Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
176 changes: 176 additions & 0 deletions Exercises.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Exercises {

/*
there is an array of positive integers as input of function and another integer for the target value
all the algorithm should do is to find those two integers in array which their multiplication is the target
then it should return an array of their indices
e.g. {1, 2, 3, 4} with target of 8 -> {1, 3}

note: you should return the indices in ascending order and every array's solution is unique
*/
public int[] productIndices(int[] values, int target) {
for (int i = 0; i < values.length; i++) {
for (int j = i + 1; j < values.length; j++) {
if (values[i] * values[j] == target) {
return new int[]{i, j};
}
}
}
return null;
}

/*
given a matrix of random integers, you should do spiral traversal in it
e.g. if the matrix is as shown below:
1 2 3
4 5 6
7 8 9
then the spiral traversal of that is:
{1, 2, 3, 6, 9, 8, 7, 4, 5}

so you should walk in that matrix in a curl and then add the numbers in order you've seen them in a 1D array
*/
public int[] spiralTraversal(int[][] values, int rows, int cols) {
int[] result = new int[rows * cols];
int index = 0;
int top = 0, bottom = rows - 1, left = 0, right = cols - 1;

while (top <= bottom && left <= right) {
for (int i = left; i <= right; i++) {
result[index++] = values[top][i];
}
top++;

for (int i = top; i <= bottom; i++) {
result[index++] = values[i][right];
}
right--;

if (top <= bottom) {
for (int i = right; i >= left; i--) {
result[index++] = values[bottom][i];
}
bottom--;
}

if (left <= right) {
for (int i = bottom; i >= top; i--) {
result[index++] = values[i][left];
}
left++;
}
}

return result;
}

/*
integer partitioning is a combinatorics problem in discreet maths
the problem is to generate sum numbers which their summation is the input number

e.g. 1 -> all partitions of integer 3 are:
3
2, 1
1, 1, 1

e.g. 2 -> for number 4 goes as:
4
3, 1
2, 2
2, 1, 1
1, 1, 1, 1

note: as you can see in examples, we want to generate distinct summations, which means 1, 2 and 2, 1 are no different
you should generate all partitions of the input number and

hint: you can measure the size and order of arrays by finding the pattern of partitions and their number
trust me, that one's fun and easy :)

if you're familiar with lists and arraylists, you can also edit method's body to use them instead of array
*/
public int[][] intPartitions(int n) {
ArrayList<int[]> partitionsList = new ArrayList<>();
int[] p = new int[n];
int k = 0;
p[k] = n;

while (true) {
int[] currentPartition = new int[k + 1];
System.arraycopy(p, 0, currentPartition, 0, k + 1);
partitionsList.add(currentPartition);

int a = 0;
while (k >= 0 && p[k] == 1) {
a += p[k];
k--;
}

if (k < 0) {
int[][] result = new int[partitionsList.size()][];
for (int i = 0; i < partitionsList.size(); i++) {
result[i] = partitionsList.get(i);
}
return result;
}

p[k]--;
a++;

while (a > p[k]) {
p[k + 1] = p[k];
a = a - p[k];
k++;
}

p[k + 1] = a;
k++;
}
}

public static void main(String[] args) {
Scanner c = new Scanner(System.in);
int[] a = new int[4];
for (int i = 0; i < 4; i++) {
a[i] = c.nextInt();
}
int b = c.nextInt();
Exercises e = new Exercises();
int[] indices = e.productIndices(a, b);
if (indices != null) {
for (int i = 0; i < indices.length; i++) {
System.out.print(indices[i] + " ");
}
System.out.println();
} else {
System.out.println("No such pair found.");
}
int rows = c.nextInt();
int cols = c.nextInt();
int[][] m = new int[rows][cols];
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
m[i][j] = c.nextInt();
}
}
int[] s = e.spiralTraversal(m, rows, cols);
for (int i = 0; i < s.length; i++) {
System.out.print(s[i] + " ");
}
System.out.println();

int n = c.nextInt();
int[][] partitions = e.intPartitions(n);
for (int[] partition : partitions) {
for (int i = 0; i < partition.length; i++) {
System.out.print(partition[i] + " ");
}
System.out.println();
}
}
}
// good