Skip to content

Commit 49cd751

Browse files
reebhubmateuszbartosik
authored andcommitted
AI start pages: edited by review comments
1 parent 349f87e commit 49cd751

File tree

5 files changed

+38
-38
lines changed

5 files changed

+38
-38
lines changed

docs/ai-integration/ai-agents/ai-agents_start.mdx

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -14,14 +14,14 @@ import aiAgentsStartOvImage from "./assets/ai-agents_start_ovImage.png";
1414
import aiAgentsStartApiImage from "./assets/ai-agents_start_apiImage.png";
1515
import aiAgentsStartStudioImage from "./assets/ai-agents_start_studioImage.png";
1616

17-
# AI Agents: Start
18-
<Admonition type="note" title="">
17+
# AI Agents
18+
### Create conversational AI proxies for your applications.
1919

2020
AI agents are server-side components that act as secure proxies between RavenDB clients and AI models. They can be easily customized to handle specific client needs, tasks or workflows, such as answering questions, performing data analysis, or automating processes.
2121
- Using AI agents frees developers from the need to manage the communication with the AI model in their code, and enables rapid integration of AI capabilities into their applications.
22-
- An agent receives requests from clients and maintains continuous conversations with AI models to fulfill them. During the conversation, the agent can enable the model to securely query a RavenDB database and request the client to perform actions.
22+
- An agent receives requests from clients and maintains continuous conversations with AI models to fulfill them. During the conversation, the agent can enable the model to securely query a RavenDB database (e.g., fetch recent orders or run vector searches on products) and request the client to perform actions (like sending emails or creating new orders).
23+
- You can use AI agents to quickly create an intelligent, actionable, conversational interface for your applications, in a way that abstracts much of the complexity of AI integration.
2324
- [See common AI agents use cases](../../ai-integration/ai-agents/ai-agents_start#use-cases)
24-
</Admonition>
2525

2626
## Technical documentation
2727
Our technical documentation explains in detail what AI agents are and how to define and use them.
@@ -43,7 +43,7 @@ Once you get acquainted with AI agents, expand your expertise with a comprehensi
4343
## Videos
4444
Watch our webinars to see AI agents in action and learn practical implementation techniques.
4545

46-
<ColGrid colCount={2}>
46+
<ColGrid colCount={1}>
4747
<CardWithImageHorizontal title="How to run AI agents natively in your database" description="Webinar with Oren Eini" url="https://www.youtube.com/watch?v=A17GSLGN-cQ" imgSrc="https://media.licdn.com/dms/image/v2/D4D10AQG81cXtiYRc2w/image-shrink_800/B4DZZYYLcTHwAk-/0/1745239456036?e=2147483647&v=beta&t=yQVz6ji4wD4reOTXtlPpERK0fdpr1f2VoG_SEV9x3lc" imgAlt="imgAlt" ctaLabel="Watch" />
4848
<CardWithImageHorizontal title="How to create powerful and secure AI agents with RavenDB" description="Webinar with Oren Eini" url="https://www.youtube.com/watch?v=jzUxL9P17G4" imgSrc="https://media.licdn.com/dms/image/v2/D4D10AQG81cXtiYRc2w/image-shrink_800/B4DZZYYLcTHwAk-/0/1745239456036?e=2147483647&v=beta&t=yQVz6ji4wD4reOTXtlPpERK0fdpr1f2VoG_SEV9x3lc" imgAlt="imgAlt" ctaLabel="Watch" />
4949
</ColGrid>

docs/ai-integration/ai-integration_start.mdx

Lines changed: 21 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -16,18 +16,20 @@ import genAiStartImage from "./assets/ai-start_gen-ai_light.png";
1616
import aiAgentsStartImage from "./assets/ai-start_ai-agents_light.png";
1717

1818

19-
# AI Integration: Start
19+
# AI Integration
20+
### Use native AI features to create intelligent database applications.
2021

2122
RavenDB is equipped with a set of powerful native AI features that can
2223
be used independently or in conjunction with each other, allowing you to easily integrate advanced AI capabilities into your applications.
2324
These features include [AI agents](../ai-integration/ai-integration_start#ai-agents), [GenAI tasks](../ai-integration/ai-integration_start#genai-tasks), [Embeddings generation](../ai-integration/ai-integration_start#embeddings-generation), and [Vector search](../ai-integration/ai-integration_start#vector-search).
2425

25-
<hr />
26+
<br />
2627

2728
### AI agents
2829
AI agents are server-side components that act as secure proxies between RavenDB clients and AI models. They can be easily customized to handle specific client needs, tasks or workflows, such as answering questions, performing data analysis, or automating processes.
2930
- Using AI agents frees developers from the need to manage the communication with the AI model in their code, and enables rapid integration of AI capabilities into their applications.
30-
- An agent receives requests from clients and maintains continuous conversations with AI models to fulfill them. During the conversation, the agent can enable the model to securely query a RavenDB database and request the client to perform actions.
31+
- An agent receives requests from clients and maintains continuous conversations with AI models to fulfill them. During the conversation, the agent can enable the model to securely query a RavenDB database (e.g., fetch recent orders or run vector searches on products) and request the client to perform actions (like sending emails or creating new orders).
32+
- You can use AI agents to quickly create an intelligent, actionable, conversational interface for your applications, in a way that abstracts much of the complexity of AI integration.
3133

3234
<Admonition type="note" title="">
3335
See common AI agents use cases:
@@ -42,8 +44,8 @@ See common AI agents use cases:
4244
<Admonition type="note" title="">
4345
<ColGrid colCount={3}>
4446
<CardWithImage title="Start page" description="Continue to the AI agents Start page" url="../ai-integration/ai-agents/ai-agents_start" imgSrc={aiAgentsStartImage} imgAlt="imgAlt" ctaLabel="Read" />
45-
<CardWithImage title="Overview" description="Enter the AI agents technical documentation" url="../ai-integration/ai-agents/ai-agents_overview" imgSrc={aiAgentsStartImage} imgAlt="imgAlt" ctaLabel="Read" />
46-
<CardWithImage title="Practical Look at AI Agents with RavenDB" description="Read an in-depth article about AI agents" url="https://ravendb.net/articles/practical-look-at-ai-agents-with-ravendb" imgSrc={aiAgentsStartImage} imgAlt="imgAlt" ctaLabel="Read" />
47+
<CardWithImage title="Technical documentation" description="Enter the AI agents technical documentation" url="../ai-integration/ai-agents/ai-agents_start#technical-documentation" imgSrc={aiAgentsStartImage} imgAlt="imgAlt" ctaLabel="Read" />
48+
<CardWithImage title="In-depth articles" description="Read in-depth article about AI agents" url="../ai-integration/ai-agents/ai-agents_start#in-depth-articles" imgSrc={aiAgentsStartImage} imgAlt="imgAlt" ctaLabel="Read" />
4749
</ColGrid>
4850
</Admonition>
4951

@@ -53,7 +55,7 @@ See common AI agents use cases:
5355
</ColGrid>
5456
</Admonition>
5557

56-
<hr />
58+
<br />
5759

5860
### GenAI tasks
5961
GenAI tasks are [ongoing operations](../studio/database/tasks/ongoing-tasks/general-info) that continuously monitor specified collections and process documents as they are added or modified.
@@ -77,8 +79,8 @@ See common GenAI tasks use cases:
7779
<Admonition type="note" title="">
7880
<ColGrid colCount={3}>
7981
<CardWithImage title="Start page" description="Continue to the GenAI tasks Start page" url="../ai-integration/gen-ai-integration/gen-ai_start" imgSrc={genAiStartImage} imgAlt="imgAlt" ctaLabel="Read" />
80-
<CardWithImage title="Overview" description="Enter the GenAI tasks technical documentation" url="../ai-integration/gen-ai-integration/gen-ai-overview" imgSrc={genAiStartImage} imgAlt="imgAlt" ctaLabel="Read" />
81-
<CardWithImage title="RavenDB GenAI Deep Dive" description="Read an in-depth article about GenAI" url="https://ravendb.net/articles/ravendb-genai-deep-dive" imgSrc={genAiStartImage} imgAlt="imgAlt" ctaLabel="Read" />
82+
<CardWithImage title="Technical documentation" description="Enter the GenAI tasks technical documentation" url="../ai-integration/gen-ai-integration/gen-ai_start#technical-documentation" imgSrc={genAiStartImage} imgAlt="imgAlt" ctaLabel="Read" />
83+
<CardWithImage title="In-depth articles" description="Read in-depth articles about GenAI" url="../ai-integration/gen-ai-integration/gen-ai_start#in-depth-articles" imgSrc={genAiStartImage} imgAlt="imgAlt" ctaLabel="Read" />
8284
</ColGrid>
8385
</Admonition>
8486

@@ -88,13 +90,14 @@ See common GenAI tasks use cases:
8890
</ColGrid>
8991
</Admonition>
9092

91-
<hr />
93+
<br />
9294

9395
### Embeddings generation
94-
[Embeddings](https://en.wikipedia.org/wiki/Embedding_(machine_learning)) are numeric vectors that you can create for data (like a text or an image) to capture meanings, contexts, or relationships related to the data. You can then search the data by running intelligent queries over its embeddings using [vector search](../ai-integration/vector-search/vector-search_start) to find content by semantic similarity rather than exact matches.
95-
- RavenDB allows you to create embeddings using native [ongoing embeddings-generation tasks](../ai-integration/generating-embeddings/embeddings-generation-task) that systematically process document collections and convert document fields (like texts or arrays) into embeddings. To create the embeddings, the tasks can use either an external AI model (such as OpenAI) or RavenDB's default embedding model.
96-
- You can also create embeddings using external embeddings providers and store them in your database (e.g., to handle other content types like images), or avoid pre-generating embeddings and let vector search operations generate embeddings on-the-fly, while searching.
97-
- Pre-generated embeddings and vector search operations can be used by other RavenDB AI features. For example, [GenAI tasks](../ai-integration/gen-ai-integration/gen-ai_start) can use vector search to find documents and update them with LLM-generated content, or [AI agents](../ai-integration/ai-agents/ai-agents_start) can use vector search to retrieve relevant data requested by the LLM.
96+
[Embeddings](https://en.wikipedia.org/wiki/Embedding_(machine_learning)) are numeric vectors that you can create for data (like a text or an image) to capture meanings, contexts, or relationships related to the data. You can then search the data by running intelligent queries over its embeddings using [vector search](../../ai-integration/vector-search/vector-search_start) to find content by semantic similarity rather than exact matches.
97+
- RavenDB allows you to create embeddings using native [ongoing embeddings-generation tasks](../../ai-integration/generating-embeddings/embeddings-generation-task) that systematically process document collections and convert document fields (like texts or arrays) into embeddings. To create the embeddings, the tasks can use either an external AI model (such as OpenAI) or RavenDB's default embedding model.
98+
- You can also create embeddings using external embeddings providers and store them in your database (e.g., to handle other content types such as images).
99+
- You can avoid pre-generating embeddings, and let vector search operations generate embeddings on-the-fly, while searching.
100+
- Embeddings can be used by other RavenDB AI features, e.g., [AI agents](../../ai-integration/ai-agents/ai-agents_start) can use vector search to retrieve relevant data requested by the LLM.
98101

99102
<Admonition type="note" title="">
100103
[See common embeddings-generation use cases](../ai-integration/generating-embeddings/embeddings-generation_start#use-cases)
@@ -103,8 +106,8 @@ See common GenAI tasks use cases:
103106
<Admonition type="note" title="">
104107
<ColGrid colCount={3}>
105108
<CardWithImage title="Start page" description="Continue to the embeddings generation Start page" url="../ai-integration/generating-embeddings/embeddings-generation_start" imgSrc={embedGenStartImage} imgAlt="imgAlt" ctaLabel="Read" />
106-
<CardWithImage title="Overview" description="Enter the embeddings generation technical documentation" url="../ai-integration/generating-embeddings/overview" imgSrc={embedGenStartImage} imgAlt="imgAlt" ctaLabel="Read" />
107-
<CardWithImage title="Generate Embeddings for AI Search with RavenDB and External Models" description="Read an in-depth article about embeddings generation" url="https://ravendb.net/articles/embeddings-generation-with-ravendb" imgSrc={embedGenStartImage} imgAlt="imgAlt" ctaLabel="Read" />
109+
<CardWithImage title="Technical documentation" description="Enter the embeddings generation technical documentation" url="../ai-integration/generating-embeddings/embeddings-generation_start#technical-documentation" imgSrc={embedGenStartImage} imgAlt="imgAlt" ctaLabel="Read" />
110+
<CardWithImage title="In-depth articles" description="Read in-depth articles about embeddings generation" url="../ai-integration/generating-embeddings/embeddings-generation_start#in-depth-articles" imgSrc={embedGenStartImage} imgAlt="imgAlt" ctaLabel="Read" />
108111
</ColGrid>
109112
</Admonition>
110113

