|
| 1 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 2 | +% % |
| 3 | +% SU2 configuration file % |
| 4 | +% Case description: Transonic inviscid optimization of a NACA0012 airfoil % |
| 5 | +% Author: Francisco Palacios % |
| 6 | +% Institution: Stanford University % |
| 7 | +% Date: 2013.09.29 % |
| 8 | +% File Version 5.0.0 "Raven" % |
| 9 | +% % |
| 10 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 11 | + |
| 12 | +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% |
| 13 | +% |
| 14 | +% Physical governing equations (EULER, NAVIER_STOKES, |
| 15 | +% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, |
| 16 | +% POISSON_EQUATION) |
| 17 | +SOLVER= EULER |
| 18 | +% |
| 19 | +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) |
| 20 | +MATH_PROBLEM= DIRECT |
| 21 | +% |
| 22 | +% Restart solution (NO, YES) |
| 23 | +RESTART_SOL= YES |
| 24 | + |
| 25 | +% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% |
| 26 | +% |
| 27 | +% Mach number (non-dimensional, based on the free-stream values) |
| 28 | +MACH_NUMBER= 0.8 |
| 29 | +% |
| 30 | +% Angle of attack (degrees) |
| 31 | +AOA= 1.25 |
| 32 | +% |
| 33 | +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) |
| 34 | +FREESTREAM_PRESSURE= 101325.0 |
| 35 | +% |
| 36 | +% Free-stream temperature (288.15 K by default) |
| 37 | +FREESTREAM_TEMPERATURE= 288.15 |
| 38 | + |
| 39 | +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% |
| 40 | +% |
| 41 | +% Reference origin for moment computation |
| 42 | +REF_ORIGIN_MOMENT_X = 0.25 |
| 43 | +REF_ORIGIN_MOMENT_Y = 0.00 |
| 44 | +REF_ORIGIN_MOMENT_Z = 0.00 |
| 45 | +% |
| 46 | +% Reference length for pitching, rolling, and yawing non-dimensional moment |
| 47 | +REF_LENGTH= 1.0 |
| 48 | +% |
| 49 | +% Reference area for force coefficients (0 implies automatic calculation) |
| 50 | +REF_AREA= 1.0 |
| 51 | +% |
| 52 | +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, |
| 53 | +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) |
| 54 | +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE |
| 55 | + |
| 56 | +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% |
| 57 | +% |
| 58 | +% Marker of the Euler boundary (0 = no marker) |
| 59 | +MARKER_EULER= ( airfoil ) |
| 60 | +% |
| 61 | +% Marker of the far field (0 = no marker) |
| 62 | +MARKER_FAR= ( farfield ) |
| 63 | + |
| 64 | +% ------------------------ SURFACES IDENTIFICATION ----------------------------% |
| 65 | +% |
| 66 | +% Marker of the surface which is going to be plotted or designed |
| 67 | +MARKER_PLOTTING= ( airfoil ) |
| 68 | +% |
| 69 | +% Marker of the surface where the functional (Cd, Cl, etc.) will be evaluated |
| 70 | +MARKER_MONITORING= ( airfoil ) |
| 71 | + |
| 72 | +% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% |
| 73 | +% |
| 74 | +% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) |
| 75 | +NUM_METHOD_GRAD= GREEN_GAUSS |
| 76 | +% |
