Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions app/cli/cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,6 +304,7 @@ def register_model(
model_config=m_config,
model_metrics=m_metrics,
model_tags=m_tags,
model_type=model_type.value,
)
typer.echo(f"Pushed {model_path} as a new model version ({run_name})")

Expand Down
52 changes: 46 additions & 6 deletions app/management/tracker_client.py
Original file line number Diff line number Diff line change
Expand Up @@ -346,6 +346,39 @@ def log_model_config(config: Dict[str, str]) -> None:

mlflow.log_params(config)

@staticmethod
def _set_model_version_tags(
client: MlflowClient,
model_name: str,
version: str,
model_type: Optional[str] = None,
validation_status: Optional[str] = None,
) -> None:
"""
Sets standard tags on a model version for serving and discovery.

Args:
client (MlflowClient): The MLflow client to use for setting tags.
model_name (str): The name of the registered model.
version (str): The version of the model.
model_type (Optional[str]): The type of the model (e.g., "medcat_snomed").
validation_status (Optional[str]): The status of the model validation (e.g., "pending").
"""
try:
client.set_model_version_tag(
name=model_name, version=version, key="model_uri", value=f"models:/{model_name}/{version}"
)
if model_type is not None:
client.set_model_version_tag(
name=model_name, version=version, key="model_type", value=model_type
)
if validation_status is not None:
client.set_model_version_tag(
name=model_name, version=version, key="validation_status", value=validation_status
)
except Exception:
logger.warning("Failed to set tags on version %s of model %s", version, model_name)

@staticmethod
def log_model(
model_name: str,
Expand Down Expand Up @@ -386,6 +419,7 @@ def save_pretrained_model(
model_config: Optional[Dict] = None,
model_metrics: Optional[List[Dict]] = None,
model_tags: Optional[Dict] = None,
model_type: Optional[str] = None,
) -> None:
"""
Saves a pretrained model to the tracking backend and associated metadata.
Expand All @@ -399,6 +433,7 @@ def save_pretrained_model(
model_config (Optional[Dict]): The configuration of the model to save.
model_metrics (Optional[List[Dict]]): The list of dictionaries containing model metrics to save.
model_tags (Optional[Dict]): The dictionary of tags to set for the model.
model_type (Optional[str]): The type of the model (e.g., "medcat_snomed").
"""

experiment_name = TrackerClient.get_experiment_name(model_name, training_type)
Expand All @@ -423,6 +458,10 @@ def save_pretrained_model(
mlflow.set_tags(tags)
model_name = model_name.replace(" ", "_")
TrackerClient.log_model(model_name, model_path, model_manager, model_name)
client = MlflowClient()
versions = client.search_model_versions(f"name='{model_name}'")
if versions:
TrackerClient._set_model_version_tags(client, model_name, versions[0].version, model_type)
TrackerClient.end_with_success()
except KeyboardInterrupt:
TrackerClient.end_with_interruption()
Expand Down Expand Up @@ -503,6 +542,7 @@ def save_model(
model_name: str,
model_manager: ModelManager,
validation_status: str = "pending",
model_type: Optional[str] = None,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

All CMS models have the ModelType, hence there's no need to make the argument optional and mlflow.set_tag() will not set a None value.

) -> str:
"""
Saves a model and its information to the tracking backend.
Expand All @@ -512,6 +552,7 @@ def save_model(
model_name (str): The name of the model.
model_manager (ModelManager): The instance of ModelManager used for model saving.
validation_status (str): The status of the model validation (default: "pending").
model_type (Optional[str]): The type of the model (e.g., "medcat_snomed").

Returns:
str: The artifact URI of the saved model.
Expand All @@ -524,17 +565,16 @@ def save_model(
if not mlflow.get_tracking_uri().startswith("file:/"):
TrackerClient.log_model(model_name, filepath, model_manager, model_name)
versions = self.mlflow_client.search_model_versions(f"name='{model_name}'")
self.mlflow_client.set_model_version_tag(
name=model_name,
version=versions[0].version,
key="validation_status",
value=validation_status,
)
if versions:
TrackerClient._set_model_version_tags(
self.mlflow_client, model_name, versions[0].version, model_type, validation_status
)
else:
TrackerClient.log_model(model_name, filepath, model_manager)

artifact_uri = mlflow.get_artifact_uri(model_name)
mlflow.set_tag("training.output.model_uri", artifact_uri)
mlflow.set_tag("training.output.model_type", model_type)

