@@ -730,39 +730,18 @@ Return self as the query object.
730730
731731## HybridQuery
732732
733- ### ` class HybridQuery(text, text_field_name, vector, vector_field_name, text_scorer='BM25STD', filter_expression=None, alpha=0.7, dtype='float32', num_results=10, return_fields=None, stopwords='english', dialect=2 ) `
733+ ### ` class HybridQuery(*args, **kwargs ) `
734734
735- Bases: ` AggregationQuery `
736-
737- HybridQuery combines text and vector search in Redis.
738- It allows you to perform a hybrid search using both text and vector similarity.
739- It scores documents based on a weighted combination of text and vector similarity.
740-
741- ``` python
742- from redisvl.query import HybridQuery
743- from redisvl.index import SearchIndex
735+ Bases: ` AggregateHybridQuery `
744736
745- index = SearchIndex.from_yaml( " path/to/index.yaml " )
737+ Backward compatibility wrapper for AggregateHybridQuery.
746738
747- query = HybridQuery(
748- text = " example text" ,
749- text_field_name = " text_field" ,
750- vector = [0.1 , 0.2 , 0.3 ],
751- vector_field_name = " vector_field" ,
752- text_scorer = " BM25STD" ,
753- filter_expression = None ,
754- alpha = 0.7 ,
755- dtype = " float32" ,
756- num_results = 10 ,
757- return_fields = [" field1" , " field2" ],
758- stopwords = " english" ,
759- dialect = 2 ,
760- )
761-
762- results = index.query(query)
763- ```
739+ #### ` Deprecated `
740+ Deprecated since version HybridQuery: is a backward compatibility wrapper around AggregateHybridQuery
741+ and will eventually be replaced with a new hybrid query implementation.
742+ To maintain current functionality please use AggregateHybridQuery directly.",
764743
765- Instantiates a HybridQuery object.
744+ Instantiates a AggregateHybridQuery object.
766745
767746* ** Parameters:**
768747 * ** text** (* str* ) – The text to search for.
@@ -785,6 +764,9 @@ Instantiates a HybridQuery object.
785764 set, or tuple of strings is provided then those will be used as stopwords.
786765 Defaults to "english". if set to "None" then no stopwords will be removed.
787766 * ** dialect** (* int* * ,* * optional* ) – The Redis dialect version. Defaults to 2.
767+ * ** text_weights** (* Optional* * [ * * Dict* * [ * * str* * ,* * float* * ] * * ] * ) – The importance weighting of individual words
768+ within the query text. Defaults to None, as no modifications will be made to the
769+ text_scorer score.
788770* ** Raises:**
789771 * ** ValueError** – If the text string is empty, or if the text string becomes empty after
790772 stopwords are removed.
@@ -922,6 +904,14 @@ Default is TFIDF.
922904* ** Return type:**
923905 * AggregateRequest*
924906
907+ #### ` set_text_weights(weights) `
908+
909+ Set or update the text weights for the query.
910+
911+ * ** Parameters:**
912+ * ** text_weights** – Dictionary of word: weight mappings
913+ * ** weights** (* Dict* * [ * * str* * ,* * float* * ] * )
914+
925915#### ` sort_by(*fields, **kwargs) `
926916
927917Indicate how the results should be sorted. This can also be used for
@@ -975,9 +965,18 @@ Return the stopwords used in the query.
975965:returns: The stopwords used in the query.
976966:rtype: Set[ str]
977967
968+ #### ` property text_weights: Dict[str, float] `
969+
970+ Get the text weights.
971+
972+ * ** Returns:**
973+ weight mappings.
974+ * ** Return type:**
975+ Dictionary of word
976+
978977## TextQuery
979978
980- ### ` class TextQuery(text, text_field_name, text_scorer='BM25STD', filter_expression=None, return_fields=None, num_results=10, return_score=True, dialect=2, sort_by=None, in_order=False, params=None, stopwords='english') `
979+ ### ` class TextQuery(text, text_field_name, text_scorer='BM25STD', filter_expression=None, return_fields=None, num_results=10, return_score=True, dialect=2, sort_by=None, in_order=False, params=None, stopwords='english', text_weights=None ) `
981980
982981Bases: ` BaseQuery `
983982
@@ -1038,6 +1037,9 @@ A query for running a full text search, along with an optional filter expression
10381037 a default set of stopwords for that language will be used. Users may specify
10391038 their own stop words by providing a List or Set of words. if set to None,
10401039 then no words will be removed. Defaults to ‘english’.
1040+ * ** text_weights** (* Optional* * [ * * Dict* * [ * * str* * ,* * float* * ] * * ] * ) – The importance weighting of individual words
1041+ within the query text. Defaults to None, as no modifications will be made to the
1042+ text_scorer score.
10411043* ** Raises:**
10421044 * ** ValueError** – if stopwords language string cannot be loaded.
10431045 * ** TypeError** – If stopwords is not a valid iterable set of strings.
@@ -1184,6 +1186,14 @@ Set the filter expression for the query.
11841186* ** Raises:**
11851187 ** TypeError** – If filter_expression is not a valid FilterExpression or string.
11861188
1189+ #### ` set_text_weights(weights) `
1190+
1191+ Set or update the text weights for the query.
1192+
1193+ * ** Parameters:**
1194+ * ** text_weights** – Dictionary of word: weight mappings
1195+ * ** weights** (* Dict* * [ * * str* * ,* * float* * ] * )
1196+
11871197#### ` slop(slop) `
11881198
11891199Allow a maximum of N intervening non matched terms between
@@ -1289,6 +1299,15 @@ Get the text field name(s) - for backward compatibility.
12891299 Either a single field name string (if only one field with weight 1.0)
12901300 or a dictionary of field: weight mappings.
12911301
1302+ #### ` property text_weights: Dict[str, float] `
1303+
1304+ Get the text weights.
1305+
1306+ * ** Returns:**
1307+ weight mappings.
1308+ * ** Return type:**
1309+ Dictionary of word
1310+
12921311## FilterQuery
12931312
12941313### ` class FilterQuery(filter_expression=None, return_fields=None, num_results=10, dialect=2, sort_by=None, in_order=False, params=None) `
@@ -1797,7 +1816,7 @@ Return self as the query object.
17971816
17981817Bases: ` AggregationQuery `
17991818
1800- MultiVectorQuery allows for search over multiple vector fields in a document simulateously .
1819+ MultiVectorQuery allows for search over multiple vector fields in a document simultaneously .
18011820The final score will be a weighted combination of the individual vector similarity scores
18021821following the formula:
18031822
0 commit comments