Skip to content

MartinPdeS/FlowCyPy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FlowCyPy Logo

FlowCyPy: Flow Cytometer Simulation Tool

Meta Python Documentation Status  
Testing Unittest Status Unittest coverage Google Colab
PyPi PyPi version PyPI - Downloads  
Anaconda Anaconda version Anaconda downloads Latest release date

Overview

FlowCyPy is a cutting-edge Python library designed to simulate flow cytometer experiments. By generating realistic Forward Scatter (FSC) and Side Scatter (SSC) signals, FlowCyPy enables detailed modeling of flow cytometry setups, making it ideal for researchers and engineers working with extracellular vesicles (EVs) or other scatterers.

Key Features

  • Particle Event Simulation: Create detailed FSC/SSC signals with customizable particle size and refractive index distributions.
  • Noise and Signal Modeling: Incorporate realistic noise sources (thermal, shot, dark current) and baseline shifts.
  • Detector Configurations: Simulate real-world detector behaviors, including saturation and responsivity.
  • Fluorescence Modeling: Simulate fluorescence signals for labeled particles (e.g., EV surface markers).
  • Visualization Tools: Generate advanced plots, including density maps and signal traces.

For full documentation and examples, visit the FlowCyPy Documentation.

Installation

Install FlowCyPy via pip or conda`:

pip install FlowCyPy
conda install FlowCyPy --channels MartinPdeS

Requirements: Python 3.10 or higher with dependencies: numpy, scipy, pint, tabulate, seaborn, MPSPlots, PyMieSim, pydantic>=2.6.3

Quick Start

Simulate a simple flow cytometer experiment:

from TypedUnit import ureg
import os
dir_path = os.path.dirname(os.path.realpath(__file__))

# %%
# Step 1: Define Flow Cell and Fluidics
# -------------------------------------
from FlowCyPy.flow_cell import FlowCell
from FlowCyPy.fluidics import Fluidics, ScattererCollection, distribution, population

flow_cell = FlowCell(
    sample_volume_flow=80 * ureg.microliter / ureg.minute,
    sheath_volume_flow=1 * ureg.milliliter / ureg.minute,
    width=200 * ureg.micrometer,
    height=100 * ureg.micrometer,
)

scatterer_collection = ScattererCollection(medium_refractive_index=1.33 * ureg.RIU)

population_0 = population.Sphere(
    name="Pop 0",
    particle_count=5e9 * ureg.particle / ureg.milliliter,
    diameter=distribution.RosinRammler(150 * ureg.nanometer, spread=30),
    refractive_index=distribution.Normal(1.44 * ureg.RIU, std_dev=0.002 * ureg.RIU),
)

population_1 = population.Sphere(
    name="Pop 1",
    particle_count=5e9 * ureg.particle / ureg.milliliter,
    diameter=distribution.RosinRammler(200 * ureg.nanometer, spread=30),
    refractive_index=distribution.Normal(1.44 * ureg.RIU, std_dev=0.002 * ureg.RIU),
)

scatterer_collection.add_population(population_0, population_1)

scatterer_collection.dilute(factor=30)

fluidics = Fluidics(scatterer_collection=scatterer_collection, flow_cell=flow_cell)

# %%
# Step 2: Define Optical Subsystem
# --------------------------------
from FlowCyPy.opto_electronics import (
    Detector,
    OptoElectronics,
    TransimpedanceAmplifier,
    source,
)

source = source.GaussianBeam(
    numerical_aperture=0.1 * ureg.AU,
    wavelength=450 * ureg.nanometer,
    optical_power=200 * ureg.milliwatt,
    RIN=-140,
)

detectors = [
    Detector(
        name="forward",
        phi_angle=0 * ureg.degree,
        numerical_aperture=0.3 * ureg.AU,
        responsivity=1 * ureg.ampere / ureg.watt,
    ),
    Detector(
        name="side",
        phi_angle=90 * ureg.degree,
        numerical_aperture=0.3 * ureg.AU,
        responsivity=1 * ureg.ampere / ureg.watt,
    ),
]

amplifier = TransimpedanceAmplifier(
    gain=10 * ureg.volt / ureg.ampere,
    bandwidth=10 * ureg.megahertz,
    voltage_noise_density=0.1 * ureg.nanovolt / ureg.sqrt_hertz,
    current_noise_density=0.2 * ureg.femtoampere / ureg.sqrt_hertz,
)

opto_electronics = OptoElectronics(
    detectors=detectors, source=source, amplifier=amplifier
)


# %%
# Step 3: Signal Processing Configuration
# ---------------------------------------
from FlowCyPy.signal_processing import (
    Digitizer,
    SignalProcessing,
    circuits,
    peak_locator,
    triggering_system,
)

digitizer = Digitizer(
    bit_depth="14bit", saturation_levels="auto", sampling_rate=60 * ureg.megahertz
)

analog_processing = [
    circuits.BaselineRestorator(window_size=10 * ureg.microsecond),
    circuits.BesselLowPass(cutoff=2 * ureg.megahertz, order=4, gain=2),
]

triggering = triggering_system.DynamicWindow(
    trigger_detector_name="forward",
    threshold=10 * ureg.microvolt,
    pre_buffer=20,
    post_buffer=20,
    max_triggers=-1,
)

peak_algo = peak_locator.GlobalPeakLocator(compute_width=False)

signal_processing = SignalProcessing(
    digitizer=digitizer,
    analog_processing=analog_processing,
    triggering_system=triggering,
    peak_algorithm=peak_algo,
)

# %%
# Step 4: Run Simulation
# ----------------------
from FlowCyPy import FlowCytometer

cytometer = FlowCytometer(
    opto_electronics=opto_electronics,
    fluidics=fluidics,
    signal_processing=signal_processing,
    background_power=0.001 * ureg.milliwatt,
)

run_record = cytometer.run(run_time=1.5 * ureg.millisecond)

# %%
# Step 5: Plot Events and Raw Analog Signals
# ------------------------------------------
_ = run_record.events.plot(
    x="Diameter",
    y="RefractiveIndex",
    show=False,
    save_as=f"{dir_path}/../images/readme_events.png",
)

Readme Events

# %%
# Plot raw analog signals
# -----------------------
_ = run_record.plot_analog(
    figure_size=(12, 8),
    show=False,
    save_as=f"{dir_path}/../images/readme_analog.png",
)

Readme Analog

# %%
# Step 6: Plot Triggered Analog Segments
# --------------------------------------
_ = run_record.plot_digital(
    figure_size=(12, 8),
    show=False,
    save_as=f"{dir_path}/../images/readme_digital.png",
)

Readme Digitalç

Explore more examples in the FlowCyPy Examples.

Code structure

Here is the architecture for a standard workflow using FlowCyPy:

FlowCyPy Logo

Development and Contribution

Clone the Repository

git clone https://github.com/MartinPdeS/FlowCyPy.git
cd FlowCyPy

Install Locally

Install in editable mode with testing and documentation dependencies:

pip install -e .[testing,documentation] (on linux system)
pip install -e ".[testing,documentation]" (on macOS system)

Run Tests

Use pytest to validate functionality:

pytest

Build Documentation

Build the documentation locally:

cd docs
make html

Find the documentation in docs/_build/html.

Additional Resources

Contributions

Contributions are welcome! If you have suggestions, issues, or would like to collaborate, visit the GitHub repository.

Contact

For inquiries or collaboration, contact Martin Poinsinet de Sivry-Houle.

About

Python package for FlowCytometry simulation and development toolbox.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •