Intelligent GRE preparation platform with AI-enhanced vocabulary learning and adaptive study algorithms
- Flask Backend Architecture with RESTful API design and modular service structure
- Vanilla JavaScript Frontend with efficient DOM manipulation and responsive CSS3 design
- JSON Data Management with session-based user authentication and progress tracking
- Production-Ready Configuration with environment variables and deployment considerations
- OpenAI GPT-3.5 Integration with educational prompt engineering for vocabulary learning
- Multi-Provider AI Support (OpenAI, Zhipu AI) with intelligent fallback mechanisms
- Dynamic Content Creation for personalized memory techniques and etymology analysis
- Conversational AI Assistant providing contextual learning support and Q&A functionality
- Real-time Progress Monitoring with user session management and learning metrics
- Adaptive Difficulty System with performance-based word selection algorithms
- Study Session Analytics tracking completion rates and learning patterns
- User Data Persistence with JSON-based storage and future database migration readiness
- Modern Responsive Interface with tech-inspired animations and particle effects
- Multi-language Support (English/Chinese) with seamless interface switching
- Engaging Learning Experience through visual feedback and progress visualization
- Cross-platform Compatibility with mobile-first design and accessibility features
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ Frontend โโโโโถโ Flask Router โโโโโถโ AI Service โ
โ (Vanilla JS) โ โ (RESTful API) โ โ (OpenAI/Zhipu) โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ โ โ
โผ โผ โผ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ Session Storage โ โ User Management โ โ Content Cache โ
โ Progress Track โ โ JSON Data Store โ โ Fallback Logic โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
# Clone and setup
git clone https://github.com/yourusername/AceGRE.git
cd AceGRE
# Install dependencies
pip install -r requirements.txt
# Configure AI (optional)
export OPENAI_API_KEY="your_api_key"
# Run application
python app.py
# Access: http://localhost:8001- GRE Six-Choice Synonyms - Authentic GRE format with AI-generated distractors
- Etymology Analysis - Automatic root-word breakdown with semantic explanations
- Memory Techniques - AI-generated visual, phonetic, and associative mnemonics
- Adaptive Difficulty - Performance-based learning path optimization
- Progress Tracking - Real-time analytics and completion metrics
- Dynamic Content Generation - Personalized learning materials for each word
- Conversational Tutor - Real-time Q&A support for vocabulary questions
- Multi-Provider Support - OpenAI and Zhipu AI integration with fallbacks
- Context-Aware Learning - Tailored explanations based on user progress
- Dashboard Overview - Progress visualization and module navigation
- Word Learning Center - Comprehensive vocabulary practice environment
- Math Tutorial - Quantitative reasoning preparation (planned)
- Reading & Writing - Verbal reasoning enhancement (planned)
- Responsive Design - Seamless experience across all devices
- Session Management - Secure user authentication and data persistence
- Multi-language Support - English/Chinese interface switching
- Performance Optimization - Sub-second loading with efficient caching
AceGRE/
โโโ ๐ Backend Core
โ โโโ app.py # Flask application & routing engine
โ โ โโโ ๐ User Management # Registration, login, session handling
โ โ โโโ ๐ API Endpoints # RESTful services for frontend
โ โ โโโ ๐ฏ Word Service # Vocabulary data management
โ โ โโโ ๐ Progress Tracking # Learning analytics & metrics
โ โ
โ โโโ ai_service.py # AI integration & content generation
โ โ โโโ ๐ง OpenAI Interface # GPT-3.5 content generation
โ โ โโโ ๐ Zhipu AI Backup # Alternative AI provider
โ โ โโโ ๐ก Prompt Engineering # Educational content prompts
โ โ โโโ ๐ก๏ธ Fallback System # Offline content generation
โ โ
โ โโโ setup_local.py # Environment configuration script
โ
โโโ ๐จ Frontend Assets
โ โโโ static/css/
โ โ โโโ dashboard.css # Main dashboard styling
โ โ โ โโโ ๐ฑ Responsive Grid # Mobile-first layout system
โ โ โ โโโ โจ Animations # Tech-inspired visual effects
โ โ โ โโโ ๐ฏ UI Components # Card layouts & navigation
โ โ โ
โ โ โโโ style.css # Global styles & utilities
โ โ โ โโโ ๐จ Design System # Color schemes & typography
โ โ โ โโโ ๐ง Utility Classes # Reusable CSS components
โ โ โ โโโ ๐ Layout Helpers # Flexbox & grid utilities
โ โ โ
โ โ โโโ word_learning.css # Learning module styles
โ โ โโโ ๐ Learning Cards # Interactive word displays
โ โ โโโ ๐ฎ Exercise UI # Synonym & definition practice
โ โ โโโ ๐ซ Visual Effects # Particle animations
โ โ
โ โโโ static/js/
โ โโโ dashboard.js # Dashboard functionality
โ โ โโโ ๐ Navigation # Module switching & routing
โ โ โโโ ๐ฌ AI Chat # Floating assistant interface
โ โ โโโ ๐ Progress UI # Analytics visualization
โ โ
โ โโโ script.js # Core application logic
โ โ โโโ ๐ Authentication # Login/register handling
โ โ โโโ ๐ API Client # Fetch wrapper & error handling
โ โ โโโ ๐พ State Management # Session & local storage
โ โ
โ โโโ word_learning.js # Learning module engine
โ โโโ ๐ฏ Exercise Logic # Synonym & definition checks
โ โโโ ๐ง AI Enhancement # Dynamic content loading
โ โโโ ๐ Progress Track # Learning analytics
โ โโโ ๐ฎ Interaction # User input & feedback
โ
โโโ ๐ผ๏ธ Templates
โ โโโ dashboard.html # Main application interface
โ โ โโโ ๐ Study Modules # Four learning area cards
โ โ โโโ ๐ค AI Assistant # Floating chat interface
โ โ โโโ ๐ค User Management # Profile & progress display
โ โ
โ โโโ language.html # Initial language selection
โ โ โโโ ๐ Language Toggle # English/Chinese switching
โ โ โโโ ๐ Auth Forms # Login & registration
โ โ โโโ ๐จ Landing Design # Welcome interface
โ โ
โ โโโ word_learning.html # Interactive learning center
โ โโโ ๐ Word Display # Current vocabulary card
โ โโโ ๐ฏ Exercise Panels # Synonym & definition practice
โ โโโ ๐ง Memory Techniques # AI-generated learning aids
โ โโโ ๐ Progress Controls # Difficulty & session tracking
โ
โโโ ๐ Documentation
โ โโโ README.md # Project overview & setup guide
โ โโโ AI_SETUP.md # AI integration configuration
โ โโโ AI_STATUS.md # Service monitoring & status
โ โโโ CONFIG.md # Environment setup guide
โ
โโโ โ๏ธ Configuration
โโโ requirements.txt # Python dependencies
โโโ users.json # User data storage (development)
โโโ .env (gitignored) # Environment variables
๐ค User Interaction
โ
โผ
๐ Frontend (JavaScript)
โ
โโโ ๐ Authentication โโโโโโโโโ
โโโ ๐ Progress Tracking โโโโโโค
โโโ ๐ฏ Learning Exercises โโโโโค
โโโ ๐ฌ AI Chat โโโโโโโโโโโโโโโโค
โ
โผ
๐ Flask Router (app.py)
โ
โโโ /api/register โโโโโโโโโโโโ
โโโ /api/word/random โโโโโโโโโค
โโโ /api/word/enhance โโโโโโโโคโโ ๐ JSON Response
โโโ /api/ai/chat โโโโโโโโโโโโโค
โโโ /api/word/learned โโโโโโโโ
โ
โผ
๐ง AI Service (ai_service.py)
โ
โโโ ๐ค OpenAI GPT-3.5 โโโโโโโโ
โโโ ๐ Zhipu AI Backup โโโโโโโคโโ ๐ก Enhanced Content
โโโ ๐ก๏ธ Fallback Generator โโโโ
โ
โผ
๐พ Data Storage
โ
โโโ ๐ฅ User Progress (users.json)
โโโ ๐ Word Database (GRE_WORDS)
โโโ ๐ง AI Content Cache
| Module | Primary Function | Key Technologies |
|---|---|---|
| ๐ Flask Backend | HTTP routing & RESTful API services | Flask 3.0.0 + Session Management |
| ๐ค AI Service | Content generation & educational enhancement | OpenAI GPT-3.5 + Prompt Engineering |
| ๐จ Frontend | Interactive user interface & learning modules | Vanilla JavaScript + CSS3 Animations |
| ๐ Word Engine | Vocabulary data management & exercises | JSON Database + Progress Tracking |
| ๐ Auth System | User authentication & session security | Session Cookies + Input Validation |
| ๐ Analytics | Learning progress & performance metrics | Local Storage + Progress APIs |
# AI Service with multiple provider support
class AIService:
def generate_word_content(self, word: str, word_info: Dict) -> Dict:
try:
return self._generate_with_openai(word, word_info)
except APIError:
return self._fallback_content_generation(word, word_info)// Frontend state management
class LearningSession {
constructor() {
this.state = { currentWord: null, progress: 0, difficulty: 'medium' };
}
async loadWord() {
const response = await this.apiCall('/api/word/random', this.state);
this.updateUI(response.data);
}
}POST /api/register- User registration with validation and progress initializationPOST /api/login- Secure user authentication with session managementPOST /api/word/random- Get AI-enhanced vocabulary with difficulty adaptationPOST /api/word/enhance- Generate specific AI content (memory/etymology)POST /api/word/favorite- Toggle word favorite status for user collectionsPOST /api/word/learned- Mark words as learned with progress trackingPOST /api/ai/chat- Conversational AI tutor for learning assistanceGET /dashboard- Main learning dashboard with progress overviewGET /word-learning- Interactive vocabulary learning interfaceGET /logout- Secure session termination
| Component | Technology | Purpose |
|---|---|---|
| Backend | Flask 3.0.0 | Web framework with production-ready features |
| AI Engine | OpenAI GPT-3.5 | Content generation and NLP |
| Frontend | Vanilla JavaScript | Performance-optimized client-side logic |
| Styling | CSS3 + Animations | Modern responsive design |
| Data | JSON + Session | Development storage with database-ready architecture |
- โ Flask Backend Development - RESTful API design with 10+ endpoints and modular architecture
- โ Frontend Engineering - Vanilla JavaScript with efficient DOM manipulation and responsive design
- โ Database Management - JSON-based data storage with user session management and progress tracking
- โ Security Implementation - User authentication, session management, and input validation
- โ Code Organization - Clean separation of concerns with scalable project structure
- โ OpenAI API Integration - GPT-3.5 content generation with error handling and fallback systems
- โ Multi-Provider Architecture - Support for OpenAI and Zhipu AI with intelligent provider switching
- โ Prompt Engineering - Optimized educational prompts for vocabulary learning and memory techniques
- โ Real-time AI Chat - Conversational assistant with context-aware responses
- โ Cost Optimization - Efficient token usage and API call management
- โ Progress Tracking System - Real-time user analytics with completion metrics and difficulty adaptation
- โ Session Management - Secure user data persistence and learning state management
- โ Performance Metrics - Word completion tracking, favorite collections, and learning analytics
- โ Data Persistence - JSON-based storage with future database migration architecture
- โ User Experience Analytics - Learning pattern tracking and adaptive content delivery
- โ Responsive Web Design - Mobile-first CSS3 with cross-platform compatibility
- โ Interactive Animations - Tech-inspired particle systems and engaging visual feedback
- โ Multi-language Interface - English/Chinese support with seamless switching
- โ Accessibility Features - Screen reader support and keyboard navigation
- โ Performance Optimization - Efficient asset loading and smooth user interactions
# Production configuration example
class ProductionConfig:
SECRET_KEY = os.environ.get('SECRET_KEY')
DATABASE_URL = os.environ.get('DATABASE_URL') # PostgreSQL ready
REDIS_URL = os.environ.get('REDIS_URL') # Caching layer
AI_REQUEST_TIMEOUT = 10
MAX_REQUESTS_PER_MINUTE = 60- Environment Configuration - Secure API key and credential management
- Production Settings - Debug mode toggling and error handling
- Database Migration Path - Architecture ready for PostgreSQL/MongoDB upgrade
- Static Asset Management - Optimized CSS/JS delivery
- Cross-platform Compatibility - Tested on multiple browsers and devices
- AI-Enhanced Education: Dynamic content generation for personalized learning
- Adaptive Learning: Performance-based difficulty adjustment algorithms
- Multi-modal Memory: Visual, auditory, and kinesthetic learning techniques
- Progressive Enhancement: Graceful degradation ensuring universal accessibility
- Cost-Effective AI: Smart caching and fallback systems for optimal resource usage
- GraphQL API for efficient mobile app data fetching
- Machine Learning Analytics for learning pattern analysis
- Real-time Collaboration with WebSocket integration
- Microservices Architecture for enterprise scalability
- Advanced Caching with Redis for improved performance
Built with modern software engineering practices demonstrating full-stack development, AI integration, and scalable architecture design.
Showcasing expertise in Python/Flask, JavaScript, RESTful APIs, AI integration, and production-ready development practices.