| ID | \n", - "Name | \n", - "Description | \n", - "Has Figure | \n", - "Has Table | \n", - "Required Inputs | \n", - "Params | \n", - "Tags | \n", - "Tasks | \n", - "
|---|---|---|---|---|---|---|---|---|
| validmind.data_validation.ACFandPACFPlot | \n", - "AC Fand PACF Plot | \n", - "Analyzes time series data using Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots to... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'forecasting', 'statistical_test', 'visualization'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.ADF | \n", - "ADF | \n", - "Assesses the stationarity of a time series dataset using the Augmented Dickey-Fuller (ADF) test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'statsmodels', 'forecasting', 'statistical_test', 'stationarity'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.AutoAR | \n", - "Auto AR | \n", - "Automatically identifies the optimal Autoregressive (AR) order for a time series using BIC and AIC criteria.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'max_ar_order': {'type': 'int', 'default': 3}} | \n", - "['time_series_data', 'statsmodels', 'forecasting', 'statistical_test'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.AutoMA | \n", - "Auto MA | \n", - "Automatically selects the optimal Moving Average (MA) order for each variable in a time series dataset based on... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'max_ma_order': {'type': 'int', 'default': 3}} | \n", - "['time_series_data', 'statsmodels', 'forecasting', 'statistical_test'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.AutoStationarity | \n", - "Auto Stationarity | \n", - "Automates Augmented Dickey-Fuller test to assess stationarity across multiple time series in a DataFrame.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'max_order': {'type': 'int', 'default': 5}, 'threshold': {'type': 'float', 'default': 0.05}} | \n", - "['time_series_data', 'statsmodels', 'forecasting', 'statistical_test'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.BivariateScatterPlots | \n", - "Bivariate Scatter Plots | \n", - "Generates bivariate scatterplots to visually inspect relationships between pairs of numerical predictor variables... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'numerical_data', 'visualization'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.BoxPierce | \n", - "Box Pierce | \n", - "Detects autocorrelation in time-series data through the Box-Pierce test to validate model performance.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'forecasting', 'statistical_test', 'statsmodels'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.ChiSquaredFeaturesTable | \n", - "Chi Squared Features Table | \n", - "Assesses the statistical association between categorical features and a target variable using the Chi-Squared test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'p_threshold': {'type': '_empty', 'default': 0.05}} | \n", - "['tabular_data', 'categorical_data', 'statistical_test'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.ClassImbalance | \n", - "Class Imbalance | \n", - "Evaluates and quantifies class distribution imbalance in a dataset used by a machine learning model.... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'min_percent_threshold': {'type': 'int', 'default': 10}} | \n", - "['tabular_data', 'binary_classification', 'multiclass_classification', 'data_quality'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.DatasetDescription | \n", - "Dataset Description | \n", - "Provides comprehensive analysis and statistical summaries of each column in a machine learning model's dataset.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'time_series_data', 'text_data'] | \n", - "['classification', 'regression', 'text_classification', 'text_summarization'] | \n", - "
| validmind.data_validation.DatasetSplit | \n", - "Dataset Split | \n", - "Evaluates and visualizes the distribution proportions among training, testing, and validation datasets of an ML... | \n", - "False | \n", - "True | \n", - "['datasets'] | \n", - "{} | \n", - "['tabular_data', 'time_series_data', 'text_data'] | \n", - "['classification', 'regression', 'text_classification', 'text_summarization'] | \n", - "
| validmind.data_validation.DescriptiveStatistics | \n", - "Descriptive Statistics | \n", - "Performs a detailed descriptive statistical analysis of both numerical and categorical data within a model's... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'time_series_data', 'data_quality'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.DickeyFullerGLS | \n", - "Dickey Fuller GLS | \n", - "Assesses stationarity in time series data using the Dickey-Fuller GLS test to determine the order of integration.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'forecasting', 'unit_root_test'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.Duplicates | \n", - "Duplicates | \n", - "Tests dataset for duplicate entries, ensuring model reliability via data quality verification.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'min_threshold': {'type': '_empty', 'default': 1}} | \n", - "['tabular_data', 'data_quality', 'text_data'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.EngleGrangerCoint | \n", - "Engle Granger Coint | \n", - "Assesses the degree of co-movement between pairs of time series data using the Engle-Granger cointegration test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'threshold': {'type': 'float', 'default': 0.05}} | \n", - "['time_series_data', 'statistical_test', 'forecasting'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.FeatureTargetCorrelationPlot | \n", - "Feature Target Correlation Plot | \n", - "Visualizes the correlation between input features and the model's target output in a color-coded horizontal bar... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'fig_height': {'type': '_empty', 'default': 600}} | \n", - "['tabular_data', 'visualization', 'correlation'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.HighCardinality | \n", - "High Cardinality | \n", - "Assesses the number of unique values in categorical columns to detect high cardinality and potential overfitting.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'num_threshold': {'type': 'int', 'default': 100}, 'percent_threshold': {'type': 'float', 'default': 0.1}, 'threshold_type': {'type': 'str', 'default': 'percent'}} | \n", - "['tabular_data', 'data_quality', 'categorical_data'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.HighPearsonCorrelation | \n", - "High Pearson Correlation | \n", - "Identifies highly correlated feature pairs in a dataset suggesting feature redundancy or multicollinearity.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'max_threshold': {'type': 'float', 'default': 0.3}, 'top_n_correlations': {'type': 'int', 'default': 10}, 'feature_columns': {'type': 'list', 'default': None}} | \n", - "['tabular_data', 'data_quality', 'correlation'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.IQROutliersBarPlot | \n", - "IQR Outliers Bar Plot | \n", - "Visualizes outlier distribution across percentiles in numerical data using the Interquartile Range (IQR) method.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'threshold': {'type': 'float', 'default': 1.5}, 'fig_width': {'type': 'int', 'default': 800}} | \n", - "['tabular_data', 'visualization', 'numerical_data'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.IQROutliersTable | \n", - "IQR Outliers Table | \n", - "Determines and summarizes outliers in numerical features using the Interquartile Range method.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'threshold': {'type': 'float', 'default': 1.5}} | \n", - "['tabular_data', 'numerical_data'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.IsolationForestOutliers | \n", - "Isolation Forest Outliers | \n", - "Detects outliers in a dataset using the Isolation Forest algorithm and visualizes results through scatter plots.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'random_state': {'type': 'int', 'default': 0}, 'contamination': {'type': 'float', 'default': 0.1}, 'feature_columns': {'type': 'list', 'default': None}} | \n", - "['tabular_data', 'anomaly_detection'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.JarqueBera | \n", - "Jarque Bera | \n", - "Assesses normality of dataset features in an ML model using the Jarque-Bera test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.KPSS | \n", - "KPSS | \n", - "Assesses the stationarity of time-series data in a machine learning model using the KPSS unit root test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'stationarity', 'unit_root_test', 'statsmodels'] | \n", - "['data_validation'] | \n", - "
| validmind.data_validation.LJungBox | \n", - "L Jung Box | \n", - "Assesses autocorrelations in dataset features by performing a Ljung-Box test on each feature.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'forecasting', 'statistical_test', 'statsmodels'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.LaggedCorrelationHeatmap | \n", - "Lagged Correlation Heatmap | \n", - "Assesses and visualizes correlation between target variable and lagged independent variables in a time-series... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'num_lags': {'type': 'int', 'default': 10}} | \n", - "['time_series_data', 'visualization'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.MissingValues | \n", - "Missing Values | \n", - "Evaluates dataset quality by ensuring missing value ratio across all features does not exceed a set threshold.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'min_threshold': {'type': 'int', 'default': 1}} | \n", - "['tabular_data', 'data_quality'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.MissingValuesBarPlot | \n", - "Missing Values Bar Plot | \n", - "Assesses the percentage and distribution of missing values in the dataset via a bar plot, with emphasis on... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'threshold': {'type': 'int', 'default': 80}, 'fig_height': {'type': 'int', 'default': 600}} | \n", - "['tabular_data', 'data_quality', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.MutualInformation | \n", - "Mutual Information | \n", - "Calculates mutual information scores between features and target variable to evaluate feature relevance.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'min_threshold': {'type': 'float', 'default': 0.01}, 'task': {'type': 'str', 'default': 'classification'}} | \n", - "['feature_selection', 'data_analysis'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.PearsonCorrelationMatrix | \n", - "Pearson Correlation Matrix | \n", - "Evaluates linear dependency between numerical variables in a dataset via a Pearson Correlation coefficient heat map.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'numerical_data', 'correlation'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.PhillipsPerronArch | \n", - "Phillips Perron Arch | \n", - "Assesses the stationarity of time series data in each feature of the ML model using the Phillips-Perron test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'forecasting', 'statistical_test', 'unit_root_test'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.ProtectedClassesDescription | \n", - "Protected Classes Description | \n", - "Visualizes the distribution of protected classes in the dataset relative to the target variable... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'protected_classes': {'type': '_empty', 'default': None}} | \n", - "['bias_and_fairness', 'descriptive_statistics'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.RollingStatsPlot | \n", - "Rolling Stats Plot | \n", - "Evaluates the stationarity of time series data by plotting its rolling mean and standard deviation over a specified... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'window_size': {'type': 'int', 'default': 12}} | \n", - "['time_series_data', 'visualization', 'stationarity'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.RunsTest | \n", - "Runs Test | \n", - "Executes Runs Test on ML model to detect non-random patterns in output data sequence.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'statistical_test', 'statsmodels'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.ScatterPlot | \n", - "Scatter Plot | \n", - "Assesses visual relationships, patterns, and outliers among features in a dataset through scatter plot matrices.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.ScoreBandDefaultRates | \n", - "Score Band Default Rates | \n", - "Analyzes default rates and population distribution across credit score bands.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'score_column': {'type': 'str', 'default': 'score'}, 'score_bands': {'type': 'list', 'default': None}} | \n", - "['visualization', 'credit_risk', 'scorecard'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.SeasonalDecompose | \n", - "Seasonal Decompose | \n", - "Assesses patterns and seasonality in a time series dataset by decomposing its features into foundational components.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'seasonal_model': {'type': 'str', 'default': 'additive'}} | \n", - "['time_series_data', 'seasonality', 'statsmodels'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.ShapiroWilk | \n", - "Shapiro Wilk | \n", - "Evaluates feature-wise normality of training data using the Shapiro-Wilk test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'data_distribution', 'statistical_test'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.Skewness | \n", - "Skewness | \n", - "Evaluates the skewness of numerical data in a dataset to check against a defined threshold, aiming to ensure data... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'max_threshold': {'type': '_empty', 'default': 1}} | \n", - "['data_quality', 'tabular_data'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.SpreadPlot | \n", - "Spread Plot | \n", - "Assesses potential correlations between pairs of time series variables through visualization to enhance... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'visualization'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.TabularCategoricalBarPlots | \n", - "Tabular Categorical Bar Plots | \n", - "Generates and visualizes bar plots for each category in categorical features to evaluate the dataset's composition.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.TabularDateTimeHistograms | \n", - "Tabular Date Time Histograms | \n", - "Generates histograms to provide graphical insight into the distribution of time intervals in a model's datetime... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.TabularDescriptionTables | \n", - "Tabular Description Tables | \n", - "Summarizes key descriptive statistics for numerical, categorical, and datetime variables in a dataset.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.TabularNumericalHistograms | \n", - "Tabular Numerical Histograms | \n", - "Generates histograms for each numerical feature in a dataset to provide visual insights into data distribution and... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.TargetRateBarPlots | \n", - "Target Rate Bar Plots | \n", - "Generates bar plots visualizing the default rates of categorical features for a classification machine learning... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'visualization', 'categorical_data'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.TimeSeriesDescription | \n", - "Time Series Description | \n", - "Generates a detailed analysis for the provided time series dataset, summarizing key statistics to identify trends,... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'analysis'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.TimeSeriesDescriptiveStatistics | \n", - "Time Series Descriptive Statistics | \n", - "Evaluates the descriptive statistics of a time series dataset to identify trends, patterns, and data quality issues.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'analysis'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.TimeSeriesFrequency | \n", - "Time Series Frequency | \n", - "Evaluates consistency of time series data frequency and generates a frequency plot.... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.TimeSeriesHistogram | \n", - "Time Series Histogram | \n", - "Visualizes distribution of time-series data using histograms and Kernel Density Estimation (KDE) lines.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'nbins': {'type': '_empty', 'default': 30}} | \n", - "['data_validation', 'visualization', 'time_series_data'] | \n", - "['regression', 'time_series_forecasting'] | \n", - "
| validmind.data_validation.TimeSeriesLinePlot | \n", - "Time Series Line Plot | \n", - "Generates and analyses time-series data through line plots revealing trends, patterns, anomalies over time.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'visualization'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.TimeSeriesMissingValues | \n", - "Time Series Missing Values | \n", - "Validates time-series data quality by confirming the count of missing values is below a certain threshold.... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'min_threshold': {'type': 'int', 'default': 1}} | \n", - "['time_series_data'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.TimeSeriesOutliers | \n", - "Time Series Outliers | \n", - "Identifies and visualizes outliers in time-series data using the z-score method.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'zscore_threshold': {'type': 'int', 'default': 3}} | \n", - "['time_series_data'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.TooManyZeroValues | \n", - "Too Many Zero Values | \n", - "Identifies numerical columns in a dataset that contain an excessive number of zero values, defined by a threshold... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'max_percent_threshold': {'type': 'float', 'default': 0.03}} | \n", - "['tabular_data'] | \n", - "['regression', 'classification'] | \n", - "
| validmind.data_validation.UniqueRows | \n", - "Unique Rows | \n", - "Verifies the diversity of the dataset by ensuring that the count of unique rows exceeds a prescribed threshold.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'min_percent_threshold': {'type': 'float', 'default': 1}} | \n", - "['tabular_data'] | \n", - "['regression', 'classification'] | \n", - "
| validmind.data_validation.WOEBinPlots | \n", - "WOE Bin Plots | \n", - "Generates visualizations of Weight of Evidence (WoE) and Information Value (IV) for understanding predictive power... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'breaks_adj': {'type': 'list', 'default': None}, 'fig_height': {'type': 'int', 'default': 600}, 'fig_width': {'type': 'int', 'default': 500}} | \n", - "['tabular_data', 'visualization', 'categorical_data'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.WOEBinTable | \n", - "WOE Bin Table | \n", - "Assesses the Weight of Evidence (WoE) and Information Value (IV) of each feature to evaluate its predictive power... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'breaks_adj': {'type': 'list', 'default': None}} | \n", - "['tabular_data', 'categorical_data'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.ZivotAndrewsArch | \n", - "Zivot Andrews Arch | \n", - "Evaluates the order of integration and stationarity of time series data using the Zivot-Andrews unit root test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'stationarity', 'unit_root_test'] | \n", - "['regression'] | \n", - "
| validmind.data_validation.nlp.CommonWords | \n", - "Common Words | \n", - "Assesses the most frequent non-stopwords in a text column for identifying prevalent language patterns.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['nlp', 'text_data', 'visualization', 'frequency_analysis'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.data_validation.nlp.Hashtags | \n", - "Hashtags | \n", - "Assesses hashtag frequency in a text column, highlighting usage trends and potential dataset bias or spam.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'top_hashtags': {'type': 'int', 'default': 25}} | \n", - "['nlp', 'text_data', 'visualization', 'frequency_analysis'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.data_validation.nlp.LanguageDetection | \n", - "Language Detection | \n", - "Assesses the diversity of languages in a textual dataset by detecting and visualizing the distribution of languages.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['nlp', 'text_data', 'visualization'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.data_validation.nlp.Mentions | \n", - "Mentions | \n", - "Calculates and visualizes frequencies of '@' prefixed mentions in a text-based dataset for NLP model analysis.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'top_mentions': {'type': 'int', 'default': 25}} | \n", - "['nlp', 'text_data', 'visualization', 'frequency_analysis'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.data_validation.nlp.PolarityAndSubjectivity | \n", - "Polarity And Subjectivity | \n", - "Analyzes the polarity and subjectivity of text data within a given dataset to visualize the sentiment distribution.... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'threshold_subjectivity': {'type': '_empty', 'default': 0.5}, 'threshold_polarity': {'type': '_empty', 'default': 0}} | \n", - "['nlp', 'text_data', 'data_validation'] | \n", - "['nlp'] | \n", - "
| validmind.data_validation.nlp.Punctuations | \n", - "Punctuations | \n", - "Analyzes and visualizes the frequency distribution of punctuation usage in a given text dataset.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'count_mode': {'type': '_empty', 'default': 'token'}} | \n", - "['nlp', 'text_data', 'visualization', 'frequency_analysis'] | \n", - "['text_classification', 'text_summarization', 'nlp'] | \n", - "
| validmind.data_validation.nlp.Sentiment | \n", - "Sentiment | \n", - "Analyzes the sentiment of text data within a dataset using the VADER sentiment analysis tool.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['nlp', 'text_data', 'data_validation'] | \n", - "['nlp'] | \n", - "
| validmind.data_validation.nlp.StopWords | \n", - "Stop Words | \n", - "Evaluates and visualizes the frequency of English stop words in a text dataset against a defined threshold.... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'min_percent_threshold': {'type': 'float', 'default': 0.5}, 'num_words': {'type': 'int', 'default': 25}} | \n", - "['nlp', 'text_data', 'frequency_analysis', 'visualization'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.data_validation.nlp.TextDescription | \n", - "Text Description | \n", - "Conducts comprehensive textual analysis on a dataset using NLTK to evaluate various parameters and generate... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'unwanted_tokens': {'type': 'set', 'default': {'s', 'mrs', 'us', \"''\", ' ', 'ms', 'dr', 'dollar', '``', 'mr', \"'s\", \"s'\"}}, 'lang': {'type': 'str', 'default': 'english'}} | \n", - "['nlp', 'text_data', 'visualization'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.data_validation.nlp.Toxicity | \n", - "Toxicity | \n", - "Assesses the toxicity of text data within a dataset to visualize the distribution of toxicity scores.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['nlp', 'text_data', 'data_validation'] | \n", - "['nlp'] | \n", - "
| validmind.model_validation.BertScore | \n", - "Bert Score | \n", - "Assesses the quality of machine-generated text using BERTScore metrics and visualizes results through histograms... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'evaluation_model': {'type': '_empty', 'default': 'distilbert-base-uncased'}} | \n", - "['nlp', 'text_data', 'visualization'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.model_validation.BleuScore | \n", - "Bleu Score | \n", - "Evaluates the quality of machine-generated text using BLEU metrics and visualizes the results through histograms... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['nlp', 'text_data', 'visualization'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.model_validation.ClusterSizeDistribution | \n", - "Cluster Size Distribution | \n", - "Assesses the performance of clustering models by comparing the distribution of cluster sizes in model predictions... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.ContextualRecall | \n", - "Contextual Recall | \n", - "Evaluates a Natural Language Generation model's ability to generate contextually relevant and factually correct... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['nlp', 'text_data', 'visualization'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.model_validation.FeaturesAUC | \n", - "Features AUC | \n", - "Evaluates the discriminatory power of each individual feature within a binary classification model by calculating... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'fontsize': {'type': 'int', 'default': 12}, 'figure_height': {'type': 'int', 'default': 500}} | \n", - "['feature_importance', 'AUC', 'visualization'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.MeteorScore | \n", - "Meteor Score | \n", - "Assesses the quality of machine-generated translations by comparing them to human-produced references using the... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['nlp', 'text_data', 'visualization'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.model_validation.ModelMetadata | \n", - "Model Metadata | \n", - "Compare metadata of different models and generate a summary table with the results.... | \n", - "False | \n", - "True | \n", - "['model'] | \n", - "{} | \n", - "['model_training', 'metadata'] | \n", - "['regression', 'time_series_forecasting'] | \n", - "
| validmind.model_validation.ModelPredictionResiduals | \n", - "Model Prediction Residuals | \n", - "Assesses normality and behavior of residuals in regression models through visualization and statistical tests.... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'nbins': {'type': 'int', 'default': 100}, 'p_value_threshold': {'type': 'float', 'default': 0.05}, 'start_date': {'type': None, 'default': None}, 'end_date': {'type': None, 'default': None}} | \n", - "['regression'] | \n", - "['residual_analysis', 'visualization'] | \n", - "
| validmind.model_validation.RegardScore | \n", - "Regard Score | \n", - "Assesses the sentiment and potential biases in text generated by NLP models by computing and visualizing regard... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['nlp', 'text_data', 'visualization'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.model_validation.RegressionResidualsPlot | \n", - "Regression Residuals Plot | \n", - "Evaluates regression model performance using residual distribution and actual vs. predicted plots.... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'bin_size': {'type': 'float', 'default': 0.1}} | \n", - "['model_performance', 'visualization'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.RougeScore | \n", - "Rouge Score | \n", - "Assesses the quality of machine-generated text using ROUGE metrics and visualizes the results to provide... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'metric': {'type': 'str', 'default': 'rouge-1'}} | \n", - "['nlp', 'text_data', 'visualization'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.model_validation.TimeSeriesPredictionWithCI | \n", - "Time Series Prediction With CI | \n", - "Assesses predictive accuracy and uncertainty in time series models, highlighting breaches beyond confidence... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'confidence': {'type': 'float', 'default': 0.95}} | \n", - "['model_predictions', 'visualization'] | \n", - "['regression', 'time_series_forecasting'] | \n", - "
| validmind.model_validation.TimeSeriesPredictionsPlot | \n", - "Time Series Predictions Plot | \n", - "Plot actual vs predicted values for time series data and generate a visual comparison for the model.... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['model_predictions', 'visualization'] | \n", - "['regression', 'time_series_forecasting'] | \n", - "
| validmind.model_validation.TimeSeriesR2SquareBySegments | \n", - "Time Series R2 Square By Segments | \n", - "Evaluates the R-Squared values of regression models over specified time segments in time series data to assess... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'segments': {'type': None, 'default': None}} | \n", - "['model_performance', 'sklearn'] | \n", - "['regression', 'time_series_forecasting'] | \n", - "
| validmind.model_validation.TokenDisparity | \n", - "Token Disparity | \n", - "Evaluates the token disparity between reference and generated texts, visualizing the results through histograms and... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['nlp', 'text_data', 'visualization'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.model_validation.ToxicityScore | \n", - "Toxicity Score | \n", - "Assesses the toxicity levels of texts generated by NLP models to identify and mitigate harmful or offensive content.... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['nlp', 'text_data', 'visualization'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.model_validation.embeddings.ClusterDistribution | \n", - "Cluster Distribution | \n", - "Assesses the distribution of text embeddings across clusters produced by a model using KMeans clustering.... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'num_clusters': {'type': 'int', 'default': 5}} | \n", - "['llm', 'text_data', 'embeddings', 'visualization'] | \n", - "['feature_extraction'] | \n", - "
| validmind.model_validation.embeddings.CosineSimilarityComparison | \n", - "Cosine Similarity Comparison | \n", - "Assesses the similarity between embeddings generated by different models using Cosine Similarity, providing both... | \n", - "True | \n", - "True | \n", - "['dataset', 'models'] | \n", - "{} | \n", - "['visualization', 'dimensionality_reduction', 'embeddings'] | \n", - "['text_qa', 'text_generation', 'text_summarization'] | \n", - "
| validmind.model_validation.embeddings.CosineSimilarityDistribution | \n", - "Cosine Similarity Distribution | \n", - "Assesses the similarity between predicted text embeddings from a model using a Cosine Similarity distribution... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['llm', 'text_data', 'embeddings', 'visualization'] | \n", - "['feature_extraction'] | \n", - "
| validmind.model_validation.embeddings.CosineSimilarityHeatmap | \n", - "Cosine Similarity Heatmap | \n", - "Generates an interactive heatmap to visualize the cosine similarities among embeddings derived from a given model.... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'title': {'type': '_empty', 'default': 'Cosine Similarity Matrix'}, 'color': {'type': '_empty', 'default': 'Cosine Similarity'}, 'xaxis_title': {'type': '_empty', 'default': 'Index'}, 'yaxis_title': {'type': '_empty', 'default': 'Index'}, 'color_scale': {'type': '_empty', 'default': 'Blues'}} | \n", - "['visualization', 'dimensionality_reduction', 'embeddings'] | \n", - "['text_qa', 'text_generation', 'text_summarization'] | \n", - "
| validmind.model_validation.embeddings.DescriptiveAnalytics | \n", - "Descriptive Analytics | \n", - "Evaluates statistical properties of text embeddings in an ML model via mean, median, and standard deviation... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['llm', 'text_data', 'embeddings', 'visualization'] | \n", - "['feature_extraction'] | \n", - "
| validmind.model_validation.embeddings.EmbeddingsVisualization2D | \n", - "Embeddings Visualization2 D | \n", - "Visualizes 2D representation of text embeddings generated by a model using t-SNE technique.... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'cluster_column': {'type': None, 'default': None}, 'perplexity': {'type': 'int', 'default': 30}} | \n", - "['llm', 'text_data', 'embeddings', 'visualization'] | \n", - "['feature_extraction'] | \n", - "
| validmind.model_validation.embeddings.EuclideanDistanceComparison | \n", - "Euclidean Distance Comparison | \n", - "Assesses and visualizes the dissimilarity between model embeddings using Euclidean distance, providing insights... | \n", - "True | \n", - "True | \n", - "['dataset', 'models'] | \n", - "{} | \n", - "['visualization', 'dimensionality_reduction', 'embeddings'] | \n", - "['text_qa', 'text_generation', 'text_summarization'] | \n", - "
| validmind.model_validation.embeddings.EuclideanDistanceHeatmap | \n", - "Euclidean Distance Heatmap | \n", - "Generates an interactive heatmap to visualize the Euclidean distances among embeddings derived from a given model.... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'title': {'type': '_empty', 'default': 'Euclidean Distance Matrix'}, 'color': {'type': '_empty', 'default': 'Euclidean Distance'}, 'xaxis_title': {'type': '_empty', 'default': 'Index'}, 'yaxis_title': {'type': '_empty', 'default': 'Index'}, 'color_scale': {'type': '_empty', 'default': 'Blues'}} | \n", - "['visualization', 'dimensionality_reduction', 'embeddings'] | \n", - "['text_qa', 'text_generation', 'text_summarization'] | \n", - "
| validmind.model_validation.embeddings.PCAComponentsPairwisePlots | \n", - "PCA Components Pairwise Plots | \n", - "Generates scatter plots for pairwise combinations of principal component analysis (PCA) components of model... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'n_components': {'type': 'int', 'default': 3}} | \n", - "['visualization', 'dimensionality_reduction', 'embeddings'] | \n", - "['text_qa', 'text_generation', 'text_summarization'] | \n", - "
| validmind.model_validation.embeddings.StabilityAnalysisKeyword | \n", - "Stability Analysis Keyword | \n", - "Evaluates robustness of embedding models to keyword swaps in the test dataset.... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'keyword_dict': {'type': None, 'default': None}, 'mean_similarity_threshold': {'type': 'float', 'default': 0.7}} | \n", - "['llm', 'text_data', 'embeddings', 'visualization'] | \n", - "['feature_extraction'] | \n", - "
| validmind.model_validation.embeddings.StabilityAnalysisRandomNoise | \n", - "Stability Analysis Random Noise | \n", - "Assesses the robustness of text embeddings models to random noise introduced via text perturbations.... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'probability': {'type': 'float', 'default': 0.02}, 'mean_similarity_threshold': {'type': 'float', 'default': 0.7}} | \n", - "['llm', 'text_data', 'embeddings', 'visualization'] | \n", - "['feature_extraction'] | \n", - "
| validmind.model_validation.embeddings.StabilityAnalysisSynonyms | \n", - "Stability Analysis Synonyms | \n", - "Evaluates the stability of text embeddings models when words in test data are replaced by their synonyms randomly.... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'probability': {'type': 'float', 'default': 0.02}, 'mean_similarity_threshold': {'type': 'float', 'default': 0.7}} | \n", - "['llm', 'text_data', 'embeddings', 'visualization'] | \n", - "['feature_extraction'] | \n", - "
| validmind.model_validation.embeddings.StabilityAnalysisTranslation | \n", - "Stability Analysis Translation | \n", - "Evaluates robustness of text embeddings models to noise introduced by translating the original text to another... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'source_lang': {'type': 'str', 'default': 'en'}, 'target_lang': {'type': 'str', 'default': 'fr'}, 'mean_similarity_threshold': {'type': 'float', 'default': 0.7}} | \n", - "['llm', 'text_data', 'embeddings', 'visualization'] | \n", - "['feature_extraction'] | \n", - "
| validmind.model_validation.embeddings.TSNEComponentsPairwisePlots | \n", - "TSNE Components Pairwise Plots | \n", - "Creates scatter plots for pairwise combinations of t-SNE components to visualize embeddings and highlight potential... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'n_components': {'type': 'int', 'default': 2}, 'perplexity': {'type': 'int', 'default': 30}, 'title': {'type': 'str', 'default': 't-SNE'}} | \n", - "['visualization', 'dimensionality_reduction', 'embeddings'] | \n", - "['text_qa', 'text_generation', 'text_summarization'] | \n", - "
| validmind.model_validation.ragas.AnswerCorrectness | \n", - "Answer Correctness | \n", - "Evaluates the correctness of answers in a dataset with respect to the provided ground... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'response_column': {'type': 'str', 'default': 'response'}, 'reference_column': {'type': 'str', 'default': 'reference'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", - "['ragas', 'llm'] | \n", - "['text_qa', 'text_generation', 'text_summarization'] | \n", - "
| validmind.model_validation.ragas.AspectCritic | \n", - "Aspect Critic | \n", - "Evaluates generations against the following aspects: harmfulness, maliciousness,... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'response_column': {'type': 'str', 'default': 'response'}, 'retrieved_contexts_column': {'type': None, 'default': None}, 'aspects': {'type': None, 'default': ['coherence', 'conciseness', 'correctness', 'harmfulness', 'maliciousness']}, 'additional_aspects': {'type': None, 'default': None}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", - "['ragas', 'llm', 'qualitative'] | \n", - "['text_summarization', 'text_generation', 'text_qa'] | \n", - "
| validmind.model_validation.ragas.ContextEntityRecall | \n", - "Context Entity Recall | \n", - "Evaluates the context entity recall for dataset entries and visualizes the results.... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'reference_column': {'type': 'str', 'default': 'reference'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", - "['ragas', 'llm', 'retrieval_performance'] | \n", - "['text_qa', 'text_generation', 'text_summarization'] | \n", - "
| validmind.model_validation.ragas.ContextPrecision | \n", - "Context Precision | \n", - "Context Precision is a metric that evaluates whether all of the ground-truth... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'reference_column': {'type': 'str', 'default': 'reference'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", - "['ragas', 'llm', 'retrieval_performance'] | \n", - "['text_qa', 'text_generation', 'text_summarization', 'text_classification'] | \n", - "
| validmind.model_validation.ragas.ContextPrecisionWithoutReference | \n", - "Context Precision Without Reference | \n", - "Context Precision Without Reference is a metric used to evaluate the relevance of... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'response_column': {'type': 'str', 'default': 'response'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", - "['ragas', 'llm', 'retrieval_performance'] | \n", - "['text_qa', 'text_generation', 'text_summarization', 'text_classification'] | \n", - "
| validmind.model_validation.ragas.ContextRecall | \n", - "Context Recall | \n", - "Context recall measures the extent to which the retrieved context aligns with the... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'reference_column': {'type': 'str', 'default': 'reference'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", - "['ragas', 'llm', 'retrieval_performance'] | \n", - "['text_qa', 'text_generation', 'text_summarization', 'text_classification'] | \n", - "
| validmind.model_validation.ragas.Faithfulness | \n", - "Faithfulness | \n", - "Evaluates the faithfulness of the generated answers with respect to retrieved contexts.... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'response_column': {'type': 'str', 'default': 'response'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", - "['ragas', 'llm', 'rag_performance'] | \n", - "['text_qa', 'text_generation', 'text_summarization'] | \n", - "
| validmind.model_validation.ragas.NoiseSensitivity | \n", - "Noise Sensitivity | \n", - "Assesses the sensitivity of a Large Language Model (LLM) to noise in retrieved context by measuring how often it... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'response_column': {'type': 'str', 'default': 'response'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'reference_column': {'type': 'str', 'default': 'reference'}, 'focus': {'type': 'str', 'default': 'relevant'}, 'user_input_column': {'type': 'str', 'default': 'user_input'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", - "['ragas', 'llm', 'rag_performance'] | \n", - "['text_qa', 'text_generation', 'text_summarization'] | \n", - "
| validmind.model_validation.ragas.ResponseRelevancy | \n", - "Response Relevancy | \n", - "Assesses how pertinent the generated answer is to the given prompt.... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'retrieved_contexts_column': {'type': 'str', 'default': None}, 'response_column': {'type': 'str', 'default': 'response'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", - "['ragas', 'llm', 'rag_performance'] | \n", - "['text_qa', 'text_generation', 'text_summarization'] | \n", - "
| validmind.model_validation.ragas.SemanticSimilarity | \n", - "Semantic Similarity | \n", - "Calculates the semantic similarity between generated responses and ground truths... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'response_column': {'type': 'str', 'default': 'response'}, 'reference_column': {'type': 'str', 'default': 'reference'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", - "['ragas', 'llm'] | \n", - "['text_qa', 'text_generation', 'text_summarization'] | \n", - "
| validmind.model_validation.sklearn.AdjustedMutualInformation | \n", - "Adjusted Mutual Information | \n", - "Evaluates clustering model performance by measuring mutual information between true and predicted labels, adjusting... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance', 'clustering'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.AdjustedRandIndex | \n", - "Adjusted Rand Index | \n", - "Measures the similarity between two data clusters using the Adjusted Rand Index (ARI) metric in clustering machine... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance', 'clustering'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.CalibrationCurve | \n", - "Calibration Curve | \n", - "Evaluates the calibration of probability estimates by comparing predicted probabilities against observed... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'n_bins': {'type': 'int', 'default': 10}} | \n", - "['sklearn', 'model_performance', 'classification'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.sklearn.ClassifierPerformance | \n", - "Classifier Performance | \n", - "Evaluates performance of binary or multiclass classification models using precision, recall, F1-Score, accuracy,... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'average': {'type': 'str', 'default': 'macro'}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ClassifierThresholdOptimization | \n", - "Classifier Threshold Optimization | \n", - "Analyzes and visualizes different threshold optimization methods for binary classification models.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'methods': {'type': None, 'default': None}, 'target_recall': {'type': None, 'default': None}} | \n", - "['model_validation', 'threshold_optimization', 'classification_metrics'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.sklearn.ClusterCosineSimilarity | \n", - "Cluster Cosine Similarity | \n", - "Measures the intra-cluster similarity of a clustering model using cosine similarity.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance', 'clustering'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.ClusterPerformanceMetrics | \n", - "Cluster Performance Metrics | \n", - "Evaluates the performance of clustering machine learning models using multiple established metrics.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance', 'clustering'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.CompletenessScore | \n", - "Completeness Score | \n", - "Evaluates a clustering model's capacity to categorize instances from a single class into the same cluster.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance', 'clustering'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.ConfusionMatrix | \n", - "Confusion Matrix | \n", - "Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'threshold': {'type': 'float', 'default': 0.5}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.FeatureImportance | \n", - "Feature Importance | \n", - "Compute feature importance scores for a given model and generate a summary table... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'num_features': {'type': 'int', 'default': 3}} | \n", - "['model_explainability', 'sklearn'] | \n", - "['regression', 'time_series_forecasting'] | \n", - "
| validmind.model_validation.sklearn.FowlkesMallowsScore | \n", - "Fowlkes Mallows Score | \n", - "Evaluates the similarity between predicted and actual cluster assignments in a model using the Fowlkes-Mallows... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.HomogeneityScore | \n", - "Homogeneity Score | \n", - "Assesses clustering homogeneity by comparing true and predicted labels, scoring from 0 (heterogeneous) to 1... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.HyperParametersTuning | \n", - "Hyper Parameters Tuning | \n", - "Performs exhaustive grid search over specified parameter ranges to find optimal model configurations... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{'param_grid': {'type': 'dict', 'default': None}, 'scoring': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}, 'fit_params': {'type': 'dict', 'default': None}} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering', 'classification'] | \n", - "
| validmind.model_validation.sklearn.KMeansClustersOptimization | \n", - "K Means Clusters Optimization | \n", - "Optimizes the number of clusters in K-means models using Elbow and Silhouette methods.... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'n_clusters': {'type': None, 'default': None}} | \n", - "['sklearn', 'model_performance', 'kmeans'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.MinimumAccuracy | \n", - "Minimum Accuracy | \n", - "Checks if the model's prediction accuracy meets or surpasses a specified threshold.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'min_threshold': {'type': 'float', 'default': 0.7}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.MinimumF1Score | \n", - "Minimum F1 Score | \n", - "Assesses if the model's F1 score on the validation set meets a predefined minimum threshold, ensuring balanced... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'min_threshold': {'type': 'float', 'default': 0.5}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.MinimumROCAUCScore | \n", - "Minimum ROCAUC Score | \n", - "Validates model by checking if the ROC AUC score meets or surpasses a specified threshold.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'min_threshold': {'type': 'float', 'default': 0.5}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ModelParameters | \n", - "Model Parameters | \n", - "Extracts and displays model parameters in a structured format for transparency and reproducibility.... | \n", - "False | \n", - "True | \n", - "['model'] | \n", - "{'model_params': {'type': None, 'default': None}} | \n", - "['model_training', 'metadata'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.sklearn.ModelsPerformanceComparison | \n", - "Models Performance Comparison | \n", - "Evaluates and compares the performance of multiple Machine Learning models using various metrics like accuracy,... | \n", - "False | \n", - "True | \n", - "['dataset', 'models'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'model_comparison'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.OverfitDiagnosis | \n", - "Overfit Diagnosis | \n", - "Assesses potential overfitting in a model's predictions, identifying regions where performance between training and... | \n", - "True | \n", - "True | \n", - "['model', 'datasets'] | \n", - "{'metric': {'type': 'str', 'default': None}, 'cut_off_threshold': {'type': 'float', 'default': 0.04}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'linear_regression', 'model_diagnosis'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.sklearn.PermutationFeatureImportance | \n", - "Permutation Feature Importance | \n", - "Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'fontsize': {'type': None, 'default': None}, 'figure_height': {'type': None, 'default': None}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.PopulationStabilityIndex | \n", - "Population Stability Index | \n", - "Assesses the Population Stability Index (PSI) to quantify the stability of an ML model's predictions across... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'num_bins': {'type': 'int', 'default': 10}, 'mode': {'type': 'str', 'default': 'fixed'}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.PrecisionRecallCurve | \n", - "Precision Recall Curve | \n", - "Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ROCCurve | \n", - "ROC Curve | \n", - "Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.RegressionErrors | \n", - "Regression Errors | \n", - "Assesses the performance and error distribution of a regression model using various error metrics.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['regression', 'classification'] | \n", - "
| validmind.model_validation.sklearn.RegressionErrorsComparison | \n", - "Regression Errors Comparison | \n", - "Assesses multiple regression error metrics to compare model performance across different datasets, emphasizing... | \n", - "False | \n", - "True | \n", - "['datasets', 'models'] | \n", - "{} | \n", - "['model_performance', 'sklearn'] | \n", - "['regression', 'time_series_forecasting'] | \n", - "
| validmind.model_validation.sklearn.RegressionPerformance | \n", - "Regression Performance | \n", - "Evaluates the performance of a regression model using five different metrics: MAE, MSE, RMSE, MAPE, and MBD.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.sklearn.RegressionR2Square | \n", - "Regression R2 Square | \n", - "Assesses the overall goodness-of-fit of a regression model by evaluating R-squared (R2) and Adjusted R-squared (Adj... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.sklearn.RegressionR2SquareComparison | \n", - "Regression R2 Square Comparison | \n", - "Compares R-Squared and Adjusted R-Squared values for different regression models across multiple datasets to assess... | \n", - "False | \n", - "True | \n", - "['datasets', 'models'] | \n", - "{} | \n", - "['model_performance', 'sklearn'] | \n", - "['regression', 'time_series_forecasting'] | \n", - "
| validmind.model_validation.sklearn.RobustnessDiagnosis | \n", - "Robustness Diagnosis | \n", - "Assesses the robustness of a machine learning model by evaluating performance decay under noisy conditions.... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'metric': {'type': 'str', 'default': None}, 'scaling_factor_std_dev_list': {'type': None, 'default': [0.1, 0.2, 0.3, 0.4, 0.5]}, 'performance_decay_threshold': {'type': 'float', 'default': 0.05}} | \n", - "['sklearn', 'model_diagnosis', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.sklearn.SHAPGlobalImportance | \n", - "SHAP Global Importance | \n", - "Evaluates and visualizes global feature importance using SHAP values for model explanation and risk identification.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{'kernel_explainer_samples': {'type': 'int', 'default': 10}, 'tree_or_linear_explainer_samples': {'type': 'int', 'default': 200}, 'class_of_interest': {'type': None, 'default': None}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ScoreProbabilityAlignment | \n", - "Score Probability Alignment | \n", - "Analyzes the alignment between credit scores and predicted probabilities.... | \n", - "True | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{'score_column': {'type': 'str', 'default': 'score'}, 'n_bins': {'type': 'int', 'default': 10}} | \n", - "['visualization', 'credit_risk', 'calibration'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.sklearn.SilhouettePlot | \n", - "Silhouette Plot | \n", - "Calculates and visualizes Silhouette Score, assessing the degree of data point suitability to its cluster in ML... | \n", - "True | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.TrainingTestDegradation | \n", - "Training Test Degradation | \n", - "Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'max_threshold': {'type': 'float', 'default': 0.1}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.VMeasure | \n", - "V Measure | \n", - "Evaluates homogeneity and completeness of a clustering model using the V Measure Score.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.WeakspotsDiagnosis | \n", - "Weakspots Diagnosis | \n", - "Identifies and visualizes weak spots in a machine learning model's performance across various sections of the... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'features_columns': {'type': None, 'default': None}, 'metrics': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_diagnosis', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.statsmodels.AutoARIMA | \n", - "Auto ARIMA | \n", - "Evaluates ARIMA models for time-series forecasting, ranking them using Bayesian and Akaike Information Criteria.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['time_series_data', 'forecasting', 'model_selection', 'statsmodels'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.statsmodels.CumulativePredictionProbabilities | \n", - "Cumulative Prediction Probabilities | \n", - "Visualizes cumulative probabilities of positive and negative classes for both training and testing in classification models.... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'title': {'type': 'str', 'default': 'Cumulative Probabilities'}} | \n", - "['visualization', 'credit_risk'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.statsmodels.DurbinWatsonTest | \n", - "Durbin Watson Test | \n", - "Assesses autocorrelation in time series data features using the Durbin-Watson statistic.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'threshold': {'type': None, 'default': [1.5, 2.5]}} | \n", - "['time_series_data', 'forecasting', 'statistical_test', 'statsmodels'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.statsmodels.GINITable | \n", - "GINI Table | \n", - "Evaluates classification model performance using AUC, GINI, and KS metrics for training and test datasets.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['model_performance'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.statsmodels.KolmogorovSmirnov | \n", - "Kolmogorov Smirnov | \n", - "Assesses whether each feature in the dataset aligns with a normal distribution using the Kolmogorov-Smirnov test.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{'dist': {'type': 'str', 'default': 'norm'}} | \n", - "['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.statsmodels.Lilliefors | \n", - "Lilliefors | \n", - "Assesses the normality of feature distributions in an ML model's training dataset using the Lilliefors test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.statsmodels.PredictionProbabilitiesHistogram | \n", - "Prediction Probabilities Histogram | \n", - "Assesses the predictive probability distribution for binary classification to evaluate model performance and... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'title': {'type': 'str', 'default': 'Histogram of Predictive Probabilities'}} | \n", - "['visualization', 'credit_risk'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.statsmodels.RegressionCoeffs | \n", - "Regression Coeffs | \n", - "Assesses the significance and uncertainty of predictor variables in a regression model through visualization of... | \n", - "True | \n", - "True | \n", - "['model'] | \n", - "{} | \n", - "['tabular_data', 'visualization', 'model_training'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.statsmodels.RegressionFeatureSignificance | \n", - "Regression Feature Significance | \n", - "Assesses and visualizes the statistical significance of features in a regression model.... | \n", - "True | \n", - "False | \n", - "['model'] | \n", - "{'fontsize': {'type': 'int', 'default': 10}, 'p_threshold': {'type': 'float', 'default': 0.05}} | \n", - "['statistical_test', 'model_interpretation', 'visualization', 'feature_importance'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.statsmodels.RegressionModelForecastPlot | \n", - "Regression Model Forecast Plot | \n", - "Generates plots to visually compare the forecasted outcomes of a regression model against actual observed values over... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'start_date': {'type': None, 'default': None}, 'end_date': {'type': None, 'default': None}} | \n", - "['time_series_data', 'forecasting', 'visualization'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.statsmodels.RegressionModelForecastPlotLevels | \n", - "Regression Model Forecast Plot Levels | \n", - "Assesses the alignment between forecasted and observed values in regression models through visual plots... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['time_series_data', 'forecasting', 'visualization'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.statsmodels.RegressionModelSensitivityPlot | \n", - "Regression Model Sensitivity Plot | \n", - "Assesses the sensitivity of a regression model to changes in independent variables by applying shocks and... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'shocks': {'type': None, 'default': [0.1]}, 'transformation': {'type': None, 'default': None}} | \n", - "['senstivity_analysis', 'visualization'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.statsmodels.RegressionModelSummary | \n", - "Regression Model Summary | \n", - "Evaluates regression model performance using metrics including R-Squared, Adjusted R-Squared, MSE, and RMSE.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['model_performance', 'regression'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.statsmodels.RegressionPermutationFeatureImportance | \n", - "Regression Permutation Feature Importance | \n", - "Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'fontsize': {'type': 'int', 'default': 12}, 'figure_height': {'type': 'int', 'default': 500}} | \n", - "['statsmodels', 'feature_importance', 'visualization'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.statsmodels.ScorecardHistogram | \n", - "Scorecard Histogram | \n", - "The Scorecard Histogram test evaluates the distribution of credit scores between default and non-default instances,... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'title': {'type': 'str', 'default': 'Histogram of Scores'}, 'score_column': {'type': 'str', 'default': 'score'}} | \n", - "['visualization', 'credit_risk', 'logistic_regression'] | \n", - "['classification'] | \n", - "
