Skip to content

Transcribe audio into text. Agentic AI supported through MCP Server.

License

Notifications You must be signed in to change notification settings

Knuckles-Team/audio-transcriber

Repository files navigation

Audio-Transcriber - A2A | AG-UI | MCP

PyPI - Version MCP Server PyPI - Downloads GitHub Repo stars GitHub forks GitHub contributors PyPI - License GitHub

GitHub last commit (by committer) GitHub pull requests GitHub closed pull requests GitHub issues

GitHub top language GitHub language count GitHub repo size GitHub repo file count (file type) PyPI - Wheel PyPI - Implementation

Version: 0.5.73

Overview

Transcribe your .wav .mp4 .mp3 .flac files to text or record your own audio!

This repository is actively maintained - Contributions are welcome!

Contribution Opportunities:

  • Support new models

Wrapped around OpenAI Whisper

MCP

MCP Tools

Function Name Description Tag(s)
transcribe_audio Transcribes audio from a provided file or by recording from the microphone. audio_processing

A2A Agent

Architecture Summary

---
config:
  layout: dagre
---
flowchart TB
 subgraph subGraph0["Agent Capabilities"]
        C["Agent"]
        B["A2A Server - Uvicorn/FastAPI"]
        D["MCP Tools"]
        F["Agent Skills"]
  end
    C --> D & F
    A["User Query"] --> B
    B --> C
    D --> E["Platform API"]

     C:::agent
     B:::server
     A:::server
    classDef server fill:#f9f,stroke:#333
    classDef agent fill:#bbf,stroke:#333,stroke-width:2px
    style B stroke:#000000,fill:#FFD600
    style D stroke:#000000,fill:#BBDEFB
    style F fill:#BBDEFB
    style A fill:#C8E6C9
    style subGraph0 fill:#FFF9C4
Loading

Component Interaction Diagram

sequenceDiagram
    participant User
    participant Server as A2A Server
    participant Agent as Agent
    participant Skill as Agent Skills
    participant MCP as MCP Tools

    User->>Server: Send Query
    Server->>Agent: Invoke Agent
    Agent->>Skill: Analyze Skills Available
    Skill->>Agent: Provide Guidance on Next Steps
    Agent->>MCP: Invoke Tool
    MCP-->>Agent: Tool Response Returned
    Agent-->>Agent: Return Results Summarized
    Agent-->>Server: Final Response
    Server-->>User: Output
Loading

Usage

CLI

Short Flag Long Flag Description
-h --help See Usage
-b --bitrate Bitrate to use during recording
-c --channels Number of channels to use during recording
-d --directory Directory to save recording
-e --export Export txt, srt, and vtt files
-f --file File to transcribe
-l --language Language to transcribe
-m --model Model to use: <tiny, base, small, medium, large>
-n --name Name of recording
-r --record Specify number of seconds to record to record from microphone
audio-transcriber --file '~/Downloads/Federal_Reserve.mp4' --model 'large'
audio-transcriber --record 60 --directory '~/Downloads/' --name 'my_recording.wav' --model 'tiny'

MCP CLI

Short Flag Long Flag Description
-h --help Display help information
-t --transport Transport method: 'stdio', 'http', or 'sse' [legacy] (default: stdio)
-s --host Host address for HTTP transport (default: 0.0.0.0)
-p --port Port number for HTTP transport (default: 8000)
--auth-type Authentication type: 'none', 'static', 'jwt', 'oauth-proxy', 'oidc-proxy', 'remote-oauth' (default: none)
--token-jwks-uri JWKS URI for JWT verification
--token-issuer Issuer for JWT verification
--token-audience Audience for JWT verification
--oauth-upstream-auth-endpoint Upstream authorization endpoint for OAuth Proxy
--oauth-upstream-token-endpoint Upstream token endpoint for OAuth Proxy
--oauth-upstream-client-id Upstream client ID for OAuth Proxy
--oauth-upstream-client-secret Upstream client secret for OAuth Proxy
--oauth-base-url Base URL for OAuth Proxy
--oidc-config-url OIDC configuration URL
--oidc-client-id OIDC client ID
--oidc-client-secret OIDC client secret
--oidc-base-url Base URL for OIDC Proxy
--remote-auth-servers Comma-separated list of authorization servers for Remote OAuth
--remote-base-url Base URL for Remote OAuth
--allowed-client-redirect-uris Comma-separated list of allowed client redirect URIs
--eunomia-type Eunomia authorization type: 'none', 'embedded', 'remote' (default: none)
--eunomia-policy-file Policy file for embedded Eunomia (default: mcp_policies.json)
--eunomia-remote-url URL for remote Eunomia server

Using as an MCP Server

The MCP Server can be run in two modes: stdio (for local testing) or http (for networked access). To start the server, use the following commands:

Run in stdio mode (default):

audio-transcriber-mcp

Run in HTTP mode:

audio-transcriber-mcp --transport "http"  --host "0.0.0.0"  --port "8000"

Model Information

Courtesy of and Credits to OpenAI: Whisper.ai

Size Parameters English-only model Multilingual model Required VRAM Relative speed
tiny 39 M tiny.en tiny ~1 GB ~32x
base 74 M base.en base ~1 GB ~16x
small 244 M small.en small ~2 GB ~6x
medium 769 M medium.en medium ~5 GB ~2x
large 1550 M N/A large ~10 GB 1x

Deploy MCP Server as a Service

The ServiceNow MCP server can be deployed using Docker, with configurable authentication, middleware, and Eunomia authorization.

Using Docker Run

docker pull knucklessg1/audio-transcriber:latest

docker run -d \
  --name audio-transcriber-mcp \
  -p 8004:8004 \
  -e HOST=0.0.0.0 \
  -e PORT=8004 \
  -e TRANSPORT=http \
  -e AUTH_TYPE=none \
  -e EUNOMIA_TYPE=none \
  knucklessg1/audio-transcriber:latest

For advanced authentication (e.g., JWT, OAuth Proxy, OIDC Proxy, Remote OAuth) or Eunomia, add the relevant environment variables:

docker run -d \
  --name audio-transcriber-mcp \
  -p 8004:8004 \
  -e HOST=0.0.0.0 \
  -e PORT=8004 \
  -e TRANSPORT=http \
  -e AUTH_TYPE=oidc-proxy \
  -e OIDC_CONFIG_URL=https://provider.com/.well-known/openid-configuration \
  -e OIDC_CLIENT_ID=your-client-id \
  -e OIDC_CLIENT_SECRET=your-client-secret \
  -e OIDC_BASE_URL=https://your-server.com \
  -e ALLOWED_CLIENT_REDIRECT_URIS=http://localhost:*,https://*.example.com/* \
  -e EUNOMIA_TYPE=embedded \
  -e EUNOMIA_POLICY_FILE=/app/mcp_policies.json \
  knucklessg1/audio-transcriber:latest

Using Docker Compose

Create a docker-compose.yml file:

services:
  audio-transcriber-mcp:
    image: knucklessg1/audio-transcriber:latest
    environment:
      - HOST=0.0.0.0
      - PORT=8004
      - TRANSPORT=http
      - AUTH_TYPE=none
      - EUNOMIA_TYPE=none
    ports:
      - 8004:8004

For advanced setups with authentication and Eunomia:

services:
  audio-transcriber-mcp:
    image: knucklessg1/audio-transcriber:latest
    environment:
      - HOST=0.0.0.0
      - PORT=8004
      - TRANSPORT=http
      - AUTH_TYPE=oidc-proxy
      - OIDC_CONFIG_URL=https://provider.com/.well-known/openid-configuration
      - OIDC_CLIENT_ID=your-client-id
      - OIDC_CLIENT_SECRET=your-client-secret
      - OIDC_BASE_URL=https://your-server.com
      - ALLOWED_CLIENT_REDIRECT_URIS=http://localhost:*,https://*.example.com/*
      - EUNOMIA_TYPE=embedded
      - EUNOMIA_POLICY_FILE=/app/mcp_policies.json
    ports:
      - 8004:8004
    volumes:
      - ./mcp_policies.json:/app/mcp_policies.json

Run the service:

docker-compose up -d

Configure mcp.json for AI Integration

Configure mcp.json

{
  "mcpServers": {
    "audio_transcriber": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "audio-transcriber",
        "audio-transcriber-mcp"
      ],
      "env": {
        "WHISPER_MODEL": "medium",            // Optional
        "TRANSCRIBE_DIRECTORY": "~/Downloads" // Optional
      },
      "timeout": 200000
    }
  }
}

A2A CLI

Endpoints

  • Web UI: http://localhost:8000/ (if enabled)
  • A2A: http://localhost:8000/a2a (Discovery: /a2a/.well-known/agent.json)
  • AG-UI: http://localhost:8000/ag-ui (POST)
Short Flag Long Flag Description
-h --help Display help information
--host Host to bind the server to (default: 0.0.0.0)
--port Port to bind the server to (default: 9000)
--reload Enable auto-reload
--provider LLM Provider: 'openai', 'anthropic', 'google', 'huggingface'
--model-id LLM Model ID (default: qwen3:4b)
--base-url LLM Base URL (for OpenAI compatible providers)
--api-key LLM API Key

| | --mcp-url | MCP Server URL (default: http://localhost:8000/mcp) | | | --web | Enable Pydantic AI Web UI | False (Env: ENABLE_WEB_UI) |

Install Python Package

python -m pip install audio-transcriber

or

uv pip install --upgrade audio-transcriber
Ubuntu Dependencies
sudo apt-get update
sudo apt-get install libasound-dev portaudio19-dev libportaudio2 libportaudiocpp0 ffmpeg gcc -y

Repository Owners

GitHub followers GitHub User's stars

About

Transcribe audio into text. Agentic AI supported through MCP Server.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published