Lattice helps you build AI agents in Go with clean abstractions for LLMs, tool calling, retrieval-augmented memory, and multi-agent coordination. Focus on your domain logic while Lattice handles the orchestration plumbing.
Building production AI agents requires more than just LLM calls. You need:
- Pluggable LLM providers that swap without rewriting logic
- Tool calling that works across different model APIs
- Memory systems that remember context across conversations
- Multi-agent coordination for complex workflows
- Testing infrastructure that doesn't hit external APIs
Lattice provides all of this with idiomatic Go interfaces and minimal dependencies.
- 🧩 Modular Architecture – Compose agents from reusable modules with declarative configuration
- 🤖 Multi-Agent Support – Coordinate specialist agents through a shared catalog and delegation system
- 🔧 Rich Tooling – Implement the
Toolinterface once, use everywhere automatically - 🧠 Smart Memory – RAG-powered memory with importance scoring, MMR retrieval, and automatic pruning
- 🔌 Model Agnostic – Adapters for Gemini, Anthropic, Ollama, or bring your own
- 📡 UTCP Ready – First-class Universal Tool Calling Protocol support
git clone https://github.com/Protocol-Lattice/go-agent.git
cd lattice-agent
go mod downloadpackage main
import (
"context"
"flag"
"log"
"github.com/Protocol-Lattice/go-agent/src/adk"
adkmodules "github.com/Protocol-Lattice/go-agent/src/adk/modules"
"github.com/Protocol-Lattice/go-agent"
"github.com/Protocol-Lattice/go-agent/src/subagents"
"github.com/Protocol-Lattice/go-agent/src/memory"
"github.com/Protocol-Lattice/go-agent/src/memory/engine"
"github.com/Protocol-Lattice/go-agent/src/models"
"github.com/Protocol-Lattice/go-agent/src/tools"
)
func main() {
qdrantURL := flag.String("qdrant-url", "http://localhost:6333", "Qdrant base URL")
qdrantCollection := flag.String("qdrant-collection", "adk_memories", "Qdrant collection name")
flag.Parse()
ctx := context.Background()
// --- Shared runtime
researcherModel, err := models.NewGeminiLLM(ctx, "gemini-2.5-pro", "Research summary:")
if err != nil {
log.Fatalf("create researcher model: %v", err)
}
memOpts := engine.DefaultOptions()
adkAgent, err := adk.New(ctx,
adk.WithDefaultSystemPrompt("You orchestrate a helpful assistant team."),
adk.WithSubAgents(subagents.NewResearcher(researcherModel)),
adk.WithModules(
adkmodules.NewModelModule("gemini-model", func(_ context.Context) (models.Agent, error) {
return models.NewGeminiLLM(ctx, "gemini-2.5-pro", "Swarm orchestration:")
}),
adkmodules.InQdrantMemory(100000, *qdrantURL, *qdrantCollection, memory.AutoEmbedder(), &memOpts),
),
)
if err != nil {
log.Fatal(err)
}
agent, err := adkAgent.BuildAgent(ctx)
if err != nil {
log.Fatal(err)
}
// Use the agent
resp, err := agent.Generate(ctx, "SessionID", "What is pgvector")
if err != nil {
log.Fatal(err)
}
log.Println(resp)
}# Interactive CLI demo
go run cmd/demo/main.go
# Multi-agent coordination
go run cmd/team/main.go
# Quick start example
go run cmd/quickstart/main.golattice-agent/
├── cmd/
│ ├── demo/ # Interactive CLI with tools, delegation, and memory
│ ├── quickstart/ # Minimal getting-started example
│ └── team/ # Multi-agent coordination demos
├── pkg/
│ ├── adk/ # Agent Development Kit and module system
│ ├── memory/ # Memory engine and vector store adapters
│ ├── models/ # LLM provider adapters (Gemini, Ollama, Anthropic)
│ ├── subagents/ # Pre-built specialist agent personas
├── └── tools/ # Built-in tools (echo, calculator, time, etc.)
| Variable | Description | Required |
|---|---|---|
GOOGLE_API_KEY |
Gemini API credentials | For Gemini models |
GEMINI_API_KEY |
Alternative to GOOGLE_API_KEY |
For Gemini models |
DATABASE_URL |
PostgreSQL connection string | For persistent memory |
ADK_EMBED_PROVIDER |
Embedding provider override | No (defaults to Gemini) |
export GOOGLE_API_KEY="your-api-key-here"
export DATABASE_URL="postgres://user:pass@localhost:5432/lattice?sslmode=disable"
export ADK_EMBED_PROVIDER="gemini"Lattice includes a sophisticated memory system with retrieval-augmented generation (RAG):
store := memory.NewInMemoryStore() // or PostgreSQL/Qdrant
engine := memory.NewEngine(store, memory.Options{}).
WithEmbedder(yourEmbedder)
sessionMemory := memory.NewSessionMemory(
memory.NewMemoryBankWithStore(store),
8, // context window size
).WithEngine(engine)Features:
- Importance Scoring – Automatically weights memories by relevance
- MMR Retrieval – Maximal Marginal Relevance for diverse results
- Auto-Pruning – Removes stale or low-value memories
- Multiple Backends – In-memory, PostgreSQL+pgvector,mongodb, neo4j or Qdrant
Create custom tools by implementing a simple interface:
package tools
import (
"context"
"fmt"
"strings"
"github.com/Protocol-Lattice/go-agent"
)
// EchoTool repeats the provided input. Useful for testing tool wiring.
type EchoTool struct{}
func (e *EchoTool) Spec() agent.ToolSpec {
return agent.ToolSpec{
Name: "echo",
Description: "Echoes the provided text back to the caller.",
InputSchema: map[string]any{
"type": "object",
"properties": map[string]any{
"input": map[string]any{
"type": "string",
"description": "Text to echo back.",
},
},
"required": []any{"input"},
},
}
}
func (e *EchoTool) Invoke(_ context.Context, req agent.ToolRequest) (agent.ToolResponse, error) {
raw := req.Arguments["input"]
if raw == nil {
return agent.ToolResponse{Content: ""}, nil
}
return agent.ToolResponse{Content: strings.TrimSpace(fmt.Sprint(raw))}, nil
}Register tools with the module system and they're automatically available to all agents.
Use Shared Spaces to coordinate multiple agents with shared memory
Perfect for:
- Team-based workflows where agents need shared context
- Complex tasks requiring specialist coordination
- Projects with explicit access control requirements
Token-Oriented Object Notation (TOON) is integrated into Lattice to dramatically reduce token consumption when passing structured data to and from LLMs. This is especially critical for AI agent workflows where context windows are precious and API costs scale with token usage.
Traditional JSON is verbose and wastes tokens on repetitive syntax. Consider passing agent memory or tool responses:
{
"memories": [
{ "id": 1, "content": "User prefers Python", "importance": 0.9, "timestamp": "2025-01-15" },
{ "id": 2, "content": "User is building CLI tools", "importance": 0.85, "timestamp": "2025-01-14" },
{ "id": 3, "content": "User works with PostgreSQL", "importance": 0.8, "timestamp": "2025-01-13" }
]
}Token count: ~180 tokens
TOON compresses the same data by eliminating redundancy:
memories[3]{id,content,importance,timestamp}:
1,User prefers Python,0.9,2025-01-15
2,User is building CLI tools,0.85,2025-01-14
3,User works with PostgreSQL,0.8,2025-01-13
Token count: ~85 tokens
Savings: ~53% fewer tokens
- Larger Context Windows – Fit more memories, tool results, and conversation history into the same context limit
- Lower API Costs – Reduce your LLM API bills by up to 50% on structured data
- Faster Processing – Fewer tokens mean faster inference times and lower latency
- Better Memory Systems – Store and retrieve more historical context without hitting token limits
- Multi-Agent Communication – Pass more information between coordinating agents efficiently
TOON is particularly effective for:
- Agent Memory Banks – Retrieving and formatting conversation history
- Tool Responses – Returning structured data from database queries or API calls
- Multi-Agent Coordination – Sharing state between specialist agents
- Batch Operations – Processing multiple similar records (users, tasks, logs)
- RAG Contexts – Injecting retrieved documents with metadata
When your agent queries its memory system, TOON can encode dozens of memories in the space where JSON would fit only a handful:
// Retrieve memories
memories := sessionMemory.Retrieve(ctx, "user preferences", 20)
// Encode with TOON for LLM context
encoded, _ := toon.Marshal(memories, toon.WithLengthMarkers(true))
// Pass to LLM with 40-60% fewer tokens than JSON
prompt := fmt.Sprintf("Based on these memories:\n%s\n\nAnswer the user's question.", encoded)Despite its compactness, TOON remains readable for debugging and development. The format explicitly declares its schema, making it self-documenting:
users[2]{id,name,role}:
1,Alice,admin
2,Bob,user
You can immediately see: 2 users, with fields id/name/role, followed by their values.
Lattice automatically uses TOON for internal data serialization. To use it in your custom tools or memory adapters:
import "github.com/toon-format/toon-go"
// Encode your structs
encoded, err := toon.Marshal(data, toon.WithLengthMarkers(true))
// Decode back to structs
var result MyStruct
err = toon.Unmarshal(encoded, &result)
// Or decode to dynamic maps
var doc map[string]any
err = toon.Unmarshal(encoded, &doc)For more details, see the TOON specification.
Bottom Line: TOON helps your agents do more with less, turning token budgets into a competitive advantage rather than a constraint.
The Tool Orchestrator is an intelligent decision engine that lets the LLM choose when and how to call UTCP tools. It analyzes user input, evaluates available tools, and returns a structured JSON plan describing the next action.
This brings
go-agentto the same capability tier as OpenAI’s tool choice, but with fully pluggable UTCP backends and Go-native execution.
-
Interprets the user’s request
-
Loads and renders all available UTCP tools
-
Allows the LLM to reason using TOON-Go
-
Produces a strict JSON decision object:
{ "use_tool": true, "tool_name": "search.files", "arguments": { "query": "config" }, "reason": "User asked to look for configuration files" } -
Executes the chosen tool deterministically
-
Collect Tool Definitions
rendered := a.renderUtcpToolsForPrompt()
-
Build the Orchestration Prompt
choicePrompt := fmt.Sprintf(` You are a UTCP tool selection engine. A user asked: %q You have access to these UTCP tools: %s You can also discover tools dynamically using: search_tools("<query>", <limit>) Return ONLY JSON: { "use_tool": ..., "tool_name": "...", "arguments": { }, "reason": "..." } `, userInput, rendered)
-
LLM Makes a Decision (via TOON)
- Coordinator executes reasoning
- Assistant returns the final JSON only
-
Agent Executes the Tool
CallToolSearchToolsCallToolStream
-
The result becomes the agent’s final response
The orchestrator uses TOON as its structured reasoning layer:
- Coordinator → analyzes tool options
- Assistant → returns the strict JSON
- No hallucinated formatting
- Easy to debug via TOON traces
- Session memory stores the entire reasoning trajectory
This yields stable, deterministic tool choice behavior.
find all files containing “db connection” in the workspace
{
"use_tool": true,
"tool_name": "search.files",
"arguments": {
"query": "db connection",
"limit": 20
},
"reason": "User wants to search through the workspace files"
}The search.files UTCP tool is invoked, and its direct output is returned to the user.
UTCP tool calls can run inside the Go DSL:
r, _ := codemode.CallTool("echo", map[string]any{"input": "hi"})The orchestrator can:
- call a tool
- run a chain step
- discover tools dynamically
- combine reasoning + execution
This makes go-agent one of the first Go frameworks with multi-step, LLM-driven tool-routing.
# Run all tests
go test ./...
# Run with coverage
go test -cover ./...
# Run specific package tests
go test ./pkg/memory/...We follow standard Go conventions:
- Use
gofmtfor formatting - Follow Effective Go guidelines
- Add tests for new features
- Update documentation when adding capabilities
New LLM Provider:
- Implement the
models.LLMinterface inpkg/models/ - Add provider-specific configuration
- Update documentation and examples
New Tool:
- Implement
agent.Toolinterface inpkg/tools/ - Register with the tool module system
- Add tests and usage examples
New Memory Backend:
- Implement
memory.VectorStoreinterface - Add migration scripts if needed
- Update configuration documentation
- Go 1.22+ (1.25 recommended)
- PostgreSQL 15+ with
pgvectorextension (optional, for persistent memory) - API Keys for your chosen LLM provider
For persistent memory with vector search:
CREATE EXTENSION IF NOT EXISTS vector;The memory module handles schema migrations automatically.
Missing pgvector extension
ERROR: type "vector" does not exist
Solution: Run CREATE EXTENSION vector; in your PostgreSQL database.
API key errors
ERROR: authentication failed
Solution: Verify your API key is correctly set in the environment where you run the application.
Tool not found
ERROR: tool "xyz" not registered
Solution: Ensure tool names are unique and properly registered in your tool catalog.
- Check existing GitHub Issues
- Review the examples for common patterns
- Join discussions in GitHub Discussions
We welcome contributions! Here's how to get started:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Make your changes with tests
- Update documentation
- Submit a pull request
Please ensure:
- Tests pass (
go test ./...) - Code is formatted (
gofmt) - Documentation is updated
- Commit messages are clear
This project is licensed under the Apache 2.0 License.
- Inspired by Google's Agent Development Kit (Python)
Star us on GitHub if you find Lattice useful! ⭐