|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import os\n", |
| 10 | + "os.environ['MKL_NUM_THREAD'] = '1'\n", |
| 11 | + "os.environ['NUMEXPR_NUM_THREADS'] = '1'\n", |
| 12 | + "os.environ['OMP_NUM_THREADS'] = '1'\n", |
| 13 | + "\n", |
| 14 | + "from medcat.cat import CAT\n", |
| 15 | + "from medcat.vocab import Vocab\n", |
| 16 | + "from medcat.cdb import CDB\n", |
| 17 | + "from tokenizers import ByteLevelBPETokenizer\n", |
| 18 | + "\n", |
| 19 | + "import pandas as pd\n", |
| 20 | + "import numpy as np\n", |
| 21 | + "import json\n", |
| 22 | + "from tqdm.notebook import tqdm" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": null, |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [], |
| 30 | + "source": [ |
| 31 | + "import warnings\n", |
| 32 | + "warnings.filterwarnings(\"ignore\", category=FutureWarning)\n" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "markdown", |
| 37 | + "metadata": {}, |
| 38 | + "source": [ |
| 39 | + "# Paths and Config" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": null, |
| 45 | + "metadata": {}, |
| 46 | + "outputs": [], |
| 47 | + "source": [ |
| 48 | + "data_dir = './data/'\n", |
| 49 | + "\n", |
| 50 | + "data_path = os.path.join(data_dir, \"<data_file>\") # Add your data file here\n", |
| 51 | + "doc_id_column = \"id\"\n", |
| 52 | + "doc_text_column = \"description\"\n", |
| 53 | + "\n", |
| 54 | + "model_dir = '../../models/'\n", |
| 55 | + "\n", |
| 56 | + "modelpack = '' # enter your model here. Should the the output of trained 'output_modelpack'.\n", |
| 57 | + "model_pack_path = os.path.join(model_dir, modelpack)\n", |
| 58 | + "\n", |
| 59 | + "filter_path = None\n", |
| 60 | + "\n", |
| 61 | + "ann_folder_path = os.path.join(data_dir, f'annotated_docs')\n", |
| 62 | + "if not os.path.exists(ann_folder_path):\n", |
| 63 | + " os.makedirs(ann_folder_path)\n", |
| 64 | + " \n", |
| 65 | + "save_path_annotations_per_doc = os.path.join(ann_folder_path, \"<output_filename>.json\")\n" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "markdown", |
| 70 | + "metadata": {}, |
| 71 | + "source": [ |
| 72 | + "# Load MedCAT model" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "code", |
| 77 | + "execution_count": null, |
| 78 | + "metadata": {}, |
| 79 | + "outputs": [], |
| 80 | + "source": [ |
| 81 | + "# Create CAT - the main class from medcat used for concept annotation\n", |
| 82 | + "cat = CAT.load_model_pack(model_pack_path)" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "markdown", |
| 87 | + "metadata": {}, |
| 88 | + "source": [ |
| 89 | + "# Annotate" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": null, |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [], |
| 97 | + "source": [ |
| 98 | + "# Set snomed filter if needed\n", |
| 99 | + "snomed_filter = json.load(open(snomed_filter_path))\n" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": null, |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [], |
| 107 | + "source": [ |
| 108 | + "cat.cdb.print_stats()" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": null, |
| 114 | + "metadata": {}, |
| 115 | + "outputs": [], |
| 116 | + "source": [ |
| 117 | + "df = pd.read_csv(data_path)[[doc_id_column, doc_text_column]]\n" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": null, |
| 123 | + "metadata": { |
| 124 | + "scrolled": true |
| 125 | + }, |
| 126 | + "outputs": [], |
| 127 | + "source": [ |
| 128 | + "%%time\n", |
| 129 | + "batch_size = 1000\n", |
| 130 | + "batch = []\n", |
| 131 | + "cnt = 0\n", |
| 132 | + "results = []\n", |
| 133 | + "for id, row in df.iterrows():\n", |
| 134 | + " text = row[doc_text_column]\n", |
| 135 | + " # Skip text if under 10 characters\n", |
| 136 | + " if len(str(text)) > 10:\n", |
| 137 | + " batch.append((row[doc_id_column], text))\n", |
| 138 | + " else:\n", |
| 139 | + " batch.append((row[doc_id_column], []))\n", |
| 140 | + " \n", |
| 141 | + " if len(batch) > batch_size or id == len(df) - 1:\n", |
| 142 | + " # Update the number of processors depending on your machine.\n", |
| 143 | + " result = cat.multiprocessing(batch, nproc=2, addl_info=snomed_filter)\n", |
| 144 | + " results.extend(result)\n", |
| 145 | + " cnt += 1\n", |
| 146 | + " print(\"Done: {} - rows\".format((cnt-1)* batch_size + len(batch)-1))\n", |
| 147 | + " \n", |
| 148 | + " # Reset the batch\n", |
| 149 | + " batch = []" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": null, |
| 155 | + "metadata": {}, |
| 156 | + "outputs": [], |
| 157 | + "source": [ |
| 158 | + "# Double check nothing is missed\n", |
| 159 | + "assert len(results)+len(skipped_docs) == len(df)" |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "code", |
| 164 | + "execution_count": null, |
| 165 | + "metadata": {}, |
| 166 | + "outputs": [], |
| 167 | + "source": [ |
| 168 | + "# Save to file (docs is docs 2 annotations)\n", |
| 169 | + "json.dump(results, open(save_path_annotations_per_doc, \"w\"))" |
| 170 | + ] |
| 171 | + }, |
| 172 | + { |
| 173 | + "cell_type": "markdown", |
| 174 | + "metadata": {}, |
| 175 | + "source": [ |
| 176 | + "### Inspect the model" |
| 177 | + ] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "code", |
| 181 | + "execution_count": null, |
| 182 | + "metadata": {}, |
| 183 | + "outputs": [], |
| 184 | + "source": [ |
| 185 | + "text = \"He was diagnosed with heart failure\"\n", |
| 186 | + "doc = cat(text)\n", |
| 187 | + "print(doc.ents)" |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": null, |
| 193 | + "metadata": {}, |
| 194 | + "outputs": [], |
| 195 | + "source": [ |
| 196 | + "# Display Snomed codes\n", |
| 197 | + "for ent in doc.ents:\n", |
| 198 | + " print(ent, \" - \", ent._.cui, \" - \", cdb.cui2preferred_name[ent._.cui])" |
| 199 | + ] |
| 200 | + }, |
| 201 | + { |
| 202 | + "cell_type": "code", |
| 203 | + "execution_count": null, |
| 204 | + "metadata": {}, |
| 205 | + "outputs": [], |
| 206 | + "source": [ |
| 207 | + "# To show semantic types for each entity\n", |
| 208 | + "for ent in doc.ents:\n", |
| 209 | + " print(ent, \" - \", cdb.cui2type_ids.get(ent._.cui))" |
| 210 | + ] |
| 211 | + }, |
| 212 | + { |
| 213 | + "cell_type": "code", |
| 214 | + "execution_count": null, |
| 215 | + "metadata": {}, |
| 216 | + "outputs": [], |
| 217 | + "source": [ |
| 218 | + "# Display\n", |
| 219 | + "from spacy import displacy\n", |
| 220 | + "displacy.render(doc, style='ent', jupyter=True)" |
| 221 | + ] |
| 222 | + }, |
| 223 | + { |
| 224 | + "cell_type": "markdown", |
| 225 | + "metadata": {}, |
| 226 | + "source": [ |
| 227 | + "# Alternative approach" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "code", |
| 232 | + "execution_count": null, |
| 233 | + "metadata": { |
| 234 | + "scrolled": true |
| 235 | + }, |
| 236 | + "outputs": [], |
| 237 | + "source": [ |
| 238 | + "# This approach does not use multiprocessing. But iterates line by line through your dataset.\n", |
| 239 | + "\n", |
| 240 | + "docs = {}\n", |
| 241 | + "print(f\"Len of df: {len(df)}\") \n", |
| 242 | + "\n", |
| 243 | + "for i, row in tqdm(df.iterrows(), total=df.shape[0]):\n", |
| 244 | + " text = str(row[doc_text_column])\n", |
| 245 | + " \n", |
| 246 | + " # Skip text if under 10 characters,\n", |
| 247 | + " if len(text) > 10:\n", |
| 248 | + " docs[row[doc_id_column]] = cat.get_entities(text)\n", |
| 249 | + " else:\n", |
| 250 | + " docs[row[doc_id_column]] = []" |
| 251 | + ] |
| 252 | + }, |
| 253 | + { |
| 254 | + "cell_type": "code", |
| 255 | + "execution_count": null, |
| 256 | + "metadata": {}, |
| 257 | + "outputs": [], |
| 258 | + "source": [ |
| 259 | + "cat.cdb.print_stats()" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "code", |
| 264 | + "execution_count": null, |
| 265 | + "metadata": {}, |
| 266 | + "outputs": [], |
| 267 | + "source": [ |
| 268 | + "# Save to file (docs is docs 2 annotations)\n", |
| 269 | + "json.dump(docs, open(save_path_annotations_per_doc, \"w\"))\n" |
| 270 | + ] |
| 271 | + }, |
| 272 | + { |
| 273 | + "cell_type": "code", |
| 274 | + "execution_count": null, |
| 275 | + "metadata": {}, |
| 276 | + "outputs": [], |
| 277 | + "source": [] |
| 278 | + }, |
| 279 | + { |
| 280 | + "cell_type": "code", |
| 281 | + "execution_count": null, |
| 282 | + "metadata": {}, |
| 283 | + "outputs": [], |
| 284 | + "source": [] |
| 285 | + } |
| 286 | + ], |
| 287 | + "metadata": { |
| 288 | + "kernelspec": { |
| 289 | + "display_name": "Python 3 (ipykernel)", |
| 290 | + "language": "python", |
| 291 | + "name": "python3" |
| 292 | + }, |
| 293 | + "language_info": { |
| 294 | + "codemirror_mode": { |
| 295 | + "name": "ipython", |
| 296 | + "version": 3 |
| 297 | + }, |
| 298 | + "file_extension": ".py", |
| 299 | + "mimetype": "text/x-python", |
| 300 | + "name": "python", |
| 301 | + "nbconvert_exporter": "python", |
| 302 | + "pygments_lexer": "ipython3", |
| 303 | + "version": "3.7.3" |
| 304 | + } |
| 305 | + }, |
| 306 | + "nbformat": 4, |
| 307 | + "nbformat_minor": 4 |
| 308 | +} |
0 commit comments