R.Haton, R. Ait Ali Yahia, V. Gauthier and A. Bouzeghoub, "[Re] Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks", ReScience C 2022
This Repository containing the code and article for the replication of the article 'Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks.' Proceedings of the 25th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2019 by S. Kumar, X. Zhang, and J. Leskovec.
create the conda environment for jodie:
$ conda create --name jodie python=3.10
$ conda activate jodie
$ python -m pip install -r requirements.txt $ python -m venv env
$ source env/bin/activate
$ python -m pip install -r requirements.txt $ python train_evaluate_wikipedia.pyThe folder jodie gathers the main functions, namely the JODIE model in model.py, the preprocess of data in preprocessing.py, the training loop in train.py and the file evaluate.py to evaluate the model.
To replicate results from table 2, lauch the following script with the hyperparameters setup (see each script for some template):
$ python train_evaluate_reddit_state.py
$ python train_evaluate_wikipedia_state.py
$ python train_evaluate_mooc_state.pyTo replicate results from table 3, lauch the following script wit the hyperparameters setup (see each script for some template):
$ python train_evaluate_reddit.py
$ python train_evaluate_wikipedia.py
$ python train_evaluate_lastfm.py