You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
### Create conversational AI proxies for your applications.
19
19
20
20
AI agents are server-side components that act as secure proxies between RavenDB clients and AI models. They can be easily customized to handle specific client needs, tasks or workflows, such as answering questions, performing data analysis, or automating processes.
21
21
- Using AI agents frees developers from the need to manage the communication with the AI model in their code, and enables rapid integration of AI capabilities into their applications.
22
-
- An agent receives requests from clients and maintains continuous conversations with AI models to fulfill them. During the conversation, the agent can enable the model to securely query a RavenDB database and request the client to perform actions.
22
+
- An agent receives requests from clients and maintains continuous conversations with AI models to fulfill them. During the conversation, the agent can enable the model to securely query a RavenDB database (e.g., fetch recent orders or run vector searches on products) and request the client to perform actions (like sending emails or creating new orders).
23
+
- You can use AI agents to quickly create an intelligent, actionable, conversational interface for your applications, in a way that abstracts much of the complexity of AI integration.
23
24
-[See common AI agents use cases](../../ai-integration/ai-agents/ai-agents_start#use-cases)
24
-
</Admonition>
25
25
26
26
## Technical documentation
27
27
Our technical documentation explains in detail what AI agents are and how to define and use them.
@@ -43,7 +43,7 @@ Once you get acquainted with AI agents, expand your expertise with a comprehensi
43
43
## Videos
44
44
Watch our webinars to see AI agents in action and learn practical implementation techniques.
45
45
46
-
<ColGridcolCount={2}>
46
+
<ColGridcolCount={1}>
47
47
<CardWithImageHorizontaltitle="How to run AI agents natively in your database"description="Webinar with Oren Eini"url="https://www.youtube.com/watch?v=A17GSLGN-cQ"imgSrc="https://media.licdn.com/dms/image/v2/D4D10AQG81cXtiYRc2w/image-shrink_800/B4DZZYYLcTHwAk-/0/1745239456036?e=2147483647&v=beta&t=yQVz6ji4wD4reOTXtlPpERK0fdpr1f2VoG_SEV9x3lc"imgAlt="imgAlt"ctaLabel="Watch" />
48
48
<CardWithImageHorizontaltitle="How to create powerful and secure AI agents with RavenDB"description="Webinar with Oren Eini"url="https://www.youtube.com/watch?v=jzUxL9P17G4"imgSrc="https://media.licdn.com/dms/image/v2/D4D10AQG81cXtiYRc2w/image-shrink_800/B4DZZYYLcTHwAk-/0/1745239456036?e=2147483647&v=beta&t=yQVz6ji4wD4reOTXtlPpERK0fdpr1f2VoG_SEV9x3lc"imgAlt="imgAlt"ctaLabel="Watch" />
### Use native AI features to create intelligent database applications.
20
21
21
22
RavenDB is equipped with a set of powerful native AI features that can
22
23
be used independently or in conjunction with each other, allowing you to easily integrate advanced AI capabilities into your applications.
23
24
These features include [AI agents](../ai-integration/ai-integration_start#ai-agents), [GenAI tasks](../ai-integration/ai-integration_start#genai-tasks), [Embeddings generation](../ai-integration/ai-integration_start#embeddings-generation), and [Vector search](../ai-integration/ai-integration_start#vector-search).
24
25
25
-
<hr />
26
+
<br />
26
27
27
28
### AI agents
28
29
AI agents are server-side components that act as secure proxies between RavenDB clients and AI models. They can be easily customized to handle specific client needs, tasks or workflows, such as answering questions, performing data analysis, or automating processes.
29
30
- Using AI agents frees developers from the need to manage the communication with the AI model in their code, and enables rapid integration of AI capabilities into their applications.
30
-
- An agent receives requests from clients and maintains continuous conversations with AI models to fulfill them. During the conversation, the agent can enable the model to securely query a RavenDB database and request the client to perform actions.
31
+
- An agent receives requests from clients and maintains continuous conversations with AI models to fulfill them. During the conversation, the agent can enable the model to securely query a RavenDB database (e.g., fetch recent orders or run vector searches on products) and request the client to perform actions (like sending emails or creating new orders).
32
+
- You can use AI agents to quickly create an intelligent, actionable, conversational interface for your applications, in a way that abstracts much of the complexity of AI integration.
31
33
32
34
<Admonitiontype="note"title="">
33
35
See common AI agents use cases:
@@ -42,8 +44,8 @@ See common AI agents use cases:
42
44
<Admonitiontype="note"title="">
43
45
<ColGridcolCount={3}>
44
46
<CardWithImagetitle="Start page"description="Continue to the AI agents Start page"url="../ai-integration/ai-agents/ai-agents_start"imgSrc={aiAgentsStartImage}imgAlt="imgAlt"ctaLabel="Read" />
45
-
<CardWithImagetitle="Overview"description="Enter the AI agents technical documentation"url="../ai-integration/ai-agents/ai-agents_overview"imgSrc={aiAgentsStartImage}imgAlt="imgAlt"ctaLabel="Read" />
46
-
<CardWithImagetitle="Practical Look at AI Agents with RavenDB"description="Read an in-depth article about AI agents"url="https://ravendb.net/articles/practical-look-at-ai-agents-with-ravendb"imgSrc={aiAgentsStartImage}imgAlt="imgAlt"ctaLabel="Read" />
47
+
<CardWithImagetitle="Technical documentation"description="Enter the AI agents technical documentation"url="../ai-integration/ai-agents/ai-agents_start#technical-documentation"imgSrc={aiAgentsStartImage}imgAlt="imgAlt"ctaLabel="Read" />
48
+
<CardWithImagetitle="In-depth articles"description="Read in-depth article about AI agents"url="../ai-integration/ai-agents/ai-agents_start#in-depth-articles"imgSrc={aiAgentsStartImage}imgAlt="imgAlt"ctaLabel="Read" />
47
49
</ColGrid>
48
50
</Admonition>
49
51
@@ -53,7 +55,7 @@ See common AI agents use cases:
53
55
</ColGrid>
54
56
</Admonition>
55
57
56
-
<hr />
58
+
<br />
57
59
58
60
### GenAI tasks
59
61
GenAI tasks are [ongoing operations](../studio/database/tasks/ongoing-tasks/general-info) that continuously monitor specified collections and process documents as they are added or modified.
@@ -77,8 +79,8 @@ See common GenAI tasks use cases:
77
79
<Admonitiontype="note"title="">
78
80
<ColGridcolCount={3}>
79
81
<CardWithImagetitle="Start page"description="Continue to the GenAI tasks Start page"url="../ai-integration/gen-ai-integration/gen-ai_start"imgSrc={genAiStartImage}imgAlt="imgAlt"ctaLabel="Read" />
80
-
<CardWithImagetitle="Overview"description="Enter the GenAI tasks technical documentation"url="../ai-integration/gen-ai-integration/gen-ai-overview"imgSrc={genAiStartImage}imgAlt="imgAlt"ctaLabel="Read" />
81
-
<CardWithImagetitle="RavenDB GenAI Deep Dive"description="Read an in-depth article about GenAI"url="https://ravendb.net/articles/ravendb-genai-deep-dive"imgSrc={genAiStartImage}imgAlt="imgAlt"ctaLabel="Read" />
82
+
<CardWithImagetitle="Technical documentation"description="Enter the GenAI tasks technical documentation"url="../ai-integration/gen-ai-integration/gen-ai_start#technical-documentation"imgSrc={genAiStartImage}imgAlt="imgAlt"ctaLabel="Read" />
83
+
<CardWithImagetitle="In-depth articles"description="Read in-depth articles about GenAI"url="../ai-integration/gen-ai-integration/gen-ai_start#in-depth-articles"imgSrc={genAiStartImage}imgAlt="imgAlt"ctaLabel="Read" />
82
84
</ColGrid>
83
85
</Admonition>
84
86
@@ -88,13 +90,14 @@ See common GenAI tasks use cases:
88
90
</ColGrid>
89
91
</Admonition>
90
92
91
-
<hr />
93
+
<br />
92
94
93
95
### Embeddings generation
94
-
[Embeddings](https://en.wikipedia.org/wiki/Embedding_(machine_learning)) are numeric vectors that you can create for data (like a text or an image) to capture meanings, contexts, or relationships related to the data. You can then search the data by running intelligent queries over its embeddings using [vector search](../ai-integration/vector-search/vector-search_start) to find content by semantic similarity rather than exact matches.
95
-
- RavenDB allows you to create embeddings using native [ongoing embeddings-generation tasks](../ai-integration/generating-embeddings/embeddings-generation-task) that systematically process document collections and convert document fields (like texts or arrays) into embeddings. To create the embeddings, the tasks can use either an external AI model (such as OpenAI) or RavenDB's default embedding model.
96
-
- You can also create embeddings using external embeddings providers and store them in your database (e.g., to handle other content types like images), or avoid pre-generating embeddings and let vector search operations generate embeddings on-the-fly, while searching.
97
-
- Pre-generated embeddings and vector search operations can be used by other RavenDB AI features. For example, [GenAI tasks](../ai-integration/gen-ai-integration/gen-ai_start) can use vector search to find documents and update them with LLM-generated content, or [AI agents](../ai-integration/ai-agents/ai-agents_start) can use vector search to retrieve relevant data requested by the LLM.
96
+
[Embeddings](https://en.wikipedia.org/wiki/Embedding_(machine_learning)) are numeric vectors that you can create for data (like a text or an image) to capture meanings, contexts, or relationships related to the data. You can then search the data by running intelligent queries over its embeddings using [vector search](../../ai-integration/vector-search/vector-search_start) to find content by semantic similarity rather than exact matches.
97
+
- RavenDB allows you to create embeddings using native [ongoing embeddings-generation tasks](../../ai-integration/generating-embeddings/embeddings-generation-task) that systematically process document collections and convert document fields (like texts or arrays) into embeddings. To create the embeddings, the tasks can use either an external AI model (such as OpenAI) or RavenDB's default embedding model.
98
+
- You can also create embeddings using external embeddings providers and store them in your database (e.g., to handle other content types such as images).
99
+
- You can avoid pre-generating embeddings, and let vector search operations generate embeddings on-the-fly, while searching.
100
+
- Embeddings can be used by other RavenDB AI features, e.g., [AI agents](../../ai-integration/ai-agents/ai-agents_start) can use vector search to retrieve relevant data requested by the LLM.
98
101
99
102
<Admonitiontype="note"title="">
100
103
[See common embeddings-generation use cases](../ai-integration/generating-embeddings/embeddings-generation_start#use-cases)
@@ -103,8 +106,8 @@ See common GenAI tasks use cases:
103
106
<Admonitiontype="note"title="">
104
107
<ColGridcolCount={3}>
105
108
<CardWithImagetitle="Start page"description="Continue to the embeddings generation Start page"url="../ai-integration/generating-embeddings/embeddings-generation_start"imgSrc={embedGenStartImage}imgAlt="imgAlt"ctaLabel="Read" />
106
-
<CardWithImagetitle="Overview"description="Enter the embeddings generation technical documentation"url="../ai-integration/generating-embeddings/overview"imgSrc={embedGenStartImage}imgAlt="imgAlt"ctaLabel="Read" />
107
-
<CardWithImagetitle="Generate Embeddings for AI Search with RavenDB and External Models"description="Read an in-depth article about embeddings generation"url="https://ravendb.net/articles/embeddings-generation-with-ravendb"imgSrc={embedGenStartImage}imgAlt="imgAlt"ctaLabel="Read" />
109
+
<CardWithImagetitle="Technical documentation"description="Enter the embeddings generation technical documentation"url="../ai-integration/generating-embeddings/embeddings-generation_start#technical-documentation"imgSrc={embedGenStartImage}imgAlt="imgAlt"ctaLabel="Read" />
110
+
<CardWithImagetitle="In-depth articles"description="Read in-depth articles about embeddings generation"url="../ai-integration/generating-embeddings/embeddings-generation_start#in-depth-articles"imgSrc={embedGenStartImage}imgAlt="imgAlt"ctaLabel="Read" />
108
111
</ColGrid>
109
112
</Admonition>
110
113
@@ -114,7 +117,7 @@ See common GenAI tasks use cases:
114
117
</ColGrid>
115
118
</Admonition>
116
119
117
-
<hr />
120
+
<br />
118
121
119
122
### Vector search
120
123
[Vector search](../ai-integration/vector-search/vector-search_start) operations let you find related content by comparing embeddings, e.g. to find texts by meaning or images by context.
@@ -135,8 +138,8 @@ See common vector search use cases:
135
138
<Admonitiontype="note"title="">
136
139
<ColGridcolCount={3}>
137
140
<CardWithImagetitle="Start page"description="Continue to the vector search Start page"url="../ai-integration/vector-search/vector-search_start"imgSrc={vectorSearchStartImage}imgAlt="imgAlt"ctaLabel="Read" />
138
-
<CardWithImagetitle="RavenDB as a Vector Database"description="Enter the vector search technical documentation"url="../ai-integration/vector-search/ravendb-as-vector-database"imgSrc={vectorSearchStartImage}imgAlt="imgAlt"ctaLabel="Read" />
139
-
<CardWithImagetitle="Using vector search with AI agents"description="Read an in-depth article about vector search"url="https://ayende.com/blog/203142-A/building-an-ai-agent-using-ravendb"imgSrc={vectorSearchStartImage}imgAlt="imgAlt"ctaLabel="Read" />
141
+
<CardWithImagetitle="Technical documentation"description="Enter the vector search technical documentation"url="../ai-integration/vector-search/vector-search_start#technical-documentation"imgSrc={vectorSearchStartImage}imgAlt="imgAlt"ctaLabel="Read" />
142
+
<CardWithImagetitle="In-depth articles"description="Read in-depth articles about vector search"url="../ai-integration/vector-search/vector-search_start#in-depth-articles"imgSrc={vectorSearchStartImage}imgAlt="imgAlt"ctaLabel="Read" />
GenAI tasks are [ongoing operations](../../studio/database/tasks/ongoing-tasks/general-info) that continuously monitor specified collections and process documents as they are added or modified.
22
21
- Similar to [ETL tasks](../../studio/database/tasks/ongoing-tasks/ravendb-etl-task), a GenAI task extracts content from documents. But instead of sending the content to another database, the task sends it to an AI model (like OpenAI) along with a guiding **prompt** and a **JSON schema** that defines the layout for the model's response.
23
22
- When the LLM responds, the GenAI task can use its response to, for example, update the source document with LLM-generated content, or create new documents in the database.
@@ -26,7 +25,6 @@ GenAI tasks are [ongoing operations](../../studio/database/tasks/ongoing-tasks/g
26
25
- You can easily create GenAI tasks using Studio or the client API.
27
26
When created via Studio, each step of their creation can be easily tested and validated before deployment.
28
27
-[See common GenAI tasks use cases](../../ai-integration/gen-ai-integration/gen-ai_start#use-cases)
29
-
</Admonition>
30
28
31
29
## Technical documentation
32
30
Use our technical documentation to learn more about GenAI tasks and how to create and manage them.
@@ -50,7 +48,7 @@ Once you're familiar with the basics of GenAI tasks, you can take a look at thes
50
48
## Videos
51
49
Learn how GenAI tasks help create reliable and effective AI-powered workflows.
