@@ -3,10 +3,10 @@ atomium
3
3
4
4
|travis | |coveralls | |pypi | |version | |commit | |downloads |
5
5
6
- .. |travis | image :: https://api.travis-ci.org/samirelanduk/atomium.svg?branch=1.0.2
6
+ .. |travis | image :: https://api.travis-ci.org/samirelanduk/atomium.svg?branch=1.0.3
7
7
:target: https://travis-ci.org/samirelanduk/atomium/
8
8
9
- .. |coveralls | image :: https://coveralls.io/repos/github/samirelanduk/atomium/badge.svg?branch=1.0.2
9
+ .. |coveralls | image :: https://coveralls.io/repos/github/samirelanduk/atomium/badge.svg?branch=1.0.3
10
10
:target: https://coveralls.io/github/samirelanduk/atomium/
11
11
12
12
.. |pypi | image :: https://img.shields.io/pypi/pyversions/atomium.svg
@@ -15,8 +15,8 @@ atomium
15
15
.. |version | image :: https://img.shields.io/pypi/v/atomium.svg
16
16
:target: https://pypi.org/project/atomium/
17
17
18
- .. |commit | image :: https://img.shields.io/github/last-commit/samirelanduk/atomium/1.0.2 .svg
19
- :target: https://github.com/samirelanduk/atomium/tree/1.0.2 /
18
+ .. |commit | image :: https://img.shields.io/github/last-commit/samirelanduk/atomium/1.0.3 .svg
19
+ :target: https://github.com/samirelanduk/atomium/tree/1.0.3 /
20
20
21
21
.. |downloads | image :: https://img.shields.io/pypi/dm/atomium.svg
22
22
:target: https://pypi.org/project/atomium/
@@ -117,8 +117,8 @@ data from an existing file...
117
117
>>> pdb1 = atomium.open(' ../1LOL.pdb' )
118
118
>>> mmtf1 = atomium.open(' /structures/glucose.mmtf' )
119
119
>>> cif1 = atomium.open(' /structures/1XDA.cif' )
120
- >>> pdb2 = atomium.fetch(' 5HVD .pdb' )
121
- >>> cif2 = atomium.fetch(' 5HVD ' )
120
+ >>> pdb2 = atomium.fetch(' 5XME .pdb' )
121
+ >>> cif2 = atomium.fetch(' 5XME ' )
122
122
123
123
In that latter case, you don't need the file to be saved locally - it will just
124
124
go and grab the PDB with that code from the RCSB.
@@ -174,7 +174,11 @@ molecular scene.
174
174
(<Model (2 chains, 4 ligands)>,)
175
175
176
176
Most just contain one - it's generally those that come from NMR experiments
177
- which contain multiple models.
177
+ which contain multiple models. You can easily iterate through these to get their
178
+ individual metrics:
179
+
180
+ >>> for model in pdb2.models:
181
+ print(model.center_of_mass)
178
182
179
183
This model contains the 'asymmetric unit' - this is one or more protein
180
184
(usually) chains arranged in space, which may not be how the molecule arranges
@@ -196,10 +200,16 @@ one already there containing the asymmetric unit - as follows...
196
200
<Model (2 chains, 4 ligands)>
197
201
>>> pdb3.generate_assembly(10 )
198
202
<Model (6 chains, 12 ligands)>
203
+ >>> [pdb.generate_assembly(n + 1 ) for n in range (len (pdb.assemblies))]
204
+ [<Model (2 chains, 4 ligands)>, <Model (2 chains, 4 ligands)>, <Model (2 cha
205
+ ins, 4 ligands)>, <Model (2 chains, 4 ligands)>, <Model (12 chains, 24 ligan
206
+ ds)>, <Model (12 chains, 24 ligands)>, <Model (6 chains, 12 ligands)>, <Mode
207
+ l (6 chains, 12 ligands)>, <Model (6 chains, 12 ligands)>, <Model (6 chains,
208
+ 12 ligands)>, <Model (4 chains, 8 ligands)>, <Model (4 chains, 8 ligands)>]
199
209
200
210
Here you load a .pdb with multiple possible assemblies, have a quick look at
201
- the asymmetric unit with 1,842 atoms, and then generate two of its possible
202
- biological assemblies by passing in their IDs.
211
+ the asymmetric unit with 1,842 atoms, and then generate first , and then all,
212
+ of its possible biological assemblies by passing in their IDs.
203
213
204
214
205
215
Model Contents
@@ -377,6 +387,15 @@ results.
377
387
Changelog
378
388
---------
379
389
390
+ Release 1.0.3
391
+ ~~~~~~~~~~~~~
392
+
393
+ `5 December 2019 `
394
+
395
+ * Made quality information detection more broad.
396
+ * Improved documentqtion.
397
+
398
+
380
399
Release 1.0.2
381
400
~~~~~~~~~~~~~
382
401
0 commit comments