Intelligent Multi-Agent Quantitative Trading Bot based on the Adversarial Decision Framework (ADF). Achieves high win rates and low drawdown in automated futures trading through market regime detection, price position awareness, dynamic score calibration, and multi-layer physical auditing.
Experience the bot immediately through our web interface: 👉 Live Dashboard
- 🕵️ Perception First: Unlike strict indicator-based systems, this framework prioritizes judging "IF we should trade" before deciding "HOW to trade".
- 🤖 17-Agent Collaboration: 17 highly specialized Agents (3 core + 14 optional) with LLM and Local variants for flexible deployment.
- 🎛️ Agent Configuration: Enable/disable optional agents via Dashboard, environment variables, or config file for customized strategy.
- 🎰 AUTO1 Symbol Selection: Intelligent single-symbol selection based on momentum, volume, and technical indicators.
- 🧠 Multi-LLM Support: Seamlessly switch between DeepSeek, OpenAI, Claude, Qwen, and Gemini via Dashboard settings.
- 📊 Multi-Account Trading: Manage multiple exchange accounts with unified API abstraction (currently Binance, extensible).
- ⚡ Async Concurrency: Currently fetches multi-timeframe data (5m/15m/1h) concurrently, ensuring data alignment at the snapshot moment.
- 🖥️ CLI Headless Mode: Run without Web UI for headless servers - rich terminal output with 93% less log verbosity.
- 🧪💰 Test/Live Mode Toggle: Quick switch between paper trading and live trading with visual confirmation.
- 🛡️ Safety First: Stop-loss direction correction, capital pre-rehearsal, and veto mechanisms to safeguard live trading.
- 📊 Full-Link Auditing: Every decision's adversarial process and confidence penalty details are recorded, achieving true "White-Box" decision-making.
The system uses a Multi-Layer Agent Architecture where data flows through specialized agents:
- 📡 Data Layer: SymbolSelectorAgent → DataSyncAgent (5m/15m/1h market data)
- 📊 Analysis Layer: QuantAnalystAgent, RegimeDetectorAgent, TriggerDetectorAgent, PositionAnalyzerAgent
- 🔮 ML Prediction: PredictAgent with LightGBM model
- 🧠 Semantic Strategy: TrendAgent (1h) + SetupAgent (15m) + TriggerAgent (5m)
- ⚖️ Decision Layer: DecisionCoreAgent with Bull vs Bear adversarial debate
- 🛡️ Risk Audit: RiskAuditAgent with absolute veto power
- 🚀 Execution: ExecutionEngine manages orders
- 🪞 Learning: ReflectionAgent analyzes trade history for continuous improvement
📖 Detailed Docs: See Data Flow Analysis for complete mechanisms.
| Exchange | Status | Register (Fee Discount) |
|---|---|---|
| Binance | ✅ Supported | Register |
| Bybit | 🗓️ Coming Soon | Register |
| OKX | 🗓️ Coming Soon | Register |
| Bitget | 🗓️ Coming Soon | Register |
| Exchange | Status | Register (Fee Discount) |
|---|---|---|
| Hyperliquid | 🗓️ Coming Soon | Register |
| Aster DEX | 🗓️ Coming Soon | Register |
| Lighter | 🗓️ Coming Soon | Register |
| AI Model | Status | Get API Key |
|---|---|---|
| DeepSeek | ✅ Supported | Get API Key |
| Qwen | ✅ Supported | Get API Key |
| OpenAI (GPT) | ✅ Supported | Get API Key |
| Claude | ✅ Supported | Get API Key |
| Gemini | ✅ Supported | Get API Key |
| Grok | 🗓️ Coming Soon | Get API Key |
| Kimi | 🗓️ Coming Soon | Get API Key |
For Complete Beginners:
- This is an automated trading bot that trades cryptocurrency futures on Binance
- It uses AI (LLM) and machine learning to make trading decisions
- Test mode lets you practice with virtual money before risking real funds
- The bot runs 24/7 and makes decisions based on market analysis
Technical Level: Intermediate Python knowledge recommended but not required for basic usage.