52
50
53
-
<ColGridcolCount={2}>
51
+
<ColGridcolCount={1}>
54
52
<CardWithImageHorizontaltitle="Why are GenAI tasks so effective"description="Webinar with Oren Eini"url="https://www.youtube.com/watch?v=NgvyeHwwVjM"imgSrc="https://media.licdn.com/dms/image/v2/D4D10AQG81cXtiYRc2w/image-shrink_800/B4DZZYYLcTHwAk-/0/1745239456036?e=2147483647&v=beta&t=yQVz6ji4wD4reOTXtlPpERK0fdpr1f2VoG_SEV9x3lc"imgAlt="imgAlt"ctaLabel="Watch" />
### Create embeddings to enable AI-powered similarity search.
20
20
21
21
[Embeddings](https://en.wikipedia.org/wiki/Embedding_(machine_learning)) are numeric vectors that you can create for data (like a text or an image) to capture meanings, contexts, or relationships related to the data. You can then search the data by running intelligent queries over its embeddings using [vector search](../../ai-integration/vector-search/vector-search_start) to find content by semantic similarity rather than exact matches.
22
22
- RavenDB allows you to create embeddings using native [ongoing embeddings-generation tasks](../../ai-integration/generating-embeddings/embeddings-generation-task) that systematically process document collections and convert document fields (like texts or arrays) into embeddings. To create the embeddings, the tasks can use either an external AI model (such as OpenAI) or RavenDB's default embedding model.
23
-
- You can also create embeddings using external embeddings providers and store them in your database (e.g., to handle other content types like images), or avoid pre-generating embeddings and let vector search operations generate embeddings on-the-fly, while searching.
24
-
- Pre-generated embeddings and vector search operations can be used by other RavenDB AI features. For example, [GenAI tasks](../../ai-integration/gen-ai-integration/gen-ai_start) can use vector search to find documents and update them with LLM-generated content, or [AI agents](../../ai-integration/ai-agents/ai-agents_start) can use vector search to retrieve relevant data requested by the LLM.
23
+
- You can also create embeddings using external embeddings providers and store them in your database (e.g., to handle other content types such as images).
24
+
- You can avoid pre-generating embeddings, and let vector search operations generate embeddings on-the-fly, while searching.
25
+
- Embeddings can be used by other RavenDB AI features, e.g., [AI agents](../../ai-integration/ai-agents/ai-agents_start) can use vector search to retrieve relevant data requested by the LLM.
25
26
-[See common embeddings-generation use cases](../../ai-integration/generating-embeddings/embeddings-generation_start#use-cases)
26
-
</Admonition>
27
27
28
28
## Technical documentation
29
29
Use our technical documentation to learn about generating, storing, and using embeddings in RavenDB.
@@ -45,7 +45,7 @@ Learn more about embeddings generation and usage in RavenDB.
45
45
## Videos
46
46
Watch our online webinars to learn about embeddings generation and usage in RavenDB.
47
47
48
-
<ColGridcolCount={2}>
48
+
<ColGridcolCount={1}>
49
49
<CardWithImageHorizontaltitle="Take over the world with AI and RavenDB"description="Practical AI integration with Oren Eini"url="https://www.youtube.com/watch?v=7DhbgfH_rSE"imgSrc="https://media.licdn.com/dms/image/v2/D4D10AQG81cXtiYRc2w/image-shrink_800/B4DZZYYLcTHwAk-/0/1745239456036?e=2147483647&v=beta&t=yQVz6ji4wD4reOTXtlPpERK0fdpr1f2VoG_SEV9x3lc"imgAlt="imgAlt"ctaLabel="Watch" />
50
50
<CardWithImageHorizontaltitle="Vector search in RavenDB"description="The AI trend developers simply cannot ignore"url="https://www.youtube.com/watch?v=zZwid8LA-e4"imgSrc="https://media.licdn.com/dms/image/v2/D4D10AQG81cXtiYRc2w/image-shrink_800/B4DZZYYLcTHwAk-/0/1745239456036?e=2147483647&v=beta&t=yQVz6ji4wD4reOTXtlPpERK0fdpr1f2VoG_SEV9x3lc"imgAlt="imgAlt"ctaLabel="Watch" />
0 commit comments