Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 14 additions & 2 deletions sklbench/report/implementation.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,10 @@

import argparse
import json
from functools import reduce
from typing import Dict, List

import numpy as np
import openpyxl as xl
import pandas as pd
from openpyxl.formatting.rule import ColorScaleRule
Expand Down Expand Up @@ -165,7 +167,12 @@ def select_comparison(i, j, diffs_selection):
df = input_df.set_index(index_columns)
unique_indices = df.index.unique()
splitted_dfs = split_df_by_columns(input_df, diff_columns)
splitted_dfs = {key: df.set_index(index_columns) for key, df in splitted_dfs.items()}
common_cols = reduce(np.intersect1d, [df.columns for df in splitted_dfs.values()])
df_specific_cols = np.setdiff1d(index_columns, common_cols)
splitted_dfs = {
key: df.assign(**{col: None for col in df_specific_cols}).set_index(index_columns)
for key, df in splitted_dfs.items()
}

# drop results with duplicated indices (keep first entry only)
for key, splitted_df in splitted_dfs.items():
Expand All @@ -181,6 +188,9 @@ def select_comparison(i, j, diffs_selection):
# compared values
for i, (key_ith, df_ith) in enumerate(splitted_dfs.items()):
for j, (key_jth, df_jth) in enumerate(splitted_dfs.items()):
common_indexes = np.intersect1d(df_ith.index, df_jth.index)
df_ith = df_ith.loc[common_indexes]
df_jth = df_jth.loc[common_indexes]
if select_comparison(i, j, diffs_selection):
comparison_name = f"{key_jth} vs {key_ith}"
for column in df_ith.columns:
Expand All @@ -196,7 +206,9 @@ def select_comparison(i, j, diffs_selection):
df[f"{comparison_name}\n{column} is equal"] = (
df_ith[column] == df_jth[column]
)
df = df.reset_index()
if len(df_specific_cols):
df.index = df.index.droplevel(list(df_specific_cols))
df = df.dropna(axis=0, how="all", ignore_index=False).reset_index()
# move to multi-index
df = df[reorder_columns(list(df.columns))]
df.columns = [
Expand Down
Loading