Skip to content

Elevenheights/dataset-manager

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UltraMuse Dataset Manager

Professional LoRA training dataset preparation tool with AI-powered captioning and model management.

⚡ Quick Links:

🌟 Features

  • ZIP Upload - Drop your images once, extract automatically
  • AI Captioning - Qwen 2.5 VL 7B generates detailed, training-optimized captions
  • Virtual Scrolling - Handle 1000+ images smoothly
  • Batch Operations - Caption, edit, and manage hundreds of images at once
  • Add/Remove - Dynamically manage images in your dataset
  • AI Toolkit Export - One-click export to training format
  • Dev + Prod - Works locally and on RunPod

🚀 Quick Start

Local Development (Windows)

1. Start Dataset Manager

cd dataset-manager
npm install
npm run dev

→ Open http://localhost:3000

2. Start Caption Service (Optional - for AI captioning)

# Copy .env.caption.example to .env.caption
# Set DEV_MODEL_PATH to your Qwen GGUF model location
start_caption_service.bat

→ Service runs on http://localhost:11435

RunPod Production (True One-Click)

Using the UltraMuse RunPod Template:

  1. Go to RunPod
  2. Select "UltraMuse Dataset Manager" template
  3. Click "Deploy"
  4. Wait ~25 minutes ☕

Done! Access your apps:

  • Dataset Manager: http://<runpod-url>:3000
  • AI Toolkit: http://<runpod-url>:8675

The template automatically:

  • ✅ Downloads setup script from UltraMuse website
  • ✅ Clones Dataset Manager, AI Toolkit, ComfyUI
  • ✅ Downloads all models (~20GB): Qwen 2.5 VL, Z-Image-Turbo
  • ✅ Installs dependencies and starts all services
  • ✅ Everything runs in background

No SSH, no commands, no configuration required.


For Advanced Users: See deployment docs:

📖 Documentation

Start Here:

  • 📘 PROJECT_OVERVIEW.md ⭐ - Complete system documentation (current status, architecture, features, roadmap)
  • 🚀 QUICKSTART.md - Get running in 5 minutes (local or Docker)

Deployment:

  • 🌐 RUNPOD.md - RunPod deployment guide (template + manual setup, troubleshooting)

Technical Deep-Dives:

Recent Updates:

❓ FAQ

Q: Do I need to commit .env.caption?
A: No! It's in .gitignore and only for local dev. Production works without it.

Q: Will the RunPod template work without configuration files?
A: Yes! Everything uses smart defaults. No .env files needed on RunPod.

Q: Can I customize the deployment?
A: Yes, set DATASET_MANAGER_REPO environment variable to use your own fork.

🔧 Tech Stack

Frontend:

  • Next.js 16 (App Router)
  • React 19
  • Tailwind CSS 4
  • TypeScript
  • Virtual scrolling (@tanstack/react-virtual)

Backend:

  • Next.js API Routes
  • Node.js file system operations
  • node-stream-zip for robust extraction

AI Captioning:

  • Qwen 2.5 VL 7B (Q8 GGUF)
  • llama-cpp-python (GPU accelerated)
  • Flask API server

📦 Project Structure

dataset-manager/
├── src/                    # Next.js application
│   ├── app/               # Pages and API routes
│   ├── components/        # React components
│   ├── lib/               # Utilities
│   └── types/             # TypeScript types
├── data/                  # Local data storage
│   ├── datasets/          # Processed datasets
│   ├── uploads/           # Temporary uploads
│   └── exports/           # Dev mode exports
├── caption_service.py     # Qwen caption service
├── runpod_start.sh       # RunPod startup (automated)
├── start_caption_service.bat  # Windows caption service
└── package.json

🎯 Workflow

  1. Upload → Drop ZIP with images
  2. Caption → AI generates descriptions or edit manually
  3. Manage → Add/remove images, search, filter
  4. Export → One-click to AI Toolkit format
  5. Train → Use exported dataset in AI Toolkit

🔑 Key Capabilities

Dataset Management

  • Upload multiple ZIPs
  • Add images to existing datasets
  • Delete selected images
  • Search by filename or caption
  • Filter by caption status

AI Captioning

  • Hardcoded Qwen 2.5 VL model
  • Batch caption 100s of images
  • Custom prompts supported
  • Professional, training-optimized output

Export

  • Dev Mode: Exports to ./data/exports/
  • Production: Exports to /workspace/ai-toolkit/datasets/
  • AI Toolkit format: {dataset}/1_dataset/{image}.jpg + {image}.txt

⚙️ Configuration

Development

Create .env.caption for local caption service:

DEV_MODEL_PATH=C:\Models\Qwen2.5-VL-7B-Instruct-Q8_0.gguf
PORT=11435
N_GPU_LAYERS=-1

Production (RunPod)

Environment is automatically configured by runpod_start.sh

🆘 Troubleshooting

Upload fails with "Invalid filename"

  • The new node-stream-zip handles this automatically
  • Files with invalid characters are sanitized

Caption service won't start

  • Dev: Check DEV_MODEL_PATH in .env.caption
  • Prod: Verify model downloaded: /workspace/models/Qwen2.5-VL-7B-Instruct-Q8_0.gguf

Export doesn't work

  • Dev: Always works (local folder)
  • Prod: Check AI Toolkit models downloaded

📞 Support

Join our Discord for:

  • Free resources
  • Early model access
  • Support and troubleshooting

🔗 https://discord.gg/9jVnQHDx

📄 License

Private project - UltraMuse


Built with ❤️ for the LoRA training community

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published