Code for paper: Automated segmentation and detection of complicated cystic renal masses using 3D V-Net convolutional neural network on multiparametric MRI
Dependencies can be installed using:
pip install -r requirements.txtThe input images required for model creation, along with data augmentation operations, are conducted offline.
python [certain modality]_process.pyUsing the default values for hyper-parameters, the following command can be used to initiate training using PyTorch:
python train_[certain modality].py
--batchSz=2
--nEpochs=500
--classes=2
--inChannels=1
--dropout_rate=0.5
--lr=1e-3
--opt='adamw'
--model='VNET' or 'UNET3D'
--cudaYou can use the following command to initiate model inference using PyTorch:
python eval_[certain modality].py
--batchSz=1
--classes=2
--inChannels=1
--dropout_rate=0.5
--model='VNET' or 'UNET3D'
--resume='model_saved_path/model.pth'
--cuda