| validmind.ongoing_monitoring.CalibrationCurveDrift | \n", - "Calibration Curve Drift | \n", - "Evaluates changes in probability calibration between reference and monitoring datasets.... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ClassDiscriminationDrift | \n", - "Class Discrimination Drift | \n", - "Compares classification discrimination metrics between reference and monitoring datasets.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ClassImbalanceDrift | \n", - "Class Imbalance Drift | \n", - "Evaluates drift in class distribution between reference and monitoring datasets.... | \n", - "True | \n", - "True | \n", - "['datasets'] | \n", - "{'drift_pct_threshold': {'type': 'float', 'default': 5.0}, 'title': {'type': 'str', 'default': 'Class Distribution Drift'}} | \n", - "['tabular_data', 'binary_classification', 'multiclass_classification'] | \n", - "['classification'] | \n", - "
| validmind.ongoing_monitoring.ClassificationAccuracyDrift | \n", - "Classification Accuracy Drift | \n", - "Compares classification accuracy metrics between reference and monitoring datasets.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ConfusionMatrixDrift | \n", - "Confusion Matrix Drift | \n", - "Compares confusion matrix metrics between reference and monitoring datasets.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.CumulativePredictionProbabilitiesDrift | \n", - "Cumulative Prediction Probabilities Drift | \n", - "Compares cumulative prediction probability distributions between reference and monitoring datasets.... | \n", - "True | \n", - "False | \n", - "['datasets', 'model'] | \n", - "{} | \n", - "['visualization', 'credit_risk'] | \n", - "['classification'] | \n", - "
| validmind.ongoing_monitoring.FeatureDrift | \n", - "Feature Drift | \n", - "Evaluates changes in feature distribution over time to identify potential model drift.... | \n", - "True | \n", - "True | \n", - "['datasets'] | \n", - "{'bins': {'type': '_empty', 'default': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]}, 'feature_columns': {'type': '_empty', 'default': None}, 'psi_threshold': {'type': '_empty', 'default': 0.2}} | \n", - "['visualization'] | \n", - "['monitoring'] | \n", - "
| validmind.ongoing_monitoring.PredictionAcrossEachFeature | \n", - "Prediction Across Each Feature | \n", - "Assesses differences in model predictions across individual features between reference and monitoring datasets... | \n", - "True | \n", - "False | \n", - "['datasets', 'model'] | \n", - "{} | \n", - "['visualization'] | \n", - "['monitoring'] | \n", - "
| validmind.ongoing_monitoring.PredictionCorrelation | \n", - "Prediction Correlation | \n", - "Assesses correlation changes between model predictions from reference and monitoring datasets to detect potential... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", - "['visualization'] | \n", - "['monitoring'] | \n", - "
| validmind.ongoing_monitoring.PredictionProbabilitiesHistogramDrift | \n", - "Prediction Probabilities Histogram Drift | \n", - "Compares prediction probability distributions between reference and monitoring datasets.... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'title': {'type': '_empty', 'default': 'Prediction Probabilities Histogram Drift'}, 'drift_pct_threshold': {'type': 'float', 'default': 20.0}} | \n", - "['visualization', 'credit_risk'] | \n", - "['classification'] | \n", - "
| validmind.ongoing_monitoring.PredictionQuantilesAcrossFeatures | \n", - "Prediction Quantiles Across Features | \n", - "Assesses differences in model prediction distributions across individual features between reference... | \n", - "True | \n", - "False | \n", - "['datasets', 'model'] | \n", - "{} | \n", - "['visualization'] | \n", - "['monitoring'] | \n", - "
| validmind.ongoing_monitoring.ROCCurveDrift | \n", - "ROC Curve Drift | \n", - "Compares ROC curves between reference and monitoring datasets.... | \n", - "True | \n", - "False | \n", - "['datasets', 'model'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ScoreBandsDrift | \n", - "Score Bands Drift | \n", - "Analyzes drift in population distribution and default rates across score bands.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'score_column': {'type': 'str', 'default': 'score'}, 'score_bands': {'type': 'list', 'default': None}, 'drift_threshold': {'type': 'float', 'default': 20.0}} | \n", - "['visualization', 'credit_risk', 'scorecard'] | \n", - "['classification'] | \n", - "
| validmind.ongoing_monitoring.ScorecardHistogramDrift | \n", - "Scorecard Histogram Drift | \n", - "Compares score distributions between reference and monitoring datasets for each class.... | \n", - "True | \n", - "True | \n", - "['datasets'] | \n", - "{'score_column': {'type': 'str', 'default': 'score'}, 'title': {'type': 'str', 'default': 'Scorecard Histogram Drift'}, 'drift_pct_threshold': {'type': 'float', 'default': 20.0}} | \n", - "['visualization', 'credit_risk', 'logistic_regression'] | \n", - "['classification'] | \n", - "
| validmind.ongoing_monitoring.TargetPredictionDistributionPlot | \n", - "Target Prediction Distribution Plot | \n", - "Assesses differences in prediction distributions between a reference dataset and a monitoring dataset to identify... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", - "['visualization'] | \n", - "['monitoring'] | \n", - "
| validmind.prompt_validation.Bias | \n", - "Bias | \n", - "Assesses potential bias in a Large Language Model by analyzing the distribution and order of exemplars in the... | \n", - "False | \n", - "True | \n", - "['model'] | \n", - "{'min_threshold': {'type': '_empty', 'default': 7}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", - "['llm', 'few_shot'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.prompt_validation.Clarity | \n", - "Clarity | \n", - "Evaluates and scores the clarity of prompts in a Large Language Model based on specified guidelines.... | \n", - "False | \n", - "True | \n", - "['model'] | \n", - "{'min_threshold': {'type': '_empty', 'default': 7}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", - "['llm', 'zero_shot', 'few_shot'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.prompt_validation.Conciseness | \n", - "Conciseness | \n", - "Analyzes and grades the conciseness of prompts provided to a Large Language Model.... | \n", - "False | \n", - "True | \n", - "['model'] | \n", - "{'min_threshold': {'type': '_empty', 'default': 7}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", - "['llm', 'zero_shot', 'few_shot'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.prompt_validation.Delimitation | \n", - "Delimitation | \n", - "Evaluates the proper use of delimiters in prompts provided to Large Language Models.... | \n", - "False | \n", - "True | \n", - "['model'] | \n", - "{'min_threshold': {'type': '_empty', 'default': 7}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", - "['llm', 'zero_shot', 'few_shot'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.prompt_validation.NegativeInstruction | \n", - "Negative Instruction | \n", - "Evaluates and grades the use of affirmative, proactive language over negative instructions in LLM prompts.... | \n", - "False | \n", - "True | \n", - "['model'] | \n", - "{'min_threshold': {'type': '_empty', 'default': 7}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", - "['llm', 'zero_shot', 'few_shot'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.prompt_validation.Robustness | \n", - "Robustness | \n", - "Assesses the robustness of prompts provided to a Large Language Model under varying conditions and contexts. This test... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{'num_tests': {'type': '_empty', 'default': 10}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", - "['llm', 'zero_shot', 'few_shot'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.prompt_validation.Specificity | \n", - "Specificity | \n", - "Evaluates and scores the specificity of prompts provided to a Large Language Model (LLM), based on clarity, detail,... | \n", - "False | \n", - "True | \n", - "['model'] | \n", - "{'min_threshold': {'type': '_empty', 'default': 7}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", - "['llm', 'zero_shot', 'few_shot'] | \n", - "['text_classification', 'text_summarization'] | \n", - "
| validmind.unit_metrics.classification.Accuracy | \n", - "Accuracy | \n", - "Calculates the accuracy of a model | \n", - "False | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['classification'] | \n", - "['classification'] | \n", - "
| validmind.unit_metrics.classification.F1 | \n", - "F1 | \n", - "Calculates the F1 score for a classification model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['classification'] | \n", - "['classification'] | \n", - "
| validmind.unit_metrics.classification.Precision | \n", - "Precision | \n", - "Calculates the precision for a classification model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['classification'] | \n", - "['classification'] | \n", - "
| validmind.unit_metrics.classification.ROC_AUC | \n", - "ROC AUC | \n", - "Calculates the ROC AUC for a classification model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['classification'] | \n", - "['classification'] | \n", - "
| validmind.unit_metrics.classification.Recall | \n", - "Recall | \n", - "Calculates the recall for a classification model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['classification'] | \n", - "['classification'] | \n", - "
| validmind.unit_metrics.regression.AdjustedRSquaredScore | \n", - "Adjusted R Squared Score | \n", - "Calculates the adjusted R-squared score for a regression model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['regression'] | \n", - "['regression'] | \n", - "
| validmind.unit_metrics.regression.GiniCoefficient | \n", - "Gini Coefficient | \n", - "Calculates the Gini coefficient for a regression model. | \n", - "False | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['regression'] | \n", - "['regression'] | \n", - "
| validmind.unit_metrics.regression.HuberLoss | \n", - "Huber Loss | \n", - "Calculates the Huber loss for a regression model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['regression'] | \n", - "['regression'] | \n", - "
| validmind.unit_metrics.regression.KolmogorovSmirnovStatistic | \n", - "Kolmogorov Smirnov Statistic | \n", - "Calculates the Kolmogorov-Smirnov statistic for a regression model. | \n", - "False | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['regression'] | \n", - "['regression'] | \n", - "
| validmind.unit_metrics.regression.MeanAbsoluteError | \n", - "Mean Absolute Error | \n", - "Calculates the mean absolute error for a regression model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['regression'] | \n", - "['regression'] | \n", - "
| validmind.unit_metrics.regression.MeanAbsolutePercentageError | \n", - "Mean Absolute Percentage Error | \n", - "Calculates the mean absolute percentage error for a regression model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['regression'] | \n", - "['regression'] | \n", - "
| validmind.unit_metrics.regression.MeanBiasDeviation | \n", - "Mean Bias Deviation | \n", - "Calculates the mean bias deviation for a regression model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['regression'] | \n", - "['regression'] | \n", - "
| validmind.unit_metrics.regression.MeanSquaredError | \n", - "Mean Squared Error | \n", - "Calculates the mean squared error for a regression model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['regression'] | \n", - "['regression'] | \n", - "
| validmind.unit_metrics.regression.QuantileLoss | \n", - "Quantile Loss | \n", - "Calculates the quantile loss for a regression model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'quantile': {'type': '_empty', 'default': 0.5}} | \n", - "['regression'] | \n", - "['regression'] | \n", - "
| validmind.unit_metrics.regression.RSquaredScore | \n", - "R Squared Score | \n", - "Calculates the R-squared score for a regression model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['regression'] | \n", - "['regression'] | \n", - "
| validmind.unit_metrics.regression.RootMeanSquaredError | \n", - "Root Mean Squared Error | \n", - "Calculates the root mean squared error for a regression model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['regression'] | \n", - "['regression'] | \n", - "
| ID | \n", + "Name | \n", + "Description | \n", + "Has Figure | \n", + "Has Table | \n", + "Required Inputs | \n", + "Params | \n", + "Tags | \n", + "Tasks | \n", + "
|---|---|---|---|---|---|---|---|---|
| validmind.data_validation.ACFandPACFPlot | \n", + "AC Fand PACF Plot | \n", + "Analyzes time series data using Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots to... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'forecasting', 'statistical_test', 'visualization'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.ADF | \n", + "ADF | \n", + "Assesses the stationarity of a time series dataset using the Augmented Dickey-Fuller (ADF) test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'statsmodels', 'forecasting', 'statistical_test', 'stationarity'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.AutoAR | \n", + "Auto AR | \n", + "Automatically identifies the optimal Autoregressive (AR) order for a time series using BIC and AIC criteria.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'max_ar_order': {'type': 'int', 'default': 3}} | \n", + "['time_series_data', 'statsmodels', 'forecasting', 'statistical_test'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.AutoMA | \n", + "Auto MA | \n", + "Automatically selects the optimal Moving Average (MA) order for each variable in a time series dataset based on... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'max_ma_order': {'type': 'int', 'default': 3}} | \n", + "['time_series_data', 'statsmodels', 'forecasting', 'statistical_test'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.AutoStationarity | \n", + "Auto Stationarity | \n", + "Automates Augmented Dickey-Fuller test to assess stationarity across multiple time series in a DataFrame.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'max_order': {'type': 'int', 'default': 5}, 'threshold': {'type': 'float', 'default': 0.05}} | \n", + "['time_series_data', 'statsmodels', 'forecasting', 'statistical_test'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.BivariateScatterPlots | \n", + "Bivariate Scatter Plots | \n", + "Generates bivariate scatterplots to visually inspect relationships between pairs of numerical predictor variables... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'numerical_data', 'visualization'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.BoxPierce | \n", + "Box Pierce | \n", + "Detects autocorrelation in time-series data through the Box-Pierce test to validate model performance.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'forecasting', 'statistical_test', 'statsmodels'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.ChiSquaredFeaturesTable | \n", + "Chi Squared Features Table | \n", + "Assesses the statistical association between categorical features and a target variable using the Chi-Squared test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'p_threshold': {'type': '_empty', 'default': 0.05}} | \n", + "['tabular_data', 'categorical_data', 'statistical_test'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.ClassImbalance | \n", + "Class Imbalance | \n", + "Evaluates and quantifies class distribution imbalance in a dataset used by a machine learning model.... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'min_percent_threshold': {'type': 'int', 'default': 10}} | \n", + "['tabular_data', 'binary_classification', 'multiclass_classification', 'data_quality'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.DatasetDescription | \n", + "Dataset Description | \n", + "Provides comprehensive analysis and statistical summaries of each column in a machine learning model's dataset.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'time_series_data', 'text_data'] | \n", + "['classification', 'regression', 'text_classification', 'text_summarization'] | \n", + "
| validmind.data_validation.DatasetSplit | \n", + "Dataset Split | \n", + "Evaluates and visualizes the distribution proportions among training, testing, and validation datasets of an ML... | \n", + "False | \n", + "True | \n", + "['datasets'] | \n", + "{} | \n", + "['tabular_data', 'time_series_data', 'text_data'] | \n", + "['classification', 'regression', 'text_classification', 'text_summarization'] | \n", + "
| validmind.data_validation.DescriptiveStatistics | \n", + "Descriptive Statistics | \n", + "Performs a detailed descriptive statistical analysis of both numerical and categorical data within a model's... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'time_series_data', 'data_quality'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.DickeyFullerGLS | \n", + "Dickey Fuller GLS | \n", + "Assesses stationarity in time series data using the Dickey-Fuller GLS test to determine the order of integration.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'forecasting', 'unit_root_test'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.Duplicates | \n", + "Duplicates | \n", + "Tests dataset for duplicate entries, ensuring model reliability via data quality verification.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'min_threshold': {'type': '_empty', 'default': 1}} | \n", + "['tabular_data', 'data_quality', 'text_data'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.EngleGrangerCoint | \n", + "Engle Granger Coint | \n", + "Assesses the degree of co-movement between pairs of time series data using the Engle-Granger cointegration test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'threshold': {'type': 'float', 'default': 0.05}} | \n", + "['time_series_data', 'statistical_test', 'forecasting'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.FeatureTargetCorrelationPlot | \n", + "Feature Target Correlation Plot | \n", + "Visualizes the correlation between input features and the model's target output in a color-coded horizontal bar... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'fig_height': {'type': '_empty', 'default': 600}} | \n", + "['tabular_data', 'visualization', 'correlation'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.HighCardinality | \n", + "High Cardinality | \n", + "Assesses the number of unique values in categorical columns to detect high cardinality and potential overfitting.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'num_threshold': {'type': 'int', 'default': 100}, 'percent_threshold': {'type': 'float', 'default': 0.1}, 'threshold_type': {'type': 'str', 'default': 'percent'}} | \n", + "['tabular_data', 'data_quality', 'categorical_data'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.HighPearsonCorrelation | \n", + "High Pearson Correlation | \n", + "Identifies highly correlated feature pairs in a dataset suggesting feature redundancy or multicollinearity.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'max_threshold': {'type': 'float', 'default': 0.3}, 'top_n_correlations': {'type': 'int', 'default': 10}, 'feature_columns': {'type': 'list', 'default': None}} | \n", + "['tabular_data', 'data_quality', 'correlation'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.IQROutliersBarPlot | \n", + "IQR Outliers Bar Plot | \n", + "Visualizes outlier distribution across percentiles in numerical data using the Interquartile Range (IQR) method.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'threshold': {'type': 'float', 'default': 1.5}, 'fig_width': {'type': 'int', 'default': 800}} | \n", + "['tabular_data', 'visualization', 'numerical_data'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.IQROutliersTable | \n", + "IQR Outliers Table | \n", + "Determines and summarizes outliers in numerical features using the Interquartile Range method.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'threshold': {'type': 'float', 'default': 1.5}} | \n", + "['tabular_data', 'numerical_data'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.IsolationForestOutliers | \n", + "Isolation Forest Outliers | \n", + "Detects outliers in a dataset using the Isolation Forest algorithm and visualizes results through scatter plots.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'random_state': {'type': 'int', 'default': 0}, 'contamination': {'type': 'float', 'default': 0.1}, 'feature_columns': {'type': 'list', 'default': None}} | \n", + "['tabular_data', 'anomaly_detection'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.JarqueBera | \n", + "Jarque Bera | \n", + "Assesses normality of dataset features in an ML model using the Jarque-Bera test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.KPSS | \n", + "KPSS | \n", + "Assesses the stationarity of time-series data in a machine learning model using the KPSS unit root test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'stationarity', 'unit_root_test', 'statsmodels'] | \n", + "['data_validation'] | \n", + "
| validmind.data_validation.LJungBox | \n", + "L Jung Box | \n", + "Assesses autocorrelations in dataset features by performing a Ljung-Box test on each feature.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'forecasting', 'statistical_test', 'statsmodels'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.LaggedCorrelationHeatmap | \n", + "Lagged Correlation Heatmap | \n", + "Assesses and visualizes correlation between target variable and lagged independent variables in a time-series... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'num_lags': {'type': 'int', 'default': 10}} | \n", + "['time_series_data', 'visualization'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.MissingValues | \n", + "Missing Values | \n", + "Evaluates dataset quality by ensuring missing value ratio across all features does not exceed a set threshold.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'min_threshold': {'type': 'int', 'default': 1}} | \n", + "['tabular_data', 'data_quality'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.MissingValuesBarPlot | \n", + "Missing Values Bar Plot | \n", + "Assesses the percentage and distribution of missing values in the dataset via a bar plot, with emphasis on... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'threshold': {'type': 'int', 'default': 80}, 'fig_height': {'type': 'int', 'default': 600}} | \n", + "['tabular_data', 'data_quality', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.MutualInformation | \n", + "Mutual Information | \n", + "Calculates mutual information scores between features and target variable to evaluate feature relevance.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'min_threshold': {'type': 'float', 'default': 0.01}, 'task': {'type': 'str', 'default': 'classification'}} | \n", + "['feature_selection', 'data_analysis'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.PearsonCorrelationMatrix | \n", + "Pearson Correlation Matrix | \n", + "Evaluates linear dependency between numerical variables in a dataset via a Pearson Correlation coefficient heat map.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'numerical_data', 'correlation'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.PhillipsPerronArch | \n", + "Phillips Perron Arch | \n", + "Assesses the stationarity of time series data in each feature of the ML model using the Phillips-Perron test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'forecasting', 'statistical_test', 'unit_root_test'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.ProtectedClassesDescription | \n", + "Protected Classes Description | \n", + "Visualizes the distribution of protected classes in the dataset relative to the target variable... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'protected_classes': {'type': '_empty', 'default': None}} | \n", + "['bias_and_fairness', 'descriptive_statistics'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.RollingStatsPlot | \n", + "Rolling Stats Plot | \n", + "Evaluates the stationarity of time series data by plotting its rolling mean and standard deviation over a specified... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'window_size': {'type': 'int', 'default': 12}} | \n", + "['time_series_data', 'visualization', 'stationarity'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.RunsTest | \n", + "Runs Test | \n", + "Executes Runs Test on ML model to detect non-random patterns in output data sequence.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'statistical_test', 'statsmodels'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.ScatterPlot | \n", + "Scatter Plot | \n", + "Assesses visual relationships, patterns, and outliers among features in a dataset through scatter plot matrices.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.ScoreBandDefaultRates | \n", + "Score Band Default Rates | \n", + "Analyzes default rates and population distribution across credit score bands.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'score_column': {'type': 'str', 'default': 'score'}, 'score_bands': {'type': 'list', 'default': None}} | \n", + "['visualization', 'credit_risk', 'scorecard'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.SeasonalDecompose | \n", + "Seasonal Decompose | \n", + "Assesses patterns and seasonality in a time series dataset by decomposing its features into foundational components.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'seasonal_model': {'type': 'str', 'default': 'additive'}} | \n", + "['time_series_data', 'seasonality', 'statsmodels'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.ShapiroWilk | \n", + "Shapiro Wilk | \n", + "Evaluates feature-wise normality of training data using the Shapiro-Wilk test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'data_distribution', 'statistical_test'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.Skewness | \n", + "Skewness | \n", + "Evaluates the skewness of numerical data in a dataset to check against a defined threshold, aiming to ensure data... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'max_threshold': {'type': '_empty', 'default': 1}} | \n", + "['data_quality', 'tabular_data'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.SpreadPlot | \n", + "Spread Plot | \n", + "Assesses potential correlations between pairs of time series variables through visualization to enhance... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'visualization'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.TabularCategoricalBarPlots | \n", + "Tabular Categorical Bar Plots | \n", + "Generates and visualizes bar plots for each category in categorical features to evaluate the dataset's composition.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.TabularDateTimeHistograms | \n", + "Tabular Date Time Histograms | \n", + "Generates histograms to provide graphical insight into the distribution of time intervals in a model's datetime... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.TabularDescriptionTables | \n", + "Tabular Description Tables | \n", + "Summarizes key descriptive statistics for numerical, categorical, and datetime variables in a dataset.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.TabularNumericalHistograms | \n", + "Tabular Numerical Histograms | \n", + "Generates histograms for each numerical feature in a dataset to provide visual insights into data distribution and... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.TargetRateBarPlots | \n", + "Target Rate Bar Plots | \n", + "Generates bar plots visualizing the default rates of categorical features for a classification machine learning... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'visualization', 'categorical_data'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.TimeSeriesDescription | \n", + "Time Series Description | \n", + "Generates a detailed analysis for the provided time series dataset, summarizing key statistics to identify trends,... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'analysis'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.TimeSeriesDescriptiveStatistics | \n", + "Time Series Descriptive Statistics | \n", + "Evaluates the descriptive statistics of a time series dataset to identify trends, patterns, and data quality issues.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'analysis'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.TimeSeriesFrequency | \n", + "Time Series Frequency | \n", + "Evaluates consistency of time series data frequency and generates a frequency plot.... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.TimeSeriesHistogram | \n", + "Time Series Histogram | \n", + "Visualizes distribution of time-series data using histograms and Kernel Density Estimation (KDE) lines.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'nbins': {'type': '_empty', 'default': 30}} | \n", + "['data_validation', 'visualization', 'time_series_data'] | \n", + "['regression', 'time_series_forecasting'] | \n", + "
| validmind.data_validation.TimeSeriesLinePlot | \n", + "Time Series Line Plot | \n", + "Generates and analyses time-series data through line plots revealing trends, patterns, anomalies over time.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'visualization'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.TimeSeriesMissingValues | \n", + "Time Series Missing Values | \n", + "Validates time-series data quality by confirming the count of missing values is below a certain threshold.... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'min_threshold': {'type': 'int', 'default': 1}} | \n", + "['time_series_data'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.TimeSeriesOutliers | \n", + "Time Series Outliers | \n", + "Identifies and visualizes outliers in time-series data using the z-score method.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'zscore_threshold': {'type': 'int', 'default': 3}} | \n", + "['time_series_data'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.TooManyZeroValues | \n", + "Too Many Zero Values | \n", + "Identifies numerical columns in a dataset that contain an excessive number of zero values, defined by a threshold... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'max_percent_threshold': {'type': 'float', 'default': 0.03}} | \n", + "['tabular_data'] | \n", + "['regression', 'classification'] | \n", + "
| validmind.data_validation.UniqueRows | \n", + "Unique Rows | \n", + "Verifies the diversity of the dataset by ensuring that the count of unique rows exceeds a prescribed threshold.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'min_percent_threshold': {'type': 'float', 'default': 1}} | \n", + "['tabular_data'] | \n", + "['regression', 'classification'] | \n", + "
| validmind.data_validation.WOEBinPlots | \n", + "WOE Bin Plots | \n", + "Generates visualizations of Weight of Evidence (WoE) and Information Value (IV) for understanding predictive power... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'breaks_adj': {'type': 'list', 'default': None}, 'fig_height': {'type': 'int', 'default': 600}, 'fig_width': {'type': 'int', 'default': 500}} | \n", + "['tabular_data', 'visualization', 'categorical_data'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.WOEBinTable | \n", + "WOE Bin Table | \n", + "Assesses the Weight of Evidence (WoE) and Information Value (IV) of each feature to evaluate its predictive power... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'breaks_adj': {'type': 'list', 'default': None}} | \n", + "['tabular_data', 'categorical_data'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.ZivotAndrewsArch | \n", + "Zivot Andrews Arch | \n", + "Evaluates the order of integration and stationarity of time series data using the Zivot-Andrews unit root test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'stationarity', 'unit_root_test'] | \n", + "['regression'] | \n", + "
| validmind.data_validation.nlp.CommonWords | \n", + "Common Words | \n", + "Assesses the most frequent non-stopwords in a text column for identifying prevalent language patterns.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['nlp', 'text_data', 'visualization', 'frequency_analysis'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.data_validation.nlp.Hashtags | \n", + "Hashtags | \n", + "Assesses hashtag frequency in a text column, highlighting usage trends and potential dataset bias or spam.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'top_hashtags': {'type': 'int', 'default': 25}} | \n", + "['nlp', 'text_data', 'visualization', 'frequency_analysis'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.data_validation.nlp.LanguageDetection | \n", + "Language Detection | \n", + "Assesses the diversity of languages in a textual dataset by detecting and visualizing the distribution of languages.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['nlp', 'text_data', 'visualization'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.data_validation.nlp.Mentions | \n", + "Mentions | \n", + "Calculates and visualizes frequencies of '@' prefixed mentions in a text-based dataset for NLP model analysis.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'top_mentions': {'type': 'int', 'default': 25}} | \n", + "['nlp', 'text_data', 'visualization', 'frequency_analysis'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.data_validation.nlp.PolarityAndSubjectivity | \n", + "Polarity And Subjectivity | \n", + "Analyzes the polarity and subjectivity of text data within a given dataset to visualize the sentiment distribution.... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'threshold_subjectivity': {'type': '_empty', 'default': 0.5}, 'threshold_polarity': {'type': '_empty', 'default': 0}} | \n", + "['nlp', 'text_data', 'data_validation'] | \n", + "['nlp'] | \n", + "
| validmind.data_validation.nlp.Punctuations | \n", + "Punctuations | \n", + "Analyzes and visualizes the frequency distribution of punctuation usage in a given text dataset.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'count_mode': {'type': '_empty', 'default': 'token'}} | \n", + "['nlp', 'text_data', 'visualization', 'frequency_analysis'] | \n", + "['text_classification', 'text_summarization', 'nlp'] | \n", + "
| validmind.data_validation.nlp.Sentiment | \n", + "Sentiment | \n", + "Analyzes the sentiment of text data within a dataset using the VADER sentiment analysis tool.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['nlp', 'text_data', 'data_validation'] | \n", + "['nlp'] | \n", + "
| validmind.data_validation.nlp.StopWords | \n", + "Stop Words | \n", + "Evaluates and visualizes the frequency of English stop words in a text dataset against a defined threshold.... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'min_percent_threshold': {'type': 'float', 'default': 0.5}, 'num_words': {'type': 'int', 'default': 25}} | \n", + "['nlp', 'text_data', 'frequency_analysis', 'visualization'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.data_validation.nlp.TextDescription | \n", + "Text Description | \n", + "Conducts comprehensive textual analysis on a dataset using NLTK to evaluate various parameters and generate... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'unwanted_tokens': {'type': 'set', 'default': {'s', 'mrs', 'us', \"''\", ' ', 'ms', 'dr', 'dollar', '``', 'mr', \"'s\", \"s'\"}}, 'lang': {'type': 'str', 'default': 'english'}} | \n", + "['nlp', 'text_data', 'visualization'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.data_validation.nlp.Toxicity | \n", + "Toxicity | \n", + "Assesses the toxicity of text data within a dataset to visualize the distribution of toxicity scores.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['nlp', 'text_data', 'data_validation'] | \n", + "['nlp'] | \n", + "
| validmind.model_validation.BertScore | \n", + "Bert Score | \n", + "Assesses the quality of machine-generated text using BERTScore metrics and visualizes results through histograms... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'evaluation_model': {'type': '_empty', 'default': 'distilbert-base-uncased'}} | \n", + "['nlp', 'text_data', 'visualization'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.model_validation.BleuScore | \n", + "Bleu Score | \n", + "Evaluates the quality of machine-generated text using BLEU metrics and visualizes the results through histograms... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['nlp', 'text_data', 'visualization'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.model_validation.ClusterSizeDistribution | \n", + "Cluster Size Distribution | \n", + "Assesses the performance of clustering models by comparing the distribution of cluster sizes in model predictions... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.ContextualRecall | \n", + "Contextual Recall | \n", + "Evaluates a Natural Language Generation model's ability to generate contextually relevant and factually correct... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['nlp', 'text_data', 'visualization'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.model_validation.FeaturesAUC | \n", + "Features AUC | \n", + "Evaluates the discriminatory power of each individual feature within a binary classification model by calculating... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'fontsize': {'type': 'int', 'default': 12}, 'figure_height': {'type': 'int', 'default': 500}} | \n", + "['feature_importance', 'AUC', 'visualization'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.MeteorScore | \n", + "Meteor Score | \n", + "Assesses the quality of machine-generated translations by comparing them to human-produced references using the... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['nlp', 'text_data', 'visualization'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.model_validation.ModelMetadata | \n", + "Model Metadata | \n", + "Compare metadata of different models and generate a summary table with the results.... | \n", + "False | \n", + "True | \n", + "['model'] | \n", + "{} | \n", + "['model_training', 'metadata'] | \n", + "['regression', 'time_series_forecasting'] | \n", + "
| validmind.model_validation.ModelPredictionResiduals | \n", + "Model Prediction Residuals | \n", + "Assesses normality and behavior of residuals in regression models through visualization and statistical tests.... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'nbins': {'type': 'int', 'default': 100}, 'p_value_threshold': {'type': 'float', 'default': 0.05}, 'start_date': {'type': None, 'default': None}, 'end_date': {'type': None, 'default': None}} | \n", + "['regression'] | \n", + "['residual_analysis', 'visualization'] | \n", + "
| validmind.model_validation.RegardScore | \n", + "Regard Score | \n", + "Assesses the sentiment and potential biases in text generated by NLP models by computing and visualizing regard... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['nlp', 'text_data', 'visualization'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.model_validation.RegressionResidualsPlot | \n", + "Regression Residuals Plot | \n", + "Evaluates regression model performance using residual distribution and actual vs. predicted plots.... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'bin_size': {'type': 'float', 'default': 0.1}} | \n", + "['model_performance', 'visualization'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.RougeScore | \n", + "Rouge Score | \n", + "Assesses the quality of machine-generated text using ROUGE metrics and visualizes the results to provide... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'metric': {'type': 'str', 'default': 'rouge-1'}} | \n", + "['nlp', 'text_data', 'visualization'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.model_validation.TimeSeriesPredictionWithCI | \n", + "Time Series Prediction With CI | \n", + "Assesses predictive accuracy and uncertainty in time series models, highlighting breaches beyond confidence... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'confidence': {'type': 'float', 'default': 0.95}} | \n", + "['model_predictions', 'visualization'] | \n", + "['regression', 'time_series_forecasting'] | \n", + "
| validmind.model_validation.TimeSeriesPredictionsPlot | \n", + "Time Series Predictions Plot | \n", + "Plot actual vs predicted values for time series data and generate a visual comparison for the model.... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['model_predictions', 'visualization'] | \n", + "['regression', 'time_series_forecasting'] | \n", + "
| validmind.model_validation.TimeSeriesR2SquareBySegments | \n", + "Time Series R2 Square By Segments | \n", + "Evaluates the R-Squared values of regression models over specified time segments in time series data to assess... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'segments': {'type': None, 'default': None}} | \n", + "['model_performance', 'sklearn'] | \n", + "['regression', 'time_series_forecasting'] | \n", + "
| validmind.model_validation.TokenDisparity | \n", + "Token Disparity | \n", + "Evaluates the token disparity between reference and generated texts, visualizing the results through histograms and... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['nlp', 'text_data', 'visualization'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.model_validation.ToxicityScore | \n", + "Toxicity Score | \n", + "Assesses the toxicity levels of texts generated by NLP models to identify and mitigate harmful or offensive content.... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['nlp', 'text_data', 'visualization'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.model_validation.embeddings.ClusterDistribution | \n", + "Cluster Distribution | \n", + "Assesses the distribution of text embeddings across clusters produced by a model using KMeans clustering.... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'num_clusters': {'type': 'int', 'default': 5}} | \n", + "['llm', 'text_data', 'embeddings', 'visualization'] | \n", + "['feature_extraction'] | \n", + "
| validmind.model_validation.embeddings.CosineSimilarityComparison | \n", + "Cosine Similarity Comparison | \n", + "Assesses the similarity between embeddings generated by different models using Cosine Similarity, providing both... | \n", + "True | \n", + "True | \n", + "['dataset', 'models'] | \n", + "{} | \n", + "['visualization', 'dimensionality_reduction', 'embeddings'] | \n", + "['text_qa', 'text_generation', 'text_summarization'] | \n", + "
| validmind.model_validation.embeddings.CosineSimilarityDistribution | \n", + "Cosine Similarity Distribution | \n", + "Assesses the similarity between predicted text embeddings from a model using a Cosine Similarity distribution... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['llm', 'text_data', 'embeddings', 'visualization'] | \n", + "['feature_extraction'] | \n", + "
| validmind.model_validation.embeddings.CosineSimilarityHeatmap | \n", + "Cosine Similarity Heatmap | \n", + "Generates an interactive heatmap to visualize the cosine similarities among embeddings derived from a given model.... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'title': {'type': '_empty', 'default': 'Cosine Similarity Matrix'}, 'color': {'type': '_empty', 'default': 'Cosine Similarity'}, 'xaxis_title': {'type': '_empty', 'default': 'Index'}, 'yaxis_title': {'type': '_empty', 'default': 'Index'}, 'color_scale': {'type': '_empty', 'default': 'Blues'}} | \n", + "['visualization', 'dimensionality_reduction', 'embeddings'] | \n", + "['text_qa', 'text_generation', 'text_summarization'] | \n", + "
| validmind.model_validation.embeddings.DescriptiveAnalytics | \n", + "Descriptive Analytics | \n", + "Evaluates statistical properties of text embeddings in an ML model via mean, median, and standard deviation... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['llm', 'text_data', 'embeddings', 'visualization'] | \n", + "['feature_extraction'] | \n", + "
| validmind.model_validation.embeddings.EmbeddingsVisualization2D | \n", + "Embeddings Visualization2 D | \n", + "Visualizes 2D representation of text embeddings generated by a model using t-SNE technique.... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'cluster_column': {'type': None, 'default': None}, 'perplexity': {'type': 'int', 'default': 30}} | \n", + "['llm', 'text_data', 'embeddings', 'visualization'] | \n", + "['feature_extraction'] | \n", + "
| validmind.model_validation.embeddings.EuclideanDistanceComparison | \n", + "Euclidean Distance Comparison | \n", + "Assesses and visualizes the dissimilarity between model embeddings using Euclidean distance, providing insights... | \n", + "True | \n", + "True | \n", + "['dataset', 'models'] | \n", + "{} | \n", + "['visualization', 'dimensionality_reduction', 'embeddings'] | \n", + "['text_qa', 'text_generation', 'text_summarization'] | \n", + "
| validmind.model_validation.embeddings.EuclideanDistanceHeatmap | \n", + "Euclidean Distance Heatmap | \n", + "Generates an interactive heatmap to visualize the Euclidean distances among embeddings derived from a given model.... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'title': {'type': '_empty', 'default': 'Euclidean Distance Matrix'}, 'color': {'type': '_empty', 'default': 'Euclidean Distance'}, 'xaxis_title': {'type': '_empty', 'default': 'Index'}, 'yaxis_title': {'type': '_empty', 'default': 'Index'}, 'color_scale': {'type': '_empty', 'default': 'Blues'}} | \n", + "['visualization', 'dimensionality_reduction', 'embeddings'] | \n", + "['text_qa', 'text_generation', 'text_summarization'] | \n", + "
| validmind.model_validation.embeddings.PCAComponentsPairwisePlots | \n", + "PCA Components Pairwise Plots | \n", + "Generates scatter plots for pairwise combinations of principal component analysis (PCA) components of model... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'n_components': {'type': 'int', 'default': 3}} | \n", + "['visualization', 'dimensionality_reduction', 'embeddings'] | \n", + "['text_qa', 'text_generation', 'text_summarization'] | \n", + "
| validmind.model_validation.embeddings.StabilityAnalysisKeyword | \n", + "Stability Analysis Keyword | \n", + "Evaluates robustness of embedding models to keyword swaps in the test dataset.... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'keyword_dict': {'type': None, 'default': None}, 'mean_similarity_threshold': {'type': 'float', 'default': 0.7}} | \n", + "['llm', 'text_data', 'embeddings', 'visualization'] | \n", + "['feature_extraction'] | \n", + "
| validmind.model_validation.embeddings.StabilityAnalysisRandomNoise | \n", + "Stability Analysis Random Noise | \n", + "Assesses the robustness of text embeddings models to random noise introduced via text perturbations.... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'probability': {'type': 'float', 'default': 0.02}, 'mean_similarity_threshold': {'type': 'float', 'default': 0.7}} | \n", + "['llm', 'text_data', 'embeddings', 'visualization'] | \n", + "['feature_extraction'] | \n", + "
| validmind.model_validation.embeddings.StabilityAnalysisSynonyms | \n", + "Stability Analysis Synonyms | \n", + "Evaluates the stability of text embeddings models when words in test data are replaced by their synonyms randomly.... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'probability': {'type': 'float', 'default': 0.02}, 'mean_similarity_threshold': {'type': 'float', 'default': 0.7}} | \n", + "['llm', 'text_data', 'embeddings', 'visualization'] | \n", + "['feature_extraction'] | \n", + "
| validmind.model_validation.embeddings.StabilityAnalysisTranslation | \n", + "Stability Analysis Translation | \n", + "Evaluates robustness of text embeddings models to noise introduced by translating the original text to another... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'source_lang': {'type': 'str', 'default': 'en'}, 'target_lang': {'type': 'str', 'default': 'fr'}, 'mean_similarity_threshold': {'type': 'float', 'default': 0.7}} | \n", + "['llm', 'text_data', 'embeddings', 'visualization'] | \n", + "['feature_extraction'] | \n", + "
| validmind.model_validation.embeddings.TSNEComponentsPairwisePlots | \n", + "TSNE Components Pairwise Plots | \n", + "Creates scatter plots for pairwise combinations of t-SNE components to visualize embeddings and highlight potential... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'n_components': {'type': 'int', 'default': 2}, 'perplexity': {'type': 'int', 'default': 30}, 'title': {'type': 'str', 'default': 't-SNE'}} | \n", + "['visualization', 'dimensionality_reduction', 'embeddings'] | \n", + "['text_qa', 'text_generation', 'text_summarization'] | \n", + "
| validmind.model_validation.ragas.AnswerCorrectness | \n", + "Answer Correctness | \n", + "Evaluates the correctness of answers in a dataset with respect to the provided ground... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'response_column': {'type': 'str', 'default': 'response'}, 'reference_column': {'type': 'str', 'default': 'reference'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", + "['ragas', 'llm'] | \n", + "['text_qa', 'text_generation', 'text_summarization'] | \n", + "
| validmind.model_validation.ragas.AspectCritic | \n", + "Aspect Critic | \n", + "Evaluates generations against the following aspects: harmfulness, maliciousness,... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'response_column': {'type': 'str', 'default': 'response'}, 'retrieved_contexts_column': {'type': None, 'default': None}, 'aspects': {'type': None, 'default': ['coherence', 'conciseness', 'correctness', 'harmfulness', 'maliciousness']}, 'additional_aspects': {'type': None, 'default': None}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", + "['ragas', 'llm', 'qualitative'] | \n", + "['text_summarization', 'text_generation', 'text_qa'] | \n", + "
| validmind.model_validation.ragas.ContextEntityRecall | \n", + "Context Entity Recall | \n", + "Evaluates the context entity recall for dataset entries and visualizes the results.... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'reference_column': {'type': 'str', 'default': 'reference'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", + "['ragas', 'llm', 'retrieval_performance'] | \n", + "['text_qa', 'text_generation', 'text_summarization'] | \n", + "
| validmind.model_validation.ragas.ContextPrecision | \n", + "Context Precision | \n", + "Context Precision is a metric that evaluates whether all of the ground-truth... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'reference_column': {'type': 'str', 'default': 'reference'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", + "['ragas', 'llm', 'retrieval_performance'] | \n", + "['text_qa', 'text_generation', 'text_summarization', 'text_classification'] | \n", + "
| validmind.model_validation.ragas.ContextPrecisionWithoutReference | \n", + "Context Precision Without Reference | \n", + "Context Precision Without Reference is a metric used to evaluate the relevance of... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'response_column': {'type': 'str', 'default': 'response'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", + "['ragas', 'llm', 'retrieval_performance'] | \n", + "['text_qa', 'text_generation', 'text_summarization', 'text_classification'] | \n", + "
| validmind.model_validation.ragas.ContextRecall | \n", + "Context Recall | \n", + "Context recall measures the extent to which the retrieved context aligns with the... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'reference_column': {'type': 'str', 'default': 'reference'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", + "['ragas', 'llm', 'retrieval_performance'] | \n", + "['text_qa', 'text_generation', 'text_summarization', 'text_classification'] | \n", + "
| validmind.model_validation.ragas.Faithfulness | \n", + "Faithfulness | \n", + "Evaluates the faithfulness of the generated answers with respect to retrieved contexts.... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'response_column': {'type': 'str', 'default': 'response'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", + "['ragas', 'llm', 'rag_performance'] | \n", + "['text_qa', 'text_generation', 'text_summarization'] | \n", + "
| validmind.model_validation.ragas.NoiseSensitivity | \n", + "Noise Sensitivity | \n", + "Assesses the sensitivity of a Large Language Model (LLM) to noise in retrieved context by measuring how often it... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'response_column': {'type': 'str', 'default': 'response'}, 'retrieved_contexts_column': {'type': 'str', 'default': 'retrieved_contexts'}, 'reference_column': {'type': 'str', 'default': 'reference'}, 'focus': {'type': 'str', 'default': 'relevant'}, 'user_input_column': {'type': 'str', 'default': 'user_input'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", + "['ragas', 'llm', 'rag_performance'] | \n", + "['text_qa', 'text_generation', 'text_summarization'] | \n", + "
| validmind.model_validation.ragas.ResponseRelevancy | \n", + "Response Relevancy | \n", + "Assesses how pertinent the generated answer is to the given prompt.... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'user_input_column': {'type': 'str', 'default': 'user_input'}, 'retrieved_contexts_column': {'type': 'str', 'default': None}, 'response_column': {'type': 'str', 'default': 'response'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", + "['ragas', 'llm', 'rag_performance'] | \n", + "['text_qa', 'text_generation', 'text_summarization'] | \n", + "
| validmind.model_validation.ragas.SemanticSimilarity | \n", + "Semantic Similarity | \n", + "Calculates the semantic similarity between generated responses and ground truths... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'response_column': {'type': 'str', 'default': 'response'}, 'reference_column': {'type': 'str', 'default': 'reference'}, 'judge_llm': {'type': '_empty', 'default': None}, 'judge_embeddings': {'type': '_empty', 'default': None}} | \n", + "['ragas', 'llm'] | \n", + "['text_qa', 'text_generation', 'text_summarization'] | \n", + "
| validmind.model_validation.sklearn.AdjustedMutualInformation | \n", + "Adjusted Mutual Information | \n", + "Evaluates clustering model performance by measuring mutual information between true and predicted labels, adjusting... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance', 'clustering'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.AdjustedRandIndex | \n", + "Adjusted Rand Index | \n", + "Measures the similarity between two data clusters using the Adjusted Rand Index (ARI) metric in clustering machine... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance', 'clustering'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.CalibrationCurve | \n", + "Calibration Curve | \n", + "Evaluates the calibration of probability estimates by comparing predicted probabilities against observed... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'n_bins': {'type': 'int', 'default': 10}} | \n", + "['sklearn', 'model_performance', 'classification'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.sklearn.ClassifierPerformance | \n", + "Classifier Performance | \n", + "Evaluates performance of binary or multiclass classification models using precision, recall, F1-Score, accuracy,... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'average': {'type': 'str', 'default': 'macro'}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ClassifierThresholdOptimization | \n", + "Classifier Threshold Optimization | \n", + "Analyzes and visualizes different threshold optimization methods for binary classification models.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'methods': {'type': None, 'default': None}, 'target_recall': {'type': None, 'default': None}} | \n", + "['model_validation', 'threshold_optimization', 'classification_metrics'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.sklearn.ClusterCosineSimilarity | \n", + "Cluster Cosine Similarity | \n", + "Measures the intra-cluster similarity of a clustering model using cosine similarity.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance', 'clustering'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.ClusterPerformanceMetrics | \n", + "Cluster Performance Metrics | \n", + "Evaluates the performance of clustering machine learning models using multiple established metrics.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance', 'clustering'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.CompletenessScore | \n", + "Completeness Score | \n", + "Evaluates a clustering model's capacity to categorize instances from a single class into the same cluster.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance', 'clustering'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.ConfusionMatrix | \n", + "Confusion Matrix | \n", + "Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'threshold': {'type': 'float', 'default': 0.5}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.FeatureImportance | \n", + "Feature Importance | \n", + "Compute feature importance scores for a given model and generate a summary table... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'num_features': {'type': 'int', 'default': 3}} | \n", + "['model_explainability', 'sklearn'] | \n", + "['regression', 'time_series_forecasting'] | \n", + "
| validmind.model_validation.sklearn.FowlkesMallowsScore | \n", + "Fowlkes Mallows Score | \n", + "Evaluates the similarity between predicted and actual cluster assignments in a model using the Fowlkes-Mallows... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.HomogeneityScore | \n", + "Homogeneity Score | \n", + "Assesses clustering homogeneity by comparing true and predicted labels, scoring from 0 (heterogeneous) to 1... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.HyperParametersTuning | \n", + "Hyper Parameters Tuning | \n", + "Performs exhaustive grid search over specified parameter ranges to find optimal model configurations... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{'param_grid': {'type': 'dict', 'default': None}, 'scoring': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}, 'fit_params': {'type': 'dict', 'default': None}} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering', 'classification'] | \n", + "
| validmind.model_validation.sklearn.KMeansClustersOptimization | \n", + "K Means Clusters Optimization | \n", + "Optimizes the number of clusters in K-means models using Elbow and Silhouette methods.... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'n_clusters': {'type': None, 'default': None}} | \n", + "['sklearn', 'model_performance', 'kmeans'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.MinimumAccuracy | \n", + "Minimum Accuracy | \n", + "Checks if the model's prediction accuracy meets or surpasses a specified threshold.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'min_threshold': {'type': 'float', 'default': 0.7}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.MinimumF1Score | \n", + "Minimum F1 Score | \n", + "Assesses if the model's F1 score on the validation set meets a predefined minimum threshold, ensuring balanced... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'min_threshold': {'type': 'float', 'default': 0.5}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.MinimumROCAUCScore | \n", + "Minimum ROCAUC Score | \n", + "Validates model by checking if the ROC AUC score meets or surpasses a specified threshold.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'min_threshold': {'type': 'float', 'default': 0.5}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ModelParameters | \n", + "Model Parameters | \n", + "Extracts and displays model parameters in a structured format for transparency and reproducibility.... | \n", + "False | \n", + "True | \n", + "['model'] | \n", + "{'model_params': {'type': None, 'default': None}} | \n", + "['model_training', 'metadata'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.sklearn.ModelsPerformanceComparison | \n", + "Models Performance Comparison | \n", + "Evaluates and compares the performance of multiple Machine Learning models using various metrics like accuracy,... | \n", + "False | \n", + "True | \n", + "['dataset', 'models'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'model_comparison'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.OverfitDiagnosis | \n", + "Overfit Diagnosis | \n", + "Assesses potential overfitting in a model's predictions, identifying regions where performance between training and... | \n", + "True | \n", + "True | \n", + "['model', 'datasets'] | \n", + "{'metric': {'type': 'str', 'default': None}, 'cut_off_threshold': {'type': 'float', 'default': 0.04}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'linear_regression', 'model_diagnosis'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.sklearn.PermutationFeatureImportance | \n", + "Permutation Feature Importance | \n", + "Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'fontsize': {'type': None, 'default': None}, 'figure_height': {'type': None, 'default': None}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.PopulationStabilityIndex | \n", + "Population Stability Index | \n", + "Assesses the Population Stability Index (PSI) to quantify the stability of an ML model's predictions across... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'num_bins': {'type': 'int', 'default': 10}, 'mode': {'type': 'str', 'default': 'fixed'}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.PrecisionRecallCurve | \n", + "Precision Recall Curve | \n", + "Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ROCCurve | \n", + "ROC Curve | \n", + "Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.RegressionErrors | \n", + "Regression Errors | \n", + "Assesses the performance and error distribution of a regression model using various error metrics.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['regression', 'classification'] | \n", + "
| validmind.model_validation.sklearn.RegressionErrorsComparison | \n", + "Regression Errors Comparison | \n", + "Assesses multiple regression error metrics to compare model performance across different datasets, emphasizing... | \n", + "False | \n", + "True | \n", + "['datasets', 'models'] | \n", + "{} | \n", + "['model_performance', 'sklearn'] | \n", + "['regression', 'time_series_forecasting'] | \n", + "
| validmind.model_validation.sklearn.RegressionPerformance | \n", + "Regression Performance | \n", + "Evaluates the performance of a regression model using five different metrics: MAE, MSE, RMSE, MAPE, and MBD.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.sklearn.RegressionR2Square | \n", + "Regression R2 Square | \n", + "Assesses the overall goodness-of-fit of a regression model by evaluating R-squared (R2) and Adjusted R-squared (Adj... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.sklearn.RegressionR2SquareComparison | \n", + "Regression R2 Square Comparison | \n", + "Compares R-Squared and Adjusted R-Squared values for different regression models across multiple datasets to assess... | \n", + "False | \n", + "True | \n", + "['datasets', 'models'] | \n", + "{} | \n", + "['model_performance', 'sklearn'] | \n", + "['regression', 'time_series_forecasting'] | \n", + "
| validmind.model_validation.sklearn.RobustnessDiagnosis | \n", + "Robustness Diagnosis | \n", + "Assesses the robustness of a machine learning model by evaluating performance decay under noisy conditions.... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'metric': {'type': 'str', 'default': None}, 'scaling_factor_std_dev_list': {'type': None, 'default': [0.1, 0.2, 0.3, 0.4, 0.5]}, 'performance_decay_threshold': {'type': 'float', 'default': 0.05}} | \n", + "['sklearn', 'model_diagnosis', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.sklearn.SHAPGlobalImportance | \n", + "SHAP Global Importance | \n", + "Evaluates and visualizes global feature importance using SHAP values for model explanation and risk identification.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{'kernel_explainer_samples': {'type': 'int', 'default': 10}, 'tree_or_linear_explainer_samples': {'type': 'int', 'default': 200}, 'class_of_interest': {'type': None, 'default': None}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ScoreProbabilityAlignment | \n", + "Score Probability Alignment | \n", + "Analyzes the alignment between credit scores and predicted probabilities.... | \n", + "True | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{'score_column': {'type': 'str', 'default': 'score'}, 'n_bins': {'type': 'int', 'default': 10}} | \n", + "['visualization', 'credit_risk', 'calibration'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.sklearn.SilhouettePlot | \n", + "Silhouette Plot | \n", + "Calculates and visualizes Silhouette Score, assessing the degree of data point suitability to its cluster in ML... | \n", + "True | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.TrainingTestDegradation | \n", + "Training Test Degradation | \n", + "Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'max_threshold': {'type': 'float', 'default': 0.1}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.VMeasure | \n", + "V Measure | \n", + "Evaluates homogeneity and completeness of a clustering model using the V Measure Score.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.WeakspotsDiagnosis | \n", + "Weakspots Diagnosis | \n", + "Identifies and visualizes weak spots in a machine learning model's performance across various sections of the... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'features_columns': {'type': None, 'default': None}, 'metrics': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_diagnosis', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.statsmodels.AutoARIMA | \n", + "Auto ARIMA | \n", + "Evaluates ARIMA models for time-series forecasting, ranking them using Bayesian and Akaike Information Criteria.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['time_series_data', 'forecasting', 'model_selection', 'statsmodels'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.statsmodels.CumulativePredictionProbabilities | \n", + "Cumulative Prediction Probabilities | \n", + "Visualizes cumulative probabilities of positive and negative classes for both training and testing in classification models.... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'title': {'type': 'str', 'default': 'Cumulative Probabilities'}} | \n", + "['visualization', 'credit_risk'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.statsmodels.DurbinWatsonTest | \n", + "Durbin Watson Test | \n", + "Assesses autocorrelation in time series data features using the Durbin-Watson statistic.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'threshold': {'type': None, 'default': [1.5, 2.5]}} | \n", + "['time_series_data', 'forecasting', 'statistical_test', 'statsmodels'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.statsmodels.GINITable | \n", + "GINI Table | \n", + "Evaluates classification model performance using AUC, GINI, and KS metrics for training and test datasets.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['model_performance'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.statsmodels.KolmogorovSmirnov | \n", + "Kolmogorov Smirnov | \n", + "Assesses whether each feature in the dataset aligns with a normal distribution using the Kolmogorov-Smirnov test.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{'dist': {'type': 'str', 'default': 'norm'}} | \n", + "['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.statsmodels.Lilliefors | \n", + "Lilliefors | \n", + "Assesses the normality of feature distributions in an ML model's training dataset using the Lilliefors test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.statsmodels.PredictionProbabilitiesHistogram | \n", + "Prediction Probabilities Histogram | \n", + "Assesses the predictive probability distribution for binary classification to evaluate model performance and... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'title': {'type': 'str', 'default': 'Histogram of Predictive Probabilities'}} | \n", + "['visualization', 'credit_risk'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.statsmodels.RegressionCoeffs | \n", + "Regression Coeffs | \n", + "Assesses the significance and uncertainty of predictor variables in a regression model through visualization of... | \n", + "True | \n", + "True | \n", + "['model'] | \n", + "{} | \n", + "['tabular_data', 'visualization', 'model_training'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.statsmodels.RegressionFeatureSignificance | \n", + "Regression Feature Significance | \n", + "Assesses and visualizes the statistical significance of features in a regression model.... | \n", + "True | \n", + "False | \n", + "['model'] | \n", + "{'fontsize': {'type': 'int', 'default': 10}, 'p_threshold': {'type': 'float', 'default': 0.05}} | \n", + "['statistical_test', 'model_interpretation', 'visualization', 'feature_importance'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.statsmodels.RegressionModelForecastPlot | \n", + "Regression Model Forecast Plot | \n", + "Generates plots to visually compare the forecasted outcomes of a regression model against actual observed values over... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'start_date': {'type': None, 'default': None}, 'end_date': {'type': None, 'default': None}} | \n", + "['time_series_data', 'forecasting', 'visualization'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.statsmodels.RegressionModelForecastPlotLevels | \n", + "Regression Model Forecast Plot Levels | \n", + "Assesses the alignment between forecasted and observed values in regression models through visual plots... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['time_series_data', 'forecasting', 'visualization'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.statsmodels.RegressionModelSensitivityPlot | \n", + "Regression Model Sensitivity Plot | \n", + "Assesses the sensitivity of a regression model to changes in independent variables by applying shocks and... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'shocks': {'type': None, 'default': [0.1]}, 'transformation': {'type': None, 'default': None}} | \n", + "['senstivity_analysis', 'visualization'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.statsmodels.RegressionModelSummary | \n", + "Regression Model Summary | \n", + "Evaluates regression model performance using metrics including R-Squared, Adjusted R-Squared, MSE, and RMSE.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['model_performance', 'regression'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.statsmodels.RegressionPermutationFeatureImportance | \n", + "Regression Permutation Feature Importance | \n", + "Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'fontsize': {'type': 'int', 'default': 12}, 'figure_height': {'type': 'int', 'default': 500}} | \n", + "['statsmodels', 'feature_importance', 'visualization'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.statsmodels.ScorecardHistogram | \n", + "Scorecard Histogram | \n", + "The Scorecard Histogram test evaluates the distribution of credit scores between default and non-default instances,... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'title': {'type': 'str', 'default': 'Histogram of Scores'}, 'score_column': {'type': 'str', 'default': 'score'}} | \n", + "['visualization', 'credit_risk', 'logistic_regression'] | \n", + "['classification'] | \n", + "
| validmind.ongoing_monitoring.CalibrationCurveDrift | \n", + "Calibration Curve Drift | \n", + "Evaluates changes in probability calibration between reference and monitoring datasets.... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ClassDiscriminationDrift | \n", + "Class Discrimination Drift | \n", + "Compares classification discrimination metrics between reference and monitoring datasets.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ClassImbalanceDrift | \n", + "Class Imbalance Drift | \n", + "Evaluates drift in class distribution between reference and monitoring datasets.... | \n", + "True | \n", + "True | \n", + "['datasets'] | \n", + "{'drift_pct_threshold': {'type': 'float', 'default': 5.0}, 'title': {'type': 'str', 'default': 'Class Distribution Drift'}} | \n", + "['tabular_data', 'binary_classification', 'multiclass_classification'] | \n", + "['classification'] | \n", + "
| validmind.ongoing_monitoring.ClassificationAccuracyDrift | \n", + "Classification Accuracy Drift | \n", + "Compares classification accuracy metrics between reference and monitoring datasets.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ConfusionMatrixDrift | \n", + "Confusion Matrix Drift | \n", + "Compares confusion matrix metrics between reference and monitoring datasets.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.CumulativePredictionProbabilitiesDrift | \n", + "Cumulative Prediction Probabilities Drift | \n", + "Compares cumulative prediction probability distributions between reference and monitoring datasets.... | \n", + "True | \n", + "False | \n", + "['datasets', 'model'] | \n", + "{} | \n", + "['visualization', 'credit_risk'] | \n", + "['classification'] | \n", + "
| validmind.ongoing_monitoring.FeatureDrift | \n", + "Feature Drift | \n", + "Evaluates changes in feature distribution over time to identify potential model drift.... | \n", + "True | \n", + "True | \n", + "['datasets'] | \n", + "{'bins': {'type': '_empty', 'default': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]}, 'feature_columns': {'type': '_empty', 'default': None}, 'psi_threshold': {'type': '_empty', 'default': 0.2}} | \n", + "['visualization'] | \n", + "['monitoring'] | \n", + "
| validmind.ongoing_monitoring.PredictionAcrossEachFeature | \n", + "Prediction Across Each Feature | \n", + "Assesses differences in model predictions across individual features between reference and monitoring datasets... | \n", + "True | \n", + "False | \n", + "['datasets', 'model'] | \n", + "{} | \n", + "['visualization'] | \n", + "['monitoring'] | \n", + "
| validmind.ongoing_monitoring.PredictionCorrelation | \n", + "Prediction Correlation | \n", + "Assesses correlation changes between model predictions from reference and monitoring datasets to detect potential... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", + "['visualization'] | \n", + "['monitoring'] | \n", + "
| validmind.ongoing_monitoring.PredictionProbabilitiesHistogramDrift | \n", + "Prediction Probabilities Histogram Drift | \n", + "Compares prediction probability distributions between reference and monitoring datasets.... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'title': {'type': '_empty', 'default': 'Prediction Probabilities Histogram Drift'}, 'drift_pct_threshold': {'type': 'float', 'default': 20.0}} | \n", + "['visualization', 'credit_risk'] | \n", + "['classification'] | \n", + "
| validmind.ongoing_monitoring.PredictionQuantilesAcrossFeatures | \n", + "Prediction Quantiles Across Features | \n", + "Assesses differences in model prediction distributions across individual features between reference... | \n", + "True | \n", + "False | \n", + "['datasets', 'model'] | \n", + "{} | \n", + "['visualization'] | \n", + "['monitoring'] | \n", + "
| validmind.ongoing_monitoring.ROCCurveDrift | \n", + "ROC Curve Drift | \n", + "Compares ROC curves between reference and monitoring datasets.... | \n", + "True | \n", + "False | \n", + "['datasets', 'model'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ScoreBandsDrift | \n", + "Score Bands Drift | \n", + "Analyzes drift in population distribution and default rates across score bands.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'score_column': {'type': 'str', 'default': 'score'}, 'score_bands': {'type': 'list', 'default': None}, 'drift_threshold': {'type': 'float', 'default': 20.0}} | \n", + "['visualization', 'credit_risk', 'scorecard'] | \n", + "['classification'] | \n", + "
| validmind.ongoing_monitoring.ScorecardHistogramDrift | \n", + "Scorecard Histogram Drift | \n", + "Compares score distributions between reference and monitoring datasets for each class.... | \n", + "True | \n", + "True | \n", + "['datasets'] | \n", + "{'score_column': {'type': 'str', 'default': 'score'}, 'title': {'type': 'str', 'default': 'Scorecard Histogram Drift'}, 'drift_pct_threshold': {'type': 'float', 'default': 20.0}} | \n", + "['visualization', 'credit_risk', 'logistic_regression'] | \n", + "['classification'] | \n", + "
| validmind.ongoing_monitoring.TargetPredictionDistributionPlot | \n", + "Target Prediction Distribution Plot | \n", + "Assesses differences in prediction distributions between a reference dataset and a monitoring dataset to identify... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", + "['visualization'] | \n", + "['monitoring'] | \n", + "
| validmind.prompt_validation.Bias | \n", + "Bias | \n", + "Assesses potential bias in a Large Language Model by analyzing the distribution and order of exemplars in the... | \n", + "False | \n", + "True | \n", + "['model'] | \n", + "{'min_threshold': {'type': '_empty', 'default': 7}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", + "['llm', 'few_shot'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.prompt_validation.Clarity | \n", + "Clarity | \n", + "Evaluates and scores the clarity of prompts in a Large Language Model based on specified guidelines.... | \n", + "False | \n", + "True | \n", + "['model'] | \n", + "{'min_threshold': {'type': '_empty', 'default': 7}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", + "['llm', 'zero_shot', 'few_shot'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.prompt_validation.Conciseness | \n", + "Conciseness | \n", + "Analyzes and grades the conciseness of prompts provided to a Large Language Model.... | \n", + "False | \n", + "True | \n", + "['model'] | \n", + "{'min_threshold': {'type': '_empty', 'default': 7}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", + "['llm', 'zero_shot', 'few_shot'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.prompt_validation.Delimitation | \n", + "Delimitation | \n", + "Evaluates the proper use of delimiters in prompts provided to Large Language Models.... | \n", + "False | \n", + "True | \n", + "['model'] | \n", + "{'min_threshold': {'type': '_empty', 'default': 7}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", + "['llm', 'zero_shot', 'few_shot'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.prompt_validation.NegativeInstruction | \n", + "Negative Instruction | \n", + "Evaluates and grades the use of affirmative, proactive language over negative instructions in LLM prompts.... | \n", + "False | \n", + "True | \n", + "['model'] | \n", + "{'min_threshold': {'type': '_empty', 'default': 7}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", + "['llm', 'zero_shot', 'few_shot'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.prompt_validation.Robustness | \n", + "Robustness | \n", + "Assesses the robustness of prompts provided to a Large Language Model under varying conditions and contexts. This test... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{'num_tests': {'type': '_empty', 'default': 10}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", + "['llm', 'zero_shot', 'few_shot'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.prompt_validation.Specificity | \n", + "Specificity | \n", + "Evaluates and scores the specificity of prompts provided to a Large Language Model (LLM), based on clarity, detail,... | \n", + "False | \n", + "True | \n", + "['model'] | \n", + "{'min_threshold': {'type': '_empty', 'default': 7}, 'judge_llm': {'type': '_empty', 'default': None}} | \n", + "['llm', 'zero_shot', 'few_shot'] | \n", + "['text_classification', 'text_summarization'] | \n", + "
| validmind.unit_metrics.classification.Accuracy | \n", + "Accuracy | \n", + "Calculates the accuracy of a model | \n", + "False | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['classification'] | \n", + "['classification'] | \n", + "
| validmind.unit_metrics.classification.F1 | \n", + "F1 | \n", + "Calculates the F1 score for a classification model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['classification'] | \n", + "['classification'] | \n", + "
| validmind.unit_metrics.classification.Precision | \n", + "Precision | \n", + "Calculates the precision for a classification model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['classification'] | \n", + "['classification'] | \n", + "
| validmind.unit_metrics.classification.ROC_AUC | \n", + "ROC AUC | \n", + "Calculates the ROC AUC for a classification model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['classification'] | \n", + "['classification'] | \n", + "
| validmind.unit_metrics.classification.Recall | \n", + "Recall | \n", + "Calculates the recall for a classification model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['classification'] | \n", + "['classification'] | \n", + "
| validmind.unit_metrics.regression.AdjustedRSquaredScore | \n", + "Adjusted R Squared Score | \n", + "Calculates the adjusted R-squared score for a regression model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['regression'] | \n", + "['regression'] | \n", + "
| validmind.unit_metrics.regression.GiniCoefficient | \n", + "Gini Coefficient | \n", + "Calculates the Gini coefficient for a regression model. | \n", + "False | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['regression'] | \n", + "['regression'] | \n", + "
| validmind.unit_metrics.regression.HuberLoss | \n", + "Huber Loss | \n", + "Calculates the Huber loss for a regression model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['regression'] | \n", + "['regression'] | \n", + "
| validmind.unit_metrics.regression.KolmogorovSmirnovStatistic | \n", + "Kolmogorov Smirnov Statistic | \n", + "Calculates the Kolmogorov-Smirnov statistic for a regression model. | \n", + "False | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['regression'] | \n", + "['regression'] | \n", + "
| validmind.unit_metrics.regression.MeanAbsoluteError | \n", + "Mean Absolute Error | \n", + "Calculates the mean absolute error for a regression model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['regression'] | \n", + "['regression'] | \n", + "
| validmind.unit_metrics.regression.MeanAbsolutePercentageError | \n", + "Mean Absolute Percentage Error | \n", + "Calculates the mean absolute percentage error for a regression model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['regression'] | \n", + "['regression'] | \n", + "
| validmind.unit_metrics.regression.MeanBiasDeviation | \n", + "Mean Bias Deviation | \n", + "Calculates the mean bias deviation for a regression model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['regression'] | \n", + "['regression'] | \n", + "
| validmind.unit_metrics.regression.MeanSquaredError | \n", + "Mean Squared Error | \n", + "Calculates the mean squared error for a regression model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['regression'] | \n", + "['regression'] | \n", + "
| validmind.unit_metrics.regression.QuantileLoss | \n", + "Quantile Loss | \n", + "Calculates the quantile loss for a regression model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'quantile': {'type': '_empty', 'default': 0.5}} | \n", + "['regression'] | \n", + "['regression'] | \n", + "
| validmind.unit_metrics.regression.RSquaredScore | \n", + "R Squared Score | \n", + "Calculates the R-squared score for a regression model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['regression'] | \n", + "['regression'] | \n", + "
| validmind.unit_metrics.regression.RootMeanSquaredError | \n", + "Root Mean Squared Error | \n", + "Calculates the root mean squared error for a regression model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['regression'] | \n", + "['regression'] | \n", + "
| Task | \n", - "Tags | \n", - "
|---|---|
| regression | \n", - "senstivity_analysis, tabular_data, time_series_data, model_predictions, feature_selection, correlation, regression, statsmodels, model_performance, model_training, multiclass_classification, linear_regression, data_quality, text_data, model_explainability, binary_classification, stationarity, bias_and_fairness, numerical_data, sklearn, model_selection, statistical_test, descriptive_statistics, seasonality, analysis, data_validation, data_distribution, metadata, feature_importance, visualization, forecasting, model_diagnosis, model_interpretation, unit_root_test, categorical_data, data_analysis | \n", - "
| classification | \n", - "calibration, anomaly_detection, classification_metrics, tabular_data, time_series_data, feature_selection, correlation, statsmodels, model_performance, model_validation, model_training, classification, multiclass_classification, linear_regression, data_quality, text_data, binary_classification, threshold_optimization, bias_and_fairness, scorecard, model_comparison, numerical_data, sklearn, statistical_test, descriptive_statistics, feature_importance, data_distribution, metadata, visualization, credit_risk, AUC, logistic_regression, model_diagnosis, categorical_data, data_analysis | \n", - "
| text_classification | \n", - "model_performance, feature_importance, multiclass_classification, few_shot, frequency_analysis, zero_shot, text_data, visualization, llm, binary_classification, ragas, model_diagnosis, model_comparison, sklearn, nlp, retrieval_performance, tabular_data, time_series_data | \n", - "
| text_summarization | \n", - "qualitative, few_shot, frequency_analysis, embeddings, zero_shot, text_data, visualization, llm, rag_performance, ragas, retrieval_performance, nlp, dimensionality_reduction, tabular_data, time_series_data | \n", - "
| data_validation | \n", - "stationarity, statsmodels, unit_root_test, time_series_data | \n", - "
| time_series_forecasting | \n", - "model_training, data_validation, metadata, visualization, model_explainability, sklearn, model_performance, model_predictions, time_series_data | \n", - "
| nlp | \n", - "data_validation, frequency_analysis, text_data, visualization, nlp | \n", - "
| clustering | \n", - "clustering, model_performance, kmeans, sklearn | \n", - "
| residual_analysis | \n", - "regression | \n", - "
| visualization | \n", - "regression | \n", - "
| feature_extraction | \n", - "embeddings, text_data, visualization, llm | \n", - "
| text_qa | \n", - "qualitative, embeddings, visualization, llm, rag_performance, ragas, dimensionality_reduction, retrieval_performance | \n", - "
| text_generation | \n", - "qualitative, embeddings, visualization, llm, rag_performance, ragas, dimensionality_reduction, retrieval_performance | \n", - "
| monitoring | \n", - "visualization | \n", - "
| ID | \n", - "Name | \n", - "Description | \n", - "Has Figure | \n", - "Has Table | \n", - "Required Inputs | \n", - "Params | \n", - "Tags | \n", - "Tasks | \n", - "
|---|---|---|---|---|---|---|---|---|
| validmind.model_validation.ClusterSizeDistribution | \n", - "Cluster Size Distribution | \n", - "Assesses the performance of clustering models by comparing the distribution of cluster sizes in model predictions... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.TimeSeriesR2SquareBySegments | \n", - "Time Series R2 Square By Segments | \n", - "Evaluates the R-Squared values of regression models over specified time segments in time series data to assess... | \n", - "True | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'segments': {'type': None, 'default': None}} | \n", - "['model_performance', 'sklearn'] | \n", - "['regression', 'time_series_forecasting'] | \n", - "
| validmind.model_validation.sklearn.AdjustedMutualInformation | \n", - "Adjusted Mutual Information | \n", - "Evaluates clustering model performance by measuring mutual information between true and predicted labels, adjusting... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance', 'clustering'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.AdjustedRandIndex | \n", - "Adjusted Rand Index | \n", - "Measures the similarity between two data clusters using the Adjusted Rand Index (ARI) metric in clustering machine... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance', 'clustering'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.CalibrationCurve | \n", - "Calibration Curve | \n", - "Evaluates the calibration of probability estimates by comparing predicted probabilities against observed... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'n_bins': {'type': 'int', 'default': 10}} | \n", - "['sklearn', 'model_performance', 'classification'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.sklearn.ClassifierPerformance | \n", - "Classifier Performance | \n", - "Evaluates performance of binary or multiclass classification models using precision, recall, F1-Score, accuracy,... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'average': {'type': 'str', 'default': 'macro'}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ClassifierThresholdOptimization | \n", - "Classifier Threshold Optimization | \n", - "Analyzes and visualizes different threshold optimization methods for binary classification models.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'methods': {'type': None, 'default': None}, 'target_recall': {'type': None, 'default': None}} | \n", - "['model_validation', 'threshold_optimization', 'classification_metrics'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.sklearn.ClusterCosineSimilarity | \n", - "Cluster Cosine Similarity | \n", - "Measures the intra-cluster similarity of a clustering model using cosine similarity.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance', 'clustering'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.ClusterPerformanceMetrics | \n", - "Cluster Performance Metrics | \n", - "Evaluates the performance of clustering machine learning models using multiple established metrics.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance', 'clustering'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.CompletenessScore | \n", - "Completeness Score | \n", - "Evaluates a clustering model's capacity to categorize instances from a single class into the same cluster.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance', 'clustering'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.ConfusionMatrix | \n", - "Confusion Matrix | \n", - "Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'threshold': {'type': 'float', 'default': 0.5}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.FeatureImportance | \n", - "Feature Importance | \n", - "Compute feature importance scores for a given model and generate a summary table... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'num_features': {'type': 'int', 'default': 3}} | \n", - "['model_explainability', 'sklearn'] | \n", - "['regression', 'time_series_forecasting'] | \n", - "
| validmind.model_validation.sklearn.FowlkesMallowsScore | \n", - "Fowlkes Mallows Score | \n", - "Evaluates the similarity between predicted and actual cluster assignments in a model using the Fowlkes-Mallows... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.HomogeneityScore | \n", - "Homogeneity Score | \n", - "Assesses clustering homogeneity by comparing true and predicted labels, scoring from 0 (heterogeneous) to 1... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.HyperParametersTuning | \n", - "Hyper Parameters Tuning | \n", - "Performs exhaustive grid search over specified parameter ranges to find optimal model configurations... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{'param_grid': {'type': 'dict', 'default': None}, 'scoring': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}, 'fit_params': {'type': 'dict', 'default': None}} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering', 'classification'] | \n", - "
| validmind.model_validation.sklearn.KMeansClustersOptimization | \n", - "K Means Clusters Optimization | \n", - "Optimizes the number of clusters in K-means models using Elbow and Silhouette methods.... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'n_clusters': {'type': None, 'default': None}} | \n", - "['sklearn', 'model_performance', 'kmeans'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.MinimumAccuracy | \n", - "Minimum Accuracy | \n", - "Checks if the model's prediction accuracy meets or surpasses a specified threshold.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'min_threshold': {'type': 'float', 'default': 0.7}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.MinimumF1Score | \n", - "Minimum F1 Score | \n", - "Assesses if the model's F1 score on the validation set meets a predefined minimum threshold, ensuring balanced... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'min_threshold': {'type': 'float', 'default': 0.5}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.MinimumROCAUCScore | \n", - "Minimum ROCAUC Score | \n", - "Validates model by checking if the ROC AUC score meets or surpasses a specified threshold.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'min_threshold': {'type': 'float', 'default': 0.5}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ModelParameters | \n", - "Model Parameters | \n", - "Extracts and displays model parameters in a structured format for transparency and reproducibility.... | \n", - "False | \n", - "True | \n", - "['model'] | \n", - "{'model_params': {'type': None, 'default': None}} | \n", - "['model_training', 'metadata'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.sklearn.ModelsPerformanceComparison | \n", - "Models Performance Comparison | \n", - "Evaluates and compares the performance of multiple Machine Learning models using various metrics like accuracy,... | \n", - "False | \n", - "True | \n", - "['dataset', 'models'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'model_comparison'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.OverfitDiagnosis | \n", - "Overfit Diagnosis | \n", - "Assesses potential overfitting in a model's predictions, identifying regions where performance between training and... | \n", - "True | \n", - "True | \n", - "['model', 'datasets'] | \n", - "{'metric': {'type': 'str', 'default': None}, 'cut_off_threshold': {'type': 'float', 'default': 0.04}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'linear_regression', 'model_diagnosis'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.sklearn.PermutationFeatureImportance | \n", - "Permutation Feature Importance | \n", - "Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'fontsize': {'type': None, 'default': None}, 'figure_height': {'type': None, 'default': None}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.PopulationStabilityIndex | \n", - "Population Stability Index | \n", - "Assesses the Population Stability Index (PSI) to quantify the stability of an ML model's predictions across... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'num_bins': {'type': 'int', 'default': 10}, 'mode': {'type': 'str', 'default': 'fixed'}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.PrecisionRecallCurve | \n", - "Precision Recall Curve | \n", - "Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ROCCurve | \n", - "ROC Curve | \n", - "Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.RegressionErrors | \n", - "Regression Errors | \n", - "Assesses the performance and error distribution of a regression model using various error metrics.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['regression', 'classification'] | \n", - "
| validmind.model_validation.sklearn.RegressionErrorsComparison | \n", - "Regression Errors Comparison | \n", - "Assesses multiple regression error metrics to compare model performance across different datasets, emphasizing... | \n", - "False | \n", - "True | \n", - "['datasets', 'models'] | \n", - "{} | \n", - "['model_performance', 'sklearn'] | \n", - "['regression', 'time_series_forecasting'] | \n", - "
| validmind.model_validation.sklearn.RegressionPerformance | \n", - "Regression Performance | \n", - "Evaluates the performance of a regression model using five different metrics: MAE, MSE, RMSE, MAPE, and MBD.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.sklearn.RegressionR2Square | \n", - "Regression R2 Square | \n", - "Assesses the overall goodness-of-fit of a regression model by evaluating R-squared (R2) and Adjusted R-squared (Adj... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.sklearn.RegressionR2SquareComparison | \n", - "Regression R2 Square Comparison | \n", - "Compares R-Squared and Adjusted R-Squared values for different regression models across multiple datasets to assess... | \n", - "False | \n", - "True | \n", - "['datasets', 'models'] | \n", - "{} | \n", - "['model_performance', 'sklearn'] | \n", - "['regression', 'time_series_forecasting'] | \n", - "
| validmind.model_validation.sklearn.RobustnessDiagnosis | \n", - "Robustness Diagnosis | \n", - "Assesses the robustness of a machine learning model by evaluating performance decay under noisy conditions.... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'metric': {'type': 'str', 'default': None}, 'scaling_factor_std_dev_list': {'type': None, 'default': [0.1, 0.2, 0.3, 0.4, 0.5]}, 'performance_decay_threshold': {'type': 'float', 'default': 0.05}} | \n", - "['sklearn', 'model_diagnosis', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.sklearn.SHAPGlobalImportance | \n", - "SHAP Global Importance | \n", - "Evaluates and visualizes global feature importance using SHAP values for model explanation and risk identification.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{'kernel_explainer_samples': {'type': 'int', 'default': 10}, 'tree_or_linear_explainer_samples': {'type': 'int', 'default': 200}, 'class_of_interest': {'type': None, 'default': None}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ScoreProbabilityAlignment | \n", - "Score Probability Alignment | \n", - "Analyzes the alignment between credit scores and predicted probabilities.... | \n", - "True | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{'score_column': {'type': 'str', 'default': 'score'}, 'n_bins': {'type': 'int', 'default': 10}} | \n", - "['visualization', 'credit_risk', 'calibration'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.sklearn.SilhouettePlot | \n", - "Silhouette Plot | \n", - "Calculates and visualizes Silhouette Score, assessing the degree of data point suitability to its cluster in ML... | \n", - "True | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.TrainingTestDegradation | \n", - "Training Test Degradation | \n", - "Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'max_threshold': {'type': 'float', 'default': 0.1}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.VMeasure | \n", - "V Measure | \n", - "Evaluates homogeneity and completeness of a clustering model using the V Measure Score.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering'] | \n", - "
| validmind.model_validation.sklearn.WeakspotsDiagnosis | \n", - "Weakspots Diagnosis | \n", - "Identifies and visualizes weak spots in a machine learning model's performance across various sections of the... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'features_columns': {'type': None, 'default': None}, 'metrics': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_diagnosis', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.CalibrationCurveDrift | \n", - "Calibration Curve Drift | \n", - "Evaluates changes in probability calibration between reference and monitoring datasets.... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ClassDiscriminationDrift | \n", - "Class Discrimination Drift | \n", - "Compares classification discrimination metrics between reference and monitoring datasets.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ClassificationAccuracyDrift | \n", - "Classification Accuracy Drift | \n", - "Compares classification accuracy metrics between reference and monitoring datasets.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ConfusionMatrixDrift | \n", - "Confusion Matrix Drift | \n", - "Compares confusion matrix metrics between reference and monitoring datasets.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ROCCurveDrift | \n", - "ROC Curve Drift | \n", - "Compares ROC curves between reference and monitoring datasets.... | \n", - "True | \n", - "False | \n", - "['datasets', 'model'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| Task | \n", + "Tags | \n", + "
|---|---|
| regression | \n", + "senstivity_analysis, tabular_data, time_series_data, model_predictions, feature_selection, correlation, regression, statsmodels, model_performance, model_training, multiclass_classification, linear_regression, data_quality, text_data, model_explainability, binary_classification, stationarity, bias_and_fairness, numerical_data, sklearn, model_selection, statistical_test, descriptive_statistics, seasonality, analysis, data_validation, data_distribution, metadata, feature_importance, visualization, forecasting, model_diagnosis, model_interpretation, unit_root_test, categorical_data, data_analysis | \n", + "
| classification | \n", + "calibration, anomaly_detection, classification_metrics, tabular_data, time_series_data, feature_selection, correlation, statsmodels, model_performance, model_validation, model_training, classification, multiclass_classification, linear_regression, data_quality, text_data, binary_classification, threshold_optimization, bias_and_fairness, scorecard, model_comparison, numerical_data, sklearn, statistical_test, descriptive_statistics, feature_importance, data_distribution, metadata, visualization, credit_risk, AUC, logistic_regression, model_diagnosis, categorical_data, data_analysis | \n", + "
| text_classification | \n", + "model_performance, feature_importance, multiclass_classification, few_shot, frequency_analysis, zero_shot, text_data, visualization, llm, binary_classification, ragas, model_diagnosis, model_comparison, sklearn, nlp, retrieval_performance, tabular_data, time_series_data | \n", + "
| text_summarization | \n", + "qualitative, few_shot, frequency_analysis, embeddings, zero_shot, text_data, visualization, llm, rag_performance, ragas, retrieval_performance, nlp, dimensionality_reduction, tabular_data, time_series_data | \n", + "
| data_validation | \n", + "stationarity, statsmodels, unit_root_test, time_series_data | \n", + "
| time_series_forecasting | \n", + "model_training, data_validation, metadata, visualization, model_explainability, sklearn, model_performance, model_predictions, time_series_data | \n", + "
| nlp | \n", + "data_validation, frequency_analysis, text_data, visualization, nlp | \n", + "
| clustering | \n", + "clustering, model_performance, kmeans, sklearn | \n", + "
| residual_analysis | \n", + "regression | \n", + "
| visualization | \n", + "regression | \n", + "
| feature_extraction | \n", + "embeddings, text_data, visualization, llm | \n", + "
| text_qa | \n", + "qualitative, embeddings, visualization, llm, rag_performance, ragas, dimensionality_reduction, retrieval_performance | \n", + "
| text_generation | \n", + "qualitative, embeddings, visualization, llm, rag_performance, ragas, dimensionality_reduction, retrieval_performance | \n", + "
| monitoring | \n", + "visualization | \n", + "
| ID | \n", - "Name | \n", - "Description | \n", - "Has Figure | \n", - "Has Table | \n", - "Required Inputs | \n", - "Params | \n", - "Tags | \n", - "Tasks | \n", - "
|---|---|---|---|---|---|---|---|---|
| validmind.data_validation.BivariateScatterPlots | \n", - "Bivariate Scatter Plots | \n", - "Generates bivariate scatterplots to visually inspect relationships between pairs of numerical predictor variables... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'numerical_data', 'visualization'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.ChiSquaredFeaturesTable | \n", - "Chi Squared Features Table | \n", - "Assesses the statistical association between categorical features and a target variable using the Chi-Squared test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'p_threshold': {'type': '_empty', 'default': 0.05}} | \n", - "['tabular_data', 'categorical_data', 'statistical_test'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.ClassImbalance | \n", - "Class Imbalance | \n", - "Evaluates and quantifies class distribution imbalance in a dataset used by a machine learning model.... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'min_percent_threshold': {'type': 'int', 'default': 10}} | \n", - "['tabular_data', 'binary_classification', 'multiclass_classification', 'data_quality'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.DatasetDescription | \n", - "Dataset Description | \n", - "Provides comprehensive analysis and statistical summaries of each column in a machine learning model's dataset.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'time_series_data', 'text_data'] | \n", - "['classification', 'regression', 'text_classification', 'text_summarization'] | \n", - "
| validmind.data_validation.DatasetSplit | \n", - "Dataset Split | \n", - "Evaluates and visualizes the distribution proportions among training, testing, and validation datasets of an ML... | \n", - "False | \n", - "True | \n", - "['datasets'] | \n", - "{} | \n", - "['tabular_data', 'time_series_data', 'text_data'] | \n", - "['classification', 'regression', 'text_classification', 'text_summarization'] | \n", - "
| validmind.data_validation.DescriptiveStatistics | \n", - "Descriptive Statistics | \n", - "Performs a detailed descriptive statistical analysis of both numerical and categorical data within a model's... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'time_series_data', 'data_quality'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.Duplicates | \n", - "Duplicates | \n", - "Tests dataset for duplicate entries, ensuring model reliability via data quality verification.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'min_threshold': {'type': '_empty', 'default': 1}} | \n", - "['tabular_data', 'data_quality', 'text_data'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.FeatureTargetCorrelationPlot | \n", - "Feature Target Correlation Plot | \n", - "Visualizes the correlation between input features and the model's target output in a color-coded horizontal bar... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'fig_height': {'type': '_empty', 'default': 600}} | \n", - "['tabular_data', 'visualization', 'correlation'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.HighCardinality | \n", - "High Cardinality | \n", - "Assesses the number of unique values in categorical columns to detect high cardinality and potential overfitting.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'num_threshold': {'type': 'int', 'default': 100}, 'percent_threshold': {'type': 'float', 'default': 0.1}, 'threshold_type': {'type': 'str', 'default': 'percent'}} | \n", - "['tabular_data', 'data_quality', 'categorical_data'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.HighPearsonCorrelation | \n", - "High Pearson Correlation | \n", - "Identifies highly correlated feature pairs in a dataset suggesting feature redundancy or multicollinearity.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'max_threshold': {'type': 'float', 'default': 0.3}, 'top_n_correlations': {'type': 'int', 'default': 10}, 'feature_columns': {'type': 'list', 'default': None}} | \n", - "['tabular_data', 'data_quality', 'correlation'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.IQROutliersBarPlot | \n", - "IQR Outliers Bar Plot | \n", - "Visualizes outlier distribution across percentiles in numerical data using the Interquartile Range (IQR) method.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'threshold': {'type': 'float', 'default': 1.5}, 'fig_width': {'type': 'int', 'default': 800}} | \n", - "['tabular_data', 'visualization', 'numerical_data'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.IQROutliersTable | \n", - "IQR Outliers Table | \n", - "Determines and summarizes outliers in numerical features using the Interquartile Range method.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'threshold': {'type': 'float', 'default': 1.5}} | \n", - "['tabular_data', 'numerical_data'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.IsolationForestOutliers | \n", - "Isolation Forest Outliers | \n", - "Detects outliers in a dataset using the Isolation Forest algorithm and visualizes results through scatter plots.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'random_state': {'type': 'int', 'default': 0}, 'contamination': {'type': 'float', 'default': 0.1}, 'feature_columns': {'type': 'list', 'default': None}} | \n", - "['tabular_data', 'anomaly_detection'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.JarqueBera | \n", - "Jarque Bera | \n", - "Assesses normality of dataset features in an ML model using the Jarque-Bera test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.MissingValues | \n", - "Missing Values | \n", - "Evaluates dataset quality by ensuring missing value ratio across all features does not exceed a set threshold.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'min_threshold': {'type': 'int', 'default': 1}} | \n", - "['tabular_data', 'data_quality'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.MissingValuesBarPlot | \n", - "Missing Values Bar Plot | \n", - "Assesses the percentage and distribution of missing values in the dataset via a bar plot, with emphasis on... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'threshold': {'type': 'int', 'default': 80}, 'fig_height': {'type': 'int', 'default': 600}} | \n", - "['tabular_data', 'data_quality', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.MutualInformation | \n", - "Mutual Information | \n", - "Calculates mutual information scores between features and target variable to evaluate feature relevance.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'min_threshold': {'type': 'float', 'default': 0.01}, 'task': {'type': 'str', 'default': 'classification'}} | \n", - "['feature_selection', 'data_analysis'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.PearsonCorrelationMatrix | \n", - "Pearson Correlation Matrix | \n", - "Evaluates linear dependency between numerical variables in a dataset via a Pearson Correlation coefficient heat map.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'numerical_data', 'correlation'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.ProtectedClassesDescription | \n", - "Protected Classes Description | \n", - "Visualizes the distribution of protected classes in the dataset relative to the target variable... | \n", - "True | \n", - "True | \n", - "['dataset'] | \n", - "{'protected_classes': {'type': '_empty', 'default': None}} | \n", - "['bias_and_fairness', 'descriptive_statistics'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.RunsTest | \n", - "Runs Test | \n", - "Executes Runs Test on ML model to detect non-random patterns in output data sequence.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'statistical_test', 'statsmodels'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.ScatterPlot | \n", - "Scatter Plot | \n", - "Assesses visual relationships, patterns, and outliers among features in a dataset through scatter plot matrices.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.ScoreBandDefaultRates | \n", - "Score Band Default Rates | \n", - "Analyzes default rates and population distribution across credit score bands.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'score_column': {'type': 'str', 'default': 'score'}, 'score_bands': {'type': 'list', 'default': None}} | \n", - "['visualization', 'credit_risk', 'scorecard'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.ShapiroWilk | \n", - "Shapiro Wilk | \n", - "Evaluates feature-wise normality of training data using the Shapiro-Wilk test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'data_distribution', 'statistical_test'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.Skewness | \n", - "Skewness | \n", - "Evaluates the skewness of numerical data in a dataset to check against a defined threshold, aiming to ensure data... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'max_threshold': {'type': '_empty', 'default': 1}} | \n", - "['data_quality', 'tabular_data'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.TabularCategoricalBarPlots | \n", - "Tabular Categorical Bar Plots | \n", - "Generates and visualizes bar plots for each category in categorical features to evaluate the dataset's composition.... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.TabularDateTimeHistograms | \n", - "Tabular Date Time Histograms | \n", - "Generates histograms to provide graphical insight into the distribution of time intervals in a model's datetime... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['time_series_data', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.TabularDescriptionTables | \n", - "Tabular Description Tables | \n", - "Summarizes key descriptive statistics for numerical, categorical, and datetime variables in a dataset.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.TabularNumericalHistograms | \n", - "Tabular Numerical Histograms | \n", - "Generates histograms for each numerical feature in a dataset to provide visual insights into data distribution and... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.data_validation.TargetRateBarPlots | \n", - "Target Rate Bar Plots | \n", - "Generates bar plots visualizing the default rates of categorical features for a classification machine learning... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'visualization', 'categorical_data'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.TooManyZeroValues | \n", - "Too Many Zero Values | \n", - "Identifies numerical columns in a dataset that contain an excessive number of zero values, defined by a threshold... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'max_percent_threshold': {'type': 'float', 'default': 0.03}} | \n", - "['tabular_data'] | \n", - "['regression', 'classification'] | \n", - "
| validmind.data_validation.UniqueRows | \n", - "Unique Rows | \n", - "Verifies the diversity of the dataset by ensuring that the count of unique rows exceeds a prescribed threshold.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'min_percent_threshold': {'type': 'float', 'default': 1}} | \n", - "['tabular_data'] | \n", - "['regression', 'classification'] | \n", - "
| validmind.data_validation.WOEBinPlots | \n", - "WOE Bin Plots | \n", - "Generates visualizations of Weight of Evidence (WoE) and Information Value (IV) for understanding predictive power... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'breaks_adj': {'type': 'list', 'default': None}, 'fig_height': {'type': 'int', 'default': 600}, 'fig_width': {'type': 'int', 'default': 500}} | \n", - "['tabular_data', 'visualization', 'categorical_data'] | \n", - "['classification'] | \n", - "
| validmind.data_validation.WOEBinTable | \n", - "WOE Bin Table | \n", - "Assesses the Weight of Evidence (WoE) and Information Value (IV) of each feature to evaluate its predictive power... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{'breaks_adj': {'type': 'list', 'default': None}} | \n", - "['tabular_data', 'categorical_data'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.FeaturesAUC | \n", - "Features AUC | \n", - "Evaluates the discriminatory power of each individual feature within a binary classification model by calculating... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'fontsize': {'type': 'int', 'default': 12}, 'figure_height': {'type': 'int', 'default': 500}} | \n", - "['feature_importance', 'AUC', 'visualization'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.sklearn.CalibrationCurve | \n", - "Calibration Curve | \n", - "Evaluates the calibration of probability estimates by comparing predicted probabilities against observed... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'n_bins': {'type': 'int', 'default': 10}} | \n", - "['sklearn', 'model_performance', 'classification'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.sklearn.ClassifierPerformance | \n", - "Classifier Performance | \n", - "Evaluates performance of binary or multiclass classification models using precision, recall, F1-Score, accuracy,... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'average': {'type': 'str', 'default': 'macro'}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ClassifierThresholdOptimization | \n", - "Classifier Threshold Optimization | \n", - "Analyzes and visualizes different threshold optimization methods for binary classification models.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'methods': {'type': None, 'default': None}, 'target_recall': {'type': None, 'default': None}} | \n", - "['model_validation', 'threshold_optimization', 'classification_metrics'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.sklearn.ConfusionMatrix | \n", - "Confusion Matrix | \n", - "Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'threshold': {'type': 'float', 'default': 0.5}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.HyperParametersTuning | \n", - "Hyper Parameters Tuning | \n", - "Performs exhaustive grid search over specified parameter ranges to find optimal model configurations... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{'param_grid': {'type': 'dict', 'default': None}, 'scoring': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}, 'fit_params': {'type': 'dict', 'default': None}} | \n", - "['sklearn', 'model_performance'] | \n", - "['clustering', 'classification'] | \n", - "