No need to manually configure Python environment! Use our automated installation scripts:
# 1. Clone the project
git clone <your-repo-url>
cd LLM-TradeBot
# 2. One-click install
chmod +x install.sh
./install.sh
# 3. Configure API keys
vim .env # Edit and add your API keys
# 4. One-click start
./start.shVisit Dashboard: http://localhost:8000
# 1. Clone the project
git clone <your-repo-url>
cd LLM-TradeBot
# 2. Configure environment
cp .env.example .env
vim .env # Edit and add your API keys
# 3. One-click start
cd docker && docker-compose up -d📖 Detailed Guide: See QUICKSTART.md
Before you start, make sure you have:
- ✅ Git installed (Download here)
- ✅ Python 3.11+ OR Docker (installation script will check)
- ✅ Nothing else needed! Test mode uses virtual balance
- ✅ Binance Account (Sign up here)
- ✅ Binance Futures API Keys with trading permissions
- ✅ USDT in Futures Wallet (minimum $100 recommended)
⚠️ Risk Warning: Only trade with money you can afford to lose
The bot supports 5 LLM providers. Configure via environment variables or Dashboard Settings:
| Provider | Model | Cost | Speed | Get API Key |
|---|---|---|---|---|
| DeepSeek (Recommended) | deepseek-chat | 💰 Low | ⚡ Fast | platform.deepseek.com |
| OpenAI | gpt-4o, gpt-4o-mini | 💰💰💰 High | ⚡ Fast | platform.openai.com |
| Claude | claude-3-5-sonnet | 💰💰 Medium | ⚡ Fast | console.anthropic.com |
| Qwen | qwen-turbo, qwen-plus | 💰 Low | ⚡ Fast | dashscope.console.aliyun.com |
| Gemini | gemini-1.5-pro | 💰 Low | ⚡ Fast | aistudio.google.com |
Method 1: Environment Variables (Recommended)
Edit your .env file:
# Select LLM Provider (required)
LLM_PROVIDER=deepseek # Options: deepseek, openai, claude, qwen, gemini
# Configure API Key for your selected provider
DEEPSEEK_API_KEY=sk-xxx # if using DeepSeek
OPENAI_API_KEY=sk-xxx # if using OpenAI
CLAUDE_API_KEY=sk-xxx # if using Claude
QWEN_API_KEY=sk-xxx # if using Qwen
GEMINI_API_KEY=xxx # if using GeminiMethod 2: Dashboard Settings
- Open Dashboard at
http://localhost:8000 - Click ⚙️ Settings → API Keys tab
- Select your preferred LLM provider and enter API key
- Click Save - changes apply on next trading cycle
Method 3: Config File (config.yaml)
llm:
provider: "deepseek" # or: openai, claude, qwen, gemini
model: "deepseek-chat" # provider-specific model
temperature: 0.3
max_tokens: 2000
api_keys:
deepseek: "sk-xxx"
openai: "sk-xxx"
# ... other providersIf you prefer manual setup:
pip install -r requirements.txt# Copy environment variable template
cp .env.example .env
# Set API Keys
./set_api_keys.sh# Copy config template
cp config.example.yaml config.yamlEdit config.yaml to set parameters:
- Trading pair (symbol)
- Max position size (max_position_size)
- Leverage (leverage)
- Stop loss/Take profit % (stop_loss_pct, take_profit_pct)
You can also configure all settings from the Dashboard:
Settings Modal with 4 tabs: API Keys (LLM Provider), Accounts (Multi-Account), Trading, Strategy (Prompt)
Built-in modern real-time monitoring dashboard.
Simulates trading with virtual balance ($1000). No real trades executed.
# Start with test mode
python main.py --test --mode continuousRun the bot without Web Dashboard, perfect for headless servers or terminal-only environments.
# Basic CLI mode (manual start required)
python main.py --test --headless
# Auto-start mode (trading begins immediately)
python main.py --test --headless --auto-start
# Custom interval (1 minute cycles)
python main.py --test --headless --auto-start --interval 1Features:
- ✅ No Web UI - runs entirely in terminal
- ✅ Rich formatted output with colors and tables
- ✅ Real-time price updates and trading decisions
- ✅ Account summary panel after each cycle
- ✅ Graceful shutdown with session statistics (Ctrl+C)
- ✅ Optimized log output (93% less verbose than Web mode)
Output Example:
╔═══════════════════════════════════════════════════════╗
║ 🤖 LLM-TradeBot CLI - TEST MODE ║
╚═══════════════════════════════════════════════════════╝
─────────── Cycle #1 | LINKUSDT, NEARUSDT ────────────
🔍 Analyzing LINKUSDT...
✅ Data ready: $13.29
⏸️ HOLD | Confidence: 45.0%
Reason: No clear 1h trend
╭─────────────── Account Summary ───────────────────╮
│ 💰 Equity: $1,000.00 │
│ 📊 Available: $900.00 │
│ 📈 PnL: $0.00 (0.00%) │
╰───────────────────────────────────────────────────╯
⏳ Next cycle in 1.0 minutes...
For production live trading, use the simplified CLI script that skips non-essential components:
# Activate virtual environment first
source venv/bin/activate
# Test mode - single run
python simple_cli.py --mode once
# Test mode - continuous (3-minute intervals)
python simple_cli.py --mode continuous --interval 3
# LIVE mode - continuous trading (⚠️ REAL MONEY)
python simple_cli.py --mode continuous --interval 3 --live
# Custom symbols (overrides .env)
python simple_cli.py --mode continuous --symbols BTCUSDT,ETHUSDT --live
# AUTO3 mode - automatic symbol selection
python simple_cli.py --mode continuous --symbols AUTO3 --liveFeatures:
- ✅ Minimal footprint - only core trading components loaded
- ✅ Production-ready - designed for stable 24/7 operation
- ✅ AUTO3 support - automatic best symbol selection via backtest
- ✅ LLM integration - full multi-agent decision system
- ✅ Risk management - built-in risk audit and position limits
- ✅ Graceful shutdown - Ctrl+C for clean exit
Configuration:
The script reads trading symbols from .env file by default:
# In your .env file
TRADING_SYMBOLS=BTCUSDT,ETHUSDT
# Or use AUTO3 for automatic selection
TRADING_SYMBOLS=AUTO3- Valid Binance Futures API keys in
.env - Sufficient USDT balance in Futures wallet
- API permissions: Read + Futures Trading enabled
- DeepSeek/OpenAI API key for LLM decisions
# Start live trading
python main.py --mode continuousPrerequisites for Live Trading:
- Valid Binance Futures API keys configured in
.env- Sufficient USDT balance in Futures wallet
- API permissions: Read + Futures Trading enabled
After startup, visit: http://localhost:8000 (or use our Cloud Hosting)
Dashboard Features:
- 🧪💰 Test/Live Mode Toggle: Quick switch between paper trading and real trading with visual confirmation
- 📈 K-Line Chart: TradingView Lightweight Charts with real-time candlestick updates, auto-synced to current symbol
- 💰 Account Summary Panel: Real-time display of wallet balance, available balance, equity, initial capital, PnL, and position details
- 🤖 Multi-Agent Decision Framework: Visual flow diagram showing all 15 agents organized by layer:
- 📡 Data Layer: DataSync Agent, Symbol Selector
- 📊 Analysis Layer: Quant Analyst, Regime Detector, Trigger Detector, Position Analyzer, Predict Agent
- 🧠 LLM Strategy Layer: Trend Agent, Trigger Agent, AI Filter
- ⚖️ Decision Layer: Decision Core with Bull/Bear debate visualization
- 🛡️ Execution Layer: Risk Audit, Final Output, Reflection Agent
- 🎛️ Agent Selection Panel: Configure optional agents via Settings → Agents tab with checkboxes
- 📡 Agent Activity Feed: Real-time event stream showing agent status updates
- 📜 Trade History: Complete record of all trades with Open/Close cycles and PnL statistics
- 📋 Live Log Output: Real-time scrolling logs with agent documentation sidebar, simplified/detailed mode toggle
All indicators use semantic icons and two-line display format for quick visual scanning:
