Base image with PySpark, Java dependencies, and system utilities for BER Data Lakehouse.
Using docker:
$ docker build . -t <image_name>:<image_tag_or_version>Using podman:
$ podman build . -f Dockerfile --platform=linux/amd64 --format dockerPython libraries (managed with uv), JARs, system executables
BERDL-specific configurations and files, entrypoint scripts and startup hooks go into the child image repository
The Python packages installed on the spark notebook base docker images are bundled in the pyproject.toml file for ease of installation and management using the package management tool uv.
Downstream python packages installed on the spark_notebook_base image or its derivatives can add these dependencies using the command:
$ uv add git+https://github.com/BERDataLakehouse/spark_notebook_base.gitThis will import the package berdl-notebook-python-base into the project dependencies; berdl-notebook-python-base provides no code of its own, it just installs the dependencies listed in the pyproject.toml.
$ uv syncSee the uv docs for more details.
$ uv add git+https://github.com/BERDataLakehouse/spark_notebook_base.git$ uv sync --group devPackages are installed into the system python path.
$ uv pip install --system --group dev