Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 17 additions & 9 deletions corrai/sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,26 +114,30 @@ class Sample:
"""

parameters: list[Parameter]
values: np.ndarray = field(init=False)
values: pd.DataFrame = field(init=False)
results: pd.Series = field(default_factory=lambda: pd.Series(dtype=object))

def __post_init__(self):
self.values = np.empty((0, len(self.parameters)))
self.values = pd.DataFrame(columns=[par.name for par in self.parameters])

def __len__(self):
return self.values.shape[0]

def __getitem__(self, idx):
if isinstance(idx, (int, slice, list, np.ndarray)):
return {"values": self.values[idx], "results": self.results[idx]}
return {"values": self.values.loc[idx, :], "results": self.results.loc[idx]}
raise TypeError(f"Unsupported index type: {type(idx)}")

def __setitem__(self, idx, item: dict):
if "values" in item:
self.values[idx] = item["values"]
self.values.loc[idx, :] = item["values"]
if "results" in item:
if isinstance(idx, int):
self.results.at[idx] = item["results"]
elif isinstance(idx, slice):
self.results.loc[idx] = pd.Series(
item["results"], index=self.results.loc[idx].index
)
else:
self.results.iloc[idx] = pd.Series(
item["results"], index=self.results.index[idx]
Expand All @@ -146,6 +150,9 @@ def _validate(self):
self.values
), f"Mismatch: {len(self.values)} values vs {len(self.results)} results"

if not self.values.index.equals(self.results.index):
raise ValueError("Mismatch between values and results indices")

def get_pending_index(self) -> np.ndarray:
"""
Identify which samples have not yet been simulated.
Expand Down Expand Up @@ -201,12 +208,12 @@ def get_list_parameter_value_pairs(
"""
selected_values = self[idx]["values"]

if selected_values.ndim == 1:
selected_values = selected_values[np.newaxis, :]
if isinstance(selected_values, pd.Series):
selected_values = selected_values.to_frame().T

return [
[(par, val) for par, val in zip(self.parameters, row)]
for row in selected_values
for row in selected_values.values
]

def get_dimension_less_values(
Expand Down Expand Up @@ -250,7 +257,8 @@ def add_samples(self, values: np.ndarray, results: list[pd.DataFrame] = None):
n_samples, n_params = values.shape
assert n_params == len(self.parameters), "Mismatch in number of parameters"

self.values = np.vstack([self.values, values])
new_df = pd.DataFrame(values, columns=self.values.columns)
self.values = pd.concat([self.values, new_df], ignore_index=True)

if results is None:
new_results = pd.Series([pd.DataFrame()] * n_samples, dtype=object)
Expand Down Expand Up @@ -539,7 +547,7 @@ def _legend_for(i: int) -> str:
if not show_legends:
return "Simulations"
parameter_names = [par.name for par in self.parameters]
vals = self.values[i, :]
vals = self.values.loc[i, :].values
return ", ".join(
f"{n}: {round(v, round_ndigits)}" for n, v in zip(parameter_names, vals)
)
Expand Down
2 changes: 1 addition & 1 deletion corrai/sensitivity.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,7 @@ def analyze(
)

if self.x_needed:
analyse_kwargs["X"] = self.sampler.sample.get_dimension_less_values()
analyse_kwargs["X"] = self.sampler.sample.get_dimension_less_values().values

analyse_kwargs["problem"] = self.sampler.get_salib_problem()

Expand Down
36 changes: 28 additions & 8 deletions tests/test_sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,17 @@ def test_sample_functions(self):
)

assert sample.get_pending_index().tolist() == [True, False]
assert sample.values.tolist() == [[1.0, 0.9, 10.0], [3.0, 0.85, 20.0]]
pd.testing.assert_frame_equal(
sample.values,
pd.DataFrame(
{
"param_1": {0: 1.0, 1: 3.0},
"param_2": {0: 0.9, 1: 0.85},
"param_3": {0: 10.0, 1: 20.0},
}
),
)

assert sample.get_parameters_intervals().tolist() == [
[0.0, 10.0],
[0.8, 1.2],
Expand All @@ -83,12 +93,22 @@ def test_sample_functions(self):
"values": np.array([9.9, 1.1, 88]),
"results": pd.DataFrame({"res": [123]}, index=[pd.Timestamp("2009-01-01")]),
}
np.testing.assert_allclose(sample.values[0], [9.9, 1.1, 88])
pd.testing.assert_series_equal(
sample.values.loc[0],
pd.Series({"param_1": 9.9, "param_2": 1.1, "param_3": 88.0}, name=0),
)
assert not sample.results.iloc[0].empty

dimless_val = sample.get_dimension_less_values()
np.testing.assert_allclose(
dimless_val, np.array([[0.99, 0.75, 0.88], [0.3, 0.125, 0.2]])
pd.testing.assert_frame_equal(
dimless_val,
pd.DataFrame(
{
"param_1": {0: 0.99, 1: 0.3},
"param_2": {0: 0.7500000000000003, 1: 0.12499999999999986},
"param_3": {0: 0.88, 1: 0.2},
}
),
)

pd.testing.assert_frame_equal(
Expand Down Expand Up @@ -302,9 +322,9 @@ def test_lhs_sampler(self):
sampler.simulate_pending()

expected = {
0: [[85.75934698790918]],
1: [[38.08478803524709]],
2: [[61.67268698504139]],
0: np.array([[85.75934698790918]]),
1: np.array([[38.08478803524709]]),
2: np.array([[61.67268698504139]]),
}

for k, arr in sampler.results.items():
Expand All @@ -328,7 +348,7 @@ def test_lhs_sampler(self):
sampler.add_sample(3, rng=42, simulate=False)

sampler.simulate_at(slice(4, 7))
assert [df.empty for df in sampler.results[-3:].values] == [False, True, True]
assert [df.empty for df in sampler.results[-3:].values] == [False, False, True]

sampler.add_sample(3, rng=42, simulate=False)
sampler.simulate_at(slice(10, None))
Expand Down