From af45c9b239fd3f3a54b37e56d9a556fb2f224a51 Mon Sep 17 00:00:00 2001 From: Chen Yang Date: Tue, 6 Jan 2026 16:05:53 -0600 Subject: [PATCH 1/2] Add FlashDeconv to ecosystem packages --- packages/flashdeconv/meta.yaml | 27 +++++++++++++++++++++++++++ 1 file changed, 27 insertions(+) create mode 100644 packages/flashdeconv/meta.yaml diff --git a/packages/flashdeconv/meta.yaml b/packages/flashdeconv/meta.yaml new file mode 100644 index 0000000..326b1c4 --- /dev/null +++ b/packages/flashdeconv/meta.yaml @@ -0,0 +1,27 @@ +name: flashdeconv +description: | + FlashDeconv is a high-performance spatial transcriptomics deconvolution tool that enables cell type mapping + at atlas scale. Using structure-preserving sketching via randomized numerical linear algebra, FlashDeconv + achieves linear time and memory complexity, processing 1 million spots in approximately 3 minutes on a + standard laptop without GPU. It provides accurate cell type proportion estimation with Pearson r = 0.944 + on the Spotless benchmark, and preserves rare cell type detection through leverage-score weighted sampling. +project_home: https://github.com/cafferychen777/flashdeconv +documentation_home: https://flashdeconv.readthedocs.io/ +tutorials_home: https://flashdeconv.readthedocs.io/ +publications: + - 10.64898/2025.12.22.696108 +install: + pypi: flashdeconv +tags: + - spatial transcriptomics + - deconvolution + - cell type + - Visium HD + - sketching +license: BSD-3-Clause +version: v0.1 +contact: + - cafferychen777 +test_command: | + pip install ".[test]" && pytest +category: ecosystem From 442aeb296832127c87b3aded2e075cd0274884f4 Mon Sep 17 00:00:00 2001 From: Chen Yang Date: Tue, 6 Jan 2026 16:39:06 -0600 Subject: [PATCH 2/2] Fix documentation URLs to use GitHub instead of readthedocs --- packages/flashdeconv/meta.yaml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/packages/flashdeconv/meta.yaml b/packages/flashdeconv/meta.yaml index 326b1c4..77cf36a 100644 --- a/packages/flashdeconv/meta.yaml +++ b/packages/flashdeconv/meta.yaml @@ -6,8 +6,8 @@ description: | standard laptop without GPU. It provides accurate cell type proportion estimation with Pearson r = 0.944 on the Spotless benchmark, and preserves rare cell type detection through leverage-score weighted sampling. project_home: https://github.com/cafferychen777/flashdeconv -documentation_home: https://flashdeconv.readthedocs.io/ -tutorials_home: https://flashdeconv.readthedocs.io/ +documentation_home: https://github.com/cafferychen777/flashdeconv#readme +tutorials_home: https://github.com/cafferychen777/flashdeconv/tree/main/examples publications: - 10.64898/2025.12.22.696108 install: