|
| 1 | +/** |
| 2 | + * 2348. Number of Zero-Filled Subarrays |
| 3 | + * Difficulty: Medium |
| 4 | + * URL: https://leetcode.com/problems/number-of-zero-filled-subarrays/description/ |
| 5 | + * |
| 6 | + * --------------------- |
| 7 | + * Approach 1: Brute Force |
| 8 | + * |
| 9 | + * - Generate all possible subarrays using two loops. |
| 10 | + * - For each subarray, check if all elements are zero. |
| 11 | + * - If yes, increase the count. |
| 12 | + * |
| 13 | + * - In the given code, this is done by converting the subarray into a string |
| 14 | + * and checking if all characters are '0'. |
| 15 | + * |
| 16 | + * Time Complexity: O(n^3) → (O(n^2) subarrays × O(n) checking each) |
| 17 | + * Space Complexity: O(n) due to string building. |
| 18 | + * |
| 19 | + * Not practical for large inputs, but helps in understanding. |
| 20 | + * |
| 21 | + */ |
| 22 | +class Solution { |
| 23 | + public long zeroFilledSubarray(int[] nums) { |
| 24 | + int count = 0; |
| 25 | + for (int i = 0; i < nums.length; i++) { |
| 26 | + String str = ""; |
| 27 | + for (int j = i; j < nums.length; j++) { |
| 28 | + str += nums[j] + ""; |
| 29 | + boolean flag = true; |
| 30 | + for (int k = 0; k < str.length(); k++) { |
| 31 | + if (str.charAt(k) != '0') { |
| 32 | + flag = false; |
| 33 | + break; |
| 34 | + } |
| 35 | + } |
| 36 | + if (flag) { |
| 37 | + count++; |
| 38 | + } |
| 39 | + } |
| 40 | + } |
| 41 | + return count; |
| 42 | + } |
| 43 | +} |
| 44 | + |
| 45 | + |
| 46 | +/** |
| 47 | + * --------------------- |
| 48 | + * Approach 2: Optimized (Mathematical Counting) |
| 49 | + * |
| 50 | + * - Instead of generating all subarrays, notice: |
| 51 | + * For a streak of `k` consecutive zeros, number of zero-subarrays is: |
| 52 | + * k * (k + 1) / 2 |
| 53 | + * (Formula of sum of first n natural numbers). |
| 54 | + * |
| 55 | + * Example: nums = [0,0,1,0] |
| 56 | + * - Streak1 = "00" → 2*(2+1)/2 = 3 subarrays → [0], [0], [0,0] |
| 57 | + * - Streak2 = "0" → 1*(1+1)/2 = 1 subarray → [0] |
| 58 | + * Total = 4 |
| 59 | + * |
| 60 | + * Algorithm: |
| 61 | + * 1. Traverse array and keep track of consecutive zeros. |
| 62 | + * 2. When a non-zero is encountered, add contribution of that streak. |
| 63 | + * 3. After loop ends, add last streak if any. |
| 64 | + * |
| 65 | + * Time Complexity: O(n) |
| 66 | + * Space Complexity: O(1) |
| 67 | + * |
| 68 | + */ |
| 69 | +class Solution { |
| 70 | + public long zeroFilledSubarray(int[] nums) { |
| 71 | + long count = 0; |
| 72 | + long streak = 0; |
| 73 | + for (int i = 0; i < nums.length; i++) { |
| 74 | + if (nums[i] == 0) { |
| 75 | + streak++; |
| 76 | + } else { |
| 77 | + count += (streak * (streak + 1)) / 2; |
| 78 | + streak = 0; |
| 79 | + } |
| 80 | + } |
| 81 | + // Handle streak at the end |
| 82 | + if (streak > 0) { |
| 83 | + count += (streak * (streak + 1)) / 2; |
| 84 | + } |
| 85 | + return count; |
| 86 | + } |
| 87 | +} |
0 commit comments