Skip to content

Anonymous324-star/CCCVAE

Repository files navigation

CCC-Guided Latent Representation Learning Enhances Cell-Cell Communication Analysis in Single-Cell RNA-seq Data

Requirements

Python: 3.9.13
PyTorch: 2.6.0 (https://pytorch.org)
Scanpy: 1.10.3 (https://scanpy.readthedocs.io/en/stable)
Numpy: 1.26.4 (https://numpy.org)
Pandas: 2.2.3 (https://pandas.pydata.org)
h5py: 3.13.0 (https://pypi.org/project/h5py)
Seaborn: 0.13.2 (https://seaborn.pydata.org)

Usage

Download the data from https://drive.google.com/drive/folders/1UlasBJkr6PuV0GKmi6sbTuog67FpEd-r?usp=sharing.

Run the process.py under the datasets folder to prepare data.

cd dataset

python process.py
cd experiments

python step_1_calculate_CCC.py --dataset_name pbmc4k --HVG_NUM 10000 --ccc_db consensus

python step_2_train_VAE.py --dataset_name pbmc4k --HVG_NUM 10000 --ccc_db consensus

python step_3_evaluate.py --dataset_name pbmc4k --HVG_NUM 10000 --ccc_db consensus

The dataset_name options are ["pbmc4k", "pbmc12k", "Pancreas", "Opium"], and the available ccc database can be found in the supplementary folder. Other hyperparameters are available in the script file.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages