diff --git a/.ipynb_checkpoints/grad_mh-checkpoint.ipynb b/.ipynb_checkpoints/grad_mh-checkpoint.ipynb new file mode 100644 index 0000000..44c666e --- /dev/null +++ b/.ipynb_checkpoints/grad_mh-checkpoint.ipynb @@ -0,0 +1,820 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import confusion_matrix\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.model_selection import cross_val_score\n", + "from pandas.plotting import scatter_matrix\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
admitgregparank
003803.613
116603.673
218004.001
316403.194
405202.934
\n", + "
" + ], + "text/plain": [ + " admit gre gpa rank\n", + "0 0 380 3.61 3\n", + "1 1 660 3.67 3\n", + "2 1 800 4.00 1\n", + "3 1 640 3.19 4\n", + "4 0 520 2.93 4" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv('grad.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
admit400.00.31750.4660870.000.000.0001.001.0
gre400.0587.7000115.516536220.00520.00580.000660.00800.0
gpa400.03.38990.3805672.263.133.3953.674.0
rank400.02.48500.9444601.002.002.0003.004.0
\n", + "
" + ], + "text/plain": [ + " count mean std min 25% 50% 75% max\n", + "admit 400.0 0.3175 0.466087 0.00 0.00 0.000 1.00 1.0\n", + "gre 400.0 587.7000 115.516536 220.00 520.00 580.000 660.00 800.0\n", + "gpa 400.0 3.3899 0.380567 2.26 3.13 3.395 3.67 4.0\n", + "rank 400.0 2.4850 0.944460 1.00 2.00 2.000 3.00 4.0" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe().T" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "table = pd.crosstab(index=df['admit'], columns=df['rank'])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rank1234
admit
028979355
133542812
\n", + "
" + ], + "text/plain": [ + "rank 1 2 3 4\n", + "admit \n", + "0 28 97 93 55\n", + "1 33 54 28 12" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEGCAYAAABrQF4qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEY9JREFUeJzt3WuMXdV5h/HnxQZMMGDwBbkeyLgtKgM4YHsUnGJRC4Ia\nAwLETSASDBhZCkkDpVFD+8WgSglJTQsSVRQnJHFJxKUQgTHBVTCXqrSBGEx9YSAgmMIBA4PDtcHE\nl7cf5kAmZozH5+zjM17z/CRrZu+z9lrvoOE/a9ZZe09kJpKkcu3R7gIkSa1l0EtS4Qx6SSqcQS9J\nhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKN7rdBQBMmDAhOzs7212GJO1WHn/88Tcyc+KO2u0w6CPi\nh8CpwOuZeVT93EHAbUAn0Aucm5lvRkQANwAnA78FLsrMJ3Y0RmdnJytXrtxRM0nSABHxv0NpN5Sl\nmx8DX9jm3FXAisw8DFhRPwaYCxxW/7cA+O5QipAktc4Ogz4z/wP4zTanTweW1D9fApwx4Py/Zr9f\nAuMiYnJVxUqSdl6jb8YenJnrAeofJ9XPTwFeGtCuVj/3MRGxICJWRsTKvr6+BsuQJO1I1W/GxiDn\nBn0OcmYuBhYDdHd3+6xkSW2xadMmarUaGzdubHcp2zVmzBg6OjrYc889G7q+0aB/LSImZ+b6+tLM\n6/XzNeCQAe06gFcaHEOSWq5Wq7HffvvR2dlJ/36S4SUz2bBhA7VajalTpzbUR6NLN0uBefXP5wF3\nDzh/YfSbBbz94RKPJA1HGzduZPz48cMy5AEigvHjxzf1G8dQtlfeAswBJkREDVgIXAvcHhHzgReB\nc+rNf07/1srn6N9eeXHDlUnSLjJcQ/5Dzda3w6DPzPO389KJg7RN4CtNVSRJqtSwuDN2RLv6gBb0\n+Xb1fUpqytVXX83YsWP5+te/vsvH9lk3krSTMpOtW7e2u4whM+glaQh6e3vp6urisssuY8aMGcyf\nP5/u7m6OPPJIFi5c+FG7zs5OFi5cyIwZM5g2bRpPP/30x/r6/ve/z9y5c3n//fd3Se0GvSQN0TPP\nPMOFF17IqlWruO6661i5ciWrV6/m4YcfZvXq1R+1mzBhAk888QRf/vKXWbRo0R/0ceONN3LPPfdw\n1113sc8+++ySug16SRqiT3/608yaNQuA22+/nRkzZjB9+nTWrVvHU0899VG7M888E4CZM2fS29v7\n0fmbb76Z++67jzvvvJO99957l9Vt0EvSEO27774AvPDCCyxatIgVK1awevVqTjnllD/Y5/5hiI8a\nNYrNmzd/dP6oo46it7eXWq22S+s26CVpJ73zzjvsu+++HHDAAbz22mvcd999Q7pu+vTpfO973+O0\n007jlVd23UMDDHpJ2klHH30006dP58gjj+SSSy7huOOOG/K1s2fPZtGiRZxyyim88cYbLazy96L/\nHqf26u7uzhH7h0fcRy+1VU9PD11dXe0uY4cGqzMiHs/M7h1d6w1TBZq2ZFrlfa6Zt6byPiXtGi7d\nSFLhDHpJKpxBL0mFM+glqXAGvSQVzl03kjRA51X3Vtpf77Wn7LDNJZdcwrJly5g0aRJr166tdHxw\nRi9JbXfRRRexfPnylvVv0EtSmx1//PEcdNBBLevfoJekwhn0klQ4g16SCmfQS1Lh3F4pSQMMZTtk\n1c4//3weeugh3njjDTo6OrjmmmuYP39+Zf0b9JLUZrfccktL+3fpRpIKZ9BLUuEMekkqnEEvSYUz\n6CWpcAa9JBXO7ZWSNNDVB1Tc39uf+PJLL73EhRdeyKuvvsoee+zBggULuPzyyystwaCXpDYaPXo0\n1113HTNmzODdd99l5syZnHTSSRxxxBGVjeHSjSS10eTJk5kxYwYA++23H11dXbz88suVjtFU0EfE\nX0fEuohYGxG3RMSYiJgaEY9GxLMRcVtE7FVVsZJUst7eXlatWsWxxx5bab8NB31ETAG+BnRn5lHA\nKOA84NvAP2fmYcCbQHUPbJCkQr333nucddZZXH/99ey///6V9t3s0s1oYJ+IGA18ClgPnADcUX99\nCXBGk2NIUtE2bdrEWWedxQUXXMCZZ55Zef8NB31mvgwsAl6kP+DfBh4H3srMzfVmNWBKs0VKUqky\nk/nz59PV1cWVV17ZkjEa3nUTEQcCpwNTgbeAfwPmDtI0t3P9AmABwKGHHtpoGZJUrR1sh6zaI488\nws0338y0adM45phjAPjmN7/JySefXNkYzWyv/DzwQmb2AUTEz4A/B8ZFxOj6rL4DeGWwizNzMbAY\noLu7e9AfBpJUutmzZ5PZ2ghsZo3+RWBWRHwqIgI4EXgKeBA4u95mHnB3cyVKkprRzBr9o/S/6foE\nsKbe12LgG8CVEfEcMB64qYI6JUkNaurO2MxcCCzc5vTzwGeb6VeSVB3vjJWkwhn0klQ4g16SCufT\nKyVpgGlLplXa35p5az7x9Y0bN3L88cfzwQcfsHnzZs4++2yuueaaSmsw6CWpjfbee28eeOABxo4d\ny6ZNm5g9ezZz585l1qxZlY3h0o0ktVFEMHbsWKD/mTebNm2i/9ak6hj0ktRmW7Zs4ZhjjmHSpEmc\ndNJJw+cxxZKkaowaNYonn3ySWq3GY489xtq1ayvt36CXpGFi3LhxzJkzh+XLl1far0EvSW3U19fH\nW2+9BcD777/P/fffz+GHH17pGO66kaQBdrQdsmrr169n3rx5bNmyha1bt3Luuedy6qmnVjqGQS9J\nbfSZz3yGVatWtXQMl24kqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4dxeKUkD9BzeVWl/XU/3DKnd\nli1b6O7uZsqUKSxbtqzSGpzRS9IwcMMNN9DVVe0PmQ8Z9JLUZrVajXvvvZdLL720Jf0b9JLUZldc\ncQXf+c532GOP1kSyQS9JbbRs2TImTZrEzJkzWzaGQS9JbfTII4+wdOlSOjs7Oe+883jggQf44he/\nWOkYBr0ktdG3vvUtarUavb293HrrrZxwwgn85Cc/qXQMt1dK0gBD3Q65OzHoJWmYmDNnDnPmzKm8\nX5duJKlwBr0kFc6glzTiZWa7S/hEzdZn0Esa0caMGcOGDRuGbdhnJhs2bGDMmDEN9+GbsZJGtI6O\nDmq1Gn19fe0uZbvGjBlDR0dHw9cb9JJGtD333JOpU6e2u4yWculGkgrXVNBHxLiIuCMino6Inoj4\nXEQcFBG/iIhn6x8PrKpYSdLOa3ZGfwOwPDMPB44GeoCrgBWZeRiwon4sSWqThoM+IvYHjgduAsjM\n32XmW8DpwJJ6syXAGc0WKUlqXDMz+j8G+oAfRcSqiPhBROwLHJyZ6wHqHycNdnFELIiIlRGxcji/\n2y1Ju7tmgn40MAP4bmZOB/6PnVimyczFmdmdmd0TJ05sogxJ0idpJuhrQC0zH60f30F/8L8WEZMB\n6h9fb65ESVIzGg76zHwVeCki/qx+6kTgKWApMK9+bh5wd1MVSpKa0uwNU38F/DQi9gKeBy6m/4fH\n7RExH3gROKfJMSRJTWgq6DPzSaB7kJdObKZfSVJ1vDNWkgpn0EtS4Qx6SSqcQS9JhTPoJalwPo9e\nQ9JzeFflfXY93VN5n5I+zhm9JBXOGb2kwV19QAv6fLv6PrVDzuglqXAGvSQVzqCXpMIZ9JJUOINe\nkgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWp\ncAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVrumgj4hREbEqIpbVj6dG\nxKMR8WxE3BYRezVfpiSpUVXM6C8HegYcfxv458w8DHgTmF/BGJKkBjUV9BHRAZwC/KB+HMAJwB31\nJkuAM5oZQ5LUnGZn9NcDfwtsrR+PB97KzM314xowZbALI2JBRKyMiJV9fX1NliFJ2p6Ggz4iTgVe\nz8zHB54epGkOdn1mLs7M7szsnjhxYqNlSJJ2YHQT1x4HnBYRJwNjgP3pn+GPi4jR9Vl9B/BK82VK\nkhrV8Iw+M/8uMzsysxM4D3ggMy8AHgTOrjebB9zddJWSpIa1Yh/9N4ArI+I5+tfsb2rBGJKkIWpm\n6eYjmfkQ8FD98+eBz1bRrySped4ZK0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqc\nQS9JhavkzlhJ7dV51b2V99k7pvIu1SbO6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxB\nL0mFM+glqXAGvSQVzkcg7ARvM5eaM23JtMr7XDNvTeV9lsYZvSQVzqCXpMIZ9JJUOINekgpn0EtS\n4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIK13DQR8QhEfFgRPRExLqIuLx+/qCI+EVE\nPFv/eGB15UqSdlYzM/rNwN9kZhcwC/hKRBwBXAWsyMzDgBX1Y0lSmzQc9Jm5PjOfqH/+LtADTAFO\nB5bUmy0Bzmi2SElS4ypZo4+ITmA68ChwcGauh/4fBsCkKsaQJDWm6aCPiLHAncAVmfnOTly3ICJW\nRsTKvr6+ZsuQJG1HU0EfEXvSH/I/zcyf1U+/FhGT669PBl4f7NrMXJyZ3ZnZPXHixGbKkCR9gmZ2\n3QRwE9CTmf804KWlwLz65/OAuxsvT5LUrGb+ZuxxwJeANRHxZP3c3wPXArdHxHzgReCc5kqUJDWj\n4aDPzP8EYjsvn9hov5KkanlnrCQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0k\nFc6gl6TCGfSSVDiDXpIK18zTKyWp7XoO76q8z66neyrvs52c0UtS4Qx6SSqcQS9JhTPoJalwBr0k\nFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1Lh\nDHpJKpxBL0mFM+glqXAGvSQVriVBHxFfiIhnIuK5iLiqFWNIkoam8qCPiFHAvwBzgSOA8yPiiKrH\nkSQNTStm9J8FnsvM5zPzd8CtwOktGEeSNASjW9DnFOClAcc14NhtG0XEAmBB/fC9iHimBbUMe9GS\nXtdOAN6osseW/EoWrfnqVQ2/N3cLnx5Ko1YE/WD/hfJjJzIXA4tbMP6IFxErM7O73XVI2/J7sz1a\nsXRTAw4ZcNwBvNKCcSRJQ9CKoP8VcFhETI2IvYDzgKUtGEeSNASVL91k5uaI+Crw78Ao4IeZua7q\ncfSJXBLTcOX3ZhtE5seWzyVJBfHOWEkqnEEvSYUz6CWpcK3YR69dKCIOp//O4yn036/wCrA0M3va\nWpikYcMZ/W4sIr5B/yMmAniM/q2tAdziw+QkfchdN7uxiPg1cGRmbtrm/F7Ausw8rD2VSZ8sIi7O\nzB+1u46Rwhn97m0r8EeDnJ9cf00arq5pdwEjiWv0u7crgBUR8Sy/f5DcocCfAl9tW1USEBGrt/cS\ncPCurGWkc+lmNxcRe9D/aOgp9P8PVAN+lZlb2lqYRryIeA34S+DNbV8C/iszB/ttVC3gjH43l5lb\ngV+2uw5pEMuAsZn55LYvRMRDu76ckcsZvSQVzjdjJalwBr0kFc6glwaIiIsi4sadvObnETGu/u+y\nVtUmNcqgl5qUmSdn5lvAOMCg17Bj0GtEiYi7IuLxiFhX/wP1RMTFEfHriHgYOG5A2x9HxHcj4sGI\neD4i/iIifhgRPRHx4wHteiNiAnAt8CcR8WRE/OOu/tqk7XF7pUaaSzLzNxGxD/CriLiX/rs0ZwJv\nAw8Cqwa0PxA4ATgNuIf+HwSX1q89Zputg1cBR2XmMbvg65CGzBm9RpqvRcT/0H/vwSHAl4CHMrMv\nM38H3LZN+3uyfw/yGuC1zFxTv3dhHdC5C+uWGmbQa8SIiDnA54HPZebR9M/cn6b/8c7b80H949YB\nn3947G/E2i0Y9BpJDgDezMzf1p/jPwvYB5gTEeMjYk/gnCb6fxfYr4I6pUoZ9BpJlgOj6w/b+gf6\nl2/WA1cD/w3cDzzRaOeZuQF4JCLW+mashhMfgSBJhXNGL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINe\nkgpn0EtS4f4fGl8qtI7Ba0kAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "table.plot(kind=\"bar\")" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[]], dtype=object)" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFidJREFUeJzt3X+Q5HWd3/Hn60B02VEWUOdWoFwsKU7jKsIU4pm6zIBe\n8EcJucIUlrksKe42P06D56Yil1TFWHVWMAnneXVXpxtRtlIeA3IYKK78Qa1MrpKc6+0quiCaReSQ\nBRf1WHQ8oq73zh/zXW92HbZ7pqdnpj/7fFRNdX8/309Pv9+73a/p+Uz395uqQpI0+n5htQuQJC0P\nA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6NI8SU5c7RqkpTLQdVxIcn6SLyX5QZJP\nJLk5ye8mmUzySJJ3J/k28LFu/puS3JPkYJL/k+Tlq9yC1JOBruYlOQn4JHAjcBpwE/CP5k35xW78\nhcDWJOcDHwX+OXA68GHgjiTPXMGypUUz0HU8uAg4EfiDqvpJVd0GfGHe/r8F3lNVP6qqp4DfBD5c\nVbuq6qdVtQP4Ufd9pDXLQNfx4AXA/jrySHTfmnf9O1X1/+ZtvxDY1i23HExyEDir+z7SmmWg63jw\nGHBGkswbO2ve9aMPOfot4H1VtWHe18lVddPQK5UGYKDrePAXwE+Btyc5McllwIXHmP/fgH+R5FWZ\nsz7JG5M8e0WqlZbIQFfzqurHwK8BVwMHgX8C3MncuvhC83czt47+h8ATwAPAVStRqzSIeIILHY+S\n7AI+VFUfW+1apOXiK3QdF5L8gyS/2C25bAFeDnx6teuSlpOfitPx4lzgFmAM+AZwRVU9trolScvL\nJRdJaoRLLpLUiBVdcnnuc59bmzZtOmLshz/8IevXr1/JMoaqtX6gvZ7sZ+1rradB+9mzZ893q+p5\nveataKBv2rSJ3bt3HzE2MzPD5OTkSpYxVK31A+31ZD9rX2s9DdpPkr/qZ55LLpLUCANdkhphoEtS\nIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AiPtiitsk3X/tlAt9+2+RBXLeF7PHTdGwe6X609\nvkKXpEb0FehJfjvJfUnuTXJTkmclOTvJriT7ktyc5KRhFytJeno9Az3JGcC/Biaq6mXACcCVwPuB\nD1TVOcydd/HqYRYqSTq2fpdcTgTWJTkROBl4DLgYuLXbvwO4fPnLkyT1q68zFiW5Bngf8BTwWeAa\n4PNV9eJu/1nAp7pX8EffdiuwFWB8fPyC6enpI/bPzs4yNjY2YBtrR2v9QHs9rbV+9u5/cqDbj6+D\nA08t/nabzzhloPsdprX2fzSoQfuZmpraU1UTveb1fJdLklOBy4CzgYPAJ4DXLzB1wZ8MVbUd2A4w\nMTFRRx8T2OMer32t9bTW+lnKO1Tm27b5ENfvXfwb1h562+RA9ztMa+3/aFAr1U8/Sy6vBb5ZVd+p\nqp8AtwG/DGzolmAAzgQeHVKNkqQ+9BPoDwMXJTk5SYBLgK8CdwNXdHO2ALcPp0RJUj96BnpV7WLu\nj59fBPZ2t9kOvBt4V5IHgNOBG4ZYpySph74W3qrqPcB7jhp+ELhw2SuSJC2JnxSVpEYY6JLUCANd\nkhphoEtSIwx0SWqEgS5JjfAEFxKDn2RCWgt8hS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBL\nUiMMdElqhIEuSY3oGehJzk1yz7yv7yd5Z5LTktyVZF93eepKFCxJWlg/p6D7elWdV1XnARcAfwN8\nErgW2FlV5wA7u21J0ipZ7JLLJcA3quqvgMuAHd34DuDy5SxMkrQ4qar+JycfBb5YVX+Y5GBVbZi3\n74mq+rlllyRbga0A4+PjF0xPTx+xf3Z2lrGxsaXWv+a01g+019NC/ezd/+QqVTO48XVw4KnF327z\nGacsfzHL5Hh4zC3G1NTUnqqa6DWv70BPchLwKPD3qupAv4E+38TERO3evfuIsZmZGSYnJ/uqYRS0\n1g+019NC/Yzy0Ra3bT7E9XsXf+DUh6574xCqWR7Hw2NuMZL0FeiLWXJ5PXOvzg902weSbOzubCPw\n+OLLlCQtl8UE+luBm+Zt3wFs6a5vAW5frqIkSYvXV6AnORl4HXDbvOHrgNcl2dftu275y5Mk9auv\nhbeq+hvg9KPGvsfcu14kSWuAnxSVpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRiz8AhKQm\nrObxa9bycWRGma/QJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY3o94xFG5LcmuRr\nSe5P8uokpyW5K8m+7vKYJ4iWJA1Xv6/QPwh8uqp+CXgFcD9wLbCzqs4BdnbbkqRV0jPQkzwH+BXg\nBoCq+nFVHQQuA3Z003YAlw+rSElSb6mqY09IzgO2A19l7tX5HuAaYH9VbZg374mq+rlllyRbga0A\n4+PjF0xPTx+xf3Z2lrGxsQHbWDta6wfa62mhfvbuf3KVqhnc+Do48NRqV7E4m8845Zj7j4fH3GJM\nTU3tqaqJXvP6CfQJ4PPAa6pqV5IPAt8H3tFPoM83MTFRu3fvPmJsZmaGycnJXnWOjNb6gfZ6Wqif\n1TxQ1aC2bT7E9XtH6zh7vQ7OdTw85hYjSV+B3s8a+iPAI1W1q9u+FTgfOJBkY3dnG4HHl1qsJGlw\nPQO9qr4NfCvJud3QJcwtv9wBbOnGtgC3D6VCSVJf+v097R3Ax5OcBDwI/DPmfhjckuRq4GHgLcMp\nUZLUj74CvaruARZav7lkecuRJC2VnxSVpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrok\nNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDWirxNcJHkI+AHwU+BQVU0kOQ24\nGdgEPAT846p6YjhlSpJ6Wcypwqeq6rvztq8FdlbVdUmu7bbfvazV6biz6do/G/p9bNt8iKtW4H6k\nlTbIkstlwI7u+g7g8sHLkSQtVb+BXsBnk+xJsrUbG6+qxwC6y+cPo0BJUn9SVb0nJS+oqkeTPB+4\nC3gHcEdVbZg354mqOnWB224FtgKMj49fMD09fcT+2dlZxsbGButiDWmtH1jZnvbuf3Lo9zG+Dg48\nNfS7WTGj2M/mM0455v7WnkeD9jM1NbWnqiZ6zesr0I+4QfIfgVngN4HJqnosyUZgpqrOPdZtJyYm\navfu3UeMzczMMDk5uaga1rLW+oGV7Wml1tCv37uYPx+tbaPYz0PXvfGY+1t7Hg3aT5K+Ar3nkkuS\n9Umeffg68KvAvcAdwJZu2hbg9iVXK0kaWD8/1seBTyY5PP9PqurTSf4SuCXJ1cDDwFuGV6YkqZee\ngV5VDwKvWGD8e8AlwyhKkrR4flJUkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgD\nXZIaYaBLUiNG6xBtkprQ66iawzqrVK+jPI46X6FLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRvQd\n6ElOSPKlJHd222cn2ZVkX5Kbk5w0vDIlSb0s5hX6NcD987bfD3ygqs4BngCuXs7CJEmL01egJzkT\neCPwkW47wMXArd2UHcDlwyhQktSfVFXvScmtwH8Cng38G+Aq4PNV9eJu/1nAp6rqZQvcdiuwFWB8\nfPyC6enpI/bPzs4yNjY2WBdrSGv9wMr2tHf/k0O/j/F1cOCpod/NimmtHxheT5vPOGX5v2kfBn0O\nTU1N7amqiV7zen70P8mbgMerak+SycPDC0xd8CdDVW0HtgNMTEzU5OTkEftnZmY4emyUtdYPrGxP\nw/i499G2bT7E9XvbOepFa/3A8Hp66G2Ty/49+7FSz6F+/sVeA7w5yRuAZwHPAX4f2JDkxKo6BJwJ\nPDq8MiVJvfRcQ6+q36mqM6tqE3Al8LmqehtwN3BFN20LcPvQqpQk9TTI+9DfDbwryQPA6cANy1OS\nJGkpFrVIVVUzwEx3/UHgwuUvSZK0FH5SVJIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDWirc8LS9Ix\nbFqBQ0ss5MZL16/I/fgKXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGtEz\n0JM8K8kXknw5yX1J3tuNn51kV5J9SW5OctLwy5UkPZ1+XqH/CLi4ql4BnAdcmuQi4P3AB6rqHOAJ\n4OrhlSlJ6qWfk0RXVc12m8/ovgq4GLi1G98BXD6UCiVJfUlV9Z6UnADsAV4M/BHwX4DPV9WLu/1n\nAZ+qqpctcNutwFaA8fHxC6anp4/YPzs7y9jY2IBtrB2t9QMr29Pe/U8O/T7G18GBp4Z+NyumtX6g\nvZ7OPuWEgZ5DU1NTe6pqote8vo62WFU/Bc5LsgH4JPCShaY9zW23A9sBJiYmanJy8oj9MzMzHD02\nylrrB1a2p6tW4Gh42zYf4vq97RxotLV+oL2ebrx0/Yo8hxb1LpeqOgjMABcBG5Ic/hc/E3h0eUuT\nJC1GP+9yeV73ypwk64DXAvcDdwNXdNO2ALcPq0hJUm/9/E6zEdjRraP/AnBLVd2Z5KvAdJLfBb4E\n3DDEOiVJPfQM9Kr6CvDKBcYfBC4cRlFaXUef1WXb5kMrsrYtaTB+UlSSGmGgS1IjDHRJaoSBLkmN\nMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1Ih+\nTkF3VpK7k9yf5L4k13TjpyW5K8m+7vLU4ZcrSXo6/bxCPwRsq6qXMHdy6N9K8lLgWmBnVZ0D7Oy2\nJUmrpGegV9VjVfXF7voPmDtB9BnAZcCObtoO4PJhFSlJ6i1V1f/kZBPw58DLgIerasO8fU9U1c8t\nuyTZCmwFGB8fv2B6evqI/bOzs4yNjS2l9jWphX727n/yiO3xdXDgqVUqZgjsZ+1rraezTzlhoFyY\nmpraU1UTveb1HehJxoD/Cbyvqm5LcrCfQJ9vYmKidu/efcTYzMwMk5OTfdUwClroZ6GTRF+/t+f5\nxEeG/ax9rfV046XrB8qFJH0Fel/vcknyDOBPgY9X1W3d8IEkG7v9G4HHl1qsJGlw/bzLJcANwP1V\n9Xvzdt0BbOmubwFuX/7yJEn96ud3mtcAvw7sTXJPN/bvgOuAW5JcDTwMvGU4JUqS+tEz0KvqfwF5\nmt2XLG85kqSl8pOiktQIA12SGmGgS1IjDHRJakQ779xv0NEf8JGkY/EVuiQ1wkCXpEYY6JLUCANd\nkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1Ih+TkH30SSPJ7l33thpSe5Ksq+7PObJ\noSVJw9fPK/QbgUuPGrsW2FlV5wA7u21J0irqGehV9efAXx81fBmwo7u+A7h8meuSJC3SUtfQx6vq\nMYDu8vnLV5IkaSlSVb0nJZuAO6vqZd32waraMG//E1W14Dp6kq3AVoDx8fELpqenj9g/OzvL2NjY\nUutfc5azn737n1yW7zOo8XVw4KnVrmL52M/a11pPZ59ywkC5MDU1taeqJnrNW+oJLg4k2VhVjyXZ\nCDz+dBOrajuwHWBiYqImJyeP2D8zM8PRY6NsOfu5ao2c4GLb5kNcv7edc6HYz9rXWk83Xrp+RXJu\nqUsudwBbuutbgNuXpxxJ0lL187bFm4C/AM5N8kiSq4HrgNcl2Qe8rtuWJK2inr/TVNVbn2bXJctc\niyRpAH5SVJIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSB\nLkmNaOeAw0OyaZHHJN+2+dCaOY65pOOLr9AlqREGuiQ1wkCXpEYY6JLUiIH+KJrkUuCDwAnAR6pq\naKeiW+wfJyXpeLPkV+hJTgD+CHg98FLgrUleulyFSZIWZ5AllwuBB6rqwar6MTANXLY8ZUmSFitV\ntbQbJlcAl1bVb3Tbvw68qqreftS8rcDWbvNc4OtHfavnAt9dUhFrU2v9QHs92c/a11pPg/bzwqp6\nXq9Jg6yhZ4Gxn/vpUFXbge1P+02S3VU1MUAda0pr/UB7PdnP2tdaTyvVzyBLLo8AZ83bPhN4dLBy\nJElLNUig/yVwTpKzk5wEXAncsTxlSZIWa8lLLlV1KMnbgc8w97bFj1bVfUv4Vk+7HDOiWusH2uvJ\nfta+1npakX6W/EdRSdLa4idFJakRBrokNWKogZ7krCR3J7k/yX1JrunGT0tyV5J93eWp3XiS/EGS\nB5J8Jcn5w6xvsZI8K8kXkny56+e93fjZSXZ1/dzc/ZGYJM/sth/o9m9azfqPJckJSb6U5M5ue2R7\nSvJQkr1J7kmyuxsbycfcYUk2JLk1yde659OrR7WnJOd2/zeHv76f5J2j2s9hSX67y4V7k9zU5cXK\nPo+qamhfwEbg/O76s4H/y9xhAv4zcG03fi3w/u76G4BPMfce94uAXcOsbwn9BBjrrj8D2NXVeQtw\nZTf+IeBfdtf/FfCh7vqVwM2r3cMxensX8CfAnd32yPYEPAQ896ixkXzMzat/B/Ab3fWTgA2j3lNX\n6wnAt4EXjnI/wBnAN4F13fYtwFUr/Txa6aZvB17H3KdFN3ZjG4Gvd9c/DLx13vyfzVtrX8DJwBeB\nVzH3CbATu/FXA5/prn8GeHV3/cRuXla79gV6ORPYCVwM3Nk9cUa2p6cJ9JF9zAHP6cIiR42PbE/z\navtV4H+Pej9doH8LOK17XtwJ/MOVfh6t2Bp69yvFK5l7VTteVY8BdJfP76Yd/kc57JFubM3olibu\nAR4H7gK+ARysqkPdlPk1/6yfbv+TwOkrW3Fffh/4t8DfdtunM9o9FfDZJHsyd+gJGOHHHPAi4DvA\nx7plsY8kWc9o93TYlcBN3fWR7aeq9gP/FXgYeIy558UeVvh5tCKBnmQM+FPgnVX1/WNNXWBsTb2v\nsqp+WlXnMfeq9kLgJQtN6y7XfD9J3gQ8XlV75g8vMHVkegJeU1XnM3ck0N9K8ivHmDsK/ZwInA/8\ncVW9Evghc0sST2cUeqJbT34z8IleUxcYW1P9dOv9lwFnAy8A1jP3+DvaUJ9HQw/0JM9gLsw/XlW3\ndcMHkmzs9m9k7tUujNDhBKrqIDDD3JrehiSHP6Q1v+af9dPtPwX465WttKfXAG9O8hBzR8y8mLlX\n7CPbU1U92l0+DnySuR+8o/yYewR4pKp2ddu3Mhfwo9wTzAXeF6vqQLc9yv28FvhmVX2nqn4C3Ab8\nMiv8PBr2u1wC3ADcX1W/N2/XHcCW7voW5tbWD4//0+6v2hcBTx7+FWwtSPK8JBu66+uY+0+8H7gb\nuKKbdnQ/h/u8AvhcdYtma0VV/U5VnVlVm5j79fdzVfU2RrSnJOuTPPvwdebWaO9lRB9zAFX1beBb\nSc7thi4BvsoI99R5K3+33AKj3c/DwEVJTu5y7/D/0co+j4b8h4K/z9yvEV8B7um+3sDcWtFOYF93\neVo3P8ydNOMbwF5gYrX/2HFUPy8HvtT1cy/wH7rxFwFfAB5g7tfHZ3bjz+q2H+j2v2i1e+jR3yR/\n9y6Xkeypq/vL3dd9wL/vxkfyMTevr/OA3d1j738Ap45yT8y9qeB7wCnzxka2n67O9wJf67LhvwPP\nXOnnkR/9l6RG+ElRSWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIa8f8BJBwcx58w3qUAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.hist(column='gre', bins=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "gre is slightly skewed to the left, but doesn't differ greatly from the gpa histogram, which is also skewed slightly to the left. " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[]], dtype=object)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFhJJREFUeJzt3X2QZXV95/H31wEUp8k8iLaTATOTdYqIjKDTRUyodbsl\nJuPiMpMNbmGMGVIkXTFqzDrZDbpVVjTZWlIWkVSSLXcSLCaJ2iCRMCGrK5nQm80aSHoU08LEDOIE\nGchMlGGgkdVq8t0/7hm9NN1zz+3b957uH+9XVVefh9/p+5kzpz997rlPkZlIkla+5zUdQJK0NCx0\nSSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdBUtIl4TEV+IiCci4pMRcVNE/HpE\njEbEQxHxvoj4ekQcjoi3tm13WbXd4xHxtYj41Qb/GVItFrqKFRFnALcCNwLrgU8AP9425KXA2cBG\nYBewJyLOq9Y9Cfw0sBa4DHh7ROwcTHJpccL3clGpIuJ1tEr8nKwO9Ij4K2AS+PPqa01mPlmtuxmY\nzsxfm+dnXQ9kZv7HAcWXuuYZukr2vcCRfOZZy9fapo+fLPPKP1bbEBE/GBF3RsQ/R8QJ4Odpnc1L\ny5aFrpI9AmyMiGhbdm7b9LqIWN02/zLg4Wr648A+4NzMXAN8BGj/OdKyY6GrZH8NPA28MyJOi4gd\nwMVzxnwgIs6IiH8NvAn4ZLX8LODRzPx/EXEx8JMDSy0tkoWuYmXmt4F/D1wNPAb8FHA78K1qyD8B\nx2mdlX8M+PnM/Ptq3S8AH4yIJ4D3AzcPMLq0KD4oqueUiLib1uWTrwJ/lJnnNBxJWjKeoatoEfFv\nIuKl1SWXXcCrgM80nUvqh9OaDiD12Xm0LpcMAV8BrsjMR9qeby4Vw0suklQIL7lIUiEGesnl7LPP\nzk2bNnW1zZNPPsnq1as7D1wmzNs/KykrmLffVlLeXrMeOHDg65n54o4DM3NgX9u2bctu3XnnnV1v\n0yTz9s9Kyppp3n5bSXl7zQpMZY2O9ZKLJBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAl\nqRAWuiQVwndblBq26Zo/a+R2D197WSO3q/7xDF2SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKX\npEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhehY6BFxXkTc0/b1eET8UkSsj4g7IuJQ9X3dIAJLkubX\nsdAz88uZeVFmXgRsA74J3ApcA+zPzC3A/mpektSQbi+5XAp8JTP/EdgB7K2W7wV2LmUwSVJ3IjPr\nD474KPD5zPydiHgsM9e2rTuemc+67BIR48A4wPDw8LaJiYmuAs7MzDA0NNTVNk0yb/+spKxQP+/0\nkRMDSPNsWzeuecZ8qft3Oeg169jY2IHMHOk0rnahR8QZwMPAKzPzaN1CbzcyMpJTU1O1bu+kyclJ\nRkdHu9qmSebtn5WUFernXS4fcFHq/l0Oes0aEbUKvZtLLm+kdXZ+tJo/GhEbqhvbABzrPqYkaal0\nU+hvAT7RNr8P2FVN7wJuW6pQkqTu1Sr0iHgh8AbgU22LrwXeEBGHqnXXLn08SVJdtT4kOjO/Cbxo\nzrJv0HrWiyRpGfCVopJUCAtdkgphoUtSISx0SSqEhS5Jhaj1LBdJ5Zn7CtXdW2e5akCvWp37KlUt\nDc/QJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhM9Dl/Sc0dSnQ924ffVAbsczdEkqhIUu\nSYWw0CWpEBa6JBWi7meKro2IWyLi7yPiYET8UESsj4g7IuJQ9X1dv8NKkhZW9wz9t4DPZOYPABcC\nB4FrgP2ZuQXYX81LkhrSsdAj4nuA1wE3AGTmtzPzMWAHsLcathfY2a+QkqTOIjNPPSDiImAPcB+t\ns/MDwLuBI5m5tm3c8cx81mWXiBgHxgGGh4e3TUxMdBVwZmaGoaGhrrZpknn7ZyVlhfp5p4+cGECa\nzobPhKNPDea2tm5c0/PPWMzx0NS+3rxmVU/H7tjY2IHMHOk0rk6hjwB3AZdk5t0R8VvA48C76hR6\nu5GRkZyamqr1DzhpcnKS0dHRrrZpknn7ZyVlhfp5m3qxy1y7t85y3fRgXmu4FB9wsZjjockXFvVy\n7EZErUKvcw39IeChzLy7mr8FeA1wNCI2VDe2ATi22LCSpN51LPTM/CfgaxFxXrXoUlqXX/YBu6pl\nu4Db+pJQklRL3ftX7wI+FhFnAA8AP0Prj8HNEXE18CDw5v5ElCTVUavQM/MeYL7rN5cubRxJ0mL5\nSlFJKoSFLkmF8P3QJfrzdLbdW2e5apk8JVHPDZ6hS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY\n6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVIha74ceEYeBJ4CngdnMHImI\n9cBNwCbgMPAfMvN4f2JKkjrp5gx9LDMvysyTny16DbA/M7cA+6t5SVJDernksgPYW03vBXb2HkeS\ntFh1Cz2Bz0bEgYgYr5YNZ+YjANX3l/QjoCSpnsjMzoMivjczH46IlwB3AO8C9mXm2rYxxzNz3Tzb\njgPjAMPDw9smJia6CjgzM8PQ0FBX2zTJvP3Tz6zTR04s+c8cPhOOPrXkP7ZvBpl368Y1Pf+MxRwP\n/fh/rmPzmlU9HbtjY2MH2i53L6hWoT9jg4hfBWaAnwNGM/ORiNgATGbmeafadmRkJKemprq6vcnJ\nSUZHR7vapknm7Z9+Zu3Xh0RfN71yPod9kHkPX3tZzz9jMcdDP/6f67hx++qejt2IqFXoHS+5RMTq\niDjr5DTwo8CXgH3ArmrYLuC2RaeVJPWszp/jYeDWiDg5/uOZ+ZmI+Fvg5oi4GngQeHP/YkqSOulY\n6Jn5AHDhPMu/AVzaj1CSpO75SlFJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0\nSSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiFWzgce6jnhVJ/5uHvrLFc19JmQ0krg\nGbokFcJCl6RC1C70iFgVEV+IiNur+c0RcXdEHIqImyLijP7FlCR10s0Z+ruBg23zvwF8ODO3AMeB\nq5cymCSpO7UKPSLOAS4Dfr+aD+D1wC3VkL3Azn4ElCTVE5nZeVDELcB/A84Cfhm4CrgrM19erT8X\n+HRmXjDPtuPAOMDw8PC2iYmJrgLOzMwwNDTU1TZNMm9vpo+cWHDd8Jlw9KkBhumReRe2deOann/G\nYo7dUx1f/bR5zaqefs/GxsYOZOZIp3Edn7YYEW8CjmXmgYgYPbl4nqHz/mXIzD3AHoCRkZEcHR2d\nb9iCJicn6XabJpm3N6d6WuLurbNcN71ynmlr3oUdfutozz9jMcduU097vXH76oH8ntX537sEuDwi\n/i3wAuB7gOuBtRFxWmbOAucAD/cvpiSpk46FnpnvBd4LUJ2h/3JmvjUiPglcAUwAu4Db+phTUkFO\n9QKyunyh2bP18jz0XwHeExH3Ay8CbliaSJKkxejqgllmTgKT1fQDwMVLH0mStBi+UlSSCmGhS1Ih\nLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSIVbOe3tqYJbijZMkDZ5n6JJUCAtd\nkgphoUtSISx0SSqEhS5JhbDQJakQFrokFaJjoUfECyLibyLiixFxb0R8oFq+OSLujohDEXFTRJzR\n/7iSpIXUOUP/FvD6zLwQuAjYHhGvBX4D+HBmbgGOA1f3L6YkqZOOhZ4tM9Xs6dVXAq8HbqmW7wV2\n9iWhJKmWyMzOgyJWAQeAlwO/C3wIuCszX16tPxf4dGZeMM+248A4wPDw8LaJiYmuAs7MzDA0NNTV\nNk0qIe/0kRMNpTm14TPh6FNNp6jPvP21kvJuXrOqp14YGxs7kJkjncbVei+XzHwauCgi1gK3Aq+Y\nb9gC2+4B9gCMjIzk6OhonZv8jsnJSbrdpkkl5L1qmb6Xy+6ts1w3vXLefsi8/bWS8t64ffVAeqGr\nZ7lk5mPAJPBaYG1EnNyb5wAPL200SVI36jzL5cXVmTkRcSbwI8BB4E7gimrYLuC2foWUJHVW5/7K\nBmBvdR39ecDNmXl7RNwHTETErwNfAG7oY05JUgcdCz0z/w549TzLHwAu7kcoSVL3fKWoJBXCQpek\nQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqE\nhS5JhbDQJakQFrokFcJCl6RC1PmQ6HMj4s6IOBgR90bEu6vl6yPijog4VH1f1/+4kqSF1DlDnwV2\nZ+YrgNcC74iI84FrgP2ZuQXYX81LkhrSsdAz85HM/Hw1/QRwENgI7AD2VsP2Ajv7FVKS1FlkZv3B\nEZuAvwQuAB7MzLVt645n5rMuu0TEODAOMDw8vG1iYqKrgDMzMwwNDXW1TZNKyDt95ERDaU5t+Ew4\n+lTTKeozb3+tpLyb16zqqRfGxsYOZOZIp3G1Cz0ihoD/DfzXzPxURDxWp9DbjYyM5NTUVK3bO2ly\ncpLR0dGutmlSCXk3XfNnzYTpYPfWWa6bPq3pGLWZt79WUt4bt6/uqRciolah13qWS0ScDvwx8LHM\n/FS1+GhEbKjWbwCOLTasJKl3dZ7lEsANwMHM/M22VfuAXdX0LuC2pY8nSaqrzv2VS4C3AdMRcU+1\n7H3AtcDNEXE18CDw5v5ElCTV0bHQM/OvgFhg9aVLG0eStFi+UlSSCmGhS1IhLHRJKoSFLkmFsNAl\nqRAr42VWz1GDeMXm7q2zXLVMXxkqqTueoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgL\nXZIKYaFLUiEsdEkqhIUuSYWw0CWpEHU+JPqjEXEsIr7Utmx9RNwREYeq7+v6G1OS1EmdM/Qbge1z\nll0D7M/MLcD+al6S1KCOhZ6Zfwk8OmfxDmBvNb0X2LnEuSRJXVrsNfThzHwEoPr+kqWLJElajMjM\nzoMiNgG3Z+YF1fxjmbm2bf3xzJz3OnpEjAPjAMPDw9smJia6CjgzM8PQ0FBX2zRpKfNOHzmxJD/n\nVIbPhKNP9f1mlsRKygrm7beVlHfzmlU99cLY2NiBzBzpNG6xn1h0NCI2ZOYjEbEBOLbQwMzcA+wB\nGBkZydHR0a5uaHJykm63adJS5h3EJwnt3jrLddMr44OrVlJWMG+/raS8N25fPZAeW+wll33Armp6\nF3Db0sSRJC1WnactfgL4a+C8iHgoIq4GrgXeEBGHgDdU85KkBnW8v5KZb1lg1aVLnEWS1ANfKSpJ\nhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBViZbz3ZIM2dfkW\ntru3zg7kbW8laS7P0CWpEBa6JBVixVxy6fbShyQ913iGLkmFsNAlqRAWuiQVwkKXpEL0VOgRsT0i\nvhwR90fENUsVSpLUvUUXekSsAn4XeCNwPvCWiDh/qYJJkrrTyxn6xcD9mflAZn4bmAB2LE0sSVK3\nIjMXt2HEFcD2zPzZav5twA9m5jvnjBsHxqvZ84Avd3lTZwNfX1TIZpi3f1ZSVjBvv62kvL1m/b7M\nfHGnQb28sCjmWfasvw6ZuQfYs+gbiZjKzJHFbj9o5u2flZQVzNtvKynvoLL2csnlIeDctvlzgId7\niyNJWqxeCv1vgS0RsTkizgCuBPYtTSxJUrcWfcklM2cj4p3A/wJWAR/NzHuXLNl3LfpyTUPM2z8r\nKSuYt99WUt6BZF30g6KSpOXFV4pKUiEsdEkqRGOFHhHnRsSdEXEwIu6NiHfPM+atEfF31dfnIuLC\ntnWHI2I6Iu6JiKllknc0Ik5Ume6JiPe3rRvY2yTUzPqf2nJ+KSKejoj11bpB79sXRMTfRMQXq7wf\nmGfM8yPipmr/3R0Rm9rWvbda/uWI+LFlkvc9EXFfdezuj4jva1v3dNu+7/sTCWrmvSoi/rkt18+2\nrdsVEYeqr13LIOuH23L+Q0Q81rZuoPu27XZXRcQXIuL2edYN7tjNzEa+gA3Aa6rps4B/AM6fM+aH\ngXXV9BuBu9vWHQbOXmZ5R4Hb59l2FfAV4PuBM4Avzt120FnnjP93wF80uG8DGKqmTwfuBl47Z8wv\nAB+ppq8Ebqqmz6/25/OBzdV+XrUM8o4BL6ym334ybzU/M6h920Xeq4DfmWfb9cAD1fd11fS6JrPO\nGf8uWk/IaGTftt3ue4CPL/D7P7Bjt7Ez9Mx8JDM/X00/ARwENs4Z87nMPF7N3kXrue6NqJP3FAb6\nNgmLyPoW4BP9ytNJtsxUs6dXX3Mfrd8B7K2mbwEujYiolk9k5rcy86vA/bT2d6N5M/POzPxmNdv0\nsVtn/y7kx4A7MvPR6nfxDmB7H2ICi8ra6LELEBHnAJcBv7/AkIEdu8viGnp1F+TVtP4aL+Rq4NNt\n8wl8NiIOROvtBQamQ94fqu4ufjoiXlkt2wh8rW3MQ9T/Y9CTTvs2Il5I6xf0j9sWD3zfVndZ7wGO\n0SqQuXm/sw8zcxY4AbyIhvZtjbzt5h67L4iIqYi4KyJ29jVopWben6guEd0SESdfNDjw/Vt331aX\nsTYDf9G2eOD7Frge+M/AvyywfmDHbuOFHhFDtMrklzLz8QXGjNH6pfiVtsWXZOZraF2KeUdEvK7v\nYemY9/O03nPhQuC3gT85udk8P6rvzxets29pXW75v5n5aNuyge/bzHw6My+idSZ7cURcMGfIQvuw\nkX1bIy8AEfFTwAjwobbFL8vWy8B/Erg+Iv7VMsj7p8CmzHwV8Od894xy4Pu37r6ldfnilsx8um3Z\nQPdtRLwJOJaZB041bJ5lfTl2Gy30iDidVuF8LDM/tcCYV9G6K7MjM79xcnlmPlx9PwbcSp/vZtfJ\nm5mPn7y7mJn/Ezg9Is6mgbdJqLNvK1cy5y5rE/u27bYfAyZ59t367+zDiDgNWAM8SsNvQXGKvETE\njwD/Bbg8M7/Vts3J/ftAte2rB5G1us1582bmN9oy/h6wrZpubP+eat9WTnXsDmrfXgJcHhGHaV1K\nfX1E/NGcMYM7dnt9MGCxX7T+Ov0BcP0pxryM1nWlH56zfDVwVtv052i982PTeV/Kd1+sdTHwYLXd\nabQeTNrMdx8UfWWTWatxJw+s1Q3v2xcDa6vpM4H/A7xpzph38MwHlm6upl/JMx9YeoD+PyhaJ++r\naT3ItWXO8nXA86vps4FD9PEB8i7ybmib/nHgrmp6PfDVKve6anp9k1mrdefRevA+mty3czKNMv+D\nogM7dnt5t8VeXQK8DZiurpcBvI9WiZOZHwHeT+ta039vPYbAbLbuTg0Dt1bLTgM+npmfWQZ5rwDe\nHhGzwFPAldn6nxvU2yR0kxVav7ifzcwn27ZtYt9uAPZG60NTnkfrgL89Ij4ITGXmPuAG4A8j4n5a\nf4SurP4t90bEzcB9wCzwjnzmXfCm8n4IGAI+We3LBzPzcuAVwP+IiH+ptr02M+9bBnl/MSIup7UP\nH6X1rBcy89GI+DVa790E8MF85uW5JrJC68HQier366Qm9u28mjp2fem/JBWi8QdFJUlLw0KXpEJY\n6JJUCAtdkgphoUtSISx0SSqEhS5Jhfj//anFSVvzILEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.hist(column='gpa', bins=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "31.75" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "percent_admit = sum(df.admit)/len(df.admit)*100\n", + "percent_admit" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[]], dtype=object)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEgVJREFUeJzt3X+QXWddx/H3xxZRu9gWIzs1jaZomLG0I8JOrcOom6mj\npSqBGWDaqbTFjmGwKGpHDeoMKDLWHxGHqmg6hRaNhKJAIhQZiOxUlCopFtIfdkghlrSdRGgbWKho\ny9c/7oku7SZ7c3/szT77fs3s7LnnPuc+3+/u5rNnn3vuTaoKSVK7vmHSBUiSxsugl6TGGfSS1DiD\nXpIaZ9BLUuMMeklqnEEvdZKsT1JJTh7w+Pkkzxx1XdKwBvqBlvRkVTV1ZDvJDcCBqvrNyVUk9XhG\nL0mNM+jVvCRbktyb5EtJ7kry4m7/SUn+MMnnk3wG+IknHDeX5HeS/HO3LPN3Sb4tyfYkX0zy8STr\nF4yvJN+TZDNwKfCrR45bxnalJzHotRrcC/wQcCrwW8BfJTkD+FngJ4HvB2aAlyxy7MXAy4G1wHcD\nHwPeBjwduBt43RMPqKptwHbg96tqqqp+atQNScfDoFfzqupdVfVAVX2tqt4JfBo4D3gZ8MdV9bmq\negj43UUOf1tV3VtVh4EPAPdW1Yer6jHgXfR+SUgnNINezUtyWZLbkzyS5BHgHGAN8B3A5xYM/Y9F\nDj+4YPvRRW5PIZ3gvOpGTUvyXcB1wAXAx6rq8SS3AwEeBNYtGP6dI5zat4XVCcMzerXuFHqh+58A\nSV5B74we4CbgF5KcmeR0YMsI5z0IeE29TggGvZpWVXcBW+k9iXoQOBf4p+7u64APAp8EPgG8e4RT\nXw+c3S0XvXeEjysdt/gfj0hS2zyjl6TGGfSS1DiDXpIaZ9BLUuNOiOvo16xZU+vXrx/o2C9/+cuc\ncsopoy3oBGfPq4M9rw7D9Hzbbbd9vqq+falxJ0TQr1+/nj179gx07NzcHLOzs6Mt6ARnz6uDPa8O\nw/ScZLFXcz+JSzeS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktS4E+KVscPY\ne/9hrtjy/onMvf+an5jIvJJ0PDyjl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXO\noJekxhn0ktQ4g16SGmfQS1LjDHpJatySQZ9kXZKPJLk7yZ1JXtPtf32S+5Pc3n1ctOCY1ybZl+Se\nJD8+zgYkScfWz9sUPwZcXVWfSPI04LYkH+rue1NV/eHCwUnOBi4Gng18B/DhJM+qqsdHWbgkqT9L\nntFX1YNV9Ylu+0vA3cDaYxyyCdhRVV+tqs8C+4DzRlGsJOn4par6H5ysB24BzgF+GbgC+CKwh95Z\n/8NJ/gS4tar+qjvmeuADVfU3T3iszcBmgOnp6eft2LFjoAYOPXSYg48OdOjQzl176kTmnZ+fZ2pq\naiJzT4o9rw72fHw2btx4W1XNLDWu7/9hKskU8LfAL1bVF5O8BXgDUN3nrcDPAFnk8Cf9NqmqbcA2\ngJmZmZqdne23lK9z7fadbN07mf8oa/+lsxOZd25ujkG/XiuVPa8O9jwefV11k+Qp9EJ+e1W9G6Cq\nDlbV41X1NeA6/n955gCwbsHhZwIPjK5kSdLx6OeqmwDXA3dX1R8t2H/GgmEvBu7otncBFyd5apKz\ngA3Av46uZEnS8ehnzeP5wMuBvUlu7/b9OnBJkufQW5bZD7wSoKruTHITcBe9K3au8oobSZqcJYO+\nqj7K4uvuNx/jmDcCbxyiLknSiPjKWElqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1Lj\nDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6g\nl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxi0Z9EnWJflIkruT3JnkNd3+\npyf5UJJPd59P7/YnyZuT7EvyqSTPHXcTkqSj6+eM/jHg6qr6XuB84KokZwNbgN1VtQHY3d0GeAGw\nofvYDLxl5FVLkvq2ZNBX1YNV9Ylu+0vA3cBaYBNwYzfsRuBF3fYm4O3VcytwWpIzRl65JKkvqar+\nByfrgVuAc4D7quq0Bfc9XFWnJ3kfcE1VfbTbvxv4tara84TH2kzvjJ/p6enn7dixY6AGDj10mIOP\nDnTo0M5de+pE5p2fn2dqamoic0+KPa8O9nx8Nm7ceFtVzSw17uR+HzDJFPC3wC9W1ReTHHXoIvue\n9NukqrYB2wBmZmZqdna231K+zrXbd7J1b99tjNT+S2cnMu/c3ByDfr1WKnteHex5PPq66ibJU+iF\n/Paqene3++CRJZnu86Fu/wFg3YLDzwQeGE25kqTj1c9VNwGuB+6uqj9acNcu4PJu+3Jg54L9l3VX\n35wPHK6qB0dYsyTpOPSz5vF84OXA3iS3d/t+HbgGuCnJlcB9wEu7+24GLgL2AV8BXjHSiiVJx2XJ\noO+eVD3agvwFi4wv4Koh65IkjYivjJWkxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1\nzqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMM\neklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJatySQZ/krUkOJbljwb7XJ7k/\nye3dx0UL7nttkn1J7kny4+MqXJLUn37O6G8ALlxk/5uq6jndx80ASc4GLgae3R3zZ0lOGlWxkqTj\nt2TQV9UtwEN9Pt4mYEdVfbWqPgvsA84boj5J0pBOHuLYVye5DNgDXF1VDwNrgVsXjDnQ7XuSJJuB\nzQDT09PMzc0NVMT0N8PV5z420LHDGrTmYc3Pz09s7kmx59XBnsdj0KB/C/AGoLrPW4GfAbLI2Frs\nAapqG7ANYGZmpmZnZwcq5NrtO9m6d5jfV4Pbf+nsROadm5tj0K/XSmXPq4M9j8dAV91U1cGqeryq\nvgZcx/8vzxwA1i0YeibwwHAlSpKGMVDQJzljwc0XA0euyNkFXJzkqUnOAjYA/zpciZKkYSy55pHk\nHcAssCbJAeB1wGyS59BbltkPvBKgqu5MchNwF/AYcFVVPT6e0iVJ/Vgy6KvqkkV2X3+M8W8E3jhM\nUZKk0fGVsZLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMm\n80buknQCWb/l/ROb+4YLTxn7HJ7RS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn\n0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuOWDPokb01yKMkdC/Y9PcmH\nkny6+3x6tz9J3pxkX5JPJXnuOIuXJC2tnzP6G4ALn7BvC7C7qjYAu7vbAC8ANnQfm4G3jKZMSdKg\nlgz6qroFeOgJuzcBN3bbNwIvWrD/7dVzK3BakjNGVawk6filqpYelKwH3ldV53S3H6mq0xbc/3BV\nnZ7kfcA1VfXRbv9u4Neqas8ij7mZ3lk/09PTz9uxY8dADRx66DAHHx3o0KGdu/bUicw7Pz/P1NTU\nROaeFHteHSbV8977Dy/7nEecdepJA/e8cePG26pqZqlxJw/06EeXRfYt+pukqrYB2wBmZmZqdnZ2\noAmv3b6TrXtH3UZ/9l86O5F55+bmGPTrtVLZ8+owqZ6v2PL+ZZ/ziBsuPGXsPQ961c3BI0sy3edD\n3f4DwLoF484EHhi8PEnSsAYN+l3A5d325cDOBfsv666+OR84XFUPDlmjJGkIS655JHkHMAusSXIA\neB1wDXBTkiuB+4CXdsNvBi4C9gFfAV4xhpolScdhyaCvqkuOctcFi4wt4Kphi5IkjY6vjJWkxhn0\nktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9J\njTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4\ng16SGmfQS1LjDHpJatzJwxycZD/wJeBx4LGqmknydOCdwHpgP/Cyqnp4uDIlSYMaxRn9xqp6TlXN\ndLe3ALuragOwu7stSZqQcSzdbAJu7LZvBF40hjkkSX1KVQ1+cPJZ4GGggL+oqm1JHqmq0xaMebiq\nTl/k2M3AZoDp6enn7dixY6AaDj10mIOPDnTo0M5de+pE5p2fn2dqamoic0+KPa8Ok+p57/2Hl33O\nI8469aSBe964ceNtC1ZTjmqoNXrg+VX1QJJnAB9K8u/9HlhV24BtADMzMzU7OztQAddu38nWvcO2\nMZj9l85OZN65uTkG/XqtVPa8Okyq5yu2vH/Z5zzihgtPGXvPQy3dVNUD3edDwHuA84CDSc4A6D4f\nGrZISdLgBg76JKckedqRbeDHgDuAXcDl3bDLgZ3DFilJGtwwax7TwHuSHHmcv66qv0/yceCmJFcC\n9wEvHb5MSdKgBg76qvoM8H2L7P8CcMEwRUmSRsdXxkpS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TG\nGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxB\nL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNW5sQZ/kwiT3\nJNmXZMu45pEkHdtYgj7JScCfAi8AzgYuSXL2OOaSJB3buM7ozwP2VdVnquq/gR3ApjHNJUk6hpPH\n9Lhrgc8tuH0A+IGFA5JsBjZ3N+eT3DPgXGuAzw947FDye5OYFZhgzxNkz6vDqut54+8N1fN39TNo\nXEGfRfbV192o2gZsG3qiZE9VzQz7OCuJPa8O9rw6LEfP41q6OQCsW3D7TOCBMc0lSTqGcQX9x4EN\nSc5K8o3AxcCuMc0lSTqGsSzdVNVjSV4NfBA4CXhrVd05jrkYwfLPCmTPq4M9rw5j7zlVtfQoSdKK\n5StjJalxBr0kNW7FBP1Sb6mQ5KlJ3tnd/y9J1i9/laPVR8+/nOSuJJ9KsjtJX9fUnsj6feuMJC9J\nUklW/KV4/fSc5GXd9/rOJH+93DWOWh8/29+Z5CNJ/q37+b5oEnWOSpK3JjmU5I6j3J8kb+6+Hp9K\n8tyRFlBVJ/wHvSd07wWeCXwj8Eng7CeM+Tngz7vti4F3TrruZeh5I/At3farVkPP3binAbcAtwIz\nk657Gb7PG4B/A07vbj9j0nUvQ8/bgFd122cD+ydd95A9/zDwXOCOo9x/EfABeq9BOh/4l1HOv1LO\n6Pt5S4VNwI3d9t8AFyRZ7IVbK8WSPVfVR6rqK93NW+m9XmEl6/etM94A/D7wX8tZ3Jj00/PPAn9a\nVQ8DVNWhZa5x1PrpuYBv7bZPZYW/DqeqbgEeOsaQTcDbq+dW4LQkZ4xq/pUS9Iu9pcLao42pqseA\nw8C3LUt149FPzwtdSe+MYCVbsuck3w+sq6r3LWdhY9TP9/lZwLOS/FOSW5NcuGzVjUc/Pb8e+Okk\nB4CbgZ9fntIm5nj/vR+Xcb0Fwqgt+ZYKfY5ZSfruJ8lPAzPAj4y1ovE7Zs9JvgF4E3DFchW0DPr5\nPp9Mb/lmlt5fbf+Y5JyqemTMtY1LPz1fAtxQVVuT/CDwl13PXxt/eRMx1vxaKWf0/bylwv+NSXIy\nvT/3jvWn0omur7eRSPKjwG8AL6yqry5TbeOyVM9PA84B5pLsp7eWuWuFPyHb78/2zqr6n6r6LHAP\nveBfqfrp+UrgJoCq+hjwTfTe8KxVY33bmJUS9P28pcIu4PJu+yXAP1T3LMcKtWTP3TLGX9AL+ZW+\nbgtL9FxVh6tqTVWtr6r19J6XeGFV7ZlMuSPRz8/2e+k98U6SNfSWcj6zrFWOVj893wdcAJDke+kF\n/X8ua5XLaxdwWXf1zfnA4ap6cFQPviKWbuoob6mQ5LeBPVW1C7ie3p93++idyV88uYqH12fPfwBM\nAe/qnne+r6peOLGih9Rnz03ps+cPAj+W5C7gceBXquoLk6t6OH32fDVwXZJforeEccVKPnFL8g56\nS29ruucdXgc8BaCq/pze8xAXAfuArwCvGOn8K/hrJ0nqw0pZupEkDcigl6TGGfSS1DiDXpIaZ9BL\nUuMMeklqnEEvSY37X5O7ULSpRpRuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.hist(column='admit', bins=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "y=df.admit\n", + "X=df[['gpa', 'gre', 'rank']]" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "model = LogisticRegression().fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.75757575757575757" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.score(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AccuracyCombos
00.682570gpa
10.682570gre
20.659994rank
30.682570gpa, gre
40.717079gpa, rank
50.699762gre, rank
60.702073gpa, gre, rank
\n", + "
" + ], + "text/plain": [ + " Accuracy Combos\n", + "0 0.682570 gpa\n", + "1 0.682570 gre\n", + "2 0.659994 rank\n", + "3 0.682570 gpa, gre\n", + "4 0.717079 gpa, rank\n", + "5 0.699762 gre, rank\n", + "6 0.702073 gpa, gre, rank" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from itertools import combinations\n", + "rows = []\n", + "for i in range(1,5):\n", + " combos = list(combinations(['gpa', 'gre', 'rank'],i))\n", + " for j,com in enumerate(combos):\n", + " y = df.admit\n", + " X = pd.DataFrame(df, columns=com)\n", + " # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, shuffle=True, random_state=22)\n", + " model = LogisticRegression(fit_intercept = True)\n", + " accuracy = cross_val_score(model, X, y, cv=10, scoring='accuracy').mean()\n", + " s = ', '.join(com)\n", + " rows.append({'Accuracy':accuracy, 'Combos':s})\n", + " # print('score:', score, 'columns:', s)\n", + "df1 = pd.DataFrame(rows)\n", + "df1.head(10) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The accuracy for this model is .717079, using gpa and rank in the model to predict admit." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CombosPrecision
0gpa0.000000
1gre0.000000
2rank0.153333
3gpa, gre0.000000
4gpa, rank0.623333
5gre, rank0.543333
6gpa, gre, rank0.558333
\n", + "
" + ], + "text/plain": [ + " Combos Precision\n", + "0 gpa 0.000000\n", + "1 gre 0.000000\n", + "2 rank 0.153333\n", + "3 gpa, gre 0.000000\n", + "4 gpa, rank 0.623333\n", + "5 gre, rank 0.543333\n", + "6 gpa, gre, rank 0.558333" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from itertools import combinations\n", + "rows = []\n", + "for i in range(1,5):\n", + " combos = list(combinations(['gpa', 'gre', 'rank'],i))\n", + " for j,com in enumerate(combos):\n", + " y = df.admit\n", + " X = pd.DataFrame(df, columns=com)\n", + " # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, shuffle=True, random_state=22)\n", + " model = LogisticRegression(fit_intercept = True)\n", + " precision = cross_val_score(model, X, y, cv=10, scoring='precision').mean()\n", + " s = ', '.join(com)\n", + " rows.append({'Precision':precision, 'Combos':s})\n", + " # print('score:', score, 'columns:', s)\n", + "df1 = pd.DataFrame(rows)\n", + "df1.head(10) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The precision score for gpa and rank to predict admit is .62333" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/golf.csv b/golf.csv new file mode 100644 index 0000000..7ac26d7 --- /dev/null +++ b/golf.csv @@ -0,0 +1,15 @@ +Outlook,Temperature,Humidity,Windy,Result +sunny,85,85,FALSE,Don't Play +sunny,80,90,TRUE,Don't Play +overcast,83,78,FALSE,Play +rain,70,96,FALSE,Play +rain,68,80,FALSE,Play +rain,65,70,TRUE,Don't Play +overcast,64,65,TRUE,Play +sunny,72,95,FALSE,Don't Play +sunny,69,70,FALSE,Play +rain,75,80,FALSE,Play +sunny,75,70,TRUE,Play +overcast,72,90,TRUE,Play +overcast,81,75,FALSE,Play +rain,71,80,TRUE,Don't Play diff --git a/grad_mh.ipynb b/grad_mh.ipynb new file mode 100644 index 0000000..44c666e --- /dev/null +++ b/grad_mh.ipynb @@ -0,0 +1,820 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import confusion_matrix\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.model_selection import cross_val_score\n", + "from pandas.plotting import scatter_matrix\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
