|
1 | 1 | test_that("kmeans sse metrics work", { |
| 2 | + set.seed(1234) |
2 | 3 | kmeans_fit_stats <- k_means(num_clusters = mtcars[1:3, ]) %>% |
3 | 4 | set_engine("stats", algorithm = "MacQueen") %>% |
4 | 5 | fit(~., mtcars) |
5 | 6 |
|
| 7 | + # We don't use CENTROIDS argument becuase it breaks testing for different |
| 8 | + # versions of ClusterR #186 |
6 | 9 | kmeans_fit_ClusterR <- k_means(num_clusters = 3) %>% |
7 | | - set_engine("ClusterR", CENTROIDS = as.matrix(mtcars[1:3, ])) %>% |
| 10 | + set_engine("ClusterR") %>% |
8 | 11 | fit(~., mtcars) |
9 | 12 |
|
10 | 13 | km_orig <- kmeans(mtcars, centers = mtcars[1:3, ], algorithm = "MacQueen") |
11 | 14 | km_orig_2 <- ClusterR::KMeans_rcpp( |
12 | 15 | data = mtcars, |
13 | | - clusters = 3, |
14 | | - CENTROIDS = as.matrix(mtcars[1:3, ]) |
| 16 | + clusters = 3 |
15 | 17 | ) |
16 | 18 |
|
17 | 19 | expect_equal(sse_within(kmeans_fit_stats)$wss, |
@@ -92,7 +94,7 @@ test_that("kmeans sihouette metrics work", { |
92 | 94 | fit(~., mtcars) |
93 | 95 |
|
94 | 96 | kmeans_fit_ClusterR <- k_means(num_clusters = 3) %>% |
95 | | - set_engine("ClusterR", CENTROIDS = as.matrix(mtcars[1:3, ])) %>% |
| 97 | + set_engine("ClusterR") %>% |
96 | 98 | fit(~., mtcars) |
97 | 99 |
|
98 | 100 | new_data <- mtcars[1:4, ] |
@@ -124,7 +126,7 @@ test_that("kmeans sihouette metrics work with new data", { |
124 | 126 | fit(~., mtcars) |
125 | 127 |
|
126 | 128 | kmeans_fit_ClusterR <- k_means(num_clusters = 3) %>% |
127 | | - set_engine("ClusterR", CENTROIDS = as.matrix(mtcars[1:3, ])) %>% |
| 129 | + set_engine("ClusterR") %>% |
128 | 130 | fit(~., mtcars) |
129 | 131 |
|
130 | 132 | new_data <- mtcars[1:4, ] |
|
0 commit comments