| 77 | +% Courant-Friedrichs-Lewy condition of the finest grid |
| 78 | +CFL_NUMBER= 10.0 |
| 79 | +% |
| 80 | +% Adaptive CFL number (NO, YES) |
| 81 | +CFL_ADAPT= NO |
| 82 | +% |
| 83 | +% Parameters of the adaptive CFL number (factor down, factor up, CFL min value, |
| 84 | +% CFL max value ) |
| 85 | +CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 ) |
| 86 | +% |
| 87 | +% Runge-Kutta alpha coefficients |
| 88 | +RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) |
| 89 | +% |
| 90 | +% Number of total iterations |
| 91 | +ITER= 1000 |
| 92 | + |
| 93 | +% ------------------------ LINEAR SOLVER DEFINITION ---------------------------% |
| 94 | +% |
| 95 | +% Linear solver for the implicit (or discrete adjoint) formulation (LU_SGS, |
| 96 | +% SYM_GAUSS_SEIDEL, BCGSTAB, GMRES) |
| 97 | +LINEAR_SOLVER= FGMRES |
| 98 | +% |
| 99 | +% Preconditioner of the Krylov linear solver (NONE, JACOBI, LINELET, LUSGS) |
| 100 | +LINEAR_SOLVER_PREC= LU_SGS |
| 101 | +% |
| 102 | +% Min error of the linear solver for the implicit formulation |
| 103 | +LINEAR_SOLVER_ERROR= 1E-4 |
| 104 | +% |
| 105 | +% Max number of iterations of the linear solver for the implicit formulation |
| 106 | +LINEAR_SOLVER_ITER= 2 |
| 107 | + |
| 108 | +% -------------------------- MULTIGRID PARAMETERS -----------------------------% |
| 109 | +% |
| 110 | +% Multi-Grid Levels (0 = no multi-grid) |
| 111 | +MGLEVEL= 2 |
| 112 | +% |
| 113 | +% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) |
| 114 | +MGCYCLE= V_CYCLE |
| 115 | +% |
| 116 | +% Multi-Grid PreSmoothing Level |
| 117 | +MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) |
| 118 | +% |
| 119 | +% Multi-Grid PostSmoothing Level |
| 120 | +MG_POST_SMOOTH= ( 0, 0, 0, 0 ) |
| 121 | +% |
| 122 | +% Jacobi implicit smoothing of the correction |
| 123 | +MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) |
| 124 | +% |
| 125 | +% Damping factor for the residual restriction |
| 126 | +MG_DAMP_RESTRICTION= 1.0 |
| 127 | +% |
| 128 | +% Damping factor for the correction prolongation |
| 129 | +MG_DAMP_PROLONGATION= 1.0 |
| 130 | + |
| 131 | +% --------------------- FLOW NUMERICAL METHOD DEFINITION ----------------------% |
| 132 | +% Convective numerical method (JST, LAX-FRIEDRICH, ROE-1ST_ORDER, |
| 133 | +% ROE-2ND_ORDER) |
| 134 | +CONV_NUM_METHOD_FLOW= JST |
| 135 | +% |
| 136 | +% Slope limiter (VENKATAKRISHNAN) |
| 137 | +SLOPE_LIMITER_FLOW= VENKATAKRISHNAN |
| 138 | +% |
| 139 | +% 2nd and 4th order artificial dissipation coefficients |
| 140 | +JST_SENSOR_COEFF= ( 0.5, 0.02 ) |
| 141 | +% |
| 142 | +% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) |
| 143 | +TIME_DISCRE_FLOW= EULER_IMPLICIT |
| 144 | + |
| 145 | +% ---------------- ADJOINT-FLOW NUMERICAL METHOD DEFINITION -------------------% |
| 146 | +% Adjoint problem boundary condition (DRAG, LIFT, SIDEFORCE, MOMENT_X, |
| 147 | +% MOMENT_Y, MOMENT_Z, EFFICIENCY, |
| 148 | +% EQUIVALENT_AREA, NEARFIELD_PRESSURE, |
| 149 | +% FORCE_X, FORCE_Y, FORCE_Z, THRUST, |
| 150 | +% TORQUE) |
| 151 | +OBJECTIVE_FUNCTION= DRAG |
| 152 | +% |
| 153 | +% Convective numerical method (JST, LAX-FRIEDRICH, ROE-1ST_ORDER, |
| 154 | +% ROE-2ND_ORDER) |
| 155 | +CONV_NUM_METHOD_ADJFLOW= JST |
| 156 | +% |
| 157 | +% Slope limiter (VENKATAKRISHNAN, SHARP_EDGES) |
| 158 | +SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN |
| 159 | +% |
| 160 | +% 2nd, and 4th order artificial dissipation coefficients |
| 161 | +ADJ_JST_SENSOR_COEFF= ( 0.0, 0.02 ) |
| 162 | +% |
| 163 | +% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT) |
| 164 | +TIME_DISCRE_ADJFLOW= EULER_IMPLICIT |
| 165 | +% |
| 166 | +% Reduction factor of the CFL coefficient in the adjoint problem |
| 167 | +CFL_REDUCTION_ADJFLOW= 0.8 |
| 168 | +% |
| 169 | +% Limit value for the adjoint variable |
| 170 | +LIMIT_ADJFLOW= 1E6 |
| 171 | + |
| 172 | +% ----------------------- GEOMETRY EVALUATION PARAMETERS ----------------------% |
| 173 | +% |
| 174 | +% Marker(s) of the surface where geometrical based function will be evaluated |
| 175 | +GEO_MARKER= ( airfoil ) |
| 176 | +% |
| 177 | +% Description of the geometry to be analyzed (AIRFOIL, WING, FUSELAGE) |
| 178 | +GEO_DESCRIPTION= AIRFOIL |
| 179 | +% |
| 180 | +% Geometrical evaluation mode (FUNCTION, GRADIENT) |
| 181 | +GEO_MODE= FUNCTION |
| 182 | + |
| 183 | +% ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% |
| 184 | +% |
| 185 | +% Kind of deformation (FFD_SETTING, HICKS_HENNE, HICKS_HENNE_NORMAL, PARABOLIC, |
| 186 | +% HICKS_HENNE_SHOCK, NACA_4DIGITS, DISPLACEMENT, ROTATION, |
| 187 | +% FFD_CONTROL_POINT, FFD_DIHEDRAL_ANGLE, FFD_TWIST_ANGLE, |
| 188 | +% FFD_ROTATION) |
| 189 | +DV_KIND= HICKS_HENNE |
| 190 | +% |
| 191 | +% Marker of the surface in which we are going apply the shape deformation |
| 192 | +DV_MARKER= ( airfoil ) |
| 193 | +% |
| 194 | +% Parameters of the shape deformation |
| 195 | +% - HICKS_HENNE_FAMILY ( Lower(0)/Upper(1) side, x_Loc ) |
| 196 | +% - NACA_4DIGITS ( 1st digit, 2nd digit, 3rd and 4th digit ) |
| 197 | +% - PARABOLIC ( 1st digit, 2nd and 3rd digit ) |
| 198 | +% - DISPLACEMENT ( x_Disp, y_Disp, z_Disp ) |
| 199 | +% - ROTATION ( x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) |
| 200 | +DV_PARAM= ( 1, 0.5 ) |
| 201 | +% |
| 202 | +% Value of the shape deformation deformation |
| 203 | +DV_VALUE= 1.0 |
| 204 | + |
| 205 | +% ------------------------ GRID DEFORMATION PARAMETERS ------------------------% |
| 206 | +% |
| 207 | +% Number of smoothing iterations for FEA mesh deformation |
| 208 | +DEFORM_LINEAR_SOLVER_ITER= 500 |
| 209 | +% |
| 210 | +% Number of nonlinear deformation iterations (surface deformation increments) |
| 211 | +DEFORM_NONLINEAR_ITER= 1 |
| 212 | +% |
| 213 | +% Print the residuals during mesh deformation to the console (YES, NO) |
| 214 | +DEFORM_CONSOLE_OUTPUT= YES |
| 215 | +% |
| 216 | +% Minimum residual criteria for the linear solver convergence of grid deformation |
| 217 | +DEFORM_LINEAR_SOLVER_ERROR= 1E-14 |
| 218 | +% |
| 219 | +% Type of element stiffness imposed for FEA mesh deformation (INVERSE_VOLUME, |
| 220 | +% WALL_DISTANCE, CONSTANT_STIFFNESS) |
| 221 | +DEFORM_STIFFNESS_TYPE= INVERSE_VOLUME |
| 222 | + |
| 223 | +% --------------------------- CONVERGENCE PARAMETERS --------------------------% |
| 224 | +% Convergence criteria (CAUCHY, RESIDUAL) |
| 225 | +% |
| 226 | +CONV_CRITERIA= RESIDUAL |
| 227 | +% |
| 228 | +% |
| 229 | +% Min value of the residual (log10 of the residual) |
| 230 | +CONV_RESIDUAL_MINVAL= -13 |
| 231 | +% |
| 232 | +% Start Cauchy criteria at iteration number |
| 233 | +CONV_STARTITER= 10 |
| 234 | +% |
| 235 | +% Number of elements to apply the criteria |
| 236 | +CONV_CAUCHY_ELEMS= 100 |
| 237 | +% |
| 238 | +% Epsilon to control the series convergence |
| 239 | +CONV_CAUCHY_EPS= 1E-6 |
| 240 | + |
| 241 | +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% |
| 242 | +% |
| 243 | +% Mesh input file |
| 244 | +MESH_FILENAME= mesh_NACA0012_inv.su2 |
| 245 | +% |
| 246 | +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) |
| 247 | +MESH_FORMAT= SU2 |
| 248 | +% |
| 249 | +% Mesh output file |
| 250 | +MESH_OUT_FILENAME= mesh_out.su2 |
| 251 | +% |
| 252 | +% Restart flow input file |
| 253 | +SOLUTION_FILENAME= solution_flow.dat |
| 254 | +% |
| 255 | +% Restart adjoint input file |
| 256 | +SOLUTION_ADJ_FILENAME= solution_adj.dat |
| 257 | +% |
| 258 | +% Output tabular format (CSV, TECPLOT) |
| 259 | +TABULAR_FORMAT= CSV |
| 260 | +% |
| 261 | +% Output file convergence history (w/o extension) |
| 262 | +CONV_FILENAME= history |
| 263 | +% |
| 264 | +% Output file restart flow |
| 265 | +RESTART_FILENAME= restart_flow.dat |
| 266 | +% |
| 267 | +% Output file restart adjoint |
| 268 | +RESTART_ADJ_FILENAME= restart_adj.dat |
| 269 | +% |
| 270 | +% Output file flow (w/o extension) variables |
| 271 | +VOLUME_FILENAME= flow |
| 272 | +% |
| 273 | +% Output file adjoint (w/o extension) variables |
| 274 | +VOLUME_ADJ_FILENAME= adjoint |
| 275 | +% |
| 276 | +% Output Objective function gradient (using continuous adjoint) |
| 277 | +GRAD_OBJFUNC_FILENAME= of_grad.dat |
| 278 | +% |
| 279 | +% Output file surface flow coefficient (w/o extension) |
| 280 | +SURFACE_FILENAME= surface_flow |
| 281 | +% |
| 282 | +% Output file surface adjoint coefficient (w/o extension) |
| 283 | +SURFACE_ADJ_FILENAME= surface_adjoint |
| 284 | +% |
| 285 | +% Writing solution file frequency |
| 286 | +WRT_SOL_FREQ= 250 |
| 287 | +% |
| 288 | +% Writing solution file frequency for physical time steps (dual time) |
| 289 | +WRT_SOL_FREQ_DUALTIME= 1 |
| 290 | +% |
| 291 | +% Writing convergence history frequency |
| 292 | +WRT_CON_FREQ= 1 |
| 293 | +% |
| 294 | +% Writing convergence history frequency (dual time, only written to screen) |
| 295 | +WRT_CON_FREQ_DUALTIME= 10 |
| 296 | +% |
| 297 | +% Output rind layers in the solution files |
| 298 | +WRT_HALO= NO |
| 299 | +% |
| 300 | +% Screen output |
| 301 | +SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) |
| 302 | + |
| 303 | +% --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% |
| 304 | +% |
| 305 | +% Available flow based objective functions or constraint functions |
| 306 | +% DRAG, LIFT, SIDEFORCE, EFFICIENCY, BUFFET, |
| 307 | +% FORCE_X, FORCE_Y, FORCE_Z, |
| 308 | +% MOMENT_X, MOMENT_Y, MOMENT_Z, |
| 309 | +% THRUST, TORQUE, FIGURE_OF_MERIT, |
| 310 | +% EQUIVALENT_AREA, NEARFIELD_PRESSURE, |
| 311 | +% TOTAL_HEATFLUX, MAXIMUM_HEATFLUX, |
| 312 | +% INVERSE_DESIGN_PRESSURE, INVERSE_DESIGN_HEATFLUX, |
| 313 | +% SURFACE_TOTAL_PRESSURE, SURFACE_MASSFLOW |
| 314 | +% SURFACE_STATIC_PRESSURE, SURFACE_MACH |
| 315 | +% |
| 316 | +% Available geometrical based objective functions or constraint functions |
| 317 | +% AIRFOIL_AREA, AIRFOIL_THICKNESS, AIRFOIL_CHORD, AIRFOIL_TOC, AIRFOIL_AOA, |
| 318 | +% WING_VOLUME, WING_MIN_THICKNESS, WING_MAX_THICKNESS, WING_MAX_CHORD, WING_MIN_TOC, WING_MAX_TWIST, WING_MAX_CURVATURE, WING_MAX_DIHEDRAL |
| 319 | +% STATION#_WIDTH, STATION#_AREA, STATION#_THICKNESS, STATION#_CHORD, STATION#_TOC, |
| 320 | +% STATION#_TWIST (where # is the index of the station defined in GEO_LOCATION_STATIONS) |
| 321 | +% |
| 322 | +% Available design variables |
| 323 | +% 2D Design variables |
| 324 | +% FFD_CONTROL_POINT_2D ( 19, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind, x_Mov, y_Mov ) |
| 325 | +% FFD_CAMBER_2D ( 20, Scale | Mark. List | FFD_BoxTag, i_Ind ) |
| 326 | +% FFD_THICKNESS_2D ( 21, Scale | Mark. List | FFD_BoxTag, i_Ind ) |
| 327 | +% FFD_TWIST_2D ( 22, Scale | Mark. List | FFD_BoxTag, x_Orig, y_Orig ) |
| 328 | +% HICKS_HENNE ( 30, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc ) |
| 329 | +% ANGLE_OF_ATTACK ( 101, Scale | Mark. List | 1.0 ) |
| 330 | +% |
| 331 | +% 3D Design variables |
| 332 | +% FFD_CONTROL_POINT ( 11, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind, k_Ind, x_Mov, y_Mov, z_Mov ) |
| 333 | +% FFD_NACELLE ( 12, Scale | Mark. List | FFD_BoxTag, rho_Ind, theta_Ind, phi_Ind, rho_Mov, phi_Mov ) |
| 334 | +% FFD_GULL ( 13, Scale | Mark. List | FFD_BoxTag, j_Ind ) |
| 335 | +% FFD_CAMBER ( 14, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind ) |
| 336 | +% FFD_TWIST ( 15, Scale | Mark. List | FFD_BoxTag, j_Ind, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) |
| 337 | +% FFD_THICKNESS ( 16, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind ) |
| 338 | +% FFD_ROTATION ( 18, Scale | Mark. List | FFD_BoxTag, x_Axis, y_Axis, z_Axis, x_Turn, y_Turn, z_Turn ) |
| 339 | +% FFD_ANGLE_OF_ATTACK ( 24, Scale | Mark. List | FFD_BoxTag, 1.0 ) |
| 340 | +% |
| 341 | +% Global design variables |
| 342 | +% TRANSLATION ( 1, Scale | Mark. List | x_Disp, y_Disp, z_Disp ) |
| 343 | +% ROTATION ( 2, Scale | Mark. List | x_Axis, y_Axis, z_Axis, x_Turn, y_Turn, z_Turn ) |
| 344 | +% |
| 345 | +% Optimization objective function with scaling factor, separated by semicolons. |
| 346 | +% To include quadratic penalty function: use OPT_CONSTRAINT option syntax within the OPT_OBJECTIVE list. |
| 347 | +% ex= Objective * Scale |
| 348 | +OPT_OBJECTIVE= DRAG |
| 349 | +% |
| 350 | +% Optimization constraint functions with pushing factors (affects its value, not the gradient |
| 351 | +% in the python scripts), separated by semicolons |
| 352 | +% ex= (Objective = Value ) * Scale, use '>','<','=' |
| 353 | +OPT_CONSTRAINT= NONE |
| 354 | +% |
| 355 | +% Factor to reduce the norm of the gradient (affects the objective function and gradient in the python scripts) |
| 356 | +% In general, a norm of the gradient ~1E-6 is desired. |
| 357 | +OPT_GRADIENT_FACTOR= 1E-6 |
| 358 | +% |
| 359 | +% Factor to relax or accelerate the optimizer convergence (affects the line search in SU2_DEF) |
| 360 | +% In general, surface deformations of 0.01'' or 0.0001m are desirable |
| 361 | +OPT_RELAX_FACTOR= 1E3 |
| 362 | +% |
| 363 | +% Maximum number of optimizer iterations |
| 364 | +OPT_ITERATIONS= 100 |
| 365 | +% |
| 366 | +% Requested accuracy |
| 367 | +OPT_ACCURACY= 1E-10 |
| 368 | +% |
| 369 | +% Upper bound for each design variable |
| 370 | +OPT_BOUND_UPPER= 0.1 |
| 371 | +% |
| 372 | +% Lower bound for each design variable |
| 373 | +OPT_BOUND_LOWER= -0.1 |
| 374 | +% |
| 375 | +% Optimization design variables, separated by semicolons |
| 376 | +DEFINITION_DV= ( 30, 1.0 | airfoil | 0, 0.05 ); ( 30, 1.0 | airfoil | 0, 0.10 ); ( 30, 1.0 | airfoil | 0, 0.15 ); ( 30, 1.0 | airfoil | 0, 0.20 ); ( 30, 1.0 | airfoil | 0, 0.25 ); ( 30, 1.0 | airfoil | 0, 0.30 ); ( 30, 1.0 | airfoil | 0, 0.35 ); ( 30, 1.0 | airfoil | 0, 0.40 ); ( 30, 1.0 | airfoil | 0, 0.45 ); ( 30, 1.0 | airfoil | 0, 0.50 ); ( 30, 1.0 | airfoil | 0, 0.55 ); ( 30, 1.0 | airfoil | 0, 0.60 ); ( 30, 1.0 | airfoil | 0, 0.65 ); ( 30, 1.0 | airfoil | 0, 0.70 ); ( 30, 1.0 | airfoil | 0, 0.75 ); ( 30, 1.0 | airfoil | 0, 0.80 ); ( 30, 1.0 | airfoil | 0, 0.85 ); ( 30, 1.0 | airfoil | 0, 0.90 ); ( 30, 1.0 | airfoil | 0, 0.95 ); ( 30, 1.0 | airfoil | 1, 0.05 ); ( 30, 1.0 | airfoil | 1, 0.10 ); ( 30, 1.0 | airfoil | 1, 0.15 ); ( 30, 1.0 | airfoil | 1, 0.20 ); ( 30, 1.0 | airfoil | 1, 0.25 ); ( 30, 1.0 | airfoil | 1, 0.30 ); ( 30, 1.0 | airfoil | 1, 0.35 ); ( 30, 1.0 | airfoil | 1, 0.40 ); ( 30, 1.0 | airfoil | 1, 0.45 ); ( 30, 1.0 | airfoil | 1, 0.50 ); ( 30, 1.0 | airfoil | 1, 0.55 ); ( 30, 1.0 | airfoil | 1, 0.60 ); ( 30, 1.0 | airfoil | 1, 0.65 ); ( 30, 1.0 | airfoil | 1, 0.70 ); ( 30, 1.0 | airfoil | 1, 0.75 ); ( 30, 1.0 | airfoil | 1, 0.80 ); ( 30, 1.0 | airfoil | 1, 0.85 ); ( 30, 1.0 | airfoil | 1, 0.90 ); ( 30, 1.0 | airfoil | 1, 0.95 ) |
0 commit comments