admitgregparank
003803.613
116603.673
218004.001
316403.194
405202.934
\n", + "
" + ], + "text/plain": [ + " admit gre gpa rank\n", + "0 0 380 3.61 3\n", + "1 1 660 3.67 3\n", + "2 1 800 4.00 1\n", + "3 1 640 3.19 4\n", + "4 0 520 2.93 4" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv('grad.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
admit400.00.31750.4660870.000.000.0001.001.0
gre400.0587.7000115.516536220.00520.00580.000660.00800.0
gpa400.03.38990.3805672.263.133.3953.674.0
rank400.02.48500.9444601.002.002.0003.004.0
\n", + "
" + ], + "text/plain": [ + " count mean std min 25% 50% 75% max\n", + "admit 400.0 0.3175 0.466087 0.00 0.00 0.000 1.00 1.0\n", + "gre 400.0 587.7000 115.516536 220.00 520.00 580.000 660.00 800.0\n", + "gpa 400.0 3.3899 0.380567 2.26 3.13 3.395 3.67 4.0\n", + "rank 400.0 2.4850 0.944460 1.00 2.00 2.000 3.00 4.0" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe().T" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "table = pd.crosstab(index=df['admit'], columns=df['rank'])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rank1234
admit
028979355
133542812
\n", + "
" + ], + "text/plain": [ + "rank 1 2 3 4\n", + "admit \n", + "0 28 97 93 55\n", + "1 33 54 28 12" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEGCAYAAABrQF4qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEY9JREFUeJzt3WuMXdV5h/HnxQZMMGDwBbkeyLgtKgM4YHsUnGJRC4Ia\nAwLETSASDBhZCkkDpVFD+8WgSglJTQsSVRQnJHFJxKUQgTHBVTCXqrSBGEx9YSAgmMIBA4PDtcHE\nl7cf5kAmZozH5+zjM17z/CRrZu+z9lrvoOE/a9ZZe09kJpKkcu3R7gIkSa1l0EtS4Qx6SSqcQS9J\nhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKN7rdBQBMmDAhOzs7212GJO1WHn/88Tcyc+KO2u0w6CPi\nh8CpwOuZeVT93EHAbUAn0Aucm5lvRkQANwAnA78FLsrMJ3Y0RmdnJytXrtxRM0nSABHxv0NpN5Sl\nmx8DX9jm3FXAisw8DFhRPwaYCxxW/7cA+O5QipAktc4Ogz4z/wP4zTanTweW1D9fApwx4Py/Zr9f\nAuMiYnJVxUqSdl6jb8YenJnrAeofJ9XPTwFeGtCuVj/3MRGxICJWRsTKvr6+BsuQJO1I1W/GxiDn\nBn0OcmYuBhYDdHd3+6xkSW2xadMmarUaGzdubHcp2zVmzBg6OjrYc889G7q+0aB/LSImZ+b6+tLM\n6/XzNeCQAe06gFcaHEOSWq5Wq7HffvvR2dlJ/36S4SUz2bBhA7VajalTpzbUR6NLN0uBefXP5wF3\nDzh/YfSbBbz94RKPJA1HGzduZPz48cMy5AEigvHjxzf1G8dQtlfeAswBJkREDVgIXAvcHhHzgReB\nc+rNf07/1srn6N9eeXHDlUnSLjJcQ/5Dzda3w6DPzPO389KJg7RN4CtNVSRJqtSwuDN2RLv6gBb0\n+Xb1fUpqytVXX83YsWP5+te/vsvH9lk3krSTMpOtW7e2u4whM+glaQh6e3vp6urisssuY8aMGcyf\nP5/u7m6OPPJIFi5c+FG7zs5OFi5cyIwZM5g2bRpPP/30x/r6/ve/z9y5c3n//fd3Se0GvSQN0TPP\nPMOFF17IqlWruO6661i5ciWrV6/m4YcfZvXq1R+1mzBhAk888QRf/vKXWbRo0R/0ceONN3LPPfdw\n1113sc8+++ySug16SRqiT3/608yaNQuA22+/nRkzZjB9+nTWrVvHU0899VG7M888E4CZM2fS29v7\n0fmbb76Z++67jzvvvJO99957l9Vt0EvSEO27774AvPDCCyxatIgVK1awevVqTjnllD/Y5/5hiI8a\nNYrNmzd/dP6oo46it7eXWq22S+s26CVpJ73zzjvsu+++HHDAAbz22mvcd999Q7pu+vTpfO973+O0\n007jlVd23UMDDHpJ2klHH30006dP58gjj+SSSy7huOOOG/K1s2fPZtGiRZxyyim88cYbLazy96L/\nHqf26u7uzhH7h0fcRy+1VU9PD11dXe0uY4cGqzMiHs/M7h1d6w1TBZq2ZFrlfa6Zt6byPiXtGi7d\nSFLhDHpJKpxBL0mFM+glqXAGvSQVzl03kjRA51X3Vtpf77Wn7LDNJZdcwrJly5g0aRJr166tdHxw\nRi9JbXfRRRexfPnylvVv0EtSmx1//PEcdNBBLevfoJekwhn0klQ4g16SCmfQS1Lh3F4pSQMMZTtk\n1c4//3weeugh3njjDTo6OrjmmmuYP39+Zf0b9JLUZrfccktL+3fpRpIKZ9BLUuEMekkqnEEvSYUz\n6CWpcAa9JBXO7ZWSNNDVB1Tc39uf+PJLL73EhRdeyKuvvsoee+zBggULuPzyyystwaCXpDYaPXo0\n1113HTNmzODdd99l5syZnHTSSRxxxBGVjeHSjSS10eTJk5kxYwYA++23H11dXbz88suVjtFU0EfE\nX0fEuohYGxG3RMSYiJgaEY9GxLMRcVtE7FVVsZJUst7eXlatWsWxxx5bab8NB31ETAG+BnRn5lHA\nKOA84NvAP2fmYcCbQHUPbJCkQr333nucddZZXH/99ey///6V9t3s0s1oYJ+IGA18ClgPnADcUX99\nCXBGk2NIUtE2bdrEWWedxQUXXMCZZ55Zef8NB31mvgwsAl6kP+DfBh4H3srMzfVmNWBKs0VKUqky\nk/nz59PV1cWVV17ZkjEa3nUTEQcCpwNTgbeAfwPmDtI0t3P9AmABwKGHHtpoGZJUrR1sh6zaI488\nws0338y0adM45phjAPjmN7/JySefXNkYzWyv/DzwQmb2AUTEz4A/B8ZFxOj6rL4DeGWwizNzMbAY\noLu7e9AfBpJUutmzZ5PZ2ghsZo3+RWBWRHwqIgI4EXgKeBA4u95mHnB3cyVKkprRzBr9o/S/6foE\nsKbe12LgG8CVEfEcMB64qYI6JUkNaurO2MxcCCzc5vTzwGeb6VeSVB3vjJWkwhn0klQ4g16SCufT\nKyVpgGlLplXa35p5az7x9Y0bN3L88cfzwQcfsHnzZs4++2yuueaaSmsw6CWpjfbee28eeOABxo4d\ny6ZNm5g9ezZz585l1qxZlY3h0o0ktVFEMHbsWKD/mTebNm2i/9ak6hj0ktRmW7Zs4ZhjjmHSpEmc\ndNJJw+cxxZKkaowaNYonn3ySWq3GY489xtq1ayvt36CXpGFi3LhxzJkzh+XLl1far0EvSW3U19fH\nW2+9BcD777/P/fffz+GHH17pGO66kaQBdrQdsmrr169n3rx5bNmyha1bt3Luuedy6qmnVjqGQS9J\nbfSZz3yGVatWtXQMl24kqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4dxeKUkD9BzeVWl/XU/3DKnd\nli1b6O7uZsqUKSxbtqzSGpzRS9IwcMMNN9DVVe0PmQ8Z9JLUZrVajXvvvZdLL720Jf0b9JLUZldc\ncQXf+c532GOP1kSyQS9JbbRs2TImTZrEzJkzWzaGQS9JbfTII4+wdOlSOjs7Oe+883jggQf44he/\nWOkYBr0ktdG3vvUtarUavb293HrrrZxwwgn85Cc/qXQMt1dK0gBD3Q65OzHoJWmYmDNnDnPmzKm8\nX5duJKlwBr0kFc6glzTiZWa7S/hEzdZn0Esa0caMGcOGDRuGbdhnJhs2bGDMmDEN9+GbsZJGtI6O\nDmq1Gn19fe0uZbvGjBlDR0dHw9cb9JJGtD333JOpU6e2u4yWculGkgrXVNBHxLiIuCMino6Inoj4\nXEQcFBG/iIhn6x8PrKpYSdLOa3ZGfwOwPDMPB44GeoCrgBWZeRiwon4sSWqThoM+IvYHjgduAsjM\n32XmW8DpwJJ6syXAGc0WKUlqXDMz+j8G+oAfRcSqiPhBROwLHJyZ6wHqHycNdnFELIiIlRGxcji/\n2y1Ju7tmgn40MAP4bmZOB/6PnVimyczFmdmdmd0TJ05sogxJ0idpJuhrQC0zH60f30F/8L8WEZMB\n6h9fb65ESVIzGg76zHwVeCki/qx+6kTgKWApMK9+bh5wd1MVSpKa0uwNU38F/DQi9gKeBy6m/4fH\n7RExH3gROKfJMSRJTWgq6DPzSaB7kJdObKZfSVJ1vDNWkgpn0EtS4Qx6SSqcQS9JhTPoJalwPo9e\nQ9JzeFflfXY93VN5n5I+zhm9JBXOGb2kwV19QAv6fLv6PrVDzuglqXAGvSQVzqCXpMIZ9JJUOINe\nkgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWp\ncAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVrumgj4hREbEqIpbVj6dG\nxKMR8WxE3BYRezVfpiSpUVXM6C8HegYcfxv458w8DHgTmF/BGJKkBjUV9BHRAZwC/KB+HMAJwB31\nJkuAM5oZQ5LUnGZn9NcDfwtsrR+PB97KzM314xowZbALI2JBRKyMiJV9fX1NliFJ2p6Ggz4iTgVe\nz8zHB54epGkOdn1mLs7M7szsnjhxYqNlSJJ2YHQT1x4HnBYRJwNjgP3pn+GPi4jR9Vl9B/BK82VK\nkhrV8Iw+M/8uMzsysxM4D3ggMy8AHgTOrjebB9zddJWSpIa1Yh/9N4ArI+I5+tfsb2rBGJKkIWpm\n6eYjmfkQ8FD98+eBz1bRrySped4ZK0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqc\nQS9JhavkzlhJ7dV51b2V99k7pvIu1SbO6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxB\nL0mFM+glqXAGvSQVzkcg7ARvM5eaM23JtMr7XDNvTeV9lsYZvSQVzqCXpMIZ9JJUOINekgpn0EtS\n4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIK13DQR8QhEfFgRPRExLqIuLx+/qCI+EVE\nPFv/eGB15UqSdlYzM/rNwN9kZhcwC/hKRBwBXAWsyMzDgBX1Y0lSmzQc9Jm5PjOfqH/+LtADTAFO\nB5bUmy0Bzmi2SElS4ypZo4+ITmA68ChwcGauh/4fBsCkKsaQJDWm6aCPiLHAncAVmfnOTly3ICJW\nRsTKvr6+ZsuQJG1HU0EfEXvSH/I/zcyf1U+/FhGT669PBl4f7NrMXJyZ3ZnZPXHixGbKkCR9gmZ2\n3QRwE9CTmf804KWlwLz65/OAuxsvT5LUrGb+ZuxxwJeANRHxZP3c3wPXArdHxHzgReCc5kqUJDWj\n4aDPzP8EYjsvn9hov5KkanlnrCQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0k\nFc6gl6TCGfSSVDiDXpIK18zTKyWp7XoO76q8z66neyrvs52c0UtS4Qx6SSqcQS9JhTPoJalwBr0k\nFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1Lh\nDHpJKpxBL0mFM+glqXAGvSQVriVBHxFfiIhnIuK5iLiqFWNIkoam8qCPiFHAvwBzgSOA8yPiiKrH\nkSQNTStm9J8FnsvM5zPzd8CtwOktGEeSNASjW9DnFOClAcc14NhtG0XEAmBB/fC9iHimBbUMe9GS\nXtdOAN6osseW/EoWrfnqVQ2/N3cLnx5Ko1YE/WD/hfJjJzIXA4tbMP6IFxErM7O73XVI2/J7sz1a\nsXRTAw4ZcNwBvNKCcSRJQ9CKoP8VcFhETI2IvYDzgKUtGEeSNASVL91k5uaI+Crw78Ao4IeZua7q\ncfSJXBLTcOX3ZhtE5seWzyVJBfHOWEkqnEEvSYUz6CWpcK3YR69dKCIOp//O4yn036/wCrA0M3va\nWpikYcMZ/W4sIr5B/yMmAniM/q2tAdziw+QkfchdN7uxiPg1cGRmbtrm/F7Ausw8rD2VSZ8sIi7O\nzB+1u46Rwhn97m0r8EeDnJ9cf00arq5pdwEjiWv0u7crgBUR8Sy/f5DcocCfAl9tW1USEBGrt/cS\ncPCurGWkc+lmNxcRe9D/aOgp9P8PVAN+lZlb2lqYRryIeA34S+DNbV8C/iszB/ttVC3gjH43l5lb\ngV+2uw5pEMuAsZn55LYvRMRDu76ckcsZvSQVzjdjJalwBr0kFc6glwaIiIsi4sadvObnETGu/u+y\nVtUmNcqgl5qUmSdn5lvAOMCg17Bj0GtEiYi7IuLxiFhX/wP1RMTFEfHriHgYOG5A2x9HxHcj4sGI\neD4i/iIifhgRPRHx4wHteiNiAnAt8CcR8WRE/OOu/tqk7XF7pUaaSzLzNxGxD/CriLiX/rs0ZwJv\nAw8Cqwa0PxA4ATgNuIf+HwSX1q89Zputg1cBR2XmMbvg65CGzBm9RpqvRcT/0H/vwSHAl4CHMrMv\nM38H3LZN+3uyfw/yGuC1zFxTv3dhHdC5C+uWGmbQa8SIiDnA54HPZebR9M/cn6b/8c7b80H949YB\nn3947G/E2i0Y9BpJDgDezMzf1p/jPwvYB5gTEeMjYk/gnCb6fxfYr4I6pUoZ9BpJlgOj6w/b+gf6\nl2/WA1cD/w3cDzzRaOeZuQF4JCLW+mashhMfgSBJhXNGL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINe\nkgpn0EtS4f4fGl8qtI7Ba0kAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "table.plot(kind=\"bar\")" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[]], dtype=object)" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFidJREFUeJzt3X+Q5HWd3/Hn60B02VEWUOdWoFwsKU7jKsIU4pm6zIBe\n8EcJucIUlrksKe42P06D56Yil1TFWHVWMAnneXVXpxtRtlIeA3IYKK78Qa1MrpKc6+0quiCaReSQ\nBRf1WHQ8oq73zh/zXW92HbZ7pqdnpj/7fFRNdX8/309Pv9+73a/p+Uz395uqQpI0+n5htQuQJC0P\nA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6NI8SU5c7RqkpTLQdVxIcn6SLyX5QZJP\nJLk5ye8mmUzySJJ3J/k28LFu/puS3JPkYJL/k+Tlq9yC1JOBruYlOQn4JHAjcBpwE/CP5k35xW78\nhcDWJOcDHwX+OXA68GHgjiTPXMGypUUz0HU8uAg4EfiDqvpJVd0GfGHe/r8F3lNVP6qqp4DfBD5c\nVbuq6qdVtQP4Ufd9pDXLQNfx4AXA/jrySHTfmnf9O1X1/+ZtvxDY1i23HExyEDir+z7SmmWg63jw\nGHBGkswbO2ve9aMPOfot4H1VtWHe18lVddPQK5UGYKDrePAXwE+Btyc5McllwIXHmP/fgH+R5FWZ\nsz7JG5M8e0WqlZbIQFfzqurHwK8BVwMHgX8C3MncuvhC83czt47+h8ATwAPAVStRqzSIeIILHY+S\n7AI+VFUfW+1apOXiK3QdF5L8gyS/2C25bAFeDnx6teuSlpOfitPx4lzgFmAM+AZwRVU9trolScvL\nJRdJaoRLLpLUiBVdcnnuc59bmzZtOmLshz/8IevXr1/JMoaqtX6gvZ7sZ+1rradB+9mzZ893q+p5\nveataKBv2rSJ3bt3HzE2MzPD5OTkSpYxVK31A+31ZD9rX2s9DdpPkr/qZ55LLpLUCANdkhphoEtS\nIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AiPtiitsk3X/tlAt9+2+RBXLeF7PHTdGwe6X609\nvkKXpEb0FehJfjvJfUnuTXJTkmclOTvJriT7ktyc5KRhFytJeno9Az3JGcC/Biaq6mXACcCVwPuB\nD1TVOcydd/HqYRYqSTq2fpdcTgTWJTkROBl4DLgYuLXbvwO4fPnLkyT1q68zFiW5Bngf8BTwWeAa\n4PNV9eJu/1nAp7pX8EffdiuwFWB8fPyC6enpI/bPzs4yNjY2YBtrR2v9QHs9rbV+9u5/cqDbj6+D\nA08t/nabzzhloPsdprX2fzSoQfuZmpraU1UTveb1fJdLklOBy4CzgYPAJ4DXLzB1wZ8MVbUd2A4w\nMTFRRx8T2OMer32t9bTW+lnKO1Tm27b5ENfvXfwb1h562+RA9ztMa+3/aFAr1U8/Sy6vBb5ZVd+p\nqp8AtwG/DGzolmAAzgQeHVKNkqQ+9BPoDwMXJTk5SYBLgK8CdwNXdHO2ALcPp0RJUj96BnpV7WLu\nj59fBPZ2t9kOvBt4V5IHgNOBG4ZYpySph74W3qrqPcB7jhp+ELhw2SuSJC2JnxSVpEYY6JLUCANd\nkhphoEtSIwx0SWqEgS5JjfAEFxKDn2RCWgt8hS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBL\nUiMMdElqhIEuSY3oGehJzk1yz7yv7yd5Z5LTktyVZF93eepKFCxJWlg/p6D7elWdV1XnARcAfwN8\nErgW2FlV5wA7u21J0ipZ7JLLJcA3quqvgMuAHd34DuDy5SxMkrQ4qar+JycfBb5YVX+Y5GBVbZi3\n74mq+rlllyRbga0A4+PjF0xPTx+xf3Z2lrGxsaXWv+a01g+019NC/ezd/+QqVTO48XVw4KnF327z\nGacsfzHL5Hh4zC3G1NTUnqqa6DWv70BPchLwKPD3qupAv4E+38TERO3evfuIsZmZGSYnJ/uqYRS0\n1g+019NC/Yzy0Ra3bT7E9XsXf+DUh6574xCqWR7Hw2NuMZL0FeiLWXJ5PXOvzg902weSbOzubCPw\n+OLLlCQtl8UE+luBm+Zt3wFs6a5vAW5frqIkSYvXV6AnORl4HXDbvOHrgNcl2dftu275y5Mk9auv\nhbeq+hvg9KPGvsfcu14kSWuAnxSVpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRiz8AhKQm\nrObxa9bycWRGma/QJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY3o94xFG5LcmuRr\nSe5P8uokpyW5K8m+7vKYJ4iWJA1Xv6/QPwh8uqp+CXgFcD9wLbCzqs4BdnbbkqRV0jPQkzwH+BXg\nBoCq+nFVHQQuA3Z003YAlw+rSElSb6mqY09IzgO2A19l7tX5HuAaYH9VbZg374mq+rlllyRbga0A\n4+PjF0xPTx+xf3Z2lrGxsQHbWDta6wfa62mhfvbuf3KVqhnc+Do48NRqV7E4m8845Zj7j4fH3GJM\nTU3tqaqJXvP6CfQJ4PPAa6pqV5IPAt8H3tFPoM83MTFRu3fvPmJsZmaGycnJXnWOjNb6gfZ6Wqif\n1TxQ1aC2bT7E9XtH6zh7vQ7OdTw85hYjSV+B3s8a+iPAI1W1q9u+FTgfOJBkY3dnG4HHl1qsJGlw\nPQO9qr4NfCvJud3QJcwtv9wBbOnGtgC3D6VCSVJf+v097R3Ax5OcBDwI/DPmfhjckuRq4GHgLcMp\nUZLUj74CvaruARZav7lkecuRJC2VnxSVpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrok\nNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDWirxNcJHkI+AHwU+BQVU0kOQ24\nGdgEPAT846p6YjhlSpJ6Wcypwqeq6rvztq8FdlbVdUmu7bbfvazV6biz6do/G/p9bNt8iKtW4H6k\nlTbIkstlwI7u+g7g8sHLkSQtVb+BXsBnk+xJsrUbG6+qxwC6y+cPo0BJUn9SVb0nJS+oqkeTPB+4\nC3gHcEdVbZg354mqOnWB224FtgKMj49fMD09fcT+2dlZxsbGButiDWmtH1jZnvbuf3Lo9zG+Dg48\nNfS7WTGj2M/mM0455v7WnkeD9jM1NbWnqiZ6zesr0I+4QfIfgVngN4HJqnosyUZgpqrOPdZtJyYm\navfu3UeMzczMMDk5uaga1rLW+oGV7Wml1tCv37uYPx+tbaPYz0PXvfGY+1t7Hg3aT5K+Ar3nkkuS\n9Umeffg68KvAvcAdwJZu2hbg9iVXK0kaWD8/1seBTyY5PP9PqurTSf4SuCXJ1cDDwFuGV6YkqZee\ngV5VDwKvWGD8e8AlwyhKkrR4flJUkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgD\nXZIaYaBLUiNG6xBtkprQ66iawzqrVK+jPI46X6FLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRvQd\n6ElOSPKlJHd222cn2ZVkX5Kbk5w0vDIlSb0s5hX6NcD987bfD3ygqs4BngCuXs7CJEmL01egJzkT\neCPwkW47wMXArd2UHcDlwyhQktSfVFXvScmtwH8Cng38G+Aq4PNV9eJu/1nAp6rqZQvcdiuwFWB8\nfPyC6enpI/bPzs4yNjY2WBdrSGv9wMr2tHf/k0O/j/F1cOCpod/NimmtHxheT5vPOGX5v2kfBn0O\nTU1N7amqiV7zen70P8mbgMerak+SycPDC0xd8CdDVW0HtgNMTEzU5OTkEftnZmY4emyUtdYPrGxP\nw/i499G2bT7E9XvbOepFa/3A8Hp66G2Ty/49+7FSz6F+/sVeA7w5yRuAZwHPAX4f2JDkxKo6BJwJ\nPDq8MiVJvfRcQ6+q36mqM6tqE3Al8LmqehtwN3BFN20LcPvQqpQk9TTI+9DfDbwryQPA6cANy1OS\nJGkpFrVIVVUzwEx3/UHgwuUvSZK0FH5SVJIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDWirc8LS9Ix\nbFqBQ0ss5MZL16/I/fgKXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGtEz\n0JM8K8kXknw5yX1J3tuNn51kV5J9SW5OctLwy5UkPZ1+XqH/CLi4ql4BnAdcmuQi4P3AB6rqHOAJ\n4OrhlSlJ6qWfk0RXVc12m8/ovgq4GLi1G98BXD6UCiVJfUlV9Z6UnADsAV4M/BHwX4DPV9WLu/1n\nAZ+qqpctcNutwFaA8fHxC6anp4/YPzs7y9jY2IBtrB2t9QMr29Pe/U8O/T7G18GBp4Z+NyumtX6g\nvZ7OPuWEgZ5DU1NTe6pqote8vo62WFU/Bc5LsgH4JPCShaY9zW23A9sBJiYmanJy8oj9MzMzHD02\nylrrB1a2p6tW4Gh42zYf4vq97RxotLV+oL2ebrx0/Yo8hxb1LpeqOgjMABcBG5Ic/hc/E3h0eUuT\nJC1GP+9yeV73ypwk64DXAvcDdwNXdNO2ALcPq0hJUm/9/E6zEdjRraP/AnBLVd2Z5KvAdJLfBb4E\n3DDEOiVJPfQM9Kr6CvDKBcYfBC4cRlFaXUef1WXb5kMrsrYtaTB+UlSSGmGgS1IjDHRJaoSBLkmN\nMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1Ih+\nTkF3VpK7k9yf5L4k13TjpyW5K8m+7vLU4ZcrSXo6/bxCPwRsq6qXMHdy6N9K8lLgWmBnVZ0D7Oy2\nJUmrpGegV9VjVfXF7voPmDtB9BnAZcCObtoO4PJhFSlJ6i1V1f/kZBPw58DLgIerasO8fU9U1c8t\nuyTZCmwFGB8fv2B6evqI/bOzs4yNjS2l9jWphX727n/yiO3xdXDgqVUqZgjsZ+1rraezTzlhoFyY\nmpraU1UTveb1HehJxoD/Cbyvqm5LcrCfQJ9vYmKidu/efcTYzMwMk5OTfdUwClroZ6GTRF+/t+f5\nxEeG/ax9rfV046XrB8qFJH0Fel/vcknyDOBPgY9X1W3d8IEkG7v9G4HHl1qsJGlw/bzLJcANwP1V\n9Xvzdt0BbOmubwFuX/7yJEn96ud3mtcAvw7sTXJPN/bvgOuAW5JcDTwMvGU4JUqS+tEz0KvqfwF5\nmt2XLG85kqSl8pOiktQIA12SGmGgS1IjDHRJakQ779xv0NEf8JGkY/EVuiQ1wkCXpEYY6JLUCANd\nkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1Ih+TkH30SSPJ7l33thpSe5Ksq+7PObJ\noSVJw9fPK/QbgUuPGrsW2FlV5wA7u21J0irqGehV9efAXx81fBmwo7u+A7h8meuSJC3SUtfQx6vq\nMYDu8vnLV5IkaSlSVb0nJZuAO6vqZd32waraMG//E1W14Dp6kq3AVoDx8fELpqenj9g/OzvL2NjY\nUutfc5azn737n1yW7zOo8XVw4KnVrmL52M/a11pPZ59ywkC5MDU1taeqJnrNW+oJLg4k2VhVjyXZ\nCDz+dBOrajuwHWBiYqImJyeP2D8zM8PRY6NsOfu5ao2c4GLb5kNcv7edc6HYz9rXWk83Xrp+RXJu\nqUsudwBbuutbgNuXpxxJ0lL187bFm4C/AM5N8kiSq4HrgNcl2Qe8rtuWJK2inr/TVNVbn2bXJctc\niyRpAH5SVJIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSB\nLkmNaOeAw0OyaZHHJN+2+dCaOY65pOOLr9AlqREGuiQ1wkCXpEYY6JLUiIH+KJrkUuCDwAnAR6pq\naKeiW+wfJyXpeLPkV+hJTgD+CHg98FLgrUleulyFSZIWZ5AllwuBB6rqwar6MTANXLY8ZUmSFitV\ntbQbJlcAl1bVb3Tbvw68qqreftS8rcDWbvNc4OtHfavnAt9dUhFrU2v9QHs92c/a11pPg/bzwqp6\nXq9Jg6yhZ4Gxn/vpUFXbge1P+02S3VU1MUAda0pr/UB7PdnP2tdaTyvVzyBLLo8AZ83bPhN4dLBy\nJElLNUig/yVwTpKzk5wEXAncsTxlSZIWa8lLLlV1KMnbgc8w97bFj1bVfUv4Vk+7HDOiWusH2uvJ\nfta+1npakX6W/EdRSdLa4idFJakRBrokNWKogZ7krCR3J7k/yX1JrunGT0tyV5J93eWp3XiS/EGS\nB5J8Jcn5w6xvsZI8K8kXkny56+e93fjZSXZ1/dzc/ZGYJM/sth/o9m9azfqPJckJSb6U5M5ue2R7\nSvJQkr1J7kmyuxsbycfcYUk2JLk1yde659OrR7WnJOd2/zeHv76f5J2j2s9hSX67y4V7k9zU5cXK\nPo+qamhfwEbg/O76s4H/y9xhAv4zcG03fi3w/u76G4BPMfce94uAXcOsbwn9BBjrrj8D2NXVeQtw\nZTf+IeBfdtf/FfCh7vqVwM2r3cMxensX8CfAnd32yPYEPAQ896ixkXzMzat/B/Ab3fWTgA2j3lNX\n6wnAt4EXjnI/wBnAN4F13fYtwFUr/Txa6aZvB17H3KdFN3ZjG4Gvd9c/DLx13vyfzVtrX8DJwBeB\nVzH3CbATu/FXA5/prn8GeHV3/cRuXla79gV6ORPYCVwM3Nk9cUa2p6cJ9JF9zAHP6cIiR42PbE/z\navtV4H+Pej9doH8LOK17XtwJ/MOVfh6t2Bp69yvFK5l7VTteVY8BdJfP76Yd/kc57JFubM3olibu\nAR4H7gK+ARysqkPdlPk1/6yfbv+TwOkrW3Fffh/4t8DfdtunM9o9FfDZJHsyd+gJGOHHHPAi4DvA\nx7plsY8kWc9o93TYlcBN3fWR7aeq9gP/FXgYeIy558UeVvh5tCKBnmQM+FPgnVX1/WNNXWBsTb2v\nsqp+WlXnMfeq9kLgJQtN6y7XfD9J3gQ8XlV75g8vMHVkegJeU1XnM3ck0N9K8ivHmDsK/ZwInA/8\ncVW9Evghc0sST2cUeqJbT34z8IleUxcYW1P9dOv9lwFnAy8A1jP3+DvaUJ9HQw/0JM9gLsw/XlW3\ndcMHkmzs9m9k7tUujNDhBKrqIDDD3JrehiSHP6Q1v+af9dPtPwX465WttKfXAG9O8hBzR8y8mLlX\n7CPbU1U92l0+DnySuR+8o/yYewR4pKp2ddu3Mhfwo9wTzAXeF6vqQLc9yv28FvhmVX2nqn4C3Ab8\nMiv8PBr2u1wC3ADcX1W/N2/XHcCW7voW5tbWD4//0+6v2hcBTx7+FWwtSPK8JBu66+uY+0+8H7gb\nuKKbdnQ/h/u8AvhcdYtma0VV/U5VnVlVm5j79fdzVfU2RrSnJOuTPPvwdebWaO9lRB9zAFX1beBb\nSc7thi4BvsoI99R5K3+33AKj3c/DwEVJTu5y7/D/0co+j4b8h4K/z9yvEV8B7um+3sDcWtFOYF93\neVo3P8ydNOMbwF5gYrX/2HFUPy8HvtT1cy/wH7rxFwFfAB5g7tfHZ3bjz+q2H+j2v2i1e+jR3yR/\n9y6Xkeypq/vL3dd9wL/vxkfyMTevr/OA3d1j738Ap45yT8y9qeB7wCnzxka2n67O9wJf67LhvwPP\nXOnnkR/9l6RG+ElRSWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIa8f8BJBwcx58w3qUAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.hist(column='gre', bins=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "gre is slightly skewed to the left, but doesn't differ greatly from the gpa histogram, which is also skewed slightly to the left. " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[]], dtype=object)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFhJJREFUeJzt3X2QZXV95/H31wEUp8k8iLaTATOTdYqIjKDTRUyodbsl\nJuPiMpMNbmGMGVIkXTFqzDrZDbpVVjTZWlIWkVSSLXcSLCaJ2iCRMCGrK5nQm80aSHoU08LEDOIE\nGchMlGGgkdVq8t0/7hm9NN1zz+3b957uH+9XVVefh9/p+5kzpz997rlPkZlIkla+5zUdQJK0NCx0\nSSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdBUtIl4TEV+IiCci4pMRcVNE/HpE\njEbEQxHxvoj4ekQcjoi3tm13WbXd4xHxtYj41Qb/GVItFrqKFRFnALcCNwLrgU8AP9425KXA2cBG\nYBewJyLOq9Y9Cfw0sBa4DHh7ROwcTHJpccL3clGpIuJ1tEr8nKwO9Ij4K2AS+PPqa01mPlmtuxmY\nzsxfm+dnXQ9kZv7HAcWXuuYZukr2vcCRfOZZy9fapo+fLPPKP1bbEBE/GBF3RsQ/R8QJ4Odpnc1L\ny5aFrpI9AmyMiGhbdm7b9LqIWN02/zLg4Wr648A+4NzMXAN8BGj/OdKyY6GrZH8NPA28MyJOi4gd\nwMVzxnwgIs6IiH8NvAn4ZLX8LODRzPx/EXEx8JMDSy0tkoWuYmXmt4F/D1wNPAb8FHA78K1qyD8B\nx2mdlX8M+PnM/Ptq3S8AH4yIJ4D3AzcPMLq0KD4oqueUiLib1uWTrwJ/lJnnNBxJWjKeoatoEfFv\nIuKl1SWXXcCrgM80nUvqh9OaDiD12Xm0LpcMAV8BrsjMR9qeby4Vw0suklQIL7lIUiEGesnl7LPP\nzk2bNnW1zZNPPsnq1as7D1wmzNs/KykrmLffVlLeXrMeOHDg65n54o4DM3NgX9u2bctu3XnnnV1v\n0yTz9s9Kyppp3n5bSXl7zQpMZY2O9ZKLJBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAl\nqRAWuiQVwndblBq26Zo/a+R2D197WSO3q/7xDF2SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKX\npEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhehY6BFxXkTc0/b1eET8UkSsj4g7IuJQ9X3dIAJLkubX\nsdAz88uZeVFmXgRsA74J3ApcA+zPzC3A/mpektSQbi+5XAp8JTP/EdgB7K2W7wV2LmUwSVJ3IjPr\nD474KPD5zPydiHgsM9e2rTuemc+67BIR48A4wPDw8LaJiYmuAs7MzDA0NNTVNk0yb/+spKxQP+/0\nkRMDSPNsWzeuecZ8qft3Oeg169jY2IHMHOk0rnahR8QZwMPAKzPzaN1CbzcyMpJTU1O1bu+kyclJ\nRkdHu9qmSebtn5WUFernXS4fcFHq/l0Oes0aEbUKvZtLLm+kdXZ+tJo/GhEbqhvbABzrPqYkaal0\nU+hvAT7RNr8P2FVN7wJuW6pQkqTu1Sr0iHgh8AbgU22LrwXeEBGHqnXXLn08SVJdtT4kOjO/Cbxo\nzrJv0HrWiyRpGfCVopJUCAtdkgphoUtSISx0SSqEhS5Jhaj1LBdJ5Zn7CtXdW2e5akCvWp37KlUt\nDc/QJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhM9Dl/Sc0dSnQ924ffVAbsczdEkqhIUu\nSYWw0CWpEBa6JBWi7meKro2IWyLi7yPiYET8UESsj4g7IuJQ9X1dv8NKkhZW9wz9t4DPZOYPABcC\nB4FrgP2ZuQXYX81LkhrSsdAj4nuA1wE3AGTmtzPzMWAHsLcathfY2a+QkqTOIjNPPSDiImAPcB+t\ns/MDwLuBI5m5tm3c8cx81mWXiBgHxgGGh4e3TUxMdBVwZmaGoaGhrrZpknn7ZyVlhfp5p4+cGECa\nzobPhKNPDea2tm5c0/PPWMzx0NS+3rxmVU/H7tjY2IHMHOk0rk6hjwB3AZdk5t0R8VvA48C76hR6\nu5GRkZyamqr1DzhpcnKS0dHRrrZpknn7ZyVlhfp5m3qxy1y7t85y3fRgXmu4FB9wsZjjockXFvVy\n7EZErUKvcw39IeChzLy7mr8FeA1wNCI2VDe2ATi22LCSpN51LPTM/CfgaxFxXrXoUlqXX/YBu6pl\nu4Db+pJQklRL3ftX7wI+FhFnAA8AP0Prj8HNEXE18CDw5v5ElCTVUavQM/MeYL7rN5cubRxJ0mL5\nSlFJKoSFLkmF8P3QJfrzdLbdW2e5apk8JVHPDZ6hS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY\n6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVIha74ceEYeBJ4CngdnMHImI\n9cBNwCbgMPAfMvN4f2JKkjrp5gx9LDMvysyTny16DbA/M7cA+6t5SVJDernksgPYW03vBXb2HkeS\ntFh1Cz2Bz0bEgYgYr5YNZ+YjANX3l/QjoCSpnsjMzoMivjczH46IlwB3AO8C9mXm2rYxxzNz3Tzb\njgPjAMPDw9smJia6CjgzM8PQ0FBX2zTJvP3Tz6zTR04s+c8cPhOOPrXkP7ZvBpl368Y1Pf+MxRwP\n/fh/rmPzmlU9HbtjY2MH2i53L6hWoT9jg4hfBWaAnwNGM/ORiNgATGbmeafadmRkJKemprq6vcnJ\nSUZHR7vapknm7Z9+Zu3Xh0RfN71yPod9kHkPX3tZzz9jMcdDP/6f67hx++qejt2IqFXoHS+5RMTq\niDjr5DTwo8CXgH3ArmrYLuC2RaeVJPWszp/jYeDWiDg5/uOZ+ZmI+Fvg5oi4GngQeHP/YkqSOulY\n6Jn5AHDhPMu/AVzaj1CSpO75SlFJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0\nSSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiFWzgce6jnhVJ/5uHvrLFc19JmQ0krg\nGbokFcJCl6RC1C70iFgVEV+IiNur+c0RcXdEHIqImyLijP7FlCR10s0Z+ruBg23zvwF8ODO3AMeB\nq5cymCSpO7UKPSLOAS4Dfr+aD+D1wC3VkL3Azn4ElCTVE5nZeVDELcB/A84Cfhm4CrgrM19erT8X\n+HRmXjDPtuPAOMDw8PC2iYmJrgLOzMwwNDTU1TZNMm9vpo+cWHDd8Jlw9KkBhumReRe2deOann/G\nYo7dUx1f/bR5zaqefs/GxsYOZOZIp3Edn7YYEW8CjmXmgYgYPbl4nqHz/mXIzD3AHoCRkZEcHR2d\nb9iCJicn6XabJpm3N6d6WuLurbNcN71ynmlr3oUdfutozz9jMcduU097vXH76oH8ntX537sEuDwi\n/i3wAuB7gOuBtRFxWmbOAucAD/cvpiSpk46FnpnvBd4LUJ2h/3JmvjUiPglcAUwAu4Db+phTUkFO\n9QKyunyh2bP18jz0XwHeExH3Ay8CbliaSJKkxejqgllmTgKT1fQDwMVLH0mStBi+UlSSCmGhS1Ih\nLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSIVbOe3tqYJbijZMkDZ5n6JJUCAtd\nkgphoUtSISx0SSqEhS5JhbDQJakQFrokFaJjoUfECyLibyLiixFxb0R8oFq+OSLujohDEXFTRJzR\n/7iSpIXUOUP/FvD6zLwQuAjYHhGvBX4D+HBmbgGOA1f3L6YkqZOOhZ4tM9Xs6dVXAq8HbqmW7wV2\n9iWhJKmWyMzOgyJWAQeAlwO/C3wIuCszX16tPxf4dGZeMM+248A4wPDw8LaJiYmuAs7MzDA0NNTV\nNk0qIe/0kRMNpTm14TPh6FNNp6jPvP21kvJuXrOqp14YGxs7kJkjncbVei+XzHwauCgi1gK3Aq+Y\nb9gC2+4B9gCMjIzk6OhonZv8jsnJSbrdpkkl5L1qmb6Xy+6ts1w3vXLefsi8/bWS8t64ffVAeqGr\nZ7lk5mPAJPBaYG1EnNyb5wAPL200SVI36jzL5cXVmTkRcSbwI8BB4E7gimrYLuC2foWUJHVW5/7K\nBmBvdR39ecDNmXl7RNwHTETErwNfAG7oY05JUgcdCz0z/w549TzLHwAu7kcoSVL3fKWoJBXCQpek\nQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqE\nhS5JhbDQJakQFrokFcJCl6RC1PmQ6HMj4s6IOBgR90bEu6vl6yPijog4VH1f1/+4kqSF1DlDnwV2\nZ+YrgNcC74iI84FrgP2ZuQXYX81LkhrSsdAz85HM/Hw1/QRwENgI7AD2VsP2Ajv7FVKS1FlkZv3B\nEZuAvwQuAB7MzLVt645n5rMuu0TEODAOMDw8vG1iYqKrgDMzMwwNDXW1TZNKyDt95ERDaU5t+Ew4\n+lTTKeozb3+tpLyb16zqqRfGxsYOZOZIp3G1Cz0ihoD/DfzXzPxURDxWp9DbjYyM5NTUVK3bO2ly\ncpLR0dGutmlSCXk3XfNnzYTpYPfWWa6bPq3pGLWZt79WUt4bt6/uqRciolah13qWS0ScDvwx8LHM\n/FS1+GhEbKjWbwCOLTasJKl3dZ7lEsANwMHM/M22VfuAXdX0LuC2pY8nSaqrzv2VS4C3AdMRcU+1\n7H3AtcDNEXE18CDw5v5ElCTV0bHQM/OvgFhg9aVLG0eStFi+UlSSCmGhS1IhLHRJKoSFLkmFsNAl\nqRAr42VWz1GDeMXm7q2zXLVMXxkqqTueoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgL\nXZIKYaFLUiEsdEkqhIUuSYWw0CWpEHU+JPqjEXEsIr7Utmx9RNwREYeq7+v6G1OS1EmdM/Qbge1z\nll0D7M/MLcD+al6S1KCOhZ6Zfwk8OmfxDmBvNb0X2LnEuSRJXVrsNfThzHwEoPr+kqWLJElajMjM\nzoMiNgG3Z+YF1fxjmbm2bf3xzJz3OnpEjAPjAMPDw9smJia6CjgzM8PQ0FBX2zRpKfNOHzmxJD/n\nVIbPhKNP9f1mlsRKygrm7beVlHfzmlU99cLY2NiBzBzpNG6xn1h0NCI2ZOYjEbEBOLbQwMzcA+wB\nGBkZydHR0a5uaHJykm63adJS5h3EJwnt3jrLddMr44OrVlJWMG+/raS8N25fPZAeW+wll33Armp6\nF3Db0sSRJC1WnactfgL4a+C8iHgoIq4GrgXeEBGHgDdU85KkBnW8v5KZb1lg1aVLnEWS1ANfKSpJ\nhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBViZbz3ZIM2dfkW\ntru3zg7kbW8laS7P0CWpEBa6JBVixVxy6fbShyQ913iGLkmFsNAlqRAWuiQVwkKXpEL0VOgRsT0i\nvhwR90fENUsVSpLUvUUXekSsAn4XeCNwPvCWiDh/qYJJkrrTyxn6xcD9mflAZn4bmAB2LE0sSVK3\nIjMXt2HEFcD2zPzZav5twA9m5jvnjBsHxqvZ84Avd3lTZwNfX1TIZpi3f1ZSVjBvv62kvL1m/b7M\nfHGnQb28sCjmWfasvw6ZuQfYs+gbiZjKzJHFbj9o5u2flZQVzNtvKynvoLL2csnlIeDctvlzgId7\niyNJWqxeCv1vgS0RsTkizgCuBPYtTSxJUrcWfcklM2cj4p3A/wJWAR/NzHuXLNl3LfpyTUPM2z8r\nKSuYt99WUt6BZF30g6KSpOXFV4pKUiEsdEkqRGOFHhHnRsSdEXEwIu6NiHfPM+atEfF31dfnIuLC\ntnWHI2I6Iu6JiKllknc0Ik5Ume6JiPe3rRvY2yTUzPqf2nJ+KSKejoj11bpB79sXRMTfRMQXq7wf\nmGfM8yPipmr/3R0Rm9rWvbda/uWI+LFlkvc9EXFfdezuj4jva1v3dNu+7/sTCWrmvSoi/rkt18+2\nrdsVEYeqr13LIOuH23L+Q0Q81rZuoPu27XZXRcQXIuL2edYN7tjNzEa+gA3Aa6rps4B/AM6fM+aH\ngXXV9BuBu9vWHQbOXmZ5R4Hb59l2FfAV4PuBM4Avzt120FnnjP93wF80uG8DGKqmTwfuBl47Z8wv\nAB+ppq8Ebqqmz6/25/OBzdV+XrUM8o4BL6ym334ybzU/M6h920Xeq4DfmWfb9cAD1fd11fS6JrPO\nGf8uWk/IaGTftt3ue4CPL/D7P7Bjt7Ez9Mx8JDM/X00/ARwENs4Z87nMPF7N3kXrue6NqJP3FAb6\nNgmLyPoW4BP9ytNJtsxUs6dXX3Mfrd8B7K2mbwEujYiolk9k5rcy86vA/bT2d6N5M/POzPxmNdv0\nsVtn/y7kx4A7MvPR6nfxDmB7H2ICi8ra6LELEBHnAJcBv7/AkIEdu8viGnp1F+TVtP4aL+Rq4NNt\n8wl8NiIOROvtBQamQ94fqu4ufjoiXlkt2wh8rW3MQ9T/Y9CTTvs2Il5I6xf0j9sWD3zfVndZ7wGO\n0SqQuXm/sw8zcxY4AbyIhvZtjbzt5h67L4iIqYi4KyJ29jVopWben6guEd0SESdfNDjw/Vt331aX\nsTYDf9G2eOD7Frge+M/AvyywfmDHbuOFHhFDtMrklzLz8QXGjNH6pfiVtsWXZOZraF2KeUdEvK7v\nYemY9/O03nPhQuC3gT85udk8P6rvzxets29pXW75v5n5aNuyge/bzHw6My+idSZ7cURcMGfIQvuw\nkX1bIy8AEfFTwAjwobbFL8vWy8B/Erg+Iv7VMsj7p8CmzHwV8Od894xy4Pu37r6ldfnilsx8um3Z\nQPdtRLwJOJaZB041bJ5lfTl2Gy30iDidVuF8LDM/tcCYV9G6K7MjM79xcnlmPlx9PwbcSp/vZtfJ\nm5mPn7y7mJn/Ezg9Is6mgbdJqLNvK1cy5y5rE/u27bYfAyZ59t367+zDiDgNWAM8SsNvQXGKvETE\njwD/Bbg8M7/Vts3J/ftAte2rB5G1us1582bmN9oy/h6wrZpubP+eat9WTnXsDmrfXgJcHhGHaV1K\nfX1E/NGcMYM7dnt9MGCxX7T+Ov0BcP0pxryM1nWlH56zfDVwVtv052i982PTeV/Kd1+sdTHwYLXd\nabQeTNrMdx8UfWWTWatxJw+s1Q3v2xcDa6vpM4H/A7xpzph38MwHlm6upl/JMx9YeoD+PyhaJ++r\naT3ItWXO8nXA86vps4FD9PEB8i7ybmib/nHgrmp6PfDVKve6anp9k1mrdefRevA+mty3czKNMv+D\nogM7dnt5t8VeXQK8DZiurpcBvI9WiZOZHwHeT+ta039vPYbAbLbuTg0Dt1bLTgM+npmfWQZ5rwDe\nHhGzwFPAldn6nxvU2yR0kxVav7ifzcwn27ZtYt9uAPZG60NTnkfrgL89Ij4ITGXmPuAG4A8j4n5a\nf4SurP4t90bEzcB9wCzwjnzmXfCm8n4IGAI+We3LBzPzcuAVwP+IiH+ptr02M+9bBnl/MSIup7UP\nH6X1rBcy89GI+DVa790E8MF85uW5JrJC68HQier366Qm9u28mjp2fem/JBWi8QdFJUlLw0KXpEJY\n6JJUCAtdkgphoUtSISx0SSqEhS5Jhfj//anFSVvzILEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.hist(column='gpa', bins=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "31.75" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "percent_admit = sum(df.admit)/len(df.admit)*100\n", + "percent_admit" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[]], dtype=object)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEgVJREFUeJzt3X+QXWddx/H3xxZRu9gWIzs1jaZomLG0I8JOrcOom6mj\npSqBGWDaqbTFjmGwKGpHDeoMKDLWHxGHqmg6hRaNhKJAIhQZiOxUlCopFtIfdkghlrSdRGgbWKho\ny9c/7oku7SZ7c3/szT77fs3s7LnnPuc+3+/u5rNnn3vuTaoKSVK7vmHSBUiSxsugl6TGGfSS1DiD\nXpIaZ9BLUuMMeklqnEEvdZKsT1JJTh7w+Pkkzxx1XdKwBvqBlvRkVTV1ZDvJDcCBqvrNyVUk9XhG\nL0mNM+jVvCRbktyb5EtJ7kry4m7/SUn+MMnnk3wG+IknHDeX5HeS/HO3LPN3Sb4tyfYkX0zy8STr\nF4yvJN+TZDNwKfCrR45bxnalJzHotRrcC/wQcCrwW8BfJTkD+FngJ4HvB2aAlyxy7MXAy4G1wHcD\nHwPeBjwduBt43RMPqKptwHbg96tqqqp+atQNScfDoFfzqupdVfVAVX2tqt4JfBo4D3gZ8MdV9bmq\negj43UUOf1tV3VtVh4EPAPdW1Yer6jHgXfR+SUgnNINezUtyWZLbkzyS5BHgHGAN8B3A5xYM/Y9F\nDj+4YPvRRW5PIZ3gvOpGTUvyXcB1wAXAx6rq8SS3AwEeBNYtGP6dI5zat4XVCcMzerXuFHqh+58A\nSV5B74we4CbgF5KcmeR0YMsI5z0IeE29TggGvZpWVXcBW+k9iXoQOBf4p+7u64APAp8EPgG8e4RT\nXw+c3S0XvXeEjysdt/gfj0hS2zyjl6TGGfSS1DiDXpIaZ9BLUuNOiOvo16xZU+vXrx/o2C9/+cuc\ncsopoy3oBGfPq4M9rw7D9Hzbbbd9vqq+falxJ0TQr1+/nj179gx07NzcHLOzs6Mt6ARnz6uDPa8O\nw/ScZLFXcz+JSzeS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktS4E+KVscPY\ne/9hrtjy/onMvf+an5jIvJJ0PDyjl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXO\noJekxhn0ktQ4g16SGmfQS1LjDHpJatySQZ9kXZKPJLk7yZ1JXtPtf32S+5Pc3n1ctOCY1ybZl+Se\nJD8+zgYkScfWz9sUPwZcXVWfSPI04LYkH+rue1NV/eHCwUnOBi4Gng18B/DhJM+qqsdHWbgkqT9L\nntFX1YNV9Ylu+0vA3cDaYxyyCdhRVV+tqs8C+4DzRlGsJOn4par6H5ysB24BzgF+GbgC+CKwh95Z\n/8NJ/gS4tar+qjvmeuADVfU3T3iszcBmgOnp6eft2LFjoAYOPXSYg48OdOjQzl176kTmnZ+fZ2pq\naiJzT4o9rw72fHw2btx4W1XNLDWu7/9hKskU8LfAL1bVF5O8BXgDUN3nrcDPAFnk8Cf9NqmqbcA2\ngJmZmZqdne23lK9z7fadbN07mf8oa/+lsxOZd25ujkG/XiuVPa8O9jwefV11k+Qp9EJ+e1W9G6Cq\nDlbV41X1NeA6/n955gCwbsHhZwIPjK5kSdLx6OeqmwDXA3dX1R8t2H/GgmEvBu7otncBFyd5apKz\ngA3Av46uZEnS8ehnzeP5wMuBvUlu7/b9OnBJkufQW5bZD7wSoKruTHITcBe9K3au8oobSZqcJYO+\nqj7K4uvuNx/jmDcCbxyiLknSiPjKWElqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1Lj\nDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6g\nl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxi0Z9EnWJflIkruT3JnkNd3+\npyf5UJJPd59P7/YnyZuT7EvyqSTPHXcTkqSj6+eM/jHg6qr6XuB84KokZwNbgN1VtQHY3d0GeAGw\nofvYDLxl5FVLkvq2ZNBX1YNV9Ylu+0vA3cBaYBNwYzfsRuBF3fYm4O3VcytwWpIzRl65JKkvqar+\nByfrgVuAc4D7quq0Bfc9XFWnJ3kfcE1VfbTbvxv4tara84TH2kzvjJ/p6enn7dixY6AGDj10mIOP\nDnTo0M5de+pE5p2fn2dqamoic0+KPa8O9nx8Nm7ceFtVzSw17uR+HzDJFPC3wC9W1ReTHHXoIvue\n9NukqrYB2wBmZmZqdna231K+zrXbd7J1b99tjNT+S2cnMu/c3ByDfr1WKnteHex5PPq66ibJU+iF\n/Paqene3++CRJZnu86Fu/wFg3YLDzwQeGE25kqTj1c9VNwGuB+6uqj9acNcu4PJu+3Jg54L9l3VX\n35wPHK6qB0dYsyTpOPSz5vF84OXA3iS3d/t+HbgGuCnJlcB9wEu7+24GLgL2AV8BXjHSiiVJx2XJ\noO+eVD3agvwFi4wv4Koh65IkjYivjJWkxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1\nzqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMM\neklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJatySQZ/krUkOJbljwb7XJ7k/\nye3dx0UL7nttkn1J7kny4+MqXJLUn37O6G8ALlxk/5uq6jndx80ASc4GLgae3R3zZ0lOGlWxkqTj\nt2TQV9UtwEN9Pt4mYEdVfbWqPgvsA84boj5J0pBOHuLYVye5DNgDXF1VDwNrgVsXjDnQ7XuSJJuB\nzQDT09PMzc0NVMT0N8PV5z420LHDGrTmYc3Pz09s7kmx59XBnsdj0KB/C/AGoLrPW4GfAbLI2Frs\nAapqG7ANYGZmpmZnZwcq5NrtO9m6d5jfV4Pbf+nsROadm5tj0K/XSmXPq4M9j8dAV91U1cGqeryq\nvgZcx/8vzxwA1i0YeibwwHAlSpKGMVDQJzljwc0XA0euyNkFXJzkqUnOAjYA/zpciZKkYSy55pHk\nHcAssCbJAeB1wGyS59BbltkPvBKgqu5MchNwF/AYcFVVPT6e0iVJ/Vgy6KvqkkV2X3+M8W8E3jhM\nUZKk0fGVsZLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMm\n80buknQCWb/l/ROb+4YLTxn7HJ7RS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn\n0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuOWDPokb01yKMkdC/Y9PcmH\nkny6+3x6tz9J3pxkX5JPJXnuOIuXJC2tnzP6G4ALn7BvC7C7qjYAu7vbAC8ANnQfm4G3jKZMSdKg\nlgz6qroFeOgJuzcBN3bbNwIvWrD/7dVzK3BakjNGVawk6filqpYelKwH3ldV53S3H6mq0xbc/3BV\nnZ7kfcA1VfXRbv9u4Neqas8ij7mZ3lk/09PTz9uxY8dADRx66DAHHx3o0KGdu/bUicw7Pz/P1NTU\nROaeFHteHSbV8977Dy/7nEecdepJA/e8cePG26pqZqlxJw/06EeXRfYt+pukqrYB2wBmZmZqdnZ2\noAmv3b6TrXtH3UZ/9l86O5F55+bmGPTrtVLZ8+owqZ6v2PL+ZZ/ziBsuPGXsPQ961c3BI0sy3edD\n3f4DwLoF484EHhi8PEnSsAYN+l3A5d325cDOBfsv666+OR84XFUPDlmjJGkIS655JHkHMAusSXIA\neB1wDXBTkiuB+4CXdsNvBi4C9gFfAV4xhpolScdhyaCvqkuOctcFi4wt4Kphi5IkjY6vjJWkxhn0\nktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9J\njTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4\ng16SGmfQS1LjDHpJatzJwxycZD/wJeBx4LGqmknydOCdwHpgP/Cyqnp4uDIlSYMaxRn9xqp6TlXN\ndLe3ALuragOwu7stSZqQcSzdbAJu7LZvBF40hjkkSX1KVQ1+cPJZ4GGggL+oqm1JHqmq0xaMebiq\nTl/k2M3AZoDp6enn7dixY6AaDj10mIOPDnTo0M5de+pE5p2fn2dqamoic0+KPa8Ok+p57/2Hl33O\nI8469aSBe964ceNtC1ZTjmqoNXrg+VX1QJJnAB9K8u/9HlhV24BtADMzMzU7OztQAddu38nWvcO2\nMZj9l85OZN65uTkG/XqtVPa8Okyq5yu2vH/Z5zzihgtPGXvPQy3dVNUD3edDwHuA84CDSc4A6D4f\nGrZISdLgBg76JKckedqRbeDHgDuAXcDl3bDLgZ3DFilJGtwwax7TwHuSHHmcv66qv0/yceCmJFcC\n9wEvHb5MSdKgBg76qvoM8H2L7P8CcMEwRUmSRsdXxkpS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TG\nGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxB\nL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNW5sQZ/kwiT3\nJNmXZMu45pEkHdtYgj7JScCfAi8AzgYuSXL2OOaSJB3buM7ozwP2VdVnquq/gR3ApjHNJUk6hpPH\n9Lhrgc8tuH0A+IGFA5JsBjZ3N+eT3DPgXGuAzw947FDye5OYFZhgzxNkz6vDqut54+8N1fN39TNo\nXEGfRfbV192o2gZsG3qiZE9VzQz7OCuJPa8O9rw6LEfP41q6OQCsW3D7TOCBMc0lSTqGcQX9x4EN\nSc5K8o3AxcCuMc0lSTqGsSzdVNVjSV4NfBA4CXhrVd05jrkYwfLPCmTPq4M9rw5j7zlVtfQoSdKK\n5StjJalxBr0kNW7FBP1Sb6mQ5KlJ3tnd/y9J1i9/laPVR8+/nOSuJJ9KsjtJX9fUnsj6feuMJC9J\nUklW/KV4/fSc5GXd9/rOJH+93DWOWh8/29+Z5CNJ/q37+b5oEnWOSpK3JjmU5I6j3J8kb+6+Hp9K\n8tyRFlBVJ/wHvSd07wWeCXwj8Eng7CeM+Tngz7vti4F3TrruZeh5I/At3farVkPP3binAbcAtwIz\nk657Gb7PG4B/A07vbj9j0nUvQ8/bgFd122cD+ydd95A9/zDwXOCOo9x/EfABeq9BOh/4l1HOv1LO\n6Pt5S4VNwI3d9t8AFyRZ7IVbK8WSPVfVR6rqK93NW+m9XmEl6/etM94A/D7wX8tZ3Jj00/PPAn9a\nVQ8DVNWhZa5x1PrpuYBv7bZPZYW/DqeqbgEeOsaQTcDbq+dW4LQkZ4xq/pUS9Iu9pcLao42pqseA\nw8C3LUt149FPzwtdSe+MYCVbsuck3w+sq6r3LWdhY9TP9/lZwLOS/FOSW5NcuGzVjUc/Pb8e+Okk\nB4CbgZ9fntIm5nj/vR+Xcb0Fwqgt+ZYKfY5ZSfruJ8lPAzPAj4y1ovE7Zs9JvgF4E3DFchW0DPr5\nPp9Mb/lmlt5fbf+Y5JyqemTMtY1LPz1fAtxQVVuT/CDwl13PXxt/eRMx1vxaKWf0/bylwv+NSXIy\nvT/3jvWn0omur7eRSPKjwG8AL6yqry5TbeOyVM9PA84B5pLsp7eWuWuFPyHb78/2zqr6n6r6LHAP\nveBfqfrp+UrgJoCq+hjwTfTe8KxVY33bmJUS9P28pcIu4PJu+yXAP1T3LMcKtWTP3TLGX9AL+ZW+\nbgtL9FxVh6tqTVWtr6r19J6XeGFV7ZlMuSPRz8/2e+k98U6SNfSWcj6zrFWOVj893wdcAJDke+kF\n/X8ua5XLaxdwWXf1zfnA4ap6cFQPviKWbuoob6mQ5LeBPVW1C7ie3p93++idyV88uYqH12fPfwBM\nAe/qnne+r6peOLGih9Rnz03ps+cPAj+W5C7gceBXquoLk6t6OH32fDVwXZJforeEccVKPnFL8g56\nS29ruucdXgc8BaCq/pze8xAXAfuArwCvGOn8K/hrJ0nqw0pZupEkDcigl6TGGfSS1DiDXpIaZ9BL\nUuMMeklqnEEvSY37X5O7ULSpRpRuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.hist(column='admit', bins=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "y=df.admit\n", + "X=df[['gpa', 'gre', 'rank']]" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "model = LogisticRegression().fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.75757575757575757" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.score(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AccuracyCombos
00.682570gpa
10.682570gre
20.659994rank
30.682570gpa, gre
40.717079gpa, rank
50.699762gre, rank
60.702073gpa, gre, rank
\n", + "
" + ], + "text/plain": [ + " Accuracy Combos\n", + "0 0.682570 gpa\n", + "1 0.682570 gre\n", + "2 0.659994 rank\n", + "3 0.682570 gpa, gre\n", + "4 0.717079 gpa, rank\n", + "5 0.699762 gre, rank\n", + "6 0.702073 gpa, gre, rank" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from itertools import combinations\n", + "rows = []\n", + "for i in range(1,5):\n", + " combos = list(combinations(['gpa', 'gre', 'rank'],i))\n", + " for j,com in enumerate(combos):\n", + " y = df.admit\n", + " X = pd.DataFrame(df, columns=com)\n", + " # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, shuffle=True, random_state=22)\n", + " model = LogisticRegression(fit_intercept = True)\n", + " accuracy = cross_val_score(model, X, y, cv=10, scoring='accuracy').mean()\n", + " s = ', '.join(com)\n", + " rows.append({'Accuracy':accuracy, 'Combos':s})\n", + " # print('score:', score, 'columns:', s)\n", + "df1 = pd.DataFrame(rows)\n", + "df1.head(10) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The accuracy for this model is .717079, using gpa and rank in the model to predict admit." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n", + "C:\\anaconda\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CombosPrecision
0gpa0.000000
1gre0.000000
2rank0.153333
3gpa, gre0.000000
4gpa, rank0.623333
5gre, rank0.543333
6gpa, gre, rank0.558333
\n", + "
" + ], + "text/plain": [ + " Combos Precision\n", + "0 gpa 0.000000\n", + "1 gre 0.000000\n", + "2 rank 0.153333\n", + "3 gpa, gre 0.000000\n", + "4 gpa, rank 0.623333\n", + "5 gre, rank 0.543333\n", + "6 gpa, gre, rank 0.558333" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from itertools import combinations\n", + "rows = []\n", + "for i in range(1,5):\n", + " combos = list(combinations(['gpa', 'gre', 'rank'],i))\n", + " for j,com in enumerate(combos):\n", + " y = df.admit\n", + " X = pd.DataFrame(df, columns=com)\n", + " # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, shuffle=True, random_state=22)\n", + " model = LogisticRegression(fit_intercept = True)\n", + " precision = cross_val_score(model, X, y, cv=10, scoring='precision').mean()\n", + " s = ', '.join(com)\n", + " rows.append({'Precision':precision, 'Combos':s})\n", + " # print('score:', score, 'columns:', s)\n", + "df1 = pd.DataFrame(rows)\n", + "df1.head(10) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The precision score for gpa and rank to predict admit is .62333" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}