Gravitational Wave Detection via Atomic Vapor Cells: A Quantum Simulation and Deep Learning Framework
- Overview
- Key Features
- Project Structure
- Quick Start
- Dataset Generation
- Model Training
- Model Architecture
- Real-time Analysis
- Performance
- Roadmap
- Authors
- License
- Citation
- Contact
- Acknowledgments
FusionWareAlttex is a comprehensive open-source framework for theoretical modeling and simulation-based analysis of ultra-weak space-time perturbations in atomic vapor systems. This project investigates the quantum response of rubidium (Rb) atomic vapor cells to gravitational wave-induced strain perturbations, combining advanced quantum simulation techniques with state-of-the-art deep learning architectures.
The framework provides a complete pipeline from first-principles quantum modeling through synthetic dataset generation to real-time AI-powered signal detection and classification, with optional integration with LIGO/Virgo gravitational wave observatory data.
| Feature | Description |
|---|---|
| 🔬 Quantum Simulation | First-principles modeling of Rb atomic vapor cell dynamics using QuTiP |
| 🧠 Deep Learning | Custom CNN-Transformer architecture for signal/noise classification |
| ⚡ High Performance | Parallel dataset generation, multi-GPU training, mixed precision |
| 📡 Real-time Analysis | LIGO/Virgo integration with live visualization dashboard |
| 🛠️ Hardware Ready | Complete serial protocol for prototype detector calibration |
| 📊 Sensitivity Analysis | Minimum detectable strain: 8.7 × 10⁻²² at SNR = 1 |
FusionWareAlttex/
│
├── 📁 stage1_simulation/ # QUANTUM SIMULATION ENGINE
│ ├── rubidium_cell.py # Rb atomic vapor cell class with Lindblad master equation
│ ├── gw_signal.py # Gravitational wave signal generator (sine, chirp, burst)
│ ├── generate_dataset.py # Single-threaded dataset generation
│ └── generate_dataset_parallel.py # Multi-core parallel dataset generation
│
├── 📁 stage2_ai_model/ # DEEP LEARNING PIPELINE
│ ├── model.py # CNN-Transformer architecture (8.2M parameters)
│ ├── train.py # Standard training script
│ ├── train_optimized.py # Optimized training with AMP, compile, multi-GPU
│ └── checkpoints/ # Pre-trained models (best_model.pth, final_model.pth)
│
├── 📁 stage3_detector/ # HARDWARE INTERFACE
│ ├── detector_interface.py # Serial protocol for prototype detector
│ └── calibrate.py # Piezoelectric calibration pipeline
│
├── 📁 stage4_integration/ # REAL-TIME ANALYSIS SYSTEM
│ ├── realtime_analyzer.py # Multi-threaded inference engine
│ ├── ligo_client.py # GraceDB API client for LIGO/Virgo cross-reference
│ ├── visualizer.py # Real-time matplotlib visualization
│ └── main.py # Application entry point
│
├── 📁 config/ # CONFIGURATION
│ └── config.yaml # Global parameters (simulation, model, detector)
│
├── 📁 utils/ # UTILITY MODULES
│ ├── config_loader.py # YAML configuration parser
│ └── data_utils.py # HDF5 I/O operations
│
├── 📁 docs/ # DOCUMENTATION
│ ├── QUICKSTART.md # Quick start guide
│ ├── SYSTEM_REQUIREMENTS.md # Hardware/software requirements
│ └── PERFORMANCE_GUIDE.md # Optimization guide
│
├── 📁 tests/ # UNIT TESTS
├── 📁 scripts/ # AUXILIARY SCRIPTS
├── requirements.txt # Python dependencies
├── LICENSE # MIT License
└── README.md # This file
# System requirements
Python 3.8+
CUDA 11.0+ (optional, for GPU acceleration)
8GB+ RAM (16GB+ recommended)
4+ CPU cores (8+ recommended)# 1. Clone repository
git clone https://github.com/AehoraDeSum/FusionWareAlttex.git
cd FusionWareAlttex
# 2. Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate # Linux/Mac
# venv\Scripts\activate # Windows
# 3. Install dependencies
pip install --upgrade pip
pip install -r requirements.txt
# 4. Verify installation
python -c "import qutip; import torch; print(f'QuTiP: {qutip.__version__}'); print(f'PyTorch: {torch.__version__}')"python stage1_simulation/generate_dataset.py \
--num_samples 100 \
--time_steps 500 \
--dt 0.001 \
--output data/test_dataset.h5python stage1_simulation/generate_dataset_parallel.py \
--num_samples 10000 \
--time_steps 1000 \
--dt 0.001 \
--workers 8 \
--output data/quantum_response.h5Dataset Specifications:
| Parameter | Value |
|---|---|
| Samples | 10,000 (50% signal, 50% noise) |
| Time steps | 1,000 per sample |
| Duration | 1 second |
| Frequency range | 10 - 1000 Hz |
| Strain amplitude | 1e-21 - 1e-19 |
| Noise level | 1e-22 |
python stage2_ai_model/train.py \
--data data/quantum_response.h5 \
--epochs 50 \
--batch_size 32 \
--lr 0.001 \
--checkpoint_dir stage2_ai_model/checkpointspython stage2_ai_model/train_optimized.py \
--data data/quantum_response.h5 \
--epochs 50 \
--batch_size 64 \
--workers 8 \
--lr 0.001 \
--use_amp \
--use_compile \
--checkpoint_dir stage2_ai_model/checkpoints┌─────────────────────────────────────────────────────────┐
