Skip to content

Make working with datetimes in Python simpler and more powerful.

License

Notifications You must be signed in to change notification settings

AresJef/cyTimes

Repository files navigation

Make working with datetimes in Python simpler and more powerful.

Created to be used in a project, this package is published to github for ease of management and installation across different modules.

Installation

Install from PyPi

pip install cytimes

Install from github

pip install git+https://github.com/AresJef/cyTimes.git

Compatibility

Supports Python 3.10 and above.

Features

cyTimes introduces two classes that simplify and enhance working with datetimes:

  • Pydt (Python datetime.datetime)
  • Pddt (Pandas DatetimeIndex)

Both provide similar functionalities:

  • Direct drop-in replacements (subclasses) for standard Python datetime and Pandas DatetimeIndex.
  • Cython-optimized for high-performance parsing, creation, and calendar manipulation (shifting & replacing).
  • Flexible constructors accepting multiple input formats (strings, datetime objects, timestamps, etc.).
  • Rich conversion options (ISO strings, ordinals, timestamps, and more).
  • Comprehensive manipulation for precise datetime fields adjustments (years, quarters, months, days, time).
  • Direct calendar information insights (e.g., days in month, leap years).
  • Extended timezone-related capabilities.
  • Supports adding or subtracting deltas, and compute delta difference against datetime-like object(s).

Pydt Usage

The Pydt class is drop-in replacement for Python’s native datetime.datetime, with additional functionalities.

Construction

from cytimes import Pydt
import datetime, numpy as np

Pydt(1970, 1, 1, tzinfo="UTC")
>>> 1970-01-01 00:00:00+0000
Pydt.parse("1970 Jan 1 00:00:01 PM")
>>> 1970-01-01 12:00:01
Pydt.now()
>>> 2024-12-06 10:37:25.619593
Pydt.utcnow()
>>> 2024-12-06 09:37:36.743159+0000
Pydt.combine("1970-01-01", "00:00:01")
>>> 1970-01-01 00:00:01
Pydt.fromordinal(1)
>>> 0001-01-01 00:00:00
Pydt.fromseconds(1)
>>> 1970-01-01 00:00:01
Pydt.frommicroseconds(1)
>>> 1970-01-01 00:00:00.000001
Pydt.fromtimestamp(1, datetime.UTC)
>>> 1970-01-01 00:00:01+0000
Pydt.utcfromtimestamp(1)
>>> 1970-01-01 00:00:01+0000
Pydt.fromisoformat("1970-01-01T00:00:01")
>>> 1970-01-01 00:00:01
Pydt.fromisocalendar(1970, 1, 4)
>>> 1970-01-01 00:00:00
Pydt.fromdayofyear(1970, 1)
>>> 1970-01-01 00:00:00
Pydt.fromdate(datetime.date(1970, 1, 1))
>>> 1970-01-01 00:00:00
Pydt.fromdatetime(datetime.datetime(1970, 1, 1))
>>> 1970-01-01 00:00:00
Pydt.fromdatetime64(np.datetime64(1, "s"))
>>> 1970-01-01 00:00:01
Pydt.strptime("00:00:01 1970-01-01", "%H:%M:%S %Y-%m-%d")
>>> 1970-01-01 00:00:01

Conversion

from cytimes import Pydt

dt = Pydt(1970, 1, 1, tzinfo="CET")

dt.ctime()
>>>  "Thu Jan  1 00:00:00 1970"
dt.strftime("%Y-%m-%d %H:%M:%S %Z")
>>>  "1970-01-01 00:00:00 CET"
dt.isoformat()
>>>  "1970-01-01T00:00:00+01:00"
dt.timetuple()
>>> (1970, 1, 1, 0, 0, 0, 3, 1, 0)
dt.toordinal()
>>>  719163
dt.toseconds()
>>>  0.0
dt.tomicroseconds()
>>>  0
dt.timestamp()
>>>  -3600.0
dt.date()
>>>  1970-01-01
dt.time()
>>>  00:00:00
dt.timetz()
>>>  00:00:00

Manipulation

from cytimes import Pydt

dt = Pydt(1970, 2, 2, 2, 2, 2, 2, "CET")