return artifact_uri

Expand Down
1 change: 1 addition & 0 deletions app/trainers/huggingface_llm_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -436,6 +436,7 @@ def run(
retrained_model_pack_path,
self._model_name,
self._model_manager,
model_type=self._model_service.info().model_type.value,
)
logger.info(f"Retrained model saved: {model_uri}")
else:
Expand Down
2 changes: 2 additions & 0 deletions app/trainers/huggingface_ner_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -237,6 +237,7 @@ def run(
retrained_model_pack_path,
self._model_name,
self._model_manager,
model_type=self._model_service.info().model_type.value,
)
logger.info(f"Retrained model saved: {model_uri}")
else:
Expand Down Expand Up @@ -664,6 +665,7 @@ def run(
retrained_model_pack_path,
self._model_name,
self._model_manager,
model_type=self._model_service.info().model_type.value,
)
logger.info(f"Retrained model saved: {model_uri}")
else:
Expand Down
7 changes: 6 additions & 1 deletion app/trainers/medcat_deid_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,12 @@ def run(
)
with open(cdb_config_path, "w") as f:
json.dump(dump_pydantic_object_to_dict(model.config), f)
model_uri = self._tracker_client.save_model(model_pack_path, self._model_name, self._model_manager)
model_uri = self._tracker_client.save_model(
model_pack_path,
self._model_name,
self._model_manager,
model_type=self._model_service.info().model_type.value,
)
logger.info("Retrained model saved: %s", model_uri)
self._tracker_client.save_model_artifact(cdb_config_path, self._model_name)
else:
Expand Down
14 changes: 12 additions & 2 deletions app/trainers/medcat_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,7 +211,12 @@ def run(
)
with open(cdb_config_path, "w") as f:
json.dump(dump_pydantic_object_to_dict(model.config), f)
model_uri = self._tracker_client.save_model(model_pack_path, self._model_name, self._model_manager)
model_uri = self._tracker_client.save_model(
model_pack_path,
self._model_name,
self._model_manager,
model_type=self._model_service.info().model_type.value,
)
logger.info("Retrained model saved: %s", model_uri)
self._tracker_client.save_model_artifact(cdb_config_path, self._model_name)
else:
Expand Down Expand Up @@ -472,7 +477,12 @@ def run(
)
with open(cdb_config_path, "w") as f:
json.dump(dump_pydantic_object_to_dict(model.config), f)
model_uri = self._tracker_client.save_model(model_pack_path, self._model_name, self._model_manager)
model_uri = self._tracker_client.save_model(
model_pack_path,
self._model_name,
self._model_manager,
model_type=self._model_service.info().model_type.value,
)
logger.info(f"Retrained model saved: {model_uri}")
self._tracker_client.save_model_artifact(cdb_config_path, self._model_name)
else:
Expand Down
7 changes: 6 additions & 1 deletion app/trainers/metacat_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,7 +159,12 @@ def run(
)
with open(cdb_config_path, "w") as f:
json.dump(dump_pydantic_object_to_dict(model.config), f)
model_uri = self._tracker_client.save_model(model_pack_path, self._model_name, self._model_manager)
model_uri = self._tracker_client.save_model(
model_pack_path,
self._model_name,
self._model_manager,
model_type=self._model_service.info().model_type.value,
)
logger.info("Retrained model saved: %s", model_uri)
self._tracker_client.save_model_artifact(cdb_config_path, self._model_name)
else:
Expand Down
37 changes: 33 additions & 4 deletions tests/app/monitoring/test_tracker_client.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import datasets
import pytest
import pandas as pd
from unittest.mock import Mock, call, ANY
from unittest.mock import Mock, call, patch, ANY
from app.management.tracker_client import TrackerClient
from app.data import doc_dataset
from app.domain import TrainerBackend
Expand Down Expand Up @@ -161,15 +161,28 @@ def test_save_model(mlflow_fixture):
mlflow_client.search_model_versions.return_value = [version]
tracker_client.mlflow_client = mlflow_client

artifact_uri = tracker_client.save_model("path/to/file.zip", "model_name", model_manager, "validation_status")
artifact_uri = tracker_client.save_model(
"path/to/file.zip", "model_name", model_manager, "validation_status", "model_type"
)

assert "artifacts/model_name" in artifact_uri
model_manager.log_model.assert_called_once_with("model_name", "path/to/file.zip", "model_name")
mlflow_client.set_model_version_tag.assert_called_once_with(name="model_name", version="1", key="validation_status", value="validation_status")
mlflow_client.search_model_versions.assert_called_once_with("name='model_name'")
assert mlflow_client.set_model_version_tag.call_count == 3
mlflow_client.set_model_version_tag.assert_any_call(
name="model_name", version="1", key="model_uri", value="models:/model_name/1"
)
mlflow_client.set_model_version_tag.assert_any_call(
name="model_name", version="1", key="model_type", value="model_type"
)
mlflow_client.set_model_version_tag.assert_any_call(
name="model_name", version="1", key="validation_status", value="validation_status"
)
mlflow.set_tag.has_calls(
[
call("training.output.package", "file.zip"),
call("training.output.model_uri", artifact_uri),
call("training.output.model_type", "model_type"),
],
any_order=False,
)
Expand All @@ -184,9 +197,15 @@ def test_save_model_local(mlflow_fixture):
model_manager.save_model.assert_called_once_with("local_dir", "filepath")


def test_save_pretrained_model(mlflow_fixture):
@patch("app.management.tracker_client.MlflowClient")
def test_save_pretrained_model(mock_mlflow_client_class, mlflow_fixture):
tracker_client = TrackerClient("")
model_manager = Mock()
mlflow_client = Mock()
version = Mock()
version.version = "1"
mlflow_client.search_model_versions.return_value = [version]
mock_mlflow_client_class.return_value = mlflow_client

tracker_client.save_pretrained_model(
"model_name",
Expand All @@ -197,6 +216,7 @@ def test_save_pretrained_model(mlflow_fixture):
{"param": "value"},
[{"p": 0.8, "r": 0.8}, {"p": 0.9, "r": 0.9}],
{"tag_name": "tag_value"},
"model_type",
)

mlflow.get_experiment_by_name.assert_called_once_with("model_name_training_type")
Expand All @@ -212,6 +232,15 @@ def test_save_pretrained_model(mlflow_fixture):
assert len(mlflow.set_tags.call_args.args[0]["mlflow.source.name"]) > 0
assert mlflow.set_tags.call_args.args[0]["tag_name"] == "tag_value"

mlflow_client.search_model_versions.assert_called_once_with("name='model_name'")
assert mlflow_client.set_model_version_tag.call_count == 2
mlflow_client.set_model_version_tag.assert_any_call(
name="model_name", version="1", key="model_uri", value="models:/model_name/1"
)
mlflow_client.set_model_version_tag.assert_any_call(
name="model_name", version="1", key="model_type", value="model_type"
)


def test_log_single_exception(mlflow_fixture):
tracker_client = TrackerClient("")
Expand Down