│ GWDetectorModel │
├─────────────────────────────────────────────────────────┤
│ │
│ Input: [batch_size, 1, 1000] │
│ (Normalized time series) │
│ │
│ ▼ │
│ ┌─────────────────────┐ │
│ │ CNN Encoder │ 3x Conv1D layers │
│ │ [64, 128, 256] │ Kernel sizes: [7, 5, 3] │
│ └─────────┬───────────┘ │
│ ▼ │
│ ┌─────────────────────┐ │
│ │ Linear Projection │ 256 → 512 │
│ └─────────┬───────────┘ │
│ ▼ │
│ ┌─────────────────────┐ │
│ │ Positional Encoding │ Sequence position info │
│ └─────────┬───────────┘ │
│ ▼ │
│ ┌─────────────────────┐ │
│ │ Transformer Encoder │ 4 layers, 8 heads │
│ │ d_model=512 │ FFN=2048, Dropout=0.1 │
│ └─────────┬───────────┘ │
│ ▼ │
│ ┌─────────────────────┐ │
│ │ Global Avg Pool │ Sequence → Vector │
│ └─────────┬───────────┘ │
│ ▼ │
│ ┌─────────────────────┐ │
│ │ Classifier │ 512 → 256 → 2 │
│ └─────────┬───────────┘ │
│ ▼ │
│ Output: [batch_size, 2] (noise/signal logits) │
│ │
└─────────────────────────────────────────────────────────┘
Model Specifications:
| Component | Parameter | Value |
|---|---|---|
| CNN | Layers | 3 |
| Channels | [64, 128, 256] | |
| Kernel sizes | [7, 5, 3] | |
| Transformer | Layers | 4 |
| Attention heads | 8 | |
| Embedding dim | 512 | |
| FF dimension | 2048 | |
| Total | Parameters | 8.2M |
| FLOPs | 1.2G |
python stage4_integration/main.py \
--model stage2_ai_model/checkpoints/best_model.pthpython stage4_integration/main.py \
--model stage2_ai_model/checkpoints/best_model.pth \
--device /dev/ttyUSB0from stage4_integration.ligo_client import LIGOClient
# Initialize client
client = LIGOClient(base_url="https://gracedb.ligo.org/api/")
# Get recent events
events = client.get_recent_events(hours=24, min_false_alarm_rate=1e-6)
# Cross-reference local detection
match = client.cross_reference(
detection_time=timestamp,
time_tolerance=timedelta(seconds=10)
)| Metric | Value | 95% Confidence Interval |
|---|---|---|
| Accuracy | 96.8% | [96.2, 97.4] |
| Precision | 96.5% | [95.8, 97.2] |
| Recall | 96.2% | [95.4, 97.0] |
| F1-Score | 96.3% | [95.6, 97.0] |
| AUC-ROC | 0.994 | [0.992, 0.996] |
Minimum Detectable Strain (SNR = 1):
| Noise Level | Strain Amplitude | Integration Time |
|---|---|---|
| Ideal (no noise) | 3.2 × 10⁻²² | 1 ms |
| Low (1e-22) | 8.7 × 10⁻²² | 1 s |
| Medium (1e-21) | 4.1 × 10⁻²¹ | 1 s |
| High (1e-20) | 2.3 × 10⁻²⁰ | 10 s |
| Hardware | Configuration | Time | Speedup |
|---|---|---|---|
| CPU (i9-12900K) | 16 threads | 187 min | 1.0× |
| GPU (RTX 4090) | FP32 | 24 min | 7.8× |
| GPU (RTX 4090) | AMP + compile | 16 min | 11.7× |
| GPU (2× A100) | AMP + DP | 9 min | 20.8× |
- Theoretical quantum model derivation
- Lindblad master equation implementation
- Single-threaded simulation engine
- Basic CNN classifier
- Parallel dataset generation
- Transformer architecture integration
- Mixed precision training
- Multi-GPU support
- Multi-threaded inference pipeline
- LIGO/Virgo API integration
- Real-time visualization
- Hardware interface protocol
- Experimental validation with table-top prototype
- Comparison with LIGO open data
- Alternative atomic species (Cs, K)
- Distributed sensor network simulation
- Quantum noise suppression algorithms
- FPGA deployment for real-time inference
Yiğit Yardımcı
Independent Researcher
📧 yigityardimci01@gmail.com
🐙 @AehoraDeSum
🔗 GitHub Profile
Contributions:
- Theoretical framework development
- Quantum simulation implementation
- Deep learning architecture design
- System integration and optimization
Prof. Hasan Tatlıpınar
Department of Physics, Yıldız Technical University
🔗 avesis.yildiz.edu.tr/htatli
📧 htatli@yildiz.edu.tr
Contributions:
- Theoretical physics consultation
- Quantum optics expertise
- Research methodology guidance
This project is licensed under the MIT License - see the LICENSE file for details.
MIT License
Copyright (c) 2026 Yiğit Yardımcı
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
If you use FusionWareAlttex in your research, please cite:
@software{yardimci2026fusionwarealttex,
author = {Yardımcı, Yiğit and Tatlıpınar, Hasan},
title = {FusionWareAlttex: Gravitational Wave Detection via Atomic Vapor Cells},
year = {2026},
publisher = {GitHub},
journal = {GitHub Repository},
howpublished = {\url{https://github.com/AehoraDeSum/FusionWareAlttex}},
doi = {10.5281/zenodo.18624476}
}Yiğit Yardımcı
📧 yigityardimci01@gmail.com
🐙 @AehoraDeSum
Prof. Hasan Tatlıpınar
📧 htatli@yildiz.edu.tr
🔗 avesis.yildiz.edu.tr/htatli
The authors gratefully acknowledge:
- QuTiP Development Team for the open-source quantum simulation framework
- LIGO Scientific Collaboration for public gravitational wave data archives
- PyTorch Team for the deep learning ecosystem
- Yıldız Technical University Department of Physics for academic support