| validmind.model_validation.sklearn.MinimumAccuracy | \n", - "Minimum Accuracy | \n", - "Checks if the model's prediction accuracy meets or surpasses a specified threshold.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'min_threshold': {'type': 'float', 'default': 0.7}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.MinimumF1Score | \n", - "Minimum F1 Score | \n", - "Assesses if the model's F1 score on the validation set meets a predefined minimum threshold, ensuring balanced... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'min_threshold': {'type': 'float', 'default': 0.5}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.MinimumROCAUCScore | \n", - "Minimum ROCAUC Score | \n", - "Validates model by checking if the ROC AUC score meets or surpasses a specified threshold.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{'min_threshold': {'type': 'float', 'default': 0.5}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ModelParameters | \n", - "Model Parameters | \n", - "Extracts and displays model parameters in a structured format for transparency and reproducibility.... | \n", - "False | \n", - "True | \n", - "['model'] | \n", - "{'model_params': {'type': None, 'default': None}} | \n", - "['model_training', 'metadata'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.sklearn.ModelsPerformanceComparison | \n", - "Models Performance Comparison | \n", - "Evaluates and compares the performance of multiple Machine Learning models using various metrics like accuracy,... | \n", - "False | \n", - "True | \n", - "['dataset', 'models'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'model_comparison'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.OverfitDiagnosis | \n", - "Overfit Diagnosis | \n", - "Assesses potential overfitting in a model's predictions, identifying regions where performance between training and... | \n", - "True | \n", - "True | \n", - "['model', 'datasets'] | \n", - "{'metric': {'type': 'str', 'default': None}, 'cut_off_threshold': {'type': 'float', 'default': 0.04}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'linear_regression', 'model_diagnosis'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.sklearn.PermutationFeatureImportance | \n", - "Permutation Feature Importance | \n", - "Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'fontsize': {'type': None, 'default': None}, 'figure_height': {'type': None, 'default': None}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.PopulationStabilityIndex | \n", - "Population Stability Index | \n", - "Assesses the Population Stability Index (PSI) to quantify the stability of an ML model's predictions across... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'num_bins': {'type': 'int', 'default': 10}, 'mode': {'type': 'str', 'default': 'fixed'}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.PrecisionRecallCurve | \n", - "Precision Recall Curve | \n", - "Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ROCCurve | \n", - "ROC Curve | \n", - "Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.RegressionErrors | \n", - "Regression Errors | \n", - "Assesses the performance and error distribution of a regression model using various error metrics.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'model_performance'] | \n", - "['regression', 'classification'] | \n", - "
| validmind.model_validation.sklearn.RobustnessDiagnosis | \n", - "Robustness Diagnosis | \n", - "Assesses the robustness of a machine learning model by evaluating performance decay under noisy conditions.... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'metric': {'type': 'str', 'default': None}, 'scaling_factor_std_dev_list': {'type': None, 'default': [0.1, 0.2, 0.3, 0.4, 0.5]}, 'performance_decay_threshold': {'type': 'float', 'default': 0.05}} | \n", - "['sklearn', 'model_diagnosis', 'visualization'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.sklearn.SHAPGlobalImportance | \n", - "SHAP Global Importance | \n", - "Evaluates and visualizes global feature importance using SHAP values for model explanation and risk identification.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{'kernel_explainer_samples': {'type': 'int', 'default': 10}, 'tree_or_linear_explainer_samples': {'type': 'int', 'default': 200}, 'class_of_interest': {'type': None, 'default': None}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ScoreProbabilityAlignment | \n", - "Score Probability Alignment | \n", - "Analyzes the alignment between credit scores and predicted probabilities.... | \n", - "True | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{'score_column': {'type': 'str', 'default': 'score'}, 'n_bins': {'type': 'int', 'default': 10}} | \n", - "['visualization', 'credit_risk', 'calibration'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.sklearn.TrainingTestDegradation | \n", - "Training Test Degradation | \n", - "Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'max_threshold': {'type': 'float', 'default': 0.1}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.WeakspotsDiagnosis | \n", - "Weakspots Diagnosis | \n", - "Identifies and visualizes weak spots in a machine learning model's performance across various sections of the... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'features_columns': {'type': None, 'default': None}, 'metrics': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_diagnosis', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.statsmodels.CumulativePredictionProbabilities | \n", - "Cumulative Prediction Probabilities | \n", - "Visualizes cumulative probabilities of positive and negative classes for both training and testing in classification models.... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'title': {'type': 'str', 'default': 'Cumulative Probabilities'}} | \n", - "['visualization', 'credit_risk'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.statsmodels.GINITable | \n", - "GINI Table | \n", - "Evaluates classification model performance using AUC, GINI, and KS metrics for training and test datasets.... | \n", - "False | \n", - "True | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['model_performance'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.statsmodels.KolmogorovSmirnov | \n", - "Kolmogorov Smirnov | \n", - "Assesses whether each feature in the dataset aligns with a normal distribution using the Kolmogorov-Smirnov test.... | \n", - "False | \n", - "True | \n", - "['model', 'dataset'] | \n", - "{'dist': {'type': 'str', 'default': 'norm'}} | \n", - "['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.statsmodels.Lilliefors | \n", - "Lilliefors | \n", - "Assesses the normality of feature distributions in an ML model's training dataset using the Lilliefors test.... | \n", - "False | \n", - "True | \n", - "['dataset'] | \n", - "{} | \n", - "['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] | \n", - "['classification', 'regression'] | \n", - "
| validmind.model_validation.statsmodels.PredictionProbabilitiesHistogram | \n", - "Prediction Probabilities Histogram | \n", - "Assesses the predictive probability distribution for binary classification to evaluate model performance and... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'title': {'type': 'str', 'default': 'Histogram of Predictive Probabilities'}} | \n", - "['visualization', 'credit_risk'] | \n", - "['classification'] | \n", - "
| validmind.model_validation.statsmodels.ScorecardHistogram | \n", - "Scorecard Histogram | \n", - "The Scorecard Histogram test evaluates the distribution of credit scores between default and non-default instances,... | \n", - "True | \n", - "False | \n", - "['dataset'] | \n", - "{'title': {'type': 'str', 'default': 'Histogram of Scores'}, 'score_column': {'type': 'str', 'default': 'score'}} | \n", - "['visualization', 'credit_risk', 'logistic_regression'] | \n", - "['classification'] | \n", - "
| validmind.ongoing_monitoring.CalibrationCurveDrift | \n", - "Calibration Curve Drift | \n", - "Evaluates changes in probability calibration between reference and monitoring datasets.... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ClassDiscriminationDrift | \n", - "Class Discrimination Drift | \n", - "Compares classification discrimination metrics between reference and monitoring datasets.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ClassImbalanceDrift | \n", - "Class Imbalance Drift | \n", - "Evaluates drift in class distribution between reference and monitoring datasets.... | \n", - "True | \n", - "True | \n", - "['datasets'] | \n", - "{'drift_pct_threshold': {'type': 'float', 'default': 5.0}, 'title': {'type': 'str', 'default': 'Class Distribution Drift'}} | \n", - "['tabular_data', 'binary_classification', 'multiclass_classification'] | \n", - "['classification'] | \n", - "
| validmind.ongoing_monitoring.ClassificationAccuracyDrift | \n", - "Classification Accuracy Drift | \n", - "Compares classification accuracy metrics between reference and monitoring datasets.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ConfusionMatrixDrift | \n", - "Confusion Matrix Drift | \n", - "Compares confusion matrix metrics between reference and monitoring datasets.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.CumulativePredictionProbabilitiesDrift | \n", - "Cumulative Prediction Probabilities Drift | \n", - "Compares cumulative prediction probability distributions between reference and monitoring datasets.... | \n", - "True | \n", - "False | \n", - "['datasets', 'model'] | \n", - "{} | \n", - "['visualization', 'credit_risk'] | \n", - "['classification'] | \n", - "
| validmind.ongoing_monitoring.PredictionProbabilitiesHistogramDrift | \n", - "Prediction Probabilities Histogram Drift | \n", - "Compares prediction probability distributions between reference and monitoring datasets.... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'title': {'type': '_empty', 'default': 'Prediction Probabilities Histogram Drift'}, 'drift_pct_threshold': {'type': 'float', 'default': 20.0}} | \n", - "['visualization', 'credit_risk'] | \n", - "['classification'] | \n", - "
| validmind.ongoing_monitoring.ROCCurveDrift | \n", - "ROC Curve Drift | \n", - "Compares ROC curves between reference and monitoring datasets.... | \n", - "True | \n", - "False | \n", - "['datasets', 'model'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ScoreBandsDrift | \n", - "Score Bands Drift | \n", - "Analyzes drift in population distribution and default rates across score bands.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'score_column': {'type': 'str', 'default': 'score'}, 'score_bands': {'type': 'list', 'default': None}, 'drift_threshold': {'type': 'float', 'default': 20.0}} | \n", - "['visualization', 'credit_risk', 'scorecard'] | \n", - "['classification'] | \n", - "
| validmind.ongoing_monitoring.ScorecardHistogramDrift | \n", - "Scorecard Histogram Drift | \n", - "Compares score distributions between reference and monitoring datasets for each class.... | \n", - "True | \n", - "True | \n", - "['datasets'] | \n", - "{'score_column': {'type': 'str', 'default': 'score'}, 'title': {'type': 'str', 'default': 'Scorecard Histogram Drift'}, 'drift_pct_threshold': {'type': 'float', 'default': 20.0}} | \n", - "['visualization', 'credit_risk', 'logistic_regression'] | \n", - "['classification'] | \n", - "
| validmind.unit_metrics.classification.Accuracy | \n", - "Accuracy | \n", - "Calculates the accuracy of a model | \n", - "False | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{} | \n", - "['classification'] | \n", - "['classification'] | \n", - "
| validmind.unit_metrics.classification.F1 | \n", - "F1 | \n", - "Calculates the F1 score for a classification model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['classification'] | \n", - "['classification'] | \n", - "
| validmind.unit_metrics.classification.Precision | \n", - "Precision | \n", - "Calculates the precision for a classification model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['classification'] | \n", - "['classification'] | \n", - "
| validmind.unit_metrics.classification.ROC_AUC | \n", - "ROC AUC | \n", - "Calculates the ROC AUC for a classification model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['classification'] | \n", - "['classification'] | \n", - "
| validmind.unit_metrics.classification.Recall | \n", - "Recall | \n", - "Calculates the recall for a classification model. | \n", - "False | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['classification'] | \n", - "['classification'] | \n", - "
| ID | \n", + "Name | \n", + "Description | \n", + "Has Figure | \n", + "Has Table | \n", + "Required Inputs | \n", + "Params | \n", + "Tags | \n", + "Tasks | \n", + "
|---|---|---|---|---|---|---|---|---|
| validmind.model_validation.ClusterSizeDistribution | \n", + "Cluster Size Distribution | \n", + "Assesses the performance of clustering models by comparing the distribution of cluster sizes in model predictions... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.TimeSeriesR2SquareBySegments | \n", + "Time Series R2 Square By Segments | \n", + "Evaluates the R-Squared values of regression models over specified time segments in time series data to assess... | \n", + "True | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'segments': {'type': None, 'default': None}} | \n", + "['model_performance', 'sklearn'] | \n", + "['regression', 'time_series_forecasting'] | \n", + "
| validmind.model_validation.sklearn.AdjustedMutualInformation | \n", + "Adjusted Mutual Information | \n", + "Evaluates clustering model performance by measuring mutual information between true and predicted labels, adjusting... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance', 'clustering'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.AdjustedRandIndex | \n", + "Adjusted Rand Index | \n", + "Measures the similarity between two data clusters using the Adjusted Rand Index (ARI) metric in clustering machine... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance', 'clustering'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.CalibrationCurve | \n", + "Calibration Curve | \n", + "Evaluates the calibration of probability estimates by comparing predicted probabilities against observed... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'n_bins': {'type': 'int', 'default': 10}} | \n", + "['sklearn', 'model_performance', 'classification'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.sklearn.ClassifierPerformance | \n", + "Classifier Performance | \n", + "Evaluates performance of binary or multiclass classification models using precision, recall, F1-Score, accuracy,... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'average': {'type': 'str', 'default': 'macro'}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ClassifierThresholdOptimization | \n", + "Classifier Threshold Optimization | \n", + "Analyzes and visualizes different threshold optimization methods for binary classification models.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'methods': {'type': None, 'default': None}, 'target_recall': {'type': None, 'default': None}} | \n", + "['model_validation', 'threshold_optimization', 'classification_metrics'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.sklearn.ClusterCosineSimilarity | \n", + "Cluster Cosine Similarity | \n", + "Measures the intra-cluster similarity of a clustering model using cosine similarity.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance', 'clustering'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.ClusterPerformanceMetrics | \n", + "Cluster Performance Metrics | \n", + "Evaluates the performance of clustering machine learning models using multiple established metrics.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance', 'clustering'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.CompletenessScore | \n", + "Completeness Score | \n", + "Evaluates a clustering model's capacity to categorize instances from a single class into the same cluster.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance', 'clustering'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.ConfusionMatrix | \n", + "Confusion Matrix | \n", + "Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'threshold': {'type': 'float', 'default': 0.5}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.FeatureImportance | \n", + "Feature Importance | \n", + "Compute feature importance scores for a given model and generate a summary table... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'num_features': {'type': 'int', 'default': 3}} | \n", + "['model_explainability', 'sklearn'] | \n", + "['regression', 'time_series_forecasting'] | \n", + "
| validmind.model_validation.sklearn.FowlkesMallowsScore | \n", + "Fowlkes Mallows Score | \n", + "Evaluates the similarity between predicted and actual cluster assignments in a model using the Fowlkes-Mallows... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.HomogeneityScore | \n", + "Homogeneity Score | \n", + "Assesses clustering homogeneity by comparing true and predicted labels, scoring from 0 (heterogeneous) to 1... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.HyperParametersTuning | \n", + "Hyper Parameters Tuning | \n", + "Performs exhaustive grid search over specified parameter ranges to find optimal model configurations... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{'param_grid': {'type': 'dict', 'default': None}, 'scoring': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}, 'fit_params': {'type': 'dict', 'default': None}} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering', 'classification'] | \n", + "
| validmind.model_validation.sklearn.KMeansClustersOptimization | \n", + "K Means Clusters Optimization | \n", + "Optimizes the number of clusters in K-means models using Elbow and Silhouette methods.... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'n_clusters': {'type': None, 'default': None}} | \n", + "['sklearn', 'model_performance', 'kmeans'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.MinimumAccuracy | \n", + "Minimum Accuracy | \n", + "Checks if the model's prediction accuracy meets or surpasses a specified threshold.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'min_threshold': {'type': 'float', 'default': 0.7}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.MinimumF1Score | \n", + "Minimum F1 Score | \n", + "Assesses if the model's F1 score on the validation set meets a predefined minimum threshold, ensuring balanced... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'min_threshold': {'type': 'float', 'default': 0.5}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.MinimumROCAUCScore | \n", + "Minimum ROCAUC Score | \n", + "Validates model by checking if the ROC AUC score meets or surpasses a specified threshold.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'min_threshold': {'type': 'float', 'default': 0.5}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ModelParameters | \n", + "Model Parameters | \n", + "Extracts and displays model parameters in a structured format for transparency and reproducibility.... | \n", + "False | \n", + "True | \n", + "['model'] | \n", + "{'model_params': {'type': None, 'default': None}} | \n", + "['model_training', 'metadata'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.sklearn.ModelsPerformanceComparison | \n", + "Models Performance Comparison | \n", + "Evaluates and compares the performance of multiple Machine Learning models using various metrics like accuracy,... | \n", + "False | \n", + "True | \n", + "['dataset', 'models'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'model_comparison'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.OverfitDiagnosis | \n", + "Overfit Diagnosis | \n", + "Assesses potential overfitting in a model's predictions, identifying regions where performance between training and... | \n", + "True | \n", + "True | \n", + "['model', 'datasets'] | \n", + "{'metric': {'type': 'str', 'default': None}, 'cut_off_threshold': {'type': 'float', 'default': 0.04}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'linear_regression', 'model_diagnosis'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.sklearn.PermutationFeatureImportance | \n", + "Permutation Feature Importance | \n", + "Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'fontsize': {'type': None, 'default': None}, 'figure_height': {'type': None, 'default': None}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.PopulationStabilityIndex | \n", + "Population Stability Index | \n", + "Assesses the Population Stability Index (PSI) to quantify the stability of an ML model's predictions across... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'num_bins': {'type': 'int', 'default': 10}, 'mode': {'type': 'str', 'default': 'fixed'}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.PrecisionRecallCurve | \n", + "Precision Recall Curve | \n", + "Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ROCCurve | \n", + "ROC Curve | \n", + "Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.RegressionErrors | \n", + "Regression Errors | \n", + "Assesses the performance and error distribution of a regression model using various error metrics.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['regression', 'classification'] | \n", + "
| validmind.model_validation.sklearn.RegressionErrorsComparison | \n", + "Regression Errors Comparison | \n", + "Assesses multiple regression error metrics to compare model performance across different datasets, emphasizing... | \n", + "False | \n", + "True | \n", + "['datasets', 'models'] | \n", + "{} | \n", + "['model_performance', 'sklearn'] | \n", + "['regression', 'time_series_forecasting'] | \n", + "
| validmind.model_validation.sklearn.RegressionPerformance | \n", + "Regression Performance | \n", + "Evaluates the performance of a regression model using five different metrics: MAE, MSE, RMSE, MAPE, and MBD.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.sklearn.RegressionR2Square | \n", + "Regression R2 Square | \n", + "Assesses the overall goodness-of-fit of a regression model by evaluating R-squared (R2) and Adjusted R-squared (Adj... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.sklearn.RegressionR2SquareComparison | \n", + "Regression R2 Square Comparison | \n", + "Compares R-Squared and Adjusted R-Squared values for different regression models across multiple datasets to assess... | \n", + "False | \n", + "True | \n", + "['datasets', 'models'] | \n", + "{} | \n", + "['model_performance', 'sklearn'] | \n", + "['regression', 'time_series_forecasting'] | \n", + "
| validmind.model_validation.sklearn.RobustnessDiagnosis | \n", + "Robustness Diagnosis | \n", + "Assesses the robustness of a machine learning model by evaluating performance decay under noisy conditions.... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'metric': {'type': 'str', 'default': None}, 'scaling_factor_std_dev_list': {'type': None, 'default': [0.1, 0.2, 0.3, 0.4, 0.5]}, 'performance_decay_threshold': {'type': 'float', 'default': 0.05}} | \n", + "['sklearn', 'model_diagnosis', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.sklearn.SHAPGlobalImportance | \n", + "SHAP Global Importance | \n", + "Evaluates and visualizes global feature importance using SHAP values for model explanation and risk identification.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{'kernel_explainer_samples': {'type': 'int', 'default': 10}, 'tree_or_linear_explainer_samples': {'type': 'int', 'default': 200}, 'class_of_interest': {'type': None, 'default': None}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ScoreProbabilityAlignment | \n", + "Score Probability Alignment | \n", + "Analyzes the alignment between credit scores and predicted probabilities.... | \n", + "True | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{'score_column': {'type': 'str', 'default': 'score'}, 'n_bins': {'type': 'int', 'default': 10}} | \n", + "['visualization', 'credit_risk', 'calibration'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.sklearn.SilhouettePlot | \n", + "Silhouette Plot | \n", + "Calculates and visualizes Silhouette Score, assessing the degree of data point suitability to its cluster in ML... | \n", + "True | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.TrainingTestDegradation | \n", + "Training Test Degradation | \n", + "Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'max_threshold': {'type': 'float', 'default': 0.1}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.VMeasure | \n", + "V Measure | \n", + "Evaluates homogeneity and completeness of a clustering model using the V Measure Score.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering'] | \n", + "
| validmind.model_validation.sklearn.WeakspotsDiagnosis | \n", + "Weakspots Diagnosis | \n", + "Identifies and visualizes weak spots in a machine learning model's performance across various sections of the... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'features_columns': {'type': None, 'default': None}, 'metrics': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_diagnosis', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.CalibrationCurveDrift | \n", + "Calibration Curve Drift | \n", + "Evaluates changes in probability calibration between reference and monitoring datasets.... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ClassDiscriminationDrift | \n", + "Class Discrimination Drift | \n", + "Compares classification discrimination metrics between reference and monitoring datasets.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ClassificationAccuracyDrift | \n", + "Classification Accuracy Drift | \n", + "Compares classification accuracy metrics between reference and monitoring datasets.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ConfusionMatrixDrift | \n", + "Confusion Matrix Drift | \n", + "Compares confusion matrix metrics between reference and monitoring datasets.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ROCCurveDrift | \n", + "ROC Curve Drift | \n", + "Compares ROC curves between reference and monitoring datasets.... | \n", + "True | \n", + "False | \n", + "['datasets', 'model'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| ID | \n", - "Name | \n", - "Description | \n", - "Has Figure | \n", - "Has Table | \n", - "Required Inputs | \n", - "Params | \n", - "Tags | \n", - "Tasks | \n", - "
|---|---|---|---|---|---|---|---|---|
| validmind.model_validation.RegressionResidualsPlot | \n", - "Regression Residuals Plot | \n", - "Evaluates regression model performance using residual distribution and actual vs. predicted plots.... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{'bin_size': {'type': 'float', 'default': 0.1}} | \n", - "['model_performance', 'visualization'] | \n", - "['regression'] | \n", - "
| validmind.model_validation.sklearn.ConfusionMatrix | \n", - "Confusion Matrix | \n", - "Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'threshold': {'type': 'float', 'default': 0.5}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.PrecisionRecallCurve | \n", - "Precision Recall Curve | \n", - "Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ROCCurve | \n", - "ROC Curve | \n", - "Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.TrainingTestDegradation | \n", - "Training Test Degradation | \n", - "Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'max_threshold': {'type': 'float', 'default': 0.1}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.CalibrationCurveDrift | \n", - "Calibration Curve Drift | \n", - "Evaluates changes in probability calibration between reference and monitoring datasets.... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ROCCurveDrift | \n", - "ROC Curve Drift | \n", - "Compares ROC curves between reference and monitoring datasets.... | \n", - "True | \n", - "False | \n", - "['datasets', 'model'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| ID | \n", + "Name | \n", + "Description | \n", + "Has Figure | \n", + "Has Table | \n", + "Required Inputs | \n", + "Params | \n", + "Tags | \n", + "Tasks | \n", + "
|---|---|---|---|---|---|---|---|---|
| validmind.data_validation.BivariateScatterPlots | \n", + "Bivariate Scatter Plots | \n", + "Generates bivariate scatterplots to visually inspect relationships between pairs of numerical predictor variables... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'numerical_data', 'visualization'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.ChiSquaredFeaturesTable | \n", + "Chi Squared Features Table | \n", + "Assesses the statistical association between categorical features and a target variable using the Chi-Squared test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'p_threshold': {'type': '_empty', 'default': 0.05}} | \n", + "['tabular_data', 'categorical_data', 'statistical_test'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.ClassImbalance | \n", + "Class Imbalance | \n", + "Evaluates and quantifies class distribution imbalance in a dataset used by a machine learning model.... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'min_percent_threshold': {'type': 'int', 'default': 10}} | \n", + "['tabular_data', 'binary_classification', 'multiclass_classification', 'data_quality'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.DatasetDescription | \n", + "Dataset Description | \n", + "Provides comprehensive analysis and statistical summaries of each column in a machine learning model's dataset.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'time_series_data', 'text_data'] | \n", + "['classification', 'regression', 'text_classification', 'text_summarization'] | \n", + "
| validmind.data_validation.DatasetSplit | \n", + "Dataset Split | \n", + "Evaluates and visualizes the distribution proportions among training, testing, and validation datasets of an ML... | \n", + "False | \n", + "True | \n", + "['datasets'] | \n", + "{} | \n", + "['tabular_data', 'time_series_data', 'text_data'] | \n", + "['classification', 'regression', 'text_classification', 'text_summarization'] | \n", + "
| validmind.data_validation.DescriptiveStatistics | \n", + "Descriptive Statistics | \n", + "Performs a detailed descriptive statistical analysis of both numerical and categorical data within a model's... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'time_series_data', 'data_quality'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.Duplicates | \n", + "Duplicates | \n", + "Tests dataset for duplicate entries, ensuring model reliability via data quality verification.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'min_threshold': {'type': '_empty', 'default': 1}} | \n", + "['tabular_data', 'data_quality', 'text_data'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.FeatureTargetCorrelationPlot | \n", + "Feature Target Correlation Plot | \n", + "Visualizes the correlation between input features and the model's target output in a color-coded horizontal bar... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'fig_height': {'type': '_empty', 'default': 600}} | \n", + "['tabular_data', 'visualization', 'correlation'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.HighCardinality | \n", + "High Cardinality | \n", + "Assesses the number of unique values in categorical columns to detect high cardinality and potential overfitting.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'num_threshold': {'type': 'int', 'default': 100}, 'percent_threshold': {'type': 'float', 'default': 0.1}, 'threshold_type': {'type': 'str', 'default': 'percent'}} | \n", + "['tabular_data', 'data_quality', 'categorical_data'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.HighPearsonCorrelation | \n", + "High Pearson Correlation | \n", + "Identifies highly correlated feature pairs in a dataset suggesting feature redundancy or multicollinearity.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'max_threshold': {'type': 'float', 'default': 0.3}, 'top_n_correlations': {'type': 'int', 'default': 10}, 'feature_columns': {'type': 'list', 'default': None}} | \n", + "['tabular_data', 'data_quality', 'correlation'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.IQROutliersBarPlot | \n", + "IQR Outliers Bar Plot | \n", + "Visualizes outlier distribution across percentiles in numerical data using the Interquartile Range (IQR) method.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'threshold': {'type': 'float', 'default': 1.5}, 'fig_width': {'type': 'int', 'default': 800}} | \n", + "['tabular_data', 'visualization', 'numerical_data'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.IQROutliersTable | \n", + "IQR Outliers Table | \n", + "Determines and summarizes outliers in numerical features using the Interquartile Range method.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'threshold': {'type': 'float', 'default': 1.5}} | \n", + "['tabular_data', 'numerical_data'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.IsolationForestOutliers | \n", + "Isolation Forest Outliers | \n", + "Detects outliers in a dataset using the Isolation Forest algorithm and visualizes results through scatter plots.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'random_state': {'type': 'int', 'default': 0}, 'contamination': {'type': 'float', 'default': 0.1}, 'feature_columns': {'type': 'list', 'default': None}} | \n", + "['tabular_data', 'anomaly_detection'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.JarqueBera | \n", + "Jarque Bera | \n", + "Assesses normality of dataset features in an ML model using the Jarque-Bera test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.MissingValues | \n", + "Missing Values | \n", + "Evaluates dataset quality by ensuring missing value ratio across all features does not exceed a set threshold.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'min_threshold': {'type': 'int', 'default': 1}} | \n", + "['tabular_data', 'data_quality'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.MissingValuesBarPlot | \n", + "Missing Values Bar Plot | \n", + "Assesses the percentage and distribution of missing values in the dataset via a bar plot, with emphasis on... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'threshold': {'type': 'int', 'default': 80}, 'fig_height': {'type': 'int', 'default': 600}} | \n", + "['tabular_data', 'data_quality', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.MutualInformation | \n", + "Mutual Information | \n", + "Calculates mutual information scores between features and target variable to evaluate feature relevance.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'min_threshold': {'type': 'float', 'default': 0.01}, 'task': {'type': 'str', 'default': 'classification'}} | \n", + "['feature_selection', 'data_analysis'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.PearsonCorrelationMatrix | \n", + "Pearson Correlation Matrix | \n", + "Evaluates linear dependency between numerical variables in a dataset via a Pearson Correlation coefficient heat map.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'numerical_data', 'correlation'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.ProtectedClassesDescription | \n", + "Protected Classes Description | \n", + "Visualizes the distribution of protected classes in the dataset relative to the target variable... | \n", + "True | \n", + "True | \n", + "['dataset'] | \n", + "{'protected_classes': {'type': '_empty', 'default': None}} | \n", + "['bias_and_fairness', 'descriptive_statistics'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.RunsTest | \n", + "Runs Test | \n", + "Executes Runs Test on ML model to detect non-random patterns in output data sequence.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'statistical_test', 'statsmodels'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.ScatterPlot | \n", + "Scatter Plot | \n", + "Assesses visual relationships, patterns, and outliers among features in a dataset through scatter plot matrices.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.ScoreBandDefaultRates | \n", + "Score Band Default Rates | \n", + "Analyzes default rates and population distribution across credit score bands.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'score_column': {'type': 'str', 'default': 'score'}, 'score_bands': {'type': 'list', 'default': None}} | \n", + "['visualization', 'credit_risk', 'scorecard'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.ShapiroWilk | \n", + "Shapiro Wilk | \n", + "Evaluates feature-wise normality of training data using the Shapiro-Wilk test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'data_distribution', 'statistical_test'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.Skewness | \n", + "Skewness | \n", + "Evaluates the skewness of numerical data in a dataset to check against a defined threshold, aiming to ensure data... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'max_threshold': {'type': '_empty', 'default': 1}} | \n", + "['data_quality', 'tabular_data'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.TabularCategoricalBarPlots | \n", + "Tabular Categorical Bar Plots | \n", + "Generates and visualizes bar plots for each category in categorical features to evaluate the dataset's composition.... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.TabularDateTimeHistograms | \n", + "Tabular Date Time Histograms | \n", + "Generates histograms to provide graphical insight into the distribution of time intervals in a model's datetime... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['time_series_data', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.TabularDescriptionTables | \n", + "Tabular Description Tables | \n", + "Summarizes key descriptive statistics for numerical, categorical, and datetime variables in a dataset.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.TabularNumericalHistograms | \n", + "Tabular Numerical Histograms | \n", + "Generates histograms for each numerical feature in a dataset to provide visual insights into data distribution and... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.data_validation.TargetRateBarPlots | \n", + "Target Rate Bar Plots | \n", + "Generates bar plots visualizing the default rates of categorical features for a classification machine learning... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'visualization', 'categorical_data'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.TooManyZeroValues | \n", + "Too Many Zero Values | \n", + "Identifies numerical columns in a dataset that contain an excessive number of zero values, defined by a threshold... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'max_percent_threshold': {'type': 'float', 'default': 0.03}} | \n", + "['tabular_data'] | \n", + "['regression', 'classification'] | \n", + "
| validmind.data_validation.UniqueRows | \n", + "Unique Rows | \n", + "Verifies the diversity of the dataset by ensuring that the count of unique rows exceeds a prescribed threshold.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'min_percent_threshold': {'type': 'float', 'default': 1}} | \n", + "['tabular_data'] | \n", + "['regression', 'classification'] | \n", + "
| validmind.data_validation.WOEBinPlots | \n", + "WOE Bin Plots | \n", + "Generates visualizations of Weight of Evidence (WoE) and Information Value (IV) for understanding predictive power... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'breaks_adj': {'type': 'list', 'default': None}, 'fig_height': {'type': 'int', 'default': 600}, 'fig_width': {'type': 'int', 'default': 500}} | \n", + "['tabular_data', 'visualization', 'categorical_data'] | \n", + "['classification'] | \n", + "
| validmind.data_validation.WOEBinTable | \n", + "WOE Bin Table | \n", + "Assesses the Weight of Evidence (WoE) and Information Value (IV) of each feature to evaluate its predictive power... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{'breaks_adj': {'type': 'list', 'default': None}} | \n", + "['tabular_data', 'categorical_data'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.FeaturesAUC | \n", + "Features AUC | \n", + "Evaluates the discriminatory power of each individual feature within a binary classification model by calculating... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'fontsize': {'type': 'int', 'default': 12}, 'figure_height': {'type': 'int', 'default': 500}} | \n", + "['feature_importance', 'AUC', 'visualization'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.sklearn.CalibrationCurve | \n", + "Calibration Curve | \n", + "Evaluates the calibration of probability estimates by comparing predicted probabilities against observed... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'n_bins': {'type': 'int', 'default': 10}} | \n", + "['sklearn', 'model_performance', 'classification'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.sklearn.ClassifierPerformance | \n", + "Classifier Performance | \n", + "Evaluates performance of binary or multiclass classification models using precision, recall, F1-Score, accuracy,... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'average': {'type': 'str', 'default': 'macro'}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ClassifierThresholdOptimization | \n", + "Classifier Threshold Optimization | \n", + "Analyzes and visualizes different threshold optimization methods for binary classification models.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'methods': {'type': None, 'default': None}, 'target_recall': {'type': None, 'default': None}} | \n", + "['model_validation', 'threshold_optimization', 'classification_metrics'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.sklearn.ConfusionMatrix | \n", + "Confusion Matrix | \n", + "Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'threshold': {'type': 'float', 'default': 0.5}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.HyperParametersTuning | \n", + "Hyper Parameters Tuning | \n", + "Performs exhaustive grid search over specified parameter ranges to find optimal model configurations... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{'param_grid': {'type': 'dict', 'default': None}, 'scoring': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}, 'fit_params': {'type': 'dict', 'default': None}} | \n", + "['sklearn', 'model_performance'] | \n", + "['clustering', 'classification'] | \n", + "
| validmind.model_validation.sklearn.MinimumAccuracy | \n", + "Minimum Accuracy | \n", + "Checks if the model's prediction accuracy meets or surpasses a specified threshold.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'min_threshold': {'type': 'float', 'default': 0.7}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.MinimumF1Score | \n", + "Minimum F1 Score | \n", + "Assesses if the model's F1 score on the validation set meets a predefined minimum threshold, ensuring balanced... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'min_threshold': {'type': 'float', 'default': 0.5}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.MinimumROCAUCScore | \n", + "Minimum ROCAUC Score | \n", + "Validates model by checking if the ROC AUC score meets or surpasses a specified threshold.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{'min_threshold': {'type': 'float', 'default': 0.5}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ModelParameters | \n", + "Model Parameters | \n", + "Extracts and displays model parameters in a structured format for transparency and reproducibility.... | \n", + "False | \n", + "True | \n", + "['model'] | \n", + "{'model_params': {'type': None, 'default': None}} | \n", + "['model_training', 'metadata'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.sklearn.ModelsPerformanceComparison | \n", + "Models Performance Comparison | \n", + "Evaluates and compares the performance of multiple Machine Learning models using various metrics like accuracy,... | \n", + "False | \n", + "True | \n", + "['dataset', 'models'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'model_comparison'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.OverfitDiagnosis | \n", + "Overfit Diagnosis | \n", + "Assesses potential overfitting in a model's predictions, identifying regions where performance between training and... | \n", + "True | \n", + "True | \n", + "['model', 'datasets'] | \n", + "{'metric': {'type': 'str', 'default': None}, 'cut_off_threshold': {'type': 'float', 'default': 0.04}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'linear_regression', 'model_diagnosis'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.sklearn.PermutationFeatureImportance | \n", + "Permutation Feature Importance | \n", + "Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'fontsize': {'type': None, 'default': None}, 'figure_height': {'type': None, 'default': None}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.PopulationStabilityIndex | \n", + "Population Stability Index | \n", + "Assesses the Population Stability Index (PSI) to quantify the stability of an ML model's predictions across... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'num_bins': {'type': 'int', 'default': 10}, 'mode': {'type': 'str', 'default': 'fixed'}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.PrecisionRecallCurve | \n", + "Precision Recall Curve | \n", + "Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ROCCurve | \n", + "ROC Curve | \n", + "Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.RegressionErrors | \n", + "Regression Errors | \n", + "Assesses the performance and error distribution of a regression model using various error metrics.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'model_performance'] | \n", + "['regression', 'classification'] | \n", + "
| validmind.model_validation.sklearn.RobustnessDiagnosis | \n", + "Robustness Diagnosis | \n", + "Assesses the robustness of a machine learning model by evaluating performance decay under noisy conditions.... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'metric': {'type': 'str', 'default': None}, 'scaling_factor_std_dev_list': {'type': None, 'default': [0.1, 0.2, 0.3, 0.4, 0.5]}, 'performance_decay_threshold': {'type': 'float', 'default': 0.05}} | \n", + "['sklearn', 'model_diagnosis', 'visualization'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.sklearn.SHAPGlobalImportance | \n", + "SHAP Global Importance | \n", + "Evaluates and visualizes global feature importance using SHAP values for model explanation and risk identification.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{'kernel_explainer_samples': {'type': 'int', 'default': 10}, 'tree_or_linear_explainer_samples': {'type': 'int', 'default': 200}, 'class_of_interest': {'type': None, 'default': None}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'feature_importance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ScoreProbabilityAlignment | \n", + "Score Probability Alignment | \n", + "Analyzes the alignment between credit scores and predicted probabilities.... | \n", + "True | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{'score_column': {'type': 'str', 'default': 'score'}, 'n_bins': {'type': 'int', 'default': 10}} | \n", + "['visualization', 'credit_risk', 'calibration'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.sklearn.TrainingTestDegradation | \n", + "Training Test Degradation | \n", + "Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'max_threshold': {'type': 'float', 'default': 0.1}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.WeakspotsDiagnosis | \n", + "Weakspots Diagnosis | \n", + "Identifies and visualizes weak spots in a machine learning model's performance across various sections of the... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'features_columns': {'type': None, 'default': None}, 'metrics': {'type': None, 'default': None}, 'thresholds': {'type': None, 'default': None}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_diagnosis', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.statsmodels.CumulativePredictionProbabilities | \n", + "Cumulative Prediction Probabilities | \n", + "Visualizes cumulative probabilities of positive and negative classes for both training and testing in classification models.... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'title': {'type': 'str', 'default': 'Cumulative Probabilities'}} | \n", + "['visualization', 'credit_risk'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.statsmodels.GINITable | \n", + "GINI Table | \n", + "Evaluates classification model performance using AUC, GINI, and KS metrics for training and test datasets.... | \n", + "False | \n", + "True | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['model_performance'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.statsmodels.KolmogorovSmirnov | \n", + "Kolmogorov Smirnov | \n", + "Assesses whether each feature in the dataset aligns with a normal distribution using the Kolmogorov-Smirnov test.... | \n", + "False | \n", + "True | \n", + "['model', 'dataset'] | \n", + "{'dist': {'type': 'str', 'default': 'norm'}} | \n", + "['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.statsmodels.Lilliefors | \n", + "Lilliefors | \n", + "Assesses the normality of feature distributions in an ML model's training dataset using the Lilliefors test.... | \n", + "False | \n", + "True | \n", + "['dataset'] | \n", + "{} | \n", + "['tabular_data', 'data_distribution', 'statistical_test', 'statsmodels'] | \n", + "['classification', 'regression'] | \n", + "
| validmind.model_validation.statsmodels.PredictionProbabilitiesHistogram | \n", + "Prediction Probabilities Histogram | \n", + "Assesses the predictive probability distribution for binary classification to evaluate model performance and... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'title': {'type': 'str', 'default': 'Histogram of Predictive Probabilities'}} | \n", + "['visualization', 'credit_risk'] | \n", + "['classification'] | \n", + "
| validmind.model_validation.statsmodels.ScorecardHistogram | \n", + "Scorecard Histogram | \n", + "The Scorecard Histogram test evaluates the distribution of credit scores between default and non-default instances,... | \n", + "True | \n", + "False | \n", + "['dataset'] | \n", + "{'title': {'type': 'str', 'default': 'Histogram of Scores'}, 'score_column': {'type': 'str', 'default': 'score'}} | \n", + "['visualization', 'credit_risk', 'logistic_regression'] | \n", + "['classification'] | \n", + "
| validmind.ongoing_monitoring.CalibrationCurveDrift | \n", + "Calibration Curve Drift | \n", + "Evaluates changes in probability calibration between reference and monitoring datasets.... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ClassDiscriminationDrift | \n", + "Class Discrimination Drift | \n", + "Compares classification discrimination metrics between reference and monitoring datasets.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ClassImbalanceDrift | \n", + "Class Imbalance Drift | \n", + "Evaluates drift in class distribution between reference and monitoring datasets.... | \n", + "True | \n", + "True | \n", + "['datasets'] | \n", + "{'drift_pct_threshold': {'type': 'float', 'default': 5.0}, 'title': {'type': 'str', 'default': 'Class Distribution Drift'}} | \n", + "['tabular_data', 'binary_classification', 'multiclass_classification'] | \n", + "['classification'] | \n", + "
| validmind.ongoing_monitoring.ClassificationAccuracyDrift | \n", + "Classification Accuracy Drift | \n", + "Compares classification accuracy metrics between reference and monitoring datasets.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ConfusionMatrixDrift | \n", + "Confusion Matrix Drift | \n", + "Compares confusion matrix metrics between reference and monitoring datasets.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'drift_pct_threshold': {'type': '_empty', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.CumulativePredictionProbabilitiesDrift | \n", + "Cumulative Prediction Probabilities Drift | \n", + "Compares cumulative prediction probability distributions between reference and monitoring datasets.... | \n", + "True | \n", + "False | \n", + "['datasets', 'model'] | \n", + "{} | \n", + "['visualization', 'credit_risk'] | \n", + "['classification'] | \n", + "
| validmind.ongoing_monitoring.PredictionProbabilitiesHistogramDrift | \n", + "Prediction Probabilities Histogram Drift | \n", + "Compares prediction probability distributions between reference and monitoring datasets.... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'title': {'type': '_empty', 'default': 'Prediction Probabilities Histogram Drift'}, 'drift_pct_threshold': {'type': 'float', 'default': 20.0}} | \n", + "['visualization', 'credit_risk'] | \n", + "['classification'] | \n", + "
| validmind.ongoing_monitoring.ROCCurveDrift | \n", + "ROC Curve Drift | \n", + "Compares ROC curves between reference and monitoring datasets.... | \n", + "True | \n", + "False | \n", + "['datasets', 'model'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ScoreBandsDrift | \n", + "Score Bands Drift | \n", + "Analyzes drift in population distribution and default rates across score bands.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'score_column': {'type': 'str', 'default': 'score'}, 'score_bands': {'type': 'list', 'default': None}, 'drift_threshold': {'type': 'float', 'default': 20.0}} | \n", + "['visualization', 'credit_risk', 'scorecard'] | \n", + "['classification'] | \n", + "
| validmind.ongoing_monitoring.ScorecardHistogramDrift | \n", + "Scorecard Histogram Drift | \n", + "Compares score distributions between reference and monitoring datasets for each class.... | \n", + "True | \n", + "True | \n", + "['datasets'] | \n", + "{'score_column': {'type': 'str', 'default': 'score'}, 'title': {'type': 'str', 'default': 'Scorecard Histogram Drift'}, 'drift_pct_threshold': {'type': 'float', 'default': 20.0}} | \n", + "['visualization', 'credit_risk', 'logistic_regression'] | \n", + "['classification'] | \n", + "
| validmind.unit_metrics.classification.Accuracy | \n", + "Accuracy | \n", + "Calculates the accuracy of a model | \n", + "False | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{} | \n", + "['classification'] | \n", + "['classification'] | \n", + "
| validmind.unit_metrics.classification.F1 | \n", + "F1 | \n", + "Calculates the F1 score for a classification model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['classification'] | \n", + "['classification'] | \n", + "
| validmind.unit_metrics.classification.Precision | \n", + "Precision | \n", + "Calculates the precision for a classification model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['classification'] | \n", + "['classification'] | \n", + "
| validmind.unit_metrics.classification.ROC_AUC | \n", + "ROC AUC | \n", + "Calculates the ROC AUC for a classification model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['classification'] | \n", + "['classification'] | \n", + "
| validmind.unit_metrics.classification.Recall | \n", + "Recall | \n", + "Calculates the recall for a classification model. | \n", + "False | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['classification'] | \n", + "['classification'] | \n", + "
| ID | \n", - "Name | \n", - "Description | \n", - "Has Figure | \n", - "Has Table | \n", - "Required Inputs | \n", - "Params | \n", - "Tags | \n", - "Tasks | \n", - "
|---|---|---|---|---|---|---|---|---|
| validmind.model_validation.sklearn.ConfusionMatrix | \n", - "Confusion Matrix | \n", - "Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... | \n", - "True | \n", - "False | \n", - "['dataset', 'model'] | \n", - "{'threshold': {'type': 'float', 'default': 0.5}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.PrecisionRecallCurve | \n", - "Precision Recall Curve | \n", - "Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.ROCCurve | \n", - "ROC Curve | \n", - "Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... | \n", - "True | \n", - "False | \n", - "['model', 'dataset'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.model_validation.sklearn.TrainingTestDegradation | \n", - "Training Test Degradation | \n", - "Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... | \n", - "False | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'max_threshold': {'type': 'float', 'default': 0.1}} | \n", - "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.CalibrationCurveDrift | \n", - "Calibration Curve Drift | \n", - "Evaluates changes in probability calibration between reference and monitoring datasets.... | \n", - "True | \n", - "True | \n", - "['datasets', 'model'] | \n", - "{'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| validmind.ongoing_monitoring.ROCCurveDrift | \n", - "ROC Curve Drift | \n", - "Compares ROC curves between reference and monitoring datasets.... | \n", - "True | \n", - "False | \n", - "['datasets', 'model'] | \n", - "{} | \n", - "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", - "['classification', 'text_classification'] | \n", - "
| ID | \n", + "Name | \n", + "Description | \n", + "Has Figure | \n", + "Has Table | \n", + "Required Inputs | \n", + "Params | \n", + "Tags | \n", + "Tasks | \n", + "
|---|---|---|---|---|---|---|---|---|
| validmind.model_validation.RegressionResidualsPlot | \n", + "Regression Residuals Plot | \n", + "Evaluates regression model performance using residual distribution and actual vs. predicted plots.... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{'bin_size': {'type': 'float', 'default': 0.1}} | \n", + "['model_performance', 'visualization'] | \n", + "['regression'] | \n", + "
| validmind.model_validation.sklearn.ConfusionMatrix | \n", + "Confusion Matrix | \n", + "Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'threshold': {'type': 'float', 'default': 0.5}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.PrecisionRecallCurve | \n", + "Precision Recall Curve | \n", + "Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ROCCurve | \n", + "ROC Curve | \n", + "Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.TrainingTestDegradation | \n", + "Training Test Degradation | \n", + "Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'max_threshold': {'type': 'float', 'default': 0.1}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.CalibrationCurveDrift | \n", + "Calibration Curve Drift | \n", + "Evaluates changes in probability calibration between reference and monitoring datasets.... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ROCCurveDrift | \n", + "ROC Curve Drift | \n", + "Compares ROC curves between reference and monitoring datasets.... | \n", + "True | \n", + "False | \n", + "['datasets', 'model'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| ID | \n", + "Name | \n", + "Description | \n", + "Has Figure | \n", + "Has Table | \n", + "Required Inputs | \n", + "Params | \n", + "Tags | \n", + "Tasks | \n", + "
|---|---|---|---|---|---|---|---|---|
| validmind.model_validation.sklearn.ConfusionMatrix | \n", + "Confusion Matrix | \n", + "Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... | \n", + "True | \n", + "False | \n", + "['dataset', 'model'] | \n", + "{'threshold': {'type': 'float', 'default': 0.5}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.PrecisionRecallCurve | \n", + "Precision Recall Curve | \n", + "Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.ROCCurve | \n", + "ROC Curve | \n", + "Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... | \n", + "True | \n", + "False | \n", + "['model', 'dataset'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.model_validation.sklearn.TrainingTestDegradation | \n", + "Training Test Degradation | \n", + "Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... | \n", + "False | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'max_threshold': {'type': 'float', 'default': 0.1}} | \n", + "['sklearn', 'binary_classification', 'multiclass_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.CalibrationCurveDrift | \n", + "Calibration Curve Drift | \n", + "Evaluates changes in probability calibration between reference and monitoring datasets.... | \n", + "True | \n", + "True | \n", + "['datasets', 'model'] | \n", + "{'n_bins': {'type': 'int', 'default': 10}, 'drift_pct_threshold': {'type': 'float', 'default': 20}} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "
| validmind.ongoing_monitoring.ROCCurveDrift | \n", + "ROC Curve Drift | \n", + "Compares ROC curves between reference and monitoring datasets.... | \n", + "True | \n", + "False | \n", + "['datasets', 'model'] | \n", + "{} | \n", + "['sklearn', 'binary_classification', 'model_performance', 'visualization'] | \n", + "['classification', 'text_classification'] | \n", + "