📊 System Columns
- Time: Decision timestamp
- Cycle: Trading cycle number
- Symbol: Trading pair (e.g., BTCUSDT)
⚖️ Critic (Decision Core)
- Result: Final action (LONG/SHORT/WAIT)
- Conf: Decision confidence (0-100%)
- Reason: Decision rationale (hover for full text)
👨🔬 Strategist (Quant Analysis)
- 1h/15m/5m: Multi-timeframe signals
- Format:
T:UP(Trend) /O:DN(Oscillator) - Colors: Green (UP), Red (DN), Gray (NEU)
- Format:
- Sent: Sentiment score with icon (📈/📉/➖)
🔮 Prophet (ML Prediction)
- Format:
🔮↗+65% - Direction: ↗UP (>55%), ➖NEU (45-55%), ↘DN (<45%)
🐂🐻 Bull/Bear (Adversarial Analysis)
- Bull:
↗Bull/🔥Bull+ confidence % - Bear:
↘Bear/🔥Bear+ confidence % - Stance: 🔥Strong, ↗Slight, ➖Neutral, ❓Unclear
🌍 Context (Market State)
- Regime:
📈UP/📉DN/〰️CHOP - Position:
🔝HIGH/➖MID/🔻LOW+ percentage
🛡️ Guardian (Risk Control)
- Risk:
✅SAFE/⚠️WARN/🚨DANGER - Guard:
✅PASS/⛔BLOCK(with reason on hover) - Aligned: ✅ Multi-period aligned / ➖ Not aligned
# Stop the bot
pkill -f "python main.py"
# Restart the bot (Test Mode)
pkill -f "python main.py"; sleep 2; python main.py --test --mode continuous
# View running processes
ps aux | grep "python main.py"
# View logs in terminal (if running in background)
tail -f logs/trading_$(date +%Y%m%d).logLLM-TradeBot/
├── src/ # Core Source Code
│ ├── agents/ # Multi-Agent Definitions (DataSync, Quant, Decision, Risk)
│ ├── api/ # Binance API Client
│ ├── data/ # Data Processing (processor, validator)
│ ├── exchanges/ # 🆕 Multi-Account Exchange Abstraction
│ │ ├── base.py # BaseTrader ABC + Data Models
│ │ ├── binance_trader.py # Binance Futures Implementation
│ │ ├── factory.py # Exchange Factory
│ │ └── account_manager.py # Multi-Account Manager
│ ├── execution/ # Order Execution Engine
│ ├── features/ # Feature Engineering
│ ├── llm/ # 🆕 Multi-LLM Interface
│ │ ├── base.py # BaseLLMClient ABC
│ │ ├── openai_client.py # OpenAI Implementation
│ │ ├── deepseek_client.py # DeepSeek Implementation
│ │ ├── claude_client.py # Anthropic Claude
│ │ ├── qwen_client.py # Alibaba Qwen
│ │ ├── gemini_client.py # Google Gemini
│ │ └── factory.py # LLM Factory
│ ├── monitoring/ # Monitoring & Logging
│ ├── risk/ # Risk Management
│ ├── strategy/ # LLM Decision Engine
│ └── utils/ # Utilities (DataSaver, TradeLogger, etc.)
│
├── docs/ # Documentation
│ ├── data_flow_analysis.md # Data Flow Analysis
│ └── *.png # Architecture & Flow Diagrams
│
├── data/ # Structured Data Storage (Archived by Date)
│ ├── market_data/ # Raw K-Line Data
│ ├── indicators/ # Technical Indicators
│ ├── features/ # Feature Snapshots
│ ├── decisions/ # Final Decision Results
│ └── execution/ # Execution Records
│
├── config/ # Configuration Files
│ └── accounts.example.json # 🆕 Multi-Account Config Template
│
├── logs/ # System Runtime Logs
├── tests/ # Unit Tests
│
├── main.py # Main Entry Point (Multi-Agent Loop)
├── config.yaml # Trading Parameters
├── .env # API Key Configuration
└── requirements.txt # Python Dependencies
The system uses a Four-Layer Strategy Filter architecture with 17 specialized Agents collaborating to make trading decisions. Core agents are always enabled, while optional agents can be configured via Dashboard or config.yaml.
Key Feature: Agents have LLM and Local variants - LLM versions use AI for semantic analysis, while Local versions use fast rule-based heuristics.
| Agent | Role | Responsibility |
|---|---|---|
| 🕵️ DataSyncAgent | The Oracle | Async concurrent fetch of 5m/15m/1h K-lines, ensuring snapshot consistency |
| 👨🔬 QuantAnalystAgent | The Strategist | Generates trend scores, oscillators, sentiment, and OI Fuel (Volume Proxy) |
| 🛡️ RiskAuditAgent | The Guardian | Risk audit with absolute veto power on all trades |
| Agent | Role | Responsibility |
|---|---|---|
| 🎰 SymbolSelectorAgent | AUTO1/3 Selector | Two-stage backtest selection: AI500 Top10 + Majors → Top 5 (1h) → Top 2 (15m) |
| Agent | Role | Responsibility |
|---|---|---|
| 🎯 PredictAgent | The Prophet | Predicts price probability using LightGBM ML model (auto-retrain every 2h) |
| 🤖 AIPredictionFilterAgent | AI Validator | AI-Trend alignment verification with veto power |
| 🔮 RegimeDetectorAgent | Regime Analyzer | Detects market state (Trending/Choppy/Ranging) and ADX strength |
| 📍 PositionAnalyzerAgent | Position Tracker | Price position analysis (High/Mid/Low zone) and S/R level detection |
| ⚡ TriggerDetectorAgent | Entry Scanner | 5m pattern detection and trigger signal scoring |
| Agent | LLM Version | Local Version | Responsibility |
|---|---|---|---|
| 📈 TrendAgent | TrendAgentLLM |
TrendAgent |
1h trend semantic analysis (UPTREND/DOWNTREND) |
| 📊 SetupAgent | SetupAgentLLM |
SetupAgent |
15m setup zone analysis (KDJ, Bollinger Bands, entry zones) |
| 🔥 TriggerAgent | TriggerAgentLLM |
TriggerAgent |
5m trigger signal analysis (CONFIRMED/WAITING) |
| Agent | Role | Responsibility |
|---|---|---|
| ⚖️ DecisionCoreAgent | The Critic | LLM Bull/Bear debate decision engine with confidence scoring |
| 🚀 ExecutionEngine | The Executor | Precision order execution and state management |
| 🪞 ReflectionAgent | The Philosopher | Trade reflection every 10 trades (LLM or Local variant) |
Agents can be configured in multiple ways (priority order):
- Dashboard Settings → Agents tab with checkboxes for each optional agent
- Environment Variables →
AGENT_<NAME>=true/false(e.g.,AGENT_PREDICT_AGENT=false) - config.yaml →
agents:section
# config.yaml example
agents:
# Prediction & Analysis
predict_agent: true # ML probability prediction
ai_prediction_filter_agent: true # AI veto mechanism
regime_detector_agent: true # Market state detection
position_analyzer_agent: false # Price position analysis
trigger_detector_agent: true # 5m pattern detection
# Semantic Analysis - LLM variants (expensive, disabled by default)
trend_agent_llm: false # 1h trend LLM analysis
setup_agent_llm: false # 15m setup LLM analysis
trigger_agent_llm: false # 5m trigger LLM analysis
# Semantic Analysis - Local variants (fast, enabled by default)
trend_agent_local: true # 1h trend rule-based analysis
setup_agent_local: true # 15m setup rule-based analysis
trigger_agent_local: true # 5m trigger rule-based analysis
# Reflection
reflection_agent_llm: false # Trade reflection via LLM
reflection_agent_local: true # Trade reflection via rules
# Symbol Selection
symbol_selector_agent: true # AUTO symbol selectionLayer 1: Trend + Fuel (1h EMA + Volume Proxy)
↓ PASS/FAIL
Layer 2: AI Filter (PredictAgent direction alignment)
↓ PASS/VETO
Layer 3: Setup (15m KDJ + Bollinger Bands entry zone)
↓ READY/WAIT
Layer 4: Trigger (5m Pattern + RVOL volume confirmation)
↓ CONFIRMED/WAITING
↓
🧠 LLM Decision (DeepSeek Bull/Bear Debate)
↓
🛡️ Risk Audit (Veto Power)
↓
🚀 Execution
📖 See System Architecture Overview section above for visual diagrams.