# . replace
dt.replace(year=2007, microsecond=1, tzinfo="UTC")
>>> 2007-02-02 02:02:02.000001+0000

# . year
dt.to_curr_year(3, 15)
>>> 1970-03-15 02:02:02.000002+0100
dt.to_prev_year("Feb", 30)
>>> 1969-02-28 02:02:02.000002+0100
dt.to_next_year("十二月", 31)
>>> 1971-12-31 02:02:02.000002+0100
dt.to_year(100, "noviembre", 30)
>>> 2070-11-30 02:02:02.000002+0100

# . quarter
dt.to_curr_quarter(3, 15)
>>> 1970-03-15 02:02:02.000002+0100
dt.to_prev_quarter(3, 15)
>>> 1969-12-15 02:02:02.000002+0100
dt.to_next_quarter(3, 15)
>>> 1970-06-15 02:02:02.000002+0100
dt.to_quarter(100, 3, 15)
>>> 1995-03-15 02:02:02.000002+0100

# . month
dt.to_curr_month(15)
>>> 1970-02-15 02:02:02.000002+0100
dt.to_prev_month(15)
>>> 1970-01-15 02:02:02.000002+0100
dt.to_next_month(15)
>>> 1970-03-15 02:02:02.000002+0100
dt.to_month(100, 15)
>>> 1978-06-15 02:02:02.000002+0200

# . weekday
dt.to_monday()
>>> 1970-02-02 02:02:02.000002+0100
dt.to_sunday()
>>> 1970-02-08 02:02:02.000002+0100
dt.to_curr_weekday(4)
>>> 1970-02-06 02:02:02.000002+0100
dt.to_prev_weekday(4)
>>> 1970-01-30 02:02:02.000002+0100
dt.to_next_weekday(4)
>>> 1970-02-13 02:02:02.000002+0100
dt.to_weekday(100, 4)
>>> 1972-01-07 02:02:02.000002+0100

# . day
dt.to_yesterday()
>>> 1970-02-01 02:02:02.000002+0100
dt.to_tomorrow()
>>> 1970-02-03 02:02:02.000002+0100
dt.to_day(100)
>>> 1970-05-13 02:02:02.000002+0100

# . date&time
dt.to_first_of("Y")
>>> 1970-01-01 02:02:02.000002+0100
dt.to_last_of("Q")
>>> 1970-03-31 02:02:02.000002+0100
dt.to_start_of("M")
>>> 1970-02-01 00:00:00+0100
dt.to_end_of("W")
>>> 1970-02-08 23:59:59.999999+0100
dt.to_first_of("Y").is_first_of("Y")
>>> True
dt.to_last_of("Q").is_last_of("Q")
>>> True
dt.to_start_of("M").is_start_of("M")
>>> True
dt.to_end_of("W").is_end_of("W")
>>> True

# . round / ceil / floor
dt.round("h")
>>> 1970-02-02 02:00:00+0100
dt.ceil("m")
>>> 1970-02-02 02:03:00+0100
dt.floor("s")
>>> 1970-02-02 02:02:02+0100

Calendar Information

from cytimes import Pydt

dt = Pydt(1970, 2, 2, tzinfo="UTC")

# . iso
dt.isocalendar()
>>> {'year': 1970, 'week': 6, 'weekday': 1}
dt.isoyear()
>>> 1970
dt.isoweek()
>>> 6
dt.isoweekday()
>>> 1

# . year
dt.is_leap_year()
>>> False
dt.is_long_year()
>>> True
dt.leap_bt_year(2007)
>>> 9
dt.days_in_year()
>>> 365
dt.days_bf_year()
>>> 719162
dt.days_of_year()
>>> 33
dt.is_year(1970)
>>> True

# . quarter
dt.days_in_quarter()
>>> 90
dt.days_bf_quarter()
>>> 0
dt.days_of_quarter()
>>> 33
dt.is_quarter(1)
>>> True

# . month
dt.days_in_month()
>>> 28
dt.days_bf_month()
>>> 31
dt.days_of_month()
>>> 2
dt.is_month("Feb")
>>> True
dt.month_name("es")
>>> "febrero"

