@@ -1090,17 +1090,37 @@ Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to comp
10901090No hints provided...
10911091
10921092< a78
1093+ P0 = np.random.uniform(-10,10,(10,2))
1094+ P1 = np.random.uniform(-10,10,(10,2))
1095+ p = np.random.uniform(-10,10,( 1,2))
1096+
1097+ def distance(P0,P1,p):
1098+ '''
1099+ Author: Hemanth Pasupuleti
1100+ Reference: https://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
1101+
1102+ ---- Explainable solution - Slightly Faster as number of lines scale up exponentially ----
1103+ '''
1104+ v = P1- P0 # Shape: (n_lines,2), Compute: [(x2-x1) (y2-y1)]
1105+ v[:,[0,1]] = v[:,[1,0]] # Shape: (n_lines,2), Swap along axis to Compute: [(y2-y1) (x2-x1)]
1106+ v[:,1]*=-1 # Shape: (n_lines,2), Compute: [(y2-y1) -(x2-x1)]
1107+ norm = np.linalg.norm(v,axis=1) # Shape: (n_lines,), Compute: sqrt((x2-x1)**2 + (y2-y1)**2)
1108+ r = P0 - p # Shape: (n_lines,2), Compute: [(x1-x0) (y1-y0)]
1109+
1110+ # np.einsum('ij,ij->i',r,v) is equivalent to np.multiply(r,v)).sum(axis=1) which is scalar product of two matrices across axis 1.
1111+
1112+ d = np.abs(np.einsum("ij,ij->i",r,v)) / norm # Shape: (n_lines,), Compute: d = |(x1-x0)*(y2-y1)-(y1-y0)*(x1-x0)|/sqrt((x2-x1)**2 + (y2-y1)**2)
1113+ return d
1114+ print(distance(P0, P1, p))
1115+
1116+ ##--------------- OR ---------------##
10931117def distance(P0, P1, p):
10941118 T = P1 - P0
10951119 L = (T**2).sum(axis=1)
10961120 U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
10971121 U = U.reshape(len(U),1)
10981122 D = P0 + U*T - p
10991123 return np.sqrt((D**2).sum(axis=1))
1100-
1101- P0 = np.random.uniform(-10,10,(10,2))
1102- P1 = np.random.uniform(-10,10,(10,2))
1103- p = np.random.uniform(-10,10,( 1,2))
11041124print(distance(P0, P1, p))
11051125
11061126< q79
0 commit comments