@@ -114,7 +117,7 @@ See common GenAI tasks use cases:
114117
</ColGrid>
115118
</Admonition>
116119

117-
<hr />
120+
<br />
118121

119122
### Vector search
120123
[Vector search](../ai-integration/vector-search/vector-search_start) operations let you find related content by comparing embeddings, e.g. to find texts by meaning or images by context.
@@ -135,8 +138,8 @@ See common vector search use cases:
135138
<Admonition type="note" title="">
136139
<ColGrid colCount={3}>
137140
<CardWithImage title="Start page" description="Continue to the vector search Start page" url="../ai-integration/vector-search/vector-search_start" imgSrc={vectorSearchStartImage} imgAlt="imgAlt" ctaLabel="Read" />
138-
<CardWithImage title="RavenDB as a Vector Database" description="Enter the vector search technical documentation" url="../ai-integration/vector-search/ravendb-as-vector-database" imgSrc={vectorSearchStartImage} imgAlt="imgAlt" ctaLabel="Read" />
139-
<CardWithImage title="Using vector search with AI agents" description="Read an in-depth article about vector search" url="https://ayende.com/blog/203142-A/building-an-ai-agent-using-ravendb" imgSrc={vectorSearchStartImage} imgAlt="imgAlt" ctaLabel="Read" />
141+
<CardWithImage title="Technical documentation" description="Enter the vector search technical documentation" url="../ai-integration/vector-search/vector-search_start#technical-documentation" imgSrc={vectorSearchStartImage} imgAlt="imgAlt" ctaLabel="Read" />
142+
<CardWithImage title="In-depth articles" description="Read in-depth articles about vector search" url="../ai-integration/vector-search/vector-search_start#in-depth-articles" imgSrc={vectorSearchStartImage} imgAlt="imgAlt" ctaLabel="Read" />
140143
</ColGrid>
141144
</Admonition>
142145

docs/ai-integration/gen-ai-integration/gen-ai_start.mdx

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -14,10 +14,9 @@ import genAiStartOvImage from "./assets/gen-ai_start_ov-image.png";
1414
import genAiStartApiImage from "./assets/gen-ai_start_api-image.png";
1515
import genAiStartStudioImage from "./assets/gen-ai_start_studio-image.png";
1616

17-
# GenAI tasks: Start
18-
<Admonition type="note" title="">
17+
# GenAI tasks
18+
### Build intelligent workflows with GenAI tasks.
1919

20-
### GenAI tasks
2120
GenAI tasks are [ongoing operations](../../studio/database/tasks/ongoing-tasks/general-info) that continuously monitor specified collections and process documents as they are added or modified.
2221
- Similar to [ETL tasks](../../studio/database/tasks/ongoing-tasks/ravendb-etl-task), a GenAI task extracts content from documents. But instead of sending the content to another database, the task sends it to an AI model (like OpenAI) along with a guiding **prompt** and a **JSON schema** that defines the layout for the model's response.
2322
- When the LLM responds, the GenAI task can use its response to, for example, update the source document with LLM-generated content, or create new documents in the database.
@@ -26,7 +25,6 @@ GenAI tasks are [ongoing operations](../../studio/database/tasks/ongoing-tasks/g
2625
- You can easily create GenAI tasks using Studio or the client API.
2726
When created via Studio, each step of their creation can be easily tested and validated before deployment.
2827
- [See common GenAI tasks use cases](../../ai-integration/gen-ai-integration/gen-ai_start#use-cases)
29-
</Admonition>
3028

3129
## Technical documentation
3230
Use our technical documentation to learn more about GenAI tasks and how to create and manage them.
@@ -50,7 +48,7 @@ Once you're familiar with the basics of GenAI tasks, you can take a look at thes
5048
## Videos
5149
Learn how GenAI tasks help create reliable and effective AI-powered workflows.
5250

53-
<ColGrid colCount={2}>
51+
<ColGrid colCount={1}>
5452
<CardWithImageHorizontal title="Why are GenAI tasks so effective" description="Webinar with Oren Eini" url="https://www.youtube.com/watch?v=NgvyeHwwVjM" imgSrc="https://media.licdn.com/dms/image/v2/D4D10AQG81cXtiYRc2w/image-shrink_800/B4DZZYYLcTHwAk-/0/1745239456036?e=2147483647&v=beta&t=yQVz6ji4wD4reOTXtlPpERK0fdpr1f2VoG_SEV9x3lc" imgAlt="imgAlt" ctaLabel="Watch" />
5553
</ColGrid>
5654

docs/ai-integration/generating-embeddings/embeddings-generation_start.mdx

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -15,15 +15,15 @@ import embedGenStartApiImage from "./assets/embeddings-generation_start_api-imag
1515
import embedGenStartStudioImage from "./assets/embeddings-generation_start_studio-image.png";
1616

1717

18-
# Generating embeddings: Start
19-
<Admonition type="note" title="">
18+
# Generating embeddings
19+
### Create embeddings to enable AI-powered similarity search.
2020

2121
[Embeddings](https://en.wikipedia.org/wiki/Embedding_(machine_learning)) are numeric vectors that you can create for data (like a text or an image) to capture meanings, contexts, or relationships related to the data. You can then search the data by running intelligent queries over its embeddings using [vector search](../../ai-integration/vector-search/vector-search_start) to find content by semantic similarity rather than exact matches.
2222
- RavenDB allows you to create embeddings using native [ongoing embeddings-generation tasks](../../ai-integration/generating-embeddings/embeddings-generation-task) that systematically process document collections and convert document fields (like texts or arrays) into embeddings. To create the embeddings, the tasks can use either an external AI model (such as OpenAI) or RavenDB's default embedding model.
23-
- You can also create embeddings using external embeddings providers and store them in your database (e.g., to handle other content types like images), or avoid pre-generating embeddings and let vector search operations generate embeddings on-the-fly, while searching.
24-
- Pre-generated embeddings and vector search operations can be used by other RavenDB AI features. For example, [GenAI tasks](../../ai-integration/gen-ai-integration/gen-ai_start) can use vector search to find documents and update them with LLM-generated content, or [AI agents](../../ai-integration/ai-agents/ai-agents_start) can use vector search to retrieve relevant data requested by the LLM.
23+
- You can also create embeddings using external embeddings providers and store them in your database (e.g., to handle other content types such as images).
24+
- You can avoid pre-generating embeddings, and let vector search operations generate embeddings on-the-fly, while searching.
25+
- Embeddings can be used by other RavenDB AI features, e.g., [AI agents](../../ai-integration/ai-agents/ai-agents_start) can use vector search to retrieve relevant data requested by the LLM.
2526
- [See common embeddings-generation use cases](../../ai-integration/generating-embeddings/embeddings-generation_start#use-cases)
26-
</Admonition>
2727

2828
## Technical documentation
2929
Use our technical documentation to learn about generating, storing, and using embeddings in RavenDB.
@@ -45,7 +45,7 @@ Learn more about embeddings generation and usage in RavenDB.
4545
## Videos
4646
Watch our online webinars to learn about embeddings generation and usage in RavenDB.
4747

48-
<ColGrid colCount={2}>
48+
<ColGrid colCount={1}>
4949
<CardWithImageHorizontal title="Take over the world with AI and RavenDB" description="Practical AI integration with Oren Eini" url="https://www.youtube.com/watch?v=7DhbgfH_rSE" imgSrc="https://media.licdn.com/dms/image/v2/D4D10AQG81cXtiYRc2w/image-shrink_800/B4DZZYYLcTHwAk-/0/1745239456036?e=2147483647&v=beta&t=yQVz6ji4wD4reOTXtlPpERK0fdpr1f2VoG_SEV9x3lc" imgAlt="imgAlt" ctaLabel="Watch" />
5050
<CardWithImageHorizontal title="Vector search in RavenDB" description="The AI trend developers simply cannot ignore" url="https://www.youtube.com/watch?v=zZwid8LA-e4" imgSrc="https://media.licdn.com/dms/image/v2/D4D10AQG81cXtiYRc2w/image-shrink_800/B4DZZYYLcTHwAk-/0/1745239456036?e=2147483647&v=beta&t=yQVz6ji4wD4reOTXtlPpERK0fdpr1f2VoG_SEV9x3lc" imgAlt="imgAlt" ctaLabel="Watch" />
5151
</ColGrid>

0 commit comments

Comments
 (0)