diff --git a/docs/tools/vdb_table/data/pinecone.json b/docs/tools/vdb_table/data/pinecone.json index e2fcfa3eb..70b3ac1c5 100644 --- a/docs/tools/vdb_table/data/pinecone.json +++ b/docs/tools/vdb_table/data/pinecone.json @@ -47,8 +47,8 @@ "comment": "" }, "multi_vec": { - "support": "none", - "source_url": "", + "support": "full", + "source_url": "https://community.pinecone.io/t/multiple-vector-representations-in-pinecone/362", "comment": "" }, "sparse_vectors": { @@ -57,23 +57,23 @@ "comment": "Supports all sparse vectors, including BM25 and native support for SPLADE vectors" }, "bm25": { - "support": "none", - "source_url": "", + "support": "full", + "source_url": "https://github.com/pinecone-io/pinecone-text", "comment": "" }, "full_text": { - "support": "none", - "source_url": "", + "support": "full", + "source_url": "https://docs.pinecone.io/guides/search/lexical-search", "comment": "" }, "embeddings_text": { - "support": "partial", - "source_url": "https://github.com/pinecone-io/canopy", + "support": "full", + "source_url": "https://docs.pinecone.io/models/overview", "comment": "" }, "embeddings_image": { - "support": "none", - "source_url": "", + "support": "full", + "source_url": "https://docs.pinecone.io/models/overview", "comment": "" }, "embeddings_structured": { @@ -82,8 +82,8 @@ "comment": "" }, "rag": { - "support": "", - "source_url": "", + "support": "full", + "source_url": "https://www.pinecone.io/learn/retrieval-augmented-generation/", "comment": "" }, "recsys": { @@ -112,7 +112,7 @@ "comment": "Includes free tier" }, "in_process": { - "support": "none", + "support": "", "source_url": "", "comment": "" }, @@ -122,9 +122,9 @@ "comment": "via namespaces" }, "disk_index": { - "support": "", - "source_url": "", - "comment": "" + "support": "full", + "source_url": "https://www.pinecone.io/blog/evolving-pinecone-for-knowledgeable-ai/", + "comment": "Intelligent storage tiering between RAM, disk, and object storage" }, "ephemeral": { "support": "none", @@ -139,21 +139,22 @@ "doc_size": { "bytes": 40000, "unlimited": false, - "source_url": "https://docs.pinecone.io/docs/limits", - "comment": "" + "source_url": "https://docs.pinecone.io/reference/api/database-limits#upsert-limits", + "comment": "This is the maximum metadata size per record; there is no limit on the size of documents from which you can create vectors." }, "vector_dims": { "value": 20000, "unlimited": false, - "source_url": "https://docs.pinecone.io/docs/limits", + "source_url": "https://docs.pinecone.io/reference/api/database-limits#upsert-limits", "comment": "" }, "index_types": { "value": [ - "FreshDiskANN" + "Proprietary", + "IVF-PQ" ], - "source_url": "https://www.pinecone.io/blog/hnsw-not-enough/#:~:text=its%20similarities%20end.-,FreshDiskANN,-PGA%20is%20based", - "comment": "Proprietary variant of Microsoft's Vamana" + "source_url": "https://www.pinecone.io/blog/optimizing-pinecone/", + "comment": "Dynamic algorithm (IVFPQ + Proprietary) selection based on workload and data size" }, "github_stars": { "value": 0, @@ -168,8 +169,8 @@ "value_90_days": 0 }, "pypi_downloads": { - "value": 51909059, - "source_url": "https://pypi.org/project/pinecone-client/", + "value": 47744166, + "source_url": "https://pypi.org/project/pinecone/", "comment": "", "value_90_days": 11477920 },