|
| 1 | +import os |
| 2 | +import os.path as osp |
| 3 | +from typing import Callable, List, Optional |
| 4 | +import numpy as np |
| 5 | +import torch |
| 6 | +from torch_geometric.data import ( |
| 7 | + Data, |
| 8 | + InMemoryDataset, |
| 9 | + download_url, |
| 10 | + extract_tar, |
| 11 | + extract_zip, |
| 12 | +) |
| 13 | + |
| 14 | +class MD22(InMemoryDataset): |
| 15 | + |
| 16 | + gdml_url = 'http://quantum-machine.org/gdml/data/npz' |
| 17 | + |
| 18 | + file_names = { |
| 19 | + 'AT-AT-CG-CG': 'md22_AT-AT-CG-CG.npz', |
| 20 | + 'AT-AT': 'md22_AT-AT.npz', |
| 21 | + 'Ac-Ala3-NHMe': 'md22_Ac-Ala3-NHMe.npz', |
| 22 | + 'DHA': 'md22_DHA.npz', |
| 23 | + 'buckyball-catcher': 'md22_buckyball-catcher.npz', |
| 24 | + 'dw-nanotube': 'md22_dw_nanotube.npz', |
| 25 | + 'stachyose': 'md22_stachyose.npz', |
| 26 | + } |
| 27 | + |
| 28 | + def __init__( |
| 29 | + self, |
| 30 | + root: str, |
| 31 | + molecules: str, |
| 32 | + transform: Optional[Callable] = None, |
| 33 | + pre_transform: Optional[Callable] = None, |
| 34 | + pre_filter: Optional[Callable] = None, |
| 35 | + ): |
| 36 | + name = molecules |
| 37 | + if name not in self.file_names: |
| 38 | + raise ValueError(f"Unknown dataset name '{name}'") |
| 39 | + |
| 40 | + self.name = name |
| 41 | + |
| 42 | + super().__init__(root, transform, pre_transform, pre_filter) |
| 43 | + |
| 44 | + idx = 0 |
| 45 | + self.data, self.slices = torch.load(self.processed_paths[idx]) |
| 46 | + |
| 47 | + def mean(self) -> float: |
| 48 | + return float(self._data.energy.mean()) |
| 49 | + |
| 50 | + @property |
| 51 | + def raw_dir(self) -> str: |
| 52 | + return osp.join(self.root, self.name, 'raw') |
| 53 | + |
| 54 | + @property |
| 55 | + def processed_dir(self) -> str: |
| 56 | + return osp.join(self.root, 'processed', self.name) |
| 57 | + |
| 58 | + @property |
| 59 | + def raw_file_names(self) -> str: |
| 60 | + name = self.file_names[self.name] |
| 61 | + return name |
| 62 | + |
| 63 | + @property |
| 64 | + def processed_file_names(self) -> List[str]: |
| 65 | + return ['data.pt'] |
| 66 | + |
| 67 | + def download(self): |
| 68 | + url = f'{self.gdml_url}/{self.file_names[self.name]}' |
| 69 | + path = download_url(url, self.raw_dir) |
| 70 | + |
| 71 | + def process(self): |
| 72 | + it = zip(self.raw_paths, self.processed_paths) |
| 73 | + for raw_path, processed_path in it: |
| 74 | + raw_data = np.load(raw_path) |
| 75 | + |
| 76 | + z = torch.from_numpy(raw_data['z']).long() |
| 77 | + pos = torch.from_numpy(raw_data['R']).float() |
| 78 | + energy = torch.from_numpy(raw_data['E']).float() |
| 79 | + force = torch.from_numpy(raw_data['F']).float() |
| 80 | + |
| 81 | + data_list = [] |
| 82 | + for i in range(pos.size(0)): |
| 83 | + data = Data(z=z, pos=pos[i], y=energy[i].unsqueeze(-1), neg_dy=force[i]) |
| 84 | + if self.pre_filter is not None and not self.pre_filter(data): |
| 85 | + continue |
| 86 | + if self.pre_transform is not None: |
| 87 | + data = self.pre_transform(data) |
| 88 | + data_list.append(data) |
| 89 | + |
| 90 | + torch.save(self.collate(data_list), processed_path) |
| 91 | + |
| 92 | + def __repr__(self) -> str: |
| 93 | + return f"{self.__class__.__name__}({len(self)}, name='{self.name}')" |
0 commit comments