| 
 | 1 | +# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.  | 
 | 2 | +#  | 
 | 3 | +# Redistribution and use in source and binary forms, with or without  | 
 | 4 | +# modification, are permitted provided that the following conditions  | 
 | 5 | +# are met:  | 
 | 6 | +#  * Redistributions of source code must retain the above copyright  | 
 | 7 | +#    notice, this list of conditions and the following disclaimer.  | 
 | 8 | +#  * Redistributions in binary form must reproduce the above copyright  | 
 | 9 | +#    notice, this list of conditions and the following disclaimer in the  | 
 | 10 | +#    documentation and/or other materials provided with the distribution.  | 
 | 11 | +#  * Neither the name of NVIDIA CORPORATION nor the names of its  | 
 | 12 | +#    contributors may be used to endorse or promote products derived  | 
 | 13 | +#    from this software without specific prior written permission.  | 
 | 14 | +#  | 
 | 15 | +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY  | 
 | 16 | +# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE  | 
 | 17 | +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR  | 
 | 18 | +# PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR  | 
 | 19 | +# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,  | 
 | 20 | +# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,  | 
 | 21 | +# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR  | 
 | 22 | +# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY  | 
 | 23 | +# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT  | 
 | 24 | +# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE  | 
 | 25 | +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
 | 26 | + | 
 | 27 | +import json  | 
 | 28 | + | 
 | 29 | +import numpy as np  | 
 | 30 | +import pytest  | 
 | 31 | +import tritonclient.grpc as grpcclient  | 
 | 32 | + | 
 | 33 | + | 
 | 34 | +class TestAdditionalOutputs:  | 
 | 35 | +    _grpc_url = "localhost:8001"  | 
 | 36 | +    _model_name = "vllm_opt"  | 
 | 37 | +    _sampling_parameters = {"temperature": "0", "top_p": "1"}  | 
 | 38 | +    _prompt = "In this example,"  | 
 | 39 | + | 
 | 40 | +    def _get_inputs(  | 
 | 41 | +        self,  | 
 | 42 | +        prompt,  | 
 | 43 | +        stream=True,  | 
 | 44 | +        sampling_parameters=None,  | 
 | 45 | +        return_finish_reason=None,  | 
 | 46 | +        return_cumulative_logprob=None,  | 
 | 47 | +        return_num_output_tokens=None,  | 
 | 48 | +    ):  | 
 | 49 | +        inputs = []  | 
 | 50 | + | 
 | 51 | +        inputs.append(grpcclient.InferInput("text_input", [1], "BYTES"))  | 
 | 52 | +        inputs[-1].set_data_from_numpy(  | 
 | 53 | +            np.array([prompt.encode("utf-8")], dtype=np.object_)  | 
 | 54 | +        )  | 
 | 55 | + | 
 | 56 | +        inputs.append(grpcclient.InferInput("stream", [1], "BOOL"))  | 
 | 57 | +        inputs[-1].set_data_from_numpy(np.array([stream], dtype=bool))  | 
 | 58 | + | 
 | 59 | +        if sampling_parameters is not None:  | 
 | 60 | +            inputs.append(grpcclient.InferInput("sampling_parameters", [1], "BYTES"))  | 
 | 61 | +            inputs[-1].set_data_from_numpy(  | 
 | 62 | +                np.array(  | 
 | 63 | +                    [json.dumps(sampling_parameters).encode("utf-8")], dtype=np.object_  | 
 | 64 | +                )  | 
 | 65 | +            )  | 
 | 66 | + | 
 | 67 | +        if return_finish_reason is not None:  | 
 | 68 | +            inputs.append(grpcclient.InferInput("return_finish_reason", [1], "BOOL"))  | 
 | 69 | +            inputs[-1].set_data_from_numpy(np.array([return_finish_reason], dtype=bool))  | 
 | 70 | + | 
 | 71 | +        if return_cumulative_logprob is not None:  | 
 | 72 | +            inputs.append(  | 
 | 73 | +                grpcclient.InferInput("return_cumulative_logprob", [1], "BOOL")  | 
 | 74 | +            )  | 
 | 75 | +            inputs[-1].set_data_from_numpy(  | 
 | 76 | +                np.array([return_cumulative_logprob], dtype=bool)  | 
 | 77 | +            )  | 
 | 78 | + | 
 | 79 | +        if return_num_output_tokens is not None:  | 
 | 80 | +            inputs.append(  | 
 | 81 | +                grpcclient.InferInput("return_num_output_tokens", [1], "BOOL")  | 
 | 82 | +            )  | 
 | 83 | +            inputs[-1].set_data_from_numpy(  | 
 | 84 | +                np.array([return_num_output_tokens], dtype=bool)  | 
 | 85 | +            )  | 
 | 86 | + | 
 | 87 | +        return inputs  | 
 | 88 | + | 
 | 89 | +    def _callback(self, result, error):  | 
 | 90 | +        self._responses.append({"result": result, "error": error})  | 
 | 91 | + | 
 | 92 | +    def _llm_infer(self, inputs):  | 
 | 93 | +        self._responses = []  | 
 | 94 | +        with grpcclient.InferenceServerClient(self._grpc_url) as client:  | 
 | 95 | +            client.start_stream(self._callback)  | 
 | 96 | +            client.async_stream_infer(  | 
 | 97 | +                self._model_name, inputs=inputs, parameters=self._sampling_parameters  | 
 | 98 | +            )  | 
 | 99 | +            client.stop_stream()  | 
 | 100 | +        assert len(self._responses) > 0  | 
 | 101 | + | 
 | 102 | +    def _assert_text_output_valid(self):  | 
 | 103 | +        text_output = ""  | 
 | 104 | +        for response in self._responses:  | 