📐 Mermaid Diagram (Interactive)
graph TB
subgraph "1️⃣ Data Collection Layer"
A["🕵️ DataSyncAgent<br/>(The Oracle)"] --> MS["MarketSnapshot<br/>5m/15m/1h K-lines"]
end
subgraph "2️⃣ Quant Analysis Layer"
MS --> QA["👨🔬 QuantAnalystAgent<br/>(The Strategist)"]
QA --> TS["📈 TrendSubAgent"]
QA --> OS["📊 OscillatorSubAgent"]
QA --> SS["💹 SentimentSubAgent"]
TS & OS & SS --> QR["Quant Signals"]
end
subgraph "3️⃣ Prediction Layer"
MS --> PA["🔮 PredictAgent<br/>(The Prophet)"]
PA --> ML["LightGBM Model<br/>Auto-Train 2h"]
ML --> PR["P_Up Prediction"]
end
subgraph "4️⃣ Bull/Bear Adversarial Layer"
MS --> BULL["🐂 Bull Agent<br/>(The Optimist)"]
MS --> BEAR["🐻 Bear Agent<br/>(The Pessimist)"]
BULL --> BP["Bull Perspective"]
BEAR --> BRP["Bear Perspective"]
end
subgraph "5️⃣ Reflection Layer"
TH["📜 Trade History<br/>Last 10 Trades"] --> REF["🧠 ReflectionAgent<br/>(The Philosopher)"]
REF --> RI["Reflection Insights<br/>Patterns & Recommendations"]
end
subgraph "6️⃣ Decision Layer"
QR & PR & BP & BRP & RI --> DC["⚖️ DecisionCoreAgent<br/>(The Critic)"]
DC --> RD["RegimeDetector"]
DC --> POS["PositionAnalyzer"]
RD & POS --> VR["VoteResult<br/>Action + Confidence"]
end
subgraph "7️⃣ Risk Audit Layer"
VR --> RA["🛡️ RiskAuditAgent<br/>(The Guardian)"]
RA --> AR["AuditResult<br/>Risk Level + Guard"]
end
subgraph "8️⃣ Execution Layer"
AR --> EE["🚀 ExecutionEngine<br/>(The Executor)"]
EE -.->|"Trade Complete"| TH
end
%% Styling for Agent Nodes
style A fill:#4A90E2,color:#fff,stroke:#2563EB,stroke-width:2px
style QA fill:#7ED321,color:#fff,stroke:#059669,stroke-width:2px
style PA fill:#BD10E0,color:#fff,stroke:#9333EA,stroke-width:2px
style BULL fill:#F8E71C,color:#333,stroke:#CA8A04,stroke-width:2px
style BEAR fill:#F8E71C,color:#333,stroke:#CA8A04,stroke-width:2px
style REF fill:#00CED1,color:#fff,stroke:#0891B2,stroke-width:2px
style DC fill:#F5A623,color:#fff,stroke:#EA580C,stroke-width:2px
style RA fill:#D0021B,color:#fff,stroke:#DC2626,stroke-width:2px
style EE fill:#9013FE,color:#fff,stroke:#7C3AED,stroke-width:2px
%% Styling for Output Nodes
style MS fill:#1E3A5F,color:#fff
style QR fill:#1E3A5F,color:#fff
style PR fill:#1E3A5F,color:#fff
style BP fill:#1E3A5F,color:#fff
style BRP fill:#1E3A5F,color:#fff
style RI fill:#1E3A5F,color:#fff
style VR fill:#1E3A5F,color:#fff
style AR fill:#1E3A5F,color:#fff
style TH fill:#1E3A5F,color:#fff
📖 Detailed Docs: See Data Flow Analysis for complete mechanisms.
Professional-grade backtesting system for strategy validation before live trading:
Features:
- 📊 Multi-Tab Parallel Backtests: Run up to 5 backtests simultaneously with independent configurations
- 📈 Real-time Progress: Live equity curve, drawdown chart, and trade markers
- 🎯 LLM-Enhanced Mode: Test the full multi-agent decision system including DeepSeek analysis
- 📅 Flexible Date Ranges: Quick presets (1/3/7/14/30 days) or custom date selection
- ⚙️ Advanced Parameters: Configurable leverage, stop-loss, take-profit, and trailing stops
- 📋 Detailed Metrics: Total return, Sharpe/Sortino ratios, win rate, max drawdown, and more
- 💾 Full Logging: All decisions and LLM interactions saved for analysis
Access: Visit http://localhost:8000/backtest after starting the bot.
The system automatically records intermediate processes for each cycle in the data/ directory, organized by date for easy review and debugging:
data/
├── market_data/ # Raw Multi-Timeframe K-Lines
│ └── {date}/
│ ├── BTCUSDT_5m_{timestamp}.json
│ ├── BTCUSDT_5m_{timestamp}.csv
│ ├── BTCUSDT_5m_{timestamp}.parquet
│ ├── BTCUSDT_15m_{timestamp}.json
│ └── BTCUSDT_1h_{timestamp}.json
│
├── indicators/ # Full Technical Indicators DataFrames
│ └── {date}/
│ ├── BTCUSDT_5m_{snapshot_id}.parquet
│ ├── BTCUSDT_15m_{snapshot_id}.parquet
│ └── BTCUSDT_1h_{snapshot_id}.parquet
│
├── features/ # Feature Snapshots
│ └── {date}/
│ ├── BTCUSDT_5m_{snapshot_id}_v1.parquet
│ ├── BTCUSDT_15m_{snapshot_id}_v1.parquet
│ └── BTCUSDT_1h_{snapshot_id}_v1.parquet
│
├── context/ # Quant Analysis Summary
│ └── {date}/
│ └── BTCUSDT_quant_analysis_{snapshot_id}.json
│
├── llm_logs/ # LLM Input Context & Voting Process
│ └── {date}/
│ └── BTCUSDT_{snapshot_id}.md
│
├── decisions/ # Final Weighted Vote Results
│ └── {date}/
│ └── BTCUSDT_{snapshot_id}.json
│
└── execution/ # Execution Tracking
└── {date}/
└── BTCUSDT_{timestamp}.json
- JSON: Human-readable, used for configuration and decision results
- CSV: High compatibility, easy for Excel import
- Parquet: Efficient compression, used for large-scale time-series data
- API Keys: Keep them safe, DO NOT commit to version control.
- Test First: Use
--testargument to run simulations first. - Risk Control: Set reasonable stop-loss and position limits in
config.yaml. - Minimal Permissions: Grant only necessary Futures Trading permissions to API keys.
- Monitoring: Regularly check the
logs/directory for anomalies.
| Document | Description |
|---|---|
| README.md | Project Overview & Quick Start |
| Data Flow Analysis | Complete Data Flow Mechanisms |
| API Key Guide | API Key Configuration Guide |
| Config Example | Trading Parameters Template |
| Env Example | Environment Variables Template |
2026-01-19:
- ✅ Dashboard UI Enhancement: Modernized dashboard with gold-themed NoFX design.
- K-Line Chart: TradingView Lightweight Charts integration for real-time candlestick display
- Account Summary Panel: Real-time balance, equity, PnL, and position tracking
- Test/Live Mode Toggle: Quick switch with visual confirmation and safety warnings
- Agent Selection Panel: Configure optional agents via Settings → Agents tab
- Current Symbol Display: Shows AUTO1 selected symbol in agent framework header
- ✅ 17-Agent Framework: Expanded to 17 specialized agents (3 core + 14 optional) with LLM and Local variants.
- 3 Core agents (DataSync, QuantAnalyst, RiskAudit) always enabled
- 14 Optional agents: LLM variants for AI analysis, Local variants for fast rule-based heuristics
- Added SetupAgent for 15m setup zone analysis (KDJ, Bollinger Bands, entry zones)
2026-01-07:
- ✅ AUTO3 Two-Stage Symbol Selection: Enhanced
SymbolSelectorAgentwith two-stage filtering.- Stage 1 (Coarse Filter): 1h backtest on AI500 Top10 + Major coins (~16 symbols) → Top 5
- Stage 2 (Fine Filter): 15m backtest on Top 5 → Top 2 performers
- Expanded candidate pool: AI500 (30+ AI/Data coins) + Majors (BTC, ETH, SOL, BNB, XRP, DOGE)
- Auto-refresh every 6 hours with smart caching
- ✅ BacktestAgentRunner Parity: Full consistency between backtest and live trading environments.
- Risk Audit Agent integrated into backtest flow
- Four-Layer Strategy Filter applied in backtests
- Position analysis and regime detection enabled
- ✅ Enhanced Backtest CLI:
python backtest.pywith support for:- Multi-symbol backtesting
- Agent strategy mode (
--strategy-mode agent) - LLM enhancement option (
--use-llm) - Detailed HTML reports with equity curves
2025-12-31:
- ✅ Full Chinese Internationalization (i18n): Complete bilingual support with language toggle button.
- Dashboard UI elements (headers, tables, buttons) fully translated
- Agent documentation sidebar with Chinese descriptions
- Seamless language switching without page reload
2025-12-28:
- ✅ Dashboard Log Mode Toggle: Switch between Simplified (agent summaries) and Detailed (full debug) log views.
- ✅ Net Value Curve Enhancement: Smart x-axis labels that adapt to data volume while preserving first cycle timestamp.
2025-12-25:
- ✅ ReflectionAgent (The Philosopher): New agent that analyzes every 10 trades and provides insights to improve future decisions.
- ✅ Trading Retrospection: Automatic pattern detection, confidence calibration, and actionable recommendations.
- ✅ Decision Integration: Reflection insights are injected into Decision Agent prompts for continuous learning.
2025-12-24:
- ✅ Multi-LLM Support: Added support for 5 LLM providers (DeepSeek, OpenAI, Claude, Qwen, Gemini) with unified interface.
- ✅ Dashboard LLM Settings: Switch LLM provider and API keys directly from Dashboard Settings.
- ✅ Multi-Account Architecture: New
src/exchanges/module withBaseTraderabstraction for multi-exchange support. - ✅ Account Manager: Manage multiple trading accounts via Dashboard or
config/accounts.json.
2025-12-21:
- ✅ ML Model Upgrade: Upgraded
PredictAgentto use LightGBM machine learning model. - ✅ Auto-Training: Implemented automatic model retraining every 2 hours to adapt to market drifts.
- ✅ Dashboard Refinement: Enhanced dashboard with auto-scrolling logs, robust scrollbars, and ML probability display.
2025-12-20:
- ✅ Adversarial Decision Framework: Introduced
PositionAnalyzerandRegimeDetector. - ✅ Confidence Score Refactor: Implemented dynamic confidence penalties.
- ✅ Full-Link Auditing: Implemented complete intermediate state archiving.
Q: Is this safe to use? Will I lose money? A: Test mode is 100% safe - it uses virtual money. For live trading, only use funds you can afford to lose. Cryptocurrency trading is risky.
Q: Do I need to know Python to use this? A: No! Just follow the Quick Start guide. You only need Python installed, not programming knowledge.
Q: How much money do I need to start? A: Test mode is free. For live trading, minimum $100 USDT recommended, but start small while learning.
Q: Will the bot trade 24/7? A: Yes, once started in continuous mode, it runs non-stop analyzing markets and making decisions.
Q: How do I know if it's working?
A: Open http://localhost:8000 in your browser to see the real-time dashboard with live logs and charts.
Q: Which exchanges are supported? A: Currently only Binance Futures. Spot trading and other exchanges are not supported.
Q: Can I customize the trading strategy?
A: Yes! Edit config.yaml for basic parameters. Advanced users can modify agent logic in src/ directory.
Q: What's the difference between Test and Live mode? A: Test mode simulates trading with $1000 virtual balance. Live mode executes real trades on Binance.
Q: How do I stop the bot?
A: Press Ctrl+C in the terminal, or run pkill -f "python main.py"
Q: Why is the dashboard not loading?
A: Make sure the bot is running and visit http://localhost:8000. Check firewall settings if issues persist.
Q: "ModuleNotFoundError" when starting
A: Run pip install -r requirements.txt to install all dependencies.
Q: "API Key invalid" error
A: Check your .env file has correct Binance API keys. For test mode, API keys are optional.
Q: Bot keeps saying "WAIT" and not trading A: This is normal! The bot is conservative and only trades when conditions are favorable. Check the dashboard logs for reasoning.
Q: How do I update to the latest version?
A: Run git pull origin main then restart the bot.
Issues and Pull Requests are welcome!
This project is licensed under the GNU Affero General Public License v3.0. See the LICENSE file for details.
Empowered by AI, Focused on Precision, Starting a New Era of Intelligent Quant! 🚀







