|
| 1 | +/** |
| 2 | + * 169. Majority Element |
| 3 | + * Difficulty: Easy |
| 4 | + * URL: https://leetcode.com/problems/majority-element/description/ |
| 5 | + * |
| 6 | + * --------------------- |
| 7 | + * Approach 1: Brute Force (Nested Loops) |
| 8 | + * |
| 9 | + * Intuition: |
| 10 | + * - For each element, count how many times it appears in the array. |
| 11 | + * - If it appears more than n/2 times, return it. |
| 12 | + * |
| 13 | + * Time Complexity: O(n^2) — for each element, we scan the entire array |
| 14 | + * Space Complexity: O(1) — no extra data structures used |
| 15 | + */ |
| 16 | +class Solution { |
| 17 | + public int majorityElement(int[] nums) { |
| 18 | + for (int i = 0; i < nums.length; i++) { |
| 19 | + int count = 0; |
| 20 | + for (int j = 0; j < nums.length; j++) { |
| 21 | + if (nums[i] == nums[j]) count++; |
| 22 | + } |
| 23 | + if (count > nums.length / 2) return nums[i]; |
| 24 | + } |
| 25 | + return -1; |
| 26 | + } |
| 27 | +} |
| 28 | + |
| 29 | +/** |
| 30 | + * --------------------- |
| 31 | + * Approach 2: Sorting |
| 32 | + * |
| 33 | + * Intuition: |
| 34 | + * - After sorting, the majority element will always occupy the middle position. |
| 35 | + * |
| 36 | + * Time Complexity: O(n log n) — due to sorting |
| 37 | + * Space Complexity: O(1) or O(log n) depending on sorting implementation |
| 38 | + */ |
| 39 | +class Solution { |
| 40 | + public int majorityElement(int[] nums) { |
| 41 | + Arrays.sort(nums); |
| 42 | + return nums[nums.length / 2]; |
| 43 | + } |
| 44 | +} |
| 45 | + |
| 46 | +/** |
| 47 | + * --------------------- |
| 48 | + * Approach 3: HashMap Counting |
| 49 | + * |
| 50 | + * Intuition: |
| 51 | + * - Count occurrences of each element using a HashMap. |
| 52 | + * - The element with count > n/2 is the majority element. |
| 53 | + * |
| 54 | + * Time Complexity: O(n) — iterate and count in one pass |
| 55 | + * Space Complexity: O(n) — to store counts in HashMap |
| 56 | + */ |
| 57 | +class Solution { |
| 58 | + public int majorityElement(int[] nums) { |
| 59 | + HashMap<Integer, Integer> map = new HashMap<>(); |
| 60 | + for (int ele : nums) { |
| 61 | + map.put(ele, map.getOrDefault(ele, 0) + 1); |
| 62 | + } |
| 63 | + int level = nums.length / 2; |
| 64 | + for (int key : map.keySet()) { |
| 65 | + if (map.get(key) > level) return key; |
| 66 | + } |
| 67 | + return -1; |
| 68 | + } |
| 69 | +} |
| 70 | + |
| 71 | +/** |
| 72 | + * --------------------- |
| 73 | + * Approach 4: Boyer-Moore Voting Algorithm (Optimized) |
| 74 | + * |
| 75 | + * Intuition: |
| 76 | + * - The majority element appears more than n/2 times in the array. |
| 77 | + * - Keep a candidate (ans) and a count. |
| 78 | + * - If count becomes 0, select a new candidate. |
| 79 | + * - If the current element equals the candidate, increment count, otherwise decrement. |
| 80 | + * - The majority element will remain as the final candidate. |
| 81 | + * |
| 82 | + * Time Complexity: O(n) — single scan |
| 83 | + * Space Complexity: O(1) — constant space |
| 84 | + */ |
| 85 | +class Solution { |
| 86 | + public int majorityElement(int[] nums) { |
| 87 | + int ans = 0, count = 0; |
| 88 | + for (int i = 0; i < nums.length; i++) { |
| 89 | + if (count == 0) |
| 90 | + ans = nums[i]; |
| 91 | + if (nums[i] == ans) { |
| 92 | + count++; |
| 93 | + } else { |
| 94 | + count--; |
| 95 | + } |
| 96 | + } |
| 97 | + return ans; |
| 98 | + } |
| 99 | +} |
0 commit comments