# . weekday
dt.is_weekday("Monday")
>>> True
dt.weekday_name("fr")
>>> "lundi"

# . day
dt.is_day(2)
>>> True

Timezone Operation

from cytimes import Pydt

dt = Pydt(1970, 1, 1, tzinfo="UTC")

dt.is_local()
>>> False
dt.is_utc()
>>> True
dt.is_dst()
>>> False
dt.tzname()
>>> "UTC"
dt.utcoffset()
>>> 0:00:00
dt.utcoffset_seconds()
>>> 0
dt.dst()
>>> None
dt.astimezone("CET")
>>> 1970-01-01 01:00:00+0100
dt.tz_localize(None)
>>> 1970-01-01 00:00:00
dt.tz_convert("CET")
>>> 1970-01-01 01:00:00+0100
dt.tz_switch("CET")
>>> 1970-01-01 01:00:00+0100

Arithmetic

from cytimes import Pydt

dt = Pydt(1970, 1, 1, tzinfo="UTC")

dt.add(years=1, weeks=1, microseconds=1)
>>> 1971-01-08 00:00:00.000001+0000
dt.sub(quarters=1, days=1, seconds=1)
>>> 1969-09-29 23:59:59+0000
dt.diff("2007-01-01 01:01:01+01:00", "s")
>>> -1167609662

Comparison

from cytimes import Pydt

dt = Pydt(1970, 1, 1)

dt.is_past()
>>> True
dt.is_future()
>>> False

Pddt Usage

Pddt extends similar functionalities to Pandas DatetimeIndex, making it behave more like native Python datetime.datetime and Pydt, but for arrays of datetime values. It supports:

  • Vectorized parsing, creation, and calendar manipulation (shifting & replacing).
  • Provides the same functionalities as Pydt (see examples above), but for datetime index.
  • Pddt is datetime64[us] focused. It will try to retain nanosecond resolution when possible, but will automatically downcast to microsecond resolution if the value exceeds the bounds of datetime64[ns]. This behavior applies to all Pddt methods.

Handling Nanosecond Overflow

By default, DatetimeIndex uses nanosecond precision 'ns', which cannot represent datetimes outside the range 1677-09-21 to 2262-04-11. Pddt automatically downcasts to microseconds us when encountering out-of-range datetimes, sacrificing nanosecond precision to allow a broader range support.

from cytimes import Pddt

# 1970-01-01: datetime64[ns]
Pddt(["1970-01-01 00:00:00+00:00", "1970-01-02 00:00:00+00:00"])
>>> Pddt(['1970-01-01 00:00:00+00:00', '1970-01-02 00:00:00+00:00'],
       dtype='datetime64[ns, UTC]', freq=None)

# 9999-01-01: datetime64[us]
Pddt(["9999-01-01 00:00:00+00:00", "9999-01-02 00:00:00+00:00"])
>>> Pddt(['9999-01-01 00:00:00+00:00', '9999-01-02 00:00:00+00:00'],
        dtype='datetime64[us, UTC]', freq=None)

Downcasting mechanism also automacially applies to all methods that modifies the date & time when the resulting values are out of the 'ns' range:

from cytimes import Pddt

# 1970-01-01: datetime64[ns]
pt = Pddt(["1970-01-01 00:00:00+00:00", "1970-01-02 00:00:00+00:00"])
>>> Pddt(['1970-01-01 00:00:00+00:00', '1970-01-02 00:00:00+00:00'],
       dtype='datetime64[ns, UTC]', freq=None)

# add 1000 years: datetime64[us]
pt.to_year(1000, "Feb", 30)
>>> Pddt(['2970-02-28 00:00:00+00:00', '2970-02-28 00:00:00+00:00'],
        dtype='datetime64[us, UTC]', freq=None)

Acknowledgements

cyTimes is based on several open-source repositories.

cyTimes is built on the following open-source repositories:

  • dateutil

    Class <'Parser'> and <'Delta'> in this package are the cythonized version of <'dateutil.parser'> and <'dateutil.relativedelta'>. Credit and thanks go to the original authors and contributors of the dateutil library.

About

Make working with datetimes in Python simpler and more powerful.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published