Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions lib/OptimizationSophia/Project.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
name = "OptimizationSophia"
uuid = "892fee11-dca1-40d6-b698-84ba0d87399a"
authors = ["paramthakkar123 <paramthakkar864@gmail.com>"]
version = "0.1.0"

[deps]
ComponentArrays = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66"
Lux = "b2108857-7c20-44ae-9111-449ecde12c47"
MLUtils = "f1d291b0-491e-4a28-83b9-f70985020b54"
Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba"
OptimizationBase = "bca83a33-5cc9-4baa-983d-23429ab6bcbb"
OrdinaryDiffEqTsit5 = "b1df2697-797e-41e3-8120-5422d3b24e4a"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SciMLSensitivity = "1ed8b502-d754-442c-8d5d-10ac956f44a1"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[compat]
ComponentArrays = "0.15.29"
Lux = "1.16.0"
MLUtils = "0.4.8"
Optimization = "4.5.0"
OptimizationBase = "2.10.0"
OrdinaryDiffEqTsit5 = "1.2.0"
Random = "1.11.0"
SciMLSensitivity = "7.88.0"
Test = "1.11.0"
Zygote = "0.7.10"
Original file line number Diff line number Diff line change
@@ -1,3 +1,9 @@
module OptimizationSophia

using OptimizationBase.SciMLBase
using OptimizationBase: OptimizationCache
using Optimization

struct Sophia
η::Float64
βs::Tuple{Float64, Float64}
Expand Down Expand Up @@ -119,3 +125,5 @@ function SciMLBase.__solve(cache::OptimizationCache{
θ,
x)
end

end
67 changes: 67 additions & 0 deletions lib/OptimizationSophia/test/runtests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
using OptimizationBase, Optimization
using OptimizationBase.SciMLBase: solve, OptimizationFunction, OptimizationProblem
using OptimizationSophia
using Lux, MLUtils, Random, ComponentArrays
using SciMLSensitivity
using Test
using Zygote
using OrdinaryDiffEqTsit5

function dudt_(u, p, t)
ann(u, p, st)[1] .* u
end

function newtons_cooling(du, u, p, t)
temp = u[1]
k, temp_m = p
du[1] = dT = -k * (temp - temp_m)
end

function true_sol(du, u, p, t)
true_p = [log(2) / 8.0, 100.0]
newtons_cooling(du, u, true_p, t)
end

function callback(state, l) #callback function to observe training
display(l)
return l < 1e-2
end

function predict_adjoint(fullp, time_batch)
Array(solve(prob, Tsit5(), p = fullp, saveat = time_batch))
end

function loss_adjoint(fullp, p)
(batch, time_batch) = p
pred = predict_adjoint(fullp, time_batch)
sum(abs2, batch .- pred)
end

u0 = Float32[200.0]
datasize = 30
tspan = (0.0f0, 1.5f0)
rng = Random.default_rng()

ann = Lux.Chain(Lux.Dense(1, 8, tanh), Lux.Dense(8, 1, tanh))
pp, st = Lux.setup(rng, ann)
pp = ComponentArray(pp)

prob = ODEProblem{false}(dudt_, u0, tspan, pp)

t = range(tspan[1], tspan[2], length = datasize)
true_prob = ODEProblem(true_sol, u0, tspan)
ode_data = Array(solve(true_prob, Tsit5(), saveat = t))

k = 10
train_loader = MLUtils.DataLoader((ode_data, t), batchsize = k)

l1 = loss_adjoint(pp, (train_loader.data[1], train_loader.data[2]))[1]

optfun = OptimizationFunction(loss_adjoint,
OptimizationBase.AutoZygote())
optprob = OptimizationProblem(optfun, pp, train_loader)

res1 = solve(optprob,
OptimizationSophia.Sophia(), callback = callback,
maxiters = 2000)
@test 10res1.objective < l1
1 change: 0 additions & 1 deletion src/Optimization.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,6 @@ export ObjSense, MaxSense, MinSense
include("utils.jl")
include("state.jl")
include("lbfgsb.jl")
include("sophia.jl")
include("auglag.jl")

export solve
Expand Down
5 changes: 0 additions & 5 deletions test/minibatch.jl
Original file line number Diff line number Diff line change
Expand Up @@ -58,11 +58,6 @@ optfun = OptimizationFunction(loss_adjoint,
Optimization.AutoZygote())
optprob = OptimizationProblem(optfun, pp, train_loader)

res1 = Optimization.solve(optprob,
Optimization.Sophia(), callback = callback,
maxiters = 2000)
@test 10res1.objective < l1

optfun = OptimizationFunction(loss_adjoint,
Optimization.AutoForwardDiff())
optprob = OptimizationProblem(optfun, pp, train_loader)
Expand Down