Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 84 additions & 1 deletion modelopt/onnx/op_types.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ def is_fusible_scaling_op(op_type: str):
]


def get_copy_ops():
def get_copy_ops() -> list[str]:
"""Returns list of copy operators."""
return [
"Flatten",
Expand Down Expand Up @@ -303,3 +303,86 @@ def is_data_dependent_shape_op(op_type: str):
"NonZero",
"RoiAlign",
]


def get_bool_ops():
"""Returns set of bool operations."""
return {
"Not",
"And",
"Or",
"Xor",
}


def get_bitwise_ops():
"""Returns set of bitwise operations."""
return {
"BitwiseAnd",
"BitwiseOr",
"BitwiseXor",
"BitShift",
}


def get_value_check_ops():
"""Returns set of value checking operations."""
return {
"IsNaN",
"IsInf",
"Sign",
"Abs",
}


def get_comparison_ops():
"""Returns set of comparison operations."""
return {
"Equal",
"Greater",
"GreaterOrEqual",
"Less",
"LessOrEqual",
}


def get_conditional_ops():
"""Returns set of conditional operations."""
return {
"Where",
}


def get_aggregation_ops():
"""Returns set of aggregation operations."""
return {
"All",
"Any",
}


def get_set_ops():
"""Returns set of set/search operations."""
return {
"Unique",
"NonZero",
}


def get_symmetric_ops():
"""Returns set of commutative/symmetric operations where operand order doesn't matter."""
return {
"Add",
"Mul",
"And",
"Or",
"Xor",
"Equal",
"Max",
"Min",
"Sum",
"Mean",
"BitwiseAnd",
"BitwiseOr",
"BitwiseXor",
}
60 changes: 60 additions & 0 deletions modelopt/onnx/quantization/autotune/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# SPDX-FileCopyrightText: Copyright (c) 2026 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pattern-Based Q/DQ Autotuning for ONNX Models.

This package provides automated optimization of Quantize/Dequantize (Q/DQ) node placement
in ONNX computation graphs to minimize TensorRT inference latency. It uses pattern-based
region analysis to efficiently explore and optimize Q/DQ insertion strategies.
"""

# Core data structures
from .common import (
AutotunerError,
AutotunerNotInitializedError,
Config,
InsertionScheme,
InvalidSchemeError,
PatternCache,
PatternSchemes,
Region,
RegionType,
)
from .insertion_points import (
ChildRegionInputInsertionPoint,
ChildRegionOutputInsertionPoint,
NodeInputInsertionPoint,
ResolvedInsertionPoint,
)
from .region_pattern import RegionPattern
from .region_search import CombinedRegionSearch

__all__ = [
"AutotunerError",
"AutotunerNotInitializedError",
"ChildRegionInputInsertionPoint",
"ChildRegionOutputInsertionPoint",
"CombinedRegionSearch",
"Config",
"InsertionScheme",
"InvalidSchemeError",
"NodeInputInsertionPoint",
"PatternCache",
"PatternSchemes",
"Region",
"RegionPattern",
"RegionType",
"ResolvedInsertionPoint",
]
Loading