Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
36 commits
Select commit Hold shift + click to select a range
d545d6a
WIP
yger Feb 21, 2025
c69b7be
WIP
yger Feb 21, 2025
c5a538c
WIP
yger Feb 21, 2025
b1ce726
Finishing the node
yger Feb 21, 2025
816e4bc
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Feb 21, 2025
d295851
WIP
yger Feb 21, 2025
c02ad97
WIP
yger Feb 21, 2025
09291d4
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Feb 21, 2025
3cf2615
Renaming
yger Mar 10, 2025
ee74efc
WIP
yger Mar 10, 2025
cdd48ec
WIP
yger Mar 10, 2025
0636637
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Mar 10, 2025
871a760
WIP
yger Mar 19, 2025
2fc771a
Imports
yger Mar 20, 2025
39e4770
WIP
yger Mar 27, 2025
674f3de
WIP
yger Mar 27, 2025
e2139f0
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Mar 27, 2025
31de097
Merge branch 'SpikeInterface:main' into thr_crossings
yger Apr 4, 2025
3de822e
Merge branch 'main' into thr_crossings
yger Apr 10, 2025
d1d2097
Making the detector reproducible
yger Apr 10, 2025
2f022dc
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Apr 10, 2025
2697736
Fixing bug in silence_periods
yger Apr 10, 2025
eaee6cf
Merge branch 'thr_crossings' of github.com:yger/spikeinterface into t…
yger Apr 10, 2025
83853e5
Fix
yger Apr 11, 2025
7dfdd17
Patching
yger Apr 11, 2025
3dc4a95
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Apr 11, 2025
c5a87da
Update src/spikeinterface/preprocessing/silence_artifacts.py
yger Dec 4, 2025
0a6a170
More envelope
yger Dec 4, 2025
4caeae3
Conflicts
yger Dec 4, 2025
4ce681f
Merge branch 'main' into thr_crossings
yger Dec 4, 2025
faefd71
WIP
yger Dec 4, 2025
5fb4a46
Naming
yger Dec 4, 2025
a3d170a
typos
yger Dec 4, 2025
aeccb81
Update
yger Dec 4, 2025
f5ae846
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 4, 2025
a2edc7f
Update
yger Dec 4, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/spikeinterface/preprocessing/preprocessing_classes.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,7 @@
from .depth_order import DepthOrderRecording, depth_order
from .astype import AstypeRecording, astype
from .unsigned_to_signed import UnsignedToSignedRecording, unsigned_to_signed
from .silence_artifacts import SilencedArtifactsRecording, silence_artifacts

_all_preprocesser_dict = {
# filter stuff
Expand Down Expand Up @@ -89,6 +90,7 @@
DirectionalDerivativeRecording: directional_derivative,
AstypeRecording: astype,
UnsignedToSignedRecording: unsigned_to_signed,
SilencedArtifactsRecording: silence_artifacts,
}
# we control import in the preprocessing init by setting an __all__

Expand Down
202 changes: 202 additions & 0 deletions src/spikeinterface/preprocessing/silence_artifacts.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,202 @@
from __future__ import annotations

import numpy as np

from spikeinterface.core.core_tools import define_function_handling_dict_from_class
from spikeinterface.preprocessing.silence_periods import SilencedPeriodsRecording
from spikeinterface.preprocessing.rectify import RectifyRecording
from spikeinterface.preprocessing.common_reference import CommonReferenceRecording
from spikeinterface.preprocessing.filter_gaussian import GaussianFilterRecording
from spikeinterface.core.job_tools import split_job_kwargs, fix_job_kwargs
from spikeinterface.core.recording_tools import get_noise_levels
from spikeinterface.core.node_pipeline import PeakDetector, base_peak_dtype
import numpy as np


class DetectThresholdCrossing(PeakDetector):

name = "threshold_crossings"
preferred_mp_context = None

def __init__(
self,
recording,
detect_threshold=5,
noise_levels=None,
seed=None,
noise_levels_kwargs=dict(),
):
PeakDetector.__init__(self, recording, return_output=True)
if noise_levels is None:
noise_levels_kwargs["return_in_uV"] = False
noise_levels_kwargs["seed"] = seed
noise_levels = get_noise_levels(recording, **noise_levels_kwargs)
self.abs_thresholds = noise_levels * detect_threshold
self._dtype = np.dtype(base_peak_dtype + [("onset", "bool")])

def get_trace_margin(self):
return 0

def get_dtype(self):
return self._dtype

def compute(self, traces, start_frame, end_frame, segment_index, max_margin):
z = np.median(traces / self.abs_thresholds, 1)
threshold_mask = np.diff((z > 1) != 0, axis=0)
indices = np.flatnonzero(threshold_mask)
local_peaks = np.zeros(indices.size, dtype=self._dtype)
local_peaks["sample_index"] = indices
local_peaks["onset"][::2] = True
local_peaks["onset"][1::2] = False
return (local_peaks,)


def detect_onsets(recording, detect_threshold=5, min_duration_ms=50, **extra_kwargs):

from spikeinterface.core.node_pipeline import (
run_node_pipeline,
)

noise_levels_kwargs, job_kwargs = split_job_kwargs(extra_kwargs)
job_kwargs = fix_job_kwargs(job_kwargs)

node0 = DetectThresholdCrossing(recording, detect_threshold, **noise_levels_kwargs)

peaks = run_node_pipeline(
recording,
[node0],
job_kwargs,
job_name="detect threshold crossings",
)

order = np.lexsort((peaks["sample_index"], peaks["segment_index"]))
peaks = peaks[order]

periods = []
fs = recording.sampling_frequency
max_duration_samples = int(min_duration_ms * fs / 1000)
num_seg = recording.get_num_segments()

for seg_index in range(num_seg):
sub_periods = []
mask = peaks["segment_index"] == 0
sub_peaks = peaks[mask]
if len(sub_peaks) > 0:
if not sub_peaks["onset"][0]:
local_peaks = np.zeros(1, dtype=np.dtype(base_peak_dtype + [("onset", "bool")]))
local_peaks["sample_index"] = 0
local_peaks["onset"] = True
sub_peaks = np.hstack((local_peaks, sub_peaks))
if sub_peaks["onset"][-1]:
local_peaks = np.zeros(1, dtype=np.dtype(base_peak_dtype + [("onset", "bool")]))
local_peaks["sample_index"] = recording.get_num_samples(seg_index)
local_peaks["onset"] = False
sub_peaks = np.hstack((sub_peaks, local_peaks))

indices = np.flatnonzero(np.diff(sub_peaks["onset"]))
for i, j in zip(indices[:-1], indices[1:]):
if sub_peaks["onset"][i]:
start = sub_peaks["sample_index"][i]
end = sub_peaks["sample_index"][j]
if end - start > max_duration_samples:
sub_periods.append((start, end))

periods.append(sub_periods)

return periods


class SilencedArtifactsRecording(SilencedPeriodsRecording):
"""
Silence user-defined periods from recording extractor traces. The code will construct
an enveloppe of the recording (as a low pass filtered version of the traces) and detect
threshold crossings to identify the periods to silence. The periods are then silenced either
on a per channel basis or across all channels by replacing the values by zeros or by
adding gaussian noise with the same variance as the one in the recordings

Parameters
----------
recording : RecordingExtractor
The recording extractor to silence putative artifacts
detect_threshold : float, default: 5
The threshold to detect artifacts. The threshold is computed as `detect_threshold * noise_level`
freq_max : float, default: 20
The maximum frequency for the low pass filter used
min_duration_ms : float, default: 50
The minimum duration for a threshold crossing to be considered as an artefact.
noise_levels : array
Noise levels if already computed
seed : int | None, default: None
Random seed for `get_noise_levels` and `NoiseGeneratorRecording`.
If none, `get_noise_levels` uses `seed=0` and `NoiseGeneratorRecording` generates a random seed using `numpy.random.default_rng`.
mode : "zeros" | "noise", default: "zeros"
Determines what periods are replaced by. Can be one of the following:

- "zeros": Artifacts are replaced by zeros.

- "noise": The periods are filled with a gaussion noise that has the
same variance that the one in the recordings, on a per channel
basis
**noise_levels_kwargs : Keyword arguments for `spikeinterface.core.get_noise_levels()` function

Returns
-------
silenced_recording : SilencedArtifactsRecording
The recording extractor after silencing detected artifacts
"""

def __init__(
self,
recording,
detect_threshold=5,
verbose=False,
freq_max=5.0,
min_duration_ms=50,
mode="zeros",
noise_levels=None,
seed=None,
list_periods=None,
**noise_levels_kwargs,
):

self.envelope = RectifyRecording(recording)
self.envelope = GaussianFilterRecording(self.envelope, freq_min=None, freq_max=freq_max)
self.envelope = CommonReferenceRecording(self.envelope)

if list_periods is None:
list_periods = detect_onsets(
self.envelope,
detect_threshold=detect_threshold,
min_duration_ms=min_duration_ms,
seed=seed,
**noise_levels_kwargs,
)

if verbose:
for i, periods in enumerate(list_periods):
total_time = np.sum([end - start for start, end in periods])
percentage = 100 * total_time / recording.get_num_samples(i)
print(f"{percentage}% of segment {i} has been flagged as artifactual")

if "envelope" in noise_levels_kwargs:
noise_levels_kwargs.pop("envelope")

SilencedPeriodsRecording.__init__(
self, recording, list_periods, mode=mode, noise_levels=noise_levels, seed=seed, **noise_levels_kwargs
)

self._kwargs.update(
{
"detect_threshold": detect_threshold,
"freq_max": freq_max,
"verbose": verbose,
"min_duration_ms": min_duration_ms,
"envelope": self.envelope,
}
)


# function for API
silence_artifacts = define_function_handling_dict_from_class(
source_class=SilencedArtifactsRecording, name="silence_artifacts"
)
31 changes: 14 additions & 17 deletions src/spikeinterface/preprocessing/silence_periods.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,8 @@
import numpy as np

from spikeinterface.core.core_tools import define_function_handling_dict_from_class
from .basepreprocessor import BasePreprocessor, BasePreprocessorSegment

from spikeinterface.core import get_random_data_chunks, get_noise_levels
from spikeinterface.preprocessing.basepreprocessor import BasePreprocessor, BasePreprocessorSegment
from spikeinterface.core.recording_tools import get_noise_levels
from spikeinterface.core.generate import NoiseGeneratorRecording


Expand Down Expand Up @@ -36,23 +35,21 @@ class SilencedPeriodsRecording(BasePreprocessor):
- "noise": The periods are filled with a gaussion noise that has the
same variance that the one in the recordings, on a per channel
basis
**random_chunk_kwargs : Keyword arguments for `spikeinterface.core.get_random_data_chunk()` function
**noise_levels_kwargs : Keyword arguments for `spikeinterface.core.get_noise_levels()` function

Returns
-------
silence_recording : SilencedPeriodsRecording
The recording extractor after silencing some periods
"""

def __init__(self, recording, list_periods, mode="zeros", noise_levels=None, seed=None, **random_chunk_kwargs):
def __init__(self, recording, list_periods, mode="zeros", noise_levels=None, seed=None, **noise_levels_kwargs):
available_modes = ("zeros", "noise")
num_seg = recording.get_num_segments()

if num_seg == 1:
if isinstance(list_periods, (list, np.ndarray)) and np.array(list_periods).ndim == 2:
# when unique segment accept list instead of of list of list/arrays
# when unique segment accept list instead of list of list/arrays
list_periods = [list_periods]

# some checks
assert mode in available_modes, f"mode {mode} is not an available mode: {available_modes}"

Expand All @@ -71,11 +68,9 @@ def __init__(self, recording, list_periods, mode="zeros", noise_levels=None, see

if mode in ["noise"]:
if noise_levels is None:
random_slices_kwargs = random_chunk_kwargs.copy()
random_slices_kwargs["seed"] = seed
noise_levels = get_noise_levels(
recording, return_in_uV=False, random_slices_kwargs=random_slices_kwargs
)
noise_levels_kwargs["return_in_uV"] = False
noise_levels_kwargs["seed"] = seed
noise_levels = get_noise_levels(recording, **noise_levels_kwargs)
noise_generator = NoiseGeneratorRecording(
num_channels=recording.get_num_channels(),
sampling_frequency=recording.sampling_frequency,
Expand All @@ -88,6 +83,7 @@ def __init__(self, recording, list_periods, mode="zeros", noise_levels=None, see
)
else:
noise_generator = None
noise_levels = None

BasePreprocessor.__init__(self, recording)
for seg_index, parent_segment in enumerate(recording._recording_segments):
Expand All @@ -97,8 +93,10 @@ def __init__(self, recording, list_periods, mode="zeros", noise_levels=None, see
rec_segment = SilencedPeriodsRecordingSegment(parent_segment, periods, mode, noise_generator, seg_index)
self.add_recording_segment(rec_segment)

self._kwargs = dict(recording=recording, list_periods=list_periods, mode=mode, seed=seed)
self._kwargs.update(random_chunk_kwargs)
self._kwargs = dict(
recording=recording, list_periods=list_periods, mode=mode, seed=seed, noise_levels=noise_levels
)
self._kwargs.update(noise_levels_kwargs)


class SilencedPeriodsRecordingSegment(BasePreprocessorSegment):
Expand All @@ -112,8 +110,7 @@ def __init__(self, parent_recording_segment, periods, mode, noise_generator, seg
def get_traces(self, start_frame, end_frame, channel_indices):
traces = self.parent_recording_segment.get_traces(start_frame, end_frame, channel_indices)
traces = traces.copy()

if len(self.periods) > 0:
if self.periods.size > 0:
new_interval = np.array([start_frame, end_frame])
lower_index = np.searchsorted(self.periods[:, 1], new_interval[0])
upper_index = np.searchsorted(self.periods[:, 0], new_interval[1])
Expand Down
16 changes: 16 additions & 0 deletions src/spikeinterface/preprocessing/tests/test_silence_artifacts.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
import pytest

import numpy as np

from spikeinterface.core import generate_recording
from spikeinterface.preprocessing import silence_artifacts


def test_silence_artifacts():
# one segment only
rec = generate_recording(durations=[10.0, 10])
new_rec = silence_artifacts(rec, detect_threshold=5, freq_max=5.0, min_duration_ms=50)


if __name__ == "__main__":
test_silence_artifacts()