AI Localization Consultant @ Pratilipi Comics
Aspiring: AI Engineer (MLOps, AIOps, LLMOps & Agents) | Recent CS Graduate @DSU Bangalore | 6+ AI Systems Built | 1 Patent + 1 Publication
| Project | Type | Key Tech | Links |
|---|---|---|---|
| VedicMed AI Assistant | Groq Vision, ElevenLabs, Gradio | ๐ Repo | |
| Compliance-GPT | Weaviate, FastAPI, Groq | ๐ Repo โข ๐งช Tests โข ๐ณ Docker โข ๐ Demo | |
| AudioRaG Enterprise | AssemblyAI, Qdrant, SambaNova | ๐ Repo | |
| TruthTracker (AntiAi) | EfficientNet-B4, FastAPI, React | ๐ Repo | |
| AI Real Estate Agent | Gemini AI, Firecrawl, Redis | ๐ Repo |
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ๐ฏ SOLVING REAL AI PROBLEMS ๐ฏ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ "Stable, deployment-ready AI systems with Docker, CI/CD, โ
โ automated testing, and monitoring for real-world impact" โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
I structure AI/ML projects through a rigorous, business-driven methodology that ensures reliability, scalability, and real-world impact. My systems are designed to be stable and deployment-ready, incorporating containerization (Docker), automated testing, CI/CD pipelines, and monitoring capabilities:
1. Business Requirements & Problem Validation
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ STEP 1: VALIDATION โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โข Define core business problem and quantifiable ROI โ
โ โข Research existing solutions and competitive advantages โ
โ โข Establish success criteria (latency, accuracy, cost) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Define the core business problem and quantifiable ROI metrics
- Research existing solutions and identify competitive advantages
- Establish success criteria (latency SLAs, accuracy thresholds, cost per prediction)
2. Reliability & Quality Strategy
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ STEP 2: QUALITY โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โข Hallucination reduction mechanisms โ
โ โข Error handling and fallback systems โ
โ โข Evaluation metrics aligned with business KPIs โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Implement hallucination reduction mechanisms (RAG, fine-tuning, prompt engineering, validation layers)
- Design robustness strategies (error handling, fallback mechanisms, circuit breakers)
- Define evaluation metrics aligned with business KPIs
3. System Design & Architecture
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ STEP 3: ARCHITECTURE โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โข Optimize latency, throughput, scalability โ
โ โข Model selection vs API trade-offs โ
โ โข Infrastructure and cost optimization โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Optimize for latency, throughput, and scalability requirements
- Evaluate model selection vs. API trade-offs (local deployment vs. cloud APIs)
- Design infrastructure (compute resources, caching, database schema)
- Plan cost optimization and resource utilization
4. Evaluation & Benchmarking
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ STEP 4: BENCHMARKING โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โข Baseline metrics and comparative analysis โ
โ โข A/B testing and validation โ
โ โข Production-representative data testing โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Establish baseline metrics (accuracy, precision, recall, F1-score, latency)
- Perform comparative analysis against baselines and competitors
- Conduct A/B testing and validation on hold-out datasets
- Use production-representative data for realistic assessment
5. Integration & Deployment
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ STEP 5: DEPLOYMENT โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โข Clean APIs with documentation โ
โ โข CI/CD pipelines for automated testing โ
โ โข Blue-green / Canary rollout strategies โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Design clean APIs with comprehensive documentation
- Ensure backward compatibility and semantic versioning
- Implement CI/CD pipelines for automated testing and deployment
- Plan rollout strategy (blue-green or canary deployments)
6. Production Monitoring & Observability
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ STEP 6: MONITORING โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โข Real-time metrics and distributed tracing โ
โ โข Alerting for SLA violations โ
โ โข Rate limiting and graceful degradation โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Monitor real-time metrics (latency, error rates, token usage, cost)
- Implement comprehensive logging and distributed tracing
- Set up alerting for SLA violations and anomalies
- Handle concurrent users with rate limiting and graceful degradation
7. Continuous Improvement
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ STEP 7: ITERATION โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โข Production data analysis and feedback loops โ
โ โข Performance and cost optimization โ
โ โข Model retraining and feature development โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Analyze production data and user feedback
- Iterate on model performance with real-world insights
- Optimize costs and performance based on deployment data
- Maintain feedback loops for model retraining and feature development
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โ
โ GOAL: Evolve into a full-fledged AI/ML Architect specializing in โ
โ AI Ops, MLOps, and LLMOps โ building the stable, scalable โ
โ backends that power the next generation of AI systems. โ
โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
I am not just building models; I am building the infrastructure that makes them reliable. My roadmap focuses on:
- AI Ops & Observability: Mastering the art of monitoring, logging, and debugging complex AI pipelines in production.
- LLM Ops: Building robust evaluation frameworks and deployment pipelines for Large Language Models.
- Scalable Backends: Architecting distributed systems that can handle millions of inferences with high availability.
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ โ
โ โโโโ โโโโ โโโโ โโ โโโโ โโโโ โโโโโโ โโโโ โ
โ โ โ โ โ โ โ โ โ โ โโ โ โ
โ โโโโ โโโโ โ โ โ โโโ โ โโ โโโโ โ
โ โ โ โ โ โ โ โ โ โ โโ โ โ
โ โ โ โ โโโโ โโ โโโโ โโโโ โโ โโโโ โ
โ โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ PROBLEM โ Need for accessible AI-powered medical consultation demos โ
โ โ that combine voice, vision, and text modalities โ
โโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ SOLUTION โ Multimodal chatbot: speak symptoms, upload images, โ
โ โ receive AI diagnosis in text + realistic voice response โ
โโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Tech: Groq Whisper (ASR) | Groq LLaMA Vision | ElevenLabs TTS | Gradio
- Features: Voice-to-text symptom input, medical image analysis (skin conditions), realistic voice responses
- Architecture:
voice_of_the_patient.pyโbrain_of_the_doctor.pyโvoice_of_the_doctor.py - Educational: Demonstrates multimodal AI integration for healthcare use cases
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ PROBLEM โ Compliance teams spend significant time manually searching โ
โ โ regulations, costing companies substantial resources โ
โโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ SOLUTION โ AI-powered assistant with citation-backed answers in 2 seconds โ
โ โ significantly reducing research time โ
โโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Tech: FastAPI | Weaviate (BM25 + semantic) | Groq LLM | Docker
- Features: Smart query expansion, web search fallback, response caching, admin auth, rate limiting
- Security (v2.1): HTTPS enforcement, CORS protection, audit logging, Prometheus metrics
- Live Demo
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ PROBLEM โ Organizations can't efficiently query insights from โ
โ โ audio/meeting recordings at scale โ
โโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ SOLUTION โ Enterprise audio RAG with transcription, semantic search, โ
โ โ and conversational AI over audio content โ
โโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Tech: AssemblyAI (speaker diarization) | Qdrant Vectors | SambaNova LLM | Redis Cache
- Enterprise Features: JWT auth with RBAC, multi-tenant isolation, audit logs, batch processing
- Domain Models: Healthcare, Legal, Finance vocabularies with privacy-conscious design
- Architecture: Streamlit UI + FastAPI + PostgreSQL + Celery workers
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ PROBLEM โ Disinformation spreads faster than fact-checkers can respond โ
โโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ SOLUTION โ AI platform combining NLP + Computer Vision to detect โ
โ โ fake news articles and deepfake images with explainability โ
โโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Tech: EfficientNet-B4 | MTCNN Face Detection | Ensemble ML (LR + RF + GB) | React + TypeScript
- Features: LIME explainability, GradCAM heatmaps, real-time confidence scores
- Inspired by: IFCN fact-checking principles
- API: FastAPI with Swagger docs at
/docsand/redoc
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ PROBLEM โ Property research is manual, time-consuming, and expensive โ
โโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ SOLUTION โ Multi-agent AI system for automated property discovery, โ
โ โ investment analysis, and market trend predictions โ
โโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Tech: Gemini AI | Firecrawl API | Streamlit | SQLite/PostgreSQL | Redis
- Features: ROI projections, rental yields, risk scoring, market trends, search history
- Data Sources: Real-time scraping from 99acres, Housing.com, Square Yards
- Performance: Significant API cost reduction with intelligent Redis caching
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โ
โ โก TECH ARSENAL โก โ
โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ โ
โ ๐ LANGUAGES: English | Hindi | Telugu | Kannada | Japanese (Intermediate) โ
โ โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
Audio & Speech AI
| Project | Description | Stack |
|---|---|---|
| Audio-RAG-Analyzer | Audio content analysis with RAG | Python, Transformers |
| Audio-AI-Agent | Intelligent audio processing agent | AI Agents |
NLP & Creative AI
| Project | Description | Stack |
|---|---|---|
| Narrative Transformer | AI-powered story genre transformation with custom NTI metric | Transformers, LLMs |
Healthcare AI
| Project | Description | Stack |
|---|---|---|
| Healthcare_ChatBot | Domain-specific healthcare assistant | Python, NLP |
| HealthyfyMe | Health and wellness application | Python, ML |
Document Intelligence
| Project | Description | Stack |
|---|---|---|
| LLMBasedPDF | LLM-powered PDF processing | LLMs |
| TextSummarizer_Project | Intelligent text summarization | NLP, Transformers |
| DocumentRetrieval | Smart document retrieval system | Information Retrieval |
Full-Stack Apps
| Project | Description | Stack |
|---|---|---|
| Edu-Connect-Dev | Educational platform | React |
| gdp-dashboard | Data visualization dashboard | Streamlit |
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โ
โ ๐ CAREER JOURNEY ๐ โ
โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โ
โ ๐ฌ RESEARCH CONTRIBUTIONS ๐ฌ โ
โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
A System for Providing Security Using a Plurality of Factors for IoT Gadgets
Filed (Indian Patent No. 202341040746)
Discovering Insights into Heart Health: A Survey of Data Mining and Machine Learning Methods
Presented at ICCICCT-2023 NICHE
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ โ
โ B.Tech in Computer Science & Technology โ
โ Dayananda Sagar University | First Class โ
โ 2021โ2025 โ
โ โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โ
โ ๐ LEARNING & GROWING ๐ โ
โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ โ
โ OPEN TO: AI/ML Intern | Entry-Level AI Engineer | LLMOps Entry Level โ
โ Entry Level RAG Systems Developer | Founder Office - AI Engineer โ
โ Product Development Associate or Intern โ
โ โ
โ LOCATION: Bengaluru, India (Open to Remote) โ
โ โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โ
โ โ
โ โ๐ Building AI that understands, reasons, and delivers โ
โ real-world impact ๐โ โ
โ โ
โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ

