Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions src/classification/main.jl
Original file line number Diff line number Diff line change
Expand Up @@ -79,8 +79,9 @@ function build_tree(
min_samples_leaf = 1,
min_samples_split = 2,
min_purity_increase = 0.0;
weights::Union{Nothing,AbstractVector{U}} = nothing,
loss = util.entropy :: Function,
rng = Random.GLOBAL_RNG) where {S, T}
rng = Random.GLOBAL_RNG) where {S, T, U <: Integer}

if max_depth == -1
max_depth = typemax(Int)
Expand All @@ -93,7 +94,7 @@ function build_tree(
t = treeclassifier.fit(
X = features,
Y = labels,
W = nothing,
W = weights,
loss = loss,
max_features = Int(n_subfeatures),
max_depth = Int(max_depth),
Expand Down Expand Up @@ -195,6 +196,7 @@ function build_forest(
min_samples_leaf = 1,
min_samples_split = 2,
min_purity_increase = 0.0;
weights = nothing,
rng = Random.GLOBAL_RNG) where {S, T}

if n_trees < 1
Expand Down Expand Up @@ -229,6 +231,7 @@ function build_forest(
min_samples_leaf,
min_samples_split,
min_purity_increase,
weights = (weights === nothing ? nothing : weights[inds]),
loss = loss,
rng = rngs)
end
Expand Down
4 changes: 2 additions & 2 deletions src/classification/tree.jl
Original file line number Diff line number Diff line change
Expand Up @@ -307,7 +307,7 @@ module treeclassifier
function fit(;
X :: Matrix{S},
Y :: Vector{T},
W :: Union{Nothing, Vector{U}},
W :: Union{Nothing, AbstractVector{U}},
loss=util.entropy :: Function,
max_features :: Int,
max_depth :: Int,
Expand All @@ -318,7 +318,7 @@ module treeclassifier

n_samples, n_features = size(X)
list, Y_ = util.assign(Y)
if W == nothing
if W === nothing
W = fill(1, n_samples)
end

Expand Down
5 changes: 4 additions & 1 deletion src/regression/main.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ function build_tree(
min_samples_leaf = 5,
min_samples_split = 2,
min_purity_increase = 0.0;
weights = nothing,
rng = Random.GLOBAL_RNG) where {S, T <: Float64}

if max_depth == -1
Expand All @@ -35,7 +36,7 @@ function build_tree(
t = treeregressor.fit(
X = features,
Y = labels,
W = nothing,
W = weights,
max_features = Int(n_subfeatures),
max_depth = Int(max_depth),
min_samples_leaf = Int(min_samples_leaf),
Expand All @@ -56,6 +57,7 @@ function build_forest(
min_samples_leaf = 5,
min_samples_split = 2,
min_purity_increase = 0.0;
weights = nothing,
rng = Random.GLOBAL_RNG) where {S, T <: Float64}

if n_trees < 1
Expand Down Expand Up @@ -86,6 +88,7 @@ function build_forest(
min_samples_leaf,
min_samples_split,
min_purity_increase,
weights = (weights === nothing ? nothing : weights[inds]),
rng = rngs)
end

Expand Down
12 changes: 8 additions & 4 deletions src/scikitlearnAPI.jl
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ get_classes(dt::DecisionTreeClassifier) = dt.classes
[:pruning_purity_threshold, :max_depth, :min_samples_leaf,
:min_samples_split, :min_purity_increase, :rng])

function fit!(dt::DecisionTreeClassifier, X, y)
function fit!(dt::DecisionTreeClassifier, X, y, weights=nothing)
n_samples, n_features = size(X)
dt.root = build_tree(
y, X,
Expand All @@ -58,6 +58,7 @@ function fit!(dt::DecisionTreeClassifier, X, y)
dt.min_samples_leaf,
dt.min_samples_split,
dt.min_purity_increase;
weights = weights,
rng = dt.rng)

dt.root = prune_tree(dt.root, dt.pruning_purity_threshold)
Expand Down Expand Up @@ -136,7 +137,7 @@ end
[:pruning_purity_threshold, :min_samples_leaf, :n_subfeatures,
:max_depth, :min_samples_split, :min_purity_increase, :rng])

function fit!(dt::DecisionTreeRegressor, X::Matrix, y::Vector)
function fit!(dt::DecisionTreeRegressor, X::Matrix, y::Vector, weights=nothing)
n_samples, n_features = size(X)
dt.root = build_tree(
float.(y), X,
Expand All @@ -145,6 +146,7 @@ function fit!(dt::DecisionTreeRegressor, X::Matrix, y::Vector)
dt.min_samples_leaf,
dt.min_samples_split,
dt.min_purity_increase;
weights = weights,
rng = dt.rng)
dt.pruning_purity_threshold
dt.root = prune_tree(dt.root, dt.pruning_purity_threshold)
Expand Down Expand Up @@ -213,7 +215,7 @@ get_classes(rf::RandomForestClassifier) = rf.classes
:min_samples_leaf, :min_samples_split, :min_purity_increase,
:rng])

function fit!(rf::RandomForestClassifier, X::Matrix, y::Vector)
function fit!(rf::RandomForestClassifier, X::Matrix, y::Vector, weights=nothing)
n_samples, n_features = size(X)
rf.ensemble = build_forest(
y, X,
Expand All @@ -224,6 +226,7 @@ function fit!(rf::RandomForestClassifier, X::Matrix, y::Vector)
rf.min_samples_leaf,
rf.min_samples_split,
rf.min_purity_increase;
weights = weights,
rng = rf.rng)
rf.classes = sort(unique(y))
rf
Expand Down Expand Up @@ -297,7 +300,7 @@ end
# since it'll change throughout fitting, but it works
:max_depth, :rng])

function fit!(rf::RandomForestRegressor, X::Matrix, y::Vector)
function fit!(rf::RandomForestRegressor, X::Matrix, y::Vector, weights=nothing)
n_samples, n_features = size(X)
rf.ensemble = build_forest(
float.(y), X,
Expand All @@ -308,6 +311,7 @@ function fit!(rf::RandomForestRegressor, X::Matrix, y::Vector)
rf.min_samples_leaf,
rf.min_samples_split,
rf.min_purity_increase;
weights = weights,
rng = rf.rng)
rf
end
Expand Down