Skip to content

Mentholatum/3DCNNForCRMs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

3DCNNForCRMs

Code for paper: Automated segmentation and detection of complicated cystic renal masses using 3D V-Net convolutional neural network on multiparametric MRI

Installing Dependencies

Dependencies can be installed using:

pip install -r requirements.txt

Data Preprocessing

The input images required for model creation, along with data augmentation operations, are conducted offline.

python [certain modality]_process.py

Training

Using the default values for hyper-parameters, the following command can be used to initiate training using PyTorch:

python train_[certain modality].py
--batchSz=2
--nEpochs=500
--classes=2
--inChannels=1
--dropout_rate=0.5
--lr=1e-3
--opt='adamw'
--model='VNET' or 'UNET3D'
--cuda

Validation

You can use the following command to initiate model inference using PyTorch:

python eval_[certain modality].py
--batchSz=1
--classes=2
--inChannels=1
--dropout_rate=0.5
--model='VNET' or 'UNET3D'
--resume='model_saved_path/model.pth'
--cuda

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages