Skip to content

Sangeeth62880/AI-Plagiarism-Checker

Repository files navigation

Veritas AI - Content Integrity & Plagiarism Detection System

Veritas AI Banner Tech Stack

Veritas AI is a production-grade, full-stack application designed to detect AI-generated content and plagiarism with high precision. It combines traditional linguistic analysis (TF-IDF), semantic search (FAISS embeddings), and deep learning classifiers (RoBERTa) to provide a comprehensive content integrity score.

🚀 Key Features

  • Multi-Layered Detection:
    • Linguistic Analysis: Feature-based detection using Perplexity (GPT-2) and Burstiness.
    • AI Classification: Transformer-based detection using a fine-tuned RoBERTa model.
    • Plagiarism Check: TF-IDF for exact matches and Semantic Search (SentenceTransformers + FAISS) for paraphrasing.
  • Explainable AI (XAI):
    • Provides natural language explanations for every verdict.
    • Breaks down the "Why" behind the score (e.g., "Low perplexity indicates machine-generated variance").
  • Modern UI/UX:
    • Sleek Next.js frontend with Tailwind CSS and Framer Motion.
    • Real-time analysis with visual feedback.
    • Responsive plagiarism and AI confidence visualizations.
  • Unified Deployment:
    • Single-command deployment where FastAPI serves both the REST API and the static React frontend.

🛠️ Tech Stack

Backend

  • Framework: FastAPI (Python)
  • ML/AI: PyTorch, Transformers (Hugging Face), Scikit-Learn, Spacy
  • Vector Search: FAISS (Facebook AI Similarity Search)
  • Architecture: Modular Service-Repository pattern with Singleton model loaders.

Frontend

  • Framework: Next.js 14 (App Router)
  • Styling: Tailwind CSS
  • State/Net: React Hooks, Axios
  • Visualization: Recharts, Framer Motion

📦 Installation & Running

Prerequisites

  • Python 3.9+
  • Node.js 18+

1. Setup Backend

# Clone the repository
git clone https://github.com/Sangeeth62880/AI-Plagiarism-Checker.git
cd AI-Plagiarism-Checker

# Install Python dependencies
pip install fastapi uvicorn spacy scikit-learn sentence-transformers faiss-cpu torch transformers

# Download Spacy model
python -m spacy download en_core_web_sm

2. Build Frontend

cd frontend
npm install
npm run build
cd ..

3. Run Unified Application

python -m backend.app

The application will be available at: http://localhost:8000

🧩 Architecture

graph TD
    Client[Next.js Frontend] -->|REST API| API[FastAPI Backend]
    API -->|Route| Services
    subgraph Detection Services
        TF["TF-IDF Plagiarism"]
        SEM["Semantic FAISS"]
        AI["AI Detector (RoBERTa)"]
    end
    Services --> TF
    Services --> SEM
    Services --> AI
    TF & SEM & AI --> Fusion[Score Fusion Layer]
    Fusion --> Explain[Explainability Engine]
    Explain --> API
Loading

🛡️ License

This project is licensed under the MIT License.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published