 | 105 | +            result, error = response["result"], response["error"]  | 
 | 106 | +            assert error is None  | 
 | 107 | +            text_output += result.as_numpy(name="text_output")[0].decode("utf-8")  | 
 | 108 | +        assert len(text_output) > 0, "output is empty"  | 
 | 109 | +        assert text_output.count(" ") > 4, "output is not a sentence"  | 
 | 110 | + | 
 | 111 | +    def _assert_finish_reason(self, return_finish_reason):  | 
 | 112 | +        for i in range(len(self._responses)):  | 
 | 113 | +            result, error = self._responses[i]["result"], self._responses[i]["error"]  | 
 | 114 | +            assert error is None  | 
 | 115 | +            finish_reason_np = result.as_numpy(name="finish_reason")  | 
 | 116 | +            if return_finish_reason is None or return_finish_reason == False:  | 
 | 117 | +                assert finish_reason_np is None  | 
 | 118 | +                continue  | 
 | 119 | +            finish_reason = finish_reason_np[0].decode("utf-8")  | 
 | 120 | +            if i < len(self._responses) - 1:  | 
 | 121 | +                assert finish_reason == "None"  | 
 | 122 | +            else:  | 
 | 123 | +                assert finish_reason == "length"  | 
 | 124 | + | 
 | 125 | +    def _assert_cumulative_logprob(self, return_cumulative_logprob):  | 
 | 126 | +        prev_cumulative_logprob = 0.0  | 
 | 127 | +        for response in self._responses:  | 
 | 128 | +            result, error = response["result"], response["error"]  | 
 | 129 | +            assert error is None  | 
 | 130 | +            cumulative_logprob_np = result.as_numpy(name="cumulative_logprob")  | 
 | 131 | +            if return_cumulative_logprob is None or return_cumulative_logprob == False:  | 
 | 132 | +                assert cumulative_logprob_np is None  | 
 | 133 | +                continue  | 
 | 134 | +            cumulative_logprob = cumulative_logprob_np[0].astype(float)  | 
 | 135 | +            assert cumulative_logprob != prev_cumulative_logprob  | 
 | 136 | +            prev_cumulative_logprob = cumulative_logprob  | 
 | 137 | + | 
 | 138 | +    def _assert_num_output_tokens(self, return_num_output_tokens):  | 
 | 139 | +        for response in self._responses:  | 
 | 140 | +            result, error = response["result"], response["error"]  | 
 | 141 | +            assert error is None  | 
 | 142 | +            num_output_tokens_np = result.as_numpy(name="num_output_tokens")  | 
 | 143 | +            if return_num_output_tokens is None or return_num_output_tokens == False:  | 
 | 144 | +                assert num_output_tokens_np is None  | 
 | 145 | +                continue  | 
 | 146 | +            num_output_tokens = num_output_tokens_np[0].astype(int)  | 
 | 147 | +            # TODO: vLLM may return token ids identical to the previous one when  | 
 | 148 | +            #       streaming, for example:  | 
 | 149 | +            #  | 
 | 150 | +            #       prev: None  | 
 | 151 | +            #       curr: text=' the', token_ids=array('l', [5])  | 
 | 152 | +            #  | 
 | 153 | +            #       prev: text=' the', token_ids=array('l', [5, 1385])  | 
 | 154 | +            #       curr: text=' the term', token_ids=array('l', [5, 1385])  | 
 | 155 | +            #  | 
 | 156 | +            #       prev: text=' the term', token_ids=array('l', [5, 1385, 44])  | 
 | 157 | +            #       curr: text=' the term', token_ids=array('l', [5, 1385, 44])  | 
 | 158 | +            #  | 
 | 159 | +            #       prev: text=' the term', token_ids=array('l', [5, 1385, 44, 48])  | 
 | 160 | +            #       curr: text=' the term “', token_ids=array('l', [5, 1385, 44, 48])  | 
 | 161 | +            #  | 
 | 162 | +            #       If this is no longer the case in a future release, change the assert  | 
 | 163 | +            #       to assert num_output_tokens > 0.  | 
 | 164 | +            assert num_output_tokens >= 0  | 
 | 165 | + | 
 | 166 | +    @pytest.mark.parametrize("stream", [True, False])  | 
 | 167 | +    @pytest.mark.parametrize("return_finish_reason", [None, True, False])  | 
 | 168 | +    @pytest.mark.parametrize("return_cumulative_logprob", [None, True, False])  | 
 | 169 | +    @pytest.mark.parametrize("return_num_output_tokens", [None, True, False])  | 
 | 170 | +    def test_additional_outputs(  | 
 | 171 | +        self,  | 
 | 172 | +        stream,  | 
 | 173 | +        return_finish_reason,  | 
 | 174 | +        return_cumulative_logprob,  | 
 | 175 | +        return_num_output_tokens,  | 
 | 176 | +    ):  | 
 | 177 | +        inputs = self._get_inputs(  | 
 | 178 | +            self._prompt,  | 
 | 179 | +            stream=stream,  | 
 | 180 | +            sampling_parameters=self._sampling_parameters,  | 
 | 181 | +            return_finish_reason=return_finish_reason,  | 
 | 182 | +            return_cumulative_logprob=return_cumulative_logprob,  | 
 | 183 | +            return_num_output_tokens=return_num_output_tokens,  | 
 | 184 | +        )  | 
 | 185 | +        self._llm_infer(inputs)  | 
 | 186 | +        self._assert_text_output_valid()  | 
 | 187 | +        self._assert_finish_reason(return_finish_reason)  | 
 | 188 | +        self._assert_cumulative_logprob(return_cumulative_logprob)  | 
 | 189 | +        self._assert_num_output_tokens(return_num_output_tokens)  | 
0 commit comments