@@ -16,23 +16,6 @@ runtime: shiny_prerendered
1616BioDataScience3::learnr_setup()
1717SciViews::R()
1818library(mlearning)
19-
20- # prepa data
21- read("biometry", package = "BioDataScience") %>.%
22- select(., gender, weight, height, wrist) %>.%
23- drop_na(.) -> bio
24-
25- # Prepare learn test and set test
26- n <- nrow(bio)
27- n_learning <- round(n * 2/3)
28- set.seed(164)
29- learning <- sample(1:n, n_learning)
30-
31- bio_test <- slice(bio, -learning)
32- bio_learn <- slice(bio,learning)
33-
34- bio_lda <- mlLda(formula = gender ~ ., data = bio_learn)
35-
3619```
3720
3821``` {r, echo=FALSE}
@@ -72,6 +55,25 @@ bio_conf <- confusion(predict(bio_lda, bio_test), bio_test$gender)
7255conf_tab <- summary(bio_conf)
7356```
7457
58+ ``` {r prepa}
59+ # prepa data
60+ read("biometry", package = "BioDataScience") %>.%
61+ select(., gender, weight, height, wrist) %>.%
62+ drop_na(.) -> bio
63+
64+ # Prepare learn test and set test
65+ n <- nrow(bio)
66+ nlearning <- round(n * 2/3)
67+ set.seed(164)
68+ learning <- sample(1:n, nlearning)
69+
70+ bio_test <- slice(bio, -learning)
71+ bio_learn <- slice(bio,learning)
72+
73+ bio_lda <- mlLda(formula = gender ~ ., data = bio_learn)
74+ ```
75+
76+
7577## Création de votre modèle
7678
7779
@@ -101,7 +103,7 @@ table(bio_test$gender)
101103
102104Réalisez un modèle avec le set d'apprentissage. Prédisez la variable ` gender ` à l'aide des 3 variables numériques.
103105
104- ``` {r lda1_h2, exercise = TRUE}
106+ ``` {r lda1_h2, exercise = TRUE, exercise.setup = "prepa" }
105107bio_lda <- mlLda(formula = ___ ~ ___, data = ___)
106108summary(bio_lda)
107109```
@@ -126,7 +128,7 @@ grade_code("Votre premier modèle est une réussite.")
126128
127129Vous venez de créer votre outils de classification qui se nomme ` bio_lda ` . Vous devez maintenant tester les performances de votre modèle.
128130
129- ``` {r lda2_h2, exercise = TRUE}
131+ ``` {r lda2_h2, exercise = TRUE, exercise.setup = "prepa" }
130132# prédiction sur le set de test
131133bio_pred <- predict(___, ___)
132134# matrice de confusion
0 commit comments