Skip to content

Rishi52/ML-Algorithm-Implementations

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

41 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

ML-Algorithm-Implementations

This repository contains a collection of machine learning algorithm implementations designed to help beginners and intermediate users to understand and apply essential concepts. Each practical focuses on a specific topic, providing hands-on experience with real-world datasets and commonly used Python libraries such as NumPy, pandas, scikit-learn, Matplotlib, and TensorFlow/Keras. ๐ŸŽฏ๐Ÿ“˜๐Ÿ’ป


๐ŸŽจ๐Ÿ“ˆ๐Ÿ› ๏ธPracticals Overview

  1. ๐Ÿ“‚ Load Titanic dataset.
  2. ๐Ÿ“Š Create visualizations: histograms, scatter plots, box plots, and heatmaps.
  3. ๐Ÿ“ˆ Interpret data distributions and relationships.ย 
  1. ๐Ÿ“Š Load Boston Housing dataset.
  2. ๐Ÿ“‰ Implement simple linear regression and multiple linear regression using scikit-learn.
  3. ๐Ÿ“ˆ Evaluate the models using mean squared error and visualize the regression line.
  1. ๐Ÿ“Š Load a binary classification dataset i.e. Breast Cancer dataset.
  2. ๐Ÿงฎ Implement logistic regression using scikit-learn.
  3. ๐Ÿ“Š Evaluate the model using accuracy, precision, recall, and plot the ROC curve.
  1. ๐Ÿ“Š Load a classification dataset Iris dataset.
  2. ๐ŸŒณ Implement decision tree and random forest classifiers using scikit-learn.
  3. ๐Ÿ“‹ Evaluate the models, visualize the decision trees, and analyze feature importance.
  1. ๐Ÿ“Š Load a binary classification dataset i.e. Iris dataset.
  2. ๐Ÿ“ Implement SVM with different kernels (linear, polynomial, RBF) using scikit-learn.
  3. ๐Ÿ“‰ Evaluate the models and visualize the decision boundaries.
  1. ๐Ÿ“Š Load a high-dimensional dataset Wine dataset.
  2. ๐Ÿ“‰ Implement PCA using scikit-learn.
  1. ๐Ÿ“Š Load a dataset suitable for clustering Customer Segmentation dataset. ๐Ÿ”
  2. ๐Ÿ“Š Implement k-means clustering using scikit-learn. โš™๏ธ
  3. ๐Ÿ“ˆ Determine the optimal number of clusters using the elbow method and visualize the clusters. ๐Ÿ“Š
  1. ๐Ÿ“Š Load a dataset for classification Titanic dataset.
  2. ๐ŸŽฏ Implement ensemble methods (Random Forest, AdaBoost, Gradient Boosting) using scikit-learn.
  3. ๐Ÿ“ˆ Compare their performance and visualize the results.
  1. ๐Ÿ“Š Load a classification dataset MNIST dataset.
  2. ๐Ÿง  Build and train a simple feed-forward neural network using TensorFlow or Keras.
  3. ๐Ÿ“ˆ Evaluate the model and visualize the training process (loss and accuracy curves).

image image image image image image image image image image


๐Ÿ› ๏ธ๐Ÿ”ง๐Ÿ“ฆInstallation and Setup

Clone the Repository

git clone https://github.com/Rishi52/ML-Algorithm-Implementations.git

Navigate to the Project Directory

cd ML-Algorithm-Implementations

Install Required Libraries

pip install -r requirements.txt

๐Ÿ“”๐Ÿ’ป๐Ÿ“ŒUsage

Each practical is implemented as a Jupyter notebook. Follow these steps to explore the notebooks:

  1. ๐Ÿ“– Start Jupyter Notebook
    jupyter notebook
  2. ๐Ÿ“˜ Open a Notebook
    • Navigate to the notebook corresponding to the practical you want to explore.ย 

๐Ÿ“‚๐Ÿ“Š๐Ÿ“Datasets

Most of the datasets are provided by scikit-learn which are not present you can find follow the links. The repository includes references to popular datasets from Kaggle like:

Ensure to download these datasets from reliable sources like kaggle or scikit-learn if not provided.


๐Ÿ“š๐Ÿ”ง๐ŸงฐKey Libraries Used

  • ๐Ÿ“š NumPy: Efficient numerical computations.
  • ๐Ÿ“Š Pandas: Data manipulation and analysis.
  • ๐Ÿ“ˆ Matplotlib & Seaborn: Data visualization tools.
  • ๐Ÿค– Scikit-learn: Machine learning algorithms and evaluation metrics.
  • ๐Ÿง  TensorFlow: Deep learning models and frameworks.ย 

๐Ÿคโœจ๐Ÿ“œContribution

Contributions are welcome! If youโ€™d like to enhance the repository or fix issues, feel free to:

  1. ๐ŸŒŸ Fork this repository.
  2. ๐Ÿ› ๏ธ Make your changes.
  3. ๐Ÿ“ฌ Submit a pull request.

๐Ÿ“œโš–๏ธ๐Ÿ“„License

This project is licensed under the MIT License. See the LICENSE file for more details.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published