|
| 1 | +/** |
| 2 | + * LeetCode Problem: 1995. Count Special Quadruplets |
| 3 | + * |
| 4 | + * Difficulty: Easy |
| 5 | + * |
| 6 | + * Problem Statement: |
| 7 | + * You are given a 0-indexed integer array nums. Return the number of distinct quadruplets (a, b, c, d) such that: |
| 8 | + * |
| 9 | + * - nums[a] + nums[b] + nums[c] == nums[d], and |
| 10 | + * - a < b < c < d |
| 11 | + * |
| 12 | + * Example 1: |
| 13 | + * Input: nums = [1,2,3,6] |
| 14 | + * Output: 1 |
| 15 | + * Explanation: The only quadruplet is (0,1,2,3) because 1 + 2 + 3 == 6. |
| 16 | + * |
| 17 | + * Example 2: |
| 18 | + * Input: nums = [3,3,6,4,5] |
| 19 | + * Output: 0 |
| 20 | + * Explanation: No such quadruplet exists. |
| 21 | + * |
| 22 | + * Example 3: |
| 23 | + * Input: nums = [1,1,1,3,5] |
| 24 | + * Output: 4 |
| 25 | + * Explanation: The quadruplets are (0,1,2,3), (0,1,2,4), (0,2,1,3), (0,2,1,4). |
| 26 | + * |
| 27 | + * Constraints: |
| 28 | + * - 4 <= nums.length <= 50 |
| 29 | + * - 1 <= nums[i] <= 100 |
| 30 | + * |
| 31 | + * Approach: |
| 32 | + * We need to count all ordered quadruplets (a, b, c, d) where: |
| 33 | + * nums[a] + nums[b] + nums[c] == nums[d] and a < b < c < d |
| 34 | + * |
| 35 | + * Brute force solution: |
| 36 | + * - Iterate through all possible quadruplets using 4 nested loops. |
| 37 | + * - For each (i, j, k, l), compute sum = nums[i] + nums[j] + nums[k]. |
| 38 | + * - If sum == nums[l], increment the count. |
| 39 | + * |
| 40 | + * Optimization: |
| 41 | + * - Since nums[i] <= 100, if sum > 100 we can break early (small pruning). |
| 42 | + * - This helps avoid unnecessary checks. |
| 43 | + * |
| 44 | + * Complexity: |
| 45 | + * - Time Complexity: O(n^4) in the worst case (since we check all quadruplets). |
| 46 | + * With n <= 50, this is acceptable (50^4 = 6.25 million iterations). |
| 47 | + * - Space Complexity: O(1) since we only use a counter. |
| 48 | + */ |
| 49 | + |
| 50 | +class Solution { |
| 51 | + public int countQuadruplets(int[] nums) { |
| 52 | + int count = 0; |
| 53 | + for (int i = 0; i < nums.length; i++) { |
| 54 | + for (int j = i + 1; j < nums.length; j++) { |
| 55 | + for (int k = j + 1; k < nums.length; k++) { |
| 56 | + int sum = nums[i] + nums[j] + nums[k]; |
| 57 | + // small pruning: since nums[d] ≤ 100, skip if sum > 100 |
| 58 | + if (sum > 100) continue; |
| 59 | + for (int l = k + 1; l < nums.length; l++) { |
| 60 | + if (sum == nums[l]) { |
| 61 | + count++; |
| 62 | + } |
| 63 | + } |
| 64 | + } |
| 65 | + } |
| 66 | + } |
| 67 | + return count; |
| 68 | + } |
| 69 | +} |
0 commit comments