@@ -28,8 +28,8 @@ def lambda_reduction_(Q):
2828 """
2929 assert len (Q.shape) == 2 and Q.shape[0 ] == Q.shape[1 ], " Q matrix must have shape (n, n)"
3030 n = Q.shape[0 ]
31- cdef np.ndarray[np.double_t, ndim= 2 , mode= " c " ] Q_ = np.array(Q, dtype = np.double)
32- cdef np.ndarray[np.double_t, ndim= 2 , mode= " c " ] Z = np.empty((n, n), dtype = np.double)
31+ cdef np.ndarray[np.double_t, ndim= 2 , mode= " fortran " ] Q_ = np.array(Q, dtype = np.double)
32+ cdef np.ndarray[np.double_t, ndim= 2 , mode= " fortran " ] Z = np.empty((n, n), dtype = np.double)
3333 assert lambda_reduction(n, & Q_[0 ,0 ], & Z[0 ,0 ]) == 0 , " lambda error!"
3434 return Z
3535
@@ -51,9 +51,9 @@ def lambda_solution_(x, sigma, m):
5151 assert len (sigma.shape) == 2 and sigma.shape[0 ] == sigma.shape[1 ], " Q matrix must have shape (n, n)"
5252 assert len (x.shape) == 1 and x.shape[0 ] == sigma.shape[1 ], " x vector must have length to match sigma matrix"
5353 num_dds = x.shape[0 ]
54- cdef np.ndarray[np.double_t, ndim= 1 , mode= " c " ] x_ = np.array(x, dtype = np.double)
55- cdef np.ndarray[np.double_t, ndim= 2 , mode= " c " ] sigma_ = np.array(sigma, dtype = np.double)
56- cdef np.ndarray[np.double_t, ndim= 2 , mode= " c " ] F_ = np.empty((num_dds,m), dtype = np.double)
57- cdef np.ndarray[np.double_t, ndim= 1 , mode= " c " ] s_ = np.empty((m), dtype = np.double)
54+ cdef np.ndarray[np.double_t, ndim= 1 , mode= " fortran " ] x_ = np.array(x, dtype = np.double)
55+ cdef np.ndarray[np.double_t, ndim= 2 , mode= " fortran " ] sigma_ = np.array(sigma, dtype = np.double)
56+ cdef np.ndarray[np.double_t, ndim= 2 , mode= " fortran " ] F_ = np.empty((num_dds,m), dtype = np.double, order = ' F ' )
57+ cdef np.ndarray[np.double_t, ndim= 1 , mode= " fortran " ] s_ = np.empty((m), dtype = np.double, order = ' F ' )
5858 assert lambda_solution(num_dds, m, & x_[0 ], & sigma_[0 ,0 ], & F_[0 ,0 ], & s_[0 ]) == 0 ," lambda error!"
5959 return (F_.T, s_.T)
0 commit comments