Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 150 additions & 0 deletions run_sim_different_parcels_equal_groups.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "64cbe8c1",
"metadata": {},
"outputs": [],
"source": [
"import simulation_tools as sim\n",
"import pandas as pd\n",
"import pickle"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e913a747",
"metadata": {},
"outputs": [],
"source": [
"def simulation_loop(N_values, conn_df):\n",
" # Loop through the values of N and run simulation with specified parameters\n",
" result_dict = {\"N\": [], \"mean_sensitivity\": [], \"mean_specificity\": []}\n",
" for N in N_values:\n",
" mean_sens, mean_spef = sim.run_multiple_simulation(conn_df, N=N, pi=0.20, \n",
" d=0.3, proportion_split=0.5, q=0.1, num_sample=100)\n",
" #print(f\"Simulation ran for N={N}.\")\n",
" \n",
" # Append results to the dictionary\n",
" result_dict[\"N\"].append(N)\n",
" result_dict[\"mean_sensitivity\"].append(mean_sens)\n",
" result_dict[\"mean_specificity\"].append(mean_spef)\n",
" \n",
" return result_dict"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "da0df0de",
"metadata": {},
"outputs": [],
"source": [
"# Path to a .csv file with connectomes in upper triangular form\n",
"path_conn_20parcels = \"/home/neuromod/ad_sz/data/abide/abide1and2_controls_20parcels.csv\"\n",
"path_conn_36parcels = \"/home/neuromod/ad_sz/data/abide/abide1and2_controls_36parcels.csv\"\n",
"path_conn_64parcels = \"/home/neuromod/ad_sz/data/abide/abide1and2_controls_64parcels.csv\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ad76085c",
"metadata": {},
"outputs": [],
"source": [
"# Load control connectomes from ABIDE\n",
"conn_20parcels_df = pd.read_csv(path_conn_20parcels)\n",
"conn_36parcels_df = pd.read_csv(path_conn_36parcels)\n",
"conn_64parcels_df = pd.read_csv(path_conn_64parcels)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a44f6133",
"metadata": {},
"outputs": [],
"source": [
"# Create a range of N values\n",
"N_values = range(300, 901, 50)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6d54cf99",
"metadata": {},
"outputs": [],
"source": [
"result_20parcels = simulation_loop(N_values, conn_20parcels_df)\n",
"result_36parcels = simulation_loop(N_values, conn_36parcels_df)\n",
"result_64parcels = simulation_loop(N_values, conn_64parcels_df)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "d08cf2e2",
"metadata": {},
"outputs": [],
"source": [
"with open('sim_result_20parcels.pkl', 'wb') as f:\n",
" pickle.dump(result_20parcels, f)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "96090de1",
"metadata": {},
"outputs": [],
"source": [
"with open('sim_result_36parcels.pkl', 'wb') as f:\n",
" pickle.dump(result_36parcels, f)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "fe070bbd",
"metadata": {},
"outputs": [],
"source": [
"with open('sim_result_64parcels.pkl', 'wb') as f:\n",
" pickle.dump(result_64parcels, f)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d8ffe20",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading