Skip to content

DriverNet-Project/DriverNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DriverNet

Distracted Driver Detection Using Deep Learning Through Depth-Grouped Pooling and Parallel Multi-Aspect Patching


0. Prerequisites

  • Python 3.10+
  • uv: Install UV
  • GPU(CUDA) available environment

1. Create Venv & Install Dependencies

uv venv
source .venv/bin/activate
uv sync

2. Download Dataset

Original Dataset was sourced from Kaggle.

Download preprocessed images from dohyeoplim/drivernet-images-depth-v2.

3. Configure Pipeline

Set data directories and model hyperparameters in config.yaml.

4. Run Training & Create Submission

uv run main.py --train-and-submit

Method 1

Depth Grouped Pooling (DGP)

5 13 14

Method 2

Parallel Multi-Aspect Patching (P-MAP)

15 19

Method 3

Strong Data Augmentations

21

Method 4

Post-Processing for Stability

24 25

About

Deep Learning Pipeline for Detecting Driver Distraction

Resources

Stars

Watchers

Forks