Skip to content
This repository was archived by the owner on Nov 19, 2025. It is now read-only.
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 42 additions & 1 deletion nemo_aligner/models/nlp/gpt/megatron_gpt_dpo_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,9 @@ def gather_and_split_rewards(self, pi_logprobs, ref_logprobs, labels, cu_seqlens
pi_logprobs - ref_logprobs, labels, cu_seqlens, average_log_probs=average_log_probs
)

if parallel_state.get_context_parallel_world_size() > 1:
torch.distributed.all_reduce(batch_logs, group=parallel_state.get_context_parallel_group())

num_examples_on_this_rank = torch.tensor(batch_logs.size(), device=torch.cuda.current_device())
num_examples = [torch.zeros_like(num_examples_on_this_rank) for _ in range(dp_group.size())]
torch.distributed.all_gather(num_examples, num_examples_on_this_rank, group=dp_group)
Expand All @@ -97,6 +100,36 @@ def gather_and_split_rewards(self, pi_logprobs, ref_logprobs, labels, cu_seqlens

return out_chosen.flatten(), out_rejected.flatten()

def get_batch_on_this_context_parallel_rank(self, batch: dict):
cp_size = parallel_state.get_context_parallel_world_size()
if cp_size > 1:
ref_logs = {}
if "ref_policy_log_probs_chosen" in batch:
ref_logs["ref_policy_log_probs_chosen"] = batch.pop("ref_policy_log_probs_chosen")

if "ref_policy_log_probs_rejected" in batch:
ref_logs["ref_policy_log_probs_rejected"] = batch.pop("ref_policy_log_probs_rejected")

cp_rank = parallel_state.get_context_parallel_rank()
for key, val in batch.items():
if val is not None:
seq_dim = 1 if key != "attention_mask" else 2
val = val.view(
*val.shape[0:seq_dim],
2 * cp_size,
val.shape[seq_dim] // (2 * cp_size),
*val.shape[(seq_dim + 1) :],
)
index = torch.tensor([cp_rank, (2 * cp_size - cp_rank - 1)], device="cpu", pin_memory=True).cuda(
non_blocking=True
)
val = val.index_select(seq_dim, index)
val = val.view(*val.shape[0:seq_dim], -1, *val.shape[(seq_dim + 2) :])
batch[key] = val
batch.update(ref_logs)

return batch

def get_forward_output_and_loss_func(self, validation_step=False, logprobs_only=False):
def fwd_output_and_loss_func(dataloader_iter, model, checkpoint_activations_all_layers=None):
batch = next(dataloader_iter)
Expand Down Expand Up @@ -138,6 +171,8 @@ def fwd_output_and_loss_func(dataloader_iter, model, checkpoint_activations_all_

batch = {key: val.cuda(non_blocking=True) if key in required_keys else None for key, val in batch.items()}

batch = self.get_batch_on_this_context_parallel_rank(batch)

tokens, labels, ref_logprobs, gt_rewards, cu_seqlens = None, None, None, None, None
if packed: ## packed sequence
tokens = batch["input_ids"]
Expand Down Expand Up @@ -275,8 +310,10 @@ def loss_func(output_tensor):
average_log_probs=self.preference_avg_log_probs,
)

cp_size = parallel_state.get_context_parallel_world_size()

return (
loss,
loss * cp_size,
{
"avg": reduced_loss,
"avg_sft_loss": reduced_sft_loss,
Expand Down Expand Up @@ -348,6 +385,10 @@ def loss_func(self, pi_logprobs, ref_logprobs, labels, gt_rewards, cu_seqlens=No
rewards = self.get_reduced_masked_logps(
pi_logprobs - ref_logprobs, labels, cu_seqlens=cu_seqlens, average_log_probs=average_log_probs,
)

if parallel_state.get_context_parallel_world_size() > 1:
torch.distributed.all_reduce(rewards, group=parallel_state.get_context_parallel_group())

chosen_rewards, reject_rewards = self.split_output_tensor(rewards)
rewards_delta = chosen_rewards - reject_rewards

Expand Down
7 changes: 3 additions & 4 deletions nemo_aligner/utils/distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -328,12 +328,11 @@ def forward(ctx, vocab_parallel_logits, target, inference_only=False, higher_sta
@staticmethod
def backward(ctx, grad_output):
softmax, target_mask, masked_target = ctx.saved_tensors
partition_vocab_size = softmax.size(-1)

# 1 if it's the chosen log prob, 0 otherwise
is_chosen = (~target_mask).unsqueeze(-1) * torch.nn.functional.one_hot(
masked_target, num_classes=partition_vocab_size
)
is_chosen = torch.zeros_like(softmax)
is_chosen.scatter_(-1, masked_target.unsqueeze(-1), 1.0)
is_chosen = is_chosen.masked_fill(target_mask.unsqueeze(-1), 0.0)

grad_input = is_chosen.float().sub_(softmax)

Expand Down
Loading