|
3 | 3 |
|
4 | 4 | In this guide, we will explore more complex queries that can be performed with RedisVL. |
5 | 5 |
|
6 | | -== Hybrid Queries |
| 6 | +== Hybrid Search: Text + Vector |
7 | 7 |
|
8 | | -Hybrid queries are queries that combine multiple types of filters. For example, you may want to search for a user that is a certain age, has a certain job, and is within a certain distance of a location. This is a hybrid query that combines numeric, tag, and geographic filters. |
| 8 | +RedisVL supports true hybrid search that combines both text and vector similarity in a single query using the `HybridQuery` class. This is different from filtered vector search - it actually scores documents based on a weighted combination of both text relevance and vector similarity. |
| 9 | + |
| 10 | +=== Basic HybridQuery |
| 11 | + |
| 12 | +A `HybridQuery` combines full-text search with vector similarity search: |
| 13 | + |
| 14 | +[source,java] |
| 15 | +---- |
| 16 | +import com.redis.vl.query.HybridQuery; |
| 17 | +
|
| 18 | +// Create a hybrid query combining text and vector search |
| 19 | +HybridQuery query = HybridQuery.builder() |
| 20 | + .text("medical professional with expertise") |
| 21 | + .textFieldName("description") |
| 22 | + .vector(queryVector) |
| 23 | + .vectorFieldName("embedding") |
| 24 | + .numResults(10) |
| 25 | + .build(); |
| 26 | +
|
| 27 | +List<Map<String, Object>> results = index.query(query); |
| 28 | +---- |
| 29 | + |
| 30 | +The results are scored using: |
| 31 | +``` |
| 32 | +hybrid_score = (alpha) * vector_similarity + (1-alpha) * text_score |
| 33 | +``` |
| 34 | + |
| 35 | +Where `alpha` (default 0.7) controls the balance between vector and text similarity. |
| 36 | + |
| 37 | +=== Adjusting the Alpha Parameter |
| 38 | + |
| 39 | +Control the balance between text and vector similarity: |
| 40 | + |
| 41 | +[source,java] |
| 42 | +---- |
| 43 | +// Favor vector similarity (alpha = 0.9) |
| 44 | +HybridQuery vectorFocused = HybridQuery.builder() |
| 45 | + .text("search terms") |
| 46 | + .textFieldName("description") |
| 47 | + .vector(queryVector) |
| 48 | + .vectorFieldName("embedding") |
| 49 | + .alpha(0.9f) // 90% vector, 10% text |
| 50 | + .build(); |
| 51 | +
|
| 52 | +// Balanced approach (alpha = 0.5) |
| 53 | +HybridQuery balanced = HybridQuery.builder() |
| 54 | + .text("search terms") |
| 55 | + .textFieldName("description") |
| 56 | + .vector(queryVector) |
| 57 | + .vectorFieldName("embedding") |
| 58 | + .alpha(0.5f) // 50% vector, 50% text |
| 59 | + .build(); |
| 60 | +
|
| 61 | +// Favor text relevance (alpha = 0.3) |
| 62 | +HybridQuery textFocused = HybridQuery.builder() |
| 63 | + .text("search terms") |
| 64 | + .textFieldName("description") |
| 65 | + .vector(queryVector) |
| 66 | + .vectorFieldName("embedding") |
| 67 | + .alpha(0.3f) // 30% vector, 70% text |
| 68 | + .build(); |
| 69 | +---- |
| 70 | + |
| 71 | +=== Adding Filters to HybridQuery |
| 72 | + |
| 73 | +Filter hybrid search results using either Filter objects or raw Redis query strings: |
| 74 | + |
| 75 | +==== Using Filter Objects |
| 76 | + |
| 77 | +[source,java] |
| 78 | +---- |
| 79 | +import com.redis.vl.query.Filter; |
| 80 | +
|
| 81 | +// Create filters |
| 82 | +Filter filter = Filter.and( |
| 83 | + Filter.tag("category", "technology"), |
| 84 | + Filter.numeric("rating").gte(4.0) |
| 85 | +); |
| 86 | +
|
| 87 | +// Apply to hybrid query |
| 88 | +HybridQuery query = HybridQuery.builder() |
| 89 | + .text("artificial intelligence") |
| 90 | + .textFieldName("description") |
| 91 | + .vector(queryVector) |
| 92 | + .vectorFieldName("embedding") |
| 93 | + .filterExpression(filter) |
| 94 | + .build(); |
| 95 | +---- |
| 96 | + |
| 97 | +==== Using String Filter Expressions (New in v0.0.2) |
| 98 | + |
| 99 | +For advanced use cases, you can pass raw Redis filter query strings: |
| 100 | + |
| 101 | +[source,java] |
| 102 | +---- |
| 103 | +// Use raw Redis query syntax |
| 104 | +String customFilter = "@category:{tech|science|engineering} @rating:[4.0 +inf]"; |
| 105 | +
|
| 106 | +HybridQuery query = HybridQuery.builder() |
| 107 | + .text("machine learning") |
| 108 | + .textFieldName("description") |
| 109 | + .vector(queryVector) |
| 110 | + .vectorFieldName("embedding") |
| 111 | + .filterExpression(customFilter) // String filter! |
| 112 | + .build(); |
| 113 | +---- |
| 114 | + |
| 115 | +This is useful when: |
| 116 | + |
| 117 | +* You need Redis query syntax not yet supported by Filter objects |
| 118 | +* You're migrating from raw Redis queries |
| 119 | +* You want direct control over the query syntax |
| 120 | + |
| 121 | +=== Custom Stopwords |
| 122 | + |
| 123 | +Control which words are filtered from the text query: |
| 124 | + |
| 125 | +[source,java] |
| 126 | +---- |
| 127 | +import java.util.Set; |
| 128 | +
|
| 129 | +// Use custom stopwords |
| 130 | +Set<String> customStopwords = Set.of("the", "a", "an", "to"); |
| 131 | +
|
| 132 | +HybridQuery query = HybridQuery.builder() |
| 133 | + .text("the quick brown fox") |
| 134 | + .textFieldName("description") |
| 135 | + .vector(queryVector) |
| 136 | + .vectorFieldName("embedding") |
| 137 | + .stopwords(customStopwords) |
| 138 | + .build(); |
| 139 | +---- |
| 140 | + |
| 141 | +=== Complete HybridQuery Example |
| 142 | + |
| 143 | +[source,java] |
| 144 | +---- |
| 145 | +import com.redis.vl.index.SearchIndex; |
| 146 | +import com.redis.vl.schema.IndexSchema; |
| 147 | +import com.redis.vl.query.HybridQuery; |
| 148 | +import com.redis.vl.query.Filter; |
| 149 | +
|
| 150 | +// Define schema with text and vector fields |
| 151 | +String schemaYaml = """ |
| 152 | + version: '0.1.0' |
| 153 | + index: |
| 154 | + name: articles-index |
| 155 | + prefix: article |
| 156 | + storage_type: hash |
| 157 | + fields: |
| 158 | + - name: title |
| 159 | + type: text |
| 160 | + - name: content |
| 161 | + type: text |
| 162 | + - name: category |
| 163 | + type: tag |
| 164 | + - name: rating |
| 165 | + type: numeric |
| 166 | + - name: embedding |
| 167 | + type: vector |
| 168 | + attrs: |
| 169 | + dims: 384 |
| 170 | + distance_metric: cosine |
| 171 | + algorithm: flat |
| 172 | + datatype: float32 |
| 173 | + """; |
| 174 | +
|
| 175 | +IndexSchema schema = IndexSchema.fromYaml(schemaYaml); |
| 176 | +SearchIndex index = new SearchIndex(schema, jedis); |
| 177 | +index.create(true); |
| 178 | +
|
| 179 | +// Perform hybrid search with filter |
| 180 | +Filter filter = Filter.and( |
| 181 | + Filter.tag("category", "technology"), |
| 182 | + Filter.numeric("rating").gte(4.0) |
| 183 | +); |
| 184 | +
|
| 185 | +HybridQuery query = HybridQuery.builder() |
| 186 | + .text("machine learning artificial intelligence") |
| 187 | + .textFieldName("content") |
| 188 | + .vector(queryVector) // Your embedding vector |
| 189 | + .vectorFieldName("embedding") |
| 190 | + .filterExpression(filter) |
| 191 | + .alpha(0.7f) // 70% vector, 30% text |
| 192 | + .numResults(10) |
| 193 | + .returnFields(List.of("title", "category", "rating")) |
| 194 | + .build(); |
| 195 | +
|
| 196 | +List<Map<String, Object>> results = index.query(query); |
| 197 | +
|
| 198 | +// Results are sorted by hybrid_score (descending) |
| 199 | +for (Map<String, Object> result : results) { |
| 200 | + System.out.println("Title: " + result.get("title")); |
| 201 | + System.out.println("Score: " + result.get("hybrid_score")); |
| 202 | + System.out.println("---"); |
| 203 | +} |
| 204 | +---- |
| 205 | + |
| 206 | +== Filtered Vector Search |
| 207 | + |
| 208 | +Filtered vector search is different from hybrid search - it applies filters before or after vector search, but doesn't combine text and vector scoring. For filtered vector queries, see <<Pre-Filtering vs Post-Filtering>>. |
9 | 209 |
|
10 | 210 | == Filter Types |
11 | 211 |
|
|
0 commit comments