-
-
Notifications
You must be signed in to change notification settings - Fork 11.7k
Description
Your current environment
The output of python collect_env.py
Collecting environment information...
==============================
System Info
==============================
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04.2) 11.4.0
Clang version : Could not collect
CMake version : Could not collect
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.9.0+cu129
Is debug build : False
CUDA used to build PyTorch : 12.9
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.12 (main, Oct 10 2025, 08:52:57) [GCC 11.4.0] (64-bit runtime)
Python platform : Linux-5.15.0-161-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.9.86
CUDA_MODULE_LOADING set to :
GPU models and configuration : GPU 0: NVIDIA RTX PRO 6000 Blackwell Server Edition
Nvidia driver version : 580.95.05
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 30
On-line CPU(s) list: 0-29
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9555 64-Core Processor
CPU family: 26
Model: 2
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 30
Stepping: 1
BogoMIPS: 6399.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean flushbyasid pausefilter pfthreshold v_vmsave_vmload vgif avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid movdiri movdir64b fsrm avx512_vp2intersect flush_l1d arch_capabilities
Virtualization: AMD-V
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 1.9 MiB (30 instances)
L1i cache: 1.9 MiB (30 instances)
L2 cache: 15 MiB (30 instances)
L3 cache: 480 MiB (30 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-29
Vulnerability Gather data sampling: Not affected
Vulnerability Indirect target selection: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP disabled; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsa: Not affected
Vulnerability Tsx async abort: Not affected
Vulnerability Vmscape: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.5.3
[pip3] numpy==2.2.0
[pip3] nvidia-cublas-cu12==12.9.1.4
[pip3] nvidia-cuda-cupti-cu12==12.9.79
[pip3] nvidia-cuda-nvrtc-cu12==12.9.86
[pip3] nvidia-cuda-runtime-cu12==12.9.79
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.16.0
[pip3] nvidia-cufft-cu12==11.4.1.4
[pip3] nvidia-cufile-cu12==1.14.1.1
[pip3] nvidia-curand-cu12==10.3.10.19
[pip3] nvidia-cusolver-cu12==11.7.5.82
[pip3] nvidia-cusparse-cu12==12.5.10.65
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-cutlass-dsl==4.3.1
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu12==2.27.5
[pip3] nvidia-nvjitlink-cu12==12.9.86
[pip3] nvidia-nvshmem-cu12==3.3.20
[pip3] nvidia-nvtx-cu12==12.9.79
[pip3] pyzmq==27.1.0
[pip3] torch==2.9.0+cu129
[pip3] torchaudio==2.9.0+cu129
[pip3] torchvision==0.24.0+cu129
[pip3] transformers==4.57.3
[pip3] triton==3.5.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.11.2.dev347+gc7ba1f6bc (git sha: c7ba1f6bc)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-29 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=void
NVIDIA_REQUIRE_CUDA=cuda>=12.9 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551 brand=unknown,driver>=560,driver<561 brand=grid,driver>=560,driver<561 brand=tesla,driver>=560,driver<561 brand=nvidia,driver>=560,driver<561 brand=quadro,driver>=560,driver<561 brand=quadrortx,driver>=560,driver<561 brand=nvidiartx,driver>=560,driver<561 brand=vapps,driver>=560,driver<561 brand=vpc,driver>=560,driver<561 brand=vcs,driver>=560,driver<561 brand=vws,driver>=560,driver<561 brand=cloudgaming,driver>=560,driver<561 brand=unknown,driver>=565,driver<566 brand=grid,driver>=565,driver<566 brand=tesla,driver>=565,driver<566 brand=nvidia,driver>=565,driver<566 brand=quadro,driver>=565,driver<566 brand=quadrortx,driver>=565,driver<566 brand=nvidiartx,driver>=565,driver<566 brand=vapps,driver>=565,driver<566 brand=vpc,driver>=565,driver<566 brand=vcs,driver>=565,driver<566 brand=vws,driver>=565,driver<566 brand=cloudgaming,driver>=565,driver<566 brand=unknown,driver>=570,driver<571 brand=grid,driver>=570,driver<571 brand=tesla,driver>=570,driver<571 brand=nvidia,driver>=570,driver<571 brand=quadro,driver>=570,driver<571 brand=quadrortx,driver>=570,driver<571 brand=nvidiartx,driver>=570,driver<571 brand=vapps,driver>=570,driver<571 brand=vpc,driver>=570,driver<571 brand=vcs,driver>=570,driver<571 brand=vws,driver>=570,driver<571 brand=cloudgaming,driver>=570,driver<571
NVIDIA_DRIVER_CAPABILITIES=compute,utility
VLLM_USAGE_SOURCE=production-docker-image
CUDA_VERSION=12.9.1
LD_LIBRARY_PATH=/usr/local/nvidia/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64
NVIDIA_CTK_LIBCUDA_DIR=/usr/lib/x86_64-linux-gnu
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
🐛 Describe the bug
When serving an NVFP4-quantized Qwen3-VL model on a Blackwell GPU using the vllm-openai:nightly image, engine initialization fails during the multimodal encoder profiling step with:
> ValueError: not enough values to unpack (expected 3, got 2)
This happens after weights load successfully. The failure occurs inside the Qwen2.5-VL attention block where it expects a [seq_len, batch_size, hidden_dim] tensor but receives a 2D tensor instead.
This is my command to reproduce the issue:
docker run --runtime nvidia --gpus all --ipc=host -p 8000:8000
-e TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
-v /usr/local/cuda-12.8/targets/x86_64-linux/include:/usr/local/cuda/include:ro
vllm/vllm-openai:nightly
Firworks/Qwen3-VL-32B-Thinking-nvfp4
--dtype auto
--max-model-len 32768
--gpu-memory-utilization 0.9
--limit-mm-per-prompt.video 0
Model downloads and loads successfully.
Failure happens during engine startup, before any client request.
--limit-mm-per-prompt.video 0 is set; I was getting an additional error about the video profiler but I set this to try to get past that. There may be an issue there but if I could at least test text and video on this model that would still be progress.
The actual failure trace is:
File "/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 4277, in profile_run
dummy_encoder_outputs = self.model.embed_multimodal(
File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/models/qwen3_vl.py", line 1503, in embed_multimodal
image_embeddings = self._process_image_input(multimodal_input)
File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/models/qwen3_vl.py", line 1382, in _process_image_input
image_embeds = self.visual(pixel_values, grid_thw=grid_thw)
File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1786, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/models/qwen3_vl.py", line 571, in forward
hidden_states = blk(
File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1786, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/models/qwen2_5_vl.py", line 380, in forward
seq_len, batch_size, _ = x.shape
ValueError: not enough values to unpack (expected 3, got 2)From the error, x.shape is only 2D at this point (likely [N, D]), but the Qwen2.5-VL attention block assumes a 3D [seq_len, batch_size, hidden_dim] layout.
I'd be happy to try any workarounds or patches if anyone has any suggestions of something to try.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.