ktJIy3FHae3z9l3Y2sUmn7KlvTI5NLpmRy + 6h00jQbe/k5XNmlznyJNsUh2Y4tczjSsmiT37i0Fxs+iXaaFF0b/AC2LIPIULrRFEuxs8jt2U0Dh + LS0gn8FqqqiNkSwYJwfxXSirKy8NtsYFX24v3Ut7FEyQIHB8hxZJrstErZVlLHyQxvpgc5xGD2SU + q0SlZTK2XcKcGiuOxWL10XTPIl6XG7U+M1zm2SXAc381p+ZKPWy9mlrBG8ybpL9D29wsfyx49bJN + Ae97TchF98YXOpcmDuQK3EH1as0qYJRSB3BweSE3ewWurbnv2VutkHNxLjwOyrKSZJFxsAWObpTG + ddENHGMeJHuJbtP3aGfe1ZwtWLLWYz3HsqVRJMmgfRV2gRDqcN3BVk1eyDjneauQqTeyUdF1u7FZ + 7Ssk7f0S37ILInAHv6KHJehRrgeex4SLaKtGuN524K1izNotY/adxPHC1xutlXvRB0h5BH1WsWKK + pZgHVuz3Ut0Eih2oFODqIKcyeJTJqiLwB6FUcyyiZZ9W4Mw6j6qydE0UHVbSQX2fS+Ff8ZBVLqBu + Hm+eVH49k2WnU/unNjcBQz3PC0ak1xRX+zxOsM8d5hla1zSLa5TjiobvZdM5pZdkLWObtoAAUryx + xlL9WLLNTLtYcZ9FDXDTK1Z4WtOoGo8dgcXA4s2AO9Lrx5k48WKLtPGY5PFB3GQ2T6rPJO9CjY94 + 2gkgkrNd7B2CQeI7ykN4dZ7Lrw1srI9Lpeok02qi1kDyJNO9sja5tpsf0XZ47cZKS9GGVJxp+z+m + un6mPWaCDVxHyTxtkb8iLX2sZckmj5aS4umXqxAQBAEAQBAflH+0dEX9G6VIBhs8jb+bAf0XnfIr + 9Ed/gfyZ+A+JRuxjm14E0e1FkBqHBxrBd2XHOKN0zRFqCGgBc0qLou8c7dx9VXjomzomYATXKyao + lMg9+4gu/wCwiDIMHmoVnsqXZJrgtxANYVKb0wbHOtm0AfNXogyxxBsxlL3W7AF4H0TLkbjTCNsc + lNyVzPosi2OYbs381i1ZJexxeHbNrnNpzQTgkHhdPjfrK2Uka9OHizJ94uLnX2sq2SXKbZBbLK5s + dA5DvxXPNuiV2c6fPIJZN1bS3j0VnOLVotJGh2ojD2x7iH7b47LFx/W0EbNK4OoduUgr0RI0P2ji + yOVZxS0VRQXObkchTHRPZHxHlwcyq7m/6LaMt2Q0QkkLskluAMjKvduyKKWl0pDf+GOff2V+VdEU + JZ2RODSaDRZoqqdijkWo3wh72uaXC6dyPYrNzrRbiQc620T2/FVk1RNbDXF1gC8qLtaJ6IyChe2j + /lWTh7olMp1jXTxRNbe1zhuG7b5a9fzXT46TlbIujE3rnR9OwxO1Yth2ucATn+6rkwu7ok9jTSsm + ia+NzXtcLBvkLGUaBbnkDus2r2CNGs0CoRNgCjVnK6IRpFGyW4VVj0Soi2c3bQAe3KycVdFiMpJr + 0HuqSQRWHlpAWZYtY4HumqogmCLAqz6qGwWNbg+qpw0LNOmAJyQ0DkrSMb0VZshcxoJux6rWMaKS + OOk4AIU/0iKKJ5M4UOVEpGKaZ3N2qfkbLpGSScXZ/opt9lkjK7UtMhbuscfJX4ye6FCSQte0Od2X + VC/ozZi1kcbdQ7ViV3ibQ3beK9V1cv1qgkGy7Gg5cazfJWD2xR3xzsLNtHvX9Vr10VopL27jdBUV + tElMjhRJoDkqrTeyx17v3Q2j81Sm2DM7bZsZP5KUnYEchbIBeB2K0sg6XtJI7dlpCNq2HoiHENBF + 1Waz+S2xp9IhmvprphK7cK3Rij6FehhqOjDJs/oT7I+oft3wVpmONyaR7tO//wBJsfkQvq/Ayc8C + /o+d8yHDKz65dhyhAEAQBAEB8B9vWjOp+A3zNFnTaiOW/QG2n/3Lj86N4r+jr8OVZT+Zp2kvcwY7 + 4Xz00e5Ewz214IJ57rnkjVMvjmIObXLKJomWO1I2kKlFrORz24Amr9VR47Js1NkDsNIPv6KJQoWT + 3tca3C/buqcRZfE7yisH5LOiSyJ73GrFD0RrQJPdawntlkDPTSKBNcKtKtklenlfbnOu75vFKrRJ + v6dqD+2Bm6sXjutMVt0UmejLObtzhk5z2Wck+QiXwyMILicd/YqrakDo1AY4yCMuAHFK+NXKg0Zh + LO/qkJnezwZG3Ewt8wdWfl9V1ZsMIY249kpnuREBoGN1crz0iGWum3En+EiqrhTyT2FErdIHChx7 + FRdkorJ8u4OJNd+KV1IFUsjtjgHE+ink7FFUR2Mo2b7o3T2Gg8nnFg9/6qeVIgGx3J9ViyxFxHBu + iMhFKhRbpZ2bnA7SB69l043GrZSSZGaVj8hwOex49lWck3omKZke51V6+vdVi2i58zrfheHVaoDb + 4cO4ueA6iSTk4PP9F6cPKi4VPszcd6PrOjxM02mj07SWRsaGNvJIXmZZrJNvpFqpG4uGzPHquckF + 2MCvTCumQHOIDcVfutJulohHCeKLRWXX+iiHGg7K5eAbv3VcmmSiJJNGgCs2mSGjPc/JU9Eluyia + NUMjuFDg0EyQNHHqqtfQLGPN5/FWWiGQ1kjSxgc4BjTbsHOPZdmCO9kJnOlyvhiMbZPEicbaXAgg + n0vsreTV37DV7Npl9VxOdMiipz80qOWyyRk1J3WBiyoStklOqc5kDto3Ory0eV6kYKkil7PKa5ww + 7awdmjt7q9JkuyUkrvD3NySMElXSXsrRRLLYA4AyqPboskZ2SHwy5pYAfugG2qzfplSbCRGC0k3z + eSVS2yaKZA1sm7kuq6GT6BaJN6I/sPcASHncDj5qVLsNEPFJwKJWdOrJs5vo2PqiBX4gH37q+VZR + TewdaS5gNGj27rojDRRvZZptzXGqII5IW2KNMrJ2avEEcrrvIBAr8V11RmfsP+z5M46Pq0JcXDxI + 5RfawQf6BfQfFSuEkeL8kv2TP1ReseaEAQBAEAQHjfHPTj1b4Q6r09ot8umeGD+YC2/mAs80OcHE + 0xS4TTP5A1APjnJBqvna+amv2PokzztY5wcHGzXCxcdl0yrxhQ831BXPNF0yGp1DWQF1jd3Kpxt0 + WswQySaiSORrnOJfQIwwV+Z/L6rf8SgrkV5X0e+JnbcbqHb0Nrimakzq2ROpwceLDRxfdVWNsWam + vcXXuseiwpotZa1+4V5vchUkiUyReRnP1WDWyTu44LD5qz8kaJRxshyePks2SUu1zdNqmTuc1m3B + PYe5W/jxUppfZWXR6Gkk1btVI3UPbRkczaKphbg573YK18vAoRTXZEXZ7McpDKc3N/Rec/10XOhz + tmywayVopNNMhnY/FdqBPqZTK9ooOqqBPp+q0zZXMI9KOQl3oFyk0TfIHNABCq9gle1l4OVrXEiy + JPlvcR3PdRXsWZtUZfAk8IXIWkMr1WuNJyVgh0tmqGgiGs/39eakzqKm+PQNIY2jS5yQRQOcqEhZ + RYc8RXmsrSGNtWG6KzKwPcxzhtHB4v8A6oTRCRzI2B73bG9iM0kIOb0SSO3J5rgqNoguiYC0is3x + 6lWuyC6Ntkuuis2CwuoiyPnSWCuTUMYy37jXAA5W2PF+QgmxwlhD2khrhY9lZ4yOmSFXQNWDypqn + SK3ZBzg17WhwsrKSp6LJ/ZCWdjYjJNLtaOScClFt6ZNFjdnO7B4PsocF7FmV2irrY6j40peITF4e + 7yGzdkeuFpLNWH8de7ISt2axzR5K4vZcmHVhuc0bU3XRDRB0jyCS5T+SX2KKNNqWmd0dHe08kWFL + jNR5WSbGPBBs5WKVoBz7xyUSBj1D3NaSDRV02noGCSV8sJ2Eccg0vQUeStkdM88sldJIX0WA031+ + qq5KP8WW9FjnXGR3PqtHlXsrWyMjRI2jkY5VIyd2GDyAKBOKpauTeyKK5XiFjjI6mtFl3oP7K0VZ + BS9zpGAEguNHA5WidMq0Z5vFJe1uHXd9ldbHQaXBhMhffuK+iieMcivfR5I7cLJJ2WJMBew1e1tY + WlfZFkmPcZNpsjm77LojJUUaLIpSDtsetDur42mVkqE+pEsxawOL2nzCvUdlvN1RWJ+0/wCz0S4d + VNUNkI+vnXv/ABDtS/8AR4/yarj/AOz9bXtHlBAEAQBAEAPCA/lb7XPh3/w98Z6uBke3TTkz6f02 + ON19DY+i8Hy8X48jPb8bLzgj886hdB1mr5tcTR1pmFrfDL8+UuulnkXItHRTq4xqHCJxO0CyAeUw + xXKyZPRZ0lm1m5jdrSbAI596WGX+T2Xj0eqx+NwPIyCuZq2aWTM4j0E1gb5HhrHWDWPRdENQKtml + jyGtJNn37rkqyxV48v7YCJwGg0YwR+YWsscfxthPZpEoujg8i151o0Jsmdz6+io7eiSTJInt8r2n + JBAPBHIPuq5McoP9iU7PM6s0SMfG4EhwohThk4TUkJK1Ru+GA+X98Hu8rGs2/wA4G0n/APzwu75G + b5ca/syxVxPp43ucAc+l/NeNJ2bInlrmm+Dkon9gmXncA01n1Ry3oI1NlIbZo3gn3UX7AdK1rbLg + 0AWSeMKFHaSJLG6iKWNrmOa9pF7gbBV52nTKpEi8gEDKl6QBaCMnGDyl0Cxp4HI7J/5IIkHxAbqw + ouiTNrdTBE0+JJs745+aQhKb/VWScZ4bqc0Wa5Au+6Sk+hR2WMPIFH1UwbW0SQMJeKt1AEAjmjgj + 8FrCbh/Ehmhopuw/dGB7LN9ElsZ7ECuLURIZY2ibJIVGAb2ehStAzTtYZI3dw7y/OqW2OTjtEFzX + FkbbBNADJulMpsirKHyTCN0gwaoNObVoUk2xq6IRtZ4hlcSXuFWcho9vT/osufomiUgj1EQ3gSMO + ReQVW3F2C9hPN2FDv2CTQ6t3cYWLTLF0AF2awojHZDI2Gl2PdTVAjKLHN2LwqygLK2ktBaCBfOEc + pKPG9Cl2I73HKoiSwuoGjZ7rSvZBj1OQQO/qoumSjzg2UWBj55tbrK/RLoHym6rKpyvYBaKsq6th + kXUAP6LUgg3BLsD9FqtdFTjwHW0kG+bCvRBm1dfwiwCCKWkWkQ+ipr2PZkYBxn81vBeyrIP8zdrg + 4t55WpUyC3yAHykmsjssErZp6NETix2wbiDZc48K04JdFUchLHHew2D39FzzTg6LrZIP2266A4H1 + XTgmqM5LZNrmmUEildzuQS0fuH+zpE4dJ6vO4Vv1LGj6Mv8AVfU/Dr/+cn/Z4Xyj/eKP1ZeyeWEA + QBAEAQBAflP+0h0J2u+GNN1mBgMmgl2zEDPhPxf0dt/Erh87Hyhy+jt8LJxnxfs/mzVacRacNyQ0 + nnkey8eSs9ZMwuIOCFjJF0ymWPxG0HFruAW816fJZcnF6L0ThaGNDSXHN2f6fJY5HbLLRqa9oFg/ + RZqNOy9lrWse7cQN3+YpJBMmH1iuFSibBMbXtfRJArA7KX1QRoa/eO5IXDKBomYesal8GluPcHXX + lwV0eLjg3+5WTdaMPwrrpHamYPNuJybsH5+6386MXBNeiMV+z1uoPBOBz6rzIxtmz6Nnwy4bXGN4 + dchy210fJO5L/wAGWNaPpA63BhJXjtu6NkTY4vBzVe6jtEljXtNEE+1p2CTH+a0r2DspZJE+KQYk + bR9VtjlxkpEM7oYm6TTthjyxt/imXK5zcmEtGlryO4z2u1Rkl7BYtuco1q0RZ3eRQxg1ShOwdeaH + P0SWgjJNpzIS4PLd7S0kAHH1WuHM4bQZrgjqIMAADW0M9lErkiLJEDvRNUqp12SR8vlB9fRTdsFb + NxBwbFjHdRvoklAS51NwOXbu6mr0iCxouQ3ZA4F8qiVMkvaRZNewV0qWyjIPDQSdwBJq/T2V/VIF + MzKtrX1Zy4G1Vx4tEp2YS4sl3OaSRxR5UuXpE0Xxnc6qIod1DW7ILW2558wA74wFDg+xZJvkIZWL + wVX3RJYDVG/qqNUC1j7bXb2Vk9FWckc0AAEH1R66BS6Vm8xhxvuFSm+iaIOfbwKLaxlZyTuiTrJK + J5oYtIqwyBko8rR6IKHSGz+qqWKXOvH1S9UDFq3TvcYoNoeMjdxzwu3x8CnuXQbolo5ZJYS6SMN8 + xAo3YvlRlhGMqiEcmdXIsqkdsHCyml98D8V1LHWzOzjT5b259EuwZtSdrfKcfmVaKQswwv5BsVhd + EZJdkM5NKPLdYxd1hS5NqitFE0tNHmqqF+qotMsX6UuLS8OofmrxuTtkN0WlhZIQCBX4LPNjvaJi + zkTS075Hho3VxYVsWNrZEmW2C4CP7t4J5paY4cpESdI/of7BtI7TfAjZHB1z6mSQF3JApo/9q+z+ + NjWD/wBnzfyErzH369A4ggCAIAgCAIDJ1rp+n6r0nV9N1bd0GqhdE8ezhSrKKkmmTGTi00fxz8Ud + L1HSeoavpmqxNp5HQvsclp5+oyvAnBxbTPehNSSaPldU3GCW33B4WEkaIgwucd2STwueUfo1TJlx + pw82Bz6+4VXH2WTOMc8OcCQfQqtImzVESW5Fn0Kq9LRKJsbRDnGwFlRYmx4aTk12CpJElu9wqyfd + YNFkU6+AzxWC0uuwHZF+/stIT4Ssh7PK6Ho9VFrt07YWADbcbaBA7lbZ8sckOKK44uJ6XUXgSYdd + Gl56js29FnROoOhnk00UEQaHhzn7bc6+flS6fIiniTq2Ug/2aPqmTWA5pPtleI4ts3LGuAG6gSM7 + ircHQJtkD3AAkD5KnH7Bc1w7Hg8+qukqDJ4cRZwBhX4aIs0sJ8MbjnbixkrJpg7beASAoJNEeoDW + tGL/ADWif6lWgXuLuDgqiJE0u0OIBNdgMqa5OgWNfjAVetCi1hHotPRB023HNhUaoIpeQCMd+D2U + xokydQl1EUAOmLRI54BdV7B6ro8eMXL9iGd6O+eXRNdLIJJST52tLQfQ0aU5oxU6iL+z0KpluJtY + SQspg1kcj5I2NeHRmiSKtX40kw0WveTggeuRyou3RFHDkkE13T+gZNYdrCA0biaaPcq2OHJ0Lo5C + XGw6yboqJv6JosjcTJI0MkqwLPDrHZRV9EFxPmJce6gHWZtoNd1m1yJOM8rXBrQxu6zjk+qs02qZ + UpmdK50fhu8Miw7F7le4ONFkWxNO/duHu71K0x4q2ikpeiEzm+M1gJ3nlYZoNy0Wi6R5z+psZqjp + jG99PDdw9Srw8V/j52S2ro0OdmwVyTdslES4DklV7JK5XCvLa0SB588ghMkr3eRzKcTwPf8ANd2H + LwVENWW6RzfBaGVtrFcLFu+yROS40CrVuyDgLiBZulvzbRUi91fdKiiCnVG+T7ccLRJgyhrW3fHy + V9sg8vVTPDye4Jx8lsolbKf2hjhtIsHm+6hQfsk9rQbPDaKwBwrxoqzupDpJAGiq5xhZz26LRIF4 + 2GM/evPotVpUVEMpZLtLSQ3N0ujFGtlZbP6v+zzRnQfBHR9M5u1w0rHOHoXDcf6r7HxYccMV/R8x + 5MuWWT/s95dBgEAQBAEAQBAEB+F/7R3w0ItbpviOGOotQBBqXD+GQDyOPzALfoPVed5uLfNHoeHk + 1wZ/P+qLHauTTFha5rdwPIcF5bR6KMQeA5zSRTTRJ4WMlRqnZyZ37hxLtvv6LNosIDlpLt2BtPel + m0WRpdKbDg4jOSFk+yQ7U7mGngEDuFZRJZHRTbxLEX+IGEbX+t/qmaKW0Is1SybGWQ5zW5pvK5eN + ujSyrU66OEBxJIJwO60x4XNkN0Sh6npJpi2GRxANNttE/MKZePJEqSKeokh+67vuuWqey5Dp04b1 + ONttDSCTfp/2Aurg5YqRldSPqmStDQWPyvGcVejdFel1crtQ9jjuDm3X+WjS7M+GMcSa7Ii3Z6cE + wbTSDx2C4KLl7JPQfRTGPoF8TxXfCs0QaIn0QDn0UNUiCW+xV0bzjssC5Pg8gmvwVq+gWlxaA0g2 + RwPVOtEGbVPlbCfDID7xaRSvZJYyVxIzx973U8dA0aacTN3McXe9KJJrshmgGwG5JHqqSdg5KyiL + I+Y9VKBTJHigexzyrdPYJw01gt3sSeCpTshl4PlJde78laiLIBgBqs1fCqo1omwCXtDm3kccJuwH + DAHYd1dK9lWUuLRJsbe4C7rsUacVYRFwc0nbQLhRJ/JU5eiSEUjzM6KgQG5d7q/FcbDL3ZO5rc47 + /igISyU4C6vhV43sEtxa2y6zilDVtgonAe0Dc4GwcGipjSBJsrgK3YHFhX5tFaI1kGz62Vg4tstd + Hn6os08hn2vJcRQvBJ9vVaKUmuCJWzS3d4efvei5JIsccH1fCqkySB4o/NbJkGTWsuItIsHBBHZa + xeyDmmOyHYQABx8lpSIsuAwRyrJUQRfQGBlaIgqdakGTUiR8oDiPDAz7+oXRDjx32VZB4PhmuPlw + i2QeP1APDDtiBceA7n3K2S+2QY+nwz6h17KaD94nAWj6sHtwylj2ty41XC5k2WNBbJtDyaPJVU9k + lbWyPkABrPPsunGreyktHrdC0X+I9W0ehaSTqNTHCARnzOF/la78OPlJRRzZJ8YuX0f1xGxscbWM + Aa1ooAdgF9elR8x2SUgIAgCAIAgCAIDzviXpGl690LV9J1jQYdTGWE1e08hw9waP0VZxU4tMtCTh + JNH8d/GXRNT0Tr2o0Ori2zwOMTzx8iPYiiF4OTG4SaZ7eOanFNHyesjuw5rS19c91zzibpkZDbaw + cXxysmi6IsOwNF4CpJFi9rz91rgs+JNnNrH2C3nmu5QmzQwNa0kmv6LGVtko6HuLSDfyCy2mXPF+ + Im+Lpwwb2lwcGOJ2gkC6td+C4qzKb1RDobtVJPCJYWeCwAPlZHtG6u/qVeT/AFdDG/s93qjBssAe + y8qR0GTSwtfIwMDHSWCdzcVnuuvFLjjZk1+x9QwU0A5NLyGtm9nY4wJrZQB5xkpNt6JRqDqrH1Wd + EmlsgJG0AC8AK1Ava4Cs5JyKRJEF0UttDg53vhUa9Eo66Vw7WD3tZuJY1QyN2enrahEMuBvzAcI1 + ewimQ45CrEk7CNzqDct59Qr9dhs1aUFpcDRBIIrFLNu6IZsjDfb5qEiCLiOwtWjVBkBRJF/in9AN + aKPdvorRVAtjrbzasVBAB3Akn+iULBsDdXCUwZ3uJcawObHqpSoHWkuHJwpkyEN1gNP5qiVlirbG + ZRIQSWDFk0PdaXSoqQ8UWS0i+6o4ssgHUTZ7Vat62Q+yDpTvIrAINjuoSog4XWbGVUsRJwBeQpog + b7AF0nog5KGy0H1Q4Vd3aJO7ie9n19Vk4lrFgM90aXoFZsuFduVVIkrkBJwt4pEWUWM2VdEE24IH + /ZVmRZx5B9VNknHNFLSNFTLKzxCPUd1qnRVlUwG0tN16jhaRRDPM1EEjnOdH3bgE8rVS9Mg06WEx + sDAGtbg17+qjJNNUiVo0iBvoAaXOizDiW8WfZTHbJK4XMkmcBij68Ltxdmc+j9E+wvpI6j8bwast + 3RaGN+oJIxu+638yT9F7Px2PllT+jzPOyccVfZ/RIX0R4YQBAEAQBAEAQBAEB+W/b18Ff410r/Hd + BAX63SMqdjBmWEZ+pbz8r9lxeZhc48l2js8TNwlxfTP5i1kADnM3XRsY7LyGj1kzzZra4N4HFk2s + 5RLJlZuhu7nFBYyVF0y5lmOyeCM0qvok7ZElkFw9lVkonKQ5raJLTyCFRolMrDjZuxeaCxa2XMXV + XSjSFs075Io3b2McbDT6geq68TtlWY+hulllbE4uDGOsNN4Byt87SiRHbPpdWLiIPK8d7ZuYtLIY + NbES2w4EY5W+OLlCSKN7PpYXgtDiab8l58ls1Ra12cckKlEkw/ynzYpRxJLYSARZ+Shqgaozixfs + DlQkC9jgQTWax2SiTscg4ILh6lVrZJh6f1GTU9Q1endAWNhIDSTyFpm8dY4Rmn2RGVto96EkgZv2 + pYVoEz5iXHBJwB6KjRJJoDXc8lR7INEZABDuAESVAnuNjOVFAPIwRgIQc3UcZQkOcB8j6K5BJjz2 + oAK3ZBIygkepKsqZBIeb3tECBZ7c/wBVFWSQDawb+aiRBAMLu55wiqiSRjLmuab47qye9kGXUMY2 + Rkbn7S44De9forJewVxva/7pscWcZ7o0LOPeOAaxShxsWZNUZZNPK2B9Ode1xPdaQik05Iiyjox1 + UWmZpNW58krGkmWqDs/1Vs8VKTnDS+hFutmzxWh481E9u6xSJskX45yo47BF8wN544VJK1RKJsII + 9VkkScvJPuiVMkhK7y3SvFEEXFm0BpBct3VEWdH3CLo+xUegRFX8uVCQISEYIOFqtIggKINYJ5V0 + yGimTb7GltEqymVt2B37K1gmA2qIzSy/stRF8hGQOPVVsmgcjcRwMraCKsojAdMNuQ7+L2XbihZn + OVH9F/YP0M9N+E/8RmaWzdQcHgHkRtw38cn6hfUfH4eGPk+2fP8AnZeeTj9H6Iu84ggCAIAgCAIA + gCAIAgP53+3X7Nx0zUv+IukQ10+V96iNo/8ALvPcfyE/gfal5Xl+Px/ePR6fi+Ry/SXZ+MajQksL + owDV5C4GjvRgAo1tO0inf3WUkaIlHJta5oc0tOBhZ0SZy+Yap3lBaGgkA+qngmrF7NEsW+OqJBys + mn6LIpkY+M35gO1rGSp7LJmHrRndoXCGIuecADk3+S6PHSvZWba6OfDEZjYw6gu8Z7e/b2UeS1X6 + 9FsZ9DKC6NebezU8rUvayfTl5FeIBldmDaa/ozl2j6GJ7TYu7GBa4pRo0TNUbmubdjd2CzcS1nW5 + OOOB7KlE2a4qoHkUq0SmWgihkYUVQLfE3ZFEkKr7JLowNpG00Pe0oHWMjB3Cmu70MlU2yTbEfKC0 + 2e9qLBYSciqKowTacEnhUYskNxqqAUAujrN80pSDJPwzvaniQUySEO5IN4Cuo6YIh4sIkC4O5INe + ysiBJM5jbtpcOBwCtlEqTEhqyPqsJaLHd4IwbUoHPZwRkE2ixhRx+gyyIbznms0pjshlGpgbbX0C + 5p8h9LV1aBikDgDuOfyUe9AzuGbxam2gUkWAHEmvzU8mnZNHXSEm65yo32QcDqbQN3m6VmDj3G8H + v3UqPtkEJKe0e/ooWrsl7NDTQ7lc/Eud5GcqrQObjwFZAgMGyr9EAuo2QKVo7IOSkEBt5HsrriNl + Ty45IGfVSkLK4nHcrohkZgSD7KU6IKd3lsg/3U8iaKnTgPLc3V8KXFtBHWSbyQDkc2qpbJJm6IJN + EVnsurHEo2fQfZr8LT9f+I4dBnwb3TyAfcjHJ+Z4HuV7HheO8s69HD5WZY4N+z+p9NDFp9PHBCwM + ijaGMaOGgCgF9MlSpHzrd7ZYpAQBAEAQBAEAQBAEAQFepgi1Onk088TJYpGlj2PFhzTyCPRQ1aph + Np2j+cPtZ+zeT4Y1cvVelxySdJmdmjf7Of8AK729HfQ+p8nyfGePa6PW8byVk/V9n5brdKyR4LRt + cuBnameX4bmyuDseYtGPZZuJdMOia4gvbb23Tr4WdtEnWukYKzt4UWSJ2b4qdddis5KyUZI2nYGv + 8xHNqj1tFi7TPZv/AJllJWiTY94MZKwrZc8DrbQ5sZdlrZA4ji67L0PFjsxyPR6/StR4unZJ4jSD + 6GrFrPPjSdFoy0etC4UMkX6rlcaNLLw4NcK4rKya2SbIXiqdhUkiUXMyAduDhYyLk2OPDcAd1Asv + D6rj0IUvoHWusjlZFjVFYbfAtK0RZe0knvjuqMkk0gd1BBZGCBZGFVJiyyPA4F13UpUQdeCQHAqz + QM8zw2weVaP0SeNquuaHTzBpmFmrAsn0z6Lrh4mSS5JEOSWmetotVHqYmyxO3sdm1lKNPZBbJp/F + nhk3gCJxdXqaUp0mRZc+wwgferCpxJsjG8hrc5x+Ko+yS9paRV3amrIJRu2u70OyhWgyxz2httyf + ZXSIPI6n1b/DvDZPC+VjjTpB/D7/ACWsIOdpFqsO1DHMYWusPNC+6yiiHoqlORnCkgzOcac5tlwG + PkpoFPi5IP8ARXUdEEhIdtE+wvsjiCsybiWg32NHhE2STj3Bw7Ae6pNslI0tcWi8ZWZJ0vA747BV + oEC+zg2rIHCffPzU1YOnAAOVKQKnybSefRWSIOO3GgrkCvLnn1UNkkJPuEG7SwZDMwuLQeOVIKYh + N4hdsAsYJ5GV1p/rSRQv0rQ4G+bys4w2TZo0+kn1mqj08LHve94a1jRZcTgAfVehhxOTSXZhkmoq + 2f0z9l/wkz4W6CGTtY7qGop+peM0ezAfQf1tfV+L46wwr2fO+Tnead+j61dJzhAEAQBAEAQBAEAQ + BAEAQEJoo5onxSxtkjeC1zXCw4HkEHlQ1Y6Pw77UPskk0/i9W+FoTLBl0ugGXM94/Ufy8jtfC83y + PD/3Q/6PRweXf6z/AOz8V1WgjkLXnc2SM/L6FeY0eimYdRBscS3g+vZZNGlmdrDXmABrNKjRNljY + hWAA0+qVoFM8AHBxapxLWYnxyxTtkaA6MjzDO5aRhBR/srydmrc7i8ricLZqnowdR03ix24Fw3U4 + D0za6vHXF2UnvR3pT/CjZDt27RgdiDwVfKrIR7MMp2+54XDOLNYs0xyEVZH4rBqi5rZIdwN5I/FV + cbBojkAAB4+azcS1loeMEY+qrwV6CZhbL1Edc8IxE6Mx3urF/P1XRLFjWG/9xVSfKvR6sbjYH3gC + uKSNDdE4EAEqhJNztgLt+Ksn0Tjb0LOdP12n1bXOicSWgEgijR4PyKZMUofyI/8ABr3msHlZr6DL + d4JFYUvsHTIBY7juFYgw6uRjz4W8biCa9lootK0WR4EPS9BrXPDInN8N9feItdv+oywrZVwiz1+l + aeLQw+DEHbO1nhc88jyO5E1SpHpNeQBfHuo0ip1z7vOK5VZMlIqe+Ta7ZRdR2g8X2Waq1ZLLoHEO + Bc83WfQlTqyrLw8c3YVqBGSQVYVWwYNXFFqY9krA4XdHN/RTHI07RYExsY2GM7PLTVLfLaIKpRdH + OKU1SKozkebi/qrJaDMkwO8FpxycZWsaqiGcfg2fSlW70SVg04gbtxrhQyUaN5FVQxws+P2WL4nY + 89foq8RZ0bXE8YKvxK2HNDfNeEURZwHPalKXoMTHdYBI9wo62DJpnGQukbdBxFfqj09ks1i7Ng3S + kHXcX2VAZ9Re2x3VgeU8/vRR25orTGreyGzaJLbQaQ4jbfIXalozs06OAyPbFGHPc+gA0WXE9gFp + ixW9FJzSR++fZL9n7ehxM6x1aIHqT23HEcjTg/8A1/049V9N4PhfhXKXf/8Ah4Xl+V+R8Y9H6SvR + OEIAgCAIAgCAIAgCAIAgCAIAgCA/O/tM+zDp3xMJOodNLOn9WOTIB+7nPo8Dv/MM+trk8jxI5drT + OrB5UsentH87fFHROq/D+ufoOs6KTSziy3cLa8erTw4fJeNlxSg6kj1seSM1cWfPPa9pPvj6LBo2 + DbaMOKigdLA6t2FUsZ5WbSTVj1tQyEUvdfmoj1KzcdlkWRbfDNtBvhXWkQzII3ia3lpDW7WgNrCu + 2QbISQ0g/dHF9vZZTjosmWRSjcNxLSOFjKOiyZuZJkNsEeqxcaL2aGPIO0mlm0TZoY8Y4NZVaLWa + A4uGHXaiVgsiry5+YWTiWs1QmuSeMLOSFlhPYiwVVOibGihjhBbGTk9zdD0+SvObn2QtGwH+HusU + qZLJgnaeOFZRIs54hDSKF91KQKCGk24BXS0SYtNrNFPrZNPBJcrcuxVrWWKUYpvoizcG0bc7O7GO + B6KkmkETvzbR2HBVO9A6AcClNWqIBNUocCbG6rzwoSJJREtYGkl2OTyr1ZUk93v81nJbJRWad87V + aBm1DGkgOHGfdWhcWSclcBGS0V3PstXsoeXDq5H9Rdp3ReUN3B44H/VavGvxqVk3s1yU4WLtZkmZ + 7u3PqhBXGynEjtmwrsUadoEYLvnlUrZJwyUMgE/JTxoiyUVAEgEWeFMtgtDgWUSFXoFLni7CtRBX + NM0MN3SKLbLIaOZs0Iexpa3ge/uonDi6ZF2aGkknB/FVaFnXkAc59EUQUPd2V1GyLMkkTHO+99F0 + Y8ZRs29M6fqtZqotHpIZZ5pXBscbG25x9Au3FhlJpIxyZFFWz+g/sw+zvT/DscfUuqNjn6qRbQMs + 099m+rvV34e/0nieFHCuUuzw/J8t5f1j0foS7zjCAIAgCAIAgCAIAgCAIAgCAIAgCAIDzuv9E6V1 + 7p79B1fQw6zTu/hkH3T6g8tPuFScIzVSRaE5QdxZ+D/aD9ivUum+JrvheR/UtIASdI//AH7B/KeH + j8D815efwGtwPTw+cnqej8g1kEkb3xPY+KaM05jm04Ecgg8Fee41pnfyTM2j1DdQCynMkb95rhRH + oqOJNmh0Q2kUbr8VXiTZj1UHlJyR37KtEpnIm0zbwSMIgVvGQD9ERB2J+xpAIuu6iSJTPO6xqJQ1 + mx21l/vD3A9lfFFXsSZu6BPJLpm7nOIaSGuPLgOLXN5EUpaNIO0eyx+K/RczouXRuIIxj81DiTZs + iPBa45WbRJoa6iMKGgWtdwQaWcoEplwJ2jKpxJJ7qN+/ZUlGiS+J9A337qVEhl+/5fgr0QUPdV3l + vdOKRJVJQBIIx690okp0UGn00z5I4mhzu4N4V5ZJPRFGwuP3j2WTi3sWSDgHXfKKNBkrGC38leiL + KdUXSQljXlpPccq8UvZIh3iJjC7eQ2i/i1WSvoWWOeBXPpVZUUyCDn3efZUcSyOOmAyCPxUcQUSz + g9xlTwvZFlTphRHK1jAizz2agCctsXZBb+q0eNqPIj2a3yE9xxys2iTN5vGJHpylaLFsMlNzR+Si + gdkmBJY0E47IokMoL6N7j5eyvWgXMdYB9RgqtAkyQDF2a5Sr2RZx3BvAVkrIMOq0z9Q4Mc8tjvzA + clXi+O6B6OnZtAA+7VUstt7Jsse524Ch7qVG+yCt5dQod8rVY60Vsi4OcPVa48bKuR6/wl8M9V+I + upDRdM05kODJIcRxD1c7t8uSvQ8fxJ5XUUc2byI41cj+h/gL4I6X8K6XdE0ajXvbUuqc3zH+Vv8A + lb7d+6+i8bxYYFrv7PEz+RLM99H1S6jnCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAID5L47+z34b+ + MIi7qOl8HWgUzWQU2VvpZ4cPY2sM3jwy99m2LyJ4uuj8C+Ovsq+Ivhkv1LIf8U6e0f8AmtOy3Nb/ + ADs5HzFheVm8OePa2j1MXlwya6Z8I/DKaNw9lxNHWUOcLDT8xaihZFnNYLeyo0Ws5NCKFAKOgzDP + BI+yw5o4PdWtEHn6AzDWfs2rbu9He6tOMeNoRu9nu6KBsQIz3XJI1RpaA33tYONlky1jz4gBadoH + 3vdKFmiKUBwbmyqNEmlrv5rtVok8zSQdZZ8RulkmbJoHtPB49BS3n+J49dlU3f8AR9CZaG1vPpS5 + HHZctheCM5yq8UC0kcg1SJANlokAmq5UgFwI9fRVaJshITXar7eigmxE4Zo2D6KQyYIqryc0jQOO + k285B4VQT8Ubc8WtUtEB59BY7KeIsk3+E7jxx/VKIs6XDg17BKBRI/GDk9woaslMyyvduyT+CKFk + NlEkwIoDhaKDRW7Mssrm5Lg0fzK6xjkUwxPZrfHkcwsIseoP9ltS48SL2b3vDm/MfmuSUWXTIMBN + Grv8lFEnWgtLgM/oiQK9RJsHIvi1KiLPO105O1rZjG4Hc4NyS0drXRjivaKyv0b4Zd9ND+1n2tYy + jRay6EkAZsKlCydkn19EWiCbWOB3HJ9PVXog6zUxGZ0Af+8aLIHZWeN1Ysuv8Sr48XtlHIg4hpHc + 3VDK6o4TOUz9C+APsw6p1yWPWdXZN03puHAOFTTf6Qfuj3P0C9Xxvj3Lc9I8/P5sY6jtn7r0PpHT + uidPZoOmaWPTQMztaMk9yTyT7le1jxxxrjFHkznKbuTNyuVCAIAgCAIAgCAIAgCAIAgCAIAgCAIA + gCAIAgCAEID4X43+y74Y+Jg+f9n/AMO17s/tOlaG7j/M3h35H3XLm8THl30zpxeVPHrtH4B8efZV + 8T/DEz9ZJCdb09p82p0wLmgerm8sPvx7ry83i5MX9o9LF5UMn9M+LMZaQRkdsrlOqx4g8xNN29/V + UkkiUVBjJg4tde3mv1VOyaorbAGPEm2zxZ5Ch9Eo0xHtRx2tZMsSc4jDSAfmq0Dz9b1rSaHVtg1D + y0uyHViltHA5xtFXkSdM9fSTNkja9jgQRYPr7rjnGjVM2RuoWs+JJfE4OAzlQSWbjYvlUZJY15ab + J/FQkCwSg+t+iigda/BLnCh7qKZJ1r9wx/0SmDpea9kBHc4WGu/FSgSErq8xBPrSMEmOHJOB2UJA + 6X2CeyumQQfI66afmVYFolxkZHCEFbpnHgKeIIMcdosiycm1ZQQbIzuAN2b+a0jEpZh6jqW6fTvk + /wAouuy1jGyLPmBPL1HVATFwY124NJwVq48VYWz3XOLmihVjK5+RajNC+WLVGNz3OY8igey1/WcS + ttHoaUvjhDDI6R15ceVyZF+xddF+87ayqUWs8zqL9oJe8Nu2xnnK3xxvoizw9MNbHM2KYB7K3F7m + 23Pv+i7JKLVozTa7PounybnS+U7m0McFcWRGiNoNHJAwsqJJRtdVZx3U8SLL2ksFkhuOStI42VlJ + CGPa50ri0D0qr910xxfZm5n2nwf9nfxD8RuZqHQnp+hcb8fUtNub/I3k/kPdel4/gzyb6RxZ/Mhj + 12z9n+EPs/8Ah34b2zQab9q1g/8AmdQA54P8o4b9F7GHxceLpbPKy+TPJ30fWBdJgEAQBAEAQBAE + AQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQHHAEEEXaA/Nvjz7H/h74g8TVdNA6R1A2d0Lf3Tz/ADM/ + VtfVcebwoZNrTOvF5k4ae0fz/wDHXwJ8RfC0jmdV0P7oupmpj80Eg/1dj7GivKzePLG/2R6eHyIZ + F+p8fpoZ4tSXFrhYzY7Lk40zpuz02R3GCazn6o0EwYu9fIhYtFrIuYA7dVmq4ygPN6p0rS9QA8YO + sA0RyFpjySj0VlFS7NugYzTwxwsPkjaGi+cLGa5bZdaVI9KJ42/NZ8NE2WtI3eXssnHZay1jnXVK + nEmxuIaax/VHEmycTyDuv8lHEEwbIdj05pKJLI84vA/NRRBMkbNpJzyookrebwCbHBU0CmXURMlb + CZA17uB6qViclYs1DyiiQVVqgd3Ad6+aUCsuq3BSkCTXgs7/AIrVKirK5SScHaaO097V0iAwO5c6 + xVYCmiLOOcw5xfuosUeZ1XTySxFrXWT29fZaRmk9kUeV0fpj9M97HRAbf4824lWyz/UmKpntmBwo + 9h39Vx2y5i6g7w5Guo5sYXV4/wDIpPonoHMDn/vHOdguB7fJVyomJveSRhZVZNmeWIyO21bTytIP + jsgok0hfqmeVnhBv3fQg2CrLI0hRr0WlZp2bQSSe55WUrkTZuY0E3XCtHG2VcjoJa4g0O9rohh+y + kpn1nwV8BfEPxI9ksen/AGbRjnVTgtYf9I5d9Me69DD4U8nS0cebyoY1t7P2n4R+zj4f6C5mpfCO + oa5uRPqGghp/lbwPnk+69fB4ePFvtnl5vKnk10j7NdZzBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBA + EAQBAEAQBAEAQBAEAQFepgg1MD9PqIY5oZBtfHI0Oa4ehB5UNJqmSm1tH5R8bfYp0rX+JqvhyVvT + tQcnTyW6Bx9u7PpY9lwZvAjLcNHbi82UdT2fifxJ8I9b+GNYY+saCXSsJpkm3dG8+zxg/LleZkwT + x6kj0seaGRfqzxdTLHEC6TA7mrpc7jZrYYYpmXE8PaeXAfos5RaL3Zl6jopJtOWRyGMk8hIPg7DM + nRoNXG2SLVNLgz7j3G7VsjT2iFo9aO+LH9li0WL2Fo/BVcSbJtcGkg4r0VKJJtGC5Q0TZK7Poq0C + DpQ0bjajiWs7DqA9ocDyocSS7eSR63yo4kHLPKiibKpdO2TlxY68ObyFopUQXx7gK5+f9Vm0TZIS + NJ81BQkCjWazT6QN8Qu83Aa210QxlWyyWLxYQ6N1B2fQqWkRZFrXbvO6zgKCCbiS2icIyUUOccVx + 3VKJsMfuZQBPupoizheGk2CTxhVaslM6ZnPAa1hDR7ooizjdIyQl02Wj1W+OLWyjZ2PRhj97GbC4 + 5NchJJslOiwR7MAmlTiTYawdhfyVlAiy2GEvNbKVljsjkbNF02bV6kafRwSambjw4WF7j9AtseDk + 6S2ZyyJdn23Q/so+Kuohr9TFB0uJ2S6d9vr/AEN7/Mhd+L47I+9HHPz8cetn6b8JfZd8PdEczUat + h6rrG0RJqGjY0/ys4/G16eHwsePfbPPy+ZkyaWkfdAAAAAADhdhynUAQBAEAQBAEAQBAEAQBAEAQ + BAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEBTrNLptZpn6bV6eKeCQU+ORgc1w9wVDSapkptO0flHx + t9iXSeoiTUfDuo/w2Z1k6eS3wO+Xdn5j2XBl8CMtw0duLzpR1PZ+JfEXwf1v4S12zqmgn0rT5WyD + zQv+Thg/LB9l5mbBOGpI9LFnhNaZ5heHVuXM40bWAWOBoi7VaJIbSct8vqCFFCy2BhaLLtzuTXCh + omy4U7tRVeIJfcAcW/Mo4k2RLmkCrBVXGybM80g+7tJ+irxJsRyiNo59kcLHI1RzxuAIo2MZUcBZ + 0yjNG/ZV4Mmzhkxgj+yfjYsrfqC3kgdgnBiyTPMfMRSv+MiwS3/NdceqlwZPIm2R5rPsFDiyLOMI + Lj5/mnEWSsVg2FFUDltxkH5qaB0PbYvgFEgWMETvvEX6AK6iQ2daYwQG+UH/ADKyh9FXIrnDRTnP + BaHXVq6i0RZc55eyg8WnAjkX9L0mq12pGn02ml1U7jiOFhe78AtI4rdRVlZZKVt0fffDv2UfE2vc + yTWRQ9MhOSZ3bn1/ob+pC7Mfx+WXejkyedjj1s/ROifZN8N6Ih+udqeovHaR2xn/ACt/Ulehj+Px + R72cU/OyS60fbdM6Z0/pkAg6fotPpIx/DDGG3865XXCEYKoqjllOUncma6VyoQBAEAQBAEAQBAEA + QBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAV6nTwamF0GohjmieKcyRoc13zBwo + aT0yU2to+N699lfwR1YEu6O3RyH/AImjcYj+A8v5Lnn4mKfaN4eVlj7Pgeu/YI4bn9D69u9I9bFn + /nZ/9q45/Gr/AGs6ofIf8kfD9Z+y/wCN+lAl3RpdWwfx6SQSgj5DzfkuSfg5Y+jqh5mKXs+R10er + 0Uxi1GnlhkGCyVpYfwNLleNrTOmMk1oyaqXWBl6aONzryHnb+BURgvY5F7XvMIMh2u7tuwPqocS1 + k9wBy7B7qKIsi4tsYx2JUcSbISuiZGXSFra4JIClRFkdrSxrongtPobRxFlgwLc4XWSiiTZ1jmED + 7w9qpOBFgthLrcKPItOAcjslFoLDWL9VPEWVM3F3mPbFYtHEWXbNoBa7zH1VXAlMi17wXAyXnOFH + AWdEv8Xri+ycCOQfJ5bP4qeA5ASPDfu/VWWMcgW6gvsNAB77qVlFIrZ7PRPhjr/V3n9g6RrdSON7 + IXFv4nH5raGGcv4oyllhH+TPt+jfYt8Ua4tfr5NJ01lh1Pfvd/ytx+a6oeDlfejmn5uNdbP0H4e+ + xv4c0G13U5tT1N45a4+FF/ytyfqV1w+Pxx/ls5Z+dN/x0ff9L6X07penGn6dodPpIh/DDGGj61yu + 2MIwVRVHJKcpO5M2KxUIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIA + gCAIAgCAIAgCAIAgCAy6/p2g6hH4Wv0Wn1TP8s0TXj8wquKl2iVJx6Z8p1P7LPgbXbieiR6d7v4t + PI6P8ga/JYS8TDL0bx8rKvZ8v1P7CehSvL+n9Z6jpfRkgZK3+gP5rGXx+N9M2j5812j5jqf2G9fh + cP2DqHTdWwmv3hfE4D14cPzWEvjX6ZtH5CPtGN/2H/F5ot1XSvl47j/9Kq/jp/aLLz8f9kXfYX8V + Tt2Ty9Hc3+aZzh/7FX/H5ftE/wCvx/RdF9g3xM2Pa3qXR4x2AdJ+jVb/AB2T20R/r8f0y1n2DfEZ + rf1rpTfUASO/QJ/jp/aI/wAhD6Zb/wDATrbvvdf6c35QvKn/ABsv+Q/yEfom37B+t8O67001wfAe + n+On/wAiP8hH6On7COshpDeudOPzhen+Ol/yH+Qj9EY/sJ661ueu9LLrxUMin/HS+yf8hH6Of/Av + 4habHXOlOHoY5Aj+Ol9kf5CP0UP+wn4ncNp6p0Yj/VL/APaq/wCOn9on/Xw+mbND9g3VB/5nr2hZ + /wD1wPf/AFIUr46XuRD+Qj6R6+h+wjQMN6z4g1Mg7th07WfmSVovjY+5FH8g/SPoum/Y58F6WjNp + 9ZrCP/39QQPwbS3j4OJd7MZeblf9H1HS/hP4a6WB+w9D0EJHDhCC78TZW8cGOPUUYyzZJds9oAAA + AUB2WpkdQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBA + EAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAE + AQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEA + QBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQ + BAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQB + AEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBA + EAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAE + AQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEA + QBAEB//Z + headers: + accept-ranges: + - bytes + access-control-allow-origin: + - '*' + age: + - '1632126' + cache-control: + - public, max-age=31536000 + connection: + - keep-alive + content-length: + - '31812' + content-type: + - image/jpeg + etag: + - '"b6a51d242511723c74b5e277f2ec0896"' + last-modified: + - Sat, 28 Mar 2020 09:58:48 GMT + strict-transport-security: + - max-age=31536000 + status: + code: 200 + message: OK +- request: + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - '42647' + content-type: + - application/json + host: + - api.anthropic.com + method: POST + parsed_body: + max_tokens: 4096 + messages: + - content: + - text: What is this vegetable? + type: text + - source: + data: /9j/4AAQSkZJRgABAQEBLAEsAAD/4QBWRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAAITAAMAAAABAAEAAAAAAAAAAAEsAAAAAQAAASwAAAAB/+0ALFBob3Rvc2hvcCAzLjAAOEJJTQQEAAAAAAAPHAFaAAMbJUccAQAAAgAEAP/hDIFodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvADw/eHBhY2tldCBiZWdpbj0n77u/JyBpZD0nVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkJz8+Cjx4OnhtcG1ldGEgeG1sbnM6eD0nYWRvYmU6bnM6bWV0YS8nIHg6eG1wdGs9J0ltYWdlOjpFeGlmVG9vbCAxMC4xMCc+CjxyZGY6UkRGIHhtbG5zOnJkZj0naHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyc+CgogPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9JycKICB4bWxuczp0aWZmPSdodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyc+CiAgPHRpZmY6UmVzb2x1dGlvblVuaXQ+MjwvdGlmZjpSZXNvbHV0aW9uVW5pdD4KICA8dGlmZjpYUmVzb2x1dGlvbj4zMDAvMTwvdGlmZjpYUmVzb2x1dGlvbj4KICA8dGlmZjpZUmVzb2x1dGlvbj4zMDAvMTwvdGlmZjpZUmVzb2x1dGlvbj4KIDwvcmRmOkRlc2NyaXB0aW9uPgoKIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PScnCiAgeG1sbnM6eG1wTU09J2h0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8nPgogIDx4bXBNTTpEb2N1bWVudElEPmFkb2JlOmRvY2lkOnN0b2NrOmVmNTcyZTAyLTA4NTUtNGFmMS1iMDA1LTVjNTMzOTllMTkyZTwveG1wTU06RG9jdW1lbnRJRD4KICA8eG1wTU06SW5zdGFuY2VJRD54bXAuaWlkOjE3ODBmZTgxLWI1OTQtNDdlZS04ZmJiLTNhODRiM2FjYzcyODwveG1wTU06SW5zdGFuY2VJRD4KIDwvcmRmOkRlc2NyaXB0aW9uPgo8L3JkZjpSREY+CjwveDp4bXBtZXRhPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAo8P3hwYWNrZXQgZW5kPSd3Jz8+/9sAQwAFAwQEBAMFBAQEBQUFBgcMCAcHBwcPCwsJDBEPEhIRDxERExYcFxMUGhURERghGBodHR8fHxMXIiQiHiQcHh8e/9sAQwEFBQUHBgcOCAgOHhQRFB4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4e/8AAEQgBaAIcAwERAAIRAQMRAf/EABwAAQADAQEBAQEAAAAAAAAAAAACAwQBBQYHCP/EAEcQAAEEAQMCBAMFBgMGBAUFAAEAAgMRIQQSMQVBEyJRYQZxgQcykaHBFCNCYrHRFVJyCDNDkuHwFjSCshdEwtLxJFNjc6L/xAAbAQEAAwEBAQEAAAAAAAAAAAAAAQIDBAUGB//EAC4RAAICAgICAgICAQQDAQEBAAABAhEDIRIxBEEFURMiMmEVFEJSkXGBodEjsf/aAAwDAQACEQMRAD8A/stAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBALCWCqTUQR/7yaNn+p4Co8kY9ssoyfSMs3WukxGn9Q09+geCfyWMvMwR7mjSPj5ZdRZlk+JujsJA1D3n+WJx/RYy+S8Zf7jReHmfopd8WdLHDdU75Rf9Vm/lvHX3/wBFl4OX+io/F+jum6TVG+LDR+qz/wAxh9Jl/wDH5PtFf/jLShxDtFqQPXClfL4vpj/Hz+0aG/FeiIBdp9SAe9NP6qf8vh9plf8AQ5PtFrPifpbuXTM/1R/2Wsfk/Hfuij8PKvRs0/WOmTkCPWRWezjt/qumHlYZ/wAZIylhyR7RuDgRuBBB7hb2ZHUAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBALQAkAWTQQGTUdT6fB/vtbAw+heL/BYz8jFD+UkaRwzl0jDN8TdIjONS6T/RGSuafyXjx/3GsfDzP0Y5fjHp7f8AdwamT/0gfqsJfMYF0mzVfH5H20UP+MmnEWhdf88n9gsX83j9RNF8dL2yiT4w1d+TRwN/1OJWUvnfqP8A9NF8avbKX/FnVCfLHpwP9B/usn87P0kWXxsPbZUfirq57xjPAjWb+cy+ki6+Oxh3xD1pwxO0fJg/ss3815L6olfH4UZNT1zrB3N/xCRr9u7aKBr14XPP5fy3rkbR8HB/xPIm6r1aeNzZeqaqKM0A8yn8vVWx+dnkuU5Mu/GxR1GKOt0koIcdTM+m53vJs+qxyZ5yVWSoxXoubAAAaaXD1FrDkywfADtpzmUb8hq/+ilSFl7Q457e6sm2UdIs2hxzWPdWSsi6JxRGhVUDeeylIq5E/D3WD2UWLIGJpoVVKrmySt2wP8PeNx7Kjlvssk6si5gGKtU/I0yasnp9Xq9Kb02pli9mux+C3xefmxfwkyk8GOf8kevo/izXQkN1McWob6/dd/b8l6eH56a1kVnLP46D/i6Pb0PxR0zUU2R79O/0kGPxC9bD8v42Xt0/7OLJ4OWHSs9mGaKZgfDKyRvq02F6UZxmri7OSUXF0yasQEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAYtb1Xp+j/8xq4mH/Ldu/AZXPl8rDi/nJI1hgyZP4o8bWfF+lZY0mnkmI/iedjf7rzcvzWKP8Ff/wAOuHx83/J0eJq/ijquoJEcjNO30jb+pXmZfm80v4ujsh8fij3s8ubV6nUk+NqZJj/M8lebk87Jkf7OzqjgjDpURiHsMrH87L8SwigB5Qb/ABUub9ijhaC2/XIA5Ucr6FbKHwyukHhyuYALqlVtl01Wybi7xQDD5Dy7dwq37Y19k7j3bA4EgcXlOSZFM6Q0FSmDhe4YaW2toNeyrMmojhfqRJNNUmNrN2Vn+OKlzfZdTlxpEtDozE1zQNpLtxLvMSp5ykyJNHoeG7G0gVzhXMrLGRAiyiiuyHIl4efu4U7siyzZTBYq/VaLopeyFNbmgCVVuidsBziPqq8m0TQLicXapKbsJECSPmcYVbZajgHmDnNBITlT2T/QkcCMt5VJTtXRKVGejdbRfuVQsUysdmue1KvFlkzHO6WMDn1KhylHRokmd0vUZtO4Phlkjd2c1xFfgtsXlTxbi6KTwxn2j6Hp3xd1KEATFmqb6OFO/EL2fH+dzR/n+xwZfjscutHvaL4z6RLQ1T3aJ/8A/KLb/wAwXteP8z4+XUnxf9nDk+Pyw62fQabUQamIS6eaOaM8OY4OB+oXqRnGauLtHFKLi6aLVYqEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQEXvYxhe9wa0ckmgobS2Ks8zWfEHS9MCP2gSuH8MQ3fnwuTJ5+DH3L/o3h42SfSPD13xhIfLpNI1n80pv8gvMz/NpL9F/2dmP46/5M8LX9a6hqgRPrJS08tadrfwC8jP8pkyfylo7sfhwj0jy45Hl28uG08NA/qV5kvJvZ2fjSJh1H/qsZZdk0drmyVTlY6LIm0iXshsvDmhoxdrTkkilMmGx7g1wNHgrROPRG+0de3NWNozkcqbphHXNOC0fIAZUte0EQ1MPiwPZuLScEjsprRMZUzFD0+PTzeID5uAfT+6zn9Gv5OSLXl4cBW6ya+apbIpE9PC4kvlsE8AcLVR9spKS6QZ0+Eaw6rYPGd3OVrbZXm6o1+H70e6cf7KWXCM91dQfspyJaJmocXCZjGi/LRvC1xwfTK5JR9Gh0dAXVqzhRmpFTiSDbc/Psq/+i9GPVNO8ebAyOy5si2bQejjXhrNp5GQq8qVMNWdLiRd1hVk72EYuo6ySCNohaHOcaG66J9Meqon6RrCCfZc2V3htLwA4gEtB4VZuiKR2WdpABI+Sq8mqCh7Ki+nYJNmqWfOnRbjob80e3KtGTFGfWh72kRjJ5KSm2y0El2ZodI6F2wuLmu5vspaJcrL2tEYzwqp0Q3ZlifFqpHwlpDhdtd3C6FfZLXHY0Olk6XqzqunavUaR3cRvIafmOF04fMzYv4ujKcIZFUlZ9n0P4xnYwR9UjE1f8WJtO+o4P0pe743ztazL/wBr/wDDzM/xy7xn13T+oaPXx79LOyT1AwR8xyveweTizq8bs8zJinjdSRqW5mEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBACQBZOEB5HUfiPpOiDg/VNle3+CLzH+wXJl83Di1KWzfH42WfSPn+ofGOokxo4WQNP8T/M7+y8fP8AOV/BUd+P43/kz57X66fVv8XV6iWes052B9F42f5HJle3Z6GPxowVJFPiOcLvn2XFLO37NVBIqa3VeI573MDD90AZ+qzyTaSLpRObXCy526+AuVttl9GCePWO6hDNHqxHBHe+MN++fcrSPFQarZa0enC4XZo+uEUd2zNljXlxBoADKs0Vol4jawQPdQ3aFEXOc1hc9zWtGSTiglMsq9FsT3HJdYrFOwiZDijQ0Nc07lsqrZlf0TY1t2LvgUrIhst2+1BXp/RWypjGSAhjwdp/BVjj5dFnKuyswbyHMmc0NdRAHKusSSsnnWqNLYxYx+Sso20ZOQ1csWkjEuolbFHdbyaC34NFY/tpF2na0x7rDgeDzYSMdbIk9l4bkXlaKJnZaGhtlbKNGbdlctAZ59b5USVItE8jqHUvA6lBpf2eR0UxoyMyGel+y5pS/al0dMMdw5XsslNU6rJwRyAspfZK+incHnccbcLKX2XWiBeQD6dgsJOi1IrJO7ncsm2nRZIOcDi6JSU7VEpUUTbQ4ZJIqlhKWy6JBwxZuu6WiKOtLd1AlQmrpD0dwD2VyCEjgXcgFW57JSPK1mp1cDwWnc2/uhvZaR4tdmiimW6XqehJaHzMjmPLXGiFMbq0VlBnrR051+q0jfsxZN8QBugPda1RSzkZfHIHxvex7ctLTRH1V8eaWN3F0yJRUlTPo+i/FckREPUwZG8eM0eYfMd/mvofD+a/25v+zzc/gLvH/wBH1+l1EOqhbNp5WyRu4c02F9DjyRyR5Rdo8yUXF0y1XKhAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEBk1/UtDoG7tXqY4vRpPmPyHKyyZseJXN0XhjlP8Aij5XqnxywF0fS9I6UjHiS4b+AXl+R8tGH8V/2d2L49v+TPlZ+rdY6mXf4nqw8B52xxjbGB2x3K8Xyvkp5dJuj0cPiwx9IobZOTxwBgLysmdvSOpRosZGLs5oevCxUW+yXIm1oJvhQ4iyYaKpZSJsi62Ns2s9pFlsol3vYQbziwqrkyyohCxsbeMVXqVtBU7ZEnZc124bGhaXeitVskC6tjaA4PyUf0P7IxsNk0XkqqRLY6p01nUtKNPLI9jQbtvK6ITUXZRSo26PSxw6eOGIHawUAeVRwcnaKub9mlsYJyaV1Dk6ZRyoz9WZ1EMYOmmAPJ8xkFgD1rut1j4rQjKL/keixjnQtEgDnV5qC24trZi3T0WxxtbdNFnJwrwil0VlJvsp1ksOjg8aZryLApjC4knigkqStkxTk6RpiY17ARYvPotIRjJaM5NpkdZptPqIy3UNa9vNPyFecItbEJyi9GjTRDwWhjcAYAWmOFxVIpOW9knx85OM+imUKKqRF5DBZvIVZPiSlZRO8AVwDxhZZJJGkUefPRO0msWCPVckpejeJBr7YDZojsVCaLVsyTFodff19VzZGjSKK3zecVn2pZORZRIunDQboHhZymkWUbISSNDfvZKxk0kWRSZGl5AGR6rJlqOmQ1d9spy0EjrZqrIKKZHEsY8VdjH5q0ZINEQXH1u1O/RBXqoRKwtddfNaxk0SnR83r+jSOnf4UUUoloEuiDiK+a6sXkNOjRtNWfU9FgfptDHDIRbbAo3Q9FpKak7Oafej0mAGrdhSjJmbVxl/3XuaRxSJxT2XiQiDyypCC75KG43oM09N1+r6bOJNJK5h/iactd8wurxPOyePK4MxzYIZVUkfb9B+JtH1DbDMW6fU/wCVx8rvkf0X1vh/JYvI10zxs/iTxbW0e8vSOQIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgPG658SdM6VuZLL4s4/wCFHkj5+i4/I83Fg/k9/R0YfFyZulo+F6t8c9Q1u5umkGli9Ixk/wDqP6LwvI+Xyz1DSPWxfHQhuWz52TWl8m+aWyckuNkrypZ5N22dqxJKkiqDUROcZA7PAs4AWMp2acWlRdJqJXuEUNCxl226UaaCiltmuBu1jQXbndzwsZRVkNlwDqOa9CoSIbLGNaxznBxJOTnH4dlf9UV2zsr2wxPlJJDQTQFk/RZ/iTdkp3ojpJZpYnmZrQd1N2ggEfVROK6RLST0dlBqgOFTjRKZ5utZr3ahkemc1kVDe40c32WihGtmkXH2elp4ywE15ji75VEqM5Mm2F98iuwClRbIckXhgibtOScq00oKit8iUTHEgg8+yzindhtE3Oe1tNDS4HK0U2lRWky7T22EySjbgkn0C6MadWyk3bpFOj6hDqi7w2vG0i9zaOQinTomWJo1RXuojnjNq0bumUfRujadmQaK7YRbW0c8ns65ji39Sr8ZUQmrDW1QHPt2UKFBys6IC+43ttvcdirrC3pkOdbRpi2tYNre30pdMKitGTtvZVNIBnk/5VnOfsso+jyOsdWdptRHC2NobW5xvO3vXyXJ5HkOLpLR1YcCkrZKV2/a7kUCM4XPkbdMmKrRRqBuaLKxnG0aRZkcdt5oXhYuVI0SMk7wBk+65pzNEZ3zEE5rtaylNl6PJ6pLMRUcr2U4XtFlw7gehUY5rlxezVR1Zq8Z/gnxK3XQo8jt9VWfWiEtnWTbgCfWqWdCjrpKwDdqjjZKOMeL5NeirVEmmNxIzwrx2UZfG68BbRKMm4HcCKIH5K39kIm2Mb/dbRuyG9F7DRrg/wBVrEoyfibWgjjurOVFasi6QOcSSKVeafZNEbtu7uob2DnPooiwyl8bC6yM+q2x5aeiH0fRfDXxTLoS3S9Qe6XTcNecuj/uPzX0ngfMcahm6+zzfJ8FS/bH2fewyRzRNlie17HC2uBsEL6aMlJWjyGmnTJqSAgCAIAgCAIAgCAIAgCAIAgCAIAgMXVuqaHpem8fXahsLOwPLj6Ad1llzQxR5TdGmPFLI6ij87+IPjjV6/fF07dpdNxuB/eP+vb6L5/y/lpTVY9L/wCnr+P8fGG57Z8lqNS3YTI7BPfv814rk2eko10ZGTDBaB6C8rNs0oqEMs5t+1luOLtZy0yUz0tJpWsWfIhs3MA5vHspsqzkkkoH7jIB85IwM/1WkcbkrIVeyIk1UjWtc5rHbjbmGsdgspR3RNJGrTtDI/vOdnBJVHoh7Lt2E5aIo611CweVFirJAgiiociaIjLsg1fCrzHov2vIHhi891em+iuvZshZQxyV0Y410YyZ3ZZsCnFUkrdk3QDQLDaoKij9Cy5sIbEZHYo491vHEow5SKOVukTcwPaY9ocHjN+i3S9L2VutlLII9O7Zs2BvFDGVk4qEqkX5OSs0QMvyN/zcjC3xwb0vszm/bNTXOY17dj3CsG/6LrTlGLVWYum7L9OC2Onl3tldGKLjGmZTdvQlIDSQL9aCmdU2FdnGSHbbmECvkqqdraJcd9lOqkBa7z7cGgPdZZZqnui8E7Mh1Bosa2vQhcf5ntJG3D2ZtS2J8e6aFr3A+Xc28qryJRtovG70w+S2juayB2WUslkqJle85+S5nI1SMk8hq6XPkmzSMTHO80RtyfQrBytGiRklcbs5PCo2XSKARZ3d/ZZ3TsuRLy4WK+vKlz0KIeKQ4N5Ko5E0cLnHsolJ+iaJiWhbhfe1C32KM+j6w6bWxQiFxhlxHKB5b9D6Feg/GcIcrKtI99hAcSCaWTpbMibX/kpjIii7OO9rUoTLw0njAWl0RRSZQ4W0ghZymiyjR1j6N8KIOmGjPrp5YQ0x/d5PlJx9FvCPJ7YSRfpZQ/Tsk2uaTmiKPKiap6KNUxO92w+HW6sWohoUYZ/En0w8X908n+E8LXklLXRKR7vwj8SajpUjY5Jf2jROPmaOW+7ff27r3vj/AD5+O+MtxODy/Fjl2tM/UNJqYdXpmajTyNkikFtc3gr6uE4zipRdpnhyi4umWq5UIAgCAIAgCAIAgCAIAgCAIAgPjvjv450fw+DpNM0avqLhiP8Agi93n9OT7Lg8vzo4FS2zs8bw5Znb0j8i6h1bqHUZ5Nd1HUPnldwXYx6AcAD0C+Y8jyZ5ZXJ2z38eGOOPGK0YNb1M6dxLHkMDACGi3c8gLGSvSNFrssY6NrHaiaUljfM5zjhoWX9Es9TRxB8bJGHDhbbbRpYZZ8XSJXRsZCABbBfPCxc7BcLDTbiPphLIG5waABdm/kpUgZP3p1BuR5jr7jQM/VW/K+iaPR0w3tFNLa7FZXbKs0AAGyKs8BVciCQIrCjkTRyN2SAq/k3SJosYDu4UXshk3DzAg1SmSd6IXRY19AU6wRYytOTiivGy5jnCnX7UtIzZRovjdv8AM0Z4K05ctoq1RMGneUH3RPeiP/JoLfIGkDJsf99l1uGqMb3ZFoJaDQJ49KVYptWWZ1waXAkH7ytSb2RbSNcbWCiB3uweD7rtiorZg2yZdE+TxQcgUdoolatwcuZX9kqOlxa4Fwce4FYTlT2KtHJdVAGEg3XOEn5EEiFjlZnGsbZcXBcy8pdmrxPoyzzOe6xWOKXJlyuTs2jCiIftGcWqc+K2TVlE03lLt3yFLGeV1bZeMTKZyTeBfusPyts14lMklEZu+FlKVFkjLK+87sLKW0XRidOHyviaHF7AHF1YN+6rGL42WoqcTgHk8rFtl0VOxgHKzvdFkVlwaMVyp6JKXWT7+qzlL0WRdG8gUQpjP0GhIzA9VdVeyCvR9OhGojnpzTESWNDiG2eSRxa7Hnk48PRVntMqqAWX9GZojAAIWkaWijJucKNDIV71ZFFTjnOQfRU5FiJkaCG4GPL8lLbe2KAk9bUKZNE4jdWMAXlb45FJIkXkWBx2W3ZSitxAIvHzWT0SZpyS1zW0FRyd6LRR5cbJoZbLrBOTf6Luh5Ta4sSguz6r4Q+Jn9D1zYJy52hmPnAztP8AmH6+q9r43z3gfGX8TzfL8ZZVa7P1mCWOeFk0L2vje0Oa5psEHuvrIyUlaPDaadMmpICAIAgCAIAgCAIAgCAIAgPz77Qfjlui3dN6RKHag22Sdudns339+3zXked8isVwg9npeJ4X5P2n0fkmsd4jy+WWrNlznZcV8zKbm9HuRjxMWu1kY2xAl1hUxQcp2/RZ6Qh0b5xuLA2hg1mrtMmVRJSo9jQwNbHsewFo5B4/PlcjzPuyWj1IbPYBcs5XsmjQBgZq1VNkFhOaJWzZU61wsiyL4UckKObWtaSAM91VyJITax2nY7wmtc4NJt7qGFrii5bQ432aHT7o2PqiWgkei5c2SmIxo7vsAAmxyqc7RNFkbtpJ5tIyp2Q0Wh7Qdw7rS1dkNASguJyAe1qzkmRR1juANoVLfoksZNbK7nkBSp1Eq1s1aeUgcnj0WsMjM5RNYoR7iTXJ25XXD+NsxfdFj3OcNzRgZv1XQ3KStFEkuzLPqnskawENLji1jLJJOujaME1ZZotQZfMT5PWsrbDKT2ymSCRuM7WgtLmtArjJXb+RJUc/Arn1OwYc1u4491XJm4rstHHZlGp8hdvc1o4oXj1/6rKE+Su6NHCmZ3ucInR7wScmzn2WE4S4uP2XVXZnfNUwh3APIGCeVwy5J8TaK1ZqikG2ic/LlbwlqmZyR2R3mvv3UZNMJGSVxdQJtcs3ZotGSVzvEqjS57dmtaK3S54RsUZ5DuJIKyZZGdwPiFQrRYOaS3cApa9kJmd+HZ4XPJ8XZouiuSt3zUTkSiLKBs/TCrFpbZJJh9+yRZLL2MLqrK2Ssq9GmGMUCW0AtUijZuiZ2AHrZW6gZNlrWgWSL+iKNEWda1u6/b8VeK2RZVKQBTW84Chq9IsihzZTbQG362jxTqi3KPZywDtuz3WVcSey1nrYpaxKMSuG0uHZdCeitbKoj4j7vybSS4+3Zaxx8tFW6MX7S2R7ttj2PZc84uLs1qirUSNa7jylU5bLJaIRvEgvd2pdeKdGM4n2X2Y/ErtJqh0XXPP7PK7/APTPJ+44/wAPyP8AX5r6f4nzqf4pdPr/APDyfO8a1+SPfs/UV9GeQEAQBAEAQBAEAQBAEAQH5r9pfxsYBJ0jpEpMgts8rDn/AENP9SvF+R+Q4Xjg9+z1PC8Pn+8+j8sp7R42odbhZr9F81kycj3Ix9H5/wDF3W36rq0eghla2RzC18buGg/xH0Py9V3YcHGFvpmc5fslF7PoPhLTaieMS6gvzW0jsB3XN5Tjh/VGnez7CKNrGbSTjK8WczRIsobhk5rv6LKWQskSfrINLs8d7gHuoU21MISmGjc6UB3lcHDsqykk9EJfZOJxec5/qibZDVEhdg9/RU5OwdJ2DAHqp5UR2Zjp/H1BfvIaBRA7ha4s0kmkS9GgE1zVei5WwibD/wB2rIMtY4EEckKe0VJh4r+6t6IIuLmluRXf1R2idMpZ1TRN1o0UmpY3USC2xu5KmOObi5VoOJuY4duSqaKs1QmqbWeV0wj6M39m2F9x7S5rb7c2V6GK+NdGEu7Iaqbwg5sLnEVgDsVabS1FiEeW2fN9J6lrNTqptPqtpYGb9xBDmFxND8FSUaSOuUYraPV6bI/SzPjL8PaAS68AY/VW8eUsba+zHKlNJnpO1JaWMbGC7gurgLf8lUkjDhe7KdVM9udzAGig3391TJNotGKZgh1AdqHWS9tgOBxdfosceZqW9o2lDRZNq2iZ73HigPVy6ZZouVsyWN1RjYIZeoftDawRQ3XZAIuvkVySyRc3RvtRojLq9U3UPdG9rYYnN3AtNubWVmo+0yyjGtntaiTa0AmiR6LTNLitnNFWzFI+6rAHdcUpfRskY5389zePkuecjSKMcjpBm8FZcmma6Ade0HhW90QURakTBwAcAHnkKW/Q40c1Rd4L2sJJcMUa/wDwtYSSdkIrH+7Hldkn7xshY+SoydoumRIXFxLBjNwJHoteGhZNkarxFmyJlMFcroitFGzS2M7G44W6haKXs1Ri69O62Rm2XNYNxHorqFuirlosdHQrBdVLX8fr2U5GTwnySE20bcNF4VsOLk7ZdzUUWQ6U0GNbnmucrsjgbVIyeT2Z9VC5jWVe8fev0XH5GCl/ZtjnZRG8ZBI9aXBjbs1kiMp2t2k5vgLoi30ypRJuOn1DWnbtaM+668XtFX2jwGzPZMLeWuKplVRZv2bJiJIiWkh39VxJU9hGXfMG2004EA4x7reM6IcUzRHqY3PEe6pB5qGF14ZuuSMJw9H7X8A9b/xvobJJXXqoP3c/qT2d9R+dr7f4/wAr/UYVJ9rs+c8vB+HJXo+hXccoQBAEAQBAEAQBAEB8H9qnxY7pOlPStA+tbMy5HjmJh/U/kPovM+Q8z8MeEe3/APD0PC8X8r5S6PyCCTdJvJvuLXyOWd7PfjGjy/iTVSN0M3gAl4aSADWVHjLlkVl3qNn5z0/omuf8SSzTwtdJO4OMkbhgdwP6L2FOPG70jmhFSfJH6r0hhh0zIrsgL5zy8rnN0dcUbzqPDAsEkmqr+q5scHMvRa59nGFzt2yaK3RyPkG57gwjLOxWqyyjCl7Bsa6h3wsbshmfTukOuZKfEG0ncTw4ey655YLHxXZDVnqiSzdhcl7srR3eCCOfUpaqhR0lzW3wHdlNtIjtkWkb9vFjkqkVssTbTO9lXVIh7LWjkqyiVs6XlvAFnNI79AlKbq3dvRWkrIR4kGk0k3Wv2/8A+YDSG8YrBWryzWPh6NHo9yM2ObXMlZQ1xvGQXZ9b4XRFb2ZNFxkG3eLGO5yPkutS1aKV6Kn3QdIA0UTQ4v1/BWSrsm/SMZe9zXiJ8Zf/AAb8A+lqYNN9l2qJauEaiN10OHADix6qzpuyIyou0Gqf+xsj8QiQA2HC3DOFo5cFSZWUbd0Q8YDDt7nXYBGVyue9luJAvJ3cjNVShyJozlgJNO5+870/6rLlT0XJQMc0gg7WgX7kKFFvZDZqiLA9r3C3g20nNLSGTiUlb0Xu1FkAiwOVSea2VUDPLINzQRhc05bNEjNMasj8Fk3bNEZnnziwq1st6I+LHI0hjtzmHzUtZppWyKaZEMa2y0jKySXom2+zriNoN36LROlsrRRIS1th3zWU0WR5TdeZI5XNcy43eYNGQO62/wBPwr+y6KdNqp3xifUOLIDZZTtoHuV34/Ghx6sSdM+l6e1s8bXNc14AGWmwvPeH9mjOUqPUg05qg2u9rWGIxcy7wCCMkAC6pdMcdFOVnkdK1PUD1mWPUsjEBB2bQRXpZ72tvxwUE72XnVaPejie5+1v3hya4URxybpGLlS2WStc121gs83a2lGnUSqd9mLT7WSAyB204Pp81GCou5dGk7a0am6qCCV2yiweUD55wu9Zow2ujneNy7PM1ZDZ4iQa3FxJdkg+3ouTyMl060dOOOjz9Xo2yyO/dtkacgOJFH1wuODUfRupaNUYcwMJqQtyb7lFKnZR7Ms7JXODrBJux2pTGTuydI8TXwls/iFhczb90E0z3Hqt4Pndl70QmL2xNouaQebXDW6ZcyN1UrJgPC3Nc4A+g91uoR4hnpCGPxvGaPNVX7KsJPozZ9j9lnUH6T4obpXO/d6phjI/mA3N/ofxX0Xwmfhl4P2eX8jj5Y+X0fr44X1p4IQBAEAQBAEAQBAeZ8UdY0/Quh6rqeoy2Fltbf33HDW/UrLNlWKDmzTFjeSaij+bup9S1HUtfNrtXMXTzuLz6knsPQBfH+TllkblLs+nw41CKiicbSyAm7c78gvNmzdHg9di1E2nMcOzzupxeaFfNaePNRbstJWVMjdpXwxxsY2Z2HFra+ZWn5G4t+hxrR9Jpydl444Xjzds0osNOIJcSLuvUqrm0qQNrDaxJLY/vKrZBZG+N2o8Enz1ur2WkYOuTIZNg8xogBVTbDLm8VZpEipZuDff1UdEEHE9lSTLIi1xFi8qE6BezzDbeBlXjsq9FoO365Wl0VMnUtfF0+B2qkugPK28uPoFbFjlkmlEmtbMuh6nJ1TRNkaw6aXfRa9t4B4WvkYvxzqTslJLZsjNP3Y/RcyZLNMEzDIIt/mN0Ftji3spJas1Ne4guJoNofK1qk6soRn1O0iPa+/8wPf3WyaS2QolGp1bnsqMlvAJ7co8ql0WjCuzXp/2eWPczG30GD/ZaR4tGcnJMtIDmlgoAmiDWVr3pFTPG39na8k2SSLvJP8AZZ1RdvkYenQakdQlmm1L5GkEBpAq7xQ7KKhWuy8nqjZO4gOsEY9OCsZOiEUgta4C3bb7rK0WJF24HbZHy4Ch20KLY3Zs9vyRdlWQM5dqZABTd2MYWU53kddFuNRRF73HdZ5ws23uyUUyyANDBao39FkjM9/sePxRf2WohoY26djwCS52C480uiebmqIZY544qvX3WNaFHAWhvGfdWjohnSA9pBItRLaIWmed/hTPGe8NsvFOA4IUPPlbSk+jRSSMEfwvKYpozJLIJi4kvefLfcD27L0sfnNdR0Vlxfs+x+HtCYdLpmuDPKwBxGLA7/NZRXOfJ9MwySpUfRRRxNbgC+RZXowhCtHG5SOStsnIoBRJEp0YzC1ri4tB2+o4XM41s2UjZHEWsBB55XXGDSVGLkmyT2sa115NZNLWkkyqbbRjmc1zwCBdZWEpW0apUZJNwBlj4B+8QqqUl+yNNPTMr4zLqGCRxIcbs5pZSvJNJl0+K0da1r3lodIWg3Y7hXWONleTQdDtldja0kEBRlx7tImMtFUu3blY8lVFjyNYwEkuAcBwDwojJ2XR58xiO5hdkdlScWnZojkUUbojQFj81Rtk3TJxvDXt59wrYnsrJaPa+GdQNL8R9P1LuG6lm75E1+q9bwMnDNBv7Rx+TDljkv6P3kcL70+XCAIAgCAIAgCAID8W+3jr/j9Uh6HFJ+50gEswB+9I4YH0b/7l4fyuff416PX+Nw6c2fm2mG+Sz+C+dySs9qJvstYAaq1xyNEhLHE5hL2tdWQCLyqxdAyRaUHUumke3e4W1t8BMkmo0iUbIzYq1xUWLW4OSLWctEmiN1cLNuiS4SDFHPunZFFkThu3BrQ4jla9oqy9khbzVfNVTpCiQe3byofRAbKN4YSCfS1W90GW2eDi88KP6ZBAYIGCVWixfGRVdyVrFVooyZNn5cKWrZBh6vpItfpxBKXVusFpyDxa1w5nilaJqyvpmkbooWwQ7i1vq6z81XNklklykW1RsMe54ceDyqRjfZFnXxuE8czQHFjt2eQO66sdrplbTVF7pNkzyXG3YouNY9B65/JRKVFUrRbK8NiLw3JwWtx8yr6asquzJLsB2g4JOAPyKjSL7LY3MiDntbtB+9nOFqnRV7IP6nNBU0hJi45491pGcifxxZpM+9pccF2cBVc/srxog1/AG6gR/wB2spSsmg+Uh7g2jYqgVSUqWiUrKZHyWPNgnzCs8Yr81VyVf2TRJ0mALq8kk8qjlolIkHmiL96tR6Iob2i+KBWb0TRB8g3cc91nJlkionxbIND+qqkT0QIJcK7cJTbJBbR2tbQGAojt0R6IuG7laA4WA422BgK12QXgN7gAcKWippg21YKrp7Ks3aeRgNdvdaYsiT2UkjUS0NBYcHHC6HJVcTNL7LS5/hW1xBAwVtGTqytKzZAHPbbiCDmwuyCckYydF3hNcKs0tlBPRTk0WbRHwLrOQt+Kgil2Z53MAqsDn3WU3FIvFM86aRpaC5oNckLjlNVbOhLZHTTeLpnOe0NaLptrfDk5x30RONS0VTTRxlk2wuLiW4OAKS43yXZKTaohpNQ1wcWjyh2OKITHliRODGonuK2soDgkrPLltaJhHezy5J2W4WDRzXIXn3TOijFqJGuHlsdySVbRY82W9xIpxJz7KsmaIq2bWue3B4OVk0y1iMjcN+TznstIlWbfFO1rwQHNIIH9F2KVU0YtXo/oPo+rbr+laXWNIInhbJ+ItfoeDIsmOM17R8nkhwm4/RqWpQIAgCAIAgCAp1uoj0mjm1Ux2xwxukefQAWVDdKyUrdH8qdZ183VOranXz5fqZnSuJ7WbA/T6L5Dy8jnJy+z6fx4cIpHNK114x2XmNnXRqe4cEg+65pyosiqSQDvzznlVi7aRJn0WpdOS4FwY1xouaBnigtc+opII2sftsg2eFyTdIskTZLZ9+655fsW6NMcny+ShxIJulANDj0tVqmDHr9dNGAyB4id97cQO3YWeV2ePiUlciD1mTmVjXvAa4gWB2XPOmyEqLDIsXdWCELN2pD3UXDjHFqsG7oSNri44JP07K7RREA63V3HKrVFy5jqujQ7FaJ0UZbuJIOCPS0u3bIK33vFi/ZUd2WROKwcNBA7+ivFshlhvbmwQfRapOitnN742Oe4HymsdvdaxUmtEOitj/EkIe2xeCeff5KeLb2OujQ0gtMVguHcYsK/G9IrZlkbMzcBtEgva8NJbfYlQotPZe00GeI9jWz7WnhzQQc9yCr1vsg5bGt2Gg4i6/75UN0StlkLtrALBJ57/gqN0QyEkrGMJ4a3JWLkWSKdBrYdVCZoC8tJI87S04NWrSThpktFpe15smyO1rHkuxQc+6rCOVkpUcDwPKbHrhZttaFWc/aKbRI2juUUm9DiVOn3yeG0mhyb5S0Wok+Q7gatvol9EUd8SrAPyVLV0TRIPx95SkQzm7t7q3QOtzVWoaBKxznPBVZScUQWskoiqruq3fRFGgOI+fos5Sp0RRs05LhySunE7M5JI3xgVThY+a9OFVswf9FsUnhB9tLhdAdqXVh0tmcldDVzmXp/7mVsUpHkJaTRXTKKlFIrFVIu0+rA0sbZJzJIPvcVahZ0o1eyJY/2tIz6icEEOJIK58mS9M0jGjFqKMb6JGMUVzSSaNYvZ4ulj1TNV+9k3QEGwTye3/5U8oKFI2k7NGrc6VoBwORRXNKcmRFJFbdQY4gwVtA4pT+RqNBxt2ZNZrpAwBoBt4FXwPVFK3TeiygjzD1Brn7IgHvINnAvP9V0ShCrFHXzDaQckrnapEoyiXc/IH3qUcdWWJv1LWxuoWQMD3RRUmLMzZRJTTgnJHotoRXKkG/ZqhkIYdwPNBdLgjM/Zfsg6kNZ8NO0bnXJopCz/wBDvM39R9F9f8Nm5+Pw/wCJ8/8AI4uOXl9n2i9Y88IAgCAIAgCA+M+2bqX+HfAWtANP1JbA3Prk/kCuXzJ8cTOnxIcsqP5ygkLwHON918nnZ9JA2QyUePzXnyezYucWuJq691yZNsutGNjvFDsmgashWxXHbDLWzMhZ5gS3vt5r2VlLeyTNDLp26l37I+UxEZMgolyt5DjNJIR0Xt1sLZQx7yPUgGh9VhHBJq6JbNvijfXb2WElsEi8FtH52qcaJsiAHUXgGuDVrRNpEM1wvrvRWD7Bra/LSbNKsrYL9O8b8Ak83fBUxiuykiOunk8YaaCQRSSXTjzddl1ePiU5vl0iOkR6ZJM+E+OHCVhLCSK3Ed1TNiUJtIs2b25AzlczVkEtwDtp7KaBMt7i1DQs6HBtd7GVaOiGSY+2u7V3tbweirRi6rLqH6VkcL5Y2PsGSL7zfT/r7Lrw/wBhJWc6eZPDj8d5MrRchaMWjW9dCRsAaC5rppGtczLgQHDnINe6Jq99Fd0YtS7UnqkMkWpI07GVICfvH3V248HRZdbL5HhoL2BpaATf91irb0P/ACUM1One4MbqojJjF5PyVf8A2W4v6L9uobHvcWtF93DP0UShOrITVlD37jW6hecrlk/RdIhut5kslxFEuJJpTzbVMmie4XdeyzYDnHi/xVaBNso9CW1kArVNV0RRVIQBwSD2qwqpNO0SQjLsknzE8Km/fZJbvBoHlS3ZBK69M8qtbJBPPBV02Qzm4XknlVuuySTD5jbgQeB6KeSfRVlm80CVD62KOxO3eajQ5Wd7smjbAWnNEm8IkntlGboSA0ALbGq6MmWtmoltrphP0UcSxsor71Arohk/sq0Zp3NLwd5oZGUlO32XWkSje2NtAD1J4UqXEq1ZGTUbiSSColksKBQ+cFoHvws+dluJmmlF4JIBwqubLpGabVc1Z+qz52WUShzy+81SOL9k9HjdS6gdNqGxyYY5tl3otMcOUX9lkr2R0joTHujGHeYEe/dW5NumGiM0rQeCPdaKmjMxumcJ2sI+95leGPki39kRI7eWSSNe+81+ql46YsGxI1wFFp/JRHTJvRdp9W6WNzJm4ZbarsutyTSM6Pvfsb6qNF8TjSvfTNcwxV/MMt/UfVex8Nl4ZuL9nm/JY+WO/o/bgvqjwQgCAIAgCAID8m/2lJnM6B0yFv8AxJ3k/Ro/uvP+R/gkd3gfzbPw6BxaavIHdfN5j3oGiKYk82vNnFnQmamTgD3I7rmcWi9kHytA9lb0QyoP3iyA0+l2qtElbntZjIF3jlTjjshspdPpWvfpNJpvI4jxJng7jS7smRKNJlEtm6CYBoz+K8ucPo0s1sfnP5FQoXoWUP1WobNEHRgQyOpoIzj+K11SwKOO72RezeyTFj6BefJFi9kuc4PcLJrYNEeodE6tu5wPlF8krTFDlOirRzqZkkeyaCOLx2ktJIy3FHae3z9l3Y2sUmn7KlvTI5NLpmRy6h00jQbe/k5XNmlznyJNsUh2Y4tczjSsmiT37i0Fxs+iXaaFF0b/AC2LIPIULrRFEuxs8jt2U0DhLS0gn8FqqqiNkSwYJwfxXSirKy8NtsYFX24v3Ut7FEyQIHB8hxZJrstErZVlLHyQxvpgc5xGD2SUq0SlZTK2XcKcGiuOxWL10XTPIl6XG7U+M1zm2SXAc381p+ZKPWy9mlrBG8ybpL9D29wsfyx49bJNAe97TchF98YXOpcmDuQK3EH1as0qYJRSB3BweSE3ewWurbnv2VutkHNxLjwOyrKSZJFxsAWObpTGddENHGMeJHuJbtP3aGfe1ZwtWLLWYz3HsqVRJMmgfRV2gRDqcN3BVk1eyDjneauQqTeyUdF1u7FZ7Ssk7f0S37ILInAHv6KHJehRrgeex4SLaKtGuN524K1izNotY/adxPHC1xutlXvRB0h5BH1WsWKKpZgHVuz3Ut0Eih2oFODqIKcyeJTJqiLwB6FUcyyiZZ9W4Mw6j6qydE0UHVbSQX2fS+Ff8ZBVLqBuHm+eVH49k2WnU/unNjcBQz3PC0ak1xRX+zxOsM8d5hla1zSLa5TjiobvZdM5pZdkLWObtoAAUryxxlL9WLLNTLtYcZ9FDXDTK1Z4WtOoGo8dgcXA4s2AO9Lrx5k48WKLtPGY5PFB3GQ2T6rPJO9CjY942gkgkrNd7B2CQeI7ykN4dZ7Lrw1srI9Lpeok02qi1kDyJNO9sja5tpsf0XZ47cZKS9GGVJxp+z+mun6mPWaCDVxHyTxtkb8iLX2sZckmj5aS4umXqxAQBAEAQBAflH+0dEX9G6VIBhs8jb+bAf0XnfIr9Ed/gfyZ+A+JRuxjm14E0e1FkBqHBxrBd2XHOKN0zRFqCGgBc0qLou8c7dx9VXjomzomYATXKyaolMg9+4gu/wCwiDIMHmoVnsqXZJrgtxANYVKb0wbHOtm0AfNXogyxxBsxlL3W7AF4H0TLkbjTCNsclNyVzPosi2OYbs381i1ZJexxeHbNrnNpzQTgkHhdPjfrK2Uka9OHizJ94uLnX2sq2SXKbZBbLK5sdA5DvxXPNuiV2c6fPIJZN1bS3j0VnOLVotJGh2ojD2x7iH7b47LFx/W0EbNK4OoduUgr0RI0P2jiyOVZxS0VRQXObkchTHRPZHxHlwcyq7m/6LaMt2Q0QkkLskluAMjKvduyKKWl0pDf+GOff2V+VdEUJZ2RODSaDRZoqqdijkWo3wh72uaXC6dyPYrNzrRbiQc620T2/FVk1RNbDXF1gC8qLtaJ6IyChe2j/lWTh7olMp1jXTxRNbe1zhuG7b5a9fzXT46TlbIujE3rnR9OwxO1Yth2ucATn+6rkwu7ok9jTSsmia+NzXtcLBvkLGUaBbnkDus2r2CNGs0CoRNgCjVnK6IRpFGyW4VVj0Soi2c3bQAe3KycVdFiMpJr0HuqSQRWHlpAWZYtY4HumqogmCLAqz6qGwWNbg+qpw0LNOmAJyQ0DkrSMb0VZshcxoJux6rWMaKSOOk4AIU/0iKKJ5M4UOVEpGKaZ3N2qfkbLpGSScXZ/opt9lkjK7UtMhbuscfJX4ye6FCSQte0Od2XVC/ozZi1kcbdQ7ViV3ibQ3beK9V1cv1qgkGy7Gg5cazfJWD2xR3xzsLNtHvX9Vr10VopL27jdBUVtElMjhRJoDkqrTeyx17v3Q2j81Sm2DM7bZsZP5KUnYEchbIBeB2K0sg6XtJI7dlpCNq2HoiHENBF1Waz+S2xp9IhmvprphK7cK3Rij6FehhqOjDJs/oT7I+oft3wVpmONyaR7tO//wBJsfkQvq/Ayc8C/o+d8yHDKz65dhyhAEAQBAEB8B9vWjOp+A3zNFnTaiOW/QG2n/3Lj86N4r+jr8OVZT+Zp2kvcwY74Xz00e5Ewz214IJ57rnkjVMvjmIObXLKJomWO1I2kKlFrORz24Amr9VR47Js1NkDsNIPv6KJQoWT3tca3C/buqcRZfE7yisH5LOiSyJ73GrFD0RrQJPdawntlkDPTSKBNcKtKtklenlfbnOu75vFKrRJv6dqD+2Bm6sXjutMVt0UmejLObtzhk5z2Wck+QiXwyMILicd/YqrakDo1AY4yCMuAHFK+NXKg0ZhLO/qkJnezwZG3Ewt8wdWfl9V1ZsMIY249kpnuREBoGN1crz0iGWum3En+EiqrhTyT2FErdIHChx7FRdkorJ8u4OJNd+KV1IFUsjtjgHE+ink7FFUR2Mo2b7o3T2Gg8nnFg9/6qeVIgGx3J9ViyxFxHBuiMhFKhRbpZ2bnA7SB69l043GrZSSZGaVj8hwOex49lWck3omKZke51V6+vdVi2i58zrfheHVaoDb4cO4ueA6iSTk4PP9F6cPKi4VPszcd6PrOjxM02mj07SWRsaGNvJIXmZZrJNvpFqpG4uGzPHquckF2MCvTCumQHOIDcVfutJulohHCeKLRWXX+iiHGg7K5eAbv3VcmmSiJJNGgCs2mSGjPc/JU9EluyiaNUMjuFDg0EyQNHHqqtfQLGPN5/FWWiGQ1kjSxgc4BjTbsHOPZdmCO9kJnOlyvhiMbZPEicbaXAggn0vsreTV37DV7Npl9VxOdMiipz80qOWyyRk1J3WBiyoStklOqc5kDto3Ory0eV6kYKkil7PKa5ww7awdmjt7q9JkuyUkrvD3NySMElXSXsrRRLLYA4AyqPboskZ2SHwy5pYAfugG2qzfplSbCRGC0k3zeSVS2yaKZA1sm7kuq6GT6BaJN6I/sPcASHncDj5qVLsNEPFJwKJWdOrJs5vo2PqiBX4gH37q+VZRTewdaS5gNGj27rojDRRvZZptzXGqII5IW2KNMrJ2avEEcrrvIBAr8V11RmfsP+z5M46Pq0JcXDxI5RfawQf6BfQfFSuEkeL8kv2TP1ReseaEAQBAEAQHjfHPTj1b4Q6r09ot8umeGD+YC2/mAs80OcHE0xS4TTP5A1APjnJBqvna+amv2PokzztY5wcHGzXCxcdl0yrxhQ831BXPNF0yGp1DWQF1jd3Kpxt0WswQySaiSORrnOJfQIwwV+Z/L6rf8SgrkV5X0e+JnbcbqHb0Nrimakzq2ROpwceLDRxfdVWNsWamvcXXuseiwpotZa1+4V5vchUkiUyReRnP1WDWyTu44LD5qz8kaJRxshyePks2SUu1zdNqmTuc1m3BPYe5W/jxUppfZWXR6Gkk1btVI3UPbRkczaKphbg573YK18vAoRTXZEXZ7McpDKc3N/Rec/10XOhztmywayVopNNMhnY/FdqBPqZTK9ooOqqBPp+q0zZXMI9KOQl3oFyk0TfIHNABCq9gle1l4OVrXEiyJPlvcR3PdRXsWZtUZfAk8IXIWkMr1WuNJyVgh0tmqGgiGs/39eakzqKm+PQNIY2jS5yQRQOcqEhZRYc8RXmsrSGNtWG6KzKwPcxzhtHB4v8A6oTRCRzI2B73bG9iM0kIOb0SSO3J5rgqNoguiYC0is3x6lWuyC6Ntkuuis2CwuoiyPnSWCuTUMYy37jXAA5W2PF+QgmxwlhD2khrhY9lZ4yOmSFXQNWDypqnSK3ZBzg17WhwsrKSp6LJ/ZCWdjYjJNLtaOScClFt6ZNFjdnO7B4PsocF7FmV2irrY6j40peITF4e7yGzdkeuFpLNWH8de7ISt2axzR5K4vZcmHVhuc0bU3XRDRB0jyCS5T+SX2KKNNqWmd0dHe08kWFLjNR5WSbGPBBs5WKVoBz7xyUSBj1D3NaSDRV02noGCSV8sJ2Eccg0vQUeStkdM88sldJIX0WA031+qq5KP8WW9FjnXGR3PqtHlXsrWyMjRI2jkY5VIyd2GDyAKBOKpauTeyKK5XiFjjI6mtFl3oP7K0VZBS9zpGAEguNHA5WidMq0Z5vFJe1uHXd9ldbHQaXBhMhffuK+iieMcivfR5I7cLJJ2WJMBew1e1tYWlfZFkmPcZNpsjm77LojJUUaLIpSDtsetDur42mVkqE+pEsxawOL2nzCvUdlvN1RWJ+0/wCz0S4dVNUNkI+vnXv/ABDtS/8AR4/yarj/AOz9bXtHlBAEAQBAEAPCA/lb7XPh3/w98Z6uBke3TTkz6f02ON19DY+i8Hy8X48jPb8bLzgj886hdB1mr5tcTR1pmFrfDL8+UuulnkXItHRTq4xqHCJxO0CyAeUwxXKyZPRZ0lm1m5jdrSbAI596WGX+T2Xj0eqx+NwPIyCuZq2aWTM4j0E1gb5HhrHWDWPRdENQKtmljyGtJNn37rkqyxV48v7YCJwGg0YwR+YWsscfxthPZpEoujg8i151o0Jsmdz6+io7eiSTJInt8r2nJBAPBHIPuq5McoP9iU7PM6s0SMfG4EhwohThk4TUkJK1Ru+GA+X98Hu8rGs2/wA4G0n/APzwu75Gb5ca/syxVxPp43ucAc+l/NeNJ2bInlrmm+Dkon9gmXncA01n1Ry3oI1NlIbZo3gn3UX7AdK1rbLg0AWSeMKFHaSJLG6iKWNrmOa9pF7gbBV52nTKpEi8gEDKl6QBaCMnGDyl0Cxp4HI7J/5IIkHxAbqwouiTNrdTBE0+JJs745+aQhKb/VWScZ4bqc0Wa5Au+6Sk+hR2WMPIFH1UwbW0SQMJeKt1AEAjmjgj8FrCbh/Ehmhopuw/dGB7LN9ElsZ7ECuLURIZY2ibJIVGAb2ehStAzTtYZI3dw7y/OqW2OTjtEFzXFkbbBNADJulMpsirKHyTCN0gwaoNObVoUk2xq6IRtZ4hlcSXuFWcho9vT/osufomiUgj1EQ3gSMOReQVW3F2C9hPN2FDv2CTQ6t3cYWLTLF0AF2awojHZDI2Gl2PdTVAjKLHN2LwqygLK2ktBaCBfOEcpKPG9Cl2I73HKoiSwuoGjZ7rSvZBj1OQQO/qoumSjzg2UWBj55tbrK/RLoHym6rKpyvYBaKsq6thkXUAP6LUgg3BLsD9FqtdFTjwHW0kG+bCvRBm1dfwiwCCKWkWkQ+ipr2PZkYBxn81vBeyrIP8zdrg4t55WpUyC3yAHykmsjssErZp6NETix2wbiDZc48K04JdFUchLHHew2D39FzzTg6LrZIP2266A4H1XTgmqM5LZNrmmUEildzuQS0fuH+zpE4dJ6vO4Vv1LGj6Mv8AVfU/Dr/+cn/Z4Xyj/eKP1ZeyeWEAQBAEAQBAflP+0h0J2u+GNN1mBgMmgl2zEDPhPxf0dt/Erh87Hyhy+jt8LJxnxfs/mzVacRacNyQ0nnkey8eSs9ZMwuIOCFjJF0ymWPxG0HFruAW816fJZcnF6L0ThaGNDSXHN2f6fJY5HbLLRqa9oFg/RZqNOy9lrWse7cQN3+YpJBMmH1iuFSibBMbXtfRJArA7KX1QRoa/eO5IXDKBomYesal8GluPcHXXlwV0eLjg3+5WTdaMPwrrpHamYPNuJybsH5+6386MXBNeiMV+z1uoPBOBz6rzIxtmz6Nnwy4bXGN4dchy210fJO5L/wAGWNaPpA63BhJXjtu6NkTY4vBzVe6jtEljXtNEE+1p2CTH+a0r2DspZJE+KQYkbR9VtjlxkpEM7oYm6TTthjyxt/imXK5zcmEtGlryO4z2u1Rkl7BYtuco1q0RZ3eRQxg1ShOwdeaHP0SWgjJNpzIS4PLd7S0kAHH1WuHM4bQZrgjqIMAADW0M9lErkiLJEDvRNUqp12SR8vlB9fRTdsFbNxBwbFjHdRvoklAS51NwOXbu6mr0iCxouQ3ZA4F8qiVMkvaRZNewV0qWyjIPDQSdwBJq/T2V/VIFMzKtrX1Zy4G1Vx4tEp2YS4sl3OaSRxR5UuXpE0Xxnc6qIod1DW7ILW2558wA74wFDg+xZJvkIZWLwVX3RJYDVG/qqNUC1j7bXb2Vk9FWckc0AAEH1R66BS6Vm8xhxvuFSm+iaIOfbwKLaxlZyTuiTrJKJ5oYtIqwyBko8rR6IKHSGz+qqWKXOvH1S9UDFq3TvcYoNoeMjdxzwu3x8CnuXQbolo5ZJYS6SMN8xAo3YvlRlhGMqiEcmdXIsqkdsHCyml98D8V1LHWzOzjT5b259EuwZtSdrfKcfmVaKQswwv5BsVhdEZJdkM5NKPLdYxd1hS5NqitFE0tNHmqqF+qotMsX6UuLS8OofmrxuTtkN0WlhZIQCBX4LPNjvaJizkTS075Hho3VxYVsWNrZEmW2C4CP7t4J5paY4cpESdI/of7BtI7TfAjZHB1z6mSQF3JApo/9q+z+NjWD/wBnzfyErzH369A4ggCAIAgCAIDJ1rp+n6r0nV9N1bd0GqhdE8ezhSrKKkmmTGTi00fxz8UdL1HSeoavpmqxNp5HQvsclp5+oyvAnBxbTPehNSSaPldU3GCW33B4WEkaIgwucd2STwueUfo1TJlxpw82Bz6+4VXH2WTOMc8OcCQfQqtImzVESW5Fn0Kq9LRKJsbRDnGwFlRYmx4aTk12CpJElu9wqyfdYNFkU6+AzxWC0uuwHZF+/stIT4Ssh7PK6Ho9VFrt07YWADbcbaBA7lbZ8sckOKK44uJ6XUXgSYddGl56js29FnROoOhnk00UEQaHhzn7bc6+flS6fIiniTq2Ug/2aPqmTWA5pPtleI4ts3LGuAG6gSM7ircHQJtkD3AAkD5KnH7Bc1w7Hg8+qukqDJ4cRZwBhX4aIs0sJ8MbjnbixkrJpg7beASAoJNEeoDWtGL/ADWif6lWgXuLuDgqiJE0u0OIBNdgMqa5OgWNfjAVetCi1hHotPRB023HNhUaoIpeQCMd+D2UxokydQl1EUAOmLRI54BdV7B6ro8eMXL9iGd6O+eXRNdLIJJST52tLQfQ0aU5oxU6iL+z0KpluJtYSQspg1kcj5I2NeHRmiSKtX40kw0WveTggeuRyou3RFHDkkE13T+gZNYdrCA0biaaPcq2OHJ0Lo5CXGw6yboqJv6JosjcTJI0MkqwLPDrHZRV9EFxPmJce6gHWZtoNd1m1yJOM8rXBrQxu6zjk+qs02qZUpmdK50fhu8Miw7F7le4ONFkWxNO/duHu71K0x4q2ikpeiEzm+M1gJ3nlYZoNy0Wi6R5z+psZqjpjG99PDdw9Srw8V/j52S2ro0OdmwVyTdslES4DklV7JK5XCvLa0SB588ghMkr3eRzKcTwPf8ANd2HLwVENWW6RzfBaGVtrFcLFu+yROS40CrVuyDgLiBZulvzbRUi91fdKiiCnVG+T7ccLRJgyhrW3fHyV9sg8vVTPDye4Jx8lsolbKf2hjhtIsHm+6hQfsk9rQbPDaKwBwrxoqzupDpJAGiq5xhZz26LRIF42GM/evPotVpUVEMpZLtLSQ3N0ujFGtlZbP6v+zzRnQfBHR9M5u1w0rHOHoXDcf6r7HxYccMV/R8x5MuWWT/s95dBgEAQBAEAQBAEB+F/7R3w0ItbpviOGOotQBBqXD+GQDyOPzALfoPVed5uLfNHoeHk1wZ/P+qLHauTTFha5rdwPIcF5bR6KMQeA5zSRTTRJ4WMlRqnZyZ37hxLtvv6LNosIDlpLt2BtPelm0WRpdKbDg4jOSFk+yQ7U7mGngEDuFZRJZHRTbxLEX+IGEbX+t/qmaKW0Is1SybGWQ5zW5pvK5eNujSyrU66OEBxJIJwO60x4XNkN0Sh6npJpi2GRxANNttE/MKZePJEqSKeokh+67vuuWqey5Dp04b1ONttDSCTfp/2Aurg5YqRldSPqmStDQWPyvGcVejdFel1crtQ9jjuDm3X+WjS7M+GMcSa7Ii3Z6cEwbTSDx2C4KLl7JPQfRTGPoF8TxXfCs0QaIn0QDn0UNUiCW+xV0bzjssC5Pg8gmvwVq+gWlxaA0g2RwPVOtEGbVPlbCfDID7xaRSvZJYyVxIzx973U8dA0aacTN3McXe9KJJrshmgGwG5JHqqSdg5KyiLI+Y9VKBTJHigexzyrdPYJw01gt3sSeCpTshl4PlJde78laiLIBgBqs1fCqo1omwCXtDm3kccJuwHDAHYd1dK9lWUuLRJsbe4C7rsUacVYRFwc0nbQLhRJ/JU5eiSEUjzM6KgQG5d7q/FcbDL3ZO5rc47/igISyU4C6vhV43sEtxa2y6zilDVtgonAe0Dc4GwcGipjSBJsrgK3YHFhX5tFaI1kGz62Vg4tstdHn6os08hn2vJcRQvBJ9vVaKUmuCJWzS3d4efvei5JIsccH1fCqkySB4o/NbJkGTWsuItIsHBBHZaxeyDmmOyHYQABx8lpSIsuAwRyrJUQRfQGBlaIgqdakGTUiR8oDiPDAz7+oXRDjx32VZB4PhmuPlwi2QeP1APDDtiBceA7n3K2S+2QY+nwz6h17KaD94nAWj6sHtwylj2ty41XC5k2WNBbJtDyaPJVU9klbWyPkABrPPsunGreyktHrdC0X+I9W0ehaSTqNTHCARnzOF/la78OPlJRRzZJ8YuX0f1xGxscbWMAa1ooAdgF9elR8x2SUgIAgCAIAgCAIDzviXpGl690LV9J1jQYdTGWE1e08hw9waP0VZxU4tMtCThJNH8d/GXRNT0Tr2o0Ori2zwOMTzx8iPYiiF4OTG4SaZ7eOanFNHyesjuw5rS19c91zzibpkZDbawcXxysmi6IsOwNF4CpJFi9rz91rgs+JNnNrH2C3nmu5QmzQwNa0kmv6LGVtko6HuLSDfyCy2mXPF+Im+Lpwwb2lwcGOJ2gkC6td+C4qzKb1RDobtVJPCJYWeCwAPlZHtG6u/qVeT/AFdDG/s93qjBssAey8qR0GTSwtfIwMDHSWCdzcVnuuvFLjjZk1+x9QwU0A5NLyGtm9nY4wJrZQB5xkpNt6JRqDqrH1WdEmlsgJG0AC8AK1Ava4Cs5JyKRJEF0UttDg53vhUa9Eo66Vw7WD3tZuJY1QyN2enrahEMuBvzAcI1ewimQ45CrEk7CNzqDct59Qr9dhs1aUFpcDRBIIrFLNu6IZsjDfb5qEiCLiOwtWjVBkBRJF/in9ANaKPdvorRVAtjrbzasVBAB3Akn+iULBsDdXCUwZ3uJcawObHqpSoHWkuHJwpkyEN1gNP5qiVlirbGZRIQSWDFk0PdaXSoqQ8UWS0i+6o4ssgHUTZ7Vat62Q+yDpTvIrAINjuoSog4XWbGVUsRJwBeQpogb7AF0nog5KGy0H1Q4Vd3aJO7ie9n19Vk4lrFgM90aXoFZsuFduVVIkrkBJwt4pEWUWM2VdEE24IH/ZVmRZx5B9VNknHNFLSNFTLKzxCPUd1qnRVlUwG0tN16jhaRRDPM1EEjnOdH3bgE8rVS9Mg06WExsDAGtbg17+qjJNNUiVo0iBvoAaXOizDiW8WfZTHbJK4XMkmcBij68Ltxdmc+j9E+wvpI6j8bwast3RaGN+oJIxu+638yT9F7Px2PllT+jzPOyccVfZ/RIX0R4YQBAEAQBAEAQBAEB+W/b18Ff410r/HdBAX63SMqdjBmWEZ+pbz8r9lxeZhc48l2js8TNwlxfTP5i1kADnM3XRsY7LyGj1kzzZra4N4HFk2s5RLJlZuhu7nFBYyVF0y5lmOyeCM0qvok7ZElkFw9lVkonKQ5raJLTyCFRolMrDjZuxeaCxa2XMXVXSjSFs075Io3b2McbDT6geq68TtlWY+hulllbE4uDGOsNN4Byt87SiRHbPpdWLiIPK8d7ZuYtLIYNbES2w4EY5W+OLlCSKN7PpYXgtDiab8l58ls1Ra12cckKlEkw/ynzYpRxJLYSARZ+ShqgaozixfsDlQkC9jgQTWax2SiTscg4ILh6lVrZJh6f1GTU9Q1endAWNhIDSTyFpm8dY4Rmn2RGVto96EkgZv2pYVoEz5iXHBJwB6KjRJJoDXc8lR7INEZABDuAESVAnuNjOVFAPIwRgIQc3UcZQkOcB8j6K5BJjz2oAK3ZBIygkepKsqZBIeb3tECBZ7c/wBVFWSQDawb+aiRBAMLu55wiqiSRjLmuab47qye9kGXUMY2Rkbn7S44De9forJewVxva/7pscWcZ7o0LOPeOAaxShxsWZNUZZNPK2B9Ode1xPdaQik05Iiyjox1UWmZpNW58krGkmWqDs/1Vs8VKTnDS+hFutmzxWh481E9u6xSJskX45yo47BF8wN544VJK1RKJsII9VkkScvJPuiVMkhK7y3SvFEEXFm0BpBct3VEWdH3CLo+xUegRFX8uVCQISEYIOFqtIggKINYJ5V0yGimTb7GltEqymVt2B37K1gmA2qIzSy/stRF8hGQOPVVsmgcjcRwMraCKsojAdMNuQ7+L2XbihZnOVH9F/YP0M9N+E/8RmaWzdQcHgHkRtw38cn6hfUfH4eGPk+2fP8AnZeeTj9H6Iu84ggCAIAgCAIAgCAIAgP53+3X7Nx0zUv+IukQ10+V96iNo/8ALvPcfyE/gfal5Xl+Px/ePR6fi+Ry/SXZ+MajQksLowDV5C4GjvRgAo1tO0inf3WUkaIlHJta5oc0tOBhZ0SZy+Yap3lBaGgkA+qngmrF7NEsW+OqJBysmn6LIpkY+M35gO1rGSp7LJmHrRndoXCGIuecADk3+S6PHSvZWba6OfDEZjYw6gu8Z7e/b2UeS1X69FsZ9DKC6NebezU8rUvayfTl5FeIBldmDaa/ozl2j6GJ7TYu7GBa4pRo0TNUbmubdjd2CzcS1nW5OOOB7KlE2a4qoHkUq0SmWgihkYUVQLfE3ZFEkKr7JLowNpG00Pe0oHWMjB3Cmu70MlU2yTbEfKC02e9qLBYSciqKowTacEnhUYskNxqqAUAujrN80pSDJPwzvaniQUySEO5IN4Cuo6YIh4sIkC4O5INeysiBJM5jbtpcOBwCtlEqTEhqyPqsJaLHd4IwbUoHPZwRkE2ixhRx+gyyIbznms0pjshlGpgbbX0C5p8h9LV1aBikDgDuOfyUe9AzuGbxam2gUkWAHEmvzU8mnZNHXSEm65yo32QcDqbQN3m6VmDj3G8Hv3UqPtkEJKe0e/ooWrsl7NDTQ7lc/Eud5GcqrQObjwFZAgMGyr9EAuo2QKVo7IOSkEBt5HsrriNlTy45IGfVSkLK4nHcrohkZgSD7KU6IKd3lsg/3U8iaKnTgPLc3V8KXFtBHWSbyQDkc2qpbJJm6IJNEVnsurHEo2fQfZr8LT9f+I4dBnwb3TyAfcjHJ+Z4HuV7HheO8s69HD5WZY4N+z+p9NDFp9PHBCwMijaGMaOGgCgF9MlSpHzrd7ZYpAQBAEAQBAEAQBAEAQFepgi1Onk088TJYpGlj2PFhzTyCPRQ1aphNp2j+cPtZ+zeT4Y1cvVelxySdJmdmjf7Of8AK729HfQ+p8nyfGePa6PW8byVk/V9n5brdKyR4LRtcuBnameX4bmyuDseYtGPZZuJdMOia4gvbb23Tr4WdtEnWukYKzt4UWSJ2b4qdddis5KyUZI2nYGv8xHNqj1tFi7TPZv/AJllJWiTY94MZKwrZc8DrbQ5sZdlrZA4ji67L0PFjsxyPR6/StR4unZJ4jSD6GrFrPPjSdFoy0etC4UMkX6rlcaNLLw4NcK4rKya2SbIXiqdhUkiUXMyAduDhYyLk2OPDcAd1AsvD6rj0IUvoHWusjlZFjVFYbfAtK0RZe0knvjuqMkk0gd1BBZGCBZGFVJiyyPA4F13UpUQdeCQHAqzQM8zw2weVaP0SeNquuaHTzBpmFmrAsn0z6Lrh4mSS5JEOSWmetotVHqYmyxO3sdm1lKNPZBbJp/Fnhk3gCJxdXqaUp0mRZc+wwgferCpxJsjG8hrc5x+Ko+yS9paRV3amrIJRu2u70OyhWgyxz2httyfZXSIPI6n1b/DvDZPC+VjjTpB/D7/ACWsIOdpFqsO1DHMYWusPNC+6yiiHoqlORnCkgzOcac5tlwGPkpoFPi5IP8ARXUdEEhIdtE+wvsjiCsybiWg32NHhE2STj3Bw7Ae6pNslI0tcWi8ZWZJ0vA747BVoEC+zg2rIHCffPzU1YOnAAOVKQKnybSefRWSIOO3GgrkCvLnn1UNkkJPuEG7SwZDMwuLQeOVIKYhN4hdsAsYJ5GV1p/rSRQv0rQ4G+bys4w2TZo0+kn1mqj08LHve94a1jRZcTgAfVehhxOTSXZhkmoq2f0z9l/wkz4W6CGTtY7qGop+peM0ezAfQf1tfV+L46wwr2fO+Tnead+j61dJzhAEAQBAEAQBAEAQBAEAQEJoo5onxSxtkjeC1zXCw4HkEHlQ1Y6Pw77UPskk0/i9W+FoTLBl0ugGXM94/Ufy8jtfC83yPD/3Q/6PRweXf6z/AOz8V1WgjkLXnc2SM/L6FeY0eimYdRBscS3g+vZZNGlmdrDXmABrNKjRNljYhWAA0+qVoFM8AHBxapxLWYnxyxTtkaA6MjzDO5aRhBR/srydmrc7i8ricLZqnowdR03ix24Fw3U4D0za6vHXF2UnvR3pT/CjZDt27RgdiDwVfKrIR7MMp2+54XDOLNYs0xyEVZH4rBqi5rZIdwN5I/FVcbBojkAAB4+azcS1loeMEY+qrwV6CZhbL1Edc8IxE6Mx3urF/P1XRLFjWG/9xVSfKvR6sbjYH3gCuKSNDdE4EAEqhJNztgLt+Ksn0Tjb0LOdP12n1bXOicSWgEgijR4PyKZMUofyI/8ABr3msHlZr6DLd4JFYUvsHTIBY7juFYgw6uRjz4W8biCa9lootK0WR4EPS9BrXPDInN8N9feItdv+oywrZVwiz1+laeLQw+DEHbO1nhc88jyO5E1SpHpNeQBfHuo0ip1z7vOK5VZMlIqe+Ta7ZRdR2g8X2Waq1ZLLoHEOBc83WfQlTqyrLw8c3YVqBGSQVYVWwYNXFFqY9krA4XdHN/RTHI07RYExsY2GM7PLTVLfLaIKpRdHOKU1SKozkebi/qrJaDMkwO8FpxycZWsaqiGcfg2fSlW70SVg04gbtxrhQyUaN5FVQxws+P2WL4nY89foq8RZ0bXE8YKvxK2HNDfNeEURZwHPalKXoMTHdYBI9wo62DJpnGQukbdBxFfqj09ks1i7Ng3SkHXcX2VAZ9Re2x3VgeU8/vRR25orTGreyGzaJLbQaQ4jbfIXalozs06OAyPbFGHPc+gA0WXE9gFpixW9FJzSR++fZL9n7ehxM6x1aIHqT23HEcjTg/8A1/049V9N4PhfhXKXf/8Ah4Xl+V+R8Y9H6SvROEIAgCAIAgCAIAgCAIAgCAIAgCA/O/tM+zDp3xMJOodNLOn9WOTIB+7nPo8Dv/MM+trk8jxI5drTOrB5UsentH87fFHROq/D+ufoOs6KTSziy3cLa8erTw4fJeNlxSg6kj1seSM1cWfPPa9pPvj6LBo2DbaMOKigdLA6t2FUsZ5WbSTVj1tQyEUvdfmoj1KzcdlkWRbfDNtBvhXWkQzII3ia3lpDW7WgNrCu2QbISQ0g/dHF9vZZTjosmWRSjcNxLSOFjKOiyZuZJkNsEeqxcaL2aGPIO0mlm0TZoY8Y4NZVaLWaA4uGHXaiVgsiry5+YWTiWs1QmuSeMLOSFlhPYiwVVOibGihjhBbGTk9zdD0+SvObn2QtGwH+HusUqZLJgnaeOFZRIs54hDSKF91KQKCGk24BXS0SYtNrNFPrZNPBJcrcuxVrWWKUYpvoizcG0bc7O7GOB6KkmkETvzbR2HBVO9A6AcClNWqIBNUocCbG6rzwoSJJREtYGkl2OTyr1ZUk93v81nJbJRWad87VaBm1DGkgOHGfdWhcWSclcBGS0V3PstXsoeXDq5H9Rdp3ReUN3B44H/VavGvxqVk3s1yU4WLtZkmZ7u3PqhBXGynEjtmwrsUadoEYLvnlUrZJwyUMgE/JTxoiyUVAEgEWeFMtgtDgWUSFXoFLni7CtRBXNM0MN3SKLbLIaOZs0Iexpa3ge/uonDi6ZF2aGkknB/FVaFnXkAc59EUQUPd2V1GyLMkkTHO+99F0Y8ZRs29M6fqtZqotHpIZZ5pXBscbG25x9Au3FhlJpIxyZFFWz+g/sw+zvT/DscfUuqNjn6qRbQMs099m+rvV34e/0nieFHCuUuzw/J8t5f1j0foS7zjCAIAgCAIAgCAIAgCAIAgCAIAgCAIDzuv9E6V17p79B1fQw6zTu/hkH3T6g8tPuFScIzVSRaE5QdxZ+D/aD9ivUum+JrvheR/UtIASdI//AH7B/KeHj8D815efwGtwPTw+cnqej8g1kEkb3xPY+KaM05jm04Ecgg8Fee41pnfyTM2j1DdQCynMkb95rhRHoqOJNmh0Q2kUbr8VXiTZj1UHlJyR37KtEpnIm0zbwSMIgVvGQD9ERB2J+xpAIuu6iSJTPO6xqJQ1mx21l/vD3A9lfFFXsSZu6BPJLpm7nOIaSGuPLgOLXN5EUpaNIO0eyx+K/RczouXRuIIxj81DiTZsiPBa45WbRJoa6iMKGgWtdwQaWcoEplwJ2jKpxJJ7qN+/ZUlGiS+J9A337qVEhl+/5fgr0QUPdV3lvdOKRJVJQBIIx690okp0UGn00z5I4mhzu4N4V5ZJPRFGwuP3j2WTi3sWSDgHXfKKNBkrGC38leiLKdUXSQljXlpPccq8UvZIh3iJjC7eQ2i/i1WSvoWWOeBXPpVZUUyCDn3efZUcSyOOmAyCPxUcQUSzg9xlTwvZFlTphRHK1jAizz2agCctsXZBb+q0eNqPIj2a3yE9xxys2iTN5vGJHpylaLFsMlNzR+SigdkmBJY0E47IokMoL6N7j5eyvWgXMdYB9RgqtAkyQDF2a5Sr2RZx3BvAVkrIMOq0z9Q4Mc8tjvzAclXi+O6B6OnZtAA+7VUstt7Jsse524Ch7qVG+yCt5dQod8rVY60Vsi4OcPVa48bKuR6/wl8M9V+IupDRdM05kODJIcRxD1c7t8uSvQ8fxJ5XUUc2byI41cj+h/gL4I6X8K6XdE0ajXvbUuqc3zH+Vv8Alb7d+6+i8bxYYFrv7PEz+RLM99H1S6jnCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAID5L47+z34b+MIi7qOl8HWgUzWQU2VvpZ4cPY2sM3jwy99m2LyJ4uuj8C+Ovsq+Ivhkv1LIf8U6e0f8AmtOy3Nb/ADs5HzFheVm8OePa2j1MXlwya6Z8I/DKaNw9lxNHWUOcLDT8xaihZFnNYLeyo0Ws5NCKFAKOgzDPBI+yw5o4PdWtEHn6AzDWfs2rbu9He6tOMeNoRu9nu6KBsQIz3XJI1RpaA33tYONlky1jz4gBadoH3vdKFmiKUBwbmyqNEmlrv5rtVok8zSQdZZ8RulkmbJoHtPB49BS3n+J49dlU3f8AR9CZaG1vPpS5HHZctheCM5yq8UC0kcg1SJANlokAmq5UgFwI9fRVaJshITXar7eigmxE4Zo2D6KQyYIqryc0jQOOk285B4VQT8Ubc8WtUtEB59BY7KeIsk3+E7jxx/VKIs6XDg17BKBRI/GDk9woaslMyyvduyT+CKFkNlEkwIoDhaKDRW7Mssrm5Lg0fzK6xjkUwxPZrfHkcwsIseoP9ltS48SL2b3vDm/MfmuSUWXTIMBNGrv8lFEnWgtLgM/oiQK9RJsHIvi1KiLPO105O1rZjG4Hc4NyS0drXRjivaKyv0b4Zd9ND+1n2tYyjRay6EkAZsKlCydkn19EWiCbWOB3HJ9PVXog6zUxGZ0Af+8aLIHZWeN1Ysuv8Sr48XtlHIg4hpHc3VDK6o4TOUz9C+APsw6p1yWPWdXZN03puHAOFTTf6Qfuj3P0C9Xxvj3Lc9I8/P5sY6jtn7r0PpHTuidPZoOmaWPTQMztaMk9yTyT7le1jxxxrjFHkznKbuTNyuVCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAEID4X43+y74Y+Jg+f9n/AMO17s/tOlaG7j/M3h35H3XLm8THl30zpxeVPHrtH4B8efZV8T/DEz9ZJCdb09p82p0wLmgerm8sPvx7ry83i5MX9o9LF5UMn9M+LMZaQRkdsrlOqx4g8xNN29/VUkkiUVBjJg4tde3mv1VOyaorbAGPEm2zxZ5Ch9Eo0xHtRx2tZMsSc4jDSAfmq0Dz9b1rSaHVtg1Dy0uyHViltHA5xtFXkSdM9fSTNkja9jgQRYPr7rjnGjVM2RuoWs+JJfE4OAzlQSWbjYvlUZJY15abJ/FQkCwSg+t+iigda/BLnCh7qKZJ1r9wx/0SmDpea9kBHc4WGu/FSgSErq8xBPrSMEmOHJOB2UJA6X2CeyumQQfI66afmVYFolxkZHCEFbpnHgKeIIMcdosiycm1ZQQbIzuAN2b+a0jEpZh6jqW6fTvk/wAouuy1jGyLPmBPL1HVATFwY124NJwVq48VYWz3XOLmihVjK5+RajNC+WLVGNz3OY8igey1/WcSttHoaUvjhDDI6R15ceVyZF+xddF+87ayqUWs8zqL9oJe8Nu2xnnK3xxvoizw9MNbHM2KYB7K3F7m23Pv+i7JKLVozTa7PounybnS+U7m0McFcWRGiNoNHJAwsqJJRtdVZx3U8SLL2ksFkhuOStI42VlJCGPa50ri0D0qr910xxfZm5n2nwf9nfxD8RuZqHQnp+hcb8fUtNub/I3k/kPdel4/gzyb6RxZ/Mhj12z9n+EPs/8Ah34b2zQab9q1g/8AmdQA54P8o4b9F7GHxceLpbPKy+TPJ30fWBdJgEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQHHAEEEXaA/Nvjz7H/h74g8TVdNA6R1A2d0Lf3Tz/ADM/VtfVcebwoZNrTOvF5k4ae0fz/wDHXwJ8RfC0jmdV0P7oupmpj80Eg/1dj7GivKzePLG/2R6eHyIZF+p8fpoZ4tSXFrhYzY7Lk40zpuz02R3GCazn6o0EwYu9fIhYtFrIuYA7dVmq4ygPN6p0rS9QA8YOsA0RyFpjySj0VlFS7NugYzTwxwsPkjaGi+cLGa5bZdaVI9KJ42/NZ8NE2WtI3eXssnHZay1jnXVKnEmxuIaax/VHEmycTyDuv8lHEEwbIdj05pKJLI84vA/NRRBMkbNpJzyookrebwCbHBU0CmXURMlbCZA17uB6qViclYs1DyiiQVVqgd3Ad6+aUCsuq3BSkCTXgs7/AIrVKirK5SScHaaO097V0iAwO5c6xVYCmiLOOcw5xfuosUeZ1XTySxFrXWT29fZaRmk9kUeV0fpj9M97HRAbf4824lWyz/UmKpntmBwo9h39Vx2y5i6g7w5Guo5sYXV4/wDIpPonoHMDn/vHOdguB7fJVyomJveSRhZVZNmeWIyO21bTytIPjsgok0hfqmeVnhBv3fQg2CrLI0hRr0WlZp2bQSSe55WUrkTZuY0E3XCtHG2VcjoJa4g0O9rohh+ykpn1nwV8BfEPxI9ksen/AGbRjnVTgtYf9I5d9Me69DD4U8nS0cebyoY1t7P2n4R+zj4f6C5mpfCOoa5uRPqGghp/lbwPnk+69fB4ePFvtnl5vKnk10j7NdZzBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQFepgg1MD9PqIY5oZBtfHI0Oa4ehB5UNJqmSm1tH5R8bfYp0rX+JqvhyVvTtQcnTyW6Bx9u7PpY9lwZvAjLcNHbi82UdT2fifxJ8I9b+GNYY+saCXSsJpkm3dG8+zxg/LleZkwTx6kj0seaGRfqzxdTLHEC6TA7mrpc7jZrYYYpmXE8PaeXAfos5RaL3Zl6jopJtOWRyGMk8hIPg7DMnRoNXG2SLVNLgz7j3G7VsjT2iFo9aO+LH9li0WL2Fo/BVcSbJtcGkg4r0VKJJtGC5Q0TZK7Poq0CDpQ0bjajiWs7DqA9ocDyocSS7eSR63yo4kHLPKiibKpdO2TlxY68ObyFopUQXx7gK5+f9Vm0TZISNJ81BQkCjWazT6QN8Qu83Aa210QxlWyyWLxYQ6N1B2fQqWkRZFrXbvO6zgKCCbiS2icIyUUOccVx3VKJsMfuZQBPupoizheGk2CTxhVaslM6ZnPAa1hDR7ooizjdIyQl02Wj1W+OLWyjZ2PRhj97GbC45NchJJslOiwR7MAmlTiTYawdhfyVlAiy2GEvNbKVljsjkbNF02bV6kafRwSambjw4WF7j9AtseDk6S2ZyyJdn23Q/so+Kuohr9TFB0uJ2S6d9vr/AEN7/Mhd+L47I+9HHPz8cetn6b8JfZd8PdEczUath6rrG0RJqGjY0/ys4/G16eHwsePfbPPy+ZkyaWkfdAAAAAADhdhynUAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEBTrNLptZpn6bV6eKeCQU+ORgc1w9wVDSapkptO0flHxt9iXSeoiTUfDuo/w2Z1k6eS3wO+Xdn5j2XBl8CMtw0duLzpR1PZ+JfEXwf1v4S12zqmgn0rT5WyDzQv+Thg/LB9l5mbBOGpI9LFnhNaZ5heHVuXM40bWAWOBoi7VaJIbSct8vqCFFCy2BhaLLtzuTXChomy4U7tRVeIJfcAcW/Mo4k2RLmkCrBVXGybM80g+7tJ+irxJsRyiNo59kcLHI1RzxuAIo2MZUcBZ0yjNG/ZV4Mmzhkxgj+yfjYsrfqC3kgdgnBiyTPMfMRSv+MiwS3/NdceqlwZPIm2R5rPsFDiyLOMILj5/mnEWSsVg2FFUDltxkH5qaB0PbYvgFEgWMETvvEX6AK6iQ2daYwQG+UH/ADKyh9FXIrnDRTnPBaHXVq6i0RZc55eyg8WnAjkX9L0mq12pGn02ml1U7jiOFhe78AtI4rdRVlZZKVt0fffDv2UfE2vcyTWRQ9MhOSZ3bn1/ob+pC7Mfx+WXejkyedjj1s/ROifZN8N6Ih+udqeovHaR2xn/ACt/Ulehj+PxR72cU/OyS60fbdM6Z0/pkAg6fotPpIx/DDGG3865XXCEYKoqjllOUncma6VyoQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAV6nTwamF0GohjmieKcyRoc13zBwoaT0yU2to+N699lfwR1YEu6O3RyH/AImjcYj+A8v5Lnn4mKfaN4eVlj7Pgeu/YI4bn9D69u9I9bFn/nZ/9q45/Gr/AGs6ofIf8kfD9Z+y/wCN+lAl3RpdWwfx6SQSgj5DzfkuSfg5Y+jqh5mKXs+R10er0Uxi1GnlhkGCyVpYfwNLleNrTOmMk1oyaqXWBl6aONzryHnb+BURgvY5F7XvMIMh2u7tuwPqocS1k9wBy7B7qKIsi4tsYx2JUcSbISuiZGXSFra4JIClRFkdrSxrongtPobRxFlgwLc4XWSiiTZ1jmED7w9qpOBFgthLrcKPItOAcjslFoLDWL9VPEWVM3F3mPbFYtHEWXbNoBa7zH1VXAlMi17wXAyXnOFHAWdEv8Xri+ycCOQfJ5bP4qeA5ASPDfu/VWWMcgW6gvsNAB77qVlFIrZ7PRPhjr/V3n9g6RrdSON7IXFv4nH5raGGcv4oyllhH+TPt+jfYt8Ua4tfr5NJ01lh1Pfvd/ytx+a6oeDlfejmn5uNdbP0H4e+xv4c0G13U5tT1N45a4+FF/ytyfqV1w+Pxx/ls5Z+dN/x0ff9L6X07penGn6dodPpIh/DDGGj61yu2MIwVRVHJKcpO5M2KxUIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAIAgCAy6/p2g6hH4Wv0Wn1TP8s0TXj8wquKl2iVJx6Z8p1P7LPgbXbieiR6d7v4tPI6P8ga/JYS8TDL0bx8rKvZ8v1P7CehSvL+n9Z6jpfRkgZK3+gP5rGXx+N9M2j5812j5jqf2G9fhcP2DqHTdWwmv3hfE4D14cPzWEvjX6ZtH5CPtGN/2H/F5ot1XSvl47j/9Kq/jp/aLLz8f9kXfYX8VTt2Ty9Hc3+aZzh/7FX/H5ftE/wCvx/RdF9g3xM2Pa3qXR4x2AdJ+jVb/AB2T20R/r8f0y1n2DfEZrf1rpTfUASO/QJ/jp/aI/wAhD6Zb/wDATrbvvdf6c35QvKn/ABsv+Q/yEfom37B+t8O67001wfAen+On/wAiP8hH6On7COshpDeudOPzhen+Ol/yH+Qj9EY/sJ661ueu9LLrxUMin/HS+yf8hH6Of/Av4habHXOlOHoY5Aj+Ol9kf5CP0UP+wn4ncNp6p0Yj/VL/APaq/wCOn9on/Xw+mbND9g3VB/5nr2hZ/wD1wPf/AFIUr46XuRD+Qj6R6+h+wjQMN6z4g1Mg7th07WfmSVovjY+5FH8g/SPoum/Y58F6WjNp9ZrCP/39QQPwbS3j4OJd7MZeblf9H1HS/hP4a6WB+w9D0EJHDhCC78TZW8cGOPUUYyzZJds9oAAAAUB2WpkdQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEAQBAEB//Z + media_type: image/jpeg + type: base64 + type: image + role: user + model: claude-haiku-4-5 + stream: false + uri: https://api.anthropic.com/v1/messages?beta=true + response: + headers: + connection: + - keep-alive + content-length: + - '797' + content-type: + - application/json + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + transfer-encoding: + - chunked + parsed_body: + content: + - text: |- + This is a **potato**, specifically a yellow or gold potato variety. You can identify it by its characteristic features: + + - **Oval/round shape** with smooth skin + - **Golden-yellow color** with small dark spots or eyes + - **Starchy appearance** typical of potatoes + + This appears to be a russet or similar yellow potato variety commonly used for cooking, baking, or making mashed potatoes. + type: text + id: msg_01KHctj7AyWoJWmwcFoXsDH6 + model: claude-haiku-4-5-20251001 + role: assistant + stop_reason: end_turn + stop_sequence: null + type: message + usage: + cache_creation: + ephemeral_1h_input_tokens: 0 + ephemeral_5m_input_tokens: 0 + cache_creation_input_tokens: 0 + cache_read_input_tokens: 0 + input_tokens: 276 + output_tokens: 92 + service_tier: standard + status: + code: 200 + message: OK +version: 1 diff --git a/tests/models/cassettes/test_anthropic/test_text_document_as_binary_content_input.yaml b/tests/models/cassettes/test_anthropic/test_text_document_as_binary_content_input.yaml new file mode 100644 index 0000000000..fc2ed220ed --- /dev/null +++ b/tests/models/cassettes/test_anthropic/test_text_document_as_binary_content_input.yaml @@ -0,0 +1,67 @@ +interactions: +- request: + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - '255' + content-type: + - application/json + host: + - api.anthropic.com + method: POST + parsed_body: + max_tokens: 4096 + messages: + - content: + - text: What does this text file say? + type: text + - source: + data: | + Dummy TXT file + media_type: text/plain + type: text + type: document + role: user + model: claude-sonnet-4-5 + stream: false + uri: https://api.anthropic.com/v1/messages?beta=true + response: + headers: + connection: + - keep-alive + content-length: + - '444' + content-type: + - application/json + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + transfer-encoding: + - chunked + parsed_body: + content: + - text: The text file says "Dummy TXT file". + type: text + id: msg_01KanQBT3kkADVzF2uCY9XPR + model: claude-sonnet-4-5-20250929 + role: assistant + stop_reason: end_turn + stop_sequence: null + type: message + usage: + cache_creation: + ephemeral_1h_input_tokens: 0 + ephemeral_5m_input_tokens: 0 + cache_creation_input_tokens: 0 + cache_read_input_tokens: 0 + input_tokens: 57 + output_tokens: 14 + service_tier: standard + status: + code: 200 + message: OK +version: 1 diff --git a/tests/models/cassettes/test_openai/test_document_url_input_force_download_response_api.yaml b/tests/models/cassettes/test_openai/test_document_url_input_force_download_response_api.yaml new file mode 100644 index 0000000000..d7c6282dc2 --- /dev/null +++ b/tests/models/cassettes/test_openai/test_document_url_input_force_download_response_api.yaml @@ -0,0 +1,389 @@ +interactions: +- request: + body: '' + headers: + accept: + - '*/*' + accept-encoding: + - gzip, deflate + connection: + - keep-alive + host: + - www.w3.org + method: GET + uri: https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf + response: + body: + string: !!binary | + JVBERi0xLjQKJcOkw7zDtsOfCjIgMCBvYmoKPDwvTGVuZ3RoIDMgMCBSL0ZpbHRlci9GbGF0ZURl + Y29kZT4+CnN0cmVhbQp4nD2OywoCMQxF9/mKu3YRk7bptDAIDuh+oOAP+AAXgrOZ37etjmSTe3IS + IljpDYGwwrKxRwrKGcsNlx1e31mt5UFTIYucMFiqcrlif1ZobP0do6g48eIPKE+ydk6aM0roJG/R + egwcNhDr5tChd+z+miTJnWqoT/3oUabOToVmmvEBy5IoCgplbmRzdHJlYW0KZW5kb2JqCgozIDAg + b2JqCjEzNAplbmRvYmoKCjUgMCBvYmoKPDwvTGVuZ3RoIDYgMCBSL0ZpbHRlci9GbGF0ZURlY29k + ZS9MZW5ndGgxIDIzMTY0Pj4Kc3RyZWFtCnic7Xx5fFvVlf+59z0tdrzIu7xFz1G8Kl7i2HEWE8vx + QlI3iRM71A6ksSwrsYptKZYUE9omYStgloZhaSlMMbTsbSPLAZwEGgNlusxQ0mHa0k4Z8muhlJb8 + ynQoZVpi/b736nkjgWlnfn/8Pp9fpNx3zz33bPecc899T4oVHA55KIEOkUJO96DLvyQxM5WI/omI + pbr3BbU/3J61FPBpItOa3f49g1948t/vI4rLIzL8dM/A/t3vn77ZSpT0LlH8e/0eV98jn3k0mSj7 + bchY2Q/EpdNXm4hyIIOW9g8Gr+gyrq3EeAPGVQM+t+uw5VrQ51yBcc6g6wr/DywvGAHegbE25Br0 + bFR/ezPGR4kq6/y+QPCnVBYl2ijka/5hjz95S8kmok8kEFl8wDG8xQtjZhRjrqgGo8kcF7+I/r98 + GY5TnmwPU55aRIhb9PWZNu2Nvi7mRM9/C2flx5r+itA36KeshGk0wf5MWfQ+y2bLaSOp9CdkyxE6 + S3dSOnXSXSyVllImbaeNTAWNg25m90T3Rd+ii+jv6IHoU+zq6GOY/yL9A70PC/5NZVRHm0G/nTz0 + lvIGdUe/Qma6nhbRWtrGMslFP8H7j7DhdrqDvs0+F30fWtPpasirp0ZqjD4b/YDK6Gb1sOGVuCfo + NjrBjFF31EuLaQmNckf0J9HXqIi66Wv0DdjkYFPqBiqgy+k6+jLLVv4B0J30dZpmCXyn0mQ4CU0b + 6RIaohEapcfoByyVtRteMbwT/Wz0TTJSGpXAJi+9xWrZJv6gmhBdF/05XUrH6HtYr3hPqZeqDxsu + nW6I/n30Ocqgp1g8e5o9a6g23Hr2quj90W8hI4toOTyyGXp66Rp6lr5P/05/4AejB2kDdUDzCyyf + aawIHv8Jz+YH+AHlZarAanfC2hDdR2FE5DidoGfgm3+l0/QGS2e57BOsl93G/sATeB9/SblHOar8 + i8rUR+FvOxXCR0F6kJ7Efn6RXmIGyK9i7ewzzMe+xP6eneZh/jb/k2pWr1H/op41FE2fnv5LdHP0 + j2SlHPokXUkH4duv0QQdpR/Sj+kP9B/0HrOwVayf3c/C7DR7m8fxJXwL9/O7+IP8m8pm5TblWbVW + Xa9err6o/tzwBcNNJpdp+oOHpm+f/ub0j6JPRX+E3EmC/CJqhUevQlY8SCfpZUj/Gb1KvxT5A/lr + 2Q72aWgJsBvYHeyb7AX2I/ZbrJLkewlfy5uh1ceH4aer+e38Dmh/Ce9T/Of8Vf47/kfFoCxRVip7 + lfuVsDKpnFJ+rVrUIrVCXa5uUXeoUUSm2nCxocPwiOFxw3OGd4z1xj6j3/gb09Wma83/dLbs7L9N + 03T/dHh6ArlrRiZdCU98lR5A3h9FDH4Aj/4QFp+mdxGFHFbAimH3atbK2tgm9il2GfOwq9n17O/Y + l9k97AH2LawAa+Am2O7gjbyDu7iHX8uv57fwo3gf59/nP+Gv8DOwPEuxKw5lubJR2aFcqgxhDUHl + gHItPHub8pjykvKy8qbyG+UMopalLlZD6pXq3erD6lH1R4ZPGgbxfsBw0jBl+JHhA8MHRm7MMeYZ + K42fMT5i/KXJaFppajfdaPoX03+Y/SyPlcFybX614NnYg4v5YzxdPcjOAJHPVErGyh2IQwd2xX9Q + gzKNuCSJediWwbPVNMFpdKph8AfZCaplL9BBI1dQidXTFGG/4KfV5/lF9GPWw7LVh5Uhww94AT2O + anSYP81PsPV0lNfzS/i9CrE32CP0BvL9CrqDXc4C9Dg7w9awz7M6dpD+hWcqHexaqo8+wFUWxzay + dwgW0FVqH33646sgW02/oLemv6omqp9DfZqkuxDRb9Br7FH6MzNE30Z1U1CNXKgyNyPfryNR9XZi + nx3EfsxGBRkwvkRHxYliqjOuU6+kd+g/6S3DcWTUelTSN6e96lfVX0XrouXYYdhl9Aj2XT9djB3z + BrLkGYzF6DLs9HjUkmrs6nbaQX30eVS926Lh6L3Ra6L7oz76R/D+mS1jf2Zj2BGT4Kin7+H9RfoZ + uwn78OL/3ikw3UdT9FtmZYWsGvvhjGGf4bDhMcNRw7cNLxqXw9vX0j3I6F8im+OxAjf9iH5Lf2Jm + xCabllEN7F0F27togHcrz1ATyyE/9mwJ6vh6fSUBSLka3rsX+/kZ7I13UCcuo2/TK4yzLKzIDf1m + yGmDn3eB+iFE8Bo2AUwfqnYZ/Q7rTmKreBD6nJB0F6rWFGz6Bf0a3o5Ku5ahLjSzSyDrT/Qp6oOG + ldTOxhGBJ2k1Kmuz8k/w91JmofVsCfs6+HqwQ5Mon1YbfsU4LZveHF3FvcozOGOiwI/h9Mqli9he + WJGMdZylDLaFaqe3wYaXiZyNnc6GdRfVr12zelVdbc2K6uVVlRXlyxxlpSXFRYVL7UsKNNvi/Lzc + nGxrVmZGelpqiiU5KTFhUXyc2WQ0qApntKzF3tqjhYt6wmqRfcOGcjG2u4BwzUP0hDWgWhfShLUe + SaYtpHSCcveHKJ0xSucsJbNo9VRfvkxrsWvhF5vt2iTbsbUL8C3N9m4tfEbCmyR8WMKJgAsKwKC1 + WPubtTDr0VrCrfv6R1t6miFufFF8k73JE1++jMbjFwFcBCicZfePs6x1TAI8q2XNOCdzIowK59ib + W8LZ9mZhQVgpbHH1hdu3drU05xYUdJcvC7Mmt703TPb14WSHJKEmqSZsbAqbpBrNK1ZDN2njy6ZG + b560UG+PI6HP3ue6rCusuLqFjhQH9DaHs6583To3hPDUpq7r58/mKqMtVq8mhqOj12vhqa1d82cL + xLW7GzLAywtbe0ZbofpmOLGtQ4M2fl13V5hdB5WaWIlYVWx9HnuLwPR8RgvH2dfb+0c/04PQ5IyG + adv+gkhOjvNY9DTltGijnV32gnBDrr3b1Zw3nk6j2/ZPZDu17IUz5cvGLSkxx44nJetAQuJ8wDM7 + JyFJLqC2bbOeZcIi+0YkRFhza7Cky441rRIXzyoada8CGV7dDFzhPkTEG45r6hm1rBF4wR82FFrs + 2ugfCRlgP/P2QoxLxxgLLX8kAYo8mU01zM/AYYcjXFYmUsTUhJjCxnVyXFu+bN8kX2n3WzR0cB+1 + w7eu7jWVcH9BgQjwTZNO6sUgfGhrV2ysUW9uhJyVju4w7xEzUzMzGdvFzKGZmVn2Hjsy+ah8EMgI + m4tm/yVbMtNa+teEWebHTHti820d9ratO7q0ltEe3bdtnQtGsflVs3M6FE5r6lJyuQ7xXEXOIikv + myUWg66EsFqIf0aZ1H1hBUkpEUxrDVt6NsSu3fEFBR/JM2kyz2OajL4juGQ3x6ZbGV7jWDheu2C8 + wLqEUQX2qkW8rXPH6Gj8grlWFKDR0Va71jraM+qajB7qtWsW++gx/jB/eNTf0jMT0Mno8Ztyw603 + d2MR/WwNkpXT+nE7u2HruJPd0LGj65gFT283dHZFOONNPeu7x5dirusYbkWcEstnsWKkiRG1MSR6 + hJvlVO4xJ9EhOatKhBy7JxlJnHkGx8g9yWM4i8ThVY7bFBF8A9449U20/ihn00bTJG9wppFBnVYo + 3qROM8o2Gw3TXHmaFVEcbnatZHVY3qs/W7/Z8m79prP11ADY8gEuy6sKUgpSCnFhuIH4QFOmPnAa + 6C+kqVPQhScYMrjwnGUhGx10rigxlMRfnOVRPQmGsqzVWRsyuzP7Mw2rs1bmXp97t+GuRQZbSiEj + npZamGwxZxcfMTHTZHRqIm5RDUy82Zl2qIBpBVUFvCAlVSPNUmXhlkl+04S2vMPqgGk7hW2bLDv3 + vufYu+mMNLJB2kg797KdaQXVWZmZqRnpuBfE217AUlZU163jtTVFRcVF9jt4/lM9V032lNft3nRN + 79fPvsxKXv1c3YZd9fUDHeueMBzPK3pu+s0fPnHNmLutzKY+90FtUuolLzz22JO7U5PEs/ct0d+o + Hbivy6R7nVmfStmTcpdBiTNmG+t5fUobb0t5k5uSJ3nQmaIuyqT4jPT0+DhjWnpRRgZNslJnUqZT + W1pzJJNFM1lmjhWLdmYuWVpz2Dpm5X7rO1b+eyuzxi8qijOLqWTQjpnZO2Zmzs5qqJdr3zvsEKvf + jNUPO95D23Sm3iIjVW+BFxrOCC+wnQW1RqN9SVFRLaKWnpm5onrlSgEqm9c84738sU+ybNu2hg3D + ZSz7vu29n37sLj42bT3tWbsl9Dqb+svPxToP4H73y+o6KmZrj1EpjNmZEt9gMBoTMoyZCTVKjbnG + WmNv5i3mFmuzPUFTKks74npKD5XeV/p148OmhxKeMD6REC49VXq6NIlKK0vbMXGy9LVSY6kzJ6+m + AeNDctJgKlBNOfmZcFkk3lQgPLdYNVlSUopz8/KKiuMZGZMtRakpzh21PSnMl8JSJnmrMzkntyg/ + DzhfHuvJY3nAHS1EdBl8HCEqFsmUHNcgeudK2F0M0mJnI1o92tLimmLnmotqKotfKn6tWEkuthUf + KlaoWCuuKo4Wq8XZJb+K+Vq4OPZCtp2Bl9/budeBRHtv707RwefS6+LdcKbhDEtJXU1oy6vYsGPv + ToTBkVaQsXJFdWbWSnnNzEAIapCDS4xGCRbNgAeYctPU7ruqWh+4LPRASf70m/nFW9f2V0y/ubhh + ZWN/+fSbatFtj3Zu396567LmL5/t5ru+WlG/4aa7pjlvvWfHstZr7z77AWKWNL1V3YbcTGM1R1NL + DCxtMnraaU1IrjFnJibXmMTFKC6GTOC4cI4tZ00NgqomLkoyWjilGdU0rioKg9vTeizMMsmOOFMX + JSdWJpWQllGV0ZOhvJPBMoR/lxTViN6Zmre4JiMrK0ddrTit2TUHFaZMsmJnHJcjVD8xSsXTiTNv + ZY1GVagW2enfGYs52LHpbDau+Gc9u7nF0/xrh2Pv8CbLu69Tw5mdlQ3StSx1dYr0a+pqAKYki9jo + DibjsrMtbOloC69BxY+oFjoefYdY9J1xBc/veHXjRDlGhuhvnEmJKQ1plrRsXFKtDQacIRMYiD6C + cUxWd1pBWloBMyUp9iXFxWLL1CUxx/T7zD59Y1Nh06cOtm/dnL2+tvfT2WrR2ST+hw/4sZ29Fy1J + +UVioFvUwDvxLPg+amAy7rdHnIVGw7H0Y1blYgPbY/iJgaemFCYmJVGupRAuSSZz5jlVL9OWX5Xf + k+/PP5RvyLckayzmLFH48hYWvtm6J6pe6urKudq3IqVAQ/HLSDeKymfP5nLj14i6dyf7V5a07cBj + vV/a/JnvP/vAkX1Nn95QO2Y4nlnw6pHrJ70pGWd/qj433VPR29jenxiPbPoS1nMt1hNHw84Gs0E1 + GgpNmrnKfNL8mlmtNB82c7OZFFWsJ47MpgbjFjyKb1Nw8vAcbVHVIr5IjZu/iPj5i0D9eg8ABnPL + 2LkXvWKw1GM1WEhGgWxfUs6cXcv7zt5rOP7+9IPvn71NVCcrHP5rw8uowpPO6pUqK1M1i5bSrR6y + GszqSSvPyEzh6amZKUlpyWRJSmNk4elx5uRFbNeiKAwTZSbeyFKSY4VYVh2c13jYFomPkr2iwbzF + 3G5WzCWWypRdKTxlkqnOxKS0Ip6+i8YypzJ5JkL3ZFxCTWZ21hXHuJfk0hx76zeJ0/KDnfXv7sx+ + naxYm1gVWgMuq6uT8UJ5EMUhbUVtjSgLWSZRBDIyVmTYURLs1ntX3x26IlDUtO6i2n/+5+k371WL + 2r9wbcfS71hWb2179YOnlI0i126Hsd9AbMTZPnKM4rAPG1DnnHHtcfxQXDhuKu5U3O/jDLa4nriD + cWNAGBSjCQe/kkzMSafwxKjQTtwiGA1GkxrPTUVMFXs5rmBpjZpt1o8ah34LIAOEJcjQyOhgAcOO + NJjL0G5n2dNvsmz1SaZOf/CXT6hFOEDYPAs7xBaccpYK+wztBn7IEDZMGU4Zfm8w2Aw9hoOGMSAM + MAY3JVwpYjRjCWWr51ii614R02s4/udWeKMRZ3Ixzqp0ymNfO0aW6PvO1kWr7477SuJdlkcMD8ef + iDuROJljNqezDfxiY2v8lsWPJD5pfDLnu/HfS/hJ/CsJ75v+lJiYl5yX4czNr8lwJqXUJGeczHgp + Q5GFLnlxg+yTstDzW5wJyUmp7Uk9STzJmspEFmTn1rAVqcLsiXytRvZLSmO9ozzWW/Nk70xOSq4Z + E/flFpi9KzUVmTehLkq1igxcushEBawyo2BLEkvKqVy8a7Fv8X2L1cXJBWYnirY5O9/bGPPGpjNy + +2w68y6KwBkUOWe61VmS3mB1Lk7GJdeCS15KgyxqDWdlEUyFEaBIFcaASPagE31khhTnnSyEkoEw + geNMzGeJLjwRF79ODhsLGhwk6F93oCjvlOqTnPBSklCaJNQnOeEskkJRnBwOHKP1uAtD8HbupZ0O + hiPHrhUX1VpoRTUpBfL+JE0chiZjFv8zs65868j0767zsvSXz7BU41mncrVr/Y5i5YpLLquvZ2xb + 5Vfuf+K2V5kZ1fm70898/qYNbODKg01NAfkxmPiI79d7nvlx/8ldyfV/NGeb5adDD/yqfu5Tf5re + avwyqgdDbWMzH58RmdZNb6amuQ/UPvQBU4IRKMN36Q71V3SLKZ8OqAFK4qtx53sJ3Qncl/hjZMX4 + dtEw1wielfQ4s7H/5JN8UtGUIeV/qw1qyPBZXXoClSANxIsjISppO+65Nlt82AgCu0u9ksTduzRY + XhXJFy9HiuTCnaEOK9TFLDqsUjrr12EDWdnndNgI+A4dNtF32Dd02ExF3K/DcTTK79LhePU5RdPh + RdRr+qUOJ9Buc7MOJxqPmh/T4SS6LPnTs347mHxch+E2y2od5qRa1umwQsss63VYpXjLkA4bKMFy + hQ4bAV+rwybqtRzWYTOlWf6gw3HUkmLQ4XjuSvmEDi+i5WmPz35btiLtFzqcqOxIT9bhJKrI8sIS + pgqvJ2V9SYdVysl6UMIG4OOzTuqwSplZ35ewEXhj1ms6rFJq1hsSNom4ZP1JhxGLrKiEzcAnWNN0 + WCWr1SbhOBFfa50OI77ZtToMOdkNOoz4Zl+sw5CZfZ8OI77ZEzqM+Gb/ow4jvtm/0mHEN+dhHUZ8 + c17UYcQ391M6jPhq2TqM+Gqf1WHEV/tfOoz4Ft8p4Xjhq+J/12H4qji2xkXAp5Zk67BKi0scEk4Q + aynZqMOwv2SrhJNE5pd4dFilvJKQhC1Szm06LOR8TcJpwuclz+owfF7yXQmnC3tKfqbDsKfkTQln + AJ9eynRYJa00Q8KZgr60VodBX9ok4WxJv1OHBf1eCeeKHCi9TYeRA6X3SDhf2FM6rsOwp/QpCdsk + /fd1WNC/LOGlIgdK39Jh5EDpHyVcJvxTlqjD8E9ZzM5yUQnKSnVYnYHN0v+zMOwvk/ljlusq26rD + Ar9LwAkx+v06LPDXS1jGpex+HRZ6H6VO2k9+8tBucpEbvUaPonVSv4Q3kY+G0II6lYaK6aNhwOLq + At4rKTRgBsBfAahZ4l3/Q0mVs5Zp1IGZAQrN0gSA24g+pm85rca7isp1qFpiG8ExgH4bePbAhqDk + 2gZ5AbRh2odrH6iGMe8C5Xqpo+8cO9fMo9FmqdbQJVJKYNbqFdBahbeGKr8JWDdmfZj3wbNBKj2v + lI+SMUdbPs+uznn4b0nPCr/1QcYg+mG6HDih7b/vcw1YD7zlhU1BaZvwkYaxoAnqUrcjHhq1S36N + iqS+Tbhuge7d0vcu0As+D6QKb49ITiGt4jw2xeLsg15hkx+0+z+SyiPzS9CNSKv2zOr16tlbLqPs + o17d6s1ypl960QVrls3aPixnvDJTO3ANSatjEYll1SrkUpO0JCi9POO3Ydiigcql52Iso7zS930y + w0TODUld8+Pu1mW5pG2Cc1BKFHb3Q/+glBjzviatdkl9bj0asRlhdUCPh0uuMca3fzb+Xj3b/XoE + PdI3AZmNsdXNRMil2x+S2jSpYb5VM5EXvhHjESm7f142CFqflBXTPYOPeTuoe8StZ2rgHLogZHqk + V7zoY7LdOiYkPS0yai6nfXLnDkuPDkh+YamI56DONaPBLfn36Vq9+kpj+1FImPPCblAKaTHsnF+9 + und9+kq8kj4kR3NRDcgsHZDWnT8nZmprYHYtYm5QypuTIerF5bq1Lt3/bln1NH2XzvisT+reI7Ex + frHDvHoM++W+8+s54sNV7Oh9urdjEuaqvUvGKpYdmvShW1+/V0ZtQNL45d6LZeOQ5IytZH52e2cz + S+z8K/TIDEprRG7u0/dWrO4MzNoxKEdz2Rv80IkU+ND63LqOXikhJD3dtyA3PbQX+BnPitx2z65w + t8xtTebAFdK3AZl3wdl6Eou6sD2234N61YjtpoCeZXPVMzY7KCPioislf8xqIdctZ+cyLaa9T3rL + L3fJ/tlVzOgekjVTzLukJ4Z1HWIPxbwYlPwzFs9I98scGpR1c8a2Cnn2BTG3BmdqJeSKd4Wkml9h + K2R1GgRFv9xLA4AGAQ3JCHnkKEC7ZA7EIl4xS/l/V8OIzJgYrWeels2o9J0491vRmpB5At4CrDgB + WnH9pMS3ANOBq8jNi3EStOC9SWI7KRFPU6J1ymwKnCfXtFl8bJ/EPOrXfT6Xo3/dKTYXmZmKPBPn + Xjm7H/ShWZ3u2doWy+e582h+tYxVjrk6Gtu/Xr1mBvQ9vUdK8czWRLFbu3VtYnfv02tp7+xpFNMZ + /BjPzNTOkdnq5NF3nGc2p4dl/Qjq+3m3no/n89fMLhQe88yTMreLz9XXp5+AIgN7ZWWMWd2rR2ZI + l3y+CBXLVS30VKwin5sV52qeqW2iirnkvagLWgd0bwf0GvJRuoX3twMzV2f3nxMLj36XMf+eK1a9 + XdIiv/SsV7/T+Wtirum5ODSvts3oFZWkT3raO+8UGZ53r7xslnp4Xt7Ond0f7ylh3aCUP5NXvgXy + RmT8L5fRnH8fOlMf5yh9oI3doYakx4X8/tn1xOyan92DekWN+T+2q/x6fsxV3oU59HErmsuPjXLt + 50Zu5t5LnDke/Q4ttprY/Z5bRnXoQzEY/pC/5yQH5N1qSN71x86hffLeaITm313919GfkTes3/95 + 9Wee893FnRvHmLfm7ljdUua5+3gmYq4P+Xr332TtnJfP1bDwvF9okUe/iw3i7JmRIJ5PGin2JFCC + e/gaqsPzl4brcozK8XxVI5+yxKcj26lNp6zC7HLM1OhwHZ7G6iTXSqrFs4BoQvrfdtb990/GmbnK + D3lv9jzs3O/37Ha5PdqjWme/R9vkG/IFgdKafMN+37Ar6PUNaf4Bd4XW7Aq6/guiSiFM6/ANhAQm + oG0cAt/y1aurynGprtAaBwa0bd49/cGAts0T8Azv8/Q1DntdA+t9A30zMtdIjCZQay7xDAeE6BUV + VVVaySave9gX8O0Ols6RzKeQ2HIpq1PCj2idw64+z6Br+HLNt/tjLdeGPXu8gaBn2NOneYe0IEi3 + d2jtrqBWpHVu0rbs3l2huYb6NM9AwDPSD7KKWUlYs2/PsMvfv38+yqM1D7tGvEN7BK8X7i3Xtvl6 + IXqz193vG3AFlgnpw16316V1uEJDfVgIXLWqusk3FPQMCtuG92sBF7wIR3l3a32egHfP0DIttnY3 + qFxeTA76hj1af2jQNQTzNXe/a9jlxjIw8LoDWIdrSMPcfrF+L9zuxwI9bk8g4IM6sSAX5Ifc/ZpX + FyUWHxryaCPeYL90w6DP1ye4BQyzgzDEDacGZnDBEc9Q0OsBtRtAaHh/hSY97dvnGXYh3sFhjys4 + iCnB4A4h5gGhTMTRMyxN2B0aGAAobYX6QR+UeIf6QoGgXGoguH/AM98TIlsDQotneNA7JCmGfZdD + rAv2u0NQFAtgn9e1xyfmR/rhc63fM+CHR3zaHu8+jySQae/SBuAObdAD3w153SB3+f0euHHI7YGS + mLu9wlma5wosZtAzsF/D2gLInQEhY9A7IN0b1DdSQNfnBkevRwsFkFLSm569IWFsyC38r+32YcmQ + iEUFgyJPsPRhD+IeRGogTAG4TKYnhoOuPa4rvUMQ7Qm6l8WcBvY+b8A/4NovVAjuIc9IwO/ywzSQ + 9MHEoDcgBAty/7Bv0CelVfQHg/41lZUjIyMVg3rCVrh9g5X9wcGBysGg+NuSysHALpdYeIVA/pUM + I54BYD2SZfOWzo2tG5saOzdu2axtadU+ubGpZXNHi9Z48baWlk0tmzsT4xPjO/vh1hmvCReLmMBQ + rCAoPXqeLSYXIxJZrLl3v7bfFxKcbpFt8LPcR7G0RHLIHEV8sf2GQO7aM+zxiEys0LrB1u9CGvh6 + xTYCZ3CBMSI7R0Q6eRA4j/D0sMcdRJx3w49zdokQ+vZ4JIkM8SwfQoPs7Q0FIRpm+rCj5i2oODBj + FBJ51hWzzCLbtH2ugZCrFxnmCiBD5nNXaNuHZM7un1kF1qRXLqS3Swv4PW4vis65K9fgxSGZbYLX + 1dfnFTmBrByWVXmZQA9L38rd/SGjBryDXrEgKJF0I77hywOxJJX5KJG+ERTUUO+AN9Av9EBWzN2D + SFTYj1D592ux5NU9tFCR9MfG3XOLE9Vrb8gTkGpQ99ye4SF9BcO63ZI40O8LDfRhD+3zekZi5eqc + 5Qs6RNKDCtA3V+Jm1wizZGF1B+diLBbm0q3efX6x0uRZBn3f64KgxxVcIwi2dzTiEChZVVNXqtUt + X1VeVVNVFRe3vQ3IquXLa2pwrVtRp9WtrF1duzox/iN23cduRjGq1M2T+xCPqx79Jknc6sz/mGXh + TJBCLBG3Bm8toJnD7qaFH3NrOqZV/9Bj/oyOU25QnlG+o5zEdXz+/AL8ha8NLnxtcOFrgwtfG1z4 + 2uDC1wYXvja48LXBha8NLnxtcOFrgwtfG1z42uDC1wYXvjb4f/hrg9nPD7z0UZ8sxGY+iT6WrT6J + CS2gPXf2Ylk1AguoZnCt9BbGl9N7oH8LuIWfOiycm+GZub/ynVfi3OwlEppPE8NskKN98vOOhfML + Z9r10zckn/18clfOpz7f/HxP+T7Shz7Vpq5T16pN6kp1lepUL1Lb1NXzqc8733neT3TmsK3nrCeG + aRMjthw08+fmsG36venlH7J4Hp6l0C8VO7Jk3vws7q/Nm7/SN3+1vI/LK/3/y1O0mH5K53l9mzqV + r1AyY2SLTilfnrCkVzsnlbsnktOqnY0W5U5qR+MUVjbRFBonn3IbHUTjIG+LlC+vPiaAifikagvo + byIN7RCaQmO4Mjl2ogn6mybSMoX4ayLJKZLvs5GqmhgwYbFWtzemK1cQUzzKENnJphxAvxi9G30+ + +l6lD5VC2OmcSLZUH4K+BpA3KBkoQzalUcmkavTNSg7lSrJQJCmmJxQpKatujFeaFKskSVYSUY9s + ilkxRapt2glF/NmwU7lhIm6RsO+GiCWj+hnlOsVE6aA6BKosW/IzSjxVoomVdE7EJVYfbkxQOrHM + TrjFpoj/rH+fvDqVoQgEQV+LkkeZmLtcyacM9K3K4kiGbeqEcrsk+zshBfrWRcwrRDeRmFQ91Rin + iL8HCCu3wuO3Sm2HJ4pWVVNjkVJCVYr4EwlNOQjooPjP4soooFGEaRShGUVoRmHFKBkR+RsxcyNo + KpUrya+M0GG0+wCrEJkRgQePSWBpSfUxJVuxwhOWE/AdAzZnIi5JWGaNpKZJMutEQlJ1wzNKgLag + cRgfnMiyVvtOKGVyKcsmrLmCwR+JS4DrsmKxAGOmiMEzSp6yWHoiX3og3GjDmFGyYiPGf8BPCe/w + l/mPRXzFT/rI/h/1/kW9/2Gsj07xUxPQ4pzk/yz60415/A0I28VfpfsAcX6CP4+jxsZ/zieFFfxn + /Bg1oH8F4z70x9CvQH88UvA92ySfnEAH2++JJGaKxfLnI45KHbAV6kBWrg6kZlY3FvLn+LOUBxE/ + Rb8U/bN8ipagP4nein6KB+l76J/gtbQW/VG9/w5/WuQ0f4o/iTPTxiciScKEcMQkuiMRo+i+FaHY + qL3S9jT/Fn+cckD6zUhRDrCPTBQttSWfgDzGH+TBSL4ttTGe38+62LsgGqNXRE+p/IFInRByOPK0 + ZjvGD/PDTmuds9BZ7nxIqSqsKq96SNEKtXKtTntIa7TwW8kA52HD8ptwxfnMkT1oTrTD/MaIWhdu + PIs1iXVxOoTrmIR6cPVLiHC1zM6+I6EGfh1tQeOQcQDtINohtKtIxfVKtM+ifQ7t8xITRAuhjaB8 + +MHhB4cfHH7J4QeHHxx+cPglh19qD6EJjh5w9ICjBxw9kqMHHD3g6AFHj+QQ9vaAo0dytIOjHRzt + 4GiXHO3gaAdHOzjaJUc7ONrB0S45nOBwgsMJDqfkcILDCQ4nOJySwwkOJzickqMKHFXgqAJHleSo + AkcVOKrAUSU5qsBRBY4qyaGBQwOHBg5Ncmjg0MChgUOTHBo4NHBoksMCDgs4LOCwSA4LOCzgsIDD + IjksMj4hNMFxGhynwXEaHKclx2lwnAbHaXCclhynwXEaHKf5yLhyqvEFsJwCyymwnJIsp8ByCiyn + wHJKspwCyymwnNKXHpTO4EibA2gH0Q6hCd4p8E6Bdwq8U5J3SqZXCE3whsERBkcYHGHJEQZHGBxh + cIQlRxgcYXCEJccYOMbAMQaOMckxBo4xcIyBY0xyjMnEDaEJjr89Kf/m0PCrWJcZhys/xEplf5De + lv0BekX2n6dx2X+OHpL9Z+lq2V9JdbIfoSLZQ57sg2Qzs4itLrkxEyVgC9ouNB/afWhH0E6imST0 + EtpraFFe61yiJpu2mO4zHTGdNBmOmE6beLJxi/E+4xHjSaPhiPG0kWuNuTxR1lGUFvqivB7E9fdo + OERwbZBQA6+B3hrU2Vq8a3iNM+WM9vsy9lIZO1nGjpSxL5axxjh+MVNlpcOdPofhrMuZULTO9gpa + XVHxOlSmW598O8sWKVppm2RPx7pSpwP922jjaA+hXY1Wh1aNVo5WiGaTuDLQdzmX6CKfRitGK0DT + hArKzMTdTWqK2XmMJ7KHJl5IpDihp7gEfCcixVXoJiPFW9A9FSnutTXGsSepWNwGsScQucfRH4nY + Xsf0N2PdNyK2E+geidhq0O2MFFeguzRS/KKtMZFtJ5sqWDv1vgPrFv22iO0SkG2N2ErROSLFRYK6 + DIoKMVvKuuh19IU619KYJnvEthbdkohttaA2U7EIPDNSuTTPgCZ6ZQIG/f4Y61KZc5HtjO1229tg + /x0ci/T4mTaponupcJJd4oy3PV3+VRA32iKN8YIe58O43odF/4TtocIbbfdAFit80na3rcJ2a/mk + GehbYPeNUkXEdrU2yR93ptkO2apswfLXbQHbJ2wu2zbbzkLgI7bLbE8LM6mbdfHHn7S1Q+BGrKIw + Yru4cFKa2Grbb3Paim2rtaeFf2lVTG5d+dPCA1Qd074M/i0rnBQ5vr1ukqU4y0zvmA6bLjWtN601 + 2U1LTItN+aZ0c6rZYk4yJ5jjzWaz0ayauZnM6eLnHRzizyvTjeKv18moiqsqYQsXVx77S1POzJw+ + QeE0pY23daxnbeEpN7X1auH3OuyTLH7rjrDBvp6FU9uorXN9eJWjbdIU3Rauc7SFTe2Xdo0zdms3 + sGF+wySjzq5JFhWo63LFD1GNM7rultxjxFj2dbd0d5M1c1+DtSF1Xcrq1ubzXHr0q2PuZZ0P5ofv + auvoCj+W3x2uFkA0v7stfJX4mapjPJkntjQf40mi6+46pvp5css2gVf9zd0ge12SIZuTQEbFogOZ + eT1pggz1ZL0gQ4xidEVgB12B6EAXn0hFkq4oPlHSqUzQjb+itTSPa5qkKSR6RdK8UkjzaJAx4G0e + LyqSVHaNdQkq1mXXpGGlUpDNBpJymyTBk5tNCrIxqSxcOUdSqJPUzpLUSl0Km6OxxWjSS2Zo0ktA + 4/gfvjzrHWxieejA8+KXv3rsLR60nvBN+/qt4UO9mjZ+IKT/JFhRT6+7X/QuTzhk9zSHD9ibtfHl + z59n+nkxvdzePE7Pt3R2jT/v9DRHljuXt9hdzd0TDfVdjQt03Tirq6v+PMLqhbAuoauh8TzTjWK6 + QehqFLoaha4GZ4PU1eIVed/eNW6m9eJ3QWQ/wRfFI4d7cgu612da/OtEQh9bW2A9kHtcJfYILXJ0 + hxPs68OJaGKqvLG8UUxhn4mpJPHzbvqU9cDagtzj7BF9ygJ0in09zbiWBFFbuHZrW7igY0eXSJWw + 03X+mAXES05bqcXbjH8YB2XDez4lBc77Cp7vFQqFAuIScuApuS1c1tEWXrkVlphMUNXT3A1cxQxO + USRuPC6uZTI6hUkHjGBBoU5ADiZ+I8AZj6cuEx8zjpm4eFQITuTkV/uewQl+EA3PcXwkUimfl/nI + xJJC8fwSnKisjfV4PhV9JKegWvwUQR1YRV8Y650p5QAOFx4uP1w3VjhWPlZnFD+08BCQtofEURqp + fEihoCMw4wiAwW6K/XQB9N0fycuXiscE4HB0OwLyN17ow6526L8jA6fPOjagSw1I8cGZgMTwAYoR + xyYdoRmmkM4iJ0OSRSr8P1jbNhMKZW5kc3RyZWFtCmVuZG9iagoKNiAwIG9iagoxMDgyNQplbmRv + YmoKCjcgMCBvYmoKPDwvVHlwZS9Gb250RGVzY3JpcHRvci9Gb250TmFtZS9CQUFBQUErQXJpYWwt + Qm9sZE1UCi9GbGFncyA0Ci9Gb250QkJveFstNjI3IC0zNzYgMjAwMCAxMDExXS9JdGFsaWNBbmds + ZSAwCi9Bc2NlbnQgOTA1Ci9EZXNjZW50IDIxMQovQ2FwSGVpZ2h0IDEwMTAKL1N0ZW1WIDgwCi9G + b250RmlsZTIgNSAwIFI+PgplbmRvYmoKCjggMCBvYmoKPDwvTGVuZ3RoIDI3Mi9GaWx0ZXIvRmxh + dGVEZWNvZGU+PgpzdHJlYW0KeJxdkc9uhCAQxu88BcftYQNadbuJMdm62cRD/6S2D6AwWpKKBPHg + 2xcG2yY9QH7DzDf5ZmB1c220cuzVzqIFRwelpYVlXq0A2sOoNElSKpVwe4S3mDpDmNe22+JgavQw + lyVhbz63OLvRw0XOPdwR9mIlWKVHevioWx+3qzFfMIF2lJOqohIG3+epM8/dBAxVx0b6tHLb0Uv+ + Ct43AzTFOIlWxCxhMZ0A2+kRSMl5RcvbrSKg5b9cskv6QXx21pcmvpTzLKs8p8inPPA9cnENnMX3 + c+AcOeWBC+Qc+RT7FIEfohb5HBm1l8h14MfIOZrc3QS7YZ8/a6BitdavAJeOs4eplYbffzGzCSo8 + 3zuVhO0KZW5kc3RyZWFtCmVuZG9iagoKOSAwIG9iago8PC9UeXBlL0ZvbnQvU3VidHlwZS9UcnVl + VHlwZS9CYXNlRm9udC9CQUFBQUErQXJpYWwtQm9sZE1UCi9GaXJzdENoYXIgMAovTGFzdENoYXIg + MTEKL1dpZHRoc1s3NTAgNzIyIDYxMCA4ODkgNTU2IDI3NyA2NjYgNjEwIDMzMyAyNzcgMjc3IDU1 + NiBdCi9Gb250RGVzY3JpcHRvciA3IDAgUgovVG9Vbmljb2RlIDggMCBSCj4+CmVuZG9iagoKMTAg + MCBvYmoKPDwKL0YxIDkgMCBSCj4+CmVuZG9iagoKMTEgMCBvYmoKPDwvRm9udCAxMCAwIFIKL1By + b2NTZXRbL1BERi9UZXh0XT4+CmVuZG9iagoKMSAwIG9iago8PC9UeXBlL1BhZ2UvUGFyZW50IDQg + MCBSL1Jlc291cmNlcyAxMSAwIFIvTWVkaWFCb3hbMCAwIDU5NSA4NDJdL0dyb3VwPDwvUy9UcmFu + c3BhcmVuY3kvQ1MvRGV2aWNlUkdCL0kgdHJ1ZT4+L0NvbnRlbnRzIDIgMCBSPj4KZW5kb2JqCgox + MiAwIG9iago8PC9Db3VudCAxL0ZpcnN0IDEzIDAgUi9MYXN0IDEzIDAgUgo+PgplbmRvYmoKCjEz + IDAgb2JqCjw8L1RpdGxlPEZFRkYwMDQ0MDA3NTAwNkQwMDZEMDA3OTAwMjAwMDUwMDA0NDAwNDYw + MDIwMDA2NjAwNjkwMDZDMDA2NT4KL0Rlc3RbMSAwIFIvWFlaIDU2LjcgNzczLjMgMF0vUGFyZW50 + IDEyIDAgUj4+CmVuZG9iagoKNCAwIG9iago8PC9UeXBlL1BhZ2VzCi9SZXNvdXJjZXMgMTEgMCBS + Ci9NZWRpYUJveFsgMCAwIDU5NSA4NDIgXQovS2lkc1sgMSAwIFIgXQovQ291bnQgMT4+CmVuZG9i + agoKMTQgMCBvYmoKPDwvVHlwZS9DYXRhbG9nL1BhZ2VzIDQgMCBSCi9PdXRsaW5lcyAxMiAwIFIK + Pj4KZW5kb2JqCgoxNSAwIG9iago8PC9BdXRob3I8RkVGRjAwNDUwMDc2MDA2MTAwNkUwMDY3MDA2 + NTAwNkMwMDZGMDA3MzAwMjAwMDU2MDA2QzAwNjEwMDYzMDA2ODAwNkYwMDY3MDA2OTAwNjEwMDZF + MDA2RTAwNjkwMDczPgovQ3JlYXRvcjxGRUZGMDA1NzAwNzIwMDY5MDA3NDAwNjUwMDcyPgovUHJv + ZHVjZXI8RkVGRjAwNEYwMDcwMDA2NTAwNkUwMDRGMDA2NjAwNjYwMDY5MDA2MzAwNjUwMDJFMDA2 + RjAwNzIwMDY3MDAyMDAwMzIwMDJFMDAzMT4KL0NyZWF0aW9uRGF0ZShEOjIwMDcwMjIzMTc1NjM3 + KzAyJzAwJyk+PgplbmRvYmoKCnhyZWYKMCAxNgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMTE5 + OTcgMDAwMDAgbiAKMDAwMDAwMDAxOSAwMDAwMCBuIAowMDAwMDAwMjI0IDAwMDAwIG4gCjAwMDAw + MTIzMzAgMDAwMDAgbiAKMDAwMDAwMDI0NCAwMDAwMCBuIAowMDAwMDExMTU0IDAwMDAwIG4gCjAw + MDAwMTExNzYgMDAwMDAgbiAKMDAwMDAxMTM2OCAwMDAwMCBuIAowMDAwMDExNzA5IDAwMDAwIG4g + CjAwMDAwMTE5MTAgMDAwMDAgbiAKMDAwMDAxMTk0MyAwMDAwMCBuIAowMDAwMDEyMTQwIDAwMDAw + IG4gCjAwMDAwMTIxOTYgMDAwMDAgbiAKMDAwMDAxMjQyOSAwMDAwMCBuIAowMDAwMDEyNDk0IDAw + MDAwIG4gCnRyYWlsZXIKPDwvU2l6ZSAxNi9Sb290IDE0IDAgUgovSW5mbyAxNSAwIFIKL0lEIFsg + PEY3RDc3QjNEMjJCOUY5MjgyOUQ0OUZGNUQ3OEI4RjI4Pgo8RjdENzdCM0QyMkI5RjkyODI5RDQ5 + RkY1RDc4QjhGMjg+IF0KPj4Kc3RhcnR4cmVmCjEyNzg3CiUlRU9GCg== + headers: + accept-ranges: + - bytes + age: + - '502211' + alt-svc: + - h3=":443"; ma=86400 + cache-control: + - public, max-age=2592000, s-maxage=2592000 + connection: + - keep-alive + content-length: + - '13264' + content-security-policy: + - frame-ancestors 'self' https://cms.w3.org/ https://cms-dev.w3.org/; upgrade-insecure-requests + content-type: + - application/pdf; qs=0.001 + etag: + - '"33d0-438b181451e00"' + expires: + - Thu, 04 Dec 2025 23:01:47 GMT + last-modified: + - Mon, 27 Aug 2007 17:15:36 GMT + strict-transport-security: + - max-age=15552000; includeSubdomains; preload + vary: + - Accept-Encoding + status: + code: 200 + message: OK +- request: + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - '17930' + content-type: + - application/json + host: + - api.openai.com + method: POST + parsed_body: + input: + - content: + - text: What is the main content on this document? + type: input_text + - file_data: data:application/pdf;base64,JVBERi0xLjQKJcOkw7zDtsOfCjIgMCBvYmoKPDwvTGVuZ3RoIDMgMCBSL0ZpbHRlci9GbGF0ZURlY29kZT4+CnN0cmVhbQp4nD2OywoCMQxF9/mKu3YRk7bptDAIDuh+oOAP+AAXgrOZ37etjmSTe3ISIljpDYGwwrKxRwrKGcsNlx1e31mt5UFTIYucMFiqcrlif1ZobP0do6g48eIPKE+ydk6aM0roJG/RegwcNhDr5tChd+z+miTJnWqoT/3oUabOToVmmvEBy5IoCgplbmRzdHJlYW0KZW5kb2JqCgozIDAgb2JqCjEzNAplbmRvYmoKCjUgMCBvYmoKPDwvTGVuZ3RoIDYgMCBSL0ZpbHRlci9GbGF0ZURlY29kZS9MZW5ndGgxIDIzMTY0Pj4Kc3RyZWFtCnic7Xx5fFvVlf+59z0tdrzIu7xFz1G8Kl7i2HEWE8vxQlI3iRM71A6ksSwrsYptKZYUE9omYStgloZhaSlMMbTsbSPLAZwEGgNlusxQ0mHa0k4Z8muhlJb8ynQoZVpi/b736nkjgWlnfn/8Pp9fpNx3zz33bPecc899T4oVHA55KIEOkUJO96DLvyQxM5WI/omIpbr3BbU/3J61FPBpItOa3f49g1948t/vI4rLIzL8dM/A/t3vn77ZSpT0LlH8e/0eV98jn3k0mSj7bchY2Q/EpdNXm4hyIIOW9g8Gr+gyrq3EeAPGVQM+t+uw5VrQ51yBcc6g6wr/DywvGAHegbE25Br0bFR/ezPGR4kq6/y+QPCnVBYl2ijka/5hjz95S8kmok8kEFl8wDG8xQtjZhRjrqgGo8kcF7+I/r98GY5TnmwPU55aRIhb9PWZNu2Nvi7mRM9/C2flx5r+itA36KeshGk0wf5MWfQ+y2bLaSOp9CdkyxE6S3dSOnXSXSyVllImbaeNTAWNg25m90T3Rd+ii+jv6IHoU+zq6GOY/yL9A70PC/5NZVRHm0G/nTz0lvIGdUe/Qma6nhbRWtrGMslFP8H7j7DhdrqDvs0+F30fWtPpasirp0ZqjD4b/YDK6Gb1sOGVuCfoNjrBjFF31EuLaQmNckf0J9HXqIi66Wv0DdjkYFPqBiqgy+k6+jLLVv4B0J30dZpmCXyn0mQ4CU0b6RIaohEapcfoByyVtRteMbwT/Wz0TTJSGpXAJi+9xWrZJv6gmhBdF/05XUrH6HtYr3hPqZeqDxsunW6I/n30Ocqgp1g8e5o9a6g23Hr2quj90W8hI4toOTyyGXp66Rp6lr5P/05/4AejB2kDdUDzCyyfaawIHv8Jz+YH+AHlZarAanfC2hDdR2FE5DidoGfgm3+l0/QGS2e57BOsl93G/sATeB9/SblHOar8i8rUR+FvOxXCR0F6kJ7Efn6RXmIGyK9i7ewzzMe+xP6eneZh/jb/k2pWr1H/op41FE2fnv5LdHP0j2SlHPokXUkH4duv0QQdpR/Sj+kP9B/0HrOwVayf3c/C7DR7m8fxJXwL9/O7+IP8m8pm5TblWbVWXa9err6o/tzwBcNNJpdp+oOHpm+f/ub0j6JPRX+E3EmC/CJqhUevQlY8SCfpZUj/Gb1KvxT5A/lr2Q72aWgJsBvYHeyb7AX2I/ZbrJLkewlfy5uh1ceH4aer+e38Dmh/Ce9T/Of8Vf47/kfFoCxRVip7lfuVsDKpnFJ+rVrUIrVCXa5uUXeoUUSm2nCxocPwiOFxw3OGd4z1xj6j3/gb09Wma83/dLbs7L9N03T/dHh6ArlrRiZdCU98lR5A3h9FDH4Aj/4QFp+mdxGFHFbAimH3atbK2tgm9il2GfOwq9n17O/Yl9k97AH2LawAa+Am2O7gjbyDu7iHX8uv57fwo3gf59/nP+Gv8DOwPEuxKw5lubJR2aFcqgxhDUHlgHItPHub8pjykvKy8qbyG+UMopalLlZD6pXq3erD6lH1R4ZPGgbxfsBw0jBl+JHhA8MHRm7MMeYZK42fMT5i/KXJaFppajfdaPoX03+Y/SyPlcFybX614NnYg4v5YzxdPcjOAJHPVErGyh2IQwd2xX9QgzKNuCSJediWwbPVNMFpdKph8AfZCaplL9BBI1dQidXTFGG/4KfV5/lF9GPWw7LVh5Uhww94AT2OanSYP81PsPV0lNfzS/i9CrE32CP0BvL9CrqDXc4C9Dg7w9awz7M6dpD+hWcqHexaqo8+wFUWxzaydwgW0FVqH33646sgW02/oLemv6omqp9DfZqkuxDRb9Br7FH6MzNE30Z1U1CNXKgyNyPfryNR9XZinx3EfsxGBRkwvkRHxYliqjOuU6+kd+g/6S3DcWTUelTSN6e96lfVX0XrouXYYdhl9Aj2XT9djB3zBrLkGYzF6DLs9HjUkmrs6nbaQX30eVS926Lh6L3Ra6L7oz76R/D+mS1jf2Zj2BGT4Kin7+H9RfoZuwn78OL/3ikw3UdT9FtmZYWsGvvhjGGf4bDhMcNRw7cNLxqXw9vX0j3I6F8im+OxAjf9iH5Lf2JmxCabllEN7F0F27togHcrz1ATyyE/9mwJ6vh6fSUBSLka3rsX+/kZ7I13UCcuo2/TK4yzLKzIDf1myGmDn3eB+iFE8Bo2AUwfqnYZ/Q7rTmKreBD6nJB0F6rWFGz6Bf0a3o5Ku5ahLjSzSyDrT/Qp6oOGldTOxhGBJ2k1Kmuz8k/w91JmofVsCfs6+HqwQ5Mon1YbfsU4LZveHF3FvcozOGOiwI/h9Mqli9heWJGMdZylDLaFaqe3wYaXiZyNnc6GdRfVr12zelVdbc2K6uVVlRXlyxxlpSXFRYVL7UsKNNvi/LzcnGxrVmZGelpqiiU5KTFhUXyc2WQ0qApntKzF3tqjhYt6wmqRfcOGcjG2u4BwzUP0hDWgWhfShLUeSaYtpHSCcveHKJ0xSucsJbNo9VRfvkxrsWvhF5vt2iTbsbUL8C3N9m4tfEbCmyR8WMKJgAsKwKC1WPubtTDr0VrCrfv6R1t6miFufFF8k73JE1++jMbjFwFcBCicZfePs6x1TAI8q2XNOCdzIowK59ibW8LZ9mZhQVgpbHH1hdu3drU05xYUdJcvC7Mmt703TPb14WSHJKEmqSZsbAqbpBrNK1ZDN2njy6ZGb560UG+PI6HP3ue6rCusuLqFjhQH9DaHs6583To3hPDUpq7r58/mKqMtVq8mhqOj12vhqa1d82cLxLW7GzLAywtbe0ZbofpmOLGtQ4M2fl13V5hdB5WaWIlYVWx9HnuLwPR8RgvH2dfb+0c/04PQ5IyGadv+gkhOjvNY9DTltGijnV32gnBDrr3b1Zw3nk6j2/ZPZDu17IUz5cvGLSkxx44nJetAQuJ8wDM7JyFJLqC2bbOeZcIi+0YkRFhza7Cky441rRIXzyoada8CGV7dDFzhPkTEG45r6hm1rBF4wR82FFrs2ugfCRlgP/P2QoxLxxgLLX8kAYo8mU01zM/AYYcjXFYmUsTUhJjCxnVyXFu+bN8kX2n3WzR0cB+1w7eu7jWVcH9BgQjwTZNO6sUgfGhrV2ysUW9uhJyVju4w7xEzUzMzGdvFzKGZmVn2Hjsy+ah8EMgIm4tm/yVbMtNa+teEWebHTHti820d9ratO7q0ltEe3bdtnQtGsflVs3M6FE5r6lJyuQ7xXEXOIikvmyUWg66EsFqIf0aZ1H1hBUkpEUxrDVt6NsSu3fEFBR/JM2kyz2OajL4juGQ3x6ZbGV7jWDheu2C8wLqEUQX2qkW8rXPH6Gj8grlWFKDR0Va71jraM+qajB7qtWsW++gx/jB/eNTf0jMT0Mno8Ztyw603d2MR/WwNkpXT+nE7u2HruJPd0LGj65gFT283dHZFOONNPeu7x5dirusYbkWcEstnsWKkiRG1MSR6hJvlVO4xJ9EhOatKhBy7JxlJnHkGx8g9yWM4i8ThVY7bFBF8A9449U20/ihn00bTJG9wppFBnVYo3qROM8o2Gw3TXHmaFVEcbnatZHVY3qs/W7/Z8m79prP11ADY8gEuy6sKUgpSCnFhuIH4QFOmPnAa6C+kqVPQhScYMrjwnGUhGx10rigxlMRfnOVRPQmGsqzVWRsyuzP7Mw2rs1bmXp97t+GuRQZbSiEjnpZamGwxZxcfMTHTZHRqIm5RDUy82Zl2qIBpBVUFvCAlVSPNUmXhlkl+04S2vMPqgGk7hW2bLDv3vufYu+mMNLJB2kg797KdaQXVWZmZqRnpuBfE217AUlZU163jtTVFRcVF9jt4/lM9V032lNft3nRN79fPvsxKXv1c3YZd9fUDHeueMBzPK3pu+s0fPnHNmLutzKY+90FtUuolLzz22JO7U5PEs/ct0d+oHbivy6R7nVmfStmTcpdBiTNmG+t5fUobb0t5k5uSJ3nQmaIuyqT4jPT0+DhjWnpRRgZNslJnUqZTW1pzJJNFM1lmjhWLdmYuWVpz2Dpm5X7rO1b+eyuzxi8qijOLqWTQjpnZO2Zmzs5qqJdr3zvsEKvfjNUPO95D23Sm3iIjVW+BFxrOCC+wnQW1RqN9SVFRLaKWnpm5onrlSgEqm9c84738sU+ybNu2hg3DZSz7vu29n37sLj42bT3tWbsl9Dqb+svPxToP4H73y+o6KmZrj1EpjNmZEt9gMBoTMoyZCTVKjbnGWmNv5i3mFmuzPUFTKks74npKD5XeV/p148OmhxKeMD6REC49VXq6NIlKK0vbMXGy9LVSY6kzJ6+mAeNDctJgKlBNOfmZcFkk3lQgPLdYNVlSUopz8/KKiuMZGZMtRakpzh21PSnMl8JSJnmrMzkntyg/DzhfHuvJY3nAHS1EdBl8HCEqFsmUHNcgeudK2F0M0mJnI1o92tLimmLnmotqKotfKn6tWEkuthUfKlaoWCuuKo4Wq8XZJb+K+Vq4OPZCtp2Bl9/budeBRHtv707RwefS6+LdcKbhDEtJXU1oy6vYsGPvToTBkVaQsXJFdWbWSnnNzEAIapCDS4xGCRbNgAeYctPU7ruqWh+4LPRASf70m/nFW9f2V0y/ubhhZWN/+fSbatFtj3Zu396567LmL5/t5ru+WlG/4aa7pjlvvWfHstZr7z77AWKWNL1V3YbcTGM1R1NLDCxtMnraaU1IrjFnJibXmMTFKC6GTOC4cI4tZ00NgqomLkoyWjilGdU0rioKg9vTeizMMsmOOFMXJSdWJpWQllGV0ZOhvJPBMoR/lxTViN6Zmre4JiMrK0ddrTit2TUHFaZMsmJnHJcjVD8xSsXTiTNvZY1GVagW2enfGYs52LHpbDau+Gc9u7nF0/xrh2Pv8CbLu69Tw5mdlQ3StSx1dYr0a+pqAKYki9joDibjsrMtbOloC69BxY+oFjoefYdY9J1xBc/veHXjRDlGhuhvnEmJKQ1plrRsXFKtDQacIRMYiD6CcUxWd1pBWloBMyUp9iXFxWLL1CUxx/T7zD59Y1Nh06cOtm/dnL2+tvfT2WrR2ST+hw/4sZ29Fy1J+UVioFvUwDvxLPg+amAy7rdHnIVGw7H0Y1blYgPbY/iJgaemFCYmJVGupRAuSSZz5jlVL9OWX5Xfk+/PP5RvyLckayzmLFH48hYWvtm6J6pe6urKudq3IqVAQ/HLSDeKymfP5nLj14i6dyf7V5a07cBjvV/a/JnvP/vAkX1Nn95QO2Y4nlnw6pHrJ70pGWd/qj433VPR29jenxiPbPoS1nMt1hNHw84Gs0E1GgpNmrnKfNL8mlmtNB82c7OZFFWsJ47MpgbjFjyKb1Nw8vAcbVHVIr5IjZu/iPj5i0D9eg8ABnPL2LkXvWKw1GM1WEhGgWxfUs6cXcv7zt5rOP7+9IPvn71NVCcrHP5rw8uowpPO6pUqK1M1i5bSrR6yGszqSSvPyEzh6amZKUlpyWRJSmNk4elx5uRFbNeiKAwTZSbeyFKSY4VYVh2c13jYFomPkr2iwbzF3G5WzCWWypRdKTxlkqnOxKS0Ip6+i8YypzJ5JkL3ZFxCTWZ21hXHuJfk0hx76zeJ0/KDnfXv7sx+naxYm1gVWgMuq6uT8UJ5EMUhbUVtjSgLWSZRBDIyVmTYURLs1ntX3x26IlDUtO6i2n/+5+k371WL2r9wbcfS71hWb2179YOnlI0i126Hsd9AbMTZPnKM4rAPG1DnnHHtcfxQXDhuKu5U3O/jDLa4nriDcWNAGBSjCQe/kkzMSafwxKjQTtwiGA1GkxrPTUVMFXs5rmBpjZpt1o8ah34LIAOEJcjQyOhgAcOONJjL0G5n2dNvsmz1SaZOf/CXT6hFOEDYPAs7xBaccpYK+wztBn7IEDZMGU4Zfm8w2Aw9hoOGMSAMMAY3JVwpYjRjCWWr51ii614R02s4/udWeKMRZ3Ixzqp0ymNfO0aW6PvO1kWr7477SuJdlkcMD8efiDuROJljNqezDfxiY2v8lsWPJD5pfDLnu/HfS/hJ/CsJ75v+lJiYl5yX4czNr8lwJqXUJGeczHgpQ5GFLnlxg+yTstDzW5wJyUmp7Uk9STzJmspEFmTn1rAVqcLsiXytRvZLSmO9ozzWW/Nk70xOSq4ZE/flFpi9KzUVmTehLkq1igxcushEBawyo2BLEkvKqVy8a7Fv8X2L1cXJBWYnirY5O9/bGPPGpjNy+2w68y6KwBkUOWe61VmS3mB1Lk7GJdeCS15KgyxqDWdlEUyFEaBIFcaASPagE31khhTnnSyEkoEwgeNMzGeJLjwRF79ODhsLGhwk6F93oCjvlOqTnPBSklCaJNQnOeEskkJRnBwOHKP1uAtD8HbupZ0OhiPHrhUX1VpoRTUpBfL+JE0chiZjFv8zs65868j0767zsvSXz7BU41mncrVr/Y5i5YpLLquvZ2xb5Vfuf+K2V5kZ1fm70898/qYNbODKg01NAfkxmPiI79d7nvlx/8ldyfV/NGeb5adDD/yqfu5Tf5reavwyqgdDbWMzH58RmdZNb6amuQ/UPvQBU4IRKMN36Q71V3SLKZ8OqAFK4qtx53sJ3Qncl/hjZMX4dtEw1wielfQ4s7H/5JN8UtGUIeV/qw1qyPBZXXoClSANxIsjISppO+65Nlt82AgCu0u9ksTduzRYXhXJFy9HiuTCnaEOK9TFLDqsUjrr12EDWdnndNgI+A4dNtF32Dd02ExF3K/DcTTK79LhePU5RdPhRdRr+qUOJ9Buc7MOJxqPmh/T4SS6LPnTs347mHxch+E2y2od5qRa1umwQsss63VYpXjLkA4bKMFyhQ4bAV+rwybqtRzWYTOlWf6gw3HUkmLQ4XjuSvmEDi+i5WmPz35btiLtFzqcqOxIT9bhJKrI8sISpgqvJ2V9SYdVysl6UMIG4OOzTuqwSplZ35ewEXhj1ms6rFJq1hsSNom4ZP1JhxGLrKiEzcAnWNN0WCWr1SbhOBFfa50OI77ZtToMOdkNOoz4Zl+sw5CZfZ8OI77ZEzqM+Gb/ow4jvtm/0mHEN+dhHUZ8c17UYcQ391M6jPhq2TqM+Gqf1WHEV/tfOoz4Ft8p4Xjhq+J/12H4qji2xkXAp5Zk67BKi0scEk4QaynZqMOwv2SrhJNE5pd4dFilvJKQhC1Szm06LOR8TcJpwuclz+owfF7yXQmnC3tKfqbDsKfkTQlnAJ9eynRYJa00Q8KZgr60VodBX9ok4WxJv1OHBf1eCeeKHCi9TYeRA6X3SDhf2FM6rsOwp/QpCdsk/fd1WNC/LOGlIgdK39Jh5EDpHyVcJvxTlqjD8E9ZzM5yUQnKSnVYnYHN0v+zMOwvk/ljlusq26rDAr9LwAkx+v06LPDXS1jGpex+HRZ6H6VO2k9+8tBucpEbvUaPonVSv4Q3kY+G0II6lYaK6aNhwOLqAt4rKTRgBsBfAahZ4l3/Q0mVs5Zp1IGZAQrN0gSA24g+pm85rca7isp1qFpiG8ExgH4bePbAhqDk2gZ5AbRh2odrH6iGMe8C5Xqpo+8cO9fMo9FmqdbQJVJKYNbqFdBahbeGKr8JWDdmfZj3wbNBKj2vlI+SMUdbPs+uznn4b0nPCr/1QcYg+mG6HDih7b/vcw1YD7zlhU1BaZvwkYaxoAnqUrcjHhq1S36NiqS+Tbhuge7d0vcu0As+D6QKb49ITiGt4jw2xeLsg15hkx+0+z+SyiPzS9CNSKv2zOr16tlbLqPso17d6s1ypl960QVrls3aPixnvDJTO3ANSatjEYll1SrkUpO0JCi9POO3Ydiigcql52Iso7zS930yw0TODUld8+Pu1mW5pG2Cc1BKFHb3Q/+glBjzviatdkl9bj0asRlhdUCPh0uuMca3fzb+Xj3b/XoEPdI3AZmNsdXNRMil2x+S2jSpYb5VM5EXvhHjESm7f142CFqflBXTPYOPeTuoe8StZ2rgHLogZHqkV7zoY7LdOiYkPS0yai6nfXLnDkuPDkh+YamI56DONaPBLfn36Vq9+kpj+1FImPPCblAKaTHsnF+9und9+kq8kj4kR3NRDcgsHZDWnT8nZmprYHYtYm5QypuTIerF5bq1Lt3/bln1NH2XzvisT+reI7ExfrHDvHoM++W+8+s54sNV7Oh9urdjEuaqvUvGKpYdmvShW1+/V0ZtQNL45d6LZeOQ5IytZH52e2czS+z8K/TIDEprRG7u0/dWrO4MzNoxKEdz2Rv80IkU+ND63LqOXikhJD3dtyA3PbQX+BnPitx2z65wt8xtTebAFdK3AZl3wdl6Eou6sD2234N61YjtpoCeZXPVMzY7KCPioislf8xqIdctZ+cyLaa9T3rLL3fJ/tlVzOgekjVTzLukJ4Z1HWIPxbwYlPwzFs9I98scGpR1c8a2Cnn2BTG3BmdqJeSKd4Wkml9hK2R1GgRFv9xLA4AGAQ3JCHnkKEC7ZA7EIl4xS/l/V8OIzJgYrWeels2o9J0491vRmpB5At4CrDgBWnH9pMS3ANOBq8jNi3EStOC9SWI7KRFPU6J1ymwKnCfXtFl8bJ/EPOrXfT6Xo3/dKTYXmZmKPBPnXjm7H/ShWZ3u2doWy+e582h+tYxVjrk6Gtu/Xr1mBvQ9vUdK8czWRLFbu3VtYnfv02tp7+xpFNMZ/BjPzNTOkdnq5NF3nGc2p4dl/Qjq+3m3no/n89fMLhQe88yTMreLz9XXp5+AIgN7ZWWMWd2rR2ZIl3y+CBXLVS30VKwin5sV52qeqW2iirnkvagLWgd0bwf0GvJRuoX3twMzV2f3nxMLj36XMf+eK1a9XdIiv/SsV7/T+Wtirum5ODSvts3oFZWkT3raO+8UGZ53r7xslnp4Xt7Ond0f7ylh3aCUP5NXvgXyRmT8L5fRnH8fOlMf5yh9oI3doYakx4X8/tn1xOyan92DekWN+T+2q/x6fsxV3oU59HErmsuPjXLt50Zu5t5LnDke/Q4ttprY/Z5bRnXoQzEY/pC/5yQH5N1qSN71x86hffLeaITm313919GfkTes3/959Wee893FnRvHmLfm7ljdUua5+3gmYq4P+Xr332TtnJfP1bDwvF9okUe/iw3i7JmRIJ5PGin2JFCCe/gaqsPzl4brcozK8XxVI5+yxKcj26lNp6zC7HLM1OhwHZ7G6iTXSqrFs4BoQvrfdtb990/GmbnKD3lv9jzs3O/37Ha5PdqjWme/R9vkG/IFgdKafMN+37Ar6PUNaf4Bd4XW7Aq6/guiSiFM6/ANhAQmoG0cAt/y1aurynGprtAaBwa0bd49/cGAts0T8Azv8/Q1DntdA+t9A30zMtdIjCZQay7xDAeE6BUVVVVaySave9gX8O0Ols6RzKeQ2HIpq1PCj2idw64+z6Br+HLNt/tjLdeGPXu8gaBn2NOneYe0IEi3d2jtrqBWpHVu0rbs3l2huYb6NM9AwDPSD7KKWUlYs2/PsMvfv38+yqM1D7tGvEN7BK8X7i3Xtvl6IXqz193vG3AFlgnpw16316V1uEJDfVgIXLWqusk3FPQMCtuG92sBF7wIR3l3a32egHfP0DIttnY3qFxeTA76hj1af2jQNQTzNXe/a9jlxjIw8LoDWIdrSMPcfrF+L9zuxwI9bk8g4IM6sSAX5Ifc/ZpXFyUWHxryaCPeYL90w6DP1ye4BQyzgzDEDacGZnDBEc9Q0OsBtRtAaHh/hSY97dvnGXYh3sFhjys4iCnB4A4h5gGhTMTRMyxN2B0aGAAobYX6QR+UeIf6QoGgXGoguH/AM98TIlsDQotneNA7JCmGfZdDrAv2u0NQFAtgn9e1xyfmR/rhc63fM+CHR3zaHu8+jySQae/SBuAObdAD3w153SB3+f0euHHI7YGSmLu9wlma5wosZtAzsF/D2gLInQEhY9A7IN0b1DdSQNfnBkevRwsFkFLSm569IWFsyC38r+32YcmQiEUFgyJPsPRhD+IeRGogTAG4TKYnhoOuPa4rvUMQ7Qm6l8WcBvY+b8A/4NovVAjuIc9IwO/ywzSQ9MHEoDcgBAty/7Bv0CelVfQHg/41lZUjIyMVg3rCVrh9g5X9wcGBysGg+NuSysHALpdYeIVA/pUMI54BYD2SZfOWzo2tG5saOzdu2axtadU+ubGpZXNHi9Z48baWlk0tmzsT4xPjO/vh1hmvCReLmMBQrCAoPXqeLSYXIxJZrLl3v7bfFxKcbpFt8LPcR7G0RHLIHEV8sf2GQO7aM+zxiEys0LrB1u9CGvh6xTYCZ3CBMSI7R0Q6eRA4j/D0sMcdRJx3w49zdokQ+vZ4JIkM8SwfQoPs7Q0FIRpm+rCj5i2oODBjFBJ51hWzzCLbtH2ugZCrFxnmCiBD5nNXaNuHZM7un1kF1qRXLqS3Swv4PW4vis65K9fgxSGZbYLX1dfnFTmBrByWVXmZQA9L38rd/SGjBryDXrEgKJF0I77hywOxJJX5KJG+ERTUUO+AN9Av9EBWzN2DSFTYj1D592ux5NU9tFCR9MfG3XOLE9Vrb8gTkGpQ99ye4SF9BcO63ZI40O8LDfRhD+3zekZi5eqc5Qs6RNKDCtA3V+Jm1wizZGF1B+diLBbm0q3efX6x0uRZBn3f64KgxxVcIwi2dzTiEChZVVNXqtUtX1VeVVNVFRe3vQ3IquXLa2pwrVtRp9WtrF1duzox/iN23cduRjGq1M2T+xCPqx79Jknc6sz/mGXhTJBCLBG3Bm8toJnD7qaFH3NrOqZV/9Bj/oyOU25QnlG+o5zEdXz+/AL8ha8NLnxtcOFrgwtfG1z42uDC1wYXvja48LXBha8NLnxtcOFrgwtfG1z42uDC1wYXvjb4f/hrg9nPD7z0UZ8sxGY+iT6WrT6JCS2gPXf2Ylk1AguoZnCt9BbGl9N7oH8LuIWfOiycm+GZub/ynVfi3OwlEppPE8NskKN98vOOhfMLZ9r10zckn/18clfOpz7f/HxP+T7Shz7Vpq5T16pN6kp1lepUL1Lb1NXzqc8733neT3TmsK3nrCeGaRMjthw08+fmsG36venlH7J4Hp6l0C8VO7Jk3vws7q/Nm7/SN3+1vI/LK/3/y1O0mH5K53l9mzqVr1AyY2SLTilfnrCkVzsnlbsnktOqnY0W5U5qR+MUVjbRFBonn3IbHUTjIG+LlC+vPiaAifikagvobyIN7RCaQmO4Mjl2ogn6mybSMoX4ayLJKZLvs5GqmhgwYbFWtzemK1cQUzzKENnJphxAvxi9G30++l6lD5VC2OmcSLZUH4K+BpA3KBkoQzalUcmkavTNSg7lSrJQJCmmJxQpKatujFeaFKskSVYSUY9silkxRapt2glF/NmwU7lhIm6RsO+GiCWj+hnlOsVE6aA6BKosW/IzSjxVoomVdE7EJVYfbkxQOrHMTrjFpoj/rH+fvDqVoQgEQV+LkkeZmLtcyacM9K3K4kiGbeqEcrsk+zshBfrWRcwrRDeRmFQ91RiniL8HCCu3wuO3Sm2HJ4pWVVNjkVJCVYr4EwlNOQjooPjP4soooFGEaRShGUVoRmHFKBkR+RsxcyNoKpUrya+M0GG0+wCrEJkRgQePSWBpSfUxJVuxwhOWE/AdAzZnIi5JWGaNpKZJMutEQlJ1wzNKgLagcRgfnMiyVvtOKGVyKcsmrLmCwR+JS4DrsmKxAGOmiMEzSp6yWHoiX3og3GjDmFGyYiPGf8BPCe/wl/mPRXzFT/rI/h/1/kW9/2Gsj07xUxPQ4pzk/yz60415/A0I28VfpfsAcX6CP4+jxsZ/zieFFfxn/Bg1oH8F4z70x9CvQH88UvA92ySfnEAH2++JJGaKxfLnI45KHbAV6kBWrg6kZlY3FvLn+LOUBxE/Rb8U/bN8ipagP4nein6KB+l76J/gtbQW/VG9/w5/WuQ0f4o/iTPTxiciScKEcMQkuiMRo+i+FaHYqL3S9jT/Fn+cckD6zUhRDrCPTBQttSWfgDzGH+TBSL4ttTGe38+62LsgGqNXRE+p/IFInRByOPK0ZjvGD/PDTmuds9BZ7nxIqSqsKq96SNEKtXKtTntIa7TwW8kA52HD8ptwxfnMkT1oTrTD/MaIWhduPIs1iXVxOoTrmIR6cPVLiHC1zM6+I6EGfh1tQeOQcQDtINohtKtIxfVKtM+ifQ7t8xITRAuhjaB8+MHhB4cfHH7J4QeHHxx+cPglh19qD6EJjh5w9ICjBxw9kqMHHD3g6AFHj+QQ9vaAo0dytIOjHRzt4GiXHO3gaAdHOzjaJUc7ONrB0S45nOBwgsMJDqfkcILDCQ4nOJySwwkOJzickqMKHFXgqAJHleSoAkcVOKrAUSU5qsBRBY4qyaGBQwOHBg5Ncmjg0MChgUOTHBo4NHBoksMCDgs4LOCwSA4LOCzgsIDDIjksMj4hNMFxGhynwXEaHKclx2lwnAbHaXCclhynwXEaHKf5yLhyqvEFsJwCyymwnJIsp8ByCiynwHJKspwCyymwnNKXHpTO4EibA2gH0Q6hCd4p8E6Bdwq8U5J3SqZXCE3whsERBkcYHGHJEQZHGBxhcIQlRxgcYXCEJccYOMbAMQaOMckxBo4xcIyBY0xyjMnEDaEJjr89Kf/m0PCrWJcZhys/xEplf5Delv0BekX2n6dx2X+OHpL9Z+lq2V9JdbIfoSLZQ57sg2Qzs4itLrkxEyVgC9ouNB/afWhH0E6imST0EtpraFFe61yiJpu2mO4zHTGdNBmOmE6beLJxi/E+4xHjSaPhiPG0kWuNuTxR1lGUFvqivB7E9fdoOERwbZBQA6+B3hrU2Vq8a3iNM+WM9vsy9lIZO1nGjpSxL5axxjh+MVNlpcOdPofhrMuZULTO9gpaXVHxOlSmW598O8sWKVppm2RPx7pSpwP922jjaA+hXY1Wh1aNVo5WiGaTuDLQdzmX6CKfRitGK0DThArKzMTdTWqK2XmMJ7KHJl5IpDihp7gEfCcixVXoJiPFW9A9FSnutTXGsSepWNwGsScQucfRH4nYXsf0N2PdNyK2E+geidhq0O2MFFeguzRS/KKtMZFtJ5sqWDv1vgPrFv22iO0SkG2N2ErROSLFRYK6DIoKMVvKuuh19IU619KYJnvEthbdkohttaA2U7EIPDNSuTTPgCZ6ZQIG/f4Y61KZc5HtjO1229tg/x0ci/T4mTaponupcJJd4oy3PV3+VRA32iKN8YIe58O43odF/4TtocIbbfdAFit80na3rcJ2a/mkGehbYPeNUkXEdrU2yR93ptkO2apswfLXbQHbJ2wu2zbbzkLgI7bLbE8LM6mbdfHHn7S1Q+BGrKIwYru4cFKa2Grbb3Paim2rtaeFf2lVTG5d+dPCA1Qd074M/i0rnBQ5vr1ukqU4y0zvmA6bLjWtN6012U1LTItN+aZ0c6rZYk4yJ5jjzWaz0ayauZnM6eLnHRzizyvTjeKv18moiqsqYQsXVx77S1POzJw+QeE0pY23daxnbeEpN7X1auH3OuyTLH7rjrDBvp6FU9uorXN9eJWjbdIU3Rauc7SFTe2Xdo0zdms3sGF+wySjzq5JFhWo63LFD1GNM7rultxjxFj2dbd0d5M1c1+DtSF1Xcrq1ubzXHr0q2PuZZ0P5ofvauvoCj+W3x2uFkA0v7stfJX4mapjPJkntjQf40mi6+46pvp5css2gVf9zd0ge12SIZuTQEbFogOZeT1pggz1ZL0gQ4xidEVgB12B6EAXn0hFkq4oPlHSqUzQjb+itTSPa5qkKSR6RdK8UkjzaJAx4G0eLyqSVHaNdQkq1mXXpGGlUpDNBpJymyTBk5tNCrIxqSxcOUdSqJPUzpLUSl0Km6OxxWjSS2Zo0ktA4/gfvjzrHWxieejA8+KXv3rsLR60nvBN+/qt4UO9mjZ+IKT/JFhRT6+7X/QuTzhk9zSHD9ibtfHlz59n+nkxvdzePE7Pt3R2jT/v9DRHljuXt9hdzd0TDfVdjQt03Tirq6v+PMLqhbAuoauh8TzTjWK6QehqFLoaha4GZ4PU1eIVed/eNW6m9eJ3QWQ/wRfFI4d7cgu612da/OtEQh9bW2A9kHtcJfYILXJ0hxPs68OJaGKqvLG8UUxhn4mpJPHzbvqU9cDagtzj7BF9ygJ0in09zbiWBFFbuHZrW7igY0eXSJWw03X+mAXES05bqcXbjH8YB2XDez4lBc77Cp7vFQqFAuIScuApuS1c1tEWXrkVlphMUNXT3A1cxQxOUSRuPC6uZTI6hUkHjGBBoU5ADiZ+I8AZj6cuEx8zjpm4eFQITuTkV/uewQl+EA3PcXwkUimfl/nIxJJC8fwSnKisjfV4PhV9JKegWvwUQR1YRV8Y650p5QAOFx4uP1w3VjhWPlZnFD+08BCQtofEURqpfEihoCMw4wiAwW6K/XQB9N0fycuXiscE4HB0OwLyN17ow6526L8jA6fPOjagSw1I8cGZgMTwAYoRxyYdoRmmkM4iJ0OSRSr8P1jbNhMKZW5kc3RyZWFtCmVuZG9iagoKNiAwIG9iagoxMDgyNQplbmRvYmoKCjcgMCBvYmoKPDwvVHlwZS9Gb250RGVzY3JpcHRvci9Gb250TmFtZS9CQUFBQUErQXJpYWwtQm9sZE1UCi9GbGFncyA0Ci9Gb250QkJveFstNjI3IC0zNzYgMjAwMCAxMDExXS9JdGFsaWNBbmdsZSAwCi9Bc2NlbnQgOTA1Ci9EZXNjZW50IDIxMQovQ2FwSGVpZ2h0IDEwMTAKL1N0ZW1WIDgwCi9Gb250RmlsZTIgNSAwIFI+PgplbmRvYmoKCjggMCBvYmoKPDwvTGVuZ3RoIDI3Mi9GaWx0ZXIvRmxhdGVEZWNvZGU+PgpzdHJlYW0KeJxdkc9uhCAQxu88BcftYQNadbuJMdm62cRD/6S2D6AwWpKKBPHg2xcG2yY9QH7DzDf5ZmB1c220cuzVzqIFRwelpYVlXq0A2sOoNElSKpVwe4S3mDpDmNe22+JgavQwlyVhbz63OLvRw0XOPdwR9mIlWKVHevioWx+3qzFfMIF2lJOqohIG3+epM8/dBAxVx0b6tHLb0Uv+Ct43AzTFOIlWxCxhMZ0A2+kRSMl5RcvbrSKg5b9cskv6QXx21pcmvpTzLKs8p8inPPA9cnENnMX3c+AcOeWBC+Qc+RT7FIEfohb5HBm1l8h14MfIOZrc3QS7YZ8/a6BitdavAJeOs4eplYbffzGzCSo83zuVhO0KZW5kc3RyZWFtCmVuZG9iagoKOSAwIG9iago8PC9UeXBlL0ZvbnQvU3VidHlwZS9UcnVlVHlwZS9CYXNlRm9udC9CQUFBQUErQXJpYWwtQm9sZE1UCi9GaXJzdENoYXIgMAovTGFzdENoYXIgMTEKL1dpZHRoc1s3NTAgNzIyIDYxMCA4ODkgNTU2IDI3NyA2NjYgNjEwIDMzMyAyNzcgMjc3IDU1NiBdCi9Gb250RGVzY3JpcHRvciA3IDAgUgovVG9Vbmljb2RlIDggMCBSCj4+CmVuZG9iagoKMTAgMCBvYmoKPDwKL0YxIDkgMCBSCj4+CmVuZG9iagoKMTEgMCBvYmoKPDwvRm9udCAxMCAwIFIKL1Byb2NTZXRbL1BERi9UZXh0XT4+CmVuZG9iagoKMSAwIG9iago8PC9UeXBlL1BhZ2UvUGFyZW50IDQgMCBSL1Jlc291cmNlcyAxMSAwIFIvTWVkaWFCb3hbMCAwIDU5NSA4NDJdL0dyb3VwPDwvUy9UcmFuc3BhcmVuY3kvQ1MvRGV2aWNlUkdCL0kgdHJ1ZT4+L0NvbnRlbnRzIDIgMCBSPj4KZW5kb2JqCgoxMiAwIG9iago8PC9Db3VudCAxL0ZpcnN0IDEzIDAgUi9MYXN0IDEzIDAgUgo+PgplbmRvYmoKCjEzIDAgb2JqCjw8L1RpdGxlPEZFRkYwMDQ0MDA3NTAwNkQwMDZEMDA3OTAwMjAwMDUwMDA0NDAwNDYwMDIwMDA2NjAwNjkwMDZDMDA2NT4KL0Rlc3RbMSAwIFIvWFlaIDU2LjcgNzczLjMgMF0vUGFyZW50IDEyIDAgUj4+CmVuZG9iagoKNCAwIG9iago8PC9UeXBlL1BhZ2VzCi9SZXNvdXJjZXMgMTEgMCBSCi9NZWRpYUJveFsgMCAwIDU5NSA4NDIgXQovS2lkc1sgMSAwIFIgXQovQ291bnQgMT4+CmVuZG9iagoKMTQgMCBvYmoKPDwvVHlwZS9DYXRhbG9nL1BhZ2VzIDQgMCBSCi9PdXRsaW5lcyAxMiAwIFIKPj4KZW5kb2JqCgoxNSAwIG9iago8PC9BdXRob3I8RkVGRjAwNDUwMDc2MDA2MTAwNkUwMDY3MDA2NTAwNkMwMDZGMDA3MzAwMjAwMDU2MDA2QzAwNjEwMDYzMDA2ODAwNkYwMDY3MDA2OTAwNjEwMDZFMDA2RTAwNjkwMDczPgovQ3JlYXRvcjxGRUZGMDA1NzAwNzIwMDY5MDA3NDAwNjUwMDcyPgovUHJvZHVjZXI8RkVGRjAwNEYwMDcwMDA2NTAwNkUwMDRGMDA2NjAwNjYwMDY5MDA2MzAwNjUwMDJFMDA2RjAwNzIwMDY3MDAyMDAwMzIwMDJFMDAzMT4KL0NyZWF0aW9uRGF0ZShEOjIwMDcwMjIzMTc1NjM3KzAyJzAwJyk+PgplbmRvYmoKCnhyZWYKMCAxNgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMTE5OTcgMDAwMDAgbiAKMDAwMDAwMDAxOSAwMDAwMCBuIAowMDAwMDAwMjI0IDAwMDAwIG4gCjAwMDAwMTIzMzAgMDAwMDAgbiAKMDAwMDAwMDI0NCAwMDAwMCBuIAowMDAwMDExMTU0IDAwMDAwIG4gCjAwMDAwMTExNzYgMDAwMDAgbiAKMDAwMDAxMTM2OCAwMDAwMCBuIAowMDAwMDExNzA5IDAwMDAwIG4gCjAwMDAwMTE5MTAgMDAwMDAgbiAKMDAwMDAxMTk0MyAwMDAwMCBuIAowMDAwMDEyMTQwIDAwMDAwIG4gCjAwMDAwMTIxOTYgMDAwMDAgbiAKMDAwMDAxMjQyOSAwMDAwMCBuIAowMDAwMDEyNDk0IDAwMDAwIG4gCnRyYWlsZXIKPDwvU2l6ZSAxNi9Sb290IDE0IDAgUgovSW5mbyAxNSAwIFIKL0lEIFsgPEY3RDc3QjNEMjJCOUY5MjgyOUQ0OUZGNUQ3OEI4RjI4Pgo8RjdENzdCM0QyMkI5RjkyODI5RDQ5RkY1RDc4QjhGMjg+IF0KPj4Kc3RhcnR4cmVmCjEyNzg3CiUlRU9GCg== + filename: filename.pdf + type: input_file + role: user + model: gpt-4.1-nano + stream: false + uri: https://api.openai.com/v1/responses + response: + headers: + alt-svc: + - h3=":443"; ma=86400 + connection: + - keep-alive + content-length: + - '1712' + content-type: + - application/json + openai-organization: + - user-grnwlxd1653lxdzp921aoihz + openai-processing-ms: + - '2035' + openai-project: + - proj_FYsIItHHgnSPdHBVMzhNBWGa + openai-version: + - '2020-10-01' + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + transfer-encoding: + - chunked + parsed_body: + background: false + billing: + payer: developer + created_at: 1765372490 + error: null + id: resp_0dcee7b90a1649d90069397249a4148196a73201b1c5b445ac + incomplete_details: null + instructions: null + max_output_tokens: null + max_tool_calls: null + metadata: {} + model: gpt-4.1-nano-2025-04-14 + object: response + output: + - content: + - annotations: [] + logprobs: [] + text: The document appears to be titled "Dummy PDF File," which suggests that it is a placeholder or example document + rather than actual content. If you can provide more specific details or share the content within the document, + I can help analyze or summarize it further. + type: output_text + id: msg_0dcee7b90a1649d9006939724aea1c8196b1ea7c07c1285b20 + role: assistant + status: completed + type: message + parallel_tool_calls: true + previous_response_id: null + prompt_cache_key: null + prompt_cache_retention: null + reasoning: + effort: null + summary: null + safety_identifier: null + service_tier: default + status: completed + store: true + temperature: 1.0 + text: + format: + type: text + verbosity: medium + tool_choice: auto + tools: [] + top_logprobs: 0 + top_p: 1.0 + truncation: disabled + usage: + input_tokens: 23 + input_tokens_details: + cached_tokens: 0 + output_tokens: 51 + output_tokens_details: + reasoning_tokens: 0 + total_tokens: 74 + user: null + status: + code: 200 + message: OK +version: 1 diff --git a/tests/models/cassettes/test_openai/test_document_url_input_response_api.yaml b/tests/models/cassettes/test_openai/test_document_url_input_response_api.yaml new file mode 100644 index 0000000000..96874becb5 --- /dev/null +++ b/tests/models/cassettes/test_openai/test_document_url_input_response_api.yaml @@ -0,0 +1,110 @@ +interactions: +- request: + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - '258' + content-type: + - application/json + host: + - api.openai.com + method: POST + parsed_body: + input: + - content: + - text: What is the main content on this document? + type: input_text + - file_url: https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf + type: input_file + role: user + model: gpt-4.1-nano + stream: false + uri: https://api.openai.com/v1/responses + response: + headers: + alt-svc: + - h3=":443"; ma=86400 + connection: + - keep-alive + content-length: + - '1830' + content-type: + - application/json + openai-organization: + - user-grnwlxd1653lxdzp921aoihz + openai-processing-ms: + - '2806' + openai-project: + - proj_FYsIItHHgnSPdHBVMzhNBWGa + openai-version: + - '2020-10-01' + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + transfer-encoding: + - chunked + parsed_body: + background: false + billing: + payer: developer + created_at: 1765372486 + error: null + id: resp_015b88f1b471dcb90069397245702481979e5c36ff51d29a52 + incomplete_details: null + instructions: null + max_output_tokens: null + max_tool_calls: null + metadata: {} + model: gpt-4.1-nano-2025-04-14 + object: response + output: + - content: + - annotations: [] + logprobs: [] + text: The document is titled "Dummy PDF file," indicating that it is a sample or placeholder PDF. Without viewing + the specific content within the PDF, it appears to be a generic or placeholder document often used for testing + or demonstration purposes. If you need a detailed summary or specific information from the actual content of the + PDF, please upload the file or provide more details. + type: output_text + id: msg_015b88f1b471dcb900693972472ae88197acf92d328008c6a8 + role: assistant + status: completed + type: message + parallel_tool_calls: true + previous_response_id: null + prompt_cache_key: null + prompt_cache_retention: null + reasoning: + effort: null + summary: null + safety_identifier: null + service_tier: default + status: completed + store: true + temperature: 1.0 + text: + format: + type: text + verbosity: medium + tool_choice: auto + tools: [] + top_logprobs: 0 + top_p: 1.0 + truncation: disabled + usage: + input_tokens: 23 + input_tokens_details: + cached_tokens: 0 + output_tokens: 72 + output_tokens_details: + reasoning_tokens: 0 + total_tokens: 95 + user: null + status: + code: 200 + message: OK +version: 1 diff --git a/tests/models/test_anthropic.py b/tests/models/test_anthropic.py index 9c70ff4bc2..c7be2c3ce2 100644 --- a/tests/models/test_anthropic.py +++ b/tests/models/test_anthropic.py @@ -1493,6 +1493,32 @@ async def test_image_url_input(allow_model_requests: None, anthropic_api_key: st ) +async def test_image_url_input_force_download(allow_model_requests: None, anthropic_api_key: str): + m = AnthropicModel('claude-haiku-4-5', provider=AnthropicProvider(api_key=anthropic_api_key)) + agent = Agent(m) + + result = await agent.run( + [ + 'What is this vegetable?', + ImageUrl( + url='https://t3.ftcdn.net/jpg/00/85/79/92/360_F_85799278_0BBGV9OAdQDTLnKwAPBCcg1J7QtiieJY.jpg', + force_download=True, + ), + ] + ) + assert result.output == snapshot( + """\ +This is a **potato**, specifically a yellow or gold potato variety. You can identify it by its characteristic features: + +- **Oval/round shape** with smooth skin +- **Golden-yellow color** with small dark spots or eyes +- **Starchy appearance** typical of potatoes + +This appears to be a russet or similar yellow potato variety commonly used for cooking, baking, or making mashed potatoes.\ +""" + ) + + async def test_extra_headers(allow_model_requests: None, anthropic_api_key: str): # This test doesn't do anything, it's just here to ensure that calls with `extra_headers` don't cause errors, including type. m = AnthropicModel('claude-haiku-4-5', provider=AnthropicProvider(api_key=anthropic_api_key)) @@ -1522,6 +1548,140 @@ async def test_image_url_input_invalid_mime_type(allow_model_requests: None, ant ) +async def test_image_url_force_download() -> None: + """Test that force_download=True calls download_item for ImageUrl.""" + from unittest.mock import AsyncMock, patch + + m = AnthropicModel('claude-sonnet-4-5', provider=AnthropicProvider(api_key='test-key')) + + with patch('pydantic_ai.models.anthropic.download_item', new_callable=AsyncMock) as mock_download: + mock_download.return_value = { + 'data': b'\x89PNG\r\n\x1a\n fake image data', + 'content_type': 'image/png', + } + + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test image', + ImageUrl( + url='https://example.com/image.png', + media_type='image/png', + force_download=True, + ), + ] + ) + ] + ) + ] + + await m._map_message(messages, ModelRequestParameters(), {}) # pyright: ignore[reportPrivateUsage,reportArgumentType] + + mock_download.assert_called_once() + assert mock_download.call_args[0][0].url == 'https://example.com/image.png' + + +async def test_image_url_no_force_download() -> None: + """Test that force_download=False does not call download_item for ImageUrl.""" + from unittest.mock import AsyncMock, patch + + m = AnthropicModel('claude-sonnet-4-5', provider=AnthropicProvider(api_key='test-key')) + + with patch('pydantic_ai.models.anthropic.download_item', new_callable=AsyncMock) as mock_download: + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test image', + ImageUrl( + url='https://example.com/image.png', + media_type='image/png', + force_download=False, + ), + ] + ) + ] + ) + ] + + await m._map_message(messages, ModelRequestParameters(), {}) # pyright: ignore[reportPrivateUsage,reportArgumentType] + + mock_download.assert_not_called() + + +async def test_document_url_pdf_force_download() -> None: + """Test that force_download=True calls download_item for DocumentUrl (PDF).""" + from unittest.mock import AsyncMock, patch + + m = AnthropicModel('claude-sonnet-4-5', provider=AnthropicProvider(api_key='test-key')) + + with patch('pydantic_ai.models.anthropic.download_item', new_callable=AsyncMock) as mock_download: + mock_download.return_value = { + 'data': b'%PDF-1.4 fake pdf data', + 'content_type': 'application/pdf', + } + + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test PDF', + DocumentUrl( + url='https://example.com/doc.pdf', + media_type='application/pdf', + force_download=True, + ), + ] + ) + ] + ) + ] + + await m._map_message(messages, ModelRequestParameters(), {}) # pyright: ignore[reportPrivateUsage,reportArgumentType] + + mock_download.assert_called_once() + assert mock_download.call_args[0][0].url == 'https://example.com/doc.pdf' + + +async def test_document_url_text_force_download() -> None: + """Test that force_download=True calls download_item for DocumentUrl (text/plain).""" + from unittest.mock import AsyncMock, patch + + m = AnthropicModel('claude-sonnet-4-5', provider=AnthropicProvider(api_key='test-key')) + + with patch('pydantic_ai.models.anthropic.download_item', new_callable=AsyncMock) as mock_download: + mock_download.return_value = { + 'data': 'Sample text content', + 'content_type': 'text/plain', + } + + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test text file', + DocumentUrl( + url='https://example.com/doc.txt', + media_type='text/plain', + force_download=True, + ), + ] + ) + ] + ) + ] + + await m._map_message(messages, ModelRequestParameters(), {}) # pyright: ignore[reportPrivateUsage,reportArgumentType] + + mock_download.assert_called_once() + assert mock_download.call_args[0][0].url == 'https://example.com/doc.txt' + + async def test_image_as_binary_content_tool_response( allow_model_requests: None, anthropic_api_key: str, image_content: BinaryContent ): @@ -1624,7 +1784,7 @@ async def test_audio_as_binary_content_input(allow_model_requests: None, media_t base64_content = b'//uQZ' - with pytest.raises(RuntimeError, match='Only images and PDFs are supported for binary content'): + with pytest.raises(RuntimeError, match='Unsupported binary content media type for Anthropic'): await agent.run(['hello', BinaryContent(data=base64_content, media_type=media_type)]) @@ -1717,6 +1877,16 @@ async def test_text_document_url_input(allow_model_requests: None, anthropic_api """) +async def test_text_document_as_binary_content_input( + allow_model_requests: None, anthropic_api_key: str, text_document_content: BinaryContent +): + m = AnthropicModel('claude-sonnet-4-5', provider=AnthropicProvider(api_key=anthropic_api_key)) + agent = Agent(m) + + result = await agent.run(['What does this text file say?', text_document_content]) + assert result.output == snapshot('The text file says "Dummy TXT file".') + + def test_init_with_provider(): provider = AnthropicProvider(api_key='api-key') model = AnthropicModel('claude-3-opus-latest', provider=provider) diff --git a/tests/models/test_mcp_sampling.py b/tests/models/test_mcp_sampling.py index 1da0851c20..338695db82 100644 --- a/tests/models/test_mcp_sampling.py +++ b/tests/models/test_mcp_sampling.py @@ -1,4 +1,3 @@ -import base64 from dataclasses import dataclass from datetime import timezone from typing import Any @@ -121,9 +120,7 @@ def test_assistant_text_history_complex(): ModelRequest( parts=[ UserPromptPart(content='1'), - UserPromptPart( - content=['a string', BinaryContent(data=base64.b64encode(b'data'), media_type='image/jpeg')] - ), + UserPromptPart(content=['a string', BinaryContent(data=b'data', media_type='image/jpeg')]), SystemPromptPart(content='system content'), ] ), diff --git a/tests/models/test_mistral.py b/tests/models/test_mistral.py index 424be8d39b..dffcc5512f 100644 --- a/tests/models/test_mistral.py +++ b/tests/models/test_mistral.py @@ -29,6 +29,7 @@ ) from pydantic_ai.agent import Agent from pydantic_ai.exceptions import ModelAPIError, ModelHTTPError, ModelRetry +from pydantic_ai.models import ModelRequestParameters from pydantic_ai.usage import RequestUsage from ..conftest import IsDatetime, IsNow, IsStr, raise_if_exception, try_import @@ -2032,12 +2033,10 @@ async def test_image_as_binary_content_input(allow_model_requests: None): m = MistralModel('mistral-large-latest', provider=MistralProvider(mistral_client=mock_client)) agent = Agent(m) - base64_content = ( - b'/9j/4AAQSkZJRgABAQEAYABgAAD/4QBYRXhpZgAATU0AKgAAAAgAA1IBAAEAAAABAAAAPgIBAAEAAAABAAAARgMBAAEAAAABAAAA' - b'WgAAAAAAAAAE' - ) + # Fake image bytes for testing + image_bytes = b'fake image data' - result = await agent.run(['hello', BinaryContent(data=base64_content, media_type='image/jpeg')]) + result = await agent.run(['hello', BinaryContent(data=image_bytes, media_type='image/jpeg')]) assert result.all_messages() == snapshot( [ ModelRequest( @@ -2045,7 +2044,7 @@ async def test_image_as_binary_content_input(allow_model_requests: None): UserPromptPart( content=[ 'hello', - BinaryContent(data=base64_content, media_type='image/jpeg', identifier='cb93e3'), + BinaryContent(data=image_bytes, media_type='image/jpeg'), ], timestamp=IsDatetime(), ) @@ -2386,3 +2385,133 @@ async def test_mistral_model_thinking_part_iter(allow_model_requests: None, mist ), ] ) + + +async def test_image_url_force_download() -> None: + """Test that force_download=True calls download_item for ImageUrl in MistralModel.""" + from unittest.mock import AsyncMock, patch + + m = MistralModel('mistral-large-2512', provider=MistralProvider(api_key='test-key')) + + with patch('pydantic_ai.models.mistral.download_item', new_callable=AsyncMock) as mock_download: + mock_download.return_value = { + 'data': '', + 'data_type': 'image/png', + } + + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test image', + ImageUrl( + url='https://example.com/image.png', + media_type='image/png', + force_download=True, + ), + ] + ) + ] + ) + ] + + await m._map_messages(messages, ModelRequestParameters()) # pyright: ignore[reportPrivateUsage] + + mock_download.assert_called_once() + assert mock_download.call_args[0][0].url == 'https://example.com/image.png' + assert mock_download.call_args[1]['data_format'] == 'base64_uri' + + +async def test_image_url_no_force_download() -> None: + """Test that force_download=False does not call download_item for ImageUrl in MistralModel.""" + from unittest.mock import AsyncMock, patch + + m = MistralModel('mistral-large-2512', provider=MistralProvider(api_key='test-key')) + + with patch('pydantic_ai.models.mistral.download_item', new_callable=AsyncMock) as mock_download: + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test image', + ImageUrl( + url='https://example.com/image.png', + media_type='image/png', + force_download=False, + ), + ] + ) + ] + ) + ] + + await m._map_messages(messages, ModelRequestParameters()) # pyright: ignore[reportPrivateUsage] + + mock_download.assert_not_called() + + +async def test_document_url_force_download() -> None: + """Test that force_download=True calls download_item for DocumentUrl PDF in MistralModel.""" + from unittest.mock import AsyncMock, patch + + m = MistralModel('mistral-large-2512', provider=MistralProvider(api_key='test-key')) + + with patch('pydantic_ai.models.mistral.download_item', new_callable=AsyncMock) as mock_download: + mock_download.return_value = { + 'data': 'data:application/pdf;base64,JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PC9UeXBlL', + 'data_type': 'application/pdf', + } + + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test PDF', + DocumentUrl( + url='https://example.com/document.pdf', + media_type='application/pdf', + force_download=True, + ), + ] + ) + ] + ) + ] + + await m._map_messages(messages, ModelRequestParameters()) # pyright: ignore[reportPrivateUsage] + + mock_download.assert_called_once() + assert mock_download.call_args[0][0].url == 'https://example.com/document.pdf' + assert mock_download.call_args[1]['data_format'] == 'base64_uri' + + +async def test_document_url_no_force_download() -> None: + """Test that force_download=False does not call download_item for DocumentUrl PDF in MistralModel.""" + from unittest.mock import AsyncMock, patch + + m = MistralModel('mistral-large-2512', provider=MistralProvider(api_key='test-key')) + + with patch('pydantic_ai.models.mistral.download_item', new_callable=AsyncMock) as mock_download: + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test PDF', + DocumentUrl( + url='https://example.com/document.pdf', + media_type='application/pdf', + force_download=False, + ), + ] + ) + ] + ) + ] + + await m._map_messages(messages, ModelRequestParameters()) # pyright: ignore[reportPrivateUsage] + + mock_download.assert_not_called() diff --git a/tests/models/test_openai.py b/tests/models/test_openai.py index b49c8fd66f..1f34f2ad35 100644 --- a/tests/models/test_openai.py +++ b/tests/models/test_openai.py @@ -880,6 +880,196 @@ async def test_document_url_input(allow_model_requests: None, openai_api_key: st assert result.output == snapshot('The document contains the text "Dummy PDF file" on its single page.') +async def test_document_url_input_response_api(allow_model_requests: None, openai_api_key: str): + """Test DocumentUrl with Responses API sends URL directly (default behavior).""" + provider = OpenAIProvider(api_key=openai_api_key) + m = OpenAIResponsesModel('gpt-4.1-nano', provider=provider) + agent = Agent(m) + + document_url = DocumentUrl(url='https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf') + + result = await agent.run(['What is the main content on this document?', document_url]) + assert 'Dummy PDF' in result.output + + +async def test_document_url_input_force_download_response_api(allow_model_requests: None, openai_api_key: str): + """Test DocumentUrl with force_download=True downloads and sends as file_data.""" + provider = OpenAIProvider(api_key=openai_api_key) + m = OpenAIResponsesModel('gpt-4.1-nano', provider=provider) + agent = Agent(m) + + document_url = DocumentUrl( + url='https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf', + force_download=True, + ) + + result = await agent.run(['What is the main content on this document?', document_url]) + assert 'Dummy PDF' in result.output + + +async def test_image_url_force_download_chat() -> None: + """Test that force_download=True calls download_item for ImageUrl in OpenAIChatModel.""" + from unittest.mock import AsyncMock, patch + + m = OpenAIChatModel('gpt-4o', provider=OpenAIProvider(api_key='test-key')) + + with patch('pydantic_ai.models.openai.download_item', new_callable=AsyncMock) as mock_download: + mock_download.return_value = { + 'data': '', + 'content_type': 'image/png', + } + + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test image', + ImageUrl( + url='https://example.com/image.png', + media_type='image/png', + force_download=True, + ), + ] + ) + ] + ) + ] + + await m._map_messages(messages, ModelRequestParameters()) # pyright: ignore[reportPrivateUsage] + + mock_download.assert_called_once() + assert mock_download.call_args[0][0].url == 'https://example.com/image.png' + + +async def test_image_url_no_force_download_chat() -> None: + """Test that force_download=False does not call download_item for ImageUrl in OpenAIChatModel.""" + from unittest.mock import AsyncMock, patch + + m = OpenAIChatModel('gpt-4o', provider=OpenAIProvider(api_key='test-key')) + + with patch('pydantic_ai.models.openai.download_item', new_callable=AsyncMock) as mock_download: + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test image', + ImageUrl( + url='https://example.com/image.png', + media_type='image/png', + force_download=False, + ), + ] + ) + ] + ) + ] + + await m._map_messages(messages, ModelRequestParameters()) # pyright: ignore[reportPrivateUsage] + + mock_download.assert_not_called() + + +async def test_document_url_force_download_responses() -> None: + """Test that force_download=True calls download_item for DocumentUrl in OpenAIResponsesModel.""" + from unittest.mock import AsyncMock, patch + + m = OpenAIResponsesModel('gpt-4.5-nano', provider=OpenAIProvider(api_key='test-key')) + + with patch('pydantic_ai.models.openai.download_item', new_callable=AsyncMock) as mock_download: + mock_download.return_value = { + 'data': 'data:application/pdf;base64,JVBERi0xLjQK', + 'data_type': 'pdf', + } + + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test PDF', + DocumentUrl( + url='https://example.com/doc.pdf', + media_type='application/pdf', + force_download=True, + ), + ] + ) + ] + ) + ] + + await m._map_messages(messages, {}, ModelRequestParameters()) # pyright: ignore[reportPrivateUsage,reportArgumentType] + + mock_download.assert_called_once() + assert mock_download.call_args[0][0].url == 'https://example.com/doc.pdf' + + +async def test_document_url_no_force_download_responses() -> None: + """Test that force_download=False does not call download_item for DocumentUrl in OpenAIResponsesModel.""" + from unittest.mock import AsyncMock, patch + + m = OpenAIResponsesModel('gpt-4.5-nano', provider=OpenAIProvider(api_key='test-key')) + + with patch('pydantic_ai.models.openai.download_item', new_callable=AsyncMock) as mock_download: + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test document', + DocumentUrl( + url='https://example.com/doc.pdf', + media_type='application/pdf', + force_download=False, + ), + ] + ) + ] + ) + ] + + await m._map_messages(messages, {}, ModelRequestParameters()) # pyright: ignore[reportPrivateUsage,reportArgumentType] + + mock_download.assert_not_called() + + +async def test_audio_url_force_download_responses() -> None: + """Test that force_download=True calls download_item for AudioUrl in OpenAIResponsesModel.""" + from unittest.mock import AsyncMock, patch + + m = OpenAIResponsesModel('gpt-4.5-nano', provider=OpenAIProvider(api_key='test-key')) + + with patch('pydantic_ai.models.openai.download_item', new_callable=AsyncMock) as mock_download: + mock_download.return_value = { + 'data': 'data:audio/mp3;base64,SUQzBAAAAAAAI1RTU0UAAAAPAAADTGF2', + 'data_type': 'mp3', + } + + messages = [ + ModelRequest( + parts=[ + UserPromptPart( + content=[ + 'Test audio', + AudioUrl( + url='https://example.com/audio.mp3', + media_type='audio/mp3', + force_download=True, + ), + ] + ) + ] + ) + ] + + await m._map_messages(messages, {}, ModelRequestParameters()) # pyright: ignore[reportPrivateUsage,reportArgumentType] + + mock_download.assert_called_once() + assert mock_download.call_args[0][0].url == 'https://example.com/audio.mp3' + + @pytest.mark.vcr() async def test_image_url_tool_response(allow_model_requests: None, openai_api_key: str): m = OpenAIChatModel('gpt-4o', provider=OpenAIProvider(api_key=openai_api_key)) diff --git a/tests/test_messages.py b/tests/test_messages.py index f5aaf972d4..80a0bc3e56 100644 --- a/tests/test_messages.py +++ b/tests/test_messages.py @@ -309,6 +309,13 @@ def test_binary_content_is_methods(): assert document_content.format == 'pdf' +def test_binary_content_base64(): + bc = BinaryContent(data=b'Hello, world!', media_type='image/png') + assert bc.base64 == 'SGVsbG8sIHdvcmxkIQ==' + assert not bc.base64.startswith('data:') + assert bc.data_uri == '' + + @pytest.mark.xdist_group(name='url_formats') @pytest.mark.parametrize( 'video_url,media_type,format',